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Introduction

The recent discovery of an analogue of the Riemann-Siegel integral formula for Dirichlet series associated
to cusp forms [2] naturally arises the question whether similar formulas might exist for other types of zeta
functions. The proof of these formulas merely depends on the functional equation for the underlying Dirichlet
series. In both cases, for {(s) and for the cusp form zeta functions, only a simple gamma factor is involved.
The next simplest case arises when two such factors occur in the functional equation. The prototype of these
Dirichlet series is (?(s), and so any investigation might well begin with this example. In the present study
we show that, indeed, a formula of Riemann-Siegel type can be found for ¢?(s).

The numerous applications of the ordinary Riemann-Siegel integral formula [3] suggest similar ones for
our formula too. For instance, it seems very probable to derive an asymptotic expansion for (2(s), giving
a generalization of Siegel’s result [9]. Originally, this expansion is due to Motohashi [6, 7], and it depends
on the corresponding formula for {(s). Consequently, our approach might lead to an independent proof
of Motohashi’s expansion. This would be of considerable value, since our method applies as well to other
Dirichlet series satisfying similar functional equations, like Hecke L series of quadratic fields. As a first step
in this direction we give a simple proof of the approximate functional equation for (2(s) at the end of the
paper.

The author is very much indebted to Professor Aleksandar Ivi¢ (Belgrade) who read a preliminary
version of this work. His suggestions and criticism led to numerous improvements. Thanks are also due to
the referee for pointing out some misprints and unclear passages.

1. Basic Formulas

Let s = o + it, 0, real, and R(s) = n 2['(£)((s). From well known properties of the zeta function [3] it
follows that R has simple poles at s = 1 and s = 0 with residues being equal to 1 and 2{(0) = —1 respectively,
and otherwise is regular. Moreover, R satisfies the functional equation R(s) = R(1 —s). For¢ > 1,2 > 0

consider ) )
- 2 —5dg — _—_ —s72 (8 2 —s
Y(z) = 57 (C)R (s)z~*ds 57 (C)w r (2)C (s)z*ds. (1.1)

Inserting the series Y>> | d(n)n~* for (?(s) and interchanging the order of integration and summation, which
is permitted by absolute convergence, yields

W(w) = id(n)%ﬂ_ o (2) ()=,

The integral is equal to 87iKo(2mnz), where Ky denotes the usual modified Bessel function, in view of the

Mellin transform [5, p.14]
1 S\ [yY\~*
— [ T?(2)(3) ds=4Ko(y).
21 J (2) (2) s o(¥)

Hence

P(x) =4 Z d(n)Ko(2mnz). (1.2)

n=1



The asymptotic relation Ky(y) = O(y~2e~¥), valid for y — oo in the sector | arg(y)| < 3% shows that the
series (1.2) converges absolutely and uniformly in any half plane Re(z) > 0 > 0. It follows that (1.2) defines
a function 1 holomorphic in the right half plane Re(z) > 0. The imaginary axis is a natural boundary for
1. This fact can, for instance, easily be deduced from Lemma 2 below. In the sequel it will turn out that ¥
is the basic function on whose properties most of our results depend. It is therefore necessary to investigate
it more closely. Obviously, v is related to the Eisenstein series Eo(z) [4]. Contrary to the usual use of this
non-analytic function, where Ej is considered as a function of the real variables z,y (where z = x + iy), it
is here the behaviour for complex values of y that matters.

Next we derive a functional equation for 4. To this end the line Re(s) = ¢ > 1 of integration in (1.1) is
shifted to Re(s) = 1. The integrand has a pole of order 2 at s = 1 with residue being equal to

1. 1 1
= —log = + =(y —logm —2log?2 1.3
r(z) . ogx+$(v ogT 0g2), (1.3)

using (I/ F)(%) = —v — 2log?2, where v denotes Euler’s constant. Thus

1 1
Y(z) =r(z) + 5= R*(s)z—*ds = r(z) + =— R%(1 — s)z ™ *ds.
27 (L) 21 ()

The last integral is easily transformed into

1 1 1 1 1 1 1 1
Y R*(w)z" " 'dw = —=r (—) + / R*(w)zVdw = — =7 (—) + = (—) .
21 (1) T T 2mix (2) T T T x

Therefore we have the functional equation for v,

v@) =) - 7 (3) + 30 () (1.4

valid throughout the half plane Re(z) > 0.
We are now going to derive new integral formulas for (?(s). Our starting point is the representation

R(s) = /Om V(@) e, o> 1, (1.5)

obtained by inverting (1.1).
Lemma 1: In the plane cut from 0 to —oo we have

1
mT\2 _
Ko(z) = (_z) e z []. =+ H(Z)],
where H is holomorphic and the principal branch of the square root is taken. If Re(z) > 0, z # 0, we have
|H(2)| <2, and if in addition |z| > 1, then |H(2)| < |z|71.
Proof: We apply the formula [5, p.119]

Ko(2) = / e *t(t? — 1)_%dt, Re(z) > 0.
1

The substitution ¢ =1 + 7 gives

N

1 o0 ! T\~
Ko(z) = (22)" ze /0 e 'z <1+2z) dz.



