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Abstract: We show that the occupation measure g on the path of a planar Brownian
motion run for an arbitrary finite time interval has an average density of order three with
respect to the gauge function p(t) = ¢ - log(1/t). More precisely, almost surely,

Ve u(B(x, 1)) dt
u(B(,1)) = 2 at p-almost every z.
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We also prove a refinement of this statement: Almost surely, at p-almost every z,

1 1/e dt oo
lim ——— Of uBean| —— = drayae “da,
cl0 log|log5|/€ {2SE2 ) 1t logt] /0 {a}
in other words, the distribution of the ¢—density function under the averaging measures of

order three converges to a gamma distribution with parameter two.
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1 Introduction

In order to study the fine local properties of fractal sets and measures Bedford and Fisher (1992)
introduced a range of average densities of different orders. Whereas the classical densities fail
to exist for fractal measures, see for example Mattila (1995), the average densities of order two
were shown to exist for a wide range of fractal measures, like for example deterministic and
random self-similar sets, mixing repellers or random measures related to stable processes, see
Bedford and Fisher (1992), Patzschke and M. Zihle (1993), Falconer (1992) and Falconer and
Xiao (1995). Average densities were also used to characterize geometric regularity of sets, see
Falconer and Springer (1994), Marstrand (1996), Mérters (1998), or symmetry properties of
measures, see Morters (1997).

For the class of random measures given by the occupation measures on the path of Brownian
motions in different dimensions the density problem is understood in the following situations:

e l'or Brownian motion on the real line, with probability one, the classical (i.e. ‘order zero’)
one—dimensional density of the occupation measure p exists y—almost everywhere. This is
the classical local time of Paul Levy.

e For Brownian motion in dimension three and larger, with probability one, the two-
dimensional average densities of order two of the occupation measure p exist py—almost
everywhere. This was shown by Falconer and Xiao (1995).



In this paper we show that for the occupation measure of planar Brownian motion, with probab-
ility one, the average density of order three with respect to the gauge function p(t) = t-log(1/t)
exists and equals two at y—almost every point. The average density of order two fails to exist.

This result on the average density of planar Brownian motion is remarkable in two ways. Firstly,
it seems to be the first instance of average densities with a gauge function other than ¢(t) = ¢.
Note that this is neither the case for the occupation measure of Brownian motion in dimensions
d > 3 nor for the local time measure on the zero—set of a one-dimensional Brownian motion,
although both cases have exact dimension gauges with multiply logarithmic correction factors.
Secondly, this seems to be the first natural appearance of an average of third order in the
context of average densities. However, a similar phenomenon was observed by Brosamler (1973)
in his study of the long time behaviour of additive functionals of planar Brownian motion and
recently limit theorems involving order three averages have been a subject of intensive study in
probability theory, see for example Foldes (1993) or Marcus and Rosen (1995).

Various refinements and generalizations of the average density approach of Bedford and Fisher
were suggested, see for example Bandt (1992), Graf (1995) or Mérters (1997). In this paper we
study the density distributions of the occupation measure of planar Brownian motion. More
precisely, we show that, with probability one, the distribution of the @—density function at
the origin with respect to a random scale distributed according to the averaging measure of
order three converges to the standard exponential distribution. This can be interpreted as a
pathwise version of the two-dimensional Kallianpur-Robbins law. A similar result holds at
almost every point of the path of a planar Brownian motion. Here the limiting distribution is
the distribution of the sum of two standard exponentially distributed random variables, which
is a gamma distribution with parameter two.

The paper is organized as follows: In Section 2 we recall the definitions concerning average
densities, density distributions and Brownian occupation measure and state our theorems. In
Section 3 we give the proof of the existence of the average densities of order three and disprove
the existence of average densities of order two. In Section 4 we extend these results in order to
prove the existence of the density distributions of order three.

Acknowledgement. [ wish to thank H.v.Weizsdcker, P. Vieten and H. Scholl for helpful
discussions on the subject of this paper.

