
            

PAPER • OPEN ACCESS

Self-generated quantum gauge fields in arrays of
Rydberg atoms
To cite this article: Simon Ohler et al 2022 New J. Phys. 24 023017

 

View the article online for updates and enhancements.

You may also like
Quantum logic and entanglement by
neutral Rydberg atoms: methods and
fidelity
Xiao-Feng Shi

-

Experimental investigations of
dipole–dipole interactions between a few
Rydberg atoms
Antoine Browaeys, Daniel Barredo and
Thierry Lahaye

-

Three-photon laser excitation of
mesoscopic ensembles of cold rubidium
Rydberg atoms
E.A. Yakshina, D.B. Tretyakov, V.M. Entin
et al.

-

This content was downloaded from IP address 131.246.130.16 on 30/04/2024 at 08:13

https://doi.org/10.1088/1367-2630/ac4a15
/article/10.1088/2058-9565/ac18b8
/article/10.1088/2058-9565/ac18b8
/article/10.1088/2058-9565/ac18b8
/article/10.1088/0953-4075/49/15/152001
/article/10.1088/0953-4075/49/15/152001
/article/10.1088/0953-4075/49/15/152001
/article/10.1070/QEL16765
/article/10.1070/QEL16765
/article/10.1070/QEL16765


New J. Phys. 24 (2022) 023017 https://doi.org/10.1088/1367-2630/ac4a15

OPEN ACCESS

RECEIVED

24 September 2021

REVISED

21 December 2021

ACCEPTED FOR PUBLICATION

11 January 2022

PUBLISHED

15 February 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Self-generated quantum gauge fields in arrays of Rydberg
atoms

Simon Ohler1,∗ , Maximilian Kiefer-Emmanouilidis1,2, Antoine Browaeys3,
Hans Peter Büchler4 and Michael Fleischhauer1

1 Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
2 Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada
3 Universit́e Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau Cedex, France
4 Institute for Theoretical Physics III and Center for Integrated Quantum Science and Technology, University of Stuttgart, 70550

Stuttgart, Germany
∗ Author to whom any correspondence should be addressed.

E-mail: sohler@rhrk.uni-kl.de

Keywords: Rydberg atoms, correlated hopping, density-dependent Peierls phase, vortex to Meissner phase transition, effective gauge
fields

Abstract
As shown in recent experiments (Lienhard et al 2020 Phys. Rev. X 10 021031), spin–orbit coupling
in systems of Rydberg atoms can give rise to density-dependent Peierls phases in second-order
hoppings of Rydberg spin excitations and nearest-neighbor repulsion. We here study theoretically
a one-dimensional zig-zag ladder system of such spin–orbit coupled Rydberg atoms at half filling.
The second-order hopping is shown to be associated with an effective gauge field, which in
mean-field approximation is static and homogeneous. Beyond the mean-field level the gauge
potential attains a transverse quantum component whose amplitude is dynamical and linked to
density modulations. We here study the effects of this to the possible ground-state phases of the
system. In a phase where strong repulsion leads to a density wave, we find that as a consequence of
the induced quantum gauge field a regular pattern of current vortices is formed. However also in
the absence of density–density interactions the quantum gauge field attains a non-vanishing
amplitude. Above a certain critical strength of the second-order hopping the energy gain due to
gauge-field induced transport overcomes the energy cost from the associated build-up of density
modulations leading to a spontaneous generation of the quantum gauge field.

1. Introduction

Due to their strong and non-local interaction, their experimental accessibility and the high degree of

tunability and control that can be exerted, Rydberg atoms have become a powerful tool for simulating

strongly correlated quantum many-body systems [1]. The strong interaction exhibited by Rydberg atoms

extending over μm distances, while at the same time featuring high stability, allows to use optical tweezers

and atom-by-atom assembly to prepare arbitrary one- and two-dimensional arrays of atoms [2–4]. The

repulsive van-der-Waals interaction between pairs of Rydberg atoms then provides a natural way to

implement spin models with Ising-type zz interactions [5] and to study them with full coherent control.

Experiments include the observation of quantum phase transitions to ordered phases in one-dimensional

quantum models with Ising interactions extending beyond the nearest neighbor (NN) [6–8] and

two-dimensional square lattices [9–12], as well as the probing of topological spin liquids in dimer models

based on Rydberg atoms in Kagome lattices [13]. Here the spin degree of freedom is formed by a low-lying

level and a Rydberg state of the atoms. If the spin is made up out of two Rydberg states with a

dipole-allowed transition, excitation exchange between pairs of atoms corresponds to an xy spin interaction,

which has been used to experimentally investigate symmetry protected topological lattice models of

interacting bosons [14].
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The realization of external magnetic fields poses a challenge to all platforms based on neutral atoms. To
circumvent this problem, different physical effects that mimic the behavior of a magnetic field on charged
particles have been proposed including laser assisted tunneling [15], periodic driving [16] or the transfer of
angular momentum from light [17]. Recently, in [18] it was demonstrated that spin–orbit coupling in
systems of Rydberg atoms can be used to generate Peierls phases in the hopping matrix elements of
Rydberg excitations without external light fields, laser assisted tunneling or lattice shaking. The authors
showed that the Peierls phases, which are the manifestation of external magnetic fields in lattice models,
lead to chiral currents in a triangle-configuration of three atoms. Moreover the complex amplitudes of the
hopping process between two Rydberg atoms depended on the occupation of Rydberg states of a third atom
in between the two atoms. Such density-controlled hopping processes form one elementary building block
for a direct implementation of even more complex many-body models such as dynamical gauge theories
[19, 20].

In the present paper we theoretically investigate a simple one-dimensional extension of the triangle
system studied in [18] with density-dependent complex hopping of Rydberg excitations competing with
repulsive density–density interactions. Interacting bosons on a lattice in an external effective magnetic field
can give rise to a transition between a Meissner and a vortex phase [21–23] upon tuning the magnetic flux.
If the magnetic field becomes density-dependent this transition can be driven by density alone [24].
Additionally, we show that in the Rydberg system a different type of transition between a Meissner phase
and vortex phase occurs. We will show that the Rydberg model features besides a static, classical gauge
potential a dynamical quantum component linked to density modulations. Although being a dynamical
quantity, the quantum component of the gauge field is gauge invariant as it is a transverse field.
Nevertheless, it substantially modifies the ground-state phase diagram, which we numerically investigate
using exact diagonalization (ED) methods. It leads to two new liquid phases in addition to a trivial
superfluid, which are characterized by alternating vortex currents of Rydberg excitations. In an ordered
phase where the repulsive interactions dominate a regular array of current vortices emerges. Surprisingly
the quantum gauge field is spontaneously generated even without additional density–density interaction
terms, reminiscent of the Higgs-mechanism.

The paper is organized as follows: in section 2 we shortly illustrate the microscopic origin of the model.
In the subsequent section 3 we discuss the Rydberg spin model and show its phase diagram as well as the
emergence of chiral currents. In order to gain some understanding of the phase diagram we transform the
spin model, equivalent to hard core bosons, to a fermion model and discuss a mean-field approximation of
the fermionic model in section 4. In section 5 we reformulate the model in terms of operator valued
transverse gauge fields which provides an explanation for the vortex-currents found in the numerical
simulations. In section 6 we make a few remarks about possible experimental signatures and in
section 7 we summarize our results and give an outlook to further studies.

2. Nonlinear excitation transport in arrays of Rydberg atoms

To understand how Rydberg interactions can be tuned to exhibit density-dependent Peierls phases, we first
consider the physical behavior of a minimal triangle setup of atoms, shown in figure 1. In this setup, three
identical Rydberg atoms are placed on an equilateral triangle in the xy-plane. Furthermore, two Rydberg
states are chosen to represent the two spin-states |1〉 and |0〉. The third atomic state, |+〉, is detuned and
will be adiabatically eliminated, yielding non-resonant processes that scale as the inverse detuning 1/Δ.
The level scheme shown in figure 1 is created by external electric and magnetic fields which provide the
required energy splittings. This minimal scheme has been experimentally realized in [18], where the authors
explain under what conditions the manifold of Rydberg states in the 60S1/2, 60P1/2, and 60P3/2 levels can be
reduced to these three states and provide concrete values of detuning and magnetic field strength. For a
short summary regarding the restriction to three atomic states, see appendix A. When the magnetic field is
orthogonal to the plane of the atoms, the microscopic Hamiltonian coupling atoms i and j can be written as

V̂ ij =
1

4πε0R3
ij

[
d̂z

i d̂z
j +

1

2

(
d̂+

i d̂−
j + d̂−

i d̂+
j

)
− 3

2

(
d̂+

i d̂+
j e−2iφij + d̂−

i d̂−
j e2iφij

)]
. (1)

Here, Ri,j =
∣∣ri,j

∣∣ and φij refer to the interatomic distance and angle in polar coordinates, respectively.

