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0. Introduction. One of the most powerful tools for the study of Dirichlet series are suitable integrals
representing them. In many cases such integrals allow the deduction of analytic (e.g. functional equation)
or asymptotic properties of the corresponding series. In the case of the Riemann zeta function, which
naturally has received the most attention, it is the celebrated Riemann-Siegel integral formula serving both
purposes. Riemann discovered this particular formula in the middle of the 19th century, but did not publish
it. Afterwards it fell into oblivion until it was rediscovered in 1926 by Bessel-Hagen in Riemann’s Nachlafl
and published a few years later by Carl Ludwig Siegel [7]. The formula reads
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Here 0 \( 1 (and similarly 0 /1) denotes a straight line from —ooe to ooe cutting the real axis
between 0 and 1. From this representation the functional equation of the zeta function follows immediately.
Moreover, employing the saddle point method, the integrals can be evaluated very precisely for ¢ — oo, thus
giving the asymptotic expansion of {(s) (Riemann-Siegel formula).

Note that the above equation can also be written in the form

((s) = f(s) + X()f(1=35), X(s)=n""2 Féﬁ
where o
I = /0\1 eri — e O (0)

In view of the numerous applications of the Riemann-Siegel integral formula [3] one may ask whether other
types of Dirichlet series admit similar integral representations. In the case of Dirichlet L functions Siegel’s
proof can directly be generalized [8]. Apart from these no other formulas of this kind have been found up to
now.

The purpose of the present paper is to show how to obtain an analogue for Dirichlet series ¢ associated
to cusp forms. The main idea is to modify the Mellin integral for ¢ so as to exploit the behaviour of the
underlying cusp form in the vicinity of a cusp of the modular group. The essential part of the argument
is given in Section 2 in its simplest form in order to show the principle most clearly. In Section 3 we shall
obtain a large generalization, extending the method to cusp forms for any conguence subgroup of SLy(Z)
and an arbitrary cusp. The final section contains a similar formula for the function {(s){(s + 1) which may
be thought of as corresponding to a modular form of weight 1. But in this case the presence of a pole at
s =1 and s = 2 causes additional difficulties which can, however, be overcome with a modified method.

One of the main application of the Riemann-Siegel integral formula is the famous Riemann-Siegel formula
mentioned above. In the present case one expects to be able to derive similar results for cusp forms. This
is indeed possible [2], and extends the class of Dirichlet series admitting this type of asymptotic expansion.
Up to now the only examples known are ((s) [7], Dirichlet L functions L(s,x) [8] and ¢2(s) [5] (compare
also Jutila’s results [4]).

1. Cusp Forms for the Modular Group. Let k be an even integer and denote by S}, the C vector space
of SLs(Z) cusp forms of weight k, i.e. f € Si if, and only if, the following conditions are satisfied:
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I) f:H — C is holomorphic, where H denotes the upper half plane.

IT) f(22) = (cz + d)¥ f(2) for (2 )) € SLy(Z).
ITT) f has a Fourier expansion

Z e?™m= - TIm(z) > 0.

The most well known example is the discriminant

oo oo

A(Z) — e27rz'z H (1 _ 627rinz)24 — Z T(n)e27rinz

n=1 n=1

of weight 12, whose Fourier coefficients are given by Ramanujan’s tau function.
Now let f € Sy be given. For our purposes it will be convenient to work with the function v defined by

Y(z) = f(iz) = ) a(n)e™>™*, Re(z) >0, 1)

n=1

Then ¢ is holomorphic in the right half plane Re(z) > 0. The transformation II) yields with the matrix

=41 (1), v =Cntary (1), @)

x

The associated Dirichlet series (s) = > oo | a(n)n™* converges absolutely provided ¢ > % + 1. This follows
at once from Hecke’s estimate a(n) = O(n%). Moreover, by Mellin’s formula

R(s) = (2m)*T(s)p(s) = / " p(@)r e 3)

Since () vanishes exponentially fast for x — oo, and by (2) also for x — 0, the integral in (3) converges
absolutely for all complex s. Hence R, and consequently ¢, are entire functions. We modify the integral as
follows. Let & be a real number, 0 < [§] < % and £ = €”. Turning the line of integration about the origin
and splitting at x = &, we get