By analytic continuation, this formula extends to the entire z plane cut from 0 to —co. With the principal
branch of the argument we have —7 < arg(z) < w. Write the above formula in the form

b= [ [T emrgmt Y emagin (2
Ko(z) = (22) 2e {/0 e "z dx+/0 e 'x h(zz)dx},

where h(w) = (1 4+ w)~2 — 1. Since

1—\/1+w_ —w
Vitw  Jitw+1l+w’

we get immediately |h(w)| < F|w| and |h(w)| < 2, provided Re(w) > 0. Thus, defining

H(z) = 73 /00 e Tx2h (;—Z) dz =72 /00 e~Tg3 [(1 + ;_z)_% - 1] dez,
0 0

we see that the first assertion is true. Let z # 0, Re(z) > 0. Splitting the last integral at |z| and applying
the above inequalities to h(3%) leads to

h(w) =

1 ]. ‘Zl 1 & 1
w3 |H(z)| < Z|Z|_1/ e_maﬁda:+2/ e Pz 2dx
0

|z

1 1
< Z|z|*1F (g) +20z| Fe 1l = |21 (5\/77%— 2|z|%e|z|> .

The expression in parantheses is less than 1 if |z| > 1, thereby proving the last assertion. Concerning the
second one, we simply use |h(5Z)| < 2 for Re(z) > 0, z # 0. Then

* 1
|H(z)| < 27} / e=*z—}dz = 2731 (5) _a.
0
This concludes the proof of Lemma, 1.

Lemma 2: Let Re(z) > 0. Then the function 1(z) = 4> . | d(n)Ko(2rnz) admits a decomposition

P(z) = 227 3 [F(z) + Fy(z)],

where F, F1 are analytic in the half plane Re(x) > 0, and where the principal branch of the square root is
taken. Moreover, Fy is continuous in Re(x) >0, x #0, and F is explicitly given by

F(z) = i d(n)n"2e 2™%  Re(z) > 0. (1.6)

n=1

Proof: Using Lemma 1 with z = 27nz gives for Re(z) > 0

1

Y(x) = 25~ 3% Z d(n)n~2ze= 2™ [1 + H(27rn:v):| =273 [F(;v) + F (x)],

Fi(z) = Y d(n)n= 2™ H(2mnaz). (1.7)

n=1

The infinite series defining F(z) and Fi(z) for Re(z) > 0 are absolutely and uniformly convergent in any
half plane Re(z) > § > 0. Hence F, F; are analytic in Re(z) > 0.
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It remains to prove that Fj is continuous for Re(z) > 0, z # 0. Let € be given, 0 < e < %, and assume
|z| > . We show that the series (1.7) converges uniformly. Define an integer N by N = 1+ [(2me)~!]. If
n > N then |27nz| > 2rN|z| > 2rNe > 1. Thus |H(2rnz)| < |2rnz|~! by Lemma 1. Since |H (2wnz)| < 2
always, we get

|Z d(n)n—%e—%"mH(anwﬂ <2 Z d(n)yn~% + |2nz|~! Z d(n)n=%
n=1 n<N n>N

< N7logN + lz|~! <« 5_%|log6| +e e
using well known estimates for the divisor function. This completes the proof of the lemma.

Next we want to study the behaviour of ¢(z) as Re(z) — 0, which is crucial to our investigation. As
it will turn out, we can obtain very precise approximations for ¢ (z) if z approaches the “cusps” i%, P, q
integers, ¢ > 0, on the imaginary axis. In this way 1(z) resembles properties of modular functions, despite
the fact that it is not a modular function. Lemma 2 shows that we are reduced to an investigation of
Fz)=3%", d(n)n—2e=2m= for Re(z) — 0%, since Fy(z) is continuous on the imaginary axis (z # 0). To
accomplish the desired task, we need to introduce the Dirichlet series

D(s,&h) = Z d(n)&Pn™%, & = eQTi, o>1. (1.8)

n=1

These functions have already been studied by Estermann [1] in a classical work, from which we borrow
those results relevant to our problem. Thus let p,q be integers, ¢ > 0 and (p,q) = 1. Clearly, D(s,.f}l’)
as given by (1.8), is analytic for o > 1. Moreover, as Estermann has shown [1, Sections 3, 4], D can be
analytically continued to the entire plane where it is holomorphic, except for a double pole at s = 1 with
residue %(’y — log g). More precisely, for || < 1

D(1+6,&)==[0"2+2(y—logg)é~" +0(1)]. (1.9)

1
q
The significance of the parameters p and ¢ can best be seen from the approximate functional equation for
(%(s). When p = ¢ = 1, the “symmetric” form is obtained, while other choices lead to an “unsymmetric”
form, as given by Motohashi [6, IIT]. Compare also the remarks at the end of the paper.

