Investigating the Use of Nearest-Neighbor
Interpolation for Cancer Research

Matthias Fuchs Stefan Forster
Center for Learning Systems Institut fiir Humangenetik
and Applications (LSA) Universitat des Saarlandes
Fachbereich Informatik 66421 Homburg
Universitat Kaiserslautern Germany
Postfach 3049, 67653 Kaiserslautern hgsfor@med-rz.uni-sb.de
Germany

fuchs@informatik.uni-k1l.de

March 6, 1997

Abstract

We investigate in how far interpolation mechanisms based on the nearest-
neighbor rule (NNR) can support cancer research. The main objective is to use
the NNR to predict the likelihood of tumorigenesis based on given risk factors.
By using a genetic algorithm to optimize the parameters of the nearest-neighbor
prediction, the performance of this interpolation method can be improved sub-
stantially. Furthermore, it is possible to detect risk factors which are hardly or
not relevant to tumorigenesis. Our preliminary studies demonstrate that NNR-
based interpolation is a simple tool that nevertheless has enough potential to be
seriously considered for cancer research or related research.

1 Introduction

In spite of tremendous progress in evaluating the underlying parameters of bioscientific
mechanisms still a lot of work remains to be done to understand the complexity of
the functional background. In this context, one of the biggest challenges in biological
research is to find the key for tumorigenesis. Thousands of facts for the development of
different tumors could be collected over the past century. But still nobody can explain
the underlying complexity of mechanisms and tumor-depending functional diversities
of carcinogenesis in detail.

One tool to shed more light on these hidden functions of life could be the use and im-
provement of methods originating from artificial intelligence and computational learn-
ing strategies. As mentioned above, cancer development is still a major problem in
medical science. While a lot of different environmental factors are known to be defi-
nitely causative for certain tumors, many other unknown biomedical parameters must
also be involved. Even if all the parameters participating in tumor development were
known, the scientists would have problems identifying the functional connections be-
tween them. It is furthermore very difficult to give a prediction for the probability of a
development of a certain kind of tumor in a certain patient even when all his so-called
risk factors are known.

Keeping all these immense problems in mind we tried to find out in how far intelligent
computer programs can be able to support scientific research in this area. Three main
questions arise in this context:

1. Can computer programs give us reliable data concerning the probability of cancer
development in a certain person if risk factors of the patient are known?

2. Can these programs help us find new risk factors in a given pool of suspected or
at first sight harmless factors (parameters)?

3. Can such programs give us some help in future days to identify underlying func-
tional connections between responsible factors of tumorigenesis?

As for question 1, we are essentially interested in a computer program (or a function)
that computes the probability of tumor development when given the risk factors of a
patient. Commonly, n risk factors are represented by n real values vq,...,v, € IR or by
a vector (vy,...,v,) =¥ € R". The function P computing the probability for tumor
development can be specified by P : IR" — [0;1].

Usually, such a function P is derived or learned from a given set of m input/output
samples S = {(v;,p;) € R" x [0;1] | 1 < ¢ < m}. It is obvious that the success of
learning P depends on the quality and quantity of the data in S. Furthermore, for
medical purposes it can be assumed that S will be rather large and will be continuously
updated and in particular extended. Therefore, it is advisable to use methods that
are quite tolerant regarding modifications of S and have efficient incremental learning
capabilities.

Methods based on the so-called nearest-neighbor rule (NNR, [6]) satisfy these condi-
tions. We shall explain in section 2 how the NNR can be utilized to design P. At that
point we shall have addressed question 1 from above. Section 3 will demonstrate that
the NNR approach also allows us to deal with question 2. (Question 3, however, can
hardly be addressed with a NNR approach.) We illustrate the approach with a case
study in human bladder cancer. Sections 4 and 5 explain the experimental set-up and
report on the experimental results, respectively. A discussion in section 6 concludes
this report.