R(s) = 0§m¢( s ldy = (/ /éoo) )z* dz

oo

— sldm ks_ld,il;’.
ARCE +()/_1 Y(@)e

Here we can again rotate the path of integration so as to run in a direction parallel to the positive real axis.
Hence we have proved

[ME

Theorem 1: Let § be real, || < T, £ = e®. Then for all complex s except s =k, k+1,...

o(s) = To(s,6) + (1) 5 X (s)To(k — 5,6 1),

where o
e T'(k —
Ty(s,9) = T [ v e, X(9) = eyt HEZT
13 ['(s)
We shall now show that it is possible to take the limit § — 7, i.e. £ — i, in the integral occurring above.
This possibility depends on the fact that f is a cusp form and consequently ¥ (z) decays rapidly as = tends
to 4. Define temporarily

1(5):/;+°°¢( o= 1dx—</ / ) (€+2)( +2)" o = Tp + I, (4)



say. For I; we obtain immediately
o0 oo
limI; = / Y@ +2)(i+2) 'dr = / V(@)@ + )" 'da.
£E—1 1 1

Concerning Iy we use the functional equation II) of f. Then f(Z%) = (2 + 1)*f(2), provided Im(z) > 0.
Passing to the function ¢ yields ¢(z) = (iz + 1)"*9(-X;) if Re(z) > 0. Thus we get

I—/1 (€+2)(€+2)°7'd —/1 (71 )('+1+‘)"“(+ )*~d
0—01/15.'27.5:12 m_owﬁ—iqu i€ iz E+z z

E-itl (€~
= / (G (—) (iz) % (i +z)* 'dz = i*’“/ (@) 23 + 1) Lda.
£ T

—i (—i+1)—1

Here lim¢_;(§ —i+1)7! = 1 and limg_,;(£ —4) ™' = co. The integrand decreases exponentially at the upper
limit of integration, so the integral converges for £ — i. Hence the limit limg_,; I(§) = limg_,; Ip + limg_,; [y
exists and together with (4) we have

ito00 oo
I(i) == lm I({) = / Y(z)z®tde = /0 ()i + z)* ' da.

§—i
This shows that we have proved the following result:

Theorem 2: Let f € Sp, 0 < 8 < Z, £ = €%, s € C, and define To(s, &) as in Theorem 1. Then

T(s) :=limg_; To(s, &) exists and equals

T(s) = (27)*T ()~ /0 " (@) + 2)*da.

Moreover,
o(s) = T(s) + (~1) X (s)T(k — 5),

provided the Fourier coefficients of f are real numbers. Otherwise 1) has to be placed by 1 in the formula for
T(k—-73).

We are now ready to derive the analogue of the Riemann-Siegel integral formula. It then appears that a
new type of functions enters the stage which has hitherto received much less attention than it deserves. We
define it by

F(z) = 2 / T emge)de, £ € Sp ) = fiz), Re(z) < L. (5)

Since 9(z) = O(e~2™*) for x — oo, it is easily seen that the integral converges absolutely and uniformly
on compact subsets of the left half plane Re(z) < 1. Hence F' is holomorphic in Re(z) < 1. Furthermore
F(z) = O(1) uniformly in Re(z) < 1 —¢ for any ¢ > 0. Obviously, F' is essentially the Laplace transform
of the cusp form f. In our derivation it occurs in a natural way and it seems to play an important role in
other investigations related to the Riemann-Siegel formula [2].

Consider the integral

1 .
I(s) = —/ 2™ F(2) 27 %dz. (6)
271 A
Here A denotes a loop around the positive imaginary axis, starting from e~37/200, running to e~ 37/2¢
wi/2

(where 0 < £ < 1 is arbitrary), encircling the origin in the positive directon to e™/?e, and finally returning
to e™/200. Thus the argument of z varies in the interval —3% < arg(z) < Z. Assume that s is confined to
a compact subset of the complex plane. Then the integral I(s) converges absolutely and uniformly. Hence
I is an entire function. For the time being we shall assume Re(s) < 1. Then ¢ above can be taken as small
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as we please. In particular we can let ¢ — 0. Parametrizing the path of integration by z = ue=37/2 and
z = ue™/2 4 > 0 real, we find
i o 8z o
I(s) = — (/ e 2T F (ju)(e” 2 u)_sdu+/ 6_2”“F(iu)(67u)_3du>
211 \J oo 0
i omis, . . o
=—5 e (e™ —e"”s)/o e 2™ B (ju)u~*du. (7)

Using the definition (5) of F'(iu) gives
/ e 2™ F(ju)u " du = 277/ 6_2"uu_s/ 2™y (r)drdu = 271'/ zp(x)/ e~ 2mu1=iz) =5 qudy
0 0 0 0 0

= (21)°T(1 - 3) /0 " (@)1 — iz)* L.