We now prove

Lemma 3: Let p,q be fized integers, ¢ > 0, (p,q) = 1, © complex with Re(x) > 0, and let éy be a real
number, 0 < do < 5. Then

1
F <z§ +x) = (2z) 3¢ (v — 2log 2 — 2log g — log 27z) + D (5,5(1_1)) +O(|w|%)

for & — 0 uniformly in the sector |arg(z)| < do.

Proof: We have F(if + z) = D d(n)fq’"pn*%e_%m. Using Mellin’s integral for e=2""® we find for any

c > %
F Z'— X = —1 / F( )D —1 § p (27(.’17) d
7 + o © w w + 58 Ydw.

Shifting the integral to the left to the line Re(w) = —3 and allowing for the poles at w = } and w = 0 shows

1 1
F <i1—) +a:) = ——(v—2log2 —2logq — log2wz) + D (5,5(1”) +

q qV2x
2rz)s
+ % /( T (s - %) D(s,£;7)(2nz)~*ds.
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The residue at w = 3 is easily calculated using (1.9). Since D(it, &P K t4 for some constant A, it follows
from Stirling’s formula and |z~ %| = |2~ %| = e!28(®) < %t/ that the last integral is absolutely and uniformly
convergent. This completes the proof of Lemma, 3.

Our last preparatory result is

Lemma 4: Let £ be a complex number such that 0 < arg(§) < 5. Then for all complex s # 0,1

-1

£+o0 £ o0
R(s) = / W(@)z*dz + / W(@)z—*dz + H(s, ),
3

with the meromorphic function

Esfl
- s—1

1
H(s,¢) (—log£+s_—1+’y—2log2—log7r>—

£ 1
sy 10g§—;+’y—2log2—log7r .

Proof: Assume o > 1 and let § = arg({). Then 0 < § < § by assumption. Since t(z) is holomorphic
in Re(z) > 0 and vanishes exponentially for z — oo in the sector |arg(z)| < §, we may turn the line of

integration in (1.5) about the origin. Hence

8

R = [ e d .
(s) /0 Y(x)z® tdz, o>1

The restriction ¢ > 1 will be maintained for the time being. Now split the integral at z = £ and apply the
functional equation (1.4) to the path from 0 to £&. This leads, after a substitution z — z~!, to the formula

goo £ too
R%*(s) = (z)z*tdz + / Y(z)z~%dz + H(s,§),
‘E -1

H(s,€) = / { [r(x) -2 (%)] +*1da,

Here H(s,£) can be calculated explicitly using r(z) = Tlog L + X(y —logm — 2log2) and

13 13 w 1
/ z¥ logadr = i/ z¥ tdx = & (logE - —> .
0 dw J, w w

This yields the stated formula for H(s,&) if o > 1. Analytic continuation provides the validity of our
assertion for all complex s # 0,1 (which are poles of H). Finally we note that the integrals above can be
turned about —§ and &, respectively, so as to run parallel to the positive real axis. This concludes the proof
of the lemma.

where

We can now state our first main theorem:

Theorem 1: Let p,q be positive integers, (p,q) =1, and & be real, 0 < 6 < %, £ = %ei‘;. For complez s
define

€+o0
To(s,€) = /g ()~ dz.
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Then the limit lims_, /5 To(s, &) ewists, i.e.

p i +oo
To (s,ia) :/ Y(x)z® ' da.

Proof: Let § = % —¢,sothat 0 < e < Z and { = %ei(g_e) =i2e™%. Then § — § is equivalent to ¢ — 0 and
§ — i£. Moreover, we define w by { =% +w. Then w = %(sine +i(cose —1)). Thus fore = 0

w| = SE +0(e?), arg(w) = —g +O0(?). (1.10)

Now consider the integral defining Ty (s, ), which we may write as

To(s, &) = /w+°° " (zg + x) (zg + m)s_l da. (1.11)

w

We apply the decomposition of ¢(z) as given by Lemma 2. We get

w+00 P P s—3 w00 p p s—3
To(s,g):Q/ F(ia+m) (za+x) da:+2/ F (za—i—x) (za+m) dz.

Since F; is continuous for Re(x) > 0,  # 0, the second integral exists if w — 0. As to the first, it suffices
to consider fg“ F(it + z)(i + z)*=3/2dz for w — 0. Write z = w +u, 0 < u < 1. If £ is small enough,
|arg(w)| < T (say) by (1.10). Hence Lemma 3 applies. Accordingly there exist complex numbers a, b, such
that F(if + ) = ¢ %(alogx + b) + O(1). Therefore

w+1 p p s—3% w+1 ) p s—3
/ F<i5+m) (za—i-:c) dmz/ [z72(alogz + b) + O(1)] (z;—kx) dz.

w w

The last integral converges for w — 0. Thus the limit w — 0 ({ — %) in (1.11) exists too and the proof of
the theorem is completed.

