
Procedural Modeling and Image Synthesis for
Virtual Surface Inspection Planning

Thesis approved by
the Department of Computer Science
University of Kaiserslautern-Landau
for the award of the Doctoral Degree

Doctor of Engineering (Dr.-Ing.)

to

Lovro Bosnar

Date of Defence: 29.04.2024.
Dean: Prof. Dr. Christoph Garth
Reviewer: Prof. Dr. Hans Hagen
Reviewer: Prof. Dr. Thomas Wischgoll
Reviewer: Prof. Dr. Holly Rushmeier

DE-386

A good picture is equivalent to a good deed.

– Vincent van Gogh

ii

Acknowledgements

As I was finishing my master studies I was at crossroads with signs saying
”industry” or ”science”. During that time, I came across a presentation by
Dr. Petra Gospodnetić, then a PhD at the University of Kaiserslautern and
Fraunhofer ITWM, about how science is very much connected to industry
and how much it is needed to tackle common industry problems such as
inspection of an aeroplane turbine. What I heard sounded like an answer
to my search and after seeing complex geometrical structures and textures
that were investigated at Fraunhofer ITWM (and how computer graphics
can be applied to those!) I decided on an internship. Therefore, I would like
to thank Dr. Petra Gospodnetić for making my internship possible since it
led to my PhD at the University of Kaiserslautern.

First and foremost I would like to thank my supervisors Dr. Petra
Gospodnetić and Markus Rauhut from Fraunhofer ITWM and Dr. Hans
Hagen from the University of Kaiserslautern. I am grateful to my supervi-
sors for ensuring that I have everything I need to perform the research and
development provided in this thesis, for being there for me during my whole
PhD, providing me with directions and discussions, and for making oppor-
tunities for meetings, networking and collaboration possible. I am truly
grateful to Dr. Petra Gospodnetić for countless discussions and meetings,
guidance and structure, pointing me to opportunities and people who made
my research even richer, with this input I was always pushing my limits and
becoming a better researcher and engineer. I simply do not have words for
the amount of time, genuine care and effort she put into supervising me and
ensuring that I had everything I needed, and for that I am grateful. I would
also like to thank my supervisors at AppleseedHQ during Google Summer
of Code where I learned a lot regarding rendering and materials in computer
graphics.

During my PhD time, I was surrounded by people from the Image
Processing department at Fraunhofer ITWM and the University of Kaiser-
slautern - a warm and kind environment which I hope to have in my future
workplace. I am grateful to each and everyone from this environment. I am
grateful that I had a chance to work with bright and kind students such as
Natascha Jeziorski, Juraj Fulir, Maurice Didion, Lala Shakti Swarup Ray,
Josiah Abah, Siddartha Dutta and Doria Šarić. I would like to thank Olena

iii

Buchbinder and Mady Gruys for being there for me, full of support and care
when solving administrative requirements and tasks. I am grateful to Mar-
tin Braun for all the help and time he provided for solving any IT problems.
I would like to thank Dr. Claudia Redenbach and Dr. Katja Schladitz for all
the discussions bridging modeling in computer graphics and mathematics.
I would like to thank Dr. Tin Barǐsin for all the conversations and running
sessions that made COVID time and hard PhD times easier. I would further
like to thank Alexander Geng, Alex Keilmann, Ahmed Alshembari and Falco
Hirschenberger for all the running sessions which I must say were crucial for
a healthy PhD. I would like to thank all PhD and HiWi students for all the
hikes, game nights, mensa time, conversations and fun. Particularly, I am
grateful for all the great times with Alexander Geng, Alex Keilmann, Juraj
Fulir, Damjan Hatić, Lars Nieradzik, Dasha Dobrovolskij and Jianming Yi.
I would like to thank Franz Schreiber, with whom I was sharing an office,
for all the laughs, good music, and great atmosphere making my PhD days
spent in the office filled with positive and good vibes.

I am grateful for the fruitful collaboration with Dr. Holly Rushmeier
and Donovan Kreul from Yale University.

I am happy and grateful that I had a chance to meet Lúıs Miguel Bastos
Barrancos Fernandes and for all the amazing computer graphics rants.

In each chapter of my life, my friends were amazing support, always
there for conversations and great times and thus I would like to thank Ivan
Krauze, Luka Macan, Damir Sadiković, Ivan Zvonimir Kos, Borna Bešić,
Leo Obadić, Robert Milijaš, Luce Ivković.

I am truly grateful for my family who was always supportive and there
for me when needed - before my PhD and during my PhD. I would like to
thank my parents, mother Sanja and father Damir for all the support and
conversations and for teaching me to trust myself in whatever I decide to
pursue. They were always there for me in every chapter of my life and for
that I am grateful. I would like to thank my grandmother Katarina for all
the conversations, wise words and support. I would like to thank my sister
Tihana and brother Mihovil - kind, smart and amazing I am grateful to have
them - for all the conversations, fun and time together which helped me a
lot during my PhD. I would also like to thank Mihovil for reviewing one of
my papers! I would like to thank my godfather Nikola Šantorić for all the
game and film nights that made my time on PhD much nicer and relaxed.

I would like to thank my very special person Ariana Prpić who gave
me an amazing amount of support in my last PhD year and for all our
conversations and time together. I am truly grateful for such a kind, caring,
wise and supportive person with whom I can dream and make those dreams
come true.

Finally, I would thank all the people whose influence is always there in
one way or another. I would like to thank my teachers from primary school,
high school and university, particularly Ivana Crnjac, Mirjana Hrašovec and

iv

Mirjana Domazet-Lošo who taught me how to think, learn, work and trust
myself.

v

Abstract

Product manufacturing is performed in a massively automated and increas-
ingly customized manner. However, overall production speed is limited by
automation of inspection since each product has to ensure the required qual-
ity. A widespread and often-used quality assurance method is visual surface
inspection. Automated surface inspection relies on an inspection plan and
defect recognition algorithms. Both inspection planning and defect recogni-
tion algorithms development heavily rely on the availability of representative
image data containing various product surface textures and imperfections
showing a wide variety of possible surface responses to different viewing and
lighting conditions. Due to the advancements in manufacturing, defects in
products occur rarely, with different frequencies of appearance, followed by a
subjective and laborious annotation process. Further, since the surface tex-
ture is often not relevant to product performance and thus not controlled,
products with different surface textures are not treated as different product
samples and thus not provided.

Motivated by aforementioned problems, this work introduces the follow-
ing contributions: (1) image synthesis requirements for industrial quality
inspection and a novel realistic image synthesis pipeline satisfying those re-
quirements (Chapter 4), (2) texture synthesis requirements for industrial
quality inspection and a procedural approach to parameterized surface tex-
ture modeling incorporating domain knowledge (Chapter 5) and (3) defect
synthesis requirements for industrial quality inspection as well as a proce-
dural approach to parameterized defect modeling (Chapter 6). The contri-
butions presented in this thesis, make it possible to obtain, in a controllable
and automated manner, the required amount of image data, containing re-
alistic and varying surface textures resembling machining surfaces as well
as diversified geometrical defects with automated, pixel-precise annotations
(Chapters 7, 8). The presented contributions enable the inspection plan-
ning and development of machine vision algorithms for defect recognition to
be performed completely virtually, by inspection planning experts, without
computer graphics knowledge.

vii

Acronyms

RGB - red, green and blue triplet
IOR - index of refraction
SSS - sub-surface scattering
BSDF - bidirectional scattering distribution function
BRDF - bidirectional reflectance distribution function
BTDF - bidirectional transmission distribution function
NDF - normal distribution function, i.e., distribution of microfacet normals
DOF - depth of field
SPD - spectral power distributuion
R - requirement
PRN - pseudo-random number
BVH - bounding volume hierarchy
BSP tree - binary space partitioning tree
LTE - light transport equation
CSG - constructive solid geometry

ix

Contents

Acknowledgements iii

Abstract vii

Acronyms ix

I Introduction 1

1 Image Synthesis for Virtual Surface Inspection Planning 3

1.1 Virtual Surface Inspection Planning 3

1.1.1 Inspection Planning and Challenges 4

1.1.2 Virtual Inspection Planning 7

1.2 Image Synthesis for Virtual Surface Inspection Planning . . . 8

1.2.1 Image Synthesis Overview 10

1.2.2 Procedural Surface Texture Modeling 12

1.2.3 Procedural Geometrical Defects Modeling 14

1.3 Problem Areas and Contribution 15

1.3.1 Image Synthesis for Surface Inspection 17

1.3.2 Procedural Texture Synthesis for Surface Inspection . 18

1.3.3 Procedural Defect Modeling for Virtual Surface In-
spection . 19

1.3.4 Synthetic Data for Defect Segmentation on Complex
Metal Surfaces . 20

1.3.5 Image Synthesis Pipeline for Machine Vision in Metal
Surface Inspection . 20

2 Image Synthesis Background 23

2.1 3D space, Transforms and Scene Graph 23

2.2 3D Objects: Shape Representations 25

2.3 3D Objects: Material Representations 32

2.3.1 Material Appearance Observation 32

2.3.2 Optics and Reflectance Functions 34

2.3.3 Texture Modeling . 45

xi

2.4 Light . 51

2.4.1 Characterization of Light 51

2.4.2 Color . 53

2.4.3 Light Sources . 54

2.4.4 Shadows . 57

2.5 Camera . 57

2.6 Rendering . 62

2.6.1 Ray-tracing-based Rendering 66

2.6.2 Rasterization-based Rendering 74

2.7 Image and Display . 80

3 Procedural Modeling Background 83

3.1 Procedural Texture Modeling 85

3.1.1 Authoring Phase . 86

3.1.2 Generation Phase . 97

3.1.3 Applications . 98

3.2 Procedural Geometry Modeling 98

3.2.1 Authoring Phase . 99

3.2.2 Generation Phase . 106

3.2.3 Applications . 107

II Image Synthesis and Procedural Modeling 109

4 Image Synthesis for Surface Inspection Planning 111

4.1 Introduction . 111

4.2 Related Work and State of the Art 113

4.3 Requirements . 115

4.4 Methods . 115

4.4.1 ErrorSmith . 116

4.4.2 Callistemon . 117

4.4.3 Acquisition System . 119

4.5 Results . 121

4.5.1 Errsmith . 121

4.5.2 Callistemon . 122

4.5.3 Acquisition System . 123

4.5.4 Intrinsic and Hand-eye Calibration 125

4.6 Discussion . 125

4.7 Conclusion . 126

5 Procedural Texture Synthesis for Surface Inspection 129

5.1 Introduction . 130

5.2 Related Work and State of the Art 131

5.3 Requirements . 134

xii

5.4 Methods . 136

5.5 Results . 141

5.6 Discussion . 144

5.6.1 Texture Synthesis Models 144

5.6.2 Texture Influence on Appearance 146

5.7 Conclusion . 147

6 Procedural Defect Modeling for Virtual Surface Inspection149

6.1 Introduction . 149

6.2 Related Work and State of the Art 151

6.3 Requirements . 153

6.4 Methods . 154

6.5 Results . 160

6.6 Discussion . 162

6.7 Conclusion . 165

III Applications 167

7 Synthetic Data for Defect Segmentation on Complex Metal
Surfaces 169

7.1 Introduction . 169

7.2 Related Work and State of the Art 171

7.2.1 Defect Recognition . 171

7.2.2 Synthetic Data Generation 173

7.3 The Clutch Dataset . 175

7.3.1 Object Description . 176

7.3.2 Real Data Acquisition 176

7.3.3 Synthetic Data Generation 177

7.4 Defect Segmentation on Complex Surfaces 178

7.4.1 Utilizing Existing Planar Datasets 178

7.4.2 Utilizing Custom Designed Synthetic Data 179

7.4.3 Enhancing Model Response in Dark Regions 179

7.5 Experimental Evaluation . 180

7.5.1 Training Details . 180

7.5.2 Effectiveness of Planar Datasets 181

7.5.3 Effectiveness of Custom Designed Synthetic Data . . . 183

7.6 Discussion . 183

7.7 Conclusion . 184

8 Image Synthesis Pipeline for Machine Vision in Metal Sur-
face Inspection 187

8.1 Introduction . 187

8.2 Synthetic Dataset Generation 190

xiii

8.2.1 Related Work . 190

8.2.2 Image Synthesis Pipeline 192

8.2.3 Decomposition of Scales 193

8.2.4 3D Scene Modeling . 194

8.2.5 Texture Mapping . 197

8.2.6 Defect Annotations Generation 202

8.2.7 Rendering . 202

8.3 Test Body Design . 202

8.4 Material Measurements . 205

8.5 Texture Modeling . 208

8.5.1 Related Work . 209

8.5.2 Sandblasted Surface 211

8.5.3 Milled Surface . 212

8.6 Defect Modeling . 218

8.6.1 Related Work . 218

8.6.2 Defect Modeling Pipeline 218

8.7 Dual Dataset . 220

8.7.1 Real Dataset . 220

8.7.2 Synthetic Dataset . 221

8.8 Quality Estimation . 223

8.8.1 A Priori Similarities 224

8.8.2 A Posteriori Similarities 224

8.9 Pipeline Evaluation . 226

8.9.1 A Priori Similarities 226

8.9.2 A Posteriori Similarities 226

8.10 Discussion . 228

8.10.1 Pipeline Controlability and Simplicity 228

8.10.2 Domain Similarity . 229

8.10.3 Task Similarity and Recognition Performance 230

8.10.4 Influence of Domain Similarity on Task Performance . 231

8.11 Conclusion . 231

IV Conclusion 233

9 Conclusion 235

9.1 Implications . 236

9.1.1 Image synthesis for Surface Inspection Planning . . . 237

9.1.2 Procedural Texture Synthesis for Surface Inspection . 237

9.1.3 Procedural Surface Defects Modeling 238

9.1.4 Synthetic Data for Defect Segmentation on Complex
Metal Surfaces . 239

9.1.5 Image Synthesis Pipeline for Machine Vision in Metal
Surface Inspection . 239

xiv

9.2 Outlook . 240

xv

List of Figures

1.1 Inspected parts with the same geometry but different re-
flectance and texture appear significantly different. 5

1.2 Defects on inspected object. 6

1.3 Real and virtual environment. 8

1.4 mage synthesis for virtual inspection environment. 9

1.5 Physical samples (gear, spring and clutch) showing different
textures and defects . 10

1.6 Synthesizing image requires modeling a 3D scene (left) and
rendering to obtain the final image (right). 10

1.7 3D scene overview . 11

1.8 Procedural texturing . 14

1.9 Procedural defecting workflow. 16

2.1 3D space containing light, camera and 3D object placed in
world coordinate system. 23

2.2 All 3D scene elements have a local coordinate system relative
to the world coordinate system. 24

2.3 Example of a scene graph. 25

2.4 Shape representations. 27

2.5 Objects with same geometry but different materials. 32

2.6 Various objects exhibiting a wide range of appearances. . . . 33

2.7 Absorption and scattering . 34

2.8 Optically flat surface scattering. 35

2.9 Irregularities at the microscopic level. 36

2.10 Various scattering phenomena 37

2.11 Specular and diffuse components of scattered light 38

2.12 BRDF . 39

2.13 Isotropic and anisotropic BRDF. 40

2.14 Two interpretations of BRDF. 40

2.15 Diffuse and specular reflection 41

2.16 Microfacet-based BRDF roughness. 43

2.17 Surface modeling scales in computer graphics. 45

2.18 Texturing pipeline recreated as discussed by Akenine et al. [1]. 47

xvii

2.19 Left: regular pattern. Middle: irregular pattern. Right: com-
bination of regular and irregular patterns. 49

2.20 Aliasing . 49

2.21 Bump mapping. Normal mapping. Displacement mapping. . 50

2.22 Light falling on an object will absorb and reflect. 52

2.23 Physical and non-physical lights. 54

2.24 Ray-tracing-based rendering and rasterization-based rendering. 55

2.25 Environment light. 56

2.26 Shadow umbra and penumbra. 57

2.27 Focal length variation. 59

2.28 Various film dimensions. 59

2.29 Camera resolution. 60

2.30 Camera transformations. 60

2.31 Camera clipping planes. 60

2.32 Left: perspective camera. Right: orthographic camera. . . . 61

2.33 Left: rendered image without DOF. Right: rendered image
with DOF. 61

2.34 Camera visibility. 63

2.35 Rendering diffuse and glossy objects. 65

2.36 Ray-tracing-based rendering. 67

2.37 Ray-tracing concept. 67

2.38 Images rendered using path tracing. Left: 1 sample per pixel.
Right: 32 samples per pixel. 73

2.39 Path-tracing. 73

2.40 Complex scene lit with physical light and environment light.
Left: ray-tracing-based rendering. Right: rasterization-based
rendering. 74

2.41 Graphics rendering pipeline. 76

2.42 Rasterization-based rendering. Left: with shadow. Right:
without shadow. 79

2.43 Rasterization-based rendering 79

2.44 Rasterization-based rendering. Left: without ambient occlu-
sion. Right: with ambient occlusion. 79

2.45 Post-processing . 81

2.46 Tone mapping. 81

2.47 Display encoding. 82

3.1 Procedurally generated geometrical shapes. 84

3.2 Procedurally generated texture. 85

3.3 Circular brushing procedural texture workflow. 88

3.4 Layering strategy. 89

3.5 Procedural masking. 89

3.6 Placement of different texture elements over the object surface.. 90

3.7 Procedural warping. 90

xviii

3.8 Planar and solid surface texturing. 91

3.9 Examples of regular shapes created using procedural modeling. 92

3.10 Left: white noise. Middle: Perlin noise. Right Worley (cellu-
lar) noise. 94

3.11 Worley cellular noise with different distance metrics: Eu-
clidean F1, Euclidean F2, Manhattan F1, Minkowski F1. . . . 95

3.12 Fractal-based noise . 96

3.13 Layering concept . 100

3.14 Modeling complex geometry by decomposing into simpler shapes.101

3.15 Voronoi cells . 101

3.16 Procedural displacement. 104

3.17 Procedural modifiers. 104

3.18 Geometry sampling. 105

3.19 Boolean operators between cube and sphere geometry: differ-
ence, union, intersect. 105

3.20 Remeshing. 106

4.1 Pipeline overview. 113

4.2 Examples of some defect tool models. 116

4.3 Preview of defects created on the model of a gear. 118

4.4 Schematic representation of how the camera is moved by the
robot end-effector. 121

4.5 Geometry of the object (left) and light (right) used in our
surface inspection environment. 123

4.6 Real vs synthetic images. 123

4.7 Calibration comparison. 124

4.8 Defected geometry and rendering. 125

5.1 Surface lay types (see Black et al. [2]). 135

5.2 Circular texture model. 137

5.3 Parallel texture model. 138

5.4 Radial texture model. 140

5.5 Real images of spring (top) and gear (bottom) objects with
zoom on surface pattern. 142

5.6 Mesh objects (gear, spring and hirth) and corresponding view
directions. 142

5.7 Gear object with circular texture and increased camera focal
length (i.e. zoom on surface pattern). 143

5.8 Comparison of synthesized images (top) and real acquired
images (bottom) of gear objects with circular texture. 143

5.9 Comparison of synthesized images (top) and real acquired
images (bottom) of spring objects with circular texture. . . . 145

5.10 Gear, spring and hirth objects. Note that only a difference in
texture causes a huge difference in surface visibility. 146

xix

5.11 Gear object with circular, radial, knurling and casting textures.147

5.12 Comparisons of procedural textures. 147

6.1 Defected geometry creation workflow 155

6.2 Defect positioning algorithms. 157

6.3 Examples of denting tool geometries. 158

6.4 Scratch keypoints, scratching tool geometry, scratch render,
scratch mask (annotation). 160

6.5 Geometrical defect mask . 161

6.6 Inspected object CAD models. 161

6.7 Scratches and dents visibility as view and illumination changes
in direction of an arc above defects. 161

6.8 Comparison of real (left) and simulated (right) defected clutch
object. 163

6.9 Comparison of real (top) and synthetic (bottom) dent and
scratch defects. 163

6.10 Defected instances of blisk object (above) and annotations
(below). 164

7.1 The examined clutch object. 170

7.2 Defect appearance variation 172

7.3 Texture and defect examples extracted from datasets used in
this work. Best viewed digitally. 176

7.4 Defects with multiple exposures. 177

8.1 Presented synthesis pipeline. 188

8.2 Image synthesis overview. 193

8.3 3D scene decomposition. 196

8.4 Simulated 3D scene representing the real inspection environ-
ment. 196

8.5 Real and synthetic images comparison. 197

8.6 Real and synthetic images comparison. 198

8.7 Defected synthetic images. 199

8.8 Real defected images. 200

8.9 Left: defected synthetic image. Middle: defect annotations.
Right: defected synthetic image with annotations overlay. . . 201

8.10 Real (left) and synthetic (right) crops of defects on different
surfaces. Top: sandblasted. Middle: parallel milling. Bot-
tom: spiral milling. 201

8.11 Illustration of the test object used in the project, the milling
processes and a test object with milled surfaces. 204

8.12 Test object type M after sandblasting and subsequently in-
troduced defects with different types and sizes. 205

8.13 Topography measurements of sandblasted and milled surfaces. 206

xx

8.14 Optical 3D measurements of milled surfaces using different
parameter settings . 207

8.15 Topography measurement. 208
8.16 Classification of computer graphics texture synthesis methods. 209
8.17 Illustration of EF-stitching. 212
8.18 Overview of model generating milled surfaces. 213
8.19 Tool paths of parallel (left) and spiral milling (right) with

center points. 213
8.20 Illustration of sub-model for ring appearance with explana-

tion of its parameters. 215
8.21 Sub-model for rings’ interaction using φk “ 0, from left to

right: fpR1, R2q, R3, L3, fpR1, R2, R3q. 215
8.22 Adapted simulated milled surfaces generated with different

parameter configurations. Imaged region is 10mmˆ 10mm. . 216
8.23 Visualization of viewpoints used for inspection. 221

xxi

List of Tables

2.1 Comparison of radiometric and photometric measurements. . 52

4.1 ErrSmith parameter values for the images in Fig. 4.8. 121

7.1 Comparison between models trained on different source datasets,
including fine-tuning (FT) and exposure stacking (EX), eval-
uated on RealClutch test split. Precision (P), recall (R) and
F1 score (F1) are presented. The best results are bolded ver-
tically. 181

8.1 Used parameter settings for processing. 205
8.2 Overview of all quantities needed for the milling model in-

cluding their required parameters and choices thereof. Known
quantities are highlighted (section 8.3). 217

8.3 Defect specifications and ranges for uniform sampling. 222
8.4 Texture variation parameters, modifying the default values in

table 8.2. 223
8.5 Domain similarities averaged within and across texture types.

MAE and LPIPS were inverted to measure the degree of sim-
ilarity. 227

8.6 Task similarities between texture groups. The domains col-
umn symbolizes the experiment training Ñ testing domain,
with the real (Re) and synthetic (Sy) domains. Fine-tuning
(FT) is performed using real data after training on synthetic
data. 229

xxiii

Part I

Introduction

1

Chapter 1

Image Synthesis for Virtual
Surface Inspection Planning

Image synthesis using computer graphics relies on 3D scene modeling and
simulation as well as rendering which are completely controllable. There-
fore, generating synthetic images using computer graphics is desirable and
applicable in various disciplines. Many computer graphics applications such
as games, animated films, visual effects, predictive simulations, robotics, etc.
brought many contributions ranging from 3D scene modeling and simulation
techniques to photo-realistic and expressive rendering algorithms making
this area more and more exciting and more involved in solving problems in
different disciplines.

In this work, computer graphics methods are applied for image synthesis
in virtual surface inspection planning. More specifically, the real inspec-
tion environment is modeled as a 3D scene where the focus is on procedural
modeling of the product surface; both textures and imperfections. Although
the focus is on virtual planning which includes configuration and placement
of acquisition hardware for obtaining the required product coverage as well
as synthetic data generation for the development of defect recognition al-
gorithms, the introduced computer graphics concepts can be extended and
used in other disciplines where realistic and parameterized image synthesis
is required.

1.1 Virtual Surface Inspection Planning

Every manufactured object, further referred to as product, must assure cer-
tain quality standards. Visual surface inspection is an often and widely
used quality assurance method as discussed by Gospodnetic [3], Moham-
madikaji [4] and Beyerer et al. [5]. Traditionally, visual surface inspection
is performed by human experts relying on their perception. The advantage
of inspection performed by a human expert is their experience, adaptation

3

to new scenarios and intuition. Unfortunately, this also implies a slow, in-
consistent, laborious and subjective inspection process. On the other hand,
automated inspection relies on cameras which are highly available and ap-
plicable to the inspection of both product shape and its surface. Acquired
images are then automatically analyzed using image processing algorithms
for defect recognition.

Automated visual inspection using computer vision has been widely re-
searched and applied to achieve different quality requirements such as prod-
uct dimensions, surface conditions, texture quality, optical properties as well
as aesthetic and technical defect recognition (Beyerer et al. [5]). In this work,
the focus is on surface inspection systems applied for defect recognition.

In the case of known inspection scenarios with known requirements, au-
tomated inspection systems are typically readily available. Unfortunately,
such systems are highly specialized and hard to apply to different set of re-
quirements. Therefore, for the majority of manufactured products, a custom
automated inspection must be developed which requires planning. Inspec-
tion planning and the challenges it brings, discussed in the next section, are
crucial for the work presented in this thesis since they determine the aspects
on which this work focuses.

1.1.1 Inspection Planning and Challenges

Production lines are constantly adopting the concepts of smart factories and
smart manufacturing introduced in Industry 4.0 which results in improved
automation and customization capabilities. However, in order to increase
the efficiency of overall production, the efficiency of automated inspection
must be improved. Since the availability and applicability of visual inspec-
tion make it a widely used quality assurance method, surface inspection
can be considered an important part of quality assurance for Industry 4.0.
Further, the complex nature of automated visual inspection development
makes inspection systems very application-specific and rigid. Therefore, the
flexibility required by Industry 4.0 to keep up with customized products is
very difficult to achieve.

Custom automated inspection system requires planning. Inspection plan-
ning is a process where experts choose acquisition hardware (e.g., camera
and light) and configure their spatial placement to obtain required prod-
uct coverage. Further, algorithms are designed for defect recognition of
acquired product images. This process is highly challenging due to several
reasons. First, obtaining the required amount of products with diversified
defects is challenging due to ever-increasing manufacturing capabilities or
small production batches. Second, due to the complexity of product ge-
ometry, material and defects which are to be detected, inspection planning
must consider the following aspects: product shape, product reflectance and
texture, defect appearance, light and camera.

4

Figure 1.1: Inspected parts with the same geometry but different reflectance
and texture appear significantly different.

Product shape. Product surfaces have a wide range of geometrical
features such as holes, openings, curved areas, free-form regions, etc. Due
to those geometrical features multiple images taken with different camera
and light positions are required. Therefore, inspection planning must cover
the product surface to the required extent and as efficiently as possible. In-
creased geometrical complexity increases the complexity of inspection which,
at one point, becomes extremely challenging if performed manually.

Product reflectance and texture. To ensure required product sur-
face coverage it is not only enough to rely on product geometry. This is
because different products have different surfaces which are exhibiting dif-
ferent reflection and texture properties. For this reason, different surfaces
will not appear the same if acquired under the same conditions. Further-
more, even products with the same geometries and the same acquisition
setup but with different reflectance and texture properties will not appear
the same which can be seen in Figure 1.1. That is, the amount of visi-
ble surface will be different. The type of surface material defines optical
properties (i.e., reflectivity) and interaction with light, influencing the ap-
pearance of the acquired image. Furthermore, processing of product surface
(e.g., machining) introduces specific texture which further influences optical
properties, that is, interaction with light. The importance of reflectance and
texture are crucial for this thesis and are tackled later.

Defect appearance. Defect is application specific. Its occurrence is
random and unique to the production environment. Thus, a general clas-
sification of surface defects is a challenging task. Generally, it represents
any kind of surface part which deviates from the expected surface. For
automated visual inspection, the producer usually predefined the deviation
from the expected surface. Two main points arise when it comes to de-
fect recognition: defect characterization and defect visibility. Defects can
occur in a wide range of shapes and sizes as well as on different parts of
inspected objects, surrounded by a wide range of possible textures (Fig-

5

Figure 1.2: Three different viewpoints of the same inspected object. Defects
with a wide range of shapes and sizes can occur on different parts of inspected
objects.

ure 1.2). Therefore, obtaining the required amount of diversified defects is
crucial for solving the problem of defect recognition. Defect shape, size,
positioning and appearance pose crucial importance for this thesis and are
tackled later.

Light. Choice of light and its position highly determines the amount
of visible surface and defects which can range from completely visible to
completely hidden (Figure 1.2). Based on product surface properties and
types of defects, either diffuse or direct light can be used. Diffuse light il-
luminates the scene uniformly from all directions, thus, reducing highlights
and shadows. On the other hand, direct light illuminates the surface pre-
dominantly or completely from one direction. Light can be configured so
that the surface of an object appears bright while defects appear dark (i.e.,
bright-field). On the other hand, light can be configured so that the surface
appears dark while defects appear bright since they directly reflect into the
camera (i.e., dark-field).

Camera. Image analysis can be performed on images obtained using ar-
bitrary camera systems (infrared, velocity, depth, etc.). In this work, the fo-
cus is on an industrial camera which captures the visible light spectrum (Fig-
ure 1.2). Captured spectrum can be saved as single-channel monochrome
(grayscale) or multi-channel red, green and blue (RGB). The grayscale cam-
era is frequently used, when color is not important, benefiting from higher
per-pixel resolution and less data for transmission, storage and analysis.
Cameras can further be area-scan or line-scan. Area-scan cameras have a
fixed resolution corresponding to the camera sensor. On the other hand, a
line-scan camera has a fixed resolution only along one image axis enabling
to capture of large, high-resolution images capture of moving objects. An
important camera parameter that has to be set is resolution determining the
trade-off between image quality and analysis time. Next, the camera’s field
of view must be set to determine the portion of the visible product surface.
Finally, based on the camera’s field of view and its distance from the product
surface, an appropriate lens introducing depth of field is selected. Depth of

6

field determines the distance between the nearest and furthest points which
are in sharp focus. A larger camera aperture implies a smaller depth of
field and vice versa. A larger camera aperture allows more light to reach the
camera sensor which requires a higher camera shutter speed to eliminate the
motion blur effect for moving objects. For curved product surfaces, a small
depth of field represents a problem since only certain parts of the surface
will be in focus.

1.1.2 Virtual Inspection Planning

Motivated by the discussed challenges, Gospodnetic [3], [6] introduced vir-
tual inspection planning - migration of the physical planning process into
a virtual environment. The benefits of such an environment are manyfold.
First, it should provide planning experts with a set of tools which enable
them to plan the inspection for products of arbitrary geometry, reflectance
and texture properties. Second, the virtual environment aims to reduce the
cost and time for inspection system development by enabling early product
coverage and precision estimates. Finally, the virtual environment gives a
way to perform planning offline and apply the obtained results on an online
system and as such enables the flexibility required for Industry 4.0.

Virtual inspection planning is based on a virtualization tool - an inter-
active inspection planning tool named V-POI [7], [6]. This tool aims to
replicate the physical inspection planning process in a virtual environment.
Specifically, it enables the use of CAD models of inspected products as well
as real-world camera properties for planning. This way, acquisition hardware
(camera and light) configuration and placement can be done completely vir-
tually with precise information on geometrical coverage. Hence, viewpoint
placement evaluation is estimated by geometrical product surface coverage
given different camera positions [8].

The introduced virtual inspection planning environment and its goals
represent the foundation for this thesis. Several critical research and devel-
opment directions are identified which extend the virtual planning platform
and thus are crucial for inspection planning and automation purposes.

First, planning and evaluating acquisition hardware purely using geo-
metrical coverage does not give the full information to inspection planning
experts. The visibility of product surface and defects highly depends on
texture, reflectance, light and camera properties which have to be simulated
in such a virtual inspection environment. Therefore, this work is extended
by integrating a physically-based image synthesis pipeline which simulates
light, camera and product surface. As such it enables photorealistic im-
age synthesis enabling estimation of product visibility and coverage with a
particular setup of acquisition camera and light. Further, surface texture
modeling techniques based on machining knowledge for realistic surface re-
flection giving the required information on product visibility are presented.

7

Second, besides acquisition hardware planning, automated inspection
systems require robust defect recognition. This can be done either using
classical image processing techniques or using machine learning techniques,
which becomes prevalent. However, machine learning defect recognition al-
gorithms require a large amount of precisely annotated image data with
diversified defects which is often not available due to the rare occurrence
of defects or small production batches. Therefore, the synthesis of the de-
fected product surfaces integrated as a part of the virtual surface inspection
planning environment represents a solution. In this work, techniques for
parametric simulation of geometrical defects on product surfaces as well as
pixel-precise, automated annotations are presented. This way, the required
amount of realistic product images with diversified defects can be generated
for the development of robust defect recognition algorithms.

1.2 Image Synthesis for Virtual Surface Inspection
Planning

Figure 1.3: Real (left) and virtual (right) inspection environment. Only
important elements of a real virtual environment are simulated: camera,
light and object.

Virtual surface inspection planning, as discussed in Section 1.1, relies on
image synthesis for the configuration and planning of acquisition hardware
placement as well as for the development of defect recognition algorithms.
Image synthesis using computer graphics requires 3D scene modeling and
rendering. The 3D scene represents a virtual environment resembling the
real inspection environment as closely as possible (Figure 1.3). Rendering,
on the other hand, uses 3D scene information to create synthetic images
for a particular view. Realistic image synthesis requires modeling of a 3D
scene containing all important elements of a real inspection environment, i.e.,

8

inspected product, light and camera as well as a physically-based rendering
method for image generation (Figure 1.4). The image synthesis background
required for this thesis is discussed in Chapter 2.

Figure 1.4: Image synthesis for virtual inspection environment as presented
in Chapter 4. First, an inspection planning expert provides information
about acquisition hardware and inspected objects. Second, defects are sim-
ulated and geometrically imprinted. Third, a 3D scene containing simulated
light, a camera and an object is rendered to obtain synthetic images. Finally,
real images can be acquired for comparison and verification.

Although all elements of such a 3D scene have to be modeled realistically,
modeling of product surface texture and surface defects are identified as cru-
cial for virtual inspection planning, making them the focus of this thesis.
There are several reasons for this decision. First, the placement of acquisi-
tion hardware to achieve the desired product coverage highly depends on the
surface response to light. Due to highly reflective materials (e.g., metals)
and a wide range of surface finishing textures, the light reflection will signif-
icantly vary, which in turn causes varying surface appearance (Figure 1.5).
Second, since the goal of the visual surface inspection is to find defects, it is
crucial to develop robust defect recognition algorithms and as such are more
and more based on machine learning. Defect recognition based on machine
learning requires realistic image data of inspected product surfaces contain-
ing various surface textures and defects as well as precise defect annotations.
Therefore, realistically modeling defect shapes to simulate the correct light
scattering on defects is required (Figure 1.5).

In this thesis, both surface texture and defects are modeled procedu-
rally. This approach results in models which can be controlled by a set of
parameters, which can further be used to perform automated, realistic and
controllable surface texture and defect generation. The procedural modeling
background required for this thesis is discussed in Chapter 3.

9

Figure 1.5: Physical samples (gear, spring and clutch) showing different
textures and defects

1.2.1 Image Synthesis Overview

Image synthesis using computer graphics is founded on two main steps: 3D
scene modeling and rendering (Figure 1.6).

Figure 1.6: Synthesizing image requires modeling a 3D scene (left) and
rendering to obtain the final image (right).

3D scene contains elements of a desired virtual environment, e.g., a vir-
tual inspection environment. Specifically, it contains 3D objects, lights and
cameras (Figure 1.7) placed in 3D space. A 3D scene is an approximation
of the physical environment it aims to represent. Therefore, modeling a
3D scene is a trade-off between computational complexity and the quality
of the synthesized image, depending on the application requirements. 3D
objects are represented with geometry, material, position, orientation and
size in 3D space. Geometry describes the shape of 3D objects. Material
is represented with reflectance function and texture which defines how the
3D object will appear when illuminated, that is, how 3D objects interact
with light. Thus, the appearance of 3D objects is tightly connected to the
light in the 3D scene. Lights, next to emission properties, can also have

10

Figure 1.7: 3D scene overview. In this work, the focus is on 3D object
surfaces, specifically surface texture and surface defect modeling.

certain geometry, size, position and orientation which highly influence how
3D objects will appear and which parts of objects will be more or less visi-
ble. Only reflected light which is captured with a camera will influence the
final image. Therefore, parts of a 3D object which will be visible depend on
camera properties and its position and orientation in a 3D scene.

That said, it can be seen that all elements of the 3D scene are highly
connected and contribute to the final synthesized image. Properties of the
modeled 3D objects, lights and cameras can be arbitrary, thus 3D scene
modeling depends on a specific application. A Plethora of methods have
been developed for modeling each scene element. In Chapter 2 an overview
of 3D scene elements relevant to applications in virtual inspection planning
is provided.

For the sake of completeness, it is worth mentioning that by including
the time component in a 3D scene, it is possible to simulate motion (i.e., an-
imation) and interaction with scene elements. This way, 3D scene elements
can move and deform based on user input (e.g., force) or animation rules.
In this case, additional material properties are assigned to 3D scene ob-
jects describing how they would move and deform, e.g., rigid or soft bodies.
Sense of movement is achieved by rendering a series of images (i.e., frames)
for each change of 3D scene elements. In this thesis, only rigid, static 3D
objects and the single, static positions of the camera and illumination in 3D
space around them are considered.

Rendering is a process of creating 2D images from the 3D scene. Ren-
dering can be seen as photographing an object of interest. The resulting 2D
image contains 3D objects viewed and illuminated from a particular direc-
tion. The rendering process can be decomposed into two steps: visibility

11

solving and shading. Visibility solving uses camera and geometry infor-
mation of 3D objects to determine which 3D objects are visible from the
camera’s point of view. Once visible 3D objects are found, their geometry
and material as well as light and camera information is used in shading step
to compute the color. Computed colors are used to construct the final 2D
image. 3D scene modeling is highly connected to rendering since its elements
must be interpretable by a rendering algorithm. Therefore, it is important
to note that 3D scene modeling has to be both usable for human experts as
well as interpretable by rendering procedure. Rendering is thus a formalized
process and different methods and techniques exist for both solving visibility
and shading which will be discussed further in Chapter 2.

Image is the result of the rendering procedure as it will be shortly dis-
cussed in Chapter 2. It is a 2D representation of the 3D scene. Each image
is taken from a particular camera position with particular 3D scene param-
eters. The resulting image can be further processed, e.g., color correction or
tone mapping.

1.2.2 Procedural Surface Texture Modeling

A particularly important element of 3D scene for virtual surface inspec-
tion planning is inspected product surface. Surface properties highly deter-
mine its appearance and visibility for particular configurations of light and
camera. Surface modeling can be decomposed into modeling bidirectional
reflectance distribution function (BRDF) and texture which combined de-
fine the surface material. BRDF is a parameterized function describing the
amount of surface reflection depending on view and light positions. BRDF
describes light behaviour on a microscopic level and state of the art models
are based on the microfacet model as discussed by Walter [9] et al. Using
BRDF with constant parameters for modeling surface results in an overly
smooth and unrealistic response. For this reason, the texture is used to mod-
ulate BRDF parameters as well as small-scale geometrical details across the
surface. Therefore, the texture is crucial for describing product surface to-
pography, which can result from manufacturing, and achieving a realistic
surface appearance.

Texture, when it comes to surface modeling, can be viewed as a function
which assigns a certain value to each point of a surface. In practice, texture is
either an image or a procedure. The creation of image textures often relies on
the usage of painting, photographing, scanning, etc. and thus is extremely
useful for depicting complex details in an intuitive and artistic approach.
However, when represented as images, textures can not be varied easily and
fast. Further, image textures have a fixed resolution. This poses a problem
since zooming in on a surface, on which the image texture is applied, reveals
a pixelized texture pattern. Also, the surface area that the image texture
can cover without obvious repetitions or seams is limited. Finally, mapping

12

image texture on complex 3D objects often requires manual inspection to
reduce repetition and stretching artefacts.

When it comes to visual surface inspection planning, the goal is to have
the possibility to apply a wide number of physically realistic textures to a
wide number of geometries. Since the textures should provide the possibility
of appearance variation and may not contain tiling artefacts or pixelization
effects, the use of image textures is largely not considered suitable. Given
that texturing is only one step in a larger inspection planning pipeline, the
process should require minimal manual work and not assume the user to have
expert background knowledge. That said, the focus was put on procedural
texturing.

Procedural texturing is an umbrella term for a number of techniques to
create texture using an algorithm (Figure 1.8). This way, the resulting tex-
ture contains certain advantages over image texturing. First, the procedural
texture is parameterized enabling the generation of diversified patterns only
by tuning the parameters. Second, since the texture is defined algorith-
mically, it can be evaluated for any surface point no matter the viewing
distance or position. This enables high-resolution textures without repeti-
tion artefacts.

Procedural texturing can be decomposed into authoring and generation
steps as discussed by Deguy [10]. In the authoring step, modeling of a pro-
cedural texture is performed. On the other hand, in the generation step,
the evaluation of the procedural texture model with specific parameters is
performed resulting in a particular texture instance. Procedural texturing
models can be explicit or implicit. The explicit model is evaluated in a
raster image which is then mapped on a 3D object. The implicit model
is evaluated during rendering. Modeling of a procedural texture is often
constructed using a combination of regular and irregular patterns. Regu-
lar patterns are often periodic mathematical expressions such as sine wave.
Irregular patterns are often produced using noise functions such as Perlin
noise [11] which generates pseudo-random values with desired properties
such as small changes in value for small differences in input. A particu-
lar downside of implicit procedural models is the complex authoring phase
when it comes to more complex patterns. On the other hand, authoring
explicit procedural texture models when it comes to more involved patterns
is much more tractable. This is because explicit models allow accessing any
point in the domain where the texture lives, e.g., pixels of the raster image,
while implicit models must answer random rendering queries for arbitrary
points in 3D space, e.g., intersection point during rendering. However, the
implicit procedural model offers far more flexibility compared to the explicit
model since it is directly queried by a rendering engine eliminating the com-
plexity of of image mapping. Nevertheless, explicit models enable fast and
controllable creation of image textures, not depending on manual work such
as painting or re-scanning. Procedural texturing is crucial for this thesis,

13

Figure 1.8: Procedural texturing as it will be presented in Chapter 3.1. The
diagrams above show the concept of a procedural texturing model for circular
brushing which is implemented algorithmically. This procedural texture is
used in synthesized objects below for simulating surface topography resulting
from machining.

therefore, it is further discussed in Section 3.1.

1.2.3 Procedural Geometrical Defects Modeling

An important task of virtual surface inspection planning is the development
of defect recognition algorithms for automated visual surface inspection.
Robust defect recognition more and more relies on machine learning. As
such it requires a large amount of realistic product images containing surface
defects with precise defect annotations. Therefore, alongside surface texture,
it is crucial to model surface defects.

Defect modeling is particularly challenging for several reasons such as
defect variety, defect unpredictability and defect complexity. Defects are
unpredictable in their size, shape and position and can have different causes
such as mechanical or chemical. This means they could appear as geomet-
rical imperfections such as dents or scratches but also as material imper-
fections such as corrosion or liquid stains. In this work, the focus is on
geometrical defects such as dents and scratches on metal surfaces. Due to
a wide range of factors in product manufacturing and handling, defects of-
ten exhibit complex geometrical shapes. The complex defect shapes coupled
with varying surface textures affect visibility making defect recognition even
harder.

Due to the aforementioned reasons, defects are procedurally modeled as

14

geometrical alterations, directly on the product surface. Since defects are
modeled geometrically, simulation of correct light behaviour, such as inter-
reflection and multiple-scattering, is ensured. Further, defect response to
light is ensured under varying light and view conditions. Parameterized de-
fecting models enable the controllable creation of diversified defect shapes,
sizes and positions over the product surface. Procedural geometry mod-
eling is often used in 3D content creation using general-purpose software.
However, general-purpose modeling tools, besides a steep learning curve, re-
quire the development involving artistic and computer graphics knowledge,
of specialized tools for specific problems such as generating defects. There-
fore, the focus is on the development of procedural geometry models which
are controlled by physically relevant parameters which require no artistic or
computer graphics knowledge.

The development of a procedural geometry model takes place in the
authoring phase. The evaluation of the procedural model with specific pa-
rameters is performed in the generation phase. The procedural model, in
the generation phase, can either produce complete geometry before render-
ing or only the geometry requested by the rendering procedure (i.e., lazy
evaluation). In this work, the procedural defecting model is applied to the
3D geometry of a product before rendering. Authoring procedural geometri-
cal defects requires modeling defect positions and their shapes. Defects can
occur anywhere on the product surface but again with a certain bias towards
specific parts of the product due to its shape and manufacturing process.
Therefore, a wide range of defect positioning possibilities with controllable
bias must be accounted for. This can be achieved using sampling of product
geometry taking into account its shape features (e.g., sharp edge). Different
sizes and shapes of defects can be achieved through procedural geometry
shape modeling. Dents and scratches can be considered the most common
classes and thus are the focus of this thesis. To model dents and scratches,
the focus is on parameterized spherical and cylindrical shapes (Figure 1.9).
This way, the high diversity of those two classes can be achieved. These
shapes represent defect negatives which are then imprinted into the surface
ensuring geometrical defect creation. Since the whole defecting workflow is
procedural, it is possible to obtain the exact defect information. This infor-
mation can be, for example, used for automated synthesis of precise defect
annotations as well as for parametric definition of dataset content (e.g., what
kind of defects are placed where). Since procedural geometry modeling for
defects is crucial for this thesis, it is further discussed in Section 3.2.

1.3 Problem Areas and Contribution

Work presented in this thesis builds on the virtual inspection planning intro-
duced by Gospodnetic [3]. Gospodnetic introduced a virtual environment for

15

Figure 1.9: Procedural defecting workflow as it will be presented in Chapter
6. First, defect positions are computed. Second, defecting tools are cre-
ated and placed. Finally, defects are geometrically imprinted and additional
geometrical information is generated for rendering annotations.

configuration and placement planning of acquisition hardware for obtaining
the required geometrical product coverage. Although assessing geometrical
product coverage virtually is helpful for inspection planning experts, the ac-
tual product coverage heavily depends on the surface response to light. To
obtain realistic product surface visibility, besides its geometry, it is crucial to
simulate its surface material and texture as well as its interaction with light.
Once the realistic light response of the surface is simulated, the inspection
planning expert can fully virtually perform the configuration and placement
planning of acquisition hardware for achieving the required coverage. This
thesis is further motivated by the need for the creation of robust machine
learning defect recognition algorithms which are crucial for automated vi-
sual surface inspection. The main obstacle is the lack of physical products
with varying textures and defects. A solution lies in image synthesis. Hav-
ing automated, controllable and realistic image synthesis of products with
various surface textures and defects would make the development of robust,
machine-learning defect recognition algorithms much more tractable.

Motivated by the aforementioned discussion, the focus of this thesis is
to provide a set of image synthesis tools, based on computer graphics: 3D
scene modeling and rendering, for solving the problems regarding acquisi-
tion hardware planning to obtain the required coverage and development
of defect recognition algorithms. The first contribution consists of re-
quirements for image synthesis for surface inspection and the development
of an image synthesis pipeline for visual surface inspection. The presented
pipeline enables inspection planning experts to define product, camera, light
and desired defect information which is used for creating the virtual inspec-

16

tion environment. The virtual environment is represented as a 3D scene
containing both defect-free and defected inspection products, illumination
and a camera. The pipeline enables realistic image synthesis using physi-
cally based rendering methods. This way, inspection planning expert can
assess the surface visibility for the particular configuration and placement
of acquisition hardware virtually, without computer graphics knowledge.
The second contribution consists of texture modeling requirements for
visual inspection and procedural texture synthesis models for modeling real-
istic product surfaces satisfying those requirements. Introduced models are
parametric, enabling automated, controllable and realistic image synthesis of
varying product textures common in machining. Resulting parameterized
texture synthesis models enable inspection planning experts to synthesize
images containing products with surface textures resembling real surfaces
resulting from machining. This way, it is possible to obtain an estimation of
surface visibility since the light response from the simulated surface resem-
bles the light response from real machined surfaces. The third contribu-
tion consists of requirements for defects modeling and procedural models
for generating geometrical defects on inspected product geometry satisfying
those requirements. Resulting parameterized models enable the controllable
generation of defected 3D product instances for image synthesis. This way,
together with the second contribution, it is possible to perform verification
of defect visibility for specific setup of acquisition hardware. Furthermore,
presented models enable automated and controllable generation of an arbi-
trary amount of defected product instances with pixel-precise annotations,
thus enabling the synthesis of training-ready datasets required for the devel-
opment of machine learning defect recognition algorithms. That said, this
work contributes to the following problem areas:

• Image Synthesis for Surface Inspection (Chapter 4)

• Procedural Texture Synthesis for Surface Inspection (Chapter 5)

• Procedural Defect Modeling for Virtual Surface Inspection (Chapter
6)

• Synthetic Data for Defect Segmentation on Complex Metal Surfaces
(Chapter 7)

• Image Synthesis for Machine Vision in Metal Surface Inspection (Chap-
ter 8)

1.3.1 Image Synthesis for Surface Inspection

Product image data containing varying surface textures and diversified de-
fects, is required for both inspection planning and development of defect

17

recognition algorithms. Due to the lack of physical product samples, image
synthesis comes as a logical solution.

Photo-realistic image synthesis is one of the main goals of computer
graphics. 3D modeling and rendering required for realistic image synthesis
are predominantly researched and developed for applications in the film and
game industry. Although those methods result in an impressive amount of
realism, they are developed to empower the artistic creative process. There-
fore, the synthesis of realistic imagery is heavily dependent on the artist’s
knowledge, experience and iterative manual work.

As a solution to problems regarding the lack of physical samples and
artist-centric image synthesis, a set of requirements which has to be satis-
fied for image synthesis in the visual surface in inspection planning is first
presented. Furthermore, an image synthesis pipeline for surface inspection,
suitable for inspection planning experts is presented. Based on the informa-
tion on the inspection planning environment (inspected object, illumination
and camera), desired defects and acquisition plan, the pipeline simulates
the inspection environment as a 3D scene and performs physically-based
rendering for generating realistic images of both correct and defected in-
spected object. With the presented pipeline, inspection planning experts
can completely virtually assess the acquisition hardware configuration and
placement for achieving the required coverage. Furthermore, the presented
pipeline allows for synthesizing an arbitrary amount of defective image data
with defect annotations for developing machine-learning-based defect recog-
nition algorithms. Contributions are discussed in Chapter 4.

1.3.2 Procedural Texture Synthesis for Surface Inspection

Configuration and placement planning of acquisition hardware highly de-
pend on product surface reflection. The crucial element of realistic object
surface appearance in synthesized images is surface material. Modeling of
surface material is predominantly researched and developed for achieving
realism in terms of perceptual appearance. Therefore, existing methods
are dependent on artistic experience for describing the realistic distribution
of material and its properties across object surface. Numerous advanced
methods and techniques are developed for such purpose and available in
software such as Substance Painter [12] for highly realistic texture model-
ing. However, existing methods require a lot of experience, artistic skills
and manual work to achieve realistic results. Furthermore, existing texture
synthesis models do not take into account the physical and manufacturing
parameters of surfaces which determine texture structure.

As a solution to this problem, a set of requirements that have to be
satisfied for texture synthesis in visual surface inspection planning is first
presented. Further, several texture synthesis models capable of producing
surfaces often found in machining and suitable for surface inspection are

18

presented. Presented models are based on procedural modeling techniques
and incorporate surface metrology and manufacturing knowledge to repre-
sent machining surfaces. Texturing models are parametrized and integrated
into the image synthesis pipeline, enabling inspection planning experts to
automatically create realistic textures in synthesized images only by tuning
the parameters. With the presented models, inspection planning experts
can estimate surface visibility for particular configurations and placement
of acquisition hardware. This contribution is key for assessing the desired
product coverage completely virtually. Contributions are discussed in Chap-
ter 5.

1.3.3 Procedural Defect Modeling for Virtual Surface In-
spection

Automated inspection heavily relies on robust, machine-learning defect recog-
nition algorithms. Defects appear as complex geometrical shapes exhibiting
complex light scattering, varying under different view and light conditions.
Due to their complexity, the development of defect recognition algorithms
requires diversified defects as well as precise annotations. Motivated by the
lack of defected physical product samples, the focus is put on defecting an
inspected object in a 3D scene.

Generating complex geometrical shapes in virtual worlds is widely re-
searched. Often, a solution to this problem is based on procedural techniques
which are capable of creating an immense amount of detail and variety by
only tuning the parameters. Unfortunately, existing procedural models re-
quire a lot of computer graphics and artistic knowledge as well as significant
experience followed by repetitive workflow for achieving the desired results.

To solve this problem, requirements which have to be satisfied by de-
fecting models in visual surface inspection planning are first presented. Fur-
thermore, parametric methods for defect placement, defect tool modeling
and defect tool imprinting are presented. The presented methods automat-
ically generate information needed for synthesizing defect annotations next
to realistic images. With the presented methods, it is possible to generate
an arbitrary amount of images containing defected product samples with
pixel-precise annotations. These methods enable assessing defect visibility
for particular configurations and placement of acquisition hardware. Finally,
the presented methods represent a solution to the lack of products with var-
ious defects, required for the development of defect recognition algorithms.
Contributions are discussed in Chapter 6.

19

1.3.4 Synthetic Data for Defect Segmentation on Complex
Metal Surfaces

Visual inspection of metal surfaces poses a particular challenge due to high
reflectivity making surfaces appear either too bright or too dark for defect
recognition. Further, complex surface textures on metal surfaces often cause
complex anisotropic reflections which in turn cause low visibility of surface
defects. The complexity of light behaviour on metal surfaces is making
the development of defect segmentation algorithms particularly challenging.
Further, robust defect segmentation algorithms rely on machine learning
approaches which require diversified defect samples providing a complete
understanding of all the possible defect characteristics and occurrences on
the production line. Existing datasets for metal defect segmentation are
sparse due to a variety of reasons such as small production batches or low
frequency of defects. Further, existing datasets often contain planar metal
surfaces which are hard to generalize to more complex, curved surfaces.

To solve this problem, introduced methods for procedural texture and
defect modeling are used to generate synthetic datasets which are repre-
sentative of their real counterparts. The particular focus is on metal parts
and thus a representative synthetic dataset, for the domain of multi-view
inspection of a complex metal object is introduced. Simulated metal parts
consist of curved surfaces, with parameterized textures and geometrical de-
fects enabling the generation of realistic, diversified and precisely annotated
images. Contributions are discussed in Chapter 7.

1.3.5 Image Synthesis Pipeline for Machine Vision in Metal
Surface Inspection

Advances in manufacturing make defect recognition tasks more and more in-
volved and complex due to at least two main reasons. First, improvements
in production processes result in less frequent defects as well as defects
which are harder to recognize. Second, increased customization capabilities
in production result in a large variety of surfaces (e.g., surface materials
and finishings) making it harder to adapt the defect recognition algorithms.
Since tasks in industrial environments are very specific and there are almost
non-existent publicly available datasets, obtaining the required data is chal-
lenging. Therefore, a suitable, well-balanced dataset must be created for
each new inspection task which is costly, time-consuming and challenging.

Synthetic image data generation provides control over content and di-
versity for dataset creation, speeding up the process and reducing its cost.
As such, it has been used in several domains for machine vision such as
human-oriented, autonomous driving and robotics. This thesis introduces a
pipeline for industrial image synthesis enabling controlled data generation of
physically correct synthetic images for surface inspection planning domain.

20

The pipeline extends the methods introduced here for image synthesis and
defect modeling for surface inspection. As such it introduced the following
contributions: (1) extension of image data synthesis introduced in Chapter
4, (2) procedure for measurement of surface and defects topography, (3) sep-
aration of surface modeling into micro, meso and macro geometry scales, (4)
requirements for stochastic geometry modeling based on the measurements,
(5) parameters for controllable synthetic dataset generation and variation,
(6) methodology for evaluating the quality of synthetic data and (7) pub-
licly available dual dataset for defect recognition. For the purpose of this
work, the focus is on milled and sandblasted metal surfaces without coating,
containing dent and scratch defects. While the measurement and modeling
process can be performed for both texture and surface defects, in this work,
the focus is on the texture modeling approach. Contributions are discussed
in Chapter 8.

21

Chapter 2

Image Synthesis Background

Image synthesis using computer graphics relies on 3D scene modeling and
rendering. Therefore, in this chapter, the background knowledge, relevant
to this thesis, regarding 3D scenes, rendering and images is provided.

The 3D scene consists of 3D objects, lights and cameras which reside in
certain a 3D space. Once modeled, a 3D scene is used for rendering which
creates viewable 2D images. Finally, synthesized images can be processed
before viewed on a display device or used for further computations.

2.1 3D space, Transforms and Scene Graph

Figure 2.1: 3D space containing light, camera and 3D object placed in world
coordinate system.

All 3D scene elements; 3D objects, lights and cameras are defined in a
certain 3D space (Figure 2.1). To explain, 3D object geometry, position,
orientation and scale are defined with a set of 3D points and 3D vectors.

23

Similarly, light geometry, its location, orientation and scale are defined with
a set of 3D points and 3D vectors. Finally, camera location and orientation
are defined with a set of 3D points and 3D vectors. That said, points and
vectors must be defined relative to a certain 3D coordinate system (Figure
2.1).

Figure 2.2: All 3D scene elements have a local coordinate system relative to
the world coordinate system.

In computer graphics, the most often used 3D coordinate system is Eu-
clidean. The Euclidean 3D coordinate system is defined with origin and
basis. Origin is defined with a 3D point, while basis is composed of three
orthogonal vectors that define the X, Y and Z axes. Although the Euclidean
coordinate system is most often used, other coordinate systems, e.g., polar,
can be used in certain scenarios (e.g., shading) for more tractable compu-
tations. Since the Euclidean 3D coordinate system is defined with a set of
points and vectors, there is a need for a standard coordinate system. For
this purpose, a world coordinate system is defined. All other, i.e., local coor-
dinate systems are defined relative to world coordinate system (Figure 2.2).
Therefore, local coordinate systems of 3D scene elements, such as object
or camera coordinate systems, are defined relative to the world coordinate
system.

To translate, rotate or scale 3D objects, lights and cameras across a 3D
scene, transformations are used. Transformations are represented as 4x4
matrices which take 3D points and vectors in homogeneous form, defined
with respect to one coordinate system and map their coordinate values to
another coordinate system. Basic transformations are translation, rotation
and scaling. Often, more advanced and specialized transformations such
as look-at transform, Euler transform, quaternions or projections (e.g., per-
spective projection) are used since they are more practical or more robust

24

Figure 2.3: Example of a scene graph. The scene represents the root node
where the camera and room are its children. Further, the room has a table
for child which has cup, jug, teapot for children.

for specific applications as discussed by Lengyel [13].

More complex 3D scenes contain a large number of 3D objects and lights
as well as their respective transforms. To simplify 3D scene creation, storage
and rendering, scene graphs are used. From the user side, scene graphs
enable easier authoring of complex scenes. On the other hand, it represents
a clear structure which is traversed during rendering. Since the spatial
arrangement of 3D scene elements has an inherent tree-like structure, scene
graphs are implemented as a tree data structure (Figure 2.3). The root node
is the starting point for the whole 3D scene. Internal nodes organize a scene
into a hierarchy. A wide range of internal nodes exist and the most often
ones are transformation nodes. Leaf nodes are actual scene elements such
as 3D objects, lights and cameras.

2.2 3D Objects: Shape Representations

3D object shape is represented using geometry. From the modeling side (i.e.,
user authoring side), geometry is used to obtain the desired 3D object shape.
From the rendering side, geometry is used for solving the visibility problem:
which objects are visible from the camera’s point of view as well as which
objects are visible to each other (i.e., no surfaces obstructing the view).
Further, geometry plays an important role during the shading step during
rendering since it gives information on where a 3D object is placed relative
to the camera and light. The crucial geometrical information required for
shading is surface normal which describes the surface orientation. The role
of geometry in rendering will be further discussed in Section 2.6.

Due to various applications of computer graphics aiming to represent
different shapes, a wide range of object shape representations were devel-

25

oped and are used in computer graphics. Some shape representations are
more suitable for modeling, while others are more tractable for rendering.
Therefore, the choice of shape representation depends on the application,
3D modeling workflow and rendering approach. Thus, efficient methods
for mapping modeling-friendly shape representations to rendering-friendly
shape representations were also developed.

Since the focus of this thesis is on metal rigid products, the interior of the
product is not relevant. In this case, surface representations such as polygon
mesh, that is, triangulated mesh are favourable, as discussed in the next sec-
tion. Further, products are often modeled using CAD programs relaying on
parametric surface representations, also discussed in the following sections,
which can be converted to mesh representations. For the sake of complete-
ness, other, commonly used shape representations are also discussed in the
following sections.

Polygon mesh

Polygon mesh is suitable for representing the surface of a 3D object in 3D
space as discussed by [14], ch. 3. Most often used polygonal meshes are
triangle meshes (Figure 2.4a). Triangles consist of three vertices making
them the simplest type of polygon. Further, triangles turned out as most
efficient rendering primitive due to their simplicity and good computational
properties (e.g., co-planar property). Triangle mesh can represent a wide
range of complex shapes. Therefore, other shape representations are often
triangulated and rendered as triangle mesh. Triangulation is the process of
converting shape representation into triangulated mesh. It is a special case
of tessellation where shape representation is transformed into a polygon
mesh.

Although efficient for rendering, triangulated meshes are not intuitive
for modeling complex shapes. For this reason, quadrilateral (quad) mesh
polygons are often used and are very convenient for modeling (Figure 2.4b).
A Quad is a polygon made of four vertices. An additional advantage of
quadrilateral mesh is that it can be efficiently triangulated and rendered as
triangle mesh.

Polygons with a number of vertices that go beyond four are not often
used since the modeling and rendering complexity increases. Further, such
polygons can be constructed using multiple triangles or quads.

The problem with polygonal meshes is that a smooth surface is only
approximated using flat polygons, making surfaces look faceted. Various
solutions were developed to reduce this effect. One solution is introduced
by Phong [15], where surface normals are interpolated across polygon and
used for shading. This method is called Phong shading and it only makes
the final surface to appear smooth without altering actual surface geome-
try. A different approach to achieving smooth surfaces is based on subdi-

26

(a) Triangle mesh. (b) Quad mesh. (c) Catmull-Clark subdi-
vision surface.

(d) Bezier curve. (e) NURBS surface. (f) Implicit surface.

(g) Voxel and particles
for fluid simulation and
visualizuation.

(h) Point cloud. (i) Particles.

Figure 2.4: Shape representations.

27

vision surface techniques as discussed by Akenine et al. [1], ch 17. These
methods solve the problem by introducing additional polygons for smoother
surface approximation. Subdivision surface methods consist of a two-step
process: refinement phase and smoothing phase. In the refinement phase,
new vertices are created and reconnected to create new, smaller polygons.
In the smoothing phase, new positions for some or all vertices in a mesh are
computed. Different strategies exist for both the refinement and smoothing
phases yielding different subdivision surface methods. The most widely used
subdivision method is Catmull-Clark [16] (Figure 2.4c).

Besides being efficient for the visibility-solving step of rendering, poly-
gon mesh can contain information for the shading step during rendering.
Shading information is stored per vertices of the mesh and thus called ver-
tex attributes. Vertex attributes can be colors, normals, texture coordinates,
etc. Texture coordinates are needed for applying textures which are crucial
for realistic shading. Texture coordinates for polygon mesh can be essen-
tially computed in two main ways: mesh unwrapping and texture projection
as discussed by Akenine et al. [1], ch. 6. Mesh unwrapping aims to unwrap
mesh on a 2D surface while minimising distortion artefacts. 2D coordinates
of unwrapped mesh vertices are called texture coordinates. Texture projec-
tion aims to use simpler shapes such as spheres or cubes which are easily
assigned with texture coordinates to project those coordinates on a mesh.