2 Basics of the NINR Approach

Methods based on the NNR fascinate with their simplicity. Nonetheless (or maybe
because of that) they have been applied in many variations with considerable success.
The NNR is probably best known for its application to classification tasks (e.g., [1, 20]),
but has also been successfully used for predicting (i.e., interpolating or estimating) real-
valued attributes (e.g., [12, 16, 4]). The latter kind of application has been studied
thoroughly by a number of mathematicians (e.g., [7, 9, 19, 5]) so that there is not
much to add from a theoretician’s point of view. Theoretical examinations, however,
can only reveal general tendencies and give general results (e.g., average/best case
or asymptotic behavior). Usefulness for a specific application must be investigated
experimentally. The objective of this report is to examine NNR-based interpolation as
to its applicability in cancer research.

Section 1 already outlined the scenario in which the NNR is to be deployed: An un-
known function ¥ : IR™ — [0; 1] is characterized by a finite sample S of its input /output
behavior, i.e., S = {(Z;,y;) € R"x[0;1] | 1 <7 < m}, where W(Z;) = y;. In our specific
case VU(Z) = y is the probability for a person to develop a certain type of cancer (within
a specified period of time) in the presence of his or her n risk factors represented by z.
A function P based on the NNR is to approximate W as closely as possible using the
sample set S. Obviously, when given ¥ = Z; for some 1 < i < m, P(Z) = y; is the
best choice. Otherwise, when given ¥ ¢ 7 = {#,...,Z,,}, a slight modification of the
so-called k-NNR is employed: Let N'={z},...,2,} CZ,¢: R" x R" — R a distance
measure (commonly Euclidean distance which we also use here), and ¢ > k > 1 so that
8(Z, 7)) < 8(%,Zig1), 8(2,2) > §(Z,Z) for all Z € T\ N, and §(Z,2;) = 6(Z, Z;) for all
k < j < gq. In other words, NV is the set of k nearest neighbors of # (w.r.t. 5), extended
by all those neighbors with a distance from ¥ that is equal to that of the kth nearest
neighbor. Thus we avoid the common practice of “arbitrarily” breaking ties between
all those 2° € T that qualify as the kth nearest neighbor of #. (In our opinion it is
not justifiable to select—arbitrarily or otherwise—just one from several possible kth
nearest neighbors, thus preventing potential kth nearest neighbors from contributing
to the subsequent computation of P(Z).)

The value P(Z) = y is computed as usual as a weighted average of the nearest neighbors.

More precisely, let §; = W(2;) (according to S). Then we have

- (o) ()

Commonly, w; > w41 so that nearer neighbors have a bigger effect. We chose weights
that center on the maximal distance d,,., = 6(Z, Z1,) of the nearest neighbors:

w; = dmaz +1-— 5(5722)

This appears to be more sensible than using preset constant weights because it allows
for taking into account absolute differences of distances as opposed to the rather coarse
information reflected by ordinals.

NNR-based interpolation has the obvious advantage that it can very easily cope with
modifications and extensions of S. Modifying an element of S or adding further ele-
ments to S does not require any particular action. This property originates from the
explicit representation of the function to be learned, namely by the sample set S. Other
approaches that use S more implicitly by encoding it in some structure (during a learn-
ing phase, e.g., connections and weights of a neural network, or (LISP) programs in
genetic programming [17]) basically have to start from scratch after each modification
or extension.

The downside of an explicit use of S is a large storage requirement and query times
that increase linearly with the size of S (and with the number n of risk factors).
With appropriate implementation techniques (e.g., [13]), however, these problems (in
particular query time) can be handled quite satisfactorily.

3 Optimizing Nearest-Neighbor Interpolation

The approach presented in the preceding section allows us to predict results of W(Z)
for & not present in the sample set S with the help of P. Thus, question 1 posed
in section 1 can be coped with. Nevertheless, the predictions of P are based on an
implicit simplifying assumption: all risk factors are equally important. This assumption
is reflected by the fact that the (Euclidean) distance measure § which is pivotal for
computing P(Z) treats all risk factors uniformly since

However, applications of NNR-based approaches in the area of classification have taught
us that not all attributes (risk factors in our case) are equally relevant to prediction.
This means that some risk factors are more important than others and therefore should
influence P(Z) more. As a matter of fact, it may be (and often is) the case that some
alleged risk factor actually is not a risk factor at all. Nonetheless it influences the

4

computation of distance and consequently affects P(Z). Less important or completely
irrelevant risk factors can have severely negative effects on prediction accuracy.