It is now easy to express C2 (s) in terms of TO(S,iZ‘)):

Theorem 2: Let p,q be positive integers, (p,q) = 1. Then for s #0,1

) =T (s, g) +X()T (1 _3, %) 4702 (g) H (s,ig) :

where - X
I_) sp—2 f faee s—1 _ 23—1F (?)
T(s, )_ r (2)/i£ Y(x)r® 'de, X(s)=m O

and -1 zi(se1)
- Zi(s—1 : 1
H s,iz—) =(2 e’ —W—Z—log2+—+7—2log2—log7r —
q q s—1 2 q s-—1
(2 sﬁ 7T—i—Ho 2—14— —2log2 —logm
q 5 2 gq s 77 g gm | -

Proof: Let & = gei‘s, where 0 < 6 < 7. By Lemma 4 and Theorem 1

Rz(s) = To(s,é.) + TO(l - 875_1) + H(Sag)

6



From Ty(s, &) = To(5,€) we get
To(1 = 5,67") = To(1—5,&70).

Since -1 % we may let tend § — Z by Theorem 1. Hence

R(s) =T (m%) + T, (1—3 zp) +H< g),

from which our assertion is obvious.

This result shows that the study of ¢2(s) is reduced to that of T'(s, %) for positive, coprime integers p,q.
Obviously, T'(s, %) is an integral function of s if p and ¢ are fixed. Our final goal will be to derive an analogue
of the Riemann-Siegel integral formula for T'(s, %). As it turns out, the formulas to be established depend
on the properties of certain integral transforms of 1(z), which we are going to investigate next.

2. Integral Transforms Involving (z)
Let p, ¢ be integers, ¢ # 0, and consider for z € C with Re(z) > 0 the integral

i2+o00
K(p,q,2) = / Ky(2mzz)zy(x)de. (2.1)

Qs

Since Ko(2mz2) = O(|(z2)"2e72™%|) and ¢(z) = O(e~2™Re(®)) for Re(z) — oo by (1.2), it is seen that
the integral converges absolutely at its upper bound since Re(z) > 0. In the vicinity of i%, Theorems 1
and 2 imply ¥(z + zg) = O(z~2|logz|) for z — 0, while K0(27r(z'§ + z)z) is regular (if p # 0) or has a
logarithmic singularity (if p = 0). This shows that X(p, q, ) defines a function holomorphic in the right half
plane Re(z) > 0.

This function is fundamental in our subsequent analysis and in the present section we proceed to derive
its basic properties.

Lemma 5: Let p,q be integers, p # 0, ¢ # 0. Then for non integral z € C

2
K(p,q,2) = 2L Z 5 [2Ko(2min®) K (2miz?) — nk}(2min®) Ko(2miz2)].

n2

The series converges absolutely and uniformly for z contained in any compact subset of the complex plane
excluding the integers.

Proof: Let Re(z) > 0. In the above definition of K(p,q,z) we insert the series (1.2) for ¢(z) and invert
the the order of integration and summation. This is permitted, for instance, by Lebesgue’s theorem on
dominated convergence. Hence

o0 2minp/q+0o
K(p,q,z) =72 Z d(n)n=2 / uKo(u)Ko(£u)du.
n—1 2minp/q
Now observe that integrals of the type
/uKo(u)Ko(au)du
can be explicitly computed. To show this, consider the function f(u) = K{(u)Ko(au) — aKo(u)Kj(au),
where « is a complex number. Using the differential equation uK{(u) = uKo(u) — K{(u), we have

[uf ()] =uf'(u) + f(u) = (1 — a®)uKo(u)Ko(au).



Thus [ uKo(u)Ko(au)du = (1 - a?)~'uf(u). With @ = £ and X := 2732, we get

ni+oo n2
/ o) Ko (Fudu = A K () K (42) — nEKG ) Ko (42)].

From this formula the assertions follow at once since Ko(An) = O(n™%), Kj(An) = O(n~z).

Since the Bessel function Ky(u) has a logarithmic singularity at u = 0, it is convenient to introduce a cut along
the positive imaginary axis. Then —3F < arg(z) < I in the cut plane, or, equivalently, —m < arg(iz) < .
The main analytic properties of X(p, g, z) follow directly from the previous lemma. We have first

Theorem 3: Let p,q be positive integers. Then K(p,q,-) extends to a meromorphic function in the plane
cut from 0 to ico. It has simple poles at the negative integers z = —n = e~ "'n with residue being equal to

d(n) ;
—rias and is regular elsewhere.

Proof: We use Lemma 5. Write z = 2#% > 0 and

fn(2) = 2Ko(inz) K| (izz) — nK|(inz)Ko(izz),

so that

K(p,q,2) = %) > d(n)z2 fn(2).

