AVERAGE DENSITIES AND LINEAR RECTIFIABILITY
OF MEASURES

P. MORTERS

Abstract: We show that a measure on R? is linearly rectifiable if and only if the lower
1-density is positive and finite and agrees with the lower average 1-density almost everywhere.

1 Introduction

Let p be a nonnegative, nonzero Radon measure on R? and @ > 0. The lower a-density of j at
x is the number

d®(p, z) = lim inf pU(z,t))

£10 to k

where U(z,t) denotes the open Euclidean ball centred in z of radius ¢, and the upper a-density
of i at z is the number
_ Ulz,t
d” (u,z) = limsup pU,1) .
) *
The geometric regularity of the measure p is intimately related to the behaviour of the densities.
We say p is a-rectifiable if p is absolutely continuous with respect to a-Hausdorff measure
restricted to a countable family of smooth a-manifolds and in the case of & = 1 we say that p is
linearly rectifiable. By Marstrand’s Theorem (see [Mar64] or [Mat95, Chapter 14]) the equality

0 < d*(u,z) =d (,2) < 0o p-almost everywhere (1)

implies that @ must be an integer and by Preiss’ Regularity Theorem (see [Pre87] or [Mat95,
Chapter 17]) such a measure g is even a-rectifiable.

A different type of density was introduced by Bedford and Fisher in [BF92], the so called average
density or order-two density. Bedford and Fisher applied a logarithmic average to the density
functions and defined the lower and upper average a-density of u at = as

! £)) dt
D)t e [ HUS

and it
—a t)) t
D (p,z) =limsup (| loge|)~ / uU(z, 1))
e—0

We clearly have the following inequalities:

d*(p,2) < D*(py ) < D (py2) < d° (ps ).

It is natural to ask whether one can get statements about the geometric regularity of y from
weaker inequalities than (1), involving the average densities. This program was started by
Falconer and Springer in [F'S95] and their results were recently improved by Marstrand (see
[Mar96]), who proved the following theorem:



Theorem 1.1 Suppose i is a nonnegative, nonzero Radon measure on R? and o > 0 such that
(i) 0 < D" (u,x) = d (p,z) < 00 for p-almost every z, or
(i) 0 < d*(p,z) = D*(p, ) < 0o for p-almost every x,

then o must be an integer.

In fact, Marstrand’s proof in the case of the second condition needs the additional assumption
that d” (u, z) < oo for u-almost every z. This assumption is removed in [MP96] and a refinement
of the argument given there is contained in Section 2 of this paper.

Do the inequalities above also imply a-rectifiability of p? As Falconer and Springer point out,
the answer is clearly no for the first inequality, even in the case @ = 1, due to an example of
O’Neil (see [O’N95]). It is the aim of this paper to give the following partial answer to this
question in the case of the second inequality.

Theorem 1.2 Suppose j is a nonnegative Radon measure on R®. Then
0< d'(p,z) = D' (n,z) < oo for p-almost every x (2)

if and only if p is linearly rectifiable.

Of course, if y is linearly rectifiable it is well known that 0 < d'(u, ) = a' (u, ) < oo for almost
every z and therefore it only remains to prove that (2) implies linear rectifiability of u. The
proof of this statement consists of two parts. In Section 2 we employ the theory of tangent
measure distributions to construct, from (ii), at almost every point z an a-flat tangent measure
v such that v(U(0,1)) = d®(u, z) and in Section 3 we finish the proof by showing that in the
case @ = 1 such a tangent measure can only exist if y is linearly rectifiable.

2 Existence of Flat Tangent Measures

We start by introducing the notion of tangent measures.

Definition

Let M (IRd) be the set of nonnegative Radon measures on R?. Equipped with the vague topology,
which is generated by the mappings p — [¢@du, ¢ continuous with compact support, M(IRd)
is a Polish space, see [Mat95, Chapter 14].