The most obvious way to tackle the problem is to modify the source of it, namely the
distance measure § (e.g., [15, 22]). For this purpose we generalize § as follows:

5(:?;’,5)2\]2@-(:@—22»)2, CZZO
=1

Instead of the “default” values ¢; = 1, the coefficients ¢; can be chosen so as to reflect
the importance of the respective risk factor ¢. The bigger ¢; is, the more risk factor ¢
affects 6 and consequently P. With ¢; = 0, risk factor ¢ can be completely ignored
because it does not affect § anymore. Note that we have the special case “factor
selection” if we restrict the ¢; to values from {0,1} (cp. [23]).

Unfortunately, the importance of risk factors is not known a priori and is actually a
prominent problem especially in cancer research (cp. question 2 in section 1). These
considerations lead us back to the original goal of modifying the distance measure,
namely to increase prediction accuracy. If we can find coefficients ¢q,..., ¢, so that a
(nearly) optimal prediction accuracy is attained, it is reasonable to assume that these
coefficients then reflect the importance of the respective risk factors. Therefore, we
search for ¢,..., ¢, so that P offers optimal prediction accuracy.

To this end we employ a genetic algorithm (GA; [14, 8]). The use of a GA appears to
be appropriate because the GA has the potential to cope with intricate search spaces in
the absence of any knowledge about their structure. Furthermore, a GA is less prone
to getting trapped in a local optimum. Both properties are highly valuable for our
purpose. In the sequel, we describe the basics of the GA and its application to our
optimization problem.

Unlike other search methods, the GA maintains a set of (sub-optimal) solutions, i.e.,
several points in the search space. In this context, a solution is preferably called an
individual, and the whole set is referred to as a population or generation. Usually, the
size of the population is fixed. In order to explore the search space, the GA applies
so-called genetic operators to (a subset of the) individuals of its current population.
Thus new individuals can be created and hence new points in the search space can
be reached. In order to keep the population size fixed, it must be determined which
individuals are to be eliminated in order to make room for the new ones. For this
purpose a so-called fitness measure is employed which rates the fitness (i.e., the ability
to solve the problem at hand) of each individual of the current population. The genetic
operators are applied to the fittest individuals, this way producing offspring which then
replaces the least fit individuals (“survival of the fittest”).

So, the GA basically proceeds as follows: Starting with a randomly generated initial
population, the GA repeats the cycle comprising the rating of all individuals using the
fitness measure, applying the genetic operators to the best individuals, and replacing
the worst individuals with offspring of the best, until some termination condition is sat-
isfied. The pool of best or “surviving” individuals is determined by the survival rate r.

The percentage r of best individuals is simply copied from the current population to
the successor population. From this pool, the genetic operators draw required parent
individuals at random (elite or truncate selection) in order to produce new individuals
to restock the population.

Here, we are searching for suitable coefficients ¢y, ..., ¢, to optimize the accuracy of P.
Besides these coefficients, also the number k of nearest neighbors to be considered
affects P. k is in general difficult to determine. Therefore, & is also subject to search.
We occasionally write ¢y instead of k£ to ease notation. Hence, an individual T is
represented by T = (co, ..., ¢,).