2 Average densities and density distributions

We recall the definition of the average densities, which is due to Bedford and Fisher (1992). Let
it be a locally finite Borel measure on R? and suppose that p(t) =t for some 0 < a < d or
some other gauge function. For every positive integer n > 0 define the averaging measures of
order n as the family (AZ) given by

1 1/e 1 bn dt
S dAZ(t) = ——— ) K,(t)dt = ——— S K (1/t) — £ by,
/ {t} a() an(l/e) /l/bn {1/t} A () an(l/e) . {t} < ( /)t2 or 0 <e<
with b, = [exp( (—c0)] ™", an(z) = log® D (z) and K,(z) = 4 (a,(z)), where exp(™, log(™)

denotes the n-th iterate of exp, respectively log. The averaging measures of order n are the
Hardy—Riesz log averages composed with the mapping ¢ — 1/t. Further material on these
averaging procedures can be found in Fisher (1987) or Bedford and Fisher (1992).



Denote by B(z,t) the closed ball of radius ¢ around z € R?. The average density of order n with
respect to ¢ of p at z is the limit

. [ #(B(z,1))
1;?8 WdA (t),

if it exists. Explicitly written, the average density of order two is

1 )
L[ P
10 |logel J. e(t)

and the average density of order three is

. /1/6 B(z,t)) dt
:0 log | log5| o(t) |t logt|”

The basic properties of average densities are listed in Bedford and Fisher (1992).

As a refinement of the notion of average density one can study the limit of the distributions
of the density function u(B(z,t))/¢(t) with respect to the averaging measures of order n as
£ 1 0. More explicitly, for a fixed measure p, gauge function ¢ and z € R?, define a probability

8 sy 1 dAL(H)
/ [uBen) ) (t)

where d¢,y stands for the point mass in a. The p-density distribution of order n of i at z is
the limit in the sense of weak convergence, as ¢ | 0, of these distributions, if it exists. Explicitly
written, the ¢—density distribution of order three at z is defined as the measure P on the real
line such that, for all continuous, bounded functions F: R = R,

distribution on the real line as

/F dP(a) = lim /1/6 B(I’t))) dt .
<10 log|loge| 10g5| e(t) /) |t logt|

Now look at the particular case of planar Brownian motion. Throughout this paper we assume
that (Bi)ter is a Brownian motion in the plane with By = 0. For any finite interval [tg, ]

we define the occupation measure or occupation time of the Brownian motion to be the random
measure pfto, t1] given by

plto, 1](A) = L(t € [to, 1] = By € A),

where £ denotes Lebesgue measure. It was shown by Ray (1962) and Taylor (1964) that p[to, ]
coincides with a constant multiple of the Hausdorff measure on the graph {B; : t € [to, 1]} for
the gauge function ¢ log(1/t) logloglog(1/t). The main result of this paper is the existence of
the average densities of order three for the occupation measures at almost every point.

Theorem 2.1 Suppose p = p[0,T] is the occupation measure of a planar Brownian motion
run for a finite time interval of arbitrary length T" > 0 and define the gauge function ¢(t) =
t?log(1/t). Then the following statements hold with probability one:

a) The average density of order three with respect to ¢ exists at p-almost every x and we have

. /1/e z,t))  dt
lim =
10 log|loge| /. o(t) |t log t|



b) At p-almost every x the average density of order two with respect to ¢ fails to exist.

Our second theorem determines the density distributions for the occupation measure of planar
Brownian motion.

Theorem 2.2 Suppose p = p[0,7T] is the occupation measure of a planar Brownian motion
run for a finite time interval of arbitrary length T > 0 and define the gauge function ¢(t) =
t? log(1/t). Then the following statements hold with probability one:

a) The p-density distribution of order three of u at the origin exists and is equal to a standard
exponential distribution. More explicitly,

lim ¥/1/65 di —/005 e %da
10 log|loge| /- {%} [t logt| Jo {a} .

b) The p—-density distribution of order three of u exists at p-almost every x and equals a
gamma distribution with parameter two, which is the distribution of the sum of two inde-
pendent standard exponentially distributed random variables. More explicitly,

lim¥/1/e5 i—/005 ae % da
10 log|loge| /. {252 t logt| Jo {a} o

Remarks:

e The first statement can be interpreted as a pathwise version of the two-dimensional
Kallianpur—Robbins law, which states in one of many equivalent formulations, that for
the distribution W of planar Brownian motion

o0
lim/5 dW:/ Ssare da.
o J {HEEE o

e Using the methods of Falconer and Xiao (1995) it can be shown that for Brownian motion

in dimensions exceeding two and ¢(t) = t2, the ¢—density distributions of order two of the

occupation measure p agrees almost surely p-almost everywhere with the distribution of
p#(B(0,1)), which was calculated explicitly by Ciesielski and Taylor (1962).