Let 0 < a < d and u € M(R?). For r > 0 define p,, € M(R?) to be the enlargement of p
at x of factor 1/r, i.e. the measure defined by p,,.(A) = p(z + rA). The set Tan,(p, z) of
a-dimensional tangent measures of yi at z is defined as the set of all limit points of p, ,/r® in
the vague topology as r | 0.

A (tangent) measure v is called a-uniform if, for some ¢ > 0, v(U(u,r)) = er® for all r > 0 and
u in the support of v. v is called a-flat if o is an integer and there is a linear space V C R? of
dimension « and some ¢ > 0 such that v = ¢- H*|y, a multiple of the restriction of a-Hausdorff
measure to the space V.



Preiss introduced the notion of tangent measures in his seminal paper [Pre87], he showed that if
0 <d*(p,z) = d” (p, ) < oo for p-almost every z, then at p-almost all z all tangent measures
of p at z are a-flat. This implies that u is a-rectifiable.

In order to make quantitative statements about the set of tangent measures we introduce a
family of probability distributions on Tan,(u, ), the so-called tangent measure distributions.

Definition
Let i € ./\/l(IRd) and 0 < & < d. For z € R? and £ > 0 we define probability distributions P? on
M(R?) by

xz -1 ! Har dr d
PY(M) = (|loge|) / 1M( : )— for Borel sets M C M(R?).

re r

P (u, z) is defined as the set of all limit points of (P¥).50 as € | 0 in the weak topology, i.e. the
topology generated by the mappings P +— [ F'dP, I’ continuous and bounded. The elements of
P (u, z) are probability distributions on the set Tan, (i, z), they are the a-dimensional tangent
measure distributions of p at z.

Tangent measure distributions were introduced by Bandt ([Ban92]) and Graf ([Gra95]) originally
as a tool for the investigation of self-similar sets. They have also turned out to be valuable for
the study of more general measures (see [M6r96], [MP96] or the thesis [M&r95]), which is due
to the invariance properties described in the following theorem. For every A > 0 we define the
rescaling operator S§ : M(R?) = M(R?) by S3v(E) = (1/A%) - v(AE) and for every u € R? we
define the shift operator T* : M(R?) — M(R?) by T*v(FE) = v(u + F).

Theorem 2.1 Let 0 < o < d and p € M(R?).
(i) At every x € R? every tangent measure distribution P € P (p, x) fulfills
P=Po(SH)™" forall X > 0. (3)

(ii) At p-almost every x every tangent measure distribution P € P*(u, z) fulfills

/ G(v,u)dv(u)dP(v //G “v, —u) dv(u) dP(v) (4)
for all Borel functions G : M(R?) x R? — [0, 00).

Whereas the scaling invariance property (3) is easy to check, the shift invariance property (4)
is quite difficult. For a proof, an interpretation and a number of applications of the formula (4)
see [MP96]. In this paper we shall make use of the properties of tangent measure distributions
by means of the following lemma.

Lemma 2.2 Suppose that a probability measure P on ./\/l(IRd) fulfills the scaling invariance
property (3) for some 0 < a < d and the shift-invariance property (4) and suppose that, with
some ¢ > 0, P-almost every v satisfies v(U(0,1)) = c¢. Then « is an integer and P-almost every
measure v is a-uniform and, in particular, a-rectifiable.



Proof From (3) we infer that, for every r > 0,

P({p : p(U0,r))=cr®}) = Po(S2)™'({u: n(U(0,1))=¢})
({u p(U(0,1))=ct)=1.

Thus, using (4) in the last step,

1 = P{p: p(U0,r)=cr}) = —// U0y U O)=er) (V) d(w) AP @)

cs”
= — / / Lt aymery (V) ) AP).