2
n —_—
1

Since f,(z) is analytic in the cut plane, except for possible poles at z = +n, the first assertion follows
from absolute and uniform convergence of the series in compact subsets of the plane, excluding the integers.
Noting that f,(n) = 0, it follows moreover that X(p, g, z) is regular at z = n. Its value is easily computed
to be

K(p,q;n) = % >

™
m#n

A

2m2n,

%) Ko () Ky (An) = m Ky (m) oo ()] =

b
m2 —n

where A = 27ri§. This proves the assertions on the analytical character of K(p,q,z), and it remains to

compute the residue at 2 = —n = e~ ™n. The task is facilitated by introducing the Hankel functions H,Sa)
with v € {0,1}, a € {1,2}. Let 2 > 0. Then, as is well known ([5, p.109], [10, p. 78])

K, (iz) = —%le—"aﬂﬂg‘”(x), K, (—iz) = %’e"zﬂﬂw(x). (2.2)
Using also K} = —K;, we can write with z = 2#%

fale ™n) = nKo(inz) Ky (—inz) + nK, (inz) Ko (—inz)
2
= Tn[HéQ) (nm)Hl(l)(na:) - Hél) (nw)Hl(z) (nz)].
Since dd—zHéa) =-H l(a), it is seen that the bracketed term is nothing but the Wronskian of the pair Hél), Hé2)

at nz, which equals —W‘ifz. Thus f,(—n) = %, and this concludes the proof of Theorem 3.

We next show how to continue K(p, ¢,z) across the cut from 0 to ioco. To this end we use the formulae [10,
p-80]
K, (ze™™) = (=1)™ [K,(2) — (-1)"mimI,(z)], (2.3)

valid for all integers v and m. Hence
fn(ze™™) = —(=1)"2Ko(An) K1 (Aze™™) 4+ nK;(An) Ko(Aze™™) = f,(2) — wimgn(2),
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where
gn(2) = 2Ko(An)I1 (Az) + nKy(An)Io(A\z) (2.4)

and A = 2m’§. We have therefore proved part of

Theorem 4: Let p,q be positive integers, m be any integer, and z compler but not an integer. Then

K(p, g, ze™™) = K(p, ¢, z) + mG(p, q, z) with

2
G(p,q,2) = =2 Z n2 - [2Ko(An) I (A2) + nK1 (Mn)o(Az)], A = 2m"§.
The function G(p,q,-) is an even meromorphic function in the entire plane. Its only singularities are simple
poles at z = +n (n positive integer) with residue being equal to q:gg%

Proof: The equations for K(p,q,ze™™) and G(p,q, z) follow immediately from the formula for f,(ze™™)
derived above. Since K,,(27m'n§) = O(n~%) for n — oo and I, is an entire function, the analytic character
of G(p,q,-) is also obvious. Its evenness follows from I,(—z) = (—1)I,(z), provided v is an integer. To
compute the residues, observe that

gn(n) = nKo(An)I; (An) + nKi(An)Io(An) = —n[Io(An) K§(An) — I§ (An) Ko (An)]
_ 1\_1_ ¢
=" (_E> T 2mp

and this completes the proof of the theorem.

Another method to derive the formula of Theorem 4 is to use the definition

oo+i%

K(p,g,2) = / Ko(@nzz)ob(z)dz

i

Qs

Assume temporarily —1 < Re(z) < 1. Then by (2.3)

co+iZ

K(p,q, ze™™) = /2 [Ko(2maz) — mimlIo(2maz)|a(z)da

co+i%
=K(p,¢,2) — m'm/ Iy (2nz2)zy(z)dz
i
q
The last integral converges absolutely in view of Iy(w) = O(e/f*®)) and ¢ (z) = O(e~?"*). Now

cotil cot-2minp/q
/ Iy (2rzz)z(x)dr = = Z d(n / uKo(u)Io(Zu)du.
i 2

iL winp/q

These integrals can be computed in much the same way as those above, the result being
/uKo(u)Ig(au)du = (1—a®) 'u[K{(u)Io(au) — aKo(u)Ij(au)].

Hence (with A\ = 27ip/q)

oo+i i
/ Iy(2mzz) e (z = 2ip Z 5 [2Ko(An)Ig(Az) — nKg(An)Io(Az)].

P
q



Inserting this into the above representation for K(p, q, ze™™), we get K(p, g, ze™™) = K(p, ¢, 2) +mG(p, q, 2),
where

oo+i%

G(p,q,2) = —7ri/ Iy(2nzz)z(z)dz (2.5)

i P
q

- Z n2 Ko )Ty (\z) — nEK () o(A2)] (2.6)

which coincides with the result of Theorem 4. In the last formula the restriction —1 < Re(z) < 1 can be
removed by absolute convergence if z is not equal to any integer.
In later applications it will prove convenient to introduce two further functions connected with G(p, g, 2).

For this purpose we use the relations [10, p.74, 77] Io(z) = Jo(2/i) = %[Hél)(z/i) + H(gQ)(z/i)]. Then with

g(a)(p’ q,%) = __/ H( g 27(.%'2!/’&)1"¢'( )d.’l?, a € {1,2}, (27)
we clearly have the decomposition

G(p,4,2) = g [0 (0r0,2) + G (p,0,2)]. (28)

Explicit formulas for G(*) can be obtained as usual. Inserting the definition of ¢ (z) yields

o0 2winp/q+oo
G (p,q,2 Z:l /2 uKo(u)Hy" (m) du.

mwinp/q
From the differential equation Héa)” (2) + z‘lHé“)l(z) + H" (2) = 0 we get
/ uko(u) HS (au)du = (1 + o2) " u[K}(u) HS® (au) — aKo(u)H®' (au)].
Therefore with u = 2mp/q

inu+oo 22U 7ri,un2 ) (@) @ @
uKo(u)HS (=) du = < [2HS (un) H{ (pz) — nH{? (un) HS® ()],
/inu 0 (m) 2(n? — 22) |: 0 1 h o ]