Parametric curves and surfaces

Parametric surfaces are another common type for representing surfaces in
3D space using parametric form, that is, analytical functions. Due to their
parametric description, parametric surfaces are compact, controllable, scal-
able and capable of representing smoother and more continuous geometry
shapes. Their advantage compared to polygonal mesh is that they can be
represented with few control points. This enables easier modeling and less
storage space. The parametric form is evaluated on the fly generating scal-
able geometry. Parametric surfaces are often used for CAD modeling in
engineering and architecture as well as modeling curved, smooth and or-
ganic surfaces.

Parametric surfaces are two-dimensional extensions of parametric curves
which are one-dimensional analogues. Parametric curves are often used for
representing thin objects, e.g., hair or for animation purposes for controlling
the movement. The simplest and most intuitive are Bezier curves as dis-
cussed by Akenine et al. [1], ch. 17, which are based on the idea of repeated
linear interpolation described by de Casteljau algorithm and compactly de-
scribed with Bernstein form (Figure 2.4d). Repeated linear interpolation is
done between two endpoints and controlled with n control points. For one
control point, the result is a linear Bezier curve, that is, linear interpola-
tion. For two control points the result is a quadratic Bezier curve. For three

28

control points, the result is a cubic Bezier curve. Therefore, the degree of
the Bezier curve is n if n ` 1 points are used. Bernstein form enables the
decoupling Bezier curve as the sum of multiplications of basis function and
control points. The basis function describes the influence of each control
point as parameter changes. Further, it defines the properties of the curve
such as that the whole Bezier curve will be located in a convex hull of con-
trol points. For efficient computation, the matrix form of the Bezier curve
can be used. The most optimal is the cubic Bezier curve which can describe
complex forms such as inflection and which has low computational com-
plexity. In practice, multiple Bezier cubic curves are concatenated to form
a larger spline called a piecewise Bezier curve, connecting multiple input
points. Joining curves must be done with care so that the desired continuity
of the resulting curve is achieved as discussed by Akenine et al. [1], ch. 17.
Therefore, positional continuity, C0 requires curves to be connected at the
same point often called joint. Next, velocity continuity, C1 requires that
derivations of connected curves in any point must be continuous. Finally,
acceleration continuity, C2 requires that first and second derivations of con-
nected curves in any point must be continuous. Similarly, curve continuity
can also be described using geometrical continuity.

In practice, more controllable cubic Hermite curves discussed by Akenine
et al. [1], ch. 17 are used. The cubic Hermit curve is described with starting
and ending points and two controllable tangent vectors at each point. Cubic
Hermite curve can also be described using Bernstein form for analysis of
Hermite basis function and matrix form for efficient computation. Multiple
cubic Hermit curves can be combined into the assembly of curves connecting
input points. The main design decision for combining curves falls on the
computation of tangents at each point. An efficient method for computing
tangents for control points is Kochanek-Bartels which offers tension and bias
parameters for shaping the curve. The special case of the Kochanek-Bartels
method results in a widely used Catmull-Rom spline.

In practice, the most widely used is cubic B-spline (Akenine et al. [1], ch.
17) which can be intuitively understood from the description given for the
Bezier curve. Two main types are uniform and non-uniform which define the
spacing of control points. Rational B-spline, a generalization of B-spline, is
used to overcome the limitation of describing certain shapes such as circles.
Finally, in practice, the most general and flexible curve description is non-
uniform, rational B-spline (NURBS).

The discussed properties of parametric curves can be extended to para-
metric surfaces. Common parametric surface types are Bezier surfaces and
B-spline surfaces. Bezier surface can be explained using repeated bilinear
interpolation forming a patch described with de Casteljau’s algorithm. Sim-
ilarly, as for curves, the Bezier surface can be analytically defined using
the Bernstein form. In practice, the bicubic Bezier surface is used due to
computational efficiency and representational capabilities. A Bicubic Bezier

29

surface is a building block which is concatenated to create more complex sur-
faces. Concatenating Bicubic Bezier surface must be also taken with care to
fulfil the continuity requirements discussed for concatenating curves. Bezier
surface inspired further methods for representing smooth surfaces such as
Bezier triangles, Point-Normal (PN) triangles and Phong tessellation as
discussed by Akenine et al. [1], ch. 17. In practice, most general and flexible
parametric surface representations are B-spline surfaces discussed by Ake-
nine et al. [1], ch. 17. Bicubic B-spline surfaces are used to form composite
surfaces. Further generalizations resulted in state-of-the-art Non-uniform
rational B-spline (NURBS) surface (Figure 2.4e).

When it comes to rendering parametric surfaces, two main approaches
can be taken. The first approach is to use ray-tracing-based rendering and to
analytically define ray-surface intersection. The second approach is to tes-
sellate the parametric surface and render it as a triangle mesh. In this case,
the trade-off between the quality of tessellation and the speed of rendering
must be decided on.

Implicit surfaces

Implicit surfaces represent object surfaces in 3D space, using a signed dis-
tance function (SDF) discussed by Soderlund et al. [17]. SDF is equal to
zero if the point is on the surface, less than zero if the point is inside the
surface and greater than zero if the point is outside of the surface. Sim-
ple SDF shapes, such as spheres, cubes and cones can be described easily
with a single expression. Describing complex shapes with a single SDF is
rather complex. To construct arbitrary complex shapes, simple SDF shapes
are combined using operations such as addition and subtraction into more
complex shapes. This way of modeling is called constructive solid geometry
(CSG) and it is often used in CAD programs [18]. Various approaches for
merging SDF shapes exist. One often used approach is ”melting” shapes into
each other giving a very well-known representation called metaballs (Figure
2.4f). Metaballs are extremely useful for modeling blobby, organic shapes.

When it comes to rendering implicit surfaces, there are two main ap-
proaches. One is based on ray-marching: tracing rays from a camera, mea-
suring the distance to the closest implicit shape via sphere shape and moving
on the ray based on obtained distance [19]. Another approach is to perform
tessellation via marching cubes [20]. First, the 3D surface described with
implicit representation is partitioned into cells. Each corner of each cell
is evaluated if lying inside or outside of the implicit shape. Based on the
configuration of cell corners lying inside the implicit shape, the polygon is
constructed. The resulting polygonal mesh can then be efficiently rendered.

30

Voxels

Voxels, as opposed to polygonal meshes, parametric and implicit surfaces,
are used to describe both the surface and interior, the volume of the 3D
object as discussed by Museth et al. [21]. One voxel is simply a cube in 3D
space and it represents a volume of space. To represent complex objects, a
uniform grid of voxels is used, where each voxel can, at simplest, contain
binary information if it is inside or outside of a 3D object. Such information
is suitable for opaque objects. Further, information stored per voxel can
be extended with, e.g., density or opacity information which enables visu-
alization of an object’s interior. Therefore, voxels are used in applications
concerned with the volume of an object. Further, this representation is par-
ticularly useful for fluid simulations such as water, smoke or clouds (Figure
2.4g).

When it comes to rendering voxel representation, two main rendering
approaches are used. The first approach is to perform tessellation and render
the resulting polygonal mesh. The second approach is to trace rays from the
camera, that is, perform ray-marching. It is worth mentioning that large
voxel grids are memory expensive and that often not all voxels in a voxel grid
are relevant for object representation. Therefore, memory-efficient sparse-
voxel representations, e.g., sparse voxel octrees are used as discussed by
Laine et al. [22] and Museth et al. [21].

Point cloud and particles

Points cloud representation describes 3D object shapes using a large number
of points in 3D space. Point cloud representation is often used for visualizing
scanned real-world objects as discussed by Griwodz et al. [23]. This way,
complex 3D models can be visualized without the need for costly surface
reconstruction or triangulation. Point clouds represent a flexible and efficient
alternative to parametric or polygonal mesh surface representations.

Point-based representation of shapes is further efficient for unified phys-
ical simulations. As discussed by Macklin et al. [24], point-based represen-
tation enables unified rigid, soft and fluid simulation.

Points are fundamental to particle systems introduced by Reeves [25].
Simulating different behaviours of points, i.e., particles, through time and
assigning them geometrical shapes and textures enables describing various
phenomena such as dust, water, smoke, etc.

When it comes to rendering, points are often represented as small 3D
shapes (e.g., spheres or capsules) or planar elements (e.g., circles or quads)
which can be efficiently rendered as discussed by Pfister et al. [26] and
Rusinkiewicz et al. [27].

31

Figure 2.5: Objects with same geometry but different materials.

2.3 3D Objects: Material Representations

Geometry in 3D space enables defining the shape of 3D objects and provides
information for determining visibility during rendering. On the other hand,
material describes how light interacts with 3D objects and thus defines their
appearance. The material description is used for shading computation dur-
ing rendering. Material information, for example, describes how an object’s
surface reflects incoming light. Light reflected from objects into the camera
is responsible for forming the image. Therefore, material defines how ob-
jects will appear in the rendered images. Based on previous discussion, it
can be concluded that material modelling is crucial for photo-realistic image
synthesis.

In computer graphics, material modeling is decoupled from object geom-
etry modeling, which enables the creation of material libraries which can be
applied on arbitrary 3D objects (Figure 2.5). Material modeling represents
an important, thus rich and complex topic in computer graphics developed
over several decades. In this section, a short overview is provided, focusing
on aspects important to this thesis.

2.3.1 Material Appearance Observation

Material modeling starts with the observation of its appearance. The goal
is to determine which characteristics are responsible for the object’s appear-
ance, what is the role of material for appearance and to determine which
features make each material look different than other materials. Looking
at different objects (Figure 2.6) it can be noticed that object appearance
generally depends on the object’s shape and material as well as illumination
and sensor (e.g., camera position and properties). Isolating material charac-
teristics is required for modeling but is not always easily done or completely
possible. For example, without light, it is not possible to see objects or
their material and thus properties of light influence how materials appear.
The following material characterization is based on human perception as
discussed by Dorsey et al. [28]:

• Materials are characterized by color. Spectral variations of light
reflected from objects into the eye are perceived as color and brightness
of the object.

32

Figure 2.6: Various objects exhibiting a wide range of appearances.

• Materials are characterized by directional effects. Variations of
light scattered from object’s surface account for directional effects. For
describing directional effects, terms such as specular, diffuse, glossy,
matte, transparent or translucent are used. An example specific to
machining is surface finishing which can be highly polished and rough
surfaces.

• Materials are characterized by texture. Any kind of spatial vi-
sual variation on an object’s surface on a much smaller scale than the
size of the object (that is, its geometry) but a much larger scale than
the wavelength of light accounts for texture. Perceived variations are
due to spatial variation in color or directional effects as well as small-
scale geometrical structures such as bumps, dents, pores, scratches,
etc. Surface texture is highly varying both spatially and on different
scales.

Material models in computer graphics aim to simulate the observed,
real-world, material appearance, namely its color, directional effects and
texture. In computer graphics, material modeling is decoupled into modeling
reflectance function and modeling texture as discussed by Christensen et
al. [29].

The reflectance function describes the color and directional effects of a
material. Texture, on the other hand, describes any kind of spatial varia-
tion. As discussed, this spatial variation can be color variation, directional
variation or small-scale geometrical details. Further, texture can be viewed

33

as a function which for each point of the object surface defines parameters of
the reflectance function and small-scale geometrical features (e.g., normals)
on which the reflectance function is evaluated.

2.3.2 Optics and Reflectance Functions

Modeling the reflectance function is based on optics, a branch of physics
dealing with light and its interaction with the material. Here, the discussion
is based on notes by Hoffman [30].

Optics for Computer Graphics

Directional and color effects are tightly connected to the light itself. Light
is an electromagnetic transverse wave as described in wave optics. Light
characterization as a wave is often too complex for computer graphics mod-
eling and rendering purposes. Therefore, computer graphics often rely on
geometrical optics where light is represented as rays.

In geometrical optics, light-matter interaction is described with an index
of refraction (IOR), a complex number where the real part determines the
speed of light in a matter and the imaginary part describes the absorption
of light in a matter. Therefore, light travelling through a medium can be ab-
sorbed, which causes light attenuation and potential change of color (Figure
2.7). Further, rapid variation in IOR causes light scattering - splitting in
multiple directions but the overall amount of light does not change (Figure
2.7). Finally, matter can emit light as is the case with light sources. In the
real world, most media both scatter and absorb light to a certain amount
defining the appearance of the medium.

Figure 2.7: Absorption (above) and scattering (below) with varying media
density amounts (0.2, 0.5, 1.0, 2.0, 4.0)

.

In the real world, light is travelling not only through one but multiple
media with different IOR values. To compute light behaviour between two

34

media Maxwell’s equations can be used which, unfortunately, in most cases
do not provide analytical solutions. A particular case in which a surface is
considered optically flat enables deriving a solution which is fundamental
for reflectance models in computer graphics.

Optically flat surface is a planar boundary between two media and it is
considered flat with respect to the scale of light wavelength. In computer
graphics such planar boundary between two media can be represented with a
surface, e.g., triangulated mesh. Light, on optically flat surfaces, scatters in
exactly two directions: reflection direction and refraction direction (Figure
2.8). Light reflection angle is equal to the incoming angle as stated by the
law of reflection θi “ θo ([14], ch. 8). Light refraction angle depends on
IOR as stated by Snell’s law, Eq. 2.1, [14], ch. 8. The amount of light
which is reflected and refracted is computed using Fresnel’s equations Eq.
2.2, [14], ch. 8. Given the incident θi and outgoing light angle θo with regards
to surface normal and the IOR of both media ηi, ηt, the Fresnel equations
specify the material’s reflectance for two different polarization states of the
incident illumination r||, rK. Finally, the amount of reflected light Fr can be
computed as well as the amount of refracted light Ft using the law of energy
conservation.

Figure 2.8: Light falling on an optically flat surface scatters exactly in two
directions: reflection and refraction.

ηisinpθiq “ ηtsinpθtq (2.1)

r|| “
ηtcospθiq ´ ηicospθtq

ηtcospθiq ` ηicospθtq
,

rK “
ηicospθiq ´ ηtcospθtq

ηicospθiq ` ηtcospθtq
,

Fr “
1

2
pr2
|| ` r

2
Kq, Ft “ 1´ Fr

(2.2)

In the real world, surfaces have certain roughness and irregularities and

35

are rarely optically flat. Therefore, light is not reflected in one direction
and thus reflection is not perfectly sharp. An approach to modeling such
surfaces is to assume that irregularities are at a scale larger than the light
wavelength (thus affecting light reflection) but too small to be observed
by the eye (i.e., under pixel). A model of such a surface can be derived
by representing a surface as a large collection of tiny optically flat facets
for which light interaction can be described using reflection and refraction
as discussed. Overall surface appearance is the aggregate result of many
facets with different orientations, where each facet reflects incoming light
in a slightly different direction. More irregular facets imply a more blurred
surface and vice versa (Figure 2.9). This kind of surface model is known
as microfacet model [31] and represents the basis for state-of-the-art surface
reflection models that will be discussed later.

Figure 2.9: Real surfaces often contain irregularities at the microscopic level
(not visible by the eye) causing blurred reflection (top). The sharpness of
reflection depends on surface regularity (bottom). Irregular surfaces have
highly varying normals causing light to scatter in various directions.

Behaviour and amount of reflected and refracted light depends on the
material properties. In computer graphics, from the practical point of view,
two main classes of materials are often considered: metals and dielectrics
(Figure 2.10). In the case of metals, refracted light is immediately absorbed
and only reflected light leaves the surface. On the other hand, dielectrics
exhibit both reflection of light as well as a wide range of absorption and
scattering of refracted light. In the case of opaque dielectrics, refracted
light is sub-surface scattered (SSS), partially absorbed and re-emitted out

36

of the same surface. Next, in the case of transparent dielectrics, refracted
light passes through the medium and exits on the surface on the other side.
Further, in the case of translucent dielectrics, refracted light is scattered,
partially absorbed, partially re-emitted and partially transmitted.

In order to reproduce the rich light scattering phenomena various scat-
tering models were developed in computer graphics, which can be separated
into surface scattering [14], ch. 8 and volume scattering [32], [14], ch. 11.
For this thesis, surface scattering, specifically surface reflection is particu-
larly important since the focus lies on light interaction with opaque, metal
surfaces. However, the discussed principles of scattering and absorption can
be applied to volumetric objects like fog or smoke.

Figure 2.10: Various scattering phenomena that can be simulated in com-
puter graphics, from left to right: metal, opaque dielectric, transparent
dielectric, translucent dielectric and volumetric.

When it comes to light-surface interaction modeling in computer graph-
ics, the two fundamental light scattering processes that can occur are spec-
ular reflection and diffuse reflection (Figure 2.11). Specular reflection rep-
resents light reflected from a surface. On the other hand, diffuse reflection
represents light which is re-emitted after being refracted into the surface
and undergone partial absorption and SSS. Although diffuse reflection is a
result of light interaction below the surface, it is often approximated using
only the surface information.

Specular and diffuse reflections are capable of describing a wide range
of surfaces and thus are crucial for this thesis. That said, metal surfaces
are completely described with specular reflection since diffuse reflection can
not occur due to the high absorption of refracted light. On the other hand,
dielectrics exhibit both specular reflection (e.g., highlights) as well as diffuse
reflection which is responsible for actual surface color. In the following
discussion, the focus mostly lies on surface reflection, however, for the sake
of completeness, it is worth noting that the principles of surface reflection can
be extended for surface refraction and transmission required for modeling
transparent objects.

37

Figure 2.11: Specular and diffuse components of scattered light. Image is
recreated based on [30].

Reflectance Functions

In computer graphics, an umbrella term for representing general surface scat-
tering is called bidirectional scattering distribution function (BSDF). BSDF
can be decoupled into surface reflection - bidirectional reflection distribution
function (BRDF) and surface transmission - bidirectional transmission dis-
tribution function (BTDF). BRDF can be used for describing metal surfaces
or opaque dielectric surfaces. On the other hand, BTDF can be used for
describing transmissive dielectric surfaces. For the purpose of this thesis,
the focus will be on BRDF models which describe the directional and color
effects of metal surfaces.

BRDF describes the surface’s response to light. It is a mathematical
model approximating light interaction and the microscopic structure of sur-
face material. It considers only light incoming and outgoing above the sur-
face which is determined by surface normal. BRDF is a parameterized func-
tion of incoming and outgoing directions (thus named bidirectional). For
example, incoming direction can be light direction incoming on the surface
while outgoing direction can be view direction - from where the surface is
viewed. Therefore, these two directions are often called view and light di-
rection. Each direction can be described with two polar coordinates giving
it a dimensionality of four (Figure 2.12).

BRDF models can be separated into isotropic and anisotropic (Figure
2.13). In the case of an isotropic BRDF, the rotation of incoming and out-
going directions around the surface normal does not affect the BRDF value.
Thus, isotropic BRDF can be parameterized with three angles only: θi, θo
and φ (Figure 2.12). On the other hand, in the case of anisotropic BRDF,
the rotation of incoming and outgoing directions around the surface nor-
mal affects the BRDF value. Thus, it must be parameterized with four
angles: θi, θo, φi, φo (Figure 2.12). Anisotropic BRDF describes anisotropic
surface reflection which is due to particular, often directional, surface mi-

38

Figure 2.12: BRDF is parameterized with two vectors: view (outgoing) v
and light (incoming) l or 4 polar angles: θi, θo, φi, φo. Here, n is surface
normal and t is the surface tangent used for anisotropic BRDF. Image is
recreated based on [30].

crostructure. The concept of anisotropy is crucial for this thesis since metal
machined surfaces are highly reflective and exhibit anisotropic reflection due
to surface texture resulting from machining.

BRDF can be interpreted in two ways (Figure 2.14). First, given the
incoming ray of light, BRDF gives the relative distribution of reflected light
over all outgoing directions above the surface. This interpretation will be
particularly useful during modeling and describing different types of BRDF.
Second, given the outgoing view ray, BRDF gives a relative contribution of
light from each incoming direction. This interpretation will be particularly
useful when it comes to rendering since BRDF is a crucial element of the
rendering equation which will be discussed later.

For BRDF to be physically plausible, it must respect Helmholz reci-
procity and energy conservation as discussed by Guarnera et al. [33]. Helmholz
reciprocity states that incoming and outgoing directions can be swapped
leaving the result unchanged. Energy conservation states that reflected light
energy cannot be greater than incoming light energy.

BRDF modeling approaches can be roughly separated into:

• Empirical approaches are modeling the observed phenomena. The
resulting model aims to reproduce observed phenomena without nec-
essarily being physically correct.

39

Figure 2.13: Left sphere: isotropic BRDF. Middle and right sphere:
anisotropic BRDF. There exist large number of anisotropic reflections de-
pending on microstructure direction.

• Physically-based approaches are building on certain physical foun-
dations aiming to develop a physically plausible model.

• Data-based approaches are relying on actual real-world BRDF mea-
surements.

Empirical approaches provide an intuitive understanding of light-surface in-
teraction modeling in computer graphics through diffuse and specular com-
ponents. Physically-based approaches are further building on those concepts
as well as optics to deliver realistic light-surface interaction. Therefore, in
this thesis, the physically-based surface reflection models are used.

Figure 2.14: Two interpretations of BRDF. Left: given incoming light,
BRDF specifies the distribution of reflected light. Right: given the view
direction, BRDF specifies the relative contributions of incoming light. Im-
age is recreated based on [30].

Empirical BRDF models

The most widely used empirical BRDF for diffuse surface reflection (Figure
2.15) is the Lambertian model [34]. Lambertian BRDF (Eq. 2.3) does not
depend on incoming and outgoing direction ωi, ωo (e.g., light and view) and
its only parameters are albedo also known as diffuse color. Albedo is either

40

Figure 2.15: Left sphere: ideal diffuse, Lambertian reflection. Right sphere:
ideal specular, mirror reflection.

a spectral or color (RGB) value. Lambertian BRDF can be interpreted as
distributing reflected light equally in all directions. A wide range of opaque
dielectrics can be represented with the Lambertian model.

flambertpωi, ωoq “
calbedo
π

(2.3)

The simplest specular reflection model (Figure 2.15) is based on mirror
reflection Eq. 2.4, which states that the angle of reflected light to surface
normal is equal to the angle of incoming light to surface normal. It repre-
sents ideal reflection where incoming light ωi is completely reflected into a
single outgoing direction ωo. Such model represents a perfect mirror surface
which is completely sharply reflecting surrounding objects and lights. If the
reflected incoming light direction from objects is not equal to the outgoing
view direction, these objects will not be visible. Therefore, the specular
reflection model depends on both incoming direction ωi and outgoing di-
rection ωo around the surface normal n. Its only parameter is reflectivity.
Reflectivity is a spectral or color (RGB) value and it determines the amount
of light which is reflected in the outgoing direction. Since specular reflection
represents light which is reflected from an object’s surface it is present in
both metal and dielectric materials as discussed by McDermott et al. [35].
In the case of dielectric material, reflectivity is equal to one and thus color
of reflected light is equal to color of incoming light (e.g., light source). In
the case of metal material, reflected light is tinted and thus reflectivity is
represented with spectral or color (RGB) value.

fmirrorpωi, ωoq “

#

reflectivity if ωo ““ ωi ´ 2pωi nqn

0 otherwise
(2.4)

41

Since many surfaces are rough and thus do not behave as perfect mir-
rors, a large body of research was devoted to improving the specular com-
ponent. Early attempts were done by Phong [15] which inspired many more
approaches. The concept of the Phong reflection model is based on the
observation that many surfaces exhibit blurred reflections of light or other
objects. This kind of blurred reflection is a result of glossy surfaces. Phong’s
idea was to represent a glossy surface as a broken mirror - a large collec-
tion of small mirror-like surfaces. For glossy surfaces represented this way,
only a fraction of light rays are reflected into the eye direction causing the
expected blurred reflection. These small mirrors were not modeled explic-
itly, but rather simulated using a clever trick. Phong observed that glossy
reflection decreases as the angle between the view direction ωo and ideal
reflected direction ωr increases (Eq. 2.5). Further, to control the amount of
gloss, the dot product of outgoing (view) direction ωo and reflected direc-
tion ωr was set to the power of α. Smaller α results in a more rough, glossy
surface, while higher α results in more mirror-like surface. As mentioned,
the Phong model is empirical, meaning it represents observed phenomena
without necessarily being physically plausible. Nevertheless, Phong’s obser-
vations and model gave foundations for more complex empirical models such
as Blinn-Phong [36] and Lafortune [37] as well as physically based models.

fphongpωi, ωoq “ pωo ¨ ωrq
α

ωr “ ωi ´ 2pωi ¨ nqn
(2.5)

Physically-based BRDF models

Modeling specular term represents quite a challenge for surfaces which are
not ideal mirrors (i.e., not optically flat). Since most surfaces are not ideal
mirrors and do exhibit glossy reflection, further research was done aiming
for more physically based solutions.

State of the art models for specular reflection are based on the microfacet
theory discussed by Torrance et al. [31]. Microfacet theory is based on the as-
sumption that there exist surface variation (microgeometry) at scale smaller
than the scale of observation (e.g., under a pixel) and yet greater than scale
of visible wavelength, thus influencing light reflection. This surface variation
is represented as a large number of microfacets - tiny, optically flat facets,
behaving as perfect mirrors. Further, each microfacet has its normal m
which slightly differs from the surface normal n. Only microfacets oriented
so that incoming light is reflected in outgoing (view) direction would con-
tribute. That is, only microfacets which are halfway between incoming and
outgoing directions would contribute. Therefore, microfacet normal m must
be equal to half-vector h to contribute. However, not all microfacets with
such orientation whould contribute. Some microfacets are blocked by other
microfacets not allowing incoming light to reach them, causing shadowing.

42

Figure 2.16: Microfacet-based BRDF with increasing roughness from left to
right: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0.

On the other hand, certain microfacets can block the light reflected from
other microfacets, not allowing light to leave the surface, causing masking.

Microfacet-based BRDF was introduced by Walter et al. [9]. Three main
components for describing microgeometry are the arrangement of microge-
ometry normals, shadowing interactions and masking interactions. In micro-
facet theory, these components are not described explicitly, but rather using
statistical distributions. To completely describe light interaction, Fresnel
equations are used to specify the amount of light which is reflected. There-
fore, microfacet-based specular BRDF (Equation 2.6) is described with fol-
lowing components: distribution of microfacet normals Dpωhq, geometry
term Gpωi, ωo, ωhq and Fresnel reflectance F pωi, ωhq.

fpωi, ωoq “
F pωi, ωhqGpωi, ωo, ωhqDpωhq

4cospωiqcospωoq
(2.6)

Distribution of microfacet normals (also known as normal distribution
function NDF) is evaluated at half-vector h giving concentration of micro-
facets which could reflect light from incoming ωi to outgoing ωo direction.
As discussed, shadowing and masking will prevent some microfacets from
contributing. For most surfaces, microfacet normals m are pointing in the
direction of surface normal n. NDF is a scalar-valued, often described with
Gauss-like distribution. State-of-the-art NDF is GGX [9]. For isotropic
surfaces, NDF is controlled with variance parameter often called roughness.
Higher roughness implies a more irregular surface and thus a more blurred
glossy reflection (Figure 2.16). Lower roughness implies more regular and
thus sharp reflection. For anisotropic surfaces (Figure 2.13), two roughness
values for tangent and bitangent surface direction are required.

Geometry term gives the percentage of microfacets with m ““ h that
are not shadowed or masked. Product of Dphq and Gpωi, ωo, hq gives the
concentration of surface points that successfully reflect light from incoming
ωi to outgoing ωo direction. Geometry term is crucial for energy conserva-
tion. Often, geometry term is represented using the Smith model [38].

Fresnel reflectance determines the amount of incoming light from di-
rection ωi which is reflected from each of the active microfacets. Besides
incoming light direction ωi, Fresnel reflectance depends on IOR which is

43

spectral or color (RGB) quantity. Often, Fresnel equations are replaced
with Schlick approximation [39], [40] for more efficient computation.

It is worth noting that microfacet theory can also be used for transpar-
ent surfaces. In this case, microfacets are specularly transmissive [9]. Next,
Oren et al. [41] used microfacet theory for a physically plausible description
of diffuse surfaces. Further, multiple scattering between microfacets is an
additional improvement that has to be considered [42]. Additionally, mi-
crofacet models can be extended to take into account wave optics such as
diffraction or interference as discussed by Steinberg [43]. Finally, the micro-
geometry model is relatively limited and builds on assumptions which are
not always true, e.g., the assumption that micro-geometry normal and height
are uncorrelated. Enhancements on microfacet geometry are discussed by
d’Eon et al. [44].

Microfacet-based BRDFs are a state of the art approach for modeling
metal surfaces which exhibit specular and glossy reflection and thus are used
in this work. Microfacet BRDFs well describe both color and directional ma-
terial characteristics (e.g., glossy reflection from the smooth or rough sur-
face). However, describing surfaces with constant microfacet BRDF param-
eters, for each surface point, results in homogeneous, uniform, too-perfect
and thus not realistic synthetic surfaces. The crucial element for synthe-
sizing realistic surfaces is modeling surface complexity through variation of
color, directional properties and small-scale details. The aim is to reproduce
surface patterns (e.g., surface finishing of machined surfaces), surface non-
uniformity (e.g., variation in color or roughness) and small-scale geometrical
imperfections (e.g., small-scale bumps, dents and scratches). This problem
was also highlighted by Jakub et al. [45] and Yan et al. [46] who extended
microfacet-based BRDFs so that surfaces can exhibit high-frequency surface
details. That said, modeling surface texture is crucial for the synthesis of
realistic surfaces and it will be the focus of this thesis.

Data-based BRDF models

The foundation of data-based BRDFs is surface reflection information mea-
sured from real-world surfaces. BRDF measurements are often stored as
look-up-tables and parameterized using incoming and outgoing directions
as discussed by [47]. Alternatively, BRDF data can be used for creating
neural materials [48] which can be seen as compression of BRDF measure-
ments.

Besides measuring and storing pure BRDF data, e.g., material direction-
ality effects and color without spatial variation, Dana et al. [49] introduced
measurement and storage of both surface reflectance and texture as bidi-
rectional texture function (BTF). Further, measured reflectance and texture
can be used for creting neural materials [50] which can again be seen as the
model for compression and efficient query.

44

Figure 2.17: Surface modeling in computer graphics is performed on differ-
ent scales. For the first sphere, only geometry modeling and thus model-
ing of macroscale is performed. For the second and third sphere, besides
geometry, color and roughness are modeled, therefore both macro- and mi-
croscale modeling is performed. In the fourth sphere besides geometry, color
and roughness, variations of surface normal is modeled representing micro-,
meso- and macroscale modeling.

Data-based BRDFs exhibit impressive results and often serve for evalua-
tion of analytical BRDF models or realistic recreation of existing real-world
surfaces as discussed by Ngan et al. [47]. However, data-based BRDFs hold
several downsides. The most obvious is the memory requirement for storing
the measurements for dense pairs of incoming and outgoing directions. Fur-
ther, they are not controllable since there are no parameters directing their
behaviour.

2.3.3 Texture Modeling

The texture does not have a well-established definition due to the complex-
ity and rich diversity of existing, real-world surface textures. In computer
graphics, for material modeling, texture can be seen as a function which
assigns each point of an object surface a certain value. Textures are used to
introduce the variation of surface properties such as color, directional effects
or small-scale surface geometry.

Texture can appear on a multitude of scales, therefore, it is needed to
introduce three main spatial scales on which modeling in computer graphics
is performed (Figure 2.17). It is important to note that the scale of modeling
is determined by viewing distance. Macro-scale is represented with object
geometry and describes its shape as discussed in Section 2.2. Meso-scale
represents spatial variations visible by the eye (e.g., spanning over several
pixels) but are smaller than object geometry. Meso-scale surface details
modeling is discussed further in this section. Micro-scale is represented
with BRDF and describes microgeometry not directly visible by the eye, in
other words, under a pixel as discussed in Section 2.3.

Textures are used to modulate BRDF parameters (e.g., reflectance or
roughness) or to add mesoscale surface details (e.g., perturbing surface nor-

45

mals) as it can be seen in Figure 2.17. Coupling textures with BRDF is used
to introduce surface variation, eliminating uniform and overly perfect sur-
faces, which is crucial for realistic surface modeling and thus image synthesis.
It is important to note that texture modeling in computer graphics serves as
an efficient method of adding surface details to object shapes. Therefore, a
large body of work in computer graphics was devoted to texturing: creating
texture models and applying them for material modeling for realistic image
synthesis. Texturing methods can be roughly separated into image texturing
and procedural texturing.

Image Texturing

The image-based texturing approaches uses image data which carries in-
formation about BRDF parameters and/or mesoscale geometry. That is,
each surface point is mapped to a certain pixel of image texture (also called
texel).

Image textures can be generated by painting, scanning, photographing,
photogrammetry ([51], [23]), etc. Textures can be drawn directly on a 3D
surface and stored as a collection of images [52]. Alternatively, textures
can be created using algorithmic pattern description, for example, noise
[53]. Image textures can be further created from complex 3D geometry and
materials using the process called baking [54]. Further, image data can be
created using generative AI or exemplar-based approaches. Generative AI is
often based on generative adversarial networks (GANs) as discussed by [55].
Exemplar-based texture synthesis creates a new texture based on an input
sample or exemplar (e.g., an image) as discussed by Wei et al. [56]. In the
first step, analysis is performed to find features of the exemplars of pixel
level [57] or patch level [58]. In the second step, the texture is synthesized
using found features and a set of rules.

During rendering, image textures are accessed with 2D coordinates (e.g.,
ps, tq). Each pixel of a 2D image contains certain surface properties such as
BRDF parameters or mesoscale normal. For the sake of completeness, it
is worth mentioning, that 3D textures are direct extensions of 2D textures
and accessed with 3D coordinates (e.g., ps, t, rq). 3D textures are useful
for describing volumetric objects since they carry certain volume properties
such as density which can be evaluated during rendering as discussed by
Wilson et al. [59]. For this thesis, the focus will be on 2D image textures.

Once 2D image texture is generated, to be used in the shading process
of the rendering procedure, it has to be mapped to a 3D object geometry,
which leads to phrase texture mapping. Texture mapping can be seen as a
problem of mapping from the 2D domain to the 3D domain (or vice-versa).
The process of texture mapping and using its values for rendering can be
described using texturing pipeline (Figure 2.18) discussed by Akenine et
al. [1], ch. 6.1., and which will be now shortly presented.

46

Figure 2.18: Texturing pipeline recreated as discussed by Akenine et al. [1].

Input to the texturing pipeline is object space location - a 3D coordinate
px, y, zq. This value is calculated by rendering procedure while resolving
which objects are visible from the camera. Object space location px, y, zq is
then used as an input to projector function which maps those coordinates to
2D texture parameter-space coordinates pu, vq. The projection function can
be implemented in many ways. One common approach is interpolation of
texture coordinates which are precalculated using mesh unwrapping. Mesh
unwrapping [60] poses a complex problem for objects of complex geometry
and thus certain extent of experience and manual involvement is required.
Another common approach is to employ texture projection functions which
project texture from simple shapes such as planes, spheres, cylinders and
cubes as discussed by Pharr et al. [14], ch. 10. Texture projection functions
can be applied to complex geometry by first separating the geometry into
simpler shapes and then using appropriate projection based on the shape.
Once 2D texture coordinates pu, vq are obtained, corresponder function is
used to map those coordinates to texture image-space location ps, tq which
has the range of image height and image width. The corresponder function
can further perform transformations of texture (i.e., scaling, rotating and
translating). If the texture is smaller than the size of the surface, then the
corresponder function is responsible for texture wrapping: repeating, mir-
roring, clamping, etc. Once texture image-space location ps, tq is available,
the value from that specific image texture texel can be obtained. Those
are usually RGB or floating values. Finally, obtained texture values are
transformed to the type required for evaluating the BRDF. This is needed
since obtained image texture values can be interpreted differently than the
original value. For example, the obtained RGB value can be interpreted as
a vector and thus RGB image as a vector array.

47

Two important concepts which must be discussed when using image
textures are texture magnificiation and texture minification as discussed by
Akenine et al. [1], ch. 6. When image texture is magnified to the ex-
tent where one image texture texel covers several pixels of the final image,
then a pixelized, stairs-like effect is visible. To solve this, filtering, such as
nearest-neighbour, bilinear, cubic, etc. is used for smoothing and reducing
the blocky effect. On the other hand, if multiple image texture texels fall
under one pixel of the final image, then the aliasing might occur resulting
in artefacts known as Moire pattern. The problem of aliasing can be ex-
plained with sampling theory and solved if the Nyquist sampling theorem is
respected. In the case of 2D images, this means either to increase sampling
frequency per pixel or to decrease the frequency of texels influencing one
pixel. Increasing sampling frequency (Figure 2.20) by using multiple sam-
ples per pixel is often used as well as in this work (Section 2.6). To decrease
the frequency of texels, mip-mapping is used in which the original image
texture is downscaled and filtered to create image pyramid [61]. Smaller
versions of image texture are used when there is a larger distance between
the camera and the texture surface. On the other hand, larger versions of
image texture are used when there is a smaller distance between the camera
and the textured surface. This way, the required one-to-on pixel-to-texel
ratio can be achieved as discussed by Akenine et al. [1], ch. 5.

Procedural Texturing

The procedural texturing approach generates BRDF parameters and/or
mesoscale surface information using an algorithm. More specifically, each
point on an object, including any additional information in this point such
as surface normal, is evaluated in a procedure resulting in a value that can
be used for modulating surface properties.

Procedural texturing is an umbrella term for a number of techniques
in computer graphics to create textures from a set of rules - procedures
and algorithms that specify certain patterns as discussed by Ebert et al.
[62] and Vivo et al. [63]. Therefore, instead of image lookup as done for
image textures, procedural textures are evaluated from a function. Thus,
procedural texture can directly be seen as a function which defines values
for each point in 3D space or 3D surface.

Developing a procedural texture often requires creating and combining
regular and irregular patterns (Figure 2.19). Regular patterns are often
based on mathematical analytical expressions such as circles, lines, sine, etc.
Although very efficient, regular patterns alone are too ideal for representing
the complexity of a realistic surface. Therefore, irregular patterns which
break regularity and ideal patterns are used.

Irregular patterns are often based on noise functions. Noise functions
are often combined to achieve more complex patterns. Examples of such

48

Figure 2.19: Left: regular pattern. Middle: irregular pattern. Right: com-
bination of regular and irregular patterns.

Figure 2.20: Simple procedural texture depicting stripe pattern. Images left,
middle and right are rendered with 1, 4 and 32 samples per pixel respectively.
Note how the image with a single sample per pixel exhibits a strong aliasing
effect which is reduced using multiple samples per pixel.

building blocks are Perlin noise [11] and Worley noise [64]. Although irreg-
ular, noise functions are controllable and hold favourable properties such as
gradual changes in local values, and larger changes in global values. These
methods very well represent irregular structures from micro to macro size
in nature and thus are often used for modeling natural phenomena and can
be extended for modeling defects on manufactured surfaces as discussed by
Dorsey et al. [28].

In this work, procedural texturing methods are used for describing prod-
uct surfaces. Such surfaces are created using certain manufacturing method
which requires both regular and irregular patterns to be combined. Proce-
dural texture modeling is crucial for this work and will be further discussed
in Chapter 3.

Similarly as for image textures, using high-frequency procedural textures
often leads to aliasing. One solution is to remove high-frequency information
from procedural texture before sampling it as discussed by Pharr et al. [14],
ch. 10. Another solution is to use multiple samples (Figure 2.20) per pixel
during rendering which is also used in this work.

49

Figure 2.21: Texture used for different amounts of surface geometry varia-
tion. Left: bump/normal mapping. Middle: displacement mapping. Right:
displacement mapping with higher intensity. Normal mapping or bump
mapping can serve as a good approximation for displacement mapping when
geometrical features are relatively small compared to the whole 3D object
geometry. Note how displacement mapping moves actual geometry exhibit-
ing irregular silhouettes and shadowing

Texture and material modeling

Image and procedural textures are used to modulate BRDF parameters or
to introduce mesoscale surface details for achieving realistic surfaces. BRDF
parameters which are often modulated are albedo, reflectance and roughness
(Figure 2.17). Meso-scale surface details are introduced by perturbing sur-
face normals using height maps or normal maps. Perturbed surface normals
are then used during BRDF evaluation. This way various surface details can
be represented such as surface finishing patterns, bumps, dents, scratches,
etc.

For this work, textures are especially interesting for introducing small-
scale surface details. An example is modeling a realistic machined product
surface, which requires modeling both surface finishing patterns and surface
imperfections. These mesoscale geometrical details are often introduced
using bump mapping, normal mapping, parallax mapping or displacement
mapping (Figure 2.21).

Bump mapping is discussed by Mikkelsen [65]. Input to this approach is
the desired surface height field which is given either by procedural or image
texture. Height value is used to perturb surface normals. Once BRDF is
evaluated on a surface containing perturbed normals, the surface appears to
be containing small-scale details. It is important to note that this method
does not change actual surface geometry. It only perturbs the normals of a
surface. Thus it is a very efficient method for introducing surface details,
but it also exhibits significant drawbacks. First, details described by bump
mapping can not cast a shadow. Second, described details are not occluding
other details making the surface look flat if seen from a grazing angle.

Normal mapping is similar to bump mapping, but instead of a height

50

map, a normal map is used as input. Normal map encodes perturbed nor-
mals directly as pixel colors. Normal mapping is also an efficient method
for introducing details but holds the same drawbacks as bump mapping.
However, normal mapping is a widely used method for an efficient descrip-
tion of mesoscale surface geometry, and thus improvements such as solving
shadowing and masking of light [66] are introduced.

Parallax mapping [67] uses a height map to achieve a similar effect as
bump mapping but also takes into account the viewing position causing
parallax and occlusion of surface details. However, this method has a higher
computational cost and still is more of a trick than an actual solution since
no actual geometry is generated.

Displacement mapping [68] is the most computationally demanding method.
It requires a finely subdivided mesh and height map. This method moves
vertices of mesh in the direction of the surface normal by the amount speci-
fied by the height map. Therefore, this method changes actual surface geo-
metrical details enabling self-shadowing, occlusion and parallax eliminating
problems with bump, normal and parallax mapping.

2.4 Light

In the real world, without light and light sources, it would not be possible to
see anything. Further, the shapes and properties of real-world light sources
are various, highly influencing how we observe the world around us. As
realistic image synthesis aims to reproduce imagery which looks as it is
observed in the real world, it is crucial to model light sources in 3D scenes
so they represent real-world light sources as closely as possible.

In computer graphics, light modeling is often based on geometric optics
which assumes that light travels along rays from light sources and between
objects in the 3D scene. Only a certain small amount of light enters the
camera forming the image. The flow of light through the 3D scene is com-
puted during rendering, more specifically, during shading and light transport
(Section 2.6). In this section, a short overview of light modeling in computer
graphics is provided.

2.4.1 Characterization of Light

Radiometric techniques in optics describe light as electromagnetic waves in
the visible spectrum with wavelengths ranging from 380nm to 780nm. Light
emitted from a light source is characterized by spectral power distribution
(SPD) as discussed by Pharr et al. [14], ch 5. SPD is the distribution function
of wavelength which describes the amount of light at each wavelength. Light
falling on an object’s surface will absorb and reflect. The reflected light is
perceived as color of the object surface (Figure 2.22). The amount of light
reflected by object surface is described with spectral reflectance curves as

51

Radiometric measurements and their photometric analogs

Radiometric Unit Photometric Unit

Radiant energy Joule (Q) Luminous energy Talbot (T)
Radiant flux Watt (W) Luminous flux Lumen (lm)
Intensity W/sr Luminous inten-

sity
lm/sr=candela(cd)

Irradiance W {m2 Illuminance lm/m2=lux(lx)
Radiance W {pm2srq Luminance lm/(m2sr)=nit

Table 2.1: Comparison of radiometric and photometric measurements.

discussed by Pharr et al. [14], ch 5. Three disciplines dealing with light
characterization are:

• Radiometry deals with the measurement of light radiation and phys-
ical transmission of light. Fundamental radiometric quantities are en-
ergy, flux, intensity, irradiance and radiance (Table 2.1).

• Photometry is similar to radiometry except that it takes the hu-
man visual system into account. Therefore, each radiometric quantity
has an equivalent photometric quantity: energy, flux, intensity, illumi-
nance and luminance (Table 2.1). Conversion of radiometric quantities
to photometric ones is done using CIE photopic spectral luminous curve
which describes the average sensitivity of the human eye to different
wavelengths for well-lit conditions.

• Colorimetry deals with the perception of color and its relationship
to SPD and thus defines color spaces and gamut.

Figure 2.22: Light falling on an object will absorb and reflect. The reflected
light is perceived as color of the object. Left: white light is absorbed and
only orange color is reflected. Right: in terms of RGB, white light contains
an equal amount of RGB while after absorption, red and green are mostly
reflected which is observed as orange.

52

2.4.2 Color

Different wavelengths of light are perceived as color by the human visual
system. Thus, color is a perceptual (psychophysical) phenomenon rather
than a physical one. The crucial element of the human visual system for
color perception is photo-receptive cells - receptors at the back of the eye
(i.e., retina) as discussed by Pharr et al. [14], ch 5. The two main cell types
are cone and rod cells. Cone cells are active in well-lit environments (e.g.,
daylight). They are sensitive to red, green and blue (R, G, B) light. Thus
they serve for the transformation of light radiation into (R, G, B) color
- trichromatic color vision. On the other hand, rod cells are sensitive to
smaller amounts of light and thus active in low-lit environments. Further,
rod cells are not reproducing colors.

Color is characterized by color space and gamut. Color space is a model
representing colors perceived by the human visual system. It gives a nu-
merical representation of color which can be used for 3D scene description
as well as computation in rendering. Gamut describes the range of possible
color that can be represented by a particular color space as discussed by
Smith [69].

For modeling and rendering purposes, in most cases specifying light as
SPD and achieving wave effects such as polarization and diffraction is not
needed. Therefore, it is more practical to represent light as color. Trichro-
matic color vision motivated XYZ color space as a bridging color space
needed for converting light characterized by SPD into color. XYZ color
space can represent any color visible to the human visual system. Con-
version of SPD of light into XYZ color space is done using CIE standard
observer color matching functions which were constructed based on color
matching experiment [14], ch. 5. Once the SPD of light is converted into
XYZ color space it has to be further converted into, e.g., RGB color space
to be visualized on a display device.

RGB color space is the most often used color space for rendering and
display. RGB color space can be visualized as a unit cube where each point
represents one color. Since both RGB and XYZ are color spaces, then
linear transformation, described by 3x3 RGB-to-XYZ matrix, is used for
conversion [14], ch. 5. It is worth mentioning that RGB color space is
additive color space, as opposed to subtractive color space. New colors in an
additive color system are made by adding two or more colors together. For
example, light sources of different colors are added into a new color. On the
other hand, new colors in subtractive color system are made by subtracting
two or more colors. For example, color of light reflected from a surface is
changed due to absorption which can be seen as subtracting.

53

2.4.3 Light Sources

This work relies on geometric optics where the light is represented with rays
and the behaviour of light with matter is described with IOR. Therefore,
the description of light using photons or waves is out of scope. This further
implies that effects such as interference, polarization, diffraction, etc. will
not be included. That said, light sources must, at least, define the position
or direction, color and intensity of emitted light. Additionally, light sources
can have a certain size and shape. Such light sources are called physical
lights (Figure 2.23). Lights without size and shape are called non-physical
lights (Figure 2.23).

Figure 2.23: Left: physical light source with cylinder as emissive geometry.
Middle: point light source. Right: directional light source. Point and direc-
tional light sources are examples of non-physical light sources which do not
have size or shape.

Physical Lights

Physical lights have certain size and shape, described with geometry as dis-
cussed by Pharr et al. [14], ch. 12. The geometry of physical light can
additionally have certain transformations, e.g., position and orientation in
a 3D scene. The emission property of each surface point is defined with
emissive distribution. Since real-world light sources have certain shapes and
emission distributions, physical light sources serve as the best approxima-
tion. It is important to note that rendering of 3D scenes containing physical
lights requires more complex light transport methods (Figure 2.24) as well
as geometry sampling which will be discussed in Section 2.6.

Non-physical Lights

Non-physical lights serve as approximations of physical lights as discussed by
Pharr et al. [14], ch. 12.. They do not have size or shape and thus the name
non-physical. However, they give information on light position, direction,
intensity and color. Using this information, it is possible to approximate
the behaviour of the light sources, namely light falloff with distance, which

54

Figure 2.24: Same scene rendered using ray-tracing-based rendering (left)
and rasterization-based rendering (right). Rendering illumination coming
from physical lights requires advanced light transport discussed in Section
2.6.

objects are illuminated, which objects cast shadows, etc. Two main types
of non-physical lights are directional lights and point lights.

Directional lights (also known as parallel or distant lights) simulate light
sources which are considered so far from objects in a 3D scene so that their
emission can be represented by parallel rays. Therefore, directional lights
are completely characterized by their direction, color and intensity. Note
that light emitted from directional lights is constant over a 3D scene (i.e.,
no light fall-off) and that the position of directional lights does not influence
its illumination properties.

Point lights (also known as spherical, omnidirectional or punctual lights)
are infinitesimally small in size and thus represented by a point. Light from
point lights is emitted in all directions uniformly. Therefore, point lights
are characterized by their position in the 3D scene, color and intensity. The
position of the point light determines the distance and direction of incoming
light for each surface point of objects in 3D scene. Distance of point light
from a surface can be used to compute light falloff (Equation 2.7).

Lpoint “ plight intensityqplight colorqfdistanceprqfdirectionplq (2.7)

Inverse square law falloff (Equation 2.8) is most often used. Since light from
point light is redistributed over a sphere, as the sphere gets larger, energy
gets redistributed over a larger area of the sphere. Therefore, more distant
objects receive less light. For practical usage, small value ε is added to
distance r since the intensity of light becomes close to infinite if the distance
of lights to objects is close to zero as discussed by Akenine et al. [1], ch. 5.

fdistanceprq “ finverse square falloff prq “
1

4πpr ` εq2
(2.8)

Besides distance fall-off which is a type of light variation by distance, direc-
tional fall-off can be used to describe light variation by direction. Directional

55

Figure 2.25: Left: only physical light source with the cylinder as emissive
geometry. Right: environment light and physical light source. Note how
environment light is used to approximate large light sources emitting light
from all directions.

variation enables the creation of a wide range of different light sources. Most
often variations of point lights are spotlights which have cone-shaped direc-
tional light falloff as discussed by [14], ch. 12. Combining distance and
directional light fall-offs with a variation of intensity and color using tex-
tures, point lights can be used to derive a wide range of rich light sources
as discussed by [14], ch. 12. More precise variation for light distribution is
represented using Illuminating Engineering Society (IES) profiles [70]. IES
profiles enable simulating distributions of real light sources by measuring
their emission over angle.

Environment Light

To approximate light coming from large sources of light such as skies, en-
vironment light is used (Figure 2.25). In this case, variation in light inten-
sity and color depends only on incoming light direction and not position.
Therefore, environment light can be described with spherical functions de-
fined over unit sphere directions. Spherical functions can be represented
using tabulated forms, spherical basis and environment mapping. The most
widely used method for representing environment illumination is environ-
ment mapping as discussed by Greene [71]. In this case, environment light
is stored in an (image) texture called environment map. The simplest type
of environment mapping is reflection mapping where the reflected vector
from the view vector is used to read the environment map light value. For
this purpose, latitude-longitude, sphere mapping or cube mapping can be
used.

56

Figure 2.26: Left: point light source has infinitely small size and thus only
enables casting hard shadow. Right: physical light source with sphere ge-
ometry casts soft shadow: umbra and penumbra component.

2.4.4 Shadows

Shadows are a crucial visual cue for understanding object placement and
relationship with other objects in a 3D scene (Figure 2.26). Further, shad-
ows are crucial for the visualization of small surface details (Figure 2.21).
Light coming from the light source is occluded by 3D objects called occlud-
ers which cast a shadow on other 3D objects which are called receivers.
Cast shadow can be decomposed in umbra - dark shadow and penumbra -
soft shadow around umbra (Figure 2.26). Small light sources such as point
lights cast hard shadows which contain only umbra component. Area light
sources such as physical lights cast soft shadows containing both umbra and
penumbra component. The core component required for computing shadows
in 3D scene is solving visibility between light sources and surfaces as well
as between surfaces. Visibility solving and computation of shadows will be
further discussed in Section 2.6.

2.5 Camera

The camera model in computer graphics is based on real-world camera con-
cepts for realistic simulation. Therefore, we will shortly review the main
components of the real-world camera system. Camera components are placed
in light-proof enclosure. Only by opening shutter, light can enter the cam-
era. The light which enters the camera travels through lens system which
focuses light through a small opening called aperture and falls on a digital
sensor. Light falling on the digital sensor is transformed into color resulting
in an image. The time in which the sensor is exposed to the light is called
exposure time. Exposure determines image brightness and the amount of
details visible in dark or light areas. Exposure is controlled with aperture
size, shutter speed and sensitivity (ISO) value. A larger aperture enables

57

more incoming light but also smaller depth of field (DOF) - the distance
between the nearest and furthest object from the scene that appears sharp
in the formed image. A longer shutter speed enables more light to fall on the
digital sensor while also causing motion blur for moving objects. Finally,
larger sensitivity enables more exposed images but with potential noise in
darker scenes.

Pinhole camera represents the simplest camera model. It is a light-proof
box which contains only one small opening - aperture and light-sensitive
film on the opposite side. Objects in the real world reflect light and some
of this light enters the aperture, falling on the film. Image formation can
be explained by following the ray connecting objects outside of the camera
through the aperture on the film. The image formed on the film using
a pinhole camera is flipped. In the real world, the aperture has a certain,
finite size and thus each point in the visible scene can map to multiple points
on the film causing blur. A larger aperture enables more light to pass to the
film but the image is blurred. A smaller aperture results in sharp images
but enables a lower amount of light to pass. For this reason, a lens is placed
in front of the aperture to enable a larger aperture opening while evading
blur by gathering (converging) the light.

An ideal pinhole camera has an infinitely small aperture where each
point in a visible scene maps to exactly one point on the film. The main
parameters of the ideal pinhole camera are the distance of the film to the
aperture and the size of the film. Distance of aperture to film is called focal
length or focal distance. A larger focal length effectively results in zooming
in, while a smaller focal length effectively results in zooming out. Further,
a larger focal length enables smaller angle (field) of view and vice versa.
Finally, a larger film size implies a smaller angle of view and vice versa.

Virtual pinhole camera is the fundamental camera model in computer
graphics, inspired by the ideal pinhole camera, as discussed by Pharr et
al. [14] ch. 6. In the case of a virtual pinhole camera, the aperture is placed
in front of the film for more tractable computations. Although this kind of
setup is not possible in the real world, it respects all the rules of geometric
optics and thus it gives the same result as a pinhole camera, except that the
resulting image is not flipped. The virtual pinhole camera is thus defined
with aperture - a three-dimensional point and film (image) plane with a
certain distance from the aperture. The main parameters are focal length
(Figure 2.27), film (image) dimension (Figure 2.28) and resolution (Figure
2.29). It is important to note that different resolutions can be used for
the same film dimension and vice versa. Film dimensions determine the
angle of view while resolution only determines the quality of the image (e.g.,
amount of details) and not the angle of view. Further, the camera has
transformation parameters (Figure 2.30), e.g., position and orientation in
a 3D scene. Discussed camera properties and transformations determine
the portion of the visible 3D scene. Virtual pinhole camera further defines

58

Figure 2.27: All camera parameters fixed except focal length. Left: focal
length of 180mm. Right: focal length of 20mm. Note how focal length
effectively means zooming out (left) or zooming in (right).

Figure 2.28: Various film dimensions (aspect ratios). Left: 4:3. Middle: 16:9
Right: 1.85:1. Note how different portion of the scene is visible although all
other camera parameters are fixed.

near and far clipping planes (Figure 2.31) which are used for clipping very
close and very far objects in 3D scene to ensure numerical stability during
rendering.

Two important types of virtual cameras are perspective and orthographic
(Figure 2.32). Perspective camera simulates the foreshortening effect. Fore-
shortening is present in the human visual system and simulated by real
camera systems, where more distant objects appear smaller. Therefore, it is
a prerequisite to achieving photo-realistic image synthesis. An orthographic
camera, on the other hand, generates images of objects which have the same
size regardless of the distance. As such, are quite useful for 3D modeling
purposes.

The virtual pinhole camera is used for image formation during render-
ing. We will shortly discuss how pinhole camera is used for two practical
rendering approaches: ray-tracing-based rendering and rasterization-based
rendering which are more discussed in section 2.6. In ray-tracing-based ren-
dering, the image is formed by creating a ray which connects the aperture
point and each pixel of the image plane. This ray is called camera ray and
it is traced into a 3D scene. If the intersection of the camera ray and object
is found, then the corresponding point of the pixel on the image plane will

59

Figure 2.29: All camera parameters fixed except resolution. Same film di-
mensions (aspect ratio 4:3). Left: 80x60 pixels. Right: 800x600 pixels. Note
how the angle of view (portion of the scene) is the same and only quality
differs.

Figure 2.30: All camera parameters fixed except transformation (position
and rotation). Note how visible portion of 3D scene depends on camera
transformation parameters.

Figure 2.31: Left: whole 3D scene visible from camera’s point of view. Right:
3D scene visible from the camera’s point of view with near and far clipping
planes moved closer.

60

Figure 2.32: Left: perspective camera. Right: orthographic camera.

Figure 2.33: Left: rendered image without DOF. Right: rendered image
with DOF.

be assigned with the color of the intersected surface point. In rasterization-
based rendering, the camera is represented using a perspective projection
matrix which contains the camera properties. This matrix projects triangle
vertices of mesh objects onto the image plane. Projected triangles are then
used for determining the color of image plane pixels.

The main problem with the described virtual pinhole camera is that all
objects are in sharp focus due to infinitely small aperture which is not pos-
sible in the real world. As discussed, real-world cameras use lenses, while
pinhole cameras neglect the important effects that the lens system has on
light passing through it. The most obvious downside of the virtual pin-
hole camera is that DOF is not simulated (Figure 2.33). Furthermore, the
amount of light entering the lens system and leaving it is different. Thus,
lenses introduce various abberations such as vignetting which causes a dark-
ening toward the edges of the image. Also, lenses introduce distortions such
as barrel distortion where straight lines are imaged as curves. Therefore,
lens simulation presents a crucial part of realistic image synthesis. The
simplest model of lens camera is thin lens camera discussed by Heidrich et
al. [72] which contains a finite aperture opening and spherical lens without
thickness. An improvement is thick lens camera discussed by Kolb et al. [73]
which approximates finite aperture opening with a lens of finite thickness.
Finally, a model of a lens system containing a number of lenses is modeled
for achieving a realistic camera as discussed by Wu et al. [74].

61

2.6 Rendering

Rendering is a process of generating a 2D image from a 3D scene. Thus, to
view a 3D scene containing 3D objects and lights from a particular camera
position, rendering must be performed (Figure 1.6). The generated image
is intended for the raster display device, therefore, the rendering process
generates raster images. A raster image is a two-dimensional array of pix-
els (discrete picture elements). Each pixel stores discrete color intensity.
Therefore, rendering can be seen as a discretization of a 3D scene.

The rendering process can be intuitively understood by observing what
happens when a photograph is taken in the real world. First, the camera
is positioned and oriented to capture the object of interest. Secondly, the
camera shutter is opened enabling light to enter the camera. The light
entering the camera is only the small amount of light which was first emitted
from a light source (e.g., the Sun) and scattered across the scene surrounding
the desired object. Therefore, light entering the camera depends on the
positions and properties of light sources and objects. The light which enters
the camera is transformed into an image. The created image contains the
desired object and portion of the scene visible to the camera.

Therefore, to simulate the process of image generation it is required to
simulate the amount of light emitted from a light source, scattered across the
scene and entering the camera. This approach to light simulation is called
forward tracing. Since only a small amount of computed light is entering the
camera, it is extremely inefficient to simulate all light emitted from the light
source and scattered across the 3D scene. Therefore, rendering simulates
only the light entering the camera. This approach is called backward tracing.

Light entering the camera is reflected from 3D objects visible from the
camera. Therefore, rendering is concerned only with objects visible from the
camera and the amount of light falling on those. Once 3D objects visible
from the camera are found, their colors are computed. The color of an object
depends on its properties and the amount of light falling on it. Therefore,
the process of computing object color can be seen as computing incoming
light on the object’s surface and computing how is light reflected based on
the object’s properties. That said, rendering can be fundamentally divided
into: (1) visibility solving, (2) shading and light transport.

Visibility Solving

Visibility-solving (Figure 2.34) is a process of determining which 3D objects,
based on their geometry and transformation, are visible from the camera.
More generally, if any two points in a 3D scene are visible to each other.
This generalized view on visibility will later be useful when discussing light
transport.

There are two main visibility-solving methods used in practice: ray-

62

Figure 2.34: Left: objects visible from camera position. Right: correspond-
ing 3D scene viewed from ”top”. Note how yellow and cyan spheres are not
visible from the camera position. Further, the visibility can be generalized
to any two points. Note how the red points connected by red line on the
cyan and orange spheres are not visible to each other. This implies that the
red point on the orange sphere can not reflect light on the red point on the
cyan sphere and vice versa.

tracing and rasterization. Ray-tracing approach is directly inspired by geo-
metric optics of light flow and thus more suitable for synthesizing complex
light phenomena. On the other hand, rasterization utilizes the concept of
mapping 3D geometry onto a 2D image plane making it extremely efficient.

The ray-tracing approach (Figure 2.37) first generates camera rays for
each pixel of the image using camera information. Next, intersections of
generated camera rays with 3D objects in a scene are found. Finally, for each
intersection point, shading is computed resulting in color which represents
the color of the pixel from which the ray was generated. Therefore, ray-
tracing is called image-centric.

Rasterization is taking the reversed approach and thus is known as the
object-centric approach. Rasterization assumes that the geometry of all 3D
objects is triangulated mesh. Each triangle is projected and all pixels are
traversed and tested if are inside the triangle. In the simplest case, the
pixel is considered inside of a triangle if the pixel center is inside a triangle.
Finally, if the pixel is inside a triangle, shading is computed resulting in
color of that pixel.

Both ray-tracing and rasterization have advantages and disadvantages,
which will be discussed in Sections 2.6.1 and 2.6.2, thus their choice depends
on application requirements.

Shading and Light Transport

Shading is the process of computing the color of 3D objects visible from the
camera. Therefore, shading is invoked after visibility-solving computation.
Described visibility solving using ray-tracing or rasterization can be seen
as sampling the surface resulting in surface position p. Thus, shading is

63

calculated for each surface point p. The color of surface point p is described
with the rendering equation discussed by Kajiya [75].

The rendering equation is very general covering different light-surface
interaction scenarios. Limiting ourselves on opaque, reflective surfaces, color
of a surface in a point p is described with reflectance equation (Equation
2.9) discussed by Pharr [14], ch. 5.

Lopp, ωoq “

ż

Ω
fpp, ωo, ωiqLipp, ωiqpωinqdωi (2.9)

Intuitively, reflectance equation describes the color Lopp, ωoq in surface
point p viewed from direction ωo. This color is integral of incoming light from
directions ωi over the hemisphere Ω above the surface, placed around surface
normal n, modulated by surface properties. Each incoming light Lipp, ωiq
on surface point p from direction ωi is attenuated by surface orientation n
towards light ωi and multiplied with BRDF fpp, ωo, ωiq which determines
amount of light coming from direction ωi into direction ωo.

Main components of the reflectance equation are incoming light Lipp, ωiq
on surface point p, amount of light reflected from surface point p described
with BRDF fpp, ωo, ωiq and attenuation factor ωin describing attenuation of
light due to surface orientation, that is its normal n, towards incoming light
ωi. For each surface point p, the BRDF parameters are set using texture for
evaluation. Therefore both BRDF and texture form the material description
of a 3D object.