The interchange of the order of integration is permitted by absolute convergence. Inserting this formula into
(7), using 771T(1 — s)sinws = ['(s)~! and the formula from Theorem 2, we get a fortiori

oo
I(s) = (27)°T'(s)™! / Y(z)(z + i) de = T(s).
0
The restriction Re(s) < 1 can now be removed by analytic continuation, so that we have proved

Theorem 3: Let f € Sy, and T(s) be defined as in Theorem 2. Then for all complex numbers s

1 .
T(s) = 97 A(527”’2F(z)zfsdz,

where F' is the Laplace transform of f as defined by (5).

Theorem 2 and 3 are the desired analogs of the Riemann-Siegel integral formula. In fact, the Laplce transform
of the cusp form f occurs as a “kernel” in the integral for T'(s), exactly as the function csc(z) = 2i(e™® —
e~ ™)~1 occurs in the formula for f(s) of Section 0. This is no coincidence since the the cosecant function
can be considered as the Laplace transform of the theta function. Also it can easily be shown [2], that F has
simple poles at the positive integers, similar to the cosecant. Consequently we have a very close relationship
between our formula and Riemann’s, which can be proved along the same lines [1].

2. Cusps Forms for Congruence Subgroups. In this section we shall consider a much more general case
using the same principle. In fact, we now allow cusp forms belonging to an arbitrary congruence subgroup
of the modular group. Moreover, instead of the limit £ — 4, which corresponds to the cusp —1, we can use
any cusp % # 0 to play the same role as % =-1.

We use the standard notation. Thus let f : H — C be a function, v € GL3 (Q), and k be a positive

integer. Then define a new function f|[y]x by f|[v]x(2) = (det7)% (cz + d)~* f(vz). If T is any congruence
subgroup of the modular group, say I'(N) C I, we let Si(I') denote the C vector space of cusp forms of
weight k belonging to I'. Consequently, f € Si(T) if, and only if, the following conditions are satisfied:

I) f:H — C is holomorphic.
IT) f|[y]x = f for each v € T.
III) If 9 € SLy(Z) and g = f|[Y0]k, then there exist complex numbers b,, such that

g(z) = Z bne%, Im(z) > 0.
n=1
If N is a positive integer set
To(N) = {(‘C’ Z) € SLy(Z)|e = O(N), } Ty (N) = { (Z Z) € SLy(Z)|a = d=1(N),c = 0(N), } .
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Then T'¢(N), T'1 (N) are congruence subgroups of level N and I'; (N) C T['g(N). Let I denote any congruence
subgroup. By conjugation, the study of Si(T') is reduced to that of S (T'1(V)) for suitable N. The space
Sk(T1(N)) of cusp forms of weight k can be further decomposed. Let x be a Dirichlet charcter modulo N
and

Sk(N,x) = {f € Sk (T1(N) I fllolk = x(@) f, 70 = (?5) € FO(N)}-

Then S (T1(N)) = @y moa nSk(N,x). We shall therefore assume from now on that f € Si(N,x). Each
such f has a Fourier expansion ) .o, a(n)e*™*, Im(z) > 0, since f(z + 1) = f(z). As before we shall also
employ the function 9 defined by

1 > _ VN
¢x:f<—): a(n)e 2™/ , Re(z) > 0. 8
£ () i Z;() (z) (8)
We define the associated Dirichlet series and the Mellin transform of ¢y through
> > 2 \ ¢
L) = Y awn™, Resf) = [ st = (25) ML), o)
,;1 o VN

Now let wy = (%) and define g by g = fl|lwnls, ie. g(z) = N_%z*kf(—Niz). Then it follows

easily ¢ € Si(N,X). Hence g has a Fourier expansion of the same type as f, and we write g(z) =
>0 b(n)e?™* Tm(z) > 0. The relation f|[wn]r = g then yields

n=1

1
w0 =ty (L), RGs.p = ¥R 5,9) (10)
We are now prepared to derive the analog of Theorem 2.