e A further characteristic, which appears to be worth studying, is the tangent measure
distribution of the occupation measures of a planar Brownian motion. For the definition
and results about tangent measure distributions see for example Bandt (1990), Graf (1995)
or Mérters and Preiss (1997).

3 The order—three density of planar Brownian motion

In this section we prove Theorems 2.1 and 2.1. Let us first see, why we can restrict our attention
to the behaviour of the occupation measure at the origin. An elegant approach to this problem
is the idea of Palm distributions, which also appears in many other branches of probability like
queuing theory or point processes. For a general reference see Kallenberg (1983), for an account



from the point of view of fractal geometry see U. Zdhle (1988) or Patzschke and M. Zahle (1992,
1993). The following definition is based on a well-known characterization theorem of Mecke.

Definition
Denote by ./\/l(IRd) the Polish space of all locally finite Borel measures on R? equipped with the
vague topology. The distribution P of a random measure is a Palm distribution if, for every

measurable G : M(R?) x R? — [0, 00], the following formula holds

//Gyudu ) dP(v //G Uy, —u) dv(u) dP(v), (1)

where the measure T"v is given by T%v(A) = v(u + A).

Proposition 3.1 Let T" > 0 be fized and pick a random number X € [0,T] uniformly and
independently of the Brownian motion. Then the distribution of the random measure u[X —T, X]
is a Palm distribution.

Proof: We first show that the random measure £[X — T, X] defined to be Lebesgue measure
on the interval [X — T, X]is Palm distributed. For any G': M(R*) x R* — [0, 0] we have

// G(T"Llr —T,7), —u) dudr
_ // Clr =T —u,7—u), ~u) dudr
A

T, v], v—r) dvdr

= /0 A—TG E[U—T,v],u)dudv. (2)

The occupation measure u[X — T, X] is now the image measure of L[X — T, X] under the
independent random map og[B], where o,[B] : ¢ — Bi1, — B, . Denote the distribution of
Brownian motion by W and observe that, as (B;) has stationary increments,

Wol(ao[-]) ' =Wo(o,[-]) " forall u € R. (3)
Also note that
T o o [B]~" = T7BIW[y 0 6o[B]~'] and o,[B](—u) = —o0[B](x). (4)

Denote the distribution of u[X — T, X] by P, and use (2), (3), (4) and Fubini’s theorem to get

//Gu, ) du(w) dP(v)

_ // / ~ T, o o[BI, ao[B)(u)) du drdW (B)
@ / / / G(TLlr 7,7 0 00[BI™", 00l Bl(=u)) du drdW¥ (B)



_ /OT /TT_T/G(Tuﬁ[T—T, o o[BI, 0ol B)(~w)) dW (B) du dr
/

G(T*Llr - T, 0 0u[B]™", 0u[Bl(~u) ) dW (B) dudr

(4) //T/T G(T7BI [L]r — T, 7) 0 00 B '], — [ B] () ) du dr dWV (B)

0 Jr-T
= //G(Tw,u, —w) du(w) dP(v) .
Thus the Palm formula (1) is proved. |

Corollary 3.2 The average density of the random measure pu[X — T, X] exists at the origin
almost surely if and only if the average density (of the same order) of p = u[0, T] exists p-almost
everywhere almost surely. Moreover, if the former is almost surely equal to a constant ¢, then
so are the latter.

Proof: This follows from (1) by using the function

_ ) 1 if the average density of v at u fails to exist,
Gy, u) = { 0 otherwise,

and observing that G(T"v, —u) = 0 if and only if the average density of v at the origin exists. m

We now study the occupation measure of Brownian motion at the origin. The principal problem
is that we cannot use the scaling invariance of Brownian motion directly, as in Falconer and Xiao
(1995), because the rescaling procedure changes our time scale. We overcome this problem by
means of a method of Ray (1962), which is based on a subdivision technique of Knight (1962).
For this purpose fix a number B > 0 and let 7 be the stopping time given by

r=inf{t >0 : |By > B}.

