
Essays in Operations Research
Vom Fachbereich Wirtschaftswissenschaften

der Rheinland-Pfälzischen Technischen Universität Kaiserslautern-Landau
zur Verleihung des akademischen Grades Doctor rerum politicarum (Dr. rer. pol.)

genehmigte

D i s s e r t a t i o n

vorgelegt von

Daniel Schermer

Tag der mündlichen Prüfung: 06. Mai 2024
Dekan: Prof. Dr. Jan Wenzelburger
Vorsitzender: Prof. Dr. Timo Gschwind
Berichterstatter: Prof. Dr. Oliver Wendt

Prof. Dr. Florian Sahling

D 386
(2024)

Contents

List of Abbreviations ix

List of Algorithms xiii

List of Figures xv

List of Tables xvii

1 Background, Organization, and Contribution 1
1.1 Background . 1
1.2 Organization and Contribution . 6
1.3 References . 12

2 A Hybrid VNS/Tabu Search Algorithm for Solving the Vehicle Routing Prob-
lem with Drones and En Route Operations 17
2.1 Introduction . 17
2.2 Related Research Works . 19
2.3 The Vehicle Routing Problem with Drones and En Route Operations 21

2.3.1 Notation and Mathematical Model 22
2.3.2 Valid Inequalities . 27

2.4 Variable Neighborhood Search for Solving the VRPDERO 31
2.4.1 Route generation . 32
2.4.2 Drone Insertion . 33
2.4.3 Divide and Conquer . 34
2.4.4 Comments . 36

2.5 Computational Experiments and their Numerical Results 38
2.5.1 Small Instances . 40

2.5.1.1 Results obtained through the MILP Formulation 40
2.5.1.2 Results obtained through the Heuristic 44

2.5.2 Large Instances . 45
2.6 Conclusion . 48
2.7 References . 50

iii

Contents

2.A Detailed Numerical Results . 52

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants 63
3.1 Introduction . 63
3.2 Related Literature . 65
3.3 Problem Definition . 70

3.3.1 Notation and Mathematical Model 70
3.3.2 Valid Inequalities . 76

3.3.2.1 Makespan Bounds . 76
3.3.2.2 Symmetry in the VRPD . 77
3.3.2.3 Knapsack Inequalities . 79

3.4 Matheuristic . 80
3.4.1 Allocation and Sequencing . 81
3.4.2 Drone Assignment and Scheduling 82

3.4.2.1 Three-Index-Operation Formulation 85
3.4.2.2 Two-Index-Operation Formulation 88

3.4.3 Discussion and Scalability . 90
3.5 Computational Experiments and their Numerical Results 91

3.5.1 Small Instances . 93
3.5.1.1 Small Instances used by Agatz et al. (2018) 93
3.5.1.2 Small Instances used by Murray and Chu (2015) 97

3.5.2 Large Instances . 100
3.5.3 Comparison to Theoretical Bounds 103

3.6 Conclusion . 103
3.7 References . 104
3.A Possible Variations . 106

3.A.1 Limited Flight Distance without Recharge 106
3.A.2 Limited Flight Time with Instantaneous Recharge 106
3.A.3 Limited Flight Time without Recharge 107
3.A.4 Limited Flight Time with Non-instantaneous Recharge 108
3.A.5 Heterogeneous Drone Fleet . 109
3.A.6 Incorporating these Variations into the DASP 109

3.B Matching the Problem Formulation of Murray and Chu 109
3.C Endurance: Limited Flight Distance vs. Limited Flight Time 111
3.D Detailed Numerical Results . 113

iv

Contents

4 The Traveling Salesman Drone Station Location Problem 127
4.1 Introduction . 127
4.2 Problem Definition . 129

4.2.1 Minimal Makespan TSDSLP . 131
4.2.2 Minimal Operational Cost TSDSLP 133

4.3 Computational Experiments . 133
4.4 Conclusion . 136
4.5 References . 137

5 The Drone-Assisted Traveling Salesman Problem with Robot Stations 139
5.1 Introduction . 139
5.2 Related Literature . 140
5.3 Problem Definition . 142

5.3.1 Minimal Makespan TSPDRS . 144
5.3.2 Minimal Operational Cost TSPDRS 149

5.4 Computational Experiments and their Numerical Results 150
5.4.1 Instance Generation . 150
5.4.2 Numerical Results . 152

5.4.2.1 MILP Solver Performance 152
5.4.2.2 Makespan versus Cost Minimization 153
5.4.2.3 Station Utilization . 154
5.4.2.4 Operational Characteristics 154

5.5 Conclusion . 156
5.6 References . 157

6 A Branch-and-Cut Approach and Alternative Formulations for the Traveling
Salesman Problem with Drone 159
6.1 Introduction . 159
6.2 Related Literature . 162

6.2.1 Model-Based Literature . 162
6.2.2 Methodology-Based Literature . 166

6.3 The Traveling Salesman Problem with Drone 167
6.3.1 Problem Definition . 167
6.3.2 A MILP formulation using a disjoint representation of multi-legs . . 168
6.3.3 A MILP formulation using a joint representation of multi-legs 171
6.3.4 Discussion . 174

6.4 A Branch-and-Cut approach for the TSPD 175

v

Contents

6.5 Computational Experiments and their Numerical Results 180
6.5.1 Instances proposed by Bouman et al. 181

6.5.1.1 Experimental Setup . 181
6.5.1.2 Numerical Results . 182

6.5.2 Instances proposed by Poikonen et al. 185
6.5.2.1 Experimental Setup . 186
6.5.2.2 Numerical Results . 187

6.5.3 Instances proposed by Murray and Chu 190
6.5.3.1 Experimental Setup . 191
6.5.3.2 Numerical Results . 192

6.6 Conclusion . 193
6.7 References . 194

7 Leveraging Machine Learning for the Per-Instance Configuration of MIP
Solvers: An Algorithm Selection Approach 197
7.1 Introduction . 197
7.2 Related Literature . 199

7.2.1 Algorithm Configuration in the context of MIP 199
7.2.2 Algorithm Selection in the context of MIP 201
7.2.3 Dynamic Configuration of MIP solvers 203

7.3 Preliminaries & Problem Definition . 204
7.4 Methodological Approach . 206

7.4.1 Random Forests as a Machine Learning Model 207
7.4.2 Optimizing by means of Empirical Model Learning 208

7.4.2.1 Embedding the Machine Learning Model into an Optimiza-
tion Problem . 208

7.4.2.2 A Branch-and-Bound Approach for solving the Optimiza-
tion Problem . 210

7.5 Computational Experiments and their Numerical Results 213
7.5.1 Problem Space and Algorithms . 214
7.5.2 Dataset . 215

7.5.2.1 Generation Procedure and Preprocessing 215
7.5.2.2 Exploratory Analysis . 217

7.5.3 Numerical Results for Offline Learning and Online Inference 220
7.5.3.1 Offline Learning . 222
7.5.3.2 Online Inference . 224

7.6 Conclusion . 233

vi

Contents

7.7 References . 234

8 Summary, Conclusion, and Outlook 241
8.1 Summary and Conclusion . 241
8.2 Outlook . 245
8.3 References . 249

9 Bibliography 253

vii

List of Abbreviations

ACP Algorithm Configuration Problem

ALNS Adaptive Large Neighborhood Search

ASP Algorithm Selection Problem

B&B Branch-and-Bound

B&C Branch-and-Cut

B&P Branch-and-Price

BKS Best Known Solution

BPC Branch-Price-and-Cut

CART Classification and Regression Trees

CRP Constraint Related Properties

D&C Divide-and-Conquer

DASP Drone Assignment and Scheduling Problem

DP Dynamic Programming

DS Default Solver

DSP Drone Scheduling Problem

DT Decision Tree

EML Empirical Model Learning

FSTSP Flying Sidekick Taveling Salesman Problem

GRASP Greedy Randomized Adaptive Search Procedure

ILP Integer Linear Programming

ix

List of Abbreviations

LB Lower Bound

MILP Mixed-Integer Linear Program

MINLP Mixed-Integer Non-Linear Programming

MIP Mixed-Integer Programming

ML Machine Learning

MTZ Miller-Tucker-Zemlin

OR Operations Research

PDSTSP Parallel Drone Scheduling Traveling Salesman Problem

RF Random Forest

RUB Route Upper Bound

SA Simulated Annealing

SAS Solver found by means of Algorithm Selection

SBS Single-Best Solver

SE String Exchange

SR String Relocation

SRP Size Related Properties

SVR Support Vector Regression

TS Tabu Search

TSDSLP Traveling Salesman Drone Station Location Problem

TSP Traveling Salesman Problem

TSPD Traveling Salesman Problem with Drone

TSPDRS Drone-Assisted Traveling Salesman Problem with Robot Stations

TSPDS Traveling Salesman Problem with Drone Station

VBS Virtual-Best Solver

x

List of Abbreviations

VDRPTW Vehicle Drone Routing Problem with Time Windows

VIEQ Valid Inequality

VNS Variable Neighborhood Search

VRP Vehicle Routing Problem

VRPD Vehicle Routing Problem with Drones

VRPDERO Vehicle Routing Problem with Drones and En Route Operations

xi

List of Algorithms

2.1 Adaptation of basic VNS. 32
2.2 An overview of the neighborhood change. 32
2.3 A summary of the drone insertion heuristic. 35
2.4 Depth-first search in the N (1) search space. 36
3.1 An overview of the matheuristic framework. 81
3.2 DASP partition routine. 92
6.1 Constraint generation scheme (applied at each MIP incumbent node). . . . 178
7.1 Depth-first tree reduction. 211
7.2 B&B procedure to determine the optimal algorithm. 212

xiii

List of Figures

1.1.1 A taxonomy of disciplines related to analytics. 6
1.2.1 The TSP, TSPD, TSDSLP, TSPDRS, VRPD, and VRPDERO. 11

2.3.1 Possible advantages of allowing en route operations. 22
2.3.2 Graphical representation of the decision variables. 27
2.4.1 A sample divide-and-conquer search tree in an N (1) search space. 35
2.4.2 A partial route and an optimal solution with two drone operations. 38
2.4.3 Visualization of possible drone operations in the en route case. 39
2.5.1 Sample VRPDERO solution on a larger instance. 40
2.5.2 MILP solver runtime on small instances. 42
2.5.3 MIP gap after runtime for small instances. 43
2.5.4 The average relative makespan on small instances. 46
2.5.5 The average relative makespan on larger instances. 48
2.5.6 The average number of drone operations. 49

3.2.1 An illustration of TSP, FSTSP, and PDSTSP solutions. 66
3.3.1 A visualization of possible operations. 75
3.3.2 A segment of a VRPD route as a directed graph. 79
3.4.1 An illustration of how the DASP fits in the algorithmic framework. 83
3.4.2 A sample matheuristic solution for a larger instance. 90
3.4.3 An illustration of the DASP partition. 92
3.5.1 The relative improvement on small instances. 97
3.5.2 The share of acyclic and cyclic operations. 98
3.5.3 The relative improvement as a box plot. 99
3.5.4 The relative improvement on larger instances. 102

4.2.1 A TSDSLP instance as well as illustrative TSP and TSDSLP solutions. . . 130
4.3.1 A visualization of the scheme according to which instances are generated. . 134
4.3.2 The savings for different values of the problem parameters. 136

5.1.1 An illustration of the TSP, TSPD, TSPDS, and TSPDRS. 140
5.4.1 The relative makespan and cost for the minimal makespan objective. 154

xv

List of Figures

5.4.2 The relative makespan and cost for the minimal cost objective. 155

6.2.1 An illustration of the TSP, FSTSP, and TSPD. 162
6.2.2 In the TSPD, it might be useful to visit vertices repeatedly. 163
6.3.1 The role of modeling drone recovery correctly. 173
6.4.1 An example of a combined truck and drone operation. 176
6.5.1 The savings depending on the drone parameters. 184
6.5.2 The share of customers served by the drone depending on its parameters. . 185
6.5.3 The impact of the endurance on the structure of optimal solutions. 190
6.5.4 The savings depending on the drone parameters on different instances. . . . 191

7.4.1 A single decision tree t that might be part of a forestM. 207
7.4.2 A collection of two trees t′ that depend only on Fθ. 210
7.4.3 An illustration of the B&B procedure. 213
7.5.1 Average runtime for all solvers. 219
7.5.2 Average MIP gap for all solvers. 219
7.5.3 The ceteris paribus effect of adjusting only a single parameter of the DS. . 221
7.5.4 The process of k-fold cross validation illustrated for k = 5. 222
7.5.5 Average Gini importance and the corresponding standard deviation. 225
7.5.6 Instance-wise comparison when using runtime as the training labels. 228
7.5.7 Instance-wise comparison when using MIP gap as the training label. 230
7.5.8 Instance-wise comparison when using the weighted sum of runtime and

MIP gap as the training label. 232

xvi

List of Tables

2.3.1 Decision variables used in the VRPDERO formulation. 24
2.3.2 Accounting for the number of operations. 28
2.A.1 MILP solver results on instances with 8 vertices. 53
2.A.2 MILP solver results on instances with 9 vertices. 54
2.A.3 MILP solver results on instances with 10 vertices. 55
2.A.4 MILP solver results (with lazy constraints) on instances with 8 vertices. . 56
2.A.5 MILP solver results (with lazy constraints) on instances with 9 vertices. . 57
2.A.6 MILP solver results (with lazy constraints) on instances with 10 vertices. 58
2.A.7 Heuristic results on instances with 8 vertices. 59
2.A.8 Heuristic results on instances with 9 vertices. 60
2.A.9 Heuristic results on instances with 10 vertices. 61
2.A.10 Heuristic results on instances with 20 and 50 vertices. 62

3.2.1 Overview of drone-related optimization with synchronization requirements. 70
3.3.1 Decision variables used in the VRPD formulation. 72
3.4.1 Decision variables used in the three-index DASP formulation. 85
3.4.2 Decision variables used in the two-index DASP formulation. 88
3.5.1 Quality of the root relaxation depending on the relative endurance. . . . 95
3.5.2 The savings, MIP gap, and number of drone operations on the FSTSP

instances. 100
3.5.3 Comparison to theoretical bounds. 103
3.D.1 MILP solver results on instances with 10 vertices. 115
3.D.2 MILP with VIEQ (makespan bounds). 116
3.D.3 MILP with VIEQ (makespan bounds, symmetry, knapsack). 117
3.D.4 Matheuristic with the three-index formulation on instances with 10 vertices.118
3.D.5 Matheuristic with the two-index formulation on instances with 10 vertices.119
3.D.6 Detailed results on the FSTSP instances. 120
3.D.7 Matheuristic with the three-index formulation on instances with 20 vertices.121
3.D.8 Matheuristic with the two-index formulation on instances with 20 vertices.122
3.D.9 Matheuristic with the three-index formulation on instances with 50 vertices.123
3.D.10 Matheuristic with the two-index formulation on instances with 50 vertices.124

xvii

List of Tables

3.D.11 Matheuristic with the three-index formulation on instances with 100 ver-
tices. 125

3.D.12 Matheuristic with the two-index formulation on instances with 100 vertices.126

4.2.1 Decision variables used in the TSDSLP formulation. 131
4.3.1 Influence of the problem parameters and formulation on the solver. 135

5.3.1 Decision variables used in the TSPDRS formulation. 144
5.4.1 Overview of technological coefficients used for studying the TSPDRS. . . 150
5.4.2 Detailed results obtained through the solver. 152
5.4.3 Station utilization depending on the objective function. 155
5.4.4 Share of customers served by each vehicle. 156

6.3.1 Binary decision variables used in the TSPD formulation. 168
6.3.2 Continuous decision variables used in the TSPD formulation. 168
6.3.3 Additional binary decision variables used in the alternative formulation. . 171
6.4.1 Additional variables used for the formulation MILP-BC. 176
6.5.1 Detailed results on the (Bouman et al., 2018b) instances. 183
6.5.2 Structural investigation of solutions to the Bouman et al. (2018b) instances.186
6.5.3 Detailed results on the Poikonen et al. (2019) instances. 188
6.5.4 Structural investigation of solutions to the Poikonen et al. (2019) instances.189
6.5.5 Detailed results on the small Murray and Chu (2015) instances. 192
6.5.6 Detailed results on the large Murray and Chu (2015) instances. 193

7.5.1 An example of three algorithms on three instances where each algorithm
dominates the other ones on exactly one instance. 217

7.5.2 Classification of linear constraints as illustrated by Gleixner et al. (2021). 223
7.5.3 Average coefficient of determination (R2) and mean absolute errors. . . . 224
7.5.4 Results obtained when using runtime as the training label. 227
7.5.5 Results obtained when using MIP gap as the training label. 229
7.5.6 Results obtained when using the weighted sum of runtime and MIP gap

as the training label. 231

xviii

1 Background, Organization, and Contribution

Section 1.1 provides the background and motivation for the problems addressed in this
thesis. The structure of the following chapters, along with the specific contributions, is
outlined in Section 1.2.

1.1 Background

As pointed out by Ghiani et al. (2013), the continued growth of e-commerce and the
perceived immediate availability of a wide variety of commodities has molded a very de-
manding customer. This is manifested by the general expectation of same- or next-day
direct-to-consumer-deliveries, which confronts logistics providers with several challenges.
They are required to handle more transactions, each typically involving smaller quantities,
within shorter timeframes, at reduced costs, and with heightened service levels, all while
striving for increased operational efficiency and sustainability. Clearly, last-mile delivery
has a crucial role when it comes to addressing these challenges. On the one hand, it
accounts for a significant share of the overall logistics costs; and, on the other hand, it
influences the perceived customer service level to a great extent.
To address these unique challenges, there has been a strong interest in investigating the

potential opportunities that may be seized by logistics providers when adopting emerging
technologies (Savelsbergh and Van Woensel, 2016). For instance, with regard to environ-
mental sustainability, prominent studies focus on the reduction of carbon emissions by
transitioning to a fleet of vehicles that utilizes more efficient automotive technology. This
involves battery electric vehicles as a replacement for traditional, fossil-fueled trucks (see,
e. g., (Goeke, 2018; Hof, 2019; Pelletier et al., 2016)). In terms of operational efficiency,
addressing the surge in parcel volumes, logistics providers are looking for new ways to
maximize their delivery rate. Generally, this performance indicator is largely governed by
the customer density and the transport infrastructure along each route. Thus, optimizing
the routing without adjusting the operational dynamics of the logistics system might prove
futile, particularly when considering external factors like increased traffic congestion.
Nevertheless, changes to the ways in which deliveries are performed may open up new

opportunities, and one emerging technology that may radically transform how the last-mile
operates is the use of autonomous auxiliary vehicles. Such auxiliary vehicles encompass

1

1 Background, Organization, and Contribution

wheeled robots (Azadeh et al., 2019; Fragapane et al., 2021) or unmanned aerial vehicles
(commonly referred to as drones) (Macrina et al., 2020; Otto et al., 2018). Due to the
limited operational range and carrying capacity of such vehicles, it is generally conceived
for them to be used either for the purpose of intralogistics or in close conjunction with
traditional delivery trucks (vans). In scenarios involving trucks and auxiliary vehicles like
drones, the latter can exploit their freedom from road restrictions and congestion to move
swiftly between locations. Furthermore, the lightweight nature of auxiliary vehicles and
their payloads results in lower energy consumption for transit between points. However,
the carrying capacity of drones or (small-sized) robots is inherently limited to just one or
few parcels. Moreover, given their reliance on relatively small batteries, their endurance
is more restricted compared to a commercial delivery truck. Consequently, due to the
complementary nature of trucks and auxiliary vehicles, the integration of the latter into
existing logistics systems may yield synergistic benefits.
Undoubtedly, the transportation sector is one of the fields that has benefited signifi-

cantly from Operations Research (OR). To be more precise, the industry’s current scale of
operation relies extensively on decision support systems, incorporating a great variety of
optimization models and algorithms that drive them (see, e. g., (Petropoulos et al., 2023)
and references therein). In this context, the Traveling Salesman Problem (TSP) and the
Vehicle Routing Problem (VRP) stand out as two of the most fundamental problems in the
scientific literature, and these problems have already been studied for several decades (see,
e. g., (Dantzig et al., 1954; Dantzig and Ramser, 1959)). In the general form of the TSP,
the problem involves a set of locations and the distance between each pair. The objective
is to determine the shortest route that visits each location exactly once before returning to
the starting point. In contrast, the VRP is traditionally concerned with routing a fleet of
capacitated trucks from a single depot, ensuring all demands are satisfied while minimizing
the total cost incurred by the routing decisions. In the decades following Dantzig’s seminal
works, numerous variants of these problems have been proposed. Among the most famous
variants are the imposition of time windows or the integration of pickup and delivery (for
a more comprehensive account refer to (Toth and Vigo, 2002; Toth and Vigo, 2014) and
references therein).
However, at the time of starting the work on this thesis and to the best of our knowledge,

very little was known in the scientific literature about the possible operational benefits
of combining trucks with drones or robots for short-haul transportation. In particular,
formal models that allow for a cascading structure of vehicles, operating collaboratively as
synchronized working units – such as trucks as a drone- or robot-carrying platform – had
only been scarcely investigated (see, e. g., (Murray and Chu, 2015)). For such problems,
it is possible to establish a distant relation to multi-echelon routing problems, which are

2

1.1 Background

not an unknown phenomenon from an OR perspective (see, eg, (Crainic et al., 2009;
Guastaroba et al., 2016)). The most commonly-studied variant consist of two distinct
echelons: In the first echelon so called ‘satellite’ locations are served from a central depot;
subsequently, deliveries can be carried out from satellites to final customer destinations.
Nevertheless, the works considered in this thesis differ from such problems. On the

one hand, there is no distinct separation of satellites and customers (Sluijk et al., 2023).
Instead, in its most challenging variant, the auxiliary vehicles are assumed to be carried by
a delivery truck, and customers may be served by either the truck or one of the auxiliary
vehicles that it carries; moreover, in such scenarios, customer locations also coincide as
feasible satellite locations for supporting the operations of auxiliary vehicles (Otto et al.,
2018). Even in the more simplistic case, i. e., when the auxiliary vehicles are assumed
to be stationed in dedicated micro-depots, the same consideration applies. A micro-
depot can be, e. g., a garage, the loading dock of a shop, or other infrastructure that may
accommodate auxiliary vehicles (Boysen et al., 2021); and on its route the truck may opt to
directly serve customers or visit micro-depots to mobilize the stationed vehicles, which may
take some of the load and aid the truck in its task. On the other hand, in such scenarios,
there is a frequent need for the vehicles to synchronize in order to synergize. In more detail,
such problems are governed by extended task, operation, movement, load, and resource
synchronization requirements (Drexl, 2012b). In contrast, e. g., in traditional capacitated
VRPs synchronization concerns only which vehicle is assigned to which customer.
Consequently, there is a clear need for new decision models that formalize the possi-

bilities of drone- or robot-assisted deliveries. As the resulting combinatorial optimization
problems are shown to be NP-hard, it is unlikely that an efficient algorithm for solving
these problems is ever going to exist (unless P = NP). Therefore, heuristic solution
approaches are imperative for solving larger instances effectively. Essentially, the afore-
mentioned considerations enable the evaluation of potential benefits of using auxiliary
vehicles in last-mile delivery. Such understanding may be crucial to making informed
decisions concerning the design and operations of future delivery fleets. This, in turn,
empowers us to contribute to establishing the groundwork for future decision support
systems.
This thesis aims to address the problems outlined in the previous paragraphs by lever-

aging and advancing established techniques of OR (more details follow in Section 1.2).
In OR, it is customary – and to some extent, an art – to tailor an algorithm in a way
such that it exploits the structure of the underlying problem, a practice which we also
attempt throughout this thesis. For some NP-hard problems, this yields impressive algo-
rithms that define the state-of-the-art and perform remarkably well for practical instances
of these problems (see, e. g., (Applegate et al., 2007)).

3

1 Background, Organization, and Contribution

Nevertheless, due to their widespread use and applicability, general-purpose Mixed-
Integer Programming (MIP) solvers have established themselves as a cornerstone of OR
(Jünger et al., 2010; Petropoulos et al., 2023). MIP solvers integrate refined algorithmic
techniques, developed over several decades of research, in a Branch-and-Cut (B&C) scheme
(Padberg and Rinaldi, 1991). Fundamentally, B&C involves solving linear programming
problems (Dantzig et al., 1954) as relaxations and tightening these relaxations by using
cutting planes (Gomory, 1963). These procedures are embedded in a Branch-and-Bound
(B&B) framework (Land and Doig, 1960). State-of-the-art MIP solvers enrich this scheme
by, e. g., cleverly devised branching strategies, more sophisticated cutting planes, effective
presolve routines, and a variety of primal heuristics, all of which contribute to considerable
speedups (see (Achterberg and Wunderling, 2013; Jünger et al., 2010; Koch et al., 2022)
and references therein). Due to the complex interactions of these components, although
complete and exact in the nature of their search, MIP solvers remain largely heuristic
during their algorithmic execution (Lodi, 2013): This concerns, e. g., when to apply primal
heuristics or which branching strategy to pursue.
State-of-the-art MIP solvers expose parameters that allow their users to control the

intrinsic components on a coarse- or fine-grained level (see, e. g., (Fair Isaac Corporation,
2023; Gurobi Optimization, LLC, 2023)). However, the default configurations of such
solvers are generally assumed to be expertly-tuned, enabling them to work well on a wide
range of problems. Consequently, it is exceedingly rare to find OR publications in which
the default parameters have been adjusted in any meaningful way, apart from enforcing
resource limitations (typically, a time limit) – admittedly, this also applies to a large
portion of the works presented in this thesis. This raises the question if it is possible to
adjust the default parameters of such solvers in any reasonable way, as this may allow for
superior performance on given problem (or a collection of problems that are of interest to a
particular user). Any effective answer to this question may have wide-ranging consequences
and be of great use when it comes to addressing almost any OR problem, including the
logistics challenges outlined above. Although MIP solvers typically include integrated
parameter tuning tools (see, e. g., (Gurobi Optimization, LLC, 2023)), such tools have
considerable limitations. On the one hand, they often focus on tuning parameters for a
single instance; and, on the other hand, there is no way to generalize to unseen models.
From a broader perspective, the challenge of selecting the optimal solution approach for

a given problem can be considered as one of the “unsolved problems in problem solving”
(Ackoff, 1962). Originally, Ackoff considered this question largely unsolved, emphasizing
that any elected approach is mainly a result of the researcher’s style rather than the
outcome of a rigorous selection procedure – and that sentiment may have some truth even
to this day. Clearly, this fundamental problem is of a general nature, and may arise in a

4

1.1 Background

wide variety of situations beyond those described above, in the context of MIP solvers.
Nearly two decades later and coming from a different angle, a formalized version of this

problem can be found in the work of Rice (1976). The Algorithm Selection Problem (ASP)
asks us to find an efficient procedure to generate a mapping from problems to algorithms,
ensuring optimal performance when applying the selected algorithm to a given problem.
Rice recognized early on that a key component of any competitive approach to the ASP
must make use of cheaply computable, informative features. Although the ASP is very
general and seems widely applicable, its direct application has remained relatively obscure
in the scientific literature for many years that followed.
On a related note, the well-known no-free lunch theorems provide a theoretical frame-

work for algorithms to optimization problems (Wolpert and Macready, 1997). Briefly
speaking, this framework establishes that that no black-box algorithm can be expected to
perform better than any other on all optimization problems. While the no-free lunch the-
orem is subject of some controversy (see, e. g., (Adam et al., 2019) and references therein),
it is crucial to stress that Wolpert and Macready reiterated on the importance of incor-
porating problem-specific knowledge into algorithm design: This might include cheaply
computable, informative features – as required in the ASP – and may yield algorithms
that perform better than others on some problems.
When addressing challenges (such as adjusting the control parameters of MIP solvers

on a per-instance basis) from the perspective of the ASP, it may no longer be sufficient
to only rely on established methods from the prescriptive OR toolbox, but instead re-
quired to take a more holistic stance (see also (Mingers and White, 2010)). This may
be achieved by drawing from methods of other disciplines that converge in the analytics
toolbox (Mortenson et al., 2015) (see Figure 1.1.1), especially branches of Artificial Intelli-
gence such as Machine Learning (ML). This belief is reinforced by the fact that advancing
methods of OR by means of ML constitutes one of the latest developments in the field,
which may hold great potential for reshaping parts of the discipline (Bengio et al., 2021;
Petropoulos et al., 2023). In recent years, ML and in particular deep learning has received
widespread scientific attention and made remarkable advancements (see, e. g., (Goodfel-
low et al., 2016; Jordan and Mitchell, 2015; Mitchell, 1997)). It is mainly thanks to these
advancements that the ASP and its related variants have also gained increased traction
(see, e. g., (Hutter et al., 2011; Kerschke and Trautmann, 2019; Kotthoff, 2016)). However,
even with good predictions it is rarely trivial to prescribe good decisions (Bertsimas and
Kallus, 2020).
In revisiting the question that Ackoff (1962) sketched more than 60 years ago in the

context of MIP, we also aim to contribute to the continued coalescence of prescriptive and
predictive analytics on a methodological level. Any result in this context may not only be

5

1 Background, Organization, and Contribution

of great use when it comes to dealing with the logistics challenges, which we outlined at
the beginning of this section, but also to the broader discipline of OR.

Technology Decision
Making

Quantitative
Methods

Analytics

Information
Systems

Artificial
Intelligence

Operations
Research

Figure 1.1.1: A taxonomy of disciplines related to analytics (following Mortenson et al. (2015)).

1.2 Organization and Contribution

The work presented in Chapters 2–7 of this thesis consists of three published journal arti-
cles, two papers that appeared in peer-reviewed conference proceedings, and one working
paper, which is currently under consideration at a prestigious journal:

• Daniel Schermer, Mahdi Moeini, and Oliver Wendt (2019a). “A hybrid VNS/Tabu
search algorithm for solving the vehicle routing problem with drones and en route
operations”. In: Computers & Operations Research 109, pp. 134–158 (Chapter 2),

• Daniel Schermer, Mahdi Moeini, and Oliver Wendt (2019b). “A matheuristic for the
vehicle routing problem with drones and its variants”. In: Transportation Research
Part C: Emerging Technologies 106, pp. 166–204 (Chapter 3),

6

1.2 Organization and Contribution

• Daniel Schermer, Mahdi Moeini, and Oliver Wendt (2020c). “The Traveling Sales-
man Drone Station Location Problem”. In: Optimization of Complex Systems: The-
ory, Models, Algorithms and Applications. Advances in Intelligent Systems and
Computing 991. Cham: Springer, pp. 1129–1138 (Chapter 4),

• Daniel Schermer, Mahdi Moeini, and Oliver Wendt (2020b). “The Drone-Assisted
Traveling Salesman Problem with Robot Stations”. In: Proceedings of the Hawaii
International Conference on System Sciences, pp. 1308–1317 (Chapter 5),

• Daniel Schermer, Mahdi Moeini, and Oliver Wendt (2020a). “A branch‐and‐cut ap-
proach and alternative formulations for the traveling salesman problem with drone”.
In: Networks 76.2, pp. 164–186 (Chapter 6),

• Daniel Schermer (2023). “Leveraging Machine Learning for the Per-Instance Con-
figuration of MIP Solvers: An Algorithm Selection Approach”. Preprint. Chair of
Business Information Systems & Operations Research, University of Kaiserslautern-
Landau (Chapter 7).

In the following chapters of this thesis, these works are presented as listed above, in
chronological order of their appearance.

In Chapter 2, we introduce the paper “A hybrid VNS/Tabu search algorithm for solving
the vehicle routing problem with drones and en route operations” (Schermer et al., 2019a),
co-authored with Mahdi Moeini and Oliver Wendt. With the goal of integrating drones
in last-mile delivery, the Vehicle Routing Problem with Drones (VRPD) assumes that we
are given a fleet of trucks, where each truck is equipped with one or more drones. The
goal is to design feasible routes of the trucks and operations of the drones such that a set
of customers is served with minimal makespan. In this paper, an extension of the VRPD
called the Vehicle Routing Problem with Drones and En Route Operations (VRPDERO) is
proposed (see also (Marinelli et al., 2018)). In this extended problem, drones may not only
be launched and retrieved at customer locations but also on some discrete points that are
positioned on the arcs that connect customers. This may be beneficial for improving the
utilization of drones with limited flight endurance. The problem is modeled as a Mixed-
Integer Linear Program (MILP) and the formulation enhanced by the introduction of Valid
Inequalities (VIEQs). Due to limited performance of a state-of-the-art solver in addressing
large-scale instances, an algorithm based on the concepts of Variable Neighborhood Search
and Tabu Search is proposed. In order to evaluate the performance of the introduced
algorithm as well as the solver in addressing the VRPDERO, we carried out extensive
computational experiments. According to the numerical results, the proposed VIEQs
and the heuristic have a significant contribution in solving the VRPDERO effectively. In

7

1 Background, Organization, and Contribution

addition, the consideration of en route operations can increase the utilization of drones
and lead to an improved makespan. This paper advances several of the foundations that
were laid in (Schermer, 2019; Schermer et al., 2018b).
Chapter 3 is dedicated to the paper “A matheuristic for the vehicle routing problem

with drones and its variants” (Schermer et al., 2019b), co-authored with Mahdi Moeini
and Oliver Wendt. The focus of this work lies in the investigation of the VRPD in its
most common variant. Given a fleet of trucks, where each truck carries a given number
of drones, the objective consists in designing feasible routes and drone operations such
that all customers are served and minimal makespan is achieved. The VRPD is formu-
lated as a MILP and the formulation enhanced through several VIEQs. Due to limited
performance of solvers in addressing large instances, a matheuristic approach is proposed
that effectively exploits the problem structure of the VRPD. Integral to this approach is
the Drone Assignment and Scheduling Problem (DASP) that, given an existing routing of
trucks, looks for an optimal assignment and schedule of drones such that the makespan is
minimized. Two MILP formulations for the DASP are proposed. In order to evaluate the
performance of a state-of-the-art solver in tackling the MILP formulation of the VRPD,
the benefit of the proposed VIEQs, and the performance of the matheuristic, an extensive
computational study is presented. According to the numerical results, the use of drones
can significantly reduce the makespan and the proposed VIEQs as well as the matheuris-
tic approach have a significant contribution in solving the VRPD effectively. This paper
differs from the one presented in Chapter 2 in several ways. Notably, the matheuristic
approach has several advantages. On the one hand, once the truck routes are fixed, the
problem can be decomposed into several DASP subproblems, which may be solved inde-
pendently. On the other hand, in the scientific literature most of the general assumptions
that determine the interactions between trucks and drones are agreed upon. However,
several subtle nuances exist that make one problem statement deviate just slightly from
another – even though, and confusingly, the problem names are often identical. The
matheuristic approach has a unique advantage when it comes to customizability: As is
demonstrated in the paper, this approach can easily be adapted to cover the most common
assumptions concerning the truck-drone interaction. As such, this work can also be seen
as an attempt to harmonize the diverse streams in the fast-growing literature.
Chapter 4 introduces the paper “The Traveling Salesman Drone Station Location Prob-

lem” (Schermer et al., 2020c), co-authored with Mahdi Moeini and Oliver Wendt. The
Traveling Salesman Drone Station Location Problem (TSDSLP) exhibits features of the
TSP as well as the Facility Location and Parallel Machine Scheduling problems. The TS-
DSLP involves a central depot with a truck and a set of customer locations, along with
various potential micro-depot locations designed to harbor drones or robots. Such micro-

8

1.2 Organization and Contribution

depots are assumed to be strategically located in close proximity to demand centers. The
TSDSLP seeks a feasible routing of the truck and operations of the auxiliary vehicles such
that all requests are fulfilled, no more than a given number of micro-depots is used, and the
makespan (alternatively, the operational cost) is minimized. This problem falls within the
general domain of Location-Routing Problems involving multiple echelons (see, e. g., (Min
et al., 1998; Nagy and Salhi, 2006; Prodhon and Prins, 2014)). What is special about this
problem is that the two resulting echelons (distribution levels) are not free of overlaps,
as the truck can supply micro-depots or directly serve customers on its tours (see also
(Sluijk et al., 2023)). Once a micro-depot has been supplied by the truck, the autonomous
auxiliary vehicles, which are stationed there, are able to visit customers in close proximity
by performing round trips. Two MILP formulations of the TSDSLP are provided, and a
state-of-the-art solver is used to obtain solutions for small- and medium-sized instances.
Overall, this work provides a different perspective on how auxiliary vehicles may be used
for enhancing last-mile delivery. In contrast to previous works that follow the tandem
approach, we demonstrate that slow-moving autonomous vehicles may already be very ef-
fective in this case. From a computational perspective, we demonstrate that the TSDSLP
is significantly less challenging, due to the relaxed synchronization requirements.
Chapter 5 introduces the paper “The Drone-Assisted Traveling Salesman Problem with

Robot Stations” (Schermer et al., 2020b), co-authored with Mahdi Moeini and Oliver
Wendt. Specifically, in the Drone-Assisted Traveling Salesman Problem with Robot Sta-
tions (TSPDRS) there is a single truck that is equipped with a drone, and one or more
potential sites of micro-depots, which might accommodate several robots. As such, the
TSPDRS integrates the concepts of the Traveling Salesman Problem with Drone (TSPD)
and TSDSLP by asking for a valid route of the truck as well as feasible utilization of the
drone and robots, such that all customers are served and minimal makespan (or cost) is
accomplished. We provide a MILP formulation of the problem and perform a detailed
numerical study. Through our numerical results, it is revealed that our formulation can
be effectively addressed by a state-of-the-art solver. It is demonstrated that optimizing
the makespan coincides largely with reduced costs; and, in contrast, optimizing the oper-
ational costs might increase the makespan substantially. Notably, this paper introduces
a novel and improved MILP formulation for truck-drone problems, compared to the ones
shown in Chapters 2 and 3. Specifically, it is no longer necessary to account for circum-
jacent operations explicitly, resulting in a formulation that requires a significantly fewer
variables and constraints, while also providing a tighter linear relaxation. Both of these
factors speed up the solution process notably.
Chapter 6 presents the paper “A branch‐and‐cut approach and alternative formulations

for the traveling salesman problem with drone” (Schermer et al., 2020a), co-authored with

9

1 Background, Organization, and Contribution

Mahdi Moeini and Oliver Wendt. Although the improved MILP formulation presented
in Chapter 5 may easily be adapted to cover the problems of previous chapters (see also
Figure 1.2.1), it still has one major drawback: Many big-M constraints are required for
correctly modeling the complex interactions between trucks and drones (see also (Ha et al.,
2018; Murray and Chu, 2015; Schermer et al., 2020b)). It is well known that this generally
results in poor linear relaxations of the involved model, making even small-sized instances
difficult to be solved to optimality (Camm et al., 1990). Therefore, in Chapter 6, two
new compact MILP formulations for the TSPD are provided that can be used to address
instances with up to ten customers within a few seconds. Notably, a third formulation is
introduced that cleverly decomposes the temporal relations of the problem and features an
exponential number of constraints. As such, this formulation is suitable to be solved by a
B&C algorithm that dynamically separates the exponential number of constraints. Indeed,
this approach can be used to find (previously open) optimal solutions for several instances
with up to 20 customers within one hour, thus challenging the state-of-the-art in optimally
solving the TSPD. A detailed numerical study provides an in-depth comparison on the
effectiveness of the proposed formulations. Moreover, further details on the operational
characteristics of a drone-assisted delivery system are revealed. By using three different
sets of benchmark instances, particular consideration is given to various assumptions that
affect, e. g., technological drone parameters and the impact of distance metrics.
Chapter 7 presents the paper “Leveraging Machine Learning for the Per-Instance Con-

figuration of MIP Solvers: An Algorithm Selection Approach” (Schermer, 2023). As is
evident from the descriptions pertaining to Chapters 2–6 (see also Figure 1.2.1), MIP
solvers play a crucial role in addressing combinatorial optimization problems and serve
a dual purpose. First, they enable the determination of optimal solutions to small-sized
instances, aiding in the validation of heuristic algorithm performance and the identifica-
tion of structural properties of optimal solutions. Second, MIP solvers are essential for
matheuristic algorithms, which are becoming increasingly popular (see, e. g., (Archetti
and Speranza, 2014)). Both academic and commercial MIP solvers have made remarkable
advancements (Koch et al., 2022). Due to the complexity and feature-richness of these
solvers, in principle, most of them allow the execution of the inherent B&C framework
to be configured in various ways that influence the optimization. However, despite the
potential for performance gains, it is non-trivial to make such adjustments sensibly a
priori. Consequently, it is common practice to rely on a default configuration, which is
generally assumed to be expertly-tuned, thus enabling it to work well for a wide range
of applications. In Chapter 7, we challenge the commonly accepted assumption that the
default configuration of a MIP solver can be expected to work well for a wide range of
problems. To be more precise, the problem of determining a configuration for a MIP

10

1.2 Organization and Contribution

TSPD TSDSLPTSP

TSPDRS VRPD VRPDERO

Figure 1.2.1: An illustration of the TSP, TSPD, TSDSLP, TSPDRS, VRPD, and VRPDERO. The
paths of the truck, drones, and robots are indicated by solid, dashed, and dotted lines, respectively.
In these figures, the depot and micro-depot are indicated by the square and star shapes.

solver on a per-instance basis is addressed from the perspective of the ASP. To that end, a
novel methodology is proposed that follows the general idea of Empirical Model Learning
(Lombardi et al., 2017). In more detail, Random Forest (RF) regression is used as a ML
model to learn an approximation of a solver’s performance. The ML model helps us to
extract the components of a prescriptive optimization problem, which seeks the optimal
configuration for a given instance. It is demonstrated that this problem can be efficiently
solved by a tailored B&B approach that exploits the structure of the underlying RF ML
model. All things considered, this methodology empowers us to compute the (predictably)
optimal configuration on a per-instance basis with minimal computational overhead. The
methodology is evaluated by using a state-of-the-art solver and the established MIPLIB
benchmark instances. The extensive numerical results demonstrate that the performance
gap between the default and virtual-best solver can be closed by about half with respect
to the average runtime and MIP gap.
We conclude this thesis in Chapter 8 by summarizing its contents, drawing concluding

remarks, and providing a future outlook.

11

1 Background, Organization, and Contribution

1.3 References

Achterberg, Tobias and Roland Wunderling (2013). “Mixed Integer Programming: Ana-
lyzing 12 Years of Progress”. In: Facets of Combinatorial Optimization. Ed. by Michael
Jünger and Gerhard Reinelt. Berlin, Heidelberg: Springer, pp. 449–481.

Ackoff, Russell L. (1962). “Some Unsolved Problems in Problem Solving”. In: Operational
Research Quarterly 13.1, pp. 1–11.

Adam, Stavros P. et al. (2019). “No Free Lunch Theorem: A Review”. In: Approximation
and Optimization: Algorithms, Complexity and Applications. Springer Optimization and
Its Applications, 145. Cham: Springer, pp. 57–82.

Applegate, David L. et al. (2007). The Traveling Salesman Problem: A Computational
Study. Princeton University Press.

Archetti, Claudia and M. Grazia Speranza (2014). “A survey on matheuristics for routing
problems”. In: EURO Journal on Computational Optimization 2.4, pp. 223–246.

Azadeh, Kaveh, René De Koster, and Debjit Roy (2019). “Robotized and Automated
Warehouse Systems: Review and Recent Developments”. In: Transportation Science 53.4,
pp. 917–945.

Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost (2021). “Machine learning for com-
binatorial optimization: A methodological tour d’horizon”. In: European Journal of Op-
erational Research 290.2, pp. 405–421.

Bertsimas, Dimitris and Nathan Kallus (2020). “From Predictive to Prescriptive Analyt-
ics”. In: Management Science 66.3, pp. 1025–1044.

Boysen, Nils, Stefan Fedtke, and Stefan Schwerdfeger (2021). “Last-mile delivery concepts:
a survey from an operational research perspective”. In: OR Spectrum 43.1, pp. 1–58.

Camm, Jeffrey D., Amitabh S. Raturi, and Shigeru Tsubakitani (1990). “Cutting Big M
down to Size”. In: Interfaces 20.5, pp. 61–66.

Crainic, Teodor Gabriel, Nicoletta Ricciardi, and Giovanni Storchi (2009). “Models for
Evaluating and Planning City Logistics Systems”. In: Transportation Science 43.4,
pp. 432–454.

Dantzig, George B., R. Fulkerson, and S. Johnson (1954). “Solution of a Large-Scale
Traveling-Salesman Problem”. In: Journal of the Operations Research Society of America
2.4, pp. 393–410.

Dantzig, George B. and John. H. Ramser (1959). “The Truck Dispatching Problem”. In:
Management Science 6.1, pp. 80–91.

Drexl, Michael (2012b). “Synchronization in Vehicle Routing—A Survey of VRPs with
Multiple Synchronization Constraints”. In: Transportation Science 46.3, pp. 297–316.

Fair Isaac Corporation (2023). FICO Xpress Optimizer Reference Manual.

12

1.3 References

Fragapane, Giuseppe et al. (2021). “Planning and control of autonomous mobile robots
for intralogistics: Literature review and research agenda”. In: European Journal of Op-
erational Research 294.2, pp. 405–426.

Ghiani, Gianpaolo, Gilbert Laporte, and Roberto Musmanno (2013). Introduction to logis-
tics systems management. 2nd ed. Wiley series in operations research and management
science. Chichester: John Wiley & Sons, Ltd.

Goeke, Dominik (2018). “Emerging trends in logistics”. Ph.D. thesis. Technische Univer-
sität Kaiserslautern.

Gomory, Ralph E (1963). “An algorithm for integer solutions to linear programs”. In:
Recent advances in mathematical programming 64.14, pp. 260–302.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. Adaptive
computation and machine learning. Cambridge: The MIT Press.

Guastaroba, G., M. G. Speranza, and D. Vigo (2016). “Intermediate Facilities in Freight
Transportation Planning: A Survey”. In: Transportation Science 50.3, pp. 763–789.

Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual.
Ha, Quang Minh et al. (2018). “On the min-cost Traveling Salesman Problem with Drone”.
In: Transportation Research Part C: Emerging Technologies 86, pp. 597–621.

Hof, Julian (2019). “Metaheuristics for Vehicle-Routing Problems Arising in Sustainable
Logistics”. Ph.D. thesis. Technische Universität Kaiserslautern.

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown (2011). “Sequential Model-
Based Optimization for General Algorithm Configuration”. In: Learning and Intelligent
Optimization. Lecture Notes in Computer Science 6683. Berlin, Heidelberg: Springer,
pp. 507–523.

Jordan, Michael I. and Tom M. Mitchell (2015). “Machine learning: Trends, perspectives,
and prospects”. In: Science 349.6245, pp. 255–260.

Jünger, Michael et al., eds. (2010). 50 Years of Integer Programming 1958-2008. Berlin,
Heidelberg: Springer.

Kerschke, Pascal and Heike Trautmann (2019). “Automated Algorithm Selection on Con-
tinuous Black-Box Problems by Combining Exploratory Landscape Analysis and Ma-
chine Learning”. In: Evolutionary Computation 27.1, pp. 99–127.

Koch, Thorsten et al. (2022). “Progress in mathematical programming solvers from 2001
to 2020”. In: EURO Journal on Computational Optimization 10, p. 100031.

Kotthoff, Lars (2016). “Algorithm Selection for Combinatorial Search Problems: A Sur-
vey”. In: Data Mining and Constraint Programming. Lecture Notes in Computer Science
10101. Cham: Springer, pp. 149–190.

Land, A. H. and A. G. Doig (1960). “An Automatic Method of Solving Discrete Program-
ming Problems”. In: Econometrica 28.3, pp. 497–520.

13

1 Background, Organization, and Contribution

Lodi, Andrea (2013). “The Heuristic (Dark) Side of MIP Solvers”. In: Hybrid Metaheuris-
tics. Ed. by El-Ghazali Talbi. Studies in Computational Intelligence 434. Berlin, Hei-
delberg: Springer, pp. 273–284.

Lombardi, Michele, Michela Milano, and Andrea Bartolini (2017). “Empirical decision
model learning”. In: Artificial Intelligence 244, pp. 343–367.

Macrina, Giusy et al. (2020). “Drone-aided routing: A literature review”. In: Transportation
Research Part C: Emerging Technologies 120, p. 102762.

Marinelli, Mario et al. (2018). “En route truck–drone parcel delivery for optimal vehicle
routing strategies”. In: IET Intelligent Transport Systems 12.4, pp. 253–261.

Min, Hokey, Vaidyanathan Jayaraman, and Rajesh Srivastava (1998). “Combined location-
routing problems: A synthesis and future research directions”. In: European Journal of
Operational Research 108.1, pp. 1–15.

Mingers, John and Leroy White (2010). “A review of the recent contribution of systems
thinking to operational research and management science”. In: European Journal of
Operational Research 207.3, pp. 1147–1161.

Mitchell, Tom M. (1997). Machine Learning. McGraw-Hill series in computer science. New
York: McGraw-Hill.

Mortenson, Michael J., Neil F. Doherty, and Stewart Robinson (2015). “Operational re-
search from Taylorism to Terabytes: A research agenda for the analytics age”. In: Euro-
pean Journal of Operational Research 241.3, pp. 583–595.

Murray, Chase C. and Amanda G. Chu (2015). “The flying sidekick traveling salesman
problem: Optimization of drone-assisted parcel delivery”. In: Transportation Research
Part C: Emerging Technologies 54, pp. 86–109.

Nagy, Gábor and Saïd Salhi (2006). “Location-routing: Issues, models and methods”. In:
European Journal of Operational Research 177.2, pp. 649–672.

Otto, Alena et al. (2018). “Optimization approaches for civil applications of unmanned
aerial vehicles (UAVs) or aerial drones: A survey”. In: Networks 72.4, pp. 411–458.

Padberg, Manfred and Giovanni Rinaldi (1991). “A Branch-and-Cut Algorithm for the
Resolution of Large-Scale Symmetric Traveling Salesman Problems”. In: SIAM Review
33.1, pp. 60–100.

Pelletier, Samuel, Ola Jabali, and Gilbert Laporte (2016). “50th Anniversary Invited
Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives”.
In: Transportation Science 50.1, pp. 3–22.

Petropoulos, Fotios et al. (2023). “Operational Research: Methods and Applications”. In:
arXiv:2303.14217 [math.OC].

Prodhon, Caroline and Christian Prins (2014). “A survey of recent research on location-
routing problems”. In: European Journal of Operational Research 238.1, pp. 1–17.

14

1.3 References

Rice, John R. (1976). “The Algorithm Selection Problem”. In: Advances in Computers.
Vol. 15. Elsevier, pp. 65–118.

Savelsbergh, Martin and Tom Van Woensel (2016). “50th Anniversary Invited Article—
City Logistics: Challenges and Opportunities”. In: Transportation Science 50.2, pp. 579–
590.

Schermer, Daniel (2019). “Integration of Drones in Last-Mile Delivery: The Vehicle Rout-
ing Problem with Drones”. In: Operations Research Proceedings 2018. Operations Re-
search Proceedings. Cham: Springer, pp. 17–22.

Schermer, Daniel (2023). “Leveraging Machine Learning for the Per-Instance Configura-
tion of MIP Solvers: An Algorithm Selection Approach”. Preprint. Chair of Business
Information Systems & Operations Research, University of Kaiserslautern-Landau.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2018b). “Algorithms for Solving
the Vehicle Routing Problem with Drones”. In: Intelligent Information and Database
Systems. Lecture Notes in Computer Science 10751. Cham: Springer, pp. 352–361.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2019a). “A hybrid VNS/Tabu search
algorithm for solving the vehicle routing problem with drones and en route operations”.
In: Computers & Operations Research 109, pp. 134–158.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2019b). “A matheuristic for the
vehicle routing problem with drones and its variants”. In: Transportation Research Part
C: Emerging Technologies 106, pp. 166–204.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2020a). “A branch‐and‐cut approach
and alternative formulations for the traveling salesman problem with drone”. In: Net-
works 76.2, pp. 164–186.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2020b). “The Drone-Assisted Travel-
ing Salesman Problem with Robot Stations”. In: Proceedings of the Hawaii International
Conference on System Sciences, pp. 1308–1317.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2020c). “The Traveling Salesman
Drone Station Location Problem”. In: Optimization of Complex Systems: Theory, Mod-
els, Algorithms and Applications. Advances in Intelligent Systems and Computing 991.
Cham: Springer, pp. 1129–1138.

Sluijk, Natasja et al. (2023). “Two-echelon vehicle routing problems: A literature review”.
In: European Journal of Operational Research 304.3, pp. 865–886.

Toth, Paolo and Daniele Vigo (2002). The vehicle routing problem. 1st ed. SIAM Series on
Discrete Mathematics and Applications. Philadelphia: SIAM.

Toth, Paolo and Daniele Vigo, eds. (2014). Vehicle routing: problems, methods, and appli-
cations. 2nd ed. MOS-SIAM series on optimization. Philadelphia: SIAM.

15

1 Background, Organization, and Contribution

Wolpert, D.H. and W.G. Macready (1997). “No free lunch theorems for optimization”. In:
IEEE Transactions on Evolutionary Computation 1.1, pp. 67–82.

16

2 A Hybrid VNS/Tabu Search Algorithm for Solving
the Vehicle Routing Problem with Drones and En
Route Operations

Abstract

With the goal of integrating drones in last-mile delivery, the Vehicle Routing Problem with
Drones (VRPD) uses a fleet of trucks, each of them equipped with a set of drones, for serving
a set of customers with minimal makespan. In this paper, we propose an extension of the
VRPD that we call the Vehicle Routing Problem with Drones and En Route Operations
(VRPDERO). Here, in contrast to the VRPD, drones may not only be launched and retrieved
at vertices but also on some discrete points that are located on each arc. We formulate the
problem as a Mixed-Integer Linear Program (MILP) and introduce some Valid Inequalities
(VIEQs) that enhance the performance of the MILP solvers. Furthermore, due to limited
performance of the solvers in addressing large-scale instances, we propose an algorithm based
on the concepts of Variable Neighborhood Search (VNS) and Tabu Search (TS). In order to
evaluate the performance of the introduced algorithm as well as the solver in solving the
VRPDERO instances, we carried out extensive computational experiments. According to the
numerical results, the proposed VIEQs and the heuristic have a significant contribution in
solving the VRPDERO effectively. In addition, the consideration of en route operations can
increase the utilization of drones and lead to an improved makespan.

2.1 Introduction

Minimum cost and fast pickup and delivery of products are important problems in logistics.
In this context, e. g., several variants of the classical Vehicle Routing Problem (VRP) have
been studied and solved using a wide range of heuristic and exact algorithms (see (Toth
and Vigo, 2002), and references therein).
Recently, there has been an interest in the integration of drones in civil applications

and, particularly, in last-mile delivery. Drones have been successfully applied in many
public and private sectors and are slowly becoming a proven technology (see, e. g., (Otto
et al., 2018)). As a result, in an effort to lower costs and reduce delivery times, several
optimization problems have been proposed in the academic literature that integrate drones
into last-mile delivery (see, e. g., (Agatz et al., 2018; Murray and Chu, 2015; X. Wang et al.,

17

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

2017)). In these problems, which might be considered as variants of the VRP or Traveling
Salesman Problem (TSP), the shared idea of a tandem that consists of traditional trucks
and drones is commonly accepted. Hence, a drone might be launched from a truck, makes
an autonomous flight to deliver a parcel to an identified customer, and is then retrieved
by the truck at a different location. Generally, we might assume that a drone can move
faster between two locations than a truck as drones are not exposed to the restriction of
following the road network structure or congestion. Additionally, drones are lightweight,
which causes them to consume less energy for the movement between two points. However,
their carrying capacity is more restricted than that of a truck. Moreover, as drones rely
on relatively small batteries for powering their flight, their range of operation is more
tightly bounded than that of a truck powered by a fossil fuel or a much larger battery.
Consequently, due to the complementary features of trucks and drones, the latter might
have a supplementary role in last-mile delivery. Classically, it is commonly assumed that
the launch and retrieval of drones is restricted to the locations of customers and the depot
(Agatz et al., 2018; Murray and Chu, 2015). However, several researchers have suggested
the relaxation of this assumption and promoted the idea of launching and retrieving drones
at arbitrary locations (Marinelli et al., 2018; Poikonen et al., 2017). In particular, Marinelli
et al. (2018) propose en route operations, i. e., the possibility to construct arc-based truck-
drone operations. Indeed, as one of many companies that are interested in the integration
of drones in last-mile delivery, Amazon Inc. has patented the possibility of incorporating
drone docking stations into existing structures such as cell towers, light and power poles,
and buildings that might be used as intermediate docks for supporting en route operations
(Gentry et al., 2016).
In this article, we propose a new problem and we call it the VRPDERO, which is an

extension of the VRPD proposed by X. Wang et al. (2017). In fact, compared to the
VRPD, the VRPDERO assumes that drones might also be launched and retrieved at
some discrete locations on each arc. The contributions of our work are as follows:

1. We formulate the VRPDERO as a MILP. Consequently, the problem might be solved
by any standard MILP solver. Furthermore, by considering the definition and math-
ematical structure of the VRPDERO, we introduce some sets of VIEQs that can be
beneficial in enhancing the performance of the MILP solvers. Through our numerical
results, we show that our proposed VIEQs have a significant impact on the solver’s
performance in finding optimal solutions to small instances.

2. In the VRPDERO, the MILP formulation can only be used on small-scale problems
to obtain optimal solutions in a reasonable amount of time. Therefore, in order to
address larger instances of the problem, we propose a heuristic that combines compo-

18

2.2 Related Research Works

nents from VNS and TS. Furthermore, our algorithm incorporates a problem-specific
drone insertion operator as local search method that is designed according to the
structure and characteristics of the VRPDERO. This operator is embedded within
a scalable Divide-and-Conquer (D&C) approach. We carried out extensive com-
putational experiments on VRPDERO instances, and we show that our algorithm
provides high-quality solutions in reasonable computation time.

3. Across our numerical study, we demonstrate that, with respect to the VRPD, the
consideration of en route operations can be beneficial for improving the utilization of
drones, thus improving the makespan. Albeit, the introduction of en route operations
significantly increases the computational complexity of the problem.

The remainder of this paper is organized as follows. We begin in Section 2.2 by providing
a brief overview on the existing academic literature related to the application of drones
in last-mile delivery. Then, Section 2.3 presents the notation, the mathematical model,
and the proposed VIEQs for the VRPDERO. In Section 2.4, we introduce a heuristic
approach that is based on the concepts of VNS and TS. This section also contains a
detailed description of the drone insertion procedure and the associated D&C approach.
Detailed results on the numerical studies, which were performed using both the MILP
formulation and the heuristic approach, are presented in Section 2.5. Finally, Section 2.6
is devoted to the concluding remarks and future research implications.

2.2 Related Research Works

Otto et al. (2018) provide a comprehensive overview on the use of drones in civil applica-
tions. However, for the sake of completeness, we present a brief overview of some of the
research works that are most relevant to this paper.

Murray and Chu (2015) introduced two new NP-hard problems, called the Flying Side-
kick Taveling Salesman Problem (FSTSP) and the Parallel Drone Scheduling Traveling
Salesman Problem (PDSTSP), that are related to delivery applications, where a truck is
working in tandem with a drone. In the FSTSP, a set of customers is given, each of whom
must be visited exactly once by either a drone or a truck. The truck-drone-tandem starts
from a common depot and must return to the same depot at the end of the tour. At
any customer location, the drone may be launched from the truck, makes an autonomous
delivery to another customer location, and is then retrieved by the truck at a different
location. In the PDSTSP, it is assumed that the depot is in close proximity to most of
the customers. In this case, it can be beneficial to let the drone make its deliveries inde-
pendently of the truck, while the truck serves customers that are located far away from

19

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

the depot. Whereas the truck continues on a predefined tour, the drone will continuously
return to the depot to pick up a new parcel after each delivery. Both problems, i. e.,
the FSTSP and PDSTSP, share the objective of minimizing the makespan. However, the
latter has significantly reduced synchronization requirements (Drexl, 2012b). Murray and
Chu (2015) proposed two simple heuristic methods for solving the FSTSP and PDSTSP,
respectively, as well as a MILP formulation for either problem. They show that a signifi-
cant makespan reduction is possible through the introduction of drones and highlight that
the FSTSP is more computationally challenging.