Additionally, the operators d̂±
i = ∓ 1√

2
(d̂x

i ± id̂y
i ) represent ladder operators raising and lowering the

angular momentum of the ith Rydberg atom. In (1) we recognize the flip–flop terms d̂+
i d̂−

j as well as terms

d̂+
i d̂+

j e−2iφij that increase the angular momentum of both involved atoms and are multiplied by a complex
phase.
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Figure 1. (a) Minimal setup of Rydberg atoms in the (x, y)-plane subjected to a magnetic field in z-direction. (b) Zig-zag chain
discussed in this paper. The distance R and angle α between NNs determine the strength and complex phase of the interaction
processes. (c) Relevant atomic levels, which we take from a Rydberg S (|0〉) and P (|+〉 , |1〉) orbital. In the experiments of [18]
the states 60S1/2 and 60P3/2 are used.

Figure 2. Illustration of the indirect process occurring in the triangle of Rydberg atoms. The three boxes correspond to the
operation in each of the three atoms. Atom 1 (blue) is de-excited, where the photon couples to the |0〉 ↔ |+〉 transition in atom
2 (brown). Since this transition is detuned, the process is non-resonant and returns to the state |0〉, which in turn couples to the
resonant |0〉 ↔ |1〉 transition of the third (green) atom.

As a result of the interaction Hamiltonian (1) it is useful to consider two different types of processes.
In this section, we will only provide a qualitative explanation, the microscopic derivation is given in
appendix A.

We consider the states |1〉 and |0〉 as the two states of a spin-1/2 system and transform to hard-core
bosons for a more intuitive picture. The first and simplest process is the resonant dipole–dipole interaction,
where the term d̂+

i d̂−
j in (1) causes an exchange of population in the |0〉 and |1〉 states of the atoms i and j.

This mechanism yields for the hard-core bosonic Hamiltonian d̂+
i d̂−

j → b̂†j b̂i, where the operators b̂i and b̂†i
are annihilation and creation operators for hard-core bosons (spin-1/2) at site i, respectively, which satisfy

the hard-core constraint b̂2
i =

(
b̂†i

)2
= 0 at each site i.

The second, more interesting process is the non-resonant excitation transfer involving three sites of the
lattice. For this process, illustrated in figure 2, the terms quadratic in raising or lowering operators in (1)
are responsible. An important feature is here that de-excitation of the blue atom drives the non-resonant
process in the red atom only if the latter is in the ground state |0〉. In this manner, the hopping process
shown in figure 2 connects two sites (blue and green atoms) depending on the density (occupation of state
|1〉) of another atom (red). Since the corresponding terms of (1) also include a complex phase, we obtain
the following term in hard-core boson language b̂†j b̂i (1 − n̂k) e−4iεi,j,kα. Here, εi,j,k is the Levi-Civita symbol
which distinguishes between a clockwise and counter-clockwise motion of the excitation, and α = φij is the
interatomic angle for all i �= j.

Lastly, we need to take into account a special case of the second process, where the initial and the final
atoms are identical. In that situation, we no longer have a hopping process, but in fact a NN
density–density interaction b̂†i b̂i (1 − n̂k), where the complex phase drops out.
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Summarising all the terms discussed so far, we can write down the total Hamiltonian for the triangle
setup discussed in figure 1

Ĥ = −J
3∑

i�=j=1

b̂†i b̂j + h.c. − 2gJ
3∑

i�=j�=k

b̂†i b̂j (1 − n̂k) e−4iεi,j,kα + h.c. − 2gJ
3∑

i�=k

n̂i (1 − n̂k) . (2)

Here, J is the natural energy scale of the system and g = 27J
2Δ is the rescaled detuning of the atomic state |+〉.

The numerical factors in g are explained in the microscopic derivation given in appendix A. This model has
been experimentally investigated by the authors of [18], where they confirmed the density-dependence of
the chiral motion of excitations on the triangular setup.

In the following we consider an extension of this model that extends in 1D in the form of a zig-zag
chain, as shown in figure 1. As a result, more density-dependent terms and longer-range processes enter the
Hamiltonian given in (2), but the underlying principle remains unchanged.

3. Spin excitations in a 1D zig-zag chain

3.1. Model
We now consider a one-dimensional zig-zag chain formed by the elementary triangles of Rydberg atoms
from the previous section, see figure 1(b). We set the physical angle α = π/3 in which case the triangles are
equilateral, and each site j now has four equivalent NNs. As a result, the indirect (density-dependent)
hopping terms as well as the NN interaction outlined in the previous section now include all possible
NN-combinations as shown in figure 3. In order to account for the fact that more internal Rydberg states
may be relevant in the interaction we allow for additional NN density–density interactions resulting from
off-resonant van-der Waals interactions. Their relevance can in fact be controlled by proper choice of
Rydberg states. For example, the total C6 interaction coefficients for the Rubidium |60s, 60s〉 , |60p, 60s〉 and
|60p, 60p〉 states are different [25], which leads to a modification of the density–density interaction from the
one in (2). We here quantify this effect by a dimensionless parameter η, where η = 1 corresponds to the
case when no additional van-der Waals interactions are present (i.e. the case of a three-level atom), and
η 	 1 means that van-der Waals interactions dominate over the second order processes discussed in the
previous section. Note that η depends on the principal quantum number of the Rydberg level and thus is
not a continuously tuneable parameter. The complete many-body Hamiltonian for the zig-zag chain then
reads up to irrelevant homogeneous single-particle energy shifts

Ĥ = −J
∑

j

b̂†j+1b̂j

[
1 + 2g

(
e∓

2πi
3 (1 − n̂j−1) + e±

2πi
3 (1 − n̂j+2)

)]
+ h.c.

− J
∑

j

b̂†j+2b̂j

[
1 + 2g e±

4πi
3 (1 − n̂j+1)

]
+ h.c. (3)

− J
∑

j

b̂†j+3b̂j 2g
[

e∓
2πi
3 (1 − n̂j+1) + e±

2πi
3 (1 − n̂j+2)

]
+ h.c. − J

∑
j

b̂†j+4b̂j 2g(1 − n̂j+2) + h.c.

− J
∑

j

b̂†j b̂j 2gη
[
(1 − n̂j−1) + (1 − n̂j+1) + (1 − n̂j−2) + (1 − n̂j+2)

]
.

The upper (lower) sign in the exponents applies to even (odd) sites j corresponding to the upper (lower)
sub-chain. b̂j, b̂†j are annihilation and creation operators of hard-core bosons and n̂j = b̂†j b̂j is the number
operator of particles acting at site j. The individual hopping processes are illustrated in figure 3. g =

27J/ (2Δ) is the coupling constant of the second order processes relative to the direct hopping. Its
magnitude determines the relevance of both the complex, density-dependent hopping processes and the
density–density interaction as compared to the direct hopping processes occurring at rate J.

The Hamiltonian (3) conserves the number of hard-core bosons (Rydberg excitations in state |1〉),
and of particular interest is the case of an excitation number commensurate with the lattice size L.
Consequently, in the following we consider half filling, i.e. the total number of atoms in Rydberg states |0〉
and |1〉 is each one half the number of lattice sites. In [14] the authors explain how to prepare such a state
experimentally for the case of a one-dimensional chain with alternating hopping. In the present case of a
zig-zag chain half filling could alternatively be achieved e.g. by selectively applying external laser fields only
to the lower sub-chain.
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Figure 3. Visualization of all hopping processes in the one-dimensional zig-zag ladder, including their respective phases.
(a) Direct hopping processes. (b) Indirect hoppings between NN on the same sub-chain, acquiring opposite Peierls phases
depending on the direction. (c) Two exemplary indirect NN hoppings connecting sub-chains. The total Peierls phase attached to
such a process is staggered, i.e. it changes sign when going from the upper to the lower chain or vice versa. The same holds for all
other non-resonant processes. (d) Indirect hopping terms connecting sites j − 2 with j + 1 as well as j with j + 4. For the case of
α = π

3 chosen here, all these indirect terms are of equal magnitude.