Fix the occupation measure p = p[0, 7] of the stopped Brownian motion. For the moment we
also fix a number b > 0 and define a,, = Be™"". By N, we denote the number of returns from
a,—1 to a, before the Brownian motion crosses B. Ray (1962) proved the following lemma.

Lemma 3.3 The sequence (N,) of random variables is a null-recurrent Markov chain with
initial value Ny = 0, individual distributions given by

P(Nn:k):l@—l)k, (5)

n n

and a stationary transition function given by

(1=0)(m—mn)"

}kﬁ—l

Ny =k} = |

E{o™m i
[1+ (1= 0)(m—n)

form > n. (6)



Ray (1962) also showed a connection between the occupation measure of balls around the origin
and the Markov chain (V,,). For the convenience of the reader we include the proof here. This
is in order to demonstrate how the scaling invariance of Brownian motion is used and also to
correct a minor error in Ray’s statement.

Lemma 3.4 For all 0 < r < 1, almost surely, as n — oo,
u(B(O, ran)) =br?-a2 - N, + o(na?).

Proof: Define stopping times

to(w) = 07
tappr(w) = inf{t > tpp(w) : [Br(w)] > an—},
tor(w) = inf{t > top_1(w) : |Bi(w)| < an},
For any 0 < r <1 let
taky1(w)
T, = Tk(w) = / 1{|BS(W)|$MTL} ds.
l‘gk(w)

Observe that

w(B(0,ray,)) ZTk (7)

As Ty depends only on the process |By|, the T} are 1ndependent. By the scaling invariance of
Brownian motion all T} have the same distribution as a27T(z,b) for some z on the unit circle,
where

p
T(z,b) =T(z,byw) = /0 L{1X o (w)|<ran} 4t

for a Brownian motion X; started at z and stopped at the time p when it first crosses the
boundary of B(0,€"). It is well known, see for example Stroock (1993), that

B 1 lebz — e~y
ET(z,b) = /B(OW)G(LQ) dy = ;/B(O,r) log (W) dy ,

where (G is the Green function for the Laplace equation with boundary value zero on the circle
of radius €®. To evaluate the integral, differentiate with respect to b under the integral sign,
observe that by symmetry we may assume x = 1, and use polar coordinates and the Poisson
integral formula to get

0 1 |‘Eb$|2 |‘5’_by|2 1 |€ y|2
—ET(z,b) = — d — I |
A (:C ) / |e b ebm|2 Y /(Om) |e—25 |2 Yy

46 2 1_Q2 )
= — dpodo = r*.
/ / 02 —2p-cosp+1 vete=r

Hence ET'(z,b) = br? for all |z| = 1 and thus E{T}} = br% - a%. Since the T} are independent
and T has finite fourth moment, we get, for some constant C' > 0,

N 4
IE{(I;(Tk —br?-a2))}




- N-IE{(Tk—br }—|—6< )(IE{ Ty — br? . )2})2
< C-N?a®.

By Markov’s inequality, for every € > 0,

Al 2. 2 2 1 al 4 N?
P{‘;(Tk—br -an)|>€-nan}<m£{(2( Ty, — br? - )) }<C.n454'

k=1
2
n

As the T} are independent of N, using (7),

P(‘,u(B(O, ran)) ~To—br?-a?

IE{P(‘ % (7 — br? - a2)| > ¢ - na?) Nn}
k=1
2
C- IE;;ZZ} = 712234 :

By the Borel-Cantelli lemma we get, almost surely, as n — oo,
,u(B(O, ran)) =To+br*-a - N, + o(na?).

Furthermore Ty is bounded by the first exit time from the ball B(O ap,—1). As the second mo-
ment of this stopping time is bounded by a constant multiple of a!, Markov’s inequality and
the Borel-Cantelli lemma yield again that To = o(na2). |

Ray (1962) used this statement to show that

lim sup H(B(0,1)
10 t?log(1/t) logloglog(1/t)

= 1 almost surely.