The Traveling Salesman Problem with Drone (TSPD), introduced by Agatz et al. (2018),
is another problem that shares most features with the FSTSP. A key difference to the
FSTSP is the relaxation that the TSPD permits a drone to be launched and retrieved
at the same vertex. Agatz et al. (2018) provide theoretical insights and propose a MILP
formulation as well as several new heuristics for solving the TSPD. They confirm that
significant savings are possible and conclude by suggesting the extension of their model
to consider multiple trucks or drones as well as adding different possibilities of recharging
the drones.
X. Wang et al. (2017) introduced the VRPD which might be considered as a generaliza-

tion of the FSTSP and TSPD. In the VRPD, we assume that a depot, a set of customers,
and a fleet of trucks is given such that each truck is equipped with a predefined number
of drones. The objective is to minimize the makespan, i. e., the time required to serve all
customers such that the given vehicle fleet (i. e., trucks and drones) has returned to the
depot at the end of the mission. Wang et al. provided several theoretical insights. In
particular, they introduced some upper bounds on the potential reductions in makespan
by employing drones (compared to a case where no drones are given). The upper bounds
are obtained by investigating the structure of optimal solutions and depend on the relative
velocity of the drones compared to the trucks and the number of drones carried by each
truck. Poikonen et al. (2017) refined the work of X. Wang et al. (2017) by further consider-
ing the impact on the previously introduced bounds when integrating limited battery life,
different distance metrics, and operational expenditures of deploying drones and trucks in
the objective function. Furthermore, Poikonen et al. (2017) proposed extending the VRPD
model similar to the close-enough TSP. More precisely, the authors suggest the possibility
of launching and recovering drones from arbitrary locations instead of being restricted to
the locations of customers and the depot. They conclude their work by proposing that
heuristics and benchmark instances should be developed as a next step in researching the
VRPD from a computational point of view.
In (Schermer et al., 2018a), based on the work by Di Puglia Pugliese and Guerriero

(2017), we introduced a MILP formulation for the VRPD along with several VIEQs.

20

2.3 The Vehicle Routing Problem with Drones and En Route Operations

In particular, we provided a heuristic approach based on VNS and two heuristic drone
insertion operators for solving the VRPD. Through an extensive numerical study, we
showed the effectiveness of our proposed VIEQs and heuristic for solving small- and large-
scale instances of the VRPD. Finally, we could demonstrate that a truck-drone-tandem
allows for a significantly reduced makespan compared to classic truck delivery.

Marinelli et al. (2018) allow drones to be launched and retrieved from arbitrary locations
that are located on a predefined path of the truck. More precisely, they propose a novel
variant of the TSPD in which the drones can be launched and retrieved on arcs by the
truck, which they call an en route operation. They state that this procedure can be
beneficial in increasing the utilization of drones and in overcoming their limited range of
operation. In order to solve the extended TSPD, Marinelli et al. (2018) propose a heuristic
which consists of three distinct steps: First, they find a routing for the truck using the
well-known Lin-Kernighan heuristic (Lin and Kernighan, 1973). Second, given the routing
of the truck, they build a list of all feasible drone operations that yield a reduced cost.
Third, the initial list is improved through the consideration of en route operation and the
moves are inserted according to their reduced cost. Through their numerical study, they
show that en route operations can yield improvements in the order of 0 to 10% over the
non-en route case with regard to the makespan.

2.3 The Vehicle Routing Problem with Drones and En Route
Operations

In this paper, we introduce and study the VRPDERO, which might be considered an
extension to the VRPD. We recall that in the VRPD, the drone sorties, i. e., the operation
of launching from a truck, serving a customer, and returning to the truck, might only be
done at the vertices (i. e., customer locations and the depot). However, in the VRPDERO,
the operations might also start and end at some discrete points which are located on the
arcs that are traversed by the trucks. In other words, the VRPDERO admits en route
operations. In fact, en route operations might be useful in two cases as highlighted in
Figure 2.3.1. On the one hand, if a drone is much faster than the truck, then it might be
able to perform multiple operations during a single transition of the truck. On the other
hand, if a drone has a low endurance, then it might be possible to perform operations, that
would otherwise not be feasible. Hence, the VRPDERO can be considered as a natural
extension of the VRPD.

21

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

Figure 2.3.1: The paths of the truck and drone are shown using solid and dashed lines, respectively.
The dotted arrows on the solid arcs indicate locations at which en route operations are possible.
On the left-hand side, one fast-moving drone is able to perform multiple operations during a single
transition of the truck. On the right-hand side, we assume that the customer might only be served
by drone, if the drone is launched and retrieved within the feasible region (indicated by the dotted
pattern). Here, through en route operations, a drone is able to perform an operation that would
otherwise not be possible.

2.3.1 Notation and Mathematical Model

Suppose that a set of customer locations, each with an equal demand, and a fleet of
homogeneous trucks, each carrying a specified number of identical drones, are given. In
the VRPDERO, we look for minimizing the time required to serve all customers using the
trucks and the drones such that, by the end of the mission, all trucks and drones must be
at the depot. Furthermore, we make the following assumptions (Murray and Chu, 2015;
Poikonen et al., 2017; X. Wang et al., 2017):

• A drone can serve exactly one customer per operation and has a limited endurance of
E distance units. After returning to the truck, the battery of the drone is recharged
instantaneously (e. g., by swapping it).

• While the trucks are restricted to the road network, the drones might be able to use
a different trajectory for traveling between locations. In addition, without loss of
generality, the average velocity of each truck is assumed to be equal to 1 and the
relative velocity of each drone is assumed to be α ∈ R+ times the velocity of the
truck. Due to the absence of congestion or necessary stops (e. g., traffic lights and
stop signs) in the route of the drone, we assume that α ≥ 1.

• The service time required to serve a customer by truck or drone and the time required
to launch and retrieve a drone are assumed to be negligible.

• Drones may only be launched and retrieved either at vertices (i. e., at the depot and
any other customer location) or at predefined discrete points which are located on
arcs that are traversed by trucks. Furthermore, a drone may not be picked up at
the same location from which it was launched. Finally, a drone must always return
to the same truck from which it was launched.

22

2.3 The Vehicle Routing Problem with Drones and En Route Operations

In order to present the mathematical model of the VRPDERO, we use the following
notation which is similar to that in (Di Puglia Pugliese and Guerriero, 2017; Schermer
et al., 2018a).
Assume that a complete and symmetric graph G = (V,A) is given, where V is the

set of vertices and A is the set of arcs. The set V contains n vertices associated with
the customers, named VN = {1, . . . , n} and (in order to simplify the notation and the
mathematical formulation) two extra vertices 0 and n + 1 that both represent the same
depot location at the start and end of each tour, respectively. Hence, V = {0}∪VN∪{n+1},
where 0 ≡ n+ 1. Each vertex Vi ∈ V is defined by a tuple (xi, yi) in the Euclidean space.
We refer to VL = V \ {n + 1} as the subset of vertices in V from which drones may be
launched. Furthermore, VR = V \{0} denotes the subset of vertices where the drones may
be retrieved.
In order to define the discrete points on the arcs, let S = {0, 1, . . . , sn} be a set of

predefined integer numbers, where sn ∈ Z+, |S| ≥ 2. Given two vertices Vi ∈ VL, Vj ∈ VR,
the location of a discrete point V⃗ s

ij that is located at step s ∈ S on arc A⃗ij ∈ A (connecting
V⃗i to V⃗j) can be calculated through formula (2.1):

V⃗ s
ij = V⃗i +

s

|S| − 1
(V⃗j − V⃗i) = V⃗i +

s

|S| − 1
A⃗ij (2.1)

We assume that for s = 0 and s = sn, V⃗ s
ij coincides with V⃗i and V⃗j , respectively. Further,

we use the sets SL = S \ {sn} and SR = S \ {0} for defining the discrete points on each
arc from which a drone might be launched and retrieved.
The parameters dij and dij define the required distance to travel from vertex i to vertex

j by truck and drone, respectively. As G is assumed to be symmetric, dij = dji and
dij = dji ∀i, j ∈ V . Furthermore, by definition, dii = dii = 0 ∀i ∈ V . Additionally, we
introduce dw,s

ij as the distance between V s
ij and Vw. As the drone may not be limited to the

road network, we can assume that dij ≤ dij ∀i, j ∈ V . Naturally, the triangle inequality is
assumed to hold for these distances.
We use the parameters v and v, where v = 1 and v = α · v, to indicate the velocity

of the truck and drone, respectively. We assume that both, the truck and the drone,
move at a constant velocity. Hence, the time required to traverse edge (i, j) is defined
as tij = dij and tij = dij/α for the trucks and drones, respectively. As we assumed that
α ≥ 1 and dij ≤ dij ∀i, j ∈ V , we can conclude that tij ≤ tij ∀i, j ∈ V . Analogously, the
time required to reach (or return from) a customer w ∈ VN from (or to) a discrete point
V s
ij , where Vi ∈ VL, Vj ∈ VR and s ∈ S, by a drone is given by t

w,s
ij = d

w,s
ij /α.

As in the VRPD (Poikonen et al., 2017; X. Wang et al., 2017), we suppose that we have
a given fleet that consists of a limited set K = {1, . . . ,KN} (KN ∈ Z+, |K| ≥ 1) of trucks

23

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

such that each truck k ∈ K holds an equal number of D ∈ Z≥0 identical drones. Each
drone may travel a maximum distance of E units per operation, where a drone-operation is
characterized by a tuple (i, sl, w, sr, j) or, alternatively, two tuples: (i, w, sl) for deliveries
and (w, j, sr) for retrievals. More precisely, the drone is launched from a truck at sl ∈ SL

en route from i ∈ VL to serve a customer w ∈ VN . Afterwards, the drone is retrieved by
the truck, from which the drone was launched, at sr ∈ SR en route to j ∈ VR.

Table 2.3.1: Decision variables used in the VRPDERO formulation.

τ ∈ R≥0 Continuous variable that indicates the makespan.
xkij ∈ {0, 1}

∀k∈K,i∈VL,j∈VR

Variables that state whether arc (i, j) belongs to the route of truck k.

yksliw ∈ {0, 1}
∀k∈K,i∈VL,w∈VN ,sl∈SL

Variables that indicate if a drone that belongs to truck k is launched
at sl en route from vertex i to serve w.

ỹksrwj ∈ {0, 1}
∀k∈K,w∈VN ,j∈VRsr∈SR

Variables that specify if a drone that belongs to truck k is retrieved
at sr en route to vertex j after a delivery to w.

skiwj ∈ {0, 1}
∀k∈K,i∈VL,w∈VN ,j∈VR

Variables that state if a drone that belongs to truck k performs a
delivery to w that occurs on arc (i, j) at any feasible combination of
steps sl ∈ SL and sr ∈ SR.

uki ∈ Z≥0

∀k∈K,i∈V
Continuous variables that indicate the position of vertex i in the
route of truck k (if customer i is served by truck k).

pkij ∈ {0, 1}
∀k∈K,∀i∈VL,j∈VR

Variables that specify whether i is served before (but not necessarily
adjacent to) j by truck k.

zkaiwje ∈ {0, 1}
∀k∈K,a,i,w,j,e∈V

Variables that state whether any drone delivery that targets w en
route from (or at) a and ends en route to (or at) e is performed
circumjacent to (i, j), i. e., launched before the truck k has reached i
and retrieved after the truck has reached j.

aki ∈ R≥0

∀k∈K,i∈V
Continuous variables that indicate the earliest time at which vertex i
is reached by the truck and any drone recovered directly at i. If i is
served by a drone, this variable simply marks the earliest time at
which i is served.

aksj ∈ R≥0

∀k∈K,j∈VR,s∈SR

Continuous variables that indicate the earliest time at which step s
en route to j is reached by the truck k and any drone that must be
recovered here.

We use the decision variables in Table 2.3.1 for modeling the VRPDERO (see also
Figure 2.3.2). Using this notation, the MILP formulation of the VRPDERO is given by
(2.2)–(2.25):

min τ, (2.2)

s. t. akn+1 ≤ τ ∀k ∈ K, (2.3)

24

2.3 The Vehicle Routing Problem with Drones and En Route Operations

∑
j∈VN

xk0j ≤ 1 ∀k ∈ K, (2.4)

∑
j∈VN

xk0j −
∑
i∈VN

xki,n+1 = 0 ∀k ∈ K, (2.5)

∑
i∈VL

xkih −
∑
j∈VR

xkhj = 0 ∀k ∈ K,h ∈ VN , (2.6)

∑
k∈K

∑
i∈VL

xkiw +
∑
k∈K

∑
i∈VL

∑
sl∈SL

yksliw = 1 ∀w ∈ VN , (2.7)∑
w∈VN

∑
sl∈SL

yksliw ≤M
∑
j∈VR

xkij ∀k ∈ K, i ∈ VL, (2.8)

∑
w∈VN

∑
sr∈SR

ỹkslwj ≤M
∑
i∈VL

xkij ∀k ∈ K, j ∈ VR, (2.9)

∑
i∈VL

∑
sl∈SL

yksliw −
∑
j∈VR

∑
sr∈SR

ỹksrwj = 0 ∀k ∈ K,w ∈ VN , (2.10)

uki − ukj + 1 ≤ (n+ 1)(1− xkij) ∀k ∈ K, i ∈ VL, j ∈ VR, (2.11)

uki − ukw + 1 ≤ (n+ 1)(1− yksliw) ∀k ∈ K, i ∈ VL, w ∈ VN , sl ∈ SL, (2.12)

ukw − ukj + 1 ≤ (n+ 1)(1− ỹksrwj) ∀k ∈ K, j ∈ VR, w ∈ VN , sr ∈ SR, (2.13)

uki − ukj + 1 ≤ (n+ 1)(1− pkij) ∀k ∈ K, i ∈ VL, j ∈ VR, (2.14)

uki − ukj ≥ 1− (n+ 1)pkij ∀k ∈ K, i ∈ VL, j ∈ VR, (2.15)

4zkaiwje − (pkai + pkje)

≤
∑
sl∈SL

ykslaw +
∑

sr∈SR

ỹksrwe ∀k ∈ K, a ∈ VL, i, w, j ∈ VN , e ∈ VR,
(2.16)

3 + zkaiwje − (pkai + pkje)

≥
∑
sl∈SL

ykslaw +
∑

sr∈SR

ỹksrwe ∀k ∈ K, a ∈ VL, i, w, j ∈ VN , e ∈ VR,
(2.17)

aksnj = akj ∀k ∈ K, j ∈ VR, (2.18)

M(xkij − 1) + aki +
tij
|S| − 1

≤ ak1j ∀k ∈ K, i ∈ VL, j ∈ VR, (2.19)

M(xkij − 1) + aksj +
tij
|S| − 1

≤ ak,s+1
j ∀k ∈ K, i ∈ VL, j ∈ VR, s ∈ SL ∩ SR, (2.20)

M(xij + yk0iw − 2) + aki + tiw ≤ akw ∀k ∈ K, i ∈ VL, w ∈ VN , j ∈ VR, sl ∈ SL, (2.21)

M(xij + yksiw − 2) + aksj + t
ws
ij ≤ akw ∀k ∈ K, i ∈ VL, w ∈ VN , j ∈ VR, s ∈ SL ∩ SR,

(2.22)

M(xij + ỹksrwj − 2) + akw + t
wsr
ij ≤ aksrj ∀k ∈ K, i ∈ VL, w ∈ VN , j ∈ VR, sr ∈ SR, (2.23)

25

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

d
wsl
ij (xij + yksliw − 1)

+d
wsr
gh (xgh + ỹksrgh − 1) ≤ E ∀k ∈ K, i, g ∈ VL, w ∈ VN ,

j, h ∈ VR, sl ∈ SL, sr ∈ SR,

(2.24)

2 + skiwj ≥ xkij +
∑
sl∈SL

yksliw +
∑

sr∈SR

ỹksrwj ∀k ∈ K, i ∈ VL, w ∈ VN , j ∈ VR, (2.25)

3skiwj ≤ xkij +
∑
sl∈SL

yksliw +
∑

sr∈SR

ỹksrwj ∀k ∈ K, i ∈ VL, w ∈ VN , j ∈ VR, (2.26)

∑
a∈VL

∑
w∈VN

∑
e∈VR

zkaiwje

+
∑

w∈VN

∑
sl∈SL,
sl≤s

yksliw +
∑

w∈VN

∑
sr∈SR,
sr>s

ỹksrwj

−
∑

w∈VN

skiwj +M(xkij − 1) ≤ D ∀k ∈ K, i ∈ VL, j ∈ VR, s ∈ SL.

(2.27)

In the VRPDERO, the objective is to minimize the makespan τ . Based on the arrival
time at the depot, i. e., akn+1, constraints (2.3) provide lower bounds on the makespan for
each truck k (and its assigned drones). The set of constraints (2.4)–(2.6) form the preser-
vation of flow for the trucks. More precisely, constraints (2.4) state that each truck k ∈ K

may depart from the depot at most once. For any truck that has departed, constraints
(2.5) guarantee that the truck must return exactly once. Constraints (2.6) ensure the
preservation of flow for each truck. According to constraints (2.7), each customer must
be served exactly once by either a truck or a drone. Synchronization between the route
of a truck and drone operations is required through constraints (2.8)–(2.9). More pre-
cisely, these constraints guarantee that drone operations can only occur at discrete points
associated with vertices that are visited by the respective truck. For each customer that
is served by a drone, constraints (2.10) state that the flow of drones must be preserved.
Constraints (2.11)–(2.13) are Miller-Tucker-Zemlin type constraints (Miller et al., 1960)
that link the variables uki to the decision variables xkij , y

ksl
iw , and ỹksliw . Similarly, constraints

(2.14)–(2.15) guarantee the right precedence relations through variables pkij with regard
to uki and ukj . Constraints (2.16)–(2.17) determine if circumjacent deliveries occur (see
also Figure 2.3.1). For a circumjacent delivery to occur, a drone must be launched before
a truck k has reached i and retrieved after the same truck has reached j. Constraints
(2.18)–(2.23) determine valid bounds on the temporal variables aki and aksj . Here, con-
straints (2.18) state that the arrival time en route to j at sr = sn equals the time akj at
the vertex itself. Furthermore, for any arc that is used by the truck, constraints (2.19)
and (2.20) provide lower bounds at each discrete step. Similarly, constraints (2.21)–(2.22)

26

2.3 The Vehicle Routing Problem with Drones and En Route Operations

determine arrival times for any customer that is served by a drone. Finally, constraints
(2.23) guarantee valid bounds whenever a drone is retrieved by a truck. Constraints (2.24)
impose a maximum distance (endurance) constraint on every possible drone operation. For
drone operations that involve a single arc (i, j), constraints (2.25)–(2.26) force the vari-
ables skiwj to take value 1. Finally, constraints (2.27) guarantee that during the transition
of a truck on arc (i, j), at each discrete step, a maximum of D drones may be in operation
simultaneously. To this end, we account for the following:

• circumjacent operations,

• the launch of any drone that is performed on the same arc up to step s,

• and any outstanding future recovery of a drone on the same arc.

To make this accounting correct, we must prevent counting the same operation twice (once
as launch up to s and once as a future recovery). Therefore, we subtract any operation
skiwj that starts and ends on this arc (i, j) (see also Figure 2.3.2 and Table 2.3.2).

a i

s0 s1

j

s3s2

e

w

zaiwje

s

t

sitj

v

u

siuj

ys0it ỹs1tj

pai pjexij

ỹs3as

ys0iv

ys1iu
ỹs3uj

Figure 2.3.2: A visualization of some of the decision variables for a given truck k. The solid and
dotted lines refer to the path of the truck. The dashed lines indicate deliveries made by drones,
which are assigned to the truck.

2.3.2 Valid Inequalities

In solving a challenging combinatorial optimization problem, a well-known approach for
enhancing the performance of a MILP solver consists in using suitable VIEQs. In this
context, (Schermer et al., 2018a) provides several sets of effective VIEQs for solving the
VRPD. Due to their success, we adapt them to the VRPDERO and improve them for

27

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

Table 2.3.2: This table illustrates how the number of operations is accounted for based on con-
straint (2.27) and Figure 2.3.2. The first column shows the step s on arc (i, j). The remaining
columns show the number of circumjacent deliveries surrounding (i, j) (

∑
z), launches up to si on

(i, j) (
∑

y), future recoveries after si on (i, j) (
∑

ỹ) and the negative number of operations that
involve the single arc (i, j) (

∑
siwj). The last column shows the left-hand side (LHS) according to

(2.27), i. e., the summation over columns 2 to 5 in the respective row of the table. In this case, the
truck needs to be equipped with D ≥ 4 drones to perform the operations shown in Figure 2.3.2.

s
∑

z
∑

y
∑

ỹ −
∑

siwj LHS according to (2.27)
s0 1 2 3 -2 4
s1 1 3 2 -2 4
s2 1 3 2 -2 4

providing sharper lower bounds that strengthen the relaxation of the formulation and
restrict the solution space of the problem while excluding none of the optimal solutions.

Proposition 2.1. In the MILP (2.2)–(2.27), τ is bounded by the time spent traveling by
each truck.

Proof: Let τk be the value which indicates the total time that the truck k ∈ K spends
traveling on arcs. It can be computed as follows:

τk =
∑
i∈VL

∑
j∈VR

xkijtij ∀k ∈ K. (2.28)

In any VRPDERO solution, akn+1, i. e., the earliest possible arrival time of the truck k and
all drones that are assigned to it at depot, is bounded by the arrival of the truck itself.
For each truck k, this value is a lower bound on τ according to constraints (2.3). Indeed,
since it might happen that the truck k waits at some vertices (or at discrete points on
arcs) for the arrival of a drone, we can use τk as a lower bound on akn+1. Consequently,
we can obtain the following VIEQs:∑

i∈VL

∑
j∈VR

xkijtij ≤ τ ∀k ∈ K, (2.29)

which completes the proof of Proposition 2.1. ■
In the MILP (2.2)–(2.27), drone operations are characterized implicitly. More precisely,

the variables yksliw (respectively, ỹkslwj) state that a drone operation starts at sl en route
from i to serve a customer w (respectively, ends at sr en route to j after a delivery to w).
However, only through the consideration of the binary variables xij do we know which
vertices are visited after i and before j. This information is crucial for the determination
of the position of discrete steps and, therefore, travel times of drones. Hence, for the

28

2.3 The Vehicle Routing Problem with Drones and En Route Operations

general case of sn > 2, we propose the inclusion of auxiliary variables and constraints to
the MILP (2.2)–(2.27) as it is suggested by the following Lemma.

Lemma 2.1. Assume that yksiwj , where k ∈ K, i ∈ VL, w ∈ VN , j ∈ VR, s ∈ SL ∩ SR, are
binary variables stating whether a drone that belongs to the truck k travels from s on
(i, j) to w or in reverse. Then, the following inequalities (2.30)–(2.31) are valid for the
MILP (2.2)–(2.27):

2yksiwj ≤ xkij + yksiw + ỹkswj ∀i ∈ VL, w ∈ VN , j ∈ VR, s ∈ SL ∩ SR, (2.30)

1 + yksiwj ≥ xkij + yksiw + ỹkswj ∀i ∈ VL, w ∈ VN , j ∈ VR, s ∈ SL ∩ SR. (2.31)

Proof: These inequalities guarantee that yksiwj is forced to value 1 if two conditions apply.
First, arc (i, j) must be a part of the truck k’s route. Second, either a delivery to w must
be initiated by a drone or a drone must be retrieved after a delivery to w en route at s

on arc (i, j). These constraints are valid with respect to MILP (2.2)–(2.27), because a
drone launched to customer w cannot be retrieved at the same location from which it was
launched (see Section 2.3.1 and MILP (2.2)–(2.27)). Therefore, the sum over yksiw and ỹkswj

can be at most one. Furthermore, an optimal solution vector x∗ to MILP (2.2)–(2.27)
is guaranteed to be feasible subset of an optimal solution vector to MILP (2.2)–(2.27),
(2.30)–(2.31). Thus, the value of the optimal solution does not change. This completes
the proof of Lemma 2.1. ■

Proposition 2.2. In the MILP (2.2)–(2.27), τ is bounded by the average time spent
traveling by drones.

Proof: We distinguish two cases: whether |S| = 2 (sn = 1), i. e., there is no en route
operation, and |S| ≥ 3 (sn ≥ 2), i. e., in presence of en route operations.

(i) For |S| = 2, we have the following case: Since |S| = 2, hence, S = {0, 1} and there
are no en route operations. We define τki as the total time that the i-th drone, which is
assigned to truck k ∈ K, spends traveling on arcs of the underlying graph. Then, we can
compute the total time spent traveling by the D drones as follows:

D∑
i=1

τki = (
∑
i∈VL

∑
w∈VN

tiwy
ks0
iw +

∑
w∈VN

∑
j∈VR

twj ỹ
ksn
wj) ∀k ∈ K. (2.32)

Let τkmax = max(τk1 , . . . , τ
k
D), i. e., τkmax is the maximum time that a single drone, as-

sociated to a truck k ∈ K, spends traveling. Since a drone might also have to wait at a
vertex or an arc in order to be retrieved by the truck, the makespan τ , at which all drones

29

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

and the truck have returned to the depot, cannot be smaller than τkmax, that is:

τkmax ≤ τ ∀k ∈ K. (2.33)

As we do not explicitly account for the travel time of each drone in MILP (2.2)–(2.27),
instead, we consider τkD, i. e., the average arrival time of the set of drones D associated to
truck k. Then, in the given set of D drones, τkD must always be less than or equal to the
earliest arrival time τkmax, that is:

τkD =
1

D

D∑
i=1

τki ≤ τkmax ≤ τ ∀k ∈ K. (2.34)

If we divide both sides of (2.32) by D, i. e., the number of drones, and take into account
the inequalities (2.34), we obtain the following VIEQs that provide a lower bound on the
makespan τ :

1

D
(
∑
i∈VL

∑
w∈VN

tiwy
ks0
iw +

∑
w∈VN

∑
j∈VR

twj ỹ
ksn
wj) ≤ τ ∀k ∈ K. (2.35)

(ii) For |S| ≥ 3, the more general case applies: Here, the relaxation provided by (2.35)
becomes weak because we only account for operations that occur directly on vertices,
i. e., at s ∈ {0, sn} ⊂ S. Through the introduction of the binary variables yksiwj and
the inequalities (2.30) and (2.31) in Lemma 2.1, we can improve the bounds given in
(2.35). More precisely, for any drone operation that either starts or ends at a discrete step
s ∈ SL ∩ SR and does not coincide with a vertex, we account for the time spent traveling
by all drones as follows for each truck:∑

i∈VL

∑
w∈VN

∑
j∈VR

∑
s∈SL∩SR

t
ws
ij yksiwj ∀k ∈ K. (2.36)

By analogously following the structure of proof shown for |S| = 2, we can consider (2.36)
as an additional term to (2.35) that tracks the total time spent performing en route drone
operations. This yields the following more general VIEQs:

1

D

∑
w∈VN

(
∑
i∈VL

tiwy
ks0
iw +

∑
j∈VR

twj ỹ
ksn
wj +

∑
i∈VL

∑
j∈VR

∑
s∈SL∩SR

t
ws
ij yksiwj) ≤ τ ∀k ∈ K, (2.37)

which is the desired conclusion of Proposition 2.2. ■

30

2.4 Variable Neighborhood Search for Solving the VRPDERO

2.4 Variable Neighborhood Search for Solving the VRPDERO

As we will see in more detail in Section 2.5, only small-sized problem instances can be
solved to optimality by a commercial state-of-the-art solver within reasonable runtime.
In order to overcome this issue, in this section, we introduce an algorithm which exhibits
features of VNS and TS for solving the VRPDERO.
VNS is a metaheuristic framework that was introduced by Mladenović and Hansen

(1997) for solving (combinatorial) optimization problems. Given an incumbent solution
x, the strategy of VNS consists in systematically visiting increasingly distant k-th neigh-
borhoods of the current incumbent solution x, i. e., Nk(x). The new neighborhoods are
then explored by a local search method in order to identify the local optima. A new so-
lution is accepted if and only if an improvement is made. Several extensions to the basic
VNS have been proposed and an overview of the proposed methods is given by Gendreau
and Potvin (2010) and Pierre Hansen et al. (2017).
TS was introduced by Glover (1986) as a metaheuristic for guiding and controlling

heuristics. The basic idea is to identify certain moves as forbidden, i. e., tabu, to prevent
cycling. Glover (1986) differentiates strong inhibition, i. e., if a move is identified as tabu
then it will never be chosen in the future (e. g., found in branch-and-bound methods) from
weak inhibition, which consists of a short-term memory.
The basic structure of our proposed procedure is shown in Algorithm 2.1. A detailed

explanation of all components is given in the subsequent sections. Indeed, this framework
structurally reflects the basic VNS by Mladenović and Hansen (1997) that consists of an
initialization, a shaking step that moves the current solution x to the k-th Neighborhood
Nk(x), and a local search procedure. For adapting VNS to the VRPDERO, we propose
decomposing the problem into two natural components: route generation and drone oper-
ation insertion. In our case, the local search procedure is a problem specific operator that,
given a routing x (that consists of a route for each truck), generates a valid VRPDERO
solution y through the insertion of drone operations (line 9 of Algorithm 2.1). Further-
more, in order to avoid cycling, a tabu list is implemented in the algorithm (lines 6-7 of
Algorithm 2.1).
Finally, the neighborhood change operator shown in Algorithm 2.2 handles value up-

dates during each iteration. In case of an improvement (or an equally good objective
value), we store the incumbent solution y∗ and the routing x associated with this solu-
tion. Furthermore, as we will see in Sections 2.4.2 and 2.4.3, the local search operator
is a deterministic procedure. Therefore, we add x to a tabu list that will prevent future
evaluations of the same routing. Note that, in principle, different routings x may lead to
the same VRPDERO solution y after the drone insertion procedure. Therefore, an equally

31

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

good objective value also triggers a change in the incumbent value to enable an effective
exploration of the search space.

Algorithm 2.1 Adaptation of basic VNS.
1: x← Initialization() ▷ refer to Section 2.4.1
2: while The termination criterion is not met do
3: k ← 1
4: while k < kmax do
5: x′ ← Shake(x, k)
6: if TabuList.contains(x′) then
7: Continue
8: end if
9: y ← LocalSearch(x′) ▷ refer to Sections 2.4.2–2.4.3

10: x, y, k ← NeighborhoodChange(x′, y, k) ▷ refer to Algorithm 2.2
11: end while
12: end while
13: return y

Algorithm 2.2 An overview of the neighborhood change.
1: if f(y) ≤ f(y∗) then
2: y∗ ← y
3: x← x′

4: k ← 1
5: TabuList.add(x)
6: else
7: k ← k + 1
8: end if

In what follows, the integrated components of Algorithm 2.1 will be described in more
detail. More precisely, in Section 2.4.1 we demonstrate the procedure that is used for the
initialization, local search, and shaking. Section 2.4.2 is devoted to the presentation of
the drone insertion procedure. As the drone insertion procedure is a deterministic search
operator, we embed it within a D&C approach that is well-suited for parallel computing
architectures. This approach is presented in Section 2.4.3. We conclude this part in
Section 2.4.4 with further remarks on the heuristic procedure and on some potential pitfalls
that might be encountered.

2.4.1 Route generation

During the initialization procedure, first, a set of routes is generated through the parallel
savings heuristic (Clarke and Wright, 1964). As trucks are by definition not associated

32

2.4 Variable Neighborhood Search for Solving the VRPDERO

with a capacity in the VRPDERO, we generate the routes in such a way that each route
may contain at most ⌈|VN |/|K|⌉ customers.

Then, for a limited number of iterations, a local search procedure is applied. Within
this procedure, we employ the 2-opt, String Relocation (SR), and String Exchange (SE)
operators (Breedam, 1994; Lin and Kernighan, 1973). More precisely, the 2-opt operator
inverts a randomly chosen subsequence of a route, SR involves a relocation of a random
customer from one route to another route and SE invokes an exchange of two random
customers from two distinct routes. When a vertex is moved through SR or SE, we insert
it at the position that will add the least additional length to the affected route. A 2-opt
move is only applied, if the move will decrease the length of the original route. Similarly,
SR and SE are only applied if the move leads to a reduction of the maximum length of
the routes that are involved in the move.
For shaking, we also use the 2-opt, SR, and SE operators that we described above. More

precisely, for k iterations, first, a random move is selected. Then, one route (or two routes,
in case of SR or SE) is selected and the move applied. However, as opposed to local search,
we also accept an increase in the route length after the application of any move.

2.4.2 Drone Insertion

So far, we did not consider drone operations during the construction of the routes, local
search, or shaking. At this point, we are interested in a procedure that transforms a set
of routes into a VRPDERO solution through introduction of drone operations. The drone
operations should be inserted within each route in a manner, such that the makespan
is minimized. For the insertion of drones in an existing route, we apply the following
procedure for each route π represented by the vector x (see Algorithm 2.1). Assume that
each route π = {0, . . . , n+ 1} is given as a permutation of vertices. Set VL = π \ {n+ 1},
VR = π \ {0}, and VN = VL ∩ VR. Then, we perform a greedy search strategy that
iteratively looks for a drone operation (i, sl, w, sr, j) (see Section 2.3.1 for its definition)
that satisfies the following criteria:

1. A significant reduction in the length of the truck’s route is achieved through the
assignment of a customer, which is currently served by the truck, to a drone.

2. The temporal delay, that is incurred at the retrieval location through the synchro-
nization requirement, is minimized.

The first criterion can be evaluated very quickly and is guided by the following formula,
where dij is the distance between nodes i and j (see Section 2.3.1), w is the customer as-
sociated with the drone operation, and wp and ws are the direct predecessor and successor

33

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

of w in the route π:
γ(w) := dwp,ws − dwp,w − dw,ws (2.38)

Clearly, the first criterion only depends on the customer w associated with the drone
operation (i, sl, w, sr, j). Therefore, the second criterion integrates the launch and retrieval
locations (i, sl) and (sr, j), respectively. More precisely, the second criterion considers the
temporal difference in arrival time between the truck and drone at the retrieval location
(that is defined by (sr, j) in the current operation) after the assignment of customer w

to a drone. In order to calculate this value, given the starting time defined at (i, sl), we
calculate the arrival time of the truck and drone, denoted by asrj and asrj , respectively.
The temporal delay is then calculated as an absolute value as follows:

λ(i, sl, w, sr, j) = |asrj − asrj | (2.39)

Based on this formula, a large value indicates that either the drone must wait for the
truck or the truck must wait for the drone for a long time. In the first case, if a drone
arrives much earlier than a truck, it is unlikely that a good utilization will be achieved as
the drone spends much time waiting. For such cases, it can be beneficial to look for an
earlier retrieval location such that the temporal delay is reduced and, in this sense, fast
synchronization achieved. In the second case, if a truck arrives much earlier than a drone,
it must wait for the drone to arrive before it can continue its tour. Therefore, it can be
worthwhile to investigate if the drone cannot be retrieved at a later point in the tour such
that time spent waiting by the truck is turned into time spent moving.
Given an initial route, these criteria are then embedded in an algorithm as follows.

First, we look for w∗ = argmaxwγ(w). Note that w∗ must be feasible, i. e., it does not
serve as a launch or retrieval location for any previously chosen operation. Afterwards, the
operation (i, sl, w, sr, j)

∗ = argmin(i,sl,w,sr,j)λ(i, sl, w, sr, j) is identified (for the domain of
(i, sl, w, sr, j), refer to Section 2.3.1). This operation must be feasible with respect to the
drone’s endurance, the number of drones in operation at any point, and any other links
between the route of the truck and drone operations that are implied by MILP (2.2)–
(2.27). As we will see in the following section, an operation may also be prohibited, i. e.,
tabu. If the operation is feasible and not tabu, we add it to the list of operations and
iterate until no more feasible or improving operation can be found.

2.4.3 Divide and Conquer

The drone insertion procedure that was introduced in the previous section is summarized
in Algorithm 2.3. This procedure is a very fast and deterministic operator that performs

34

2.4 Variable Neighborhood Search for Solving the VRPDERO

Algorithm 2.3 A summary of the drone insertion heuristic.
1: while the termination criterion is not met do
2: for customer w with maximum γ(w) in the route π do
3: for operation (i, sl, w, sr, j) with minimum λ(i, sl, w, sr, j) that is feasible do
4: if the operation is not tabu (see Section 2.4.3) then
5: insert (i, sl, w, sr, j) and remove w from π
6: end if
7: end for
8: end for
9: end while

a greedy search that is guided by the criteria γ and λ. While the results returned by
this procedure are solid in many cases, it may be of interest to perform a more thorough
and in-depth exploration of possible drone operations. To this end, we propose a search
space, called N (1) search space, where the neighborhood relationship is a single drone
operation, i. e., two neighboring solutions differ through exactly one drone operation. For
the exploration of the N (1) search space, we embed the drone insertion procedure in a
D&C approach (for a general description of a D&C algorithm, see, e. g., (Cormen et al.,
2014) and references therein).
In order to describe our D&C approach, consider the rooted tree shown in Figure 2.4.1.

In this tree, the root node is associated with the route π of a single truck where no drone
operations occur. The children of each node then refer to operations that are inserted
into π in a sequential manner. The depth of a node directly corresponds to the number
of operations that have been inserted.

π

o0

o1 o2

o3 f

f

o4

o5 o6 f

o7

. . .

¬o1

¬o3

¬(o1 ∨ o2)

¬o0

¬o5 ¬(o5 ∨ o6)

¬(o0 ∨ o4)

Figure 2.4.1: A sample divide-and-conquer search tree in an N (1) search space.

Within the D&C approach, first, we apply the drone insertion procedure (Algorithm 2.3)
which generates the leftmost branch. This branch indicates that o0 is the first operation

35

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

inserted in the route, afterwards o1 is inserted, and then, no more operation can be found.
As the leaf node o1 has no children, we say that this node has been fully fathomed. After
the generation of the initial branch, we follow a D&C approach and explore the tree in a
depth-first manner. More precisely, after the initial (leftmost) branch has been generated,
we start with node o1, that has been fathomed, and move to its parent node. Then, we
generate a new branch where the operation at depth 2 of the tree is prohibited to be
o1, i. e., ¬o1, which generates the node o2 and its child o3 through Algorithm 2.3. This
procedure is iterated according to Algorithm 2.4 until a termination criterion is met or
the tree fully explored.

Algorithm 2.4 Depth-first search in the N (1) search space.
1: Root r ← π
2: r.addBranch() ▷ refer to Algorithm 2.3
3: Node n = r.getLeaf()
4: while Termination criteria not met do
5: if n.degree == 0 then
6: n.fathomed ← true
7: end if
8: Node p = n.getParent()
9: if (p.getRightMostChild().Operation == {}) then

10: p.fathomed ← true
11: end if
12: while p.fathomed == true do
13: p = p.getParent()
14: end while
15: n = p.addRightMostChild()
16: n.addTabus(n.Siblings)
17: n.addOperations(n.Ancestors)
18: n.addBranch() ▷ refer to Algorithm 2.3
19: end while

2.4.4 Comments

In essence, this D&C procedure is well-suited to implementations that utilize parallel-
computing architectures (see, e. g., (Kumar and V. N. Rao, 1987; N. N. Rao and Kumar,
1987)). More precisely, after the initial leftmost branch has been generated, branching can
start on multiple nodes. This procedure can then be iterated whenever unexplored nodes
are available, yielding a parallel depth-first search procedure. However, for the purpose of
our preliminary study, we chose a more simple sequential depth-first search approach.
As no nodes are pruned in our procedure, in principle, we greedily search the complete

36

2.4 Variable Neighborhood Search for Solving the VRPDERO

operation space where the neighboring relation between two nodes is a single operation.
This enumeration is easily possible for small instances that can be associated with small
(in terms of vertices) routes at the root node. However, for large initial routes and an
increase in the maximum permitted steps sn, the size of the tree may become prohibitively
large. In such a case, for providing a heuristic exploration of the tree, it is easily possible
to introduce some criteria that limit the effort spent on the search. Possible criteria that
limit the overall size of the tree include, e. g., limits on the number of nodes that have
been processed in the tree, or a limit on the degree of each node before we consider it to be
fathomed. As an alternative to restricting the size of the tree, it is also possible to reduce
the time that is spent processing each node in the tree. More precisely, additional logic
might be added to Algorithm 2.3 such that only a subset of drone operations is considered
in the first place. Given the initial route π, let iid, wid, and jid refer to the indices of
vertices i, w, and j in π. Then, one possibility is to only consider those operations, where
|wid− iid| and |jid−wid| do not exceed a given threshold. Typically, in optimal solutions,
retrieval of drones occurs almost immediately after the launch such that a high utilization
is guaranteed. Finally, a more general criterion might simply limit the runtime spent on
the exploration of the tree.

It is also important to consider that the N (1) search space may prevent the (globally)
optimal solution to be found in some cases, if the feasibility of an operation is considered
during each move in Algorithm 2.3. To illustrate this case, consider Figure 2.4.2, which
shows an initial route (left). Assume that we have a single drone with limited endurance
and the optimal drone operations are (a, s0, b, s1, d) and (a, s1, c, s2, d) (right). However,
given the initial route and the N (1) search space, it is not possible to reach the optimal
solution without visiting an intermediate solution that is infeasible. Conversely, the in-
sertion of an operation that is feasible by itself can render existing operations, that were
previously deemed feasible, infeasible. Therefore, careful attention is required when the
feasibility of a solution is checked and a full exploration is only guaranteed if the feasibility
is verified on a node-level in the rooted tree instead of a per-move basis in Algorithm 2.3.
However, such delayed validation of operational feasibility (i. e., on a node instead of per-
move basis) will increase the size of the tree.
Any increase in discrete steps has significant influence on number of possible drone

operations and consequently, the size of the tree and the potential degree of its nodes. In
the MILP (2.2)–(2.27), the number of possible drone operations, which are reflected by
combinations of variables yksliw and ỹksrwj , grows in the order of O(|S|2) with the amount of
discrete steps. As the route is assumed to be fixed when solving the drone insertion, given
sn, a route π = {0, a, . . . , b, n+1} with π\{0, n+1} ∈ VN \{w}, and a vertex w ∈ VN that is
set to be served by drone, the number of potential operations can be calculated according

37

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

a

b

c

d a

b

c

d a

b

c

d

Figure 2.4.2: An initial route (left) and the optimal solution that features two drone operations
(right). In this case, the optimal solution can only be constructed by generating an intermediately
infeasible solution in the N (1)-neighborhood (center). In this case, we assume that sn = 2, i. e.,
we have S = {0, 1, 2} which implies an available discrete point at the center of each arc.

to formula (2.40), in which the first underbrace accounts for the drone operations that
are performed on single arcs and the second underbrace accounts for all drone operations
that involve multiple arcs. As an example, Figure 2.4.3 visualizes the number of possible
operations for a route πk = {g, h, j} with just three vertices and sn = 2. In this case, for
sn = 1, we have three possible operations that are highlighted in red. For sn = 2, the
number of possible operations already increases to 10 and, clearly, this amount grows not
just with an increase in sn but also with respect to the value of |πk|.

|π|−1∑
i=1

(
∑
sl∈SL

∑
sr∈SR
sr>sl

1)

︸ ︷︷ ︸
single arc

+

|π|−2∑
i=1

((|π| − 1− i)
∑
sl∈SL

∑
sr∈SR

1)

︸ ︷︷ ︸
multiple arcs

(2.40)

2.5 Computational Experiments and their Numerical Results

We carried out two main classes of computational experiments, on small- and large-scale
instances, and we present the numerical results in this section. More precisely, in Sec-
tion 2.5.1 we discuss the performance of Gurobi Optimizer in solving MILP (2.2)–(2.27)
and compare its performance to our proposed heuristic. Afterwards, Section 2.5.2 shows
that the heuristic can also be used to solve larger instances.
All experiments were performed on single compute nodes in an Intel® Xeon® Gold 6126

cluster, where each node operated at 2.6 GHz with 16 GB of RAM (hyper-threading
disabled). We implemented our algorithms in Java SE 8 and for solving MILPs, we used
Gurobi Optimizer 8.1.0 (Gurobi Optimization, LLC, 2023). The solver was allowed to
utilize all cores of the processors, whereas our heuristic ran single-threaded. Since there is

38

2.5 Computational Experiments and their Numerical Results

g h j

w

w

w

w

w

w

s0 s1 s2,
s0

s1 s2

g h j

w

w

w

w

s0 s1 s2,
s0

s1 s2

Figure 2.4.3: All possible drone operations for a given route πk = {g, h, j}, a customer w that is
served by drone and sn = 2. The left-hand and right-hand side represent the first and second under
brace in formula (2.40), respectively. The operations that are possible for sn = 1 are highlighted
in red.

no commonly accepted benchmark for the VRPD, we performed our experiments on the
benchmark instances used by Agatz et al. (2018). The instances are specified by a graph
G(V,E) (that determines the location of the depot and customers), the relative velocity
α, and the endurance E . In particular, through a relative endurance parameter Er, the
endurance E can be calculated as follows, where max(E) refers to the edge with maximum
weight in the graph G:

E := Er ·max(E), Er ∈ [0, 2]. (2.41)

In this case, Er = 0 guarantees that no drone operation is possible while Er = 2 marks
any operation as feasible. Furthermore, the trucks and drones are assumed to both follow
the Euclidean distance metric. For different numbers of vertices, Agatz et al. (2018)
provide 10 instances with a uniform distribution of customers. Each instance is associated
with a value α ∈ {1, 2, 3} and a value Er ∈ {0.2, 0.4, 0.6, 1.0, 1.5, 2.0} yielding a total of
10 · 3 · 6 = 180 different instances for a given size (i. e., |V |). Furthermore, by definition
of Poikonen et al. (2017) and X. Wang et al. (2017), the number of trucks and drones
per truck are parameters in the VRPD (and therefore, also in the VRPDERO). As a
meaningful selection, we limit ourselves to |K| ∈ {1, 2} and |D| ∈ {1, 2}, i. e., we either
have one or two trucks that are equipped with either one or two drones each. In addition, to
investigate the benefits of en route operations, we consider sn ∈ {1, 2}, i. e., we either have
0 or 1 discrete steps on each arc, which can be used for en route operations. Figure 2.5.1
shows a sample VRPDERO solution.

39

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

Figure 2.5.1: A sample VRPDERO solution on a problem instance with 50 customers, |K| = 3,
D = 1, and sn = 2. The solid and dashed lines represent the paths of the vehicles and drones,
respectively.

2.5.1 Small Instances

For the purpose of studying the performance of the MILP solver and a comparison to
our heuristic, we used instances with |V | ∈ {8, 9, 10} vertices. For each size, we have ten
different instances each of which is associated with three different values for the relative
velocity α and six different values for the relative endurance Er. In total, this yields
3 · 180 = 540 instances. Based on the additional VRPDERO-specific problem parameters,
i. e., the number of trucks, drones, and discrete steps, we considered a total of 23 · 540 =

4320 problem instances in our experiments. Sections 2.5.1.1 and 2.5.1.2 are dedicated to
detailed numerical results that were obtained by solving these instances through the MILP
solver and our heuristic.

2.5.1.1 Results obtained through the MILP Formulation

In this section, we provide the results that were obtained by solving the MILP introduced
in Section 2.3.1 using the solver Gurobi Optimizer 8.1.0 (Gurobi Optimization, LLC, 2023).
More precisely, we solved these 4320 instances in two different ways:

1. We solved the MILP (2.2)–(2.27) while we included the VIEQs (2.29)–(2.35) that

40

2.5 Computational Experiments and their Numerical Results

provide bounds on the makespan. For sn = 1, we only included VIEQs (2.29) and
(2.35) in the model. For the general case, where sn ≥ 2, we also took the variables
ykiwj into consideration, enabling us to add constraints (2.30)–(2.31) to the model.
Through these additional variables and constraints, the VIEQs (2.35) were replaced
with the more general VIEQs (2.37).

2. In MILP (2.2)–(2.27), the cardinality of rows required for constraints (2.16)–(2.17)
that bind the values of the zkaiwje variables is very large. Furthermore, given the
underlying set of these variables, the typical subset of variables in the solution vec-
tor with binary value 1 is very sparse and thus, they rarely influence constraints
(2.27). Therefore, these constraints might be a good candidate for a row-generation
procedure. Following this logic, we also considered a case where these constraints
were treated as lazy constraints. More precisely, whenever the solver detects a new
candidate incumbent integer-feasible solution, we determine if any of constraints
(2.16)–(2.17) are violated. If this is the case, the respective constraints are lazily
added to the model, i. e., not before needed or only as necessary, and then, the
solver’s internal branch-and-cut procedure continues. For this case, we also included
the VIEQs according to the previous case (as we previously described).

When solving the VRPDERO as MILP, we limited the runtime of the solver to 10
minutes. Note that, in principle, we could have also solved MILP (2.2)–(2.27) without the
presence of any VIEQ. However, for all but trivial cases, this will lead to Mixed-Integer
Programming (MIP) gaps that are close or equal to 100% after runtime. As this is not
very revealing, we decided to exclude them from the final experiments and analysis.
For the analysis of our results, we introduce the following metric. The value ∆ indicates

the relative change in makespan through the introduction of drones and is calculated as
follows:

∆ := 100%− objective value after runtime
optimal objective value with D = 0

(2.42)

Note that the optimal objective value for D = 0 can be obtained within a few seconds
by solving MILP (2.2)–(2.27).

The results are visualized in Figures 2.5.2 and 2.5.3; however, for the sake of com-
pleteness, the detailed numerical results are available in the Appendix 2.A (refer to Ta-
bles 2.A.1–2.A.6). Overall, the problem parameters such as, e. g., the relative endurance Er,
the number of trucks |K|, the number of drones D, and the instance size have a significant
influence on the runtime of the solver. A small relative endurance (i. e., Er ∈ {0.2, 0.4, 0.6})
will often allow the solver to find the optimal solution within the allocated runtime. More-
over, a change in the discrete steps might increase the runtime significantly. As an exam-

41

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

ple, even for the smallest instance (n = 8), the introduction of a discrete step on each arc
can cause a nearly tenfold increase in runtime to find the optimal solution.
In general, treating constraints (2.16)–(2.17) as lazy constraints has some benefits in

the sense that most instances can be solved faster to proven optimality or with smaller
gaps within the runtime limit. Significant speed-ups are gained when there is no en route
possibility, i. e., sn = 1. However, this procedure quickly approaches the quality of the
non-lazy case as the instance size increases and, as a result, the runtime limit is steadily
approached by both approaches.

0.2 0.6 1.0 1.5 2.0 0.2 0.6 1.0 1.5 2.0 0.2 0.6 1.0 1.5 2.06s

60s

600s

T
im

e
t
[s]

α = 1
α = 2
α = 3

8 9 10
Instance Size

0.2 0.6 1.0 1.5 2.0 0.2 0.6 1.0 1.5 2.0 0.2 0.6 1.0 1.5 2.06s

60s

600s

Relative Endurance Er

T
im

e
t
[s]

α = 1
α = 2
α = 3

Figure 2.5.2: The average time t (shown on a logarithmic scale) required by the solver for different
instance sizes, relative endurances Er, and relative velocities α. The lines are shown for sn = 1
(upper figure) and sn = 2 (lower figure) and a single truck equipped with a single drone (based on
Tables 2.A.1 - 2.A.6). The solid lines represent the basic MILP and the dashed lines represent the
case where lazy constraints were used.

Figure 2.5.2 visualizes the runtime of the solver for both approaches that were described
at the beginning of this section. Furthermore, Figure 2.5.3 highlights the remaining MIP

42

2.5 Computational Experiments and their Numerical Results

gap after runtime. These figures show the cases of a single truck that is equipped with a
single drone for sn = 1 and sn = 2, respectively.
A peak can often be detected for the runtime and MIP gap at Er = 1. This behavior is

interesting as Er = 1 implies a much more constrained solution space than Er ∈ {1.5, 2.0}.
Nevertheless, the structure of optimal solutions can differ in these cases and, therefore, so
can the runtime to determine them.

0.2 0.6 1.0 1.5 2.0 0.2 0.6 1.0 1.5 2.0 0.2 0.6 1.0 1.5 2.0

20

40

60

80

100

M
IP

G
ap

[%
]

α = 1
α = 2
α = 3

8 9 10
Instance Size

0.2 0.6 1.0 1.5 2.0 0.2 0.6 1.0 1.5 2.0 0.2 0.6 1.0 1.5 2.0

20

40

60

80

100

Relative Endurance Er

M
IP

G
ap

[%
]

α = 1
α = 2
α = 3

Figure 2.5.3: The average remaining relative MIP gap after runtime returned by the solver for
different instance sizes, relative endurances Er, and relative velocities α. The lines are shown for
sn = 1 (upper figure) and sn = 2 (lower figure) and a single truck equipped with a single drone
(based on Tables 2.A.1 - 2.A.6). The solid lines represent the basic MILP and the dashed lines
represent the case where lazy constraints were used.

Similar observations can be made as the number of drones per truck D or the number of
trucks |K| is increased. Typically, a single truck equipped with two drones can be tackled
easier by the solver than the case of two trucks that are equipped with one drone each.
Moreover, the case of two trucks equipped with two drones each has proven itself to be

43

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

the most difficult case. In all of these cases, generally, the average runtime and MIP gaps
increase tremendously compared to the basic case of |K| = D = 1 (see Tables 2.A.1–
2.A.6). Clearly, the number of columns and rows of MILP (2.2)–(2.27) are independent of
the number of drones, i. e., D (only the right-hand side in constraints (2.27) is affected).
Opposed to this, an increase in the number of trucks increases both, the number of variables
and constraints, significantly.
To sum up, based on the recorded ∆ values in Tables 2.A.1–2.A.6, notable makespan-

savings are possible through the introduction of drones. These values vary significantly
with the drone parameters and hence, care should be taken when designing a drone fleet
in practice. Moreover, the introduction of a discrete step on each arc typically reduces
the makespan by an additional 2 to 3% with respect to the non-en route cases. Compared
to this, a second drone allows for significantly increased savings that typically fall in the
range of 5 to 15%. In both cases, the increased savings depend strongly on the relative
velocity and endurance of drones. This is also illustrated in Figure 2.5.4.

2.5.1.2 Results obtained through the Heuristic

In this section, we provide the numerical results that were obtained by solving the small
instances through the heuristic introduced in Section 2.4. We begin by explaining the
parameters that were used for the implementation of the heuristic. For the initialization
procedure described in Section 2.4.1, after the initial generation of routes, |V |3 iterations
were spent on local search. We ran the heuristic five times, each time using a different
random seed, for at most 10 minutes. If the incumbent solution remained unchanged for
one minute, the heuristic terminated ahead of time. The value kmax, that determines the
maximum depth of the neighborhood within our VNS procedure, was set to kmax = 6.
For the determination of feasible moves in the drone insertion heuristic (Algorithm 2.3),

we only considered the limit on the number of drones currently in operation and the en-
durance with respect to the current operation. Recall that, as mentioned in Section 2.4.4,
the insertion of a feasible operation can render previously feasibly inserted operations in-
feasible. The feasibility of a solution (defined by multiple operations) was then determined
whenever a new branch was added to the rooted tree (Section 2.4.3). For the depth-first
search of this tree, we impose a maximum degree of 30 on all nodes (including the root),
before considering it to be fathomed. Alternatively, in each iteration of Algorithm 2.1, we
canceled the exploration of the tree after 5000 calls of Algorithm 2.3.
The detailed results can be found in Tables 2.A.7–2.A.9 (see the Appendix). With

respect to the results achieved by the MILP solver, overall, our heuristic demonstrated
desirable behavior. In what follows, we will compare the results of our heuristic to the

44

2.5 Computational Experiments and their Numerical Results

best results achieved by the MILP solver through either approach (best results from Ta-
bles 2.A.1–2.A.3 and Tables 2.A.4–2.A.6). For the 4320 different problem instances and 5
runs per heuristic, the heuristic found a solution that was as good as or better than the
one provided by the solver in 18569 out of 21600, i. e., 85.96% of all cases. Given that
not every instance was solved to optimality by Gurobi after runtime, the results returned
by the heuristic were on average 3.6% better in terms of the objective value. Therefore,
it is fair to conclude, as backed up by the detailed results, that for the cases where the
heuristic performed worse than the solver, the solution quality did not differ much. The
average runtime for the heuristic was 106.56 seconds, i. e., on average the final solution
was detected within 106.56 − 60 = 44.76 seconds. Note that our neighborhood change
(see Algorithm 2.2) is also triggered when the same objective value is found through a
different routing (for an explanation, see Section 2.4). Therefore, the same solution (that
is constructed through a different routing) might often be found earlier. As was the case
for the MILP, runtime behavior was significantly influenced by the discrete steps, the
number of drones, and endurance of drones. Clearly, all of these parameters influence the
size of the tree explored during D&C.
Figure 2.5.4 visualizes the relative change in the makespan∆ (defined by formula (2.42))

for the cases that were recorded for the heuristic. These figures provide an insight in the
savings through allowing an en route operation and the influence of the relative endurance
Er and relative velocity α. A look at this figure confirms the observations that were
already mentioned in the previous section. More precisely, the introduction of a discrete
step increases the savings by typically 2 to 3%. The introduction of a second drone is
often much more effective, albeit, the relative endurance and velocity must be sufficiently
large. Overall, the relative improvement diminishes as α or Er are increased. Nevertheless,
fast drones benefit noticeably more than slow drones from a further increase in endurance.
Conversely, large endurance is only of limited usefulness in presence of slow-moving drones.
These observations also apply to the cases where multiple trucks are present. For these
small instances, in the presence of two trucks, the average number of customers served
by each truck is very small. Therefore, drones often seem very effective in these cases.
Care must be taken when comparing the cases of one truck to those where two trucks are
present as the denominator when calculating ∆ also changes.

2.5.2 Large Instances

In this section, we show that our heuristic is also suitable for tackling larger VRPDERO
instances. To this end, we tested on reasonably-sized instances with either 20 or 50 vertices
that are within the scope of those that were used for related problems (see, e. g., (Agatz

45

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

0.20.40.6 1 1.5 2
0

10

20

30

40

50

60

Rel. Endurance Er
|K| = 1, D = 1

R
el
.
Im

pr
ov
em

en
t
∆

[%
] α = 1

α = 2
α = 3

0.20.40.6 1 1.5 2
0

10

20

30

40

50

60

Rel. Endurance Er
|K| = 1, D = 2

α = 1
α = 2
α = 3

0.20.40.6 1 1.5 2
0

10

20

30

40

50

60

Rel. Endurance Er
|K| = 2, D = 1

R
el
.
Im

pr
ov
em

en
t
∆

[%
] α = 1

α = 2
α = 3

0.20.40.6 1 1.5 2
0

10

20

30

40

50

60

Rel. Endurance Er
|K| = 2, D = 2

α = 1
α = 2
α = 3

Figure 2.5.4: The average relative makespan reduction ∆ depending on the number of trucks |K|,
the number of drones per truck D, the relative endurance Er, and the relative velocity α (based
on Tables 2.A.7–2.A.9). Lines shown for sn = 1 (solid) and sn = 2 (dashed).

et al., 2018; Bouman et al., 2018a; Murray and Chu, 2015)). On these instances, we tested
according to the specifications given at the beginning of Section 2.5. Deviating from that,
we only used Er ∈ {0.2, 0.4, 0.6, 1.0} as any larger value on the relative endurance had
no significant impact (see also Figure 2.5.4). Hence, in total, we tested on 1920 medium-
sized instances. On each of these instances, we ran our heuristic five times with the time
restrictions that were introduced previously.
With respect to the description of the parameters that were used for small instances

(see Section 2.5.1.2), we adjusted some of them as follows. In order, to perform a more
focused exploration of the search space, the maximum depth of the neighborhood has been
reduced to kmax = 3. Furthermore, to achieve a better tradeoff between diversification

46

2.5 Computational Experiments and their Numerical Results

(route generation) and intensification (exploration of the rooted tree), some parameters
for the D&C approach were adjusted. More precisely, a maximum degree of 10 on the root
node and 5 on all other nodes was imposed, before we considered them to be fathomed.
Alternatively, we canceled the search after 104 calls of Algorithm 2.3.

