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Summary. Tangent measure distributions appeared as a natural tool for the
description of the regularity of the local geometry of self similar sets in Euclidean
spaces first in weaker versions, as in Bedford and Fisher [BeFi], and then in their
full strength, as in Bandt [Ba] or Graf [G]. The results are best expressed using
U. Zahle’s [ZU] definition of statistical self similarity: At almost every point, the
local geometry of a self similar set is, from a statistical point of view, described
by a unique statistically self similar random measure.

The definition of tangent measure distributions extends naturally to arbitrary
measures and dimensions. In this paper we show that for any dimension a and
every measure on a FEuclidean space, at almost every point, all a-dimensional
tangent measure distributions define statistically self similar random measures.
Consequently, the local geometry of general measures is not different from the
local geometry of self similar sets. The strength of this result is illustrated by
pointing out how it can be used to improve or generalize recently proved relations
between ordinary and average densities (e.g. [FaSp], [Ma2], or [M62]).

Mathematics Subject Classification (1995): 28A80, 28A75, 60G57.

1. The result and its background

The study of the regularity of the local behaviour of a measure p on a Euclidean
space is much simplified by the fact that, under the presence of mild a priori
estimates, the weak compactness of bounded sets of measures allows one to define
the measures representing the local behaviour of p at a point z as limit points
of enlargements of g about z. In various disguises, this idea has been used for
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a long time: Examples include Young measures (see e.g. [V]), tangent cones to
currents (see [Fe, 4.3.16]), or tangent measures (see [Pr]). The applicability of this
extremely valuable tool stems from the observation that taking this particular
limit of measures often improves their geometric behaviour; this behaviour then
can be analyzed and, by approximation, information may be obtained about the
original measure. The concept of tangent measures turned out to be particularly
useful for study of sets and measures of integer dimension and their rectifiability
questions (see [Mat] for a description; for new results in this direction see [02]).
However, in order to investigate non-rectifiable sets and measures more refined
tools seem to be necessary, as simple examples show that the set of tangent
measures may be rather large and contain measures that do not have much
better geometric properties than the original one.

One class of tools for the investigation of non-rectifiable measures is based on
an averaging idea of Bedford and Fisher (see [BeFi]). Instead of looking directly
at all limit points of the enlargements of p about z as the enlargement factor
goes to infinity, we take a natural family of probability distributions on the
set of positive reals whose expectations tend to infinity and study the limiting
distributions of the induced family of distributions on the set of enlargements.
The limiting distributions define “random tangent measures” which are called
tangent measure distributions. This idea was applied by Bandt [Ba] and Graf
[G] to the particular case of self similar measures. They found that self similar
sets have a unique tangent measure distribution at almost all points, which they
described explicitly. This technique has also been applied to statistically self
similar random measures by Arbeiter and Patzschke [APa].

The fact that a-dimensional tangent measure distributions can be defined in a
natural way for all measures on Euclidean spaces and all dimensions led us to
investigate to what extent the strong results on connections between rectifiability
and the behaviour of tangent measures have their analogy in the fractal world.
More precisely, we were looking for a converse of the results of Bandt and Graf:
As the tangent measure distributions of a self similar set have been described in
the work of the authors quoted above as being scaling invariant Palm measures,
one would ask if self similarity of a set is equivalent to all of its tangent measure
distributions being Palm measures (bearing in mind that the scaling invariance

is always fulfilled).

This conjecture has turned out to be wrong. Instead we found a surprising and
strong result of opposite nature: We prove here that all a-dimensional tangent
measure distributions to all measures (on Euclidean spaces of arbitrary dimen-
sion) are Palm measures and thus the local geometry of general measures is,
from the statistical point of view, not different from the local geometry of self
similar sets. Of course, we pay slightly for the generality of the result by allowing
that the zero measure has positive probability (which should be imagined as the
case when the measure has, in reality, dimension bigger than «) or that it is not
a probability measure (which should be imagined as the case when the measure
has, in reality, dimension smaller than «). We believe that this result reveals
a wealth of new unexpected information about the structure of such general
measures, and we illustrate this by giving several examples of its application to
questions studied previously in [M&Pr], [M62] [FaSp] and [Ma2].

We should also remark that our result is new already on the line. However, in
the important case of measures on the line with positive lower and finite upper
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densities 1t is possible to deduce the Palm property of tangent measure distri-
butions from very detailed information about the structure of these measures
which has been obtained in the thesis [M61] and will appear in [M62].

Measure theoretical definitions and preliminaries

We first recall some notions concerning measures. If X is a separable and com-
pletely metrizable topological space, short a Polish space, a non-negative Borel
measure v is termed a Radon measure if every compact subset K of X has finite
measure and

v(B) =sup{v(K) : K C B, K compact} for every Borel set B C X.

We shall often use the facts that Radon measures v on X also fulfill (see e.g. [S,
1,§1.2])

v(B) =inf{v(U) : BCU, U open} for every Borel set B C X

and that, under the conditions imposed upon X, a Borel measure is Radon if and
only if it is locally finite, i.e. every point has a neighbourhood of finite measure
(see e.g.[S, 1§IL.3]).

If v, are Radon measures on X, we say that the sequence (vx) converges vaguely
to the Radon measure v if the following two conditions hold

1. v(K) > limsupy_, o, vk (K) for every compact set K C X, and
2. v(L) < liminfg_, o v (L) for every open set I C X.

In the following we recall some useful descriptions of the vague convergence of
Radon measures. For this purpose the following lemma, which is proved for finite
measures in [T, Lemma 7.7], will turn out to be useful.

Lemma 1. Let (v;) be a sequence of Radon measures on a Polish space X.
Then, for every n > 0 and every open set G C X and compact set K C X with
K C @, there are a compact set C with K C C C G and an open set H with
K C H C G such that

(a) n+ limsup,_, o, vk(C) > limsupy_, ., vi(H) and
(b) n+liminfy_, e vk (C) > liminfr o vi(H).

Proof. Let G; be the intersection of G with the open 1/j-neighbourhoods of K.
Pick strictly monotonic sequences (a;) increasing to inf; lim sup v (G;) and (b;)
increasing to inf; liminfug (G;). We can find a sequence k1 < kg < ... of indices
such that v (G;) > b; for all k > k; and v (G;) > a; for some k; <1 < kjyqq. For
every j we may pick a compact set K C C; C G such that v (C;) > b; for all
ki <k < kjy1 and v (C;) > a; for some k; <! < kjp1. Then the set C =JC;
is compact (see e.g. [T, Lemma 7.5.]) and fulfills liminfu, (C') > liminfb; and
limsup vy (C) > limsupa;. Picking j large enough such that H = G; fulfills
limsupvg(H) < inf; limsupyg(G;)+n and liminfyg (H) < inf; liminfvg (Gi)+7
finishes the proof.



4 P. Mérters and D. Preiss

Lemma 2. Let (v;) be a sequence of Radon measures on a Polish space X
converging vaguely to the Radon measure v.

(a) For every compact K C X and every n > 0, there is an open set H D K
such that limsupy_, o vi(H) < v(K) + 7.

(b) For every open set G C X with v(G) < oo and every n > 0, there is a
compact set C' C G such that liminf,_, o v (C) > v(G) — 1.

Proof. To prove (a) we pick an open set G D K such that v(G \ K) < n/2. By
Lemma 1(a) we can find a compact set C' C G and an open set H D K with
limsup vy (H) < n/2+limsupvy(C) and, as limsup vy (C) < v(C) < v(K)+1n/2,
this proves (a). To prove (b) we pick a compact set K C G with v(G\ K)

and use Lemma 1(b) to find a compact set C' C G and an open set H D

n/2 + liminfy,(C) > liminfyg(H). As liminfyg(H) > v(H) > v(G) —
is proved.

)
<n/2

K with

n/2, (b)

Lemma 3. A sequence (v) of Radon measures on a Polish space X converges
vaguely to a Radon measure v if and only if for every compact set K C X and
every n > 0 there is an open set K C L C X such that

tim sup ‘ / ) dvg (2 / () dv ()

for every continuous function ¢ : X — [0,1] such that p(z) =0 forz ¢ L.

<7

Proof. An easy approximation shows that the given condition implies that (v)
converges Vaguely to v. On the other hand, if the convergence is assumed, n > 0
and K C X is compact, we can use Lemma 2(a) and (b) to first find an open
set L D K such that limsupvg(L) < v(K) 4+ /2 and then a compact set C
with K C ¢ C L with limsupvg(L \ C) < 5. Observe that sup v (C) < oo. If
@ 1s given as in the lemma, we calculate, using Fubini’s Theorem and Fatou’s
Lemma,

[eir > [ewr=[ vizcc o zma
> [ limsupn(ls € C < ola) 2 1))
> liﬂsup/o vr({z € C : p(z) >1})dt

= limsup/ wdug Zlimsup/g@duk—n,
c

k— o0 k— o0

and, similarly, we get

[ewr = [wrer:p@>ma

1
< / liminfog({z € L : p(z) >t})dt
- g k—oo
1
< lim inf/ vi{z € L : ¢(z) > t})dt = lim inf/godl/k ,
- k—co [ k— o0
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which together implies the condition given in the lemma.