As this holds for arbltrary r and s we infer that, for P-almost every v, we have that
v(U(u,r)) = er® for v-almost every u and every rational r > 0. By continuity, P-almost
every v satisfies that v(U(u,r)) = cr® for every u in the support of v and every r > 0, i.e. v is
a-uniform. We can now use Marstrand’s Theorem to conclude that « is an integer and Preiss’

Regularity Theorem to conclude that v is a-rectifiable, but of course much weaker statements
(like in [Kir88]) would suffice. |

Theorem 2.3 Let un € M(R?) be a measure such that
0 <d”(p,z) =D"(u,z) < oo for p-almost every x.

Then « is an integer and, at p-almost every x, there is an a-flat measure v € Tan, (p, z) such
that

V(U(07 1)) = da(ﬂ7 ‘r) :
Proof To make use of the preceding lemma, we prove that at p-almost every x there is P €
P(u, z) such that P-almost every v satisfies v(U(0,1)) = d*(p, z).
Fix 2 € R? such that the density condition is fulfilled and choose ¢, } 0 such that
d
lim (|logey,|) / u(U(z,r)) dr —Qa(u,m).

n—oo

As, for all m > 1 and R > 0,

(z mr)) dr

Py U0 m) > Bty < (1/R) (loge, )t [ L o

r

S(Mmmwalﬁjgﬂﬁ

we can find, for every € > 0, a sequence R,, T co such that, for all n,

r

PI({v :v(U(0,m)) < Ry foralm=1,2,...})>1—¢.

This set is compact in ./\/l(IRd) and hence, by Prohorov’s Theorem, we can choose a conver-
gent subsequence of (PZ ) and denote the limit P. As the mapping v — v(U(0,1)) is lower
semicontinuous we have

[vw o) apw) < fim (loge,y™ [ HEEILE _ pog ) = ),



But v(U(0,1)) > d*(u, z) for all v € Tan, (i, z) and therefore we must have v(U(0, 1))
for P-almost every v.

d*(p; )

By Lemma 2.2 « is an integer and, for p-almost every z, the P € P*(u,z) we have con-
structed has the property that P-almost every v € Tan,(u,z) is a-rectifiable and fulfills
v(U(y,r)) = d*(p,z) - r® for all » > 0 and y in the support of v. Fix such a tangent measure
vo € Tan,(p, z) and, using that vy is a-rectifiable, fix yo in its support such that all tangent
measures of vy at yo are a-flat. Since, for p-almost every z, Tan,(v,y) C Tan,(u,z) for all
v € Tan,(p, z) and y in the support of v (see e.g. [Mat95, Theorem 14.16]), any tangent meas-
ure of vy at yg fulfills the requirements of the theorem. [ |

3 The Proof of Theorem 1.2

We now look at the case @ =1 and show the following theorem.

Theorem 3.1 Ifup e M (IRd) is a measure such that at p-almost every x there is a 1-flat measure
v € Tany (u, z) with v(U(0,1)) = d"(u, ), then u is linearly rectifiable.

Clearly, Theorems 2.3 and 3.1 together imply Theorem 1.2. The following lemma contains the
main ingredient of the proof of Theorem 3.1.

Lemma 3.2 For any 0 < £ < 1/2—/1/5 and 0 < p < 1 there is an 0 < g9 = o(&,p) < 1
such that, for all 0 < & < g9, whenever F is a compact subset of the interval [a,b] such that
the Lebesque measure of [a,b]\ E is at least p- (b — a) and every connected component of the
set [a,b] \ F has length at most € - (b — a), and whenever v is a measure on the line such that

v([a,b]\ E) <e-(b—a) and
vz —t,z+t) >t forallz e E,0<t<2-(b—a),

then we have ;

v([a, b)) > (b—a) - [ +ep] > 5

Proof of Lemma 3.2. If £ and p are given, we pick a number p such that 1/24+& < o < 1—-4/1/5
and numbers £g,e; > 0 such that

(g—%)-(l—sl)p—%—%toﬂ ()