The detailed results are available in Table 2.A.10 of the appendix. In general, our
heuristic still performs well on these instances. On average, the final solution is found
within just below two minutes of runtime (after 111 seconds). As there are no other
results to compare ourselves to, for this section, we focus on the performance differences
of our heuristic in solving these instances with regard to en route operations. We have
seen in Section 2.5.1 that en route operations significantly increase the computational
complexity of the problem. Therefore, we are interested to know if our heuristic is able to
process larger instances as well.

Figure 2.5.5 compares the average objective values achieved through the heuristic while
en route operations are allowed (sn = 2) to the cases where they are not allowed (sn = 1).
More precisely, for each combination of trucks and drones, this figure contains a plot for
|V | ∈ {20, 50} and the different combinations of drone parameters.

Overall, the much more difficult case of en route operations is still handled well by our
heuristic. As we already observed in the previous section, enabling en route operations
can in some cases allow saving in the order of typically 2 to 3% and up to 10%. Typically,
such savings are achieved if the relative velocity is large and the relative endurance small.
However, it is also evident that the solutions found for the en route case are in some cases of
slightly worse quality than those found for the basic case. As was already evident on small
instances, the consideration of en route operations increases the size of the search space
tremendously. As a result, much more effort has to be spent during the D&C approach to
identify the best drone operations in the en route case, as the rooted tree might become
significantly larger. For these cases, an implementation that provides a parallel depth-first
search or prunes parts of the search tree might yield a significant speed-up.

In a similar manner, Figure 2.5.6 gives some insights into the structural differences when
drone operations are allowed. More precisely, this figure visualizes the increase (decrease)
of drone operations. This figure highlights that solutions differ noticeably at a small
relative endurance values (i. e., Er ∈ {0.2, 0.4}), where the number of operations can be
larger in the en route case. In particular, there is no large variation in these plots with a
change in the relative velocity α. However, as we have seen in Figure 2.5.5, an increase in
α can nevertheless reduce the makespan significantly.

47

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

0.2 0.4 0.6 1
0.9

0.95

1

1.05

1.1

Rel. Endurance Er
|K| = 1, D = 1

O
bj
ec
tiv

e(
s n

=
2)

O
bj
ec
tiv

e(
s n

=
1)

α = 1
α = 2
α = 3

0.2 0.4 0.6 1
0.9

0.95

1

1.05

1.1

Rel. Endurance Er
|K| = 1, D = 2

α = 1
α = 2
α = 3

0.2 0.4 0.6 1
0.9

0.95

1

1.05

1.1

Rel. Endurance Er
|K| = 2, D = 1

O
bj
ec
tiv

e(
s n

=
2)

O
bj
ec
tiv

e(
s n

=
1)

α = 1
α = 2
α = 3

0.2 0.4 0.6 1
0.9

0.95

1

1.05

1.1

Rel. Endurance Er
|K| = 2, D = 2

α = 1
α = 2
α = 3

Figure 2.5.5: The average makespan shown as relative values for the en route and basic case
depending on the number of trucks |K|, the drones per truck D, the relative endurance Er, and
the relative velocity α (based on Table 2.A.10). Lines shown for |V | = 20 (solid) and |V | = 50
(dashed).

2.6 Conclusion

In this paper, we have introduced the VRPDERO, which consists of a combination of
multiple trucks and drones in a last-mile delivery setting. The distinguishing feature
between the VRPDERO and VRPD is that the former allows drones to be launched and
retrieved on arcs by the truck; more precisely, drones are allowed to be launched and
retrieved on certain discrete steps on each arc. We formulated the VRPDERO as a MILP.
Then, we proposed VIEQs in order to enhance the performance of the solver and showed
the effectiveness of the VIEQs through computational experiments. However, we are only

48

2.6 Conclusion

0.2 0.4 0.6 1
0.5

1

1.5

2

2.5

Rel. Endurance Er
|K| = 1, D = 1

D
ro
ne

O
pe

ra
tio

ns
(s

n
=

2)

D
ro
ne

O
pe

ra
tio

ns
(s

n
=

1) α = 1
α = 2
α = 3

0.2 0.4 0.6 1
0.5

1

1.5

2

2.5

Rel. Endurance Er
|K| = 1, D = 2

α = 1
α = 2
α = 3

0.2 0.4 0.6 1
0.5

1

1.5

2

2.5

Rel. Endurance Er
|K| = 2, D = 1

D
ro
ne

O
pe

ra
tio

ns
(s

n
=

2)

D
ro
ne

O
pe

ra
tio

ns
(s

n
=

1) α = 1
α = 2
α = 3

0.2 0.4 0.6 1
0.5

1

1.5

2

2.5

Rel. Endurance Er
|K| = 2, D = 2

α = 1
α = 2
α = 3

Figure 2.5.6: The average number of drone operations shown as relative values for the en route and
basic case depending on the number of trucks |K|, the drones per truck D, the relative endurance
Er, and the relative velocity α (based on Table 2.A.10). Lines shown for |V | = 20 (solid) and
|V | = 50 (dashed).

able to solve some small-scale problems to optimality through a state-of-the-art solver
within reasonable runtime. Therefore, we introduced a heuristic, which is based on the
concepts of VNS and TS. Within this heuristic, as a local search operator, we introduced
a drone insertion procedure that was embedded within a scalable D&C approach. We
provided an extensive computational study that considered the impact of several problem
parameters on, e. g., the makespan and runtime.

Overall, through our numerical results, we are able to show the potential of a reduced
makespan and a higher utilization of drones if we consider the possibility of launching and
retrieving drones en route. Notably, en route operations seem most beneficial when either

49

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

the drone endurance is small or the relative velocity is sufficiently large. In the former
case, the drone is able to perform operations that would otherwise not be feasible. In
the latter case, the drone is able to perform multiple operations in a most efficient way.
However, we have also seen that the introduction of en route operations increases the
computational complexity of the problem significantly. As a next step, it might be worth
to refine our drone insertion operators. Naturally, it might be worthwhile to investigate
the performance of a parallel depth-first search procedure. Moreover, a procedure to
prune parts of the search tree might significantly increase the performance, in particular
in solving larger instances. Finding alternative and possibly compact MILP formulations
might also be an interesting research direction.

In this paper, we only considered a basic model with possibility of en route operations
and assumed that the battery is recharged instantaneously after each delivery and dis-
charged only if the drone is moving. Furthermore, possible effects of service times were
neglected. In a practical setting, we might also be interested to investigate more realis-
tic battery life considerations, recharge models, and the impact of potentially stochastic
service times. For the moment, we leave them as future research plans.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments and sugges-
tions that helped us in improving the quality of this paper.

2.7 References

Agatz, Niels, Paul Bouman, and Marie Schmidt (2018). “Optimization Approaches for the
Traveling Salesman Problem with Drone”. In: Transportation Science 52.4, pp. 965–981.

Bouman, Paul, Niels Agatz, and Marie Schmidt (2018a). “Dynamic programming ap-
proaches for the traveling salesman problem with drone”. In: Networks 72.4, pp. 528–
542.

Breedam, Alex van (1994). “An Analysis of the Behavior of Heuristics for the Vehicle
Routing Problem for a selection of problems with Vehicle-related, Customer-related,
and Time-related Constraints Contents”. Ph.D. thesis. University of Antwerp.

Clarke, Geoff and John W. Wright (1964). “Scheduling of Vehicles from a Central Depot
to a Number of Delivery Points”. In: Operations Research 12.4, pp. 568–581.

Cormen, Thomas H. et al. (2014). Introduction to Algorithms. 3rd ed. Cambridge: MIT
Press.

50

2.7 References

Di Puglia Pugliese, Luigi and Francesca Guerriero (2017). “Last-Mile Deliveries by Us-
ing Drones and Classical Vehicles”. In: Optimization and Decision Science: Methodolo-
gies and Applications. Springer Proceedings in Mathematics & Statistics 217. Cham:
Springer, pp. 557–565.

Drexl, Michael (2012b). “Synchronization in Vehicle Routing—A Survey of VRPs with
Multiple Synchronization Constraints”. In: Transportation Science 46.3, pp. 297–316.

Gendreau, Michel and Jean-Yves Potvin (2010). Handbook of Metaheuristics. 2nd ed.
Cham: Springer.

Gentry, Nicholas Kristofer, Raphael Hsieh, and Luan Khai Nguyen (2016). “Multi-use
UAV docking station systems and methods”. US9387928B1 (United States Patent).

Glover, Fred (1986). “Future paths for integer programming and links to artificial intelli-
gence”. In: Computers & Operations Research 13.5, pp. 533–549.

Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual.
Hansen, Pierre et al. (2017). “Variable neighborhood search: basics and variants”. In:

EURO Journal on Computational Optimization 5.3, pp. 423–454.
Kumar, Vipin and V. Nageshwara Rao (1987). “Parallel depth first search. Part II. Anal-
ysis”. In: International Journal of Parallel Programming 16.6, pp. 501–519.

Lin, S. and B. W. Kernighan (1973). “An Effective Heuristic Algorithm for the Traveling-
Salesman Problem”. In: Operations Research 21.2, pp. 498–516.

Marinelli, Mario et al. (2018). “En route truck–drone parcel delivery for optimal vehicle
routing strategies”. In: IET Intelligent Transport Systems 12.4, pp. 253–261.

Miller, C. E., A. W. Tucker, and R. A. Zemlin (1960). “Integer Programming Formulation
of Traveling Salesman Problems”. In: Journal of the ACM 7.4, pp. 326–329.

Mladenović, N and P Hansen (1997). “Variable Neighborhood Search”. In: Computers &
Operations Research 24.11, pp. 1097–1100.

Murray, Chase C. and Amanda G. Chu (2015). “The flying sidekick traveling salesman
problem: Optimization of drone-assisted parcel delivery”. In: Transportation Research
Part C: Emerging Technologies 54, pp. 86–109.

Otto, Alena et al. (2018). “Optimization approaches for civil applications of unmanned
aerial vehicles (UAVs) or aerial drones: A survey”. In: Networks 72.4, pp. 411–458.

Poikonen, Stefan, Xingyin Wang, and Bruce Golden (2017). “The vehicle routing problem
with drones: Extended models and connections”. In: Networks 70.1, pp. 34–43.

Rao, Nageshwara N. and Vipin Kumar (1987). “Parallel depth first search. Part I. Imple-
mentation”. In: International Journal of Parallel Programming 16.6, pp. 479–499.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2018a). “A Variable Neighborhood
Search Algorithm for Solving the Vehicle Routing Problem with Drones”. Technical

51

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

Report. Business Information Systems & Operations Research, Technische Universität
Kaiserslautern.

Toth, Paolo and Daniele Vigo (2002). The vehicle routing problem. 1st ed. SIAM Series on
Discrete Mathematics and Applications. Philadelphia: SIAM.

Wang, Xingyin, Stefan Poikonen, and Bruce Golden (2017). “The vehicle routing problem
with drones: several worst-case results”. In: Optimization Letters 11.4, pp. 679–697.

Appendix

2.A Detailed Numerical Results

This appendix contains the detailed numerical results. All experiments were performed
on the uniformly distributed instances used by Agatz et al. (2018).

For each respective instance size and problem parameters, the values provided in the
tables are shown as average values over 10 instances. Tables 2.A.1–2.A.6 show the results
that were obtained through Gurobi Optimizer. More precisely, Tables 2.A.1–2.A.3 show
the results that were obtained by solving MILP (2.2)–(2.27). For sn = 1, VIEQs (2.29) and
(2.35) were added to the model. For sn = 2, we also added the variables ykiwj , enabling
us to include constraints (2.30)–(2.31) to the model. In this case, the VIEQs (2.35)
were replaced with the more general VIEQs (2.37). Tables 2.A.4–2.A.6 show the results
that were obtained by treating constraints (2.16)–(2.17) as lazy constraints. Apart from
the problem parameters such as the number of trucks, number of drones, discrete steps,
relative velocity and relative endurance, the columns show the average savings ∆ (see
formula 2.42), the average runtime t and the average remaining MIP gap after runtime.
Furthermore, Tables 2.A.7–2.A.9 and 2.A.10 show the results that were obtained by

solving the small and large instances through the proposed heuristic. These tables also
show the average savings ∆, the average runtime t, and the average number of drone
operations (Ops) that were present in the solution. As no optimal solutions for the non-
drone case were generated for larger instances, Table 2.A.10 shows the objective value
(Obj.) as real numbered values.

52

2.A Detailed Numerical Results

Table 2.A.1: MILP solver results on instances with 8 vertices.

|K| = 1 |K| = 2
D = 1 D = 2 D=1 D=2

sn α Er ∆ t Gap ∆ t Gap ∆ t Gap ∆ t Gap

1

0.2 0.1% 7.5 0.0% 0.1% 7.9 0.0% 0.0% 23.9 0.0% 0.0% 21.0 0.0%
0.4 0.9% 13.8 0.0% 1.0% 13.1 0.0% 0.0% 51.7 0.0% 0.0% 66.0 0.0%
0.6 3.0% 55.1 0.0% 3.5% 48.4 0.0% 0.7% 553.0 23.4% 0.8% 459.4 9.0%
1 9.4% 348.6 6.0% 12.6% 423.5 14.8% 3.0% 603.9 46.3% 5.0% 601.0 49.8%

1.5 13.1% 333.9 6.1% 19.9% 546.3 33.4% 6.3% 603.4 44.6% 6.6% 601.8 51.8%
2 13.1% 385.9 14.2% 20.4% 556.5 35.8% 7.0% 603.5 43.3% 7.2% 602.0 61.0%

1 2

0.2 0.5% 7.1 0.0% 0.5% 8.4 0.0% 0.4% 27.0 0.0% 0.4% 23.0 0.0%
0.4 2.2% 14.4 0.0% 2.5% 11.2 0.0% 1.5% 45.1 0.0% 1.7% 58.3 0.0%
0.6 5.3% 46.9 0.0% 6.0% 38.7 0.0% 3.9% 450.4 18.9% 4.7% 386.9 13.2%
1 20.2% 213.2 0.0% 24.2% 174.2 0.0% 12.0% 601.3 39.2% 13.4% 493.5 24.9%

1.5 31.9% 357.4 9.7% 42.8% 188.4 5.8% 31.4% 474.2 32.5% 36.1% 340.5 8.2%
2 33.2% 353.6 6.7% 45.6% 175.5 0.0% 37.2% 469.7 23.8% 47.5% 385.4 23.9%

3

0.2 0.6% 7.3 0.0% 0.6% 6.9 0.0% 0.5% 21.2 0.0% 0.5% 24.2 0.0%
0.4 2.5% 13.3 0.0% 2.9% 9.9 0.0% 1.8% 68.0 0.0% 1.9% 50.7 0.0%
0.6 5.6% 44.5 0.0% 6.2% 41.5 0.0% 4.1% 427.2 18.1% 4.5% 400.9 6.8%
1 22.5% 160.0 0.0% 26.3% 168.9 5.1% 16.0% 520.9 28.0% 17.6% 507.8 25.8%

1.5 41.1% 191.9 0.0% 49.5% 104.6 0.0% 34.9% 396.8 28.2% 42.3% 358.0 12.3%
2 41.8% 269.7 7.9% 53.8% 132.2 0.0% 43.4% 382.0 13.3% 63.2% 263.5 0.0%

Average 13.7% 156.9 2.8% 17.7% 147.6 5.3% 11.3% 351.3 20.0% 14.1% 313.6 15.9%

1

0.2 0.2% 19.9 0.0% 0.3% 15.0 0.0% 0.0% 162.5 0.0% 0.0% 163.0 2.6%
0.4 1.7% 151.5 0.0% 2.2% 91.8 0.0% 0.4% 546.8 28.7% 0.3% 521.6 25.4%
0.6 4.3% 481.6 5.3% 5.6% 521.5 5.5% 1.5% 554.9 41.4% 1.2% 551.1 46.1%
1 7.6% 604.0 24.2% 13.0% 604.1 36.5% 5.8% 601.5 47.1% 6.1% 602.6 52.8%

1.5 12.6% 492.6 19.2% 19.8% 600.4 41.2% 6.8% 602.8 44.6% 7.2% 603.9 54.2%
2 13.3% 501.5 13.1% 20.5% 600.2 30.2% 7.2% 603.0 41.0% 7.2% 603.6 61.7%

2 2

0.2 0.7% 16.4 0.0% 0.7% 13.9 0.0% 0.5% 165.3 0.0% 0.5% 114.2 0.0%
0.4 4.4% 79.8 0.0% 5.3% 83.0 0.0% -0.5% 471.1 24.3% 2.1% 444.2 32.1%
0.6 11.0% 295.6 2.6% 11.3% 278.1 0.9% 7.3% 488.7 26.7% 7.3% 509.6 32.8%
1 22.0% 490.0 17.3% 27.6% 321.9 16.6% 17.3% 530.1 27.7% 20.2% 480.8 18.6%

1.5 33.3% 287.3 7.0% 44.8% 224.6 4.5% 34.0% 339.3 12.5% 37.3% 358.1 15.4%
2 35.0% 254.0 1.0% 47.3% 262.2 1.5% 38.2% 399.4 5.3% 48.1% 433.3 8.9%

3

0.2 0.8% 15.2 0.0% 0.8% 14.4 0.0% 0.5% 164.4 0.2% 0.5% 145.0 0.0%
0.4 4.7% 94.0 0.0% 5.8% 76.0 0.0% 2.3% 426.5 17.5% 0.6% 470.5 25.5%
0.6 10.1% 297.4 5.6% 11.1% 243.3 2.9% 8.0% 509.1 21.5% 7.0% 500.7 32.3%
1 28.1% 367.4 15.4% 32.9% 280.1 10.2% 20.5% 531.9 22.4% 23.0% 436.1 22.6%

1.5 43.2% 223.9 1.5% 52.7% 83.1 0.0% 41.7% 287.0 9.0% 45.3% 246.4 3.3%
2 43.9% 217.1 1.0% 56.8% 104.1 0.0% 48.5% 282.1 4.1% 63.4% 235.7 0.0%

Average 15.4% 271.6 6.3% 19.9% 245.4 8.3% 13.3% 425.9 20.8% 15.4% 412.2 24.1%

53

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

Table 2.A.2: MILP solver results on instances with 9 vertices.

|K| = 1 |K| = 2
D = 1 D = 2 D=1 D=2

sn α Er ∆ t Gap ∆ t Gap ∆ t Gap ∆ t Gap

1

0.2 0.0% 13.4 0.0% 0.0% 13.0 0.0% 0.0% 72.6 0.0% 0.0% 76.3 0.0%
0.4 1.5% 81.5 0.0% 1.8% 61.2 0.0% 0.2% 493.9 17.7% 0.3% 475.7 23.5%
0.6 3.4% 421.3 8.0% 5.2% 321.3 6.2% 1.4% 603.0 36.3% 1.5% 602.5 32.8%
1 8.9% 604.2 35.3% 13.1% 603.8 48.0% 1.1% 601.3 54.9% 0.8% 600.9 67.9%

1.5 13.7% 601.9 30.8% 20.0% 602.4 46.6% 5.8% 602.8 52.0% 7.5% 604.1 67.3%
2 14.3% 601.8 28.2% 20.8% 602.0 43.9% 6.1% 602.3 50.9% 8.1% 604.3 66.3%

1 2

0.2 0.1% 13.3 0.0% 0.1% 13.3 0.0% 0.1% 77.9 0.0% 0.1% 71.5 0.0%
0.4 4.5% 70.7 0.0% 4.8% 57.2 0.0% 1.5% 450.6 19.9% 1.3% 448.7 28.0%
0.6 10.5% 241.6 0.0% 11.9% 230.5 0.0% 4.2% 601.9 32.1% 4.6% 601.2 38.3%
1 19.8% 603.4 43.7% 24.7% 601.5 50.2% 9.0% 600.8 66.4% 11.7% 601.0 76.9%

1.5 30.0% 602.8 31.8% 41.3% 540.8 19.3% 24.2% 600.7 56.7% 35.0% 600.8 55.0%
2 30.9% 607.1 29.8% 43.7% 563.0 14.3% 26.1% 600.7 55.3% 43.3% 600.7 49.6%

3

0.2 0.1% 13.6 0.0% 0.1% 13.4 0.0% 0.1% 79.0 0.0% 0.1% 75.6 0.0%
0.4 4.6% 68.1 0.0% 5.0% 51.2 0.0% 0.5% 447.6 27.1% 0.9% 433.8 21.7%
0.6 11.7% 280.8 0.0% 13.3% 259.0 0.0% 4.8% 602.0 34.8% 6.0% 602.2 44.3%
1 24.0% 601.1 50.1% 26.0% 601.5 47.1% 11.6% 600.8 66.5% 9.8% 600.9 80.5%

1.5 34.7% 603.6 33.1% 52.3% 424.3 5.3% 30.9% 597.0 49.5% 41.6% 553.9 33.0%
2 34.4% 583.6 33.8% 53.7% 406.5 4.3% 34.0% 600.7 48.2% 53.4% 539.7 23.4%

Average 13.7% 365.5 17.9% 18.8% 331.4 15.8% 9.0% 490.9 37.1% 12.6% 483.0 39.4%

1

0.2 0.1% 151.1 0.0% 0.1% 114.4 0.0% -2.2% 546.2 33.6% -5.6% 516.2 30.5%
0.4 -1.4% 527.7 15.8% 1.8% 508.8 14.6% -62.7% 601.2 64.8% -53.5% 600.9 64.6%
0.6 1.1% 600.8 54.9% 4.8% 601.1 47.3% -2.2% 601.3 87.5% -13.8% 601.5 89.3%
1 2.2% 600.9 68.0% 12.7% 600.9 68.7% -2.9% 602.0 92.8% -6.6% 601.8 94.0%

1.5 11.3% 600.9 53.3% 18.9% 602.2 65.4% 1.8% 601.1 82.5% 6.4% 601.2 86.9%
2 10.4% 601.5 48.4% 20.9% 602.3 56.7% 5.9% 600.8 85.2% 8.1% 600.9 74.8%

2 2

0.2 0.5% 117.3 0.0% 0.5% 127.3 0.0% -0.1% 556.6 32.3% -0.3% 538.8 28.1%
0.4 2.5% 554.0 14.7% 6.9% 465.0 4.3% -33.1% 601.1 56.2% -49.3% 601.1 59.3%
0.6 10.5% 601.0 30.2% 11.0% 593.8 27.4% 0.2% 601.7 86.3% -11.3% 601.4 83.1%
1 13.5% 601.3 59.5% 26.8% 577.5 38.6% -2.7% 602.3 93.5% 2.9% 602.0 93.6%

1.5 25.1% 601.1 47.6% 38.2% 602.9 35.7% 16.3% 601.2 82.4% 23.3% 601.0 76.8%
2 22.3% 603.9 55.1% 41.2% 603.1 30.6% 24.6% 600.8 74.9% 45.6% 601.3 26.6%

3

0.2 0.6% 135.0 0.0% 0.6% 131.3 0.0% -41.5% 526.7 28.7% -1.8% 558.4 36.1%
0.4 2.9% 506.3 17.2% -1.0% 436.9 17.8% -60.1% 600.9 65.3% -59.4% 601.0 74.0%
0.6 14.6% 599.4 24.1% 16.2% 597.7 21.0% -1.2% 601.4 83.0% -11.2% 601.4 82.6%
1 20.9% 601.9 46.7% 35.3% 560.5 25.5% -0.7% 602.3 94.2% 6.5% 601.8 92.8%

1.5 34.1% 601.9 31.8% 53.1% 497.6 9.9% 21.5% 601.2 75.9% 32.8% 580.9 60.7%
2 31.6% 576.7 42.3% 53.9% 589.9 14.3% 35.6% 601.0 56.2% 59.0% 573.2 12.0%

Average 11.2% 508.2 33.7% 19.0% 489.6 26.5% -5.8% 591.7 70.9% -1.0% 587.9 64.7%

54

2.A Detailed Numerical Results

Table 2.A.3: MILP solver results on instances with 10 vertices.

|K| = 1 |K| = 2
D = 1 D = 2 D=1 D=2

sn α Er ∆ t Gap ∆ t Gap ∆ t Gap ∆ t Gap

1

0.2 0.1% 19.7 0.0% 0.1% 17.0 0.0% 0.1% 305.7 0.0% 0.1% 280.3 0.0%
0.4 -0.8% 349.0 12.0% -2.0% 323.2 15.6% -0.9% 603.1 36.6% -16.5% 602.0 54.3%
0.6 -2.3% 601.9 32.8% -3.8% 601.0 36.6% -9.7% 601.1 63.5% -1.0% 600.9 62.3%
1 5.7% 600.7 41.6% 7.5% 600.9 57.0% 1.1% 601.7 68.6% -0.3% 602.4 77.0%

1.5 9.3% 600.8 38.5% 15.1% 600.8 49.5% 3.5% 601.7 66.9% 3.5% 601.2 73.4%
2 9.5% 601.0 37.2% 16.3% 600.9 47.2% 4.8% 601.8 64.4% 5.9% 601.7 73.1%

1 2

0.2 0.5% 19.1 0.0% 0.5% 20.3 0.0% 0.1% 327.4 1.2% 0.1% 278.1 0.0%
0.4 -1.2% 319.5 14.9% 0.3% 299.8 15.4% -4.9% 602.1 51.8% -25.3% 591.2 64.5%
0.6 -4.1% 598.9 36.8% -4.7% 567.7 38.2% -7.7% 601.0 72.5% -3.1% 600.9 75.9%
1 15.9% 601.2 51.9% 21.6% 601.2 63.7% 6.8% 602.9 75.0% 9.1% 601.8 83.5%

1.5 22.4% 601.2 43.9% 34.8% 600.9 51.1% 13.3% 601.5 71.4% 22.9% 601.4 78.2%
2 23.1% 600.8 41.7% 35.4% 601.3 50.1% 19.0% 601.6 67.5% 28.1% 601.7 72.9%

3

0.2 0.5% 20.6 0.0% 0.5% 20.7 0.0% 0.1% 276.4 0.0% 0.1% 270.2 0.0%
0.4 -0.9% 340.2 16.1% 0.2% 307.1 15.9% -15.7% 601.2 53.6% -22.1% 601.1 53.2%
0.6 -2.0% 593.2 41.7% -0.5% 577.2 33.3% -8.2% 601.0 78.1% 1.0% 599.5 72.3%
1 16.3% 600.7 60.9% 21.1% 600.8 70.4% 4.4% 601.8 81.1% 8.0% 602.3 87.0%

1.5 28.3% 600.9 47.9% 41.1% 601.1 56.3% 17.7% 601.5 75.5% 26.7% 601.5 81.8%
2 27.6% 601.1 49.5% 49.1% 601.1 42.2% 19.4% 601.3 73.5% 36.4% 601.9 74.4%

Average 8.3% 461.9 31.7% 12.9% 452.4 35.7% 2.4% 551.9 55.6% 4.1% 546.7 60.2%

1

0.2 -2.7% 474.5 18.5% -11.4% 483.8 21.8% -125.0% 602.0 85.1% -86.3% 602.2 79.6%
0.4 -36.2% 600.9 74.1% -9.8% 601.1 58.9% -54.6% 602.5 86.9% -59.0% 602.3 87.3%
0.6 -9.3% 601.1 87.7% -9.9% 601.5 88.3% -26.6% 602.9 96.2% -43.0% 603.1 97.2%
1 -9.2% 601.4 91.1% -4.2% 601.6 92.1% -33.2% 603.6 95.8% -24.4% 603.0 96.5%

1.5 5.1% 601.4 82.4% 11.6% 601.1 82.1% -7.9% 601.8 91.3% -1.5% 602.4 91.8%
2 6.2% 600.9 79.6% 13.0% 601.1 79.3% -11.6% 602.2 90.6% 1.1% 602.1 90.7%

2 2

0.2 -5.1% 470.4 15.4% -7.6% 487.1 18.0% -95.6% 601.5 81.5% -80.6% 601.3 79.5%
0.4 -25.5% 601.1 63.3% -20.7% 601.2 58.0% -50.9% 602.3 87.3% -63.5% 603.2 87.2%
0.6 -5.4% 601.4 88.0% -1.3% 601.1 85.1% -38.8% 603.5 96.0% -24.6% 604.1 96.7%
1 5.9% 601.4 90.4% 6.2% 601.2 91.1% -41.5% 603.3 96.6% -40.2% 604.9 97.3%

1.5 18.1% 601.2 81.3% 27.6% 601.2 79.5% -4.4% 601.6 91.9% 20.9% 602.2 91.2%
2 17.0% 601.0 79.5% 30.9% 601.1 77.7% 1.2% 601.7 90.6% 25.8% 601.6 89.3%

3

0.2 -11.2% 564.2 20.5% -3.8% 480.0 20.1% -92.4% 601.4 81.1% -96.8% 601.6 81.7%
0.4 -32.5% 601.0 64.7% -32.9% 600.9 64.5% -52.8% 602.0 90.8% -93.8% 602.0 89.1%
0.6 -6.6% 601.1 87.5% 0.2% 601.1 82.5% -45.3% 602.6 96.7% -22.1% 603.6 96.5%
1 -1.9% 601.6 92.0% 7.4% 601.5 91.5% -35.2% 602.8 96.5% -56.0% 602.7 97.1%

1.5 14.7% 601.1 83.1% 39.8% 601.7 72.0% -5.5% 601.9 92.7% 17.5% 601.4 92.5%
2 24.5% 601.0 78.2% 44.6% 601.3 67.7% 9.9% 602.1 90.5% 37.0% 601.6 88.6%

Average -3.0% 585.4 71.3% 4.4% 581.6 68.4% -39.5% 602.3 91.0% -32.8% 602.5 90.5%

55

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

Table 2.A.4: MILP solver results (with lazy constraints) on instances with 8 vertices.

|K| = 1 |K| = 2
D = 1 D = 2 D=1 D=2

sn α Er ∆ t Gap ∆ t Gap ∆ t Gap ∆ t Gap

1

1

0.2 0.1% 4.4 0.0% 0.1% 4.5 0.0% 0.0% 24.3 0.0% 0.0% 29.3 0.0%
0.4 0.9% 10.0 0.0% 1.0% 10.6 0.0% 0.0% 52.1 0.0% 0.0% 55.9 0.0%
0.6 3.0% 24.9 0.0% 3.5% 26.8 0.0% 0.8% 300.3 0.0% 0.8% 256.0 0.0%
1 9.4% 136.2 0.0% 12.7% 209.3 0.0% 5.4% 600.5 31.2% 4.7% 600.6 36.7%

1.5 13.1% 139.2 0.0% 19.9% 257.5 0.0% 7.1% 517.7 6.0% 7.2% 520.1 9.4%
2 13.1% 138.5 0.0% 20.5% 263.9 0.0% 7.2% 514.7 5.7% 7.2% 586.9 14.0%

2

0.2 0.5% 4.1 0.0% 0.5% 4.6 0.0% 0.4% 23.1 0.0% 0.4% 23.6 0.0%
0.4 2.2% 8.6 0.0% 2.5% 8.9 0.0% 1.5% 50.3 0.0% 1.7% 44.1 0.0%
0.6 5.3% 23.5 0.0% 6.0% 21.9 0.0% 3.9% 184.8 0.0% 4.7% 153.2 0.0%
1 20.2% 104.9 0.0% 24.2% 116.7 0.0% 13.5% 592.1 35.2% 15.7% 501.9 17.4%

1.5 31.9% 84.3 0.0% 42.8% 41.7 0.0% 33.0% 141.9 0.0% 36.1% 183.7 1.4%
2 33.5% 79.4 0.0% 45.6% 77.0 0.0% 38.0% 148.5 0.0% 48.1% 161.4 0.0%

3

0.2 0.6% 4.1 0.0% 0.6% 4.6 0.0% 0.5% 24.9 0.0% 0.5% 22.4 0.0%
0.4 2.5% 9.3 0.0% 2.9% 10.0 0.0% 1.8% 43.9 0.0% 1.9% 40.4 0.0%
0.6 5.6% 19.1 0.0% 6.2% 20.9 0.0% 4.1% 190.9 3.1% 5.1% 196.9 0.0%
1 22.5% 79.7 0.0% 26.3% 127.7 0.0% 16.4% 516.0 25.5% 16.6% 510.3 24.2%

1.5 41.1% 51.4 0.0% 49.5% 21.1 0.0% 38.0% 140.0 0.0% 42.3% 129.7 0.0%
2 41.8% 43.5 0.0% 53.8% 21.8 0.0% 44.7% 95.0 0.0% 63.2% 69.5 0.0%

Average 13.7% 53.6 0.0% 17.7% 69.4 0.0% 12.0% 231.2 5.9% 14.2% 227.0 5.7%

2

1

0.2 0.2% 10.8 0.0% 0.3% 11.3 0.0% 0.0% 83.1 0.0% 0.0% 82.5 0.0%
0.4 1.7% 60.5 0.0% 2.2% 50.5 0.0% -2.5% 467.2 20.0% -6.0% 436.0 37.6%
0.6 3.4% 443.6 8.9% 5.2% 408.5 9.2% 1.7% 553.1 30.8% 1.5% 547.5 31.8%
1 4.7% 602.4 41.1% 10.7% 602.3 48.7% 4.3% 602.3 84.0% 3.1% 602.9 85.8%

1.5 13.3% 599.2 10.8% 20.2% 598.6 30.9% 5.6% 600.9 83.4% 6.1% 600.8 79.8%
2 13.4% 480.9 8.0% 20.4% 600.6 18.8% 5.4% 601.0 78.9% 7.1% 600.8 83.8%

2

0.2 0.7% 10.1 0.0% 0.7% 11.2 0.0% 0.5% 64.0 0.0% 0.5% 58.0 0.0%
0.4 4.4% 39.2 0.0% 5.3% 29.6 0.0% -2.1% 443.7 22.5% -4.2% 347.7 24.4%
0.6 10.4% 217.8 4.1% 11.3% 122.2 0.0% 7.1% 383.9 13.3% -2.4% 455.6 31.3%
1 17.5% 603.2 39.8% 26.1% 333.0 15.4% 10.4% 601.0 80.2% 14.6% 563.9 74.2%

1.5 33.3% 474.4 6.6% 44.9% 377.0 0.0% 18.8% 601.3 83.9% 30.7% 601.7 75.4%
2 35.0% 362.5 0.3% 47.3% 315.6 0.9% 31.8% 601.2 50.3% 45.2% 600.8 68.4%

3

0.2 0.8% 11.6 0.0% 0.8% 11.3 0.0% 0.5% 54.1 0.0% 0.5% 49.9 0.0%
0.4 4.7% 32.8 0.0% 5.8% 27.5 0.0% 1.6% 302.9 5.7% -4.3% 381.7 26.7%
0.6 11.2% 193.5 3.3% 11.4% 107.5 0.0% 6.4% 395.9 17.9% 8.4% 449.6 15.4%
1 28.5% 300.7 13.0% 31.5% 284.4 11.8% 12.6% 554.8 64.2% 18.3% 517.8 59.8%

1.5 43.2% 265.2 0.8% 52.7% 109.8 0.0% 31.1% 477.0 60.7% 39.7% 506.8 53.5%
2 44.1% 280.3 0.0% 56.8% 233.0 0.0% 39.7% 516.9 57.4% 56.6% 600.4 57.1%

Average 15.0% 277.1 7.6% 19.6% 235.2 7.5% 9.6% 439.1 41.9% 12.0% 444.7 44.7%

56

2.A Detailed Numerical Results

Table 2.A.5: MILP solver results (with lazy constraints) on instances with 9 vertices.

|K| = 1 |K| = 2
D = 1 D = 2 D=1 D=2

sn α Er ∆ t Gap ∆ t Gap ∆ t Gap ∆ t Gap

1

1

0.2 0.0% 10.1 0.0% 0.0% 9.8 0.0% 0.0% 116.8 0.0% 0.0% 118.3 0.0%
0.4 1.5% 62.7 0.0% 1.8% 59.6 0.0% 0.3% 385.2 11.7% 0.4% 390.4 11.5%
0.6 3.4% 308.2 3.6% 5.4% 254.2 4.1% 1.4% 600.5 35.4% 0.7% 600.9 34.2%
1 8.9% 600.3 28.4% 11.7% 600.5 42.2% 0.0% 601.5 60.5% -1.8% 602.2 70.9%

1.5 15.6% 472.3 5.3% 21.7% 593.1 15.4% 6.9% 600.6 53.0% 5.3% 600.6 70.9%
2 15.9% 435.2 1.2% 22.7% 598.0 12.1% 8.0% 600.4 35.1% 8.1% 600.6 44.3%

2

0.2 0.1% 9.5 0.0% 0.1% 9.9 0.0% 0.1% 113.5 0.0% 0.1% 124.2 0.0%
0.4 4.5% 44.6 0.0% 4.8% 44.5 0.0% 1.8% 347.4 9.4% 1.8% 350.4 5.9%
0.6 10.5% 164.3 0.0% 11.9% 149.0 0.0% 4.1% 601.0 42.4% 3.7% 590.6 30.1%
1 20.8% 548.2 21.7% 25.5% 554.8 22.0% 5.9% 602.2 68.5% 6.8% 603.6 76.9%

1.5 31.0% 354.2 0.0% 42.9% 300.9 2.6% 28.3% 583.1 30.7% 35.2% 526.3 25.9%
2 31.6% 369.2 0.0% 44.4% 306.5 0.0% 32.9% 526.2 15.9% 47.5% 515.7 13.2%

3

0.2 0.1% 9.8 0.0% 0.1% 9.9 0.0% 0.1% 119.9 0.0% 0.1% 145.7 0.0%
0.4 4.6% 39.9 0.0% 5.0% 47.2 0.0% 2.0% 376.5 4.6% 2.0% 379.8 6.7%
0.6 11.7% 114.6 0.0% 13.3% 118.0 0.0% 5.8% 585.7 34.2% 5.8% 537.1 31.2%
1 21.6% 476.3 27.0% 25.8% 512.2 35.2% -5.2% 602.7 74.7% 8.6% 601.4 83.1%

1.5 35.9% 293.8 0.0% 52.3% 70.9 0.0% 34.7% 517.8 36.3% 42.6% 427.5 16.0%
2 36.2% 276.7 0.0% 53.7% 164.2 0.0% 43.0% 376.6 0.4% 55.0% 324.5 11.0%

Average 14.1% 255.0 4.8% 19.1% 244.6 7.4% 9.5% 458.8 28.5% 12.3% 446.6 29.5%

2

1

0.2 0.1% 30.0 0.0% 0.1% 38.1 0.0% 0.1% 403.2 7.6% 0.0% 405.2 11.4%
0.4 1.8% 421.3 12.7% 2.8% 340.5 9.4% -25.2% 600.6 53.1% -31.3% 570.6 51.3%
0.6 -3.9% 604.4 50.2% 0.8% 603.1 46.9% -8.9% 601.0 75.9% -26.9% 601.5 80.6%
1 -0.3% 608.0 63.8% 6.9% 604.5 70.7% -0.2% 602.7 90.3% 2.3% 624.0 92.1%

1.5 5.5% 601.6 61.4% 13.3% 601.2 73.3% -0.8% 602.0 89.1% 1.6% 601.6 89.9%
2 5.5% 600.6 60.1% 15.2% 600.5 65.5% 1.8% 601.2 86.1% 3.3% 600.7 87.7%

2

0.2 0.5% 31.7 0.0% 0.5% 31.4 0.0% 0.1% 380.1 8.4% 0.3% 356.3 8.4%
0.4 6.3% 242.1 3.6% 7.1% 229.0 1.9% -38.0% 534.7 53.0% -21.0% 562.4 44.7%
0.6 7.4% 578.1 37.4% 11.2% 567.6 27.1% -13.9% 601.1 74.2% -12.2% 601.3 80.5%
1 9.8% 603.9 67.0% 23.3% 570.5 48.8% 6.9% 642.0 90.3% 11.0% 623.2 86.1%

1.5 12.0% 601.0 73.6% 28.8% 600.9 60.2% 8.8% 601.1 89.2% 14.7% 601.9 89.5%
2 16.7% 600.7 61.1% 36.0% 600.9 56.6% 8.4% 600.9 87.4% 20.5% 600.5 87.1%

3

0.2 0.6% 35.6 0.0% 0.6% 37.2 0.0% 0.4% 398.1 7.5% 0.4% 310.7 2.9%
0.4 6.2% 289.7 6.6% 8.0% 182.8 0.0% -18.0% 579.1 44.3% -22.2% 569.6 52.4%
0.6 10.9% 507.9 26.3% 12.8% 485.2 23.4% -2.7% 601.2 74.3% -15.1% 601.7 75.3%
1 9.3% 607.9 75.6% 29.4% 531.4 37.7% 6.6% 626.3 91.0% 11.0% 636.9 92.2%

1.5 22.3% 602.4 64.5% 49.2% 600.7 40.8% 12.8% 601.1 89.4% 16.5% 601.6 91.0%
2 32.0% 600.4 34.6% 53.6% 582.7 33.4% 17.5% 601.3 86.5% 31.1% 602.8 87.9%

Average 7.9% 453.7 38.8% 16.6% 433.8 33.1% -2.5% 565.4 66.5% -0.9% 559.6 67.3%

57

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

Table 2.A.6: MILP solver results (with lazy constraints) on instances with 10 vertices.

|K| = 1 |K| = 2
D = 1 D = 2 D=1 D=2

sn α Er ∆ t Gap ∆ t Gap ∆ t Gap ∆ t Gap

1

1

0.2 0.1% 17.9 0.0% 0.1% 17.5 0.0% 0.1% 485.5 11.3% 0.1% 478.3 8.5%
0.4 1.5% 251.6 5.7% 1.7% 246.0 5.6% -0.8% 601.3 31.4% -0.7% 601.5 38.0%
0.6 1.1% 570.4 28.4% 2.6% 565.3 31.8% -2.2% 601.2 58.4% -2.0% 602.1 64.7%
1 4.6% 601.0 39.9% 4.5% 601.0 55.1% -2.0% 604.0 64.8% 0.0% 602.3 74.9%

1.5 7.8% 600.6 33.5% 14.6% 600.5 48.3% 1.2% 601.7 65.7% 0.5% 601.4 74.4%
2 10.7% 600.5 25.6% 15.5% 600.6 40.1% 1.1% 601.3 64.1% 4.8% 601.1 73.1%

2

0.2 0.5% 18.0 0.0% 0.5% 16.9 0.0% 0.1% 475.6 10.3% 0.1% 489.5 10.8%
0.4 3.3% 152.5 0.0% 3.5% 216.4 0.0% 0.1% 601.4 35.9% -0.8% 601.9 35.4%
0.6 5.9% 488.2 29.4% 7.2% 476.0 21.5% -0.3% 601.7 64.9% 0.9% 601.7 65.9%
1 13.7% 601.0 46.7% 19.3% 601.3 47.8% 6.5% 602.1 72.3% 9.8% 601.2 79.5%

1.5 22.0% 600.5 33.9% 31.3% 588.6 36.4% 14.1% 601.7 69.6% 21.8% 601.7 75.1%
2 22.6% 590.4 30.5% 36.0% 556.7 39.4% 16.2% 600.7 67.6% 26.3% 602.0 71.9%

3

0.2 0.5% 20.1 0.0% 0.5% 17.6 0.0% 0.1% 489.2 10.2% 0.1% 471.7 10.8%
0.4 3.4% 177.3 0.0% 3.6% 221.5 2.0% -0.6% 600.9 37.3% -0.3% 593.2 36.0%
0.6 8.3% 481.6 29.3% 6.7% 478.2 24.5% -1.9% 603.2 70.7% 1.1% 572.1 60.2%
1 6.3% 601.0 57.1% 21.0% 601.7 53.3% 5.7% 602.7 78.2% -5.2% 601.6 85.5%

1.5 29.3% 587.9 31.4% 46.8% 519.3 28.3% 15.1% 601.6 72.5% 26.8% 601.1 75.1%
2 31.4% 584.3 26.5% 47.7% 560.8 29.7% 23.3% 601.5 69.9% 36.3% 601.7 73.3%

Average 9.6% 419.1 23.2% 14.6% 415.9 25.8% 4.2% 582.1 53.1% 6.6% 579.2 56.3%

2

1

0.2 0.2% 87.7 0.0% 0.2% 109.3 0.0% -0.7% 594.5 31.9% -2.7% 599.8 30.1%
0.4 -2.0% 600.6 32.1% -1.7% 585.5 31.3% -68.4% 600.7 89.1% -87.4% 600.8 84.2%
0.6 -11.4% 601.1 72.4% -7.5% 601.1 69.9% -15.2% 615.0 94.3% -10.8% 601.3 92.4%
1 -9.4% 600.8 83.1% -1.0% 602.1 84.2% -9.9% 601.4 95.3% -11.0% 601.9 95.7%

1.5 -0.9% 601.3 78.9% 7.6% 601.4 82.5% -3.7% 601.7 90.8% -0.1% 601.7 91.8%
2 1.2% 601.0 69.6% 10.5% 601.4 76.4% -3.4% 601.2 90.1% 3.5% 601.5 90.2%

2

0.2 1.5% 84.8 0.0% 1.5% 85.2 0.0% -0.3% 582.8 24.0% -8.3% 580.1 25.8%
0.4 1.9% 509.7 27.3% 1.6% 505.1 28.1% -56.6% 601.3 84.3% -50.4% 601.1 80.3%
0.6 -2.8% 600.9 68.2% 5.1% 601.9 57.9% -16.0% 601.5 94.4% -2.0% 601.1 93.8%
1 0.4% 601.8 83.6% 11.2% 601.1 81.4% -3.6% 601.6 95.7% 2.4% 601.6 95.0%

1.5 6.9% 601.2 79.7% 17.9% 601.2 79.9% 5.1% 601.4 91.4% 17.3% 602.0 91.2%
2 11.6% 601.6 75.4% 23.5% 600.8 78.6% 6.5% 601.1 90.2% 20.2% 601.2 89.5%

3

0.2 1.6% 78.1 0.0% 1.6% 88.8 0.0% -2.7% 601.5 28.5% -4.8% 601.6 35.0%
0.4 2.1% 544.9 26.9% 4.6% 465.7 18.4% -63.4% 601.2 79.9% -56.6% 601.5 78.2%
0.6 -3.6% 602.1 67.2% 6.4% 601.3 60.3% -11.0% 601.4 93.2% -13.2% 624.9 93.4%
1 6.3% 601.0 83.4% 18.2% 601.5 69.7% 2.1% 601.8 94.6% 1.0% 601.5 94.8%

1.5 7.5% 601.0 83.5% 31.3% 603.3 72.5% 6.6% 602.9 92.0% 20.9% 602.1 91.7%
2 11.3% 600.8 79.5% 29.4% 602.1 77.9% 15.9% 601.3 89.9% 33.5% 603.2 88.3%

Average 1.3% 506.2 56.0% 8.9% 503.3 53.8% -11.5% 600.8 80.5% -7.6% 601.6 80.0%

58

2.A Detailed Numerical Results

Table 2.A.7: Heuristic results on instances with 8 vertices.

|K| = 1 |K| = 2
D = 1 D = 2 D=1 D=2

sn α Er ∆ t Ops ∆ t Ops ∆ t Ops ∆ t Ops

1

0.2 0.1% 61.6 0.4 0.1% 61.6 0.4 -0.1% 61.4 0.2 -0.1% 61.4 0.2
0.4 0.9% 61.8 0.9 1.0% 62.1 1.1 -0.1% 61.5 0.7 -0.1% 61.5 0.7
0.6 2.9% 62.2 1.4 3.5% 67.6 2.2 0.7% 61.5 1.4 0.8% 62.3 1.7
1 9.4% 63.6 1.8 12.7% 85.3 2.9 3.9% 61.8 1.9 5.5% 63.6 2.6

1.5 13.1% 64.2 1.9 19.9% 202.3 3.2 6.1% 62.0 2.2 7.1% 63.9 3.4
2 13.1% 64.5 1.9 20.5% 267.3 3.0 7.2% 62.7 2.0 7.2% 77.3 3.5

2 2

0.2 0.5% 61.7 0.4 0.5% 61.7 0.4 0.3% 61.4 0.2 0.3% 61.4 0.2
0.4 2.2% 61.8 0.9 2.2% 62.1 1.1 1.5% 61.5 0.7 1.5% 61.6 0.7
0.6 5.3% 62.3 1.4 5.9% 75.3 2.2 3.5% 61.5 1.6 3.9% 62.0 1.8
1 20.0% 63.6 2.3 24.2% 103.9 3.5 11.6% 61.9 2.5 14.4% 64.2 3.1

1.5 31.7% 64.6 2.8 42.8% 238.7 4.2 30.6% 62.3 3.2 36.0% 68.3 4.2
2 33.2% 65.0 2.9 45.6% 290.0 4.1 35.9% 62.2 3.1 47.4% 67.7 4.4

3

0.2 0.6% 61.7 0.4 0.6% 61.7 0.4 0.4% 61.5 0.2 0.4% 61.4 0.2
0.4 2.5% 61.8 0.9 2.5% 62.1 1.1 1.8% 61.5 0.7 1.8% 61.6 0.7
0.6 5.5% 62.2 1.3 6.2% 75.9 2.3 3.7% 61.5 1.6 4.1% 62.0 1.8
1 22.1% 63.6 2.4 26.3% 107.6 3.6 14.1% 62.0 2.5 16.0% 64.1 2.9

1.5 39.7% 64.6 3.1 49.3% 259.4 4.3 35.0% 62.3 3.3 41.7% 69.0 4.2
2 41.0% 65.0 3.2 53.8% 215.1 4.3 42.6% 62.2 3.3 56.1% 67.2 4.5

Average 13.5% 63.1 1.7 17.7% 131.1 2.5 11.0% 61.8 1.7 13.6% 64.5 2.3

1

0.2 0.1% 61.9 0.6 0.1% 62.2 0.7 -0.2% 61.5 0.6 -0.2% 61.6 0.6
0.4 1.7% 62.9 1.2 2.5% 76.2 2.1 0.3% 61.9 1.4 0.4% 62.7 1.7
0.6 4.4% 65.9 1.7 5.7% 124.8 2.8 1.9% 62.6 1.9 2.5% 65.5 2.5
1 10.0% 77.3 2.2 16.7% 182.5 3.3 5.8% 63.0 2.2 6.9% 66.9 3.1

1.5 13.4% 88.5 2.0 20.1% 179.8 3.5 6.7% 63.0 2.1 7.1% 67.5 3.4
2 13.4% 87.4 2.0 20.2% 186.8 3.4 7.2% 64.5 2.0 7.2% 146.8 3.8

2 2

0.2 0.7% 61.8 0.7 0.7% 62.1 0.9 0.5% 61.5 0.6 0.5% 61.6 0.6
0.4 4.3% 63.1 1.4 5.3% 82.1 2.3 2.3% 62.0 1.5 3.1% 62.9 1.7
0.6 10.7% 66.4 2.3 11.3% 157.7 3.5 7.5% 63.1 2.7 7.8% 67.4 2.9
1 23.4% 87.9 3.3 27.9% 189.0 4.2 16.7% 64.0 3.4 20.2% 97.8 3.8

1.5 33.6% 106.2 3.2 43.2% 127.0 4.3 32.0% 64.0 3.4 37.7% 80.8 4.0
2 35.0% 117.5 3.2 45.3% 133.9 4.2 35.7% 64.1 3.3 44.2% 91.7 4.3

3

0.2 0.8% 61.8 0.7 0.8% 62.1 0.9 0.5% 61.5 0.6 0.5% 61.6 0.6
0.4 4.7% 63.3 1.4 5.7% 85.0 2.3 2.4% 62.0 1.5 3.3% 62.7 1.8
0.6 11.0% 67.7 2.4 11.4% 166.4 3.4 8.8% 63.1 2.6 8.7% 67.5 3.0
1 28.3% 92.9 3.4 32.7% 218.5 4.3 19.3% 64.1 3.3 22.7% 103.4 3.9

1.5 43.1% 110.5 4.0 50.7% 159.5 4.5 39.0% 64.2 3.6 45.1% 82.1 4.2
2 44.0% 115.6 3.9 53.9% 151.0 4.5 43.3% 64.4 4.0 53.8% 84.8 4.4

Average 15.7% 81.0 2.2 19.7% 133.7 3.1 12.8% 63.0 2.3 15.1% 77.5 2.8

59

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

Table 2.A.8: Heuristic results on instances with 9 vertices.

|K| = 1 |K| = 2
D = 1 D = 2 D=1 D=2

sn α Er ∆ t Ops ∆ t Ops ∆ t Ops ∆ t Ops

1

0.2 0.0% 61.7 0.1 0.0% 61.7 0.1 0.0% 61.6 0.1 0.0% 61.6 0.1
0.4 1.4% 62.2 1.1 1.8% 62.7 1.3 0.2% 61.6 0.6 0.4% 61.7 0.7
0.6 3.4% 63.6 1.5 5.4% 65.8 2.2 1.6% 61.8 1.4 1.8% 62.7 1.7
1 10.4% 64.8 2.0 15.3% 196.0 3.5 4.2% 62.5 2.3 6.0% 64.9 3.1

1.5 15.8% 68.2 2.0 22.5% 317.4 3.7 7.5% 62.8 2.4 8.0% 71.1 3.7
2 16.1% 69.0 2.0 23.1% 303.2 3.7 7.9% 63.2 2.2 8.1% 123.6 3.8

1 2

0.2 0.1% 61.7 0.2 0.1% 61.7 0.2 0.1% 61.6 0.1 0.1% 61.6 0.1
0.4 4.4% 62.0 1.1 4.7% 62.7 1.4 1.7% 61.6 0.7 1.7% 61.7 0.7
0.6 10.5% 63.1 1.4 11.7% 64.9 2.3 5.4% 61.8 1.5 5.8% 62.6 1.8
1 23.1% 64.6 2.8 27.7% 166.6 4.0 14.0% 62.6 2.8 17.4% 69.3 3.6

1.5 30.7% 67.2 3.3 43.1% 345.5 4.8 28.0% 63.2 3.5 37.1% 71.6 4.7
2 31.4% 68.8 3.5 43.3% 232.0 4.9 28.6% 63.1 3.6 45.7% 73.7 5.1

3

0.2 0.1% 61.7 0.2 0.1% 61.7 0.2 0.1% 61.6 0.1 0.1% 61.6 0.1
0.4 4.6% 62.1 1.1 4.9% 62.7 1.4 1.8% 61.6 0.7 1.8% 61.7 0.7
0.6 11.7% 63.1 1.6 13.2% 65.2 2.5 6.0% 61.8 1.6 6.6% 62.7 1.7
1 25.4% 64.8 2.9 30.0% 183.9 4.2 15.1% 62.6 2.9 19.1% 70.5 3.5

1.5 34.6% 69.9 3.5 51.2% 335.3 4.9 31.9% 63.1 3.7 42.9% 71.6 4.7
2 35.6% 70.4 3.7 53.3% 273.8 5.2 36.3% 63.3 3.9 53.9% 72.2 5.0

Average 14.4% 64.9 1.9 19.5% 162.4 2.8 10.6% 62.3 1.9 14.3% 69.2 2.5

1

0.2 0.0% 61.9 0.4 0.0% 62.0 0.5 -0.2% 61.7 0.3 -0.2% 61.7 0.3
0.4 2.6% 64.6 1.4 3.9% 73.7 2.0 0.5% 62.2 1.4 0.6% 63.3 1.7
0.6 6.0% 76.0 2.0 8.9% 320.9 3.2 2.7% 64.0 2.1 4.1% 68.3 2.9
1 11.8% 151.8 2.2 17.7% 220.3 3.9 5.8% 64.5 2.5 7.7% 79.7 3.6

1.5 16.1% 246.5 2.3 21.8% 185.9 3.9 7.5% 64.8 2.3 8.1% 78.3 3.9
2 16.3% 221.8 2.3 22.1% 205.9 3.9 7.9% 65.9 2.3 8.1% 240.1 4.0

2 2

0.2 0.5% 61.9 0.5 0.5% 62.0 0.6 0.4% 61.7 0.3 0.4% 61.7 0.3
0.4 6.6% 64.2 1.6 7.8% 75.4 2.4 3.5% 62.1 1.7 3.7% 63.4 1.9
0.6 15.2% 73.0 2.6 17.1% 216.3 3.8 8.3% 64.3 2.8 9.1% 69.2 3.5
1 27.3% 141.3 3.4 32.7% 296.4 4.7 19.8% 66.1 3.9 23.7% 117.7 4.5

1.5 33.0% 209.4 4.1 40.7% 158.5 4.7 28.4% 66.5 4.1 38.4% 107.1 4.8
2 33.5% 203.0 4.1 40.9% 158.1 4.9 29.4% 67.4 3.7 45.0% 91.0 5.0

3

0.2 0.6% 61.9 0.5 0.6% 62.0 0.6 0.5% 61.7 0.3 0.5% 61.7 0.3
0.4 7.1% 64.3 1.5 8.1% 73.6 2.3 4.3% 62.3 1.7 4.5% 63.6 2.0
0.6 16.6% 72.7 2.7 19.0% 242.7 3.7 9.2% 64.6 2.9 9.9% 77.3 3.1
1 31.9% 164.6 3.8 37.6% 294.8 4.9 23.9% 67.2 4.0 28.1% 168.7 4.7

1.5 39.9% 244.5 4.8 49.2% 190.1 4.9 37.1% 66.8 4.5 44.8% 96.9 4.9
2 40.6% 228.6 4.7 50.9% 191.0 5.0 42.0% 66.6 4.6 55.0% 86.0 5.0

Average 17.0% 134.0 2.5 21.1% 171.6 3.3 12.8% 64.5 2.5 16.2% 92.0 3.1

60

2.A Detailed Numerical Results

Table 2.A.9: Heuristic results on instances with 10 vertices.

|K| = 1 |K| = 2
D = 1 D = 2 D=1 D=2

sn α Er ∆ t Ops ∆ t Ops ∆ t Ops ∆ t Ops

1

0.2 0.1% 62.0 0.4 0.1% 62.0 0.4 -0.1% 61.7 0.2 -0.1% 61.6 0.2
0.4 1.5% 63.0 1.1 1.7% 66.8 1.7 0.3% 61.8 1.0 0.3% 62.4 1.2
0.6 3.3% 64.5 1.9 4.8% 123.4 2.7 1.0% 62.4 1.9 1.4% 63.5 2.4
1 9.5% 73.6 2.3 14.4% 506.7 3.8 4.5% 63.2 2.6 5.1% 70.2 3.8

1.5 12.8% 87.5 2.2 19.4% 328.2 4.1 6.0% 63.3 2.6 6.8% 78.5 4.0
2 12.8% 88.6 2.3 19.7% 366.3 4.0 7.2% 65.1 2.5 7.3% 402.1 4.1

1 2

0.2 0.5% 62.0 0.4 0.5% 62.0 0.4 -0.1% 61.7 0.2 -0.1% 61.6 0.2
0.4 3.3% 63.0 1.2 3.5% 67.0 1.8 0.6% 61.9 1.0 0.7% 62.4 1.1
0.6 9.3% 64.4 2.0 10.4% 144.9 3.0 3.6% 62.7 2.3 4.0% 64.2 2.5
1 22.2% 76.0 3.2 28.5% 398.1 4.9 16.6% 63.7 3.4 20.4% 110.8 4.3

1.5 27.4% 88.2 3.6 39.6% 361.8 5.2 26.3% 63.8 3.9 34.8% 112.9 5.5
2 27.8% 86.0 3.7 40.5% 374.2 5.4 27.7% 63.9 4.0 44.6% 126.2 5.5

3

0.2 0.5% 62.1 0.4 0.5% 62.1 0.4 -0.1% 61.7 0.2 -0.1% 61.7 0.2
0.4 3.4% 62.9 1.2 3.6% 67.4 1.8 0.6% 61.9 1.1 0.8% 62.4 1.1
0.6 10.4% 64.5 2.0 11.3% 143.8 3.1 4.6% 62.8 2.3 5.0% 64.2 2.6
1 23.9% 78.8 3.3 31.7% 452.2 5.0 18.0% 63.7 3.7 22.3% 84.9 4.5

1.5 32.8% 96.9 4.0 49.0% 392.2 5.3 29.7% 63.6 4.1 42.4% 116.5 5.4
2 33.5% 97.0 4.0 51.2% 358.9 5.4 34.9% 63.7 4.3 59.8% 91.9 5.9

Average 13.0% 74.5 2.2 18.4% 241.0 3.2 10.1% 62.9 2.3 14.2% 97.7 3.0

1

0.2 0.1% 62.9 0.6 0.2% 63.4 0.8 -0.2% 61.9 0.6 -0.1% 62.1 0.6
0.4 2.5% 69.2 1.5 3.3% 218.6 2.7 0.6% 63.4 1.7 1.0% 65.7 2.4
0.6 4.7% 162.9 2.0 6.6% 345.3 3.6 1.8% 64.8 2.5 2.7% 74.2 3.2
1 10.5% 212.2 2.8 15.4% 262.5 4.1 5.4% 68.1 2.7 6.8% 91.3 4.4

1.5 12.9% 225.1 2.4 18.6% 214.0 4.2 6.9% 66.7 2.4 7.1% 101.1 4.2
2 12.9% 228.0 2.4 18.6% 232.5 4.4 7.2% 116.7 2.5 7.3% 551.0 4.3

2 2

0.2 1.5% 62.8 0.7 1.5% 63.3 0.9 0.2% 61.9 0.7 0.3% 62.1 0.8
0.4 7.4% 67.1 2.1 7.7% 244.2 3.1 2.0% 63.5 2.5 2.4% 68.2 2.8
0.6 14.1% 142.7 3.0 14.8% 300.5 4.3 7.2% 66.6 3.3 8.6% 127.6 4.3
1 24.2% 187.7 4.4 30.6% 218.7 5.3 19.8% 81.0 4.4 23.3% 247.1 5.3

1.5 29.0% 176.2 4.3 37.6% 221.4 5.0 28.0% 77.3 4.4 37.9% 130.3 5.5
2 29.1% 177.8 4.2 38.1% 231.0 5.0 29.9% 91.7 4.6 44.5% 196.6 5.7

3

0.2 1.6% 62.8 0.7 1.5% 63.3 0.9 0.2% 61.9 0.7 0.3% 62.1 0.7
0.4 7.7% 69.8 2.1 7.8% 238.8 3.2 2.1% 63.5 2.4 2.6% 69.7 2.9
0.6 15.9% 153.0 3.3 16.5% 290.2 4.4 8.4% 67.5 3.1 9.2% 153.9 4.2
1 29.2% 220.4 4.8 35.3% 231.3 5.1 22.4% 78.3 4.7 26.1% 202.0 5.3

1.5 37.2% 220.4 5.0 47.2% 207.7 5.1 38.8% 71.8 5.0 48.3% 143.7 5.8
2 37.8% 249.8 4.7 48.5% 263.8 5.3 41.5% 72.6 5.0 60.0% 158.2 6.1

Average 15.4% 152.8 2.8 19.4% 217.3 3.7 12.4% 72.2 3.0 16.0% 142.6 3.8

61

2 A Hybrid VNS/TS Algorithm for the VRPD with En Route Operations

Table 2.A.10: Heuristic results on instances with 20 and 50 vertices.