Theorem 4: Let N, k be positive integers, x a Dirichlet character modulo N, f € Si(N,x). For s,& complex
with Re(€) > 0 define

s 1.6 = (2) T | T @,

where V¢ (z) = f(%) If p,q are integers with pg # 0 and (p,q) =1 and if £ = igx/ﬁe’” with 0 <6 < §
for g >0 resp. =5 <6 <0 for g < 0, then the limit T(s, f, g) = limg ;. /n/, To(s, f, &) exists. Moreover,
the associated Dirichlet series L(s, f) has the representation

L(s,f)zT(s,f,§>+i’“X(8)T<k—s,g,—piN), 0= fllonle,  X(s) = @n/VE)* *T(k — 8)/T(s)

Proof: The method is exactly parallel to that of Section 1, but the behaviour at the cusps has to be analyzed
more carefully. We first have for any complex £ with Re(§) > 0

§oo 13 §oo
R(s, f) = Yy(z)z ' dz = (/ +/ ) Yy (z)z* ' da. (11)
0 0 3
Applying the transformation formula in (10) and turning the line of integration we get
£+o0 £ oo
R(s, f) = / Yy (z)z*tdx + zk/ Yy (x)zF = d. (12)
g -1

Hence using the definition of Ty(s, f, &)

2_7r>25k T(k—s)

JN W; g = fllwn]k-

L(S,f) = To(safaé-) +ZkX(S)T0(k - S,g,é-_l), X(S) = (
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We now consider special values of the parameter £, namely £ = zgx/N e, with 0 < § < 7 for p/q > 0 and
—% <6 <0 for p/g < 0. In order to justify the limit operation § — 0 we first observe ¢¢(§) = f(%) =
f(=2e7). Here =2e~% = —L 4w where w = 2(1—e~¥). Thus Im(w) = 2sind > 0 and w — 0 is equivalent
to & — 0. Let b,d be integers satisfying pd + bg = 1. Consequently, A := (_qud) € SL2(Z). Moreover, let

fi == f|[A]. Then f; has a Fourier expansion of the shape fi(2) = Y o0 c,e?™™*/N Tm(z) > 0. This
follows from property IIT) above. By definiton f(Az) = (—qz + d)* fi(z). In particular Az = w — % where

__1 d PPN B
2=—gg ty This implies

0r(© = 1 (=) = £(42) = (Caz + "1 = (@) *4 (— o+ ).

The Fourier series for f; shows that fl(—q%w

equivalent to 6 — 0 and & — igx/ﬁ , we see that 1¢(§) decays exponentially as £ — i%\/ﬁ . Hence the limit
operation £ — z%x/ﬁ in (12) is permitted, which concludes the proof of the theorem.

+ %) decays exponentially provided w tends to zero. As this is

Having derived this basic representation for Ty(s, f,£) it is now easy to get the general version of the
Riemann-Siegel integral formula. We state the final result, whose proof is practically the same as that of
Theorem 3, as follows.

Theorem 5: Let N,k be positive integers, x a Dirichlet character modulo N, f € Sp(N,x). Let s be a
complex number and p,q be positive integers with (p,q) = 1. Define T'(s, f, %) as in Theorem J. Then

T (s,f,§> = L/Ae327”'14'%z,z_sﬁ{f, g}(z)dz,

T 2w

where A denotes a loop around the positive imaginary azis. If g = f|[wn]k, then the associated Dirichlet
series satisfies

Ho =T (s.0.2) + x0T (k-53..%).

In this formula

£{5.2}(e) =2n / erazy (igwm mm) d
0
is the Laplace transform with parameter % of ¥y. It is holomorphic in the left half plane Re(z) < 1.

3. The function ((s)((s + 1). We have already remarked that other types of Dirichlet series also admit
integral representations similar to those given above. In this section we derive several formulas for {(s){(s+1).
It corresponds essentially to the Dedekind eta function. In this case, however, n(z) is not a cusp form, but
has a simple pole at each cusp. This different behaviour causes some additional difficulties. They can be
overcome by first applying a suitable integration by parts and then proceeding as before.