Three genetic operators are used: crossover, mutation, and hill-climbing. Crossover
and mutation are the “standard” operators of a GA. Crossover produces a new indi-
vidual T = (co,...,¢,) from two distinct parent individuals T; = (cél), ooy cll)) and
T, = (082), ..., c{2)) by applying “multiple-point” crossover: ¢; = c,gl) or ¢; = CEQ) with
a probability of 50%, respectively. The resulting individual T may be subject to mu-
tation with a probability F,.;. If T is actually subject to mutation, one of the ¢; is
selected at random and replaced with a value also generated at random. Naturally,

certain range restrictions apply, i.e., ¢ < ¢; < "%,

We also use hill-climbing (in form of a genetic operator) to profit from potential bene-
fits of hill-climbing. Hill-climbing produces a new individual T from a parent individual
T = (¢o,...,Cn) by selecting a ¢; at random and incrementing or decrementing ¢é;, i.e.,
T = (¢o,...,¢Ci—1,¢ £ 1,641,...,¢,). 1 denotes +1 or —1 with a probability of
50%), respectively. If range restrictions are violated, then we deterministically use +1
or —1 as the case may be. (Mutation is never used in connection with hill-climbing.)
Crossover or hill-climbing are employed with a probability of P., and Py, = 100% — P.,,

respectively, when producing a new individual T.

The fitness of an individual T = (¢o,...,¢,) is measured in terms of the prediction
accuracy of P when using k£ = ¢¢ and the coefficients ¢y, ..., ¢, for the distance mea-
sure 6. Naturally, we can only center on the information provided by S. We employ
the so-called leave-one-out method: For each (Z;,y;) € S compute P(Z;) when using
Si = S\ {(Zi,y:)}. We write Ps, in order to make clear that P is based on 5; instead
of the whole set S. |Ps, (%) — y;| is the prediction error. With m = |S|,

1 Z B B .
cans(1) = — S Ps () — il and epan(X) = max({|Ps,(#) = il | 1 < i < m})

=1

are the average and maximal prediction error of individual T, respectively. An indi-
vidual T is considered fitter than an individual T if

ag(T) < Carg(T) 0 Caug(T) = cang(T) and epua(T) < Eman(T).

Using this fitness measure, the GA searches for a k£ and coefficients ¢, ..., ¢, that
minimize the average and maximal prediction error (primary and secondary objective,
respectively) and thus optimize prediction accuracy of P with respect to S and the

leave-one-out method. It is reasonable to assume that such an optimization can also
increase overall accuracy when being given an arbitrary Z. In the sequel we present
our experimental studies which support this assumption.

4 Experimental Set-up

In order to test our approach for approximating ¥ (i.e., the probability to be affected
with cancer) based on a finite sample S of the input/output behavior of ¥, we of
course have to create an “artificial” W4. In reality, we can only expect to create a
finite sample with the help of polls and statistical evaluations. This is all we need
to approximate a “real” W, but it is insufficient to test and illustrate our approach.
Obviously, an artificial W4 should reflect essential properties present in reality, i.e.,
central mathematical properties which affect prediction accuracy (e.g., slope) should
not differ significantly.

For this reason we selected bladder cancer for our experimental studies. Bladder cancer
has been studied thoroughly (e.g., [18, 21]) and therefore offers reliable epidemiological
and statistical data with which we can expect to create an artificial, but realistic W 4.
The six risk factors considered here are sex, age, smoking behavior, occupational risks
(e.g., exposition to toxic substances), alcohol consumption, and predisposition. Fach
risk factor can take on one out of a finite number of discrete values. (Discrete values
for risk factors are very common. It is unrealistic to assume that medical examinations
or polls will provide us with continuous values. Besides, certain factors, like sex,
are inherently discrete.) Where necessary, discrete values are obtained by grouping
continuous values appropriately.

Studies in bladder cancer revealed that there is a basic probability pg (the so-called
incidence) to be affected with bladder cancer. pg ranges between 3 - 107> and 6 - 1075
for a 20 year-old woman with no further risk factors in Western Europe and North
America (cf. [18]). According to the studies (e.g., [18, 21]), each value of a risk factor
causes a multiplicative increase of pg. For instance, being a man (at least) doubles the
risk of bladder cancer. Therefore, we create an artificial ¥4 as follows:

Let Dy,..., D, be the discrete values for risk factors 1, ..., n, respectively (here n = 6).
Let fi(y) € R be the factor by which pg is to be multiplied if risk factor ¢ takes
on the value y € D,. Each fi(j) is based on epidemiological data. Then for each
= (21,...,2,) €D =Dy x---x D, we set

V() = ps - ﬁfz(xz) e [0;1].