As an important consequence of the lemma we note that the vague limit of a
sequence (vg), if it exists, is uniquely determined. Although we have not defined
a topology inducing the vague convergence (see [T, Chap. 7] for problems related
to this), the notion of relative sequential compactness with respect to the vague
convergence is naturally defined for a set of Radon measures.

Lemma 4. A set M of Radon measures on a Polish space X is relatively sequen-
tially compact with respect to the vague convergence if and only if sup{v(K) :
v € M} < oo for every compact set K C X.

Proof. Tf there is a sequence (vg) in M such that, for some compact K, the
sequence v (K) tends to oo, this sequence clearly has no convergent subsequence
and M cannot be relatively sequentially compact. On the other hand suppose
(vg) is a sequence in M and (vx(K)) is bounded for every compact K. We have
to find a convergent subsequence. Using Lemma 1(a) we can find a sequence
(G;) of open sets increasing to X with supy, vx(G;) < co. As any family of finite
measures with bounded mass has a vaguely convergent subsequence (see e.g.[T,
Theorem 7.8]), we can pick a subsequence (ug) of (vx) such that, for every j, the
sequence lg; py converges, say to p9). For every compact set K there is an index
n such that K C G, and therefore pu9|x = ul)|g for all 4,5 > n. Using this,

it is easy to see that we can define a Radon measure pu by pu(B) = sup u("(K),

where the supremum extends over all compact sets K C B and n is chosen
according to K. It is then straightforward to check that y is indeed the limit of
the sequence ().

Lemma 5. Suppose that i and vy are Radon measures on a Polish space X
such that (ug) converges vaguely to po and (vy) converges vaguely to vqy. Suppose
further that for every n > 0 and for every pair K C L of subsets of X such that
K s compact and L s open there is an open set K C U C L such that

liminf g (U) <+ limsupvg (L) .
k—o0 - k— oo

Then po < vg.

Proof. If K C X is compact and n > 0, we use Lemma 3 to find an open set
L DO K such that

limsup‘/ ) dpg(z /go(:b) dpig(z)
k—o0

im sup \ [ et@ramia) ~ [ o) duo(a)

for every continuous function ¢ : X — [0, 1] such that ¢(z) = 0 for ¢ L. Let
L D Ly O K be an open set such that vo(Lo\ K) < npandlet Lo D Iy D K

be an open set whose closure is contained in Lg. Using the assumption of the
lemma, we find an open set L1 D U D K such that

< 7

and

<7

likminfpk(U) < np+limsupyg(Ly) .
—o00

k— o0
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Let ¢ : X — [0, 1] be a continuous function such that ¢(z) = 1 for z € K and
=0 forz ¢ U and let ¥ : X — [0, 1] be a continuous function such that
P(z) =1 for 2 € Ly and ¢(z) = 0 for 2 ¢ Lg. Then

polK) < [ (o) duate) < n+limint [ (@) dpn(z) < 0+ limint o (0)

IN

2n+ limsupyg(L1) < 2+ lim sup/ P(z) dvg(2)

k— o0 k— o0

< s+ [ 6 duo(e) <30+ n(La) < 47+ 1a(K)

Since n > 0 and the compact set K are arbitrary, this shows that pg < vg.

A sequence (v;) of Radon measures with limsup,_, . vx(X) < oo is said to
converge weakly to the Radon measure v if [ ¢ dvy — [ ¢ dv for every bounded
continuous function ¢ on X.

Lemma 6. Let v be Radon measures on a Polish space X and suppose that
limsupy,_, o v5(X) < 0o and (vi) converges vaguely to a Radon measure v. Then
the following statements are equivalent:

(a) (vi) converges weakly to v.
(b) v(X) > limsup,_, ., vi(X).
(¢) For every n > 0 there is K C X, compact, such that limsupvg(X \ K) < 7.

Proof. As the function 1x is continuous and bounded, (a) implies (b). If (b)
holds, then v(A) > limsup,_, ., vk(A) for every closed set A C X and we can
conclude the weak convergence by means of Fubini’s Theorem as exercised in the
proof of Lemma 3. Finally, the equivalence of (a) and (c) follows from Prohorov’s

Theorem (see [S, App. §3,Th. 3 and 4]).

Of course, if the Polish space X is compact, then Radon measures are finite and
weak and vague convergence coincide. More generally, if X is a locally compact
Polish space, then vy converges vaguely to v if and only if [pdvy — [¢dv
for every continuous function ¢ on X with compact support. Then the vague
convergence of Radon measures is induced by the vague topology, the smallest
topology on the set of Radon measures that makes the mappings u — [ dpu
continuous for all continuous ¢ with compact support. The space M(X) of
Radon measures with this topology is again a Polish space.

Lemma 7. Suppose that X s a locally compact Polish space and that Py are
Radon measures on M(X) vaguely converging to Py. Let Ay be Borel measures

on M(X) x X defined by

Ap(E) = // 1e(v,y) dv(y) dPx(v) .

Then Ay are Radon measures converging vaguely to Ag.
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Proof. If K C M(X) x X is compact, let K1 C M(X) and K5 C X be compact
sets such that K C K1 x Ky and let Ly D Az be an open set contained in a
compact set Kz C X. Then there is 0 < ¢ < oo such that v(K3) < ¢ for all
v € Ky. Given any n > 0, we use Lemma 3 to find an open set L; D K; such

that
lim sup ‘/ ) dPx(v /gp(u) dPy(v)
k—o0

for every continuous function ¢ : M(X) — [0, 1] such that ¢(v) =0 for v ¢ Ly;
intersecting L; with the open set {v : v(K3) < c}, if necessary, we may also
assume that v(L2) < ¢ for all v € Ly. As a byproduct we note that K x L
contains K and Ag(K; x L) < oo, so that A; are Radon measures. Denote
L=ILxLy. My : M(X)x X = [0,1] is a continuous function such that
U(v,y) = 0if (v,y) € L, we note that the function p(v) = L L[ (v, y)dv(y) is
non-negative, contmuous bounded by one, and satlsﬁes 50( ) =0 for v ¢ L.
Thus (1) implies that

<nje (1)

lim sup ‘ [ dren) = [0 daotn)| <n,

k— o0

which, according to Lemma 3, implies that (Ag) vaguely converges to Ag.

In the case X = R? the set M(R?) of all Radon measures on R? equipped
with the vague topology is a Polish space and we observe, as a consequence of
Lemma 4, that a subset M of M(R?) is relatively compact if and only if for each
n =1,2,... there is ¢(n) € (0,00) such that uU(0,n) < ¢(n) for each p € M,
where U(z,r) denotes the open Euclidean ball of radius r centred in z.

Finite Radon measures on the Polish space M(R?) will be termed measure
distributions on R?; depending on the context we may also call them random
measures. The measure distributions we are interested in will always be sub-
probability measures and often, but not always, they will be probability mea-
sures.

Tangent measure distributions and their basic properties

The main geometric measure theoretical notions describing the a-dimensional
part of the behaviour of a Radon measure u on R? about a point 2 € R? are
introduced in the following way. We define the family of measures (pz ,)r>0 C
M(R?), the enlargements of p about z, by py ,(A) = p(z + rA) for all Borel
sets A C R and probability distributions Pf on M(R?) by

1
T r d
Py (M) = (|log(5|)_1/ Tar ('u—’) " for Borel sets M C M(RY).
s re r -
P (p, z) is defined as the set of all limit points of (Pf)s>o as d | 0 in the vague
convergence. The elements of P*(u,z) are the a-dimensional tangent measure
distributions of p at x. We observe that P*(u, z) # 0; indeed, Lemma 4 shows
that for every sequence d; | 0 the sequence P§ has a vaguely convergent subse-
quence.
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This approach also allows us to study the local geometry of sets £ C R? by
means of natural measures on the set, like for example Hausdorff measures.
We also point out that no a priori relation between «, i and 2 has been assumed,;
thus, for example, tangent measure distributions of the one dimensional Lebesgue
measure £ in R are:

1. If @ < 1 then the unique a-dimensional tangent measure distribution of £ at
every z € R is the Dirac measure concentrated at the zero measure.

2. If @ = 1 then the unique a-dimensional tangent measure distribution of £ at
every z € R is the Dirac measure concentrated at L.

3. If @ > 1 then the unique a-dimensional tangent measure distribution of £ at
every ¢ € R is the zero measure distribution.

Several close concepts have been used to describe the behaviour of a Radon
measure g on R? about a point. The most classical are the lower and upper
a-dimensional densities of p at z defined by

lim inf M and limsup M

rl0 re rlo re '

respectively, where U(z,r) denotes the open Euclidean ball of radius r with

centre at . More recent is the notion of lower and upper average, or order two,

a-dimensional densities of p at x defined by

V(U (=, 7)) dr /1 u(U(z, 7)) dr
[

liminf (|logd _1/ — and limsup(|logé|)~!
nint (oga)~" [ AL S and im s log )

respectively. Finally, the a-dimensional tangent measures of p at = are defined
as elements of the set

Hzry
o

n

Tang (p, z) = {v = lim in the vague topology for some 7, | 0 } .

n—r 00
Again, no relation between «, g and z has been assumed; thus, for example,
Tanz (L, z) = @ for every z € R.. Note also that a-dimensional tangent measures
may form a proper subset of the set of tangent measures considered in [Pr].