!
where again the relations (2.2) and K} = —K;, H® = —H® have been employed. This leads to the
following representation:

a ’L a a p
G (p,q,2) = p2n2 2B () B (p2) = o () Y (n2)], =2 (29)

From Héa) (un) = O(n~2) for n — oo, it is easily deduced that both functions are regular in the complex
plane cut along the negative real axis, except for possible poles at z =n or 2 = e~ "'n.
In order to determine the behaviour in these points we define

F(2) = 2HS (un)H{® (1) — nH) (un) HS (2).

Then
FO(n) = n[HS (un) B (un) — HE (un) B (un)]

' ' 21q
= n[HS (un) B (um) — HEY (un) HED (un)] =

7r2p
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on using the Wronski determinant for Hél), Héz) ([5, p- 113], [10, p.76]). Concerning z = e~ ™‘n we have [10,
p.75]
HM (e ™iz) =28 (2) + HP (), HP (e ™2) = —H{(2),

" H{ (e ™) = —2H{"(2) - H (), HP(e ™2) = H"(2).
Consequently,
(e mn) = —n[-2HE () P o) + 27 () YD ()] = 52,
Turning to ffl we clearly have f, (2)( ) = 0. Moreover,
F e n) = =B Gen) 1 (um) = F ur) B )] = =L

Collecting all these results we have

Theorem 5: The functions G(*)(p,q,-) as defined in (2.7) are meromorphic in the plane cut from 0 to —oo

G has a simple pole at z = n with residue — (2"), and a simple pole at z = e~ ™'n with residue d("). The
n n

n

function GP) is regular for —m < arg(z) < and has a simple pole at z = e~™n with residue —%—nl.

For many purposes it is necessary to have asymptotic estimates about the growth of the fundamental functions
K(p,q,2) and G(®)(p,q, z) for z = co. The most basic one is given by

Theorem 6: Let p,q be positive integers, and 6, A be positive real numbers such that g > A. Let z be
complez, r = |z| > 2, M = min{|z — n|;n € Z} and assume M # 0. Then K(p,q,2) = e~2"*P/1Ky(p, q, 2),
where Ko(p, q,-) is meromorphic in the plane cut from 0 to ico and satisfies

Ko(p,q,2) < (1 + M’l)r’% logr, —27m+d<arg(z) <w—39,
uniformly in p,q,z. Similarly,
GM(p,q,2) = e>™=2/1G{D(p,q,2), G (p,q,2) = e >=2/1G{) (p, q, 2),

where .
(1) (p,q,2) € (1+ M Yr~2logr, —m+0d<arg(z)<2r—4,

(2)(17761; 2) < (1+ MYy~ 2logr, —27+6<arg(z) <m—4,

uniformly in p,q, z.

Proof: Consider first K(p, g, 2). Write K, (z) = (2l)% “#K}(z). Then K} is holomorphic in the plane cut
from 0 to —oo. Moreover, if |z| > 1, |arg(z)| < 3% — 4, then, by the asymptotic expansion for the modified
Bessel function ([8, p. 250], [10, p. 202]), K is bo

oun ded This remains true if we assume |z| > A for some
z) = 0(logz), K,(2) =0(27%) (v > 1) as z — 0. Hence

/\

positive constant A. This follows easily from Ky
we can write

1
o
K, (2m'z1—’) = (4iz’—’> e 2P/ 1 (zm'z’—’) , —2n+0<arg(z) <m—d, 2n]z|E > 1.
q q q q

With the abbreviation A = 2m’§, Lemma 5 gives

L) LR SR
K09 =52 (s) R DI (f)z2 [Ko(m)KF(A2) + nKhOmKs ()], (2.10)
n=1

11



Now we use K,(\n) = O(()\n)_%). By the asymptotic formula above, this is true for |A\n| > 1 and, more
generally, for all n > 1, since [An| > [A| > 2mA > 0. Thus with —— = 5-(-2 — =) we get

1
n2—z 2z n+z

> d -5
Z ’I’L2 (_n)z2 ZKO()\TL)KT()\Z) < (g) Z d(n)nfé (|n _ Z|_1 + |n + Z|_1). (211)
n=1 n—1

Similarly, with 105 = 55 (555 + 75%)
o~ d) ey e P\ » »
> K On K02 < (2) 3 dtnE(n— 27 +n+27). (2.12)
n=1 n—1

We are therefore reduced to estimate the last infinite series. It suffices clearly to assume Re(z) > 0. Then
[n+2z| > n which yields 3" d(n)n=2 [n+2z| < ¢%(2) = O(1). It remains to consider S(z) = 3 d(n)n=2|n—z|"L.
With r = |2| we split the summation into three parts.