K = 1 K = 2
D = 1 D = 2 D = 1 D = 2

|V | sn α Er Obj. t Ops Obj. t Ops Obj. t Ops Obj. t Ops

20

1

0.2 398.7 68.3 1.0 397.6 79.7 1.5 278.0 63.4 0.9 277.7 63.6 1.1
0.4 373.0 242.5 3.5 371.0 191.7 5.1 271.6 71.0 2.7 268.7 119.6 4.6
0.6 368.8 164.5 4.0 350.5 187.3 6.2 266.4 96.0 3.3 259.4 299.9 5.9
1 362.6 156.3 3.7 332.9 148.6 6.4 250.5 100.2 3.8 239.1 521.1 6.9

1 2

0.2 393.3 87.4 2.3 392.4 103.2 2.8 276.2 64.1 2.0 274.9 64.6 2.1
0.4 367.3 145.2 5.3 353.3 161.1 6.8 262.7 112.6 5.4 256.2 172.8 6.6
0.6 340.7 143.4 6.5 307.0 196.9 8.4 242.6 183.9 6.8 233.5 414.1 8.8
1 330.1 159.9 6.4 280.7 200.6 8.9 221.6 340.3 7.6 202.7 511.6 10.8

3

0.2 392.9 87.4 2.2 392.0 105.1 2.8 276.2 64.1 2.0 274.9 64.5 2.1
0.4 365.5 153.8 5.5 352.0 173.1 6.9 261.5 116.3 5.6 252.5 177.9 6.4
0.6 336.6 157.6 6.8 296.0 211.2 8.4 236.9 189.3 7.1 229.3 451.6 9.1
1 322.0 156.4 6.7 272.9 184.4 8.8 215.4 330.2 7.9 193.1 531.9 11.1

Average 362.6 143.6 4.5 341.5 161.9 6.1 255.0 144.3 4.6 246.8 282.8 6.3

1

0.2 394.9 156.4 2.3 397.1 166.3 2.8 277.2 66.8 1.8 276.5 71.5 2.4
0.4 402.9 147.7 3.9 392.2 135.0 5.7 269.5 114.4 3.7 265.9 282.5 5.7
0.6 397.2 120.7 4.4 365.1 152.9 6.9 263.9 224.9 4.4 259.5 292.3 6.9
1 381.5 135.3 4.0 350.3 139.0 6.6 254.2 214.0 4.2 248.5 244.4 7.1

2 2

0.2 394.1 145.9 4.8 397.8 161.7 5.4 272.2 79.7 3.6 271.3 87.7 4.3
0.4 378.3 139.8 6.2 357.2 140.0 7.5 256.7 208.7 6.9 251.9 303.8 8.4
0.6 357.5 130.8 6.1 325.3 137.0 8.3 240.1 326.5 7.8 233.7 361.9 9.8
1 346.8 142.1 6.1 307.1 143.4 8.3 223.9 250.6 7.9 209.0 286.9 10.5

3

0.2 393.0 151.9 4.7 396.7 161.7 5.5 271.8 77.8 3.7 270.9 89.7 4.5
0.4 373.6 140.6 6.3 346.7 157.9 7.6 252.0 215.5 6.9 246.9 313.8 8.5
0.6 342.3 142.5 6.2 309.2 147.4 8.2 233.7 292.5 8.2 226.4 379.8 10.2
1 336.6 131.5 6.4 291.7 159.9 8.5 213.5 303.5 8.6 197.8 292.0 10.9

Average 374.9 140.4 5.1 353.0 150.2 6.8 252.4 197.9 5.6 246.5 250.5 7.4

50

1

0.2 642.8 155.8 7.0 638.0 140.5 11.5 376.9 149.3 6.5 379.0 126.4 9.8
0.4 597.8 163.1 9.2 578.1 127.4 17.4 366.2 129.6 10.1 360.9 122.9 17.4
0.6 585.7 163.5 8.3 561.0 122.6 15.6 359.1 139.5 9.4 349.2 145.9 17.1
1 583.6 148.7 7.9 552.9 135.5 14.3 353.1 143.9 8.7 343.2 136.0 15.1

1 2

0.2 609.9 118.7 13.0 600.2 128.5 15.1 374.6 115.2 12.5 366.8 135.4 14.3
0.4 536.9 120.3 16.2 516.3 103.6 22.1 340.5 127.2 17.8 321.6 193.4 23.2
0.6 546.6 128.8 15.1 509.0 111.4 20.6 332.3 143.1 17.4 314.5 179.4 23.5
1 556.8 146.3 13.0 514.4 129.8 18.8 338.4 138.1 15.6 314.4 173.2 21.9

3

0.2 608.7 118.8 13.1 599.1 126.8 15.1 372.0 111.4 12.6 367.4 129.8 14.4
0.4 533.6 116.0 16.7 515.3 96.0 21.9 338.9 124.4 18.2 319.6 211.2 23.4
0.6 544.3 126.8 15.3 505.7 113.7 20.9 330.3 165.6 18.1 312.3 185.8 24.5
1 554.1 141.0 13.7 511.3 136.9 19.0 338.2 137.7 15.9 314.2 169.0 21.7

Average 575.1 137.3 12.4 550.1 122.7 17.7 351.7 135.4 13.6 338.6 159.0 18.9

1

0.2 646.9 265.5 9.6 651.7 165.5 15.2 386.2 163.0 8.7 389.0 158.6 12.9
0.4 603.3 276.1 10.2 605.2 169.7 17.9 370.4 192.6 10.6 372.9 132.4 18.4
0.6 589.2 339.4 9.2 573.6 194.0 16.1 361.5 186.7 10.0 358.6 168.4 17.3
1 586.1 386.0 7.9 557.3 230.4 14.4 355.2 215.0 8.8 348.1 171.5 15.6

2 2

0.2 597.5 138.1 16.3 591.9 121.3 18.4 370.6 131.6 16.2 364.6 117.3 18.5
0.4 554.2 174.9 15.5 532.6 132.6 20.0 346.2 142.2 17.5 336.2 156.7 22.7
0.6 557.0 227.0 13.7 525.0 163.5 19.5 341.6 166.8 16.0 331.8 123.3 21.8
1 564.5 281.5 12.0 526.1 185.2 17.6 341.6 195.1 13.8 326.0 153.4 19.8

3

0.2 586.0 132.7 16.6 579.1 123.1 18.6 362.6 132.1 16.5 363.8 120.4 18.8
0.4 542.0 172.4 15.7 518.1 129.7 20.3 338.9 138.1 18.1 331.4 138.7 22.4
0.6 549.2 215.7 14.2 514.0 158.0 19.7 338.8 168.4 16.2 323.8 138.1 21.9
1 559.3 272.6 12.6 520.7 192.6 17.5 339.1 197.9 14.2 322.1 156.5 20.5

Average 577.9 240.2 12.8 557.9 163.8 17.9 354.4 169.1 13.9 347.4 144.6 19.2

62

3 A Matheuristic for the Vehicle Routing Problem
with Drones and its Variants

Abstract

In this work, we are interested in studying the Vehicle Routing Problem with Drones (VRPD).
Given a fleet of trucks, where each truck carries a given number of drones, the objective
consists in designing feasible routes and drone operations such that all customers are served
and minimal makespan is achieved. We formulate the VRPD as a Mixed-Integer Linear
Program (MILP), which can be solved by any standard MILP solver. Moreover, with the
aim of improving the performance of solvers, we introduce several sets of Valid Inequalities
(VIEQs). Due to limited performance of the solvers in addressing large instances, we propose
a matheuristic approach that effectively exploits the problem structure of the VRPD. Integral
to this approach, we propose the Drone Assignment and Scheduling Problem (DASP) that,
given an existing routing of trucks, looks for an optimal assignment and schedule of drones
such that the makespan is minimized. In this context, we propose two MILP formulations
for the DASP. In order to evaluate the performance of a state-of-the-art solver in tackling the
MILP formulation of the VRPD, the benefit of the proposed VIEQs, and the performance
of the matheuristic, we carried out extensive computational experiments. According to the
numerical results, the use of drones can significantly reduce the makespan and the proposed
VIEQs as well as the matheuristic approach have a significant contribution in solving the
VRPD effectively.

3.1 Introduction

In recent years, drones have started to play an increasing role in logistics systems in
both, academic research and practical context. Several companies in the logistics indus-
try, such as Amazon Inc., Deutsche Post AG, UPS Inc. and the DPDgroup are actively
investigating the potentials of drones for parcel delivery (see (Murray and Chu, 2015), and
references therein). Furthermore, drones have been successfully applied in many public
and private sectors including energy, agriculture and forestry, environmental protection,
and emergency response (see (Otto et al., 2018), and references therein).

Most recently, several problems have been proposed in the academic literature that
integrate drones into last-mile delivery, in an effort to lower costs and reduce delivery
times (see, e. g., (Agatz et al., 2018; Murray and Chu, 2015; X. Wang et al., 2017)).

63

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Drones might generally move faster between two locations than trucks due to not being
restricted to the road network or congestion. In addition, drones and their payload are
far more lightweight than trucks, which causes drones to consume less energy for the
movement between two points. However, a drone’s capacity is inherently limited to just
one or few parcels. Moreover, as drones rely on comparatively small batteries for powering
their flight, their range of operation is quite restricted compared to a commercial delivery
truck that is powered by a fossil fuel or a high-capacity battery. Consequently, due to
the complementary nature of trucks and drones, the integration of the latter into existing
architectures in last-mile delivery might yield synergistic benefits.

With the objective of taking into account the potential benefits of using drones, the
VRPD was proposed by X. Wang et al. (2017). They propose the integration of drones
into the classical Vehicle Routing Problem. More precisely, given a fleet of trucks that are
equipped with sets of drones, the objective consists in designing feasible routes and drone
operations such that all customers are served and minimal makespan is achieved.
In this paper, we address the VRPD. The contributions of our work are manyfold:

1. To the best of our knowledge, we are the first to provide a formal specification of
the multi-drone VRPD through a MILP. In particular, as opposed to existing works
that consider a multi-truck case (see, e. g., (Sacramento et al., 2019; Schermer et al.,
2019a)), our formulation allows for cyclic (loop) drone operations. Furthermore, we
show that our model is very flexible and easily adaptable when deviating assumptions
apply.

2. In order to improve the performance of MILP solvers in solving VRPD instances, we
derive several sets of VIEQs. We show that our proposed VIEQs have a significant
impact on the solver’s performance in finding optimal solutions of small instances.

3. Nevertheless, using the MILP formulation to obtain (optimal) solutions in a rea-
sonable amount of time is only possible for small instances. Therefore, in order
to address larger instances of the VRPD, we propose a matheuristic that effec-
tively exploits the problem structure of the VRPD. As an integral component of our
matheuristic, we propose the DASP as a MILP. Indeed, given an existing routing of
trucks, the DASP looks for the optimal assignment and schedule of a set of drones,
such that the makespan is minimized.

4. In any case, through our numerical study, we show that the application of drones can
significantly reduce the makespan, thus making them a valuable prospect in last-mile
delivery. Furthermore, we provide an in-depth sensitivity analysis on relevant drone
parameters.

64

3.2 Related Literature

The remainder of this paper is organized as follows. We begin in Section 3.2 by providing
a brief overview of the existing academic literature that is related to the application of
drones in last-mile delivery. Afterwards, Section 3.3 introduces the notation, mathematical
model, and the proposed VIEQs for the VRPD. In Section 3.4, we explain the basic
structure of the matheuristic and show how it effectively exploits the problem structure
of the VRPD. Within this section, we propose the DASP as a mathematical program
through two MILP formulations. Detailed results on the numerical studies are presented
in Section 3.5. Finally, concluding remarks on this work and future research implications
are provided in Section 3.6.

3.2 Related Literature

In this section, we provide a short overview on drone-related optimization problems in last-
mile delivery. While there are many works that specifically consider routing a single drone
or a swarm of drones (see, e. g., (Dorling et al., 2017)), for the purpose of this work, we
limit ourselves to problems that require intensive synchronization (Drexl, 2012b) between
trucks and drones. A more general literature review on civil applications of drones is given
by Otto et al. (2018).
Murray and Chu (2015) introduced two novel problems, that are visualized in Fig-

ure 3.2.1, where a truck is working in tandem with a drone. Both problems assume that
a depot and a set of customers, each of whom must be served exactly once by either the
truck or drone, are given:

• In the Flying Sidekick Taveling Salesman Problem (FSTSP), the drone travels along-
side the truck. Both start from a common depot and must return to the same depot
at the end of the tour. At any customer location (or at the depot), the drone may
be launched from the truck, starting an operation (or sortie), which is described as
follows: the drone begins its flight, performs a delivery to a customer, and will then
be retrieved by the truck at a later customer location (or the depot).

• In the Parallel Drone Scheduling Traveling Salesman Problem (PDSTSP), it is as-
sumed that the depot is in close proximity to most customers. In this case, it
might be beneficial to let the drone make its deliveries independently of the truck.
Whereas the truck serves several customers that are located further away from the
depot, the drone will continuously return to the depot to pick up a new parcel after
each delivery.

Both problems share the objective of minimizing the makespan. However, in the case of
the FSTSP extended synchronization between the truck and the drone is required.

65

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Figure 3.2.1: An illustration of TSP, FSTSP, and PDSTSP solutions where the truck’s and drone’s
paths are indicated by solid and dashed lines, respectively.

Murray and Chu (2015) introduced MILP formulations as well as two heuristic methods
for solving the FSTSP and PDSTSP. The authors conclude that, due to the NP-hard
nature of the proposed problems, only small-sized instances can be solved to optimality
within a reasonable amount of time. Based on their experiments, they note that the
FSTSP is significantly harder to solve due to the synchronization requirements. Finally,
given a problem instance, Murray and Chu (2015) highlight that it is difficult to assess a
priori whether treating a problem as the FSTSP or the PDSTSP will yield better results
with regard to the objective value.
The Traveling Salesman Problem with Drone (TSPD) (Agatz et al., 2018) was proposed

independently of the FSTSP but shares most of the common assumptions nonetheless. In
this problem, a key difference to the FSTSP is that a drone can be retrieved at the same
location from which it was launched by the truck and that drone operations are constrained
by flight distance rather than time. The authors propose an Integer Linear Programming
(ILP) formulation as well as heuristics for solving the TSPD. Agatz et al. performed a
numerical study to assess the performance of their heuristics on various problem instances.
The authors suggest extending their model in order to take into account multiple trucks
(or drones) as well as to add different possibilities for recharging the drones.
Based on Dynamic Programming (DP), Bouman et al. (2018a) provide an exact solution

method for the TSPD. The authors highlight that their method is able to find the optimal
solution for problem instances with 10 vertices much faster compared to the ILP approach
presented by (Agatz et al., 2018). In particular, Bouman et al. (2018a) also perform an in-
depth analysis on the impact of (heuristically) adding additional constraints that restrict
the number of drone operations. Based on their experiments, this can significantly reduce
the time required to find the optimal solution, albeit, a non-optimal solution might be
achieved after the imposition of these restrictions. They note that it might be beneficial
to identify a procedure that detects unprofitable operations upfront. Furthermore, they

66

3.2 Related Literature

highlight that their method cannot be readily applied to cases where multiple drones are
present.
Es Yurek and Ozmutlu (2018) provide an approach for solving the TSPD that is based

on a decomposition of the problem into two components. First, all feasible tours to the
Traveling Salesman Problem (TSP) are generated that visit only a subset of customers.
Each tour provides a lower bound on a (feasible) TSPD solution that features the same
TSP solution and serves the remaining customers by drones. Starting with the shortest
tour, mathematical programming is used to find the optimal drone operations such that
the customers that were not contained in the TSP tour are served by drone. Here, the
objective is to minimize the waiting time of the truck such that the objective value after
solving the mathematical model is as close as possible to the lower bound that is associated
with the initial TSP tour. This procedure continues until the best remaining lower bound
(of a tour that has not been examined) is worse than the incumbent TSPD solution. Es
Yurek and Ozmutlu (2018) compare their results to (Agatz et al., 2018; Murray and Chu,
2015) and highlight that they are able to solve instances with 10 to 12 vertices in shorter
computation time. However, the authors highlight that their approach might be limited
to small instances due to the enumerative nature of the approach.
Carlsson and Song (2018) worked on a variant of the TSPD called the Horsefly Routing

Problem w. r. t. a commercially available system with the same name. Compared to the
TSPD, their variant features a single truck that can be equipped with one or more drones.
The authors propose a heuristic method and use large instances (with up to 500 vertices) as
well as practical data (with up to 100 vertices). One of their key findings is the hypothesis
that the potential benefit of using a drone in tandem with a truck is proportional to the
square root of the relative velocity between the truck and the drone.
X. Wang et al. (2017) introduced the VRPD as a generalization of the TSPD. In the

VRPD a fleet of trucks, each truck equipped with a given number of drones, is tasked with
delivering parcels to customers. The drones may be launched from the truck at the depot
or at any customer location and may be retrieved by the truck at a different customer
location (or at the depot, concluding its tour). When a drone is launched, it can serve
exactly one customer before it needs to return to the truck such that it can be resupplied.
In contrast to classic VRPs, the objective is to minimize the makespan, i. e., the time
required to serve all customers such that the entire fleet has returned to the depot. Wang
et al. studied the problem from a theoretical point of view. In particular, they introduced
several upper bounds on the amount of time that can be saved by employing drones.
The upper bounds are obtained by investigating the structure of optimal solutions and
depend on the relative velocity of the drones compared to the trucks and the number
of drones per truck. Poikonen et al. (2017) refined the work of X. Wang et al. (2017)

67

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

by considering the impact on the previously introduced bounds when integrating limited
battery life, different distance metrics, and operational expenditures of deploying drones
and trucks in the objective function. The authors suggest the possibility of launching
and retrieving drones from arbitrary locations instead of being restricted to customer
locations. Furthermore, as a future research direction, the authors suggest developing
models, heuristics, and benchmark VRPD instances.

Di Puglia Pugliese and Guerriero (2017) introduced the Vehicle Drone Routing Problem
with Time Windows (VDRPTW), where the objective consists in serving customers at
minimum cost using a truck and drones, while respecting the time-window restrictions.
The authors provide a mathematical model for the VDRPTW and use a commercial
solver for solving the problem on randomly generated instances with 5 or 10 customers.
The authors conclude that the benefit of drones for last-mile delivery strongly depends on
the marginal cost per mile of both drones and trucks.
Boysen et al. (2018b) proposed the Drone Scheduling Problem (DSP), where a fixed

sequence of customers that are visited by a single truck and a disjoint set of customers that
must be served by drone(s) are given. In this problem, they look for the optimal schedule
of drones, i. e., launch and retrieval locations, such that the makespan is minimized. The
authors differentiate between a truck that is equipped with a single or multiple drones and
different degrees of freedom regarding feasible launch and retrieval locations. Particularly,
for special cases that restrict potential launch and retrieval locations, polynomial time
algorithms can be derived. They propose two different MILPs for solving the DSP and
conclude that the DSP might also be used for solving a more holistic problem such as the
TSPD. In this case, a subsequence of customers visited by the truck might be generated
and the drones schedule for the remaining customers derived through the DSP (similar to
the work of Es Yurek and Ozmutlu (2018)).
Ha et al. (2018) considered a variant of the FSTSP where the objective is to minimize

the operational costs. These costs include the variable cost of driving and flying and might
also include costs for the time spent waiting by the truck and drone. In particular, the
authors adapt the MILP model and heuristics proposed by Murray and Chu (2015) to their
new problem. Furthermore, they propose a Greedy Randomized Adaptive Search Procedure
(GRASP) as a solution method. The authors can show that their MILP formulation can be
used for solving small-sized instances under the min-cost objective within a few minutes.
Moreover, the proposed GRASP heuristic is able to achieve optimal results in all cases
for 5 small instances with 10 vertices. Notably, Ha et al. (2018) also test their heuristic
under the min-time objective. A detailed numerical study reveals the effectiveness of their
approach. According to their experiments, under the min-cost objective, the costs are
reduced by about 30% w. r. t. truck-only solutions (with an increase in the makespan by

68

3.2 Related Literature

typically 50%). Moreover, under the min-time objective, the makespan is reduced by
about 10% (with a decrease in cost by typically 20%).

Sacramento et al. (2019) investigated a variant of the FSTSP, in which multiple trucks
are present and call it the VRPD. The authors consider an objective where the operational
costs are minimized under the restriction of a maximum duration for all routes. For this
purpose, the MILP formulation of Murray and Chu (2015) is adapted and an Adaptive
Large Neighborhood Search (ALNS) procedure proposed. As integral components of their
ALNS algorithm, the authors suggest several problem-specific destroy and repair meth-
ods. Sacramento et al. (2019) show that their MILP formulation can be used to solve
some small-sized instances with 6, 10, and 12 vertices to optimality. However, signifi-
cant increases in runtime are observed with an increase in the instance size. On larger
instances, they can show that the truck-drone fleet allows cost-savings of typically 20 to
30% compared to truck-only delivery.

The possibility of en route operations in the context of the VRPD has been studied
in (Schermer et al., 2019a). En route operations were defined by Marinelli et al. (2018)
as the possibility of constructing arc-based truck-drone operations. In (Schermer et al.,
2019a), a formal specification of the VRPD with en route operations is given through a
MILP. In this MILP, en route operations can be performed at some discrete points on
each arc. Moreover, an algorithm that follows the framework of Variable Neighborhood
Search (VNS) is proposed. Through a computational study, it is revealed that, in some
cases, en route operations allow for additional savings, compared to the non en route case.
Moreover, a strong dependence of these additional savings on drone parameters such as
their velocity or endurance is shown. Albeit, it is revealed that the possibility of en route
operations makes the problem significantly more difficult to solve.

Table 3.2.1 provides an overview of the problems that were introduced in this section. As
we have already established, in contrast to classic VRPs (see, e. g., (Toth and Vigo, 2014)
and references therein), the objective in these problems often consists in minimizing the
makespan rather than cost. Furthermore, if multiple trucks are allowed, there is no fixed
cost incurred when an additional truck is deployed. Rather, the number of available trucks
and drones per truck (fleet) is considered a parameter of the problem itself as opposed to
a decision-relevant component (see (Di Puglia Pugliese and Guerriero, 2017; Sacramento
et al., 2019; X. Wang et al., 2017)). Finally, problem assumptions often differ with regard
to cyclic (loop) drone operations, i. e., the possibility of drone operations that start and
end at the same vertex (while the truck remains stationary). In fact, even though all
problems allow acyclic operations, cyclic operations are often not permitted.

69

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Table 3.2.1: Overview of drone-related optimization problems with extensive synchronization re-
quirements presented in Section 3.2.

Reference Trucks Drones Obj. Cyclic Ops. Contribution Vertices

Murray and Chu (2015) 1 1 time no MILP, heuristic 10 . . . 20
Poikonen et al. (2017) and X.
Wang et al. (2017)

n m time yes theoretical insights -

Di Puglia Pugliese and Guer-
riero (2017)

n m cost no MILP 5 . . . 10

Agatz et al. (2018) and
Bouman et al. (2018a)

1 1 time yes IP, DP, heuristic 10 . . . 100

Carlsson and Song (2018) 1 m time no heuristic 25 . . . 500
Es Yurek and Ozmutlu (2018) 1 1 time no heuristic 10 . . . 20
Boysen et al. (2018b) 1 m time yes MILP, SA 5 . . . 100
Ha et al. (2018) 1 1 cost/time no MILP, GRASP 10 . . . 100
Sacramento et al. (2019) n 1 cost no MILP, ALNS 6 . . . 200
Schermer et al. (2019a) n m time no MILP, VNS 10 . . . 50
This work n m time yes MILP, matheuristic 10 . . . 100

3.3 Problem Definition

In this paper, we are interested in studying the VRPD as proposed by X. Wang et al.
(2017). We recall that the VRPD asks for routing a fleet of trucks, each truck equipped
with a set of drones, and seeks to minimize the makespan, i. e., the time required to serve
all customers using the trucks and the drones such that, by the end of the mission, all
trucks and drones have returned to the depot.

In Section 3.3.1, we formulate the VRPD as MILP model. Afterwards, in Section 3.3.2,
we provide additional VIEQs. As a key difference to existing models (refer to Table 3.2.1),
our model permits not only multiple trucks, but also multiple drones per truck and cyclic
drone operations, i. e., operations that start and end at the same vertex.

3.3.1 Notation and Mathematical Model

Suppose that a set of customer locations, each with a uniform demand, and a fleet of
homogeneous trucks, each carrying the same number of homogeneous drones, are given.
In the VRPD, we look for minimizing the makespan required to serve all customers by
using the given fleet such that, by the end of the mission, all trucks and drones must be
at the depot (Poikonen et al., 2017; X. Wang et al., 2017). Furthermore, we make the
following assumptions regarding the nature of drones (Agatz et al., 2018; Murray and Chu,
2015; X. Wang et al., 2017):

• When launched from the truck, a drone can serve exactly one customer before it
needs to return to the same truck from which it was launched. Furthermore, we ask

70

3.3 Problem Definition

that each truck has sufficient capacity.

• We assume that a drone has a limited endurance of E distance units per operation.
After returning to the truck, the battery of the drone is recharged (or swapped)
instantaneously. For a more detailed discussion on this assumption, we refer to
Appendix 3.C.

• Associated with each launch and retrieval of a drone are two overhead times, tl and
tr. Furthermore, we assume that the truck is capable of launching and retrieving
drones in parallel.

• Drones may only be dispatched and picked up from vertices, i. e., at the depot or
any other customer location.

Inspired by the work of Di Puglia Pugliese and Guerriero (2017), we use the following
notation in order to formulate the VRPD. Assume that a complete graph G = (V,E) is
given, where V is the set of vertices (or nodes) and E is the set of edges. The set V

contains n vertices associated with the customers, named VN = {1, 2, . . . , n − 1, n} and
two extra vertices 0 and n+1 that (in order to simplify the notation and the mathematical
formulation) both represent the same depot location at the start and end of each tour,
respectively. Thus, V = {0, 1, . . . , n, n+1}, where 0 ≡ n+1. In addition, we call VD ⊆ VN

the drone-serviceable subset of customers.
We refer to VL = V \ {n+ 1} as the subset of vertices in V from which drones may be

launched and retrieved after performing cyclic operations (that start and end at the same
location). Furthermore, VR = V \ {0} denotes the subset of vertices where drones may be
retrieved after performing an acyclic operation.

By the parameters dij and dij we define the distance required to travel from vertex i to
vertex j by truck and drone, respectively. Additionally, as the drone may not be limited
to the road network, we can assume that dij ≤ dij ∀i, j ∈ V . It is reasonable to assume
that the triangle inequality applies to these distances.
We consider a limited set K = {1, . . . ,Kn},Kn ∈ Z>0 of |K| = Kn trucks. Furthermore,

each truck k ∈ K holds an equal set of D = {1, . . . , Dn}, Dn ∈ Z>0, |D| = Dn drones.
Each drone may travel a maximum range of E distance units per operation, where a
drone-operation is characterized by a triple (i, w, j) as follows: the drone is launched from
a truck at a vertex i ∈ VL, delivers a parcel to w ∈ VN , and is retrieved by the same truck
from which it was launched at vertex j ∈ V (i ̸= w,w ̸= j). If i = j, (i. e., the operation
is (i, w, i)) we call it a cyclic (loop) operation, otherwise, we call it an acyclic operation.
We use the decision variables in Table 3.3.1 for modeling the VRPD. The MILP formu-

lation of the VRPD is given in (3.1)–(3.27) where (3.1) is the objective function and the

71

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Table 3.3.1: Decision variables used in the VRPD formulation.

τ Continuous variable that indicates the makespan.
xkij

∀i,j∈V,k∈K,i ̸=j

Binary variables that state whether arc (i, j) is used by truck k.

ykdiwj
∀i∈VL,w∈VD,j∈V,
k∈K,d∈D,i ̸=w,w ̸=j

Binary variables that specify whether a drone d associated with truck
k performs the operation (i, w, j).

pkij
∀i,j∈V,k∈K,i ̸=j

Binary variables that indicate whether vertex i is served before but
not necessarily adjacent to vertex j in the route of truck k.

uki
∀i∈V,k∈K

Continuous variables with a lower bound of 0 that state the position
of vertex i in the route of truck k.

zkdaiwje
∀a,i,w,j,e∈V,

k∈K,d∈D,|{a,i,w,j,e}|=5

Binary variables that specify whether the drone delivery ykdawe is
performed circumjacent to xk

ij , i. e., drone d is launched at vertex a
before the truck k has reached i and retrieved at vertex e after the
truck has reached j. The term |{a, i, w, j, e}| = 5 implies that all
vertices are pairwise different.

aki
∀i∈V,k∈K

Continuous variables with a lower bound of 0 that indicate the arrival
time of truck k at i.

ski
∀i∈V,k∈K

Continuous variables with a lower bound of 0 that indicate the earliest
possible departure time of truck k at i.

rkdi
∀i∈V,k∈K,d∈D

Continuous variables with a lower bound of 0 that indicate the earliest
possible release time of drone d that belongs to truck k at i.

skdi
∀i∈V,k∈K,d∈D

Continuous variables with a lower bound of 0 that indicate the earliest
time at which drone d that belongs to truck k is ready to depart from
i.

ykdi
∀i∈V,k∈K,d∈D

Binary variables that take value 1, if drone d that belongs to truck k is
available for an operation at i.

constraints are given by (3.2)–(3.27). Please note, due to the large number of variables in-
volved in the model, for the sake of compactness, all constraints that restrict the domains
of binary variables to the set {0, 1}, integer variables to Z+, and continuous variables to
take a value within their respective intervals [0,∞) are not listed explicitly.

min τ, (3.1)

s. t. τ ≥ skn+1 ∀k ∈ K, (3.2)∑
j∈VR

xk0j −
∑
i∈VL

xki,n+1 = 0 ∀k ∈ K, (3.3)

∑
i∈VL,
i ̸=h

xkih −
∑
j∈VR,
h ̸=j

xkhj = 0 ∀k ∈ K, h ∈ VN , (3.4)

72

3.3 Problem Definition

∑
j∈VR

xk0j = 1 ∀k ∈ K, (3.5)

∑
k∈K

∑
i∈VL,
i ̸=w

xkiw +
∑
k∈K

∑
d∈D

∑
i∈VL,
i ̸=w

∑
j∈V,
w ̸=j

ykdiwj = 1 ∀w ∈ VD, (3.6)

∑
k∈K

∑
i∈VL,
i ̸=w

xkiw = 1 ∀w ∈ VN \ VD, (3.7)

ykd0wj ≤
∑
h∈VL,
h ̸=j

xkhj ∀k ∈ K, d ∈ D,w ∈ VD, j ∈ VR, w ̸= j, (3.8)

2ykdiwj ≤
∑
h∈VL,
h ̸=i

xkhi +
∑
l∈VN ,
l ̸=j

xklj ∀k ∈ K, d ∈ D, i ∈ VN ,

w ∈ VD, j ∈ VR, |{i, w, j}| = 3,
(3.9)

ykdiwi ≤
∑
h∈VL,
h ̸=i

xkhi ∀k ∈ K, d ∈ D, i ∈ VN , w ∈ VD, i ̸= w, (3.10)

uki − ukj + 1 ≤ (n+ 1)(1− xkij) ∀k ∈ K, i ∈ VN , j ∈ VR, i ̸= j, (3.11)

uki − ukj + 1 ≤ (n+ 1)(1− ykdiwj) ∀k ∈ K, d ∈ D, i ∈ VN ,

w ∈ VD, j ∈ VR, |{i, w, j}| = 3,
(3.12)

xkij ≤ pkij ∀k ∈ K, i ∈ VL, j ∈ VR, i ̸= j, (3.13)

uki − ukj ≥ 1− (n+ 1)pkij ∀k ∈ K, i ∈ VN , j ∈ VR, i ̸= j, (3.14)

uki − ukj ≤ −1 + (n+ 1)(1− pkij) ∀k ∈ K, i ∈ VN , j ∈ VR, i ̸= j, (3.15)

3zkdaiwje ≤ ykdawe + pkai + pkje ∀k ∈ K, d ∈ D, a ∈ VL, i, j ∈ VN ,

w ∈ VD, e ∈ VR, |{a, i, w, j, e}| = 5,
(3.16)

2 + zkdaiwje ≥ ykdawe + pkai + pkje ∀k ∈ K, d ∈ D, a ∈ VL, i, j ∈ VN ,

w ∈ VD, e ∈ VR, |{a, i, w, j, e}| = 5,
(3.17)

M(xkij − 1) + ski + tij ≤ akj ∀k ∈ K, i ∈ VL, j ∈ VR, i ̸= j, (3.18)

aki ≤ ski ∀k ∈ K, i ∈ V, (3.19)

M(ykdiwj − 1) + skdi

+(tl + tiw + twj + tr) ≤ rkdj ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD,

j ∈ VR, |{i, w, j}| = 3,

(3.20)

rkdi +
∑

w∈VD,
i ̸=w

(tl + tiw + twi + tr)y
kd
iwi ≤ skdi ∀k ∈ K, d ∈ D, i ∈ VL, (3.21)

skdi + tl
∑

w∈VD,
i ̸=w

∑
j∈VR,

|{i,w,j}|=3

ykdiwj ≤ ski ∀k ∈ K, d ∈ D, i ∈ V, (3.22)

73

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

akj + tr
∑
i∈VL
i ̸=j

∑
w∈VD,

|{i,w,j}|=3

ykdiwj ≤ rkdj ∀k ∈ K, d ∈ D, j ∈ V, (3.23)

(diw + dwj)y
kd
iwj ≤ E ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD,

j ∈ V, i ̸= w,w ̸= j,
(3.24)

M(xkij − 1) + ykdi +
∑
a∈VL,
a ̸=i,
a ̸=j

∑
w∈VD,
i ̸=w,

|{a,w,j}|=3

ykdawj

+
∑
a∈VL,
a ̸=i,
a ̸=j

∑
w∈VD,

|{a,i,w,e}|=4

∑
e∈VR,

|{a,i,w,j,e}|=5

zkdaiwje ≤ 1 ∀k ∈ K, d ∈ D, i ∈ VL, j ∈ VR, i ̸= j,
(3.25)

M(xkij − 1) +
∑

w∈VD,
i ̸=w

∑
e∈VR,

|{i,w,e}|=3

ykdiwe ≤ ykdi ∀k ∈ K, d ∈ D, i ∈ VL, j ∈ VR, i ̸= j,
(3.26)

M(xkij − 1) +
∑

w∈VD,
i ̸=w

ykdiwi ≤Mykdi ∀k ∈ K, d ∈ D, i ∈ VL, j ∈ VR, i ̸= j.
(3.27)

The objective function, represented by (3.1), minimizes the makespan through con-
straints (3.2). Constraints (3.3)–(3.5) form the preservation of flow for the trucks. More
precisely, constraints (3.3) guarantee that each truck that departs from the depot must
also return to the depot. Constraints (3.4) ensure that each truck that visits a customer
h ∈ VN must also depart from the same customer. Due to constraints (3.5), each truck
k ∈ K must start from the depot exactly once (note that a truck might remain stationary
by following the arc xk0,n+1).

Constraints (3.6) ensure task synchronization, i. e., each customer j ∈ VD must be served
exactly once by either a truck or a drone. Furthermore, constraints (3.7) guarantee that the
non drone-eligible customers are served by a truck. Movement synchronization between
routes of the trucks and its drones is handled by constraints (3.8)–(3.10). Constraints
(3.8) handle the synchronization between the truck and drone in the case that a drone is
launched from the depot. In the case of constraints (3.9), if a drone performs an acyclic
operation (i, w, j), then truck k ∈ K must visit vertices i ∈ Vn and j ∈ VR at some point
to allow a launch and retrieval of the drone at vertices i and j, respectively. Constraints
(3.10) ensure that cyclic operations are only possible, if the truck k ∈ K visits i.

Constraints (3.11)–(3.12) link the variables uki , for truck k ∈ K, to the decision variables
xkij and ykiwj . When i is adjacent to j, constraints (3.13) provide a strong coupling between
xkij and pkij . For the remaining cases, constraints (3.14)–(3.15) associate the variables pkij
with uki and ukj . We ask that u0 = 0 and p0j = 1 ∀j ∈ VR. Constraints (3.16)–(3.17)

74

3.3 Problem Definition

determine a value on the variables zkaiwje depending on the decision variables pkij and ykiwj .

The set of constraints (3.18)–(3.23) guarantee temporal operational synchronization by
providing lower bounds on the arrival and departure times for the trucks and drones. For
each possible transition of a truck and acyclic operation of a drone, constraints (3.18)
and (3.20) set lower bounds on the arrival times and release times for the trucks and
drones, respectively. Furthermore, constraints (3.19) enforce the arrival time as a lower
bound on the departure time of the truck. In case of cyclic operations, constraints (3.21)
set lower bounds on the earliest departure time of the drone. More precisely, a drone
can depart from a vertex as soon its cyclic operations have been completed. In contrast,
the truck must wait for the last drone to complete its cyclic operation which is handled
through constraints (3.22). Finally, constraints (3.23) guarantee that a drone can only be
released after the truck has arrived. Constraints (3.22) (and (3.23)) also incorporate the
overhead times tl (and tr) in the case that a drone is launched for (retrieved after) an
acyclic operation.

Constraints (3.24) impose a maximum distance (endurance) constraint on each drone
operation (i, w, j). Finally, constraints (3.25)–(3.27) guarantee that during each transition
of the truck from vertex i to vertex j a feasible number of drone operations are performed
(see Figure 3.3.1). More precisely, constraints (3.25) force the variables ydi to take value
0, if a circumjacent operation is performed. Furthermore, the set of constraints (3.26)
and (3.27) ensure that acyclic and cyclic operations can only be performed if the drone is
available at i.

a i j e

u

zkdaiuje, y
kd
aue

v

ykdavj

w

ykdiwj

t

ykditi

xkai xkij xkje

Figure 3.3.1: A visualization of some possible operations that might occur as a truck proceeds
from i to j. In particular, if drone d performs a circumjacent operation such as, e. g., either ykdavj
or ykdaue, no operation can be performed by drone d at i. Otherwise, the drone might perform a
number of cyclic operations such as ykditi followed by a single acyclic operation such as ykdiwj .

75

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Any standard MILP solver might be used to solve MILP (3.1)–(3.27). However, a glance
at MILP (3.1)–(3.27) reveals that size of the model grows significantly with an increase
in the size of G as well as the sets K and D. In particular, tracking circumjacent drone
operations requires a significant modeling effort; and, compared to related models (Di
Puglia Pugliese and Guerriero, 2017; Schermer et al., 2019a), cyclic drone operations lead
to several additional variables and constraints. A detailed discussion on the flexibility of
the model to deviating assumptions can be found in the Appendix 3.A of this paper.

3.3.2 Valid Inequalities

In order to enhance the performance of the MILP solvers in solving the VRPD, we derive
several VIEQs as cuts in the solution space of the problem that exclude none of the
optimal solutions. Hence, the addition of VIEQs might have a positive impact on the
computational time that is required for solving the VRPD.

3.3.2.1 Makespan Bounds

In this section, we derive two sets of VIEQs that are used to place Lower Bounds (LBs)
on the objective value τ . While the derivation of these VIEQ is relatively straightforward,
they have a significant impact on the performance of the solver by providing an improved
linear relaxation to the solver (refer to Section 3.5).

Proposition 3.1. In the MILP (3.1)–(3.27), τ is bounded by the time spent traveling by
trucks.

Proof. For each truck k ∈ K, the time spent traveling can be calculated as follows:∑
i∈VL

∑
j∈VR,
i ̸=j

tijx
k
ij ∀k ∈ K. (3.28)

Furthermore, the time spent waiting at vertices can be accounted as follows:∑
i∈V

(ski − aki) ∀k ∈ K. (3.29)

The variable τ marks the time at which all trucks and all drones have arrived at vertex
n+1. In a feasible VRPD solution, a truck spends time traveling on arcs and might spend
further time waiting on vertices for a drone to be retrieved. Therefore, the time spent
traveling and waiting by each truck qualifies as a valid lower bound on the objective value

76

3.3 Problem Definition

as follows: ∑
i∈V

(ski − aki) +
∑
i∈VL

∑
j∈VR,
i ̸=j

tijx
k
ij ≤ τ ∀k ∈ K. (3.30)

This completes the proof of Proposition 3.1. ■

Proposition 3.2. In the MILP (3.1)–(3.27), τ is bounded by the time spent traveling by
each drone.

Proof. For each drone d ∈ D that belongs to a truck k ∈ K, the total time spent traveling
can be accounted as follows:∑
i∈VL

∑
w∈VD,
i≠w

(tl + tiw + twi + tr)y
kd
iwi +

∑
i∈VL

∑
w∈VD,
i ̸=w

∑
j∈VR,
i ̸=j,
w ̸=j

(tl + tiw + twi + tr)y
kd
iwj ∀k ∈ K, d ∈ D.

(3.31)
The variable τ marks the time at which all trucks and all drones have arrived at vertex
n+1. In a feasible VRPD solution, a drone spends time traveling on arcs and might spend
further time hovering on vertices after performing an acyclic operation for the truck to
arrive, such that it can be retrieved. Thus, the time spent traveling by each drone qualifies
as a valid lower bound on the objective value as follows:

∑
i∈VL

∑
w∈VD,
i≠w

(tl+tiw+twi+tr)y
kd
iwi+

∑
i∈VL

∑
w∈VD,
i ̸=w

∑
j∈VR,
i ̸=j,
w ̸=j

(tl+tiw+twi+tr)y
kd
iwj ≤ τ ∀k ∈ K, d ∈ D.

(3.32)
Therefore, we have proven Proposition 3.2. ■

3.3.2.2 Symmetry in the VRPD

In this section, we show that in the case of a symmetric graph G, the VRPD is a symmetric
problem, hence, has symmetric solutions. We use this property in order to derive a set of
symmetry-breaking cuts, and for this purpose, we introduce the following proposition.

Proposition 3.3. Assume that we have a solution for the MILP (3.1)–(3.27) with com-
ponents xkij and ykiwj . Furthermore, in the given solution, let πk defines the sequence of
customers visited by the truck k, for each truck k ∈ K. Then, the following statements
are true:

77

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

• (i) The VRPD is a symmetric problem, i. e., corresponding to πk, there is another
solution, having the same objective value, consisting of reverse order of visiting
customers as it is in πk.

• (ii) The following inequality breaks the symmetry in the VRPD∑
i∈VN

i · xk0,i ≤
∑
j∈VN

j · xkj,n+1 ∀k ∈ K. (3.33)

Proof. (i) In the arc-based formulation MILP (3.1)–(3.27), for each truck k ∈ K, a feasible
selection of decision variables xkij and ykiwj imply makespan skn+1 and a directed graph
G(V,A). We call GT (V,AT) the transpose graph of G. We prove that the same makespan
skn+1 is associated with G and the transpose graph GT . We consider the following three
possible cases:

1. If no drones are present, G is a simple path. In this case, the longest path through
G (which corresponds to skn+1) is equal to the inverse longest path through the
transpose graph GT .

2. Next, assume that acyclic drone operations occur. In this case, G is no longer a
simple path but remains a directed acyclic graph nonetheless. Thus, the longest
path through G (which corresponds to skn+1) equals the longest path through GT .

3. Finally, consider the general cases where acyclic and cyclic drone operations occur.
In this case, based on the structure of the problem, any directed graph G with cyclic
operations can be transformed into directed acyclic graph through the introduction
of a dummy vertex for each cyclic operation (see Figure 3.3.2). Therefore, this case
can be reduced to previous case.

(ii) For each truck k ∈ K, the decision variables xkij directly correspond to a sequence
of customers πk, as visited by the truck k. Based on the symmetry of the problem, we
might introduce a constraint that guarantees that a tour πk = {0, i . . . , j, n + 1} (here,
xk0,i = xkj,n+1 = 1) and its partially inverted sequence πTk = {0, j . . . , i, n + 1} are not
both evaluated. To this end, we introduce the following set of static symmetry breaking
inequalities (Jünger et al., 2010) that guarantee that for any sequence πk = {0, i, . . . , j, n+
1}, i ≤ j, the partially inverted sequence πTk = {0, j, . . . , i, n+ 1} must not be evaluated.∑

i∈VN

i · xk0,i ≤
∑
j∈VN

j · xkj,n+1 ∀k ∈ K. (3.34)

This completes the proof of Proposition 3.3. ■

78

3.3 Problem Definition

i j

u

w

v

s

i i’ i” j

u

w

v

s

Figure 3.3.2: A segment of a VRPD route as a directed graph with two drones indicated by dashed
and dotted lines, respectively, and the corresponding directed acyclic graph. In the corresponding
graph, we assume that the weight of solid edges that connect dummy vertices is equal to 0. In
this case, the order of the dummy vertices implies that the drone that serves u returns before the
drone that serves w.

3.3.2.3 Knapsack Inequalities

In this section, we provide two sets of knapsack inequalities.

Proposition 3.4. Assume that i ∈ VL, j ∈ VR, and w ∈ VD, where |{i, w, j}| = 3; then,
the following inequalities are valid for the MILP (3.1)–(3.27):

xkiw +
∑
d∈D

(
ykdiwi +

∑
j∈VR,
i ̸=j,
w ̸=j

ykdiwj

)
≤ 1 ∀k ∈ K, i ∈ VL, w ∈ VD, i ̸= w, (3.35)

xkiw+xkwj+xkij+
∑
d∈D

(ykdiwj+ykdiwi+ykdjwj) ≤ 2 ∀k ∈ K, i ∈ VL, w ∈ VD, j ∈ VR, |{i, w, j}| = 3.

(3.36)

Proof. Consider a pair of two vertices i ∈ VL and w ∈ VD where i ̸= w. Constraints (3.6)
guarantee that the indegree of performed deliveries is at most one. Therefore, w can be
served from i at most once by either a truck, a drone that performs a cyclic delivery, or
a drone that performs an acyclic delivery. Mathematically, this can be expressed through
the following inequalities:

xkiw +
∑
d∈D

(
ykdiwi +

∑
j∈VR,
i ̸=j,
w ̸=j

ykdiwj

)
≤ 1 ∀k ∈ K, i ∈ VL, w ∈ VD, i ̸= w. (3.37)

Next, consider a triple of vertices i ∈ VL, w ∈ VN , and j ∈ VR, where all vertices are
pairwise different (|{i, w, j}| = 3). In this triple, with the truck (and possibly drones)
located at i, there can be at most two deliveries such that all demands are fulfilled.

79

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Starting at i, either the truck first serves w and then j, or the truck directly moves from i

to j. In the latter case, a drone is permitted to either perform a cyclic or acyclic operation.
Therefore, we can introduce the following inequalities:

xkiw+xkwj+xkij+
∑
d∈D

(ykdiwj+ykdiwi+ykdjwj) ≤ 2 ∀k ∈ K, i ∈ VL, w ∈ VD, j ∈ VR, |{i, w, j}| = 3.

(3.38)
The inequalities (3.37) and (3.38) complete the proof of Proposition (3.4). ■

3.4 Matheuristic

As we will see in Section 3.5.1, a state-of-the-art MILP solver can solve only small VRPD
instances within reasonable runtime. As an alternative, we might use a heuristic solution
method which must be able to provide high-quality solutions within short computation
time. In this context, a heuristic might approach the VRPD by solving the following
hierarchical subproblems in succession:

1. Allocation Problem: Which customers should be served by which tandem (where
each tandem consists of a truck and its drone fleet)?

2. Sequencing Problem: In which order should each allocation be processed?

3. Assignment Problem: In each sequence, which customers should be assigned to the
truck and drones?

4. Scheduling Problem: Given the assignment, which feasible operations should the
drones perform, i. e., what are the concrete locations where drones are launched and
retrieved?

Methods that embed mathematical programming inside a heuristic framework are called
matheuristics and have been applied to several routing problems (see, e. g., (Archetti
and Speranza, 2014) and references therein). We propose a matheuristic in which we
decompose the problem into two natural components as follows:

1. Allocation & Sequencing, that can be solved simultaneously through established
heuristics for VRPs (see, e. g., (Toth and Vigo, 2014) and references therein). In the
following, we refer to this subproblem as the routing subproblem of the VRPD.

2. Drone assignment & Scheduling, that are solved simultaneously through the use of
mathematical programming techniques. In the following, we refer to this subproblem
as the DASP. In contrast to existing works (e. g., (Boysen et al., 2018b; Es Yurek

80

3.4 Matheuristic

and Ozmutlu, 2018)), the assignment of drones to customers is not fixed in advance
or determined during routing, i. e., we solve the assignment and scheduling problem
simultaneously. Furthermore, our method is suitable for cases where multiple drones
are present that might have different relative velocities or endurances.

Algorithm 3.1 shows the basic structure of our proposed matheuristic which will be
explained in more detail in the following sections. Initially, the incumbent objective value
f(x∗) is set to a sufficiently large value M . Then, our algorithm iterates until a termi-
nation criterion (e. g., a runtime limit) is met. In this algorithm, lines 3 to 8 refer to the
allocation and sequencing problem which will be addressed in Section 3.4.1. Afterwards,
in Section 3.4.2, we dedicate ourselves to lines 10 to 17 that are concerned with the drone
assignment and scheduling problem.

Algorithm 3.1 An overview of the matheuristic framework.
1: f(x∗) ← M
2: while termination critera is not met do
3: Routes ← RandomizedSavingsHeuristic
4: Routes ← LocalSearch(Routes)
5: Routes ← sort(Routes)
6: if tabuList.contains(π : Routes) then
7: continue while
8: end if
9: RUB ← 0

10: for (π : Routes) do
11: xπ ← DASP(π, BestObjStop(RUB), Cutoff(f(x∗)))
12: RUB ← (f(xπ) > RUB) ? f(xπ) : RUB
13: if RUB ≥ f(x∗) then
14: tabuList.add(π)
15: continue while
16: end if
17: end for
18: f(x∗) ← RUB
19: tabuList.add(π that determined RUB)
20: end while

Allocation and
Sequencing (Section 3.4.1)

DASP (Section 3.4.2)

3.4.1 Allocation and Sequencing

In each iteration, a set of routes is generated and sorted according to their length. As
we use an exact procedure to determine the optimal drone assignment and schedule for a
given route (refer to Section 3.4.2), a tabu list is employed. The tabu list stores examined

81

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

routes and inhibits the matheuristic from repeatedly solving the same DASP for routes
that are guaranteed not to improve the incumbent solution. The criterion, under that a
route is added to the list, will be described in more detail in Section 3.4.2.

In principle, any algorithm that generates a feasible routing (a set of routes) might
be used as an initialization procedure within our heuristic. Moreover, it is conceivable
to embed the DASP as a local search method within a more sophisticated metaheuristic
approach. However, to show the strength of the DASP as a component, we choose a more
simplistic procedure for solving the routing problem. More precisely, we adapt the parallel
Clarke-Wright-Savings heuristic as initialization procedure (Clarke and Wright, 1964). For
customizing this heuristic for the VRPD, we make two minor adjustments:

• Since the trucks do not possess a limited capacity in the VRPD, we limit each route
to contain at most ⌈|G|/|K|⌉ customers.

• In order to generate different starting solutions, within the heuristic the savings
are weighted with a random value drawn at uniform from an interval [rlb, 1], where
0 < rlb ≤ 1.

Afterwards, the initial routing is improved through some local search operations. Here,
for a limited number of iterations, we attempt to improve the routing by minimizing the
length of the longest remaining route. As local search method, we use the 2-opt as single-
route improvement heuristic (Lin and Kernighan, 1973). Furthermore, we rely on String
Relocation (SR) and String Exchange (SE) with best insertion, respectively, as multi-route
improvement heuristics (Toth and Vigo, 2014). All operators work by choosing random
vertices within the routes. In the case of 2-opt, two vertices from the same route are
selected and the sequence is inverted. If this inversion leads to an improved route length,
the move is accepted, otherwise it is reverted. This move can be efficiently evaluated in
O(1) per iteration. In the case of SR and SE, first, two random routes are selected from
the set of routes. Clearly, these moves are only applied when the number of routes (trucks)
is larger than one. In the case of SR, a random vertex is selected from the longer route and
inserted into the shorter route at the best location in the sequence, i. e., the one that will
add the minimal length to the route after insertion. In the case of SE, a random vertex is
selected from each route and inserted into the respective other route at the best location
in the sequence. Both moves, SR and SE, can be efficiently evaluated in O(n).

3.4.2 Drone Assignment and Scheduling

Once a feasible routing (a set of routes) has been generated, the next steps involve solving
the DASP for each route. More precisely, we use a MILP solver to determine the optimal

82

3.4 Matheuristic

assignment and schedule of drones for each truck. The proposed MILP formulations will
be discussed in Sections 3.4.2.1 and 3.4.2.2. Let the Route Upper Bound (RUB) be the
supremum on the makespan based on all routes that have been evaluated thus far in the
current iteration. The RUB is re-initialized to zero in every iteration. Then, for each route
π in the list of routes, we solve the DASP as a MILP, yielding a solution xπ, by supplying
the solver with the following parameters (line 11 in Algorithm 3.1):

• BestObjStop(RUB): When the solver detects a feasible solution xπ with an objective
value f(xπ) ≤ RUB, we can terminate the solver’s internal branch-and-cut process.
In this case, the objective value associated with the DASP for the current route π is
at least as good as the RUB. Therefore, there is no need to solve the current DASP
to optimality as the RUB remains unchanged. In particular, in presence of multiple
trucks, once an initial value on the RUB ̸= 0 has been established, by solving the
DASP for the first truck’s route, subsequent DASPs can often be evaluated more
quickly through this process.

• Cutoff(f(x∗)): When the solver detects that the best possible solution value is greater
than or equal to the incumbent objective value f(x∗), we can cut off (terminate) the
solver’s branch-and-cut process. In this case, the objective value f(xπ) would gen-
erate a new RUB that is guaranteed to be greater than or equal to the current
incumbent objective value f(x∗). Therefore, the makespan associated with the cur-
rent set of routes is guaranteed not to improve on the incumbent solution.

0 Objective Value

Lo
we
r

Bo
un
d Inc

um
be
nt

f(
x
∗)

RU
B Up

pe
r B

ou
nd

f(
x π
)

Figure 3.4.1: For each route π, internally, the MILP solver attempts to find an optimal solution
xπ to the DASP by closing the gap between the lower and upper bound. If the lower bound is
greater than or equal to the incumbent solution f(x∗), a cutoff can be applied. In this case, the
next RUB is guaranteed to be greater than or equal to f(x∗) and, thus, the incumbent solution
will not change. Similarly, if the upper bound f(xπ) ≤ RUB, we can stop and do not need to solve
the DASP to optimality. In this case, as the RUB determines the makespan of the VRPD solution,
it is sufficient to prove that a solution xπ exists for the current route π such that f(xπ) ≤ RUB.

Figure 3.4.1 visualizes how this procedure can significantly speed up the process, requir-
ing not all Mixed-Integer Programming (MIP) gaps to be tight when solving the DASP.

83

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Whenever the MILP solver returns a solution xπ with an objective f(xπ) > RUB, we set
the RUB to the value of f(xπ) (line 12 in Algorithm 3.1). Furthermore, if the current
RUB is greater than or equal to f(x∗), the current iteration can terminate, i. e., no further
routes have to be evaluated as no improvement on the incumbent solution can be found
with the current set of routes. In this case, the route π that determined the RUB (and, in
case of a symmetric graph, the reverse route as a result from Section 3.3.2.2) are stored
on the tabu list and we continue with the next iteration by generating a completely new
set of routes (lines 13 to 16 in Algorithm 3.1). Finally, if the algorithm evaluated the
last route and if RUB < f(x∗) still holds, then we have a new and improved incumbent
solution x (that consists of all xπ for each route π) with an objective value f(x) = RUB.
This solution is then stored as the incumbent solution and the route that determined the
RUB is also added to the tabu list (refer to Section 3.4.1).

At this point, we require a MILP that, given a feasible routing, returns the optimal
assignment of customers to either the truck or a drone including the schedule of drones
for each route π such that the makespan is minimized. In principle, MILP (3.1)–(3.27)
can be readily used for this, by fixing the variables xkij based on each route π. However,
in terms of columns and rows, the resulting MILP is still very large and, given a fixed
allocation and sequencing decision, contains many redundant constraints.

In what follows, we will show that a much more compact MILP formulation for the
DASP can be derived. To this end, assume that a graph G(V,E) and a route (permutation)
π = (0, . . . , n + 1), π ⊆ V is given as an ordered list of vertices. Let VL = π \ {n + 1},
VR = π \ {0}, and VN = VL ∩ VR. Furthermore, we call VD ⊆ VN the drone-serviceable
subset of customers. As in Section 3.3, we assume that tij (dij) and tij (dij) are the times
(distances) required to travel from i ∈ VL to j ∈ π by truck and drone, respectively. We
use the notation i ≺ j (i ≻ j) to indicate that the index associated with i in the ordered
list π is smaller (larger) than the index associated with j. Furthermore, i ⪯ j (i ⪰ j)
implies that the index of i is smaller (larger) than or equal to the index of j.

For the DASP, we will now provide two MILP formulations. Section 3.4.2.1 provides a
formulation, where a drone operation (i, w, j) is directly modelled through three indices,
similar to the decision variables that were already used in Section 3.3. Alternatively,
Section 3.4.2.2 models each drone operation (i, w, j) through two disjoint arcs (i, w) and
(w, j). The latter formulation reduces the number of variables required for modeling the
problem at the cost of additional constraints.