Figure 4. Phase diagram as a function of g and η. The phases I–IV are characterized by a different behavior of single particle

correlations. (a) Re[b̂†
j+1b̂j], (b) Im[b̂†j+2b̂j]. The cross (plus) signs show the positions of the peaks of the ground-state fidelity

obtained from ED simulation in horizontal (vertical) cuts. The inset in (a) shows a finite-size extrapolation of the peak positions
for η = 1, demonstrating that the liquid regime II, absent in a mean-field model, survives in the thermodynamic limit L →∞.

3.2. Phase diagram
In the present paper we are interested in the properties of the many-body ground state of the zig-zag chain
(3) for a half-filled system of hard-core bosons with repulsive interactions, i.e. g > 0 and η � 0. We start by
considering the two trivial limiting cases.

If all second-order processes are weak, i.e. for g → 0, which is the case for large detuning |Δ| 	 J, only
direct hopping processes between NNs j → j + 1 and j → j + 2 are relevant and one expects a simple
bosonic (quasi) superfluid (phase I in figure 4). Controlled by the parameter η, there is a competition
between the density–density interaction, preferring an ordered state for ηg 	 1 (phase IV in figure 4),
and hopping processes which drive the system into a liquid state (phases I–III). For small values of η there
is furthermore a competition between direct hopping processes and second-order hopping processes with
density-dependent Peierls phases, controlled by g. Of particular interest are effects caused by the complex,
density-dependent hopping terms.

To attain a qualitative overview of the transition points between these phases we have calculated the
dimensionless ground-state fidelity [26]

f (λ) =
2

N

1 − |〈Φ0(λ)| |Φ0(λ+ δλ)〉|
δλ2

, δλ→ 0, (4)

where |Φ0(λ)〉 is the many-body ground state of the system with N particles, and λ denotes a system
parameter (g or η) that is varied, while keeping the other constant. In the thermodynamic limit L →∞
while keeping L/N = 2 and within the same phase f is a smooth function of the system parameter(s) λ but

5



New J. Phys. 24 (2022) 023017 S Ohler et al

Figure 5. Density–density correlations for g = 2 and varying η for PBCs, using a system size of L = 24 sites. One recognizes a
transition from a liquid to an ordered phase with half filling of each the upper and lower sub-chain for increasing values of η.
Note that two degenerate states (e.g. |ψ(1)

0 〉 and |ψ(4)
0 〉) contribute to g(2), explaining the pattern seen for large values of η.

develops a singularity at a phase transition. In a finite system the ground-state fidelity remains finite but
shows a peak, which can still be used as a good indicator of a phase transition.

Figure 4 shows a qualitative phase diagram as a function of g and η. Shown are different first-order
correlations in a false color plot. The crosses/plusses correspond to peaks of the ground-state fidelity f
obtained from ED of Hamiltonian (3) in a finite system of length L = 20 with periodic boundary
conditions (PBCs), whereas the inset shows the result of a finite size expansion. The latter demonstrates
that the intermediate, liquid regime II survives in the thermodynamic limit. Since we are studying an
experimentally motivated system, some comments about the achievable range of values of g are in order.
For large g, the adiabatic elimination of state |+〉 becomes incorrect and our model breaks down. For an
estimate we use the values of detuning and hopping strength given in [18], where the minimal triangle
system in figure 1(c) was studied. These values give g ≈ 0.46, which is very close to the transition point to
regime III for η = 1 and an increase by a factor of 2 seems feasible. Thus all liquid phases at η = 1 are
within reach of the experiment.

In order to characterize the different phases we discuss in the following density correlations and
currents.

3.3. Density correlations
As can be seen from figure 4 the critical value of η needed for a transition into a phase with density order is
larger than unity and on the order of 3. Thus further density–density interactions are needed in addition to
the one associated with the second order hopping processes discussed in section 2.

In figure 5 we plotted the density–density correlation g(2)
j = 〈n̂0n̂j〉 − 〈n̂0〉〈n̂j〉 for different values of η at

g = 2. One recognizes the emergence of long-range density order in both sub-chains when η > 3. In an
infinite system or for PBCs and a number of lattice sites that is a multiple of 4, the ordered ground state is
four-fold degenerate:

|ψ(1)
0 〉 = |1〉|1〉|0〉|0〉|1〉|1〉 . . . ,

|ψ(2)
0 〉 = |0〉|1〉|1〉|0〉|0〉|1〉 . . . , (5)

|ψ(3)
0 〉 = |0〉|0〉|1〉|1〉|0〉|0〉 . . . ,

|ψ(4)
0 〉 = |1〉|0〉|0〉|1〉|1〉|0〉 . . . .

In these configurations every excited site has exactly one excited neighbor, minimizing the energy from
density–density interactions. In any other configuration the number of excited neighbors is increased,
leading to a larger interaction energy per particle. Thus g(2)

j oscillates with a period of 4.

3.4. Liquid phases and chiral average currents
More interesting than the liquid–insulator transition from phase III into phase IV seen in figure 5 are those
within the liquid phases. Figure 6 shows a plot of f along a vertical cut of figure 4 for η = 1. One recognizes
two further peaks, one at g ≈ 0.5 and another one at g ≈ 0.38. For small g (phase I) the system is a simple
superfluid. This phase is well characterized by an approximate Hamiltonian (3) where a mean-field
decoupling is used in all hopping terms

6
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Figure 6. (a) Ground-state fidelity f (equation (4)) along a vertical cut through figure 4 at η = 1 and L = 24 for PBC. One
recognizes two peaks, which are indicative of a phase transition. For these peaks, finite-size expansion yields the critical values of
g = 0.605 and g = 0.313. The inset demonstrates that further increasing g does not change the properties of the system.
(b) Currents Ij→j+2 for j = 0 (sub-chain A) as a function of g within the liquid phase for η = 1. The values of g at which Ij→j+2 is
discontinuous are identical to the peaks in (a).

ĤB
MF = −J

∑
j

[
b̂†j+1b̂j(1 − g) + b̂†j+2b̂jr e±iφ(g) − b̂†j+3b̂jg

]
+ h.c. (6)

− 2Jgη
∑
〈j,l〉

n̂j(1 − n̂l),

where re±iφ(g) = 1 + ge±
4πi
3 describes an effective magnetic field and 〈j, l〉 denotes all NNs. For such a

system one expects a Meissner-like phase for small magnetic fields with anti-parallel screening currents in
the upper and lower sub-chain as predicted in [21] and first observed in [22].

Since the system is particle-number conserving, currents can be derived from the continuity equation
∂t n̂j =

∑
i Ii→j − Ij→i which contains a sum of incoming and outgoing terms. In the full model the current

along the chain thus reads

Ij→j+2 = 2J Im〈b̂†j b̂j+2〉 − Jg Im〈b̂†j (1 − n̂j+1)b̂j+2〉

±
√

3Jg Re〈b̂†j (1 − n̂j+1)b̂j+2〉, (7)

where the upper (lower) sign corresponds to even (odd) j for the upper (lower) chain. Note that the
appearance of both imaginary and real parts of the correlations is due to the presence of the Peierls phase.
At the same time the average current between the two chains must vanish for PBCs.

In figure 6(b) we have plotted Ij→j+2 for the upper sub-chain as a function of g and for η = 1. The
current along the lower sub-chain is exactly opposite. For small g there is a linear growth which is fully
consistent with the approximate model, equation (6), in which the magnetic flux per elementary triangle in
units of the flux quantum, Φ/Φ0 = φ(g)/2π, increases approximately linear with g.

For larger values of g two new phases (II and III) with distinctly different current patterns emerge. One
notices two interesting features:

(a) The direction of the chiral currents reverses when g becomes larger than unity.

(b) The magnitude of the current is substantially amplified in phase II as compared to phases I and III,
with a discontinuous transition.