For n <r—+/r we have |[n — z| >r —n > /r. Thus

Z d(n)n_%|n -z < ros Z d(n)n~7 < logr.
n<r—/r n<r—/r

Now consider the interval r — y/r <n <71+ +/r. Since |n — z| > M always, we get

Z d(n)n_% In —z|7' < M~lr~3 Z d(n) €« M~logr.
r—/r<n<r+/7 r—/T<n<r+/7

Finally, consider those n satisfying n > r 4 1/r. Note first that the inequality implies = < (1 + r_%)_l and
thus
In—z|>n—r=n(l-=) >n(1—i—7'%)_1 >
2y
Consequently,
Z d(n)n*%m -2 '« rs Z d(n)nfg < logr.

n>r+/r n>r+/r
Thus we have shown S(z) < logr + M ~!logr, provided r > 2. Inserting (2.11) and (2.12) into (2.10) yields

the desired assertion.
Similar reasoning applies to G) and G(* using the explicit formula (2.9). This proves the theorem.

For certain purposes [2] it is convenient to use another representation of the the functions G(* (p, g, -), which
is essentially a Laplace transform. To this end define

V(@) = D A HP (ume ", jp=2m, Re(a) >0, (2.13)
n=1
and ~
L,(2)= ,u/ e, (x)dz, Re(z) < 1. (2.14)
0

It is easily seen that ¢, (z) = O(z 2logz) for z — 0 and 4, (z) = O(e #*) for z — +oo0. Hence the
integral converges absolutely and uniformly for Re(z) < 1 — ¢, where € > 0 is fixed. This implies that L, is
holomorphic in the left half plane Re(z) < 1. Its analytic continuation is found by inserting the series (2.13)
into (2.14) and integrating term by term, the result being

Lo(z) = 3 dn) H? (un) —

n=1

—. (2.15)

12



From this explicit representation we conclude that L, extends to a meromorphic function. The only singu-
larities are simple poles at the positive integers z = n with residue —d(n)H.52) (un). We then have

Theorem 7: Let p,q be positive integers and define v, and L, as in (2.13) and (2.14), respectively. Then
for a € {1,2}

G (p,q,2) = ;—ZH£“> (42)[Lo(2) — Lo(—2)] — ;—ZHS“’ (u2) [L1(2) — Ly(—2)],

where p = 2#%.

Proof: Write (2.9) in the form

. (o]
_ip d( H (4 _ip (a)
g(a) (p,q,Z) - ; ngl ’I'L2 Zan ¢ Z n2 anoa (/J,Z),
with a, = Hé2) (un), by, = Hl(z)( n). Note that a, = O(n~2) and b, = O(n™%), provided y is fixed. Using
n2£z2 = ﬁ(niz + n—ll-z) = %(niz - n+z)7 we obtain
o ip ip -
G p,q,2) = - H (12) Zd man(GLs = 552) = L HY (02) 3 dmba (L + ).
n=1 n=1

Assuming —1 < Re(z) < 1, we can write

1 _ /oo e—u(n—z)du 1 _ /oo e—u(n—{—z)du_
n—z Jo T on+z o Jo

G (p,,2) = 32 L (12) 3 d(m)an ( / e uE gy, / du)
n=1 0

oo o) %)
’Lp H(a) Z d (/ e~ untuz g, +/ e—un—uzdu> .
n=1 0

Interchanging the order of integration and summation, which is permitted by absolute convergence, imme-
diately yields the claim. This proves Theorem 7.

Hence

3. The Riemann-Siegel Integral Formula

From our previous investigations we can now derive some new integral representations for ¢2(s). Thus assume
0<2,0< <, and let p,q be positive integers. Using the reflection formula for the gamma, function we

obtain ,
T (f) = COZSWSF ( S) =257 1r=%(1 - cosws)/ Ko(2)z'7%dz.
2 2 2 o

Let Re(a) > 0. Then substitute z = au and turn the line of integration about the origin to get

5\72 s—1_—2 2-s o™ 1-s
r (§> =2°""7r7%(1 — coss) Ko(au)u ~*du,
0

provided |arg(a) — ¢| < . In particular, let o = 27wz, where Re(z) > 0 and Im(z) = %. Consequently, if
0<p<3
coe i

-2
m°T (f) =2(1 — cosms)z*~* Ko(2rzu)u'~*du.
2 0
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Multiplying by v (z)z*~! and integrating from i2 t0 if + oo yields

T(s) ==°T (%)_2 /zi§+00 Y(z)z* tde

i 400 *

=2(1- cosws)/ ! mp(x)/ Ko(2nzu)u'~*dudz
0

coe~ i z%—i—oo
=2(1 — cos7s) / ulfs/ Ko (2rzu)y(z)dedu,
0 i

i 2

where the interchange of the order of integration is permitted by absolute convergence of the double integral.
Hence

T(s) =2(1 — cosms) / K(p,q,u)u'*du. (3.1)
0

In this equation even ¢ < 7 is allowed, since K(p, g, u) = O(e~2"Re(iw)p/4) for 4, — oo (Theorem 6). Together
with Theorem 2 this constitutes our first analogue of the Riemann-Siegel integral formula for ¢2(s).