Suppose that E and v are given as in the formulation of the lemma and 0 < & < &o. We denote
by Z the family of connected components of [a, b]\ E. We can pick a finite subfamily Z C 7 such

that
SHI> A =e)d >0 —e)p-(b—a). (6)
Tet IeT

For every I € 7 we denote by T the interval consisting of all z € [a,b] such that the distance
of z to I is at most |I|. We pick any of the longest I € Z and remove all J € Z with J C T



from the collection. We can go on with this procedure, always starting with one of the longest
remaining intervals which has not been considered and, after a finite number of steps, we have
a new collection of intervals, which we order from left to right

L <y < --<Inoq < In.

We now show how the statement of the lemma follows from

N N
V(UE)29-£(U7¢)—58-(b—a), (7)

where £ denotes Lebesgue measure. Using Vitali’s Covering Theorem (see e.g. [Mat95, Theorem
2.2]) we can cover L-almost all of the set '\ Uf\; I; by countably many disjoint intervals
[2; — s, 2,4 7;] centred in z; € F with r; < £(b—a), which are contained in [a, 5]\ |JY., T;. Hence

-,C(E\L]ji»).
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We also have

Altogether we get
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= = +[g_§} ,C(iL:_Jlli)—51(b—a)/2—55(b—a)
> (b—a){%—l—( —%)-(1—51)])—51/2—550}
> (b-a)5 )],

using ﬁ(Uf\; Ti) > > ezl > (1 —e1)p- (b — a) in the penultimate step and (5) in the final
step.

It remains to show (7). For this purpose fix some 2 < k < N. Denote by Z; the set of points
between the intervals Ir_q and [, such that the distance to one of the intervals is less than its
length. Let

Cr=1,_1UZ,UI.



We show that there are v, ...,y with X, ; < e(b— a) such that

1 1
|k1|+M+|Zk|}—7k- (8)

v(Ck) > 0 [

If the distance of Ip_; and [} is larger than the sum of their lengths, then the open interval
centred in the right endpoint of I;_; of diameter 2|;_1| and the open interval centred in the left
endpoint of I; of diameter 2|I;| are disjoint and thus, using that the endpoints of these intervals
are in F/,

[Te—1| | |1l

: ‘|‘—+|Zk|}> [Uk 1|, [l

‘|'—‘|‘|Zk|}-

2
v(Cr) 2 il + |1l = 5 |

We may thus suppose that 7 is an interval with |Z;| < |Ix—1|+ |Ix| and that

v <o [Pty By 7). (9)

Looking at an open interval centred in the endpoint of the larger of the intervals Ip_; and I we
get v(C) > %(|Ik_1| + |Ik|) Together with (9) we conclude

72l > (52 (11eal + 11). (10)

I Z] > 0/ (2= 20) (1 Tima| + Ta]), say | Ze] = M(|Tus| + |1x]) for some 1 > X > o/ (2 — 20), then

v(Cr) > AMp_1| 4 AL

= o|Zl+ (1= o) - M| Tx—a] + [1x])

[|Ik 1|+@+|Z ”

v

contradicting (9). Hence

121 < (5 _929)(|Ik_1| + 1) - (11)

We know from the construction of the I that (i, the centre of Cy, is in Zj. Let us show that,
with 9 = 1/0 — 3/2, the interval B = ({3 — 9| Zk|, (& + V| Zk|) contains no point of F.
For,if y € BN E, let

1 — 29
t=5- (Il +10l) + | Ze| > 0
Then (y —t,y+t) C Cy and, using (9),
p M=ty t) v o el el 4212
t t [T—1| + |[Tx] + (1 — 29)| Z]
and hence, using (11),
1 (1-0)(2~20)
Z — | I 7zl =17
1760 > 5y (Tt + 1) > 5 =25 12 = 17

a contradiction, which implies BN E = (.



Observe that B C 7, since ( € BN Z; but the boundaries of Iy_; and I are not. Hence there
is a connected component I € 7 of [a, b] \ E such that

BCICZ,.