We shall give some statements concerning compactness, localization and scaling
invariance properties of tangent measure distributions.

Proposition 1. Suppose that p € M(R?) and o > 0.

(a) For every x € RY, and for every sequence & | 0 the sequence P§ has a
subsequence vaguely convergent to a distribution P concentrated on the set
Tany (s, 2). Hence all P € P*(p, ) are concentrated on Tang(p, z).

(b) If u has finite upper average a-dimensional density at z, then for every
sequence O | 0 the sequence P§ has a weakly convergent subsequence. In
particular, all P € P*(u, z) are probability measures and the set P*(u, z) is
compact in the weak topology.

(¢) If u has positive lower a-dimensional density at z, then P({¢}) = 0 for
every P € P*(u,z). (Here ¢ denotes the zero measure.)
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Proof. The existence of a vaguely convergent subsequence follows from Lemma 4.
If the sequence P vaguely converges to P and P(M(RY) \ Tan, (g, z)) > 0,

we find a compact set K C M(R?)\ Tan,(u, x) of positive P measure and use
that Tang(u, z) is closed to find an open set K C L whose closure does not
meet Tan, (p, z). Since K is compact, for every n = 1,2, ... there is a constant

e(n) € (0,00) such that vU(0,n) < ¢(n) for every v € K. Then the sets

L,={veL:vU(0,1)<c(l),...,vU(0,n) < e(n)}
>

) > P(K) and we infer that for each n there

are open and contain K; so P(L, ¢
L,) > P(K)/2. Noting that

is § < n=2/PE) guch that PF(Ln

=

1
(|log6|)_1/ 1, (B2) % < (|logd|)~‘logn < P(K)/2,
1

/n re

we conclude that there is 0 < 7, < 1/n such that “”;% € L,. Now the sequence

Bz ry

=r= has a convergent subsequence; but its limit has to belong to Tan, (u, ) as

well as to the closure of the set L, which 1s disjoint from it. This contradiction
finishes the proof of (a).

If p has finite upper average a-dimensional density at z, we infer from

(ogal)™ [ ML gt [ ML 2

re né re r

that the numbers

D, = sup{(|log(5|)_1/61 plUz,nn)) dr 5 1/2}

re r

are finite. Thus for any n > 0 we may choose ¢(n) € (0,00) such that
Zzozl CI()—H”) < 1 and observe that the set

K= {I/EM(Rd) :vU(0,n) <e(n) forn=1,2,...}

is compact and that by Chebyshev’s inequality PF(R?\ K) < 5. Hence the
existence of a weakly convergent subsequence and the compactness statement
follows from Lemmas 4 and 6 and the fact that P*(u, z) consist of probability
measures follows from Lemma 6.

Finally, if 4 has positive lower a-dimensional density at z, then Tan, (u, ) does
not contain the zero measure. Hence (c) follows from (a).

Remark. Observe that by Proposition 1, whenever p has positive lower and
finite upper a-dimensional densities at z, all tangent measure distributions P €

P (u, x) are nontrivial in the sense that P(M(R?)\ {¢}) = 1.

Using Proposition 1 we can find the a-dimensional tangent measure distributions
in several trivial situations.

Proposition 2. For every measure p € /\A(Rd), at p-almost every x € RY,
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(a) the only 0-dimensional tangent measure distribution is given by the Dirac
measure concentrated at the p({z}) multiple of the Dirac measure concen-
trated at the origin (in fact, this holds at every x),

(b) the only d-dimensional tangent measure distribution is given either by the
zero measure or by the Dirac measure concentrated at a multiple of Lebesgue
measure on RY depending on whether limsup, _, o pU(z,7)/L3U (x,7) is in-
finite or finite (and, in the latter case, this limit defines the multiple),

(¢) if a > d, then the only a-dimensional tangent measure distribution is the
zero measure.

If p is a-rectifiable then, at p-almost every x € RY,

(d) the a-dimensional tangent measure distribution at z is unique and given by a
Dirac measure concentrated at the only tangent measure at this point, which
1s a constant multiple of Hausdorff measure on the approrimate tangent
space at the point.

Proof. This is immediate from Proposition 1 and the structure of the respective
sets of a-dimensional tangent measures (see [Mat, Chap. 14-16]).

Remark. Proposition 2(d) shows that tangent measure distributions are a nat-
ural generalization of the classical concept of a tangent space.

Lemma 8. Suppose that u,v € M(R?) are Radon measures, « > 0 and x € R?
s such that
- sup{|u(E) = v(B)| - F C Uz, r))
i (h + ) (U, 1)
and that o5 | 0. Then, if for either of p or v the sequence P converges vaguely,
then both sequences converge and they have the same limit.

=0

Proof. Denote by Py and (Jx the sequence Pj with respect to yu, respectively
v. Because of the possibility of passing to convergent subsequences, it suffices to
assume that P and @y converge vaguely to, say P and @, respectively. If n > 0
and L C M(R?) is open, we use Lemma 2(b) to find a compact set K C L
such that limsup,_, ., Px(K) > P(L) — n. Since L is a vague neighbourhood
of the compact set K, there is a positive integer m such that, with a suitable
0 < o < 1, L contains every measure v which satisfies

sup{|y(F) — B(E)|: E CU(0,m)} < o for some 3 € K. (2)

Let ¢(n) € (1,00) be such that fU(0,n) < ¢(n) forall g € K andlet 0 < R < 1
be such that
sup{lu(B) — w(B)| : F C U(z,1)}
(b +v)(U(z,r))

for 0 < r < R; using this with E = U(z,r), we infer that vU (2, r) < 2uU(z,r)
and, consequently,

sup{|u(E) —v(E)|: EC Uz, r)}
pU(x,7)

< o/(3c(m))

< o/e(m)
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for0<r< Rand E CU(z,r).
Let Ko be the set of all measures y which have the property (2) and, in addition,
satisfy

YU (0,n) < 2¢(n) + (n/R)*vU(z,n) for every n > m .
Then K C Ko C L and Ky is compact. Moreover, if 0 < r < R/m and 222 € K
we show that 2=~ € K. Indeed, if nr > R, then

ro

Yer (17(0,m)) < “CE) < (n/R) U (2, m) |
r T
if nr < R, then
Veor I/U(I‘,TLT’) Bz, r
200, m) < ZE R (0,0) < 2e(0

and, finally,

sup{"f—a"‘(E) - ZLE)| B C U(0,m)}

sup{[u(E) — v(E)|: B C Uz, mr)} pios
uU(z, mr) re

(U(0,m)) < o.

Consequently, Q(L) > Q(Ko) > limsup,_, ., Qx(Ko) > limsup,_, Px(K) >
P(L) —n, which, as n > 0 is arbitrary, implies that Q(L) > P(L) for every open
set L C M(R?). Exchanging the roles of P and @, we finally conclude that
P=aQ.

Proposition 3. Suppose that o > 0 and that E C R? is u-measurable. Then
the restriction of u to E, which is the Radon measure pu|g on R? defined by
ule(A) = p(E N A), fulfills P*(u,z) = P* (|, z) for p-almost every x € E.

Proof. For p-almost every z € E we infer from the Besicovitch-Morse Density
Theorem (see [Fe, 2.9.11]) that

B(: E
B NE)
rio  p(B(z,r))

For any such z € F the required statement holds because the measure p and
v = u|g satisfy the assumptions of Lemma 8.

Remark. Similarly, Lemma 8 may be used to describe tangent measure distri-
butions of a measure absolutely continuous with respect to p: If the Radon-
Nikodym derivative of v with respect to p is f, and if z is a Lebesgue point
of f,i.e. lim,_q fU(x,r) |f(z) — f(y)|dp(y)/pU(z,7) = 0, we can first transform
tangent measure distributions of p to its constant multiple by f(z), and then
infer from Lemma 8 that these are precisely the tangent measure distributions
of v at z. Since p-almost every point is a Lebesgue point of f, this applies in g,
hence v, almost every point of R%.
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Proposition 4. For every A > 0 we define the rescaling operator S : M(R?) —
M(RA) by S¢v(E) = (1/A%) -v(AE). For all x € RY and P € P*(u, ) we have

P=Po(SH)™" for all X > 0.

Proof. Let A > 0 and observe that SY is a homeomorphism of M(R?) onto itself,
hence it preserves compact and open subsets of M(R?). Suppose that d; | 0
and that P is the vague limit of P . For every compact set K C M(R?) and

every open set L C M(R?) we calculate
(Po(SH)™(K) = P((S3)™H(K))

z,r d
> limsup (] logdx|)~ / “ )_r

k—co ra r

T, AT d
= hmsup (|logdx|)~ / <,u A ) -
k— r

T AT d
= limsup(|logdx|)~ / <,u A )_r
kE—o0 Su/A r

= limsup(|logdx|)” / 'ufr —
k— o0

= limsup Pj, (K)
k— o0

and, similarly, (Po(S¢)™1)(L) < liminfx_ 0 Py (L). Thus P§ converges vaguely
to Po (Si‘)_l, which, because of the unique determination of the limit, proves

that P = Po (S§)~!