Furthermore, when η is increased the system crosses from the liquid regime into a regime with density
order. Consequently, the currents are suppressed with a power law ∼η−1 and disappear in the limit of large
η (see appendix B).

4. Origin of liquid phases: fermion mean-field Hamiltonian

In order to get a qualitative understanding of the emergence of different phases in the liquid regime we first
discuss a mean-field approximation accounting for the hard-core character of the bosons. To this end we
express the bosonic Hamiltonian in terms of fermions using a Jordan–Wigner transformation [27] along a
zig-zag string (see figure 3) via

ĉi = eiπ
∑

l<i n̂l b̂i. (8)

7
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Figure 7. Single particle spectrum of ĤMF for g = 0.2, 0.5, 0.8 relative to the Fermi energy corresponding to a half-filled system
for each value of g. One recognizes that for g � 0.5 only the lower band is occupied, while for g > 0.5 an increasing range of
low-momentum states of the lower band is emptied and high-momentum states of the upper band become occupied.

Here the b̂i are the hard-core boson operators from before and the ĉi are fermionic ones. The transformed
Hamiltonian then reads

Ĥ =

⎧⎨
⎩−J

∑
j

ĉ†j+1 ĉj + ĉ†j+2 ĉj(1 − 2n̂j+1)− 2gJ
∑

j

ĉ†j+2 ĉj

(
e∓

2πi
3 (1 − n̂j−1) + e±

2πi
3 (1 − n̂j+2)

)

− 2gJ
∑

j

ĉ†j+2 ĉj

[
(1 − 2n̂j+1) + 2g e±

4πi
3 (1 − n̂j+1)

]
(9)

− 2gJ
∑

j

ĉ†j+3 ĉj

[
e∓

2πi
3 (1 − 2n̂j+2)(1 − n̂j+1) + e±

2πi
3 (1 − 2n̂j+1)(1 − n̂j+2)

]

− 2gJ
∑

j

ĉ†j+4 ĉj(1 − 2n̂j+1)(1 − n̂j+2)(1 − 2n̂j+3) + h.c.

⎫⎬
⎭− 2ηgJ

∑
〈 j,l〉

n̂j(1 − n̂l),

where we have used the identity e±iπn̂j =
(
1 − 2n̂j

)
. Now we apply a mean-field approximation, replacing

the particle number operators in the higher-order terms by expectation values, assuming a uniform half
filling

〈
n̂j

〉
= 0.5. The corresponding mean-field Hamiltonian reads

ĤMF = −J
∑

j

ĉ†j+1 ĉj(1 − g) − gJ
∑

j

ĉ†j+2 ĉj e±
4π
3 i + h.c. − 2ηgJ

∑
j

n̂j. (10)

One recognizes that the hoppings along the upper and lower sub-chain are complex and contain fixed
Peierls phases ±4π/3 of opposite sign, which cannot be gauged away. These phases correspond to a
homogeneous, constant effective gauge field for the fermions, which leads to chiral currents along the upper
and lower chains. Furthermore, the direct NN hopping j → j + 1 changes its sign when g becomes larger
than unity. We may write ĤMF in momentum space

ĤMF = −J
∑

k

(
ĉ†Ak

ĉ†Bk

)�⎛⎝2g sin
(

k − π

6

)
(1 − g)(1 + e−ik)

(1 − g)(1 + eik) −2g sin
(

k − π

6

)
⎞
⎠(

ĉAk

ĉBk

)
, (11)

where k ∈ [−π,π] is the lattice momentum and the indices A and B denote the upper and lower chain,
respectively. The corresponding spectrum is shown in figure 7 where one observes that there is no gap
opening between the two bands and thus in mean-field approximation the system is not insulating away
from unit filling. For g < 0.5 only momentum states at the edge of the Brillouin zone touch the Fermi
energy. For g � 0.5, where the system enters phase III, low-momentum states cross the Fermi energy,
changing the properties of the many-body ground state.

The nature of the intermediate phase II, in between the superfluid phase I, g → 0, and phase III, where
second-order hopping processes are dominant, g � 0.5, cannot be explained within the simple mean-field
approximation and requires to consider the interactions included in the full Hamiltonian (3).

We have seen in section 3.3 that the NN density–density interaction drives the system into a density
wave of period two in both sub-chains. In the presence of a weak density wave the mean-field Hamiltonian

8
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Figure 8. Folded spectrum of the mean-field Hamiltonian (10) into half the original Brillouin zone, corresponding to an
effective unit cell of four lattice sites, where we have set the lattice constant to unity. The latter arises if a density modulation in
the two sub-chains is taken into account in the mean-field Hamiltonian. One recognizes a crossing of the lowest sub-bands which
occurs for g ≈ 0.366. This value of g corresponds approximately to the transition point between phase I and phase II.

gets perturbed. The density-dependent hopping terms are then modulated corresponding to a unit cell of
four lattice sites. The impact of such a modulation can be understood when folding the mean-field
spectrum of figure 7 into a reduced Brillouin zone from −π/2 to π/2. This is illustrated in figure 8 for
values of g between 0.3 and 0.45. One recognizes that for g � 0.36 there is a band crossing of the lower
sub-bands, which modifies the nature of the many-body ground state when the density-modulation is
taken into account. The emergence of phase II can be attributed to this.

From this mean-field description one naively expects that phase II disappears in the absence of
density–density interactions, i.e. for η = 0. Quite surprisingly this is not the case. When calculating the
ground-state fidelity of the full model (3) for η = 0 we still find two peaks at g ≈ 0.5 and g ≈ 0.375. This
must then be attributed to the presence of the density-dependent complex hopping terms alone. We will
return to this point at a later point section 5.2.

5. Beyond mean-field: emerging effective gauge fields

To further understand the impact of the density-dependent hopping terms included in the Rydberg-spin
Hamiltonian (3) we once again consider the currents between NN sites between and along the chains.
To simplify the methodology we use open boundary conditions (OBCs) to select a fixed realization of
density-order. In figure 9 we show the corresponding current for OBC spatially resolved, where we have
used equation (7) and

Ij→j+1 = 2J Im〈b̂†j b̂j+1〉 − Jg Im〈b̂†j (2 − n̂j+2 − n̂j−1)b̂j+1〉 (12)

±
√

3Jg Re〈b̂†j (n̂j+2 − n̂j−1)b̂j+1〉.

In the limit g → 0 all currents naturally vanish, as does the effect of the gauge field (left-most column of
figure 9). In the middle column we see that for 2g ≈ 1 the currents connecting the sub-chains remain small,
whereas the current along the sub-chains shows the behavior, characteristic for a Meissner phase, inasmuch
as we find a homogeneous current moving right in sub-chain A (j even) and moving left in sub-chain
B (j odd). However, as soon as the density-dependent hopping become dominant over the direct processes
(g 	 1) we observe that both currents feature a periodicity of four sites. We can draw these currents as
arrows between the sites (bottom row of figure 9) to see that the current flows around plaquettes of four
sites in alternating manner forming a regular array of vortices. For hardcore bosons hopping on a square
ladder in an external effective magnetic field, a transition from a Meissner phase into a phase with current
vortices when increasing the magnetic flux has been predicted in [21] and was observed in [22]. Thus the
emergence of vortices in figure 9 seems at first glance consistent with these predictions based on the
approximate boson Hamiltonian, equation (6). However, one recognises that for larger values of g the
current vortices have the opposite direction as expected from equation (6), which is an effect of the
density-dependence of the Peierls phases.

To understand this effect, we rewrite the fermion Hamiltonian (9) in the following form

9
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Figure 9. Currents between the chains (top row) and along the chains (center row) for η = 2 and different values of g. One
clearly recognizes the formation of a regular pattern of circular currents in the case of large g. This pattern is illustrated in the
bottom row.

Ĥ = −J
∑

j

[
ĉ†j+1 ĉj + ĉ†j+2 ĉj(1 − 2n̂j+1)

]
+ h.c. (13)

− 2gJ
∑

j

[
ĉ†j+1 ĉj Û j+1,j

(
1 − n̂j−1n̂j+2

)
+ ĉ†j+2 ĉj Uj+2,j(1 − n̂j+1)

+ ĉ†j+3 ĉj Û j+3,j

(
1 − n̂j+1n̂j+2

)
− ĉ†j+4 ĉj (1 − 2n̂j+1)(1 − n̂j+2)(1 − 2n̂j+3)

]
+ h.c.