84

3.4 Matheuristic

3.4.2.1 Three-Index-Operation Formulation

In this section, we model a drone operation (i, w, j) directly through three indices. Com-
pared to the two-index formulation presented in Section 3.4.2.2, this makes the number
of variables larger but the model itself compact. For modeling the problem, we introduce
the decision variables in Table 3.4.1.

Table 3.4.1: Decision variables used in the three-index DASP formulation.

yw
∀w∈VN

Binary variables that determine if w ∈ VN is served by any drone.

odi
∀d∈D,i∈VL

Binary variables that indicate if drone d ∈ D is available at i ∈ VL.

ydiwj
∀d∈D,i∈VL,w∈VD,j∈VR,

i≺w≺j

Binary variables that specify if a drone d ∈ D performs an acyclic
operation (i, w, j).

ydiwi
∀d∈D,i∈VL,w∈VD,i≺w

Binary variables that determine if a drone d ∈ D performs a cyclic
operation (i, w, i).

ai
∀i∈π

Continuous variables with a lower bound of 0 that specify the earliest
possible arrival time of the truck at i.

si
∀i∈π

Continuous variables with a lower bound of 0 that specify the earliest
possible departure time of the truck from i.

rdi
∀d∈D,i∈π

Continuous variables with a lower bound of 0 that specify the earliest
possible release time of drone d at i.

sdi
∀d∈D,i∈π

Continuous variables with a lower bound of 0 that specify the earliest
possible time at which drone d is available for a departure from i.

Given G(V,E) and a fixed sequence of vertices π, MILP (3.39)–(3.54) is used to find the
best possible assignment and schedule of drones such that the makespan at vertex n + 1

is minimized.

min sn+1, (3.39)

s.t. yw = 0 ∀w ∈ VN \ VD, (3.40)∑
d∈D

∑
i∈VL,
i≺w

(ydiwi +
∑
j∈VR,
w≺j

ydiwj) = yw ∀w ∈ VD, (3.41)

∑
d∈D

∑
w∈VD,
v≺w

(ydvwv +
∑
j∈VR,
w≺j

ydvwj) ≤M(1− yv) ∀v ∈ VN , (3.42)

∑
d∈D

∑
w∈VD,
w≺v

∑
i∈VL,
i≺w

ydiwv ≤M(1− yv) ∀v ∈ VN , (3.43)

−M(yi + yj) + si + tij ≤ aj i ∈ VL, j ∈ VR, i ≺ j, (3.44)

85

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

ai ≤ si ∀i ∈ V, (3.45)

−M(1− ydiwj) + sdi + (tl + tiw + twj + tr) ≤ rdj ∀d ∈ D, i ∈ VL, w ∈ VD,

j ∈ VR, i ≺ w ≺ j,
(3.46)

rdi +
∑

w∈VD,
i≺w

(tl + tiw + twj + tr)y
d
iwi ≤ sdi ∀d ∈ D, i ∈ VL, (3.47)

sdi + tl
∑

w∈VD,
i≺w

∑
j∈VR,
w≺j

ydiwj ≤ si ∀d ∈ D, i ∈ V, (3.48)

aj + tr
∑
i∈VL,
i≺w

∑
w∈VD,
w≺j

ydiwj ≤ rdj ∀d ∈ D, j ∈ V, (3.49)

(diw + dwj)y
d
iwj ≤ E ∀d ∈ D, i ∈ VL, w ∈ VD,

j ∈ V, i ≺ w ≺ j,
(3.50)

(diw + dwi)y
d
iwi ≤ E ∀d ∈ D, i ∈ VL, w ∈ VD, i ≺ w, (3.51)

odh +
∑
i∈VL,
i≺h

∑
w∈VD,
i≺w

∑
j∈VR,
j≻h

ydiwj = 1 ∀d ∈ D, h ∈ VN ,
(3.52)∑

w∈VD,
i≺w

∑
j∈VR,
w≺j

ydiwj ≤ odi ∀d ∈ D, i ∈ VL, (3.53)

∑
w∈VD,
i≺w

ydiwi ≤Modi ∀d ∈ D, i ∈ VL. (3.54)

The objective function (3.39) minimizes the time required such that all customers are
served and the truck and drones have returned to the depot. The set of constraints (3.40)–
(3.41) force the variables yw to 1 if a customer w is served by any drone and to value 0
for any customer that cannot be served by drone. Furthermore, they guarantee that
each customer is served at most once by a drone. Constraints (3.42) and (3.43) impose
that no drone sortie can start or end at a customer v that is served by a drone. Lower
bounds on the arrival time of the truck are specified through the set of constraints (3.44).
Moreover, due to constraints (3.45) the departure time of the truck is bound by its arrival
time at each vertex. For each drone operation (i, w, j), constraints (3.46) provide valid
lower bounds on the release times. Constraints (3.47) ensure that a drone can only depart
from a vertex as soon as all cyclic operations have been completed. The earliest possible
departure time of each drone qualifies as a lower bound on the earliest possible departure
time of the truck (constraints (3.48)). Furthermore, constraints (3.49) enforce that a drone
can only be released after the truck has arrived. Constraints (3.50) and (3.51) ensure that

86

3.4 Matheuristic

no drone operation violates the maximum endurance. In practice, this can be efficiently
handled during a preprocessing step such that the associated variables ydiwj are bound to
0 if the operation violates the endurance. Constraints (3.52) determine the values on the
variables odh, that indicate if a drone is available for an operation at each vertex h. If there
is an operation (i, w, j) that occurs circumjacent to h, then the drone is unavailable at h.
Finally, constraints (3.53) and (3.54) ensure that at each vertex, a drone can only perform
an acyclic and cyclic operation, respectively, if the drone is available.

For completeness, in principle, it is also possible to introduce some additional auxiliary
binary variables xij where i ∈ VL, j ∈ VR, i ≺ j, that explicitly determine the path of
the truck. This might be done by including the following inequalities (3.55)–(3.57) as
constraints in the model and by replacing (3.44) with (3.58).

xij ≤ (1− yi) ∀i ∈ VL, j ∈ VR, i ≺ j, (3.55)

xij ≤ (1− yj) ∀i ∈ VL, j ∈ VR, i ≺ j, (3.56)

(1− yi) + (1− yj)− 1−
∑

w∈VN ,
i≺w,
w≺j

(1− yw) ≤ xij ∀i ∈ VL, j ∈ VR, i ≺ j,
(3.57)

si + tijxij ≤ aj ∀d ∈ D, i ∈ VL, j ∈ V, i ≺ j. (3.58)

Here, constraints (3.55) and (3.56) ensure that the truck departs or arrives at a customer
that is served by drone. Furthermore, constraints (3.57) guarantees that xij is equal to 1
if neither i nor j are served by drone and all remaining customers w in between i and j

are not served by the truck. Adding these constraints would remove the M in the set of
constraints (3.44) and allow for the inclusion of VIEQs (3.59) and (3.60). These VIEQs
are analogous to the previously introduced VIEQs (3.30) and (3.32) and have proven
themselves to be very beneficial in solving MILP (3.1)–(3.27) more efficiently.∑

i∈V
(si − ai) +

∑
i∈VL

∑
j∈VR,
i≺j

tijxij ≤ sn+1, (3.59)

∑
i∈VL

∑
w∈VD,
i≺w

((tiw + twi)y
d
iwi +

∑
j∈VR,
w≺j

(tiw + twj)y
d
iwj) ≤ sn+1 ∀d ∈ D. (3.60)

However, we do not use these additional variables and constraints when solving the DASP.

87

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

3.4.2.2 Two-Index-Operation Formulation

Another possibility is to represent an operation (i, w, j) through two disjoint arcs (i, w) and
(w, j), instead. This allows for a significantly reduced number of variables at the cost of
several additional constraints that guarantee valid drone operations. For this formulation,
consistent with the three-index formulation, we use the variables yw, o

d
i , ai, si, r

d
i , and sdi

(refer to Section 3.4.2.1). Furthermore, we introduce the decision variables in Table 3.4.2.

Table 3.4.2: Decision variables used in the two-index DASP formulation.

ydiw
∀d∈D,i∈VL,w∈VD,i≺w

Binary variables that specify if a drone d ∈ D performs an acyclic
delivery to w ∈ VD which starts at i ∈ VL.

ỹdwj
∀d∈D,w∈VD,j∈VR,w≺j

Binary variables that specify if a drone d ∈ D is retrieved at j ∈ VR

after an acyclic delivery to w ∈ VD.
zdiw

∀d∈D,i∈VL,w∈VD,i≺w

Binary variables that determine if a drone d ∈ D performs a cyclic
delivery (i, w, i).

The model is then given as follows, where (3.61) marks the objective and the constraints
are given by (3.62)–(3.78).

min sn+1 (3.61)

s.t. yw = 0 w ∈ VN \ VD, (3.62)∑
k∈D

∑
i∈VL
i≺w

(ydiw + zdiw) = yw w ∈ VD, (3.63)

∑
d∈D

∑
v∈VD,
w≺v

(ydwv + zdwv) ≤M(1− yw) ∀w ∈ VN , (3.64)

∑
d∈D

∑
v∈VD,
v≺w

(ỹdvw + zdvw) ≤M(1− yw) ∀w ∈ VN , (3.65)

∑
i∈VL,
i≺w

ydiw =
∑
j∈VR,
w≺j

ỹdwj ∀d ∈ D, w ∈ VD, (3.66)

−M(yi + yj) + si + tij ≤ aj ∀i ∈ VL, j ∈ V, i ≺ j, (3.67)

ai ≤ si ∀i ∈ V, (3.68)

−M(1− ydiw) + sdi + tl + tiw ≤ rdw ∀d ∈ D, i ∈ VL, w ∈ VD, i ≺ w, (3.69)

−M(1− ỹdwj) + sdw + twj + tr ≤ rdj ∀d ∈ D, w ∈ VD, j ∈ VR, i ≺ w, (3.70)

88

3.4 Matheuristic

rdi +
∑

w∈VD,
i≺w

(tl + tiw + twi + tr)z
d
iw ≤ sdi ∀d ∈ D, i ∈ VL, (3.71)

sdi + tl
∑

w∈VD,
i≺w

ydiw ≤ si ∀d ∈ D, i ∈ V, (3.72)

aj + tr
∑

w∈VD,
w≺j

ỹdwj ≤ rdj ∀d ∈ D, j ∈ V, (3.73)

∑
i∈VL,
i≺w

diwy
d
iw +

∑
j∈VR,
w≺j

dwj ỹ
d
wj ≤ E ∀d ∈ D, w ∈ VD, (3.74)

∑
i∈VL,
i≺w

(diw + dwi)z
k
iw ≤ E ∀d ∈ D, w ∈ VD, (3.75)

odh +
∑
i∈VL,
i≺h

∑
w∈VD,
w≻i

ydiw −
∑
j∈VR,
j⪯h

∑
w∈VD,
w≺j

ỹdwj = 1 ∀d ∈ D, h ∈ VN ,
(3.76)∑

w∈VD

ydiw ≤ odw ∀d ∈ D, i ∈ VL, (3.77)

∑
w∈VD

zdiw ≤Modw ∀d ∈ D, i ∈ VL. (3.78)

This model closely follows the one presented in Section 3.4.2.1. The objective function
is given by (3.61) and minimizes the arrival time at the depot. Constraints (3.62) force
the variables yw to value 0 for any customer that cannot be served by drone. Furthermore,
the variables yw are forced to value 1 by constraints (3.63) if a drone-eligible customer w
is served by any drone. These constraints also guarantee that there can be at most one
delivery by drone to each customer. Constraints (3.64) and (3.65) ensure that no drone
starts or ends a delivery at a customer w that is served by any drone. For each delivery
that does not start and end at the same location, there must be exactly one incoming and
one outgoing arc, which are synchronized through constraints (3.66).

The set of constraints (3.67) provides lower bounds on the arrival time of the truck.
For acyclic drone operations, constraints (3.69) and (3.70) account for the release times of
drones during departure and return flight, respectively. Furthermore, the set of constraints
(3.71) provide a lower bound on the departure time of the drone at each vertex in case of
cyclic operations. The departure time of the truck is bound by its arrival time through
constraints (3.68) and the departure time of drones (constraints (3.72)). Furthermore,
constraints (3.73) guarantee that at each vertex where a drone is retrieved, the drone can
only be released after its respective truck has arrived. The endurance check is implemented
through the set of constraints (3.74) and (3.75). Constraints (3.76) determine the value

89

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

on the variables odh, that indicate if a drone k is available for an operation at vertex h.
In particular, if a drone k performs a circumjacent operation at h, then odh is forced to 0.
Finally, constraints (3.77) and (3.78) guarantee that a drone can only perform acyclic and
cyclic operations, respectively, if it is available.

3.4.3 Discussion and Scalability

As outlined in Section 3.4, because of the min-max objective of the VRPD, a significant
speed up can be achieved in our matheuristic framework through a cutoff and the subse-
quent prevention of unnecessary evaluations of either MILP. This cutoff can be applied,
whenever the MILP yields a lower bound that is greater than or equal to the incumbent
solution f(x∗) and by an early termination of the solver whenever the upper bound moves
beneath the current RUB (see Figure 3.4.1).

Figure 3.4.2: A sample solution for an instance with 50 customers found through the matheuristic
with |K| = 3, |D| = 1.

Both, MILP (3.39)–(3.54) and MILP (3.61)–(3.78), can be solved relatively quickly
for reasonably sized routes. Figure 3.4.2 shows a sample solution found through the
matheuristic (Algorithm 3.1) within just a few seconds. As we have outlined, the number
of variables required for modeling the DASP is O(|π|3) and O(|π|2) for the three- and
two-index-Operation formulation, respectively. For routes that contain a small amount of
customers, the performance difference is negligible. Nevertheless, the reduced number of

90

3.5 Computational Experiments and their Numerical Results

constraints involved in the formulation presented in Section 3.4.2.1 and the large number of
variables that can be removed during preprocessing often make it the preferred formulation
for the instances considered in this work. Overall, the runtime is heavily influenced by
the set of binary variables that determine the drone operations. In particular, the value
of E can severely limit the number of feasible drone operations and therefore significantly
reduce the model size. This can be effectively exploited by the three-index formulation
during preprocessing.
When solving the DASP for larger routes with up to 100 customers, it might take the

solver several seconds to resolve the MILP formulation. At the cost of an optimal drone
schedule, an improved runtime behavior can be achieved in several ways:

• It is easily possible to restrict the set of feasible drone operations further, e. g., by
limiting the maximum number of vertices that can be visited by the truck between
the launch and recovery of a drone (similar approaches were used by Bouman et al.
(2018a) and Boysen et al. (2018b)).

• Furthermore, at the expense of potentially suboptimal drone placements, a time
limit or relative MIP gap might be imposed on the MILP solver when solving the
DASP.

As an alternative approach, within the matheuristic, we suggest splitting the route
(permutation) π into m overlapping partitions π1| . . . |πm. As an example, consider the
route π = (0, . . . , n/2, . . . , n + 1) where n is an even number in Z+. If n is very large,
instead of solving the DASP on π, we might consider two (or m) overlapping partitions
π1 = (0, . . . , n/2) and π2 = (n/2, . . . , n + 1) such that the makespan sn/2 determined by
solving the DASP on π1 marks the starting time of the DASP in π2. This might be achieved
by replacing line 11 in Algorithm 3.1 with Algorithm 3.2. In this algorithm, the function
Partition(π,m) generates m overlapping partitions of π, f(xπ) is the accumulated cost
associated with the route after evaluating each partition, and f(xπi) is the cost of solving
the DASP on each partition πi. Preliminary experiments have shown that this approach
is well-suited for large routes where the runtime behavior is improved significantly with
little or no loss on the solution quality. Figure 3.4.3 shows a sample application of the
DASP involving many partitions.

3.5 Computational Experiments and their Numerical Results

We carried out two main classes of computational experiments, on small- and large-scale
instances and we present the numerical results in this section. More precisely, in Sec-
tion 3.5.1 we discuss the performance of Gurobi Optimizer in solving MILP (3.1)–(3.27).

91

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Algorithm 3.2 DASP partition routine.
1: f(xπ) = 0
2: for πi ∈ Partition(π,m) do
3: if i ̸= m then
4: xπi ← DASP(πi, BestObjStop(0), Cutoff(f(x∗)− f(π)))
5: else
6: xπi ← DASP(πi, BestObjStop(RUB− f(π)), Cutoff(f(x∗)− f(π)))
7: end if
8: f(xπ)← f(xπ) + f(xπi)
9: end for

Figure 3.4.3: A sample solution that was found through the Clarke-Wright savings heuristic and
improved through local search for a single truck (left-hand side) and the respective solution after
solving the DASP (|D| = 1) on each partition, as indicated by the different colors (right-hand side).

Moreover, we highlight the benefits of adding the VIEQs with bounds on the makespan
(3.30) and (3.32), the symmetry breaking constraints (3.34), and (knapsack) inequalities
(3.37) and (3.38) to the model. Finally, we compare the performance of the matheuristic
in solving the same instances through the three-index formulation of the DASP (see Sec-
tion 3.4.2.1) and two-index formulation of the DASP (see Section 3.4.2.2). Afterwards,
Section 3.5.2 shows that the proposed matheuristic can also be used to solve large-scale
instances effectively.

For the matheuristic, the set of constraints (3.46) for the three-index formulation and
(3.69)–(3.70) for the two-index formulation were treated as lazy constraints. All experi-
ments were performed on Intel® Xeon® Gold 6126 CPUs and 16 GB of RAM. We imple-

92

3.5 Computational Experiments and their Numerical Results

mented our algorithms in Java SE 8 and for solving MILPs we used Gurobi Optimizer
8.1.0 (Gurobi Optimization, LLC, 2023).

3.5.1 Small Instances

In this section, we describe the computational experiments on small instances and provide
their numerical results. Since there is no commonly accepted benchmark for the VRPD,
we perform our experiments on the benchmark instances that were used by Agatz et al.
(2018) for the TSPD and Murray and Chu (2015) for the FSTSP. In Section 3.5.1.1 we test
the MILP and matheuristic on the instances used by Agatz et al. (2018). Furthermore, in
Section 3.5.1.2, we evaluate our model and heuristic on the instances used by Murray and
Chu (2015). On the latter instances, to respect the problem description of Murray and
Chu (2015) and to produce comparable results, several minor adjustments to the VRPD
and DASP MILPs are necessary that we explain in detail in Appendix 3.B.

3.5.1.1 Small Instances used by Agatz et al. (2018)

In this section, we provide the results that we obtained on the instances used by Agatz et al.
(2018). These instances are specified by a symmetric graph G(V,E) and assume that the
truck and drone follow the Euclidean distance metric. Furthermore, the instances specify
two parameters: the relative velocity α and the endurance E . In particular, through a
relative endurance parameter Er ∈ R+, the endurance can be calculated as follows, where
max(E) refers to the edge with maximum weight in the graph G:

E := Er ·max(E) Er ∈ [0, 2]. (3.79)

In this case, Er = 0 guarantees that no drone operation is possible while Er = 2 marks
any operation as feasible. The velocity of the drones v is assumed to be α ∈ R+ times
the velocity of the truck. Furthermore, the times required to launch and retrieve drones,
i. e., tl and tr, are assumed to be negligible. Agatz et al. (2018) provide 10 instances (with
10 vertices each), where each instance is associated with a value α ∈ {1, 2, 3} and a value
Er ∈ {0.2, 0.4, 0.6, 1.0, 1.5, 2.0} yielding a total of 180 different instances. By definition
of Poikonen et al. (2017) and X. Wang et al. (2017), the number of trucks and drones
per truck are a parameter in the VRPD. Thus, as a meaningful selection on for small
instances, we limit ourselves to |K| ∈ {1, 2} and |D| ∈ {1, 2}, i. e., we either have one or
two trucks that are equipped with either one or two drones each. Therefore, we consider
a total of 2 · 2 · 180 = 720 instances for our experiments. We solve these 720 instances in
five different ways as follows:

93

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

1. We solve the MILP (3.1)–(3.27) without VIEQs.

2. We further include the VIEQs (3.30)–(3.32) that provide bounds on the makespan
to the model.

3. Additionally, we include the symmetry breaking constraints (3.34) and (knapsack)
inequalities (3.37)–(3.38) to previous model and VIEQs.

4. Finally, we consider the matheuristic with either the three-index formulation MILP
(3.39)–(3.54) or the two-index formulation MILP (3.61)–(3.78) for solving the DASP.

When solving the VRPD as MILPs, we limit the runtime of the solver to 15 minutes.
For solving the VRPD through the matheuristic, we limit the runtime of the heuristic to 10
minutes. Furthermore, within this time limit, if the incumbent value remains unchanged
for more than 1 minute, the heuristic terminates. The parameter rlb that randomizes
the savings during initialization was set to 0.7 and the number of iterations spent on local
search were set to ⌈|V |1.5⌉, where |V | marks the number of vertices in the instance. Finally,
we perform five runs of the matheuristic per instance.
In total, this yields 3 · 720 = 2160 unique experiments using the MILP and the VIEQ

and 5 · 720 = 3600 unique experiments using the matheuristic with each MILP for solving
the DASP. Therefore, we have done 2160 + 2 · 3600 = 9360 experiments in total.
For the analysis of our results, we introduce the following metric. More precisely, given

a fixed number of trucks, ∆ indicates the relative change in makespan through the intro-
duction of drones and is calculated as follows:

∆ := 100%− objective value
optimal objective value with D = {}

(3.80)

Tables 3.D.1–3.D.3 (see Appendix 3.D) show the average solutions achieved by solving
the instances through steps 1.–3. (see above). Each table shows the average value of ∆,
the average MIP gap returned by the solver, the average runtime t, the average number
of acyclic (#a) and cyclic operations (#c) in a solution, and the number of runs where an
optimal solution was found within the runtime limit.
Furthermore, Tables 3.D.4 and 3.D.5 (see Appendix 3.D) show the average solution

achieved through the matheuristic using the three- and two-index DASP formulation, re-
spectively. In this case, we report the average value of ∆, the average runtime tbest after
which the incumbent solution was found, the average number of changes in the incumbent
solution until convergence n, the average number of acyclic and cyclic operations, respec-
tively, and the share of solutions where the heuristic found a solution of equal or better
quality than the one returned by the solver.

94

3.5 Computational Experiments and their Numerical Results

Overall, we can make the following observations. Regarding the MILP in Tables 3.D.1–
3.D.3, on average, the introduction of the VIEQ significantly improved the performance
of the MILP solver. In particular, we can observe a larger share of instances that are
solved to optimality and significantly reduced runtimes (and MIP gaps) while doing so.
The average time to optimality is significantly influenced by the number of drones and
the relative endurance Er which by implication have a large influence on the number of
binary variables ykdiwj that might be removed during preprocessing. Furthermore, Er has a
strong influence on the quality of the root relaxation. This is highlighted in Table 3.5.1,
which shows the average objective, iterations, and time (in seconds) after solving the root
relaxation. In this table, the column labeled %R is calculated as follows:

%R :=
root relaxation objective

objective value of the feasible solution after runtime (3.81)

Table 3.5.1: Results obtained after solving the root relaxation depending on the relative endurance
Er (averaged over all instances).

MILP (3.1)–(3.27) without VIEQ MILP + makespan bounds MILP + all VIEQ
Er Objective Iterations Time %R Obj. Iter. Time %R Obj. Iter. Time %R

0.2 0 281.1 0.0 0.0% 163.0 399.7 0.0 58.0% 163.0 388.1 0.0 58.0%
0.4 0 334.5 0.0 0.0% 131.8 579.2 0.1 47.5% 131.8 536.6 0.1 47.5%
0.6 0 438.4 0.2 0.0% 82.5 892.5 0.3 31.0% 82.5 825.0 0.3 31.0%
1.0 0 502.2 0.8 0.0% 65.4 1,017.0 1.5 28.1% 65.4 1,016.1 1.3 28.3%
1.5 0 588.4 1.4 0.0% 62.3 1,081.1 2.8 30.6% 62.3 1,167.1 2.3 30.7%
2.0 0 227.5 1.2 0.0% 62.3 1,348.1 3.6 31.7% 62.3 1,454.8 3.4 32.0%

Average 0 395.3 0.6 0.0% 94.6 886.3 1.4 37.8% 94.6 898.0 1.2 37.9%

Regarding the matheuristic in Tables 3.D.4 and 3.D.5, on average, optimal or near-
optimal solutions are found in almost all cases. On small instances, there is no significant
difference in solving the DASP through either the three- or two-index formulation with
regard to the time required to solve the MILP. In particular, the matheuristic converges
very fast and does not require many changes to the incumbent solution to find optimal
solutions. Solving the DASP through mathematical programming provides an intensive
local search mechanism that is also very robust. In some cases, the optimal VRPD solution
can be constructed by solving the DASP on structurally similar but not necessarily equal
routes (i. e., distinct routes that share a large number of the same arcs).
In almost all cases, the matheuristic is able to provide a solution that is at least as good

(or better) than the one provided by the MILP solver. In order to highlight this behavior,
Tables 3.D.4 and 3.D.5 contain a column that shows the number of times where a solution
of equal or better quality was found by the matheuristic.

95

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

In what follows, we will provide a more detailed analysis of solutions based on Ta-
ble 3.D.3 (MILP with all VIEQs active) which performed the best on average. To this
end, Figure 3.5.1 shows the average relative improvement ∆ as a function of the relative
endurance Er, the relative velocity α, the number of trucks |K|, and the number of drones
per truck |D|. Overall, we can observe logarithmic-shaped curves in all cases, indicating
a diminishing return with regard to an increase in the relative endurance. Recall that
a value of Er = 0 indicates that no drone operation is possible while a value of Er = 2

indicates that, in principle, all operations are feasible. In all cases, even small increases in
the drone’s endurance can lead to significant savings (e. g., moving Er from 0 to 1) whereas
further increases often lead to smaller returns (e. g., moving Er from 1 to 2). In general,
α and Er seem strongly correlated. If the drone is relatively slow, performing operations
that require a large endurance does not seem to be beneficial. In contrast, if the drone
is relatively fast, it can be beneficial to perform operations that require a high endurance
and visit distant locations.

For a more detailed analysis on the performed operations, see Figure 3.5.2. This figure
shows the average number of acyclic and cyclic operations performed by drones as a func-
tion of the relative endurance Er, the relative velocity α, the number of trucks |K|, and
the number of drones per truck |D|. Overall, the share of acyclic operations performed is
much larger than the share of cyclic operations. Moreover, the number of acyclic opera-
tions performed as a function of the relative endurance also appears logarithmic-shaped.
This might be an indication that after reaching a certain threshold of relative endurance
Er, depending on the relative velocity α, the operations performed by drones will not
change structurally. These results are in line with Figure 3.5.1. However, we also have an
indication that an improvement in ∆ is not necessarily linked to additional drone opera-
tions. To this end, consider, e. g., the cases for α ∈ {2, 3}, |K| = 1, |D| = 1 in Figures 3.5.1
and 3.5.2. Even though the number of acyclic and cyclic operations is almost identical,
the relative improvements ∆ are very much different. Therefore, in some cases, it can be
beneficial to perform the same number of operations but at an increased relative velocity.
Clearly, once the drone is fast enough, the velocity of the truck becomes the bottleneck
such that an increase in the relative velocity yields no further improvement.

Finally, Figure 3.5.3 shows the relative improvement as box plots based on the 10 differ-
ent base instances (specifying the customers and depot) that we used in our experiments.
On this figure, we observe that even though the median relative improvement is typically
large, the minimum and maximum values can differ noticeably. In particular for the cases
of α = 3, the difference between the maximum and minimum relative improvement when
comparing different problem instances can be large.

96

3.5 Computational Experiments and their Numerical Results

0.20.40.6 1 1.5 2
0

10

20

30

40

50

60

Rel. Endurance Er
|K| = 1, |D| = 1

R
el
.
Im

pr
ov
em

en
t
∆

[%
] α = 1

α = 2
α = 3

0.20.40.6 1 1.5 2
0

10

20

30

40

50

60

Rel. Endurance Er
|K| = 2, |D| = 1

R
el
.
Im

pr
ov
em

en
t
∆

[%
] α = 1

α = 2
α = 3

0.20.40.6 1 1.5 2
0

10

20

30

40

50

60

Rel. Endurance Er
|K| = 1, |D| = 2

R
el
.
Im

pr
ov
em

en
t
∆

[%
] α = 1

α = 2
α = 3

0.20.40.6 1 1.5 2
0

10

20

30

40

50

60

Rel. Endurance Er
|K| = 2, |D| = 2

R
el
.
Im

pr
ov
em

en
t
∆

[%
] α = 1

α = 2
α = 3

Figure 3.5.1: The relative improvement ∆ depending on the number of trucks |K|, the number of
drones per truck |D|, the relative endurance Er, and the relative velocity α (based on 10 instances).

3.5.1.2 Small Instances used by Murray and Chu (2015)

To show that our model and heuristic are also well-suited to the assumptions and instances
of Murray and Chu (2015), we provide some computational evidence in this section. In
these instances, there is a single truck which is equipped with a single drone that follow
a Manhattan and Euclidean distance matrix at 25 miles per hour (mph) and 15, 25,
or 35 mph, respectively. For the sake of compactness, in this section, we respect these
assumptions and do not consider a multi-truck or multi-drone case. Murray and Chu
(2015) provide 72 problems that contain 10 customers distributed across an 8-mile square
region (80% to 90% of which are drone serviceable) and 1 depot location i. e., 11 vertices
in total (one more vertex compared to the previous section). Among these 72 instances,

97

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

0.20.40.6 1 1.5 2
0

1

2

3

4

5

6

7

Rel. Endurance Er
|K| = 1, |D| = 1

N
um

be
r
of

O
pe

ra
tio

ns

α = 1
α = 2
α = 3

0.20.40.6 1 1.5 2
0

1

2

3

4

5

6

7

Rel. Endurance Er
|K| = 2, |D| = 1

N
um

be
r
of

O
pe

ra
tio

ns

α = 1
α = 2
α = 3

0.20.40.6 1 1.5 2
0

1

2

3

4

5

6

7

Rel. Endurance Er
|K| = 1, |D| = 2

N
um

be
r
of

O
pe

ra
tio

ns

α = 1
α = 2
α = 3

0.20.40.6 1 1.5 2
0

1

2

3

4

5

6

7

Rel. Endurance Er
|K| = 2, |D| = 2

N
um

be
r
of

O
pe

ra
tio

ns
α = 1
α = 2
α = 3

Figure 3.5.2: The average share of acyclic operations (solid lines) and cyclic operations (dashed
lines) depending on the number of trucks |K|, the number of drones per truck |D|, the relative
endurance Er, and the relative velocity α (based on 10 instances).

the endurance of the drone is either 20 or 40 minutes.
Several minor modifications to the VRPD and DASP MILPs are necessary to match

the problem formulation of Murray and Chu (2015). A detailed discussion is provided
in Appendix 3.B. Due to the effectiveness of the VIEQs (refer to Section 3.5.1.1), we
solved the modified MILP through Gurobi Optimizer in the presence of all VIEQs that
are proposed in Section 3.3.2. For comparative purposes, we also solved the same set of
instances through the matheuristic with the three-index formulation using the same set of
parameters that was described in the previous section. The detailed results are available
in Table 3.D.6 (refer to Appendix 3.D).
Noteworthy, Murray and Chu (2015) report that they were unable to solve any of these

98

3.5 Computational Experiments and their Numerical Results

0.6 1.0 1.5 2.0

0

10

20

30

40

50

60

Rel. Endurance Er
|K| = 1, |D| = 1

R
el
.
Im

pr
ov
em

en
t
∆

[%
] α = 1

α = 2
α = 3

0.6 1.0 1.5 2.0

0

10

20

30

40

50

60

Rel. Endurance Er
|K| = 2, |D| = 1

R
el
.
Im

pr
ov
em

en
t
∆

[%
] α = 1

α = 2
α = 3

0.6 1.0 1.5 2.0

0

10

20

30

40

50

60

Rel. Endurance Er
|K| = 1, |D| = 2

R
el
.
Im

pr
ov
em

en
t
∆

[%
] α = 1

α = 2
α = 3

0.6 1.0 1.5 2.0

0

10

20

30

40

50

60

Rel. Endurance Er
|K| = 2, |D| = 2

R
el
.
Im

pr
ov
em

en
t
∆

[%
] α = 1

α = 2
α = 3

Figure 3.5.3: The relative improvement ∆ as a box plot depending on the number of trucks |K|,
the number of drones per truck |D|, the relative endurance Er, and the relative velocity α. Values
taken from Table 3.D.3 (averaged over 10 instances).

problems to proven optimality within 30 minutes of runtime. Compared to this, within 15
minutes of runtime, we can solve 26 out of 72 instances to optimality. The average MIP
gap over all instances remained 16.69% after runtime. As we observed in Section 3.5.1.1,
an increased endurance (i. e., flight time Et) generally decreases the performance of the
MILP solver. This is also evident by the average runtime of 535.0 seconds and MIP gap
of 11.4% (781.9 seconds and 22.0%) after runtime when the maximum flight time is set to
20 minutes (40 minutes).
Table 3.5.2 provides some additional information based on the solutions returned by

the MILP solver. More precisely, this table contains the average savings ∆ (refer to

99

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Formula (3.80)) and the average number of drone operations present in the solution vector.
Moreover, information on the root relaxation solution is shown (similar to Table 3.5.1).
This table highlights that slightly smaller savings of a similar magnitude are possible
on these instances compared to the ones observed in Section 3.5.1.1. Furthermore, the
dependence of the savings on the drone velocity and endurance structurally matches the
one observed in Figure 3.5.1.

Table 3.5.2: The savings ∆, the MIP gap, and the number of drone operations (Ops.) on the
instances of Murray and Chu (2015) as well as information on the root relaxation solution (averaged
over 12 instances).

Drone
Speed
(mph)

Et=20 minutes Et=40 minutes
Solution Root Solution Root

∆ Gap Ops. Iterations Time %R ∆ Gap Ops. Iterations Time %R

15 2.7% 0.0% 0.7 1,028.5 0.4 58.0% 10.2% 22.0% 1.0 1,123.8 1.4 54.6%
25 15.7% 17.2% 2.1 1,174.8 1.1 52.8% 17.6% 23.9% 2.2 1,298.6 1.7 53.9%
35 23.0% 16.9% 2.9 1,400.7 1.7 54.0% 22.8% 20.3% 3.0 1,417.6 1.8 53.8%

Average 13.8% 11.4% 1.9 1,201.3 1.1 54.9% 16.8% 22.0% 2.1 1,280.0 1.6 54.1%

With respect to the Best Known Solutions (BKSs) provided by (Ha et al., 2018; Murray
and Chu, 2015), both our MILP and matheuristic showed favorable performance. More
precisely, both approaches were able to generate solutions that were on average within a
0.5% margin to the BKS. Moreover, to the best of our knowledge, we believe that we were
able to identify several new and slightly improved BKSs through the MILP solver and
matheuristic on 13 instances (refer to Table 3.D.6).

3.5.2 Large Instances

Regarding the large instances, we also used the instances provided by Agatz et al. (2018)
with 20, 50, and 100 vertices, respectively. In accordance with the explanations in Sec-
tion 3.5.1.1, for each size, there are ten instances that are associated with a relative velocity
α ∈ {1, 2, 3} and a relative endurance Er ∈ {0.2, 0.4, 0.6, 1.0, 1.5, 2.0}. For our experi-
ments, we limit ourselves to Er ≤ 1 as no significant differences can be observed at larger
endurances (see the results in Section 3.5.1.1). Furthermore, we test with |K| ∈ {1, 2, 3}
and |D| ∈ {1, 2}, i. e., we have one, two, or three trucks that are equipped with either one
or two drones each. This yields a total of 3 · 10 · 3 · 4 · 3 · 2 = 2160 instances. On each
instance, we run the matheuristic 5 times using either the three- or two-index formulation
of the DASP, yielding a total of 21600 unique experiments.
In order to achieve an improved runtime behavior, in particular when solving instances

with 100 customers while a single truck is present, we use the DASP partition (see Al-

100

3.5 Computational Experiments and their Numerical Results

gorithm 3.2). To this end, a route containing more than 20 vertices is split into multiple
(equally large) partitions such that no partition contains more than 20 vertices.
As we have no optimal objective values for these problems, we introduce the following

updated metric ∆ for studying the benefit of using drones. Given a fixed number of trucks,
the updated metric gives insights into the change in makespan through the utilization of
drones:

∆ := 100%− incumbent objective value
incumbent objective value before solving the DASP (3.82)

Tables 3.D.7–3.D.12 show the results from solving the instances with 20, 50, and 100 ver-
tices by using the matheuristic with either the three- or two-index formulation for solving
the DASP. Overall, on larger instances the matheuristic also converges very fast. Whereas
preliminary results have shown that the three-index formulation typically performs better
in solving larger DASPs, when using the DASP partition, there is no significant perfor-
mance difference in using the three- or two-index formulation for solving the MILPs within
the heuristic. Furthermore, similar observations regarding the share of acyclic and cyclic
operations can be made, i. e., when the relative velocity is small (α ∈ {1, 2}), then the share
of cyclic operations also tends to be very small irrespective of the number of drones. Apart
from this observation, there is no significant increase in the number of acyclic operations
performed when moving from α = 2 to α = 3.
Figure 3.5.4 visualizes the relative improvement ∆ (according to Formula (3.82)) de-

pending on the number of trucks, drones per truck, instance size, relative velocity, and
endurance, respectively, based on the results achieved through the three-index formula-
tion. The basic shape of these curves is very similar to the one that we observed in
Figure 3.5.1. That is, on the one hand, increasing the relative endurance Er quickly leads
to a threshold where a further increase does not yield any changes to the relative im-
provement. In particular, based on the definition of the relative endurance in Formula
(3.79), for a fixed relative endurance, the larger the instance, the larger the number of
possible operations. Therefore, we can observe a lower threshold for larger (or more dense)
instances. Furthermore, on the other hand, an increase in the relative velocity leads to a
greater relative improvement in all cases. We can also observe that the smaller the num-
ber of trucks (or, the larger the number of customers served by each truck) the larger the
relative improvement gained by increasing α. These improvements heavily depend on the
number of drones. In most cases, the improvement gained by increasing α from 2 to 3 is
significantly larger in the presence of two drones than in the presence of a single drone per
truck. Finally, we can also observe that substitutability is possible. Therefore, in some
cases, a single fast moving drone (e. g., α = 3) allows for a similar relative improvement
as two slower drones (e. g., α = 2 with possibly reduced endurance).

101

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.00

10

20

30

40

50

60

Rel. Endurance Er
|K| = 1 (|D| = 1 as solid lines, |D| = 2 as dashed lines)

R
el
.
Im

pr
ov
em

en
t
∆

[%
]

α = 1
α = 2
α = 3

20 50 100
Instance Size

0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.00

10

20

30

40

50

60

Rel. Endurance Er
|K| = 2 (|D| = 1 as solid lines, |D| = 2 as dashed lines)

R
el
.
Im

pr
ov
em

en
t
∆

[%
]

α = 1
α = 2
α = 3

20 50 100

0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.00

10

20

30

40

50

60

Rel. Endurance Er
|K| = 3 (|D| = 1 as solid lines, |D| = 2 as dashed lines)

R
el
.
Im

pr
ov
em

en
t
∆

[%
]

α = 1
α = 2
α = 3

20 50 100

Figure 3.5.4: The relative improvement ∆ depending on the instance size, number of trucks |K|,
number of drones per truck |D|, relative endurance Er, and relative velocity α based on Tables
3.D.7, 3.D.9, and 3.D.11.

102

3.6 Conclusion

3.5.3 Comparison to Theoretical Bounds

As discussed in Section 3.2, X. Wang et al. (2017) provide several theoretical insights on
the VRPD. In this section, we are interested in investigating these theoretical bounds and
comparing them to the numerical results of our study. In particular, we are interested
in a bound that concerns the relative completion ratio Zr. Let Z(VRPD|K|,α,|D|) be the
optimal objective value of the VRPD for a fleet consisting of |K| trucks equipped with
|D| drones each. Each drone is assumed to move at a relative velocity α (with unlimited
endurance, i. e., Er = 2). In addition, we denote the optimal objective value by Z(VRP*),
if we use the same fleet, but with no drones. Wang et al. have introduced the following
bound:

Zr,max =
Z(VRP*)

Z(VRPD|K|,α,|D|)
≤ α |D|+ 1. (3.83)

Table 3.5.3 highlights the investigated cases and the corresponding results. Depending
on the number of drones and their relative velocity, the table shows the bound on the
relative completion ratio (Zr,max), the analogous maximum possible savings ∆max (see
Equation (3.80)), and the average savings observed for one and two trucks, respectively,
based on Table 3.D.3 for Er = 2.

Table 3.5.3: Comparison to theoretical bounds for the cases investigated in this work based on
(X. Wang et al., 2017).

|D| - 1 2
α 0 1 2 3 1 2 3

Zr,max ≤ 1 2 3 4 3 5 7
∆max = 100%− 1

Zr
≤ 0.0% 50.0% 66.66% 75.0% 66.66% 80.0% 85.7%

∆avg,|K=1| 0.0% 10.8% 27.5% 35.3% 14.9% 41.2% 55.7%
∆avg,|K=2| 0.0% 3.9% 24.1% 40.8% 6.1% 43.7% 58.9%

Overall, the savings (or completion ratios) that we observed in our numerical study are
significantly smaller than the maximum possible theoretical savings. These observations
apply to both, the small instances (see Section 3.5.1) and heuristic solutions to large
instances (see Section 3.5.2).

3.6 Conclusion

In this paper, we investigated the VRPD. To be more precise, we began in Section 3.2 with
a brief overview of related problems in last-mile delivery that feature trucks and drones
which have intensive synchronization requirements. Afterwards, in Section 3.3 we provided
a MILP formulation of the VRPD and derived several VIEQs. In Section 3.4, for solving

103

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

the VRPD, we introduced a matheuristic that can effectively leverage any MILP solver
by exploiting the structure of the VRPD. As part of this matheuristic, we introduced
the DASP that, given a feasible routing, finds an optimal assignment and schedule of
drones such that the makespan is minimized. In this context, we provided two different
MILP formulations for the DASP. Finally, in Section 3.5, we presented the results and
observations of our extensive computational experiments. The numerical results indicate
that the use of drones can significantly reduce the makespan. Furthermore, we have shown
that similar makespan reductions can be achieved with different drone designs. According
to the numerical results, our matheuristic is very fast, converges quickly, and is able to
consistently provide optimal or near optimal solutions.
Throughout this work, we have hinted at several potential opportunities for future

research. In particular, we have shown that different recharge policies or a mixed drone
fleet might be of future research interest (see Appendix 3.A). Furthermore, even though
our matheuristic performed very well overall, we believe that it might be interesting to
embed it as a component within a more sophisticated metaheuristic. Finally, it might be
worthwhile to investigate the existence of more compact MILP formulations.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments and sugges-
tions that helped us in improving the quality of this paper.

3.7 References

Agatz, Niels, Paul Bouman, and Marie Schmidt (2018). “Optimization Approaches for the
Traveling Salesman Problem with Drone”. In: Transportation Science 52.4, pp. 965–981.

Archetti, Claudia and M. Grazia Speranza (2014). “A survey on matheuristics for routing
problems”. In: EURO Journal on Computational Optimization 2.4, pp. 223–246.

Bouman, Paul, Niels Agatz, and Marie Schmidt (2018a). “Dynamic programming ap-
proaches for the traveling salesman problem with drone”. In: Networks 72.4, pp. 528–
542.

Boysen, Nils et al. (2018b). “Drone delivery from trucks: Drone scheduling for given truck
routes”. In: Networks 72.4, pp. 506–527.

Carlsson, John Gunnar and Siyuan Song (2018). “Coordinated Logistics with a Truck and
a Drone”. In: Management Science 64.9, pp. 3971–4470.

Clarke, Geoff and John W. Wright (1964). “Scheduling of Vehicles from a Central Depot
to a Number of Delivery Points”. In: Operations Research 12.4, pp. 568–581.

104

3.7 References

Di Puglia Pugliese, Luigi and Francesca Guerriero (2017). “Last-Mile Deliveries by Us-
ing Drones and Classical Vehicles”. In: Optimization and Decision Science: Methodolo-
gies and Applications. Springer Proceedings in Mathematics & Statistics 217. Cham:
Springer, pp. 557–565.

Dorling, Kevin et al. (2017). “Vehicle Routing Problems for Drone Delivery”. In: IEEE
Transactions on Systems, Man, and Cybernetics: Systems 47.1, pp. 70–85.

Drexl, Michael (2012b). “Synchronization in Vehicle Routing—A Survey of VRPs with
Multiple Synchronization Constraints”. In: Transportation Science 46.3, pp. 297–316.

Es Yurek, Emine and H. Cenk Ozmutlu (2018). “A decomposition-based iterative op-
timization algorithm for traveling salesman problem with drone”. In: Transportation
Research Part C: Emerging Technologies 91, pp. 249–262.

Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual.
Ha, Quang Minh et al. (2018). “On the min-cost Traveling Salesman Problem with Drone”.
In: Transportation Research Part C: Emerging Technologies 86, pp. 597–621.

Jünger, Michael et al., eds. (2010). 50 Years of Integer Programming 1958-2008. Berlin,
Heidelberg: Springer.

Lin, S. and B. W. Kernighan (1973). “An Effective Heuristic Algorithm for the Traveling-
Salesman Problem”. In: Operations Research 21.2, pp. 498–516.

Marinelli, Mario et al. (2018). “En route truck–drone parcel delivery for optimal vehicle
routing strategies”. In: IET Intelligent Transport Systems 12.4, pp. 253–261.

Murray, Chase C. and Amanda G. Chu (2015). “The flying sidekick traveling salesman
problem: Optimization of drone-assisted parcel delivery”. In: Transportation Research
Part C: Emerging Technologies 54, pp. 86–109.

Otto, Alena et al. (2018). “Optimization approaches for civil applications of unmanned
aerial vehicles (UAVs) or aerial drones: A survey”. In: Networks 72.4, pp. 411–458.

Poikonen, Stefan, Xingyin Wang, and Bruce Golden (2017). “The vehicle routing problem
with drones: Extended models and connections”. In: Networks 70.1, pp. 34–43.

Sacramento, David, David Pisinger, and Stefan Ropke (2019). “An adaptive large neigh-
borhood search metaheuristic for the vehicle routing problem with drones”. In: Trans-
portation Research Part C: Emerging Technologies 102, pp. 289–315.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2019a). “A hybrid VNS/Tabu search
algorithm for solving the vehicle routing problem with drones and en route operations”.
In: Computers & Operations Research 109, pp. 134–158.

Toth, Paolo and Daniele Vigo, eds. (2014). Vehicle routing: problems, methods, and appli-
cations. 2nd ed. MOS-SIAM series on optimization. Philadelphia: SIAM.

Wang, Xingyin, Stefan Poikonen, and Bruce Golden (2017). “The vehicle routing problem
with drones: several worst-case results”. In: Optimization Letters 11.4, pp. 679–697.

105

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Appendix

3.A Possible Variations

As we have seen in Section 3.2, the literature on optimization problems with drones in
the context of last-mile delivery is vast and fast-growing. Moreover, even though the
basic assumptions of these problems are commonly accepted by most researchers, there
is no general consensus on more detailed aspects of the problem. These aspects concern
questions such as whether cyclic (loop) operations are allowed and if trucks as well as
drones follow the same distance metric. In particular, while waiting for a truck to ar-
rive, a relevant question is whether drones can safely land and remain stationary on the
ground or if they must continue hovering. This has different implications for distance and
time constrained endurance (refer to Appendix 3.C). With the purpose of illustrating the
flexibility of the proposed model, as we will see in 3.A.1–3.A.6, our model can be easily
adapted to cases where different assumptions might apply.

3.A.1 Limited Flight Distance without Recharge

In this section, we show that it is possible to consider the case where a drone has a limited
range of operation and cannot be recharged. In the MILP (3.1)–(3.27), this can be done
by replacing constraints (3.24) with the following constraints that account for the total
distance covered during all operations for each drone:∑

i∈VL

∑
w∈VD,
i ̸=w

∑
j∈V,
w ̸=j

(diw + dwj) y
kd
iwj ≤ E ∀k ∈ K, d ∈ D. (3.84)

3.A.2 Limited Flight Time with Instantaneous Recharge

If a drone cannot safely remain stationary on its own while waiting for the arrival of a
truck, we might consider a maximum flight time including hovering time. To this end,
the endurance (in time units) might be limited by a maximum flight time Et, rather than
distance. If we assume that the endurance is recharged after each operation (e. g., through
a swap of the battery), we can introduce the following sets of inequalities as a replacement
for constraints (3.24) that consider the maximum flight time Et instead:

M(ykdiwj − 1) + (rkdj − skdi) ≤ Et ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD, j ∈ VR, |{i, w, j}| = 3,

(3.85)

(tl + tiw + twi + tr) y
kd
iwi ≤ Et ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD, i ̸= w. (3.86)

106

3.A Possible Variations

In this case, the set of inequalities in (3.85) and (3.86) account for the time spent per-
forming acyclic and cyclic operations, respectively. In particular, in the case of acyclic
operations, the hovering time is also considered if the drone arrives before the truck. Note
that constraints (3.85) imply that a drone must immediately depart from the customer.
If a drone can safely remain stationary at the place of delivery for some time, the case
discussed in Appendix 3.C applies.

3.A.3 Limited Flight Time without Recharge

Analogously, we might consider a case where the drone has a limited flight time and
an endurance that cannot be recharged. In this case, the following (non-linear) set of
constraints might be introduced instead of constraints (3.24):∑
i∈VL

∑
w∈VD,
i ̸=w

(tl + tiw + twi + tr) y
kd
iwi +

∑
i∈VL

∑
w∈VD,
i ̸=w

∑
j∈VR,
i ̸=j,
w ̸=j

(rkdj − skdi) ykdiwj ≤ Et ∀k ∈ K, d ∈ D.

(3.87)
These constraints guarantee that the total time spent performing operations (including
hovering time) must be less than or equal to the endurance Et. As an alternative, to
provide a linear model, we might introduce additional continuous decision variables qkdi
and qkdi where k ∈ K, d ∈ D, i ∈ V that can take a value in [0, Et]. The variables qkdi
and qkdi indicate the remaining flight time of drone d (that belongs to truck k) when
initially retrieved and after departing from vertex i, respectively (we assume that qkd0 = Et).
With these additional variables, we might use the following sets of inequalities instead of
constraints (3.87) to provide a linear model:

M(1− xkdij) + qkdi ≥ qkdj ∀k ∈ K, d ∈ D, i ∈ VL, j ∈ VR, i ̸= j, (3.88)

qkdi −
∑

w∈VD,
i ̸=w

(tl + tiw + twi + tr) y
kd
iwi ≥ qkdi ∀k ∈ K, d ∈ D, i ∈ VL, (3.89)

M(1− ykdiwj) + qkdi − (rkdj − skdi) ≥ qkdj ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD,

j ∈ VR, |{i, w, j}| = 3.
(3.90)

Constraints (3.88) guarantee that for any transition xkij that is performed by a truck,
the remaining endurance of drone d upon arrival at j must be less than or equal to the
remaining endurance upon departure at i. In between arrival and departure, further
charge might be used to perform cyclic operations which are accounted for by the set of
constraints (3.89). Finally, the inequalities in (3.90) account for a depletion of the drone’s

107

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

battery for performing acyclic operations.

3.A.4 Limited Flight Time with Non-instantaneous Recharge

Similar to the previous section, we might consider a scenario where a drone’s battery can
be recharged non-instantaneously. In this case, we assume that the battery of the drone
might be recharged while the truck is powered (in motion). To this end, we might use the
decision variables qkdi and qkdi that were introduced in the previous section and add the
set of constraints (3.89) and (3.90) as well as the following additional constraint:

M(1− xkdij) + qkdi +
tij
κ
(ykdi −

∑
w∈VD,
i ̸=w

∑
h∈VR,
i ̸=h,
w ̸=h

ykdiwh) ≥ qkdi ∀k ∈ K, d ∈ D, i ∈ VL, j ∈ VR, i ̸= j.

(3.91)
This constraint guarantees that for any transition xkij performed by truck k where the drone
d is available at i (i. e., ykdi = 1) and performs no acyclic operation (i. e., the drone remains
stationary on the truck during the transition to j), the endurance might be recharged with
tij/κ, where κ is a parameter that determines the charging rate for each unit of time that
the truck is in motion.
If we assume that a drone can also be recharged while a truck remains stationary, it is

possible to introduce further continuous decision variables hkdi with lower bound 0 that
denote the additional waiting time of drone d that remains stationary on truck k at vertex
i. Then, we might replace inequalities (3.21) with the following set of inequalities which
guarantee that the drone departure time skdi is bound by the release time rkdi , the time
spent performing operations at i, and the waiting time hkdi .

rkdi +
∑

w∈VD,
i ̸=w

(tl + tiw + twi + tr) y
kd
iwi + hkdi ≤ skdi ∀k ∈ K, d ∈ D, i ∈ V. (3.92)

With these variables hkdi , we might replace constraints (3.89) with the following set of
constraints that allow a drone to be recharged at a rate of κ′ per unit of time that it
remains on a stationary truck:

qkdi −
∑

w∈VD,
i ̸=w

(tl + tiw + twi + tr) y
kd
iwi +

hkdi
κ′
≥ qkdi ∀k ∈ K, d ∈ D, i ∈ VL. (3.93)

Note that similar considerations are easily possible if the endurance is limited by distance
(i. e., excluding hovering time) rather than time.

108

3.B Matching the Problem Formulation of Murray and Chu

3.A.5 Heterogeneous Drone Fleet

Moreover, since each drone is referenced by a specific index, it is easily possible to consider
a mixed drone fleet where each truck is equipped with a different number of drones which
might have different velocities and endurances. This can be done by introducing specific
drone travel times tkdij and endurances Ekd.

3.A.6 Incorporating these Variations into the DASP

As a concluding remark, note that the possible variations on MILP (3.1)–(3.27), that
were implied in Sections 3.A.1–3.A.5, might be easily incorporated into either model
for the DASP. All variations to the MILP require minor adjustments to constraints
(3.21) and (3.24). Note that there is a direct correspondence between these constraints
and constraints (3.47), (3.50), and (3.51) for the three-index formulation (refer to Sec-
tion 3.4.2.1) and constraints (3.71), 3.74, and (3.75) for the two-index formulation (refer
to Section 3.4.2.2). Moreover, most variations require the variables rkdi and skdi from
MILP (3.1)–(3.27). The equivalent variables are already present in both proposed DASP
models as rdi and sdi . Any additional variables or parameters that were introduced in
Sections 3.A.1–3.A.5 might be added to the DASP models analogously.

Appendix 3.B provides a guideline on how all MILPs must be adjusted to respect the
assumptions of Murray and Chu (2015). This appendix also provides an illustrative ex-
ample on how, e. g., the endurance constraints must be adjusted to respect the maximum
flight time.

3.B Matching the Problem Formulation of Murray and Chu

In this section, we describe how the MILP formulations of the VRPD and DASP might
be adjusted to respect the problem formulation of Murray and Chu (2015). As outlined in
Section 3.2, several slightly deviating assumptions apply for this problem. More precisely,
cyclic drone-operations are prohibited and the overhead times and associated temporal
constraints are treated in a slightly different way. In particular, the endurance is mea-
sured in units of time rather than units of distance. For a formulation that follows the
assumptions of Murray and Chu (2015), we propose MILP (3.1)–(3.19), (3.94)–(3.99),
(3.25)–(3.27).

M(ykdiwj − 1) + skdi + tiw ≤ rkdw ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD,

j ∈ VR, |{i, w, j}| = 3,
(3.94)

109

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

M(ykdiwj − 1) + skdw + twj + tr ≤ rkdj ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD,

j ∈ VR, |{i, w, j}| = 3,
(3.95)

rkdi ≤ skdi ∀k ∈ K, d ∈ D, i ∈ V, (3.96)

skdi ≤ ski ∀k ∈ K, d ∈ D, i ∈ V, (3.97)

akj + tl
∑

w∈VD,
w ̸=j

∑
h∈Vr
j ̸=h,
w ̸=h

ykdjwh + tr
∑
i∈VL
i ̸=j

∑
w∈VD,
i ̸=w,
w ̸=j

ykdiwj ≤ rkdj ∀k ∈ K, d ∈ D, j ∈ VR, (3.98)

M(ykdiwj − 1) + (rkdj − skdw) + tiw ≤ Et ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD,

j ∈ VR, |{i, w, j}| = 3.
(3.99)

In this model, we ask that all variables yiwi where i ∈ VL, w ∈ VD are bound to 0 to prevent
any cyclic operation from occurring. The updated temporal constraints (3.94)–(3.98) are
consistent with the model of Murray and Chu (2015). In particular, the overhead times are
treated in a slightly different way through constraints (3.94), (3.95), and (3.98). Finally,
constraints (3.99) provide an endurance based on flight time that is coherent with the one
proposed by Murray and Chu (2015). Similar adjustments can be made for the DASP
models, where it is also necessary to bind all variables yiwi and ziw where i ∈ VL, w ∈ VD to
values 0. For the three-index formulation, we propose MILP (3.39)–(3.44), (3.100)–(3.105),
(3.52)–(3.54).

−M(1− ydiwj) + sdi + tiw ≤ rdw ∀d ∈ D, i ∈ VL, w ∈ VD,

j ∈ VR, i ≺ w ≺ j,
(3.100)

−M(1− ydiwj) + sdw + twj + tr ≤ rdj ∀d ∈ D, i ∈ VL, w ∈ VD,

j ∈ VR, i ≺ w ≺ j,
(3.101)

rdi ≤ sdi ∀d ∈ D, i ∈ V, (3.102)

sdi ≤ si ∀d ∈ D, i ∈ V, (3.103)

aj + tl
∑

w∈VD,
j≺w

∑
g∈VR,
w≺g

ydjwg + tr
∑
i∈VL,
i≺w

∑
w∈VD,
w≺j

ydiwj ≤ rdj ∀d ∈ D, j ∈ VR, (3.104)

M(ydiwj − 1) + (rdj − sdw) + tiw ≤ Et ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD,

j ∈ VR, i ≺ w ≺ j.
(3.105)

Analogously, we propose MILP (3.61)–(3.68), (3.106)–(3.111), (3.76)–(3.78) for the two-
index formulation.

−M(1− ydiw) + sdi + tiw ≤ rdw ∀d ∈ D, i ∈ VL, w ∈ VD, i ≺ w, (3.106)

110

3.C Endurance: Limited Flight Distance vs. Limited Flight Time

−M(1− ỹdwj) + sdw + twj + tr ≤ rdj ∀d ∈ D, w ∈ VD, j ∈ VR, i ≺ w, (3.107)

rdi ≤ sdi ∀d ∈ D, i ∈ V, (3.108)

sdi ≤ si ∀d ∈ D, i ∈ V, (3.109)

aj + tl
∑

w∈VD,
j≺w

ydjw + tr
∑

w∈VD,
w≺j

ỹdwj ≤ rdj ∀d ∈ D, j ∈ VR, (3.110)

M(ỹdwj − 1) + (rdj − sdw) +
∑

w∈VD,
i≺w

(tiwy
d
iw) ≤ Et ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD,

j ∈ VR, i ≺ w ≺ j.
(3.111)

3.C Endurance: Limited Flight Distance vs. Limited Flight Time

Within the research community, there is no consensus on the operational constraints that
should apply to drones. In particular, this concerns the possibility of cyclic drone op-
erations (refer to Table 3.2.1) and the way the endurance of drones is modelled. Some
suggest the application of range-constrained drones (see, e. g., (Agatz et al., 2018; Di
Puglia Pugliese and Guerriero, 2017)), while others propose time-constrained drones in-
stead (see, e. g., (Ha et al., 2018; Murray and Chu, 2015)). In order to bridge this gap,
we introduce the following proposition, which states that there is no problematic differ-
ence between the two mentioned cases, if the drone is permitted to delay its departure
after serving a customer. Before attending to the proposition, we introduce the following
constraints, which can be used if a drone must not immediately depart after serving a
customer:

M(ykdiwj − 1) + skdi + (tl + tiw) ≤ rkdw ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD,

j ∈ VR, |{i, w, j}| = 3,
(3.112)

M(ykdiwj − 1) + skdw + (twj + tr) ≤ rkdj ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD,

j ∈ VR, |{i, w, j}| = 3,
(3.113)

M(ykdiwj − 1) + tl + tiw + (rkdj − skdw) ≤ Et ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD,

j ∈ VR, |{i, w, j}| = 3,
(3.114)

(tl + tiw + twi + tr) y
kd
iwi ≤ Et ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD, i ̸= w. (3.115)

More precisely, constraints (3.112)–(3.113) might serve as a replacement for constraints
(3.20). Through these constraints, we explicitly account for the arrival time rkdw of a drone
d at w ∈ VD and its earliest possible release time rkdj after its return flight towards j ∈ VR.
Given a maximum flight time Et, the endurance constraints are enforced by (3.114) and
(3.115) for acyclic and cyclic operations, respectively, and might serve as a replacement for

111

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

constraints (3.24). Note that similar constraints were also used by Murray and Chu (2015)
(refer to Appendix 3.B). Due to constraints (3.21), in principle, the departure time from
w, i. e., skdw , can be arbitrarily larger than rkdw . In the following proposition, we address
the relation between distance- and time-constrained endurance assumptions.