It is also possible to obtain formulas involving the functions G(*) introduced in Section 2. Tt will be
seen that these representations are even more elegant. First assume % < o < 2, and let L denote the path
consisting of the straight line segments from 0 to —1 — ¢ and from —1 — ¢ to —i — co. By Theorem 6 and

(3.1) above
T(s) =2(1 - cosws)/ K(p,q,v)ur *du.
L

If we set z = e™w, we obtain
T(s) = 2(1 — cosms)e™ K(p,q,e ™2)2'~%dz
emi L

= 2(1 — cos ws)e”is/ [K(p,a,2) — G(p, q,2)] 2" ~*dz.
emi L

Since K(p,q,-) is regular for —7 < arg(z) < % and decays sufficiently fast for |2| — oo (Theorem 6), the

integral involving K(p, q,-) can be turned around the origin, so that

K(p,q,z)zl_sdz:/K(p,q,z)zl_sdz.
L

e™i L
This gives
T(s) = 2(1 - cosms)e™ {/ Kp,q,2)z'*dz— | G(p,q, z)zlsdz}
L emi],
= e™T(s) — 2(1 — cosws)e™ G(p,q,2)z'~%dz,
e™i L
or, equivalently,
(™ —1)T(s) = 2(1 — coss) / G(p, q,2)z ~*dz. (3.2)
L

Now consider the integral

I:/g(p,q,z)zl_sdz,
A

where A denotes the path from —oo — i to e‘%é (0 < § < 1), then along the circle of radius § around the
origin from e~ " § to €% 4, and finally from % 8 to oo +i. By assumption 3 < o < 2. This implies that the
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integral converges absolutely for § — 0, as well as at infinity, using, in addition, the estimate of Theorem 6.
Thus we may let tend ¢ to 0, leading to

0 oo+
I=(/ +/ )g@@afﬂwz—/gm%af”w+ G(p,q,2)7"~*dz
—oco—i 0 L emi L
= (e~ 1) / G(p, g, 2)7~*dz,
L

since G(p,q,—2) = G(p, ¢, 2). Inserting this expression into (3.2) yields
(™ —1)T(s) = 2(1 — cosms)(e” ™ — 1)1,

i.e.
1+o0o
T(s) = / G(p,g,2)7"~*dz = (1 — &™) / G(p, g, 2) 7 dz. (33)
A 0

To ensure absolute convergence, we had to assume % < 0 < 2, but it might well be that these formulas
continue to hold for a wider range of . A more detailed investigation of the properties of G(p,q, z) will
perhaps reveal this property. It is, however, possible to employ another, more elementary, method. In fact,

using the decomposition (2.8) we get

™

400
A=) [ [0 00,2) + 6 p0,2)] 20
0

By Theorem 6 we may modify the path of integration in such a manner that Im(z) — +oo for G and
Im(z) — —oo for G*). Thus for any ¢ with 0 < < Z

T(S) — 212(1 _ em'S) {/Ooo

Here it should be remembered that G™)(p,q,-) is holomorphic in the upper half plane, and G®(p,q,-) is
holomorphic in the right half plane Re(z) > 0 (Theorem 5). Thus we have obtained the desired analytic
continuation, as the integrals in (3.3) are absolutely convergent for any o < 2. Since (2(s) is given in terms
of T(s) and an elementary function (Theorem 2), formulas (3.1), (3.3), and (3.4) can be considered as the
desired analogue of the Riemann-Siegel formula.

It is the last equation (3.4) that may serve as a starting point for the derivation of the asymptotic
expansion of (2(s). To illustrate this point and to show the utility of our formulas, we indicate how to derive
the approximate functional equation for ¢2(s) [3]. For simplicity we assume p = q = 1. Let s = o +it, o > 0,
t > 2. Obviously, the second integral is sufficiently small, namely < e~% . Hence the main contribution
comes from the first one. After a suitable modification of the path of integration, we arrive at

e'? ocoe™ ¥

G (p,q,2)2" *dz + /

¢ (p, q, z)zlsdz} - (3.4)
0

T(s)= Y dn)n*+ 212 / - GM(1,1,2)2' ~*dz + O(e~), (3.5)

n<t/2w

where ¢ > 0 is a certain constant, and zp; = %(1 F %e"Ti). We modify the path so as to pass through the
point 2 = N + %, where N = [%] Inserting the explicit formula (2.9) for GV (1,1, 2), and integrating term
by term shows that the integral is < 73 logt. Hence

T(s)= Y dn)n™*+0(t""*logt).

n<t/2mw

From Theorem 2 we finally get

G(s)= > dmn™ +7*71X(s) D dn)n*~ +O(t" " logt),

n<t/2m n<t/2m
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which is the desired result. Choosing other values for p and ¢ we obtain similarly an unsymmetric form of the
approximate functional equation, where the ranges of summation are unequal (compare [6, III]). To derive
a full asymptotic expansion of T'(s) (see [6, 7]), a detailed investigation of the integral in (3.5) is required,
which is, however, the most difficult task. We shall return to this subject at another occasion.
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