− 2ηgJ
∑

j

ĉ†j ĉj

[
(1 − n̂j−1) + (1 − n̂j+1) + (1 − n̂j−2) + (1 − n̂j+2)

]
.

Here we have introduced unitary link operators

Ûj+1,j = exp
(

iφ̂j+1,j

)
= − exp

(
±πi

3
(n̂j+2 − n̂j−1)

)
,

Ûj+2,j = exp
(

iφ̂j+2,j

)
= exp

(
∓πi

3

)
, (14)

Ûj+3,j = exp
(

iφ̂j+3,j

)
= − exp

(
±2πi

3
(n̂j+1 − n̂j+2)

)
,

where the upper (lower) sign corresponds to even (odd) indices j. Thus besides the direct hopping
amplitudes at rate J there are complex hopping terms proportional to Jg corresponding to an effective
gauge field. In contrast to lattice models describing particles coupled to a fixed background field, such
as the Harper–Hofstadter model, the effective gauge fields are here operator valued. Only Ûj+2,j

corresponds to a fixed, classical gauge field.
Despite the fact that the gauge fields causing the operator-valued Peierls phases are dynamical quantities,

there is no additional conserved charge associated with them and the gauge freedom is the same as for a
classical background field. In the case of a classical background field, the unitary link operators are just
exponential phase factors

Ulj = exp

{
i

∫ l

j
dr · A

}
, (15)

where A is the external, classical vector potential. Under a U(1) gauge transformation of the classical field,
the link operators transform as

Ulj → U ′
lj = exp

{
i

∫ l

j
dr · (A +∇α)

}
= exp

{
i

∫ l

j
dr · A + i

(
αl − αj

)}
, (16)

10
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which can be compensated by a unitary transformation of the fermion operators, e−iαjn̂j ĉj eiαjn̂j = ĉj eiαj ,
such that the Hamiltonian is invariant under the total transformation. We should remember that only the
longitudinal component of the vector potential A = A‖ + A⊥ changes under a gauge transformation, while
the transversal part A⊥ remains the same. Upon inspecting equation (14) one recognizes that the
operator-valued contributions Â to the gauge field are transverse:

φ̂l,j =

∫ l

j
dr · (A + Â) =

∫ l

j
dr · (A‖ + Â⊥). (17)

To see this we note that the operator terms in equation (14) are given by differences of occupation numbers
at lattice sites left and right of the hopping path, which is the lattice equivalent of

Â ∼ ∇× n̂(x, y)ez =

(
∂n̂

∂y
,−∂n̂

∂x
, 0

)
, and thus ∇ · Â = 0. (18)

The Peierls phases φ̂l,j themselves have no direct physical relevance as a classical gauge transformation of the

longitudinal component, equation (16), leads to φ̂l,j → φ̂l,j + αl − αj. Quantities that are invariant under
these gauge transformations are plaquette fluxes, e.g. in a rhombus of lattice sites j, j + 1, j + 2, j + 4
consisting of two adjacent triangles, Θ̂�

j (mod 2π). Θ̂�
j contains a fixed classical component Φ�

c = 2π/3

and a quantum component Φ̂�
j

Θ̂�
j = ±

(
φ̂j+2,j + φ̂j+3,j+2 − φ̂j+3,j+1 − φ̂j+1,j

)
, (19)

= −π

3

(
n̂j+2 + n̂j+1 − n̂j−1 − n̂j+4

)
+

2π

3
= Φ̂�

j +Φ�
c ,

where the upper (lower) sign correspond to even (odd) sites j. Note that we have defined the sign of the
fluxes by a clockwise sequence of sites in the +z direction in figure 3, i.e. for even j: j → j + 2 → j + 3 →
j + 1 → j and for odd j: j → j + 1 → j + 3 → j + 2 → j. In the absence of density modulations the quantum
gauge fields Φ̂�

j have all a vanishing magnitude and one recovers the mean-field behavior. This changes
however if density correlations are taken into account. Then the plaquette fluxes are modulated and they
induce currents between the two chains Ij→j+1 and modulate the currents Ij→j+2 along the chains, as seen in
figure 9.

5.1. Dynamical gauge fields driven by density–density interactions
As shown in figure 5, density–density interactions drive the many-body ground state toward an ordered
state with a density wave for large values of η. For the ground states (5) one would find e.g. in state
|ψ0〉 = . . . |0〉0|1〉1|1〉2|0〉3|0〉4|1〉5 . . .

〈Φ̂�
0 〉 =

2π

3
, 〈Φ̂�

1 〉 = 0, 〈Φ̂�
2 〉 = −2π

3
, 〈Φ̂�

3 〉 = 0, etc.

Thus the total flux of the gauge field oscillates around the classical value Φ�
c = 2π/3.

To describe the transition to the flux-ordered phase in a system with OBCs, we introduce the order
parameter

χ =

∣∣∣∣∣∣
1

L

∑
j=2n

(−1)n
(〈

Φ̂�
j

〉
+
〈
Φ̂�

j+1

〉)∣∣∣∣∣∣ . (20)

In this expression, we exclude the first and last plaquette at the edges of the system to avoid boundary
effects. In figure 10(a) we show χ as function of g in the regime of large η. We recognize a transition into a
phase with long-range order of the flux lattice. The origin of the regular pattern of staggered effective
fluxes is simply the density order generated by the repulsive interaction proportional to η. Since in the
ordered phase (IV) first-order correlations are not strictly zero but are suppressed proportional to η−1

(see appendix), the flux pattern induces a lattice of current vortices similar to those in figure 9. In
figure 10(b) we have plotted the local current between the two sub-chains inside the ordered phase IV for
OBCs.

5.2. Spontaneous gauge field generation
When η is reduced and below the critical value of the transition to the ordered phase, density correlations
show a power-law decay as function of distance. In this case the order parameter χ vanishes in the

11
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Figure 10. (a) Order parameter of flux lattice χ in the ordered phase for η = 10, excluding the classical flux of 2π/3. Zoom-ins
show the plaquette fluxes Φ̂�

j in the highlighted region. (b) Currents along the sub-chains in the ordered phase for η = 10 and
OBC. Although the currents are suppressed with 1/η, the long-range ordered pattern is clearly visible.

Figure 11. (a) Average density in the mean-field and full models in the absence of density–density repulsion, i.e. η = 0, and
g = 1, where the sub-chains decouple in the mean-field case. (b) Full model: spatially resolved flux of quantum gauge field 〈Φ̂�

j 〉
for finite system (L = 24) with OBC for the same parameter. Lattice sites directly at the boundary are cut off. One clearly
recognizes a spontaneous generation of the gauge field with liquid-like spatial correlations.

thermodynamic limit, but the local flux Φ̂�
j shows non-vanishing fluctuations, i.e.

〈(
Φ̂�

j

)2
〉

�= 0 and

liquid-like spatial correlations.
However, when the density–density interaction is switched off entirely, i.e. for η = 0, one naively expects

no density modulations in the absence of density-dependent complex hoppings. In fact due to the
triangular lattice structure Friedel oscillations do lead to density modulations in a finite system with OBCs
even in the mean-field limit. Only at g = 1, where the mean-field Hamiltonian (10) separates into two
independent chains, the corresponding density distribution is flat, see figure 11(a), and we expect the
quantum gauge field to be in a vacuum state. We note that the classical Peierls phases can be gauged
away in this case. The full model does however show density modulations, see figure 11(a), which are
entirely caused by the density-dependent complex hopping terms. Thus there is a spontaneous generation

of the gauge field with non-vanishing amplitude of 〈
(
Φ̂�

j

)
〉 and fluxes that form an oscillating pattern for

OBCs. The oscillations decay away from the boundary, however, showing that the flux correlations are
liquid-like and there is no long-range order, in contrast to figure 10(a) for η = 10.