If we let R(s) = n~2['(£)((s), the function R satisfies R(s) = R(1 — s), which is nothing but the
functional equation for ((s). Moreover, R is meromorphic, having only simple poles at s = 0, s = 1, with
residues being equal to —1 and 1, respectively. We further define

f(s) = 3R(s)R(s + 1). (13)
From R(s) = R(1 — s) we get the functional equation f(s) = f(—s). Also, f is holomorphic in the complex

plane, except for simple poles at s = —1,1 and a double pole at s = 0. Using the definition of R and the
duplication formula for the gamma function, we obtain

f(s) = 2m)7°T(s)¢(s)¢(s + 1) (14)
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Inserting the Dirichlet series

() +) =S oamn®, oam)=3d", (15)
n=1 d|n

which converges absolutely for o = Re(s) > 1, and using the gamma integral, yields the basic formula

= /000 Y(x)t e, o>1, oY) = Za,l(n)e_%m, Re(z) > 0. (16)

Obviously, ¢ is holomorphic in the half plane Re(xz) > 0. This function is well known, since it essentially
equals the logarithm of the Dedekind eta function, viz. logn(iz) = —T§ — 1 (z). Some important properties
can be deduced by inverting the Mellin transform (16). This gives

1
27

P(z) = f( Jx7%ds, c¢>1.

For example, using the functional equation f(s) = f(—s), substituting —s = w in the integral, shifting the
contour to the right and evaluating the residues, leads to the formula

™

1
P(x) = Tk -1 Ea: + - log:c + (;) . (17)

Here, as usual, Re(z) > 0 and log = takes its principal value, i.e. |arg(z)| < J.
Besides this well known function v, we need a new one, 1;, which we define through

Za 1(n)n~te™?™2  Re(z) > 0. (18)

Its chief properties are summarized in

Theorem 6: For complex x with positive real part let ¢, (x) be defined by (18) Then the function iy is
holomorphic in the right half plane Re(z) > 0 and o] = —2m1p. Moreover, 1(x) = 27rf Y(u)du, where the
path of integration may be any rectifiable curve extending to infinity and lying in a sector larg(u)| < T-0< F
(6 > 0 fized). Finally, 11 satisfies the functional equation

> 2
Y1(z) = Alogz + B + Czlogz + Dz + Ex? — 27z Z o_1(n)E, (%) . (19)
n=1
Here A, ..., E are suitable complex numbers not depending on x, and the function E» (generalized exponential
mtegral) is given by Ex(z) = [ e *'t72dt, Re(z) >0

Proof: All statements are easy deductions from the definitions (16) and (18) of ¥ and 1), except the last
two concerning the functional equation. To show these, one may proceed as in the case of 1)(z), using the
Mellin transform

| @t =m0 + 06+ 2 = 6 1),

and its reciprocal

(@) =5 [ s+ ds, >0
! 271'Z (c) S )
Applying the functional equation for f, shifting the contour appropriately, taking into account the double
poles at s = —1,0, as well as the simple one at s = 1, leads to
Y1(z) = Alogz + B + Czlogx + Dz + Ex” —27r:c— f() ds c> 1

2mi



Inserting (14), (15) and noting

1 2 1
— [T ds =B (-
el B Q(z)’

proves the assertion. Another, and possibly more direct, way to obtain the modular relation (19) consists in
using the corresponding equation (17) for ¢ and integrating. For,

0 1
P1(x) = 277/ Y(u)du = 277/ Y(u)du + 91 (1).
If Re(z) > 0, we get from (17)
1 1
/ Y(u)du = / |:;T—2U_1 - %u + %loguwL {0 (%)] du
= —%logw — ;—4(1 —2?) + %(—1 —zlogz + ) + /1z Y(u)u~2du.

Write the last integral as

/100 Y(u)u"2du — /;01 Y(u)u"2du = /100 Y(u)u 2 du — :L'/loo ) (%) v 2du,

[ e (@)= Srom (32)

This concludes the derivation of (19) and gives the values

where

2 2 o]
A:—F, C=-n,D=m, E= %, B=¢1(1)+27T/ P(u)u™?du —
1

7'(2

12

— 7.

Hence, Theorem 6 is completely proved.

Note that the infinite series involving E» is absolutely convergent. This follows from Es(z) = O(e™?), 2z —
00, |arg(z)| < 7.

On the basis of the preceding investigations, we are now going to derive a new formula for f(s), as given
by the following result.