The main result

While the scaling invariance of tangent measure distributions is easy, it is a
more interesting and difficult task to formulate and prove their shift-invariance
property. For every u € R? we define the shift operator 7% : M(R?) — M(R)
by T¥v(E) = v(u+ E). A shift-invariance principle for tangent measure distri-
butions is given in the following theorem.

Theorem 1. Let o > 0 and let p € M(R?) be any measure. Then at p-almost
all points x every a-dimensional tangent measure distribution P € P*(u,x)

fulfills

/ G(v,u)dv(u)dP(v //G “v, —u) dv(u) dP(v) (3)
for all Borel functions G : M(R?) x R? — [0, 00).
Remark. Because of the simple description of tangent measure distributions of

rectifiable measures (see Proposition 2(d)), the formula is easy whenever y is
rectifiable. In particular it holds trivially in the special cases « = 0 and a > d.



Tangent measure distributions of fractal measures 13

Since the formulation of the translational invariance property may not be ob-
vious, we first explain some reformulations of Theorem 1 and point out a few
applications showing that the formula (3) gives additional information about
local symmetry of measures. The proof of the theorem is deferred to Sections 2
to 4.

Measure distributions fulfilling (3) are well known in the theory of random mea-
sures. By a theorem of Mecke (see [Me]) the formula (3) characterizes P as a
Palm measure. Palm measures appear in many areas of probability, for example
in queuing theory or in the theory of point processes, where they play the role
of conditional distributions of stationary point processes given a point at the
origin (see [K, Chap. 10]).

A measure distribution P on M(R?) is a Palm measure if there is a stationary
o-finite measure @ on M(R?) with finite intensity and

/ v(B)dQ(v) = / PoT*(M)du for all M C M(R?), B C R Borel.
M B

Mecke’s characterization theorem states:

Lemma 9. A measure distribution P on M(Rd) 15 @ Palm measure if and only

if P({¢}) = 0, where ¢ is the zero-measure, and the Palm formula (3) holds.

Clearly P({¢}) =0 for all P € P*(u, z) if the lower a-dimensional density of u
at x is positive. Thus our main result implies that

Theorem 2. Let a > 0 and p € M(R?) be any measure. Then, at p-almost
every point © at which the lower a-dimensional density of pu is positive, every
tangent measure distribution P € P*(pu,z) is a Palm measure.

This statement establishes an interesting connection to the theory of self similar
random measures developed by Ulrich Zahle in [ZU]. He suggested, heuristically
speaking, that a random measure is statistically self similar if it is scaling invari-
ant with respect to its “typical point” and we can interpret Palm measures as
those measure distributions which have the origin as a “typical point”. More pre-
cisely, a measure distribution P on M(R?) is an a-self similar random measure
if P is a Palm measure invariant under the rescaling group (S%)xso.

This concept has been subject of investigations by Patzschke, U. Zahle and
M. Zahle, see for example [PaZU] and [PaZM]. In particular, they have stud-
ied the relation of the concept to statistically self similar measures in the con-
structive sense. Using the notion of a-self similar random measures, we may
reformulate Theorem 1 as

Theorem 3. Let a > 0 and p € M(R?) be any measure. Then, at p-almost
all points x, every tangent measure distribution P € P*(u, z) defines an a-self
stmilar random measure.

Here we have extended the notion of a-self similar random measures to allow,
in the natural way, for the possibility that P({¢}) > 0 and/or that the total
mass of P may be less than one. Of course, no such extension is needed if y is
supposed to have positive lower and finite upper a-dimensional densities.
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Applications to average densities

Without further assumptions on the measure, the connection between average
densities and tangent measure distributions is not straightforward, since it in-
volves passing to a limit of an integral of the unbounded function v — vU (0, 1).
For our purposes, the following information will suffice.

Proposition 5. Suppose that y € M(R?), a >0, 6, | 0 and that Py converge
vaguely to a measure distribution P. If

1
d
liminf(|log6n|)_1/ &f” Z <o, (4)
n—00 " r r

then Py converge to P weakly, hence P is a probability measure and, for every

R>0,
' uU (2, Rr) dr

re r

v, R)aPw) <timint (1og,)) " [ (5)

If i has finite upper a-dimensional density at z, then there is a compact subset
of M(R?) containing the supports of all measures PF, 0 < § < 1. In particular,
P s a probability measure and, for every R > 0,

/VU(O,R) dP(y):nlingo(Hog(SnD_l/ W% (6)

Proof. As the sequence Pj converges weakly if a subsequence converges weakly,
we may assume that the limit in (4) exists. For any m = 1,2, ... we infer from

/VU(o,m)dpgn(y) = (|1og5n|)—1/ pU(w, mr) dr

TQ

n

- m“<|loga‘n|)-1/

mdn,

r

wU(z,7) dr

re T
1

o _ U(z,r) dr

m®(|logdn|) 1/ M7

o
Sn r

INA

™ ouU(x,7r) dr
+m°‘(|log5n|)_1/ uUlz,r) dr
1 r r
that the sequence [vU(0,m) dP§ (v), n = 1,2,... is bounded by, say, Cp,.
Thus, for any € > 0, the measures P§ are concentrated, up to measure ¢, on
the compact set
o0
() {ve MR :vU(0,m) < 2™Cp/c},
m=1
which shows that the vaguely convergent sequence Pj converges weakly. The
inequality (5) follows, since the function v — vU (0, R) is lower semi-continuous.
If 44 has finite upper a-dimensional density at z, then the set {g,,/r® : 0 <r <
1} is relatively compact in M(R?); its closure has the required property. Thus



Tangent measure distributions of fractal measures 15

the function v — vU (0, R) is upper semi-continuous and bounded on a compact
set containing supports of all Py . Hence

' uU (2, Rr) dr
.rOé

/I/U(O,R)dp(r/) > limsup(|log5n|)_1/(S

n—0o0 n

1 ,
> liminf(|log5n|)_1/ 4/‘“@’;3’“)@
n—00 Sm r r
> /VU(O,R) dP(V):/VU(O,R)dP(V),

using Proposition 4 in the last step. This proves Proposition 5.

We may use the formula (3) of Theorem 1 with G(v, u) = h(u) to infer that, at
p-almost all points z, every tangent measure distribution P € P*(u, z) fulfills

//h(u) dv(u) dP(v) = //h(—u) dv (u) dP(v)

for every Borel function h : R? — [0, 00). Choosing for h characteristic func-
tions only, we get

/V(U) dP(u):/u(—U) dP(v)

for every Borel subset U of R%. A number of unexpected statements concerning
average densities, which have no analogy for ordinary densities, follow from this
equality.

Proposition 6. If p has finite upper a-dimensional density almost everywhere,
then at p-almost all points x the following holds: Whenever U C V C R® with
U closed and V open and 6, | 0, we have

1 ) d 1 — d
liminf(|log5n|)_1/ ple+rl) dr liminf(|log5n|)_1/ Larv) &<

re r T n—oo
n

n

Proof. We may assume that P§ converges to a measure distribution P. Em-
ploying the compactness result of Proposition 5, we infer that

Pz +rU) dr

re r

linlgglf(llogénl)_l/n
< /V(U) dP(y):/u(—U) dP(v)
< [viryarw)
I;ngggf(uogann—l/l ule = rV) dr

P .
Sn r T

IN
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Whenever C is a Borel cone in R9, one defines the lower average a-dimensional
density of a measure p at a point z with respect to C' as

1
[

re r

If C = R, this is the lower average density of the measure pu at a point z, if
d=1and C = (0, 00) we speak about right lower average density of the measure
p at a point z, etc.

Proposition 7. Suppose a > 0, u € M(R?) has finite upper a-dimensional
density almost everywhere and C' is a closed cone which (except for the origin) is
contained in the open cone K. Then, at p-almost all points z, the lower average
a-dimensional density of the measure p with respect to C' does not exceed its
lower average a-dimensional density with respect to the cone — K.

Proof. For every tangent measure distribution P the scaling invariance property
implies that [ v(U/(0, l)ﬂC )dP(v) < [v(U(0,1)NK) dP(v) and we can employ
the same argument as in ProposHlon 6.

As an immediate corollary of these propositions we obtain the following result,
which was obtained only under the additional assumption of positive lower a-
dimensional density in [M62] and, in a weaker form, in [M6Pr].

Theorem 4. Let o > 0 and p € M(R) be a measure on the line with finite
upper a-dimensional densities p-almost everywhere. Then, at p-almost all points
x, the right and left lower average a-dimensional densities coincide and each of
them s half of the lower average a-dimensional density of p at x.

Of course, analogous results can be found for upper average densities.