5.3. Gutzwiller ansatz
The spontaneous generation of a non-zero expectation value of the staggered gauge field results from the
competition between an increase of kinetic energy of direct hopping processes on the one hand and a
lowering of energy by increase of the imaginary second-order hopping amplitudes on the other. To see this,
we performed a variational approach to determine the ground state using a Gutzwiller ansatz. Guided by
the numerical results we assume a unit cell of four sites and write the following ansatz wavefunction,
illustrated in figure 12

|ψ〉 = 1

N
∏
j=4n

∣∣ψj

〉 ∣∣ψj+1

〉 ∣∣ψj+2

〉 ∣∣ψj+3

〉
, (21)

∣∣ψj

〉
= (1 − ε) |0〉+ (1 + ε)ei(θ−φ) |1〉 , (22)∣∣ψj+1

〉
= (1 + ε) |0〉+ (1 − ε)e−i(θ−φ) |1〉 , (23)∣∣ψj+2

〉
= (1 + ε) |0〉+ (1 − ε)ei(θ+φ) |1〉 , (24)

12
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Figure 12. Schematic representation of the Gutzwiller ansatz. The darker (brighter) sites correspond to an increased (decreased)
excited state occupation. The arrows symbolize the different complex phases.

Figure 13. Bottom: contour-plot of the Gutzwiller-energies for L = 16, η = 0. (a) g = 0.001, (b) g = 1. Shown is a cut through
the three-dimensional parameter space at the optimal values of θ, respectively (θ = 0 and θ = π/2). Crosses mark the
(degenerate) minima. Top: order parameter χ from (20) for values along the red dotted lines in the bottom figures.

∣∣ψj+3

〉
= (1 − ε) |0〉+ (1 − ε)e−i(θ+φ) |1〉 . (25)

Here we use three parameters to accommodate the physics of the model. The parameter ε accounts for the
observed density modulation, θ distinguishes the two sub-chains and φ accounts for the complex phase that
is picked up when a particle hops along the same sub-chain (to the right for the upper chain, to the left for
the lower one).

Using a standard optimization algorithm to minimize the variational energy, we obtain the following
results for the three parameters (up to numerical precision) for L = 16, η = 0 and g = 1:

εopt ≈ 0.134 θopt ≈
π

2
φopt ≈ 0.317. (26)

For the case of very small density-dependent hopping, g → 0, all three optimal parameter values are found
to be zero as in this case only direct hopping processes survive. In figure 13 we show the expectation value
of the ground-state energy in the Gutzwiller state, where we have fixed the third parameter θ to its optimal
values, θ = 0 (g = 0.001) and θ = π/2 (g = 1). For small density-dependent hopping the alternating
currents quantified by χ vanish. For g = 1 however there exist two degenerate minimum energy
configurations point-symmetric to zero which represent the two different chain configurations and feature
non-vanishing gauge fields, as indicated by the value of χ for the horizontal cut in figure 13.

We note that the Gutzwiller ansatz cannot capture a liquid-type phase with short-range correlations of
the gauge field and thus a finite value of the order parameter χ is obtained. It is instructive to consider the
optimum value of the density imbalance, characterized by the variational parameter ε as function of the
strength g of second-order hopping processes. This is shown in figure 14. One recognizes that within the
Gutzwiller approach there is a phase transition at g = 0.5 from a phase with vanishing gauge field to a
phase with a finite amplitude. Below the critical value of g the energy increase due to a density wave
outweighs the energy decrease due to the gauge-field mediated hopping. Above the critical value the
situation is reversed.
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Figure 14. Density modulation ε, which is linked to the gauge field amplitude, as function of the strength of second-order
hopping processes g in Gutzwiller approximation for η = 0. The critical value agrees qualitatively with the transition to the
gauge-field dominated regime III in figure 4.

6. Possible experimental signatures of non-trivial liquid phases

While vortex currents of Rydberg excitations are difficult to measure in experiments, first order correlations
can be accessed. Applying a global microwave pulse to all Rydberg atoms allows to rotate all spins formed
by states |0〉 and |1〉, see figure 1(c), from the x- or y-direction on the Bloch-sphere onto the z axis. A
subsequent spatially resolved measurement of correlations of Rydberg excitations thus yields xx or yy spin
correlations, from which one can obtain the real part of first-order boson correlations

Re
[
〈b̂†kb̂l〉

]
= 〈σ̂x

kσ̂
x
l 〉+ 〈σ̂y

kσ̂
y
l 〉. (27)

Using laser beams addressing specific atoms and a global microwave pulse, it is possible to apply spin
rotations around different axes to different Rydberg atoms. In this way anisotropic spin correlations can be
measured which give access also to the imaginary part of first-order correlations between bosons at different
lattice sites

Im
[
〈b̂†kb̂l〉

]
= 〈σ̂y

kσ̂
x
l 〉 − 〈σ̂x

kσ̂
y
l 〉. (28)

As shown in the phase diagram figure 4 the non-trivial liquid phases II and III can be distinguished from
the trivial phase I by first-order correlations of neighboring lattice sites between the sub-chains, 〈b̂†j b̂j+1〉,
and along the sub-chains, 〈b̂†j b̂j+2〉. In phase I the real part of both is positive and there is no imaginary
component, indicating the absence of currents, see top row of figure 15. In phase II the imaginary parts of
both correlations feature an oscillating pattern, while the real parts remain positive with reduced
amplitudes, see middle row of figure 15. The nearly homogeneous oscillation in the right column is a
signature of the constant chiral currents along the upper and lower sub-chain. Finally in phase III the real
part of the inter-chain correlation 〈b̂†j b̂j+1〉 flips its sign and the imaginary parts attain a more complex
pattern reminiscent of vortex currents. To summarize, using the technique of global (and local) microwave
pulses and subsequent space-resolved measurement of Rydberg excitations allows to experimentally
confirm the non-trivial liquid regimes of the model.

7. Summary and conclusion

We studied the effects of a density-dependent, complex hopping of Rydberg excitations arising from
second-order processes to the many-body ground state of a one-dimensional zig-zag-chain at half filling.
The strength of the second-order hopping can be controlled by microscopic parameters of the Rydberg
atoms and the system can be tuned from a regime where these processes are negligible to one where they
dominate. Second order processes also lead to density–density interactions, which are modified by
additional off-resonant van-der-Waals couplings between Rydberg atoms. The competition between direct
and second-order hopping processes as well as density–density repulsion leads to a rich ground-state phase
diagram. Most importantly the complex valuedness of the second-order hopping amplitudes breaks
time-reversal symmetry and, as shown in the present paper, leads to two types of effective gauge fields.
The first one is equivalent to a classical vector potential. It is worth noting that this field emerges directly
from the microscopic physics of Rydberg atoms and is very different from other mechanisms that have been
suggested for effective gauge fields for neutral atoms. This classical gauge field can be employed for example
to realize topological band structures. Even more interesting is the second kind of gauge field which arises
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Figure 15. First-order correlations 〈b̂†kb̂l〉 for OBCs, η = 1 and system size L = 24. Left: inter-chain correlations between sites j
and j + 1, right: intra-chain correlations between sites j and j + 2. From top to bottom row: g = 0.1, 0.4, 3.0.

from the density-dependence of the second-order hopping. It is a quantum field linked to density
modulations. Thus we here encounter a dynamical quantum gauge field. While based on the mechanism
discussed here it is possible to implement true lattice gauge theories, the operator-valued field in the present
context is a transversal vector potential. It is thus gauge invariant and does not lead to additional conserved
local charges. Depending on the values of second order hopping and density–density interaction we
identified four distinct phases. An insulating phase with long-range density order in a repulsion-dominated
regime, a superfluid for weak interactions, and two nontrivial liquid phases where density repulsion is weak
but second order hopping dominates over direct hopping. In the insulating phase long-range density
correlations induce an oscillatory lattice of fluxes of the quantum gauge field, which in turn leads to a
regular pattern of local vortex currents. Surprisingly, even in the complete absence of density–density
interactions the quantum gauge field attains a non-vanishing value with liquid-like correlations. We must
interpret this as a spontaneous creation of the gauge field by breaking of the lattice translational symmetry.