To compute the amount of outgoing light Lopp, ωoq reflected from the
object surface point p into the view direction ωo, it is required to compute
incoming light Lipp, ωiq to surface point p. Incoming light Lipp, ωiq can be
computed using different light transport methods. Generally, incoming light
(illumination) can be divided into direct or indirect (Figure 2.35). Direct
illumination describes light coming directly from a light source to the surface
point p. Indirect illumination describes light coming from any direction,
e.g., reflected from another surface to surface point p. Direct and indirect
illumination combined result in global illumination.

Solving indirect illumination represents a hard problem since it requires
computing light from any direction to the surface point. The light can be,
for example, multiple times reflected from other surfaces until reaching the
surface point p. For each surface contributing, light can also come from any
direction, thus implying the recursive nature of the rendering equation. To
systematically approach this problem Heckbert [76] introduced light paths
notation. Heckbert’s notation distinguishes between different types of sur-
face reflections along the path. The possible vertices of the light path are the
light source (L), camera (E), diffuse reflection (D) and specular reflection
(S). Vertices such as D and S can appear zero, one or multiple times.

Two main approaches for solving indirect illumination and thus global il-
lumination are Monte-Carlo methods based on ray-tracing or finite elements

64

Figure 2.35: Diffuse and glossy spheres rendered using: only direct illumi-
nation (left), direct and indirect (global) illumination (right). Note how in
the case of direct illumination only light source illumination is used to shade
the surface. Further, note how all surfaces which are not visible to the light
source are completely black. Note how in the case of indirect illumination,
other surfaces contribute to shading visible as reflection.

methods. State-of-the-art Monte-Carlo ray-tracing-based method for light
transport is called path-tracing discussed by Kajiya [75]. Path-tracing is an
elegant method which can solve light transport for diffuse (D) and specular
(S) surfaces. As such, it represents a unified light transport method capable
of completely describing light transport in a 3D scene. On the other hand,
state of the art finite elements method is called radiosity discussed by Goral
et al. [77], which accounts only for diffuse surfaces.

For the sake of completeness, it is worth mentioning that light transport
methods, e.g., path tracing can be extended to volumetric light transport
for simulating light interaction for SSS and participating media as discussed
by Fong et al. [32]. Since the focus in on surface reflection, volumetric 3D
objects are out of the scope of this thesis.

Practical Considerations

When it comes to rendering in practice, ray-tracing or rasterization are often
used for visibility solving. When it comes to shading, every rendering pro-
cedure aims to solve the rendering equation to a certain extent introducing
various simplifications. Often, those simplifications aim to make the com-
putation of incoming light Lipp, ωiq (Eq. 2.9) more tractable and efficient.

As mentioned, rendering can be seen as a process of discretizing a 3D
scene into a 2D image. A 2D image is a two-dimensional array of pixels
(discrete picture elements) with discrete intensity levels. That said, render-
ing must compute the color of each pixel in a 2D image. Each pixel of a 2D
image covers a certain portion of a 3D scene called pixel footprint. Pixel
footprint often contains complex information and yet pixels can represent
only one color. This clearly shows the problem of discretization. For de-

65

tailed 3D scenes, discretization often leads to aliasing. Aliasing is visible
as artefacts on a rendered image, that is, elements that do not exist in a
3D scene due to poor sampling and reconstruction as discussed by Pharr et
al. [14], ch. 7.

Aliasing artefacts are reduced using various anti-aliasing methods. In
the case of overly detailed textures which are used on 3D object surfaces,
the anti-aliasing can be reduced using mip-mapping which aims to obtain a
one-to-one pixel-to-texel ratio as discussed by Ewins et al. [61]. The source
of aliasing can be any 3D scene element which contains high frequency or
sharp transitions. Therefore, the most efficient anti-aliasing method is to
use multiple samples per pixel (e.g., multiple rays per pixel) to compute a
color which approximates the pixel footprint the best as discussed by Pharr
et al. [14], ch. 7.

2.6.1 Ray-tracing-based Rendering

Ray-tracing is a method for solving visibility - determining if two points in a
3D scene are visible to each other. Rendering based on ray-tracing is inspired
by physical light propagation as described by geometric optics. Therefore,
light is represented as a ray. Ray-tracing is used to find the geometry of 3D
objects visible from the camera. Further, it is used for light transport, for
computing incoming light on the object surface.

Since ray-tracing-based rendering is simulating real-world light flow it
is capable of producing photo-realistic images (Figure 2.36). That said, it
can produce various phenomena such as soft shadows, occlusion shadows,
reflections, transmissions, etc. For this reason, the image synthesis work-
flow in this thesis is based on ray-tracing, that is, a path-tracing rendering
procedure.

The ray-tracing-based rendering can be explained using two functions:
tracepq and shadepq shown in Figure 2.37 and Algorithm 1 (Akenine et
al. [1], ch. 26). Function tracepq is responsible for finding the closest inter-
section point given a ray and the objects in a 3D scene. Function shadepq
is responsible for computing the color of the intersection point found by
tracepq.

Rendering starts by generating rays from the camera to each pixel of
the image. These rays are called camera or primary rays. Function tracepq
tests camera ray intersection with objects in a 3D scene and returns the
closest intersection. Function shadepq is then called to calculate the color
in the found intersection point. Since color depends on incoming light,
function tracepq is used for computing the incoming light on the intersection
point. In the case of direct illumination, function tracepq can be used for
testing if the intersected point is visible to the light source. In the case of
indirect illumination, recursive invoking of tracepq and shadepq functions is
performed to compute incoming light reflected from other surfaces. After

66

Figure 2.36: 3D scene lit using physical and environment light, contain-
ing various complex surface materials: plastic, glass, glossy metal. Note
how ray-tracing-based rendering can produce realistic images containing soft
shadows, transmission, inter-reflections, indirect illumination, etc. which
would be hard to render using rasterization.

Figure 2.37: For each pixel, a camera ray is created. Function tracepq is
called for ray-tracing using the camera ray. Function shadepq is called for
the found intersection point to compute the color. To do so, function shadepq
calls function tracepq while evaluating BRDF at this point. Therefore, func-
tion tracepq is called to ray-trace shadow ray and reflection ray. This process
is recursively continued. The figure is recreated based on Akenine et al. [1],
ch. 26

67

incoming light is computed, function shadepq uses material information:
BRDF and texture to compute the color of the camera ray intersection.
Computed color is then used as pixel color for which the camera ray was
generated.

Algorithm 1 Ray-tracing based rendering

function rayTraceImage()
for p in image pixels do

color of p = trace(camera ray through p);

function trace(ray)
pt = find closest intersection;
return shade (pt);

function shade(point)
color = 0;
for L in light sources do

trace(shadow ray to L);
color += evaluate BRDF

color += trace(reflection ray);
color += trace(refraction ray);
return color;

Based on this discussion, ray-tracing-based rendering can be described
with the following steps:

• Generating camera rays which will be used for visibility solving.

• Testing the intersection of camera rays with the geometry of 3D objects
to find the closest intersection. This step effectively finds 3D objects
visible from a camera.

• Computing color, i.e., shading, of the closest intersection point by
using object shape and material information as well as incoming light
computed with light transport.

Generating Camera Rays

Before discussing the generation of camera rays, it is required to define a ray.
Ray is defined with origin O - a three-dimensional point and direction D -
a three-dimensional vector. Any point on a ray is defined with a parametric
equation as shown in Equation 2.10.

P ptq “ O ` t ˚D (2.10)

The camera ray is generated by using the camera aperture as the ray
origin. Camera ray direction is calculated by connecting the camera aper-
ture with the centre of each pixel on the camera’s film (i.e., image) plane.

68

Often, generating one camera ray per pixel is not satisfactory due to alias-
ing. Therefore, pixel area is sampled and multiple rays are generated for
each pixel sample. Finally, the computed camera ray must be transformed
into the world space where all other objects in the 3D scene reside.

Testing Camera-ray for Intersections

Once the camera ray is generated, it is tested for intersection with the geome-
try of 3D objects. Two important implications have to be considered. First,
geometry (i.e., shape) representation for efficient ray intersection testing.
Second, acceleration of intersection testing for complex 3D scenes contain-
ing large amounts of complex geometries.

A wide range of different geometry representations exist as discussed
in Section 2.2. The most widely used geometry representation for efficient
rendering is triangle mesh. Triangle mesh can be seen as an array of triangles
which can be independently tested for intersection, not caring about the
actual shape. The ray-triangle intersection can be computed very efficiently
using the edge function as discussed by [14], ch. 3. Finally, the advantage
of triangle meshes is that a wide range of shape representations can be
triangulated efficiently.

Even when efficient ray-geometry testing is achieved, production scenes
and complex objects often contain a large number of triangles, making the
overall rendering process slow due to a large number of intersection tests. To
accelerate intersection testing, acceleration spatial data structures are used
as discussed by Akenine [1], ch. 19 and Pharr [14], ch. 4. Acceleration data
structures lower the amount of ray-triangle intersection tests by discarding
regions of 3D scenes which are not relevant to the current ray. Acceleration
data structures are often hierarchical and are organizing 3D scenes into
tree-like structures. Root defines the whole scene while children define their
volume which further contains children. Instead of testing intersections with
all triangles in the 3D scene, the spatial data structure is traversed and only
triangles inside the volume of interest are tested for intersection. For n
objects, compared to naive intersection testing, such data structures give
improvement from Opnq to Oplogpnqq.

Acceleration data structures can be roughly separated into spatial sub-
divisions and object subdivisions. Spatial subdivision algorithms subdivide
3D space into regions and record which triangles are falling in which re-
gion. During intersection testing, only triangles inside the region through
ray passes are tested. Object subdivision is progressively decomposing ob-
jects in a 3D scene into smaller sets of objects. During intersection testing,
only triangles inside the bounding volume which is intersected are tested
for intersection. Both spatial and object subdivisions successfully accelerate
the general problem of ray intersection testing. Often used spatial subdivi-
sion algorithms are uniform grids and axis-aligned binary space partitioning

69

(BSP) trees. On the other hand, the often used object subdivision algorithm
is bounding volume hierarchy (BVH).

Fujimoto [78] introduced uniform grids, a spatial subdivision approach
where the 3D scene is decomposed into equally sized grid cells. Uniform grids
are simple to implement and efficient to test for intersections. This approach
is further extended with more efficient construction and intersection testing
methods.

BSP trees are encoding subdivisions of the entire space which is adap-
tively subdivided with planes as discussed by Pharr et al. [14]. A BSP tree
starts with a bounding box that encompasses the entire scene. If the number
of primitives in the box is greater than some threshold, the box is split in half
by a plane. Primitives are then associated with whichever half they overlap
The splitting process continues recursively either until each leaf region in
the resulting tree contains a sufficiently small number of primitives or until
a maximum depth is reached. Splitting planes can be placed at arbitrary
positions. The two most common variations of BSP trees are kd-trees [79]
and octrees [80]. A kd-tree restricts the splitting plane to be perpendicu-
lar to one of the coordinate axes. The octree uses three axis-perpendicular
planes to simultaneously split the box into eight regions at each step.

BVH enclose regions of space surrounding the objects with bounding
volumes which are simple to test intersection against. Early BVH were
based on grouping objects under a hierarchy of bounding volumes as dis-
cussed by Clark [81]. Each bounding volume surrounding the whole object
is simpler to test for intersection compared to testing intersection on the
object itself. Bounding volume is a simple shape (e.g., sphere, axis-aligned
bounding box (AABB), oriented bounding box (OBB), etc.) which contains
the tightest possible volume surrounding the object. During intersection
testing, first, the bounding volume of an object is tested for intersection. If
the ray intersects the volume then all triangles inside the volume are tested
for intersection. Otherwise, all triangles of an object inside the bounding
volume are skipped. Choosing the shape of the bounding volume is a trade-
off between intersection test complexity and the number of intersections.
Simpler shapes are easier to test for intersections but often do not fit the
objects’ shapes. This can lead to intersection testing of all triangles inside
the bounding volume although the ray misses all triangles inside. On the
other hand, complex bounding volumes fit the object more closely but test-
ing them for intersection is more computationally expensive. More advanced
BVH approaches further break object bounding volume into smaller volumes
containing groups of triangles enabling more efficient intersection testing as
discussed by Wald [82].

70

Shading and Light Transport

Once the closest intersection of the camera ray and object surface is found,
shading is performed to compute the color in the intersection point. There-
fore, a shaded intersection point is called a shading point. The color of the
shading point can also be seen as light reflected from the object’s surface
into the camera. Therefore, color in the shading point is, as discussed, gener-
ally described with reflectance equation (Equation 2.9). That said, shading
depends on the surface properties in the shading point (e.g., surface normal
and material) as well as incoming light and viewing direction. Computed
color in the shading point is assigned to the camera ray that was used for
intersection testing, that is, to the pixel from which the ray was generated.

Given the incoming and outgoing direction in the shading point, the
BRDF term in the reflectance equation gives information on how much light
is reflected in the outgoing direction. In the case of shading camera-ray in-
tersection, the outgoing direction is defined with the camera ray and is also
called view direction. The direction of the incoming light is computed by
tracing rays from the camera ray intersection point towards the light source.
Using the same BRDF with constant parameters for each intersection point
results in a smooth and overly perfect surface. Therefore, material descrip-
tion is only complete when texture over the surface is used to feed the BRDF
parameters introducing spatial variation.

The attenuation factor in the reflectance equation depends on surface
orientation, that is, the angle between the normal vector and incoming light
direction. As discussed, in ray-tracing, the direction of the incoming light
is computed by tracing rays from the camera ray intersection point towards
the light source.

The crucial information that has to be computed is the amount and
direction of incoming light. This information is computed using light trans-
port. Incoming light can be separated into direct illumination and indirect
illumination.

To compute direct illumination, a ray - shadow ray - is traced from
the intersection point to all light sources in the 3D scene as discussed by
Pharr [14], ch 14. The main task is to compute if there are light sources
visible from the intersection - that is if no objects are obstructing the shadow
ray. If the light source is visible, the amount of light and its direction
is computed. This information can be elegantly computed since the light
direction is determined with the shadow ray and the intersection of the
shadow ray with the light source gives access to the light source emission
information.

As discussed in Section 2.4 lights can be separated into physical and
non-physical: point and directional lights. In the case of physical lights, as
discussed by Pharr et al [14], ch. 14, the light shape area must be sam-
pled. For each sample, a shadow ray is constructed connecting it to the

71

intersection point. If not obstructed, each of the shadow rays contributes to
the intersection point light. In the case of point lights, a single shadow ray
connecting the intersection point and point light is created and tested for
intersections. In the case of directional lights, shadow ray can be generated
in the direction of light and tested for intersections. If there are no intersec-
tions along the shadow ray, then the intersection point is visible to the light
source. Therefore, shadow ray direction and light source color and inten-
sity are used as incoming light information. If there are intersections along
the shadow ray, for any type of light source, then the current intersection
point is not receiving light (e.g., intersection with opaque object occurred)
or receiving less light (e.g., intersection with partially transparent object oc-
curred) for the current shadow ray. In this case, the intersection point is in
shadow. This shows how direct illumination and shadows can be elegantly
solved in ray-tracing-based rendering (Figure 2.24).

Besides direct illumination coming from light sources, light can come
indirectly from any direction to a surface being shaded, e.g., after multiple
bounces from other surfaces in a 3D scene. If only direct illumination is
computed, surfaces which are not directly exposed to light are completely
black as discussed by Pharr et al. [14]. Further, since specular and glossy
surfaces would normally reflect their environment, without indirect illumi-
nation they would be mostly black except for the smaller area which reflects
light source. Similarly, transparent surfaces refract and transmit light from
their environment and thus would look unrealistic if only light from a light
source would be refracted. Inter-reflections between surfaces can be sepa-
rately tacked as indirect specular and indirect diffuse. Finally, computing
indirect illumination enables the generation of soft shadows which would be
completely black if not visible to light sources. That said, indirect illumina-
tion is a crucial component for realistic image synthesis (Figure 2.36).

An early light transport method based on ray-tracing is Whitted ray-
tracing [83]. Whitted ray-tracing introduced an important concept of com-
puting visibility between surfaces in 3D scenes which is a crucial element
of light transport. Whitted ray-tracing computes visibility only between
surfaces which are either ideal specular reflection (e.g., mirror-like) or ideal
specular transmission. Therefore, after finding the camera ray intersection,
rays are further traced bouncing between specular and transmissive surfaces
until reaching the light source or diffuse surface. If the light source is reached
then its color is simply used for computing the color of the shading point.
If a diffuse surface is reached then its color computed by direct illumination
is used for computing the color of the shading point.

Work done by Kajiya [75] can be seen as extending Whitted ray-tracing.
Kajiya introduced the light transport equation (LTE) describing the equi-
librium distribution of light in a scene. Further, in this work, Kajiya intro-
duced path tracing, which is a general-purpose, unbiased Monte-Carlo light
transport algorithm. Path-tracing simulates incoming light on camera-ray

72

Figure 2.38: Images rendered using path tracing. Left: 1 sample per pixel.
Right: 32 samples per pixel.

Figure 2.39: Images rendered using path tracing. Left: 32 samples per pixel.
Right: 32 samples per pixel with denoising. Denoising removes noise, but
can blur parts of the image depending on the noise level.

intersection point by computing complex light path through 3D scene to
the light sources. This light path simulates light scattering across surfaces
in 3D scene. Path-tracing uses Monte-Carlo sampling which can be seen
as collecting all light which illuminates camera-ray intersection for all di-
rections contained in the hemisphere above this intersection point. It is
unbiased method meaning its only source of error comes from statistical
variance which can be observed as noise in the rendered image. The process
always approaches the most accurate result possible. It is general-purpose
meaning that it can be applied for any type of surfaces and materials: spec-
ular, glossy, diffuse, transparent, translucent, participating media, etc. This
makes path tracing one of the most elegant methods enabling practical real-
istic image synthesis based on ray-tracing and Monte-Carlo sampling. The
main problem with path-tracing is that it requires a large number of samples
to produce images with a low amount of noise (Figure 2.38). This implies
significant computation time. An even larger number of samples and com-
putation time is needed for complex scene setups such as a combination of
transparent and diffuse surfaces causing caustics. Eliminating noise in com-
plex scenarios, besides increasing samples and computational time, can be
done using denoising (Figure 2.39) as discussed by Zwicker et al. [84].

73

2.6.2 Rasterization-based Rendering

Rasterization-based rendering, compared to ray-tracing-based rendering, is
extremely fast and often used for real-time rendering. On the other hand,
visual realism is sacrificed, thus complex light phenomena such as soft shad-
ows, refraction, indirect diffuse and indirect specular can not be elegantly
simulated as in ray-tracing-based rendering. Therefore, in this work, ray-
tracing-based rendering is used for generating photo-realistic images, while
rasterization-based rendering is used for an interactive virtual surface in-
spection planning environment discussed by Gospodnetic [3].

Rasterization, next to ray-tracing, is another technique for solving visibil-
ity. Although visibility solving via ray-tracing can be generalized for any two
points in a 3D scene, visibility solving with rasterization is performed only
from the camera’s point of view. Therefore, only the first visible surfaces can
be obtained efficiently and obtaining visibility between arbitrary two points
is highly inefficient. However, obtaining the first visible surfaces using raster-
ization is extremely efficient as well as its efficiency for hardware-accelerated
computation resulting in real-time performance. When it comes to shading
of first visible surfaces, rasterization can not offer efficient visibility infor-
mation and thus various complex light phenomena can not be simulated
as efficiently as in ray-tracing-based rendering (Figure 2.40). For example,
inter-reflections and soft shadows can not be efficiently implemented since a
large amount of 3D scene information is discarded. Further, physical lights
can not be simulated easily (Figure 2.24) while sampling their surface is not
feasible due to a lack of 3D scene information. To conclude, rasterization
can not be efficiently used for advanced light transport algorithms required
for shading which reflects in amount of visual realism.

Figure 2.40: Complex scene lit with physical light and environment light.
Left: ray-tracing-based rendering. Right: rasterization-based rendering.

Rasterization: Visibility Solving Method

Rasterization is a highly efficient method for solving visibility for 3D ob-
jects for which geometry representation is described with triangle meshes.

74

The rasterization process can be separated into two main stages: triangle
projection and triangle rasterization as discussed by Akenine et al. [1], ch.
23.

The triangle projection step projects vertices of each triangle of each
mesh object in a 3D scene onto an image plane. Triangle projection is pre-
ceded by multiple transformations which convert vertex coordinates from
world space, in which all 3D objects reside, into a space suitable for pro-
jection on the image plane. Projection is then the final transformation
described with the perspective projection matrix. After the projection step,
each triangle vertex has two-dimensional coordinates called raster coordi-
nates. Further, each vertex contains information about distance from the
camera which is called depth or z-value.

In the triangle rasterization step, each pixel of the image plane is tested
if it is contained inside a projected triangle. In the simplest case, the centre
of a pixel can be used to determine if the pixel is inside a projected trian-
gle. Determining if the pixel centre point is inside the triangle is called the
inside-outside test which relies on the edge function as discussed by Akenine
et al. [1], ch. 23. When rasterization is used during rendering, for pixels
which are inside the triangle the color is calculated in the shading step. Sim-
ilarly as discussed for ray-tracing, each pixel when projected into a 3D scene
covers a certain area - pixel footprint. Pixel footprint can contain complex
3D scene information containing high-frequency details. To evade aliasing,
multiple samples per pixel are often taken to compute a more accurate color
estimation of pixel footprint.

Often, pixel samples can overlap multiple triangles. To resolve this,
for each pixel sample, the distance from the camera to the corresponding
triangle point is computed. Only points on the closest triangles are processed
further, while others are discarded. For each pixel, this distance information
is stored in a depth buffer - a 2D array which has the same size as the image.
Once all triangles and all pixels are traversed, the depth buffer contains
distances to the closest triangles from the camera. Information stored in a
depth buffer is extensively used during rendering, especially during shading.

Rasterization-based Rendering

Rasterization-based rendering can be conceptually described using graphics
rendering pipeline (Figure 2.41) which is commonly implemented on GPU
using shader cores for hardware-accelerated rendering as discussed by Ake-
nine et al. [1], ch. 2.

Two main tasks of the graphics rendering pipeline are visibility solving
and shading. The visibility solving step is implementing rasterization to
determine which objects are visible from the camera. The shading step is
responsible for computing the color of visible objects. These tasks are solved
in four conceptual stages: application stage, geometry processing stage, ras-

75

Figure 2.41: Graphics rendering pipeline.

terization stage and pixel processing stage as discussed by Akenine et al. [1],
ch. 2. Optionally, compute shader can be used for GPU computation which
is not necessary rendering.

Application stage. In the application stage, 3D scene information is
defined: 3D objects, lights and cameras. Each 3D object is assigned with
certain transformations defining its position in the 3D scene. Transforma-
tion on a 3D object is applied in the geometry processing stage. 3D object
shapes are often described as triangle meshes. If a different geometry rep-
resentation is used for describing the shape of the 3D object, then it is
triangulated to obtain the triangle mesh which is further processed in sub-
sequent stages. As discussed, the triangulated mesh is used for visibility
solving in the rasterization stage. Shading information of 3D objects is de-
fined as a shader program which is commonly invoked in the pixel processing
stage. The shader program contains an algorithm known as shading model
which completely describes the computation of the color of the 3D object.
The shading model combines BRDF with texture information to describe
the material and thus object’s appearance. The shading model often imple-
ments direct illumination computation and thus uses information on light
and camera in the 3D scene. Parameters of the shading model are stored
as vertex attributes which are in subsequent stages interpolated across the
triangle and used for shading. In rasterization-based rendering, often non-
physical lights are used, such as point and directional lights, which can be
efficiently incorporated into the shading model. For point lights, their po-
sition, intensity and color can be defined in the application stage and used
in the shading model. For point lights, their direction, intensity and color
can be defined in the application stage and used in the shading model. The
camera defines a portion of visible 3D scene which are dependent on cam-
era properties, location and orientation. In rasterization-based rendering,
camera information is defined with transformation and projection matrices
which are used during the rasterization stage. On the application stage, the
interaction and animation of 3D objects is also defined. Complex tasks such
as particle system behaviour, tessellation and simulations can be delegated
to compute shader for faster computation on GPU. Information on the 3D
scene which is defined on the application stage is sent to the next stage:
geometry processing.

Geometry processing. The main purpose of the geometry processing
stage is to prepare 3D objects for rasterization as discussed by Akenine et
al. [1], ch.2. More specifically vertices of all triangle meshes of all 3D ob-

76

jects are transformed to be rasterized in the next stage. This stage is under
the user’s control meaning that additional transformations on vertices can
be computed before triangle vertices are transformed and projected on the
image plane for rasterization. For example, the user can specify different
scaling, rotation and translation transformations applied to the same geom-
etry which effectively copies or instances 3D objects across the 3D scene.
Triangle vertices, in this stage, are transformed through local, world, camera
and finally screen space. These transformations are specified with 3D object
transformation, camera transformation and projection transformation (e.g.,
perspective projection). Geometry which is outside of camera frustum or
which is occluded by other geometry, is clipped and culled enabling a more
efficient rasterization step as well as the whole rendering process. Besides
geometry computation, this stage can also be used for evaluating and setting
up vertex attributes such as colors, normals or texture coordinates. For ex-
ample, for each vertex, a shading model can be evaluated resulting in color.
This color can be interpolated over triangles in subsequent stages. Shading
in this stage is restricted only to vertices and thus more advanced surface
effects such as variation of details can not be achieved. Optional geometry
processing can be performed using tessellation shader, geometry shader and
stream output but which are currently out of scope.

Rasterization stage, as discussed, is solving the visibility problem, i.e.,
which triangles are visible from the camera’s point of view. More specifically,
the rasterization stage is responsible for determining which pixels of the im-
age plane are overlapping which triangles. Since triangle vertices are already
projected on the image plane, this is done by looping over each triangle and
over all image pixels. For each pixel, samples which are determined to be
contained in the triangle are sent to pixel processing. The rasterization stage
can be decomposed into triangle setup and triangle traversal. In the triangle
setup step, all data needed for subsequent stages, such as edge function and
barycentric coordinates, is computed. After which in the triangle traversal
stage, each pixel is checked if covered by a triangle using the inside-outside
test. For each part of the pixel which is covered by a triangle a fragment
is generated. All fragments inside a triangle are sent further to the pixel
processing stage.

Pixel processing can be decomposed into pixel shading and pixel merg-
ing sub-stages. The pixel shading stage computes the color of pixel samples
which were found to be overlapping a triangle. Color is computed using a
shading model which is defined as a shader program defined on the applica-
tion stage. Evaluation of the shading model is done with interpolated vertex
attributes for each point on the triangle corresponding to the current pixel.
The result of the pixel shading stage is computed color for pixels samples,
that is fragments. The pixel merging stage combines computed color per
fragment into a pixel color. The pixel merging stage further enables var-
ious operations such as blending required for transparent surfaces, stencil

77

for controlling what is rendered and visibility resolving. Once all pixels are
processed, the result is the image - color buffer which is a rectangular array
of colors, ready for display.

Rasterization-based Rendering Optimizations

The disadvantage of the described rasterization-based rendering is that only
information on the first visible surfaces from the camera is recorded while
the rest of the 3D scene information is discarded which is also discussed in
Christensen et al. [29]. This is because rasterization, which is used for visibil-
ity solving, is extremely efficient only for obtaining the first visible surfaces
from the camera’s point of view. This is also due to culling and clipping of
occluded surfaces or surfaces out of the camera’s frustum. Therefore, most
of the 3D scene information is discarded and not available during shading
which is performed in the pixel processing stage. Due to this limitation,
computing indirect illumination requires additional data-structures storing
the 3D scene information. On the other hand, the computation of direct
illumination is much more tractable. Often non-physical lights (e.g., point
lights) are used since the lack of information on surfaces in 3D scenes during
shading, disables the possibility of computation with physical lights (Figure
2.24). Direct illumination is often computed by looping over all lights in a
3D scene. For each light, the shading model is evaluated and added as a
contribution to the final color.

Lack of information on surfaces in 3D scenes significantly cripples possi-
bilities of advanced light transport methods. Therefore, computing more ad-
vanced, indirect light-surface interaction for producing realistic effects such
as shadows, soft shadows, inter-reflections and transparent surfaces is not
possible directly (Figure 2.40) and requires additional techniques. Those
techniques are rarely physically-based and always involve strong assump-
tions which often decline in particular complex 3D scene setups. However,
they are inspired by complex light phenomena and can often be used to
achieve the desired appearance. Often desired light phenomena in synthe-
sized images are shadows (Figure 2.42). A wide range of methods are de-
veloped for shadow computation in rasterization-based rendering. Notable
methods, discussed by Hasenfratz [85], are planar shadows, shadow volumes
and shadow mapping. Further, there is a wide range of methods simulat-
ing additional indirect illumination effects. Notable methods are environ-
ment mapping [71] (Figure 2.43) and ambient occlusion (AO) [86] (Figure
2.44). Global illumination methods can be used to precompute the amount
of light on surfaces in 3D scenes. This method is called light baking [87].
Precomputed light is stored in texture and used during rendering. Finally,
simplifications of global illumination and the introduction of additional data
structures enable dynamic computation of indirect light such as described
in the voxel cone tracing approach discussed by Crassin et al. [88].

78

Figure 2.42: Rasterization-based rendering. Left: with shadow. Right:
without shadow.

Figure 2.43: Rasterization-based rendering. Left: only non-physical point
light. Right: environment illumination and non-physical point light.

Figure 2.44: Rasterization-based rendering. Left: without ambient occlu-
sion. Right: with ambient occlusion.

79

The described rasterization-based rendering pipeline performs so-called
forward shading. Although intuitive and simple, forward shading is very
expensive for a larger number of light sources. To solve this problem, a
different paradigm called deferred shading was introduced as discussed by
Akenine et al. [1], ch. 20. Deferred shading uses multiple render targets
technique to store different scene information from the camera’s point of view
in geometry buffer, short G-buffer. Information stored in the G-buffer is then
used for efficient computation of the final image. Since only information on
the first visible surfaces is stored in the G-buffer, the particular disadvantage
of deferred shading is the rendering of transparent surfaces. To solve the
rendering of transparent surfaces, forward shading can be combined with
deferred shading. In this scenario, forward shading is used to compute the
color of transparent surfaces while opaque surfaces are shaded and using
deferred shading.

2.7 Image and Display

After rendering, the image is often additionally processed before further
usage or displaying on a display device. Operations that are performed on
an image are described with imaging pipeline, discussed by Akenine et al. [1]
et al, ch. 5. The imaging pipeline contains three main steps: user-defined
post-processing, tone-mapping and display encoding.

Post-processing

Post-processing is either used to introduce effects which are too expensive
to simulate during rendering or to achieve certain visual styles. Depending
on the image synthesis environment environment, post-processing can be
applied be applied on-the-fly [89] (e.g., real-time rendering) or on images of
already rendered frames [90] (e.g., offline rendering).

Post-processing can be performed by applying image processing tech-
niques such as blurring, edge detection, dilatation, quantization, pixeliza-
tion, etc. [91] (Figure 2.45) on the rendered image (i.e., color buffer). Fur-
ther, additional 3D scene information can be computed in multipass render-
ing and stored such as depth buffer, normal vectors buffer, velocity buffer,
etc. These buffers provide additional insight into 3D scenes and enable ad-
vanced effects such as glare (i.e., bloom, lens flare), depth of field, motion
blur, etc. [89] (Figure 2.45).

Tone-mapping

During rendering, a 3D scene is discretized in order to obtain a 2D image
for visualization on display devices. Display devices, besides limited spatial
resolution, are limited in color display capabilities. This means that colors

80

Figure 2.45: Left: rendered image. Middle: blur post-processing. Right:
glare effects post processing.

Figure 2.46: Left: rendered image. Middle: tone mapping (strong contrast
reduction, approximating high dynamic range for limited dynamic range
display). Right: color grading (artistic manipulation of image color).

of the rendered image will not look as expected once visualized on display
devices. For this purpose tone mapping is performed as discussed by Durand
et al. [92]. Tone mapping is concerned with image reproduction and preferred
image reproduction. Image reproduction aims to create an image which gives
observers the same impression as if they were observing the original scene.
Tone mapping can be seen as process of converting rendered image colors
to display device color values. Image reproduction can be performed in
two steps: scaling the image by exposure and fitting the dynamic range
of a rendered image to the dynamic range of the display device using tone
reproduction transform such as Reinhard transform [93]. On the other hand,
preferred image reproduction, that is, color grading is creative manipulation
of image color to achieve the desired artistic look as discussed by Faridul et
al. [94] (Figure 2.46).

Display Encoding

The final operation that has to be performed on the rendered image, before
displaying it, is encoding its color values into display values. Until this
step, image color values are in linear color space. Linear color space is
needed for correct rendering computation and manipulation of image colors.
However, the relationship between input color values and display device light
intensity is described with display transfer function which is non-linear as
discussed by Akenine et al. [1] et al, ch. 5. Therefore, linear color values are
encoded for display by applying the inverse display transfer function. This
operation is known as gamma correction [95], which applied on linear color
space results in sRGB color space for which most computer monitors are

81

Figure 2.47: Left: linear color values resulting from rendering. Right:
gamma correction, sRGB color values. Note how linear color space appears
dimmer since the non-linear display transform is not cancelled out.

configured. Displaying gamma-corrected image color values cancels out the
non-linearity of the display device transfer function (Figure 2.47).

82

Chapter 3

Procedural Modeling
Background

Procedural modeling is a paradigm in which 3D scene elements such as
geometries, textures, lights, shading, animation, etc. (Figure 3.1, 3.2) are
algorithmically defined (i.e., using code, procedures). As such, procedural
modeling perfectly fits for creating complex and thus realistic shapes as
well as highly detailed patterns that would be hard and time-consuming to
create manually. Procedural modeling is highly beneficial when it comes to
modeling highly complex natural objects or phenomena: surface or interior
of a stone, wood, marble, sea surface, clouds, smoke, fire, landscapes, etc. as
discussed by Ebert et al. [62]. Further, this approach is valuable for modeling
man-made elements which are complex but contain clear structure and order
such as buildings, cities, roads, manufactured surfaces, etc. as discussed by
Smelik et al. [96].

The term procedural is used to denote elements that are described by
code rather than data structure (i.e., procedural vs declarative) as discussed
by Ebert et al. [62]. However, almost every procedure takes some parameters
as input and can rely on certain data and data-structures The defining char-
acteristic of procedural elements is that they are synthetic - generated by a
program rather than painting or digitizing the real-world. Thus, procedural
modeling can include mathematical models, phenomenological approaches,
physical simulation, artificial intelligence (e.g., machine learning), etc.

Procedural modeling results in parameterized elements of a 3D scene,
e.g., parameterized texture or geometry model which is evaluated with fixed
parameters to generate the specific instance of a 3D scene element (Figure
3.1, 3.2). This way of modeling enables controllable, automated and repeat-
able creation of 3D scene elements - from their diversity of types to their
sheer number as discussed by Ebert et al. [62] and Raistrick et al. [97].

Often, procedural modeling is criticised because of the experience re-
quired, compared to manual or data-based modeling, for writing a procedure

83

Figure 3.1: Procedurally generated geometrical shapes. By only changing
the parameters, different instances of geometrical shapes can be generated.

as well as non-intuitive parameters for obtaining the desired look. On the
other hand, procedural modeling enables easier creation of complex visual el-
ements (e.g., rich surface details) which are often required for photo-realistic
image synthesis as discussed by Ebert [62]. Procedural modeling can be cou-
pled with other modeling methods. For example, physical simulation can
be used to compute the behaviour of 3D scene objects where the procedural
part computes the driving forces of the simulation. Another example is us-
ing artificial intelligence (AI) (e.g., generative deep learning) and data-based
approaches (e.g., image data) for more tractable development of procedu-
ral models as discussed by Guerrero et al. [98]. Further, the development
of procedural models is more tractable when computation is performed on
input providing the information about the target domain. For example, if a
procedural model for generating texture on a 3D object is developed, then
3D object geometry information such as surface tangent field can be used
as input to the model making the development of texture patterns on arbi-
trary surfaces more tractable. Another example is the interactive usage of
the procedural model where the user is guiding the computation by provid-
ing the spatial input, e.g., position on a 3D object. This way, a powerful
creative process is possible as discussed in [99], [100], [101], [102], [103].

That said, procedural modeling represents a paradigm which holds irre-
placeable characteristics and thus found its usage in a wide range of appli-
cations for modeling virtual environments as surveyed by Smelik et al. [96],
Freiknecht et al. [104], Freiknecht [105], Emilien et al. [99], Ebert et al. [62],
Kelly et al. [106]. The power of procedural modeling is adapted in 3D con-
tent creation such as films, games and virtual environments. A notable
example of a tool for general-purpose procedural modeling for content cre-
ation, deeply integrating principles of proceduralism into the workflow is
Houdini [107].

Although any 3D scene element can be procedurally defined, for the pur-
pose of this thesis, the focus will specifically be on the procedural modeling

84

Figure 3.2: Procedurally generated texture on procedurally generated geo-
metrical shapes. By only changing the parameters, a wide range of textures
can be achieved.

of 3D object surface which includes surface texture (Section 3.1) and 3D
geometrical surface defects (Section 3.2).

3.1 Procedural Texture Modeling

Realistic image synthesis heavily relies on surface shading - the process of
computing color of the 3D object’s surface (Chapter 2). Shading further
relies on a surface reflection model (e.g., BRDF) and texture. The texture
is used to vary the reflection model properties over the surface of a 3D
object. Therefore, it is crucial for achieving realistic surface details and thus
realistic appearance. In this chapter the focus is on procedural texturing -
an approach where an algorithm is used to generate a texture [10].

Procedural texturing involves two steps: authoring step and generation
step. During the authoring step, a parameterized procedural model is being
developed (Section 3.1.1). During the generation step, the procedural model,
developed in the first step, is evaluated with specific parameters to produce
the specific instance of a texture (Section 3.1.2).

There are many advantages of the procedural texturing paradigm. First,
procedural textures are extremely compact, reducing the need for storage
of high-resolution texture maps. Since a procedural texture model must
be evaluated to generate a texture, only code and parameters need to be
stored. Second, procedural texture does not have a fixed resolution. Since a
procedural texture model can be evaluated for any point in space no matter
how large or small it is, the resulting texture will always appear detailed.
This way, patterns described with procedural texture are of high quality re-
gardless of observation distance. Furthermore, the procedural texture does
not have a fixed area. The procedural texture model can be evaluated for
any point in the space and thus can cover an arbitrarily large area with-

85

out seams or repetition artefacts. Finally, the procedural texture model is
parameterized enabling the automated and controllable creation of a large
number of texture instances.

However, there are several downsides to the procedural texturing paradigm.
First, procedural texture models can be difficult to create. Developing a
procedure which describes a complex texture pattern can be hard. This is
especially prominent while developing the implicit procedural model as it
will be discussed in Section 3.1.1. Second, procedural texture can be non-
intuitive to control compared to scanning or painting a texture. Finally,
the procedural texture model must be evaluated during rendering for each
shading point which can be slower than simple raster image access.

3.1.1 Authoring Phase

Procedural texture modeling is often performed by artists or computer
graphic experts who have a lot of experience, knowledge and intuitive reason-
ing as discussed by Ebert et al. [62]. Authoring a procedural model requires
designing and developing a procedure which describes the desired texture
pattern. Terms procedural and texture are very general therefore this pro-
cess is still an art form: there is not a recipe that can be reused. Therefore,
in this chapter, strategies, approaches, methods, techniques and building
blocks which are combined, extended or built on are discussed (Sections
3.1.1, 3.1.1 and 3.1.1). By combining modeling strategies, and regular and
irregular procedural modeling building blocks, a wide range of patterns rang-
ing from natural to manufactured can be described. Manufactured surfaces
have a certain degree of regularity due to precise manufacturing processes
but also certain irregularities due to manufacturing errors and handling.
Therefore, often the goal is to create a structured pattern with certain reg-
ularity and add irregularity to introduce imperfections and a more realistic
appearance. To do so, artists and computer graphic experts rely on the fact
that many textures are variants of each other, built by the same building
blocks and concepts.

Describing a pattern can be done both using code or visual coding such
as node-graphs (both are equivalent in terms of functionality). The texture
pattern described in this way offers parameters which drive the procedural
model. This way, the texturing model is controllable and enables obtaining
the desired look and feel of the texture. It is important to note that input
parameters can be scalars, vectors, arrays, images, etc.

Texture patterns can be extremely complex. Therefore, the first step is
to determine the class of texture patterns to be modeled by a procedural
texture model. Desired patterns in the class should be obtainable by tuning
the parameters of the procedural texture model that is being created. Next,
visual observation and analysis are performed to extract important texture
features, texture elements and their composition. In this step, the pattern

86

is conceptually decomposed into a set of simpler shapes and their positions,
directions, etc. Finally, the procedural texture model is developed by com-
bining or extending various strategies, methods, approaches and techniques
discussed in Sections 3.1.1, 3.1.1 and 3.1.1.

The development of a procedural texture model depends on several de-
sign decisions:

• Which kind of input to the procedural model can be expected? If
certain information can be pre-computed and inputted to the proce-
dural model, then certain operations do not need to be implemented
in procedural model itself.

• Does the procedural model must be explicit or implicit (see Section
3.1.2)? Explicit models make writing easier since all geometrical and
topological information can be accessed at any point. On the other
hand, implicit models are invoked for any point in space randomly
and geometrical or topological information is not (if not precomputed)
available, except for the current shading point (e.g., position and nor-
mal).

• Is texture pattern anisotropic or isotropic? Certain patterns exist only
in 2D space. For example, planar product surfaces can exhibit texture
which is a result of a machining process that can be applied only on
planar surfaces. Those patterns are often directed and anisotropic. On
the other hand, certain patterns can be modeled in 3D space. Often,
isotropic patterns can be well-defined in 3D space.

• Is texture pattern global or stationary, local? Global patterns vary
spatially, while stationary patterns have more or less uniform structure
over the area.

Discussed approaches to procedural texture model creation and design
questions can further be specialized for specific applications and patterns
aimed to be recreated. For the purpose of this thesis, the focus is on ma-
chined surfaces. Machining is a standardized and deterministic process pro-
ducing standardized surface textures (i.e., finishing) as discussed by Black
et al. [2]. Thus, classes of possible textures are bounded by machining pro-
cesses. Once a class of texture pattern is selected, observation of textures
and analysis of texture features can greatly benefit from knowledge of ma-
chining processes. For example, machined surface textures can be divided
into isotropic (e.g., sandblasting, shot blasting, etc.) or anisotropic (e.g.,
grooves and directed lines which are caused by machining tool movement).
Further, visual observation, image processing analysis and machine knowl-
edge are used to extract information on texture pattern elements and their
composition (e.g., lines or circles arranged or directed in a certain way).
Finally, the extracted information gives clues on which strategy, methods,

87

approaches, and techniques to use for the development of the procedural tex-
ture model. That said, procedural texturing approach described in Chapter
5 can be conceptually decomposed in the following steps (Figure 3.3):

1. Texture classification: determine the type of machined surfaces to be
modeled

2. Texture observation and analysis: use observation, image processing
and surface machining knowledge to extract texture features

3. Texture model development: determine and use strategies, approaches,
methods, and techniques for modeling the pattern

4. Texture model application: develop additional procedures needed to
map procedural patterns on the 3D object

Figure 3.3: Circular brushing procedural texture workflow. First, a circular
brushing pattern present on a gear object (left) is analysed. Next, the tex-
ture is conceptually decomposed into a set of circles which can be modeled
using torus elements with varying widths (middle). Finally, with the de-
composition of texture in mind, the procedural model is developed, applied
on a 3D object surface and rendered (right).

Procedural Texture Modeling Strategies

Procedural modeling strategies in one or another way build upon a concept
of simplification. The general strategy is to decompose the complex texture
pattern into a set of simpler patterns which can be modeled more easily and
combined to form a complex pattern.

Layering approach, stacks simpler patterns one on top of another as
discussed by Ebert et al. [62], ch 2 and Perlin [11]. This approach can be seen
as combining multiple layers of patterns to produce more complex patterns
(Figure 3.4). Combining layers can be performed using parametrized and
thus controllable functions. An example of layer combination is weighting
using linear interpolation.

Composition approach takes several simpler functions and composes
them to produce more complex functions. An example of function com-
position is taking a simple function which generates random numbers and

88

Figure 3.4: Two simple procedural textures patterns are present one left
and middle sphere. The right sphere contains combined (layered) patterns.

using it as an input to another function which generates different colors for
different inputs as discussed by [62], ch.2 and Perlin [11].

Masking approach uses one or more masks which define regions per
object surface. Each mask can be procedurally defined, enabling control
over the size, shape and positions of regions. This way, multiple textures
can be layered on the surface while determining their influence using the
mask assigned to each texture (Figure 3.5).

Figure 3.5: First sphere contains procedural texture which represents a
mask. The second and third spheres contain two different procedural tex-
tures. The fourth sphere contains textures from the second and third spheres
combined using the mask shown on the first sphere.

Texture elements and placement approach is inspired by germ-grain
model [108], random pattern placement [62], ch. 2 and texture bombing
[109]. The key idea is that texture patterns can be decomposed into texture
elements and the placement of those elements (Figure 3.6). For example, a
scratched surface can be seen as a collection of scratches (texture elements),
which are placed in a certain way on the surface (placement of texture
elements). This decomposition is useful since the shape of texture elements
and their placement can be modeled separately. This approach is intuitive
and easy for explicit procedural texturing models (Section 3.1.2). On the

89

other hand, placement modeling for implicit procedural texturing models
(Section 3.1.2) is more difficult. This is because spatial information in the
implicit procedural model is not inherently known. One solution to generate
positions for placement is precomputing points and storing them as an image
or a table. Another solution is to use implicit noise functions for generating
the positions.

Figure 3.6: Placement of different texture elements over the object surface..

Domain warping approach takes a simpler pattern and perturbs the
texture space, which in turn distorts (i.e., warps, deforms) the starting sim-
pler, pattern into a new, more complex pattern (Figure 3.7) as discussed by
Ebert et al. [62], ch. 2 and Quilez [110]. If the texture is defined as a func-
tion of space as fppq, then warping is applying certain function gppq before
evaluating the texture fpgppqq. For example, function gppq “ p`hppq, where
hppq is a small arbitrary distortion. This process can be seen as applying
deformations on a pattern such as pinching, stretching, twisting, bending,
re-scaling, etc.

Figure 3.7: Left and middle sphere show two procedural textures evaluated
using sphere surface points. The right sphere shows procedural texture
obtained by evaluating the procedural texture present on the second sphere
but surface points were distorted (warped) using the procedural texture
present on the first sphere.

Planar texture modeling assumes that the domain of a texture is a

90

plane. Modeling texture on a plane is much more tractable than modeling
on curved surfaces in 3D. In this approach procedural texture is described
in 2D space while leaving the third coordinate to zero. Once procedural
texture is described for planar surfaces, various planar projections can be
used to apply the texture on curved surfaces in 3D space (Figure 3.8) as
discussed by Akenine [1], ch. 6.

Figure 3.8: Left: Procedural line patterns are modeled on a planar surface
and for more complex object geometries, planar texture can be mapped
using, for example, triplanar mapping [111]. Right: Solid texture defines
spheres in 3D space which are intersected by 3D object surface and visible
as circles. As such, solid texture can be directly applied to arbitrary 3D
geometry.

Solid texturing is extending the idea of planar texturing in 2D to
3D. Each 3D point on a 3D object surface can be used to evaluate a solid
texturing model as discussed by Pharr et al., ch 10 [14]. This approach is
useful since procedural solid texture can be directly applied to any geometry
(Figure 3.8). On the other hand, not all texture patterns are easily defined
directly in 3D.

Simulation approach enables the generation of complex texture pat-
terns by defining a set of rules which are solved over time. An example of
such simulation is reaction-diffusion discussed by Witkin et al. [112].

Inverse procedural texturing approaches automated the process of
building a procedural texture model given image data. Hu et al. [113] present
the approach where a procedural texture model is constructed by combining
procedural masks and noise functions inside each region. Shi et al. [114]
present an approach where the best fitting procedural model is selected
from a library of procedural models and which parameters are fitted to best
match the given image. Hu et al. [115] further build on this approach.

Generative AI. The idea is to teach machine learning or deep learning
model about procedural modeling strategies and building blocks so that it
can generate a procedural model in the form of a graph or algorithm. Guer-
rero et al. [98] present an approach where a procedural model (i.e., procedu-
ral texture graph) is built from scratch using the library of building blocks
(e.g., nodes). This way, the authoring step is simplified but completely con-
trollable and explainable. Further, enhancements and improvements on the

91

Figure 3.9: Examples of regular shapes created using procedural modeling.

resulting model can be done by an artist or computer graphics expert. It is
important to note that in this approach, the machine learning model is not
substituting the whole process, rather it serves as a helping tool for artists
or computer graphics experts.

Building Blocks for Regular Texture Patterns

In this section, fundamental building blocks for describing regular patterns
as discussed by Ebert et al. [62], ch. 2 and Vivo et al. [63] are covered. This
set of methods can be seen as tools for algorithmic drawing. Many of these
methods combined result in surprising complexity which is well visualized
and investigated in ShaderToy [116].

Transformations such as translation, rotation and scaling are crucial
building blocks for defining texture patterns (Figure 3.9).

Step function is a primitive building block which can be used as if
statement or to produce a sharp transition from one to another type of
texture. As such it can be used for building simple patterns such as polygons
(e.g., triangles or cubes) (Figure 3.9).

Smooth step function represents conditional or transition similar to
step, but the transition is smooth. A gradual, smooth transition (Figure
3.9) is obtained by using the cubic function, e.g., 3x2 ´ 2x3. A smooth step
function is often desired since transition can be eased in and out to avoid
unpleasant or unnatural transitions present in the transition offered by a
step function.

Clamp function returns value a if input value x is smaller than a, input
value when input x is between a and b, finally value b if input value x is
larger than b. The clamp function can be seen as conditional.

Min and max functions are closely related to the clamp function since

92

min and max can be expressed as clamp or clamp can be used to express
min and max. Min and max functions can be seen as conditionals.

Abs function can be used to convert negative values to positive which
can be seen as converting the direction of surface irregularities on the same
side.

Sin and Cos functions are well-known periodic function useful for
representing lines (Figure 3.9). They are closely tied to the geometry of the
circle, angular measure, etc. Further, other functions can be built using the
sum of sin functions of different frequencies and phases known as spectral
synthesis discussed by Gardner [117].

Mod function is another important periodic function. It gives the
positive reminder obtained when dividing a by b. Using the mod function as
input to other functions makes them periodic too. The integer part of the
ratio can be also obtained using the mod function which can be very useful
for creating a spatial grid where each vertex corresponds to the integer part.

Floor and ceil functions return the largest and the smallest integer
less or equal than or greater or equal than a given value.

Splines are useful for interpolating given values such as colours (e.g.,
colormap) or points. Often, cubic spline such as Catmull-Rom [118] is used.

Mix functions are controlled by values in range r0, 1s. They can exist
in many forms but the main concept is they are remapping the unit interval.
Examples are the gamma correction function as well as the gain and bias
functions described by Ebert et al. [62], ch. 12.

Shapes such as polygons (triangles, rectangles), circles, stars, polar
shapes, etc. (Figure 3.9) can be constructed with presented building blocks.
Those simple shapes can be further combined into complex patterns as dis-
cussed by Vivo et al. [63].

Building blocks for Irregular Texture Patterns

To model irregular patterns, with large variety and complexity, noise func-
tions are essential building blocks. Noise is a pseudo-random function useful
for breaking the regularity and monotony of patterns. In this section, a short
overview of noise functions based on the discussion in Ebert et al. [62], Dong
et al. [53], Bailey et al. [119] ch. 10. and Fernandes [120] is provided.

White noise is the simplest stochastic function. It is a source of truly
random numbers, uniformly distributed with no correlation between succes-
sive values (Figure 3.10). It can be truly generated only by random physical
processes such as the thermal noise of analogue electronic systems.

Pseudo-random noise functions can produce a fair approximation to
white noise. However, there are several properties of white noise which are
not desired. For example, no repeatability, no controllability, high frequency,
amount of details, etc. Therefore, the properties of desired noise functions
are:

93

Figure 3.10: Left: white noise. Middle: Perlin noise. Right Worley (cellular)
noise.

• It has to be a repeatable pseudo-random function of its inputs (e.g.,
the position of a surface point).

• Output of noise function must have known range, e.g., r0, 1s

• Noise function must be band-limited with a certain maximum fre-
quency.

• Noise functions should not exhibit obvious periods or regular patterns.

• Noise function should be stationary (translationally invariant).

• Noise function should be isotropic (rotationally invariant).

• The Value of a noise function should change slightly if the input is
changed slightly.

Lattice noises are the most popular noise types. Fundamental lattice
noise function which motivated many other noises is introduced by Per-
lin [11] (Figure 3.10). First, pseudo-random values are uniformly distributed
at the vertices of an integer lattice (coordinates of lattice vertices are inte-
gers). Second, a value at every point in 3D space (inside the lattice) is
generated by the smooth interpolation of pseudo-random values on the inte-
ger lattice (interpolation is effectively performing low-pass filtering). Lattice
noises may vary in how pseudo-random numbers on integer lattice points are
created and interpolated. Perlin uses tabulated values and hashing to create
pseudo-random values at the vertices of an integer lattice.

Value noise creates pseudo-random number (PRN) between r´1, 1s at
each lattice point as discussed by Perlin [121]. For a given input, the value of
the noise function is computed by interpolating between these values. The
key design decision of value noise depends on how interpolation inside the
lattice is done. For example, linear interpolation contains obvious cell arte-
facts and sharp changes. On the other hand, cubic interpolation produces

94

Figure 3.11: Worley cellular noise with different distance metrics: Euclidean
F1, Euclidean F2, Manhattan F1, Minkowski F1.

smooth and gradual change. Many other interpolation schemes exist, for
example, quadratic or cubic B-splines.

Gradient noise first assigns pseudo-random gradient vectors at each
lattice point as discussed by Perlin [122]. Next, for a given input, pseudo-
random gradient vectors at eight corners of a single cell are interpolated for
a new value representing the noise value. An improvement is introduced by
Perlin et al. [123] to mimic the swirling flow and advection.

Value-gradient noise solves the problem of gradient noise which has
a value of zero on lattice points resulting in the observable grid. A simple
approach is a weighted sum of values and gradient noise is returned. A
more complex approach is to use cubic Hermite interpolation to combine
value and gradient noise [62].

Lattice Convolution noise solves the problem of lattice noises which
exhibit axis-aligned artefacts. These artefacts are due to the anisotropic
nature of the interpolation schemes used for blending the pseudo-random
lattice values as discussed by Ebert et al. [62], ch. 2. Lattice convolution
noise is removing anisotropy and solving this problem by using discrete
convolution to perform the interpolation. Lattice pseudo-random values
are convolved with a radially symmetrical filter, for example Catmull-Rom
filter. The convolution is simply the sum of the product of each lattice
point pseudo-random value times the value of the filter function based on
the distance of the input point from the lattice point.

Sparse Convolution Noises are not based on a regular lattice of
pseudo-random values. Sparse convolution noise value is computed by con-
volving a filter function with a collection of randomly located random pseudo-
random values (e.g., Poisson process). Filtering can be done using for ex-
ample Catmull-Rom filter. Scattered pseudo-random values are considered
sparse in contrast to white noise, thus name spars convolution noise. An
example is spot noise discussed by Wijk et al. [124]. Due to randomly placed
points with pseudo-random values, a large neighbourhood of cells must be
considered for evaluation, thus this noise function is computationally expen-
sive. However, it results in a less observable grid-like pattern as discussed
by Ebert et al. [62], ch. 2.

95

Figure 3.12: Fractal-based noise. Left: Perlin noise with small frequency
(scale) and high amplitude. Middle: Perlin noise with high frequency and
small amplitude. Right: Fractal noise made by adding previous two.

Cellular noise introduced by Worley [64], is based on randomly dis-
tributed discrete features (i.e., points) in 3D space. Noise value is computed
by finding the distance F ppq between the input point p and the feature
points. Distance F ppq can be computed using different metrics such as Eu-
clidean, Minkowski, Manhattan, etc. The first closest distance between p
and the feature point determines the distance F1ppq. F1ppq switches from
one feature point to the next along equidistant planes which are exactly the
planes computed by the Voronoi diagram - a partition of space into cellu-
lar regions (Figure 3.10). Similarly, distance function Fnppq can be defined
as the distance to n-th closest feature point to input point p. Different
distance functions Fippq form different patterns (Figure 3.11) and further
complexity can be achieved by combining them in a certain expression, e.g.,
F1ppq+F2ppq. Further complexity can be achieved by combining multiple
cellular basis functions in a fractal fashion. The cellular basis function is
continuous and it can be computed anywhere in space. Due to its nature, it
is extremely useful for describing any kind of cellular-like pattern.

Fractal-based methods are often used to create more complex patterns.
The idea is to combine multiple noise functions (Figure 3.12). Perlin [11]
introduced turbulence function which sums up noise functions, similarly as
fractal sum, with different frequencies. Changing the frequency of the noise
function affects the average size of gaps called lacunae. Scaling the am-
plitude of noise function affects fractal dimension. Combining noises with
doubled frequency and halving the amplitude of each layer results in fBm
(fractional Brownian motion) [11], [63] ch. 13.

Explicit Noise Algorithms are a class of noises which are not con-
venient for implicit procedural texturing models (Ebert et al. [62], ch. 2.).
These methods generate all noise values all at once explicitly. To use them
in an implicit procedural texturing model, values must be stored as a table
or image and then used. Examples are midpoint displacement and random
successive additions. Such methods can be less expensive compared to im-

96

plicit evaluation methods. Fourier Spectral Synthesis (Ebert et al. [62],
ch. 2.) is an example of explicit noise generation. The idea is to generate
a pseudo-random discrete frequency spectrum where power at a given fre-
quency has distribution for the desired noise. Then discrete inverse Fourier
transform (e.g., inverse FFT) is performed on the frequency domain to ob-
tain a spatial domain representation of the noise. This approach is slower
than lattice noises and not practical for procedural texturing.

3.1.2 Generation Phase

In the generation step, the procedural model is evaluated with specific pa-
rameters to produce the final texture. The realization of procedural texture
depends on the procedural texture type: implicit or explicit as discussed by
Ebert et al. [62] and Deguy [10].

Implicit procedural texturing models are evaluated, when needed, by an-
swering a random query from the rendering procedure. They are suitable
both for ray-tracing-based rendering as well as rasterization-based render-
ing since both can be seen as sampling the surface, where each sample can
be seen as a query. Therefore, implicit procedural texture models are im-
plemented in a shader which is then used during rendering. The rendering
procedure provides information on shading point which is used for evalu-
ating the procedural texture model. Only once the rendering procedure is
finished, the texture will be visible on the object surface - texture is gen-
erated on the fly and no information is stored as a texture map making it
memory efficient.

explicit procedural texturing models generate the complete texture pat-
tern as a raster image for a given resolution. Therefore, storing raster images
in memory is required. The generated image is then used for answering the
rendering procedure query. Although it requires more memory during ren-
dering, querying a raster image texture is faster.

In theory, both implicit and explicit models can produce the same class
of textures, but in practice, it is more convenient to use one over another.
Both have advantages and disadvantages and their choice depends on the
application:

• Implicit models can be directly used during the rendering procedure
while explicit models first have to be evaluated as an image which is
then used for rendering.

• Implicit models are extremely compact when it comes to memory re-
quirements while explicit require storing the whole pattern as an im-
age.

• Implicit models enable render-time evaluation with parameter varia-
tion while explicit models have to be evaluated pre-render-time com-
pletely for each variation of parameters

97

• Implicit models ensure high quality for changing view distance or area
to be covered while explicit models are restricted to the resolution of
the raster image in which the model is evaluated.

• Rendering query evaluating implicit models can be slower compared to
direct raster texture image lookup which is generated pre-render-time
with explicit models.

• Certain complex texture patterns are simply too hard to write implic-
itly. This is due to the lack of spatial information which is naturally
available when writing an explicit model.

3.1.3 Applications

Presented strategies and building blocks used for authoring a procedural
model as well as its usage are best illustrated by the set of applications
where procedural texturing is used. Concepts discussed in these specific
applications can be generalized to different applications such as modeling
machined surface textures.

Procedural texture modeling toolsets. Industry-standard procedu-
ral texture modeling for games, film and beyond are Substance Painter [12]
and Houdini [107]. These environments combine discussed strategies and
building blocks for procedural texture modeling. Although powerful, they
require experience, computer graphics and artistic knowledge.

Content creation for film and game industry relies on procedu-
ral texturing for controllable and fast production of asset instances which
are used for populating the 3D scene. Attractive characteristics of procedu-
ral modeling are increasing productivity, complex texture production, look
consistency, animation, etc. as discussed by Deguy [10].

Synthetic image data generation for machine learning. Devel-
opment of computer vision algorithms based on machine learning requires
large and diversified datasets. A solution for generating required datasets
lies in image synthesis. Procedural texture modeling is a crucial element for
creating parametric 3D scenes which are used for diversified image synthesis
as discussed by Tsirikoglou [125] and Mayer [126].

3.2 Procedural Geometry Modeling

Geometry is used to represent the shape of an object. Procedural geometry
modeling is a way of generating geometry using an algorithm. Geometry can
be generated in various ways using procedural modeling: generating geome-
try from scratch, modifying existing geometry, deforming existing geometry,
appending geometry to existing geometry, combining existing geometry into
new geometry, etc.

98

Similarly as in procedural texturing, procedural geometry modeling con-
sist of authoring and generation step. The authoring step focuses on proce-
dural model development. The generation step focuses on procedural model
evaluation and generating instances of geometry (i.e., during rendering).

The authoring step consists of designing and developing a procedure
which generates geometry. The procedure is described using code [127] or
visual programming [107]. Writing a procedure which generates geometry
is based on various strategies and building blocks which are combined and
extended as it will be discussed in Section 3.2.1.

The generation step is the process of evaluating the procedural geometry
model with a fixed set of parameters resulting in a geometry instance. The
generation step depends on the type of procedural geometry model which
can be implicit or explicit. In implicit models, the model is evaluated by
rendering procedure, thus complete geometry is available after the render-
ing procedure has finished. In explicit models, the model is directly evaluated
and generates the whole geometry. Implicit models, such as signed distance
functions, are particularly suitable for ray-tracing-based rendering for which
visibility solving, that is, intersection testing can be elegantly performed. On
the other hand, explicit models are suitable both for ray-tracing-based ren-
dering as well as rasterization-based rendering since the resulting geometry
can be treated like any other input geometry. The generation step is further
discussed in Section 3.2.2.

The advantage of procedural geometry modeling compared to manual
geometry modeling is:

• Parameterized and thus controllable creation of a large number of ge-
ometry instances

• Automated and controllable deformation, modification or population
of geometry

• Ability to create an immense amount of detail, adaptive to view dis-
tance

On the other hand, procedural geometry modeling has several downsides:

• It is hard to restrict parameters to always produce a meaningful re-
sulting geometry instance

• Intuitive control over local geometry features is not easily obtainable
since parameters often dictate the global distribution of all features.

3.2.1 Authoring Phase

Procedural modeling of geometry, similar to procedural modeling of texture,
is still an art form: no recipe exists that can be reused. The authoring

99

Figure 3.13: Layering concept. Two geometries are modeled separately
representing different layers. The final geometry is obtained by merging the
layers.

process thus relies on strategies and building blocks which are combined
and extended.

Procedural Geometry Modeling Strategies

Layering is a fundamental concept which was identified that makes mod-
eling complex shapes easier. The idea is to model complex shapes layer by
layer which are then combined (Figure 3.13). This way, complex problem
is simplified into smaller, simpler problems. Layers can, for example, rep-
resent different scales. Therefore, the first layer defines the coarse shape,
the second layer defines smaller-scale geometry, the third even smaller scale
and so on. On the other hand, layers can represent parts of geometry which
are modeled using different techniques. For example, certain parts can be
simulated using physically-based methods while other parts can be modeled
using phenomenological methods.