As our final application we show in Theorem 5 how the results of [FaSp] and
[Ma2] follow naturally by using the higher regularity of tangent measure distri-
butions. Our approach removes their unnatural assumption of finiteness of upper
densities for results about lower densities.

Lemma 10. Suppose that a probability measure P on M(R?) defines an a-self
stmilar random measure and that, with some ¢ > 0, P-almost every v satisfies
vU(0,1) = ¢. Then a is an integer.

Proof. From the invariance of P under the rescaling group (S¥)iso we infer
that, for every » > 0 and P-almost every v, we have vU (0, r) = er®. Thus, using
the Palm formula in the last step,

U= Pl o=y = [ oy M aonzere) () () dP()

cs®

s // U(0.5) Lpw: U (u,ry=erey (v) dv(u) dP(v).

As r and s are arbitrary, for P-almost every v we infer that vU(u,r) = er®
for v-almost every u and every rational r > 0. By continuity, P-almost every v
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satisfies that vU(u,r) = er® for every u in the support of v and every r > 0.
Now it suffices to use Marstrand’s Theorem ([Mal], see also [Mat, 14.10]) to
infer that « is an integer.

Theorem 5. Suppose that p € M(R?) and that o > 0 is not an integer. Then
p-almost all points x satisfy:

(a) The lower average a-dimensional density and the lower a-dimensional den-
sity of u at x are either both zero, or both infinite, or the former is strictly
bigger than the latter.

(b) The upper average a-dimensional density and the upper a-dimensional den-
sity of pu at x are either both zero, or both infinite, or the former s strictly
smaller than the latter.

Proof. Tf d(z) and D(z) denote the (ordinary) lower and upper a-dimensional
densities of p, respectively, then, for p-almost every z, each v € Tan,(p, z)
satisfies d(z) < vU(0,1) < D(z). To use Lemma 10, it suffices to observe that if
the average and ordinary lower, respectively upper, densities of p at x coincide
and are finite, then there is a probability measure P € P*(u, z) such that P-
almost every v satisfies that vU (0, 1) = d(z), respectively vU (0, 1) = D(z). But
if d(x), respectively D(x), is finite, then we can find J,, | 0 such that

1

' d
lim (|log 5n|)_1/ pU(z,r) dr = d(z) , respectively D(z).
n—00 r

rOC

n

We can choose P as the limit of a subsequence of Py . Then, by Proposition 1(a),
d(z) < vU(0,1) < D(z) for P-almost every v, and we may use the inequality

(5) of Proposition 5 in case of lower densities and the equality (6) of the same
proposition in case of upper densities to infer that P-almost every v satisfies

vU(0,1) = d(z), respectively vU(0,1) = D(z).

2. The main lemma

Although our results do not depend on the choice of the norm of R4, it will be
convenient to equip it with the maximum norm defined, for u = (u1, ..., uq), by

lul| = max{us] i =1,....d)
and denote by B(u,r) the closed balls with respect to this norm, i.e., B(u,r) =
{reR: flu—z| <7}

Lemma 11. Whenever a measure p € M(R?), a Borel measurable function
H :R? xR x (0,00) — [0,1] and 0 < a < d satisfy, for some constants
R, Ay, As € (0,00), the conditions

(i) H(z,y;r) =0 whenever ||z — y|| > Rr,
(i1) H(z,y;r) =0 whenever uB(z,5Rr) > Air*, and
(iii) for all z,%,y,§ € R? and 0 < r < o0,

Iz =&l + v =il

[H(z,y;r) — H(Z, ;)| < Ag .
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then, for p-almost every x € RY,

. 1 Y H(x,yr)— H(y,2;7) dr _
g ], | = duly) — =0. ™)

r

The rest of this section is devoted to the proof of this lemma. Our plan is first
to find a dyadic model of the statement of the lemma, then show how this
approximation may be used to prove its statement, and only then to embark
upon the series of technical estimates which will eventually result in the proof
of the dyadic version of our main lemma.

The dyadic model

We approximate the situation of Lemma 11 by discretizing 1t in a dyadic grid.
For k =0,1,..., we define the k-th grid as the family of dyadic cubes

0, — {ﬁ{ﬁ—kkztl) (b1, ka) €20,

Any z € R? is contained in a unique cube from Qy; this cube will be denoted by
Qx(z). The dyadic approximation to our main lemma is given in the following
statement.

Lemma 12. Given any ¢ > 0, 0 < a < d, and constants C1,Cy € (0,00),
we can find a constant Co = Cy(o,a,d,C1,C3) € (0,00) having the following
property: Whenever a finite measure yu € M(R?) and Borel measurable functions
Hy : R? x RY — R satisfy the conditions

(i) Hg(z,y) =0 whenever y ¢ Q(z),

(ii) Hg(z,y) = 0 whenever u(Qr(z)) > C127%2,

(iii) |Hg(z,u) — Hi(y,u)| < Co2koth=i if i >k 2z yc I € Q; and u € Qi (z),
(iv) Hyi(y,z) = —Hi(z,y) for allk=0,1,... and all z,y € RY,

then for any n = 1,2, ... and any non-negative function g € La(p),

[o@ ([ nz:fHk(m,u) du(u) = on)du(z) < Con®*u(RA) gl

Although we shall not need it, it is interesting to note that our proof allows
one to describe the dependence of Cy on all parameters explicitly; this shows, in
particular, that Co may be chosen independently of a as long as « is kept away
from d.
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Proof of Lemma 11 using Lemma 12

We need only prove Lemma 11 under the additional assumption that u is fi-
nite, as the general case immediately follows by using the special one for the
restrictions of y to B(0,k), k=1,2,...

Lemma 13. Suppose that 0 < a < d, p € M(R?) is a finite measure and
G RIxRIx(0,00) — R is a Borel measurable function, and Ay, A3 € (0, 00)
are constants such that

(i) |G(z,y;r)| <7 forallz,y € R? and r > 0,
(ii) G(z,y;r) = 0 whenever ||z — y|| > r,

(iii) G(z,y;7) =0 whenever uB(z,4r) > Aqire,
(iv) for all z,y,u € R and 0 < r < oo,

|G (2, u;r) = Gly, uir)| < Agr™* Mz — gl
(v) Gly,z;r) = —G(z,y;r) for all z,y € R and r > 0.

Then for every o > 0 there 1s C; < oo such that for any n = 1,2,... and any
non-negative g € La(p),

[ [ [ et at® —on] ante) < el ®

—n—1

Consequently, for p-almost all x € R?, the equality

1 R dr
lm oy [ [ Glovin aut) 5 = 0 )
holds for every R > 0.
Proof. The function
d
w(z) =[] (1 — min{|z|, 1/2}) "
i=1

verifies 1 < w(z) < 2¢ and is Lipschitz on R?; let Cy be its Lipschitz constant.

We define C7 = Al and Cy = 4%Cy + 2d+2°‘+2A2, and we prove that, for any
a € R? and any 1/4 < s < 1/2, the functions

Hi(z,y;a,5) = Y lo(@)le(y) Gla+z,a+y;27"s)w(2(y — z))
QEQk

satisfy the assumptions (i)—(iv) of Lemma 12 for the measure 7%p. Clearly, 12(i)
follows directly from the definition of Hy(z,y;a,s) and 12(iv) follows directly
from 13(v). If Tu(Qr(z)) > C127%2 then

p(Bla+2,275%25)) > pu(Bla+2,27%)) > pla+ Qu(x)) = T°p(Qk(z))
> 127k > A (27Fs),
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which, by 13(iii), shows that G(a+=z,a+y;27%s) = 0 and hence the requirement
of 12(ii) that Hg(z,y;a,s) = 0. Finally, the condition 12(iii) is also easy, since
i>k, z,yele€Q; and u € Qi(z) imply, because of 13(ii) and 13(iv), that
|Hi(z,u;a,s) — Hp(y, u;a, s)]

|G(m+a,u+a;2_k5)w(2k(u —:E)) —G(y—i—a,u—i—a;?‘ks)w(Zk(u - y))|

< |w(@(u—2) —w(@u—y)] |G+ a,u+ a2

+]w (2w =) |Gz + a,uta;27"s) = Gy + a,u+ a;27"5)]
< (2787 Co2 |ly — @l +2945(27Fs) " |z — |
< Cphethei

Let C = Co(o/log2, a, d, Ch, CQ),u(Rd)lﬂ, where Cqy is the constant introduced
in Lemma 12 and let g € La(p) be non-negative. The statement of Lemma 12
then implies that, for every a € R? and every 1/4 < s < 1/2,

/ (z + a) /ZHk (z,u;a,s) dT%u(u) —Un/logQ)dTap(:L‘)

< Cn® (gl (u)

Hence, denoting

Gr(z,y;a,s) = Hi(z—a,y—a;a,s)
= Y laro(@)lare®)Gle,y: 27 s)w (2" (y — 2)),
QeEQk

we have that
n—1
[a@( [ 3 Gulovuia,s) dutu) — on/ tog2) du(z) < en* gl (10)
k=0

If ||y — 2|| < 27%s, we use that s < 1/2 to infer that w(2*(y — z)) = T, (1-
28 |y; — :L‘Z'D_l. Thus