Define
rr = min{|lz_1|,29|Zx|} and s; = min{|Ig|, 29| 7|} .

As |I| > 29| Zg| the intersection of the open interval centred in the right endpoint of I_; of
radius r; and the open interval centred in the left endpoint of I of radius s is contained in 1.
Moreover, they are both contained in C and therefore

v(Cr) +v(l) > ry+ sk . (12)
We choose v = v(I). We look at three cases that might occur in the definition of s, ry.
(1) rp = |Ir—1| and s = |Ig]|.
From (11) and (12) we derive

2—2p
0

V(C) + 7k 2 Tl + 11l 2 5 (T |+ 1) + (1= /2) 1l

and (8) follows since (1 — 0/2) (2 —20)/0 > o.

(2) rp = |Ir—1| and s = 29| Z;|, or rp = 29| Zk| and s = |[Ix].
By symmetry we concentrate on the second case. Since B C Z; we have
1
[I5—1] < §(|Ik—1| + x| + |Zk|) — V[ Z|

and thus
1l > Ta| = (1= 20)|Z4).

Using this, (12) and (11) we conclude

1 1
v(Cr) +vi > 20|73 + §|Ik| + §|Ik—1| — (1/2 = 9)|Z|
2—20

v

(el +101) + [(1/2 = 0/2) ==+ (30 = 1/2)] | 24,
and (8) follows from (1/2 — 9/2)(2—20)/0+ (39 — 1/2) > 0.

(3) ri = sp = 29| 2.
From (12) and (10) we derive

4 1-
v(Ch) > 40124 > 0|2l + (5 = 6= o) 5 E (1 Tsal + 11l

and (8) follows since p < 1 — /1/5 implies (4/0—6 — 0)(1 — 0)/(20) > 0/2.



In all three cases we have verified (8) for a v such that the v, ..., vy fulfill

N
Z% <Y v)=v(a,b]\E)<e(b-a).

IeT

To finish the proof we estimate, taking special care of the “boundary” intervals Iy and Iy,

N . N N
v(UT) > Sw(C) -3 vl
=1 k=2 k=1
N I I N
> Q-{ |k21|+|2—k|+|Zk|}—Z'yk—€-(b—a)
k=2 k=2

Q) = S(1l+ 11vl) = 22 - (6 - a)

v
s
o
—~
C=
~i

k=1
N p—
> Q-E(U Ik) —be-(b—a),
k=1
which is (7) and thus the proof is finished. |

We now have the means to carry out the Proof of Theorem 3.1.
Denote by B(z,r) the closed Euclidean ball of radius r centred in z.

Suppose the statement is false. Then there is some 0 < n < 1 and & > 0 such that the set
{reR: 5 <d (p2) <n-d ()}
has positive measure. Fix some 0 < £ < 1/2—y/1/5and 1 > 1 —p > 1. We can then pick
0 < e <eg(&,p),such that e < § and (14 5e) <1 —p and
1

H(1+

€
6—¢

)(1+58)<%—|—€p, (13)

and we can find a compact set F C R? with u(F) > 0 and numbers 0 < d < D < oo with
d < d < nD such that there is R > 0 such that for all z € F

o u(U(z,r))> (d—¢e)rforal0<r<R,

e there is a sequence r,, | 0 such that the tangent measure

is 1-flat and p(B(z,r,)) < d-r,, and
e there is a sequence s, | 0 such that pu(U(z,s,)) > D - s,.