Thus, we obtain a “complete sample” C = {(Z,y) | ¥ € D,y = V4(Z)} of the in-
put/output behavior of an artificial ¥ 4. From this complete sample C we can extract
partial samples S C C and can check how well P approximates VU, depending on the
size of S and on optimizations described in section 3.

Table 1: Average and maximal prediction error (top and bottom, respectively) for
default coefficients and optimized coefficients depending on the size of a sample in %.

size || k=1 k=2 |k=3|k=4|k=5|k=6|k=T7|k=8|k=9| opt.
20% 0.015 | 0.014 | 0.013 | 0.014 | 0.015 | 0.015 | 0.015 | 0.015 | 0.015 || 0.009
0.193 | 0.204 | 0.208 | 0.212 | 0.214 | 0.219 | 0.217 | 0.223 | 0.222 || 0.132
20% 0.007 | 0.007 | 0.007 | 0.008 | 0.008 | 0.009 | 0.009 | 0.009 | 0.010 || 0.003
0.137 | 0.141 | 0.159 | 0.170 | 0.175 | 0.190 | 0.191 | 0.198 | 0.199 | 0.077
60% 0.004 | 0.003 | 0.004 | 0.004 | 0.004 | 0.004 | 0.005 | 0.005 | 0.005 || 0.001
0.103 | 0.109 | 0.115 | 0.125 | 0.143 | 0.149 | 0.154 | 0.160 | 0.172 || 0.057
0% 0.002 | 0.001 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 || 0.000
0.064 | 0.078 | 0.085 | 0.087 | 0.092 | 0.101 | 0.110 | 0.113 | 0.118 || 0.028

5 Experimental Results

We conducted experiments so as to illustrate the approach and to examine the quality
of the approximation P of a ¥ 4 in dependence of the sample S C C and the parameter k
(number of nearest neighbors to be considered), as well as the coefficients ¢1,...,¢,
of the distance measure §. For the experiments we chose |D| = |C| = 504. A rather
small size is necessary to obtain experimental results in an acceptable period of time.
Although P(Z#) can be computed quite fast even for larger sizes of S (e.g., in 0.1
seconds for S| = 50,000 on a SPARCstation 20 with a sub-optimal implementation of
the NNR), P(Z) must be computed for all ¥ € C so as to determine a mean prediction
error. In order to check on influences of the choice of S, this is done for ¢ sets S C C
so that P(.) is computed ¢ - |C| times.

First, we used default values ¢; = --- = ¢, = 1 and had k range from 1 to 9. We
normalized the risk factors to avoid a possible bias regarding distance measurement on
account of range differences between the D;. More precisely, we normalized each D;
to [0;1] when using P, i.e., each ¥ € D was normalized to 7(Z) € [0;1]". As usual,
|P(7(%)) — W 4(&)] is the (absolute) prediction error.

We selected S C C so that the percentage of samples in .S was 20%, 40%, 60%), or 80%.
For each of these sizes, 100 sample sets S C C were chosen at random. With each such
sample set S, P(7(%)) was computed for all ¥ € D. Thus, the average and maximal
prediction error for P (with respect to the 100 sample sets) could be determined. This
information is given in table 1. Each entry shows the average prediction error (top) and
the maximal prediction error (bottom). The heads of columns 2-10 show the respective
value of parameter k. The head of each row lists the sample percentage 100 - |S|/|C|.
As expected, average and maximal prediction error drop notably with an increasing
sample percentage. Furthermore, the best results are achieved with rather small values
for k. Increasing k slowly, but continuously decreases prediction accuracy.

When optimizing the coefficients ¢q, ..., ¢, and parameter k as described in section 3,

8

substantial improvements can be achieved.! Although we used a sample set S which
merely comprised 20% of C, the optimized parameters allowed for significantly reducing
both average and maximal prediction error also when used for larger sample sets. The
last column of table 1 shows the results obtained with optimized parameters. It is
worth noting that the “optimal” k& = 1.