Stochastic geometry is concerned with the study of random spatial
patterns [128]. Therefore, stochastic geometry modeling serves as a good
starting point and inspiration for building procedural geometry models.
Stochastic geometry modeling systematically describes elaborate random
spatial patterns using spatial point processes and random sets [129]. Com-
bining point processes and random sets results in a particularly useful germ-
grain model [108]. Germs can be seen as points generated by a point process.
For example, germs can represent sampled 3D points on an object’s surface
or in 3D space. Grains can be seen as a compact close set which is placed on
germs (Figure 3.14). For example, grain can represent geometrical shapes
such as spheres or cubes. This concept is particularly useful since it de-
couples complex geometry into modeling simpler shapes (i.e., grains) and
modeling their positions (i.e., germs).

Random tessellations is subdivision of 3D space into cells - non-
overlapping, compact sets [128]. Point processes and random sets described
in stochastic geometry modeling are finding particular usage when it comes

100

Figure 3.14: Modeling complex geometry can be decomposed into modeling
simpler shapes and modeling their placement. Left: placement modeled for
geometric instancing. Middle: simpler geometry modeled separately. Right:
Simpler shapes instanced on sampled points.

Figure 3.15: Initial cube geometry is tessellated in Voronoi cells. The result-
ing cells can be transformed (e.g., scaled) and randomly removed to create
new shapes.

to creating random tessellations. Widely used random tessellation is Voronoi
and Delaunay tessellations. Random tessellations are a useful concept in pro-
cedural geometry modeling (Figure 3.15). For example, existing geometry
can be tessellated and a subset of resulting cells can be either removed or
re-scaled to modify and thus introduce imperfections in the input geometry.
Another example is to create fractures using tessellation cells [130].

L-system is a grammar of replacement rules discussed by Lindenmayer
and Prusinkiewicz [131]. Most widely, the L-system is used for modeling
biological shapes and development such as vegetation and natural phenom-
ena but also artificial shapes and patterns. L-system grammar consists of
symbols such as ”F”, ”+”, ”-”, etc. L-system defines a set of rules, known
as production rules, that describes the replacement of a non-terminal sym-
bol with a string of zero or more symbols. L-system is seeded with axiom
- initial string on which production rules are applied. Each symbol defined
by the L-system can be assigned geometric elements such as translations,
rotations, scaling, shape (e.g., cylinders) etc. L-systems are organized into
families based on their representational capabilities. The simplest is a de-

101

terministic, context-free L-system. Parameters and stochasticity are further
added to simulate randomness. Varying degrees of context sensitivity can
be used to achieve global influences across the L-system (e.g., tropism).

Geometric instancing. Composite geometrical objects can be de-
scribed using a scene graph and instanced into the scene as a sub-tree of
the main scene graph (Figure 3.14). Instancing can be used to implement
productions of an L-system as discussed by Hart et al. [132], thus geometric
instancing has representational power comparable to deterministic, context-
free L-system. Instancing of scene graphs can be further described with a
procedure enabling procedural geometric instancing. Procedural geometric
instancing has representational power comparable to stochastic, context-fee
parametric L-systems.

Fractal geometry represents a geometrically complex object, whose
complexity arises from the repetition of a given form over a range of scales
as discussed by Ebert et al. [62], ch 14. Fractals are the simplest complexity
generators. Such an object holds the property of dilation symmetry - being
invariant under a change of scale. Fractal complexity is a result of repeating
the same rules or events. Non-fractal complexity is characterized by the
accumulation of distinct and unrelated events over time. Fractal geometry
is obtained by repeating an underlying shape - a basis function which has
a certain frequency, amplitude and lacunarity (change of frequency in each
step of the repeating process). Any complex, self-similar phenomena over
scales can be well described with fractals. Fractals fit well into the procedu-
ral modeling paradigm since they can be described with iterative, construc-
tive procedures. Fractals can be generated using various methods: Iterated
function systems [133], L-systems, Mandelbrot sets [134] as an example of
escape-time methods, diffusion-limited aggregation [135] as an example of
random fractals, etc.

Generative Modelling Language, discussed by Havemann [136], is
paradigm where 3D geometry is described using geometry-generating rules.
Simple geometry-generating rules can be combined into complex geometry-
generating rules for describing complex geometry. An example is the usage
of Euler operators [137] which modify the mesh by creating or removing
faces, edges or vertices according to simple rules while preserving the overall
topology.

Procedurally driven physical simulation enables modeling complex
behaviour of 3D objects in a 3D scene given driving forces. Unified phys-
ical simulation is described by Lesser et al. [138]. Parametric modeling of
complex phenomena can be decomposed into procedural modeling of driv-
ing forces and physical simulation solving the resulting behaviour. This
way, procedural modeling is only focused on generating driving forces in the
form of vector fields. An example of a procedural vector field is flow noise
discussed by Perlin et al. [123].

Inverse procedural modeling represents approach for creating pro-

102

cedural model from data [139], [140]. Given an exemplar geometry, the task
is to find the set of rules which are similar to the exemplar as discussed
by Bokeloh [141]. This way, building a procedural model can be simpli-
fied given enough data. Examples include inverse procedural modeling of
trees [142], branching structures [143], facade layouts [144] and architectural
models [145].

AI-based procedural geometry. Deep neural networks, the most
popular form of AI, can be applied to 3D geometric data for parametric 3D
shape modelling and animation. In this approach, geometry and parame-
terized rules are described using a neural network. A notable example is
work done by Pearl et al. [146] where 3D shapes are mapped to a human-
interpretable parameter space, allowing intuitive editing of the recovered
3D shapes from a point cloud or sketch input. Another example is work by
Shechter et al. [147] where neural networks are used to inject the underlying
shape geometry into the deformation parameters.

Procedural Geometry Modeling Building blocks

Transformations are fundamental for procedural geometry modeling. Trans-
formations can be applied to the whole geometry or some of its parts (e.g.,
vertices). Since the work in this thesis relies on meshes, transformations can
be applied on the whole mesh (all vertices) or per vertex. When applied to
the whole mesh, scaling transformation is particularly useful. Scaling can
be applied uniformly: equal in all scaling directions or non-uniformly: not
equal in all scaling directions. When applied to each vertex, translation and
rotation transformations are particularly useful. This way, a mesh can be
deformed by transforming each of its vertices procedurally.

Displacement is a useful method for introducing deformation of geo-
metrical surfaces. It can be done by offsetting vertices in a normal direction
using the height amount for this vertex as introduced by Cook [148]. The
height value per vertex is given by texture which can be generated using pro-
cedural models, for example, noise functions (Figure 3.16). Displacement is
often combined with subdivision since for high-frequency height variation
per object surface higher subdivision of geometry is required. Otherwise,
the resulting geometry will lack geometrical details. This problem can be
seen as aliasing in 3D as discussed by Watt et al. [149].

Texture can be seen as a function which for each surface point or point
in 3D space generates a value and thus can serve as a procedural geome-
try modeling tool as discussed by Ebert et al. [62]. For example, texture
can represent the height field which is then used for displacement (Figure
3.16). Further, texture can be used as a weighting scheme for instancing or
deformation.

Deformation modifiers are a set of tools that are often available in
3D modeling programs such as Blender [150]. Various deformation mod-

103

Figure 3.16: Geometries generated by displacement of spare vertices in nor-
mal direction using three different heightfields generated by procedural tex-
ture.

Figure 3.17: Starting geometry on the left is procedurally altered using
twisting, bending, stretching and lattice deformation modifiers.

ifiers exist to deform the geometry as discussed by Watt et al. [149] and
Mortenson et al. [151] (Figure 3.17). One approach is to deform the base
geometry using a lattice. Lattice represents coarse geometry which is easier
to control. Another approach is to deform geometry using rotation: twist-
ing and bending. Geometry can also be deformed with scaling: taper and
stretch. Warping and morphing of geometry are further useful modifiers for
procedural deformation as discussed by Gomes [152].

Geometry sampling is an important tool for determining positions on
the 3D object surface. Once a position is determined, instancing, random
walk, deformation, displacement, etc. can be used to modify the geometry
(Figure 3.18). Sampling depends on the type of geometry. Sampling is often
performed on mesh faces as discussed by Portsmouth [153] and Sik [154].
This way, efficient and controllable sampling can be achieved.

Geometry walking on a surface, given a starting and optionally an
ending point, creates a path. The created path can be used to instance
geometry or to create parametric curves or surfaces. When the starting and
ending points on the surface are given, the shortest path can be constructed.
When only a starting point is given, then a random walk on the surface can

104

Figure 3.18: Initial geometry is sampled for positions (red points). Once
samples are created, geometry can be instanced. In this case, foundational
geometrical shapes such as torus and cubes are instanced. Finally, instanced
geometry can be merged with base geometry to create a new shape.

Figure 3.19: Boolean operators between cube and sphere geometry: differ-
ence, union, intersect.

be used to construct the path. The constructed path can be further displaced
to introduce higher curvature in its shape. Geometric path construction
relies on geodesic distances discussed by Surazhsky et al. [155].

Foundational geometrical shapes such are plane, sphere, cube, cylin-
der, cone, torus, etc. represent building blocks for creating more complex
geometry. This can be done either by combining, modifying, instancing,
etc. (Figure 3.18). The idea is that any geometrical shape, no matter how
complex, can be decomposed into simpler shapes. A particular advantage of
using simple shapes is that they can be completely mathematically described
and thus procedurally created.

Boolean operations such as union, intersect and difference represent
basic tools for combining and modifying geometry as discussed by Hoffmann
[156], ch. 3. Those operations can be easily incorporated into a procedural
modeling framework since they can be seen as operators between geometrical
objects (Figure 3.19). An example is constructive solid geometry (CSG)
[157] which uses simpler geometrical shapes such as spheres and cubes to
create more complex geometrical shapes using Boolean operations.

Remeshing methods aim to improve mesh quality as discussed by Khan
et al. [158]. Remeshing improves the regularity of vertices and edges as

105

Figure 3.20: Initial sphere geometry with uniform triangles is displaced
resulting in geometry with non-uniform triangles. The third and fourth
geometries represent remeshed spheres with smaller and larger resolutions.

well as increases robustness. Remeshing can be used in between different
geometrical operations or on the resulting geometry (Figure 3.20). This is an
important operation in procedural modeling workflow since the intermediate
or final geometry may contain non-uniform edges and vertices.

3.2.2 Generation Phase

In the generation phase, the procedural geometry model is evaluated with
fixed parameters resulting in a specific instance of geometry. The genera-
tion phase depends on the type of procedural geometry model: implicit or
explicit.

Explicit models directly generate the points which make up the shape.
Thus, they are more suitable for polygonal meshes and parametric surface
representations. On the other hand, implicit models answer a query about
a particular point. Thus they are more suitable for implicit geometry repre-
sentations such as signed distance functions. That said, evaluating implicit
models is very natural to use during the ray-tracing-based rendering pro-
cedure since the implicit model can be queried for each ray. On the other
hand, explicit models, which generate whole geometry before rendering, can
be used for rendering both with rasterization-based and ray-tracing-based
methods.

In principle, both implicit and explicit models can produce the same
classes of geometry. However, in practice, one type is preferable to another
due to various reasons such as rendering workflow, modeling workflow and
a class of geometry which is to be modeled. For example, explicit models
are more suitable when spatial information of the geometry is needed (e.g.,
for sampling).

Implicit and explicit procedural geometry models stem from two eval-
uation approaches: data amplification and lazy evaluation as discussed by
Ebert et al. [62], ch. 11. Data amplification can be seen as pre-render-time
geometry generation. The procedural model creates highly detailed inter-
mediate geometry which is then passed to the rendering procedure. The

106

problem with this approach is the large memory cost of such a geometrical
model that has to be handled. L-System is an example of a data amplifica-
tion approach since it generates highly detailed geometrical representation
which is then inputted to the rendering procedure. Lazy evaluation can
be seen as render-time geometry generation. In contrast to data amplifica-
tion, intermediate geometry is not generated. The synthesis of geometry is
performed only when it is needed. Procedural geometric instancing is an
example of a lazy evaluation approach.

As the goal of procedural geometry models is to be used as elements
of 3D scenes, is important to note that efficient rendering requires efficient
bounding volumes for each geometry. For geometry generated pre-render-
time, bounding volume can be also precomputed before the rendering pro-
cedure. Such bounding volumes are static through the rendering process.
On the other hand, a geometry which is generated during rendering requires
dynamic bounding volumes as geometry is being generated.

3.2.3 Applications

How presented strategies and building blocks are combined is best illus-
trated through applications where procedural geometry is used. Various
applications of procedural geometry are surveyed by Smelik et al. [96]. It is
important to note that the concepts of those methods are usable in different
applications such as manufactured surface modeling.

Procedural geometry modeling of terrains is often combining height
field and displacement as discussed by Weiss et al. [111]. The height field
is used to describe terrain elevation which is generated by displacement.
The height field can be represented as an image or procedural texture. Pro-
cedural height fields are often generated using noise such as Perlin noise.
Advanced methods for terrain modeling rely on combining procedural ap-
proaches with layered data structures, physically-based methods, AI meth-
ods and interactive methods as surveyed by Smelik et al. [159].

Procedural geometry modeling of vegetation is concerned with
producing individual plant organs to complete plants and whole plant ecosys-
tems. L-systems proved to be very powerful system for the procedural gener-
ation of vegetation. Further, procedural vegetation modeling is augmented
with physical parameters such as collision detection or shadowing as well as
interaction by sketching as discussed by Smelik et al. [96]. Runions further
discussed space or surface sampling and then walking for path construc-
tion [160].

Procedural geometry modeling for water bodies is quite focused
on modeling rivers by using height maps. One set of approaches creates
a height map based on the river network as discussed by Genevaux [161].
Other sets of approaches create a river network by analyzing heightmap as
discussed by Belhadj [162]. Similarly, as for other applications, interactive

107

modeling is introduced for guiding the procedural model.
Procedural geometry modeling for cities and roads. Procedural

road generation can be constrained on terrain or city layout as discussed
by Smelik [96]. Therefore, it can be seen as a certain path construction
with constraints. Procedural modeling of cities often relies on a hierarchi-
cally structured model. One strategy is to first generate a broad division of
city zones and then refine them. Another approach is to use L-systems for
modeling as discussed by Parish et al. [163].

Procedural geometry modeling for buildings and interiors. Pro-
cedural building generation often relies on rewriting systems such as L-
system, split grammar or shape grammar as discussed by Smelik et al. [96].
Interior modeling often relies on floor plan generation and furniture layout
solving. Floor plan generation is often solved using grammar, subdivision,
constraints-solving, etc. Furniture layouts are often solved using example-
based or constraint-solving methods also discussed by Smelik et al. [96].

Procedural modeling toolset. Wide range of both specialized and
general tools was developed which combine discussed strategies and building
blocks for fast and effective procedural modeling. Houdini [107] represents
the most general procedural modeling tool capable of creating a wide range
of geometries but comes with the cost of a high learning curve. Vue [164] and
Terragen [165] represent procedural toolsets specialized for modeling virtual
environments containing natural elements ranging from water bodies and
mountains to clouds and vegetation. SpeedTree [166] and XFrog [167] are
specialized tools used for the procedural modeling of trees and vegetation.

108

Part II

Image Synthesis and
Procedural Modeling

109

Chapter 4

Image Synthesis for Surface
Inspection Planning

Surface inspection development requires large amounts of image data repre-
senting the inspected product surface. The image data should contain both
the ideal surface and the defective surface that can appear during produc-
tion. Although image synthesis comes as a natural solution to this problem,
its application is not straightforward in automated surface inspection envi-
ronments. The reason for that is a lot of manual work that should be done
for creating defects, simulating the inspection environment, and setting up
the acquisition system for validation of simulation. To address these issues,
we present a novel pipeline that automatizes surface defect creation, pro-
vides realistic rendering in a predefined inspection environment setup, and
an acquisition system that enables comparison with the real images. The
pipeline creates geometry-imprinted defects which combined with physically
based rendering methods enable realistic light response for different light and
camera positions during image synthesis. Finally, synthesized images can be
compared with the real image taken in the same setup enabling verification.
Also, synthesized images enable the visualization of visible surfaces and de-
fects for a given inspection plan.

The presented pipeline wouldn’t be possible without the important con-
tributions made by two students: Doria Šarić and Siddhartha Dutta. Meth-
ods and results regarding ErrorSmith (Sections 4.4.1 and 4.5.1) were re-
searched, developed and described by Doria Šarić. Methods and results
regarding Acquisition system (Sections 4.4.3 and 4.5.3) were researched, de-
veloped and described by Siddhartha Dutta.

4.1 Introduction

Industry 4.0 introduced the concepts of smart factories and smart manu-
facturing which are oriented towards automated production with high cus-

111

tomization capabilities. Automated production further requires automated
inspection of the products. Due to its high availability and applicability,
visual inspection is a frequent inspection method [6]. Therefore, automated
visual inspection, such as surface inspection, can be considered as an im-
portant part of quality assurance in the Industry 4.0 concept. Even though
the inspection process itself is automated, development of one such inspec-
tion system requires an expert approach. For that purpose, research efforts
have been focused on development of automated inspection planning tools,
which can be used as an aid to experts developing surface inspection sys-
tems [6], [4]. The main goal of such planning tools is to find the optimal
setup of acquisition hardware (camera and illumination) that ensure com-
plete surface coverage of the product.

Good acquisition setup and development of robust image processing algo-
rithms for defect detection are two highly interdependent parts of inspection
system design. Acquisition hardware is placed and calibrated to maximize
the visibility of a defect, and the image processing algorithms are developed
for images made with that particular acquisition setup. Therefore, develop-
ment of automated surface inspection systems relies on a large amount of
representative product image data. More specifically, image data containing
as many defects as possible. Due to variety of reasons (frequency of defect
occurrence, small production batches, etc.), the amount of available defects
is frequently limited, which can cause problems in the development of robust
detection algorithms. For that purpose synthetically generated datasets are
needed. Those datasets would contain images of the product augmented
with defects with a wide range of shapes and positions over the surface
as they would appear in the real-world cases only after longer production
periods.

Computer generated imagery (CGI) comes as a logical solution to the
image synthesis problem, however, its utilization is not straightforward in
the automated environments since it requires a lot of manual work done by
experts. In this work, we address those problems by offering a clear pipeline
for realistic image synthesis of an object with both ideal and defective sur-
face, as well as comparison to the imagery of physical objects for verification
of the results. Synthesized images offer a way to visualise which parts of
the surface and defects are visible for given inspection plan (i.e., camera
and light positions). As it can be seen in Fig. 4.1, the pipeline consists of
three modules. The first module is responsible for defect creation directly on
object geometry. The second module performs physically based rendering
of the object. The third module allows real image acquisition and therefore
verification of the synthesized image.

The presented pipeline enables controllable image synthesis. To explain,
the pipeline is founded on computer graphics simulation and rendering which
are completely controllable. Therefore, the context which is used for gener-
ating images is completely controllable.

112

Figure 4.1: Pipeline overview. Input data and its flow is represented in
green color. Core pipeline and its modules are represented in orange color.
Module outputs and expert interaction is represented in red color.

4.2 Related Work and State of the Art

Gospodnetic, Mosbach, Rauhut and Hagen [6] defined fundamental require-
ments for surface inspection planning pipelines and gave an example of a
semi-automated visual inspection planning pipeline. The presented pipeline
uses the geometry of the object for the purpose of viewpoint placement. The
problem of data synthesis as a means to predict the inspection outcome has
not been tackled, but the importance of such work has been highlighted.
The pipeline also introduced a verification system, used for coverage com-
parison, but the method used for correct positioning of the camera was not
discussed.

Deficiency of defect data motivated defect image augmentation (Shorten
and Khoshgoftaar [168]). Standard image transformations are used to pro-
duce more data, which in some respects becomes redundant or repetitive, but
makes the detection robust to defect position, size, etc. Autoencoder and
GAN-based solutions can infill defect-free images with synthesized defects
learned on real defect images (Tang, Yang, Xiong and Yan [169]). How-
ever, the learning process is unstable without larger amounts of data and
requires a confident validation for generated images. Even so, it could only
be applied to simple geometries in ideal inspection lightning conditions.

As an alternative, Merillou, Dischler and Ghazanfarpour [170] propose
a hybrid approach to effectively render surface scratches. They couple bidi-
rectional reflectance distribution functions (BRDFs) with texture mapping.
However, it involves taking measurements of real scratches and the profile
curve of the defect before mapping it to the model. Desbenoit, Galin and
Akkouche [171] built an atlas of template fracture models imitating real
cracks on various materials. The fracture model is automatically mapped
onto the 3D model and carved into object surface using the Boolean differ-
ence operator. Although lightweight, it is still time consuming.

113

Haindl and Filip [172] provided taxonomy of the reflectance models,
highlighting the scale of the observation as an important aspect. BRDF
represents an efficient model for homogeneous surfaces (i.e., surfaces seen
from a larger distance). Ngan, Durand and Matusik [47] evaluated analyt-
ical BRDFs in terms of their ability to fit measured bidirectional distribu-
tion function data. They concluded that microfacet based models (Walter,
Marschner, Li and Torrance [9]) provide a faithful, physically based appear-
ance.

Mohammadikaji [4] and Reiner [173] tackled with realistic image synthe-
sis for machine vision inspection systems. Mohammadikaji coupled ray trac-
ing with Fourier optics methods for introducing wave optics effects. While
it produces good results for laser based illumination, in case of white light
illumination Dong, Walter, Marschner and Greenberg [174] concluded that
same result can be achieved using geometric optics models which are widely
available in existing physically based rendering engines. Therefore, this
approach lacks generality. Reiner [173] proposed more general simulation
approach but lacks clear pipeline.

Evaluation of realism in photorealistic rendering has been oriented to-
wards appearance and was used to assess the subjective experience of a
viewer (Kolivand, Sunar, Kakh, Al-Rousan and Ismail [175], Greenberg et
al. [176]). The reason likely lies in the fact that recreating the same environ-
ment is a challenging process. Recently, Stets et al. [177] introduced a re-
assembly and multimodal digitization pipeline containing a controlled envi-
ronment to precisely capture a given scene, obtaining almost pixel-precision
when comparing simulated and captured images.

Obtaining correct camera setup involves camera calibration and hand-
eye calibration. Camera calibration determines relative orientation of the
camera to a calibration object and also its internal parameters, while hand-
eye calibration determines the rigid transformation from robot end-effector
to camera coordinate system. For hand-eye calibration, Tsai and Lenz [178]
suggested a star-like viewpoint pattern while acquiring checkerboard images.
Pachtrachai, Allan, Pawar, Hailes and Stoyanov [179] suggested calibration
without markers. The downside of this approach is the lack of accuracy.
Antonello, Gobbi, Michieletto, Ghidoni and Menegatti [180] and Wang, Lu,
Hu and Li [181] proposed the approach in which the robot automatically
takes images of the calibration object and performs hand-eye calibration.
Recently, Lyngby, Matthiassen, Frisvad, Dahl and Aanæs [182] used hand-
eye calibration algorithm developed by Liang and Mao [183] for accurately
aligning the camera position and orientation of the robot to measure the
BRDF. None of those approaches discuss cameras with a narrow field of
view, which is essential in the most surface inspection scenarios.

114

4.3 Requirements

CGI techniques such as [28], [184], [14], [35] are commonly used for gen-
eration of photo-realistic images and are capable of producing remarkable
results. However, their practical use in the field of surface inspection is
minimal [4], [173]. We assume that the explanation lies in the following rea-
sons. Firstly, defects can occur in a wide range of shapes and positions over
the surface introducing uncertainty which must be dealt with. Secondly,
CGI techniques are developed with the goal of providing high flexibility and
freedom for artists. Artists then manually create scene elements such as ob-
jects, materials, lights etc. This makes the direct usage of such techniques
not applicable for environments which aim towards automation (e.g., surface
inspection development). Finally, confidently using synthesized images for
representing the real physical objects requires an acquisition system followed
by verification methods that can prove the quality of the object properties
in the synthesized image. Guided by the aforementioned reasons, we de-
fine three main requirements which should be satisfied by a defect synthesis
pipeline:

R1 Must be capable of producing defects of various shapes and positions
over the surface of the object.

R2 Must produce realistic images of the object.

R3 Must compare the synthesized image with a corresponding image ac-
quired in the real world on the spot.

4.4 Methods

As mentioned in Section 4.1, the presented pipeline consists of three main
modules shown in Fig. 4.1:

• ErrSmith, discussed in section 4.4.1, creates defects directly on the 3D
model of the object based on the provided defect parameters.

• Callistemon, discussed in section 4.4.2, incorporates the object mate-
rial and geometry as well as light and camera properties used in surface
inspection to reconstruct a 3D scene resembling the surface inspection
environment. The 3D scene is then rendered from different camera
viewpoints.

• Acquisition system, discussed in section 4.4.3, incorporates a semi au-
tomatic hand-eye calibration and camera calibration as well as auto-
matic image acquisition of the real images taken from the same view-
point as in Callistemon. Images acquired using the acquisition system
enable verification of the synthesised images.

115

4.4.1 ErrorSmith

Computer graphics artists often spend a lot of time on each 3D model,
sculpting surface irregularities and introducing color modification to make
the object seem more real. To automate defect creation, we developed Err-
Smith, a module which can automatically make geometrical surface defects
on any given 3D model based on a provided set of parameters. For preview
purposes, it is possible to render images of the object containing virtual
defects. ErrSmith consists of defect creation, geometry processing, and pre-
view rendering (see Fig. 4.1). It can be easily applied or adapted to various
conditions and use cases.

Defect Creation

For the purpose of this work, defects are considered to be irregular indenta-
tions of varying sizes on the surface of the object (i.e., dents and scratches).
Therefore, first a defect tool is made. It is a smaller 3D object manually
modelled to resemble a 3D negative of defect representation on the surface,
as can be seen in Fig. 4.2. The tool is then partly imprinted into surface of
a given 3D model. Tools can be smooth and regular or quite complex with
rough surfaces. The variety and complexity of defect shapes depends on the
variety and complexity of the defect tools.

Figure 4.2: Examples of some defect tool models. The ones with the label
D are creating dents, while the very thin ones below S labels are used for
scratches (sharp tools imitating a saw or a blade).

The input parameters for ErrSmith define defect types, number of defects
(per type or in total), and defect sizes. All of these parameters can be set
to fixed values or defined as a range of values from which the value should
be sampled.
The following steps are repeated for each defect that should be made on
the object:

1. Select a random defect tool belonging to the tool collection of the
chosen defect type

2. Randomly translate the defect tool anywhere on the grid

116

3. Scale the tool with defect size parameter

4. Randomly rotate the defect tool

5. Translate the origin of the tool to an arbitrary point on the closest
face of the object

6. Apply the Boolean difference with the object mesh to create a geo-
metrical surface defect

Geometry Processing

After creating defects, further geometry manipulations can enhance the look
of rendered images. Some simple-geometry models require processing before
being rendered. For example, we could add some noise to face normals to
simulate a rough surface. With simple geometries, all the faces first need
to be subdivided by a certain factor. Otherwise, the model will have an
insufficient number of normals to simulate surface roughness. In addition
to that, edge roughness can be achieved by selectively adding some noise to
vertex normals.

Preview Rendering

Lightweight, preview rendering developed using Pyrender, offer a quick way
to visualise ErrSmith results. Depending on the rendering parameters (cam-
era setup, lights, viewpoints, number of images), a preview is rendered. For
one given viewpoint, the preview includes a synthesized image of the defec-
tive object and a capture of the defect map. Defect map is a 3D model of
that same object, with defective areas colored white and the rest in black.
The captures of the defect map mark exact defect positions on the virtual
image. An example of a preview can be seen in Fig. 4.3. If the rendering
parameters were odd and the defects were hardly visible on the synthesized
image, one could check the binary image to notice them. Additionally, the
binary 2D images of the defect map could be used as the defect labels for
the synthesized images in deep learning applications.

4.4.2 Callistemon

Once the defects are introduced on the object geometry, synthesis of realis-
tic images, similar to those acquired by a visual surface inspection system,
is done using Callistemon. Callistemon serves as a connection between the
surface inspection planning data and a physically based rendering engine.
Therefore, it offers a way of visualising defected geometry with physically
based material in an simulated environment. Surface inspection planning
data consists of an object geometry and viewpoints which define camera

117

Figure 4.3: Preview of defects created on the model of a gear. Virtual
image with the defects (left) and the corresponding defect map capture (on
the right).

placement and orientation, relative to the given object. A viewpoint is de-
fined as a 9D vector v “ rp,d,us, p,d,u P R3. p represents a point in space
where the camera is positioned, d is the direction of the optical axis of the
camera and u represents orientation of the camera around the optical axis.
In order to synthesize an image from a given viewpoint, a digital represen-
tation of the inspection environment (scene) is required. The scene consists
of a light source, a camera and an object, each of which is described by a
set of inputs. Required inputs are object mesh and viewpoints. Optional
inputs are object material, light source geometry and material, environment
parameters and camera parameters. To systematize the rendering process
optional inputs have default values, but depending on application can be
adjusted.

Object, Camera and Light Parameters

To simulate the appearance of the object during inspection, its geometry
and material specifications are required. The geometry should be a realistic
mesh representation of the object. Material specification is separated into
reflectance properties and spatial variation details (i.e., texture). Realistic
reflectance properties are described using physically based BRDFs available
in Callistemon’s rendering engine as Open Shading Language (OSL) closures
[185]. User can choose the BRDF by choosing the OSL closure and specifying
its parameters. Those BRDFs are resulting in perfectly smooth surface as
viewed from a large distance. Therefore, they contain no spatial variation.
Spatial variation in synthetic images is a result of color and surface roughness

118

variation and is specified using procedural texturing. The user can describe
the variation using OSL. Description accounts for variation which is much
smaller than the size of the object, but much larger than the light wavelength
[28]. Therefore, smaller scale of variation should be defined using BRDFs,
while the larger scale of variation should be present in object geometry.

Simulating inspection environment requires that light source can be po-
sitioned relative to the camera or relative to the object. Defining the light
relative to the camera will change its position in the scene for each new cam-
era position. Otherwise, if the light position is defined relative to the object,
its position p P R3 must be provided in object coordinate space and will re-
main the same for all the viewpoints. Callistemon supports physical (area)
lights which are prerequisite for physically based simulation. Physical lights
have certain shape and emit light from the surface of the shape. Therefore,
physical light requires geometry and material specification. Light geometry
should match the geometry of the real light because its area greatly influ-
ences the total amount of light in the scene. Emission material properties
should be defined by the user using OSL (e.g., amount and color of light).
The camera is simulated using a pinhole camera model and a set of param-
eters describing the real camera. The parameters include resolution, film
dimension, pixel size and focal length.

4.4.3 Acquisition System

To enable validation of the synthesized images, it is necessary to obtain the
real (ground truth) images in the same physical environment. Defining the
environment for a surface inspection validation system is not as complex as
for real life scenes (e.g., outdoor) since inspection system requires precise and
consistent imaging conditions. Image acquisition conditions in an inspection
system are determined by object placement, one or more cameras and one
or more illumination devices. Object placement process determines the way
in which the object is placed into the inspection system and manipulated
during the inspection (e.g., manual placement, conveyor belt, turntable,
manipulator device, etc.). Camera is always positioned relative to the object
and represented by a single viewpoint from which an inspection image is
acquired. Illumination devices can be relative to a camera or fixed relative to
the object. Fixed illumination devices will have the same position regardless
of the viewpoint which is used to acquire an image and can be used with
more then one viewpoint, while relative illumination devices depend on the
camera position and are typically only used by that single viewpoint.

An acquisition system provides a possibility to compare synthetic im-
ages to a precisely determined environment in an automated, consistent and
reproducible manner. For that purpose we assume that the positioning sys-
tem in an actual inspection system will always place the object at the same
position. With such assumption it is possible to precisely define the position

119

of the object within the acquisition system. The camera is attached to a
manipulator device, thus enabling both positioning precision and repeata-
bility. The illumination device position can either be fixed or attached to
the same manipulator device as the camera. Finally, the system is given a
list of camera viewpoints defined in Section 4.4.2, which are reached using
the manipulator device.

Synthetic and real images are created independently, therefore, it is not
possible to rely on any kind of markers, like it has been done by Stets et
al. [177]. Instead, the precise positioning of the acquisition hardware within
the scene requires the application of calibration techniques. The manipu-
lator device carrying the camera is 6 degrees of freedom robotic arm. The
camera is attached to its end-effector, but the coordinate systems of the
robotic arm and the camera do not coincide. Therefore, moving a camera to
a precise position using a robotic arm requires hand-eye transformation de-
scribing the transformation between the end-effector coordinate system and
camera coordinate system [178]. Camera is fix-mounted to the end-effector,
therefore the hand-eye transformation does not change during the acquisi-
tion process, but should be recalculated with any change in the acquisition
system (e.g., focal length of the existing camera). Further, it should be
recalculated regularly to account for the wear and tear effects.

We introduce an semi-automatic calibration approach. First, for intrinsic
calibration, images with varying viewing angles of the checkerboard which
is fixed in the scene are automatically acquired. Narrow field of view at the
focusing distance and large aperture cause shallow depth of field, therefore
some acquired images above the pattern can not capture the checkerboard
clearly. As a solution, the checkerboard is fixed in the robot space. Var-
ious boundary coordinate ranges within the robotic coordinate system are
defined. The range consists of the edge points from where the full checker-
board is in view to the points where the checkerboard corners are no longer
in the view. Spanning the robot hand through these ranges allows to capture
different views of the calibration object. For an accurate calibration, more
than 3 boundary coordinates are specified. The system requires the number
of images to be acquired for the calibration, which are then taken by the
robot hand striding over boundary coordinates. Calibration is sensitive to
exposure which affects the detection of corners. Therefore, images without
all corners detected are automatically rejected by the system. The same
images are then used for hand-eye calibration. For each image the trans-
formation of the calibration pattern to eye can be estimated from 3D-2D
correspondences using Lavenberg-Marquardt optimization as done by An-
tonello, Gobbi, Michieletto, Ghidoni and Menegatti [180]. This approach is
used for calculating the hand-eye transformation. Since the robot knows the
transformation from base to end-effector, the hand-eye transformation can
be calculated using the calibration method provided by Tsai and Lenz [178].
Schematic representation of the manipulator is presented in Fig. 4.4. Af-

120

Figure 4.4: Schematic representa-
tion of how the camera is moved
by the robot end-effector while
taking images of the checkerboard
at different positions. The yel-
low and purple dots show the posi-
tions calculated by the acquisition
system at runtime from the given
boundary coordinate ranges. Hce

is the resulting matrix for camera
coordinate system to end-effector
coordinate system transformation.

ter finding the hand-eye transformation, any point in camera space can be
converted to end-effector space using:

rXe Ye Ze s
T “ HcerXc Yc Zc s

T (4.1)

4.5 Results

4.5.1 Errsmith

ErrSmith automatizes the process of modeling surface defects. There are
two main types of surface defects applicable in it - scratches and dents. For
each type of defect, a collection of custom defect tool models was made
(both from the sphere model). All the tools are of uniform size and made
with Blender, which has advanced sculpting features widely used among
computer graphics artists. The examples of defect tools in Fig. 4.2 were
specifically used on the gear model in Fig. 4.5 to obtain artificial defects
which can be seen in the Fig. 4.8. On the central image, we can see how the
first defect tool damaged a gear tooth. When running ErrSmith module,
defined parameters were specified as in Table 4.1.

Defect
creation

defect type [’scratch’, ’dent’]
defect size [(0.1, 0.35), (0.2, 0.4)]
number of defects [(1, 8), (2, 5)]
defect coordinates -

Geometry
processing

face normals noise Gauss(0, 0.001)
vertex noise -
face subdivision 2

Table 4.1: ErrSmith parameter values for the images in Fig. 4.8.

121

This assumes ErrSmith will make between 1 and 8 scratches and 2 to 5
dents. Scratches will have arbitrary size from 0.1 to 0.35. Dents will be large
between 0.2 and 0.4. Gaussian noise will be added to the face normals and
all the faces will previously be subdivided by factor 2. There is an option to
specify the number and size of defects in total (instead of separately per each
defect type). For some specific use cases, the precise defect locations can
be defined. The user can also specify the path to defect tool models, which
enables the user to directly influence the defect appearance by modeling his
own tools.

The outputs from ErrSmith, regardless of whether the images are being
rendered for the preview, involve: (1) an STL file containing the defective
object geometry, (2) an OBJ file containing a defect map in 3D, and (3) a
JSON file containing metadata. Metadata includes all the parameter values
(either default or defined by the user) for defect creation and geometry
processing, paths to exact defect tools with exact defect locations they were
applied to, and the amount of time it took to produce each defect.

4.5.2 Callistemon

Callistemon has been used to recreate surface inspection environment and
render an object within it from the provided camera viewpoints. The scene
consisted of the metal gear object and the physical light source (see Figures
4.5 and 4.6).

Object geometry was provided with the real object. Material property
was configured using metal-specific physically based microfacet model (i.e.,
metalBRDF) provided in Appleseed [184]. Roughness value was set to 0.25.
Anisotropy amount was set to 0.7. Fresnel normal incidence color was set
to (196, 199, 199) sRGB. Spatial variation was introduced using procedural
texture in OSL defined using:

vpx, yq “
a

px` cq2 ` py ` cq2 mod d (4.2)

Where c “ Spr mod 1.0q, r “
a

x2 ` y2. Sp¨q represents smoothstep func-
tion, d P R is used for controlling pattern density, x and y are coordinates
of the shading point P P R3. Value of the function is multiplied with the
calculated color of metal material. The resulting render is in Fig. 4.6.

Camera and light source properties were determined based on the ac-
quisition system described in Section 4.5.3. The light source geometry was
created using Blender (see Fig. 4.5). Light source material was set to diffuse
emissive distribution function. Light source position is defined relative to
the camera. Callistemon allows configuration of the environment light color
and intensity. As the environment influence is negligible in the real setup,
black, non-emitting environment is used in the simulation. Callistemon uses
Appleseed, an open-source, physically based global illumination rendering

122

Figure 4.5: Geometry of the object (left) and light (right) used in our
surface inspection environment.

Figure 4.6: Top: real image acquired by acquisition system. Bottom: ren-
dered image with metal material and texture which is also magnified on the
right. Note the defective geometry which was introduced using ErrSmith.

engine. Modern light transport technique, unidirectional path tracing, was
used along with five passes and adaptive pixel sampler.

Binary mask (see Fig. 4.7) of the object was created without any addi-
tional input. First, constant color was applied to the object. Next, environ-
ment light was enabled. These steps allow for a clear boundary between the
object and the environment. Finally, using OpenCV [186] binary thresh-
olding was performed on the rendered image. Due to discarded shading
information, parts of the object that are not seen in realistic render are seen
in binary image (e.g., inner side of the gear object).

Defective geometry created by ErrSmith was used in Callistemon (see
Fig. 4.8). Beside defects, rendered images contain metal material as de-
scribed above.

4.5.3 Acquisition System

For the purpose of this work, both the camera and the illumination device
have been mounted on a UR3 robot. The camera was Prosilica GC 2450

123

Figure 4.7: Left: overlap of rendered (red object) and real image without
calibration. Middle: overlap of rendered (red object) and real image with
calibration. Right: overlap of binary mask (red object) and real image with
calibration.

with a Sony ICX625 CCD sensor - an industrial, grayscale camera with
mounted Kowa 12mm lens. The sensor has resolution of 2448ˆ 2050 pixels
with 3.45µm ˆ 3.45µm pixel dimensions. The camera had a fully opened
fixed aperture and focusing distance set to 146 mm. The illumination device
is a DCM Sistemes ALU1006A-630C ring light mounted around the camera
lens.

System Configuration

A checkerboard pattern was used to perform the hand-eye calibration. Due
to shallow depth of field present in the camera setup, checkerboard with
11 ˆ 9 squares sized 6.6 mm was used. Calibration accuracy is limited to
the accuracy of the printed checkerboard, while an error by a millimeter
can produce large pixel deviation in the image. As discussed in Section
4.4.3 it is required to define boundary coordinates for the robotic arm. To
determine each boundary range the UR3 teach-in pendant was used. Be-
cause the boundary coordinates are manually inputted to the system, the
target reachability is satisfied. To achieve low error, a number of different
viewpoints were used while striding over boundary coordinates. 9 different
boundary coordinates are calculated using the UR3 teach-in pendant and a
total of 80 images from different viewpoints were requested to be captured.
Based on that the system calculates 80 different positions from which im-
ages will be captured. Each of these positions is then randomly mixed and
the robot takes one image for each of these positions. To ensure collision
avoidance, the robot was made to return to a safe position before going to
take the next position. To detect corners automatically OpenCV [186] and
ViSP [187] libraries were used. Images without all corners detected corners
are automatically rejected by the system. The rejection rate is lower when
the images are of lesser resolution compared to 100% resolution. This is due
to the fixed size of corner detection filters in OpenCV, where the convolution
size is too small to detect corners in high-resolution images.

124

Figure 4.8: Top row: defective geometry created using ErrSmith. Bottom
row: synthesized images using Callistemon. Images show visibility of sur-
faces and defects for particular light and camera setup. Some scratches are
deep therefore light is trapped. Dents show complex light response due to
complex internal structure.

4.5.4 Intrinsic and Hand-eye Calibration

The implementation of the intrinsic and hand-eye calibration has been pro-
vided by ViSP [187]. The final output of the process is a 4 ˆ 4 hand-eye
matrix Hce, 3 ˆ 3 calibration matrix K, and the radial distortion param-
eter k1. These details are used by the acquisition system. k1 is used for
undistorting the images. To validate the hand-eye transformation, known
3D points in robot space are back-projected into the 2D image captured by
the camera. In a robust hand-eye estimate, the back-projected 3D points
coincide with the seen 2D points in the image.

4.6 Discussion

The resulting images in Fig. 4.8 show us how using just 8 defect tool models
in total can produce a complex variety of surface irregularities. Since the
tool is partly carved into the object, there is a great number of possibilities
even for one defect tool, depending on how the tool is positioned, scaled,
or rotated. Applying Boolean operator with complex defect tools allowed
us to introduce more complexity and diversity into defects, while remain-
ing computationally inexpensive. This shows that our pipeline satisfies the
requirement R1. However, some faster and optimized Blender-external re-
sources should be used for these operations in the future. Introducing more

125

defect types would enable new use cases (e.g., color modifications imitating
stains). Geometry imprinted defects allow using arbitrary material dur-
ing image synthesis, since defects are part of the mesh and not the material.
Also, this way defects behave correctly under arbitrary light and camera po-
sitions. Additionally, there is a space for improvement of defect tool models
by experimenting with different modelling techniques or other geometries.
Applying physically based material and texture enabled more realistic ap-
pearance of the synthesised object as it can be seen in Fig. 4.6. Therefore,
requirement R2 is satisfied. Combination of physically based material and
modern light transport results in accurate reflections and realistic appear-
ance. Also, due to roughness, certain parts of the object are visible more
clearly while other parts are not visible at all (Fig. 4.8). This is impor-
tant for surface inspection tasks, because viewpoint coverage in this case
can be lower than coverage estimated purely using the geometry. Clearer
contrast can be achieved using advanced light distribution description such
as Illuminating Engineering Society (IES), also proposed by Reiner [173].
By applying texture, our goal was to reproduce the brushing pattern intro-
duced by industrial process. The texture is an important realism property,
therefore our aim is to investigate different texture synthesis methods. Ac-
quisition system enabled comparison of synthesized and real image satisfying
requirement R3. As it can be seen in Fig. 4.7, without hand-eye calibration
a miss-match in the overlap of the object in the rendered and the real image
is present. This mismatch has been removed using the hand-eye calibration
(see Fig. 4.7). Matching also depends on the distortion parameters of the
camera lens. Currently, calibration system can only model radial distortion
and not tangential distortion. Effects of tangential distortion can be seen
in the lower right half of the image. The effect of tangential distortion in-
creases as we move away from image center. Modeling tangential distortion
will further improve the results. As it can be seen, the presented pipeline
satisfies all requirements discussed in section 5.3, also it provides clear steps
as well as general solution for image synthesis for surface inspection.

4.7 Conclusion

The lack of images containing defects is a common obstacle in industrial in-
spection. In this work, we have presented a pipeline for synthesizing images
of an object with both ideal and defective surfaces. It consists of three mod-
ules. The first module, Errsmith, is responsible for imprinting the object
geometry with surface defects of various sizes and positions. This approach
ensures valid light response around defective areas of the surface, which
seems impossible when augmenting defects from real images to defect-free
images. The second module, Callistemon, performs realistic image synthe-
sis which incorporates surface inspection data along with material, light,

126

and camera specification to ensure realistic appearance. The third module
provides the acquisition of images through a robotic system and ensures
that the geometry of the objects in synthesized images and real images
match. This pipeline promises numerous applications. One example is syn-
thesizing images containing features unseen in real-world data for machine
learning approaches. It can be also used for simulating inspection systems
while designing specialized hand-crafted algorithms. Also, it can help dur-
ing viewpoint optimization for surface coverage where it is required to know
if a certain defect is visible from a particular camera and light position and
orientation. For further work, we would point out the importance of au-
tomatic evaluation of the synthesized image with regards to the real image
and the metric which would allow this. If synthesizing images containing
features unseen in real data would help defect detection models learn to
detect surface defects, could inspection systems start developing in similar
directions?

Core references

Lovro Bosnar, Doria Saric, Siddhartha Dutta, Thomas Weibel, Markus
Rauhut, Hans Hagen and Petra Gospodnetic, ”Image synthesis pipeline for
surface inspection”, LEVIA 2020: Leipzig Symposium on Visualization in
Applications, Leipzig, Germany, doi: 10.31219/osf.io/kqt8w

127

10.31219/osf.io/kqt8w

Chapter 5

Procedural Texture
Synthesis for Surface
Inspection

The automated visual surface inspection planning is an important part of
the quality assurance in automated custom product manufacturing. Vi-
sual surface inspection planning tackles image acquisition design and defect
detection. Both tasks greatly benefit from the utilization of realistic and
automated image synthesis of the inspected object. The realism of synthe-
sized images greatly depends on object material, whose properties are largely
influenced by texture. In this work, the focus is on parametric texture syn-
thesis and its application for visual surface inspection planning. First, the
texture present on physical samples is analyzed and the requirements for
texture synthesis models in visual surface inspection are introduced. Based
on observation and surface characterization standards, a model capable of
reproducing texture on physical samples is presented. This approach is gen-
eralized and further models are presented with respect to requirements. Fi-
nally, the importance of surface texture from the visual inspection planning
perspective is highlighted.

The contributions of this work are (1) texture synthesis model require-
ments for surface inspection, (2) novel texture synthesis models which enable
inspection planning expert to generate common machined surface texture in
repeatable and consistent manner, (3) introducing surface metrology con-
cepts in computer graphics texture modeling, (4) series of simulations with
introduced texture synthesis models to highlight and discuss the importance
of surface texture influence on object appearance and thus visual surface in-
spection planning.

129

5.1 Introduction

The goal of automated visual surface inspection is to detect various defects
on a product’s surface. This process requires a complete visual coverage
of the inspected product surface and usage of robust image processing algo-
rithms for defect detection. Industry 4.0 incentivizes product customization,
which makes the development of inspection procedures very challenging. An
answer to this likely lies in virtual inspection planning which is an actively
researched area (Gospodnetic et al. [6], [188], [189] and Mosbach et al. [190]).

The virtual inspection planning for a visual inspection aims to solve
two main tasks: the spatial configuration of acquisition hardware to ensure
required product coverage and the development of robust image process-
ing algorithms for defect detection. Both tasks rely heavily on the acqui-
sition of the representative product image data, i.e., the images showing
the appearance of the object during the inspection. As shown by Moham-
madikaji [191], [192] and Jorgensen et al. [193] the use of photo-realistic
rendering for a representative image simulation can greatly benefit the in-
spection design process.

In Chapter 4 a pipeline for image synthesis as a part of a virtual in-
spection planning system was presented. Using this pipeline, an inspection
planning expert, describes a 3D scene with the particular spatial configura-
tion of the inspected object, expected defects and acquisition hardware (il-
lumination and camera) and synthesizes images using physically-based light
transport simulation (Hall et al. [194]). Synthesized images are then used for
assessing the the acquisition hardware configuration and its placement for
obtaining the required coverage as well as development of defect detection
algorithms. In this work, the focus is on the texture of the inspected surface,
to which, the hardware positioning and the image processing algorithms are
very sensitive due to visible surface patterns, highlights and shadows (Fig.
5.8). Therefore, texture synthesis models are presented which are integrated
into the image synthesis system for surface inspection presented in Chapter
4, where inspection planning expert must only choose texture parameters.
Presented texturing modes enable photo-realistic image synthesis and thus
generating images as they would be taken in real-world, allowing inspection
expert to fully virtually perform the inspection planning.

Texture synthesis methods developed for computer graphics so far are
mostly targeting the film and the game industries and are undoubtedly suc-
cessful in achieving a high degree of realism. However, the existing texture
synthesis paradigm aims to assist artists in their creation process in which
the textures are manually and subjectively created and applied onto objects.
On the other hand, texture simulation for the visual inspection planning pro-
cess must be objective, parameterized, automatic and must assist inspection
planning expert. Therefore, the manual texture creation and application is
out of the question as it is too time-consuming and not consistently repeat-

130

able.

To tackle the texture synthesis for the visual surface inspection plan-
ning, a machining surface pattern of physical gear and spring inspection
objects (Fig. 5.5 and 5.6) is analyzed. In discussion with the domain ex-
pert, the texturing model requirements are gathered. Furthermore, a novel
texture synthesis model capable of reproducing the pattern present in the
gear and spring inspection objects, while satisfying the presented require-
ments is presented. In order to model a physically correct texture, surface
metrology concepts were used that are, to our knowledge, used for the first
time in computer graphics texture modeling. Those foundations are gener-
alized to the parallel and the radial textures (Fig. 5.1 and 5.10) that are
often present in machined surfaces. Finally, the importance of texture for
visual surface inspection planning is highlighted by providing and discussing
simulations with presented models.

The contributions of this work are: (1) the requirements for texture syn-
thesis models for surface inspection (Section 5.3), (2) the integration of the
surface metrology concepts in computer graphics texture modeling (Sections
5.2 and 5.4), (3) three novel procedural texture synthesis models (Section
5.4) that can be integrated into the rendering engines, providing parameters
for the planning experts to perform an automated generation of realistic tex-
tures in a repeatable manner, without any knowledge of computer graphics,
(4) simulations highlighting the importance of the realistic surface texture
for virtual inspection planning (Sections 5.5 and 5.6).

5.2 Related Work and State of the Art

Image synthesis and material modeling

A synthesized image is said to be realistic if it cannot be perceptually dis-
tinguished from a real image or environment (Greenberg et al. [176]). On
the other hand, a synthesized image is said to be photo-correct if it is indis-
tinguishable from the real image based on physical foundations. The foun-
dations for the realistic image synthesis are a physically correct 3D scene
definition and a physically-based rendering (e.g., appleseed [184]). Phys-
ically rendering is widely researched and discussed by Dutre et al. [195].
In this work, we focus on the material modeling aspect of the 3D scene
definition, namely texture modeling.

The foundation for physically plausible material modeling is the microfacet-
based bidirectional reflectance distribution function (BRDF) discussed by
Walter et al. [9]. Microfacet-based BRDF computes the amount of reflected
light for a given view, light direction and surface properties. It models cu-
mulative effect of eye-invisible surface geometry which greatly affects the
appearance. Microfacet BRDF consists of three main parts: distribution of
microfacet normals (NDF), geometry term and Fresnel term. NDF describes

131

amount of microfacet normals which contribute to the light reflection. It is
represented as a continuous distribution parameterized by roughness value
which determines microstructure regularity. Geometry term describes which
microfacets are shadowing and masking incoming and reflected light as dis-
cussed by Heitz [38]. Finally, Fresnel term describes amount of reflected
light and thus tint of the reflection.

Spatially uniform BRDF properties over surface result in an unrealisti-
cally smooth surface. The key for achieving surface complexity and therefore
realism is to spatially variate BRDF properties (i.e. roughness and normals)
over a 3D model surface using textures. Spatial variation of BRDF param-
eters over a the surface significantly contributes to the realistic appearance
(see Fig. 5.10) and thus is the focus of our work.

Texture synthesis

For the purpose of the visual surface inspection planning, we are interested
in both a realistic and an automated texture synthesis. Therefore, the ex-
isting texture synthesis methods can be grouped by the level of automation:
manual, example-based and procedural. Since manual object texturing re-
quires artists (e.g. Burley [52]), we consider such approaches unsuitable for
an automated environment and will not consider them.

The example-based approaches, surveyed by Wei et al. [56], replicate
the pattern specified by an exemplar image, over an object. However, a
parameterized mesh surface is required but typically not readily available.
Parameterization of complex meshes often requires a certain degree of man-
ual work and therefore is unsuitable for an automated environment. Differ-
ent approaches utilize generative adversarial networks (GAN) to synthesize
a large-scale output image while maintaining both the small-scale and the
global characteristics of the exemplar [196] and [197]. Unfortunately, ap-
plying resulting images over free-form geometry rises the problem of image
stitching and repetition. Next, visual artifacts can often appear in the gen-
erated tiles or in the corners and the borders of the final image which can
be only tackled with time-consuming, trial and error-based training using
a large number of image samples are required to be performed by an ex-
perienced user. Moreover, the representative exemplars, from which the
replicated features are learned, can be challenging to obtain.

The procedural approaches do not require the mesh parameterization
and a texture pattern is algorithmically defined using the rendering engine
shading languages, e.g. Open Shading Language (OSL) [185]. Procedural
textures can cover arbitrarily large surfaces with patterns ranging from sta-
tionary to globally varying and are configured by a set of the predefined
parameters representing the minimal user input (Ebert et al. [62]). There-
fore, they allow a high degree of automation, making them well suited for
the automated visual surface inspection planning. In our work, noise-based

132

textures (Lagae et al. [198]) proved useful for introducing complexity in the
encoded pattern. Approach by Glanville [109] where texture elements are
placed on the surface points determined by a procedural point distribution,
inspired our method, but instead of a random placement of elements, we
encode their positions in order to obtain a more structured pattern.

The development of procedural textures complexity intensifies with the
texture and geometrical complexity. We make this problem more tractable
by restricting the scope of textures to the well standardized textures result-
ing from the machining processes (Section 5.2).

Grooves and anisotropic reflectance modeling

Vangorp et al. [199] pointed out the influence of surface texture on light re-
flection and thus highlights. Manufactured surfaces, as discussed by Bosch
[200] exhibit scratches or grooves that can be individually invisible, meaning
that they are observed as an average anisotropic reflectance or individually
observable as detailed shadows and highlights. Directionality and orienta-
tion of grooves determine the anisotropic reflectance as shown by Poulin et
al. [201].

Raymond et al. [202] simulated the average anisotropic reflectance by
stretching the BRDF lobe in a desired tangential direction. Poulin and
Fournier [201] simulate the average anisotropic reflection using eye-invisible
cylinders representing surface grooves. Unfortunately, the lack of visible geo-
metrical features makes the surface appearance unrealistically smooth. Nev-
ertheless, this approach inspired us to use cylinders and torus as primitives
for modeling grooves. Data based approach was performed by Dong et al.
[174] where a microfacet BRDF was constructed using the surface profilome-
ter measurements. The resulting model reproduced the average anisotropic
reflectance and the visible texture details were additionally added via a
Gaussian random field. In contrast, our approach does not require a mea-
surement and directly results in an anisotropic reflectance with visible tex-
ture details.

Bosch [203–206] modeled the individually visible scratches by utilizing
two BRDFs and a 2D texture for marking the scratch positions. This ap-
proach requires a 2D scratch texture creation. Raymond et al. [207] modeled
a scratched surface by stacking layers with different scratch distributions.
Each layer (i.e. 2D texture) consists of an array of individual scratches with
pre-computed reflections. Unfortunately, the resulting surface is not a re-
sult of any specific manufacturing process. Both approaches require a UV
parametrization of the mesh for texture mapping.

133

Manufacturing and surface texture analysis

The surface texture greatly depends on the manufacturing process. A good
overview of manufacturing processes is given by Black et al. [2] where they
are grouped into casting, forming and machining processes. The casting
processes result in a bumpy surface similar to the skin of an orange. The
machining processes such as turning, milling and abrasion result in an elon-
gated grooved surface texture defined by the cutting tool [208]. In a turning
process, a workpiece is rotated against a cutting tool. In a milling process,
a rotating cutting tool is used for surface shaping. The abrasive methods
shape a surface using small abrasive granules. Additionally, the surface
can be processed further in order to achieve certain aesthetic or functional
properties.

Black et al. [2] and Jiang et al. [209,210] further give a good overview of
the surface metrology frameworks and the surface characterization, namely
roughness, waviness and lay (i.e., form). Surface roughness refers to the
finely spaced surface irregularities. Waviness describes the surface irregular-
ities with spacing greater than that of surface roughness. Lay is determined
by the production method and it describes a predominant surface pattern
direction. Lay types (Fig. 5.1) standardised by ISO 1302 [211] inspired the
texture synthesis models in our work. Wolf [212] provides an overview of sur-
face representation models as well as surface characterization via field and
feature areal parameters used in surface metrology for scale-limited surfaces.

Surface texture analysis is a widely researched aspect of machine vision
(see Beyerer et al. [5]). The texture of the manufactured surface can be
viewed as structural or semi-structural. A structural texture contains the
elementary patterns aligned in a deterministic spatial pattern. On the other
hand, the elementary patterns in semi-structured texture can be still rec-
ognized but their placement is affected by stochastic variations. For the
texture modeling, we were inspired by viewing texture as a set of elements
and their placement. The structural texture description (Humeau [213])
perceives textures in terms of elements and their placements. Another ap-
proach that inspired our work is Germ-grain model developed in continuum
percolation theory. Germ-grain model is a generalization of Boolean and
Boolean-Poisson models. It is driven by arbitrary stationary point process
which assigns arbitrary compact sets to points [108].

5.3 Requirements

The existing computer graphics methods provide an excellent foundation for
realistic image synthesis. The realism is achieved partly by the physically-
based light transport simulation and surface reflection models. The other
part of realism is achieved through the work of artists. Without the involve-
ment of an artist who creates the fine-scale surface details, materials and

134

(a) Radial. (b) Vertical. (c) Horizontal.

(d) Crossed. (e) Circular. (f) Isotropic.

Figure 5.1: Surface lay types (see Black et al. [2]).

imperfections, surfaces are unnaturally smooth and too perfect, thereby not
serving as a good representation of real surfaces. Visual surface inspection
planning requires a consistent and repeatable automated image synthesis.
Therefore, an automated and parameterized texture synthesis is needed. For
this purpose the procedural texturing methods are most suitable because
they enable a parameterized development of the texture synthesis models
with a minimal and more intuitive user input. Based on those observations,
a procedural texturing model must:

R4 Generate physically based texture feature values.

R5 Ensure a high resolution for different viewing distances.

R6 Cover an arbitrary surface area.

R7 Be configurable by a set of predetermined parameters.

R8 Require only intuitive input parameters.

R9 Be compatible with rendering engines.

The use of the physically-based surface values (R4) in a physically-based
light transport and shading promise a physically plausible surface-light in-
teraction which is, in turn, a prerequisite for a realistic appearance.

135

During a visual inspection, viewing distance can vary (e.g. variation
of camera’s focal length and its distance from the surface). Therefore, the
texture synthesis model must support a high-resolution texture during ren-
dering, regardless of viewing distance (R5).

Inspected products vary greatly in geometrical complexity. Therefore,
texture synthesis methods must cover an arbitrarily large, complex and free-
form surface area (R6).

The focus is on the machined surface textures which can be standardized
and categorized into classes (e.g., circular brushing) as discussed in Black
et al. [2]. Each class contains a range of textures that are similar yet dis-
tinguishable. For example, a two textures from the circular class may have
a different groove size which makes them a two different instances of the
same texture class. Therefore, the texture synthesis model must provide
the configuration parameters for recreating a range of texture instances of
a certain class (R7).

The texture synthesis models must be usable by quality inspection expert
who is unlikely to be a computer graphics expert. Therefore, intuitive input
parameters are needed (R8).

Texture synthesis models must provide a standardized interface to ren-
dering engines used for image synthesis in virtual surface inspection planning
(R9).

5.4 Methods

In this section, procedural models which describe visible texture patterns
algorithmically are presented, enabling continuous texture over object sur-
face evading problems of image stitching and tiling that have to be tackled
in example-based and GAN approaches.

Firstly, three novel texture synthesis models for describing common ma-
chining surfaces, namely circular, radial and parallel are presented. Sec-
ondly, three models of which two are based on existing methods, namely
Worley cellular texture for bumpy pattern and checker texture are shortly
discussed. The third model is built via triangular waves to represent knurl-
ing pattern.

Circular texture synthesis model

A circular texture (Fig. 5.1e) is modeled using a large amount of torus
elements placed concentrically around the world origin as illustrated in Fig.
5.2a. Each torus is defined by a minor (tube) radius r and a distance from
the neighboring torus element R. If a shading point P is lying inside a
torus tube radius, then a perturbed surface normal Np in shading point P is
calculated, otherwise, a mesh surface normal N is used during the shading
(Fig. 5.2c). The process of evaluating the surface normal of a shading point

136

is given in Algorithm 2. The perturbed normal Np in a shading point P
is calculated using a tangent vector T : Np Ð α ˚ T ` p1 ´ αq ˚ N . The
tangent vector T is found using the closest torus element to the shading
point P . The closest torus element with radius Rmajor is found by using
the shading point location Pxy0 and the regular placement of torus elements
shown in Fig. 5.2a. The perturbed normal is interpolated between the
original mesh normal N and the tangent T using a parameter α P r0, 1s. The
interpolation parameter α dictates an amount of normal perturbation. We
propose a smaller interpolation parameter (e.g., 0.3) so that the perturbed
normal Np does not significantly deviate from the mesh normal N . Ideal and
identical torus elements are not a good representation of grooves resulting
from machining because cutting tools always introduce deviation from the
ideal grooving pattern. The same also holds for the cylinder elements in the
parallel and radial texture synthesis methods. Therefore, additional pattern
complexity is introduced by adding noise to the minor radius. The minor
radius can vary per torus elements (see torus A and B in Fig. 5.2b and
5.2d) which is achieved by using torus major radius for noise evaluation.
The minor radius can also vary per segments of a torus object (see torus
C in Fig. 5.2b and 5.2d). In this case, the angular position of the torus
element is used for noise evaluation. In this way, an overlapping of the torus
elements is achieved, forming a more complex surface.

(a) Placement of torus elements. (b) Varying torus elements.

(c) Normal vector evaluation. (d) Varying torus elements.

Figure 5.2: Circular texture model.

137

Algorithm 2 Circular texture synthesis model

Require: P,N,R, r
Ensure: Np

Pxy0 Ð pPx, Py, 0q
Rmajor Ð R ˚ t||Pxy0||{Ru Ź current torus
Rminor Ð r ` noisepq Ź variation
if |||Pxy0|| ´Rmajor| ă Rminor then

α Ð |||Pxy0|| ´Rmajor|{Rminor
T Ð Pxy0 ´ normpPxy0q ˚Rmajor Ź tangent
T Ð normpT q
Np Ð α ˚ T ` p1´ αq ˚N
Np Ð normpNpq

else
Np Ð N

Parallel texture synthesis model

(a) Placement of cylinder elements. (b) Varying cylinder elements.

(c) Normal vector evaluation. (d) Varying cylinder elements.

Figure 5.3: Parallel texture model.