L 3 teselaret) act(@

QEQk

= LYae[0,1]": Y lape(@)laro(y) =1}
QEQk

= 1/w(2k(y — 1))
and we conclude that
G(m,y;?‘ks) = / Gr(z,y;a,s) dﬁd(a). (11)
[0,1]¢

If ||y — z|| > 27%s, then both sides of (11) are zero according to (ii); hence (11)
may be used for all z,y. Thus, integrating (10) over [0, 1]¢ with respect to the
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Lebesgue measure and over 1/4 < s < 1/2 with respect to the measure ds—s and
using that

9—k—1

1/2
[ eurtyZ= [ GwunT,
1 9—k—2 r

/4 5

we get

1/2 dr
Jo@[ [ [ Gl due) T - on] dutz) < en*llgllag log2
2—n—1
which shows that (8) holds with ¢; = Clog2.
To prove (9), we denote
G(x;r) = /G(:z:, y;7)du(y)
and note that, by 13(ii),13(v) and 13(iv),
G, ;)| = 1pen@IG(w,y;r) = Gy, y;7)| < Aer™ 7|z — yll 1B, ) (v)
< AZT_QlB(x,r) (y)

Since, by 13(iii), the left side is zero unless p(B(z,r)) < A17®, we obtain by
integrating with respect to du(y) that for all z and r,

|Glas )| < Asr=*u(B(x,1)) < At Az, (12)

Next we use (8) for the characteristic function g of the set

N dr
E, = {x : /2_n_1 G(z;r) - > 20'71},

to get that
onp(Ba) < Cin®pu(En)?,

hence p(Ey,) < C?n~1/2/0?, which shows that "o, y(E,s) converges. By the
Borel-Cantelli Lemma, for g-almost every x € R there is a positive integer m
such that ¢ (J.—,, Fns. Consider any such z and the corresponding m; we

may clearly also assume that m > 7A; A5/, Whenever 0 < § < 27" we find
n > m such that 2=("+1° < § < 2=»° and we note that z ¢ E,» implies that

1 . dr nd 1 v dr

— iT) = ey 1) — <: 2.

Mogs G(z;r) G(z;r) — < 20/ log?2
g8| Jo—n3-1 r [logd| n? Jo—naos r

Since (12) gives

1 /R (;(:c-r)ﬁ - Ay As(|log R| + log 2)
|logd| 1/2 R |log d|

and
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/W h )& AiAs(|log R| + ((n + 1)* — n?) log 2)
— <
Ilog5| - |1 g4
A1 As|log R|  TA; Ay
= [log d] n

we Infer that

1 R dr
lim su —/ /Ga}, ir)d — < 20/log?2
NP gl o (#,y;7) du(y)—~ < 20/log

for every R > 0. Since ¢ > 0 may be arbitrary, it follows that for y-almost every
z the inequality

lim sup

1 R dr
G(z,y;r)d — <0
sio  |logd| /53/ (= yir) du(y) ro

holds for every R > 0. The statement (9) follows by using this also with G
replaced by —G.

Proof of Lemma 11. If the assumptions of Lemma 11 hold, we let Ay = A R,
A2 = 2A2R, and

H(z,y;7/R) — H(y,z;7/R)

rOC

)

Gz, y;r) =

and note that the assumptions (i), (ii), (iv) and (v) of Lemma 13 are clearly
satisfied. To establish 13(iii), we observe that it follows directly from 11(i) if
[le—y|| > r. If [[x—y|| < r then B(z,5r)NB(y,5r) D B(x,4r), hence uB(x, 4r) >
Ayr® implies that uB(z,5r) > Aj(r/R)* and uB(y,5r) > Ai(r/R)®, hence
H(z,y;7/R) = H(y,z;r/R) = 0 according to 11(ii) .

Hence, using (9) of Lemma 13, we have

1 . _ .
Jim — / /H(I’y’r) H(y, zir) du(y)
540 |logd] Js ro r

— R%lim /R/G( ) () = 0
= AR logd] Sy J VA= T

Proof of Lemma 12

For the remainder of this section we shall assume that 0 < o < d, o, Cy, Cy > 0,
the measure u, the functions Hi and an integer n are fixed. Define the cut-off
function

0  otherwise,

i “lgg—ka o—ka
wk(x)Z{ L if Oy o275 < p(Qk()) < C1277%,

and let, for k € {0,1,...,n— 1}, € R? and Borel sets £ C R,
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Hy(z) = wk(m)/ (x)Hk(J:,u)dﬂ(u)

and

_ e LUEN (Qk (@) \ @i (2)))
ea(E) = (CiC%) 1;) L£4(Qr(2) \ Qi1 (2))

These notions are justified by the following observation.

Hk(l‘)

Lemma 14. For every positive function g € La(p),

[o@ (] nin(x,u) dp(u) — on) dy(x)
0102/9(33)5%(Rd)d/1($)

IA

2

C1Csl|9lla(n) (/ (%(Rd))Qdu(fv))U :

Proof. By (i) and by the case i = k of (iii) Hi(z,u) < C228%1g, (o)(u).
Thus, if wg(z) = 0, then either pu(Qx(z)) < C5 lo2=ka and [ He(z,u) dp(u) <
Co2821u(Qr () < o, or p(Qr(z)) > C127% in which case we infer from (ii) that
[ Hg(z,u)du(u) = 0 < o, and hence

/Z_:Hk(m,u)du —0'n</2wk VHg (2, u) dp(u) = C’nggoz(Rd).

The statement follows by multiplying this inequality by g(z), integrating with
respect to dy(z), and using Holder’s inequality.

INA

We therefore devote the rest of this section to the estimate of [ (goz(Rd))Qdu(:L‘).
Since working with the signed measures ¢, may sometimes be slightly awkward,
we majorize them by Radon measures ¢, (2 € R?) defined by

§ LYE N (Qx(2) \ Qry1(2)))
o LUQk(2) \ Qupa ()

To see the majorization, we first note that wg(z) # 0 implies that wg(z) = 1
and p(Qg(x)) < C127%% which proves that

wz(E) Wi (:L‘)

Lemma 15. For every x € R? and every k € {0,1,...,n — 1},

wi (2)2°*p(Qx(2)) < C1 .

Consequently, |Hg(z)| < wg(z fQ |Hk z,u)| dp(u) < wi(2)28*Cop(Qr(z)) <
wi (2)C1Cy, and we infer that

Lemma 16. For every x € R? and every Borel set E C R?,
lez(E)| < ¢2(E) -
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In addition to the above auxiliary functions and measures, we need to decompose
the family of dyadic cubes into several subfamilies. We denote by

n—1
I = QyU U {Q e Qr:p(Q)>Cile27Fy
k=1
the family of those dyadic cubes which have a non-negligible y measure (or
belong to the starting grid).
Noting that Qqo(z) € Z for every z € R, we define

k(z) = max{k=0,1,...,n—1:Qx(z) €T}
and, for I € Q,,,

G(I) = {ze€l:k(z)=m}.

It will also be convenient to extend the notation Qg (z) in the following way:
If I € Qn and 0 < k < m, then Qx(7) will denote the unique cube from Qy
containing /.

Finally, we choose the smallest integer ¢ such that ¢? > n, define, for i €
{0,1,...,9— 1},
(i+1)g—1

i = In |J o

k=iq

and denote by K; the set of maximal cubes from the set IOUZ;;(I Qr = Uj;zl Z;,
le.,

n—1 n—1
]CZ»:{KeIO Ja:kcre | Qk,K;éIimpliesfgéI}.

k=iq k=iq

Lemma 17. If K € Z, the sets G(I) (I € Z, I C K) form a (Borel measurable,
finite) partition of K. Consequently, the union of the family K; is partitioned
into the cubes from K; as well as into the sets G(I) (I € UZ;ZI Z). In particular,
the sets G(I) (I € I) form a (Borel measurable, locally finite) partition of RY.