Apart from the mentioned improvements of prediction accuracy, the optimized coef-
ficients also allowed us to draw conclusions regarding the importance of risk factors.
The most prominent result was that the coefficient for risk factor ‘alcohol consump-
tion” was 0 which indicates that alcohol consumption does not (notably) influence
bladder cancer. This observation—although already known in connection with blad-
der cancer—supports our belief that the optimized NNR approach also can help us to
identify more and less important risk factors, thus helping us to answer question 2 in
section 1 which essentially addresses a data-mining problem.

6 Discussion

Interpolation mechanisms based on the k nearest-neighbor rule (k-NNR) have proven
their usefulness in a variety of applications (e.g., [10, 4, 11]). In medical research,
statistical methods like multiple (linear) regression appear to be dominant in order
to detect and describe functional dependencies between input and output variables
(e.g., [3]). These methods, however, assume a certain kind of functional dependency
(usually a linear polynomial in the input variables) and then adapt available parameters
appropriately (see also [2]). Methods based on the k-NNR are not restricted to a
certain a priori chosen type of functional dependency. They essentially can approximate
arbitrary (continuous) functions (cp. [7, 9, 5, 19]).

Most interpolation methods (e.g., regression, genetic programming, neural networks)
generate an implicit representation of the given sample of the input/output behavior of
the (unknown) function which is to be approximated (e.g., coefficients of a polynomial,
a program, weights and topology of a neural net). Methods based on the k-NNR,
however, use the sample in an explicit manner. The advantage is that there is no
need for pre-processing. Therefore, on the one hand k-NNR methods are very well-
suited to frequently changing samples. On the other hand, &-NNR methods have rather
high storage requirements and usually are not as efficient as pre-processing methods
which create a more compact and also more efficient approximator during the very
pre-processing phase. With suitable implementation techniques (e.g., [13]), however,
k-NNR interpolation can gain an acceptable level of efficiency.

Our preliminary studies with the &-NNR in the area of cancer research demonstrated
that £-NNR methods are useful for predicting the likelihood of tumorigenesis based
on given risk factors. By optimizing the “standard” A-NNR using a genetic algorithm,

}Parameter settings: population size '50, 10 generations, r = 30%, P.o = Phe. = 50%, Pny: = 10%,
et =1, efr®® = 10, (recall cg = k), " =0, ¢ =100 for 1 < i < 6.

prediction accuracy could be improved significantly. The optimization also allows for
identifying more or less relevant risk factors. (This can of course also be achieved by
statistical methods like multiple correlation and regression analysis.)

Thus, two out of three important questions in cancer research posed at the beginning
can be addressed with a k-NNR method. The third question concerning the identifica-
tion of functional connections between risk factors, however, cannot be answered with
a k-NNR method. Genetic programming [17] could be helpful for dealing with this
question in that explicit functions (programs) are computed, whereas neural networks
and statistical methods (the latter mostly only permitting to test how well an assumed
functional connection fits the given data) also appear to be useless in this context.

Finally, the main purpose of this report is to point out the potential of k-NNR methods
for cancer research and related research. We do not claim that these methods are
necessarily better or more suitable than any other method. But their simplicity and
their advantages discussed earlier make them worthwhile considering. In this context,
a thorough and fair comparison of interpolation methods would be helpful. Given the
vast number of methods and possible comparison criteria, such a comparison amounts
to a research project of its own.

10

References

1]

2]

[10]

[11]

[12]

[13]

Aha, D.W.; Kibler, D.; Albert, M.K.: Instance-Based Learning Algorithms,
Machine Learning 6:37-66, 1991.

Andreassen, S.; Benn, J.; Hovorka, R.; Olesen, K.; Carson, E.: A Proba-
bilistic Approach to Glucose Prediction and Insulin Dose Adjustment: Description
of Metabolic Model and Pilot Fvaluation Study, Comp. Methods Programs Biomed.
41:153-165, 1994.

Assmann, G.; Schulte, H.; von Eckardstein, A.: Hypeririglyceridemia and
Flevated Lipoprotein(a) Are Risk Factors for Major Coronary Events in Middle-
aged Men, Am. J. of Cardiology 77:1179-1184, 1996.