Proposition 3.5. If a drone can remain stationary at a customer location for a suffi-
cient amount of time, then distance- and time-constrained endurance assumptions are
equivalent.

Proof. Assume that a drone d is retrieved at some vertex j by truck k after an operation
(i, w, j). We distinguish two cases: (i) either the drone arrives at the same time as (or
after) the truck, (ii) or the drone arrives before the truck.
First, we assume that the drone arrives at the same time as or after the truck, i. e.,

skdw + twj + tr ≥ akj + tr. This case is not problematic. The reason is the fact that, as the
truck is already at vertex j, the drone does not need to hover. More precisely, to perform
the operation (i, w, j), the drone is in flight for exactly the following amount of time units:

(tl + tiw) + (rkdj − skdw) = (tl + tiw + twj + tr). (3.116)

Given its average velocity v, the drone covers (tl + tiw + twj + tr) · v = diw + dwj distance
units during the operation.
Next, we assume that the drone arrives before the truck, i. e., skdw + twj + tr < akj + tr.

Here, if a drone cannot safely land, it would need to continue hovering for a time δ > 0

that satisfies the following condition:

skdw + twj + tr + δ = akj + tr. (3.117)

Hovering for δ time units would require a continuous power supply approximately equal
to that during straight flight (Dorling et al., 2017). However, the return flight from w

can simply be delayed such that the expected arrival time of the drone and truck match.
More precisely, it is always feasible to delay the departure time skdw from w by the amount
δ such that the arrival time of the truck is matched and hovering becomes unnecessary,
i. e., skdw + twj + tr = akj + tr. Note that the makespan remains unaffected. Consequently,
analogously to the first case, the drone is in flight for exactly (tl+ tiw+ twj+ tr) time units
and covers (tl + tiw + twj + tr) · v = diw + dwj distance units during flight. As a result, let
us replace Et · v ← E as well as:

(tl + tiw) · v ← diw and (rkdj − skdw) · v = (twj + tr) · v ← dwj .

112

3.D Detailed Numerical Results

After integrating these transformations into (3.114)–(3.115), we obtain the following in-
equalities:

M(ykdiwj − 1) + diw + dwj ≤ E ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD, j ∈ VR, |{i, w, j}| = 3,

(3.118)

(diw + dwi) y
kd
iwi ≤ E ∀k ∈ K, d ∈ D, i ∈ VL, w ∈ VD, i ̸= w. (3.119)

Note that these inequalities are functionally equivalent to (3.24), which is the desired
conclusion of Proposition 3.5. ■

As a concluding remark, notably, the concept of drones that may wait at customer
locations is already implicitly present in some works that consider time-constrained drones
(see, e. g., (Murray and Chu, 2015)).

3.D Detailed Numerical Results

Table 3.D.1 contains the results from solving small instances with 10 customers through
Gurobi Optimizer 8.1.0 (Gurobi Optimization, LLC, 2023) by using MILP (3.1)–(3.27).
Moreover, Tables 3.D.2 shows the results when adding VIEQs (3.30) and (3.32) to the
model. Finally, in Table 3.D.3, the symmetry breaking (3.34) and knapsack inequalities
(3.37) and (3.38) were added to the formulation. Each table shows the relative savings ∆
(see, Equation (3.80)), the MIP gap, the runtime t, the number of acyclic (#a) and cyclic
(#c) operations, respectively, as average values as well as the number of cases in which an
optimal solution was found within the runtime limit.
Next, Tables 3.D.4 and 3.D.5 show the results from solving the small instances through

the matheuristic (see Algorithm 3.1) using the three-index formulation (MILP (3.39)–
(3.54)) and two-index formulation (MILP (3.61)–(3.78)) for solving the mathematical pro-
gram, respectively. In these tables, the relative savings ∆, the time until the final solution
is found (tbest), the number of changes to the incumbent solution n, and the number of
operations are shown as average values. Furthermore, the column labeled “≤” highlights
how often the matheuristic found a solution with a better or equal objective value to
the feasible (in some cases optimal) solutions returned by the MILP solver after runtime
(refer to Table 3.D.3). Recall that the matheuristic ran five times for each problem in-
stance; therefore, for each optimal solution in Table 3.D.3, the matheuristic might reach
this solution up to five times.
The results to the instances of Murray and Chu (2015) are shown in Table 3.D.6. In

this table, the BKSs were taken from (Ha et al., 2018; Murray and Chu, 2015). The

113

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

objective value of the MILP and the best solution value after five runs of the matheuristic
are then shown relative to the BKS. These results were obtained by adjusting all MILP
formulations according to Appendix 3.B.
Finally, Tables 3.D.7–3.D.12 show the results achieved by solving instances with 20,

50, and 100 customers through matheuristic by solving the MILP through the three- and
two-index formulation, respectively. In these tables, as we have no information on any
optimal values, the ∆ columns are calculated according to Equation (3.82). Furthermore,
the share of acyclic and cyclic operations are shown as percentages, rather than absolute
values.

114

3.D Detailed Numerical Results

Table 3.D.1: MILP solver results on instances with 10 vertices.

|D| α Er
|K| = 1 |K| = 2

∆ Gap t #a #c Opt. ∆ Gap t #a #c Opt.
0.2 0.1% 10.0% 315.7 0.2 0.0 9 0.1% 49.7% 687.1 0.2 0.3 5
0.4 1.5% 70.0% 779.5 0.8 0.0 3 0.3% 90.0% 881.6 1.1 0.0 1

1 0.6 2.6% 100.0% 900.4 2.1 0.0 0 1.2% 100.0% 900.3 1.7 0.0 0
1 3.1% 100.0% 900.4 2.2 0.0 0 -1.3% 100.0% 901.3 1.1 0.2 0
1.5 -1.2% 100.0% 900.3 1.1 0.0 0 -0.3% 100.0% 911.2 1.9 0.1 0
2 -2.4% 100.0% 901.1 1.2 0.1 0 -0.7% 100.0% 903.7 1.5 0.1 0
0.2 0.9% 0.0% 337.7 0.4 0.5 10 0.2% 40.0% 635.9 0.1 0.5 6
0.4 3.5% 57.1% 730.1 1.9 0.2 4 1.0% 100.0% 900.8 1.4 0.5 0

1 2 0.6 9.5% 96.2% 900.3 3.5 0.1 0 4.6% 100.0% 900.6 1.8 1.1 0
1 14.1% 100.0% 901.0 4.0 0.6 0 7.2% 100.0% 900.3 2.4 2.5 0
1.5 15.8% 100.0% 902.4 3.2 0.7 0 20.6% 100.0% 904.4 3.4 1.8 0
2 14.9% 100.0% 900.2 3.0 1.1 0 20.0% 100.0% 911.7 3.6 1.5 0
0.2 1.4% 0.0% 291.6 0.4 0.6 10 0.3% 41.7% 676.1 0.1 0.5 5
0.4 4.2% 80.0% 808.4 1.8 0.6 2 1.6% 90.3% 900.7 1.0 0.7 0

3 0.6 10.8% 100.0% 900.4 3.4 0.1 0 6.3% 100.0% 900.4 2.0 2.1 0
1 19.6% 100.0% 900.3 3.7 1.5 0 15.4% 100.0% 901.5 2.6 2.7 0
1.5 24.8% 100.0% 903.4 3.5 1.8 0 34.3% 100.0% 912.2 3.2 2.8 0
2 25.1% 100.0% 900.3 3.7 1.1 0 35.8% 100.0% 909.4 3.3 2.7 0

Average 8.2% 78.5% 781.9 2.2 0.5 38/180 8.1% 89.5% 863.3 1.8 1.1 17/180
0.2 0.1% 20.0% 371.9 0.4 0.0 8 0.0% 60.0% 752.2 0.2 0.2 4
0.4 1.7% 80.0% 831.6 1.4 0.0 2 0.3% 100.0% 901.3 1.2 0.1 0

1 0.6 3.3% 100.0% 900.4 3.1 0.0 0 0.3% 100.0% 901.6 1.6 0.6 0
1 4.3% 100.0% 901.2 3.9 0.7 0 1.6% 100.0% 906.5 2.7 1.5 0
1.5 6.7% 100.0% 900.3 4.1 0.3 0 4.3% 100.0% 900.9 3.5 2.5 0
2 2.6% 100.0% 904.1 3.9 0.8 0 4.9% 100.0% 900.8 3.5 2.3 0
0.2 0.9% 18.6% 391.1 0.4 0.5 8 0.2% 38.7% 620.7 0.1 0.5 6
0.4 3.7% 76.4% 824.7 2.3 0.2 2 1.1% 86.1% 873.9 1.4 1.0 1

1 2 0.6 10.1% 100.0% 900.4 4.1 0.5 0 4.3% 100.0% 900.5 2.2 1.7 0
1 20.4% 100.0% 901.4 4.8 1.0 0 15.3% 100.0% 905.6 2.7 3.2 0
1.5 30.8% 100.0% 900.3 4.6 2.2 0 31.5% 100.0% 901.1 3.8 3.1 0
2 34.2% 100.0% 900.4 4.2 1.9 0 41.0% 100.0% 901.1 4.7 2.6 0
0.2 1.4% 10.0% 358.3 0.4 0.6 9 0.3% 48.0% 720.3 0.3 0.6 5
0.4 4.6% 90.0% 896.6 2.0 0.9 1 2.1% 91.9% 901.1 1.0 1.5 0

3 0.6 12.2% 100.0% 900.4 3.9 0.7 0 6.3% 100.0% 902.4 1.4 3.3 0
1 26.2% 100.0% 902.7 4.5 2.0 0 20.5% 100.0% 904.2 2.5 3.6 0
1.5 46.1% 100.0% 902.2 4.4 2.5 0 44.7% 100.0% 901.3 3.5 3.4 0
2 48.2% 100.0% 900.4 4.2 3.0 0 56.2% 100.0% 901.0 3.6 4.5 0

Average 14.3% 83.1% 804.9 3.1 1.0 30/180 13.1% 90.3% 866.5 2.2 2.0 16/180

115

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Table 3.D.2: MILP with VIEQ (makespan bounds) on instances with 10 vertices.

|D| α Er
|K| = 1 |K| = 2

∆ Gap t #a #c Opt. ∆ Gap t #a #c Opt.
0.2 0.1% 0.0% 1.8 0.3 0.0 10 0.1% 0.0% 29.7 0.3 0.2 10
0.4 1.5% 0.0% 8.4 1.1 0.0 10 0.3% 0.0% 141.8 1.2 0.2 10

1 0.6 3.4% 0.0% 123.7 2.4 0.0 10 1.4% 7.8% 561.8 1.8 0.1 8
1 8.4% 33.3% 900.5 2.4 0.0 0 0.9% 57.8% 901.0 2.0 0.2 0
1.5 10.9% 35.0% 901.9 2.0 0.0 0 3.0% 63.9% 904.4 2.0 0.3 0
2 10.3% 38.2% 900.8 2.0 0.0 0 5.5% 62.6% 910.5 2.2 0.6 0
0.2 0.9% 0.0% 1.6 0.4 0.5 10 0.2% 0.0% 29.3 0.2 0.6 10
0.4 3.5% 0.0% 7.5 1.9 0.2 10 1.0% 0.0% 113.8 1.0 0.4 10

1 2 0.6 9.5% 0.0% 41.5 3.5 0.1 10 4.8% 2.0% 445.4 2.6 0.7 9
1 22.8% 3.5% 377.5 4.3 0.2 9 14.1% 58.0% 902.6 3.4 0.7 0
1.5 26.2% 41.0% 901.7 3.8 0.2 0 23.8% 65.4% 903.4 4.3 0.7 0
2 26.1% 39.4% 902.3 4.0 0.0 0 24.8% 63.3% 907.8 3.7 0.7 0
0.2 1.4% 0.0% 2.4 0.4 0.6 10 0.3% 0.0% 35.4 0.3 0.4 10
0.4 4.2% 0.0% 6.8 1.8 0.6 10 1.7% 0.0% 125.5 1.3 0.9 10

3 0.6 11.0% 0.0% 34.1 3.5 0.1 10 6.3% 6.2% 554.4 2.3 1.5 7
1 26.5% 0.0% 247.4 4.5 0.4 10 18.5% 56.8% 901.7 2.7 2.0 0
1.5 35.0% 32.9% 875.3 4.1 0.5 1 35.2% 61.1% 841.0 3.8 1.7 1
2 35.0% 35.5% 871.1 4.3 0.5 1 39.3% 62.3% 917.3 4.0 1.7 0

Average 13.1% 14.4% 394.8 2.6 0.2 111/180 10.1% 31.5% 562.6 2.2 0.8 85/180
0.2 0.1% 0.0% 3.4 0.2 0.0 10 0.1% 0.0% 59.1 0.4 0.1 10
0.4 1.7% 0.0% 49.5 1.7 0.0 10 0.3% 0.0% 299.2 1.1 0.0 10

1 0.6 4.8% 1.1% 412.7 3.0 0.0 8 1.5% 30.6% 810.5 2.5 0.2 2
1 11.9% 46.4% 903.6 3.7 0.0 0 3.3% 65.5% 911.6 2.4 1.2 0
1.5 16.2% 51.0% 902.1 3.9 0.0 0 4.2% 74.0% 900.6 3.7 1.1 0
2 13.4% 53.3% 900.3 3.9 0.0 0 5.7% 74.6% 900.5 4.5 1.0 0
0.2 0.9% 0.0% 2.9 0.4 0.5 10 0.2% 0.0% 58.1 0.4 0.3 10
0.4 3.7% 0.0% 13.4 2.2 0.3 10 1.2% 0.9% 274.7 1.6 0.8 9

1 2 0.6 11.0% 0.0% 86.4 4.0 0.5 10 5.2% 23.2% 802.5 2.7 1.6 2
1 27.8% 16.9% 778.3 5.4 0.5 3 15.3% 60.8% 901.0 3.5 1.2 0
1.5 38.8% 50.0% 900.4 5.6 0.3 0 33.3% 73.8% 900.6 4.8 2.1 0
2 40.5% 51.0% 900.4 5.5 0.4 0 42.1% 71.3% 900.7 4.8 2.3 0
0.2 1.4% 0.0% 2.8 0.4 0.6 10 0.3% 0.0% 50.4 0.4 0.5 10
0.4 4.6% 0.0% 14.6 2.1 0.8 10 2.1% 0.9% 238.3 1.4 1.3 9

3 0.6 12.8% 0.0% 68.6 3.8 0.8 10 7.0% 26.2% 776.9 2.1 2.4 2
1 33.5% 0.0% 486.5 5.6 0.5 10 22.0% 69.7% 859.4 3.7 1.8 1
1.5 51.7% 42.9% 870.1 5.6 0.8 1 45.5% 74.1% 900.6 3.8 3.4 0
2 53.9% 44.1% 884.5 5.0 1.8 1 59.9% 57.7% 900.5 5.1 2.7 0

Average 18.3% 19.8% 454.5 3.4 0.4 103/180 13.8% 39.1% 635.8 2.7 1.3 65/180

116

3.D Detailed Numerical Results

Table 3.D.3: MILP with VIEQ (makespan bounds, symmetry, knapsack) on instances with 10
vertices.

|D| α Er
|K| = 1 |K| = 2

∆ Gap t #a #c Opt. ∆ Gap t #a #c Opt.
0.2 0.1% 0.0% 1.3 0.3 0.0 10 0.1% 0.0% 35.5 0.3 0.2 10
0.4 1.5% 0.0% 4.0 1.0 0.0 10 0.3% 0.0% 125.9 1.0 0.2 10

1 0.6 3.4% 0.0% 39.1 2.5 0.0 10 1.3% 7.1% 714.9 1.5 0.1 8
1 9.5% 0.5% 625.7 2.3 0.0 9 1.8% 60.8% 900.3 1.9 0.2 0
1.5 11.8% 33.5% 900.4 1.9 0.0 0 3.5% 63.9% 907.6 2.2 0.2 0
2 10.8% 34.7% 900.2 1.9 0.0 0 3.9% 62.5% 926.3 1.9 0.0 0
0.2 0.9% 0.0% 1.4 0.4 0.5 10 0.2% 0.0% 31.4 0.2 0.4 10
0.4 3.5% 0.0% 3.2 1.9 0.2 10 1.0% 0.0% 138.3 1.0 0.8 10

1 2 0.6 9.5% 0.0% 15.2 3.5 0.1 10 4.8% 10.3% 560.2 2.3 0.6 6
1 22.8% 0.0% 210.1 4.2 0.2 10 14.5% 56.4% 870.8 3.1 1.0 1
1.5 27.3% 27.4% 792.6 4.0 0.2 2 23.6% 64.1% 902.0 3.5 0.7 0
2 27.5% 33.6% 900.5 3.7 0.4 0 24.1% 66.1% 916.8 3.5 0.8 0
0.2 1.4% 0.0% 1.7 0.4 0.6 10 0.3% 0.0% 42.9 0.2 0.4 10
0.4 4.2% 0.0% 3.3 1.8 0.6 10 1.7% 0.0% 139.8 1.3 0.8 10

3 0.6 11.0% 0.0% 13.5 3.5 0.1 10 6.3% 6.9% 528.5 2.3 1.1 8
1 26.2% 4.8% 168.3 4.3 0.6 9 17.4% 58.6% 857.6 2.6 2.1 1
1.5 34.3% 33.7% 869.2 4.1 0.6 2 33.9% 67.4% 900.7 3.7 2.0 0
2 35.3% 28.7% 790.7 4.0 0.7 2 40.8% 62.8% 915.4 3.7 1.9 0

Average 13.4% 10.9% 346.7 2.5 0.3 124/180 10.0% 32.6% 578.6 2.0 0.8 84/180
0.2 0.1% 0.0% 1.9 0.4 0.0 10 0.1% 0.0% 66.5 0.4 0.0 10
0.4 1.7% 0.0% 22.6 1.5 0.0 10 0.3% 0.0% 361.6 0.8 0.1 10

1 0.6 4.8% 0.0% 154.3 3.1 0.0 10 1.4% 35.6% 900.8 2.2 0.2 0
1 14.2% 39.9% 892.1 3.5 0.0 1 3.0% 66.7% 913.1 2.3 1.1 0
1.5 14.3% 52.5% 900.6 3.9 0.0 0 5.7% 74.4% 900.7 3.9 1.2 0
2 14.9% 53.3% 900.2 3.8 0.1 0 6.1% 74.6% 900.6 3.8 1.4 0
0.2 0.9% 0.0% 1.7 0.4 0.5 10 0.2% 0.0% 56.3 0.3 0.3 10
0.4 3.7% 0.0% 5.5 2.2 0.3 10 1.2% 1.2% 319.5 1.0 1.4 9

1 2 0.6 11.0% 0.0% 24.4 4.1 0.4 10 4.9% 36.9% 797.1 2.0 1.9 2
1 28.3% 25.2% 670.0 5.5 0.2 3 17.9% 59.6% 909.6 3.2 1.6 1
1.5 39.0% 41.7% 900.3 5.5 0.1 0 34.4% 74.6% 900.6 3.9 2.5 0
2 41.2% 46.1% 900.8 5.2 0.5 0 43.7% 70.2% 900.6 5.4 1.5 0
0.2 1.4% 0.0% 1.7 0.4 0.6 10 0.3% 0.0% 69.5 0.1 0.7 10
0.4 4.6% 0.0% 6.1 2.0 0.9 10 2.1% 0.0% 349.1 1.2 1.2 10

3 0.6 12.8% 0.0% 30.6 3.7 0.9 10 6.9% 25.3% 730.1 2.1 2.0 4
1 33.5% 4.3% 413.7 5.6 0.5 7 23.2% 73.6% 848.8 3.8 2.0 1
1.5 52.7% 23.4% 713.7 5.4 0.9 4 46.6% 74.1% 900.6 4.0 2.7 0
2 55.7% 20.2% 723.9 5.0 1.3 4 58.9% 65.3% 900.5 4.5 3.0 0

Average 18.6% 17.0% 403.6 3.4 0.4 109/180 14.3% 40.7% 651.4 2.5 1.4 67/180

117

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Table 3.D.4: Matheuristic with the three-index formulation on instances with 10 vertices.

|D| α Erel
|K| = 1 |K| = 2

∆ tbest n #a #c ≤ ∆ tbest n #a #c ≤

0.2 0.1% 3.2 4.3 0.2 0.0 50 0.1% 0.4 2.6 0.3 0.0 50
0.4 1.5% 11.2 5.2 0.9 0.0 50 0.3% 3.3 3.1 1.1 0.0 50

1 0.6 3.4% 17.2 5.5 2.1 0.0 49 1.3% 7.9 3.9 1.8 0.0 50
1 9.5% 25.4 5.8 2.1 0.0 50 3.5% 13.5 4.4 2.3 0.0 45
1.5 12.7% 34.4 5.9 2.0 0.0 50 5.8% 7.1 3.8 2.4 0.0 50
2 12.7% 27.1 5.0 2.0 0.0 49 7.2% 17.9 4.1 2.2 0.0 50
0.2 0.9% 6.1 5.3 0.4 0.5 50 0.2% 1.0 3.0 0.4 0.3 50
0.4 3.5% 8.5 5.6 1.9 0.2 50 1.0% 5.0 3.1 1.4 0.4 50

1 2 0.6 9.5% 10.2 5.6 3.5 0.1 50 4.6% 10.9 5.1 2.8 0.6 45
1 22.3% 24.6 5.7 4.2 0.1 42 16.5% 28.9 6.1 3.7 0.4 50
1.5 27.0% 36.4 6.5 4.0 0.2 43 23.4% 27.4 5.2 4.0 1.0 30
2 27.4% 36.1 6.5 4.0 0.2 38 23.4% 20.1 5.1 3.7 1.1 27
0.2 1.4% 9.8 5.6 0.4 0.6 50 0.3% 1.3 3.0 0.4 0.4 50
0.4 4.2% 14.0 6.2 1.8 0.6 50 1.6% 3.0 3.8 1.4 0.6 45

3 0.6 10.9% 16.1 6.0 3.5 0.1 50 6.1% 10.0 5.0 2.6 1.0 45
1 25.9% 40.5 7.8 4.3 0.8 43 19.2% 23.8 6.0 3.5 1.4 41
1.5 32.2% 33.1 6.4 3.9 1.6 22 31.6% 20.4 5.9 3.3 2.7 18
2 32.0% 41.7 7.2 3.7 1.6 14 32.8% 22.3 6.3 3.1 2.9 0

Average 13.2% 22.0 5.9 2.5 0.4 800/900 9.9% 12.5 4.4 2.3 0.7 746/900
0.2 0.1% 3.0 4.4 0.2 0.0 50 0.1% 0.6 2.1 0.4 0.0 50
0.4 1.7% 7.0 5.3 1.5 0.0 50 0.3% 2.1 3.1 1.2 0.0 50

1 0.6 4.7% 24.3 6.1 2.8 0.0 49 1.6% 14.2 3.9 2.7 0.0 45
1 14.5% 34.8 5.9 3.7 0.0 48 3.9% 17.3 4.5 3.7 0.1 45
1.5 19.5% 39.3 5.0 3.4 0.0 50 6.3% 23.4 3.7 4.3 0.3 50
2 19.8% 33.9 4.2 3.3 0.1 50 7.3% 20.7 3.4 4.4 0.0 50
0.2 0.9% 7.6 4.9 0.4 0.5 50 0.2% 2.4 3.0 0.4 0.2 50
0.4 3.7% 11.1 5.3 2.2 0.3 50 1.1% 11.1 3.3 1.6 0.6 50

2 2 0.6 11.0% 26.2 6.7 4.0 0.5 50 5.2% 9.1 4.4 3.1 1.1 50
1 28.6% 29.5 6.1 5.7 0.3 49 21.0% 32.9 6.6 4.3 1.0 45
1.5 39.5% 41.8 6.4 5.5 0.6 33 33.7% 23.9 5.6 4.8 1.6 24
2 40.2% 36.4 5.9 5.4 0.7 19 38.1% 30.3 5.3 5.2 0.8 10
0.2 1.4% 11.1 5.1 0.4 0.6 50 0.3% 3.4 3.0 0.4 0.3 50
0.4 4.6% 12.9 6.1 2.0 0.9 50 1.8% 5.4 3.5 1.6 0.7 45

3 0.6 12.8% 24.9 6.8 3.8 0.8 50 6.9% 13.7 4.7 3.0 1.4 50
1 33.1% 37.5 7.1 5.5 0.6 46 23.1% 23.0 5.9 4.2 1.5 45
1.5 49.2% 45.9 7.4 4.2 2.8 6 47.2% 22.5 5.3 4.0 2.5 40
2 51.5% 47.6 6.7 4.2 2.6 5 51.8% 32.7 5.7 4.1 2.5 5

Average 18.7% 26.4 5.9 3.2 0.6 755/900 13.9% 16.0 4.3 3.0 0.8 754/900

118

3.D Detailed Numerical Results

Table 3.D.5: Matheuristic with the two-index formulation on instances with 10 vertices.

|D| α Erel
|K| = 1 |K| = 2

∆ tbest n #a #c ≤ ∆ tbest n #a #c ≤

0.2 0.1% 5.3 4.9 0.3 0.0 50 0.1% 0.6 2.3 0.4 0.1 50
0.4 1.5% 11.1 5.1 1.4 0.0 50 0.3% 1.6 3.0 1.4 0.0 50

1 0.6 3.4% 14.4 5.4 2.2 0.0 49 1.3% 7.6 3.8 2.3 0.0 47
1 9.5% 27.7 5.7 2.1 0.0 50 4.8% 21.9 5.0 2.5 0.0 50
1.5 12.6% 37.0 5.5 1.9 0.0 49 5.8% 17.8 4.3 2.4 0.0 50
2 12.7% 38.0 5.2 2.1 0.0 47 7.2% 22.0 5.1 2.1 0.0 50
0.2 0.9% 8.5 5.1 0.4 0.5 49 0.2% 1.2 3.1 0.4 0.3 50
0.4 3.5% 7.9 5.9 1.9 0.2 50 1.0% 1.1 3.7 1.4 0.4 45

1 2 0.6 9.5% 17.9 6.9 3.5 0.1 50 4.6% 11.0 4.8 2.7 0.7 43
1 22.2% 32.8 6.1 4.2 0.1 36 16.5% 20.6 6.3 4.1 0.3 49
1.5 27.0% 42.6 6.5 3.9 0.3 30 23.5% 27.0 5.3 3.8 1.2 28
2 27.4% 45.8 7.0 4.0 0.2 28 23.6% 21.2 5.3 3.7 1.2 26
0.2 1.4% 15.8 6.0 0.4 0.6 50 0.3% 2.2 3.1 0.4 0.5 50
0.4 4.2% 17.3 6.2 1.8 0.6 50 1.6% 2.7 3.9 1.4 0.7 45

3 0.6 11.0% 14.6 6.0 3.4 0.2 46 6.0% 4.7 5.4 2.6 0.9 40
1 25.5% 39.1 7.4 4.3 0.6 34 18.9% 22.0 6.2 3.7 1.0 37
1.5 31.2% 41.4 6.8 4.0 0.9 15 30.6% 13.0 6.2 3.7 1.8 20
2 31.1% 46.8 6.9 4.2 0.8 3 31.1% 18.1 5.7 3.3 1.8 0

Average 13.1% 25.8 6.0 2.6 0.3 736/900 9.9% 12.0 4.6 2.3 0.6 730/900
0.2 0.1% 5.8 5.1 0.2 0.0 50 0.1% 0.9 2.3 0.4 0.2 50
0.4 1.7% 16.2 5.0 1.7 0.0 50 0.3% 3.4 3.1 1.6 0.0 50

1 0.6 4.7% 35.1 6.4 3.0 0.0 48 1.6% 12.8 4.4 3.2 0.1 42
1 14.5% 38.5 5.9 3.7 0.0 47 4.6% 24.0 5.0 4.1 0.1 48
1.5 19.5% 45.3 4.8 3.4 0.0 50 6.4% 23.9 5.0 4.5 0.3 45
2 19.8% 42.1 4.9 3.2 0.0 50 7.3% 39.8 4.8 4.3 0.2 50
0.2 0.9% 6.0 5.3 0.4 0.5 50 0.2% 0.9 2.9 0.4 0.4 50
0.4 3.7% 14.9 5.6 2.3 0.2 50 1.1% 3.8 3.7 1.4 0.8 45

2 2 0.6 11.0% 21.1 6.5 4.1 0.4 50 5.2% 5.0 4.8 3.1 1.2 45
1 28.5% 43.9 6.6 5.7 0.3 47 21.0% 30.6 6.1 4.4 0.9 45
1.5 39.6% 52.3 6.2 5.3 0.6 34 33.7% 32.2 5.9 4.8 1.6 21
2 40.4% 42.0 6.0 5.6 0.5 19 38.3% 25.0 4.9 5.1 0.9 10
0.2 1.4% 7.4 5.2 0.4 0.6 50 0.3% 1.5 2.9 0.4 0.5 50
0.4 4.6% 15.7 5.9 2.0 0.9 50 1.8% 3.9 3.9 1.4 1.0 45

3 0.6 12.8% 27.0 7.0 3.8 0.8 50 6.7% 10.3 4.9 3.0 1.4 45
1 33.0% 38.3 7.1 5.5 0.6 45 23.2% 23.2 5.8 4.2 1.5 40
1.5 48.0% 52.2 6.8 4.9 1.7 3 47.2% 24.4 6.2 3.8 2.6 40
2 50.4% 52.7 6.9 4.6 1.6 0 51.9% 28.0 5.2 4.3 2.3 4

Average 18.6% 30.9 6.0 3.3 0.5 743/900 13.9% 16.3 4.5 3.0 0.9 725/900

119

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Table 3.D.6: Detailed results on the FSTSP instances of Murray and Chu (2015) with 11 vertices.

Drone
Speed
(mph)

Instance
Et = 20 minutes Et = 40 minutes

BKS
MILP Matheuristic

BKS
MILP Matheuristic

BKSrel Gap t BKSrel tbest BKSrel Gap t BKSrel tbest

15

37v1 56.5 100.00% 0.0% 116.0 100.00% 12.9 50.6 100.00% 17.0% 900.0 100.00% 27.6
37v2 53.2 100.00% 0.0% 62.0 100.00% 36.3 47.3 100.00% 0.0% 196.1 100.00% 64.8
37v3 53.7 100.00% 0.0% 120.2 100.00% 16.7 53.7 100.00% 30.4% 900.0 100.00% 98.2
37v4 67.5 100.00% 0.0% 510.5 100.00% 4.7 66.5 100.83% 39.4% 900.0 100.00% 83.3
40v1 49.4 100.00% 0.0% 296.4 100.00% 12.9 46.9 100.00% 9.8% 900.0 100.00% 22.9
40v2 50.7 100.00% 0.0% 69.1 100.00% 41.5 46.4 102.41% 11.0% 900.0 100.00% 43.2
40v3 56.1 100.00% 0.0% 325.7 100.00% 50.3 53.9 104.02% 24.3% 900.0 100.00% 11.7
40v4 69.9 100.00% 0.0% 891.1 100.00% 81.4 67.9 100.71% 37.1% 900.0 100.71% 8.1
43v1 69.6 100.00% 0.0% 55.3 100.00% 63.7 55.5 100.00% 11.6% 900.0 100.00% 36.0
43v2 72.1 100.00% 0.0% 54.8 100.00% 56.4 58.1 100.00% 15.5% 900.0 100.00% 37.9
43v3 77.3 100.00% 0.0% 45.1 100.00% 43.4 69.2 102.43% 29.9% 900.0 100.05% 47.5
43v4 90.1 100.00% 0.0% 521.1 100.00% 14.6 82.7 101.15% 37.5% 900.0 100.00% 89.5

25

37v5 47.5 108.29% 30.1% 900.0 106.52% 12.6 45.8 104.16% 23.3% 900.0 110.29% 50.9
37v6 45.1 104.80% 27.9% 900.0 104.80% 39.0 44.6 106.07% 33.7% 900.0 97.76% 106.2
37v7 49.6 100.00% 26.6% 900.0 100.00% 7.7 46.6 102.51% 30.1% 900.0 100.00% 93.7
37v8 62.4 100.00% 35.3% 900.0 100.00% 57.7 59.6 101.34% 36.7% 900.0 99.67% 43.3
40v5 43.5 100.00% 0.0% 139.5 102.51% 22.1 43.5 100.00% 0.0% 162.0 101.19% 19.5
40v6 44.1 99.71% 0.0% 113.3 99.71% 15.3 44.1 99.40% 0.0% 153.1 99.40% 19.0
40v7 49.5 99.90% 0.0% 181.1 99.90% 77.3 49.2 100.54% 14.8% 900.0 100.00% 68.3
40v8 62.3 100.73% 25.1% 900.0 99.92% 82.8 62.0 101.28% 27.5% 900.0 99.95% 46.5
43v5 53.1 102.86% 12.2% 900.0 104.60% 55.9 52.1 104.44% 28.9% 900.0 100.63% 77.7
43v6 55.2 100.00% 23.1% 900.0 101.01% 54.2 52.3 105.05% 28.9% 900.0 100.00% 57.9
43v7 64.4 100.00% 0.0% 240.2 100.00% 63.6 60.7 100.00% 25.9% 900.0 100.00% 79.3
43v8 77.2 100.00% 25.7% 900.0 100.00% 98.0 73.7 98.97% 36.5% 900.0 98.97% 73.5

35

37v9 42.6 105.80% 29.3% 900.0 105.29% 56.1 42.4 101.25% 23.2% 900.0 105.71% 37.9
37v10 41.9 101.76% 32.6% 900.0 99.57% 44.7 40.9 104.25% 24.1% 900.0 102.01% 34.3
37v11 42.9 100.00% 21.3% 900.0 100.00% 28.3 42.9 100.00% 27.6% 900.0 100.00% 72.2
37v12 56.7 98.24% 0.0% 575.0 98.24% 34.5 55.7 100.00% 35.3% 900.0 100.00% 70.3
40v9 42.5 100.00% 0.0% 211.6 100.00% 16.1 42.5 100.00% 0.0% 229.2 100.00% 40.9
40v10 43.1 100.00% 0.0% 122.3 100.00% 44.3 43.1 100.00% 0.0% 204.2 100.00% 26.2
40v11 49.2 100.00% 0.0% 211.4 100.00% 28.2 49.2 100.00% 0.0% 204.4 100.00% 80.0
40v12 62.0 100.00% 24.9% 900.0 100.00% 31.6 62.0 100.00% 25.0% 900.0 100.00% 40.1
43v9 46.9 97.87% 17.9% 900.0 97.87% 108.8 46.9 102.97% 24.0% 900.0 100.00% 40.9
43v10 47.9 100.00% 17.3% 900.0 97.91% 48.3 47.9 101.28% 21.2% 900.0 97.91% 64.0
43v11 56.4 101.54% 20.5% 900.0 100.00% 75.6 56.4 101.54% 19.7% 900.0 100.00% 78.0
43v12 69.2 100.00% 39.1% 900.0 100.00% 111.4 69.2 102.54% 43.0% 900.0 100.00% 59.1

Average 100.60% 11.4% 535.0 100.50% 45.8 53.7 101.37% 22.0% 781.9 100.40% 54.2

120

3.D Detailed Numerical Results

Table 3.D.7: Matheuristic with the three-index formulation on instances with 20 vertices.

|D| α Er

|K| = 1 |K| = 2 |K| = 3
∆ #a #c tbest ∆ #a #c tbest ∆ #a #c tbest

1

0.2 2.8% 7.9% 0.7% 38.4 0.8% 6.7% 0.0% 47.9 0.2% 5.5% 0.2% 32.5
0.4 7.8% 19.7% 0.3% 26.8 3.7% 16.2% 0.0% 76.8 2.8% 16.3% 0.5% 46.7
0.6 13.8% 22.7% 0.7% 31.4 7.3% 18.3% 0.2% 96.3 4.4% 20.8% 0.5% 34.9
1 16.4% 20.4% 0.3% 20.3 11.7% 19.9% 0.1% 94.2 5.4% 24.6% 0.3% 70.0

1 2

0.2 7.8% 11.9% 6.1% 47.6 2.1% 12.9% 3.1% 96.7 1.7% 11.8% 4.6% 21.4
0.4 18.6% 33.8% 5.1% 52.7 7.5% 33.2% 3.8% 107.9 5.1% 29.2% 3.8% 42.8
0.6 27.1% 38.3% 5.1% 60.3 16.8% 38.5% 3.5% 115.7 9.8% 33.1% 6.2% 75.4
1 34.6% 37.5% 6.3% 68.1 25.0% 41.3% 3.8% 96.3 18.1% 40.8% 4.5% 108.0

3

0.2 9.4% 12.5% 10.3% 39.7 3.2% 11.4% 6.7% 70.0 1.9% 12.1% 5.9% 30.6
0.4 23.0% 33.2% 10.6% 74.6 9.2% 32.1% 9.6% 98.7 6.0% 27.2% 8.0% 48.9
0.6 33.0% 38.6% 10.4% 75.0 19.5% 35.8% 10.3% 98.6 12.5% 31.4% 13.8% 53.5
1 42.7% 37.4% 13.1% 101.0 26.9% 39.1% 14.5% 89.7 21.7% 36.0% 19.8% 94.6

1

0.2 3.4% 12.2% 2.2% 26.2 0.7% 10.1% 0.2% 47.8 0.7% 5.2% 0.0% 33.0
0.4 12.3% 33.9% 0.9% 29.1 5.1% 28.2% 0.3% 105.8 3.2% 24.4% 0.6% 55.6
0.6 22.4% 37.5% 0.7% 65.0 10.0% 35.7% 0.2% 104.7 3.4% 33.8% 1.8% 47.9
1 25.7% 34.5% 0.2% 119.3 16.2% 38.9% 1.8% 86.8 4.7% 40.8% 2.4% 73.5

2 2

0.2 5.7% 15.4% 5.4% 29.3 1.7% 13.9% 4.5% 75.2 2.2% 11.9% 4.9% 37.7
0.4 22.5% 41.9% 4.8% 53.7 9.5% 40.4% 2.0% 79.8 7.2% 35.1% 4.8% 67.1
0.6 33.9% 54.2% 4.4% 58.0 20.3% 48.9% 4.8% 90.1 14.2% 44.8% 7.5% 64.9
1 46.6% 53.5% 5.2% 80.9 32.8% 53.2% 8.7% 101.0 24.3% 50.9% 9.6% 90.9

3

0.2 9.0% 14.2% 11.1% 43.2 3.0% 13.1% 7.9% 71.2 2.7% 12.1% 6.6% 66.2
0.4 28.1% 40.7% 8.9% 75.3 11.5% 38.1% 7.1% 89.5 8.2% 35.5% 7.6% 60.4
0.6 40.7% 52.2% 9.2% 75.6 24.8% 44.9% 14.4% 112.9 17.1% 41.9% 13.2% 48.1
1 56.5% 50.3% 17.7% 125.2 37.2% 49.7% 21.5% 99.4 29.4% 43.4% 26.7% 87.2

Average 22.7% 31.4% 5.8% 59.0 12.8% 30.0% 5.4% 89.7 8.6% 27.9% 6.4% 58.0

121

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Table 3.D.8: Matheuristic with the two-index formulation on instances with 20 vertices.

|D| α Er

|K| = 1 |K| = 2 |K| = 3
∆ #a #c tbest ∆ #a #c tbest ∆ #a #c tbest

1

0.2 2.5% 9.8% 0.5% 30.3 0.8% 7.7% 0.1% 50.8 0.4% 8.0% 0.3% 26.4
0.4 8.2% 20.3% 0.4% 25.0 3.5% 17.8% 0.1% 75.9 3.2% 20.8% 1.1% 47.9
0.6 12.1% 21.8% 0.3% 24.0 6.7% 19.8% 0.5% 86.6 4.4% 22.6% 1.1% 45.5
1 16.4% 19.9% 0.0% 17.5 11.5% 20.4% 0.0% 91.1 6.3% 23.5% 0.5% 78.6

1 2

0.2 6.2% 13.7% 5.3% 51.8 2.0% 13.2% 2.9% 85.3 1.6% 12.3% 5.7% 16.5
0.4 16.6% 34.3% 4.1% 54.9 7.2% 33.2% 3.9% 84.3 5.0% 27.4% 4.9% 56.2
0.6 23.9% 38.5% 5.2% 28.8 16.9% 38.2% 2.9% 98.9 10.1% 31.1% 7.4% 80.9
1 31.5% 39.1% 5.1% 55.9 25.0% 40.7% 3.7% 101.5 17.6% 38.6% 5.9% 89.5

3

0.2 10.4% 11.3% 10.7% 64.0 3.1% 11.4% 6.4% 74.1 1.8% 11.7% 5.8% 37.0
0.4 21.7% 33.3% 9.1% 74.7 8.6% 31.7% 7.5% 98.6 5.2% 26.4% 7.8% 60.3
0.6 33.0% 38.3% 10.6% 90.6 19.5% 35.8% 8.7% 110.5 12.7% 30.1% 12.1% 72.2
1 39.6% 38.3% 10.7% 83.8 26.6% 39.8% 10.1% 99.2 21.1% 37.6% 13.1% 107.8

1

0.2 3.8% 12.7% 1.6% 34.2 0.6% 10.4% 0.1% 61.1 0.7% 9.4% 1.7% 32.5
0.4 12.3% 34.0% 0.6% 41.5 4.8% 29.9% 0.0% 90.3 3.3% 30.1% 1.9% 60.1
0.6 21.6% 38.4% 0.2% 59.8 10.5% 35.5% 0.4% 110.7 3.3% 35.1% 2.2% 54.3
1 25.8% 33.6% 0.1% 93.0 16.0% 38.0% 1.1% 102.3 5.3% 39.1% 3.1% 95.6

2 2

0.2 6.6% 15.1% 7.7% 24.5 2.3% 13.7% 5.5% 68.1 2.0% 10.9% 5.8% 28.5
0.4 21.0% 42.9% 4.4% 66.0 9.4% 39.5% 3.3% 89.3 6.4% 32.3% 8.6% 59.4
0.6 33.5% 54.0% 4.3% 46.5 19.6% 46.5% 5.5% 96.3 13.7% 41.4% 8.0% 57.4
1 45.3% 54.9% 4.4% 101.6 32.4% 52.8% 7.6% 105.2 24.0% 49.8% 10.6% 90.5

3

0.2 11.7% 14.0% 11.8% 62.6 2.7% 11.8% 8.7% 73.0 2.3% 11.2% 8.4% 43.4
0.4 26.7% 40.8% 10.0% 59.1 11.5% 38.7% 6.9% 77.9 7.8% 32.9% 10.7% 73.6
0.6 36.8% 52.5% 8.7% 60.6 23.7% 46.1% 10.3% 99.6 16.7% 40.9% 14.2% 54.2
1 51.9% 53.4% 13.5% 106.5 35.8% 52.1% 15.1% 119.7 28.5% 47.5% 18.5% 98.5

Average 21.6% 31.9% 5.4% 56.6 12.5% 30.2% 4.6% 89.6 8.5% 27.9% 6.6% 61.1

122

3.D Detailed Numerical Results

Table 3.D.9: Matheuristic with the three-index formulation on instances with 50 vertices.

|D| α Er

|K| = 1 |K| = 2 |K| = 3
∆ #a #c tbest ∆ #a #c tbest ∆ #a #c tbest

1

0.2 6.2% 21.7% 0.2% 67.4 3.0% 19.3% 0.0% 92.5 2.0% 17.9% 0.0% 77.2
0.4 15.4% 23.7% 0.1% 89.7 7.8% 23.6% 0.0% 102.5 4.1% 24.3% 0.0% 104.3
0.6 16.4% 22.2% 0.0% 97.7 9.6% 23.1% 0.0% 104.9 5.8% 23.9% 0.1% 114.3
1 16.3% 22.2% 0.1% 70.2 9.7% 23.1% 0.0% 116.1 5.9% 23.7% 0.1% 134.4

1 2

0.2 14.6% 31.4% 3.3% 78.7 8.4% 29.2% 2.2% 96.0 4.4% 26.7% 1.8% 74.3
0.4 30.4% 40.4% 2.9% 85.6 19.3% 40.6% 1.3% 116.7 12.6% 39.1% 2.0% 112.0
0.6 30.6% 39.1% 3.0% 112.9 19.9% 41.7% 1.8% 90.3 13.6% 40.7% 2.6% 97.9
1 29.6% 40.0% 2.8% 91.4 19.8% 41.3% 2.0% 108.4 14.2% 41.4% 2.7% 101.1

3

0.2 16.9% 30.4% 7.7% 94.4 9.5% 28.2% 5.3% 85.3 5.3% 26.9% 5.1% 71.2
0.4 33.6% 39.6% 9.1% 99.2 20.2% 40.3% 5.3% 85.7 13.3% 38.7% 6.1% 106.1
0.6 34.8% 38.2% 11.2% 85.2 21.4% 40.7% 6.8% 101.8 15.2% 38.8% 8.6% 107.9
1 34.0% 38.5% 10.6% 83.3 21.7% 40.6% 6.7% 105.5 15.7% 39.5% 9.6% 106.9

1

0.2 7.8% 32.2% 0.5% 87.0 4.3% 28.5% 0.2% 110.4 1.9% 27.1% 0.3% 83.9
0.4 21.0% 42.6% 0.6% 90.2 10.7% 42.6% 0.7% 112.4 5.8% 42.0% 0.9% 131.0
0.6 21.8% 42.3% 0.7% 123.9 12.0% 42.9% 0.9% 140.4 7.3% 43.1% 1.5% 127.4
1 20.7% 42.5% 0.6% 140.1 12.5% 42.9% 0.7% 173.6 7.8% 44.6% 1.3% 128.6

2 2

0.2 16.2% 36.2% 5.0% 78.7 9.8% 34.1% 2.5% 91.5 5.1% 31.5% 3.3% 85.9
0.4 40.0% 56.8% 2.9% 101.6 24.5% 56.6% 2.0% 135.6 15.2% 52.5% 2.6% 91.5
0.6 42.6% 56.1% 3.3% 86.0 27.4% 57.8% 2.1% 112.2 19.0% 55.5% 4.2% 92.1
1 43.3% 56.4% 3.9% 91.1 27.7% 57.5% 2.4% 112.3 20.4% 57.6% 3.9% 109.0

3

0.2 18.7% 34.4% 8.7% 71.1 10.5% 33.1% 6.2% 94.6 5.7% 30.9% 4.8% 86.8
0.4 42.9% 56.2% 7.5% 91.5 26.2% 55.6% 5.0% 104.3 17.1% 51.2% 6.5% 87.5
0.6 47.8% 54.8% 10.8% 133.2 30.0% 56.0% 7.7% 115.6 21.7% 53.4% 10.0% 102.0
1 47.4% 54.2% 11.2% 91.3 30.6% 56.1% 9.5% 106.7 23.2% 55.7% 11.2% 115.9

Average 27.0% 39.7% 4.4% 93.4 16.5% 39.8% 3.0% 109.0 10.9% 38.6% 3.7% 102.1

123

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Table 3.D.10: Matheuristic with the two-index formulation on instances with 50 vertices.

|D| α Er

|K| = 1 |K| = 2 |K| = 3
∆ #a #c tbest ∆ #a #c tbest ∆ #a #c tbest

1

0.2 6.1% 21.6% 0.1% 91.5 2.8% 20.5% 0.0% 90.6 1.8% 17.6% 0.1% 112.3
0.4 14.4% 24.5% 0.0% 91.2 7.2% 25.2% 0.1% 118.7 4.1% 24.6% 0.1% 116.1
0.6 14.7% 22.4% 0.1% 96.0 8.2% 24.5% 0.0% 101.2 5.3% 24.0% 0.2% 116.5
1 14.9% 22.2% 0.0% 79.5 8.5% 23.3% 0.2% 113.9 5.3% 24.1% 0.1% 119.1

1 2

0.2 13.9% 30.9% 3.3% 93.1 8.2% 29.3% 2.0% 97.5 4.5% 26.5% 1.6% 76.8
0.4 29.5% 39.7% 2.9% 81.4 18.9% 40.0% 1.6% 140.4 12.1% 39.0% 1.8% 94.2
0.6 30.7% 39.4% 3.4% 105.7 19.7% 41.0% 2.1% 108.3 13.4% 39.8% 2.6% 111.6
1 29.8% 38.9% 3.6% 91.7 19.6% 41.1% 1.9% 109.8 13.9% 40.0% 3.8% 90.8

3

0.2 16.5% 30.2% 6.5% 85.0 9.2% 29.3% 4.1% 110.5 5.0% 26.5% 4.7% 82.6
0.4 32.6% 40.3% 8.1% 85.4 20.1% 40.4% 4.7% 117.9 13.3% 38.2% 6.2% 101.1
0.6 33.4% 38.8% 9.4% 88.1 21.6% 41.3% 6.4% 114.9 14.7% 39.6% 7.5% 89.6
1 33.6% 39.3% 8.2% 96.6 21.4% 40.9% 5.9% 122.8 15.4% 40.0% 8.2% 112.5

1

0.2 6.5% 31.5% 1.2% 82.7 3.3% 30.0% 0.3% 105.1 1.8% 27.5% 0.7% 107.2
0.4 18.9% 45.3% 0.9% 115.5 9.2% 44.0% 0.9% 118.7 5.4% 42.1% 1.2% 144.2
0.6 20.2% 42.1% 0.9% 121.5 11.5% 44.7% 1.0% 136.6 6.8% 44.0% 1.1% 167.9
1 18.9% 42.7% 0.8% 117.7 11.1% 43.5% 0.9% 158.3 7.4% 45.3% 1.0% 174.0

2 2

0.2 15.6% 35.4% 5.0% 87.6 9.3% 33.8% 2.7% 104.7 4.9% 31.0% 3.4% 91.9
0.4 39.0% 56.7% 2.2% 115.2 23.3% 56.1% 1.9% 110.8 15.0% 52.0% 2.9% 88.5
0.6 42.6% 57.1% 3.4% 108.8 26.9% 57.6% 2.0% 112.7 18.7% 55.1% 3.6% 117.4
1 41.8% 56.0% 3.0% 85.2 27.0% 57.7% 2.3% 122.1 19.8% 56.2% 3.6% 126.0

3

0.2 18.6% 33.5% 8.4% 108.8 10.4% 32.9% 5.1% 85.3 5.3% 29.5% 6.7% 98.4
0.4 41.8% 57.1% 4.6% 107.1 25.1% 54.4% 5.1% 97.8 16.8% 51.4% 5.5% 91.9
0.6 45.8% 55.7% 8.0% 126.5 29.4% 56.8% 5.9% 105.8 21.0% 52.7% 9.0% 104.0
1 45.8% 54.7% 9.1% 117.9 29.3% 57.0% 6.6% 103.5 22.6% 55.1% 9.8% 116.6

Average 26.1% 39.8% 3.9% 99.2 15.9% 40.2% 2.7% 112.8 10.6% 38.4% 3.5% 110.5

124

3.D Detailed Numerical Results

Table 3.D.11: Matheuristic with the three-index formulation on instances with 100 vertices.

|D| α Er

|K| = 1 |K| = 2 |K| = 3
∆ #a #c tbest ∆ #a #c tbest ∆ #a #c tbest

1

0.2 8.1% 23.8% 0.1% 4.3 3.9% 23.0% 0.0% 3.9 1.9% 22.3% 0.2% 3.3
0.4 13.1% 22.0% 0.0% 12.5 7.0% 22.6% 0.1% 8.5 4.3% 23.1% 0.1% 6.9
0.6 13.0% 22.1% 0.0% 12.1 7.6% 22.3% 0.0% 10.6 4.5% 22.6% 0.1% 8.3
1 13.1% 22.2% 0.1% 15.2 7.6% 22.4% 0.0% 10.8 5.0% 23.0% 0.0% 8.9

1 2

0.2 17.9% 38.3% 2.6% 2.4 10.5% 37.0% 2.1% 5.5 5.6% 35.0% 1.7% 3.9
0.4 23.7% 39.7% 3.0% 4.7 15.2% 40.5% 2.5% 14.9 9.9% 41.0% 1.8% 6.8
0.6 23.4% 40.2% 3.1% 5.5 15.4% 40.9% 2.4% 8.4 12.2% 41.3% 2.1% 13.7
1 23.9% 40.1% 2.7% 5.5 15.9% 40.5% 2.4% 12.6 11.4% 41.2% 2.4% 10.3

3

0.2 19.4% 37.3% 6.8% 2.4 11.4% 36.6% 5.1% 2.7 6.3% 34.3% 4.3% 4.8
0.4 25.5% 38.7% 9.2% 4.4 17.5% 40.0% 6.9% 9.7 13.0% 39.9% 6.2% 10.9
0.6 25.8% 38.5% 9.6% 5.1 17.0% 39.9% 7.4% 10.5 15.2% 39.9% 7.0% 23.3
1 25.6% 39.2% 9.2% 5.2 17.3% 39.9% 7.5% 6.4 15.0% 40.2% 6.4% 11.4

1

0.2 11.1% 41.7% 0.6% 11.4 5.3% 38.4% 0.3% 9.5 2.5% 36.1% 0.5% 7.5
0.4 17.8% 42.6% 0.9% 52.0 10.4% 42.7% 0.6% 32.4 5.7% 42.8% 0.5% 25.2
0.6 18.4% 42.3% 0.8% 53.5 11.0% 42.7% 0.7% 40.0 7.3% 42.5% 0.8% 35.8
1 17.9% 42.2% 0.8% 53.9 10.6% 42.5% 0.6% 47.3 6.8% 43.2% 0.6% 30.4

2 2

0.2 22.8% 50.9% 2.2% 2.7 12.9% 48.9% 1.7% 2.8 7.3% 45.6% 1.5% 3.9
0.4 33.8% 56.3% 3.4% 5.2 26.1% 56.5% 3.0% 20.7 20.4% 56.5% 2.2% 22.2
0.6 33.9% 56.4% 3.5% 5.8 25.7% 57.3% 2.8% 16.4 24.4% 57.3% 3.1% 30.2
1 33.5% 56.4% 3.6% 6.2 25.2% 57.4% 2.7% 14.1 25.2% 57.2% 3.1% 33.2

3

0.2 24.2% 49.3% 5.6% 2.8 14.1% 47.6% 4.3% 3.8 8.7% 44.2% 3.6% 5.8
0.4 36.4% 54.5% 9.2% 4.2 26.9% 55.7% 7.1% 16.7 24.2% 54.3% 7.3% 24.5
0.6 36.5% 54.5% 9.8% 5.1 31.6% 54.8% 9.3% 31.3 30.8% 54.9% 8.8% 64.3
1 36.6% 53.7% 10.3% 5.2 30.7% 55.3% 8.2% 25.8 32.7% 55.2% 9.3% 43.7

Average 23.1% 41.8% 4.1% 12.0 15.7% 41.9% 3.2% 15.2 12.5% 41.4% 3.1% 18.3

125

3 A Matheuristic for the Vehicle Routing Problem with Drones and its Variants

Table 3.D.12: Matheuristic with the two-index formulation on instances with 100 vertices.

|D| α Er

|K| = 1 |K| = 2 |K| = 3
∆ #a #c tbest ∆ #a #c tbest ∆ #a #c tbest

1

0.2 7.2% 24.8% 0.1% 5.6 3.6% 24.1% 0.1% 4.9 1.8% 22.8% 0.4% 4.2
0.4 11.6% 22.8% 0.0% 14.5 6.4% 23.2% 0.1% 10.9 4.1% 23.0% 0.3% 8.4
0.6 11.2% 22.3% 0.0% 15.6 6.7% 22.3% 0.1% 12.8 4.3% 22.0% 0.2% 9.9
1 11.3% 22.2% 0.0% 15.8 6.6% 22.1% 0.0% 13.1 4.3% 22.1% 0.2% 11.4

1 2

0.2 17.6% 38.7% 2.3% 3.1 10.2% 37.4% 1.9% 3.2 5.6% 34.6% 2.7% 2.6
0.4 23.4% 40.4% 2.7% 5.8 14.9% 40.0% 2.6% 6.3 11.2% 39.3% 3.0% 14.1
0.6 23.4% 40.2% 2.8% 6.6 15.6% 39.8% 2.3% 10.7 11.0% 39.7% 2.1% 6.8
1 23.3% 40.1% 3.1% 6.8 15.1% 40.9% 2.0% 8.5 10.9% 40.3% 2.1% 11.0

3

0.2 19.1% 37.7% 5.8% 3.1 10.3% 35.7% 5.3% 3.8 6.2% 33.7% 5.8% 7.1
0.4 25.6% 39.3% 8.4% 5.7 16.2% 39.6% 6.3% 7.4 11.5% 39.4% 6.0% 8.1
0.6 24.6% 39.4% 8.0% 6.8 16.6% 39.1% 6.5% 11.3 13.8% 39.9% 6.3% 16.0
1 25.7% 39.4% 7.8% 7.3 18.0% 39.7% 6.7% 8.5 13.2% 39.2% 6.4% 12.4

1

0.2 10.5% 41.9% 0.8% 17.4 4.6% 40.0% 0.8% 13.3 2.3% 36.4% 0.9% 11.2
0.4 16.0% 42.9% 0.9% 50.2 9.7% 42.4% 0.8% 40.6 5.5% 40.7% 0.8% 35.3
0.6 16.5% 41.7% 1.3% 54.4 9.8% 41.9% 0.7% 43.1 6.1% 39.5% 1.1% 37.7
1 16.6% 42.4% 1.1% 49.2 9.9% 41.6% 0.7% 44.0 6.5% 41.7% 0.9% 41.0

2 2

0.2 23.3% 50.4% 2.8% 4.1 13.0% 47.6% 2.0% 4.9 7.9% 43.8% 2.5% 5.9
0.4 33.0% 56.4% 3.0% 9.2 23.2% 56.0% 2.2% 10.7 19.5% 55.1% 3.0% 23.7
0.6 34.0% 55.7% 3.2% 9.7 23.1% 56.8% 2.5% 11.9 25.0% 56.0% 2.8% 40.8
1 33.0% 56.9% 2.6% 10.5 24.0% 56.5% 2.4% 16.5 24.9% 56.6% 2.5% 40.9

3

0.2 24.7% 49.8% 5.1% 4.0 14.0% 47.3% 4.4% 7.2 7.3% 43.5% 4.5% 3.5
0.4 36.0% 55.2% 7.7% 7.1 26.1% 55.0% 6.3% 19.9 22.2% 53.9% 5.5% 27.0
0.6 36.3% 55.0% 7.8% 8.4 30.9% 55.4% 6.9% 26.0 27.6% 55.2% 6.9% 49.0
1 35.8% 54.5% 8.5% 9.5 31.5% 54.6% 7.5% 32.8 26.5% 54.9% 7.1% 40.8

Average 22.5% 42.1% 3.6% 13.8 15.0% 41.6% 3.0% 15.5 11.6% 40.6% 3.1% 19.5

126

4 The Traveling Salesman Drone Station Location
Problem

Abstract

In this paper, we introduce the Traveling Salesman Drone Station Location Problem (TS-
DSLP). The TSDSLP exhibits features of the Traveling Salesman, Facility Location, and
Parallel Machine Scheduling problems. More precisely, given a truck located at a central
depot, a multitude of possible drone stations (micro-depots), and a set of customer locations,
the TSDSLP seeks for a feasible routing of the truck and drone operations such that all re-
quests are fulfilled, no more than a given number of drone stations is used, and the makespan
(or operational cost) is minimized. We formulate the TSDSLP as a Mixed-Integer Linear
Program (MILP) and use a state-of-the-art solver to obtain solutions for small- and medium-
sized instances. Through our numerical results, we show that the utilization of drone stations
might reduce the makespan significantly.