Proof. Suppose that K € ZN Q. If x € K, then k() > m, so I = Qps)() C
K, I €7 and z € G(I). Hence K C UIeI,ICK G(I) which, since G(I) C 1,
implies that K = (J;cz ;e G(I). Finally, z € G(I) N G(J) implies that T =
Qr(z)(x) = J, s0o G(I) N G(J) = 0 for I # J. The bracketed statements about
Borel measurability and finiteness are obvious since each G(7) is a finite union
of cubes from Q,,_1 and the number of those I € Q for which I C K is finite.
Since the cubes from the family K; are clearly disjoint, their union is partitioned
by them as well as by the sets G(I), where I runs through cubes from Z that are
subsets of cubes from K;. But each such I belongs to UZ;} 7Ty, and, conversely,
each I € UZ;; 7y belongs to Z, hence, by definition, it is a subset of some cube
from K;. This proves the second statement and, since the union of Kg = Qg is
R4, also the last one.

bl
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We are now ready to start our main estimates. Note that, according to Lemma 17,

e (RY) = D ea(G(D)
and

Y Y@ = Y k)

j=i+1J€eZ; KeKit

Hence, using that |¢;(E)| < ¢;(F) by Lemma 16, we may estimate
A RTe
= X /%(G(I)) ¢z (G(J)) du(z)

I.Jez

= X_: > /%(G(I))sox(G(J))d,l(x)

i=01,J€eZ;
q—2 q-1

12)55 S OB D PR PRETIENE

i=0 j=i4+1I1€Z; JEI;

g—1

IN

> /wﬁf(G(I))wx(G(J))d,u(m) (13)

i=0 I,JEZ;

)

q—2
#2050 3 [ ealGU) e (K) dut). (14)

i=0 Te€Z; K€K,y
For i > 1 we divide the integral [ ¢, (G (1)) ¢5(G(J)) du(z) in (13) into integrals
over Qi—1)q(1) N Qi—1)q(J) and R?\ (Qei-1)q(I) N Qi=1)q(J)) and, using that
1z 18 a non-negative measure, estimate the second integral by twice the integral
over R%\ Q(;_1)4(I). Similarly, we divide the integral [ ¢, (G(I)) ¢z (K)du(x)
in (14) into integrals over R?\ K and K and replace ¢, by v, in the first, but
then estimate the second integral in a slightly more sophisticated way by

| #G0) e (K) dua)
= [ el = e (G1D) oK) dua)
+ [ e (G0) g (K) duta)
sup |- (1) = e (G| [ 0 dite)

2eK

oc (GD) /K e (K) du(z),

IN

where ((K) denotes the centre of K. Thus
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[ (o) dute)

< Y [ 6l (GO du(o) (13
I,J€Zy
+ZZ /Q R C TR ETE R
+ZZ R CULCURTE (1
+2EZ > /R d\K%(G(f))wz(K)du(r) (18)

i=0 T€T; K€Ky

Sy Y sup [6.(G(1) = w0 (G| [ wa(K)du(a)(19)

i=01€Z; K€K 41

2 Y e (@) /K oo () du(a). (20)

i=0T€T; K€Ky

Taking into account Lemma 14, we conclude that to finish the proof of Lemma 12
it suffices to estimate each of the terms (15-20) by Cn??u(RY), or by C®u(R9),

since n < ¢% < (\/——i— 1)? < 4n implies nd? < % < 8713/2 This will be done,
term by term, in a series of lemmas. The first of them follows immediately from
the deﬁnltlons

Lemma 18. If 0 <1< j <n, then

V2 (Qi(2) \ Q= Z% ) <j—i

In particular,

e (RY) = 5 (Qo() \ Qn(z)) <n < g?.
Lemma 19. Whenever 0 <l <m <n and x € I € Qy, then
Yo (Qm(z) NG(T)) = 0.

Proof. Since ¢, (Qm(z)NG(I)) < ZZ;}H wg(z), the statement is obvious if m =

n or wi(z) = 0 for all m < k < n — 1. On the other hand, if p > m is the least

index for which w, () # 0, then Q,(2) = Qp(z) € Zforall z € Qp( z),s0k(z) >p

for all such z and we infer that Q,(z) N G(I) = . Hence 9, (Qm(z) N G(I)) <
p! wi(z) = 0, since wg(z) =0 for all m < k < p.

k=m

Lemma 20. If0§l§i<j§nandngﬁUf;Zl»Qk, then

Yo w(G)<20i-1) .

IeJ,ceQi(I)
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Consequently,
Z Gy (G(T)) du(z) < 4(j — 1)2 ay
I,JEJ/z< )anmw (G(1) ¥ (G(J)) du(z) < 4(5 = 1)"p(RT)

Proof. I € J and x € Q;(I) \ I, then G(I) C T C Qi(z) \ Q;(x). Using also
the disjointness of G(I) (I € Z) (Lemma 17) and Lemma 18, we have

T alGU) < e @(x)\ Q) <G L
TeJ zeQi(I\I

Similarly, but using first Lemma 19, we get

Yo ve(G) = D G\ Qi(2) < ¥u(Qi(x)\ Qi(x) <j—1.

IeJ,zel IeJ,zel

Adding these two inequalities gives the first statement. The second statement
follows, since

3 ], o D) (GO )

I1,7ed

- /(= mmu»fdm)s4<j—z>m<Rd).

IeJ,ze@i(I)

Estimate of (15). From Lemma 20 with J = Z we infer

Estimate of (16). Using Lemma 20, we see that

Z > . e (G (GUT) di(e)

1Jez; ¥ Qui—1a(I)NQi-1)4 (J)

q-=
Z p(RY) = 16¢°u(RY) .
Lemma 21. If0<I< k<nand I € ZN Qy, then
/ bal1) dn(a) < 201 Co20=R =) (1) /o
(M\Qu41 (1)

Pmof We first note that u(I) > 2~ ’“‘C osincek>0and I €ZNQ,. If z &
Qu(IN\Qu41 (1) then IN(Q:(2)\Qiy1(z)) = Difi # L and IN(Q(2)\ Q41 (2)) = I.

Hence
Ed(])(2—ld _ 2_(l+1)d)_1wl(:13) < 2—kd2ld+1wl(x)
9~ k(d=e)old+1 i (Nwy (2) /0.

Wz (1)

INA
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Since, according to Lemma 15,

/ () du(x) < Cr27'
QuIN\Qi4:1(1)

we Infer that

/ V1) dpi(z)
QuI\ Qi1 (1)

< 2—k<d—o«)2ld+lcw(f)/ wi(z) du(z)/o
QuIN\Qi41(T)
< 20105207 (1) /o,

Lemma 22. If0<m<k<nand I € TN Qy, then
/ Yo (1) dp(x) < 20, Co2m =R (1) (27 ~ 1)) .
RIN\Quwm (1)
In particular,
[ () due) < 26 CanlD)/ (o2t = 1)
RA\T

Proof. Since ¢ (R%\ Qo(z)) = 0, the first inequality follows by adding the
inequalities from Lemma 21 for [ = 0,1,...,m — 1. The second inequality is the
case m = k of the first one.

Estimate of (17). Using that ) _ ;7 ¥.(G(J))
18 and that according to Lemma 22, for any I €

< n < ¢? according to Lemma
7,

/ Vo G(I) du(z) < €127 (1),
R \Q(z 1)q( )

where C; = 2C1C3/(0(297% — 1)), we estimate that

Z S [ G0 G e

i=11,J€T; NQi—1yg (I

Sl 02(G(1) du(2)

i=1TeZ; \Q(, e

S SO

i=1 IeZ;
C127 1= gt (RY)
Cag” (R,

IN

INA

<
<

where Cy = Cy sup,,s; 2~ *)m.
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Estimate of (18). We first note that the disjointness of the cubes from K;44
and the second inequality of Lemma 22 imply that

S [ R <o ST uK) < ).

KeKiq KeKip

Thus, using first that ) ;.7 ¥ (G(I)) < q%, we have

>y [ o O i 1)

i=0 T€Z; KE€K41

< 222/ Ve (K) dp(z)

1= 0KEK:+1

< ¢ Z Cip(RY)
S CquN(Rd) .
Lemma 23. For any dyadic cube K,

Y sup |eo (G \ K) — ¢y (G(I) \ K)

rez ©VEK

Proof. If 2,y € K € Qp and 0 < k < m, then Qr(z) = Qr(y), Qrs+1(z) =
Qr+1(y) and wi(z) = wi(y). Usmg also that wg(z)28u(Qr(z)) < Ci by
Lemma 15 and that, for all u € Qx(2), |Hg(y,u) — Hg(z,u)] < Cy ,2kocth—m
by assumption, we infer that

<1.

|Hi(y) — Hi(z)] < wm)/ .30 = i )] d )

Hence

e (G \ K) = ¢y (G f)\

Qr(2) \ Qr41(2)))

(C1C5) C1Cy28—m
s (GG 2:% (Qk )\ Qrgi(x)) o
and, taking supremum over z,y € K, we have
sup g (G(I) \ K) — ¢y (G(I) \ K)
z,yeK
¢ 5 EOD 0 @D Qe €N

= Ed Qk (C(E)\ Q+1(C(K)))

Thus, summing over I € Z and using the disjointness of the sets G(I), we get
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m—1

S sup [ (G()\ K) — ¢, (GN\ K) < 3 287 < 1.

rez T VEK k=0

Estimate of (19). To use Lemma 23, we observe that, whenever u € K € K;41
and I € U§:0 Z;, then k(u) > i and hence u ¢ G(I). Consequently, ¢,(G(I)) =
¢e(G(I)\ K) for every z € K and, using first that [, 1o (K)du(z) < ¢*u(K),
since ¥, (K) < ¢:(RY) < ¢ by Lemma 18, then Lemma 23 and finally the
disjointness of K;;1, we infer that

2

> Y s leaG0) — e (G| [ e ()

q-
i=0T€Z; KEKiqr ~

u(K) Y Y sup e (G(I)) = eeiy (G(T)]

KeKiq j=071ez; €K

5
(]

IA
=
[V
=
=
>
S’

IN
L]
w
=
=
=

Lemma 24. For every dyadic cube K,

| ey dutz) =0,

Proof. If Q € Qy, the anti-symmetry of Hy and the fact that wg(z) = wk (¢(Q))
for every » € ) imply that

/Q Hi(e)du(z) = wn(C(Q) /Q /Q Hi(o,u) du(a) dp(u) = 0.
Hence, if K € Q,,,

[ el®)dute) = () Y | o) duta)

CIARD D [ ete)

k=m Q€Qx,QCK

= 0.