Our findings demonstrate that systems of Rydberg atoms can give rise to a broad spectrum of nontrivial
interaction processes and offer new and experimentally accessible approaches to study dynamical gauge
fields. Additionally, even topologically non-trivial states are realizable using this Rydberg system, as we
demonstrate in a Haldane-type model on a honeycomb lattice [28].
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Appendix A. Microscopic derivation

In this section we provide a microscopic derivation of Hamiltonian (2). In this derivation, we assume that
the dynamics of the atoms can be restricted to the three atomic states shown in figure 1(c), namely
|1〉 =

∣∣60P3/2, mJ = −1/2
〉
, |+〉 =

∣∣60P3/2, mJ = +3/2
〉

as well as |0〉 =
∣∣60S1/2, mJ = +1/2

〉
.

The validity of this reduction to three states has been demonstrated in [18], we shortly summarize the
arguments here: The states of the P1/2 manifold can be neglected, as spontaneous decay into these
states is negligible and they are not populated during preparation. If initially only the states |1〉 and |0〉
are populated, the only possible exchange process that couples out of the three-state manifold is the
process |1〉 →

∣∣60S1/2, mJ = −1/2
〉

and simultaneously |0〉 →
∣∣60P3/2, mJ = +1/2

〉
in another atom.

As mentioned in the appendix of [18], this transition is off-resonant and energetically suppressed.
Using this three-state approximation we derive the Hamiltonian (2) starting from the static

dipole–dipole interaction between two atoms

V̂ ij =
1

4πε0R3
ij

[
d̂z

i d̂z
j +

1

2

(
d̂+

i d̂−
j + d̂−

i d̂+
j

)
− 3

2

(
d̂+

i d̂+
j e−2iφij + d̂−

i d̂−
j e2iφij

)]
, (A.1)

where Ri,j =
∣∣ri,j

∣∣ and φij refer to the interatomic distance and angle in polar coordinates, respectively.

Additionally, the operators d̂±
i = ∓ 1√

2
(d̂x

i ± id̂y
i ) represent ladder operators raising and lowering the angular

momentum of the ith Rydberg atom. The total Hamiltonian of the three-site setup shown in figure 1 then
reads

Ĥ =
3∑

i=1

(
ω |1〉 〈1|i + (ω +Δ) |+〉 〈+|i

)
+
∑
i�=j

V̂ ij. (A.2)

Here, ω refers to the energy difference between the states |1〉 and |0〉, while Δ denotes the detuning of the
state |+〉 shown in figure 1. The subscript of the projectors indicates the respective atom. In deriving the
spin excitation transport in the triangle of Rydberg atoms we only need to consider the case of one and two
excitations in the system, where we define an atom to be excited if it occupies either the state |1〉 or |+〉.
This definition of occupation differs from the main text, but is convenient for the derivation.

For the case of a single excitation, we adiabatically eliminate the state |+〉, which is detuned by Δ and
thus will only be virtually excited. This leads to a 3 × 3 matrix describing the effective dipole–dipole
interaction of three two-level systems with a single excitation (in state |1〉 or |+〉)

Ĥeff =

⎛
⎝ 0 〈100| Ĥ |010〉 〈100| Ĥ |001〉
〈010| Ĥ |100〉 0 〈010| Ĥ |001〉
〈001| Ĥ |100〉 〈001| Ĥ |010〉 0

⎞
⎠− 1

Δ

⎛
⎝ U1 h1→3→2 h1→2→3

h2→3→1 U2 h2→1→3

h3→2→1 h3→1→2 U3

⎞
⎠ , (A.3)

where |100〉 denotes the state where the three atoms are in states |1〉, |0〉, |0〉, respectively. In this calculation
we neglected all terms of higher order in 1/Δ. In equation (A.3), the symbol hi→j→k refers to the indirect
hopping process going from the |1〉 state at site i via the |+〉 state at site j to |1〉 at site k:

h1→2→3 = 〈0, 0, 1| Ĥ |0,+, 0〉 〈0,+, 0| Ĥ |1, 0, 0〉 . (A.4)

Therefore, hi→j→k describes exactly the process shown in figure 2 in the main text. Similarly, the symbol Ui

denotes the virtual processes where the initial site i and the final site k are identical, e.g. for i = 1:

U1 = h1→2→1 + h1→3→1. (A.5)

A key aspect is the fact that the latter 1/Δ term in (A.3) only occurs within the single-excitation manifold.
E.g. if site 2 is occupied, the matrix element vanishes

〈0, 1, 1| Ĥ |0,+, 0〉 〈0,+, 0| Ĥ |1, 1, 0〉 = 0, (A.6)

and only the direct dipole–dipole flopping process between site 1 and site 3 remains (first term in (A.3)).
The identical consideration holds for the terms Ui. As a result, both the hopping amplitudes and the NN
interaction terms are density-dependent. We can make this effect explicit by writing down the Hamiltonian
using spin operators. We define the energy scale

J = −〈0, 1, 0| Ĥ |0, 0, 1〉 = −〈0, 1, 0| V̂1,2 |1, 0, 0〉 , (A.7)

of the direct hopping process over the distance R as shown in figure 1. The explicit evaluation of these
matrix elements can be done using Wigner-symbols. For this, we reduce the expectation values of the
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interaction Hamiltonian (A.7) to the dipole operators

〈0, 1, 0| V̂1,2 |1, 0, 0〉 (A.8)

=
1

8πε0R3
1,2

〈0, 1, 0|
(

d̂+
1 d̂−

2 + d̂−
1 d̂+

2

)
|1, 0, 0〉 (A.9)

=
1

8πε0R3
〈0, 1, 0| d̂−

1 d̂+
2 |1, 0, 0〉 = 1

8πε0R3
〈1| d̂−

1 |0〉 〈0| d̂+
2 |1〉 , (A.10)

In this way, all matrix elements can be reduced to obtaining a result for the dipole operator transition
elements

〈0| d̂− |+〉 〈1| d̂− |0〉 〈0| d̂+ |1〉 〈+| d̂+ |0〉 . (A.11)

We can evaluate these matrix elements by rewriting the dipole operator

d̂+ = − 1√
2

(
d̂x + id̂y

)
= − q√

2

(
x̂ + iŷ

)
= −e+ · d̂ = −qe+ · r̂ = −qe+ · êr · r, (A.12)

where we have used e+ = 1√
2

(
ex + iey

)
. Similar expression can be derived for d̂−. Additionally, we can

decompose the position unit vector using the spherical harmonics Yl,m (see [29])

er =

√
4π

3

[
Y1,−1

ex + iey√
2

+ Y1,1
−ex + iey√

2
+ Y1,0ez

]
. (A.13)

To calculate the transition matrix element between two states |Ψ〉 and |Ψ′〉 we will consider the angular and
radial parts separately:

〈Ψ′| d̂± |Ψ〉 = −qe± 〈Ψ′| êr · r |Ψ〉 , (A.14)

= −q 〈ψ′|C1,±1 |ψ〉
∫ ∞

0
dr R′

n,l′(r)rRn,l(r). (A.15)

In the above equation, |ψ〉 and |ψ′〉 denote the angular and R′
n,l′ , Rn,l the radial wavefunctions. The latter is

equal to

ξ ≡
∫ ∞

0
dr R′

n,l′(r)rRn,l(r), (A.16)

and is constant over all transitions relevant here, so we simply set it to ξ. For the angular part, we must
evaluate the following expression

〈ψ′| d̂± |ψ〉 = q 〈ψ′|C1,±1 |ψ〉 , (A.17)

Cl,m =

√
4π

2l + 1
Yl,m, (A.18)

where q = −e is the electron charge. Matrix elements of this kind can be evaluated using Wigner symbols
(see [30])

〈ψ′|Ck,p |ψ〉 = δS′ ,S

√
(2J ′ + 1)(2J + 1)(2L′ + 1)(2L + 1)(−1)M′−S (A.19)

×
(

J ′ J k
−M′ M p

)(
L′ k L
0 0 0

){
L′ L k
J J ′ S

}
. (A.20)

The brackets in the second line are referred to as Wigner-3j-symbols and Wigner-6j-symbols,
respectively, and the variables contained in the above equation represent the quantum numbers of both
states. Using the atomic states in question, we arrive at (the common factor of ξ is omitted)

〈0| d̂− |+〉 = e√
3

〈1| d̂− |0〉 = − e

3
, (A.21)

〈0| d̂+ |1〉 = e

3
〈+| d̂+ |0〉 = − e√

3
. (A.22)

Now we can calculate explicitly the transition elements from above, starting from the unit of energy J:
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Figure B1. Current Ij→j+2 between NN sites along the upper sub-chain for different values of g as function of density–density
repulsion strength η. One can clearly see the 1/η scaling as the system enters into the density-ordered phase. The red dotted line
corresponds to the transition point for g = 2 as marked in figure 4 in the main text.