Atkeson, C.G.: Using Locally Weighted Regression for Robot Learning, Proc.
International Conf. on Robotics and Automation, IEEE Press, 1991, pp. 958-963.

Cheng, P.E.: Strong Consistency of Nearest Neighbor Regression Function Fsti-
mators, Journal of Multivariate Analysis 15:63-72, 1984.

Cover, T.M.; Hart, P.E.: Nearest Neighbor Paltern Classification, IEEE Trans-
actions on Information Theory, Vol. IT-13, Jan. 1967, pp. 21-27.

Cover, T.M.: Estimation by the Nearest Neighbor Rule, IEEE Transactions in
Information Theory, Vol. I'T-14, No. 1, Jan. 1968, pp. 50-55.

De Jong, K.: Learning with Genetic Algorithms: An Overview, Machine Learn-
ing 3:121-138, 1988.

Devroye, L.P.: The Uniform Convergence of Nearest Neighbor Regression Func-
tion Estimators and Their Application in Optimization, IEEE Transactions on

Information Theory, Vol. I'T-24, No. 2, March 1978, pp. 142-151.

Farmer, J.D.; Sidorowich, J.J.: Predicting Chaotic Time Series, Physical
Review Letters, Vol. 59, No. 8, August 1987, pp. 845-848.

Fechteler, T.; Dengler, U.; Schomburg, D.: Prediction of Protein Three-
dimensional Structures in Insertion and Deletion Regions: A Procedure for Search-

ing Data Bases of Representative Protein Fragments Using Geometric Scoring
Criteria, J. of Molecular Biology 253:114-131, 1995.

Franke, R.: Scattered Data Interpolation: Tests of Some Methods, Mathematics
of Computation, Vol. 38, No. 157, January 1982.

Friedman, J.H.; Bentley, J.L.; Finkel, R.A.: An Algorithm for Finding Besl
Matches in Logarithmic Expected Time, ACM Trans. on Mathematical Software
3(3), Sept. 1977, pp. 209-226.

11

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Holland, J.H.: Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence, Ann Arbor:
Univ. of Michigan Press, 2" edition, 1992.

Kelly, J.D.; Davis, L.: Hybridizing the Genetic Algorithm and the K Nearest
Neighbors Classification Algorithm, Proc. 4" International Conference on Genetic

Algorithms (ICGA-91), 1991, Morgan Kaufmann, pp. 377-383.

Kibler, D.; Aha, D.W.; Albert, M.K.: [Instance-based Prediction of Real-
valued Attributes, Comput. Intell. 5:51-57, 1989.

Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA, 1992.

Kroft, S.H.; Oyasu, R.: Biology of Disease, Urinary Bladder Cancer: Mecha-
nisms of Development and Progression, Laboratory Investigation, Vol. 71, No. 2,

1994, pp. 158-170.

Li, K.-C.: Consistency for Cross-validated Nearest Neighbor Fstimates in Non-
parametric Regression, The Annals of Statistics, 1984, Vol. 12, No. 1, pp. 230-240.

Michie, D.; Spiegelhalter, D.J.; Taylor, C.C.: Machine Learning, Neural
and Statistical Classification, Ellis Horwood, 1994.

Porru, S.; Aulenti, V.; Donato, F.; Boffetta, P.; Fazioli, R.; Cunico,
S.C.; Alessio, L.: Bladder Cancer and Occupation: A Case-conlrol Study in
Northern Italy, Occupational and Environmental Medicine 53:6-10, 1996.

Raymer, M.L.; Punch, W.F.; Goodman, E.D.; Kuhn, L.A.:, Genetic Pro-
gramming for Improved Data Mining — Application to the Biochemustry of Prolein
Interactions, Proc. First International Conference on Genetic Programming (GP-

96), MIT Press, 1996, pp. 375-380.

Siedlecki, W; Sklansky, J.: A Note on Genetic Algorithms for Large-scale
Feature Selection, Pattern Recognition Letters 10:335-347, November 19809.

12