4.1 Introduction

Drones are on the verge of becoming a proven commercial technology for civil applications
in many public and private sectors. In particular, drones have already been successfully
applied for surveillance or monitoring tasks in agriculture, energy, or infrastructure, and
for the delivery of packages (see (Otto et al., 2018) and references therein).
Murray and Chu introduced two novel NP-hard problems where a truck is assisted

by a drone in last-mile delivery (Murray and Chu, 2015). The first one is called the
Flying Sidekick Taveling Salesman Problem (FSTSP). In this case, if the depot is remotely
located from the demand centers, it can be beneficial to have the drone working in close
collaboration with the truck. To this end, they assume that the drone is taken along by
the truck and might be launched at some locations to initiate an autonomous delivery.
After fulfilling the requested demand, the drone must return to the truck in order to be
resupplied with a new package. During recent years, a fast-growing number of research
papers have been published, which follow the general concept of the FSTSP such that a
high degree of synchronization between trucks and drones is required (see, e. g., (Agatz et
al., 2018; Schermer et al., 2018a; Schermer et al., 2018b; Schermer et al., 2019a; Schermer
et al., 2019b; X. Wang et al., 2017)).

127

4 The Traveling Salesman Drone Station Location Problem

By contrast, if most recipients are located in close proximity to the central depot, as
an alternative to the FSTSP, Murray and Chu propose the Parallel Drone Scheduling
Traveling Salesman Problem (PDSTSP). In this case, while the truck follows a tour and
serves remote locations, the drone might be used to serve targets in close proximity to the
depot, continuously departing from it to initiate a delivery and returning to it for picking
up a new package. As trucks and drones are less dependent in the PDSTSP compared to
the FSTSP, a much smaller degree of synchronization is required. Therefore, given specific
technical constraints such as drone’s limited payload weight and range of operation, many
research studies are only concerned with the routing of drone fleets from a depot (see, e. g.,
(Dorling et al., 2017)). Similar considerations have been applied to the cases, where it
might be necessary to determine the best location for multiple drone depots without taking
care of routing trucks (see, e. g., (Chauhan et al., 2019)). These considerations involve,
in the first place, a strategic perspective on establishing drone depots. To overcome the
limitations of drones that are restricted to an existing (central) depot, Kim and Moon
(2018) introduced the Traveling Salesman Problem with Drone Station (TSPDS) as a
generalization of the PDSTSP. In the TSPDS, there is a single truck located at a central
depot and a single drone station (micro-depot). Once the drone station has been supplied
by the truck, the drones (located at the station) are used for distributing parcels. As in the
PDSTSP, the objective of the TSPDS is to serve all customers with minimal makespan.
In particular, Kim and Moon can show that, under special assumptions, it is possible to
determine a priori which customers should be served by truck or drone, respectively. In
these special cases, it is possible to decompose the problem into an independent Traveling
Salesman Problem (TSP) in order to determine the route of the truck and a Parallel
Machine Scheduling Problem to generate the operations at the drone station. To the best
of our knowledge, there is no other published research article addressing challenges of the
location problem in the context of the PDSTSP. However, the general domain of combined
location-routing problems is not new (see, e. g., (Min et al., 1998; Nagy and Salhi, 2006),
and references therein).
In this paper, we introduce the TSDSLP in which we address a research gap by con-

sidering the routing of the truck, facility location of the drone stations, and scheduling of
drones in an integrated model. In the TSDSLP, we assume that a single truck is located
at a central depot and a set of demand as well as a multitude of possible drone station
locations are given. We require that the truck is sufficient to serve all customers with
regard to its capacity and the scheduling horizon. The TSDSLP asks for a feasible route
and drone operations, such that all customers are served, no more than a permitted num-
ber of drone stations are used, and minimal makespan (or operational cost) is achieved.
To this end, a subset of drone stations, which might accommodate a given number of au-

128

4.2 Problem Definition

tonomous drones, can be visited by the truck. If the truck supplies a station with parcels,
then the station is considered as open, and the drones, which are resting there, can begin
to help deliver packages in parallel. In an effort to reduce delivery times and costs, this
concept might be a viable solution for the integration of autonomous auxiliary vehicles
in last-mile and same-day delivery. Indeed, our numerical study demonstrates that an
effective formulation of the TSDSLP enables a state-of-the-art solver to solve small- to
medium-sized instances within reasonable computation time. In particular, compared to
existing spacious depots at remote locations, drone stations might be a small-sized and
low-cost infrastructure that provides shelter for parcels and drones as well as a recharging
possibility for the latter in close proximity to demand centers (Kim and Moon, 2018).
The remainder of this paper is organized as follows. In Section 4.2, we specify the

assumptions of the TSDSLP and formulate it as a MILP. Computational experiments and
their numerical results are presented in Section 4.3. Finally, concluding remarks are drawn
in Section 4.4.

4.2 Problem Definition

In this section, we introduce the TSDSLP that covers a more general case than the
PDSTSP and TSPDS (Kim and Moon, 2018; Murray and Chu, 2015). More precisely,
the TSDSLP not only integrates possibility of drones deliveries into the TSP tours, but
also assumes the presence of multiple drone stations, which might be opened to be used
for drone deliveries (see also Figure 4.2.1). Suppose that a single truck located at a depot,
a multitude of drone stations that can accommodate a fixed number of drones, and a set
of customer locations, each of them with a single demand, are given. In the TSDSLP,
the objective consists in minimizing the makespan (or operational cost) such that all cus-
tomers are served, either by the truck or by a drone. Furthermore, we accept the following
assumptions regarding the nature of drones (Agatz et al., 2018; Murray and Chu, 2015;
Schermer et al., 2018a; Schermer et al., 2018b; Schermer et al., 2019a; Schermer et al.,
2019b; X. Wang et al., 2017):

• When launched from a station, each drone can fulfill exactly one request, and then it
needs to return to the same station from which it was launched to be resupplied for
future missions. Without loss of generality, we assume that each customer is eligible
to be served by a drone.

• We assume that a drone has a limited endurance of E distance units per operation.
After returning to the station, the battery of the drone is recharged (or swapped)
instantaneously.

129

4 The Traveling Salesman Drone Station Location Problem

• While the truck is subject to the limitations of the road network, the drones might
be able to use a different trajectory for traveling between locations. Furthermore,
based on their technical constraints, the speed of the truck and drone might differ.
Hence, without loss of generality, the average velocity of each truck is assumed to
be equal to 1 and the relative velocity of each drone is assumed to be α ∈ R+ times
the velocity of the truck.

• We do not consider explicit service times; however, such considerations may be easily
integrated into the model.

• We assume that at most C ∈ Z+ drone stations can be opened, and they are free of
charge, except if we minimize the operational cost (see Section 4.2.2). Furthermore,
we require that the potential sites of these stations are predetermined.

D

31

2 4

s1 s2

Figure 4.2.1: A TSDSLP with a depot D, four customers VN = {1 . . . 4}, two drone stations
VS = {s1, s2} that can accommodate two drones each, a TSP solution (center) and a TSDSLP
solution (right) in which a station is utilized for two deliveries.

Let us present the notation that we are going to use throughout the paper. Assume
that a complete and symmetric graph G = (V,E) is given, where V is the set of vertices
and E is the set of edges. The set V contains n vertices associated with the customers,
named VN = {1, . . . , n}, a set of m possible drone stations VS = {s1, . . . , sm}, and two
extra vertices 0 and n + 1 that (in order to simplify the notation and the mathematical
formulation) both represent the same depot location at the start and end of the truck’s
tour. Thus, V = {0} ∪ VN ∪ VS ∪ {n+ 1}, where 0 ≡ n+ 1. To simplify the notation, we
introduce the sets VL = V \ {n+ 1} and VR = V \ {0}.
By the parameters dij and dij we define the distance required to travel from vertex i to

vertex j by truck and drone, respectively. In principle, as the drones are not limited to the
road network, the distances might differ. For the purpose of this work, Euclidean distance
is considered for both the truck and drones. We use the parameters v = 1 and v = α · v to
define the (constant) velocity of the truck and drones. Hence, the time required to traverse
edge (i, j) is defined as tij = dij and tij = dij/α for the truck and drones, respectively.
We assume that each drone station accommodates a limited and identical number of

drones D = {1, . . . , Dn}, where Dn ∈ Z>0. Each drone may travel a maximum span of E

130

4.2 Problem Definition

distance units per operation, where a drone operation is characterized by a triple (d, s, j)

as follows: the drone d ∈ D is launched from a drone station s ∈ VS , fulfills a request at
j ∈ VN , and returns to the same station from which it was launched.

4.2.1 Minimal Makespan TSDSLP

Table 4.2.1: Decision variables used in the TSDSLP formulation.

τ ∈ R≥0 continuous variable that defines the makespan.
xij ∈ {0, 1}
∀i∈VL,j∈VR

is equal to 1, iff arc (i, j) is part of the truck’s route.

xsij ∈ {0, 1}
∀i∈VL,j∈VR,s∈VS

is equal to 1, iff arc (i, j) is part of the truck’s route to the drone station s.

ydsj ∈ {0, 1}
∀s∈VS ,j∈VN ,d∈D

is equal to 1, iff drone d serves j from station s.

zs ∈ {0, 1}
∀s∈VS

is equal to 1, iff drone station s is opened.

To formulate the TSDSLP, we introduce the decision variables shown in Table 4.2.1.
Using this notation, we have the following MILP formulation (4.1)–(4.15) of the TSDSLP:

min τ, (4.1)

s.t.
∑
i∈VL

∑
j∈VR
i ̸=j

tijxij ≤ τ, (4.2)

∑
i∈VL

∑
j∈VR
i ̸=j

tijx
s
ij +

∑
j∈VN

2 · tsj · ydsj ≤ τ ∀s ∈ VS , d ∈ D, (4.3)

∑
i∈VL,
i ̸=j

xij +
∑
s∈VS

∑
d∈D

ydsj = 1 ∀j ∈ VN , (4.4)

∑
j∈VR

x0j =
∑
i∈VL

xi,n+1 = 1, (4.5)

∑
i∈VL
i ̸=k

xik −
∑
j∈VR
k ̸=j

xkj = 0 ∀k ∈ VN ∪ VS , (4.6)

∑
i∈S

∑
j∈S
i ̸=j

xij ≤ |S| − 1 ∀S ⊂ V, {0, n+ 1} /∈ S, |S| > 1, (4.7)

xsij ≤ xij ∀s ∈ VS , i ∈ VL, j ∈ VR, i ̸= j, (4.8)∑
j∈VR

xs0j = 1 ∀s ∈ VS , (4.9)

131

4 The Traveling Salesman Drone Station Location Problem

∑
i∈VL
i ̸=k

xsik −
∑
j∈VR
j ̸=k

xskj = 0 ∀s ∈ VS , k ∈ VN ∪ VS , s ̸= k, (4.10)

∑
i∈VL
i ̸=s

xsis −
∑
i∈VL
i ̸=s

xis = 0 ∀s ∈ VS , (4.11)

∑
i∈VL
i ̸=s

xis ≥ zs ∀s ∈ VS , (4.12)

∑
s∈VS

zs ≤ C, (4.13)

∑
d∈D

∑
j∈VN

ydsj ≤ nzs ∀s ∈ VS , (4.14)

2 · dsj · ydsj ≤ E ∀s ∈ VS , d ∈ D, j ∈ VN . (4.15)

In this model, the objective function (4.1) minimizes the makespan τ . Constraints (4.2)
and (4.3) describe τ mathematically. More precisely, constraint (4.2) sets the time spent
traveling by the truck (to serve customer and supply stations) as a lower bound on the
objective value. In constraints (4.3), for each station s, we account for the time until the
truck has reached the station and then, for each drone d located at the station, the time
spent fulfilling requests. These values are summed up to define lower bounds on τ .
Constraints (4.4) guarantee that each request j is served exactly once by either the

truck or a drone. The flow of the truck is defined through constraints (4.5)–(4.6). More
precisely, constraints (4.5) ensure that the truck starts and concludes its tour exactly once.
For each customer or drone station, constraints (4.6) guarantee that the flow is preserved,
i. e., the number of incoming arcs must equal the number of outgoing arcs. Moreover,
constraints (4.7) serve as classical subtour elimination constraints (Dantzig et al., 1954),
i. e., for each proper non-empty subset of vertices S (that does not contain the depot), no
more than |S| − 1 arcs can be selected within this set.

Constraints (4.8)–(4.11) specify the route of the truck that leads to each drone station
s. To this end, constraints (4.8) ensure that this path must follow the path of the truck.
Moreover, constraints (4.9) guarantee that the departure from the depot is always a part
of each route to a station. Furthermore, for each vertex k that might be located in between
the depot and the station, constraints (4.10) preserve the flow. In addition, for each station
s that is visited by the truck, constraints (4.11) guarantee that there is exactly one arc
leading to the station.
As specified by constraints (4.12), a drone station is opened only if it is visited by

the truck. Moreover, constraint (4.13) guarantees that at most C drone stations may be
opened. Constraints (4.14) restrict the number of drone operations that can only be per-

132

4.3 Computational Experiments

formed at opened drone stations. Constraints (4.15) determine the drone stations’ range
of operation. Note that these constraints might be effectively handled during preprocess-
ing. Finally, according to the definition of the decision variables, τ ∈ R≥0 and the other
decision variables are binary.
In place of constraints (4.7), it is possible to adapt the family of Miller-Tucker-Zemlin

(MTZ) constraints, using auxiliary integer variables ui, as follows (Miller et al., 1960):

u0 = 1, (4.16)

2 ≤ ui ≤ n+m+ 2 ∀i ∈ VR, (4.17)

ui − uj + 1 ≤ (n+m+ 2)(1− xij) ∀i ∈ VL, j ∈ VR, i ̸= j, (4.18)

ui ∈ R≥0 ∀i ∈ V. (4.19)

4.2.2 Minimal Operational Cost TSDSLP

As an alternative to the makespan minimization, we might be interested in cost mini-
mization instead. In this case, we consider only the variable cost-per-mile that might be
associated with the truck and drones and the fixed cost of using a station. To this end,
we might use the following objective function:

min ct
∑
i∈VL

∑
j∈VR
i ̸=j

dijxij + cd
∑
s∈VS

∑
d∈D

∑
j∈VN

(dsj + djs)y
d
sj +

∑
s∈VS

fszs (4.20)

where fs is the fixed cost of operating the station s, and the parameters ct, cd ∈ R+

determine the relative cost for each mile that the truck and drones are in action. In
this case, the model can remain unchanged with the exception that it is not necessary to
consider the variables τ , xsij and the respective constraints associated with these variables.

4.3 Computational Experiments

We implemented the model (4.1)–(4.15) and solved it by the MILP solver Gurobi Optimizer
8.1.0 (Gurobi Optimization, LLC, 2023). Throughout the solution process, the subtour
elimination constraints (4.7) were treated as lazy constraints. More precisely, whenever
the solver determines a new candidate incumbent integer-feasible solution, we examine if
it contains any subtour. If no subtour is contained, we have a feasible solution. Otherwise,
we calculate the set of vertices S that is implied by the shortest subtour contained in the
current candidate solution. For this set S, constraint (4.7) is added as a lazy constraint and
the solver continues with its inbuilt branch-and-cut procedure. For comparative purposes,

133

4 The Traveling Salesman Drone Station Location Problem

we solved also the alternative formulation of the TSDSLP in which the MTZ constraints
(4.16)–(4.19), in place of (4.7), are used. We carried out all experiments on single compute
nodes in an Intel Xeon E5-2670 CPU cluster where each node was allocated 8 GB of RAM.
A time limit of 10 minutes was imposed on the solver.
We generated the test instances according to the scheme shown in Figure 4.3.1. More

precisely, we considered a 32 × 32 km2 square grid where the customer locations VN =

{1, . . . , n}, n ∈ {10, 30, 50} were generated under uniform distribution. Furthermore, we
assumed that the drone stations are located at the coordinates (x, y) ∈ (8, {8, 24}) ∪
(24, {8, 24}). Moreover, we considered a central depot at (x, y) = (16, 16). We investigated
different cases; more precisely, the basic one follows the assumption of Murray and Chu
(2015), where drones have a maximum range of operation of E = 16 km. Therefore, the
radius of operation associated with each station is Er = E/2 = 8 km. For the purpose of
broadening our experiments, we tested the model with two other values of Er.

x

y

Figure 4.3.1: A visualization of the scheme according to which instances are generated.

In order to study the influence of problem parameters on the solver and the solutions,
we considered their domains as follows. We tested for three different values for C, i. e.,
C ∈ {1, 2, 3}, and also did experiments for three distinct number of identical drones that
a drone station can hold, i. e., |D| ∈ {1, 2, 3}. Moreover, we let the relative velocity be
α ∈ {0.5, 1, 2, 3} and we assumed that the operational radius Er ∈ {8, 12, 16}.

For each value of n ∈ {10, 30, 50}, we generated 10 random instances, which (along
with the drone stations and the location of the depot) specify the graph G. Furthermore,
based on our choice of parameters C, |D|, α and E , we have 3 · 3 · 4 · 3 = 108 parameter
combinations; and a total of 30 · 108 = 3240 problems that are solved through both
formulations.
Table 4.3.1 contains the numerical results of our computational experiments using two

different formulations of the TSDSLP. In particular, for each number of customers n, the
permitted number of stations C, and the operational radius Er, this table shows the average
runtime t (in seconds) as well as the average Mixed-Integer Programming (MIP) gap. While

134

4.3 Computational Experiments

comparing the results of two formulations, we observe that the differences on instances with
n = 10 are negligible; however, on larger instances, the prohibition of subtours through lazy
constraints improves the average runtimes and MIP gaps noticeably. Although medium-
sized instances can be solved within reasonable time, the runtime depends strongly on n

and the parameters C and Er.

Table 4.3.1: Influence of the instance size n, the number of permitted stations C, the radius of
operation Er, and the formulation on the average runtime (in seconds) as well as MIP gap.

MILP (4.1)–(4.15) with lazy constraints MILP (4.1)–(4.6), (4.8)–(4.19)
Er = 8 Er = 12 Er = 16 Er = 8 Er = 12 Er = 16

n C t Gap t Gap t Gap t Gap t Gap t Gap

10
1 1.1 0.0% 1.3 0.0% 1.4 0.0% 1.9 0.0% 1.8 0.0% 2.0 0.0%
2 1.1 0.0% 1.7 0.0% 2.3 0.0% 1.6 0.0% 2.1 0.0% 2.9 0.0%
3 1.0 0.0% 1.7 0.0% 3.1 0.0% 1.6 0.0% 2.0 0.0% 3.0 0.0%

30
1 16.1 0.0% 28.0 0.0% 37.3 0.0% 83.2 0.0% 145.9 0.2% 198.8 0.3%
2 43.9 0.0% 80.0 0.0% 178.8 0.6% 187.6 0.9% 301.5 2.3% 423.8 5.4%
3 67.2 0.0% 227.6 0.9% 331.6 3.3% 228.9 1.6% 350.2 4.6% 442.0 8.7%

50
1 113.5 0.0% 292.4 0.2% 379.6 1.1% 430.8 2.1% 562.6 8.4% 591.0 13.2%
2 289.1 0.5% 534.8 5.3% 583.9 11.4% 505.4 4.9% 600.2 18.9% 600.3 24.0%
3 385.5 2.7% 549.8 13.7% 591.2 23.0% 526.6 7.2% 599.7 23.2% 597.0 28.4%

For the purpose of illustrating the benefits of utilizing the drone stations with regard
to makespan reduction, we introduce the following metric, where τ is the objective value
returned by the solver and τ∗TSP is the optimal objective value of the TSP (that does not
visit or use any drone station):

∆ = 100%− τ

τ∗TSP
(4.21)

Figure 4.3.2 highlights the numerical results. More precisely, this figure shows the
average savings over the TSP, i. e., ∆, based on the number of permitted stations C, the
number of drones located at each station |D|, as well as the drones’ relative velocity α and
radius of operation Er. Overall, we can distinguish two cases. If the radius of operation is
small (Er = 8, solid lines) and the number of permitted stations C is fixed, the savings are
nearly independent of the number of drones at each station and their velocity and radius
of operation. In this case, the number of customers that can be served by the drones is
limited (see Figure 4.3.1). However, even a slow-moving drone can effectively serve most
(or all) customers within its radius of operation. An increase in the number of drones (or
their relative velocity) will in this case not improve the overall makespan. On the other
hand, if the radius of operation is large (Er = 16, dashed lines), there is a significant impact
of these parameters on the savings. In this case, the makespan can be reduced effectively

135

4 The Traveling Salesman Drone Station Location Problem

by increasing the number of drones (or their relative velocity). Furthermore, it is worth
to highlight that, in many cases, significant savings are already possible with few drones
(per station) that have a relative velocity of α ∈ {0.5, 1} but a large operational range.
This contrasts problems that follow the fundamental idea of the FSTSP, where drones
with relatively small endurance but fast relative velocity are often preferred (Agatz et al.,
2018; Schermer et al., 2018a; Schermer et al., 2018b; Schermer et al., 2019a; Schermer
et al., 2019b).

0.5 1.0 2.0 3.0 0.5 1 2 3 0.5 1 2 30

10

20

30

40

50

60

Relative Velocity α

Sa
vi
ng

s
∆

[%
]

|D| = 1

|D| = 2

|D| = 3

1 2 3
Permitted Stations C

Figure 4.3.2: The savings ∆ for different values of the problem parameters (averaged over all
instances). Solid and dashed lines correspond to Er = 8 and Er = 16, respectively.

4.4 Conclusion

In this work, we introduced the TSDSLP, which combines the TSP and Facility Location
Problem in which facilities are drone stations. After formulating the problem by two
MILPs, we presented the results of our computational experiments. According to the
numerical results, one of the formulations is far more effective than the other and can be
used to solve medium-sized instances within reasonable computation time. Moreover, using
suitable drone stations can bring a significant reduction in the delivery time. Particularly,
this also applies for slow-moving drones, which are generally considered to be far less
effective in related works.
Since TSDSLP defines a new concept, the future research directions are numerous, e. g.,

a research idea might consist in studying the case of using multiple trucks in place of
a single one. Another research direction might focus on the design of efficient solution

136

4.5 References

methods. In fact, the standard solvers are able to solve only small- to medium-sized
TSDSLP instances; hence, we might design effective heuristics, which can address large-
scale instances. The research in this direction is in progress and the results will be reported
in the future.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments and sugges-
tions that helped us in improving the quality of this paper.

4.5 References

Agatz, Niels, Paul Bouman, and Marie Schmidt (2018). “Optimization Approaches for the
Traveling Salesman Problem with Drone”. In: Transportation Science 52.4, pp. 965–981.

Chauhan, Darshan, Avinash Unnikrishnan, and Miguel Figliozzi (2019). “Maximum cov-
erage capacitated facility location problem with range constrained drones”. In: Trans-
portation Research Part C: Emerging Technologies 99, pp. 1–18.

Dantzig, George B., R. Fulkerson, and S. Johnson (1954). “Solution of a Large-Scale
Traveling-Salesman Problem”. In: Journal of the Operations Research Society of America
2.4, pp. 393–410.

Dorling, Kevin et al. (2017). “Vehicle Routing Problems for Drone Delivery”. In: IEEE
Transactions on Systems, Man, and Cybernetics: Systems 47.1, pp. 70–85.

Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual.
Kim, Sungwoo and Ilkyeong Moon (2018). “Traveling Salesman Problem With a Drone
Station”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 49.1,
pp. 42–52.

Miller, C. E., A. W. Tucker, and R. A. Zemlin (1960). “Integer Programming Formulation
of Traveling Salesman Problems”. In: Journal of the ACM 7.4, pp. 326–329.

Min, Hokey, Vaidyanathan Jayaraman, and Rajesh Srivastava (1998). “Combined location-
routing problems: A synthesis and future research directions”. In: European Journal of
Operational Research 108.1, pp. 1–15.

Murray, Chase C. and Amanda G. Chu (2015). “The flying sidekick traveling salesman
problem: Optimization of drone-assisted parcel delivery”. In: Transportation Research
Part C: Emerging Technologies 54, pp. 86–109.

Nagy, Gábor and Saïd Salhi (2006). “Location-routing: Issues, models and methods”. In:
European Journal of Operational Research 177.2, pp. 649–672.

137

4 The Traveling Salesman Drone Station Location Problem

Otto, Alena et al. (2018). “Optimization approaches for civil applications of unmanned
aerial vehicles (UAVs) or aerial drones: A survey”. In: Networks 72.4, pp. 411–458.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2018a). “A Variable Neighborhood
Search Algorithm for Solving the Vehicle Routing Problem with Drones”. Technical
Report. Business Information Systems & Operations Research, Technische Universität
Kaiserslautern.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2018b). “Algorithms for Solving
the Vehicle Routing Problem with Drones”. In: Intelligent Information and Database
Systems. Lecture Notes in Computer Science 10751. Cham: Springer, pp. 352–361.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2019a). “A hybrid VNS/Tabu search
algorithm for solving the vehicle routing problem with drones and en route operations”.
In: Computers & Operations Research 109, pp. 134–158.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2019b). “A matheuristic for the
vehicle routing problem with drones and its variants”. In: Transportation Research Part
C: Emerging Technologies 106, pp. 166–204.

Wang, Xingyin, Stefan Poikonen, and Bruce Golden (2017). “The vehicle routing problem
with drones: several worst-case results”. In: Optimization Letters 11.4, pp. 679–697.

138

5 The Drone-Assisted Traveling Salesman Problem
with Robot Stations

Abstract

In this paper, we study the Drone-Assisted Traveling Salesman Problem with Robot Stations
(TSPDRS). Specifically, we assume that there is a single truck that is equipped with a drone,
and one or more potential sites of stations that might accommodate some robots. The TSP-
DRS asks for a valid route of the truck as well as feasible utilization of the drone and robots,
such that all customers are served and minimal delivery time (makespan) or cost is accom-
plished. We provide a Mixed-Integer Linear Program (MILP) formulation of the problem and
perform a detailed numerical study. Through our numerical results, it is revealed that our
formulation can be effectively addressed by a state-of-the-art solver. In addition, we demon-
strate that optimizing the makespan coincides with reduced costs. In contrast, optimizing
the operational costs might increase the makespan significantly. Furthermore, depending on
the objective function, the operational utilization of the vehicles differs.

5.1 Introduction

Drones are on the brink of achieving market maturity as a commercial technology for
civil applications in many public and private sectors. In particular, drones have already
been successfully applied for monitoring tasks in agriculture, energy, or infrastructure,
and for the delivery of packages (see (Otto et al., 2018) and references therein). Besides
that, to reduce the negative impact of traffic in urban areas, there is a rising interest in
using autonomous delivery robots in last-mile delivery (see, e. g., (Boysen et al., 2018a;
Moeini and Salewski, 2020; Sonnenberg et al., 2019)). Due to the complementary nature
of trucks, drones, and robots such as, e. g., their different speeds and carrying capacities,
in a combined approach, benefits might emerge in terms of improved delivery times or
reduced operational costs.
As a result, in this paper, we introduce the TSPDRS (see also Figure 5.1.1). To be

more specific, we study the interoperability of a drone-assisted truck (refer to (Agatz et
al., 2018; Murray and Chu, 2015)) with the possibility of using remote robot stations
(refer to (Kim and Moon, 2018; Schermer et al., 2020c)) in an integrated model. In this
problem, we assume that a truck with sufficient capacity, which carries a drone, is located

139

5 The Drone-Assisted Traveling Salesman Problem with Robot Stations

at a central depot. Moreover, we expect that a set of customer locations, each of them
with an equal type of demand, as well as the potential sites of robot stations are known in
advance. A subset of stations, which might accommodate a given number of autonomous
robots, can be visited by the truck. The TSPDRS asks for a valid route of the truck,
feasible operations of the drone, and admissible use of the robots, such that all customers
are served and minimal delivery time (makespan) or cost is accomplished. Notably, this
problem is concerned with various aspects of synchronization that determine the interplay
between the vehicles (Drexl, 2012b). In other words, the interactions between the truck
and auxiliary vehicles are governed by several operational constraints.

Figure 5.1.1: An illustration of TSP, TSPD, TSPDS, and TSPDRS solutions (from left to right):
the paths of the truck, drones, and robots are indicated by solid, dashed, and dotted lines, respec-
tively. In each figure, the depot and drone station (micro-depot) are indicated by the square and
star shapes; however, the robots may only be utilized in the TSPDS and TSPDRS.

The remainder of this paper is organized as follows. We begin with a brief literature
review in Section 5.2. Afterwards, in Section 5.3, we clarify the assumptions of the TSP-
DRS and provide a MILP formulation of the problem. Computational experiments and
their numerical results are then presented in Section 5.4. Finally, in Section 5.5, we draw
concluding remarks on our work and derive some possible implications for future research.

5.2 Related Literature

Murray and Chu (2015) introduced two novel problems, where a truck is assisted by a
single drone in the context of last-mile delivery. The first one is called the Flying Sidekick
Taveling Salesman Problem (FSTSP). Here, if the depot is remotely located from the
demand centers, it might be beneficial to have the drone working in close collaboration
with the truck. Therefore, for the FSTSP, we assume that the drone is taken along by the
truck and might be launched at some locations to initiate a multi-leg flight. In detail, the
first leg consists of the loaded drone departing from the truck to perform an unattended
delivery to a customer. Subsequently, as the drone needs to be resupplied, the second
(empty) leg consists of the drone autonomously returning to the truck. The objective is

140

5.2 Related Literature

to serve all customers and achieve minimal delivery time. Noteworthy, in the FSTSP, the
drone cannot be recovered at the same location from which it was launched, i. e., round
trips are forbidden (Murray and Chu, 2015). In contrast, in a closely related problem,
named the Traveling Salesman Problem with Drone (TSPD) (Agatz et al., 2018), such
a move is permitted (see Figure 5.1.1). In recent years, a rapidly increasing number of
research papers have been published, which follow the general idea of the FSTSP and
TSPD (see, e. g., (Poikonen et al., 2019; Poikonen et al., 2017; Schermer et al., 2019b;
Sonnenberg et al., 2019; X. Wang et al., 2017)). These works address variants, provide
theoretical insights, or develop advanced computational methods for solving problems
involving a truck-drone tandem.
In contrast to the FSTSP, if the central depot is located within a dense customer cluster,

the Parallel Drone Scheduling Traveling Salesman Problem (PDSTSP) provides a different
perspective (Murray and Chu, 2015). In this case, the truck and drone perform their
actions more independently of each other. Indeed, while the truck follows a predefined
tour to serve remote locations, the drone might be used to fulfill requests that are located
in the area surrounding the depot. While the truck serves the customers that might be
inaccessible by the drone, the latter continuously performs round trips: starting from the
depot, a customer is served, and the drone resupplied afterwards. Hence, a much smaller
degree of synchronization is required in the PDSTSP (Murray and Chu, 2015).

In practice, it seems unlikely that the central depot is located in close proximity to
demand centers. In order to overcome this issue, the Traveling Salesman Problem with
Drone Station (TSPDS) was introduced as a generalization of the PDSTSP (Kim and
Moon, 2018) (see also Figure 5.1.1). More precisely, apart from the central depot, where
the truck is initially located, it is assumed that there is a single drone station (or micro-
depot), which provides shelter to one or more drones. In the TSPDS, as soon as the drone
station has been supplied by the truck, the drones can start their operation in a manner
that mirrors the PDSTSP. In this problem, as in the FSTSP and PDSTSP, the objective
is to serve all customers with minimal makespan, by effectively utilizing the drone station.
Specifically, when the number of drones that are located at the station and their relative
velocity are sufficiently large, it is possible to determine from the start which customers
should be assigned to the truck or drone, respectively. Moreover, under these special
assumptions, it is possible to decompose the problem into two independent subproblems
(Kim and Moon, 2018): a Traveling Salesman Problem (TSP) to determine the route of
the truck and a Parallel Machine Scheduling Problem to create a schedule for the drones
that are located at the station.
Compared to existing large-scale central depots, drone stations (micro-depots) might

be a low-cost infrastructure of much smaller scale. Above all, they need to provide shelter

141

5 The Drone-Assisted Traveling Salesman Problem with Robot Stations

along with the infrastructure that is needed for automated storage and retrieval of parcels
as well as recharging of drones. Consequently, it is conceivable to incorporate the decision
of locating (or selecting) a drone station from several potential sites into the problem
at hand. Indeed, this was addressed in the Traveling Salesman Drone Station Location
Problem (TSDSLP) that treats the routing of the truck, facility location of the drone
stations, and scheduling of the drones in an integrated model (Schermer et al., 2020c). In
general, works that follow the concept of the FSTSP conclude that a drone must have a
sufficiently large velocity to provide significant improvements w. r. t. the makespan (see,
e. g., (Agatz et al., 2018; Schermer et al., 2019a)). In contrast, Kim and Moon (2018)
and Schermer et al. (2020c) can show that drone stations are also effective even when the
speed of the drones is low compared to that of the truck.

To the best of our knowledge, at this point, there is no work that combines the concepts
of the FSTSP (or TSPD) with the general idea of using drone stations. However, in
an effort to further reduce delivery times or costs, it might be beneficial to consider an
integrated delivery system that merges a (costly high-speed aerial) drone that travels
along with the truck with some (cheaper ground-operated and slow-moving) robots that
are coordinated directly from stations.

5.3 Problem Definition

In this section, we formally introduce the TSPDRS, which integrates the TSP with a
drone (refer to (Agatz et al., 2018; Murray and Chu, 2015)) and the TSP with robot
stations (refer to (Kim and Moon, 2018; Schermer et al., 2020c)). To be more precise,
the TSPDRS combines the concepts of a drone traveling along with a truck with the
possibility of the truck driver utilizing micro-depots that house further auxiliary vehicles,
e. g., robots, which might be used for performing unattended deliveries. In this paper,
we make no strong assumptions about the nature of the auxiliary vehicles. However, for
the sake of readability, in what follows the term drone is used exclusively to refer to the
(unmanned aerial) vehicle that travels along with the truck and the term robot to refer to
one of the (unmanned ground) vehicles that are assigned to a station.
For the description of the problem, suppose that the truck-drone tandem is initially

located at a central depot. Furthermore, we accept the presence of one or more robot
stations that provide accommodation to a fixed number of robots. In the TSPDRS, the
objective is to serve a given set of customers by utilizing the truck, drone, and robots in
such a way that all vehicles have returned to their initial location as quickly as possible,
i. e., with minimal makespan. Alternatively, we consider an objective that is based purely
on the operational cost. We accept the following assumptions regarding the nature of

142

5.3 Problem Definition

the drone and robots (Agatz et al., 2018; Kim and Moon, 2018; Murray and Chu, 2015;
Schermer et al., 2020c):

• When the drone is launched from the truck, it can serve exactly one customer and
afterwards it needs to return to the truck. Similarly, we ask that a robot can deliver
exactly one parcel to a customer. Then, it also needs to return to the station from
which it was launched for a resupply.

• We assume that the drone and robots have a limited endurance of Ed and Er time
units per operation, respectively. Moreover, we ask that the batteries of the drone
and robots are recharged (or swapped) instantaneously after each operation.

• While the truck is restricted to follow the road network, the drone and robots might
be able to use different routes with different speeds. Hence, the times required to
travel between two locations can differ for the truck, drone, and robots.

• In this problem, we assume that at most C ∈ Z≥0 robot stations can be utilized by
the truck (which might be a managerial decision).

Let us present the notation that we are going to use throughout the paper. Assume
that a complete graph G = (V,E) is given, where V is the set of vertices and E is the set
of edges. We identify several pairwise disjoint subsets in V :

• {0, n+ 1} ⊂ V marks the depot at the start and end of the tour, respectively.

• VN = {1, . . . , n} ⊂ V is the set of all customers. Moreover, VD ⊆ VN is the subset
of customers that may be served by either the truck, drone, or robot. But, VN \ VD

is the subset of customers that may be served by truck only.

• VS = {s1, . . . , sm} ⊂ V is the set of potential robot station sites that are present in
the network.

Thus, V = {0}∪VN ∪VS∪{n+1}, where 0 ≡ n+1. To simplify the notation, we introduce
two further sets named VL = V \ {n+ 1} and VR = V \ {0} that mark the locations from
which a drone may be launched and retrieved, respectively. A drone operation (or sortie)
is characterized by a triple (i, w, j) ∈ P , where P is the set of all feasible operations and
the following conditions must be fulfilled (Agatz et al., 2018; Murray and Chu, 2015):

• The location i, from which the drone is launched, must be contained in the set VL.

• The customer w ∈ VD, that is served by the drone, must be different from i.

• At any retrieval location j, w ̸= j must hold. In addition, if i = j, we call it a cyclic
(loop) operation or a round trip. Otherwise, if i ̸= j ∈ VR, we call it an acyclic or
multi-leg operation.

143

5 The Drone-Assisted Traveling Salesman Problem with Robot Stations

By the parameters dij , dij , and d̃ij , for all i, j ∈ V , we define the distance required to
travel from vertex i to vertex j by truck, drone, and robot, respectively. Similarly, we use
tij , tij , and t̃ij to define the times required to travel from vertex i to j depending on the
mode of transportation. Furthermore, we assume that tl (respectively, tr) time units are
required to launch (respectively, recover) the drone (Murray and Chu, 2015).

We assume that each robot station accommodates a limited and identical number of
robots K = {1, . . . , k}, where |K| ∈ Z≥0. A robot delivery is characterized by a triple
(k, s, w) as follows: the robot k ∈ K starts from a station s ∈ VS , fulfills a request at
w ∈ VD, and returns to the same station from which it was launched (Kim and Moon,
2018; Schermer et al., 2020c).

5.3.1 Minimal Makespan TSPDRS

Table 5.3.1: Decision variables used in the TSPDRS formulation.

τ ∈ R≥0 defines the makespan.
xij ∈ {0, 1}

∀i∈VL,j∈VR,i ̸=j

is equal to 1, iff arc (i, j) is used by the truck.

yiw ∈ {0, 1}
∀i∈VL,w∈VD,i ̸=w

is equal to 1, iff the drone serves w from i, i. e., arc (i, w) is the start of a
multi-leg.

y′wj ∈ {0, 1}
∀w∈VD,j∈VR,w ̸=j

is equal to 1, iff the drone returns from w to j, i. e., arc (w, j) is the end of
a multi-leg.

ŷiw ∈ {0, 1}
∀i∈VL,w∈VD,i ̸=w

is equal to 1, iff the drone performs a round trip (i, w, i).

yi ∈ {0, 1}
∀i∈V

is equal to 1, iff the drone is available for an operation at i.

zksw ∈ {0, 1}
∀k∈K,s∈VS ,w∈VD

is equal to 1, iff robot k serves customer w from station s.

ai ∈ R≥0
∀i∈V

indicates the arrival time of the truck at i.

si ∈ R≥0
∀i∈V

states the earliest possible departure time of the truck from i.

ri ∈ R≥0
∀i∈V

indicates the earliest possible release time of the drone at i.

si ∈ R≥0
∀i∈V

states the earliest possible departure time of the drone from i.

To formulate the TSPDRS, we use the decision variables shown in Table 5.3.1. Using
this notation, we introduce the following MILP formulation (5.1)–(5.27).
In the TSPDRS, according to (5.1), the objective is to minimize the makespan τ . The

makespan has multiple lower bounds which are given by the time at which the truck-
drone tandem has returned to the depot as well as the time at which each robot station

144

5.3 Problem Definition

has concluded its operation. These bounds are defined in constraints (5.2) and (5.3) for
all vehicle types.

min τ (5.1)

s. t. sn+1 ≤ τ (5.2)

as +
∑
w∈VD

(t̃sw + t̃ws)z
k
sw ≤ τ ∀s ∈ VS , k ∈ K (5.3)

The flow of the truck is defined through constraints (5.4) and (5.5). More precisely,
according to constraints (5.4), the truck should commence and conclude its tour exactly
once. Moreover, for each vertex h, that is visited by the truck in between, the flow must
be conserved according to constraints (5.5).∑

j∈VR

x0j =
∑
i∈VL

xi,n+1 = 1 (5.4)

∑
i∈VL,
i ̸=h

xih =
∑
j∈VR,
h ̸=j

xhj ∀h ∈ VN ∪ VS (5.5)

In the TSPDRS, every customer must be served exactly once. Constraints (5.6) cover
the customers that can be served exclusively by the truck. For the remaining customers,
constraints (5.7) guarantee that they are served exactly once by either truck, drone, or
robot. ∑

i∈VL,
i ̸=w

xiw = 1 ∀w ∈ VN \ VD (5.6)

∑
i∈VL,
i ̸=w

(xiw + yiw + ŷiw) +
∑
s∈VS

∑
k∈K

zksw = 1 ∀w ∈ VD (5.7)

The TSPDRS has intensive operational synchronization requirements. For the truck and
the drone, these are handled through constraints (5.8)–(5.10). To be more precise, through
constraints (5.8) (respectively, (5.9)), the truck is required to visit every vertex i that serves
as a starting point for a multi-leg (respectively, round trip) operation. Furthermore, when
a drone is retrieved at some vertex j after a multi-leg operation, the truck is required to
visit the vertex due to constraints (5.10). Finally, constraints (5.11) guarantee that the

145

5 The Drone-Assisted Traveling Salesman Problem with Robot Stations

flow is conserved during multi-leg operations.

yiw ≤
∑
j∈VR
i ̸=j

xij ∀i ∈ VL, w ∈ VD, i ̸= w (5.8)

ŷiw ≤
∑
j∈VR
i ̸=j

xij ∀i ∈ VL, w ∈ VD, i ̸= w (5.9)

y′wj ≤
∑
i∈VL
i ̸=j

xij ∀w ∈ VD, j ∈ VR, w ̸= j (5.10)

∑
i∈VL
i ̸=w

yiw =
∑
j∈VR
w ̸=j

y′wj ∀w ∈ VD (5.11)

Temporal constraints for the truck are given through constraints (5.12) and (5.13). The
first set of constraints applies the arrival time as a lower bound on the departure time. In
addition, the second set of constraints provides a lower bound on the arrival time at j for
every arc (i, j) that is used by the truck.

ai ≤ si ∀i ∈ V (5.12)

M(xij − 1) + si + tij ≤ aj ∀i ∈ VL, j ∈ VR, i ̸= j (5.13)

For every multi-leg (i, w, j) performed by the drone, constraints (5.14) and (5.15) provide
lower bounds on the release time of the drone at the customer and retrieval location. These
constraints incorporate the departure time of the drone as well as the overhead times and
flight times associated with each leg.

M(yiw − 1) + si + (tl + tiw) ≤ rw ∀i ∈ VL, w ∈ VD, i ̸= w (5.14)

M(y′wj − 1) + sw + (twj + tr) ≤ rj ∀w ∈ VD, j ∈ VR, w ̸= j (5.15)

Due to constraints (5.16), the earliest possible departure time si of the drone depends
on its release time ri at i and the time spent performing round trips at the same vertex.
Moreover, the earliest possible departure time of the truck is bounded by the earliest
possible release time of the drone. If a drone starts a multi-leg, the overhead time to
launch the drone must be applied which is stated through constraints (5.17). Similarly,
expressed through constraints (5.18), when a drone is retrieved after a multi-leg, the
overhead time to retrieve the drone must be considered before the drone can be released

146

5.3 Problem Definition

again.

ri +
∑

w∈VD,
i ̸=w

(tl + tiw + twi + tr)ŷiw ≤ si ∀i ∈ V (5.16)

si + tl
∑

w∈VD,
i ̸=w

yiw ≤ si ∀i ∈ V (5.17)

aj + tr
∑

w∈VD,
w ̸=j

y′wj ≤ rj ∀j ∈ V (5.18)

Constraints (5.19) and (5.20) define the maximum endurance for round trips and multi-
leg drone flights.

(tiw + twi)ŷiw ≤ Ed ∀i ∈ VL, w ∈ VD, i ̸= w (5.19)∑
i∈VL,
i ̸=w,
i ̸=j

tiwyiw + (rj − sw) ≤ Ed +M(1− y′wj) ∀w ∈ VD, j ∈ VR (5.20)

Constraints (5.21) account for the availability of the drone: for every arc (i, j) used by
the truck, these constraints place a valid upper bound on the variable yj depending on
the previous availability, i. e., yi, as well as starts of a multi-leg at i and recoveries after a
multi-leg at j.

(1− xij) + yi +
∑

w∈VD,
w ̸=i
w ̸=j

(−yiw + y′wj) ≥ yj ∀i ∈ VL, j ∈ VR, i ̸= j (5.21)

If a drone is available, it can start or end a multi-leg at most once and perform an
arbitrary number of round trips at the same location. This behavior is expressed through
constraints (5.22)–(5.24). ∑

w∈VD,
w ̸=i

yiw ≤ yi ∀i ∈ VL (5.22)

∑
w∈VD,
w ̸=j

y′wj ≤ yj ∀j ∈ VR (5.23)

∑
w∈VD,
i ̸=w

ŷiw ≤ nyi ∀i ∈ VL (5.24)

147

5 The Drone-Assisted Traveling Salesman Problem with Robot Stations

At this point, we have fully specified the interaction of the truck and drone. Next, we
will integrate the robot stations into the TSPDRS. We say that a station is used if it is
visited by the truck. Through constraints (5.25), we require that at most C ∈ Z≥0 stations
may be used. Furthermore, constraints (5.26) guarantee that an arbitrary number of robot
deliveries might be performed at each station s that is visited by the truck.∑

i∈VL

∑
s∈VS
i ̸=s

xis ≤ C (5.25)

∑
k∈K

∑
w∈VD

zksw ≤ n
∑
i∈VL,
i ̸=s

xis ∀s ∈ VS (5.26)

We conclude our model with constraints (5.27) that guarantee the maximum endurance
to be respected for all robot operations.

(t̃sw + t̃ws)z
k
sw ≤ Er ∀k ∈ K, s ∈ VS , w ∈ VD (5.27)

Even though MILP (5.1)–(5.27) formulates the TSPDRS, the linear relaxation can be
improved by including some simple yet highly effective valid inequalities (see (Schermer
et al., 2019b)). For the purpose of this work, we adapt them through constraints (5.28)
and (5.29) as follows:∑

i∈VL

∑
j∈VR,
i ̸=j

tijxij +
∑
i∈VL

∑
w∈VD,
i ̸=w

tlyiw +
∑
w∈VD

∑
j∈VR,
w ̸=j

try
′
wj

+
∑
i∈VL

∑
w∈VD,
i ̸=w

(tl + tiw + twi + tr)ŷiw ≤ τ
(5.28)

∑
i∈VL

∑
w∈VD,
i ̸=w

(tl + tiw)yiw +
∑
w∈VD

∑
j∈VR,
w ̸=j

(twj + tr)y
′
wj

+
∑
i∈VL

∑
w∈VD,
i ̸=w

(tl + tiw + twi + tr)ŷiw ≤ τ
(5.29)

These constraints state that the makespan is bounded by the time spent traveling by either
the truck or drone and the time shared by both vehicles when they perform synchronized
actions: these actions occur during the launches and recoveries associated with multi-leg
operations, i. e., whenever the overhead times tl and tr are applied, as well as during round
trips.

As a general remark, our model loosely follows the MILP models presented in (Kim

148

5.3 Problem Definition

and Moon, 2018; Schermer et al., 2019b; Schermer et al., 2020c). However, with respect
to modeling the interaction between the truck and drone, the model provided in this
paper is far more compact. In particular, through the introduction of constraints (5.21),
we explicitly account for the availability of the drone at every vertex without tracking
circumjacent drone operations (refer to (Schermer et al., 2019a; Schermer et al., 2019b)).
Through this procedure, we significantly reduce the number of variables and constraints
involved in the formulation. In fact, we only require O(|V |2) variables and constraints for
modeling the problem. Furthermore, in contrast to existing models (see, e. g., (Kim and
Moon, 2018; Murray and Chu, 2015; Schermer et al., 2020c)), we require no explicit subtour
elimination constraints. In fact, constraints (5.13)–(5.15) already eliminate the possibility
of any subtour. Finally, we need only a few big-M constraints. To be more precise,
these constraints only appear in the temporal constraints (5.13)–(5.15) and endurance
constraints (5.20), which helps to strengthen the linear relaxation further. As a result
of these improvements, to the best of our knowledge, at this time, we are the first to
effectively solve a multitude of instances with 10 or more customers to optimality within
acceptable runtime and to approach instances with up to 20 customers reasonably well
through a general-purpose MILP solver (refer to Section 5.4).

5.3.2 Minimal Operational Cost TSPDRS

As an alternative to the makespan minimization, we might be interested in cost minimiza-
tion instead. While minimizing the cost, we might consider the variable cost-per-mile that
might be associated with the truck, drone, and every robot. To this end, we might use
the following objective function:

min ct
∑
i∈VL

∑
j∈VR
i ̸=j

dijxij + cd
∑
i∈VL

∑
w∈VD,
i ̸=w

((
diw + dwi

)
ŷiw + diwyiw

)
+ cd

∑
w∈VD

∑
j∈VR,
w ̸=j

dwjy
′
wj + cr

∑
s∈VS

∑
k∈K

∑
w∈VD

(d̃sw + d̃ws)z
k
sw

(5.30)

In this objective function, the parameters ct, cd, cr ∈ R+ determine the relative cost for
each mile that the truck, drone, and robots are in operation, respectively.

As a concluding remark, as the TSPDRS (with either objective) generalizes the NP-
hard TSP, the TSPDRS is also NP-hard.

149

5 The Drone-Assisted Traveling Salesman Problem with Robot Stations

5.4 Computational Experiments and their Numerical Results

We implemented the model (5.1)–(5.29) and solved it by the MILP solver Gurobi Optimizer
8.1.0 (Gurobi Optimization, LLC, 2023) with a time limit of 30 minutes. We carried out
all experiments on compute nodes in an Intel Xeon E5-2670 CPU cluster where each node
was allocated 8 GB of RAM.

5.4.1 Instance Generation

Several different assumptions have been made with regard to the technical coefficients
that apply to trucks, drones, and robots. For trucks, these assumptions include speeds
that range from 15 to 35 mph (refer to (Boysen et al., 2018a; Ha et al., 2018; Moeini and
Salewski, 2020; Murray and Chu, 2015; Sacramento et al., 2019)) and, as drones are not
exposed to the limitations of the road network, it is commonly assumed that they move
faster than trucks. In the literature, for drones, the speed varies from 25 to 50 mph along
with 15 to 40 minutes of flight time (refer to (Ha et al., 2018; Moeini and Salewski, 2020;
Murray and Chu, 2015; Sacramento et al., 2019)).

Table 5.4.1: Overview of technological coefficients used for studying the TSPDRS.

Scenario
Truck Drone Robots

vt [mph] ct vd [mph] ED [min] cd vr [mph] Er [min] cr

Slow robot 20 1 25 20 1/10 5 40 1/20
Fast robot 20 1 25 20 1/10 15 40 1/20

Generally, when it is of interest to minimize the makespan, faster drones are more
favorable; however, the marginal utility is diminishing as we speed up drones (Agatz et
al., 2018; Schermer et al., 2019b). For the purpose of this work, we conservatively assume
that we have a truck that moves at 20 mph and a drone that moves at 25 mph with a
maximum flight time of 20 minutes. Moreover, we differentiate between robots that move
close to walking speed, i. e., 5 mph, and faster robots that move at 15 mph (Boysen et al.,
2018a; Schermer et al., 2020c). For both cases, we set the robots’ endurance to 40 minutes.
Further, we assume that the Manhattan distance applies to the truck while the Euclidean
distance applies to the drone and robots. This is a reasonable assumption to make because
drones might move as the crow flies and robots might follow routes that are inaccessible
to the truck such as, e. g., pedestrian zones. For both of these networks, we assume that
the distances are symmetric. Finally, we set the overhead times associated with a launch
and recovery of the drone to tl = tr = 1 minute (Ha et al., 2018; Murray and Chu, 2015).
To the best of our knowledge, there is no work that quantifies the variable cost-per-mile

150

5.4 Computational Experiments and their Numerical Results

associated with trucks in comparison to (delivery) drones and robots. However, related
works consider drones to be 10 to 25 times more cost-efficient than trucks (refer to (Ha
et al., 2018; Sacramento et al., 2019)). In this study, we accept these assumptions and
use the cost ratios ct = 1, cd = 1/10, cr = 1/20 for the minimal cost objective in (5.30).
Table 5.4.1 contains the technological coefficients, under which the problem is studied.

Apart from the problem parameters, an instance is specified by a graph G(V,E) that
determines the locations of the depot, stations, and customers as well as the distances
between them. As the TSPDRS is a new concept, we generated several graphs that
match to the problem.1 More precisely, for each number of customers n ∈ {10, 15, 20}, we
generated 10 instances as follows:

• The locations of the depot and n customers have been randomly placed within an
8× 8 mile square region (Murray and Chu, 2015).

• For comparative purposes, we placed two robot stations that might be used. The
first robot station is placed randomly within the square grid. The second robot
station is placed at the coordinates (xs, ys) that depend on the locations of the
n customers according to formula (5.31). This station might be located closer to
customer clusters.

(xs, ys) :=
1

n

∑
w∈VN

(xw, yw) (5.31)

Afterwards, we solved these instances in four different ways. As a baseline, we treated
them as a TSP. For comparative purposes, we also solved them (under the minimal
makespan and cost objectives) as a TSPD, i. e., when C = 0. For the TSPDRS, under the
minimal makespan objective, we did the experiments with C ∈ {1, 2} and |K| ∈ {1, 2}. In
contrast, under the minimal cost objective, as no fixed cost is incurred for deploying the
second robot, we only tested with |K| = 1.
For the TSPDRS, based on our choice of parameters C, |K|, and the two different scenar-

ios portrayed in Table 5.4.1, we have 23 parameter combinations for the minimal makespan
objective and 22 parameter combinations for the minimal cost objective. Therefore, given
the 30 different problem instances, we have a total of 30 TSP, 60 TSPD, as well as 120

minimal cost TSPDRS and 240 minimal makespan TSPDRS, which are all solved by the
MILP solver. Notably, for a problem that is solved according to the minimal makespan
objective, we also calculate the cost that can be associated with the solution. Analo-
gously, under the minimal cost objective, we also compute the corresponding makespan.
For solving the instances, we assumed that VN coincides with VD, i. e., all customers are

1See https://doi.org/10.5281/zenodo.3446016

151

https://doi.org/10.5281/zenodo.3446016

5 The Drone-Assisted Traveling Salesman Problem with Robot Stations

drone- and robot-eligible. From a computational point of view, due to the complicating
constraints (5.7), this is the most challenging case. As the decision of whether a customer
should be served by the truck, drone, or robot must be made for all customers, VN = VD

provides the largest solution space.

5.4.2 Numerical Results

In this section, we provide the numerical results of our computational study. In particular,
we comment on the performance of the MILP solver in addressing the proposed instances
and the potential makespan and cost savings. Afterwards, we analyze the way in which
the drone and robots are utilized depending on the selected objective function.

5.4.2.1 MILP Solver Performance

Table 5.4.2 provides some insights into the performance of the MILP solver. More precisely,
this table contains the average runtime and Mixed-Integer Programming (MIP) gaps for
the studied cases. Moreover, the table indicates how often the MILP solver was able to
identify the provably optimal solution within the runtime limit of 30 minutes.

Table 5.4.2: Detailed results obtained through Gurobi Optimizer 8.1.0. This table contains the
average runtime (in seconds), the average MIP gap after runtime, and the number of times (opt.)
in which the provably optimal solution was found (values are averaged over 10 instances). The
parameters n, vr, |K|, and C are the number of customers, velocity of the robots, the amount of
robots, and the number of stations that can be utilized.

n vr C

TSPD (C = |K| = 0) TSPDRS
min cost min make. min cost min make. (|K| = 1) min make. (|K| = 2)

time gap opt. time gap opt. time gap opt. time gap opt. time gap opt.

10
5

1

1.2 0.0% 10/10 18.9 0.0% 10/10

1.7 0.0% 10/10 101.8 0.0% 10/10 62.9 0.0% 10/10
2 2.2 0.0% 10/10 144.3 0.0% 10/10 108.6 0.0% 10/10

15
1 1.1 0.0% 10/10 12.4 0.0% 10/10 5.6 0.0% 10/10
2 1.2 0.0% 10/10 13.2 0.0% 10/10 4.8 0.0% 10/10

15
5

1

12.5 0.0% 10/10 739.1 1.5% 7/10

29.2 0.0% 10/10 883.8 1.8% 8/10 711.1 1.8% 8/10
2 40.9 0.0% 10/10 949.0 2.0% 7/10 896.0 2.3% 7/10

15
1 4.7 0.0% 10/10 774.0 2.0% 8/10 204.8 0.0% 10/10
2 4.9 0.0% 10/10 699.0 1.8% 8/10 160.3 0.0% 10/10

20
5

1

193.8 0.0% 10/10 1,645.2 9.0% 1/10

365.1 0.0% 10/10 1,678.4 9.5% 1/10 1,571.9 9.8% 2/10
2 451.4 0.0% 10/10 1,637.1 11.1% 2/10 1,614.8 9.4% 2/10

15
1 46.4 0.0% 10/10 1,711.1 10.1% 2/10 1,780.6 10.6% 1/10
2 45.9 0.0% 10/10 1,800.0 15.9% 0/10 1,580.2 10.5% 3/10

Average 69.2 0.0% 30/30 801.1 3.5% 18/30 82.9 0.0% 120/120 867.0 4.5% 76/120 725.1 3.7% 83/120

Regarding the TSPD cases, overall, the numerical results show that our MILP formula-
tion is well-suited for solving small-sized problems. Under the minimal cost objective, we
can solve all instances to proven optimality within reasonable runtime. Moreover, under

152

5.4 Computational Experiments and their Numerical Results

the minimal makespan objective, our formulation can solve instances with 10 customers to
optimality within short runtime. Furthermore, we are able to approach instances with 15
customers with low MIP gaps and can even solve 7 out of 10 to proven optimality. How-
ever, it also becomes apparent that performance degrades as the instance size is increased
to n = 20, in particular, when we are optimizing the makespan instead of cost.
For the TSPDRS, we are able to solve instances with 10 to 15 customers reasonably well

and achieve optimality in almost all cases. Indeed, under the minimal cost objective, we
can even approach instances with 20 customers and achieve performance that rivals the
TSPD cases. Specifically, in the presence of fast robots, i. e., vr = 15, the problem often
becomes easier to solve. However, it also becomes apparent that, in general, the minimal
makespan problem is much more difficult to solve: for n = 20 the remaining MIP gaps
after runtime increase and the number of instances that are solved to optimality decreases
noticeably.