The parallel texture (Fig. 5.1b and 5.1c) is modeled using a large number
of parallelly placed cylinder elements as illustrated in Fig. 5.3a. Each cylin-
der is defined by its radius r and its distance to the neighboring cylinders
R. If the shading point P is inside the cylinder element, then a perturbed
normal Np is calculated and used for shading calculation. Otherwise, a mesh

138

normal N is used for the shading calculation (Fig. 5.3c). If desired, cylin-
ders can be rotated around an axis parallel to the texture plane normal for
a given angle θ. The evaluation of the surface normal in a shading point
is described in Algorithm 3. The perturbed normal Np is calculated using
a tangent vector T as described for circular texture synthesis model. In
this case, the closest cylinder with position Dcylinder to the shading point P
is found using the shading point position Px and the regular placement of
cylinder elements shown in Fig. 5.3a. The pattern complexity is increased
by adding noise to the cylinder radius. One possibility is to vary radius per
cylinder, that is, distance from shading point P to the cylinder center is used
for noise evaluation (see cylinder elements A and B in Fig. 5.3b and 5.3d).
The radius can also be varied per cylinder segments (see cylinder element C
in Fig. 5.3b and 5.3d). In this case, the noise is evaluated using the shading
point position in the cylinder. As a result of radius variation, the cylinder
elements are likely to overlap thus creating a more complex surface texture.

Algorithm 3 Parallel texture synthesis model

Require: P,N,R, r, θ
Ensure: Np

P Ð rotatepP, θ, p0, 0, 1qq Ź rotate around z axis
Dcylinder Ð R ˚ tPx{Ru Ź closest cylinder distance
Rcylinder Ð r ` noisepq Ź variation
if |Px ´Dcylinder| ă Rcylinder then

αÐ |Px ´Dcylinder|{Rcylinder
T Ð pPx ´Dcylinder, 0, 0q Ź tangent
T Ð normpT q
Np Ð α ˚ T ` p1´ αq ˚N
Np Ð normpNpq

else
Np Ð N

Radial texture synthesis model

The radial texture (Fig. 5.1a) is modeled using a large amount of cylinder
elements which are placed radially, as illustrated in Fig. 5.4a. Each cylinder
is defined by its radius r and an angle to its neighboring cylinder φ. If the
shading point P is inside the cylinder radius then a perturbed normal is
calculated, otherwise, a mesh normal is used for the shading (Fig. 5.4c), as
described in Algorithm 4. The perturbed normal Np is calculated using vec-
tor T as described for circular texture synthesis model. The closest cylinder
to P is constructed by finding a shading point angle from a reference direc-
tion Vref . Pattern complexity is increased by adding noise to the cylinder
radius. Noise is evaluated using the shading point position on the cylinder,

139

resulting in radius variation per cylinder segments (see Fig. 5.4b, 5.4d).

(a) Placement of cylinder elements. (b) Varying cylinder elements.

(c) Normal vector evaluation. (d) Varying cylinder elements.

Figure 5.4: Radial texture model.

Algorithm 4 Radial texture synthesis model

Require: P,N, φ, r
Ensure: Np

Vref Ð p1, 0, 0q Ź reference direction
Pxy0 Ð pPx, Py, 0q
φPxy0 Ð arccospnormpPxy0q ¨ Vref q
φcylinder Ð φ ˚ tφPxy0{φu Ź closest cylinder angle
Vcylinder Ð pcospφcylinderq, sinpφcylinderq, 0q Ź direction
Pcylinder Ð Vcylinder ˚ pVcylinder ¨ Pxy0q Ź projection
Rcylinder Ð r ` noisepq Ź variation
if ||Pcylinder ´ Pxy0|| ă Rcylinder then

αÐ ||Pcylinder ´ Pxy0||{Rcylinder
T Ð Pxy0 ´ Pcylinder Ź tangent
T Ð normpT q
Np Ð α ˚ T ` p1´ αq ˚N
Np Ð normpNpq

else
Np Ð N

140

Common and readily available models

Checker texture synthesis model Common procedural texture often
available in modeling tools. This method is dividing object into regular
cubes effectively resulting in checkerboard texture. Neighboring checkers
differ in height values and roughness. Height value is used to generate
perturbed normal in shading point using Mikkelsen’s surface gradient-based
bump mapping framework [65].

Bumpy texture synthesis model Procedural texture based on cellular
basis function introduced by Worley [62] where the closest distance from the
feature is used as height value. Height value is used for generating perturbed
normals [65].

Knurling texture synthesis model This procedural texture is based
on two triangle waves that are placed at different angles. The maximum
value of triangle waves in every point is used as a height value. The height
value is used for generating perturbed normals [65].

5.5 Results

Models introduced in Section 5.4 were used in a simulated 3D surface in-
spection scene containing inspected object, illumination and camera (based
on the description given in Chapter 4). The 3D scene is rendered using
appleseed rendering engine which is an offline, physically-based, production
rendering engine. For rendering, path tracing light transport with 150 sam-
ples per pixel was used.

Inspected objects were represented by gear, spring and hirth geometry
(Fig. 5.6). In addition, the gear object contains mesh imprinted scratch
and dent defects which are examples of defects commonly required to be
detected. All mesh objects have uniformly sized and distributed triangles
across the surface. Gear, hirth and spring meshes are composed of 113K,
44K and 1M triangles respectively. Gear and hirth objects are CAD models
created to resemble real inspected parts, whereas the spring object is created
to resemble a challenging, free-form surface. For both gear and the spring
object, a physical sample was created based on CAD description and was
used to obtain real images (see Fig. 5.5). The acquisition is based on
the description given in Chapter 4 and performed using Prosilica GC 2450
camera with a Sony ICX625 CCD sensor (2448ˆ2050 pixels) - an industrial,
grayscale camera with mounted Kowa 12mm lens. Material is defined by
appleseed’s metal BRDF model and texture synthesis models introduced
in Section 5.4. Texture synthesis models are implemented in OSL, which
also provides a set of predefined noise functions. cellnoisepq was used to
achieve torus and cylinder radius variation (see Section 5.4). As described
in OSL [185], cellnoisepq is a discrete function constant on ri, i ` 1q for all
integers i with different and uncorrelated value at every integer. The origin

141

Figure 5.5: Real images of spring (top) and gear (bottom) objects with zoom
on surface pattern.

of the simulated objects corresponds with the world origin of the 3D scene,
therefore circular and radial textures are centered (i.e., seeded) in world
origin. Generally, center of circular and radial texture depends on object
shape. Therefore, it should be set manually. An automatic solution would
be using the center of the inspected object bounding volume.

The illumination source is defined by torus-shaped mesh geometry and
diffuse-emission material and placed in a black, non-emissive environment.
The emissive material is specified using OSL. Light position is relative to
the camera, meaning that it is mounted on the camera and its position
transformation follows the camera transformation.

The camera is defined by appleseed’s pinhole camera model with a pixel

Figure 5.6: Mesh objects (gear, spring and hirth) and corresponding view
directions.

142

Figure 5.7: Gear object with circular texture and increased camera focal
length (i.e. zoom on surface pattern).

(a) (b) (c)

(d) (e) (f)

Figure 5.8: Comparison of synthesized images (top) and real acquired images
(bottom) of gear objects with circular texture.

size of 0.00824 mm, focal length 12.93 mm and resolution 1024x768 pixels.
The parameters correlate with real camera parameters.

Comparison of synthesized and real images is given in Fig. 5.8 and
5.9. The simulations in Fig. 5.10 contain set of images for each model,
with viewing direction depicted in Fig. 5.6. All scene parameters are fixed,
except for the texture showing the importance of texture influence on object
appearance. Circular, parallel and radial textures are presented in Fig. 5.10a
to 5.10c. Circular textures with increasing torus minor radius and a distance
between torus elements are presented in Fig. 5.10d to 5.10f. Fig. 5.7 shows
circular texture rendered with focal of 60 mm, effectively zooming in on the
surface. Finally, Fig. 5.11 shows influence of different texture on defect
visibility.

143

5.6 Discussion

The presented texture synthesis models for circular, parallel and radial tex-
tures will be discussed. Also, a series of simulations where all scene param-
eters are fixed except for the texture (Fig. 5.12, 5.10) will be presented.
The goal of these simulations is to highlight the importance of texture on
appearance and visual surface inspection planning.

5.6.1 Texture Synthesis Models

The presented methods define geometrical surface properties (i.e., normal
vectors) based on parameters resulting from machining processes. There-
fore, instead of subjective texture generated manually by an artist, surface
texture in rendered objects is a result of parameterized calculations founded
on surface manufacturing standards, partially satisfying requirement R4.
Therefore, further research of physically correct surface texture parameters
is needed.

In Fig. 5.7 is visible that a higher camera zoom level (i.e., higher camera
focal length) produces high quality surface features resolution which satisfies
requirement R5. Furthermore, Fig. 5.10 show that procedural texture can
cover arbitrary surface area without repetition and stitching artifacts, also
without problems caused by free-form surface. Therefore, requirement R6 is
satisfied. Both of the aforementioned observations are possible because the
texture pattern is described algorithmically and is re-evaluated for differ-
ent viewing conditions, in contrast to example-based or deep learning (e.g.,
GAN) approaches where only a static image of fixed size is generated.

Circular, parallel and radial (Fig. 5.10a to 5.10c) texture synthesis mod-
els represent three common machined surface texture classes (Fig. 5.1). For
circular texture class, different texture instances are depicted (Fig. 5.10d
to 5.10f) showing that the presented models are configurable by a set of
predetermined parameters, satisfying requirement R7. Therefore, inspec-
tion planning experts have direct control over generated texture whereas
in example-based or deep learning approaches, the user can only rely on
image samples of which representative ones can be hard to obtain and time-
consuming, experience-based training of a black box.

The presented texture models use only shading point position and normal
known during rendering. No mesh preprocessing or any other user input is
needed. Models provide parameters that are configuring texture elements
and their placement, for which computer graphics knowledge is not needed,
making models more suitable for inspection planning expert (requirement
R8). Comparing models presented in this work to example-based and GAN
approaches discussed in Section 5.2, it can be seen that the texture can
be generated with considerably less user input because dataset acquisition,
preparation and training is not required to be performed by the inspection

144

(a) (b) (c)

(d) (e) (f)

Figure 5.9: Comparison of synthesized images (top) and real acquired images
(bottom) of spring objects with circular texture.

planning expert. Furthermore, texture evaluation time is not affected by
the number of texture elements (e.g., torus and cylinder elements) that
contribute to texture detail and it is typically under one second for a personal
laptop (CPU: Intel Core i7, 8 cores, 1.9GHz. GPU: Intel. RAM: 16GB). This
is because only relevant texture element is constructed for current shading
points (see Section 5.4).

Models are implemented using OSL, a highly optimized, industry-standard
shading language supported by physically-based, ray-tracing rendering en-
gines. This satisfies the requirement R9. As OSL syntax is very similar to
other shading languages, implementation transfer to other rendering envi-
ronments is easier, should there be a need for it.

The parameters of the circular texture synthesis model can be fitted so
that anisotropic reflectance and texture patterns of the synthesized object
matches the real object to a high degree resulting in a close resemblance (see
Fig. 5.8 and 5.9). Based on the same principles as in the circular texture
synthesis method and with the help of manufacturing standardizations (Fig.
5.1), parallel and radial texture synthesis models are developed as discussed
in Section 5.4. Therefore, inspection planning expert can fit the parameters
of given models to match the appearance of the real texture. Differences
introduced by factors such as surface defects (e.g., scratches), illumination,
camera lens and sensor can still be observed (e.g., reflection artifact in Fig.
5.9f) and should be tackled in further work, but are not within the scope
of this work. Also, it is important to note that background can be barely
visible in acquired images, which is not the case in inspection acquisition sys-

145

(a) Circular. (b) Parallel. (c) Radial. (d) Circular
instance 1.

(e) Circular
instance 2.

(f) Circular
instance 3.

(g) Circular. (h) Parallel.

(i) Checker. (j) Parallel. (k) Radial. (l) Bumpy.

Figure 5.10: Gear, spring and hirth objects. Note that only a difference in
texture causes a huge difference in surface visibility.

tems, thus can be ignored. Additionally, further investigation of parameters
resulting from manufacturing processes (e.g., groove amplitudes) as well as
parametric relation between machining and texture synthesis on arbitrary
surfaces is needed.

5.6.2 Texture Influence on Appearance

Uniform, smooth surfaces without textures will result in simple, isotropic
reflection. On the other hand, surface patterns such as grooves cause dif-
ferent types of anisotropic reflections depending on groove orientations and
shapes as discussed in Section 5.2. This effect is visible in Fig. 5.9 and
5.10. It is important to note that anisotropic reflection in presented figures
is purely due to visible geometrical features, generated by presented texture
synthesis models as opposed to average anisotropy reflectance models, dis-
cussed in Section 5.2. Differences in reflection due to surface texture must
be taken into account during surface inspection because some parts of the
surface will not be visible. Furthermore, visible geometrical details are the
key to a realistic surface and have additional importance when it comes to
visual inspection planning, which is a possibility to adapt the acquisition
conditions without ever physically positioning the hardware. This way, an
inspection expert can truly plan what will the acquisition capture.

146

Figure 5.11: Gear object with circular, radial, knurling and casting textures
illustrating how defect visibility greatly depends on texture.

Figure 5.12: 3D scene containing the same setup except for surface textures:
no texture (only BRDF), circular texture, parallel texture, radial texture.
Note how various surface textures cause various anisotropic reflections.

Surface texture causes a wide range of highlights and shadows as it can
be seen in Fig. 5.10. Due to the highlights and shadows, the visibility
of surface parts changes gradually, therefore some parts of the surface are
visible, while others are hidden. This leads to the problem of defect visibility
(see Fig. 5.11) where scratch and dent defects are ranging from visible to
invisible based on the texture. Finally, presented simulations clearly show
how the difference in texture causes a wide range of appearance levels.

5.7 Conclusion

In this work, we have tackled texture synthesis used in representative prod-
uct image data generation for visual surface inspection. We have introduced
requirements as well as presented three novel procedural texture synthesis
models capable of generating texture patterns common in machined sur-

147

faces. Presented models allow surface inspection planning expert to fully
virtually visualize object surface for inspection planning without computer
graphics knowledge. Presented models are based on procedural recreation
of surface geometrical pattern, on a greater scale than BRDF, for describing
realistic continuous surface texture. Furthermore, presented models ensure
introduced requirements, namely, they generate physically based values R4,
ensure high resolution regardless of view distance R5, cover arbitrary large
surface area R6, enable multiple texture instances per texture class R7,
require only input intuitive to non-experts R8 and are compatible with a
range of existing rendering engines R9. With presented models, inspection
planning experts can create realistic machined surfaces without knowledge
of computer graphics, in a repeatable and automated manner. Finally, the
importance of surface texture for visual surface inspection planning has been
highlighted by providing and discussing series of simulations with the pre-
sented texture synthesis models. In future work, dynamic texture scale
evaluation should be investigated.

Core references

Lovro Bosnar, Markus Rauhut, Hans Hagen and Petra Gospodnetic, ”Tex-
ture synthesis for surface inspection”, LEVIA 2022: Leipzig Symposium on
Visualization in Applications, Leipzig, Germany, doi: 10.36730/2022.1.

levia.4

148

10.36730/2022.1.levia.4
10.36730/2022.1.levia.4

Chapter 6

Procedural Defect Modeling
for Virtual Surface
Inspection

Development of automated visual surface inspection systems heavily de-
pends on the availability of defected product samples. Both inspection
hardware configuration and training of defect detection models require diver-
sified, representative and precisely annotated data. Reliable training data
of sufficient size is frequently challenging to obtain. Using virtual envi-
ronments, it is possible to simulate defected products which would serve
both for configuration of acquisition hardware as well as for generation of
required datasets. In this work, parameterized models for adaptable simula-
tion of geometrical defects, based on procedural methods are presented. Pre-
sented models are suitable for creating defected products in virtual surface
inspection planning environments. As such, they enable inspection planning
experts to assess defect visibility for various configurations of acquisition
hardware. Finally, the presented method enables pixel-precise annotations
alongside image synthesis for the creation of training-ready datasets.

Contribution of this work is presented in the video on the following link:
https://www.computer.org/csdl/video-library/video/1MgrjWE4J7W

6.1 Introduction

Advancements in production are aiming toward the implementation of In-
dustry 4.0 concepts such as automated and customized product manufactur-
ing. However, the automation of production is limited by quality inspection
and its level of automation. An important and widely used quality assurance
method for ensuring defect-free product surfaces is visual surface inspection
(VSI).

149

https://www.computer.org/csdl/video-library/video/1MgrjWE4J7W

Automated VSI requires an inspection planning expert to configure ac-
quisition hardware (i.e., camera and illumination) and its placement for
required surface coverage. Due to the geometrical complexity of products
and highly reflective materials, the inspection planning procedure is cum-
bersome and expensive. A solution was proposed by Gospodnetic et al. [6]
in the form of the virtual inspection planning environment, where an expert
configures the acquisition hardware and its placement in a 3D scene. The
extension was introduced in Chapter 4, where the inspection environment
was simulated using physically based rendering enabling representative im-
age data synthesis and showing what a real camera in a real environment
would see. This provided the expert with the possibility to predict acquired
image characteristics without the need for a physical laboratory.

The discussed virtual inspection environment proposed an initial method
to defect simulation. However, without the possibility of straightforward de-
fect parameter adaptation which is crucial for the development of automated
and robust VSI systems. First, various defect shapes exhibit different re-
sponses to illumination and thus visibility. Defect visibility is important
information for inspection planning expert during the configuration of ac-
quisition hardware placement (i.e., required imaging angle). Furthermore,
VSI systems require machine vision models for defect detection. In the case
of classical approaches, a redundant set of representative defects is needed
for the development of robust analysis methods. On the other hand, ma-
chine learning approaches require large, diversified and precisely annotated
datasets. Due to the lack of defected physical product samples, particular
defects (which also have to be acquired) and the influence of a complex
environment obtaining the right amount of images from the right position
becomes difficult very fast. Furthermore, annotating the acquired images re-
quires manual effort which is expensive, error-prone, inconsistent and often
subjective.

In this work, the method introduced in Chapter 4 is extended with pa-
rameterized models for the adaptable generation of the geometrical dent and
scratch defects on a simulated inspected object surface. Dent and scratch
defects represent geometrical flaws on object which must be detected using
visual surface inspection (Black et al. [2], ch. 43). Models for creating dent
and scratch defects are obtained by using procedural geometry methods in
order to completely algorithmically describe defect shapes, their distribution
as well as integration of domain knowledge (e.g., manufacturing). To our
knowledge, such complete control over defect modeling enabling integration
of domain knowledge has been done for the first time. In this work, the
focus is on manufactured metal parts of complex geometry and non-trivial
texture, for which dent and scratch defects must be detected. Specifically,
defecting workflow was demonstrated on metal car part - clutch (Fig. 6.6,
6.8 and 6.9).

Presented models enable controllable creation of defected product ob-

150

jects. Defects are geometrically imprinted into the object which ensures
correct defect visibility under arbitrary view and illumination conditions.
This provides representative defect visibility for an inspection planning ex-
pert during acquisition configuration. Finally, the presented method makes
it possible to guarantee pixel-precise defect annotations simultaneously with
image synthesis, thus enabling the automated creation of training-ready
datasets.

This work introduces: (1) requirements for parameterized defect genera-
tion models, (2) procedural geometry modeling workflow for developing pa-
rameterized defecting models, (3) parameterized models for dent and scratch
defects creation over object surface intuitive to inspection planning expert,
(4) automated generation of defect annotations for training-ready datasets,
(5) examples and discussion highlighting the importance of geometrical de-
fect modeling for correct defect visibility representation.

6.2 Related Work and State of the Art

Generation of defected datasets can be performed using virtual environments
or image-based methods. Virtual environments proved beneficial for both
the generation of training datasets (Nikolenko et al. [214]) and the VSI
planning process (Gospodnetic et al. [188]). Defect detection in VSI is based
on illuminating the surface from different angles and observing its response.
Thus, the visibility of surface flaws greatly depends on their geometrical
nature (Black et al. [2], Chapter 43). Therefore, the focus is on modeling
geometrical defects for virtual environments. For the sake of completeness,
texture-based defects and their shortcomings in virtual environments are
discussed. Finally, image-based methods and their drawbacks compared to
virtual environments are discussed.

Geometry-based defects

Geometry modeling is widely adopted and greatly developed for building
virtual environments for games and films. Powerful procedural modeling
tools such as Houdini [107] are developed for flexibility and artist produc-
tivity. However, due to their complexity and learning curve, they are not
suitable for inspection planning experts. Nevertheless, Houdini’s procedural
workflow inspired the approach presented in this work. In this work pa-
rameterized models for defect creation which are more suitable for usage in
virtual inspection environments are presented.

Gutierrez et al. [215] used height maps for creating surface displacement
representing a defect. However, the usage of height maps requires the un-
wrapping of geometry which requires substantial manual work for free-form
geometry. Further, as displacement is done in the surface normal direction,
it can not reproduce overhanging geometry.

151

In Chapter 4 a novel defect modeling workflow is presented, where a 3D
geometry representing a defecting tool is modeled and imprinted on product
surface geometry. Defecting tool geometry is imprinted into product surface
using Boolean operations discussed by Zhou et al. [216]. Geometrically
imprinted defects realistically and correctly represent 3D defect shape and
its interaction with light. Geometrical defects can trap and reflect light
in various directions based on viewing and illumination conditions. These
effects can not be correctly simulated using texture-based or image-based
defects as discussed by Rushmeier et al. [217]. In Schmedemann et al. [218],
a similar workflow was used, however, it is not clear how were the defects
placed or modeled and if any parameters are available. It can be only
concluded that the defecting tool creation is mostly manual and limited
to spherical shapes. The method introduced in Chapter 4 is extended by
introducing parameterized and adaptable models for both the creation of
defecting tools (i.e., dents and scratches) and their placement over the object
surface.

Our approach is based on procedural methods. Foundations for proce-
dural modeling are discussed by Ebert et al. [62]. The basis of procedural
modeling lies in controllable stochastic methods based on noise (Lagae et
al. [198]) which were utilized for defecting tool creation and placement.

Procedural geometry modeling is often used for content creation in vir-
tual worlds (Smelik et al. [96]). Our work was specifically inspired by mod-
eling terrain irregularities (Weiss et al. [111]), where modeling geometrical
operations (e.g., subdivision and extrusion) proved as a good foundation for
modeling the irregularities of the defecting tool geometry.

Texture-based defects

Modeling defects using procedural textures was discussed by Boikov et al.
[219]. Defects were modeled by a series of deformations imposed on noise
function. A similar approach, but with image textures was done by Bosch et
al. [220]. The manually created texture was used to specify the position of
scratches over the surface. This texture is then used to switch between two
BRDFs: one for scratches and one for the surface. Different approach was
taken by Raymond et al. [207] who modeled a scratched surface by stacking
layers with different scratch distributions. Although impressive, each layer
containing individual scratches reflections must be pre-computed and stored
as 2D texture which further has to be applied on free-form surface. Unfor-
tunately, manual involvement and image mapping on free-form geometry
are not suitable for inspection planning expert. Furthermore, texture-based
methods are not perturbing the actual geometry. Therefore, they fail to cor-
rectly model the defect geometrical details and depth. As interaction with
light greatly depends on geometrical shape (e.g., light trapping or redirec-
tion) texture-based methods do not provide representative surface visibility

152

(Rushmeier et al. [217]) and thus defect visibility for all illumination and
viewing conditions. In our work, defects are geometrically modeled ensuring
correct interactions with light.

Image-based defects

Image processing methods have also been used for defect creation. Most
successful approaches are based on GANs as discussed by Niu et al. [221].
However, there are several downsides. First, these approaches operate di-
rectly on images that must be acquired beforehand. Next, the lack of de-
fected physical product samples results in poor diversity of generated defect
images which is further propagating to the training procedure. Moreover,
those methods lack controllability since the only way to control them is
through input images, not parameters. Next, those methods cannot gener-
ate features they have not seen, including different imaging and illumination
conditions. Finally, the results are images and a substantial amount of work
is required for incorporating them into 3D virtual environments.

6.3 Requirements

Procedural geometry modeling approaches have been widely developed and
adopted in the film and game industry. One reason for this is the modular
and algorithmic description of objects, which allows significant content cre-
ation flexibility. The resulting parameterized models can be used for rapid
object creation by simply tuning the parameters. Unfortunately, existing
general-purpose procedural modeling tools (e.g., Houdini) are not intuitive
to inspection planning experts or suitable for integration with inspection
planning. A promising solution lies in specialized parameterized models for
defect creation, stemming from a collaboration between computer graphics
experts and domain experts. The resulting defecting models should offer
parameters intuitive to an inspection planning expert, who can use them to
create defected product instances in a virtual environment. Based on the
discussion with a domain expert, defecting models should:

R10 Be configurable by a set of predetermined parameters

R11 Ensure required defect diversity

R12 Require only intuitive input parameters

R13 Be applicable to arbitrary free-form product geometry

R14 Provide means for automatic defect annotation

R15 Be usable in image synthesis environment

153

R16 Be usable in interactive inspection planning environment

Defecting models must provide parameters for controllable creation of arbi-
trary amount of different defected geometries (R10). Provided parameters
must be configurable so that the creation of diversified defects is ensured
(R11). Parameters must be usable by an inspection planning expert who is
not necessarily a computer graphics expert (R12). Defecting models must
perform correctly regardless of product geometry shape (R13). Models
must generate information needed for defect annotation in the synthesized
images (R14). Created defected objects must be ready for image synthesis
and therefore defecting models must be compatible with image synthesis
environments (R15). Finally, defecting models must be usable in an in-
teractive inspection planning environment for image acquisition, hardware
configuration and planning of its placement (R16).

6.4 Methods

Two parameterized models based on procedural geometry methods for the
controllable creation of dent and scratch defects are presented. Presented
defect creation models are based on the following workflow (Fig. 6.1):

(1) Generate defect positions.

(2) Generate defecting tool geometry for dent and scratch defects for each
position.

(3) Create defect shell geometry.

(4) Imprint the defecting tool geometry into the product geometry surface.

Step (4) consists of CSG Boolean difference [216] between product object
geometry and defecting tool geometries.

Defect positioning methods

Defect positioning methods define the distribution of points on object surface
which are in later steps used for placing defecting tool. Thus, they define
where the defecting will take place.

Manual positioning (Algorithm 5). User picks screen-space coordi-
nates Pscreen which are used for ray-casting with mesh M . Found intersec-
tions are used as defecting positions P . Although manual, this method can
help for precise interactive defecting by inspection planning experts.

Random placement (Fig. 6.2a and Algorithm 6). First, for each face
of the given mesh M , the number of face samples nface samples is calculated
based on the face area and user-defined density d ą 0.0. This way, larger
faces will have more samples and smaller faces will have fewer samples.

154

Figure 6.1: Defected geometry creation workflow. First, defect positions are
generated over the surface. Second, for each generated position, a unique
dent (blue) or scratch (red) defecting tool is created. Finally, the created
defecting tools are imprinted into the surface.

Algorithm 5 Manual placement

Require: M,Pscreen
Ensure: P

for Pscreen i in Pscreen do
P Ð raycastpM,Pscreen iq

Higher density enables generating more samples on a face. Next, for each
face, random barycentric sampling is performed nface samples times. Finally,
when all faces are sampled (Pallq, user-defined amount n of random samples
are selected from all samples Pall as defecting positions P . This method is
inspired by Blender’s [150] point distribution geometry node.

Algorithm 6 Random placement

Require: M,n, d
Ensure: P Ź Positions
Pall Ð r s

for fi in M.faces do
nface samples Ð rareapfiq ˆ ds

Pall.addpsamplepfi, nface samplesqq

P Ð pick n randompPall, nq

Localized placement (Fig. 6.2b and Algorithm 7). First, the bounding
volume hierarchy (BVH) acceleration data structure of object mesh M is
constructed. Next, n points are randomly sampled within the user-defined
cube volume of size S and centered at C. Finally, BVH is used to find points

155

on the object mesh which are closest to all of the sampled points Vpoints.
The found points are further used as defect positions P .

Algorithm 7 Localized placement

Require: M,n, S,C
Ensure: P Ź Positions
bvhÐBVHpMq
Vpoints Ð sample cubepC, S, nq
P Ð bvh.nearestpVpointsq

Edge placement (Fig. 6.2c and Algorithm 8). First, for each edge of
the given mesh M , an angle θ between faces sharing that edge is calculated.
Next, if θ is within the user-specified range φmin and φmax, then a number
of points on that edge are sampled randomly and stored (Pall). The number
of edge samples is calculated based on edge length and user-specified den-
sity parameter d ą 0.0. Finally, n random samples are taken from Pall as
defecting positions P .

Algorithm 8 Edge placement

Require: M,n, φmin, φmax, d
Ensure: P Ź Positions
Pall Ð r s

for ei in M.edges do
θ Ð neighbouring faces anglepeiq
if θ ą φmin and θ ă φmax then

nedge samples Ð rlenpeiq ˆ ds

Pall.addpsamplepei, nedge samplesqq

P Ð pick n randompPall, nq

Cluster placement (Fig. 6.2d and Algorithm 9). Methods (1), (2) and
(3) can be extended so that for each generated sample, a cluster of samples is
generated in an arbitrary neighbourhood. First, BVH for fast spatial queries
is constructed using a given mesh M . Then, for each given starting point
pi P Pstart a cube of size S and center pi is sampled for ncluster points and
stored (Pall). Finally, for all sampled points Pall, the BVH was used to find
the closest points P on mesh which are later used as defecting positions.

Generating denting tool geometry

For each generated dent position, the following parameterized models for
creating denting tool geometries can be used:

Spherical denting tool (Fig. 6.3a and Algorithm 10). First, triangu-
lated sphere mesh with nverts vertices is created. Next, scaling and rota-
tion are performed using random scaling factors and rotation angles from

156

Algorithm 9 Cluster placement

Require: M,Pstart, ncluster, S
Ensure: P Ź Positions
bvhÐBVHpMq
for pi P Pstart do

P.addpsample cubeppi, S, nclusterqq

P Ð bvh.nearestpP q

(a) Random placement. (b) Localized placement.

(c) Edge placement. (d) Cluster placement.

Figure 6.2: Defect positioning algorithms.

157

(a) Spherical denting tools. (b) Clustered denting tools.

Figure 6.3: Examples of denting tool geometries.

user-specified ranges srange and rrange respectively. Finally, displacement
of vertices in normal direction using noise is performed, parameterized by
strength dstrength and frequency dfreq.

Clustered denting tool (Fig. 6.3b and Algorithm 11). First, points
inside of a cube volume with size Csize are sampled randomly. Next, on
each sampled point, randomly scaled and rotated elements (e.g., sphere or
cube mesh) are placed so they are partially overlapping. Further, the cre-
ated elements are merged into one object using voxel remeshing. Finally,
resulting mesh can be scaled and rotated by user-specified ranges srange and
rrange. Additionally, vertex displacement in normal direction can be per-
formed controlled by noise with user-specified frequency dfreq and strength
dstrength.

Algorithm 10 Spherical denting tool creation

Require: nverts, srange, rrange, dstrength, dfreq
Ensure: D Ź Denting tool geometry
D Ð create sphere meshpnvertsq
D Ð scalepD, srangeq
D Ð rotatepD, rrangeq
D Ð vertex displacepD, dstrength, dfreqq

Generating scratching tool geometry

Each generated scratch defect position is used as starting point for building
scratch keypoints using mesh walking. Next, scratch keypoints are used for

158

Algorithm 11 Clustered denting tool creation

Require: Csize, srange, rrange, dfreq, dstrength
Ensure: D Ź Denting tool geometry
Cpositions Ð sample cube volumepCsizeq
Celements Ð rs

for p in Cpositions do
eÐ create meshp”sphere”|”cube”q
escale Ð random vectorpCsizeq
erotate Ð random scalarp0, 2πq
eÐ transformpp, escale, erotateq
Celements.addpeq

D Ð remeshpCelementsq
D Ð rotatepD, rrangeq
D Ð scalepD, srangeq
D Ð vertex displacepD, dfreq, dstrengthq

building solid geometry which represents a scratching tool. Finally, scratch-
ing tool geometry is refined (e.g., vertex displacement).

Scratch keypoints roughly define scratching tool geometry (Fig. 6.4)
and are generated as described in Algorithm 12. First, a BVH acceleration
structure is built using the given mesh M . Next, path ending point Pend
is generated using BVH, so it lies in user-defined distance range R from
starting point Pstart. Finally, path keypoints are generated iteratively using
BVH neighbourhood search from starting point to ending point with user-
defined distance S.

Algorithm 12 Generating scratch keypoints

Require: M,Pstart, R, S
Ensure: Pkeypoints Ź Scratch keypoints
Pkeypoints Ð rPstarts
bvhÐ BVHpMq
Pend Ð farthestpbvh.nearestpPstart, Rqq
tmpÐ Pstart
while distptmp, Pendq ą 0 do

dir Ð normalizepPend ´ tmpq
next “ tmp` dir ˚ S
next “ BVH.nearestpnextq
Pkeypoints Ð rPkeypoints, nexts
tmpÐ next

Generated scratch keypoints are further refined (e.g., displaced) and used
for constructing solid geometry representing scratching tool (Fig. 6.4). Solid

159

Figure 6.4: Scratch keypoints, scratching tool geometry, scratch render,
scratch mask (annotation).

geometry can be built using the Bezier curve or metaball object. Bezier
curve is built using keypoints as Bezier control points. Next, the curve is
thickened and transformed into the mesh. Finally, mesh vertices can be
additionally displaced in vertex normal direction using noise. Alternatively,
the metaball object is constructed from generated keypoints by firstly inter-
polating additional points between generated path keypoints. Next, on each
point, a metaball object is placed. As metaballs are analytically defined,
they ”melt” in one another when overlapping, forming continuous solid ge-
ometry. Finally, the metaball object is converted to mesh and mesh vertices
can be further displaced in the vertex normal direction using noise.

Generating defect shell geometry

Defect shell geometry (Fig. 6.5) is constructed using defecting tool geometry
and CAD of the inspected object. First, the Boolean intersection between
the CAD object and the defecting tool is calculated. Next, the defecting
tool geometry is slightly downscaled (e.g., by a factor of 0.99). Finally,
the Boolean difference between the scaled defecting tool and the intersected
object from the previous step is calculated. The resulting geometry is a
defect shell and is used for rendering defect annotations.

6.5 Results

The complete defecting workflow (Fig. 6.1) introduced in Section 6.4 was
implemented using Blender [150] Python API and requires only Blender as
a dependency and availability of a CAD model. The results of the defecting

160

Figure 6.5: Dent (left) and scratch (right) defects with corresponding defect
shells (green) and defecting tools (blue).

(a) Blisk (b) Clutch (c) Gear

Figure 6.6: Inspected object CAD models.

Figure 6.7: Scratches and dents visibility as view and illumination changes
in direction of an arc above defects.

161

process were used in a virtual surface inspection environment containing
the inspected object, illumination and camera described in Chapter 4. The
3D scene is rendered using appleseed [184], a physically-based, path-tracing
rendering engine.

Inspected objects used in virtual environment are: blisk, clutch and gear
(Fig. 6.6). All mesh objects have uniformly sized and distributed triangles
across the surface. Blisk, clutch and gear meshes are composed of 200K, 80K
and 11K triangles respectively. Blisk and clutch objects are CAD models
representing real inspection parts whereas the gear CAD model is created
to resemble real inspected parts. Material is defined by appleseed’s metal
BRDF model and OSL [185] texture models introduced in Chapter 5.

The illumination source is defined by torus-shaped mesh geometry and
OSL’s diffuse-emission material. Its position is relative to the camera, mean-
ing that it is mounted on the camera and its position transformation follows
the camera transformation. The environment is black and non-emissive.

The camera is defined by appleseed’s pinhole camera model: pixel size
0.0069 mm, focal length 12.93 mm and resolution 1224 ˆ 1025 pixels. The
parameters correlate with real camera parameters.

Fig. 6.7 shows defected gear geometry illuminated from different angles.
Comparison of the real and simulated clutch object containing defects is
given in Fig. 6.8. A close-up comparison of the real and simulated dent and
scratch defects on clutch and gear objects is given in Fig. 6.9. Defect shell
geometry (Section 6.4) was used for rendering annotations. First, a 3D scene
containing inspected CAD object with assigned black, non-emissive material
and defect shell geometry with assigned white emissive material is created.
Next, sources of illumination were disabled and environment illumination
was set to black, non-emissive. Finally, rendering the described 3D scene
resulted in defect annotations as can be seen in Fig. 6.10 for the defected
blisk object.

6.6 Discussion

Presented defecting models are controllable by a set of parameters, as dis-
cussed in Section 6.4, satisfying requirement R10. Defecting model pa-
rameters are provided in ranges that can be sampled to obtain a space of
diversified defects over the object surface (see e.g., Fig. 6.10), satisfying
requirement R11. Defecting model parameters are defining defects in terms
of their spatial distribution and shape, attenuating the need for computer
graphics knowledge (see Section 6.4), making the presented models more
intuitive to inspection planning expert, partly satisfying requirement R12.
Discussion with experts regarding what makes defecting models usage even
more intuitive is left for future work. Defecting models can be used on com-
plex, free-form geometry (e.g., Fig. 6.8), satisfying requirement R13. As

162

Figure 6.8: Comparison of real (left) and simulated (right) defected clutch
object.

Figure 6.9: Comparison of real (top) and synthetic (bottom) dent and
scratch defects.

163

Figure 6.10: Defected instances of blisk object (above) and annotations
(below).

discussed in Section 6.4 and visible in Fig. 6.10, automated, pixel-precise
defect annotation is supported, satisfying requirement R14. Presented de-
fecting models were used in existing image synthesis (Chapter 4) and in-
spection environment (Gospodnetic et al. [6]) to produce resulting images,
therefore, satisfying requirements R15 and R16.

Fig. 6.7 shows defect visibility under changing illumination and view-
ing positions and thus the importance of geometrically imprinted defects.
Changes in illumination and viewing configuration cause different parts of
defects to be visible. Especially interesting cases for surface inspection plan-
ning are grazing angles, where only the defect is visible and the rest of the
surface is invisible. As defect shapes are often geometrically complex they
can trap or redirect light in a complex manner. This kind of light-defect
interaction can be only achieved with geometrical modeling of defects as
opposed to texture and image-based defect modeling discussed in Section
6.2. Therefore, the presented methods serve inspection planning expert for
assessing defect visibility of acquisition hardware configuration, without the
need for physical samples.

Presented models enable the creation of defected products with diverse
dent and scratch defect shapes which are variously distributed over the sur-
face (Fig. 6.10). The complexity of created defect shapes can be seen in
Fig. 6.9 where a close-up of dent and scratch defects is presented. Further-
more, comparison of real and simulated defects (Fig. 6.8 and 6.9) shows
that simulated defects are representative of real defects to a high degree.
This example clearly emphasizes the importance of geometrical defects for
visual surface inspection planning.

164

Presented parameterized defecting models enable automated creation of
arbitrary amount of diversified defected product geometries. Furthermore,
a method for defect annotations creation (Section 6.4) enabling the gener-
ation of training-ready synthetic datasets was presented. Finally, presented
defecting models do not depend on existing defected product samples which
is the case with image-based defecting approaches (Section 6.2).

Procedural methods for the creation of parameterized models opened
new venues for collaboration between computer graphics experts and surface
metrology experts. Our aim is to further incorporate domain knowledge
into defecting models. Thus, further research regarding defect placement
distribution is required. For example, defect locations can be weighted on
particular object areas due to object geometrical features and manufacturing
process. Next, further research is to be conveyed regarding defect shapes and
their imprinting into the object surface. To explain, defecting areas might
contain surface mass redistribution causing ”wrinkled” deformation. Also,
defected areas can exhibit altered material properties besides geometrical
deformation.

6.7 Conclusion

In this work, parameterized models for the controllable and automated cre-
ation of defected product geometries are presented. The resulting geometries
contain geometrically imprinted defects which ensure correct and realistic
light interaction and visibility. Presented defecting models are usable in a
virtual environment by an inspection planning expert to help assess defect
visibility for a given inspection hardware configuration. Furthermore, pre-
sented defecting models enable representative and diversified defected prod-
uct samples creation and thus offer a solution to the lack of defected physical
product samples. Finally, automated creation of an arbitrary amount of de-
fected product images with precise annotations is available giving a way to
training-ready datasets.

With the presented approach, now it is possible to obtain the required
amount of representative defected products needed for both VSI planning
and the development of machine vision algorithms for defect detection. Fur-
thermore, the presented approach opens a new venue for domain knowledge
integration into computer graphics modeling, which calls for further collab-
oration between computer graphics and surface metrology experts. This
would lead towards a much needed library of parameterized defect creation
models for virtual environments. Such libraries would serve for further ML
models advancements for defect detection.

165

Core references

Lovro Bosnar, Hans Hagen and Petra Gospodnetic, ”Procedural defect mod-
eling for virtual surface inspection environments”, 2023. IEEE Computer
Graphics and Applications, 43(2), 13-22., doi: 10.1109/MCG.2023.3243276

166

10.1109/MCG.2023.3243276

Part III

Applications

167

Chapter 7

Synthetic Data for Defect
Segmentation on Complex
Metal Surfaces

Metal defect segmentation poses a great challenge for automated inspec-
tion systems due to the complex light reflection from the surface and lack
of training data. In this work we introduce a real and synthetic defect
segmentation dataset pair for multi-view inspection of a metal clutch part
to overcome data shortage. Synthetic dataset was generated using image
synthesis methods coupled with parameterized texture and defect modeling
introduced in Chapters 4, 5 and 6. Model pre-training on our synthetic
dataset was compared to similar inspection datasets in the literature. Two
techniques are presented to increase model training efficiency and prediction
coverage in darker areas of the image. Results were collected over three pop-
ular segmentation architectures to confirm superior effectiveness of synthetic
data and unveil various challenges of multi-view inspection.

For the sake of completeness, this chapter includes work done by PhD
student Juraj Fulir who (1) characterized and described real-world physical
sample (clutch object), its texture, defects and performed acquisition (Sec-
tion 7.3), (2) performed defect segmentation and experimental evaluation
(Sections 7.3 and 7.4).

7.1 Introduction

Surface inspection is a common task of automated visual inspection systems,
where defects are anomalies appearing on the surface of the product, result-
ing from production chain error (e.g., scratch, bump, pitting) [222]. While
automated surface inspection systems introduce benefits such as faster in-
spection process and reduction of human error, they require consistent acqui-
sition conditions. The acquisition conditions, together with detection algo-

169

Figure 7.1: The examined clutch object from outside (left) and inside (right).
The object contains four distinct texture patterns (red) and a transition area
(green).

rithms, are always customized for specific inspection tasks. This makes the
systems extremely rigid. Experts planning the acquisition hardware setup
in an inspection system must ensure that the whole surface of the inspected
product is illuminated and captured in a way such that all possible defects
can be successfully detected. The task may sound simple in principle, how-
ever the appearance of defects varies drastically and is largely affected by the
location of the defect relative to illumination sources and camera (fig. 7.2).
This problem becomes especially noticeable on geometrically complex and
reflective metallic surfaces. Additionally, defect visibility can be obscured
by the surrounding surface texture, which vary locally (fig. 7.1) and between
products.

Designing a robust inspection system requires defect samples which are
diverse enough to provide a complete understanding of all the possible de-
fect characteristics and occurrences on the production line. A sufficient
dataset will thus require a large number of physical samples, which might
be challenging to obtain since some defects appear more frequently than
the others and appearance within a single class of defects can vary greatly.
The challenge increases for premium products fabricated in low volumes.
While traditional image processing algorithms can be developed with con-
siderably smaller amount of defected samples, cases with high variation of
defect characteristics significantly complicates their development and main-
tenance. Machine learning approaches can circumvent these shortcomings
by relying on automatic extraction of robust features from large amounts of
diverse data. However, in low data scenarios they are prone to overfitting.

Usage of synthetic data to circumvent the data shortage has gained trac-
tion recently in machine vision [218, 223–227]. Mainly because it provides

170

a way to generate arbitrary amount of diverse annotated training data, in-
cluding edge-case scenarios which are difficult to obtain in real production.
However, there is a lack of studies which investigate the suitabil-
ity and advantages of using custom designed synthetic data for
industrial quality inspection.

We summarize our contributions as following:

• We introduce a dual dataset, consisting of real and synthetic equiva-
lent, for the domain of multi-view inspection of a complex metal object
to expand the existing literature on synthetic data for industrial ap-
plications.

• We compare the effectiveness of our synthetic dataset to alternative
metal inspection datasets in the literature, to confirm that a custom
designed synthetic data is superior in the low-data scenario.

• We introduce intensity biased cropping mechanism to increase model
training performance in this domain.

• We introduce exposure stacking to increase model response in darker
regions and discuss its effect on surface coverage in inspection.

• Finally, we identify the unique shortcomings of applying synthetic data
in this domain and offer research directions for overcoming them.

7.2 Related Work and State of the Art

7.2.1 Defect Recognition

Defects are the results of anomalous events in the production chain which
inflict deviations from product’s intended design, function, or appearance.
Defects can come in various forms, with several classifications present in the
literature [222,228,229], however, what is and what is not considered to be a
defect is always application-specific. For visual inspection we distinguish be-
tween defects which are visible by observing the object with non-penetrating
light interaction [222,230], and defects that are below the observable surface
and should be inspected using a material penetrating medium [230–232]. In
this work we focus on the first kind, more specifically, macroscopic surface
defects such as dents and scratches [222].

Recognition approaches Defect recognition is a process of identifying a
defect and its characteristics. There is a number of traditional (non-learning)
approaches to application specific defect recognition [228, 233]. However,
these methods rely on manual design and, when presented with changes in
inspection setup, require redesign which leads to an increase in complexity

171

Figure 7.2: Appearance inconsistencies of scratches on a curved surface when
acquired under different angles, as seen in real (top) and synthetic (bottom)
data. Defect appearance changes in terms of its shape and contrast due
to illumination and the surrounding surface texture. Notice how the defect
part gets obscured by the texture in the upper middle image.

and operating cost. Therefore, recent research aims largely at learning based
approaches where defect recognition models are trained under supervision
with labeled data. The approaches can be aimed at defect detection [229,
234], defect segmentation [229, 235–237] or image classification [229, 236].
In all cases, the main problem is the high cost of obtaining large amounts
of labeled data. This may increase difficulty of developing models which
successfully generalize to production.

Labeling for both detection and segmentation is time consuming. There-
fore, efforts have been made to use methods which rely on faster training
sets annotation approaches, such as image classification [229]. There, seg-
mentation is achieved using the class-activation map (CAM) technique [238].
CAMs tend to produce very localized predictions, which are useful for de-
fect segmentation as defects are often localized, such as defects in LED
chips [239]. Božić et al. [236] mixes pixel and image level labels to increase
the effective dataset size at a lower annotation cost. In cases where defected
samples are unavailable or are in too small quantities for supervised training,
anomaly detection can be used on solely the correct samples for training.
During inference, the reconstruction of an input image is compared to the
original or extracted features are compared to memorized features of correct

172

samples to detect outliers. It has been employed for defect segmentation over
a variety of objects as presented in [240–243]. We focus on the case where
training data is scarce, making the aforementioned methods unsuitable.

Datasets Various datasets exist for defect recognition tasks in metal [228,
229, 244]. Most available datasets focus on inspection of hot-rolled steel
[245–248] which is a planar surface with various defects. Other present
shapes are curved pads [235, 236, 249], pipes [250] or rails [251]. More
complex surfaces are present in [252] in form of a ball screw driver with a
multi-view setting through single-axis rotation. Anomaly detection datasets
[243, 253] contain complex metal objects, however they reduce the problem
to single-view inspection with a fixed top-down view. In [237], authors per-
form a similar top-down acquisition with varying illumination angles. In
contrast, our dataset represents a complex geometry with highly specular
and anisotropic surface in the multi-view setup in a dark environment.

Inspection of complex surfaces Defect recognition is tightly coupled
with inspection planning process, which determines the image acquisition
setup (i.e. camera and illumination position). This process is currently per-
formed by experts based on physical tests and experience. A semi-automated
inspection planning pipeline for virtual design and verification of inspection
plans was introduced (Chapter 4 and [3]). That work allows coverage eval-
uation of any object geometry, regardless of its geometrical complexity. In
this work we rely on their methods to create inspection plans for both real
and synthetic data.

7.2.2 Synthetic Data Generation

Image synthesis can benefit data preparation by providing more control over
its content and diversity, speeding up the process and reducing its costs.
Additionally, it provides insight into the expected inspection coverage and
results. So far it was employed in many forms to a wide range of machine
vision tasks [214] in order to produce balanced datasets for machine learning.

Generative models A straight-forward way to generate defected sam-
ples from correct real images is by synthesizing an image of a defect and
embedding it in a correct real image. The cheapest approach is by manu-
ally designing generative models which produce 2D patches of defects [254].
Albeit a controllable and versatile technique, the defects are modeled as
2D patches and can not correctly model the light response of specular de-
fects observed from multiple viewpoints. This introduces a bias towards
the subset of modeled defect appearances with inaccurate light response.
A more popular approach is to automatically learn the generative model
using generative-adversarial networks (GAN), where two models are jointly

173

trained in adversarial setup on weakly-annotated real data [229, 255, 256]
with control over the spatial properties, category and style of defects. These
approaches demonstrate great improvements in the defect recognition tasks,
however they can not introduce data representing edge-case scenarios or
guarantee generation of correct data. The second requirement is particu-
larly difficult to obtain in the multi-view setup due to the complex specular
defect appearance. Additionally, extending the supported set of defect types
or variations requires retraining on new observed data which does not guar-
antee the retention of appearance quality in previously supported defect
types.

Computer graphics Leveraging computer graphics for data generation
provides a versatile, controllable and reliable tool for generating large quan-
tities of data with the support for generation of scenario-specific variations.
It has proven its usefulness across various computer vision tasks [257]. A
popular example is traffic scene recognition where the synthetic datasets
are commonly paired with real datasets [227] to complement the scenarios
missing from the real data. In situations where manual data annotation is
intractable, it offers an invaluable source of annotated data such as in the
many-keypoint tracking task [226].

In defect recognition domain, available synthetic datasets are sparse.
The DAGM dataset [258] consists of generic artificial textures and defects
with no specific application in mind and is often used as a baseline bench-
mark. In [259], authors use simple noise transformations for color and vertex
displacement to generate a labeled synthetic dataset for defect detection over
steel plates. The MIAD dataset [224] is a product maintenance dataset for
anomaly detection with various outdoor scenarios, including welding defects
of a steel pipe. The recent CAD2Render toolkit [223] produced the DIMO
dataset [260] by relying on photo-realistic rendering. It goes a bit further by
using procedurally generated defects which are applied to the object surface
to simulate rust and scratches. However, it focuses on assembly inspec-
tion and object pose estimation without specific control over the shape and
locations of defects, reducing its usefulness for defect inspection.

In all of the above mentioned cases, the main focus is on simulating
macroscopic features such as the object shape or surface color, disregarding
the evaluation of the correct light response from micro-scale structures of
the surface texture or the defect geometry. This is not sufficient in cases
when the surface is observed from multiple viewpoints at higher resolution,
reducing their usability for defect recognition. In chapters 5 and 6, methods
have been introduced for the generation of procedural textures and proce-
dural defects, capable of approximating various industrial surfaces with a
high degree of realism and control. The synthetic defecting methods have
already been employed in [218] for defect segmentation in endoscopic images

174

of a turbocharger.

Transfer learning Transfer learning techniques aim to align the problem
domain between different data sources. A number of techniques is at hand,
depending on the task and data availability [261]. These methods are suit-
able for use with synthetic data since the synthetic data introduces various
approximations of the real world appearance, thus creating a domain shift.

Domain adaptation exploits the knowledge obtained from the source data
to align the model towards the target data. The most common approach is
by initializing the training procedure with model parameters pre-trained on a
larger source dataset [214,227,261,262]. The model can be adapted entirely
[263] or partially [242]. However, some research suggests that similarity
between the two domains results in better performance [261,263].

Domain randomization [264] is a technique which enlarges the variance
of the source domain to increase the chance of covering the target domain,
while making it possible for the model to learn more robust features. It
is commonly used in synthetic data since the environment can be easily
manipulated [214, 227]. By parameterizing the surface texture and defect
geometry as procedural functions as discussed in 5 and Chapters 6, we can
generate a variety of data that can cover all plausible possibilities within the
specified ranges. Note that some parameters, such as perspective distortion,
rotation or flipping of the image, are commonly randomized through train-
time augmentation removing the need for their rendering.

Following Wood et al. [226] instead of using domain adaptation to re-
duce the domain gap, we rely on increasing the realism of synthetic data.
However, we do incorporate domain randomization of surface appearance
and background to produce a variety of realistic samples.

7.3 The Clutch Dataset

In this work we introduce and publish1 the dual dataset composed from
real data and its synthetic equivalent. It is a versatile dataset which can be
utilized for multiple tasks such as image classification, defect segmentation
and detection in supervised, unsupervised or weakly-supervised approaches.
In this work we focus on binary defect segmentation in order to evaluate
approaches for dataset preparation, machine learning techniques specialized
for this domain and possible imperfections of synthetic data which must be
taken into account.

1https://owncloud.fraunhofer.de/index.php/s/mtr1FzERutdOrXi

175

https://owncloud.fraunhofer.de/index.php/s/mtr1FzERutdOrXi

DAGM KSDD2
Severstal
Steel MTD

CSEM
MISD

Synth
Clutch

Real
Clutch

Figure 7.3: Texture and defect examples extracted from datasets used in
this work. Best viewed digitally.

7.3.1 Object Description

The dataset contains a part of a clutch, shown in fig. 7.1. The clutch is
an aluminum object consisting of two halves, produced using turning and
milling with additional brushing to remove material extrusions introduced
from drilling. The flat and curved surfaces, holes and details such as screw
threads or beveled edges increase the geometrical complexity of the object.
Different machining and processing operations throughout the part produc-
tion introduce four distinct surface textures displaying patterns with more
or less prominent periodicity.

Since the real defects are often a proprietary information, the clutch
object is used as a case study and the defects were introduced manually to
resemble typical defects appearing in production lines. The defects include
various scratches and dents depicted in fig. 7.3.

7.3.2 Real Data Acquisition

The RealClutch acquisition setup consists of a robot manipulator, matrix
grayscale camera with a diffuse ring light mounted around it and the ac-
quisition table. The manipulator is used to position the camera and the
illumination into predefined viewpoints. The acquisition table is a flat sur-

176

Figure 7.4: Increasing image exposure reveals the dark, but also overexposes
the bright parts of the object. Notice the appearance change of the lower
right scratch and the middle left scratch.

face covered in diffuse black velvet and the inspected object is placed on
it. The viewpoints were arranged manually using V-POI2 [7] in a way that
covers the inspected surfaces with overlaps [8]. For the purpose of this work,
the viewpoints have been created with significant overlap in order to exam-
ine defect behavior from multiple acquisition angles. Before the acquisition,
hand-to-eye calibration was performed as discussed in Chapter 4, however,
slight acquisition offsets are still present due to manual object placement
on the acquisition table. The collected images were manually annotated
using labelme [265] with an extension which allows enhancement of the de-
fect visibility (fig. 7.4) by manually adjusting the image exposure using:
fpxq “ x ¨ 2α, with α P t0, 1, 2u. The polygonal annotations were finally
rasterized into image masks used for model training and validation.

7.3.3 Synthetic Data Generation

The SynthClutch dataset has been designed and generated using the meth-
ods presented in Chapters 4, 5 and 6. The process requires a 3D model
of the object and consists of four steps: inspection planning, defect model-
ing, texture definition and dataset generation. In the inspection planning
step, view and illumination points are positioned in the space relative to
the object. The viewpoints contain camera parameters such as resolution,
focal length or focusing distance and illumination points contain the light
geometry and intensity. For the purpose of this work, all the parameters cor-
respond to the real setup, the lightpoint geometry has the ring light shape
and is positioned around the viewpoint. The defects are modeled as dents
and scratches, imprinted directly into the object geometry. They are defined
using class specific parameter ranges, sampled to obtain desired shape vari-
ation. Dents are defined by their size, depth and elongation, while scratches

2https://itwm.fraunhofer.de/v-poi

177

https://itwm.fraunhofer.de/v-poi

are defined by their depth, length, and curving strength and frequency. The
textures are modeled using procedural methods that perturb surface nor-
mals, with parameters adjusted to match the observed appearance of their
respective counterparts across the real object (fig. 7.1). Finally, all afore-
mentioned elements are combined and parameters are sampled to define a
scene for photo-realistic rendering of the images and their corresponding
defect masks, rendered using emissive material. As the real environment
contains inter-reflections between the object and acquisition manipulator,
we emulate this with a small amount of constant illumination. The back-
ground was dark with addition of uniform noise at train-time to resemble
sensor dark shot noise.

The dataset contains object instances varying in defect shapes and tex-
ture which are then rendered according to the inspection plan. First, ge-
ometry instances are created with defects randomly generated and applied
across the surface. The defect sizes were defined to be comparable to de-
fects present in real samples and contain circular dents (diameter 0.2´2mm)
and scratches (diameter 0.05´0.3mm). Additionally, we apply insignificant
defects which do not contribute to the masks, but simulate minor irregu-
larities present in the real data which may resemble defects but should be
ignored. Next, the texture parameters are sampled within defined ranges
centered around their previously optimized values. We randomize the sur-
face roughness, normal perturbation strength and texture scale. Finally,
each geometry instance is rendered with its corresponding texture param-
eters and stored in a structured way to simplify data loading. Reader is
referred to the supplementary for a visual comparison of the two datasets.

7.4 Defect Segmentation on Complex Surfaces

Complex metal objects present a unique case for defect recognition due to the
changes in surface appearance caused by reflectivity. This requires collection
of large amounts of data to successfully train a model, however oftentimes
this is not possible. In our case, only a small number of real samples is
available real making it difficult to restrain models from overfitting, even
with extensive data augmentation. Therefore, we look into using alternative
data sources from similar domains and compare its use to a custom designed
synthetic dataset. In both cases the real data is utilized only for fine-tuning
and evaluation.

7.4.1 Utilizing Existing Planar Datasets

We first examine the transfer of features learned on available large datasets
that represent similar domains. These datasets collect a large number of
images with a variety of defect types observed over mostly planar surfaces.
We restrict our selection to 5 datasets (fig. 7.3) based on similarities to

178

RealClutch: DAGM [258] for its genericness, KSDD2 [236] for its defect
shapes, Severstal Steel [245] and MTD [249] for their material and defects,
and CSEM-MISD [237] for its materials, defects and defect visibility changes.

7.4.2 Utilizing Custom Designed Synthetic Data

Synthetic data can be generated in arbitrary amounts with large diversity.
However, it introduces a domain gap due to the approximations made during
simulation such as texture geometry or material reflectance. We analyze the
applicability of features learned on synthetic data with and without fine-
tuning on the real data.

Intensity-biased random cropping Inspection images have larger reso-
lution to increase surface coverage, which requires us to use random cropping
during training. As large part of the image is in the dark, random cropping
produces a large amount of crops that end up in the dark background re-
gions. To remedy this, we bias the random cropping mechanism towards
brighter regions to contain the object’s surface. The input image is first
binarized using a user-defined threshold to obtain an intensity mask. A ran-
dom pixel from the mask is sampled and a crop window is centered around
it. This technique guarantees that every crop will contain useful intensity
values, while not completely ignoring the darker regions to prevent the pos-
sibility of detecting false positives in the acquisition scene background. The
threshold was chosen heuristically from real data to ensure coverage of the
regions containing manual annotations.

7.4.3 Enhancing Model Response in Dark Regions

When predicting on the acquired image, the model tends to respond only
on well lit surfaces where the patterns have higher contrast, which reduces
the detection coverage over the object surface. As described in section 7.3.2
annotators could increase image exposure to enhance the visibility of defect
shapes in darker areas of the image, at the cost of overexposing some areas
and increasing the image noise amplitude (fig. 7.4). To emulate this, we
transform the acquired image using same exposure values as annotators to
construct a channel-wise stack of transformed images alongside the original
as inputs to the model. This allows our model to have simultaneous access
to multiple exposure values and learn to respond to a much larger surface
area.

179

7.5 Experimental Evaluation

7.5.1 Training Details

Training is implemented using PyTorch and for segmentation techniques we
used easily accessible implementations of segmentation models: FCN [266]
and DeepLabV3 [267] implementations from torchvision and U-Net [268]
from segmentation-models library [269], with the ResNet-34 [270] backbone.
For FCN and DeepLabV3 backbones we additionally use bottleneck blocks
to increase speed [270] and dilated convolutions in the last 3 layers to keep
the resolution reduction factor to 8 [267]. The dilation was necessary to
obtain precise predictions.

For training we use AdamW [271] and binary cross-entropy (BCE) loss
function. To satisfy memory constraints we use random crops of size 256ˆ
256, biased towards intensity values above 10. We find that further lowering
of crop sizes decreases model performance. The use of intensity biased crop-
ping in most of the cases reduced the training time and produced baseline
models with metrics increased by few percentage points. Therefore, it was
employed in all of the experiments. We train with batch size 16 for a maxi-
mum of 1000 epochs, selected from preliminary experiments on RealClutch.
The initial learning rate and L2 weight decay factor were always selected
using grid search over t10´3, 10´4u and t10´4, 10´5u respectively, maximiz-
ing F1 score on source validation set. The learning rate was halved every
50 epochs, with early stopping when relative decrease in validation loss is
under 0.01 for 5 consecutive validations. Model parameters pre-trained on
ImageNet did not improve speed or performance, similarly to [263]. Once
the model is trained, fine-tuning is performed using real clutch images. For
fine-tuning we only reduce the starting learning rate to 10´4 and train until
convergence of validation loss. In all experiments, image values were cen-
tered to range r´1, 1s and the defect mask channels were collapsed for single
class segmentation. The reader is referred to the supplementary for detailed
analysis.

The performance of our models and data sources is compared using pixel-
wise metrics: precision, recall and F1 score. The model predictions were
binarized with a threshold that maximizes the F1 score on validation set of
the respective training dataset.

The RealClutch dataset consists of 3 correct and 3 defected objects. The
objects were acquired using 86 viewpoints, covering all examined surfaces,
resulting in 516 labeled images of resolution 2448ˆ1025. The train-test
split was constructed object-wise using 2 and 4 objects respectively, while
keeping the 1:1 balance between the correct and defected samples. The train
set contains objects with one surface texture, while the test set contains two
surface textures which is common in evolving manufacturing processes. The
train-val split was constructed with a 4:1 random split of the training set.

180

Source dataset
FCN DLv3 U-Net

P [%] R [%] F1 [%] P [%] R [%] F1 [%] P [%] R [%] F1 [%]

RealClutch (baseline) 53.2 19.4 28.4 59.1 16.5 25.8 55.7 21.7 31.3

DAGM 0.0 4.6 0.1 1.0 0.1 0.1 0.1 5.9 0.2
KSDD2 1.5 5.1 2.3 2.2 6.5 3.3 0.7 7.0 1.3
Severstal Steel 1.0 9.7 1.8 1.7 9.0 2.9 1.0 3.2 1.5
MTD 7.7 10.2 8.8 23.5 9.9 13.9 8.7 11.6 10.0
CSEM-MISD 6.5 6.9 6.7 9.3 3.8 5.4 4.6 5.0 4.8
DAGM (FT) 15.5 4.7 7.2 9.3 5.3 6.7 20.0 3.3 5.6
KSDD2 (FT) 8.0 3.9 5.3 2.2 1.2 1.5 3.6 0.8 1.3
Severstal Steel (FT) 33.7 12.9 18.6 19.5 8.6 11.9 6.1 12.0 8.0
MTD (FT) 28.8 10.5 15.3 48.1 6.6 11.5 48.0 9.5 15.9
CSEM-MISD (FT) 55.2 17.5 26.5 55.0 19.9 29.2 46.3 13.5 20.9

SynthClutch 59.3 10.7 18.1 57.4 10.7 18.1 67.2 10.8 18.7
SynthClutch (FT) 69.6 24.0 35.7 63.1 25.5 36.3 67.6 28.9 40.5

RealClutch (EX) 59.0 16.3 25.5 54.8 17.9 27.0 55.2 20.3 29.7
SynthClutch (EX) 58.1 11.6 19.4 57.5 12.0 19.8 60.0 11.6 19.4
SynthClutch (EX+FT) 67.9 24.2 35.7 67.6 27.7 39.3 64.9 23.5 34.6

Table 7.1: Comparison between models trained on different source datasets,
including fine-tuning (FT) and exposure stacking (EX), evaluated on Real-
Clutch test split. Precision (P), recall (R) and F1 score (F1) are presented.
The best results are bolded vertically.