Denote X,, = N,,/n. We study the behaviour of the average density of p at the origin by means
of an analysis of the averages of X,,. This analysis is based on the calculation of the moments
of X,,, which can be carried out using Lemma 3.3.

Lemma 3.5 The following (in-)equalities hold for the moments of (X;).

1
a) EX; = ——— forall i >0,

b) IE{XX]}_ 1(z—|—]—1) andCov{XZ,X}— -1 fori>j4>0,

c) E{X;X; Xy} <3 foralli,jk>0.

Proof: From (5) we get

|EXZ:]§%§-P(X¢:;)zi%-(l—%)kzi;17 (%)




as Y22 o k¢* = q/(1 = ¢)? for ¢ < 1. Now let i > j > 0 and differentiate (6) to get

w_k}_d[lE{an_k}} L =k+i—g (9)
We thus get
E{X.X;} = E{E{X;X;|N;}} = E k kL (1~ %)k %
As S50 0 k2qF =2¢%/(1 — q)® + q/(1 — q)? for ¢ < 1, we obtain
E(XX) =Tt (4= 1)
and this yields
Cov{X;, X;} = E{X;X,} - EX;EX; = ]%1 (10)

In order to study the third moment we use that, by Lemma 3.3, for k < j <,

IE{XinXk} — IE{IE{XZ', ij|N',Nk}}
S Z Im l—l-z.—J ;(1_%)m.p(Nj:1|Nk:m)_
=0 m=

As before we have
Z 1P(N; =1

and, calculating the second derivative,

Ny = ) = %[lE{UNJ|Nk = m}L:1 =m+j—k

;z? P(N; = Z‘Nk =m) = (dd22 + dd ) [E{o™ | Ny = m}L:1
= m’+dAm(j —k)+2(7 - k)*+ (G- k).
Altogether we get, using that "°°_ m3¢™ = 6¢>/(1 — ¢)* +6¢*/(1 — q)> + q/(1 — q)? for ¢ < 1,
and a straightforward calculation
IE{XZ»Xij} < U% Z_: (1 - %)m : {m?’ +m? (4(j — k) + (i —j))
+m (20— k)2 + (1 +i— )G — k)]

7)(k(z—3—5j)+(j—1)2+i(j—1)) <3.



Lemma 3.6 Almost surely, we have

1 &K X;
li —2:1.

Proof: By Lemma 3.5(a) we have

lim [E

n—oo Og n

X; -1
Gl =

1

and for the variance we obtain from Lemma 3.5(b), for n > 2,

Var{logn Z: 7} = {logn)? X_:Z_: 7 [IE{/ iX;} - EX;EX;
=1 =1 j5=1
n 1 2 ]
< (log 2 ; 1_2]:1 7
2 L | 6
s (logn)2;;< logn

k3

Chebyshev’s inequality yields, for sufficiently large n,

= X; = X;
<lognz 1‘>5)<P(‘10gn2 . _IE{lo;n;TH>E/2)S5224

logn

/X

Now let s, = 2("*) and observe that, by the Borel-Cantelli Lemma, we have almost surely

li
n1—1>lgo 10g2 )n? “ Z
If k£ is arbitrary, say with s,_1 < k < s,,, we get

S'an

10g2 (log 2) n? Z

i=1

k s

1 ~ "Y’L
; 1og2)(n—1)2;_"
As both the lower and upper bound converge to 1 we get the result. [

We now return to the occupation measures. Using Lemma 3.4 we can approximate the density
functions by means of the X,,.

Lemma 3.7 For every 0 < r <1 we have, almost surely, as n — oo,

1(B(0,rt))
©(t)

2

rte™? . X, +0(1) < <r¥e?. X, +o0(1),

uniformly for every a,+1 <t < a,.

10



Proof: For any a,+1 <t < a, we have
b+ O(apy) < @(t) < ag -bn+O0(ay).