Estimate of (20). By Lemma 24,

EZ > 804<K)(G(f))/ eo(K)dp(z) =0 .

i=0 T€Z; K€Ky K
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3. Proof of the Palm formula

Noting that trivial cases have been handled in Proposition 2, we assume, for the
rest of this section, that 0 < @ < d and a measure u € M(R?) are fixed.

We will need to make some, not very difficult but careful, estimates of measures of
sets. This will be facilitated by defining the usual distances Fy (v, ) of measures v
and 7 as the supremum of | [ f(w) dv(w) — [ f(w)di(w)|, where f runs through
functions f : R? — R having support in B(0,k) and Lipschitz constant at
most one. Tt is not difficult to see that (Fy)2, is a sequence of pseudo-metrics
inducing the weak topology of M(R?) (see e.g. [Mat, 14.13]). In addition, we
will only need the following simple estimate of the distance of enlargements of
measures.

Lemma 25. Whenever z,% € R and r > 0, then

(e Hr ¢ Bl oSl k) =31,

re | po ro r

Proof. If f is as in the definition of Fj then

| [ ) o) = [ ) s ()]
= I =15 |t

r—z r—Z
/ o~ 3] ay+ [ =g
B(x,kr) r B(&,kr) r

2u(B(z |lz - & + kr)) =,

IN

IA

which, divided by r®, proves the statement.

Before coming to our last lemma, we need to introduce the distances also in the
space M(R?) x R We define them by g,((v,u), (7,@)) = F,(v,7) + ||[u — @;
they form a non-decreasing sequence of pseudo-metrics generating the topol-
ogy of M(RY) x R% We will also use the usual notation g,((v,u), M) =
inf(; ayenmr 0p((v, u), (7, 1)) for the g, distance of (v, u) € M(R?) x R? from a set
M C M(R?) x R? and recall that the g, distance of sets M, N C M(R?) x R?
is defined as the infimum of g, ((v, u), (7, %)), where (v,u) € M and (#,%) € N.

Lemma 26. Suppose that R > 1 and that U CV C M(R%) x B(0,R — 1) are
open subsets ofM(Rd) x R. such that, for some positive integer p, the g, distance
of U from the complement of V' is positive and the values of v(B(0,5R+p+1))
for (v,u) € U are bounded. Then, for ji-almost every r € RY,

timint [ [ [1v() = 10770, —)] du(a) P () > 0.

Proof. We choose ¢ € (0,1) such that g, ((v, u), (#,%)) > € whenever (v,u) € U
and (7, u) ¢ V, and we let
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Ay =14 sup v(B(0,5R+p+1)), As = (2A1 + 1)/¢€,
(v,u)eU

and observe that our assumptions imply that A; is finite. (It may be pointed
out that the names of the constants are chosen with the future application of
Lemma 11 in mind. Also, to avoid trivialities, note that in the case U = @ the
statement of the lemma is obvious.)

Define S : R? x R? x (0, 00) = M(R?) x R? by

S(z,y;r) = (%’y—x) :

r

Since S is continuous, the set S~!(U/) is open, which implies that the function

H(z,y;r) = max{O,l—A2 inf llz — 2|+ [ly — gl
(&,g;r)€S—1(U) r

is upper semi-continuous, hence Borel measurable.
We prove that

H(;p’y; )<1‘z(/’tl‘r’y_éb) (21)

r

for all (z,y;7) € R? x R? x (0, 00). Indeed, otherwise there would exist (z,y;r)
and (%, §; r) such that S(z,y;r) € V, S(Z,9;7) € U, and ||e—Z||+||ly—3|| < r/A2,
and we would infer from S(#,y;r) € U that

p(B(E||E— 2l +pr)) < p(B(E (p+ 1)) = pz o (BO. (p + 1))
pir(B(0,5R +p+ 1)) < Ayr.

But then Lemma 25 would imply that

zr Y— T z,r g_i
¢ < o5 50) (5 55)
r r r r
< 2#(B(m,||év;1‘||+?r)) [z — 2l | [lz =2l +lly — gl
r r T
941 /Ay + 1/ As

A

13

Noting that, for any G,

. ﬂxr dﬂr,r y) dr
[[cwnaarze) = o [ [o(ter,y) actd

ﬂxr Y- dr
— du(y) ——
|1og5|// e ) #Y) e

we integrate (21) first with respect to du(y) and then with respect to dr/ri+e
to find out that

|101g(,-|/6 /H(ﬂ:;y; r) dp(y) % S//lv(u, y)dv(y) dP§ (v) (22)
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for every € R? and every § > 0. In a similar way we find an estimate of the
integral involving the set U: Since H(y,z;r) = 1if S(y,z;r) € U, we have

lU('uyo’Kr, u) < H(y,z;r). (23)
7 7

Hence, noting that, for any G,

@ [ ' Ty/lr r dpiz r(y) dr
/ G(TYv, —y) dv(y) dP§ (v) |log6|/ /G —a”_y) T( -

yr r— dr
= d -
|log6|// ) #Y)

we obtain, integrating (23) first with respect to du(y) and then with respect to
dr/rit® that

Y z 1 ! . dr .
[ ity i) < o [ Hmndut) 0

for every z € R® and every 6 > 0.

We prove that H(z,y; r) satisfies the assumptions of Lemma 11. We have already
noted that H is Borel measurable, and it is clear that its range is contained in
[0,1]. If H(z,y;r) # 0, then we find (Z,9;7) € S™1(U) such that ||z — Z|| +
lly — 9l <r/A2 < r and infer from S(Z,§;r) € U that ||z — g|| < (R— 1)r and
ts.r(B(0,5R+ 1)) < A;r®. Hence
lz =yl <lle =2l +]ly— gl + 12 -9l <r+ (R—-1)r = Rr,
which proves 11(i) , and
u(B(x,5Rr)) < u(B(E, (GR+ 1)) = iz o (BO,5R+ 1)) < Ayr®

which proves 11(ii) . Finally, the requirement 11(iii) follows directly from the
definition of H(z,y;r).

This finishes the proof of the Lemma, since (24) and (22) and Lemma 11 imply
that

hmlnf// lv(v,y) — lu(TV, — )] dv(y) dP5 (v)

> liminf / /H LYr H(y,:b;r) dy(y) dr
- Ilog5|

=0

Proof of Theorem 1

Using that M(R?) x R? is a separable metric space, we find a countable basis
U of its open sets which is closed under finite unions. Let i/ be the set of pairs
(U, V) of sets from U for which there are R > 1 and a positive integer p such
that U C V C M(R?) x B(0, R— 1), the g, distance of U from the complement
of V is positive and the values of v(B(0,5R+p+ 1)) for (v,u) € U are bounded.
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Since U is countable, we infer from Lemma 26 that there is a g null set N CR?
such that for every z € R\ N,

lirénui)nf// [1V(1/, y) — lp(TYv, —y)] dv(y)dP§(v) >0 (25)

for every pair (U, V) € U.
Let z € R4\ N and P € P%(pu, z) be fixed. Let §; | 0 be such that Py converge
weakly to P. Then

a(E) = [ [ 1e) e w)

are, according to Lemma 7, Radon measures on M(R?) x R? converging vaguely
to the Radon measure

AE) = //IE(u,y)dz/(y)dP(u).

Moreover, since the mapping 7' : M(R%) x RY — M(R?) x R? defined by
T(v,y) = (TYv, —y) is a homeomorphism, the measures Ay = Az 0T~ converge
vaguely to A=AoT 1.

We intend to use Lemma 5 to show that A < A. Whenever K C L are subsets
of M(R?) x R? such that K is compact and L is open, we first choose R > 2
such that K C M(R%) x B(0,R — 2) and find V € U such that K C V C
LN M(R? x B(0,R—1). Then we choose a positive integer p such that the
op distance of K from the complement of V is positive. We let ¢ denote this
distance, define

A = 14 sup v(B(0,5R+p+1))
(vu)eK
and
U = {(r,u) eV :g((v,u),K)<&/2,v(B(0,5R+p+ 1)) < A},

and choose U € U such that K C U C U. Then (U, V) € U, and we conclude
from (25) that

liminf A, (U) = hminf//lU(Tyv,—y) dv(y) dPs, (v)
k— o0 k— 00
< liminf// lv (v,y) dv(y) dP5 (v)
- k— o0
= liminf Ag (V)
k—o0

< limsup Ag(L).

k— oo

By Lemma 5, this shows that A< A Butthen A= AoT"' < AoT~' = A, and
we conclude that A = A, which is the statement of Theorem 1.
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