Theorem 7: For s € C, except s =+1 and s =0

s—1
2

6= [T o+ =22 [T - e+ 1),

where H is defined by

mi s (1 1 e (mi 1
H(s)=——e2 ——=.
(8) = —33¢° (s—1+s+1>+2s (2 s)
Proof: Let w be a complex number having positive real part and assume temporarily o > 1. If arg(w) = ¢

with |¢| < 7, we may turn the line of integration in (16) around the origin. Splitting the integral at z = w
and applying the functional equation (17) to the finite part (i.e. from 0 to w), we thus obtain

f(s) = /m b(e)a* = dz + /m b(e)a" de + H(s,w),

w w1
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with

T ws—l ws—i—l w? 1
H(s,w) = — - Y (logw—~). 2
(sw) = 75 (3—1 s+1) * 2 (ng s) (20)

As usual, logw denotes the principal branch of the logarithm, where |Im(logw)| < 5. Integrating by parts
yields using Theorem 6

56) = genpr ™+ 2 [T e 2

2 Jy

1 1 occe™ ¥
+ — 1ty (w Hwt — s / 1 () 2dx + H(s,w).
2w 27 w—1

Since 1 (x) decays exponentially as Re(z) — oo, the paths of integration can again be rotated, so as to run
in a direction parallel to the positive real axis. Thus

ws s — 1 w—+00
£6) = 5 T+ ] + 7= [ p@)et 2o-

2 Sy,

_s+l /w_ o Y1 (x)z™ " 2dx + H(s,w). (21)

21 w—1

Up to this point w was aribitrary, subject only to the condition Re(w) > 0. Now we specialize to w = e,
where ¢ = 7 — 4 and 0 < § < 5. We are going to show that we may let 0 tend to 0, i.e. w — 4 in (21). This
is, of course, obvious for H (s, w). To discuss the integrals, observe that

w=1ie"® =sind+icosd =i+ +0(%), wl=—ie? =gsind—icosd=—i+3+0(5?),

for § — 0. Hence, setting w =i+ v and w™! = —i + o, we find v = § + O(6?), v’ = § + O(6?). Moreover,
Re(u) > 0, Re(u') > 0 and |arg(u)|, |arg(u')| < § (say), provided § is small enough. Applying this to the
first integral in (21) yields

w—+00 u+o00 wtoo
/ Y1 (z)z’ da = / Y1(z +i)(z +49)"2dz = / Uy (@) (x +0)*2da.

w u u

But Theorem 6 shows that 9 (z) = O(log x) for x tending to 0 in a sector |arg(x)| < 7. Consequently, the
last integral converges as u — 0, i.e. § = 0, w — i. The same argument applies to

w40 u'+00
/ Y1 (z)z ™ 2dx = / 1 () (x — )5 2de.

w1 u’

It remains to discuss the bracketed term in (21). With the same notation as before, namely w = i + u,
w~! = —i +u', we have using Theorem 6

Pr(w)w™t + 1 (w™Hw = Y1 (ww™h + i (u)w
= [Alogu + B + O(ulogu)]w™" + [Alogu’ + B + O(u' logu')|w
= (Alogé + B)(w™" +w) + O(5logd) = O(dlogd),

since w ! +w = u+u' = O(§). Thus, as § — 0 (equivalently w — i), the bracketed term in (21) vanishes,
giving

-1 i+00 . 1 —i+o0
f(s) = 8271- /Z Y1 (z)z*~2dx — S;;r /_l 1 (x)e™*"2dx + H(s,i).
The restriction ¢ > 1 made at the beginning of the proof can now be dropped by analytic continuation,
excluding only the poles of H(s,%). Substitution of the variable of integration and defining H(s) = H(s,1)
finally concludes the proof of Theorem 7.



The formula given by this result seems to be new. Its validity depends essentially on the properties of 9,
which permitted the limiting value w = i in (21). We were thus able to perform the same limit operation
as in Sections 1 and 2, despite the fact that ¢ (z) grows like (x —i)~! for z — i. Now the Riemann-Siegel
formula can be deduced in the usual manner. As a preliminary step, we divide both sides of the formula of
Theorem 7 by (27)7°T'(s) to get

Theorem 8: For any s € C except s =0,1,2,...