The image resolution is halved for evaluation efficiency, padded to ensure
divisibility by 96 and split into patches of size 416ˆ352.

7.5.2 Effectiveness of Planar Datasets

When evaluating the usefulness of pre-training on existing datasets, the
domain difference is compensated for using augmentations. We apply ran-
dom rotations from r´90, 90s, Gaussian noise of variance ď 10, exposures
between r0, 1s, Gaussian blur with kernel sizes form t1, 3u, horizontal and
vertical flips. For each dataset the model was trained on the source dataset
and evaluated on the RealClutch test set with and without fine-tuning.

DAGM [258] is a synthetic dataset of generic textures with artifacts
representing defects. It consists of 10 textures, totaling with around 8000
labeled samples for train and test splits. The labels are in form of ellipsoids
surrounding the defected area which does not provide a detailed coverage of
the defect and is a form of weak supervision. We pad the images to size 512
and split into patches of size 256ˆ256.

Kolektor Surface Defect Detection v2 (KSDD2) [236] is a dataset for
binary defect segmentation of metallic tile-shaped products with rough sur-
face. The train split contains 2331 samples, which we split in 4:1 ratio for
training and validation. The test split contains 1004 samples. For evalua-
tion efficiency, we convert the images to grayscale, pad them with zeros to
resolution 256ˆ672 and split into patches of size 256ˆ224.

Severstal Steel dataset [245] is a dataset of planar hot-rolled steel with

181

defects segmented in 4 classes which we collapse into binary segmentation.
The test set for this dataset is private, however we use it solely for the
pre-training of models so we utilize the available train split for training and
validation. The train split contains 12568 samples, which we split using 4:1
ratio for training and validation respectively. We merge the defect classes
into single class to make it compatible with our binary segmentation. For
evaluation efficiency, we pad the images with zeros to resolution 1792ˆ256
and split it into patches of size 224ˆ256.

Magnetic Tile Defects (MTD) [249] is a dataset of magnetic tiles with
slight curvature, used for saliency prediction over 5 defect classes. We select
the defect classes that are important for our task based on their similarity
to our data. We treat blowhole, crack and break as the defected class, while
uneven and free are ignored. The fray class is not expected in our data
and is thus ignored. Our subset of this dataset contains 1312 samples split
into train-val sets using the 4:1 ratio, while keeping the ratio of correct
and defected samples at 4:1 in both subsets. For evaluation efficiency, we
standardize the resolution to 640ˆ448 by padding with zeros and split the
image into patches of size 320ˆ224.

CSEM multi-illumination surface defects (CSEM-MISD) [237] collects
3 different objects (gear, screw and washer) used for defect segmentation.
We use the highest 24 light points as defined in the paper, totaling to 2304
images. Different from the proposed method, we train the model to predict
defects on each image separately. The train split contains 32 instances of
every object which we split using 4:1 ratio for training and validation. For
evaluation efficiency, we split the image into patches of size 256ˆ256.

In table 7.1 generalization capabilities of models trained on different
source datasets to the baseline model trained on RealClutch. As expected,
the models trained on the RealClutch data generalize poorly due to the small
number of available samples and overfitting due to training and validation
being performed on different images but same objects. DAGM performs
even worse since it does not model neither the surface texture nor the defect
appearance of the metallic surfaces nor the tight segmentation masks. Sev-
erstal Steel shows some promise due to its size and defect variety which helps
in regularizing the model to learn more robust features, which is especially
visible after fine-tuning. MTD is most similar to surfaces of RealClutch and
the results confirm this relative to other sources. CSEM-MISD addition-
ally displays changes in defect appearance and after fine-tuning performs
on par with RealClutch. Fine-tuning the models with RealClutch in most
cases causes a significant increase of performance, with highest performance
change attributed to the most similar datasets. However these gains cannot
be predicted based on the pre-trained model performance. This allows the
conclusion that the domain similarity in form of surface and defect appear-
ance is important for knowledge transfer. Additionally, learning to correctly
respond to different surface and defect appearances is a crucial information

182

for better performance.

7.5.3 Effectiveness of Custom Designed Synthetic Data

SynthClutch dataset consists of 20 correct and 20 defected object instances.
We used the same viewpoints as for the real acquisition including the non-
examined surfaces, totaling in 106 viewpoints and 4240 labeled images. The
train-val-test split was constructed object-wise using 28´4´8 objects re-
spectively, while keeping the balance between correct and defected objects.
We follow the augmentation from section 7.5.2, with max rotation angle
reduced to 30 to avoid learning out-of-domain features.

Compared to the baseline model, the models trained on synthetic data
produce lower recall and similar precision. However, fine-tuning on Re-
alClutch boosts the performance above the baseline models by 5´10% on
both metrics. Most pronounced increase is in recall, where the model mostly
increased the area of predictions to match the labels with a few additional de-
fects becoming detected. When compared to pre-training on planar datasets,
synthetic data doubles the model performance. This shows that task specific
features guided by geometric attributes and surface texture are required for
best prediction quality. Consequently, this simplifies the task for fine-tuning
as model needs to adapt only to the smaller differences between domains.

The exposure stacking augmentation is evaluated only on SynthClutch
since the defect behavior corresponds to the target RealClutch defects. As
expected, in most cases recall increases as the model becomes more respon-
sive to a larger surface area. However, the results are not consistently better
or worse, indicating a need for more detailed research.

7.6 Discussion

Existing planar datasets were of limited value as sources of data for trans-
ferring knowledge to our geometrically complex domain. The real object
contains sharp and curved geometrical features with tiny insignificant de-
fects which can appear very bright under different views. Models tend to
produce false-positives in those regions as they were not explicitly trained to
ignore them. Even fine-tuning this does not fully resolve this issue, raising
the importance of training on the target object data from the start.

The use of custom designed synthetic data has proven to be the
most promising approach when the amount of real data is ex-
tremely restricted. Although still hindered by the domain gap, the over-
all model performance is significantly better than using models trained on
alternative datasets, which in many cases contain more training samples but
the domain is not similar enough. The model performance is additionally
impeded by the task difficulty. Significant appearance changes of defects
depending on the grazing angle and surrounding texture produce ambiguity

183

which would also be present for the human inspector. In such cases, a human
inspector would not make a conclusion, but seek a different grazing angle,
which was mimicked by the illumination stacking approach of Honzatko et
al. [237]. In automated inspection the network is expected to decide based
on a single view, which lowers the recall rate as observed in table 7.1. This
comes from the fact that the synthetic data is overly precisely labeled - the
defects are labeled if they are geometrically visible (not obstructed), and
not if they are visible in terms of prominence. This is true for [237] as well.
This issue hints at the need for models with efficient multi-view memory
capabilities or models utilizing the grazing angle and location information
about the view from a CAD model. So far, the research community has
no answer to defect visibility evaluation, however our study raises this as
an important point to be tackled in the future to prevent over-labeling in
synthetic data.

The defect visibility problem is also closely related to the estimation
of inspection coverage where we estimate if a region of the object surface
can be inspected by a set of viewpoints. Our study on multiple exposures
unveils the opportunity to study the effective visual coverage that is achieved
by a particular recognition model, which greatly influences the process of
inspection planning [8].

While fine-tuning on a small amount of real data helps with the domain
gap, it is still prone to model overfitting due to high complexity of both the
task and the model. [272] Further development of the data generator could
reduce the gap from reality and reduce the need for fine-tuning. Enhance-
ments might include texture models with richer variations or more precise
selection of texture parameters. Both is achievable due to the immense con-
trollability of generators based on computer graphics. Once designed, the
data generator can reuse existing textures and defects, and be extended for
the new ones. The extensions may be costly in terms of time however they
become cheaper on the long run due to their high reusability and adaptabil-
ity across different inspection targets.

7.7 Conclusion

When it comes to metal inspection, weighting the benefits of investing into a
custom designed synthetic dataset against using publicly available datasets
is difficult. Metal as a target domain is alone highly restrictive, whereas
the multi-view inspection of complex metal geometry leaves us with a single
publicly available real dataset. Therefore this work not only examined the
benefits of the synthetic data, but additionally published a new dataset con-
taining both real and corresponding synthetic data for multi-view inspection
of a complex metal object. Such dataset is a first of its kind for metal in-
spection. The synthetic data has proven to be a superior pre-training data

184

source over multiple architectures but is still burdened by over-labeling. To
resolve this, the research must further focus on generator enhancement, de-
fect visibility quantification and utilization of object 3D as additional source
of information for the network.

Core references

Juraj Fulir, Lovro Bosnar, Hans Hagen and Petra Gospodnetić, ”Synthetic
Data for Defect Segmentation on Complex Metal Surfaces”, 2023. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 4423-4433)., doi: 10.1109/CVPRW59228.2023.00465

185

10.1109/CVPRW59228.2023.00465

Chapter 8

Image Synthesis Pipeline for
Machine Vision in Metal
Surface Inspection

Defect recognition is a crucial element of quality assurance in the manufac-
turing industry. With ever-improving industrial processes, defects become
less frequent and harder to detect. Alongside, the variety of material surfaces
is ever-increasing leading to difficulties in adaptation of surface inspection
systems. All of this leads to slow iteration times of manually designed sys-
tems and not enough data for machine learning-based approaches. To solve
this, we build on methods for image synthesis for surface inspection and pa-
rameterized texture and defects modeling introduced in Chapters 4, 5 and
6. We present a dataset consisting of synthetic and real data to demonstrate
the utilization of Computer Graphics in data generation for the data-sparse
task of defect detection.

For the sake of completeness, this chapter includes work done by PhD
students Natascha Jeziorski and Juraj Fulir as well as work done by To-
bias Herffurth. Tobias Herffurth performed test body design and material
measurements (Sections 8.3 and 8.4). Natascha Jeziorski performed texture
modeling based on the measurements (Section 8.5). Juraj Fulir performed
acquisition and generation of dual dataset, quality estimation and pipeline
evaluation (Sections 8.7, 8.8 and 8.9)

8.1 Introduction

Machine vision provides a way to automate repetitive processes which rely
on visual information. As such, it has many uses in industrial applications.
Those processes would otherwise either be performed by humans or could
not be performed at all due to extreme working environment (temperature,
noise, chemicals, etc.). As a technique, machine vision is very flexible since it

187

Figure 8.1: Presented synthesis pipeline. Based on a 3D model of an object,
spatial properties of the surface texture are measured. Surface topography
and manufacturing parameters are used to develop a mathematical model
capable of reproducing the texture as a normal map. Multiple realizations
of the texture are generated by varying the parameters and are applied onto
the 3D model of the object which has been altered to include surface defects
of varying types and sizes. During the simulation step, the final image
is computed based on the interaction between the acquisition environment
(light, camera), object geometry and texture normal map. This process is
repeated arbitrary amount of times, with different values and variance in
order to generate a sufficient training dataset.

can be utilized for solving various challenges. However, every machine vision
solution on its own is highly specialized, integrates expert knowledge and can
not be easily adapted if inspection requirements or production environment
changes.

Terms such as automation, flexibility, customization or smart systems
are appearing more and more regularly in the context of manufacturing pro-
cesses and production line optimization. This poses a particular challenge
for automated visual inspection solutions since they are developed in a way
which requires rigidness in order to ensure reliable detection precision [6].
In order to make the systems less rigid, the integrators of automated visual
inspection systems are turning towards machine learning techniques for ma-
chine vision. While the proposed solutions sound promising, their success
in terms of reliability and flexibility is yet to be proven, making the indus-
try sceptical towards their integration into production lines. Additionally,
machine learning requires a significant amount of training data, which has
shown to be challenging in industrial environments. The tasks are typically
very specific and there are little to no publicly available datasets. Therefore,
a dataset must be created for each new system. This is not only costly and
time-consuming, but also poses a significant challenge to generate a well
balanced dataset.

Building on the inspection planning research done by Gospodnetic [3]
and work introduced in Chapters 4, 5 and 6, we present a complete pipeline
for generation of physically correct synthetic images, used for training sur-

188

face inspection machine learning models. As illustrated in fig. 8.1, the
pipeline encompasses physical surface measurement, parameterization and
development of stochastic geometry models representing the measurements,
image synthesis, and dataset generation used for further training. The prin-
ciples presented in this work can be applied to a large variety of materials
and defects. For the purpose of this work, we focus on milled or sandblasted
metal surfaces without coating, containing dent and scratch defects. While
the measurement and modeling process can be performed for both texture
and surface defects, for the purpose of this work, we will only present the
texture modeling approach. Defect models will be used as defined in Chap-
ter 6. The goal of our work is to perform industrial image synthesis for the
controlled generation of data for surface inspection purposes. Synthetic im-
age data generation provides control over content and diversity for dataset
creation, speeding up the process and reducing its cost. As such, it has been
used in many forms for machine vision such as optical flow, detection, seg-
mentation, tracking, pose estimation, etc. as discussed by Nikolenko [214].

The pipeline introduced in Chapter 4 identified core computer graph-
ics components needed to perform image synthesis for surface inspection
and stressed the importance of texture and defect parameterization. The
study presented a concept which opened a future possibility to ask and
discuss questions arising from applying the pipeline to a realistic scenario.
Therefore, our work extends the aforementioned pipeline and applies it to a
realistic scenario. As such it introduces the following contributions:

• Extended data synthesis pipeline

• Introduction of surface and defect measurement procedure

• Separation of machined surfaces into micro, meso and macro geometry
scales

• Introduction of requirements when developing stochastic geometry mod-
els which can faithfully represent the measured surface and defects

• Introduction of parameters as a point-of-control to synthetic dataset
generation and variation

• Practical methodology for evaluating the quality of synthetic data

• Introduction of a public dual dataset for defect recognition over three
texture groups, with a study of its quality

189

8.2 Synthetic Dataset Generation

8.2.1 Related Work

Synthetic image data generation can be roughly separated into genera-
tive, based on AI (predominantly deep learning) to produce synthetic data,
and rule-based, using computer graphics simulation based on physically-
based image synthesis, using a well-defined set of rules. The important dif-
ference between the two is that with the generative approach only a single
realization is controlled while with the rule-based approach, the realization
context is controlled, thus enabling complete control, reproducibility and
reliability in terms of content.

Generative image synthesis approaches are often used when there
is not enough time or knowledge available to create actual models simulat-
ing the process. Often, generative approaches are based on deep learning,
specifically on generative adversarial networks (GANs) which are extensively
discussed by Wu et al. [273], Gui et al. [274], Pan et al. [275], Figueira et
al. [276] and Little et al. [277]. As such, GAN-based approaches were used
in various computer vision tasks such as medical image synthesis [278], im-
age super-resolution [279], image translation [280], texture synthesis [281],
face synthesis [282], image inpainting [283], human synthesis [284], human
pose synthesis [285], industrial quality inspection [286], [256], [229], [255].
Schmedemann [287] applied generative style-transfer on the synthetic image
generated using a rule-based approach to reduce the domain gap - differ-
ent between synthetic and real image. However, applying style transfer on
images synthesized using the rule-based approach can lead to a loss of fea-
tures making this approach not reliable without a human operator review
of generated images.

Generative deep learning approach results in images which may look
realistic but may also incorporate errors on a level which is beyond our
comprehension, further causing misalignment when that data is used for
training. Also, the generative methods do not know anything about the
context or what has caused an image to appear in a particular manner,
so it is not possible to control the dataset content and distribution of the
features. That said, they can not introduce edge-case scenarios or guarantee
correct data generation. This problem can be partially circumvented only
by retraining on new data containing the desired features.

Rule-based image synthesis relies on computer graphics for modeling
and rendering virtual environments which have recently gained popular-
ity beyond the entertainment industry (e.g., movies or gaming). It repre-
sents a controllable, versatile and reliable approach for generating arbitrary
amounts of data with customized features and variations. As such, it has
proved useful across various machine vision tasks as discussed by Dahmen et
al. [257]. There are several domains currently using synthetic data for ma-

190

chine vision tasks as surveyed by Tsirikoglou et al. [125]: human-oriented,
autonomous driving and robotics. The surface inspection topic, covered
in our work, can be considered to belong to industry automation, which
is closely linked to robotics, but may include tasks beyond those needed
for movement, localization and mapping. The domain of human-oriented
synthetic data includes human body pose estimation [288], human body
tracking [289], multi-person pose estimation and tracking [290], face recog-
nition [291]. Therefore, the human-oriented domain focuses on large-scale
geometry features leaving out realistic texture and detailed surfaces. The
domain of autonomous driving relies on virtual environments of large-scale
urban and traffic scenes [292] for recognition tasks [293] and object detec-
tion [294]. That said, virtual environments used for autonomous driving
lack small-scale details and realistic textures. The robotics domain relies
on virtual environments [295], [296] for recognition tasks such as semantic
segmentation [297] and object detection [298]. Image synthesis for robotics
aims for correct geometry representation while detailed surfaces are out of
focus. The surface inspection domain relies on virtual environments for
inspection planning and the development of defect recognition algorithms.
The required level of realism and small-scale surface details for visual sur-
face inspection make this domain highly different from other discussed do-
mains. Virtual surface inspection planning was discussed by Gospodnetic et
al. [188] and in Chapter 4. Procedural textures and defects for generating
synthetic data for defect recognition in visual surface inspection were intro-
duced in Chapters 5 and 6. A similar approach was taken by Schmedemann
et al. [218]. A synthetic dataset for defect segmentation on metal surfaces
was introduced in Chapter 7. Moonen et al. [223] presented a toolkit for
synthetic image data generation in manufacturing. Synthesizing datasets
for industrial inspection using a rule-based approach was further discussed
by [299], [300], [219] and [260]. Synthetic data was further used for various
quality assurance tasks such as inspection of industrial components [301],
metal surface inspection [302], industrial visual inspection [303], scaffold-
ing quality inspection [304], expected camera view [305]. General-purpose
dataset generator is introduced by Greff et al. [306]. It promises realism
(using physically-based ray tracing), scalability and reproducibility which
are also covered by our pipeline. However, as it is general framework, it
requires user to define a 3D scene for particular task using scripting. Assets
for 3D scene must be either created by the user or imported from general-
purpose asset libraries. As such, data generation for specialized problems,
such as quality assurance, is challenging due to reasons such as unavailable
assets, assets with unsatisfactory features or limited modeling capabilities
of a user. In this work, we introduce rule-based image synthesis for visual
surface inspection and with it, we introduce physically-based parameteri-
zation of simulated surfaces which existing pipelines do not provide. Our
pipeline enables image synthesis controllability which goes beyond artistic

191

expression and relies on precise surface parameters.

In this work, we introduce a rule-based image synthesis pipeline,
based on a virtual environment resembling the real inspection environment.
Therefore, our focus lies in simulating small-scale surface texture and imper-
fections. Rule-based image synthesis pipeline for realistic image synthesis
can be divided into two main steps: physically-based 3D scene modeling (i.e.,
modeling a virtual environment) and rendering procedures as discussed by
Greenberg et al. [176] and Tsirikoglou [125].

3D scene contains 3D objects, lights and cameras. In this work, we
focus on 3D object surface modeling, specifically surface texture and defects
modeling. The realism of the surface highly depends on the texture which
is used to describe surface topography resulting from machining. Surface
topography highly influences surface reflectivity which is defined using bidi-
rectional reflectance distribution function (BRDF) as discussed by Dorsey
et al. [28]. Physically-based BRDFs are founded on microfacet theory [9]
and describe local, small-scale light-surface interaction. Therefore, texture
defines the variation of BRDF parameters over the surface as well as the
variation of meso scale surface geometry on which BRDF is evaluated. Next
to surface topography resulting from machining, we focus on surface defect
modeling. Defect shapes are often complex resulting in complex light be-
haviour. To tackle this we build on the geometrical defect modeling pipeline
introduced in Chapter 6. Although surface modeling is constantly moving
towards physically-based methods respecting certain physical restrictions,
such as conservation of energy (Heitz, [38], Hill et al. [307]), often the aim
is visual appearance and support for artistic creation (Guerrero et al. [98],
Adobe Substance [12], Ebert et al. [62]). Therefore, the development of
models is not based on real-world parameters but rather artistic, making
them visually appealing but not necessarily correct. In this work, we per-
form surface modeling using models based on real-world surface parameters
as discussed in section 8.5.

Rendering is a process of generating 2D images from 3D scene and
the crucial element for realism of generated images is light transport. In
this work, we use state of the art, physically-based light transport based
on path-tracing discussed by Kajiya [75] and Pharr et al. [14]. Therefore,
in this work we use appleseed, a physically-based, path-tracing rendering
engine [184].

8.2.2 Image Synthesis Pipeline

The image synthesis pipeline in this work is based on the description given
in Chapter 4. For completeness, we provide an overview of the complete
pipeline, extended with work introduced in Chapter 6. and our novel work
regarding the usage of textures introduced in section 8.5 and required texture
mapping. Image synthesis can be decomposed into 3D scene modeling and

192

Figure 8.2: Image synthesis overview. In this work, we focus on 3D object
surface and perform photo-realistic image synthesis of both defect-free and
defected 3D objects with automated and pixel-precise defect annotations.

rendering which generates a 2D image from the 3D scene (see fig. 8.2). We
first start by defining observation scales of 3D objects to provide the reader
with the context on how the synthesis pipeline is structured, and what is im-
portant when it comes to surface inspection. Next, we provide an overview
of 3D scene modeling introduced in Chapter 4, and extend it with texture
mapping techniques which can handle complex 3D object geometry without
requiring the UV unwrapping step (section 8.5). Texture mapping extension
is needed since we are using image textures resulting from explicit procedural
modeling and exemplar-based texture synthesis (section 8.5). We use those
methods since they provide easier texture pattern modeling than implicit
models. However, implicit procedural textures are far more suitable for au-
tomated generation since they can be evaluated on the fly during rendering
as will be discussed in section 8.5. Further, we provide an overview of gener-
ating defect annotations, as introduced in Chapter 6, for defected geometry
described in section 8.6.2. Finally, we provide an overview of the rendering,
as discussed in Chapter 4, used in our work for photo-realistic synthesis of
both defect-free object surfaces (fig. 8.5, fig. 8.6) and defected object surfaces
with pixel-precise and automated annotations (fig. 8.7, fig. 8.9, fig. 8.10).

8.2.3 Decomposition of Scales

A 3D scene contains 3D objects which are traditionally decoupled into
geometry and material. The geometry specifies the size, position and shape
of an object (high-level appearance), while the material influences how the
light interacts with its surface and thus its detailed appearance. Alterna-
tively, a 3D object can be considered at three different scales: macro, meso
and micro. Macro scale refers to object geometry (e.g., mesh) and large
geometrical features. Meso scale refers to the surface structure on a much
smaller scale than the shape of the object, but larger than the wavelength
of light (e.g., surface texture), as discussed by Dorsey et al. [28], ch. 2.
Micro scale refers to surface structure and properties which are not sep-
arately distinguishable by the imaging sensor, but are contributing to light
reflection.

It is important to note that it is very difficult to make a strict distinction

193

between the scales using units. This is because the scales are relative to the
imaging sensor resolution and viewing distance. Therefore we propose the
following guidelines. The macro scale should be attributed to geometrical
shapes which take larger portions of the image. The micro scale can be
determined using Nyquist-Shannon [308] sampling theorem stating that the
sampling rate must be at least twice the bandwidth of the signal. Having
defined what would constitute macro and micro scale, we can deduce that
the meso scale constitutes features which occupy a smaller portion of the
image, measured in a handful of pixels. With that in mind, we can also
introduce a clear image scale separation between the meso and the micro
scale: every feature which can not be sampled by more than one pixel falls
under micro scale class.

For a more vivid explanation of the definition and scale relativism. In
the case of visual surface inspection, we are looking at specific parts of an
object with high resolution. Therefore the inspected object is in macro scale,
its defects and surface texture caused by the manufacturing process are in
the meso scale, while roughness and smallest geometrical features are all
part of the micro scale. However, if we were to observe an outdoor scene
of a park, containing many people and trees for example, the macro scale
would be the shapes of people and trees, whereas the eyes or leaves would
already fall under the meso scale, and the skin or the leaf veins would be
considered micro scale.

8.2.4 3D Scene Modeling

The acquisition environment represents the context in rule-based image syn-
thesis. As such, the scene to be simulated must faithfully represent the
environment. For surface inspection environment this includes 3D objects,
lights and cameras (see fig. 8.3). Notice that in this pipeline we do not model
environment illumination, which is acceptable since surface inspection sys-
tems typically require a strictly controlled acquisition environment and no
uncontrolled illumination.

In this work, following the scale decomposition introduced in section 8.2.3,
the geometry of the inspected part is attributed to macro scale, texture and
defects to meso scale and material reflectance and roughness properties to
micro scale using BRDF. While all scales affect the realism, in this work we
place particular focus on texture and defect modeling.

Geometry of 3D objects in 3D scene must be the same as real inspected
products, which are in this work referred to as test bodies. Therefore, the 3D
scene contains the same 3D geometry which is used for the production of the
real test bodies (see fig. 8.11). Further, the geometry must contain defects
which are as close as possible to real defects. Thus, product geometry is
augmented using surface defecting models introduced in section 8.6.2.

3D object material is based on the state-of-the-art, physically-based,

194

microfacet-based BRDF for rough metal surfaces which is built on work by
Walter et al. [9], Kulla et al. [309] and Turquin et al. [310].

The described BRDF is a parameterized function. The most important
parameters for our work are BRDF roughness and surface normal in which
BRDF is evaluated. Within this work, we refer to surface normal as nor-
mal. Using constant BRDF parameters and surface normals for evaluating
the BRDF results in a smooth, overly perfect surface. Realistic surface mod-
eling in computer graphics relies on varying BRDF parameters and surface
normals using texture. This is highlighted in work by Dong et al. [174]
where the texture was generated using surface measurements and Gaus-
sian random field to add surface details on otherwise smooth and overly
perfect metal surfaces. Although this approach gives impressive results, it
does not provide the tools necessary to control the texture pattern based on
real surface topography measurements. In our work, we build a completely
controllable texture synthesis model using surface measurements.

Texture is a frequently used term in various domains. Therefore it can
be ambiguous to the reader which may draw context from a domain other
than computer graphics. In computer graphics, texture is a function which
assigns values to each point of object surface to be used during rendering
time. Texture describes surface patterns using vector values (e.g., normal)
and scalar values (e.g., roughness) that are used during rendering which
would require significant storage and computational efforts if they were to
be represented by the actual geometry. Once synthesized, the surface will
exhibit the pattern as defined by the texture (fig. 8.5, fig. 8.6).

In computer graphics, surface topographies can be represented using
surface normals and BRDF roughness. In this work, we specifically fo-
cus on surface topologies resulting from machining discussed in section 8.3.
Variation of surface normals and BRDF roughness over a surface is further
represented using textures. That said, texture can be seen as a computer
graphics tool to encode variations of surface topographies. Surface normal
and BRDF roughness values generated using texture are used during render-
ing for evaluating BRDF model. Varying roughness parameter of BRDF
over surface using texture results in variations in surface reflection [311].
Perturbing surface normals using texture, as discussed by Mikkelsen et
al. [312], affects the orientation of BRDF, introducing the appearance of geo-
metrical details (e.g., milling pattern) over a surface. In this work, we focus
only on surface normal while leaving roughness to a small constant value
(e.g., 0.0-0.1) due to the high level of detail modeled with surface normals.

Based on the topography measurements introduced in section 8.4, the
two main surface characteristics are modeled, namely textures and defects.
Texture modeling (section 8.5) focuses on developing algorithms capable of
recreating sandblasted and milling surface patterns. The textures are gen-
erated as images to focus on physically based texture modeling without the
additional layer of complexity introduced when adapting the models for an

195

Figure 8.3: 3D scene decomposition.

Figure 8.4: Simulated 3D scene representing the real inspection environ-
ment.

implicit procedural generation as suggested in Chapter 5. Sandblasted sur-
faces are modeled using a combination of exemplar-based methods whereas
the model for milled surfaces is procedural but implemented explicitly for
the sake of simplicity. Defect modeling (section 8.6) focuses on creating dent
and scratch defects, resembling the ones present on the inspected product
surface, as explained in section 8.3. Unlike the texture, which is modeled us-
ing normal mapping, the defects are modeled using actual geometry, which
is embedded into the 3D object geometry. This is done because the defects
are larger than the surface texture, and their complex shape causes intricate
light scattering that can not be captured by normal maps alone.

Light in the 3D scene represents the illumination devices used in the
surface inspection environment. Therefore, for the purpose of this work,

196

(a) Test body 1,
face A.

(b) Test body 2,
face A.

(c) Test body 3,
face A.

(d) Test body 3,
face B.

(e) Test body 5,
face A.

(f) Test body 1,
face A.
Sanblasting 2.5
bar.

(g) Test body 2,
face A.
Sandblasting 6
bar.

(h) Test body 3,
face A.
Parallel milling
4mm, zustellfak-
tor 0.5.

(i) Test body 3,
face B.
Parallel milling
4mm, zustellfak-
tor 0.8.

(j) Test body 5,
face A.
Parallel 8mm,
zustellfaktor
0.5.

Figure 8.5: Top: synthesized images. Bottom: real images. The viewpoint
is the 20-degree angle from a perpendicular view. Synthetic images contain
slight variation since they are picked from the dataset.

the light geometry represents a model of the real ring light geometry used
in the real inspection system which has a torus-like shape (fig. 8.4), with
diffuse emission distribution describing the light emission in each point of
the shape. This corresponds to the diffuse illumination device used during
real acquisition. Light geometry is placed so that the camera is in the centre,
with the same position and orientation as the camera, simulating the real
setup where light is mounted on the camera.

Camera is based on a pinhole camera model defined by its resolution,
pixel size, focal length, position and orientation parameters. Simulated cam-
era parameters are set to resemble the real camera parameters used in the
surface inspection environment. However, we do not account for aberrations
such as distortions and depth of field of the real camera. Since the goal is
to use synthetic data for ML where the focus is learning texture features
and defects, camera aberrations can be introduced during training using
augmentations. Therefore, the described camera model is enough for the
pipeline we introduce.

8.2.5 Texture Mapping

The textures used in this work are created as normal map images, using
explicit procedural models and exemplar-based texture synthesis (see sec-

197

(a) Test body 5,
face B.

(b) Test body 7,
face A.

(c) Test body 7,
face B.

(d) Test body 9,
face A.

(e) Test body 9,
face B.

(f) Test body 5,
face B.
Parallel milling
8mm, zustellfak-
tor 0.8.

(g) Test body 7,
face A.
Spiral milling
4mm, zustellfak-
tor 0.5.

(h) Test body 7,
face B.
Spiral 4mm,
zustellfaktor
0.8.

(i) Test body 9,
face A.
Parallel milling
8mm, zustellfak-
tor 0.5

(j) Test body 9,
face B.
Parallel milling
8mm, zustellfak-
tor 0.8

Figure 8.6: Top: synthetic images. Bottom: real images. The viewpoint is
the 20-degree angle from a perpendicular view. Synthetic images contain
slight variation since they are picked from the dataset.

tion 8.5), before the rendering takes place. Although implicit procedural
models (Chapter 5) allow evaluation during rendering, and thus control-
lable on-the-fly texture generation are more suitable for automated genera-
tion, limited spatial information makes describing spatially-varying patterns
with regular global structures, such as milling patterns present in physical
test bodies (fig. 8.5, fig. 8.6, fig. 8.8), challenging.

Normal maps are 2D image textures where each pixel encodes a normal
vector. Such an array of normal vectors describes the meso scale surface
pattern such as milling (fig. 8.6), present on the physical inspected object.
To use created normal map images for evaluating BRDF during rendering,
it is required to map procedural image texture on 3D object.

The way image texture is applied to an object greatly depends on the ob-
ject’s geometrical complexity. In the case of simple objects such as planes,
cubes and spheres, texture can be easily applied using texture projection
methods (e.g., planar, cube, spherical) as discussed by Pharr et al. [14]. In
the case of more complex geometry (see fig. 8.11) those methods are not sat-
isfactory if applied without care. For example, spherical projection does not
fit the shape of object geometry (fig. 8.11) and thus causes texture stretch-
ing. Further, cube projection fails since object geometry faces (fig. 8.11)
are under angle compared to cube projection planes which cause stretching.
Therefore, more elaborate approaches must be used. One potential approach

198

is mesh unwrapping. Unfortunately, mesh unwrapping requires manual in-
volvement and inspection of results which is typically performed by experts
or 3D artists. Furthermore, physical samples created for this work contain
different texture patterns per face. Setting up an unwrapped mesh to fit
different image textures is not straightforward and is time-consuming. In
our work, we take advantage of object shape and adaptively use texture
projection methods. Since object geometry (fig. 8.11) contains planar faces,
we use planar texture mapping per face and not on the whole object. First,
3D object geometry is separated on planar faces (fig. 8.11a). Second, planar
texture projection is used on relevant faces. Third, mapped texture values
are adapted to be used for BRDF evaluation during rendering.

(a) Test body 1, face
A.

(b) Test body 5, face
A.

(c) Test body 7, face
A.

(d) Test body 9, face
A.

(e) Test body 1, face
A.

(f) Test body 5, face
A.

(g) Test body 7, face
A.

(h) Test body 9, face
A.

Figure 8.7: Synthetic images of object surface with defects and textures. Top
row: perpendicular view. Bottom row: 20 degrees angle from perpendicular
view.

In the first step, 3D object geometry is separated into multiple faces to
enable applying the texture on each face separately using the planar texture
projection (fig. 8.11a). Pre-processing is performed on the original object
geometry which is described parametrically (STP file format). Since each
face is parametrically described, separation is performed using operators,
such as explode compound for separating parametric geometry into faces,
commonly provided in CAD modeling tools (e.g., FreeCAD [313]). Sepa-
rated object geometry is grouped on relevant planar faces A, B, C and the
rest of the object which contains non-relevant faces for our work (fig. 8.11a).
Finally, tessellation is used on processed geometry to obtain a triangulated

199

(a) Test body 14,
face A.

(b) Test body 17,
face A.

(c) Test body 27,
face A.

(d) Test body 21,
face A.

(e) Test body 14,
face A.

(f) Test body 17,
face A.

(g) Test body 27,
face A.

(h) Test body 21,
face A.

Figure 8.8: Real images of object surface with defects. Top row: 20 de-
grees angle from perpendicular view. Bottom row: 40 degrees angle from
perpendicular view.

mesh which is used for rendering.

In the second step, the separated object geometry is used in our 3D scene.
Since each face is planar and has a certain orientation in 3D space, the planar
texture projection [14] is used. Planar texture mapping only depends on the
normal of the face onto which the texture is mapped. Since face normal is
readily available and provided by the rendering method, texture mapping
via planar texture projection can be performed efficiently.

In the third step, the processing of normals stored in the projected nor-
mal map is done before evaluating the BRDF. First, the projected texture
is rotated and translated so that the position of the pattern matches the
position of the pattern on the real surface. Next, red, green and blue (RGB)
values are read from image textures. RGB values represent normal vectors
and thus remapping from [0,1] (color values) to [-1,1] (normal vector values)
must be performed. Further, normal vectors in image texture are stored
in tangent space meaning that the Z axis is pointing up. Therefore, the
face normal on which texture is mapped is used to construct orthonormal
basis [314] which is then used for correctly orienting normal vectors from
image texture. Finally, the normal obtained from normal image texture is
used instead of the face normal and thus called perturbed normal.

200

Figure 8.9: Left: defected synthetic image. Middle: defect annotations.
Right: defected synthetic image with annotations overlay.

Figure 8.10: Real (left) and synthetic (right) crops of defects on differ-
ent surfaces. Top: sandblasted. Middle: parallel milling. Bottom: spiral
milling.

201

8.2.6 Defect Annotations Generation

Object geometry used in the 3D scene is defected using methods introduced
in Chapter 6. Imprinting defects in actual geometry enables synthesizing
images containing realistic defected surfaces (fig. 8.7, fig. 8.10). Alongside
photo-realistic image synthesis of defected 3D objects, images containing
defect annotations (fig. 8.9) are generated based on the description given
in Chapter 6. For the sake of completeness, we provide an overview of the
process of generating annotations since our goal is creating training-ready
datasets which must contain precise annotations.

Images containing defect annotations are generated using both 3D object
and geometrical defect masks (discussed in section 8.6.2). Each defect on
3D object geometry is covered by a geometrical defect mask. To distinguish
defects, black (non-emissive) material is set to 3D object, emissive material
is set to geometrical masks and all light sources are disabled. This way, only
defect areas are visible from the camera position and not occluded by the
3D object are generated. Note that this approach also generates defecting
annotations on any part of the object visible from the camera, even if the ob-
ject is in the dark. Finally, generated images containing defect annotations
are paired with photo-realistic images using the same camera parameters,
effectively achieving automatic and pixel-precise defect annotations.

8.2.7 Rendering

Once a 3D scene is modeled, rendering is performed to create a 2D image
from a particular camera position using a 3D scene description. The main
rendering parameters for the quality of synthesized images are the number
of samples per pixel (SPP) and the number of light ray bounces.

Each pixel in the 2D image, depending on the camera position, covers a
certain portion of the 3D scene. In our work, pixels cover rich and complex
surface structures. Therefore, we use a higher number of SPP (i.e., 128) to
ensure the computation of pixel color which approximates well the surface
covered by that pixel. A higher number of SPPs effectively reduces noise
and aliasing in the rendered image.

In our work, 3D objects contain complex, geometrically imprinted de-
fects. To simulate correct light transport and obtain realistic defect response
to light, multiple light ray bounces are used. This way, complex light phe-
nomena such as shadowing, masking or interreflections expected to happen
on complex geometry is well approximated (fig. 8.7).

8.3 Test Body Design

The image synthesis pipeline presented in this work builds upon manufac-
turing domain knowledge to reproduce photorealistic data. Therefore, to

202

remove any potential ambiguity coming from manufacturing, we use cus-
tom designed and manufactured test objects. In return, this provides us
with complete insight into and control over the processing chain, allowing
us to focus on the image synthesis, surface modeling, dataset generation and
training challenges.

In total, three identical sets of test objects were fabricated, each con-
taining 10 test bodies. The bodies within the set vary in geometry and sur-
face machining methods. When designing the test bodies, the aim was to
generate bodies with multiple test faces (surfaces) showing different realistic
surface texture patterns. The base bodies (type B and type M) are polygons
made from aluminum, see fig. 8.11a. Each polygon has size 5cmˆ5cmˆ5cm
with planar faces A, B and C of approximately size 2cmˆ2cm which are mea-
sured and modeled subsequently. The remaining faces are left “unfinished”
(rough milling) and are not further considered. The difference between type
B and type M is the mirrored arrangement of plane faces of the base body.

The scope of this work is restricted to milling and sandblasting surface
processing methods.

First, the surfaces are milled using different processing parameters (fig. 8.11b).
This is a common machining method for the shaping of work pieces. It uses
a rotating cutter with a specific head diameter to remove material from the
surfaces by performing many separate, small cuts along the tool path with
a defined feed rate. Here, we consider face-milling, which means that the
tool moves perpendicularly to the object surface. The distance between the
neighboring tool paths depends on the radial depth of the cut and influences
the resulting tool marks, see fig. 8.11c. Parallel and spiral tool paths are
used, i.e. the surface is milled in parallel lines or in a spiral way. Artifacts
in the form of exit lines can occur for spiral milling (fig. 8.8 and fig. 8.7).

After milling, some of the faces were sandblasted, i.e. a hand-held nozzle
of a sandblasting tool blasts the surface with a mixture of sand and air under
high pressure. This abrasive method can smoothen or roughen the surface,
dependent on the pressure of the air jet. The resulting surface topography
dependents thus on the pressure of the air jet and the grain size distribution,
shape and material of the sand.

The parameter values were chosen to create realistic patterns that re-
semble the industrial processing of products. For milling, this includes the
selection and variation of the milling head size, the feed rate or the radial
depth of cut and for sandblasting the variation of the pressure. All the
applied process parameter settings are summarized in section 8.3.

Objects in set 1 contain no surface defects, while sets 2 and 3 contain
more than 200 scratches and localized point defects, created precisely on the
faces. For this purpose, a custom “indenter” and a scratch test tool were
used where the tips can be loaded with different masses. As tips we used
a diamond tip, a steel needle and a screw. The load of the tips were 500g,
1000g and 1500g. Using the tools, the scratches (straight and free-form

203

(a) Drawing of the base test bodies.

(b) Sketch of the milling processes and its main parameters.

(c) Picture of the manufactured surfaces of type B spiral milled with a small head
(4mm) and various radial cutting depths.

Figure 8.11: Illustration of the test object used in the project, the milling
processes and a test object with milled surfaces.

204

manufacturing
technique

parameter values

milling milling head diameter 4mm, 8mm
radial depth of cut 0.2, 0.5, 0.8
path parallel, spiral

sandblasting pressure 2.5bar, 6bar

Table 8.1: Used parameter settings for processing.

Figure 8.12: Test object type M after sandblasting and subsequently intro-
duced defects with different types and sizes.

lines) and digs (dents) are realized on the surfaces as typical surface defects
in accordance to ISO8785. The generated defect sizes were in the range of
sub-millimeter to millimeter. See fig. 8.11 for an example.

8.4 Material Measurements

The focus variation microscopy is a non-contact high-resolution surface mea-
surement technique, but can also be used for lower-resolution surface mea-
surements of larger surface areas. In order to characterize the machined sur-
faces, where both the small details and the surface pattern are important,
optical 3D and topography measurements are performed by means of focus-
variation microscope (Bruker alicona InfiniteFocus G4). In the high preci-
sion machining industry measurement systems based on the focus-variation
technique are standard inspection tools to characterize 3D mechanical parts.
The advantage is the high precision and contact-free measurement of rough-
ness, surface structure, micro-geometry and form using one optical sensor.
The measurement system is based on a precise optical lens system with
shallow depth sharpness. By changing the working distance between the
measured surface and the microscope lens, different depths of the surface
come into focus and are projected sharply on to the sensor. The proprietary
software analyzes the distance for each point and measures the sharpness,

205

(a) Parallel milled surface using milling head diameter 4mm and depth of cut 0.5.
Small imaged region (left) is 2mmˆ 1.4mm using νM « 0.44µm and large imaged
region (right) is 7.5mmˆ 5.9mm using νM « 1.75µm.

(b) Sandblasted surface using pressure 2.5bar (left) and 6bar (right). Imaged region
is 7.7mmˆ 5.7mm using νM « 1.75µm.

Figure 8.13: Topography measurements of sandblasted and milled surfaces.

which is used for the calculation of the surface depth profile (topography).
Depending on the magnification of the optical lens system, this process al-
lows a vertical resolution down to 10nm (magnification equivalent of 100x,
which is a physical magnification limit). The measurements are provided as
2D images M : t1, . . . ,MMu ˆ t1, . . . , NMu Ñ Rd of size MM ˆ NM for
MM, NM P N and pixel spacing νM P Rą0. The topography images can
be interpreted as height images, that means, each pixel is assigned a height
value.

For the purpose of this work, an optical lens system with a magnification
of 5x and a nominal vertical resolution of 410nm is used. The vertical res-
olution was limited manually during data acquisition by the measurement
software. The defect free samples of objects in test set 1 are measured with
different lateral resolutions, depending on the size of the scanned surface
area, as it is shown in fig. 8.13. The topography measurements are con-
verted into ASCII xyz-files in order to create readable files used for surface
modeling.

Depending on the process parameters, the tool marks created by the
milling process form an unique pattern which can be observed by the naked
eye (fig. 8.11c) and influences the subsequent surface light response, play-
ing the key role in surface inspection. Measurements of surfaces processed
using different parameter settings are given in fig. 8.14. When describing
the surface topography it has to be distinguished between surface roughness

206

Parallel, milling head diameter
4mm, depth of cut 0.8.

Parallel, milling head diameter
8mm, depth of cut 0.8.

Spiral, milling head diameter
4mm, depth of cut 0.5.

Spiral, milling head diameter
8mm, depth of cut 0.2.

Figure 8.14: Optical 3D measurements of milled surfaces using different
parameter settings. Imaged region is 21mmˆ 17.5mm using νM « 7µm.

and waviness. The latter is more on the long scale range and has typically
a periodical structure (e.g. tool marks). On smaller length scale, the tool
marks are overlayed with stochastically distributed fluctuations of the sur-
face height (spacing of the irregularities ! wavelength of waviness) which is
described by the surface roughness. For example, the surface roughness can
be influenced by the microscopic structure of the work piece, e.g. material.
The measured heights of the waviness are in the range of several microme-
ters whereas the resulting root mean square (rms) roughness is about 2µm.
When sandblasting, the previous milling does not affect the final surface
pattern, see fig. 8.13b. It results in a random stationary and isotropic ho-
mogeneous surface without spatial long scale relations.

In order to characterize the generated defects we used an optical lens sys-
tem with a magnification of 20x and adjusted the vertical resolution during
data acquisition in the software manually (depth quality filter value between
2e ´ 6 and 8e ´ 6 depending on the defect type and size). See fig. 8.15 for
an example. The shape of the dent resembles a dig with a peak and a valley
of about 150µm in height and depth with respect to the undamaged surface

207

Figure 8.15: Optical 3D (top left) and topography (right) measurement with
2D intersection of the height profile (bottom left) marked in the topography
measurement of a defect created using the indentor with load of 500g.

level.

8.5 Texture Modeling

The sandblasting and milling surface processing methods described in sec-
tion 8.3 resulted in very different surface topographies (fig. 8.13). Therefore,
separate models are required for both processing methods, each based on
the corresponding topography measurements M. The surface topography
describes the shape of an object in meso scale as introduced in section 8.2
which is here given as texture. For the sake of simplicity, texture images
are used. Thus, the output of the models is a texture image T of arbi-
trary size MT ˆ NT and pixel spacing νT ě νM coarser or equal to the
input’s pixel spacing. For the purpose of this work, we use νT « 6.1µm
and MT “ NT “ 13107 so that a squared imaged region with edge length
80mm is provided. The chosen pixel spacing is large enough in order to
generate images of appropriate size for which the rendering process can still
be done in acceptable time. However, pixel spacing is chosen small enough
so that no visible discretization artifacts occur. The resulting texture image
can completely cover test body surfaces during the later rendering process,
without the need for image tiling, even when the texture image is rotated.
Tiling is avoided because it repeats the texture image if it is too small to
cover the considered surface, producing visible edges between the tiles. Such
edges break the texture pattern and are unrealistic.

208

Texture synthesis

Procedural data-based

Explicit Implicit Exemplar-based Generative AI

Statistic-based Patch-rearrangement

Figure 8.16: Classification of computer graphics texture synthesis methods.

8.5.1 Related Work

Particularly interesting computer graphics methods for modeling highly re-
flective metal surfaces are the ones describing highly specular surfaces with
high-frequency details called glints discussed by Zhu et al. [315] and Cher-
main [316]. Glint effects appear due to complex and unstructured small-
scale, high-frequency geometries such as tiny bumps, dents and scratches.
The problem with these approaches is that they do not model the actual
properties of surfaces to resemble any particular and standardized surface.
Rather, they are modeled to resemble the surface finishing appearance in
an artistic way which is difficult to compare to any particular real-world
counterpart.

To our knowledge, there is no work describing texture synthesis models
for sandblasted surfaces. Milling belongs to the machining processes which
are deterministic and standardized, and therefore result in deterministic and
describable surface patterns as discussed by Groover et al. [317] and Childs
et al. [318]. Therefore it is extremely useful to incorporate existing domain
knowledge while modeling textures for milled surfaces. In order to estimate
the surface quality of milled surfaces and thus determine the required quality
Felho et al. [319,320] and Kundrak et al. [321] developed models for parallel
face-milled surfaces. Further, Hadad et al. [322] developed a more detailed
model that takes other typical milling parameters into account, e.g. tilting
of the tool to avoid re-cutting. All models create milled surfaces using
the CAD software and the patterns are thus geometrically imprinted into
the surface. In our application, that procedure would lead to extensively
long computation times for the rendering step. Furthermore, the surfaces
generated in this way look too perfect, as possible irregularities are not
included in the models, e.g. slight deviations in the cutting geometry due
to irregular material and machine behavior.

In computer graphics, surface topographies can be represented by tex-
tures which are roughly separated into procedural and data-based. The
whole classification tree is illustrated in fig. 8.16.

Procedural texture modeling is based on algorithms which com-

209

pletely describe the surface patterns without the need for additional data
(e.g., image data). The main concept is to combine regular patterns (e.g.
sine, simple shapes such as lines and circles as well as other mathematical
functions) discussed by Vivo et al. [63] with irregular patterns (e.g. noise
functions) discussed by Dong et al. [53]. Since procedural texture models are
algorithmic descriptions of a texture, they offer parameterization and thus
immense controllability which is recognized by the computer graphics com-
munity for content creation [10]. However, developing procedural textures
is often done by artists who base their work on experience and expression
rather than encoding physically correct parameters.

Deguy [10] separates procedural models into implicit and explicit. The
explicit procedural texture models generate texture images which are first
mapped on the object surface and then used during rendering. Contrary,
the implicit procedural texture models are directly evaluated during the
rendering procedure ensuring texture generation in render-time and allow-
ing render-time re-parametrization. Moreover, implicit procedural texture
models can cover arbitrary large surfaces without repetitions or seams and
they provide infinite resolution. On the other hand, explicit procedural
models are easier to develop for complex texture patterns. In Chapter 5 im-
plicit procedural texture synthesis method for circular, parallel and radial
textures was presented. Those patterns resemble processed surfaces but no
explicit machining method is taken into account.

Data-based texture modeling relies on sensor data and measure-
ments as input, as discussed by Tsirikoglou et al. [125]. For example, the
input texture image may be obtained using photogrammetry [51] or other
scanning techniques [323]. The advantage of data-driven texture modeling
is to synthesize approximations of real-world surfaces for which there are no
well-defined mathematical descriptions. However, those methods offer little
control over the generated content since they depend entirely on the input
data. Thus, no structure-describing input parameters exist. Data-based
texture modeling can be roughly separated into generative AI and exemplar-
based. Generative AI texture synthesis is often based on GANs as dis-
cussed by Jetchev et al. [324], Bergmann et al. [281] and Zeltner et al. [325].
On the other hand, exemplar-based texture synthesis uses algorithms
to generate new texture images similar to a given input image. While sta-
tionary textures can be well reproduced, problems occur for globally varying
textures. Further, since the output image relies entirely on the input image,
it leaves no possibility of influencing the pattern itself. Raad et al. [326] give
an overview of common exemplar-based texture synthesis methods. They
distinguish between statistic-based and patch-rearrangement methods.

Statistic-based exemplar-based methods divide into two steps. First,
model-dependent statistics of the input image are computed followed by the
adjustment of a random image so that its statistics match. The asymptotic
discrete spot noise (ADSN) and the random phase noise (RPN) are both

210

parameter-free and non-iterative statistic-based methods [327]. A texture
image simulated by the ADSN maintains the mean of the input image and
its auto-covariance equals the input’s auto-correlation. The RPN creates
texture images that have the same Fourier modulus as the input image but
a random Fourier phase. Heeger and Bergen [328,329] introduced a different
procedure for texture modeling that uses image pyramids. A random image
is adjusted iteratively by applying histogram matching to all images in its im-
age pyramid according to the image pyramid of the reference image. Portilla
and Simoncelli [330,331] improved this method by using certain statistics in-
stead of histogram matching, e.g. cross-correlations between pyramid levels.
In contrast to the exemplar-based methods that generate completely new
texture images, the patch-rearrangement methods quilt patches taken
from the input image. With the method of Efros and Freeman [332, 333],
the output image grows successively by adding certain patches one after the
other in a raster-scan order. It is an extension of the method of Efros and
Leung [334] that generates a new texture image pixel by pixel.

Guehl et al. [335] introduce a hybrid approach combining procedural and
data-based texture synthesis. The visual structure of the generated image
texture is based on a procedural parametric model, while texture details
are synthesized using a data-driven approach. Another hybrid approach is
presented by Hu et al. [113], in which the texture of the input image, which
contains the BRDF parameters, is decomposed and proceduralized.

8.5.2 Sandblasted Surface

When sandblasting, the surface topography changes with respect to the
range of height values and the degree of roughness depending on the pres-
sure of the air-jet (fig. 8.13b). The resulting surface topography is homo-
geneous, resembling a stationary Gaussian random field. However, fitting
Gaussian random fields did not provide satisfactory texture images. In ad-
dition, due to the small number of process parameters, it is difficult to
develop a model that depends exclusively on them. Therefore, we used a
combination of exemplar-based texture synthesis methods that only receive
the measurement as input. We select measurements of approximately size
4440ˆ 3250 and pixel spacing νM « 1.75µm that correspond to an area of
size 7.5mmˆ 5.7mm.

To generate texture images for sandblasted surfaces, the asymptotic dis-
crete spot noise (ADSN) is used, introduced by Galerne at al. [327]. The
size and pixel spacing of the input image is maintained. To obtain the new
texture image, a convolution between a Gaussian white noise image and the
input is used. Thus, the output is normally distributed having as mean
and auto-covariance the input’s sample mean and auto-correlation. The
measurements serve as input for the ADSN.

Next, the desired size MT ˆ NT and pixel spacing νT of the texture

211

Figure 8.17: Illustration of EF-stitching marking the minimal path in each
step. Patches have the size of 512ˆ 512 and the overlap region width is 256
pixels. The imaged region is approximately 1.34mmˆ 1.34mm.

image have to be met. The ADSN can generate texture images larger than
the input image, while maintaining the same pixel spacing. Therefore, the
input image is enlarged using padding with its mean value before applying
the ADSN. However, periodical repetitions are visible. To avoid that cir-
cumstance, multiple texture image patches are generated and stitched using
EF-stitching. The patchwork texture is then down-sampled using nearest
neighbor interpolation to meet the desired pixel spacing.

EF-stitching was introduced by Efros and Freeman [332, 333]. To stitch
two neighboring patches within an overlap region, both are cut apart along
an intersection edge first and put together afterwards. The intersection
edge is determined by finding the path within the overlap region where
both images are most similar. Therefore, the minimal path approach is
used. Depending on the alignment of two neighboring patches we distinguish
between vertical, horizontal and L-shaped stitching (fig. 8.17).

8.5.3 Milled Surface

The model generating textures of milled surfaces is given as a function in a
continuous domain R2. Thus, it is procedural but implemented explicitly for
the sake of simplicity. The discrete texture image is obtained by evaluating
the function at the image grid-points pνT x, νT yq for x “ 1, . . . ,MT and
y “ 1, . . . , NT . The milling pattern appearance depends on a number of
parameters associated with production parameters. The most prominent
structures are cycloidal edge paths caused by the rotation motion of the
milling head. In this work they are approximated by n P N rings R1, . . . , Rn
(fig. 8.18a). The model is further divided into the following sub-models for
the

1. tool path providing the arrangement and order of the rings by defining
their center points ck

2. appearance of an individual ring Rk (fig. 8.18b)

3. interaction between neighboring rings (fig. 8.18b)

212

(a) Edge path (top) and its approx-
imation (bottom).

(b) Sub-models for one ring (left) and inter-
action of multiple rings (right).

Figure 8.18: Overview of model generating milled surfaces.

x

y

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚
ρ

δ
‚ x

y

ρ
‚

δ

Figure 8.19: Tool paths of parallel (left) and spiral milling (right) with center
points.

The first sub-model generates the ring center points ck P R2 along the
tool path. Within this study, either parallel or spiral milling (fig. 8.19) is
considered. First, the respective tool path has to be modeled, together with
the distance ρ P p0, dq between two neighboring sub paths. The distance is
controlled by the amount of ring overlap α P p0, 1q and the diameter d P Rą0

of the rings, as ρ “ p1 ´ αq ¨ d. The diameter of the milling head is crucial
for defining the ring diameter and the radial cutting depths for the ring
overlap α “ p1 ´ cutting depthq. As the blades do not reach the edge of
the tool, α is reduced here by taking α´ γ with γ P r0, αq. Then, points c̃k
are computed that are located on the tool path to get the ring center points
by ck „ N pc̃k,Σcq. Their location is specified by the distance δ P Rą0

between two center points along the tool path. The distance δ depends on
the tool’s feed rate and rotational speed. Further, it is important to keep
the chronological order of the rings in order to keep the tool path visible.
Finally, while being very precise, the milling process is not perfect and every
once in a while there is an occurrence of a ring which is more visible than
the others. To introduce such irregularities in visibility of rings, the order
of a certain amount ε P r0, 1s or rings is changed.

The second sub-model controls the appearance of an individual ring Rk,

213

which is the result of the cut within a single rotation of the milling head,
produced by a cutting edge. Therefore, the width of the cutting edge is
crucial for the indentation width w´k „ N pµw´ , σw´q. To get height values,
the shape of the indentation is modeled by the cosine function ´ cospxq for
x P r´π{2, π{2s scaled to the width of the ring. Material depositions are mod-
eled by accumulations beside the indentation in form of rings having positive
values. The width for the inner and outer rings are w`ik „ N pµw`i , σw`iq

and w`ok „ N pµw`o , σw`oq and the height component is again modeled using
the cosine function. All together is called the shape Sk of ring Rk (fig. 8.20).

So far, perpendicularity between the milling head and the surface has
been assumed. However, the milling head is often tilted forwards in direction
of the tool movement to prevent re-cutting the surface that was treated just
shortly before. It is given by the angle φk P p´π, πs in the x-y´-plane
between the tool path and the x-axis at point c̃k. Tilting introduces a slope
within the rings defined by the minimal l‚k „ N pµl‚ , σl‚q and maximal h‚k „
N pµh‚ , σh‚q indentation, inner and outer accumulation at the ring’s front
respectively back for ‚ P t´,`i,`ou (fig. 8.20). Since the tool’s presence
prevents pushing material to the inside, l`i and h`i are chosen small. Tilting
Tk is then applied by multiplying with the shape Sk.

Finally, noise Nk is added, simulating irregularities caused by resistances
in the material or vibrations during the process. Therefore, a combination
of λk „ Ppλq sine curves with varying frequencies τkj „ Ppτq and random
shifts ξkj „ U pp´π, πsq for j “ 1, . . . , λk is taken. Thus, Rk “ Sk ¨ Tk `Nk

defines the sub-model for the appearance of one individual ring (fig. 8.20).
The third sub-model deals with the interaction of the neighboring rings.

First, the rings are successively added into the model, according to their
order by using a recursive function f pR1, . . . , Rkq “ Lk ¨ Rk ` p1 ´ Lkq ¨
f pR1, . . . , Rk´1q for k “ 1, . . . , n and R0 “ 0 (fig. 8.21). Since every part
of the surface is processed several times, all associated rings must be taken
into account with most of the weight on the temporally last rings. A convex
combination is used therefore. Because the surface is more changed by
deeper indentations, a linear function Lk : R2 Ñ r0, 1s is taken instead of a
global parameter, which gives more weight to the front part of the ring than
to the back. It is zero for points outside the ring. Values at the front and
back of the rings are given by ak „ Upramin, amaxsq and bk „ Uprbmin, bmaxsq.

A summary of the parameters needed for the model is given in table 8.2.
Some parameters are known explicitly (section 8.3), while the others are
estimated by visual comparison using high resolution topography measure-
ments (fig. 8.13a). Different simulations of the model using distinct pa-
rameter configurations are shown in fig. 8.22. In the end, height values of
the preliminary texture image Tpre are adapted so that their distribution
resembles that of the corresponding measurement M. Their sample mean
values µ̂‚ and sample variances σ̂2

‚ should coincide, which is obtained by
T “

a

σ̂M{σ̂Tpre ¨ pTpre ´ µ̂Mq ` µ̂Tpre .

214

(a) Sub-model for ring appearance using φk “ 0, from left to right: Sk, Tk, Nk, Rk.

(b) 1d intersection of Sk ¨ Tk.

Figure 8.20: Illustration of sub-model for ring appearance with explanation
of its parameters.

Figure 8.21: Sub-model for rings’ interaction using φk “ 0, from left to
right: fpR1, R2q, R3, L3, fpR1, R2, R3q.

215

Parallel milling using d “ 4mm,
α “ 0.2, δ “ 0.09mm.

Parallel milling using d “ 4mm,
α “ 0.2, δ “ 0.25mm.

Parallel milling using d “ 4mm,
α “ 0.5, δ “ 0.09mm.

Parallel milling using d “ 4mm,
α “ 0.8, δ “ 0.09mm.

Parallel milling using d “ 8mm,
α “ 0.2, δ “ 0.09mm.

Spiral milling using d “ 4mm, α “
0.2, δ “ 0.09mm.

Figure 8.22: Adapted simulated milled surfaces generated with different
parameter configurations. Imaged region is 10mmˆ 10mm.

216

notation definition meaning distribution parameter values

p
at

te
rn

ck rings’ center points determined by tool path N pc̃k,Σcq Σc P R2ˆ2
ą0 pΣcqii “

1{300δ, i “ 1, 2

d diameter of ring diameter of milling head d P Rą0 d P t4, 8umm

α
defines ρ (distance between amount of overlap of

α P p0, 1q α P t0.2, 0.5, 0.8u
neighboring tool paths) neighboring tool paths

γ
increase distance between distance between blade

γ P p0, αq γ “ 0.04
neighboring tool paths and outer edge of tool

δ
distance between depends on feed rate and

δ P Rą0 δ “ 0.09mm
center points tool’s rotational speed

ε
amount of rings

ε P r0, 1s ε “ 0.01
with changed order

ap
p

ea
ra

n
ce

w´k
width of

width of cutting edge N pµw´ , σw´q
µw´ P p0, d{2q µw´ “ 0.05mm

indentation σw´ P Rą0 σw´ “ 1{6µw´

w`ik
width of depends on N pµw`i , σw`iq

µw`i P r0, d{2´ µw´q µw`i “ 0.025mm
inner accumulation edges’ sharpness σw`i P Rą0 σw`i “ 1{30

w`ok
width of depends on N pµw`o , σw`oq

µw`o P Rě0 µw`o “ 0.025mm
outer accumulation edges’ sharpness σw`o P Rą0 σw`o “ 1{30

φk tilting direction depends on tool path φk P p´π, πs computed by ck

l´k , h´k
minimal/maximal scaling

cutting depth with tilting N pµ‚´ , σ‚´q
µ‚´ P Rě0 µl´ “ 0.7, µh´ “ 1

of indentation depth σ‚´ P Rą0 σ‚´ “ 8{30

l`ik , h`ik
minimal/maximal scaling depends on N pµ‚`i , σ‚`iq

µ‚`i P Rě0 µl`i “ 0, µh`i “ 0.2
of inner accumulation height edges’ sharpness σ‚`i P Rą0 σ‚`i “ 1{6

l`ok , h`ok
minimal/maximal scaling depends on N pµ‚`o , σ‚`oq

µ‚`o P Rě0 µl`o “ 0.2, µh`o “ 0.5
of outer accumulation height edges’ sharpness σ‚`o P Rą0 σ‚`o “ 1{6

λk number of sine curves Ppλq λ P N λ “ 50

τkj frequency of sine curves Ppτq τ P N τ “ 50

ξkj shift of sine curves U pp´π, πsq

in
te

ra
ct

io
n

ak
minimal value U

`

ramin, amaxs
˘ amin P r0, 1s amin “ 0

convex combination amax P ramin, 1s amax “ 0.3

bk
maximal value U

`

rbmin, bmaxs
˘ bmin P r0, 1s bmin “ 0.1

convex combination bmax P rbmin, 1s bmax “ 0.4

Table 8.2: Overview of all quantities needed for the milling model includ-
ing their required parameters and choices thereof. Known quantities are
highlighted (section 8.3).