J = −〈0, 1, 0| V̂1,2 |1, 0, 0〉 = − 1

8πε0R3
〈1| d̂−

1 |0〉 〈0| d̂+
2 |1〉 (A.23)

=
e2

72πε0R3
. (A.24)

Analogously, we calculate the indirect transport processes from above, h1→2→3

h1→2→3 = 〈0, 0, 1| Ĥ |0,+, 0〉 〈0,+, 0| Ĥ |1, 0, 0〉 (A.25)

= 〈0, 0, 1| V̂2,3 |0,+, 0〉 〈0,+, 0| V̂1,2 |1, 0, 0〉 (A.26)

=

(
1

4πε0R3

3

2

)2

〈0, 0, 1| d̂−
2 d̂−

3 e2iφ2,3 |0,+, 0〉 〈0,+, 0| d̂+
1 d̂+

2 e−2iφ1,2 |1, 0, 0〉 (A.27)

=

(
1

4πε0R3

3

2

)2

e−4iα e4

27
(A.28)

= 27J2e−4iα. (A.29)

Similarly, one can evaluate the density–density terms Ui.
So far we have performed the derivation in the single-excitation manifold of the Hilbert space. In the

case of two excitations on the triangle, all hi→j→k vanish, whereas hi→j→i remains non-zero if sites i and k are
occupied.

Using this we arrive at the Hamiltonian in hard-core boson language as already shown in the main text

Ĥ = −J
3∑

i�=j=1

b̂†i b̂j + h.c. − 2gJ
3∑

i�=j�=k

b̂†i b̂j (1 − n̂k) e−4iεi,j,kα + h.c. − 2gJ
∑
i�=k

n̂i (1 − n̂k), (A.30)

where we again introduce g = 27J
2Δ as a dimensionless parameter.

Appendix B. Local current vortices in the insulating regime

We have seen in section 5.1 that in the density-ordered phase of large η an oscillatory regular flux pattern of
the quantum gauge field is induced with long-range correlations. A measurable consequence of this is the
formation of a vortex lattice of local currents as seen in figure 10(b). Although there is no net current in an
insulating phase with density order and first-order NN correlations are suppressed, their amplitudes decays
only algebraically with the density–density repulsion η. Thus local vortex currents can emerge even in the
insulating phase. Their amplitude is expected to decrease as 1/η, which is verified by the very good
agreement of the numerical data for the current Ij→j+2 with an 1/r fit in figure B1. We marked the
transition for g = 2 (green curve) by the red dotted line.
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[17] Goldman N, Juzeliūnas G, Öhberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[18] Lienhard V et al 2020 Phys. Rev. X 10 021031
[19] Wiese U J 2013 Ann. Phys., Lpz. 525 777–96
[20] Dalmonte M and Montangero S 2016 Contemp. Phys. 57 388–412
[21] Orignac E and Giamarchi T 2001 Phys. Rev. B 64 144515
[22] Atala M, Aidelsburger M, Lohse M, Barreiro J T, Paredes B and Bloch I 2014 Nat. Phys. 10 588–93
[23] Piraud M, Heidrich-Meisner F, McCulloch I P, Greschner S, Vekua T and Schollwöck U 2015 Phys. Rev. B 91 140406
[24] Greschner S, Huerga D, Sun G, Poletti D and Santos L 2015 Phys. Rev. B 92 115120
[25] Weber S, Tresp C, Menke H, Urvoy A, Firstenberg O, Büchler H P and Hofferberth S 2017 J. Phys. B: At. Mol. Opt. Phys. 50

133001
[26] Zanardi P and Paunkovíc N 2006 Phys. Rev. E 74 031123
[27] Jordan P and Wigner E 1928 Z. Phys. 47 631–51
[28] Ohler S, Kiefer-Emmanouilidis M and Fleischhauer M 2022 (in preparation)
[29] Foot C 2011 Atomphysik (München: Oldenbourg)
[30] Sobelman I I 1979 Atomic Spectra and Radiative Transitions (Berlin: Springer)

19

https://orcid.org/0000-0001-8424-3154
https://orcid.org/0000-0001-8424-3154
https://orcid.org/0000-0003-4059-7289
https://orcid.org/0000-0003-4059-7289
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1038/s41586-018-0450-2
https://doi.org/10.1038/s41586-018-0450-2
https://doi.org/10.1038/s41586-018-0450-2
https://doi.org/10.1038/s41586-018-0450-2
https://doi.org/10.1038/nature18274
https://doi.org/10.1038/nature18274
https://doi.org/10.1038/nature18274
https://doi.org/10.1038/nature18274
https://doi.org/10.1126/science.1258351
https://doi.org/10.1126/science.1258351
https://doi.org/10.1126/science.1258351
https://doi.org/10.1126/science.1258351
https://doi.org/10.1103/physrevx.7.041063
https://doi.org/10.1103/physrevx.7.041063
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
https://arxiv.org/abs/2012.12281
https://doi.org/10.1038/s41586-021-03585-1
https://doi.org/10.1038/s41586-021-03585-1
https://doi.org/10.1038/s41586-021-03585-1
https://doi.org/10.1038/s41586-021-03585-1
https://doi.org/10.1103/physrevx.8.021069
https://doi.org/10.1103/physrevx.8.021069
https://doi.org/10.1103/physrevx.8.021070
https://doi.org/10.1103/physrevx.8.021070
https://arxiv.org/abs/2104.04119
https://doi.org/10.1126/science.aav9105
https://doi.org/10.1126/science.aav9105
https://doi.org/10.1126/science.aav9105
https://doi.org/10.1126/science.aav9105
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1103/physrevx.4.031027
https://doi.org/10.1103/physrevx.4.031027
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1103/physrevx.10.021031
https://doi.org/10.1103/physrevx.10.021031
https://doi.org/10.1002/andp.201300104
https://doi.org/10.1002/andp.201300104
https://doi.org/10.1002/andp.201300104
https://doi.org/10.1002/andp.201300104
https://doi.org/10.1080/00107514.2016.1151199
https://doi.org/10.1080/00107514.2016.1151199
https://doi.org/10.1080/00107514.2016.1151199
https://doi.org/10.1080/00107514.2016.1151199
https://doi.org/10.1103/physrevb.64.144515
https://doi.org/10.1103/physrevb.64.144515
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nphys2998
https://doi.org/10.1103/physrevb.91.140406
https://doi.org/10.1103/physrevb.91.140406
https://doi.org/10.1103/physrevb.92.115120
https://doi.org/10.1103/physrevb.92.115120
https://doi.org/10.1088/1361-6455/aa743a
https://doi.org/10.1088/1361-6455/aa743a
https://doi.org/10.1103/physreve.74.031123
https://doi.org/10.1103/physreve.74.031123
https://doi.org/10.1007/bf01331938
https://doi.org/10.1007/bf01331938
https://doi.org/10.1007/bf01331938
https://doi.org/10.1007/bf01331938

	Self-generated quantum gauge fields in arrays of Rydberg atoms
	1.  Introduction
	2.  Nonlinear excitation transport in arrays of Rydberg atoms
	3.  Spin excitations in a 1D zig-zag chain
	3.1.  Model
	3.2.  Phase diagram
	3.3.  Density correlations
	3.4.  Liquid phases and chiral average currents

	4.  Origin of liquid phases: fermion mean-field Hamiltonian
	5.  Beyond mean-field: emerging effective gauge fields
	5.1.  Dynamical gauge fields driven by density–density interactions
	5.2.  Spontaneous gauge field generation
	5.3.  Gutzwiller ansatz

	6.  Possible experimental signatures of non-trivial liquid phases
	7.  Summary and conclusion
	Acknowledgments
	Data availability statement
	Appendix A.  Microscopic derivation
	Appendix B.  Local current vortices in the insulating regime
	ORCID iDs
	References