C(5)C(s +1) =T(s) + X (s)T(—35) + (2)°T(s) " H{(s),

where - r
T(s) = (2m)*'T'(s — 1)_1/ Y1 (z)(x 4+ 4)°"2de, X (s) = (2n)** F(_S';),
0
and H(s) is defined as in Theorem 7.
Proof: This is obvious from Theorem 7 and formula (14). The points s = 0,1,2, ... excluded are poles of

X(s) and H(s).

To proceed further, we are going to transform 7'(s) into a loop integral around the positive imaginary axis.
We require some preliminary considerations.
With ¢, as in (18) we define a new function F by

F(z)=2n /000 e?™ 4y (x)dz, Re(z) < 1. (22)

It follows from (18) that 41 (x) = O(e~27*) as & — co. Moreover 1) () = O(log x) as x tends to 0 by Theorem
6. Consequently, the above integral converges absolutely and uniformly provided Re(z) < 1 —¢e < 1. This
shows that F' is a holomorphic function in the left half plane Re(z) < 1. Furthermore we have

|F(2)] < 2 / " eme ey (a)da = O((1 - Re(2) )
0

if Re(z) < 1 and this implies that F' is uniformly bounded in any half plane Re(z) <1 —¢ if € > 0 is fixed.
Now assume ¢ < 2 and consider

I(s):/ e 2™ F(ju)u' ~*du,
0

which is absolutely and uniformly convergent in any strip o9 < ¢ < o1 < 2. Note that F(iu) = O(1) as
stated above. Using the definition of F', we get

I(s) = 27r/ 672””u1*s/ 2™ @iy, (x)dzdu :277/ wl(x)/ e u@r—2miz)  1=s qudg,
0 0

0 0

where the interchange of the order of integration is permitted by absolute convergence. The inner integral
takes the value (27)°2(1 — iz)*~2I'(2 — s), hence

eF ) 1(s) = (2n)'T(2 - 5) /000 bi(e)(@ +i)*de. (23)

Next we consider )

J(s) = %Aez”izzl_sF(z)dz, (24)

where A is the loop around the positive imaginary axis as described right after the analogous expression (6)
for cusp forms. Using the properties of F', we conclude that J is an entire function of s. It is now easy to
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relate J(s) to T'(s) as before. Let us assume that o < 2. Then we may let tend £ to 0 in our parametrization
of A and thus we obtain

1 i 0 mi >
J(s) = =— (637(2_3)/ e ™y T F (iu)du + eT(Q_S)/ 6_2FUU1_SF(iU)d“)
~ 0

2mi
= L,e%i(s_z)l(s) (e7™i — e™is) = —1(27r)s*1 sinwsT'(2 — s) / 1 (z)(z +14)* 2de
27 m 0

by (23). Since I'(s — 1)T'(2 — s) = —x/ sinws, we get J(s) = T'(s). The restriction of o to values less than 2
can now be removed by analytic continuation. We have thus proved

Theorem 9: If A denotes a loop around the positive imaginary azis as described above, then

1 .
T(s) = —/ 2™ F(2)dz
A

 2mi
for any complex s. The function F is defined by (22).

Again we have found an analogue of the Riemann-Siegel formula. As in the case of cusp forms, one may
ask whether a more general version of Theorem 9 is possible. For this purpose it is certainly necessary to
investigate the behaviour of 4, in the vicinity of an arbitrary cusp, which we will do next.

If z is complex and |z| < 1 let

oo oo oo 1
9(z) = —log [[1—2m) =3 3 —am
m=1 n=1m=1

This function is related to ¥ (z) and to the logarithm of the Dedekind eta function and has been studied
in a classical work by Rademacher [6]. In our notation g(e=27%) = ¢(x) if Re(z) > 0. Let p,q be integers
such that ¢ > 0, (p,q) = 1, and denote by p’ any solution of the congruence pp’ = —1 mod ¢q. Then, as
Rademacher has shown ([6], p. 317, (1.45))

_2me  2mip 2, 2mip’ m
et ) +7 )

=g(e = ——(w—x_1)+%logx—7ri5(p',q). (25)

9(e 12¢

In this formula S denotes the well-studied Dedekind sum

o= £ (22 [24]-3)

p=1

with [t] being the greatest integer not exceeding t. To employ our function 4, we replace z by T in (25) and
take complex conjugates on both sides. The result is

r .p 1 P ™ -1 1 ; !
— - = _— — _ — — +—1 - 2
w(q+211) ¢(wq+lq) 12q(m =) 2 oge +miS(p',q) (26)

The next two results correspond to Theorems 6 and 7, respectively.