From this and Lemma 3.4 we infer

p(B(0,rt)) p(B(0,ray)) 1

o) S d, b (1+0()
< 2 (L)X, 4 X, O(5) + o(1)

An41 n

= r2e?. X, +0(1),

and analogously for the opposite inequality. [ |

Lemma 3.8 For every 0 < r <1, almost surely,

1 /1/6 ( 77‘t)) dt _ .2
:0 log|logg| o(t) |t logt|

Proof: For any a,+1 <t < a, we have, by Lemma 3.7,

rtem . X, 1 +0(1) < H(BO, 1)) <rte?. X, +o(1).
e(1)
Note that, as k£ — oo,
TSSO "
p41 |t10gt| log 433 k

Picking for every € > 0 the index n such that a,4+; < e < a,, we get, using Lemma 3.6 and (11),
almost surely,

- 1 1/e 0,rt)) dt
liminf /
=10 log|loge| o(t) |tlogt|
l/e
> liminf / (B(O,rt)) _dt
n—+oo logllogan+1| et)  |tlogt|

1 S u(B(0,rt)  dt
i L

w et) |tlogt|

= liminf ———
n—co log(n 4+ 1 =

e %2 ( lim 2_: ) = 2by2,

n—oo log n+1)

v

Analogously, we get

1 /e u(B t dt
lim sup / u(B(0,rt)) <2,
<o log|loge| Je w(t)  |tlogt|

11



and, altogether, letting b — 0, almost surely,

Ve (BO,rt) dt

1
I =
¢10 log | loge] / ot)  |tlogt]

To finish the proof of the first part of Theorem 2.1, we have to pass from the measure p = [0, 7]
to the measure u[X — T, X]. Given any § > 0, we can choose B so small that 7 < X with
probability at least 1—4 or so large that 7 > X with probability at least 1—§. The monotonicity
of t — p[0,¢] and the independence of the average density of the choice of B then yield, that
the statement of Lemma 3.8 holds with probability exceeding 1 — 2§ for the measure u[0, X].
Analogously, we can make sure that the statement holds for the measure u[X — T,0] with
probability more than 1—248. By adding these statements we get that, with probability exceeding
1 — 46,

lim
e—0

1 /1/e u[X =T, X](B(0,rt)) dt ) (12)
=r.
log [ logel Je e(t) |t log |
Finally, as § was arbitrary, (12) holds almost surely and, choosing r = 1, this implies the first
statement of Theorem 2.1 by means of Corollary 3.2.

Now let us look at the second statement of Theorem 2.1. Suppose that the average density
of order two of the measure u[X — T, X] at the origin exists with positive probability. As the
Brownian motion almost surely never returns to the origin, the average density of order two of
the measures u[X — T, —t] and p[t, X] at the origin vanish almost surely, for any ¢ > 0. This
implies, by Blumenthal’s 01-law, that the order—two density of u[X — T, X] at the origin exists
with probability one and is constant, say equal to 2C' > 0. We conclude further that, for every
t > 0, the order—two density of u[—t,¢] at the origin equals 2C" almost surely. As the Brownian
motions (By)s>o and (B_;);>0 are independent, the order-two density of u[0,¢] at the origin is
equal to C for every t > 0 and, with the same argument as above, for every B > 0, the average
density of order two at the origin for the occupation measure p[0, 7] of the Brownian motion
stopped upon crossing the circle of radius B is equal to C almost surely. For every b > 0 we
define, as before, the Markov chain X,,. Application of Lemma 3.7 yields, almost surely,

1 & 1 &
C e ? <liminf = X; <limsup — X, <(C-e?,
< fminf 2 XSl 2 i<

By Lemma 3.3 the distribution of the sums (1/n) >_/-, X; is independent of the choice of b > 0
and hence the assumption implies that %Z?:l X; converges to C' almost surely.

Lemma 3.9 We have
lim Var{

n—oo

sup IE{(

3| =

iX} —1, (13)

and also

3|

j XZ-)S} < . (14)

=1

12



Proof: We obtain for the variance, by Lemma 3.5b),

lim_ Var{%zn:Xi} = lim %Ei {E{xiX;} - EX;EX,}
=1

i=1j7=1
B | 2 n li—l . .
= Jma LU0
1= 71=1
2 X2 —-3i+2
T

By Lemma 3.5¢) we have

|
Now, by (14), the process (L 37, X;)? is uniformly integrable and hence, if 2 327, X; converges
to C, the variances converge to 0, which is a contradiction to (13). Therefore, with probability
one, the average density of order two of u[X — T, X] at the origin fails to exist and, using the
Palm property as in Corollary 3.2, we infer that, with probability one, the average density of
order two of u[0, 7] fails to exist at almost every point.