Using the Density Theorem (see e.g. [Mat95, Corollary 2.14]) we can fix a density point y € F,
i.e. a point y € I’ such that lim,_o p(B(y,r) \ F')/u(B(y,r)) = 0. Then, in particular,

lim — u(B(y,ra) \ F) = 0.

n—oo 1,



Denote by L, the line through y such that i =c- 7‘[1|Ly—y and by 7, the orthogonal projection
onto L,. Denote by S(y,r) the set of all points z € B(y,r) such that the distance of z to
its projection onto L, is at most re/(1 + 5¢) and, similarly, denote by S(0,1) the set of all
z € B(0,1) such that the distance of z to its projection onto L, — y is at most £/(1 4 5¢).Then

1 r
lim sup — (B(y, ) \ S(y, a)) = lim sup Z272 (B(0,1)\ $(0,1)) = 0..
n—oo T'p n—oo Tn
We may partition (L, — y) N B(0,1) into finitely many disjoint intervals Jy,...,J; with 0 <
|Ji| < &/(145¢) and for each interval we can choose a nonnegative continuous function f; on R?
which is positive in some point of .J; with support contained in the set of those points in S(0, 1)
whose projection onto L, — y hits J;. We find

0< [ £ dit) = fim [ 5(5Y) duta)

and conclude that there is NV such that for all n > N and every 1 <7 < k the set ﬂgjl(y—i—rn.]i) N
S(y,ry,) contains points of I'. Putting these facts together we can find 0 < r < R/4 such that

’I'L

e cvery connected component of the set 7, (B(y,r)) \ 7y (£’ 0 S(y,r)) has length
less than r - 2¢/(1 4 5e),

e there is an open set B D B(y, r) such that u(B) <d-r,

o n(Blyr\ S, < EE
o n(Blr\ Py < UL

Let s =r/(1+ 5e). We define a compact subset of the line L, by
Ey =Ty (FQS(:%T))QB(Z/MS) g Ly

We now show that the hypotheses of Lemma 3.2 are fulfilled with £, in the réle of £ and
7y (B(y, s)) in the réle of [a,b]. By choice of s the connected components of 7,(B(y,s)) \ £,
have length less than e(2s).

By Besicovitch’s Covering Theorem (see e.g. [Mat95, Theorem 2.8]) we can cover p-almost all
of FNB(y,r) with a countable family (B(z(%), s(¢))) of disjoint balls centred in F" and contained
in B such that u(B(z(¢),s(i))) > D - s(i). We infer that

= . _ u(B) _dr
;S(Z)ST o <

Hence the set ), covers at most a proportion of 7(1+ 5¢) < 1 — p of the length of 7, (B(y,s)).
In other words,

£(my(B(y,9) \ By) > 25(1 - (1 + 5¢)) > p(2s).

Now define a measure on L, by

Cd-—¢

10



We have
v(my(B(y,9))\ By) < 1/(d—2) - [p(Bly,r) \ F) + pu(B(y, 1) \ S(y,7))| < 2(25) .

Finally, for all 2 € E, and t < 4es < R, there is 2 € F'n S(y,r)N ﬁy_l(x). As U(z,t) C
Ul(z,5es) C B(y,r) we get

VU, 0N L) > !

(UG ) 2

and thus the hypotheses of Lemma 3.2 are fulfilled. Therefore

Vim (Bl,s)) 2 (29)-[5+8]. (14)

On the other hand, from the construction of v, we get

v(my(Bly,s))) < o p(Blym))
< d_€(1+5€)8. (15)
Now (14) and (15) together imply
S+ ) (1452) 2 [+ e
—€ 2
which contradicts (13) and finishes the proof. |

Remarks:

(i) There are alternative ways to prove Theorem 3.1 from Lemma 3.2. For example one
could, instead of showing the existence of densities, use the fact that, if a set F does
not contain a linearly rectifiable subset of positive measure, the projections onto almost
all lines have Lebesgue measure zero by the Besicovitch-Federer Projection Theorem (see
[Mat95, Chapter 18]) and then apply Lemma 3.2 with p = 1.

(i) Our result naturally raises the question for which dimensions (other than 1) a result like
Theorem 3.1 and hence Theorem 1.2 holds. This seems to be a delicate question.
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