217

8.6 Defect Modeling

8.6.1 Related Work

Defects are flaws on the surface (fig. 8.8, fig. 8.10) of an object that can
range from geometrical defects (e.g., mechanical - dents, scratches, cracks,
etc.) to material defects (e.g., oil, chemicals, etc.) as discussed by Black
et al. [2]. The development of machine vision solutions for defect recogni-
tion requires image data of products containing various defects (Beyerer et
al. [5]). Straightforward ways to generate defected image data are to either
embed defects on defect-free real images or to train GAN models. First,
a more classical, approach was presented by Haselmann et al. [286] which
uses a multi-step stochastic process which generates defect textures that
are added to defect-free surfaces. Although controllable, the method gener-
ates defects as 2D patches which cannot correctly represent light reflection
disabling multi-view image generation and often causing inconsistent light
appearance between the defected and correct (original) surface. More popu-
lar defect image synthesis using GAN is discussed by Niu et al. [221], Wang
et al. [256] and Zhang et al. [255]. However, GAN-based methods cannot
generate edge-case scenarios if they were not present in the sample dataset
or multi-view representation of the same defect with varying acquisition con-
ditions. Additionally, GANs are known to hallucinate [287], which can cause
the results to introduce uncontrolled error representation into the generated
dataset.

Since our focus is rule-based image synthesis, more suitable, algorithmic
approaches are presented by Barisin et al. [231] and Jung et al. [336] for
the simulation of concrete cracked surfaces. Although they give impressive
results, their work is focused on 3D voxel data, while our focus is on metal
surfaces with surface defects. Defected metal surface modeling was presented
by Raymond et al. [207] where scratches were modeled by stacking layers
with different scratch distributions. Unfortunately, this model does not
represent curving scratches nor dents or scratches with varying geometrical
depth. In this work, we use the parameterized methods presented in Chapter
6, capable of producing surfaces containing geometrical dent and scratch
defects ensuring correct light scattering.

8.6.2 Defect Modeling Pipeline

For the sake of completeness, we first provide a short overview of the de-
fecting workflow presented in Chapter 6. Three main steps of the defecting
workflow are (1) defect positions generation, (2) generation of 3D geometries
representing the defecting tools and (3) imprinting the defecting tools into
the surface and creating geometrical masks which are used later for gen-
erating defect annotations. Defect positions are found by sampling points
on inspected product geometry using various methods ranging from uni-

218

form to weighted ones. Two main defecting tools that are introduced are
negatives of dents and scratches. Denting tools are typically spherical and
parametrized for controlling their scale, rotation and shape. Scratch tools
are created by first walking on a product geometry resulting in a path which
is then converted into a solid geometry. Scratch tools are also parametrized
enabling the control of their size and shape such as thickness and curviness.
Imprinting defecting tools into inspected product mesh is performed using
Boolean difference operation to ensure correct light response under varying
view and light conditions. After defect imprinting, geometrical masks are
created using inspected product mesh and defecting tool. The resulting ge-
ometry - a mask - can be a solid filling the defect or represent a shell covering
the defect.

After the defecting workflow overview, we describe how it is used for de-
fect modeling in our work. We focus on dent and scratch defects introduced
in Chapter 6 to replicate physical defects described in section 8.3. First,
positions are generated on the inspected product shape where the defects
will take place. Since generating positions is parameterized, we can control
where the defects will appear and the number of defects that will be created.
To control where the defects will appear, constrained sampling is used so
that only faces A, B, and C (fig. 8.11a) are sampled for positions. Once
defecting positions are generated, defecting tools are generated and placed
on found positions. As the generation of defecting tools is completely pa-
rameterized we can control their shape, size and orientation as discussed
in Chapter 6. This enables the controllable creation of defecting tools that
represent dent and scratch negatives that can be found on physical objects.
Once generated and placed, defecting tools are imprinted into the inspected
product surface altering the actual geometry. In this step, a geometrical ob-
ject, a mask, fitting the created defect is further created using the defecting
tool. The created mask object is used during the image synthesis step for
the automatic generation of defect annotations, alongside realistic renders.

Described defecting process, both the mesh sampling algorithm for de-
fect positioning as well as defecting tool creation are parameterized. This
means that this approach enables the creation of defects whose parameters
correspond to the shape, size and position of real defects. Therefore, we can
create realistic defects resembling the real defects. That said, measured de-
fect topographies are used to determine the defecting parameters. However,
the defecting approach used in this work can be further extended so that
defecting tools are created based on the defect topography information. Fi-
nally, this approach enables the creation of an arbitrary number of defected
3D objects. That leads to creating an arbitrary number of synthetic im-
ages of defected objects (fig. 8.5, fig. 8.6) with automated and pixel-precise
annotations (fig. 8.7, fig. 8.9, fig. 8.10).

219

8.7 Dual Dataset

Inspection datasets of defects are difficult to obtain due to physical costs
of producing defected parts, low probability of defects appearing and pro-
prietary nature of the data. However, several datasets exist in the scien-
tific community and provide an invaluable source of data for scientific ad-
vancements in the field. Publicly available datasets for inspection of metal
objects [228] mostly focus on the defect recognition over flat surfaces and
single-view inspection setups. While this simplifies the light response di-
versity of defect and surface geometry to ease defect recognition, it poses
the danger of lower recognition of some defects due to low defect visibility
under that specific setup. The aforementioned datasets contain objects such
as hot rolled steel [245–248], slightly curved metal pads [236,337], rails [251]
and pipes [250]. Datasets of smaller metal objects with complex geometry
are also present, however also under single-view inspection setups [243,253].
More complex inspection setups are present in recent datasets by including
single-axis rotation [338], multiple illumination directions [237] and the mul-
tiple view directions [339]. Multi-view inspection setups inspect the same
surface multiple times while varying at least the direction of the incoming
light source or the direction of the camera to reduce the chance of miss-
ing defects due to low visibility. Synthetic datasets for inspection exist in
form of generic stochastic textures [340], outdoor maintenance scenes [224],
multi-object pose estimation task [260], industrial part recognition [341] and
surface defect recognition [339].

We present a dual dataset consisting of a real and synthetic part, follow-
ing the multi-view inspection setup described by [339]. Our dataset focuses
on recognition difficulties arising from complex reflectance of different sur-
face finish patterns which may cause defect curtaining.

8.7.1 Real Dataset

The real dataset was acquired using a setup consisting of a robot manipula-
tor, matrix grayscale camera, diffuse ring light and an acquisition table. The
setup uses a thick black curtain to remove any influence of the environment
illumination or reflection from within the acquisition box. The manipulator
is used to position the camera and illumination onto predefined viewpoints.
The acquisition table is a flat surface covered in diffuse black velvet and the
acquired object is manually placed on top. The acquisition viewpoints are
defined using V-POI [188] as an inspection plan, relative to the 3D model
of the acquired object. Our acquisition plan consists of viewpoints focused
on the middle of each inspected object face, at angles 0, 10 and 20 degrees
from the respective surface normal visualized in fig. 8.23.

In order to minimize the placement deviation between the expected and
actual position of the object, the operator must perform the object position-

220

Figure 8.23: Visualization of viewpoints used for inspection.

ing routine. The positioning routine uses a predefined reference viewpoint
and synthetic image of the object taken from it. In this case, it is the
viewpoint placed perpendicularly to the C-face of the object. The physical
camera is placed into position defined by the reference viewpoint and the
reference synthetic image is overlayed. For research purposes we ensure that
the real images are closely aligned with their synthetic correspondents by
manually aligning the object to make the observed image match a synthetic
reference image. For this procedure to be appropriate - either the synthetic
image must contain image distortion introduced by the lens or the real image
must be undistorted.

The real dataset consists of images of test bodies defined in section 8.3,
acquired using the setup above and manually annotated using LabelMe [265].
In total, the dataset contains 30 objects, with 20 of them defected, and
12 viewpoints per object. Overall this amounts to 360 annotated images,
240 of which display defects. The dataset was split into train-val-test sets.
The test set contains the 10 correct objects and 10 defected objects. Train
and validation sets contain the remaining 10 defected objects, where only 1
viewpoint per object is used for the validation set.

8.7.2 Synthetic Dataset

The synthetic dataset generation environment described in section 8.2 was
developed to match the physical acquisition setup. Dataset generator is an
automated procedure which uses object, texture and defect specifications
for generating annotated synthetic data in multiple stages. The first stage
of dataset generator is geometric defecting as described in section 8.6, which

221

Parameter Small dent Big dent Flat scratch Curvy scratch

Quantity 5 3 2 2
Diameter [0.02, 0.2] [0.2, 1.0] [0.02, 0.2] [0.02, 0.1]
Elongation [1, 2] [1, 4] - -
Depth [0.05, 0.2] [0.2, 1.0] - -
Path length - - [5, 20] [10, 20]
Step size - - 0.1 1.0

Table 8.3: Defect specifications and ranges for uniform sampling.

generates and applies defects to the original object geometry. The defect-
ing consists of sampling points on the object’s surface, generating random
defect geometries based on user specification and applying them on sam-
pled locations. Depending on their specifications, defects are grouped into
classes which are later used to obtain labels for recognition model devel-
opment. Along with application of defects to the object surface, the defect
geometry is grouped and stored in two ways: per-class for generating seman-
tic segmentation masks and as separate geometries for generating instance
segmentation masks. Defecting is performed in an iterative manner for each
new defect specification, for a user-specified number of times, each time re-
sulting in new instance of defected geometry. We define two types of defects:
dents and scratches. To obtain an approximate defect specification ranges
we measure the defects present in real objects. We further gently increase
the range to generate unobserved defect shapes. The final defect generation
specifications are provided in table 8.3. The defect specifications of dents
and scratches are split into 2 sub-types to ensure that both types are always
present in the images, however they are later treated same by the recognition
model.

The second stage is done in parallel and produces texture images of the
object surface using methods introduced in section 8.5. Like defects, the
texture parameters are specified by ranges which are randomly sampled for
every new image, thus introducing controlled surface appearance variation
within desired ranges. For dataset generation we use parameters introduced
in table 8.2 with increase in variation by sampling parameters presented in
table 8.3. We empirically decided on this set of parameters as they model
stochastic elements of the milling process and produced observable changes
in textures. The ranges were chosen to model plausible effects on textures,
such as the milling at different translational speeds or amplitudes of parallel
and orthogonal tool vibrations.

The third stage combines the geometries and textures to produce an-
notated images, as described in section 8.2. Synthetic images and masks
are generated for every instance of the defected geometry based on a prede-
fined inspection plan (camera/light acquisition setup). An image-mask pair

222

Parameter Set of values to randomly sample from

Ring flip probability (ε) 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5
Tool path noise (Σc) 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8
Ring separation (δ) 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2
Ring width noise (σω´) 0.3, 0.4, 0.5, 0.6, 0.7
Noise depth (σl´ , σh´) 0.4, 0.6, 0.8, 1.0, 1.2
Sin curves number (λ) 30, 50, 70

Table 8.4: Texture variation parameters, modifying the default values in
table 8.2.

is produced for all viewpoints and all geometries. To simulate the variety
in production of surface finishes, for each surface of the object geometry
a texture instance is selected at random, the texture is rotated randomly
between r´15, 15s degrees and translated by 5, 3 or 1 for faces A, B and
C respectively. High sensitivity of textures to direction of light and camera
ensures that the random texture shifts will produce greatly different appear-
ances. Since the defective geometries have multiple instances, the correct
object instances are generated by using original object geometry together
with randomly sampled texture instances, offsets and rotations. To model
different oxidation levels, we use the material roughness parameter which
we randomly sample for each synthetic object from range r0.05, 0.3s.

The synthetic dataset is an approximate model of the production vari-
ance observed in the real dataset. Similarly to the real dataset, it contains 10
objects with matching textures. However, it contains 30 instances of correct
and 30 instances of defective geometry per-object. The correct geometry
instance is shared within each correct object instance and only the textures
are applied uniquely to produce variety. The defected geometry instances
are shared among objects to remove result variance due to geometry in the
later experiments. In total, the dataset contains 31 unique geometries form-
ing 600 unique object instances. Each object instance is inspected using
same 9 viewpoints used in the real dataset totaling in 5400 images, 2700 of
which contain defects. The images were rendered using 256 spp and 8 light
bounces at resolution 1224 ˆ 1025. The train-val-test set was produced in
the ratio 70:10:20, by splitting along the dimension of object instances to
ensure the same label distribution across all texture groups.

8.8 Quality Estimation

Dataset quality for machine learning is a field focusing on estimation of fac-
tors that affect recognition model development. Various metrics were pro-
posed in recent works [342] to estimate the factors that affect the dataset
quality, such as annotation quality or class balance. However, these met-

223

rics usually ignore the domain-specific and cross-domain elements that can
produce various domain-specific biases, such as labeling sufficiency, domain
task compatibility or domain coverage.

Quality estimation of a synthetic dataset should be measured by how
accurately it models the real process of data acquisition, as well as how
much utility does the recognition model get from it. It should give insight
into the domain gap present between the two datasets to assist with further
improvements of the synthetic dataset. To organize the different ways of
measuring the quality of a dataset, we propose a distinction between a priori
and a posteriori similarities. To measure the qualities of our synthetic data,
we assume the existence of a representative dataset collected in the real
world under controlled conditions. To the best of the authors knowledge,
this is a first evaluation of synthetic data quality which goes beyond the
comparison of recognition model performances.

8.8.1 A Priori Similarities

A priori quality estimation collects requirements which should be satis-
fied by the synthetic dataset to model the real acquisition process prior to
data generation itself. For visual surface inspection, these requirements are
tightly coupled with the results of physical processes used to manufacture
and inspect the object. Measuring such a quality is difficult as we work with
observations which aren’t necessarily quantifiable by themselves. However,
listing the assumptions taken when modeling the dataset provide valuable
information on which effects might not have been modeled and could later
affect the recognition model. Thus, the a priori quality of the dataset is
proportional to the number and precision of the environment model used to
generate the images.

8.8.2 A Posteriori Similarities

A posteriori quality estimation is done by comparing the similarity of the
synthetic dataset to the collected real dataset. In this work we accumulate
the results of metrics that compare the similarity between the corresponding
dataset images (domain similarity) and the similarity of the dataset distri-
butions through the training of defect recognition models on the required
task (task similarity). The a posteriori quality of the dataset is proportional
to the distances between datasets reported by the dataset similarity metrics.

Domain similarity

describes the dataset quality through the similarity of intensities and pat-
terns in corresponding images between datasets. This type of dataset sim-
ilarity is related to the amount of covariate shift. Covariate shift is a type

224

of domain shift where the conditional (posterior) distributions are equiva-
lent between distributions ppy|xq, but the prior (image) distributions differ
ppxq [343]. Since the image space is high-dimensional and sensitive to offsets
in the scene, a more efficient comparison can be performed through an image
descriptor which summarizes some aspects of an image into a short feature
vector used for comparison.

Value-wise similarity compares the global distribution of intensities be-
tween the images with corresponding viewpoints (e.g. histogram distances).
This type of comparison is affected by scene media that are spatially invari-
ant, e.g. illumination strength and light absorption of a material.

Pattern-wise similarity compares the spatial patterns between the im-
ages. This type of comparison is affected by the scene structures, e.g.
patterns of the surface finish, light source shape and material reflectance
function.

Handmade image descriptors focus on special aspects of patterns in im-
ages, such as: pixel-wise closeness and alignment (e.g. mean absolute error,
PSNR) or statistical similarity (e.g. SSIM [344]). Leveraging learned fea-
ture extractors for feature-space comparison (e.g. Inception score [345],
FID [346], LPIPS [347]) alleviate the need of designing manual image de-
scriptors by instead relying on a large and diverse dataset and training of
a deep feature extractor to model a general-purpose feature space that can
work across different domains of images.

Multiple distance measures are available in the field of domain adapta-
tion for measuring different shifts between data distributions [343], where
the goal is to reduce the distance between two or more domains of a learned
feature extractor. These methods are also used in generative adversarial
models, where a feature matching loss function is used to improve the re-
alism of the generator model by minimizing the distance in a feature space
modeled by the discriminator model [348].

Task Similarity

describes the distance between the data distributions through the condi-
tional dependence of label space on image space. This type of dataset simi-
larity is related to the amount of concept shift present between the datasets.
Concept shift is a type of domain shift where the conditional (posterior)
distributions ppy|xq differ between domains, while the priors ppxq are the
same [343]. In the field of domain adaptation [343], a common approach
to measure the effectiveness of such methods is through the difference in
results of task metrics when a model is trained on the source dataset and
when such methods are used to adapt it to the target domains. As dis-
cussed in [349], this approach measures the difference in biases present in
the two datasets, which can be interpreted as domain shifts when working
with datasets acquired from different environments.

225

8.9 Pipeline Evaluation

8.9.1 A Priori Similarities

Using physics based light simulation we ensure that the images are produced
in a realistic way (section 8.2.7). Using the CAD model of the object we
guarantee the produced images restrict the defect recognition task to the
target object thus allowing development of simpler recognition models (sec-
tion 8.2.5). Using textures modeled to match the real surface measurements
we further restrict the recognition task to ignore nominal patterns (sec-
tion 8.5). Texture parameters around the observed nominal values increase
model robustness towards ignoring the surface texture and focus more on
defect texture (section 8.7.2). Additional defect randomization parameters
that contain ranges of expected defect dimensions and shapes, we restrict
the model to safely recognize observed defects, but also defects outside the
observed range for better generalization outside the real dataset set (sec-
tion 8.7.2).

8.9.2 A Posteriori Similarities

Domain Similarity

To compare the synthetic images to real ones we need to remove the influ-
ence of background noise and minor offsets, present from the imprecision of
the acquisition system and background scene structures. Thus we first mask
out all the regions that do not contain the observed object face containing
the target texture. The polygonal target face was manually annotated and
a common meta-mask was constructed from the intersection of all masks
for that viewpoint, thus removing the influence of offsets in hard edges be-
tween the face polygon and the black background. Real image histograms
have a region of zeros after intensity 0 which we simulate by adding the
mean gap size across all real images for a particular object. Next, we esti-
mate a multiplication factor that compensates for the illumination intensity
and material absorption differences in synthetic images. The factor can be
extracted from the integral of the rendering equation [75] under the assump-
tion that the environment reflectance and the inter-reflectance of the surface
micro-structures is negligible, which holds since we use a controlled environ-
ment and normal-mapping respectively. The estimated factors and biases
are: (0.632, 34) for sandblasted, (1.481, 39) for parallel and (1.526, 33) for
spiral milling. Finally, as the synthetic pinhole camera model does not in-
clude blurring and imperfections of the real camera, we artificially blur the
synthetic images using defocus blur [350].

When evaluating the metrics, we select the smallest (closest) value be-
tween synthetic object instances for the corresponding viewpoints. We aver-
age the similarities of images across multiple viewpoints for objects sharing

226

Method (Ò) Sandblasted Parallel Spiral All

Histogram (Pearson) 0.840 0.794 0.772 0.794
1 - MAE 0.807 0.681 0.655 0.696
SSIM 0.896 0.561 0.585 0.638
1 - LPIPS 0.916 0.660 0.686 0.722

Table 8.5: Domain similarities averaged within and across texture types.
MAE and LPIPS were inverted to measure the degree of similarity.

the same texture type. The results across different similarity metrics are re-
ported in table 8.5. To summarize the distance between normalized intensity
histograms we use the Pearson correlation coefficient, which is bounded be-
tween r´1, 1s. Mean absolute error (MAE) and Structural similarity (SSIM)
are bounded between r0, 1s and were used to measure the average difference
in values and similarity of statistics of values, respectively. For the learned
descriptor LPIPS we used a stock pre-trained AlexNet [351] backbone, which
enforces no restrictions on image size and returns the similarity bounded be-
tween r0, 1s.

Task Similarity

To evaluate task similarity, we train a UNet [268] with a ResNet-50 [270]
backbone. For each experiment we train 5 models with random parame-
ter initializations and report the top obtained result. Since the number of
non-backgorund pixels is highly unrepresented, we observed the need to use
class weighting which we empirically found to be p1, 1.5, 1.5q for the real
and p1, 2, 2q for the synthetic dataset. The model is trained to perform se-
mantic segmentation through pixel classification into classes: background,
dent, scratch. We optimize models using the AdamW optimizer [271] with
learning rate 10´4 and L2 weight regularization of 10´5, for a maximum of
1000 epochs with early stopping at validation loss convergence upon 5 con-
secutive validations without at least 10´2 relative improvement. For model
fine-tuning we decrease the learning rate to 10´5. For memory efficiency,
during training we extract image crops of size 256 ˆ 256 and during evalu-
ation we split the images into a 3ˆ 3 grid of patches of size 416ˆ 352. All
images were zero padded to ensure dimension divisibility correctness when
evaluating the U-Net and image patching. To speed up model training, we
center the images linearly between r´1, 1s.

We use the images pre-processed as described in section 8.9.2. Since
rendering images is a memory and compute expensive operation we offload
as much of the domain alignment as possible to online post-processing. To
simulate the non-zero background, we artificially add Gaussian noise of am-
plitudes between r0, 5s to the background around the object. To simulate
the vertical blooming effect caused by photon leakage within the saturated

227

regions of the CCD sensor array, we extract the maximum value of each im-
age column, mask it using a threshold 0.95, blur it using a box filter of size
64, multiply by 0.02 and add to the original image with clipping. Manually
annotated real images contain imprecision in masks as they often cover the
object surface around the rim of the defect. We emulate this by dilating
the masks by 1 pixel. The synthetic images contain masks in regions that
are mostly uniform and should be considered invisible. We pre-filter the
masks to remove defect with insufficient visibility. We empirically estimate
the visibility as the difference between the mean intensity of the defect and
the mean intensity of the surface ring around the defect, calculated as dif-
ference between the 2 times dilated and the original defect mask. Defects
are considered visible if the difference in means is over 0.05.

Data augmentation further increases the diversity of the dataset and
helps regularizing the recognition model to consider the important features.
To simulate the offsets of the camera we use a random rotation of amplitude
15 degree. Illumination strength and object material diffusion variation can
be jointly controlled using random exposure from interval r´0.5, 1.5s. To
simulate the blurred background structures and impurities in the lens or
the light carrying medium, we add Gaussian noise of amplitude between
r0, 5s to the entire image and then blur it using defocus blur [350] of kernel
sizes between r1, 3s. Gaussian noise of amplitude between r0, 5s is added
once more to simulate the static noise of the real images. Finally, images
can be randomly flipped horizontally to increase the texture-structure pair
diversity. All of the augmentations are performed with probability of 50%.
Finally, we perform intensity biased random cropping [339] using threshold
15 to ensure production of crops that contain more visible structures in the
image.

The results are collected in table 8.6. When computing the mean score,
the contribution of the background class was ignored as it is the majority
class that would skew the results away from the defect classes. To evaluate
the concept shift, we compare common semantic segmentation metrics of
the model generalization when trained on the real subset to the synthetic
subset.

8.10 Discussion

8.10.1 Pipeline Controlability and Simplicity

The pipeline is very versatile and allows generation of a wide variety of
texture variations needed for domain randomization. Parametrization of the
modules allows defining elements using physical measurements. The process
is relatively fast and its modularity allows faster iteration and extensibility
to new textures and defects. The biggest bottleneck is the rendering process
which slows down the dataset generation.

228

Texture Domains mP mR mF1 mIoU

Sandblasted

Sy Ñ Sy 57.0 53.1 54.7 37.7
Sy Ñ Re 34.0 64.3 41.7 26.3

Sy+FT Ñ Re 60.1 71.9 65.5 49.6
Re Ñ Re 57.9 61.9 59.1 42.6

Parallel

Sy Ñ Sy 57.1 39.6 45.6 29.6
Sy Ñ Re 26.5 23.0 23.5 13.8

Sy+FT Ñ Re 52.6 33.4 38.3 23.9
Re Ñ Re 50.3 34.5 40.8 25.8

Spiral

Sy Ñ Sy 59.5 39.7 47.6 31.3
Sy Ñ Re 35.2 22.1 26.4 15.5

Sy+FT Ñ Re 49.5 40.1 43.9 28.4
Re Ñ Re 50.6 43.1 46.2 30.7

All

Sy Ñ Sy 59.4 46.0 51.5 34.7
Sy Ñ Re 32.2 31.3 31.6 18.9

Sy+FT Ñ Re 59.0 49.1 53.1 36.1
Re Ñ Re 59.0 48.2 52.6 35.8

Table 8.6: Task similarities between texture groups. The domains column
symbolizes the experiment training Ñ testing domain, with the real (Re)
and synthetic (Sy) domains. Fine-tuning (FT) is performed using real data
after training on synthetic data.

Currently, the large number of parameters makes it difficult to study the
influence of different parameter sampling schemes on the recognition per-
formance. However, this pipeline opens the opportunity to design a higher
level of abstraction for dataset design through modelling of lower dimen-
sional constraints over larger sets of parameters. This study is however out
of scope and left a future work.

8.10.2 Domain Similarity

Measuring texture similarity is a difficult problem due to surface and ac-
quisition imperfections present in the real data. Camera blurring, surface
imperfections and other effects move away from the nominal texture without
degrading its performance, thus producing falsely bad results. In addition,
it is difficult to generate a nominal image that perfectly aligns to the ac-
quired image due camera-object and texture-object alignments. In this work
we instead rely on methods that compare global or local pixel statistics of
textures to remove alignment. From results in table 8.5 we observe that the
sandblasted textures have the highest degree of similarity compared to the
parallel and spiral milling textures. This result is related to the simplicity of
modeling the sandblasted texture as the texture appears as mostly uniform
noise. More structured textures such as those of milling are more difficult to

229

replicate as they have significantly more parameters that interplay to pro-
duce unique patterns. The Pearson correlation of image histograms show
relatively higher similarity values in milled textures, which is likely due to
the histogram-based image adjustments performed in section 8.9.2.

Comparing the values of metrics is difficult, even though they are bounded
between r0, 1s and might measure similar properties of images, they do not
share the same linearity of response to changes in inputs. A separate study
is required to compare which physical properties different metrics attempt
measuring over additional datasets. Since such a study targets a different
task, it requires different definitions of dataset parameters which is out of
scope of this study.

8.10.3 Task Similarity and Recognition Performance

The defect recognition results in table 8.6 show very similar performance
in all experiments, except when the model trained on synthetic domain is
evaluated directly on the real domain. The similarity of results, even after
fine-tuning, indicates that the models are saturated in their capacity to solve
the task. The low generalization to real domain indicates that there exists a
misalignment between the synthetic and real data distributions, both in the
form of covariate shift (as observed by similarity metrics) and concept shift.
Results of models trained on all textures do not surpass the performance
on the highest performing, sandblasted texture, leading us to the conclusion
that training a model on multiple textures at once does not give any benefit
over training a separate model for each texture.

When inspecting the model predictions over the datasets we notice some
patterns. All models tend to predict masks that are slightly wider than the
label. Most false positives come from the milled textures, in the lines where
two milling path circles overlap and along the exit lines. In sandblasted
textures, tiny glints from the surface are often falsely predicted as defected.
False positives are also present in minor deviations in object shape such
as edge scuffing, beveling, deeper sandblasting holes, etched signature, on
paper label sticker and where the milled pattern has high contrast. Models
also tend to predict defects on out-of-focus faces that the annotator left as
unannotated due to heavy blurring or unrecognazibility. When predicting
scratches, the models prefer areas where the texture has lower contrast and
defect stand out. Some scratches that are not close to being horizontal or
vertical are not predicted, even tho the visibility is similar to the predicted
ones, meaning the recognition models need more filters in lower levels or
more explicit rotation invariance. Overall, it seems a higher resolution might
help the model distinguish between defect and texture patterns.

230

8.10.4 Influence of Domain Similarity on Task Performance

The largest drop in recognition performance is on milled textures, which
is consistent with their lower domain similarity compared to sandblasted
textures. Furthermore, SSIM and LPIPS seem to be linearly correlated to
the best obtained recognition performance. If this were true, we could use
these metrics when iteratively improving the synthetic data to reduce the
domain gap at its source, the data simulation or generation process. This
forms the questions of weather these metrics are indeed predictive of the
domain gap that impedes the recognition performance, which other metrics
have a similar property and why MAE and histogram comparison does not
seem to be. These questions are vastly out of scope of this paper and we
leave their treatment for a future study.

8.11 Conclusion

Specific requirements of machine vision for surface inspection require cus-
tomized dataset and thus highly controllable context for realistic image gen-
eration. We presented a complete image synthesis pipeline which consists of
surface topography measurements, parameterization and development tex-
ture models representing the measurements, simulation of image acquisi-
tion context for image synthesis and dataset generation. In collaboration
with surface metrology experts test bodies were created containing industry-
relevant, sandblasted and milling patterns. Surface topography was mea-
sured, analyzed and parameterized. Based on this requirements for bridging
computer graphics surface modeling and surface metrology parameters were
introduced. Resulting parameterized surface texture models ensured rich
variation and controllability of surface texture patterns. The pipeline was
put into practice and used to generate a dual synthetic and real dataset
which is made publically accessible for further research. Quality estimation
of the whole pipeline and synthetic data was performed. From experimental
results, it can be concluded that further research is needed to quantify the
domain gap and which elements of it affect the recognition models. Finally,
the results indicated misalignment in synthetic and real data. This pointed
to further research directions regarding the adaptation of the acquisition
context, such as camera parameters, for image synthesis.

Core references

Juraj Fulir, Natascha Jeziorski, Tobias Herffurth, Lovro Bosnar, Thomas
Gischkat, Katja Schladitz, Henrike Stephani, Claudia Redenbach, Hans Ha-
gen and Petra Gospodnetić, ”SYNOSIS: Image synthesis pipeline for ma-
chine vision in metal surface inspection”, 2024. To be published.

231

Part IV

Conclusion

233

Chapter 9

Conclusion

The work is this thesis, as discussed in Section 1.1, is motivated by the
virtual inspection planning and virtual environment introduced by Gospod-
netic [3]. The inspection planning process includes the tasks of the place-
ment of acquisition hardware for obtaining the required coverage as well
as the development of defect recognition algorithms for acquired images.
Planning represents a complex problem which must consider product shape,
reflectance, texture and defects as well as light and camera. That said, the
work in this thesis extends the virtual environment, using computer graphics
methods, with an image synthesis pipeline as well as parameterized surface
texture and defects. With this work, now it is possible to generate an ar-
bitrary amount of photorealistic images which simulate images acquired by
a system inspecting metal surfaces. This can be used for the evaluation of
acquisition quality, i.e., estimating product surface coverage with respect to
the illumination response of the surface, which wasn’t possible until now.
Further, this can be used for creating arbitrarily large datasets with realistic
and varying textures as well as realistic and diversified defects coupled with
pixel-precise annotations.

The aforementioned extensions to the virtual inspection planning envi-
ronment are presented in the form of thesis contributions:

1. A novel image synthesis pipeline for generating synthetic data for sur-
face inspection, introduced in Chapter 4 and further extended in Chap-
ter 8

2. A procedural approach to parameterized surface texture modeling, in-
troduced in Chapter 5

3. A procedural approach to parameterized defect modeling, introduced
in Chapter 6

These contributions make it possible to obtain the required amount of
representative product surfaces with realistic and varying surface textures

235

and realistic as well as diversified defects in a controllable and automated
manner as discussed in Chapters 7 and 8. Now, the virtual environment [3]
extended with these contributions makes it possible for inspection planning
experts to perform the planning process virtually without computer graphics
knowledge.

The first contribution are requirements for image synthesis for sur-
face inspection planning and an image synthesis pipeline satisfying those
requirements. With the presented pipeline, it is possible to synthesize re-
alistic images of inspected product surfaces, both ideal and defected, in a
controllable and automated manner. As such, the pipeline can be used for
assessing the placement of acquisition hardware or for obtaining the required
amount of defected image data for the development of defect recognition al-
gorithms. This is particularly important for surface inspection tasks where
data is difficult to collect or the labelling is too expensive to collect a large
amount of it. Surface texture and surface defects are identified as crucial
elements for inspection purposes and thus, they were the focus of the next
two contributions.

The second contribution are requirements for texture synthesis for
visual surface inspection and novel, parameterized texture synthesis models
satisfying those requirements. The presented models are capable of gen-
erating circular, parallel and radial brushing texture patterns common in
machined surfaces. As such, once applied on the product surface, the pre-
sented textures provide a physically relevant light response. This promises
numerous applications in surface inspection planning. First, it enables as-
sessing the surface coverage for particular configurations of acquisition hard-
ware, completely virtually. Second, it enables assessing surface and defect
visibility for particular view and light conditions.

The third contribution are requirements for defect modeling in surface
inspection, parameterized workflow for positioning, generating and imprint-
ing diversified defects on the product surface and automated generation of
precise defect annotations. Presented models are based on procedural ge-
ometry, thus enabling parametric simulation of geometrical defects such as
dents and scratches, which are two of the most frequent defect types. Defects
are imprinted into product geometry ensuring realistic light behaviour. Fi-
nally, the presented methods generate additional defect information needed
for pixel-precise defect annotation during the synthesis of defected product
images.

9.1 Implications

This thesis provides a complete image synthesis pipeline based on computer
graphics for virtual inspection planning. The requirements and components
of image synthesis crucial for surface inspection are discussed. Further, this

236

work connects computer graphics procedural modeling of surface textures
and defects with real-world surface topographies and manufacturing. As
such it gives the foundation for further research regarding image synthesis
and parameterized surface modeling for surface inspection and integration
of manufacturing knowledge.

9.1.1 Image synthesis for Surface Inspection Planning

By having a virtual environment for inspection planning at their disposal,
the crucial questions that inspection planning experts would like to answer
are what is the quality of particular acquisition hardware setup in terms of
surface/defect visibility and how to configure it with minimal cost and ef-
fort?. To enable answering those questions this thesis extends the virtual
inspection environment [189] with an image synthesis pipeline for surface
inspection. The introduced pipeline enables the synthesis of realistic images
containing ideal and defected metal surfaces for a predefined inspection en-
vironment setup. The image synthesis is based on a controllable image ac-
quisition context (i.e., a 3D scene containing inspected product, lights and
cameras) and uses physically-based, global illumination simulation. This
way, complete control over the simulated product surface, light and camera
is available. This enables inspection planning experts to set up the desired
parameters of the acquisition camera and light for evaluation and configu-
ration. Further, configuring the desired defected product surface with geo-
metrically imprinted defects is possible. Once the image acquisition context
is defined, physically-based light simulation is used to ensure realistic sur-
face and defect visibility under varying light and view conditions. That said,
the presented image synthesis pipeline ensures the realistic representation of
a virtual inspection environment as well as parameterized image synthesis.
Therefore, inspection planning experts can completely virtually, visualize
visible surfaces and defects for a given inspection plan, with minimal com-
puter graphics knowledge. The presented image synthesis pipeline promises
numerous applications besides acquisition hardware evaluation such as gen-
eration of well-balanced synthetic datasets for the development of defect
recognition algorithms. These applications further motivated our research
towards modeling product surface texture and defects.

9.1.2 Procedural Texture Synthesis for Surface Inspection

With the developed image synthesis pipeline for surface inspection, the fo-
cus was on further improving synthetic product images to be representative,
i.e., as similar as possible to the images of real products. Since surface tex-
ture highly influences surface appearance, it is identified as a crucial element
of inspected products for modeling. In this work, parameterized texturing
models capable of reproducing circular, parallel and radial brushing texture

237

patterns, resembling common surface patterns resulting from machining, are
introduced. Now, inspection planning experts can configure and thus simu-
late a wide range of varying surface textures to assess product coverage for
a particular acquisition plan. This is possible since parameters are aimed to
represent real-world surface parameters and not computer graphics surface
parameters. The key observation that influenced texture synthesis research
presented in this thesis is that the surface texture of inspected products
is largely determined by the machining process. Therefore, the introduced
models were developed by taking into account surface metrology concepts
and connecting those with computer graphics procedural texture modeling.
That said, it is important to highlight that synthesizing representative prod-
uct surface textures relies on obtaining the real machining parameters and
using them for modeling.

9.1.3 Procedural Surface Defects Modeling

Defect shapes and their occurrence on product surfaces are unpredictable.
Therefore, a virtual inspection environment must be able to simulate prod-
ucts with diversified defect shapes, sizes and positions for the development
of robust defect recognition algorithms. For this purpose, a parameterized
workflow based on procedural geometry modeling consisting of three main
steps: defect placement, defect negative modeling and defect imprinting on
the product surface was introduced. Each step is parameterized enabling
controllable placement and creation of diversified defect shapes. Dents and
scratches are identified as common surface defects and thus particular focus
was put on modeling their geometrical negatives. Since defects are modeled
geometrically, the light response can be simulated correctly, which would
not be the case if we only used normal mapping. Correct defect light re-
sponse represents important information for determining defect visibility for
different acquisition hardware setups. Further, using the modeled geomet-
rical negatives, it was shown how precise defect annotations can be created
automatically during rendering. This way, complete training data informa-
tion can be created automatically, evading the cumbersome and subjective
defect annotations. The resulting workflow is intended for intuitive use by
inspection planning experts. This means that a wide diversity of defected
products can be simulated with intuitive parameters and minimal computer
graphics knowledge. With the introduced workflow, now it is possible to
generate defects with diversified shapes and locations, over product surface,
in a controllable and automated manner. These contributions are enabling
the creation of arbitrary large image datasets containing defected products
with diversified defects with pixel-precise annotations.

238

9.1.4 Synthetic Data for Defect Segmentation on Complex
Metal Surfaces

Defect segmentation is crucial for defect recognition during automated vi-
sual surface inspection. Metal surfaces are particularly complex for inspec-
tion and the development of defect segmentation algorithms due to high
reflectivity and anisotropic reflection caused by surface textures. Obtaining
the required amount of defected product surface images is hard due to the
low availability of defected product samples. Further, existing datasets are
sparse, even more so when it comes to multi-view inspection and often focus
on planar surfaces which are hard to generalize to more complex, curved
surfaces. With the presented work, we showed that the introduced image
synthesis pipeline, procedural texture modeling and procedural defect mod-
eling can be used as a solution to those problems. We introduced a real
and synthetic datasets pair for multi-view inspection and used it for train-
ing experiments. Obtaining the real dataset was limited by the number of
defected physical products at our disposal. On the other hand, this was not
the case with the synthetic dataset, where an arbitrary amount of defected
products with varying textures and diversified defects could be generated.
In this experiment, the presented methods for image synthesis, texture mod-
eling and defects modeling are used in a realistic scenario and shown to be
highly relevant due lack of training datasets and customized dataset cre-
ation. The experiment results showed that using custom synthetic image
data, although hindered by the domain gap, is the most promising approach
when the amount of real data is restricted.

9.1.5 Image Synthesis Pipeline for Machine Vision in Metal
Surface Inspection

After the pipeline and parameterized surface texture and defects presented
here were applied in the realistic scenario, we identified further research di-
rections aiming to reduce the gap between real and synthetic images. The
crucial task was developing texture models with even richer variations and
more precise parameters to real surface parameters. The key difference in
models introduced here before and developed now is that previous texture
models are developed to resemble the surface appearance as close as possible,
without measurements, while new texture models actually follow machining
parameters and measurements. That required extending the pipeline with
actual surface topography measurement and collaboration with manufactur-
ing and metrology experts. For the purpose of this work, sandblasted and
milled surfaces, which represent industry-relevant machining patterns, were
created, analyzed, measured and parameterized. To bridge surface mea-
surements and computer graphics modeling, requirements for developing
stochastic geometry models for the representation of measurements are in-

239

troduced. Developed parameterized surface texture models ensure rich con-
trol over synthetic dataset generation and variation. The extended pipeline
now encompasses physical surface measurement, parameterization and de-
velopment of stochastic geometry models representing the measurements,
applying developed textures on simulated products, image synthesis and
dataset generation. The pipeline was used to create a dual synthetic and
real dataset which and made publicly available. Performing quality estima-
tion of the whole pipeline and synthetic dataset for machine learning defect
recognition led us to the conclusion that further research is needed in terms
of quantifying the domain gap and how much utility the recognition models
get from it. Quality estimation of synthetic data was performed by training
defect segmentation networks on synthetic and real data. The result of the
experiment indicated a misalignment of synthetic and real data and pointed
to further research in closing the domain gap. Therefore, besides surface
texture pattern modeling, it is required to further adapt other elements of
the acquisition context (e.g., simulated camera) for image synthesis.

9.2 Outlook

With this work, requirements, workflows, methods and implementations are
introduced and available for realistic image synthesis for virtual surface in-
spection planning. The particular focus was put on procedural and thus
parameterized models for surface textures and defects which are crucial for
realistic image synthesis for inspection planning. Now is the time to focus
research and development on further improvements of the presented ap-
proaches. First, as discussed, image synthesis highly depends both on 3D
scene modeling and rendering. That said, further simulation of real cam-
era parameters as well as different light shapes and intensity distributions
must be researched and incorporated. Camera lens and sensor properties
as well as light distribution modeling improvements will enable making vir-
tual environment to resemble the real environment to an even higher degree.
Second, since products are manufactured with a wide range of machining
methods which are standardized and deterministic, the machining domain
knowledge, as well as surface metrology, must be further incorporated into
parameterized surface texture modeling. This way, it would be possible
to design libraries of standardized, parameterized and physically correct
surface textures. Equally important, the development of surface textures
must be accompanied with further research on mapping the created tex-
tures on arbitrarily complex geometries with minimal manual work. Such
developments would enable inspection planning experts to set up a virtual
inspection environment for any manufactured product. Third, defects are
unpredictable and highly diversified ranging from mechanical to chemical,
surface, sub-surface, etc. Therefore, the categorization and standardization

240

of defects across different manufacturing processes is crucial. This way, the
development of parameterized defecting models matching those standardiza-
tions would be possible. In order to do so, it is crucial to connect computer
graphics research and manufacturing industry. This way, domain knowledge
regarding actual and expected defects could be incorporated to develop gen-
eralized parameterized models. Once such a library becomes available, the
development of robust defect recognition algorithms can completely rely on
controllable and thus diversified synthetic image data generation. Such de-
velopments would enable the creation of arbitrarily large synthetic datasets
which can be adapted to any inspection planning scenario.

241

Bibliography

[1] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-time rendering.
Crc Press, 2019.

[2] J. T. Black and R. A. Kohser, DeGarmo’s materials and processes in
manufacturing. John Wiley & Sons, 2020.

[3] P. Gospodnetic, “Visual surface inspection planning for industrial
applications,” Ph.D. dissertation, ”TU Kaiserslautern”, 2021.
[Online]. Available: https://publica.fraunhofer.de/handle/publica/
416618

[4] M. Mohammadikaji, “Simulation-based planning of machine vision in-
spection systems with an application to laser triangulation,” Ph.D.
dissertation, KIT, 2019.

[5] J. Beyerer, F. P. León, and C. Frese, Machine vision: Automated visual
inspection: Theory, practice and applications. Springer, 2015.

[6] P. Gospodnetic, D. Mosbach, M. Rauhut, and H. Hagen, “Flexible
surface inspection planning pipeline,” in 2020 6th International Con-
ference on Control, Automation and Robotics (ICCAR). IEEE, 2020,
pp. 644–652.

[7] P. Gospodnetić, M. Rauhut, and H. Hagen, “Surface inspection plan-
ning using 3d visualization,” in LEVIA’19: Leipzig Symposium on
Visualization in Applications, 2019.

[8] P. Gospodnetić, D. Mosbach, M. Rauhut, and H. Hagen, “Viewpoint
placement for inspection planning,” Machine Vision and Applications,
vol. 33, no. 2, 2022.

[9] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet
models for refraction through rough surfaces.” Rendering techniques,
vol. 2007, p. 18th, 2007.

[10] S. Deguy, “The new age of procedural texturing.” 2019.

243

https://publica.fraunhofer.de/handle/publica/416618
https://publica.fraunhofer.de/handle/publica/416618

[11] K. Perlin, “An image synthesizer,” ACM Siggraph Computer Graphics,
vol. 19, no. 3, pp. 287–296, 1985.

[12] Adobe, “Adobe Substance 3D Painter.” [Online]. Available: https:
//www.adobe.com/products/substance3d-painter.html

[13] E. Lengyel, Mathematics for 3D game programming and computer
graphics. Course Technology Press, 2011.

[14] M. Pharr, W. Jakob, and G. Humphreys, Physically based rendering:
From theory to implementation. Morgan Kaufmann, 2016.

[15] B. T. Phong, “Illumination for computer generated pictures,” in Semi-
nal graphics: pioneering efforts that shaped the field, 1998, pp. 95–101.

[16] E. Catmull and J. Clark, “Recursively generated b-spline surfaces on
arbitrary topological meshes,” in Seminal graphics: pioneering efforts
that shaped the field, 1998, pp. 183–188.

[17] H. H. Söderlund, A. Evans, and T. Akenine-Möller, “Ray tracing of
signed distance function grids,” Journal of Computer Graphics Tech-
niques Vol, vol. 11, no. 3, 2022.

[18] S. Chen, R. Xu, J. Xu, S. Xin, C. Tu, C. Yang, and L. Lu, “Quickcsg-
modeling: Quick csg operations based on fusing signed distance fields
for vr modeling,” ACM Transactions on Multimedia Computing, Com-
munications and Applications, 2023.

[19] L. J. Tomczak, “Gpu ray marching of distance fields,” Technical Uni-
versity of Denmark, vol. 8, 2012.

[20] T. S. Newman and H. Yi, “A survey of the marching cubes algorithm,”
Computers & Graphics, vol. 30, no. 5, pp. 854–879, 2006.

[21] K. Museth, N. Avramoussis, and D. Bailey, “Openvdb,” in ACM SIG-
GRAPH 2019 Courses, 2019, pp. 1–56.

[22] S. Laine and T. Karras, “Efficient sparse voxel octrees–analysis, ex-
tensions, and implementation,” NVIDIA Corporation, vol. 2, no. 6,
2010.

[23] C. Griwodz, S. Gasparini, L. Calvet, P. Gurdjos, F. Castan, B. Mau-
jean, G. De Lillo, and Y. Lanthony, “Alicevision meshroom: An open-
source 3d reconstruction pipeline,” in Proceedings of the 12th ACM
Multimedia Systems Conference, 2021, pp. 241–247.

[24] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim, “Unified parti-
cle physics for real-time applications,” ACM Transactions on Graphics
(TOG), vol. 33, no. 4, pp. 1–12, 2014.

244

https://www.adobe.com/products/substance3d-painter.html
https://www.adobe.com/products/substance3d-painter.html

[25] W. T. Reeves, “Particle systems—a technique for modeling a class of
fuzzy objects,” in Seminal graphics: pioneering efforts that shaped the
field, 1998, pp. 203–220.

[26] H. Pfister, M. Zwicker, J. Van Baar, and M. Gross, “Surfels: Surface
elements as rendering primitives,” in Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, 2000, pp.
335–342.

[27] S. Rusinkiewicz and M. Levoy, “Qsplat: A multiresolution point ren-
dering system for large meshes,” in Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, 2000, pp.
343–352.

[28] J. Dorsey, H. Rushmeier, and F. Sillion, Digital modeling of material
appearance. Elsevier, 2010.

[29] P. Christensen, J. Fong, J. Shade, W. Wooten, B. Schubert,
A. Kensler, S. Friedman, C. Kilpatrick, C. Ramshaw, M. Bannister
et al., “Renderman: An advanced path-tracing architecture for movie
rendering,” ACM Transactions on Graphics (TOG), vol. 37, no. 3, pp.
1–21, 2018.

[30] N. Hoffman, “Background: physics and math of shading,” Physically
Based Shading in Theory and Practice, vol. 24, no. 3, pp. 211–223,
2013.

[31] K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection
from roughened surfaces,” Josa, vol. 57, no. 9, pp. 1105–1114, 1967.

[32] J. Fong, M. Wrenninge, C. Kulla, and R. Habel, “Production volume
rendering: Siggraph 2017 course,” in ACM SIGGRAPH 2017 Courses,
2017, pp. 1–79.

[33] D. Guarnera, G. C. Guarnera, A. Ghosh, C. Denk, and M. Glencross,
“Brdf representation and acquisition,” in Computer Graphics Forum,
vol. 35, no. 2. Wiley Online Library, 2016, pp. 625–650.

[34] J. Lambert, “Photometria sive de mensura de gratibus luminis, colo-
rum et umbrae. eberhard klett, augsburg, 1760,” W. Engleman, Lam-
bert’s Photometrie. Leipzig, vol. 127, no. 128, p. 2, 1982.

[35] W. McDermott, The PBR Guide. Allegorithmic, 2018.

[36] J. F. Blinn, “Models of light reflection for computer synthesized pic-
tures,” in Proceedings of the 4th annual conference on Computer graph-
ics and interactive techniques, 1977, pp. 192–198.

245

[37] E. P. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg,
“Non-linear approximation of reflectance functions,” in Proceedings
of the 24th annual conference on Computer graphics and interactive
techniques, 1997, pp. 117–126.

[38] E. Heitz, “Understanding the masking-shadowing function in
microfacet-based brdfs,” Journal of Computer Graphics Techniques,
vol. 3, no. 2, pp. 32–91, 2014.

[39] C. Schlick, “An inexpensive brdf model for physically-based render-
ing,” in Computer graphics forum, vol. 13, no. 3. Wiley Online Li-
brary, 1994, pp. 233–246.

[40] N. Hoffman, “Fresnel Equations Considered Harmful,” in Workshop
on Material Appearance Modeling, R. Klein and H. Rushmeier, Eds.
The Eurographics Association, 2019.

[41] M. Oren and S. K. Nayar, “Generalization of lambert’s reflectance
model,” in Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, 1994, pp. 239–246.

[42] E. Heitz, J. Hanika, E. d’Eon, and C. Dachsbacher, “Multiple-
scattering microfacet bsdfs with the smith model,” ACM Transactions
on Graphics (TOG), vol. 35, no. 4, pp. 1–14, 2016.

[43] S. Steinberg, P. Sen, and L.-Q. Yan, “Towards practical physical-optics
rendering,” ACM Transactions on Graphics, vol. 41, no. 4, pp. 1–13,
2022.

[44] E. d’Eon, B. Bitterli, A. Weidlich, and T. Zeltner, “Microfacet theory
for non-uniform heightfields,” in ACM SIGGRAPH 2023 Conference
Proceedings, 2023, pp. 1–10.

[45] W. Jakob, M. Hašan, L.-Q. Yan, J. Lawrence, R. Ramamoorthi, and
S. Marschner, “Discrete stochastic microfacet models,” ACM Trans-
actions on Graphics (TOG), vol. 33, no. 4, pp. 1–10, 2014.

[46] L.-Q. Yan, M. Hašan, S. Marschner, and R. Ramamoorthi, “Position-
normal distributions for efficient rendering of specular microstruc-
ture,” ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1–9,
2016.

[47] A. Ngan, F. Durand, and W. Matusik, “Experimental analysis of brdf
models.” Rendering Techniques, vol. 2005, no. 16th, p. 2, 2005.

[48] K. Zsolnai-Fehér, P. Wonka, and M. Wimmer, “Gaussian material
synthesis,” arXiv preprint arXiv:1804.08369, 2018.

246

[49] K. J. Dana, B. Van Ginneken, S. K. Nayar, and J. J. Koenderink,
“Reflectance and texture of real-world surfaces,” ACM Transactions
On Graphics (TOG), vol. 18, no. 1, pp. 1–34, 1999.

[50] A. Kuznetsov, “Neumip: Multi-resolution neural materials,” ACM
Transactions on Graphics (TOG), vol. 40, no. 4, 2021.

[51] C. Dostal and K. Yamafune, “Photogrammetric texture mapping: A
method for increasing the fidelity of 3d models of cultural heritage
materials,” Journal of Archaeological Science: Reports, vol. 18, pp.
430–436, 2018.

[52] B. Burley and D. Lacewell, “Ptex: Per-face texture mapping for pro-
duction rendering,” in Computer Graphics Forum, vol. 27, no. 4. Wi-
ley Online Library, 2008, pp. 1155–1164.

[53] J. Dong, J. Liu, K. Yao, M. Chantler, L. Qi, H. Yu, and M. Jian,
“Survey of procedural methods for two-dimensional texture genera-
tion,” Sensors, vol. 20, no. 4, p. 1135, 2020.

[54] J. Knodt, Z. Pan, K. Wu, and X. Gao, “Joint uv optimization and
texture baking,” ACM Transactions on Graphics, 2023.

[55] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang, “Diversified
texture synthesis with feed-forward networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
3920–3928.

[56] L.-Y. Wie, S. Lefebvre, V. Kwatra, and G. Turk, “State of the Art
in Example-based Texture Synthesis,” in Eurographics 2009 - State of
the Art Reports, M. Pauly and G. Greiner, Eds. The Eurographics
Association, 2009.

[57] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in Proceedings of the seventh IEEE international confer-
ence on computer vision, vol. 2. IEEE, 1999, pp. 1033–1038.

[58] E. Praun, A. Finkelstein, and H. Hoppe, “Lapped textures,” in Pro-
ceedings of the 27th annual conference on Computer graphics and in-
teractive techniques, 2000, pp. 465–470.

[59] O. Wilson, A. Van Gelder, and J. Wilhelms, “Direct volume rendering
via 3d textures,” Ucsc-crl-94-19, Jack Baskin School of Eng., Univer-
sity of California at Santa Cruz, 1994.

[60] C. Yuksel, S. Lefebvre, and M. Tarini, “Rethinking texture mapping,”
in Computer graphics forum, vol. 38, no. 2. Wiley Online Library,
2019, pp. 535–551.

247

[61] J. P. Ewins, M. D. Waller, M. White, and P. F. Lister, “Mip-map level
selection for texture mapping,” IEEE Transactions on Visualization
and Computer Graphics, vol. 4, no. 4, pp. 317–329, 1998.

[62] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley,
Texturing & modeling: a procedural approach. Morgan Kaufmann,
2003.

[63] P. G. Vivo and J. Lowe, “The book of shaders,” Dosegljivo:
https://thebookofshaders. com, 2015.

[64] S. Worley, “A cellular texture basis function,” in Proceedings of the
23rd annual conference on Computer graphics and interactive tech-
niques, 1996, pp. 291–294.

[65] M. S. Mikkelsen, “Surface gradient–based bump mapping framework,”
Journal of Computer Graphics Techniques Vol, vol. 9, no. 3, 2020.

[66] V. Schüssler, E. Heitz, J. Hanika, and C. Dachsbacher, “Microfacet-
based normal mapping for robust monte carlo path tracing,” ACM
Transactions on Graphics (TOG), vol. 36, no. 6, pp. 1–12, 2017.

[67] T. Kaneko, T. Takahei, M. Inami, N. Kawakami, Y. Yanagida,
T. Maeda, and S. Tachi, “Detailed shape representation with parallax
mapping,” in Proceedings of ICAT, vol. 2001, 2001, pp. 205–208.

[68] L. Szirmay-Kalos and T. Umenhoffer, “Displacement mapping on the
gpu—state of the art,” in Computer graphics forum, vol. 27, no. 6.
Wiley Online Library, 2008, pp. 1567–1592.

[69] A. R. Smith, “Color gamut transform pairs,” ACM Siggraph Computer
Graphics, vol. 12, no. 3, pp. 12–19, 1978.

[70] I. E. S. of North America. Computer Committee, IES standard file
format for electronic transfer of photometric data and related infor-
mation. Illuminating Engineering Society of North America, 1991.

[71] N. Greene, “Environment mapping and other applications of world
projections,” IEEE computer graphics and Applications, vol. 6, no. 11,
pp. 21–29, 1986.

[72] W. Heidrich, P. Slusallek, and H.-P. Seidel, “An image-based model for
realistic lens systems in interactive computer graphics,” in Graphics
Interface, vol. 97. Citeseer, 1997, pp. 68–75.

[73] C. Kolb, D. Mitchell, and P. Hanrahan, “A realistic camera model for
computer graphics,” in Proceedings of the 22nd annual conference on
computer graphics and interactive techniques, 1995, pp. 317–324.

248

[74] J. Wu, C. Zheng, X. Hu, and F. Xu, “Rendering realistic spectral
bokeh due to lens stops and aberrations,” The Visual Computer,
vol. 29, pp. 41–52, 2013.

[75] J. T. Kajiya, “The rendering equation,” in Proceedings of the 13th
annual conference on Computer graphics and interactive techniques,
1986, pp. 143–150.

[76] P. S. Heckbert, “Adaptive radiosity textures for bidirectional ray trac-
ing,” in Proceedings of the 17th annual conference on Computer graph-
ics and interactive techniques, 1990, pp. 145–154.

[77] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Mod-
eling the interaction of light between diffuse surfaces,” ACM SIG-
GRAPH computer graphics, vol. 18, no. 3, pp. 213–222, 1984.

[78] A. Fujimoto, T. Tanaka, and K. Iwata, “Arts: Accelerated ray-tracing
system,” IEEE Computer Graphics and Applications, vol. 6, no. 4, pp.
16–26, 1986.

[79] M. R. Kaplan, “The use of spatial coherence in ray tracing,” in ACM
SIGGRAPH, vol. 85, 1985, pp. 22–26.

[80] A. S. Glassner, “Space subdivision for fast ray tracing,” IEEE Com-
puter Graphics and applications, vol. 4, no. 10, pp. 15–24, 1984.

[81] J. H. Clark, “Hierarchical geometric models for visible surface algo-
rithms,” Communications of the ACM, vol. 19, no. 10, pp. 547–554,
1976.

[82] I. Wald, “On fast construction of sah-based bounding volume hierar-
chies,” in 2007 IEEE Symposium on Interactive Ray Tracing. IEEE,
2007, pp. 33–40.

[83] T. Whitted, “An improved illumination model for shaded display,” in
ACM Siggraph 2005 Courses, 2005, pp. 4–es.

[84] M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi,
F. Rousselle, P. Sen, C. Soler, and S.-E. Yoon, “Recent advances in
adaptive sampling and reconstruction for monte carlo rendering,” in
Computer graphics forum, vol. 34, no. 2. Wiley Online Library, 2015,
pp. 667–681.

[85] J.-M. Hasenfratz, M. Lapierre, N. Holzschuch, and F. X. Sillion, “A
survey of real-time soft shadows algorithms,” in Computer Graphics
Forum, vol. 22, no. 4, 2003, pp. 753–774.

[86] M. Pharr and S. Green, “Ambient occlusion,” GPU Gems, vol. 1, pp.
279–292, 2004.

249

[87] A. Silvennoinen and P.-P. Sloan, “Ray guiding for production lightmap
baking,” in SIGGRAPH Asia 2019 Technical Briefs, 2019, pp. 91–94.

[88] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann, “Inter-
active indirect illumination using voxel cone tracing,” in Computer
Graphics Forum, vol. 30, no. 7. Wiley Online Library, 2011, pp.
1921–1930.

[89] X. Yang, M. Yip, and X. Xu, “Visual effects in computer games,”
Computer, vol. 42, no. 7, pp. 48–56, 2009.

[90] R. Ganbar, Nuke 101: professional compositing and visual effects.
Peachpit Press, 2014.

[91] A. Hertzmann, “Non-photorealistic rendering and the science of
art,” in Proceedings of the 8th International Symposium on Non-
Photorealistic Animation and Rendering, 2010, pp. 147–157.

[92] F. Durand and J. Dorsey, “Interactive tone mapping,” in Rendering
Techniques 2000: Proceedings of the Eurographics Workshop in Brno,
Czech Republic, June 26–28, 2000 11. Springer, 2000, pp. 219–230.

[93] Y. Salih, A. S. Malik, N. Saad et al., “Tone mapping of hdr images:
A review,” in 2012 4th International Conference on Intelligent and
Advanced Systems (ICIAS2012), vol. 1. IEEE, 2012, pp. 368–373.

[94] H. S. Faridul, T. Pouli, C. Chamaret, J. Stauder, A. Trémeau, E. Rein-
hard et al., “A survey of color mapping and its applications.” Euro-
graphics (State of the Art Reports), vol. 3, no. 2, p. 1, 2014.

[95] K. D. A. C. A. Wilkie and W. Purgathofer, “Tone reproduction and
physically based spectral rendering,” in Eurographics, 2002.

[96] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A survey on pro-
cedural modelling for virtual worlds,” in Computer Graphics Forum,
vol. 33, no. 6. Wiley Online Library, 2014, pp. 31–50.

[97] A. Raistrick, L. Lipson, Z. Ma, L. Mei, M. Wang, Y. Zuo, K. Kayan,
H. Wen, B. Han, Y. Wang, A. Newell, H. Law, A. Goyal, K. Yang, and
J. Deng, “Infinite photorealistic worlds using procedural generation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2023, pp. 12 630–12 641.

[98] P. Guerrero, M. Hašan, K. Sunkavalli, R. Měch, T. Boubekeur, and
N. J. Mitra, “Matformer: A generative model for procedural materi-
als,” arXiv preprint arXiv:2207.01044, 2022.

250

[99] A. Emilien, “Interactive design of virtual worlds: Combining procedu-
ral modeling with intuitive user control,” Ph.D. dissertation, Univer-
sité de Grenoble, 2014.

[100] S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz, “Treesketch:
Interactive procedural modeling of trees on a tablet.” in SBIM@ Ex-
pressive. Citeseer, 2012, pp. 107–120.

[101] Z. Hu and X. Qin, “Extended interactive and procedural modeling
method for ancient chinese architecture,” Multimedia Tools and Ap-
plications, vol. 80, pp. 5773–5807, 2021.

[102] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang, “Interactive
procedural street modeling,” in ACM SIGGRAPH 2008 papers, 2008,
pp. 1–10.

[103] L. Krecklau and L. Kobbelt, “Interactive modeling by procedural high-
level primitives,” Computers & Graphics, vol. 36, no. 5, pp. 376–386,
2012.

[104] J. Freiknecht and W. Effelsberg, “A survey on the procedural gen-
eration of virtual worlds,” Multimodal Technologies and Interaction,
vol. 1, no. 4, p. 27, 2017.

[105] J. Freiknecht, “Procedural content generation for games,” Ph.D. dis-
sertation, Mannheim University, 2021.

[106] G. Kelly and H. McCabe, “A survey of procedural techniques for city
generation,” The ITB Journal, vol. 7, no. 2, p. 5, 2006.

[107] SideFX, “Houdini.” [Online]. Available: https://www.sidefx.com/

[108] C. Stover. Germ-grain model. [Online]. Available: https://mathworld.
wolfram.com/Germ-GrainModel.html

[109] S. Glanville, “Texture bombing,” GPU Gems: Programming Tech-
niques, Tips, and Tricks for, vol. 1, 2004.

[110] “Domain warping,” https://iquilezles.org/articles/warp/, accessed:
2023-08-03.

[111] S. Weiss, F. Bayer, and R. Westermann, “Triplanar displacement map-
ping for terrain rendering,” Eurographics 2020 - Short Papers, 2020.

[112] A. Witkin and M. Kass, “Reaction-diffusion textures,” in Proceedings
of the 18th annual conference on computer graphics and interactive
techniques, 1991, pp. 299–308.

251

https://www.sidefx.com/
https://mathworld.wolfram.com/Germ-GrainModel.html
https://mathworld.wolfram.com/Germ-GrainModel.html
https://iquilezles.org/articles/warp/

[113] Y. Hu, C. He, V. Deschaintre, J. Dorsey, and H. Rushmeier, “An
inverse procedural modeling pipeline for svbrdf maps,” ACM Trans-
actions on Graphics (TOG), vol. 41, no. 2, pp. 1–17, 2022.

[114] L. Shi, B. Li, M. Hašan, K. Sunkavalli, T. Boubekeur, R. Mech, and
W. Matusik, “Match: Differentiable material graphs for procedural
material capture,” ACM Transactions on Graphics (TOG), vol. 39,
no. 6, pp. 1–15, 2020.

[115] Y. Hu, P. Guerrero, M. Hasan, H. Rushmeier, and V. Deschaintre,
“Node graph optimization using differentiable proxies,” in ACM SIG-
GRAPH 2022 conference proceedings, 2022, pp. 1–9.

[116] I. Quilez and P. Jeremias, “Shadertoy,” Retrieved March, vol. 27, p.
2017, 2017.

[117] G. Y. Gardner, “Visual simulation of clouds,” in Proceedings of the
12th annual conference on Computer graphics and interactive tech-
niques, 1985, pp. 297–304.

[118] C. Yuksel, S. Schaefer, and J. Keyser, “Parameterization and applica-
tions of catmull–rom curves,” Computer-Aided Design, vol. 43, no. 7,
pp. 747–755, 2011.