4 The density distribution of planar Brownian motion

The proof of Theorem 2.2 will be given by means of Laplace transforms. As in the arguments
before we first study a stopped Brownian motion. For this purpose fix B > 0 and denote

r=1inf{t >0 : |By| > B} and o =sup{t <0 : |B; > B}.
Let py = p[0, 7], p2 = plo, 0] and p = pfo, 7].

Lemma 4.1 Almost surely, for every K, A > 0 and 0 < r <1,

im @ / e exo - [W] . A[mi(g;rt))]) : ldtg :

1 1
- (1—|—m‘2)(1—|—/\r2)'

Proof: We use the same approximation technique as in the previous section. For every b > 0
denote a,, = Be and define the Markov chain X,, as before for the Brownian motion (By):>0
with stopping time 7 and in the same way an independent Markov chain Y,, for the Brownian
motion (B_;)¢>o with the stopping time —o. Recall from Lemma 3.7 that, almost surely for all
tngr <t <y,

—bn

L (B(0, rt)) 2(B(0, rt))
R e
< eyl ( -k Xpq1 — )‘Yn—l—l) +o(1),

e~ by ( -kX, - /\Yn) + o(1)

IA
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and therefore it suffices to show that, for fixed x, A > 0,
1 e g 1 1
li E = .
nl—%Ologn 7 (1—1—/-@) (1—}—/\)

=1

We start by calculating the limit of the expectations. By (5),

E{e} = Z <Z_ 1) = (i —ll)e—f»/f - 1im'

Using the independence of X; and Y; we thus get

—kX; —AY;

i B S T () ().

Our next aim is to estimate the variance. For this purpose let ¢ > j and use (6) to see

) el 4 (1= ey (i- )]
E o= Xi o= X, J . 1 okl { + 1
{ } Z ( ) {1—I-(1—e H/2)(2—‘])}]%
= [+ == g) - e P (e (= e = )) G- 1)
A straightforward calculation yields
E{eXi L E{erXi } (1= e/ (G(1 = /i) — j2(1 — e=n1))
IE{e rXie—nX; } (z —(1— l)e—”/i) (] - (- 1)6_H/j)

The modulus of the fraction on the right is bounded by a constant multiple of j/i. Using the
independence of X; and Y; we infer that, for some constant C' > 0,

IE{e—HXi e—\Yi } |E{6—f~:XJ e Y }

-1

>1-C-(j/1),
|E{e—ﬁx,'e—me—ﬁxje—xyj} < (7/1)
and, because the denominator is bounded by 1,
E{emXiemWiemnXem W pfemXiem WL Bl e e} < O (/i)

This implies, for n > 2,

1 n
Var{ log 7 Zz:

e—ﬁX,- e—,\Y¢

IN
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Chebyshev’s inequality yields, for sufficiently large n,

al

By the Borel-Cantelli lemma we get, for s,, = 2(”2), almost surely

1 n e Xigm 1 1 24C
logn(ze ie )_(1+m)(1—|——/\)‘>€>§5210gn'

i=1

1 Sn e—K.Xl‘e—/\Yi

. 1 1
nh—>n<}o log s, et 7 - (1—}—1@) <1—|—/\)

and, for k arbitrary, say with s,_1 < k < s,,, we can repeat previous arguments and sandwich
the sum between two sums which both converge to the same limit. This finishes the proof. m

By the continuity theorem for Laplace transforms (see e.g. Kallenberg (1983), 15.5.2) we infer
from the case r = 1 in Lemma 4.1 that the distribution of the ¢—density function at the origin
with respect to uy or ps converges almost surely to a standard exponential distribution and
that the distribution with respect to p converges almost surely to the distribution of the sum
of two independent standard exponentially distributed random variables, which is the gamma
distribution with parameter two.

The result is now proved for the density distribution at the origin of the occupation measure
and p of the stopped Brownian motion. The argument needed to extend this result and obtain
the statement of Theorem 2.2 is exactly as in the previous section.
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