Theorem 10: Let p,q be integers, ¢ > 0, (p,q) = 1 and let p' be a solution of pp' = —1 mod q. Then, if
Re(z) >0

_ 2minp’

p 2ning! (2
h (% +z§) = Aylogx + By, + Cyzlogz + Dpyx + Eyx” — %a: o_1(n)e” " ¢ FE» (%:) .

n=1

11



Here A,, Byq, Cy, Dpq, E4 are complex numbers not depending on x. In fact
Aj=——=, Cy= E, = ,
o6 T g ¢ q 1247
and 2 2 2, 2 (e8] ! 1
™ i T s u Ny _9 .D
Bpyy=————=+—50q +—/ w(—+z—>u du+¢1<—+z—).
W= g T SO q 7 q
Proof: Using the definition of 1; we have

(U <E +l§) =27 /:O ¥ (u)du.

q ;_H'E

q

The integral equals

atig 1 2rr [* 1
¢1(§+i£)=27r/ ¢(u)du+¢1(—+i£)=—ﬂ-/w(g+ig>du+¢1 (—+ig>-
a q =pi2 ¢ q/ alo \a ¢ a q

As in the proof of Theorem 6 the assertion follows from (26) by integration, q.e.d.

Theorem 11: Let p,q be positive integers, (p,q) = 1. Then

f(s)‘s_l/oo«b v+il) (z 4L 52d$—5+1/m¢ (m_ig) (w_ig)”dx
T o o " q q 21 Jo ' q q

zis (P\° i P

= (2) “p H(s,it

where D(p,q) = %ﬁq logg - I%qu + %B—qp, and By, is defined as in Theorem 10. Moreover, H(s,w) is given
by (20).

Proof: We start from equation (21) which was proved for any complex w with Re(w) > 0 and for o > 1.
The last condition can be dropped, avoiding only the singularities of H(s,w). Let ¢ be real, 0 < ¢ < T and
set w = i%e‘i‘s. We shall show that § — 0, i.e. w — iZ is permissible in (21). We write w = 2(i + u),
w! = Z(—i+u'). Hence Re(u) > 0, Re(u') > 0 and u = § + O(?), u' = § + O(¢*) as § — 0. The first

integral in (21) is equal to
%u-}—oo p p s—2
/ i (m—}—i—) (w—i—i—) dz,
By q q

which converges absolutely for u — 0 since ¢ (x+1 %) grows only logarithmically at x = 0 by the previous the-

orem. The other integral is treated similarly. Thus it remains to show that lims_,o [¢1 (w)w™" + 91 (w™)w]
exists. From the definition of w,u and Theorem 10 we obtain

U, .
1 (w) = (;p + zg) = Ay log(up) + Bpg + O(d logd)
= Aglogé + Aglogp + Bpg + O(dlog ).
Similarly,
1 uqg | q —
P (w™) = s + ZE = A,logd + Aplog g+ Bgp + O(d1logd).
Combining these formulas we get

Y1 (w)w™! + ¢ (wHw = —i%Aq logp + z'gAp logq — i%qu + isB—qp + O(d1ogd).
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Taking the limit 6 — 0, we obtain the assertion of the theorem, q.e.d.

The next two results give generalizations of Theorems 8 and 9. As the proofs do not involve any new idea,
we omit them.

Theorem 12: Let p,q be positive integers, (p,q) = 1. Then

C()C(s+1) =T (s, g) LT <_§, %)X(s) + i(27r)3_1;§ (§)sp(p, g + (2r)T(s)'H (sz§> ,

with the function T defined by

T (s,%’) = (2r)* 'T(s — 1)~ /Ooo " (a:-l—ig) (m+z‘§>3_2 da,

X (s), D(p,q) as in Theorems 8 and 11, respectively, and finally

. s—1 2 9 mis s .
.D T zis [P 1 pq ez (p m p 1
H — | =——e2 (= —_— — = — +log=——-].
(S’Zq) 12° (q) <é>’—1+8+1>+ 2s (q) (2 ey 8)

Theorem 13: The function T from Theorem 12 admits the integral representation

1 P >
T (s,l—)) = —/ 2T T (z,z—)) dz, F (z,l—)) = 27r/ 2™ %), (w+ig> dz.
q 2mi Ja q q 0 q
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