[119] M. Bailey and S. Cunningham, Graphics shaders: theory and practice.
AK Peters/CRC Press, 2009.

[120] L. M. B. B. Fernandes, “Enhancing mesh deformation realism: Dy-
namic mesostructure detailing and procedural microstructure synthe-
sis,” Master’s thesis, FEUP - Faculdade de Engenharia, 2023.

[121] K. Perlin, “Improving noise,” in Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques, 2002, pp.
681–682.

[122] K. Perlin and E. M. Hoffert, “Hypertexture,” in Proceedings of the 16th
annual conference on Computer graphics and interactive techniques,
1989, pp. 253–262.

[123] K. Perlin and F. Neyret, “Flow noise,” in 28th International Con-
ference on Computer Graphics and Interactive Techniques (Technical
Sketches and Applications). SIGGRAPH, 2001, p. 187.

[124] J. J. Van Wijk, “Spot noise texture synthesis for data visualization,”
in Proceedings of the 18th annual conference on Computer graphics
and interactive techniques, 1991, pp. 309–318.

252

[125] A. Tsirikoglou, G. Eilertsen, and J. Unger, “A survey of image syn-
thesis methods for visual machine learning,” in Computer Graphics
Forum, vol. 39, no. 6. Wiley Online Library, 2020, pp. 426–451.

[126] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox, “A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 4040–4048.

[127] A. Fabri and S. Pion, “Cgal: The computational geometry algorithms
library,” in Proceedings of the 17th ACM SIGSPATIAL international
conference on advances in geographic information systems, 2009, pp.
538–539.

[128] J. Møller and D. Stoyan, Stochastic Geometry and Random Tessel-
lations, ser. Research Report Series. Department of Mathematical
Sciences, Aalborg University, 2007, no. R-2007-28.

[129] B. Figliuzzi, “Introduction to stochastic geometry,” Tech. Rep.,
2015.[Online]. Available: http://www. cmm. mines-paristech. fr . . . ,
Tech. Rep., 2015.

[130] S. C. Schvartzman and M. A. Otaduy, “Fracture animation based on
high-dimensional voronoi diagrams,” in Proceedings of the 18th Meet-
ing of the ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, 2014, pp. 15–22.

[131] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of
plants. Springer Science & Business Media, 2012.

[132] J. C. Hart, “The object instancing paradigm for linear fractal model-
ing,” in Graphics interface, vol. 92. Citeseer, 1992, pp. 224–231.

[133] R. Ghosh and J. Marecek, “Iterated function systems: A comprehen-
sive survey,” arXiv preprint arXiv:2211.14661, 2022.

[134] B. B. Mandelbrot, “Fractal aspects of the iteration of z→ λz (1-z) for
complex λ and z,” Annals of the New York Academy of Sciences, vol.
357, no. 1, pp. 249–259, 1980.

[135] T. A. Witten and L. M. Sander, “Diffusion-limited aggregation,” Phys-
ical review B, vol. 27, no. 9, p. 5686, 1983.

[136] S. Havemann, “Generative mesh modeling,” Ph.D. dissertation, Have-
mann, 2005.

253

[137] M. Mantyla and R. Sulonen, “Gwb: A solid modeler with euler oper-
ators,” IEEE Computer Graphics and Applications, vol. 2, no. 7, pp.
17–31, 1982.

[138] S. Lesser, A. Stomakhin, G. Daviet, J. Wretborn, J. Edholm, N.-H.
Lee, E. Schweickart, X. Zhai, S. Flynn, and A. Moffat, “Loki: a uni-
fied multiphysics simulation framework for production,” ACM Trans-
actions on Graphics (TOG), vol. 41, no. 4, pp. 1–20, 2022.

[139] D. G. Aliaga, İ. Demir, B. Benes, and M. Wand, “Inverse procedural
modeling of 3d models for virtual worlds,” in ACM SIGGRAPH 2016
Courses, 2016, pp. 1–316.

[140] J. Weissenberg, “Inverse procedural modelling and applications,”
Ph.D. dissertation, ETH-Zürich, 2014.

[141] M. Bokeloh, M. Wand, and H.-P. Seidel, “A connection between partial
symmetry and inverse procedural modeling,” in ACM SIGGRAPH
2010 papers, 2010, pp. 1–10.

[142] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and
B. Benes, “Inverse procedural modelling of trees,” in Computer Graph-
ics Forum, vol. 33, no. 6. Wiley Online Library, 2014, pp. 118–131.

[143] J. Guo, H. Jiang, B. Benes, O. Deussen, X. Zhang, D. Lischinski, and
H. Huang, “Inverse procedural modeling of branching structures by
inferring l-systems,” ACM Transactions on Graphics (TOG), vol. 39,
no. 5, pp. 1–13, 2020.

[144] F. Wu, D.-M. Yan, W. Dong, X. Zhang, and P. Wonka, “Inverse pro-
cedural modeling of facade layouts,” arXiv preprint arXiv:1308.0419,
2013.

[145] I. Demir, D. G. Aliaga, and B. Benes, “Proceduralization for editing
3d architectural models,” in 2016 Fourth International Conference on
3D Vision (3DV). IEEE, 2016, pp. 194–202.

[146] O. Pearl, I. Lang, Y. Hu, R. A. Yeh, and R. Hanocka, “Geocode: In-
terpretable shape programs,” arXiv preprint arXiv:2212.11715, 2022.

[147] M. Shechter, R. Hanocka, G. Metzer, R. Giryes, and D. Cohen-
Or, “Neuralmls: Geometry-aware control point deformation,” arXiv
preprint arXiv:2201.01873, 2022.

[148] R. L. Cook, “Shade trees,” in Proceedings of the 11th annual con-
ference on Computer graphics and interactive techniques, 1984, pp.
223–231.

254

[149] W. Alan and W. Mark, “Advanced animation and rendering tech-
niques,” Theory and Practice Wokingham, pp. 339–368, 1992.

[150] Blender.Foundation, “Blender.” [Online]. Available: https://www.
blender.org/

[151] M. E. Mortenson, Geometric modeling. John Wiley & Sons, Inc.,
1997.

[152] J. Gomes, Warping & morphing of graphical objects. Morgan Kauf-
mann, 1999.

[153] J. Portsmouth, “Efficient barycentric point sampling on meshes,”
arXiv preprint arXiv:1708.07559, 2017.

[154] M. Šik and J. Křivánek, “Fast random sampling of triangular meshes,”
in Pacific Graphics, Short Papers, 2013.

[155] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H. Hoppe,
“Fast exact and approximate geodesics on meshes,” ACM transactions
on graphics (TOG), vol. 24, no. 3, pp. 553–560, 2005.

[156] C. M. Hoffmann, Geometric and solid modeling: an introduction.
Morgan Kaufmann Publishers Inc., 1989.

[157] D. H. Laidlaw, W. B. Trumbore, and J. F. Hughes, “Constructive solid
geometry for polyhedral objects,” in Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, 1986, pp.
161–170.

[158] D. Khan, A. Plopski, Y. Fujimoto, M. Kanbara, G. Jabeen, Y. J.
Zhang, X. Zhang, and H. Kato, “Surface remeshing: A systematic lit-
erature review of methods and research directions,” IEEE transactions
on visualization and computer graphics, vol. 28, no. 3, pp. 1680–1713,
2020.

[159] R. M. Smelik, K. J. De Kraker, T. Tutenel, R. Bidarra, and S. A. Groe-
newegen, “A survey of procedural methods for terrain modelling,” in
Proceedings of the CASA Workshop on 3D Advanced Media In Gaming
And Simulation (3AMIGAS), vol. 2009. sn, 2009, pp. 25–34.

[160] A. Runions, B. Lane, and P. Prusinkiewicz, “Modeling trees with a
space colonization algorithm.” Nph, vol. 7, no. 63–70, p. 6, 2007.

[161] J.-D. Génevaux, É. Galin, E. Guérin, A. Peytavie, and B. Benes, “Ter-
rain generation using procedural models based on hydrology,” ACM
Transactions on Graphics (TOG), vol. 32, no. 4, pp. 1–13, 2013.

255

https://www.blender.org/
https://www.blender.org/

[162] F. Belhadj and P. Audibert, “Modeling landscapes with ridges and
rivers: bottom up approach,” in Proceedings of the 3rd international
conference on Computer graphics and interactive techniques in Aus-
tralasia and South East Asia, 2005, pp. 447–450.

[163] Y. I. Parish and P. Müller, “Procedural modeling of cities,” in Pro-
ceedings of the 28th annual conference on Computer graphics and in-
teractive techniques, 2001, pp. 301–308.

[164] E-ON Software, “VUE.” [Online]. Available: https://info.
e-onsoftware.com/vue/overview

[165] Planetside Software, “Terragen.” [Online]. Available: https://
planetside.co.uk/

[166] Unity Technologies, “Speed Tree.” [Online]. Available: https:
//store.speedtree.com/

[167] Xfrog inc., “Xfrog.” [Online]. Available: https://www.xfrog.net/

[168] C. Shorten and T. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of Big Data, vol. 6, 12 2019.

[169] W. Tang, Q. Yang, K. Xiong, and W. Yan, “Deep learning based
automatic defect identification of photovoltaic module using electro-
luminescence images,” Solar Energy, vol. 201, pp. 453 – 460, 2020.

[170] S. Mérillou, J.-M. Dischler, and D. Ghazanfarpour, “Surface scratches:
measuring, modeling and rendering,” The Visual Computer, vol. 17,
no. 1, pp. 30–45, 2001.

[171] B. Desbenoit, E. Galin, and S. Akkouche, “Modeling cracks and frac-
tures,” The Visual Computer, vol. 21, pp. 717–726, 2005.

[172] M. Haindl and J. Filip, Visual texture: Accurate material appearance
measurement, representation and modeling. Springer Science & Busi-
ness Media, 2013.

[173] J. Reiner, “Rendering for machine vision prototyping,” in Optical De-
sign and Engineering III, vol. 7100. International Society for Optics
and Photonics, 2008, p. 710009.

[174] Z. Dong, B. Walter, S. Marschner, and D. P. Greenberg, “Predicting
appearance from measured microgeometry of metal surfaces,” ACM
Transactions on Graphics (TOG), vol. 35, no. 1, pp. 1–13, 2015.

[175] H. Kolivand, M. S. Sunar, S. Y. Kakh, R. Al-Rousan, and I. Ismail,
“Photorealistic rendering: a survey on evaluation,” Multimedia Tools
and Applications, vol. 77, no. 19, pp. 25 983–26 008, 2018.

256

https://info.e-onsoftware.com/vue/overview
https://info.e-onsoftware.com/vue/overview
https://planetside.co.uk/
https://planetside.co.uk/
https://store.speedtree.com/
https://store.speedtree.com/
https://www.xfrog.net/

[176] D. P. Greenberg, K. E. Torrance, P. Shirley, J. Arvo, E. Lafortune,
J. A. Ferwerda, B. Walter, B. Trumbore, S. Pattanaik, and S.-C. Foo,
“A framework for realistic image synthesis,” in Proceedings of the 24th
annual conference on Computer graphics and interactive techniques,
1997, pp. 477–494.

[177] J. D. Stets, A. D. Corso, J. B. Nielsen, R. A. Lyngby, S. H. N.
Jensen, J. Wilm, M. B. Doest, C. Gundlach, E. R. Eiriksson,
K. Conradsen, A. B. Dahl, J. A. Bærentzen, J. R. Frisvad,
and H. Aanæs, “Scene reassembly after multimodal digitization
and pipeline evaluation using photorealistic rendering,” Appl. Opt.,
vol. 56, no. 27, pp. 7679–7690, Sep 2017. [Online]. Available:
http://ao.osa.org/abstract.cfm?URI=ao-56-27-7679

[178] R. Y. Tsai and R. K. Lenz, “A new technique for fully autonomous
and efficient 3d robotics hand/eye calibration,” IEEE Transactions on
robotics and automation, vol. 5, no. 3, pp. 345–358, 1989.

[179] K. Pachtrachai, M. Allan, V. Pawar, S. Hailes, and D. Stoyanov,
“Hand-eye calibration for robotic assisted minimally invasive surgery
without a calibration object,” in 2016 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp.
2485–2491.

[180] M. Antonello, A. Gobbi, S. Michieletto, S. Ghidoni, and E. Menegatti,
“A fully automatic hand-eye calibration system,” in 2017 European
Conference on Mobile Robots (ECMR), 2017, pp. 1–6.

[181] H. Wang, X. Lu, Z. Hu, and Y. Li, “A vision-based fully-automatic
calibration method for hand-eye serial robot,” Industrial Robot: An
International Journal, 2015.

[182] R. A. Lyngby, J. B. Matthiassen, J. R. Frisvad, A. B. Dahl, and
H. Aanæs, “Using a robotic arm for measuring brdfs,” in Scandinavian
Conference on Image Analysis. Springer, 2019, pp. 184–196.

[183] R. Liang and J. Mao, “Hand-eye calibration with a new linear de-
composition algorithm,” Journal of Zhejiang University-SCIENCE A,
vol. 9, no. 10, pp. 1363–1368, 2008.

[184] F. Beaune, E. Tovagliari, L. Barrancos, S. Agyemang, S. Basu,
M. Bhutani, L. Bosnar, R. Brune, M. Chan, J. M. M. Costa,
H. Crepaz, J. Deng, J. Dent, M. Dhiman, D. Fevrier, K. R.
Iyer, D. Lahiri, K. Masson, G. Olson, A. Pandey, J. Park,
S. Pogosyan, B. Samir, O. Smolin, T. Vergne, L. Wilimitis,
and L. Zawallich, “appleseed,” Sep. 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.3456967

257

http://ao.osa.org/abstract.cfm?URI=ao-56-27-7679
https://doi.org/10.5281/zenodo.3456967

[185] L. Gritz, C. Stein, C. Kulla, and A. Conty, “Open shading language,”
in ACM SIGGRAPH 2010 Talks, 2010, pp. 1–1.

[186] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[187] É. Marchand, F. Spindler, and F. Chaumette, “Visp for visual ser-
voing: a generic software platform with a wide class of robot control
skills,” IEEE Robotics & Automation Magazine, vol. 12, no. 4, pp.
40–52, 2005.

[188] P. Gospodnetic, M. Rauhut, and H. Hagen, “Surface inspection plan-
ning using 3d visualization,” LEVIA, 2020.

[189] P. Gospodnetic, D. Mosbach, M. Rauhut, and H. Hagen, “Viewpoint
placement for inspection planning,” Machine Vision and Applications,
2021.

[190] D. Mosbach, P. Gospodnetić, M. Rauhut, B. Hamann, and H. Hagen,
“Feature-driven viewpoint placement for model-based surface inspec-
tion,” Machine Vision and Applications, vol. 32, no. 1, pp. 1–21, 2020.

[191] M. Mohammadikaji, S. Bergmann, J. Beyerer, J. Burke, and C. Dachs-
bacher, “Sensor-realistic simulations for evaluation and planning of op-
tical measurement systems with an application to laser triangulation,”
IEEE Sensors Journal, vol. 20, no. 10, pp. 5336–5349, 2020.

[192] M. Mohammadikaji, “Simulation-based planning of machine vision in-
spection systems with an application to laser triangulation,” Ph.D.
dissertation, KIT, 2020.

[193] T. B. Jørgensen, T. M. Iversen, A. P. Lindvig, C. Schlette, D. Kraft,
T. R. Savarimuthu, J. Roßmann, and N. Krüger, “Simulation-based
optimization of camera placement in the context of industrial pose
estimation.” in VISIGRAPP (5: VISAPP), 2018, pp. 524–533.

[194] R. A. Hall and D. P. Greenberg, “A testbed for realistic image syn-
thesis,” IEEE Computer Graphics and Applications, vol. 3, no. 8, pp.
10–20, 1983.

[195] P. Dutre, P. Bekaert, and K. Bala, Advanced global illumination. CRC
Press, 2018.

[196] Y. Zhou, Z. Zhu, X. Bai, D. Lischinski, D. Cohen-Or, and H. Huang,
“Non-stationary texture synthesis by adversarial expansion,” arXiv
preprint arXiv:1805.04487, 2018.

258

[197] A. Frühstück, I. Alhashim, and P. Wonka, “Tilegan: synthesis of
large-scale non-homogeneous textures,” ACM Transactions on Graph-
ics (TOG), vol. 38, no. 4, pp. 1–11, 2019.

[198] A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D. S. Ebert,
J. P. Lewis, K. Perlin, and M. Zwicker, “A survey of procedural noise
functions,” in Computer Graphics Forum, vol. 29, no. 8. Wiley Online
Library, 2010, pp. 2579–2600.

[199] P. Vangorp, J. Laurijssen, and P. Dutré, “The influence of shape on the
perception of material reflectance,” in ACM SIGGRAPH 2007 papers,
2007, pp. 77–es.

[200] C. Bosch, “Realistic image synthesis of surface scratches and grooves,”
Ph.D. dissertation, Citeseer, 2007.

[201] P. Poulin and A. Fournier, “A model for anisotropic reflection,” ACM
SIGGRAPH Computer Graphics, vol. 24, no. 4, pp. 273–282, 1990.

[202] B. Raymond, G. Guennebaud, P. Barla, R. Pacanowski, and
X. Granier, “Optimizing brdf orientations for the manipulation of
anisotropic highlights,” in Computer Graphics Forum, vol. 33, no. 2.
Wiley Online Library, 2014, pp. 313–321.

[203] C. Bosch, X. Pueyo, S. Mérillou, and D. Ghazanfarpour, “A physically-
based model for rendering realistic scratches,” in Computer Graphics
Forum, vol. 23, no. 3. Wiley Online Library, 2004, pp. 361–370.

[204] ——, “General rendering of grooved surfaces,” Citeseer, Tech. Rep.,
2005.

[205] C. Bosch and G. Patow, “Real time scratches and grooves,” in XVII
Congreso Espanol de Informática Gráfica (CEIG’07). Citeseer, 2007.

[206] C. Bosch, X. Pueyo, S. Mérillou, and D. Ghazanfarpour, “A resolution
independent approach for the accurate rendering of grooved surfaces,”
in Computer Graphics Forum, vol. 27, no. 7. Wiley Online Library,
2008, pp. 1937–1944.

[207] B. Raymond, G. Guennebaud, and P. Barla, “Multi-scale rendering of
scratched materials using a structured sv-brdf model,” ACM Trans-
actions on Graphics (TOG), vol. 35, no. 4, pp. 1–11, 2016.

[208] M. Mannan, Z. Mian, and A. A. Kassim, “Tool wear monitoring us-
ing a fast hough transform of images of machined surfaces,” Machine
Vision and Applications, vol. 15, no. 3, pp. 156–163, 2004.

259

[209] X. Jiang, P. J. Scott, D. Whitehouse, and L. Blunt, “Paradigm shifts
in surface metrology. part i. historical philosophy,” Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 463, no. 2085, pp. 2049–2070, 2007.

[210] X. Jiang, P. J. Scott, D. J. Whitehouse, and L. Blunt, “Paradigm shifts
in surface metrology. part ii. the current shift,” Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 463, no. 2085, pp. 2071–2099, 2007.

[211] “Iso 1302 (2002) geometrical product specifications (gps)—indication
of surface texture in technical product documentation.”

[212] G. W. Wolf, “Surfaces—topography and topology,” Surface Topogra-
phy: Metrology and Properties, vol. 8, no. 1, p. 014003, 2020.

[213] A. Humeau-Heurtier, “Texture feature extraction methods: A survey,”
IEEE Access, vol. 7, pp. 8975–9000, 2019.

[214] S. I. Nikolenko, “Synthetic data for deep learning,” 2019. [Online].
Available: https://arxiv.org/abs/1909.11512

[215] P. Gutierrez, M. Luschkova, A. Cordier, M. Shukor, M. Schappert,
and T. Dahmen, “Synthetic training data generation for deep learning
based quality inspection,” in Fifteenth International Conference on
Quality Control by Artificial Vision, vol. 11794. SPIE, 2021, pp.
9–16.

[216] Q. Zhou, E. Grinspun, D. Zorin, and A. Jacobson, “Mesh arrange-
ments for solid geometry,” ACM Transactions on Graphics (TOG),
vol. 35, no. 4, pp. 1–15, 2016.

[217] H. E. Rushmeier, B. E. Rogowitz, and C. Piatko, “Perceptual issues in
substituting texture for geometry,” in Human Vision and Electronic
Imaging V, vol. 3959. Spie, 2000, pp. 372–383.

[218] O. Schmedemann, M. Baaß, D. Schoepflin, and T. Schüppstuhl,
“Procedural synthetic training data generation for ai-based defect
detection in industrial surface inspection,” Procedia CIRP, vol. 107,
pp. 1101–1106, 2022, leading manufacturing systems transformation –
Proceedings of the 55th CIRP Conference on Manufacturing Systems
2022. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2212827122003997

[219] A. Boikov, V. Payor, R. Savelev, and A. Kolesnikov, “Synthetic data
generation for steel defect detection and classification using deep learn-
ing,” Symmetry, vol. 13, no. 7, p. 1176, 2021.

260

https://arxiv.org/abs/1909.11512
https://www.sciencedirect.com/science/article/pii/S2212827122003997
https://www.sciencedirect.com/science/article/pii/S2212827122003997

[220] C. Bosch and G. Patow, “Real-time path-based surface detail,” Com-
puters & Graphics, vol. 34, no. 4, pp. 430–440, 2010.

[221] S. Niu, B. Li, X. Wang, and H. Lin, “Defect image sample generation
with gan for improving defect recognition,” IEEE Transactions on
Automation Science and Engineering, vol. 17, no. 3, pp. 1611–1622,
2020.

[222] T. Czimmermann, G. Ciuti, M. Milazzo, M. Chiurazzi, S. Roccella,
C. M. Oddo, and P. Dario, “Visual-based defect detection and
classification approaches for industrial applications—a survey,”
Sensors, vol. 20, no. 5, 2020. [Online]. Available: https:
//www.mdpi.com/1424-8220/20/5/1459

[223] S. Moonen, B. Vanherle, J. de Hoog, T. Bourgana, A. Bey-Temsamani,
and N. Michiels, “CAD2Render: A modular toolkit for GPU-
accelerated photorealistic synthetic data generation for the manufac-
turing industry,” in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV) Workshops, January
2023, pp. 583–592.

[224] T. Bao, J. Chen, W. Li, X. Wang, J. Fei, L. Wu, R. Zhao,
and Y. Zheng, “Miad: A maintenance inspection dataset
for unsupervised anomaly detection,” 2022. [Online]. Available:
https://arxiv.org/abs/2211.13968

[225] X. Guo, W. Wu, D. Wang, J. Su, H. Su, W. Gan, J. Huang, and
Q. Yang, “Learning video representations of human motion from syn-
thetic data,” in 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022, pp. 20 165–20 175.

[226] E. Wood, T. Baltrušaitis, C. Hewitt, S. Dziadzio, T. J. Cashman, and
J. Shotton, “Fake it till you make it: Face analysis in the wild using
synthetic data alone,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2021, pp. 3681–
3691.

[227] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani,
C. Anil, T. To, E. Cameracci, S. Boochoon, and S. Birchfield,
“Training deep networks with synthetic data: Bridging the reality
gap by domain randomization,” in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW).
Los Alamitos, CA, USA: IEEE Computer Society, jun 2018, pp.
1082–10 828. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/CVPRW.2018.00143

261

https://www.mdpi.com/1424-8220/20/5/1459
https://www.mdpi.com/1424-8220/20/5/1459
https://arxiv.org/abs/2211.13968
https://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00143
https://doi.ieeecomputersociety.org/10.1109/CVPRW.2018.00143

[228] B. Tang, L. Chen, W. Sun, and Z.-k. Lin, “Review of surface defect
detection of steel products based on machine vision,” IET Image
Processing, vol. 17, no. 2, pp. 303–322, 2023. [Online]. Available: https:
//ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ipr2.12647

[229] X. Wen, J. Shan, Y. He, and K. Song, “Steel surface defect
recognition: A survey,” Coatings, vol. 13, no. 1, 2023. [Online].
Available: https://www.mdpi.com/2079-6412/13/1/17

[230] J. Yang, S. Li, Z. Wang, H. Dong, J. Wang, and S. Tang, “Using deep
learning to detect defects in manufacturing: A comprehensive survey
and current challenges,” Materials, vol. 13, no. 24, 2020. [Online].
Available: https://www.mdpi.com/1996-1944/13/24/5755

[231] T. Barisin, C. Jung, F. Müsebeck, C. Redenbach, and K. Schladitz,
“Methods for segmenting cracks in 3d images of concrete: A
comparison based on semi-synthetic images,” Pattern Recognition,
vol. 129, p. 108747, 2022. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S003132032200228X

[232] Q. Fang, C. Ibarra-Castanedo, and X. Maldague, “Automatic defects
segmentation and identification by deep learning algorithm with
pulsed thermography: Synthetic and experimental data,” Big Data
and Cognitive Computing, vol. 5, no. 1, 2021. [Online]. Available:
https://www.mdpi.com/2504-2289/5/1/9

[233] Y. Chen, Y. Ding, F. Zhao, E. Zhang, Z. Wu, and L. Shao,
“Surface defect detection methods for industrial products: A
review,” Applied Sciences, vol. 11, no. 16, 2021. [Online]. Available:
https://www.mdpi.com/2076-3417/11/16/7657

[234] A.-A. Tulbure, A.-A. Tulbure, and E.-H. Dulf, “A review on modern
defect detection models using dcnns – deep convolutional neural
networks,” Journal of Advanced Research, vol. 35, pp. 33–48, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S2090123221000643

[235] D. Tabernik, S. Šela, J. Skvarč, and D. Skočaj, “Segmentation-Based
Deep-Learning Approach for Surface-Defect Detection,” Journal of In-
telligent Manufacturing, May 2019.

[236] J. Božič, D. Tabernik, and D. Skočaj, “Mixed supervision for surface-
defect detection: from weakly to fully supervised learning,” Computers
in Industry, 2021.

[237] D. Honzátko, E. Türetken, S. A. Bigdeli, L. A. Dunbar, and P. Fua,
“Defect segmentation for multi-illumination quality control systems,”

262

https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ipr2.12647
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ipr2.12647
https://www.mdpi.com/2079-6412/13/1/17
https://www.mdpi.com/1996-1944/13/24/5755
https://www.sciencedirect.com/science/article/pii/S003132032200228X
https://www.sciencedirect.com/science/article/pii/S003132032200228X
https://www.mdpi.com/2504-2289/5/1/9
https://www.mdpi.com/2076-3417/11/16/7657
https://www.sciencedirect.com/science/article/pii/S2090123221000643
https://www.sciencedirect.com/science/article/pii/S2090123221000643

Machine Vision and Applications, vol. 32, no. 6, p. 118, Sep 2021.
[Online]. Available: https://doi.org/10.1007/s00138-021-01244-z

[238] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learn-
ing deep features for discriminative localization,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[239] H. Lin, B. Li, X. Wang, Y. Shu, and S. Niu, “Automated defect in-
spection of led chip using deep convolutional neural network,” Journal
of Intelligent Manufacturing, vol. 30, pp. 1–10, 08 2019.

[240] M. Rudolph, T. Wehrbein, B. Rosenhahn, and B. Wandt, “Asym-
metric student-teacher networks for industrial anomaly detection,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), January 2023, pp. 2592–2602.

[241] J. Liu, G. Xie, J. Wang, S. Li, C. Wang, F. Zheng, and Y. Jin,
“Deep industrial image anomaly detection: A survey,” 2023. [Online].
Available: https://arxiv.org/abs/2301.11514

[242] K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T. Brox, and P. Gehler,
“Towards total recall in industrial anomaly detection,” in 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2022, pp. 14 298–14 308.

[243] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “Mvtec ad
— a comprehensive real-world dataset for unsupervised anomaly de-
tection,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 9584–9592.

[244] X. Sun, J. Gu, S. Tang, and J. Li, “Research progress
of visual inspection technology of steel products—a review,”
Applied Sciences, vol. 8, no. 11, 2018. [Online]. Available:
https://www.mdpi.com/2076-3417/8/11/2195

[245] P. Severstal, “Severstal: Steel defect detection,” https://www.kaggle.
com/c/severstal-steel-defect-detection, 2019.

[246] K. Song and Y. Yan, “A noise robust method based on
completed local binary patterns for hot-rolled steel strip surface
defects,” Applied Surface Science, vol. 285, pp. 858–864, 11 2013.
[Online]. Available: https://www.sciencedirect.com/science/article/
abs/pii/S0169433213016437

[247] G. Fu, P. Sun, W. Zhu, J. Yang, Y. Cao, M. Y. Yang, and Y. Cao,
“A deep-learning-based approach for fast and robust steel surface

263

https://doi.org/10.1007/s00138-021-01244-z
https://arxiv.org/abs/2301.11514
https://www.mdpi.com/2076-3417/8/11/2195
https://www.kaggle.com/c/severstal-steel-defect-detection
https://www.kaggle.com/c/severstal-steel-defect-detection
https://www.sciencedirect.com/science/article/abs/pii/S0169433213016437
https://www.sciencedirect.com/science/article/abs/pii/S0169433213016437

defects classification,” Optics and Lasers in Engineering, vol. 121,
pp. 397–405, 10 2019. [Online]. Available: https://www.sciencedirect.
com/science/article/abs/pii/S0143816619301678

[248] X. Lv, F. Duan, J.-j. Jiang, X. Fu, and L. Gan, “Deep metallic
surface defect detection: The new benchmark and detection
network,” Sensors, vol. 20, no. 6, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/6/1562

[249] Y. Huang, C. Qiu, Y. Guo, X. Wang, and K. Yuan, “Surface defect
saliency of magnetic tile,” in 2018 IEEE 14th International Conference
on Automation Science and Engineering (CASE), 2018, pp. 612–617.

[250] Tianchi, “Aluminum profile surface flaw recognition dataset,” 2016.
[Online]. Available: https://tianchi.aliyun.com/dataset/dataDetail?
dataId=140666

[251] Z. Zhang, S. Yu, S. Yang, Y. Zhou, and B. Zhao, “Rail-
5k: a real-world dataset for rail surface defects detection
[unpublished],” CoRR, vol. abs/2106.14366, 2021. [Online]. Available:
https://arxiv.org/abs/2106.14366

[252] T. Schlagenhauf, M. Landwehr, and J. Fleischer, “Industrial machine
tool element surface defect dataset,” 2021.

[253] P. Mishra, R. Verk, D. Fornasier, C. Piciarelli, and G. L. Foresti, “VT-
ADL: A vision transformer network for image anomaly detection and
localization,” in 30th IEEE/IES International Symposium on Indus-
trial Electronics (ISIE), June 2021.

[254] M. Haselmann and D. Gruber, “Supervised machine learning based
surface inspection by synthetizing artificial defects,” in 2017 16th
IEEE International Conference on Machine Learning and Applications
(ICMLA), 2017, pp. 390–395.

[255] G. Zhang, K. Cui, T.-Y. Hung, and S. Lu, “Defect-GAN: High-fidelity
defect synthesis for automated defect inspection,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), January 2021, pp. 2524–2534.

[256] R. Wang, S. Hoppe, E. Monari, and M. Huber, “Defect transfer
gan: Diverse defect synthesis for data augmentation,” in 33rd
British Machine Vision Conference 2022, BMVC 2022, London, UK,
November 21-24, 2022. BMVA Press, 2022. [Online]. Available:
https://bmvc2022.mpi-inf.mpg.de/0445.pdf

264

https://www.sciencedirect.com/science/article/abs/pii/S0143816619301678
https://www.sciencedirect.com/science/article/abs/pii/S0143816619301678
https://www.mdpi.com/1424-8220/20/6/1562
https://tianchi.aliyun.com/dataset/dataDetail?dataId=140666
https://tianchi.aliyun.com/dataset/dataDetail?dataId=140666
https://arxiv.org/abs/2106.14366
https://bmvc2022.mpi-inf.mpg.de/0445.pdf

[257] T. Dahmen, P. Trampert, F. Boughorbel, J. Sprenger, M. Klusch,
K. Fischer, C. Kübel, and P. Slusallek, “Digital reality: a model-based
approach to supervised learning from synthetic data,” AI Perspectives,
vol. 1, no. 1, p. Article No.2, 2019, 43.22.02; LK 01.

[258] M. Wieler, T. Hahn, and F. A. Hamprecht, “Weakly
supervised learning for industrial optical inspection
[dataset],” https://hci.iwr.uni-heidelberg.de/content/
weakly-supervised-learning-industrial-optical-inspection, 2007.

[259] A. Boikov, V. Payor, R. Savelev, and A. Kolesnikov, “Synthetic
data generation for steel defect detection and classification using
deep learning,” Symmetry, vol. 13, no. 7, 2021. [Online]. Available:
https://www.mdpi.com/2073-8994/13/7/1176

[260] P. De Roovere, S. Moonen, N. Michiels, and F. Wyffels,
“Dataset of industrial metal objects,” 2022. [Online]. Available:
https://arxiv.org/abs/2208.04052

[261] G. Csurka, “Domain adaptation for visual applications: A
comprehensive survey,” 2017. [Online]. Available: https://arxiv.org/
abs/1702.05374

[262] C. Wu, X. Bi, J. Pfrommer, A. Cebulla, S. Mangold, and J. Beyerer,
“Sim2real transfer learning for point cloud segmentation: An indus-
trial application case on autonomous disassembly,” in Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vi-
sion (WACV), January 2023, pp. 4531–4540.

[263] B. Vanherle, S. Moonen, F. V. Reeth, and N. Michiels, “Analysis
of training object detection models with synthetic data,” in 33rd
British Machine Vision Conference 2022, BMVC 2022, London, UK,
November 21-24, 2022. BMVA Press, 2022. [Online]. Available:
https://bmvc2022.mpi-inf.mpg.de/0833.pdf

[264] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2017, pp. 23–30.

[265] K. Wada, “Labelme: Image polygonal annotation with Python.”
[Online]. Available: https://github.com/wkentaro/labelme

[266] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Los Alamitos, CA, USA:
IEEE Computer Society, jun 2015, pp. 3431–3440. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298965

265

https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection
https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection
https://www.mdpi.com/2073-8994/13/7/1176
https://arxiv.org/abs/2208.04052
https://arxiv.org/abs/1702.05374
https://arxiv.org/abs/1702.05374
https://bmvc2022.mpi-inf.mpg.de/0833.pdf
https://github.com/wkentaro/labelme
https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298965

[267] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethink-
ing Atrous Convolution for Semantic Image Segmentation,” arXiv e-
prints, p. arXiv:1706.05587, Jun. 2017.

[268] O. Ronneberger, P.Fischer, and T. Brox, “U-Net: Con-
volutional networks for biomedical image segmentation,” in
Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI), ser. LNCS, vol. 9351. Springer, 2015, pp. 234–241,
(available on arXiv:1505.04597 [cs.CV]). [Online]. Available:
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a

[269] P. Iakubovskii, “Segmentation models,” https://github.com/qubvel/
segmentation models, 2019.

[270] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

[271] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in International Conference on Learning Representations, 2017.

[272] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[273] X. Wu, K. Xu, and P. Hall, “A survey of image synthesis and editing
with generative adversarial networks,” Tsinghua Science and Technol-
ogy, vol. 22, no. 6, pp. 660–674, 2017.

[274] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A review on generative
adversarial networks: Algorithms, theory, and applications,” IEEE
transactions on knowledge and data engineering, vol. 35, no. 4, pp.
3313–3332, 2021.

[275] Z. Pan, W. Yu, X. Yi, A. Khan, F. Yuan, and Y. Zheng, “Recent
progress on generative adversarial networks (gans): A survey,” IEEE
access, vol. 7, pp. 36 322–36 333, 2019.

[276] A. Figueira and B. Vaz, “Survey on synthetic data generation, evalu-
ation methods and GANs,” Mathematics, vol. 10, no. 15, 2022.

[277] C. Little, M. Elliot, R. Allmendinger, and S. S. Samani, “Genera-
tive adversarial networks for synthetic data generation: a comparative
study,” arXiv preprint arXiv:2112.01925, 2021.

[278] J. T. Guibas, T. S. Virdi, and P. S. Li, “Synthetic medical im-
ages from dual generative adversarial networks,” arXiv preprint
arXiv:1709.01872, 2017.

266

http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models
http://www.deeplearningbook.org

[279] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and
C. Change Loy, “Esrgan: Enhanced super-resolution generative adver-
sarial networks,” in Proceedings of the European conference on com-
puter vision (ECCV) workshops, 2018, pp. 0–0.

[280] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-
to-image translation using cycle-consistent adversarial networks,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2223–2232.

[281] U. Bergmann, N. Jetchev, and R. Vollgraf, “Learning texture mani-
folds with the periodic spatial gan,” arXiv preprint arXiv:1705.06566,
2017.

[282] R. Huang, S. Zhang, T. Li, and R. He, “Beyond face rotation: Global
and local perception gan for photorealistic and identity preserving
frontal view synthesis,” in Proceedings of the IEEE international con-
ference on computer vision, 2017, pp. 2439–2448.

[283] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2536–2544.

[284] B. Zhao, X. Wu, Z.-Q. Cheng, H. Liu, Z. Jie, and J. Feng, “Multi-view
image generation from a single-view,” in Proceedings of the 26th ACM
international conference on Multimedia, 2018, pp. 383–391.

[285] L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and L. Van Gool,
“Pose guided person image generation,” in Proceedings of 31st Con-
ference on Neural Information Processing Systems, vol. 30, 2017.

[286] M. Haselmann and D. P. Gruber, “Pixel-wise defect detection by
cnns without manually labeled training data,” Applied Artificial
Intelligence, vol. 33, no. 6, pp. 548–566, 2019. [Online]. Available:
https://doi.org/10.1080/08839514.2019.1583862

[287] O. Schmedemann, S. Schlodinski, D. Holst, and T. Schüppstuhl,
“Adapting synthetic training data in deep learning-based visual sur-
face inspection to improve transferability of simulations to real-world
environments,” in Automated Visual Inspection and Machine Vision
V, vol. 12623. SPIE, 2023, pp. 25–35.

[288] G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev,
and C. Schmid, “Learning from synthetic humans,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 109–117.

267

https://doi.org/10.1080/08839514.2019.1583862

[289] D. Park and D. Ramanan, “Articulated pose estimation with tiny
synthetic videos,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2015, pp. 58–66.

[290] M. Fabbri, F. Lanzi, S. Calderara, A. Palazzi, R. Vezzani, and R. Cuc-
chiara, “Learning to detect and track visible and occluded body joints
in a virtual world,” in Proceedings of the European conference on com-
puter vision (ECCV), 2018, pp. 430–446.

[291] A. Kortylewski, A. Schneider, T. Gerig, B. Egger, A. Morel-Forster,
and T. Vetter, “Training deep face recognition systems with synthetic
data,” arXiv preprint arXiv:1802.05891, 2018.

[292] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[293] A. Shafaei, J. J. Little, and M. Schmidt, “Play and learn: Us-
ing video games to train computer vision models,” arXiv preprint
arXiv:1608.01745, 2016.

[294] B. Hurl, K. Czarnecki, and S. Waslander, “Precise synthetic image
and lidar (presil) dataset for autonomous vehicle perception,” in 2019
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 2522–
2529.

[295] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birch-
field, “Deep object pose estimation for semantic robotic grasping of
household objects,” arXiv preprint arXiv:1809.10790, 2018.

[296] “Nvidia isaac - the accelerated platform for robotics and ai,” https:
//www.nvidia.com/en-us/deep-learning-ai/industries/robotics/, ac-
cessed: 2023-01-30.

[297] S. Khan, B. Phan, R. Salay, and K. Czarnecki, “Procsy: Procedural
synthetic dataset generation towards influence factor studies of seman-
tic segmentation networks.” in CVPR workshops, vol. 3, 2019, p. 4.

[298] E. Buls, R. Kadikis, R. Cacurs, and J. Ārents, “Generation of synthetic
training data for object detection in piles,” in Eleventh International
Conference on Machine Vision (ICMV 2018), vol. 11041. SPIE, 2019,
pp. 533–540.

[299] M. Wieler and T. Hahn, “Weakly supervised learning for industrial
optical inspection,” in DAGM symposium in, vol. 6, 2007.

[300] T. Bao, J. Chen, W. Li, X. Wang, J. Fei, L. Wu, R. Zhao, and
Y. Zheng, “Miad: A maintenance inspection dataset for unsupervised

268

https://www.nvidia.com/en-us/deep-learning-ai/industries/robotics/
https://www.nvidia.com/en-us/deep-learning-ai/industries/robotics/

anomaly detection,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 993–1002.

[301] F. A. Saiz, G. Alfaro, I. Barandiaran, S. Garcia, M. Carretero, and
M. Graña, “Synthetic data set generation for the evaluation of image
acquisition strategies applied to deep learning based industrial com-
ponent inspection systems.” in CEIG, 2021, pp. 1–8.

[302] B. Yang, Z. Liu, G. Duan, and J. Tan, “Mask2defect: A prior
knowledge-based data augmentation method for metal surface defect
inspection,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 10, pp. 6743–6755, 2021.

[303] A. G. Abubakr, I. Jovancevic, N. I. Mokhtari, H. B. Abdallah, and
J.-J. Orteu, “On learning deep domain-invariant features from 2d syn-
thetic images for industrial visual inspection,” in Fifteenth Interna-
tional Conference on Quality Control by Artificial Vision, vol. 11794.
SPIE, 2021, pp. 317–325.

[304] A. Kim, K. Lee, S. Lee, J. Song, S. Kwon, and S. Chung, “Synthetic
data and computer-vision-based automated quality inspection system
for reused scaffolding,” Applied Sciences, vol. 12, no. 19, p. 10097,
2022.

[305] S. Sauer, M. Borkar, D. Sasidharan, and T. Dunker, “Model-based
visual inspection with machine learning methods using simulation of
the expected camera view,” Workshop on ”Generating synthetic im-
age data for AI” at the KI 2022 (virtual, hosted in Trier/Germany),
September 2022.

[306] K. Greff, F. Belletti, L. Beyer, C. Doersch, Y. Du, D. Duckworth, D. J.
Fleet, D. Gnanapragasam, F. Golemo, C. Herrmann et al., “Kubric:
A scalable dataset generator,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2022, pp. 3749–
3761.

[307] S. Hill, S. McAuley, L. Belcour, W. Earl, N. Harrysson, S. Hillaire,
N. Hoffman, L. Kerley, J. Patry, R. Pieké et al., “Physically based
shading in theory and practice,” in ACM SIGGRAPH 2020 Courses,
2020, pp. 1–12.

[308] C. Shannon, “Communication in the presence of noise,” Proceedings
of the IRE, vol. 37, no. 1, pp. 10–21, jan 1949. [Online]. Available:
https://doi.org/10.1109/jrproc.1949.232969

[309] C. Kulla and A. Conty, “Revisiting physically based shading at image-
works,” SIGGRAPH Course, Physically Based Shading, vol. 2, no. 3,
2017.

269

https://doi.org/10.1109/jrproc.1949.232969

[310] E. Turquin, “Practical multiple scattering compensation for mi-
crofacet models,” URL: https://blog. selfshadow. com/publications/-
turquin/ms comp final. pdf, vol. 45, no. 3, 2019.

[311] “The pbr guide by allegorithmic - part 2,” https://substance3d.adobe.
com/tutorials/courses/the-pbr-guide-part-2, accessed: 2023-01-30.

[312] M. S. Mikkelsen, “Bump mapping unparametrized surfaces on the
gpu,” Journal of graphics, gpu, and game tools, vol. 15, no. 1, pp.
49–61, 2010.

[313] “Freecad - an open-source parametric 3d modeler,” https://www.
freecadweb.org/, accessed: 2023-01-30.

[314] T. Duff, J. Burgess, P. Christensen, C. Hery, A. Kensler, M. Liani,
and R. Villemin, “Building an orthonormal basis, revisited,” JCGT,
vol. 6, no. 1, 2017.

[315] J. Zhu, S. Zhao, Y. Xu, X. Meng, L. Wang, and L.-Q. Yan, “Recent ad-
vances in glinty appearance rendering,” Computational Visual Media,
vol. 8, no. 4, pp. 535–552, 2022.

[316] X. Chermain, F. Claux, and S. Mérillou, “Glint rendering based on a
multiple-scattering patch brdf,” in Computer Graphics Forum, vol. 38,
no. 4. Wiley Online Library, 2019, pp. 27–37.

[317] M. P. Groover, Fundamentals of modern manufacturing: materials,
processes, and systems. John Wiley & Sons, 2020.

[318] T. H. Childs, K. Maekawa, T. Obikawa, and Y. Yamane, Metal ma-
chining: theory and applications. Butterworth-Heinemann, 2000.

[319] C. Felhő, B. Karpuschewski, and J. Kundrák, “Surface roughness mod-
elling in face milling,” Procedia CIRP, vol. 31, pp. 136–141, 2015.

[320] C. Felhő and J. Kundrák, “Effects of setting errors (insert run-outs)
on surface roughness in face milling when using circular inserts,” Ma-
chines, vol. 6, no. 2, 2018.

[321] J. Kundrák, C. Felhő, and A. Nagy, “Analysis and prediction of rough-
ness of face milled surfaces using cad model,” Manufacturing Technol-
ogy, vol. 22, pp. 558–572, 2022.

[322] M. Hadad and M. Ramezani, “Modeling and analysis of a novel ap-
proach in machining and structuring of flat surfaces using face milling
process,” International Journal of Machine Tools and Manufacture,
vol. 105, pp. 32–44, 2016.

270

https://substance3d.adobe.com/tutorials/courses/the-pbr-guide-part-2
https://substance3d.adobe.com/tutorials/courses/the-pbr-guide-part-2
https://www.freecadweb.org/
https://www.freecadweb.org/

[323] M. Ritz, S. Breitfelder, P. Santos, A. Kuijper, and D. W. Fellner,
“Seamless and non-repetitive 4d texture variation synthesis and real-
time rendering for measured optical material behavior,” Computa-
tional Visual Media, vol. 5, pp. 161–170, 2019.

[324] N. Jetchev, U. Bergmann, and R. Vollgraf, “Texture synthe-
sis with spatial generative adversarial networks,” arXiv preprint
arXiv:1611.08207, 2016.

[325] T. Zeltner, F. Rousselle, A. Weidlich, P. Clarberg, J. Novák, B. Bit-
terli, A. Evans, T. Davidovič, S. Kallweit, and A. Lefohn, “Real-time
neural appearance models,” arXiv preprint arXiv:2305.02678, 2023.

[326] L. Raad, A. Davy, A. Desolneux, and J.-M. Morel, “A survey of
exemplar-based texture synthesis,” 2017.

[327] B. Galerne, Y. Gousseau, and J.-M. Morel, “Random phase tex-
tures: Theory and synthesis,” IEEE Transactions on Image Process-
ing, vol. 20, no. 1, pp. 257–267, 2011.

[328] D. Heeger and J. Bergen, “Pyramid-based texture analysis/synthesis,”
in Proceedings., International Conference on Image Processing, vol. 3,
1995, pp. 648–651 vol.3.

[329] T. Briand, J. Vacher, B. Galerne, and J. Rabin, “The Heeger & Bergen
Pyramid Based Texture Synthesis Algorithm,” Image Processing On
Line, vol. 4, pp. 276–299, 2014, https://doi.org/10.5201/ipol.2014.79.

[330] J. Portilla and E. Simoncelli, “A parametric texture model based on
joint statistics of complex wavelet coefficients,” International Journal
of Computer Vision, vol. 40, 10 2000.

[331] J. Vacher and T. Briand, “The portilla-simoncelli texture model: to-
wards understanding the early visual cortex,” Image Processing On
Line, vol. 11, pp. 170–211, 2021, https://doi.org/10.5201/ipol.2021.
324.

[332] A. Efros and W. Freeman, “Image quilting for texture synthesis and
transfer,” Computer Graphics (Proc. SIGGRAPH’01), vol. 35, 07
2001.

[333] L. Raad and B. Galerne, “Efros and Freeman Image Quilting Algo-
rithm for Texture Synthesis,” Image Processing On Line, vol. 7, pp.
1–22, 2017, https://doi.org/10.5201/ipol.2017.171.

[334] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in Proceedings of the Seventh IEEE International Confer-
ence on Computer Vision, vol. 2, 1999, pp. 1033–1038.

271

https://doi.org/10.5201/ipol.2014.79
https://doi.org/10.5201/ipol.2021.324
https://doi.org/10.5201/ipol.2021.324
https://doi.org/10.5201/ipol.2017.171

[335] P. Guehl, R. Allegre, J.-M. Dischler, B. Benes, and E. Galin, “Semi-
procedural textures using point process texture basis functions,” in
Computer Graphics Forum, vol. 39, no. 4. Wiley Online Library,
2020, pp. 159–171.

[336] C. Jung and C. Redenbach, “Crack modeling via minimum-weight
surfaces in 3d voronoi diagrams,” 2022.

[337] D. Tabernik, S. Šela, J. Skvarč, and D. Skočaj, “Segmentation-based
deep-learning approach for surface-defect detection,” Journal of
Intelligent Manufacturing, vol. 31, no. 3, pp. 759–776, Mar 2020.
[Online]. Available: https://doi.org/10.1007/s10845-019-01476-x

[338] T. Schlagenhauf and M. Landwehr, “Industrial machine tool
component surface defect dataset,” Data in Brief, vol. 39, p. 107643,
2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2352340921009185

[339] J. Fulir, L. Bosnar, H. Hagen, and P. Gospodnetić, “Synthetic data for
defect segmentation on complex metal surfaces,” in 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2023, pp. 4423–4433.

[340] W. Matthias, H. Tobias, and H. F. A., “Dagm: Weakly
supervised learning for industrial optical inspection [dataset],”
2007. [Online]. Available: https://hci.iwr.uni-heidelberg.de/content/
weakly-supervised-learning-industrial-optical-inspection

[341] X. Zhu, T. Bilal, P. Mårtensson, L. Hanson, M. Björkman, and
A. Maki, “Towards sim-to-real industrial parts classification with syn-
thetic dataset,” in 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), 2023, pp. 4454–4463.

[342] Y. Gong, G. Liu, Y. Xue, R. Li, and L. Meng, “A survey
on dataset quality in machine learning,” Information and Software
Technology, vol. 162, p. 107268, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584923001222

[343] A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia, “A brief
review of domain adaptation,” in Transactions on Computational Sci-
ence and Computational Intelligence, 2021.

[344] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality as-
sessment: from error visibility to structural similarity,” IEEE Trans-
actions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

272

https://doi.org/10.1007/s10845-019-01476-x
https://www.sciencedirect.com/science/article/pii/S2352340921009185
https://www.sciencedirect.com/science/article/pii/S2352340921009185
https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection
https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection
https://www.sciencedirect.com/science/article/pii/S0950584923001222
https://www.sciencedirect.com/science/article/pii/S0950584923001222

[345] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, X. Chen, and X. Chen, “Improved techniques for train-
ing GANs,” in Advances in Neural Information Processing Systems,
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-
nett, Eds., vol. 29. Curran Associates, Inc., 2016. [Online].
Available: https://proceedings.neurips.cc/paper files/paper/2016/
file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf

[346] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter, “GANs trained by a two time-scale update
rule converge to a local nash equilibrium,” in Advances in
Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. [Online].
Available: https://proceedings.neurips.cc/paper files/paper/2017/
file/8a1d694707eb0fefe65871369074926d-Paper.pdf

[347] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2018, pp. 586–595.

[348] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A review on generative
adversarial networks: Algorithms, theory, and applications,” IEEE
Transactions on Knowledge and Data Engineering, vol. 35, no. 4, pp.
3313–3332, 2023.

[349] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in CVPR
2011, 2011, pp. 1521–1528.

[350] D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” 2019.

[351] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in Advances
in Neural Information Processing Systems, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, Eds., vol. 25. Curran Associates, Inc.,
2012. [Online]. Available: https://proceedings.neurips.cc/paper files/
paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

273

https://proceedings.neurips.cc/paper_files/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Curriculum Vitae

Lovro Bosnar
lovro.bosnar@itwm.fraunhofer.de

Education
2020— Degree: Doctor of Engineering in Computer Science
2024 Where: RPTU Kaiserslautern, Germany

Topic: Procedural Modeling and Image Synthesis for Virtual Sur-
face Inspection Planning
Supervisor: Prof. Dr. Hans Hagen
Focusing on procedural surface modeling for image synthesis for vir-
tual surface inspection planning. During the research conducted for
the thesis, I explored the research topics through the development of
photo-realistic modeling and image synthesis environment for surface
inspection planning. The environment was applied for surface inspec-
tion planning and the creation of training-ready synthetic datasets
for Machine learning in surface quality inspection.
Highlighted focus areas: Computer graphics, procedural geom-
etry modeling, material modeling, procedural texture modeling, re-
flection models, path-tracing rendering, physically based models.

2017— Degree: Master of Science in Computer Science
2019 Where: University of Zagreb, Croatia

Faculty of Electrical Engineering and Computing

During master’s studies I worked on several projects and attended
courses in areas of Computer Graphics, Computer Vision and Ma-
chine Learning

• Highlighted courses: Computer Graphics. Machine Learn-
ing. Computer Vision.

• Master Thesis: Modelling Spatial Development of Biological
Systems.

– I have used procedural and generative methods to simu-
late and animate growth/morphogenesis using Blender and
Python.

– Thesis: https://urn.nsk.hr/urn:nbn:hr:168:055831.

– Code: https://github.com/lorentzo/Growth_models

• Computer Graphic course project: Designing and devel-
oping an artistic model of the Solar System.

– I have used fractals and procedurally generated textures.
Technology: C Sharp and Unity.

– Code: https://gitlab.com/lorentzo/computer-graphics-labs

• Computer Vision course project: Optical flow estimation
using gradient methods.

– Group project. I have implemented an optical flow algo-
rithm. Technology: Python and OpenCV

– Code: https://bitbucket.org/eigenvaluer/racunalni_
vid/src/master/

February 2018— Degree: Master of Science in Computer Science
July 2018 Where: University of Science and Technology (AGH), Poland

During my semester abroad (Erasmus+) I have worked on several
projects and attended courses in Computer Vision and Machine Learn-
ing:

• Highlighted courses: Fundamentals of Data Science. Digital
Image Processing and Vision Systems.

• Data Science course project: Kaggle competition: imple-
menting a model for audio clip classification.

– I have extracted features using MFCC and applied K-means
and SVM. Technology: Python

– Code: https://github.com/lorentzo/DS-PROJECT

2014— Degree: Bachelor of Science in Computer Science
2017 Where: University of Zagreb, Croatia

Faculty of Electrical Engineering and Computing
During my Bachelor studies I worked on several projects and at-
tended general computer science courses:

• Highlighted courses: Programming and Software Engineer-
ing. Interactive Computer Graphics. Artificial Intelligence.

• Bachelor Thesis: Analysis of Algorithms for Finding Maxi-
mum Flow in a Graph.

– Analysis and comparison of different algorithms for maxi-
mum flow in a graph

– Thesis and code: https://urn.nsk.hr/urn:nbn:hr:168:
431927

Research
2020— Project: Procedural Modeling and Image Synthesis for Virtual Surface
Inspection Planning
Present Where: Fraunhofer ITWM, Kaiserslautern, Germany

Advisor: Petra Gospodnetic, Markus Rauhut
Contributions:

• Development of photorealistic image synthesis pipeline for vir-
tual surface inspection planning.

• Established a set of general requirements for image synthesis in
surface inspection planning

• Development of procedural texturing methods for representing
machining surface topologies for industrial quality inspection

• Established a set of general requirements for texture synthesis
in surface inspection planning

• Development of procedural geometrical defecting workflow for
representing defects occurring in manufacturing for industrial
quality inspection

• Established a set of general requirements for geometrical defect
modeling in surface inspection planning

• Set foundations for synthetic dataset generation workflow for
Machine learning quality inspection

Experience

January 2023.— Position: Computer Graphics Teacher
April 2023. Where: DHBW Mannheim, Germany

Teaching Foundations of Computer Graphics. My work included:

• Writing syllabus and lectures from scratch,

• Writing projects and exams,

• Giving lectures,

• Correcting projects and exams

June 2020.— Position: Computer Graphics (rendering) Internship
September 2020. Where: AppleseedHQ, remotely

Google Summer of Code with appleseed. Implementing enhanced
normal mapping in appleseed rendering engine based on ”Microfacet-
based Normal Mapping for Robust Monte Carlo Path Tracing” pa-
per by Vincent Schüßler (KIT), Eric Heitz (Unity Technologies), Jo-
hannes Hanika (KIT) and Carsten Dachsbacher (KIT).
Full report and code:

• Report: https://github.com/lorentzo/GSOC-2020-Report

• Code: https://github.com/appleseedhq/appleseed/pull/

2886

August 2019— Position: Computer Graphics Internship
October 2019 Where: Fraunhofer ITWM, Kaiserslautern, Germany

Computer graphics modeling and rendering for surface inspection.
My tasks included:

• Building image synthesis pipeline using appleseed rendering en-
gine

• Simulating the inspected object, camera and illumination in a
3D scene

• Synthesizing photo-realistic images using appleseed rendering
engine.

October 2018— Position: Machine Learning Teaching Assistant
February 2019 Where: University of Zagreb, Croatia
Faculty of Electrical Engineering and Computing

Laboratory Assistant for Machine Learning University course. My
tasks included:

• Machine Learning methods application in laboratory work

• Helping students, discussing problems and solutions. Examin-
ing laboratory assignments.

August 2017— Position: Testing Engineer
October 2017 Where: Ericsson Nikola Tesla, Zagreb, Croatia

Reviewing low-level telecommunication systems written in C. Testing
via TCL. Programming in pairs.

Publications

1. Lovro Bosnar, Doria Saric, Siddhartha Dutta, Thomas Weibel, Markus Rauhut,
Hans Hagen and Petra Gospodnetic, ”Image synthesis pipeline for surface in-
spection”, LEVIA 2020: Leipzig Symposium on Visualization in Applications, Leipzig,
Germany, doi: 10.31219/osf.io/kqt8w

2. Lovro Bosnar, Markus Rauhut, Hans Hagen and Petra Gospodnetic, ”Texture syn-
thesis for surface inspection”, LEVIA 2022: Leipzig Symposium on Visualization
in Applications, Leipzig, Germany, doi: 10.36730/2022.1.levia.4

3. Lovro Bosnar, Hans Hagen and Petra Gospodnetic, ”Procedural defect modeling
for virtual surface inspection environments”, 2023. IEEE Computer Graphics
and Applications, 43(2), 13-22., doi: 10.1109/MCG.2023.3243276

4. Juraj Fulir, Lovro Bosnar, Hans Hagen and Petra Gospodnetić, ”Synthetic Data
for Defect Segmentation on Complex Metal Surfaces”, 2023. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4423-
4433)., doi: 10.1109/CVPRW59228.2023.00465

5. Juraj Fulir, Natascha Jeziorski, Tobias Herffurth, Lovro Bosnar, Katja Schladitz,
Henrike Stephani, Thomas Gischkat, Claudia Redenbach, Hans Hagen and Petra
Gospodnetic, ”SYNOSIS: Image synthesis pipeline for machine vision in
metal surface inspection”, To be published

6. Katja Schladitz, Cladia Redenbach, Tin Barisin, Christain Jung, Natascha Jeziorski,
Lovro Bosnar, Juraj Fulir and Petra Gospodnetic, ”Simulation of microstruc-
tures and machine learning. In Proc. CMDS14, Paris, 2023, Springer Proceedings
in Mathematics and Statistics, Eds. A. Cherkaev, D. Jeulin, J. Dirrenberger, S. Forest,
F. Willot.

Talks

1. Lovro Bosnar. Procedural Modeling for Virtual Surface Inspection Planning Environ-
ments. Workshop on ”Generating synthetic image data for AI” at the KI 2022 (virtual,
hosted in Trier/Germany). Kaiserslautern, Germany, Sept. 2022

Activities and Achievements

• Google Summer of Code Participant 2020

• Student Supervisor - Master students, 2021-2023

• Teacher at DHBW Mannheim: Introduction to computer graphics, 2023

• Mentor - high school student, 2023

	Acknowledgements
	Abstract
	Acronyms
	I Introduction
	Image Synthesis for Virtual Surface Inspection Planning
	Virtual Surface Inspection Planning
	Inspection Planning and Challenges
	Virtual Inspection Planning

	Image Synthesis for Virtual Surface Inspection Planning
	Image Synthesis Overview
	Procedural Surface Texture Modeling
	Procedural Geometrical Defects Modeling

	Problem Areas and Contribution
	Image Synthesis for Surface Inspection
	Procedural Texture Synthesis for Surface Inspection
	Procedural Defect Modeling for Virtual Surface Inspection
	Synthetic Data for Defect Segmentation on Complex Metal Surfaces
	Image Synthesis Pipeline for Machine Vision in Metal Surface Inspection

	Image Synthesis Background
	3D space, Transforms and Scene Graph
	3D Objects: Shape Representations
	3D Objects: Material Representations
	Material Appearance Observation
	Optics and Reflectance Functions
	Texture Modeling

	Light
	Characterization of Light
	Color
	Light Sources
	Shadows

	Camera
	Rendering
	Ray-tracing-based Rendering
	Rasterization-based Rendering

	Image and Display

	Procedural Modeling Background
	Procedural Texture Modeling
	Authoring Phase
	Generation Phase
	Applications

	Procedural Geometry Modeling
	Authoring Phase
	Generation Phase
	Applications

	II Image Synthesis and Procedural Modeling
	Image Synthesis for Surface Inspection Planning
	Introduction
	Related Work and State of the Art
	Requirements
	Methods
	ErrorSmith
	Callistemon
	Acquisition System

	Results
	Errsmith
	Callistemon
	Acquisition System
	Intrinsic and Hand-eye Calibration

	Discussion
	Conclusion

	Procedural Texture Synthesis for Surface Inspection
	Introduction
	Related Work and State of the Art
	Requirements
	Methods
	Results
	Discussion
	Texture Synthesis Models
	Texture Influence on Appearance

	Conclusion

	Procedural Defect Modeling for Virtual Surface Inspection
	Introduction
	Related Work and State of the Art
	Requirements
	Methods
	Results
	Discussion
	Conclusion

	III Applications
	Synthetic Data for Defect Segmentation on Complex Metal Surfaces
	Introduction
	Related Work and State of the Art
	Defect Recognition
	Synthetic Data Generation

	The Clutch Dataset
	Object Description
	Real Data Acquisition
	Synthetic Data Generation

	Defect Segmentation on Complex Surfaces
	Utilizing Existing Planar Datasets
	Utilizing Custom Designed Synthetic Data
	Enhancing Model Response in Dark Regions

	Experimental Evaluation
	Training Details
	Effectiveness of Planar Datasets
	Effectiveness of Custom Designed Synthetic Data

	Discussion
	Conclusion

	Image Synthesis Pipeline for Machine Vision in Metal Surface Inspection
	Introduction
	Synthetic Dataset Generation
	Related Work
	Image Synthesis Pipeline
	Decomposition of Scales
	3D Scene Modeling
	Texture Mapping
	Defect Annotations Generation
	Rendering

	Test Body Design
	Material Measurements
	Texture Modeling
	Related Work
	Sandblasted Surface
	Milled Surface

	Defect Modeling
	Related Work
	Defect Modeling Pipeline

	Dual Dataset
	Real Dataset
	Synthetic Dataset

	Quality Estimation
	A Priori Similarities
	A Posteriori Similarities

	Pipeline Evaluation
	A Priori Similarities
	A Posteriori Similarities

	Discussion
	Pipeline Controlability and Simplicity
	Domain Similarity
	Task Similarity and Recognition Performance
	Influence of Domain Similarity on Task Performance

	Conclusion

	IV Conclusion
	Conclusion
	Implications
	Image synthesis for Surface Inspection Planning
	Procedural Texture Synthesis for Surface Inspection
	Procedural Surface Defects Modeling
	Synthetic Data for Defect Segmentation on Complex Metal Surfaces
	Image Synthesis Pipeline for Machine Vision in Metal Surface Inspection

	Outlook