5.4.2.2 Makespan versus Cost Minimization

For the purpose of illustrating the benefits of utilizing the drone and robots with regard
to cost versus makespan reduction, we introduce the following metrics:

∆τ =
τ

τ∗TSP
and ∆c =

c

c∗TSP
, (5.32)

where, τ and c are the objective values returned by the solver and τ∗TSP as well as c∗TSP
stand for the optimal makespan and cost of the TSP solution, i. e., where no drone is
present and no station is visited or used.
Figure 5.4.1 highlights the numerical results for the minimal makespan objective. Specif-

ically, this figure shows the average savings over the TSP, i. e., ∆τ and ∆c, based on the
number of available robots |K| and their velocity vr for a given value of using at most
C = 1 stations. Note that, in this figure, the values for K = 0 are taken from the TSPD
solution (where C = |K| = 0 but the drone can be used). Notably, under the makespan
objective, the costs are also reduced significantly. Based on the selected technological co-
efficients (refer to Table 5.4.1), the savings are of similar magnitude. In particular, robots
that move close to walking speeds of 5 mph have a hardly noticeable influence under the
minimal makespan objective. In contrast, as their speed is increased to 15 mph, they
become increasingly useful.
Figure 5.4.2 visualizes the results for the minimal cost objective. As expected, under

this objective, even smaller costs can be realized. However, in contrast to the makespan
objective, the costs and delivery time show a contrary development (see also (Ha et al.,

153

5 The Drone-Assisted Traveling Salesman Problem with Robot Stations

0 1(5) 2(5) 1(15) 2(15) 0 1(5) 2(5) 1(15) 2(15) 0 1(5) 2(5) 1(15) 2(15)
50%

60%

70%

80%

Number of robots |K| (and their velocity vr in mph)

R
el
at
iv
e
m
ak

es
pa

n
an

d
co
st

∆c

∆τ

10 15 20
Number of Customers n

Figure 5.4.1: The relative makespan ∆τ and cost ∆c for the minimal makespan objective. These
values are shown for C = 1 (C = 0 for the TSPD solution, i. e., where |K| = 0) and averaged over
10 instances.

2018)): as we increase the speed of the robots, the relative costs decrease further, but
there is a sharp increase in the makespan. As a possible explanation, an increase in speed
also raises the robots’ range (see constraints (5.27)); and while operating robots might be
cheap (due to the cost factor cr), this throttles the makespan nonetheless.

5.4.2.3 Station Utilization

Regarding the use of the robot stations, we present Table 5.4.3, on which we can make
the following observations. When the objective is to minimize the operational cost or if
the number of used stations is limited to C = 1, it is much more likely that the weighted
station is utilized. In contrast, this ratio becomes less definite under the minimal makespan
objective, where it can also make sense to visit the randomly placed station. In these cases,
it might also be useful to utilize a station as an intermediate hub in order to launch or
recover the drone (see also (Schermer et al., 2019a)).

5.4.2.4 Operational Characteristics

We are also interested to investigate the operational characteristics of the drone and robots.
For this purpose, Table 5.4.4 illustrates the share of customers that are served by the truck,
through a multi-leg or a round trip, and by a robot.

154

5.4 Computational Experiments and their Numerical Results

0 1 (5) 1 (15) 0 1 (5) 1 (15) 0 1 (5) 1 (15)
30%
40%
50%
60%

120%

180%

240%

300%

Number of robots |K| (and their velocity vr in mph)

R
el
at
iv
e
m
ak

es
pa

n
an

d
co
st

∆c

∆τ

10 15 20
Number of Customers n

Figure 5.4.2: The relative makespan ∆τ and cost ∆c for the minimal cost objective. These values
are shown for C = |K| = 1 (C = 0 for the TSPD solution, i. e., where |K| = 0) and averaged over
10 instances.

Table 5.4.3: The share of times the weighted or randomly located stations are used under the min-
imal cost and minimal makespan (time) objective (averaged over 30 instances for n ∈ {10, 15, 20}).

vr C
min cost min time (|K| = 1) min time (|K| = 2)

weighted random weighted random weighted random

5 1 63.3% 16.7% 16.7% 43.3% 26.7% 40.0%
2 70.0% 16.7% 40.0% 50.0% 36.7% 43.3%

15 1 96.7% 3.3% 63.3% 33.3% 83.3% 16.7%
2 96.7% 10.0% 93.3% 66.7% 100.0% 76.7%

If the objective is to achieve minimal operational cost, the utilization of the truck is
expensive. Moreover, the cheaper modes of delivery, i. e., the drone and in particular the
robots, are utilized to a large extent. Indeed, the predominant mode of operating the
drone is the round trip. Noteworthy, to the best of our knowledge, most research works
(existing in the literature) that study related problems under a minimal cost objective, do
not permit drones to perform round trips (see, e. g., (Ha et al., 2018; Sacramento et al.,
2019)). However, if only the variable cost-per-mile is considered, a round trip clearly is
the most cost-effective operation that a drone can perform. More precisely, consider a
feasible multi-leg (i, w, j) ∈ P . Based on the objective defined in (5.30), if diw < dwj , it
is always feasible and, in particular, more cost-efficient to perform the round trip (i, w, i)

155

5 The Drone-Assisted Traveling Salesman Problem with Robot Stations

Table 5.4.4: Share of customers served by each vehicle (averaged over 10 instances for C = 1).

minimal cost (|K| = 1) minimal makespan (|K| = 1) minimal makespan (|K| = 2)
n vr truck multi-leg round trip Robot truck multi-leg round trip Robot truck multi-leg round trip Robot

10
5 20.0% 0.0% 74.0% 6.0% 63.0% 31.0% 0.0% 6.0% 63.0% 31.0% 0.0% 6.0%
15 14.0% 0.0% 16.0% 70.0% 54.0% 22.0% 0.0% 24.0% 40.0% 25.0% 0.0% 35.0%

15
5 21.3% 0.0% 72.7% 6.0% 67.3% 26.7% 0.0% 6.0% 64.7% 25.3% 0.0% 10.0%
15 12.0% 0.0% 14.7% 73.3% 60.7% 21.3% 0.0% 18.0% 50.7% 18.7% 0.0% 30.7%

20
5 23.5% 0.0% 65.5% 11.0% 69.0% 25.0% 0.0% 6.0% 67.5% 25.5% 0.0% 7.0%
15 12.0% 0.0% 15.5% 72.5% 62.5% 21.5% 0.0% 16.0% 53.0% 16.5% 0.0% 30.5%

instead. Note that, analogous considerations are possible for the case of diw > dwj .
On the contrary, when the objective is to achieve minimal makespan, the utilization

of the truck ramps up significantly. Equally important, the predominant mode of drone
delivery is the multi-leg and the share of customers served by robots declines noticeably.
It is interesting to note that when fast robots are used, the shares of customers served by
the drone and robot, respectively, are of a similar magnitude.

5.5 Conclusion

In this work, we introduced the TSPDRS, which combines the concepts of a truck-drone
tandem with the possibility of robot stations. After a brief literature review, we formu-
lated the problem as a MILP, and presented the numerical results of our computational
study. We have shown that a state-of-the-art solver yields acceptable results within rea-
sonable runtime for instances with up to 20 customers. According to the numerical results,
combining a truck-drone tandem along with properly situated robot stations can bring sig-
nificant reductions in the delivery time or operational costs. Furthermore, drone round
trips are a suitable mode of operation when the objective is to minimize the costs – sur-
prisingly, this is only scarcely considered in the literature. However, we believe that one
must be careful with the impact that this might have on the delivery time.

As the TSPDRS defines a new concept, the future research directions are numerous.
A subsequent sensitivity analysis on parameters (e. g., drone speed) might provide some
more in-depth insights on their respective impact. While our MILP formulation has shown
favorable behavior, it will be necessary to rely on heuristic methods in order to address
larger instances. Moreover, in the context of same-day-delivery, it might be of interest
to formulate the TSPDRS as a multi-objective problem: to achieve an improved trade-
off, we might weigh time against cost savings and include advanced cost metrics such
as, e. g., a cost that is imposed for waiting (refer to (Ha et al., 2018)). Finally, it is
also interesting to consider the impact of multiple trucks, several drones per truck or the

156

5.6 References

possibility of enhanced robots with multiple compartments (see, e. g., (Schermer et al.,
2019b; Sonnenberg et al., 2019)).

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments and sugges-
tions that helped us in improving the quality of this paper.

5.6 References

Agatz, Niels, Paul Bouman, and Marie Schmidt (2018). “Optimization Approaches for the
Traveling Salesman Problem with Drone”. In: Transportation Science 52.4, pp. 965–981.

Boysen, Nils, Stefan Schwerdfeger, and Felix Weidinger (2018a). “Scheduling last-mile
deliveries with truck-based autonomous robots”. In: European Journal of Operational
Research 271.3, pp. 1085–1099.

Drexl, Michael (2012b). “Synchronization in Vehicle Routing—A Survey of VRPs with
Multiple Synchronization Constraints”. In: Transportation Science 46.3, pp. 297–316.

Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual.
Ha, Quang Minh et al. (2018). “On the min-cost Traveling Salesman Problem with Drone”.
In: Transportation Research Part C: Emerging Technologies 86, pp. 597–621.

Kim, Sungwoo and Ilkyeong Moon (2018). “Traveling Salesman Problem With a Drone
Station”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 49.1,
pp. 42–52.

Moeini, Mahdi and Hagen Salewski (2020). “A Genetic Algorithm for Solving the Truck-
Drone-ATV Routing Problem”. In: Optimization of Complex Systems: Theory, Mod-
els, Algorithms and Applications. Advances in Intelligent Systems and Computing 991.
Cham: Springer, pp. 1023–1032.

Murray, Chase C. and Amanda G. Chu (2015). “The flying sidekick traveling salesman
problem: Optimization of drone-assisted parcel delivery”. In: Transportation Research
Part C: Emerging Technologies 54, pp. 86–109.

Otto, Alena et al. (2018). “Optimization approaches for civil applications of unmanned
aerial vehicles (UAVs) or aerial drones: A survey”. In: Networks 72.4, pp. 411–458.

Poikonen, Stefan, Bruce Golden, and Edward A. Wasil (2019). “A Branch-and-Bound
Approach to the Traveling Salesman Problem with a Drone”. In: INFORMS Journal on
Computing 31.2, pp. 335–346.

Poikonen, Stefan, Xingyin Wang, and Bruce Golden (2017). “The vehicle routing problem
with drones: Extended models and connections”. In: Networks 70.1, pp. 34–43.

157

5 The Drone-Assisted Traveling Salesman Problem with Robot Stations

Sacramento, David, David Pisinger, and Stefan Ropke (2019). “An adaptive large neigh-
borhood search metaheuristic for the vehicle routing problem with drones”. In: Trans-
portation Research Part C: Emerging Technologies 102, pp. 289–315.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2019a). “A hybrid VNS/Tabu search
algorithm for solving the vehicle routing problem with drones and en route operations”.
In: Computers & Operations Research 109, pp. 134–158.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2019b). “A matheuristic for the
vehicle routing problem with drones and its variants”. In: Transportation Research Part
C: Emerging Technologies 106, pp. 166–204.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2020c). “The Traveling Salesman
Drone Station Location Problem”. In: Optimization of Complex Systems: Theory, Mod-
els, Algorithms and Applications. Advances in Intelligent Systems and Computing 991.
Cham: Springer, pp. 1129–1138.

Sonnenberg, Marc-Oliver et al. (2019). “Autonomous Unmanned Ground Vehicles for Ur-
ban Logistics: Optimization of Last Mile Delivery Operations”. In: Proceedings of the
Hawaii International Conference on System Sciences, pp. 1538–1547.

Wang, Xingyin, Stefan Poikonen, and Bruce Golden (2017). “The vehicle routing problem
with drones: several worst-case results”. In: Optimization Letters 11.4, pp. 679–697.

158

6 A Branch-and-Cut Approach and Alternative
Formulations for the Traveling Salesman Problem
with Drone

Abstract

In this paper, we are interested in studying the Traveling Salesman Problem with Drone
(TSPD). Given a set of customers and a truck that is equipped with a single drone, the
TSPD asks that all customers are served exactly once and minimal delivery time is achieved.
We provide two compact Mixed-Integer Linear Program (MILP) formulations that can be
used to address instances with up to ten customers within a few seconds. Notably, we in-
troduce a third formulation for the TSPD with an exponential number of constraints. The
latter formulation is suitable to be solved by a Branch-and-Cut (B&C) algorithm. Indeed,
this approach can be used to find optimal solutions for several instances with up to 20 cus-
tomers within one hour, thus challenging the current state-of-the-art in solving the TSPD.
A detailed numerical study provides an in-depth comparison on the effectiveness of the pro-
posed formulations. Moreover, we reveal further details on the operational characteristics of
a drone-assisted delivery system. By using three different sets of benchmark instances, con-
sideration is given to various assumptions that affect, e. g., technological drone parameters
and the impact of distance metrics.

6.1 Introduction

Probing drones and other autonomous auxiliary vehicles in last-mile delivery is a current
trend that is investigated by retailers and logistics service providers such as Amazon
Inc. or Deutsche Post DHL Group (see (Murray and Chu, 2015) and references therein).
The integration of such vehicles into existing logistic architectures might yield synergistic
benefits that could emerge in terms of time or cost savings, both of which might be
crucial for effectively carrying out cost-efficient same-day deliveries in the future (refer to
(Aurambout et al., 2019)). In fact, drones have already become a proven technology
in many related public and private sectors including energy, agriculture and forestry,
environmental protection, and emergency response (see (Otto et al., 2018) and references
therein).
Generally, we might accept that a drone can move faster between two locations than

159

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

a truck as a drone has a larger average velocity, can move as the crow flies, and is not
subjected to the limitations of a road network such as, e. g., congestion. In addition,
drones are far more lightweight than trucks, which might cause them to consume less
energy when moving from one point to another. However, a drone’s payload weight and
cargo capacity in terms of volume are inherently limited. Moreover, as multirotor drones
rely on comparatively small batteries for powering their flight, their range of operation is
quite restricted compared to a traditional delivery truck.

Consequently, due to the complementary nature of both vehicles, combining a truck with
a drone gives rise to several new problems in logistics. In recent years, these problems have
received a rising interest from the optimization community. Indeed, several new problems
have been proposed in the academic literature in which different possibilities of integrating
drones are studied (see, e. g., (Agatz et al., 2018; Kim and Moon, 2018; Murray and Chu,
2015; X. Wang et al., 2017)). In an attempt to classify these problems, Otto et al. (2018)
proposed the following criteria that allow for a differentiation (for more details, we point
to the aforementioned paper and the references therein):

1. Drones as the main performance drivers, i. e., trucks supporting the operations of
drones: this might be the case if, e. g., a truck only serves as a (passive) carrier for
a drone.

2. Trucks as the main performance drivers, i. e., drones supporting the operations of
trucks: this case might occur if, e. g., a truck is merely resupplied by a drone during
its tour.

3. Drones and trucks performing independent tasks: in such scenarios, a truck and
a drone might be located at a common distribution center but perform deliveries
without interacting with one another.

4. Drones and trucks as synchronized working units: these approaches have received
significant attention in the literature and might be further classified as follows:

• Sidekick-based approaches (see, e. g., (Agatz et al., 2018; Murray and Chu,
2015)): in these cases, a drone is assumed to be carried along by a delivery
truck. However, the truck is not just a passive carrier, i. e., customers can be
served by either truck or drone.

• Station-based approaches (see, e. g., (Kim and Moon, 2018; Schermer et al.,
2020b)): here, the truck and drone(s) might be located at distinct distribution
centers resembling multiple echelons. While the truck could initially be at
a central depot, the drone(s) might be located at a remote drone station. A

160

6.1 Introduction

drone station could be a low-cost infrastructure (a micro-depot) located in close
proximity to demand centers that contains one or more drones.

This paper is concerned with the TSPD that is a sidekick-based approach. As initially
identified by Murray and Chu (2015) and confirmed in many subsequent works (see, e. g.,
(Agatz et al., 2018; Bouman et al., 2018a; Poikonen et al., 2019)), finding optimal solutions
to these kinds of problems poses a significant computational challenge. In fact, these
problems are strongly involved with several aspects of synchronization (refer to (Drexl,
2012b)). Consequently, from an algorithmic point of view, currently, no efficient method
exists for computing optimal solutions even to small problems in short computation time.
While it might be reasonable to accept (unless P = NP) that no such method may
ever exist, given the NP-hard nature of the underlying problem, we still believe that
there is meaning in accelerating the search process for provably optimal solutions to small
instances. Therefore, the contributions of our work are as follows:

1. As an alternative to existing formulations in the literature (see, e. g., (Agatz et al.,
2018; Murray and Chu, 2015)), we introduce two novel MILP formulations as well
as some effective Valid Inequalities (VIEQs) (see (Schermer et al., 2019b; Schermer
et al., 2020b)). At this point, instances with just 9 to 10 customers are considered
to be quite difficult to be solved optimally within reasonable time. By themselves,
using a state-of-the-art solver, our proposed formulations can be used to solve such
instances within a few seconds.

2. Notably, we propose a third formulation with an exponential number of constraints
that is suitable be integrated in a B&C solver. Arguably, motivated by the VIEQs,
this method leverages the strengths of existing and compact MILP formulations (e. g.,
(Murray and Chu, 2015; Schermer et al., 2019b; Schermer et al., 2020b)) by merging
them with the basic idea of the set-covering based Integer Linear Programming
(ILP) approach proposed by Agatz et al. (2018). Through this combined approach,
we can address several instances with up to 20 customers in less than one hour.
As a consequence, several previously unsolved instances can be solved to proven
optimality.

3. In any case, through our numerical study, we confirm previous observations that a
drone-assisted truck might allow for a significantly reduced delivery time, and provide
some further insights into the operational characteristic of such a delivery system.
Furthermore, we show that, using our formulations, different benchmark instances
and their associated assumptions have a noticeable influence on the performance of
the MILP solver and the effectiveness of the truck-drone delivery system.

161

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

The remainder of this paper is organized as follows. We begin in Section 6.2 with a brief
overview of the related literature. Afterwards, Section 6.3 introduces the notation, two
compact mathematical models, and the proposed VIEQs for the TSPD. As an alternative,
a third formulation with an exponential number of constraints is discussed in Section 6.4.
We present the detailed results of our numerical studies in Section 6.5. Finally, concluding
remarks on this work and future research implications are drawn in Section 6.6.

6.2 Related Literature

For the purpose of this paper, we restrict ourselves to works that consider the sidekick-
based approach (see Figure 6.2.1) under a minimal delivery time objective (refer to (Agatz
et al., 2018; Murray and Chu, 2015)) as these problems have intensive synchronization
requirements (refer to (Drexl, 2012b)). In Section 6.2.1, we provide a brief account on the
development of novel MILP formulations or any other exact method that comes with an
optimality certificate. Afterwards, in Section 6.2.2, we highlight some additional works
that are primarily concerned with heuristics. The works presented in these sections have
some overlaps. In fact, many of the authors that introduced a novel MILP formulation,
also developed heuristics for solving the problem (see, e. g., (Agatz et al., 2018; Murray
and Chu, 2015)). More general literature reviews on the potentials of utilizing drones in a
civil manner in and outside the context of vehicle routing problems can be found in (Otto
et al., 2018; Rojas Viloria et al., 2020).

Figure 6.2.1: An illustration of a possible TSP, FSTSP, and TSPD solution (from left to right).
The paths of the truck and drone are indicated by solid and dashed lines, respectively. In each
figure, the depot is indicated by the square shape.

6.2.1 Model-Based Literature

The Flying Sidekick Taveling Salesman Problem (FSTSP), which aims at finding a drone-
assisted Traveling Salesman Problem (TSP) tour, was introduced by Murray and Chu
(2015). In this problem, it is assumed that a depot and a set of customers are given,

162

6.2 Related Literature

each of whom must be served exactly once (see Figure 6.2.1). Initially, the truck-drone
tandem is located at a central depot. The objective is to find a feasible routing of the
truck and drone such that all customers are served and both vehicles have returned to the
depot as quickly as possible, i. e., with minimal makespan. The authors propose a MILP
formulation for solving the FSTSP and specify a drone sortie by a triple (i, j, k): the drone
is launched at vertex i, serves customer j, i ̸= j, and is retrieved by the truck at a third
vertex k, j ̸= k. Notably, in their model, round trips are forbidden, i. e., for every sortie
(i, j, k) the following condition must hold: i ̸= k. Using a state-of-the-art MILP solver,
the authors cannot find any provably optimal solution within a 30-minute time limit for
instances with just 10 customers. As an alternative, Murray and Chu (2015) propose a
heuristic for solving the problem.
The TSPD was proposed by Agatz et al. (2018) and shares most of the assumptions of

the FSTSP. However, there are a few key differences to the FSTSP. Firstly, the drone can
be retrieved at the same location from which it was launched (see Figure 6.2.1). Secondly,
in principle, the truck may visit customers more than once as this could be beneficial in
operating the drone (see Figure 6.2.2) (see also (Morandi et al., 2023)).

Figure 6.2.2: In the TSPD, it might be useful to visit vertices repeatedly to increase the utilization
of the drone.

Agatz et al. (2018) propose a set-covering based ILP formulation for solving the TSPD.
Within this approach, they use an operation as the essential building block (see also
Figure 6.4.1): an operation is characterized by an ordered sequence of at least two (or
more) vertices as visited by the truck. Within this sequence, at most one customer can
be served by the drone through a sortie that connects the start and end of the sequence.
Using the ILP formulation, the authors can tackle instances with 9 customers within no
more than 40 seconds. However, due to the exponential number of operations w. r. t. the
number of customers, they also report that this approach does not scale well. In fact, on
instances with just 11 customers, several hours are required to obtain optimal solutions.
Notably, some theoretical insights and heuristics that leverage local search and Dynamic
Programming (DP) are also provided in this work.
In a follow-up paper, Bouman et al. (2018a) provide another method that is based on

163

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

DP. The authors highlight that the new DP method is able to find optimal solutions
much faster compared to the ILP approach presented in (Agatz et al., 2018). In fact,
the speedup is about fortyfold on instances with 9 customers. However, it also becomes
apparent that the performance degrades as the instance size is increased: for provably
optimal solutions, instances with 12 customers already take 1 minute, an increase to 15
customers requires more than two hours of computation time, and no solution is found
within 12 hours beyond this size. To overcome this issue, they propose a heuristic variant
of their DP approach where only a subset of feasible operations is considered. The authors
can show that a considerable speedup can be achieved through this procedure with just a
slight loss on the solution quality w. r. t. optimal solutions.
Es Yurek and Ozmutlu (2018) provide an exact method for solving the TSPD that is

based on a decomposition of the problem into two components. First, all feasible tours to
the TSP are generated that visit every possible subset of customers. Each tour provides
a Lower Bound (LB) on a TSPD solution in which the customers that are not covered
by the tour must be served by the drone. Starting with the shortest tour (smallest LB),
mathematical programming is used to identify the optimal drone sorties. This procedure
continues until the best remaining LB is worse than the incumbent TSPD solution. The
authors compare their results to (Agatz et al., 2018; Murray and Chu, 2015) and highlight
that they can solve instances with 10 customers within 5 minutes and instances with 12
customers within 30 minutes. Although, the authors stress that performance depends
largely on the type of instance as well as parameters (e. g., speed of the drone). In partic-
ular, their approach performs poorly on densely clustered instances: here, for the case of
12 customers, the algorithm rarely terminates within one hour.
In the work of Poikonen et al. (2019), a Branch-and-Bound (B&B) method is introduced

for solving the TSPD. Each node in the B&B search tree represents a delivery sequence
as visited by the truck, which might contain only a subset of customers. At each node, for
the customers not covered by this sequence, the optimal TSPD solution can be computed
through the DP algorithm proposed in (Agatz et al., 2018). During the search, child nodes
are created by inserting customers into the parental sequence. Poikonen et al. (2019)
stress that, in the TSPD, the objective value could also improve if an additional customer
is inserted into the sequence. Therefore, as we climb the tree, for some children, the
objective value obtained through the DP can in fact be smaller than that of its ancestors.
The authors introduce the tree exploration ratio as a parameter that provides a tradeoff on
optimality guarantee versus speed. With an optimality guarantee, they can solve instances
with 9 customers in just one minute. However, the authors also report that the solution
time becomes intractably large when the number of customers is increased to 14.
Dell’Amico et al. (2021b) propose a modified FSTSP model that builds on the foun-

164

6.2 Related Literature

dation laid by Murray and Chu (2015). In particular, they propose a new formulation
in which some explicit constraints are replaced with exponentially many constraints that
can be added in a cutting plane manner. The affected constraints concern restrictions
regarding, e. g., the availability of the drone and the correct orientation of sorties (w. r. t.
the route of the truck). Dell’Amico et al. (2021b) can show that these changes lead to an
improvement in performance as they can solve several instances with 10 customers opti-
mally within one hour. Moreover, in a subsequent work, Dell’Amico et al. (2019) propose
a more compact formulation. This is achieved by explicitly accounting for the drone’s
availability at each vertex (a similar approach is used in (Schermer et al., 2019b)). The
authors can show that the B&C formulation yields favorable results as instances from
(Murray and Chu, 2015) with 10 customers can be solved in about 15 minutes on average.
Notably, the endurance of the drone has a significant influence. Moreover, a few instances
with up to 20 customers can be solved optimally within one hour of runtime.
In (Schermer et al., 2020b) a variant of the TSPD named the Drone-Assisted Traveling

Salesman Problem with Robot Stations (TSPDRS) is proposed. The TSPDRS merges
the sidekick-based with the station-based approaches (refer to Section 6.1). The compact
MILP formulation presented in that paper also covers the truck-drone as a special case.
Using a state-of-the-art solver, the formulation can be used to solve these special cases in
relatively short computation time. Indeed, problem instances with ten customers can be
solved within 20 seconds and instances with up to 15 customers in less than 15 minutes.
Even though most assumptions are commonly accepted, the existing literature is in fact

quite divergent: several further subtle nuances differentiate the various problem statements
from one another, making a comparison only valid to a limited extent – in fact, besides
this work, there are four different problem statements, all of which are called “TSPD” by
the respective authors (refer to (Agatz et al., 2018; Es Yurek and Ozmutlu, 2018; Ha et al.,
2018; Poikonen et al., 2019)). Apart from the problem instances and concrete choice of
parameters (e. g., the drone’s velocity), details of the problem statements differ in whether
round trips are permitted, if vertices can be revisited by the truck, and whether both
vehicles operate on the same type of network. Moreover, there is no consensus on if an
overhead time is incurred for launching and recovering the drone and how such penalties
should be applied concretely. Furthermore, there is no agreement on if a drone is permitted
to wait at a customer after making a delivery, thus conserving energy before the return
flight, or if, instead, it must hover while waiting for the truck to pick it up again. In any
case, there is no generally recognized way of specifying a drone’s endurance precisely.
As will be unveiled in much more detail in the following sections, in this paper we

provide three new formulations; in particular, one of them can be used to design a B&C
scheme for solving the TSPD effectively. Indeed, we can optimally solve instances with

165

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

n = 9 or n = 10 customers in just a few seconds, instances with n = 14 customers within
around 5 minutes, and several instances with n = 19 or n = 20 customers within an hour.

6.2.2 Methodology-Based Literature

Several further works exist that study variants of the problem (multiple trucks, drones, or
different objective functions) or are primarily concerned with heuristics. For the reasons
listed at the beginning of this section, we just mention them briefly.

Ponza (2016) discusses the possibilities of solving the FSTSP heuristically using meta-
heuristics such as Simulated Annealing (SA) or Ant Colony Optimization. Of these possible
algorithms, SA is implemented and evaluated. For small-scale instances with at most 10
customers, on which optimal solutions can be obtained through a MILP formulation (that
follows the one proposed by Murray and Chu (2015)), the SA algorithm can obtain optimal
solutions in most cases. After the investigation of these small instances, a more detailed
parameter study is performed on larger instances with up to 200 customers.
Freitas and Penna (2020) propose a Variable Neighborhood Search (VNS) for solving the

FSTSP and TSPD (see also (Freitas and Penna, 2018)). In this algorithm, the first step
consists in determining the optimal TSP solution. Next, a greedy improvement procedure
is proposed that takes customers from the truck’s route and assigns them to drone sorties.
Finally, VNS serves as an in-depth improvement procedure, for which the authors propose
several problem-specific neighborhood structures. Freitas and Penna provide a detailed
numerical study and show the effectiveness of their approach by testing on the problem
instances proposed in (Agatz et al., 2018; Murray and Chu, 2015; Ponza, 2016).
The work by Ha et al. (2018) studies a variant of the TSPD with a minimal cost (as

opposed to time) objective. The authors provide a MILP formulation that is based on the
one provided in (Murray and Chu, 2015). However, the primary contribution of the work
is the design of an effective Greedy Randomized Adaptive Search Procedure (GRASP) that
can be used to insert drone operations into an existing TSP solution as well as some local
search operators for refining the solution quality afterwards. In a subsequent work, the
same authors investigate the performance of a Hybrid Genetic Algorithm as an alternative
to their GRASP (Ha et al., 2020). The authors show that this novel algorithm outperforms
existing approaches in terms of solution quality on instances with up to 100 customers.
Similarly, Sacramento et al. (2019) study a variant of the TSPD that involves multiple

vehicles from a cost-per-mile-oriented perspective. For this purpose, they extend the MILP
formulation that was proposed in (Murray and Chu, 2015). In particular, they propose
an Adaptive Large Neighborhood Search procedure that is capable of solving large-scale
instances with up to 250 customers.

166

6.3 The Traveling Salesman Problem with Drone

Following (Poikonen et al., 2017; X. Wang et al., 2017), Schermer et al. (2019b) in-
vestigate a variant of the TSPD that features multiple vehicles and drones per vehicle
named the Vehicle Routing Problem with Drones (VRPD). A MILP formulation and some
effective VIEQs are introduced. However, the primary contribution is the design of a
Matheuristic that embeds the Drone Assignment and Scheduling Problem. This heuris-
tic is evaluated on instances with up to 100 customers. Related to this work, Schermer
et al. (2019a) also study a variant of the VRPD where en route operations are permitted,
i. e., the possibility of launching or recovering drones at some discrete points on each arc
(see also (Marinelli et al., 2018)). Even though a MILP formulation is introduced, which
can be used to address small-scale instances, the primary contribution is the design of an
effective heuristic based on the concept of VNS.

6.3 The Traveling Salesman Problem with Drone

In this section, we provide a formal specification of the TSPD. We begin in Section 6.3.1
with a concise problem description. Afterwards, in Sections 6.3.2 and 6.3.3, we provide
two compact MILP formulations of the problem.

6.3.1 Problem Definition

Suppose that there is a set of customers, each of whom must be served exactly once. In
the TSPD, we assume that there is a single truck that is equipped with a single drone
for performing the deliveries. Both vehicles are initially located at a central depot and
we look for a feasible route of the truck and admissible use of the drone such that all
customers are served and both vehicles have returned to the depot as quickly as possible,
i. e., minimal makespan is achieved. Furthermore, consistent with most of the previous
assumptions in the literature, we accept the following limitations in regard to the nature
of the drone (Agatz et al., 2018; Murray and Chu, 2015; X. Wang et al., 2017):

• When launched from the truck, the drone can serve exactly one customer before it
needs to return.

• We assume that the drone’s flight time is limited by E time units per sortie. Fur-
thermore, after returning to the truck, the battery of the drone is recharged (or
swapped) instantaneously.

• Launching and recovering the drone might take tl and tr time units, respectively.

• It is only admissible to operate the drone at vertices (for a generalization, refer to,
e. g., (Marinelli et al., 2018; Schermer et al., 2019a)).

167

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

In the TSPD, the locations of the depot and the customers are defined by a complete
graph G(V,A). In this graph, V is the set of vertices and A the set of arcs. The vertex
set V contains n vertices associated with the customers, labeled VN = {1, . . . , n} ⊂ V and
two extra vertices 0 and n + 1 that represent the depot location at the start and end of
the tour, respectively. To sum up, V = {0, 1, . . . , n, n + 1}, where 0 ≡ n + 1. We define
VL = V \ {n+ 1} and VR = V \ {0}.
A drone-sortie is characterized by a triple (i, w, j) as follows: the drone is launched

from the truck at i ∈ VL, performs a delivery to w ∈ VN , and is retrieved at vertex j ∈ V

(i ̸= w,w ̸= j). If j = i, i. e., when the sortie is (i, w, i), we call it a round trip; otherwise,
if j ∈ VR, i ̸= j, we call it a multi-leg sortie. Finally, by the parameters dij and dij we
define the distance required to travel from i to j by truck and drone, respectively. In a
similar manner, we use tij and tij to define the time that is spent when traveling from i

to j by either vehicle. We assume that the triangle inequality holds for these values.

6.3.2 A MILP formulation using a disjoint representation of multi-legs

For the MILP formulation of the TSPD, we use the binary decision variables according to
Table 6.3.1 and the continuous variables according to Table 6.3.2.

Table 6.3.1: Binary decision variables used in the TSPD formulation.

xij ∈ {0, 1}
∀i∈VL,j∈VR,i ̸=j

is equal to 1, iff arc (i, j) is used by the truck.

yiw ∈ {0, 1}
∀i∈VL,w∈VN ,i ̸=w

is equal to 1, iff arc (i, w) is the start of a multi-leg sortie.

ỹwj ∈ {0, 1}
∀w∈VN ,j∈VR,i ̸=w

is equal to 1, iff arc (w, j) is the end of a multi-leg sortie.

ziw ∈ {0, 1}
∀i∈VL,w∈VN ,i ̸=w

is equal to 1, iff the drone performs a round trip (i, w, i).

νi ∈ {0, 1}
∀i∈V

is equal to 1, iff the drone is available for a sortie at i.

Table 6.3.2: Continuous decision variables used in the TSPD formulation.

ai ∈ R≥0

∀i∈V
indicates the time at which i is reached by either truck or drone. If the drone is
retrieved at i, this marks the lower bound at which the last vehicle (truck or
drone) has arrived.

si ∈ R≥0

∀i∈V
indicates the earliest possible departure time from i.

Using these variables, we can formulate the TSPD as in (6.1)–(6.16), where (6.1) is the
objective function and the constraints are given by (6.2)–(6.16). In the following, we refer

168

6.3 The Traveling Salesman Problem with Drone

to this model as MILP-A, and it draws inspiration from (Schermer et al., 2020b).

min sn+1, (6.1)

s. t.
∑
j∈VR

x0j =
∑
i∈VL

xi,n+1 = 1, (6.2)

∑
i∈VL,
i ̸=h

xih −
∑
j∈VR,
h ̸=j

xhj = 0 ∀h ∈ VN , (6.3)

∑
i∈VL,
i ̸=w

yiw −
∑
j∈VR,
w ̸=j

ỹwj = 0 ∀w ∈ VN , (6.4)

∑
i∈VL,
i ̸=w

(xiw + yiw + ziw) = 1 ∀w ∈ VN , (6.5)

M(xij − 1) + si + tij ≤ aj ∀i ∈ VL, j ∈ VR, i ̸= j, (6.6)

M(yiw − 1) + si + tiw ≤ aw ∀i ∈ VL, w ∈ VN , i ̸= w, (6.7)

M(ỹwj − 1) + sw + twj ≤ aj ∀w ∈ VN , j ∈ VR, w ̸= j, (6.8)

ai + tr
∑

w∈VN ,
w ̸=i

ỹwi + tl
∑

w∈VN ,
i≠w

yiw

+
∑

w∈VN ,
i ̸=w

(tl + tiw + twi + tr)ziw ≤ si ∀i ∈ V, (6.9)

∑
i∈VL,
i ̸=w

tiwyiw +
∑
j∈VR,
w ̸=j

twj ỹwj ≤ E ∀w ∈ VN , (6.10)

∑
i∈VL,
i ̸=w

(tiw + twi)ziw ≤ E ∀w ∈ VN , (6.11)

(1− xij) + νi −
∑

w∈VN ,
w ̸=i,
w ̸=j

yiw +
∑

w∈VN ,
w ̸=i,
w ̸=j

ỹwj ≥ νj ∀i ∈ VL, j ∈ VR, i ̸= j, (6.12)

∑
i∈VL,
i ̸=j

xij ≥ νj ∀j ∈ VR, (6.13)

∑
w∈VN ,
i ̸=w

yiw ≤ νi ∀i ∈ VL, (6.14)

∑
w∈VN ,
w ̸=j

ỹwj ≤ νj ∀j ∈ VR, (6.15)

169

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

∑
w∈VN ,
i ̸=w

ziw ≤ νi ∀i ∈ VL. (6.16)

In the TSPD, the truck and the drone should serve all customers in the shortest possible
time and then return to the depot, which is stated in (6.1). Constraints (6.2) and (6.3)
guarantee that the flow of the truck is conserved. Moreover, constraints (6.4) sustain
the flow of the drone during each multi-leg. As is stated through constraints (6.5), every
customer must be served exactly once. Note that, without loss of generality, we assume
that every customer is eligible to be served by the drone. If this does not apply, one can
simply bind the respective variables yiw, ywj , and ziw to zero for each customer w ∈ VN\VD,
where VD ⊆ VN is the subset of customers that are eligible to be served by drone.

The temporal constraints are defined through (6.6)–(6.9). More precisely, (6.6) as well
as (6.7) and (6.8) define the transitions of the truck and drone, respectively. Note that
any subtour would contradict constraints (6.6)–(6.8). Moreover, constraints (6.9) account
for the overhead times as well as the time spent performing round trips for every vertex.

The endurance constraints are given by (6.10) for multi-leg and (6.11) for round trip
sorties and incorporate the time during which the drone is in flight. Constraints (6.12)
and (6.13) account for the availability of the drone at each vertex. In particular, if an arc
(i, j) is used by the truck, constraints (6.12) provide an upper bound on the availability of
the drone at j, i. e., νj . If the drone is available at i, i. e., νi = 1, the upper bound νj ≤ 1

will only hold if either the drone is not launched at i or if it is immediately recovered at
j; otherwise, νj will be bound to zero. In contrast, if the drone is unavailable at i, i. e.,
νi = 0, then there must be a recovery at j (from a sortie that began before i) for the drone
to be available again. Moreover, constraints (6.13) are logical constraints: the drone can
only be available at vertices that are visited by the truck. Finally, with these limits on
the availability of the drone in place, constraints (6.14)–(6.16) guarantee that the drone
can only be launched from and recovered at vertices where it is also available.

Even though MILP (6.1)–(6.16) formulates the TSPD, some effective VIEQs exist that
significantly strengthen the linear relaxation (refer to (Dell’Amico et al., 2021b; Schermer
et al., 2019b; Schermer et al., 2020b)). For the purpose of this work, we integrate them
into MILP-A as follows:∑
i∈VL

∑
j∈VR,
i ̸=j

tijxij +
∑
i∈VL

∑
w∈VN ,
i ̸=w

((
tl + tiw + twi + tr

)
ziw + tlyiw

)
+

∑
w∈VN

∑
j∈VR,
w ̸=j

trỹwj ≤ sn+1,

(6.17)

170

6.3 The Traveling Salesman Problem with Drone

∑
i∈VL

∑
w∈VN ,
i ̸=w

((
tl + tiw + twi + tr

)
ziw +

(
tl + tiw

)
yiw

)
+

∑
w∈VN

∑
j∈VR,
w ̸=j

(
twj + tr

)
ỹwj ≤ sn+1.

(6.18)

Here, constraints (6.17) and (6.18) account for the time spent traveling on arcs by the
truck and drone, respectively. Moreover, these constraints incorporate the time when the
truck and drone perform their actions in a synchronized manner, i. e., when the drone
performs round trips while the truck remains stationary (waiting for the drone to return)
and whenever the overhead times tl and tr are applied.

6.3.3 A MILP formulation using a joint representation of multi-legs

In MILP-A, we use the variables yiw and ỹwj (according to Table 6.3.1) to differentiate
between drone arcs that are part of outbound and inbound flights (each part of a multi-
leg). In principle, instead of using two disjoint sets, it is also possible to use a single set
of variables that simply state if an arc is used at all during a multi-leg flight. Hence, a
smaller number of columns is required for formulating the problem. To the best of our
knowledge, at this point, there are no models using a two-index formulation for the TSPD
(or related problems) in the literature that investigated this possibility.
To this end, we might use the binary decision variables xij , ziw, and νi as well as the

continuous decision variables ai and si according to Tables 6.3.1 and 6.3.2, respectively.
Moreover, we introduce the additional binary decision variables according to Table 6.3.3.
Then, the alternative MILP formulation of the TSPD is given by (6.1)–(6.3), (6.6), (6.11),
(6.13), (6.16), and (6.19)–(6.31). We denote this formulation by MILP-B.

Table 6.3.3: Additional binary decision variables used in the joint drone arc formulation.

yij ∈ {0, 1}
∀i∈VL,j∈VR,i ̸=j

is equal to 1, iff arc (i, j) is part of a multi-leg sortie (either outbound or
inbound).

ri ∈ {0, 1}
∀i∈V

indicates if the drone is recovered after a multi-leg sortie at i.

∑
i∈VL,
i ̸=w

(
xiw + (yiw + ziw)

)
− rw = 1 ∀w ∈ VN , (6.19)

∑
i∈VL,
i ̸=w

yiw −
∑
j∈VR,
w ̸=j

ywj − νw ≤ 0 ∀w ∈ VN , (6.20)

171

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

νw +
∑
i∈VL,
i ̸=w

yiw −
∑
j∈VR,
w ̸=j

ywj ≥ 0 ∀w ∈ VN , (6.21)

∑
i∈VL,
i ̸=j

(xij + yij)− 1 ≤ rj ∀j ∈ VR, (6.22)

∑
i∈VL,
i ̸=j

xij ≥ rj ∀j ∈ VR, (6.23)

∑
i∈VL,
i ̸=j

yij ≥ rj ∀j ∈ VR, (6.24)

rj ≤ νj ∀j ∈ VR, (6.25)

M(yij − 1) + si + tij ≤ aj ∀i ∈ VL, j ∈ VR, i ̸= j, (6.26)

ai + trri + tl(νi − 1 +
∑

w∈VN ,
i ̸=w

yiw)

+
∑

w∈VN ,
i ̸=w

(tl + tiw + twi + tr)ziw ≤ si ∀i ∈ V, (6.27)

∑
i∈VL,
i ̸=w

tiwyiw +
∑
j∈VR,
w ̸=j

twjywj ≤ E +Mrw ∀w ∈ VN , (6.28)

2 · (1− xij) + νi −
∑

w∈VN ,
w ̸=i,
w ̸=j

yiw + rj ≥ νj ∀i ∈ VL, j ∈ VR, i ̸= j, (6.29)

yij ≤ νi + rj ∀i ∈ VL, j ∈ VR, (6.30)∑
j∈VR,
i ̸=j

yij ≤ 1 ∀i ∈ VL. (6.31)

Through the objective function (6.1) and constraints (6.2)–(6.3), we still aim at mini-
mizing the makespan while preserving the flow of the truck. Moreover, the updated model
requires several new constraints that restrict the binary variables ri. Constraints (6.19)
state that every customer must be served exactly once. If the drone is recovered at a
vertex j, i. e., rj = 1, there are two incoming arcs at j: one for the truck and drone,
respectively. In this case, we subtract the binary variable rj to achieve an equilibrium.

Constraints (6.20)–(6.21) provide conservation of flow for the drone arcs. More precisely,
if the drone is not available at some vertex w, i. e., νw = 0, then the flow must be conserved
and both constraints force the number of incoming (drone) arcs to be equal to the number
of outgoing arcs. On the other hand, flow must not necessarily be conserved if the drone is

172

6.3 The Traveling Salesman Problem with Drone

available at w, i. e., if νw = 1 (see also Figure 6.3.1). Constraints (6.22)–(6.24) determine
the value on the variables rj : these constraints force the variables to take value 1 if there is
exactly one incoming truck and drone arc and to value 0 otherwise. Moreover, constraints
(6.25) are valid cuts that are logically implied by the remaining model. These constraints
state that the drone can only be recovered if it also available at the same vertex.

ih j k

l

ri ∈ {0, 1}
νi = 1

νl = 0
rl = 0

rj = 1
νj = 1

rk = 0
νk = 1

xij xjk

yil ylj

Figure 6.3.1: A part of a feasible TSPD solution: the variables ri are used to indicate if a drone is
recovered. If the drone is available, i. e., where νi = 1, flow must not necessarily be conserved: in
these situations, there can be an incoming (outgoing) drone arc without an outgoing (incoming)
drone arc. Note that the case of ri = 1, νi = 0 does not exist ∀i ∈ V .

In this model, the temporal constraints for the truck defined in (6.6) still hold. More-
over, it suffices to use constraints (6.26) and (6.27) for the transitions of the drone. The
endurance constraints are given by (6.11) and (6.28) for round trip and multi-leg sor-
ties, respectively. Note that, in this model, (6.28) now requires an additional Mrw term,
i. e., the constraint only applies for two consecutive drone arcs that visit a customer (and
not the truck) in between (see also Figure 6.3.1). Finally, constraints (6.13), (6.16), and
(6.29)–(6.31) are used to determine the availability of the drone and to restrict operations
accordingly. If the formulation presented in this section is used, before integrating the
VIEQs (6.17) and (6.18) into MILP-B, slight adjustments are necessary. In particular,
due to the nature of the variables yij , it is no longer possible to associate the overhead
time tl and tr with outgoing and incoming drone arcs, respectively. However, during each
multi-leg, the drone is launched and recovered exactly once. Hence, the total number of
multi-leg arcs yij with value 1 will always be even, and thus we can adapt these VIEQs as
follows:∑

i∈VL

∑
j∈VR,
i ̸=j

tijxij +
∑
i∈VL

∑
w∈VN ,
i ̸=w

((
tl + tiw + twi + tr

)
ziw

)
+

∑
i∈VL

∑
j∈VR,
i ̸=j

tl + tr
2

yij ≤ sn+1,

(6.32)

173

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

∑
i∈VL

∑
w∈VN ,
i ̸=w

((
tl + tiw + twi + tr

)
ziw

)
+

∑
i∈VL

∑
j∈VR,
i ̸=j

(
tl + tr

2
+ tij

)
yij ≤ sn+1.

(6.33)

6.3.4 Discussion

As we will see in Section 6.5, only small-sized instances can be solved through MILP-A
and MILP-B. In particular, several constraints involve large M -coefficients; hence, the
linear relaxation is quite weak, which results in a slow convergence of the LB. Neverthe-
less, the proposed VIEQs strengthen the linear relaxation significantly and, according to
Lemma 6.1, these VIEQs are almost tight.

Lemma 6.1. In an optimal solution, the slack value between left-hand-side of the VIEQs
(6.17) and (6.32) and the makespan, i. e., sn+1, is equal to the total time that the truck
remains stationary at vertices while waiting for the drone to arrive (from a multi-leg
sortie).

Proof. The total operating time of the truck can be decomposed into three components
as follows:

1. First, the travel time, i. e., the time spent moving on arcs.

2. Second, the synchronized waiting time, i. e., the time shared by the truck and drone
in a coordinated manner while performing interdependent actions:

• during launch and retrieval of the drone (whenever overhead times are applied),

• whenever the truck is waiting for a drone to return from a round trip.

3. Finally, the non-synchronized waiting time, i. e., the time spent at each vertex by
the truck while waiting for the drone to join (arrive from a multi-leg).

Based on the problem definition in Section 6.3, no other mode of operation does exist for
the truck. Note that the VIEQs (6.17) and (6.32) account for the travel time and the
synchronized waiting time. Therefore, the slack must be equal to the non-synchronized
waiting time. This concludes the proof of Lemma 6.1. ■

It is also worth to mention that, based on VIEQs (6.18) and (6.33), a similar lemma
might be proposed for the drone. However, compared to Lemma 6.1, one further mode
of operation exists for which these VIEQs do not account for: the time during which the
drone is carried along an arc by the truck.

174

6.4 A Branch-and-Cut approach for the TSPD

6.4 A Branch-and-Cut approach for the TSPD

The MILP formulations presented in Section 6.3 might be solved by any standard MILP
solver, e. g., Gurobi Optimizer (Gurobi Optimization, LLC, 2023). However, in order to
gain more efficiency, we introduce a third MILP formulation that permits a customized
design of the B&C algorithm. This proposal is motivated by three main observations:

1. In optimal solutions, typically, the travel time and synchronized waiting time have
the largest contribution to the makespan and, due to Lemma 6.1, they can be ap-
proximated well through the linear constraints (6.17) and (6.32).

2. The temporal constraints in MILP-A and MILP-B, presented in Section 6.3, intro-
duce several M -coefficients (as is the case in related models, e. g., (Dell’Amico et al.,
2019; Dell’Amico et al., 2021b; Ha et al., 2018; Murray and Chu, 2015)). Conse-
quently, the quality of the linear relaxation is quite weak and the convergence of
the LB is slow. However, these formulations are compact, i. e., of polynomial size.
In fact, in our formulations, only O(|V |2) variables and constraints are required for
formulating the problem.

3. In the set-covering based ILP formulation proposed by Agatz et al. (2018), the so-
called operations are used as the essential building block. Operations already explic-
itly incorporate the non-synchronized waiting times; therefore, no big-M constraints
are necessary. However, there is an exponential number of operations for a given
instance; hence, a static formulation does not scale very well to a B&C framework.

Based on these observations, we introduce a MILP formulation that attempts to leverage
the strengths of the MILP and ILP approaches listed above through Lemma 6.1. Before
we present the model, we adapt the concept of an operation o for our purpose (based on
(Agatz et al., 2018)). Let an operation o contain a feasible sequence (w. r. t. Section 6.3)
of one or more truck-arcs that we call a directed path P . Each operation o contains
exactly one multi-leg drone sortie that starts at the beginning of P , targets a customer
(not contained in P), and concludes at the end of P . We introduce the notation δ(o) ∈ VR

to refer to the vertex at the end of the operation o (the path P). Finally, we denote the
cardinality of an operation by |o| and define it as the total number of directed arcs that
are contained. Figure 6.4.1 illustrates an example of this concept. Let O denote the set
of all feasible operations and take note that this set grows exponentially with |V |.
In this section, we introduce a MILP formulation of the TSPD that features an expo-

nential number of constraints. As a result, we propose these constraints to be separated
dynamically, i. e., through a B&C framework. For introducing this formulation, we use

175

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

i j k l

w

xij

tij

xjk

tjk

xkl

tkl

yiw

tiw

ỹwl

twl

Figure 6.4.1: An example of an operation o = {xij , xjk, xkl, yiw, ỹwl} with a cardinality of |o| = 5
that ends at δ(o) = l ∈ VR. The directed path P is defined by the solid arcs.

the decision variables according to Tables 6.3.1 and 6.4.1. Using this notation, the MILP
generally follows MILP-A and is given by (6.2)–(6.5), (6.10)–(6.16), (6.34)–(6.39), and the
Miller-Tucker-Zemlin (MTZ) constraints (6.42)–(6.46). Due to the B&C nature, we call
this formulation MILP-BC.

min τ + ω, (6.34)

s. t.
∑
i∈VL

∑
j∈VR,
i ̸=j

tijxij +
∑
r∈VR

wt
r = τ, (6.35)

∑
i∈VL

∑
w∈VN ,
i ̸=w

tiwyiw +
∑

w∈VN

∑
j∈VR,
w ̸=j

twj ỹwj +
∑
r∈VR

wd
r ≤ τ, (6.36)

∑
i∈VL

∑
w∈VN ,
i ̸=w

(tl + tiw + twi + tr)ziw + tl
∑
i∈VL

∑
w∈VN ,
i ̸=w

yiw + tr
∑

w∈VN

∑
j∈VR,
w ̸=j

ỹwj = ω. (6.37)

Table 6.4.1: Additional variables used for the formulation MILP-BC.

τ ∈ R≥0 defines the least upper bound on the travel time and non-synchronized waiting
time for the truck and drone.

ω ∈ R≥0 indicates the total synchronized waiting time shared by the truck and drone.
wt
j ∈ R≥0

∀j∈VR

is the non-synchronized waiting time of the truck at vertex j (while waiting for
the drone to arrive).

wd
j ∈ R≥0

∀j∈VR

defines the non-synchronized waiting time of the drone at vertex j (while waiting
for the truck to arrive).

ui ∈ R≥0

∀i∈V
sets the position of vertex i in the delivery sequence.

Let us explain the model in more detail. Generally, this formulation closely follows
MILP-A. In fact, we only replace the objective function and drop all the temporal con-
straints (and thus, M -coefficients). Hence, in MILP-BC, the objective function is given

176

6.4 A Branch-and-Cut approach for the TSPD

by (6.34) and consists of two terms: τ and ω (note that a similar objective is used in
(Dell’Amico et al., 2019; Dell’Amico et al., 2021b)). The value τ has two bounds which are
defined through constraints (6.35) and (6.36) for the truck and drone, respectively. These
constraints account for the time spent traveling on arcs as well as the non-synchronized
waiting times wt

r and wd
r at each vertex r ∈ VR. Note that the bound is binding in case of

constraint (6.35) while (6.36) only provides a LB on τ (refer to Lemma 6.1 and comments).
The total synchronized waiting time ω is defined through equation (6.37). This constraint
accounts for the time spent performing round trips and the total overhead time.
For each operation o ∈ O, constraints (6.38) and (6.39) provide LBs on the non-

synchronized waiting times wt
δ(o) for the truck and wd

δ(o) for the drone:

ϕ(o)

1 +
∑
xij∈o

xij +
∑
yiw∈o

yiw +
∑
ỹwj∈o

ỹwj − |o|

 ≤ wt
δ(o) ∀o ∈ O, (6.38)

θ(o)

1 +
∑
xij∈o

xij +
∑
yiw∈o

yiw +
∑
ỹwj∈o

ỹwj − |o|

 ≤ wd
δ(o) ∀o ∈ O. (6.39)

To explain these constraints, let us assume that an operation o is currently part of the
solution, i. e., the parentheses in (6.38) and (6.39) evaluate to 1; then, for the given
operation o, the non-synchronized waiting times at the vertex δ(o) ∈ VR are defined by the
functions ϕ(o) and θ(o) for the truck and drone, respectively. These functions determine
the non-synchronized waiting times at the vertex δ(o) ∈ VR as follows:

• If one vehicle (either the truck or the drone) arrives at δ(o) at the same time as or
after the other one, then the non-synchronized waiting time (either ϕ(o) or θ(o)) is
equal to 0 as it does not have to wait for synchronization.

• In contrast, if one vehicle (either the truck or the drone) arrives at δ(o) before the
other one, then the non-synchronized waiting time (either ϕ(o) or θ(o)) is equal to
the difference in arrival time, i. e., the time spent waiting.

As a result, the functions ϕ(o) and θ(o) are embedded within the scheme shown in Al-
gorithm 6.1. Indeed, using a state-of-the-art solver, this algorithm can be applied through
a callback whenever a new feasible candidate incumbent solution is identified. In more
detail, for each operation o that is contained in the current solution:

1. First, the travel times of the truck and drone are calculated. Here, we do not account
for the overhead times, as they are already included in the term ω in the objective
function (see objective (6.34) and constraint (6.37)).

177

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

2. Depending on which vehicle arrives first, either cut (6.38) or (6.39) is added using
the difference in travel time, i. e., the non-synchronized waiting time at δ(o) of either
the truck or the drone, given that the operation o is part of the solution.

Algorithm 6.1 Constraint generation scheme (applied at each MIP incumbent node).
1: for each operation o ∈ O contained in the current solution do
2: Calculate tt =

∑
xij∈o

tijxij and td =
∑

yiw∈o

tiwyiw +
∑

ỹwj∈o

twj ỹwj

3: if tt < td then ▷ In operation o, the truck arrives before the drone.
4: ϕ(o) = (td − tt)
5: Add cut (6.38) for operation o
6: else if tt > td then ▷ In operation o, the drone arrives before the truck.
7: θ(o) = (tt − td)
8: Add cut (6.39) for operation o
9: end if

10: end for

Using this algorithm, the corresponding constraints, i. e., (6.38) and (6.39), are added
only as necessary or not before needed to the model. This scheme is guaranteed to converge
towards the optimal solution because of Lemmas 6.1 and 6.2 as well as Proposition 6.1,
described in what follows.

Lemma 6.2. An operation o ∈ O is never a subset of any other operation o′ ∈ O, o ̸= o′.

Proof. By contradiction, assume that ∃o′ ∈ O such that o ⊂ o′ and o ̸= o′ (the case of
o′ ⊂ o can be treated analogously; hence, we skip it). We differentiate the following cases:

1. either o′ contains at least one more drone sortie,

2. or o′ contains at least one more arc that is used by the vehicle.

The first case contradicts the definition of an operation as at most one (multi-leg) drone
sortie can be contained in each operation. For the second case, assume that we were to
add an additional arc xij to the path P . For the path to remain feasible, the only possible
location to append one further arc is at the end or the beginning of P . However, this would
also contradict the definition of an operation as the drone would no longer be launched
(retrieved) at the start (end) of the path. This concludes the proof of Lemma 6.2. ■

Proposition 6.1. The constraints (6.38)–(6.39) are optimality cuts, i. e., they are:

1. binding if the operation o ∈ O is contained in the current solution,

2. feasible for all other o′ ∈ O, o′ ̸= o, otherwise.

178

6.4 A Branch-and-Cut approach for the TSPD

Proof. The first statement follows directly from the definition of an operation at the be-
ginning of Section 6.4 and the fact that constraints (6.38)–(6.39) are indicator constraints,
i. e., they become active if and only if o is part of the solution. In this case, i. e., if the
operation o is part of the solution, constraints (6.38)–(6.39) provide valid LBs on wt

r and
wd
r for the truck and drone, respectively.

The second statement is true because of Lemma 6.2. In fact, since o is never a subset of
any other o′, the cut is non-binding and feasible for all other operations. This completes
the proof of Proposition 6.1. ■

As an example, let us consider the operation o ∈ O shown in Figure 6.4.1. Here, the
operation is given as o = {xij , xjk, xkl, yiw, ỹwj} with a cardinality of |o| = 5. In this
example, we assume that the arrival time of the truck is tt = tij + tjk + tkl and the arrival
time of the drone is td = tiw + twj . As the overhead times tl and tr are shared by both
vehicles and incorporated in the synchronized waiting time ω, we do not have to consider
them here. If tt > td, then the drone has to wait for θ(o) = (tt − td) time units at
δ(o) = l ∈ VR and the following drone-cut can be added (refer to Algorithm 6.1):

(tt − td)(xij + xjk + xkl + yiw + ỹwj − 4) ≤ wd
l . (6.40)

Otherwise, if tt < td, the truck has to wait for ϕ(o) = (td− tt) time units at l for the drone
to arrive. Thus, we can add the following truck-cut:

(td − tt)(xij + xjk + xkl + yiw + ỹwj − 4) ≤ wt
l . (6.41)

Note that, in the (rare) event where td = tt, the arrival of the truck and drone is perfectly
synchronous; hence, no cut must be added as neither vehicle has to wait for the other one.
Finally, the temporal constraints (6.6)–(6.9) that also prevent subtours are no longer

used in the model MILP-BC. As a result, we adapt and use the family of MTZ constraints
(refer to (Miller et al., 1960)) as follows:

u0 = 0, (6.42)

1 ≤ ui ≤ n+ 1 ∀i ∈ VR, (6.43)

ui − uj + 1 ≤ (n+ 1)(1− xij) ∀i ∈ VL, j ∈ VR, i ̸= j, (6.44)

ui − uw + 1 ≤ (n+ 1)(1− yiw) ∀i ∈ VL, w ∈ VN , i ̸= w, (6.45)

uw − uj + 1 ≤ (n+ 1)(1− ỹwj) ∀w ∈ VN , j ∈ VR, w ̸= j. (6.46)

This concludes the description of MILP-BC. However, in optimal solutions, many op-

179

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

erations are of cardinality |o| = 3, i. e., the truck does not serve any additional customer
in between launch and recovery of the drone (see also Figure 6.5.3). Even though, the
constraint generation scheme proposed in Algorithm 6.1 also accounts for such operations,
it might be beneficial to introduce some additional VIEQs that match to these types of
operations. Therefore, we propose constraints (6.47) and (6.48) as VIEQs to MILP-BC
and call the resulting formulation MILP-BC-VI:∑

w∈VN ,
i ̸=w,
w ̸=j

(
tiwyiw + twj ỹwj

)
− tijxij+

M · (xij +
∑

w∈VN ,
i ̸=w,
w ̸=j

(yiw + ỹwj)− 3) ≤ wt
j ∀i ∈ VL, j ∈ VR,

(6.47)

tijxij −
∑

w∈VN ,
i ̸=w,
w ̸=j

(
tiwyiw − twj ỹwj

)

+M · (xij +
∑

w∈VN ,
i ̸=w,
w ̸=j

(yiw + ỹwj)− 3) ≤ wd
j ∀i ∈ VL, j ∈ VR.

(6.48)

In particular, constraints (6.47) and (6.48) account for the waiting time of the truck
and drone, respectively, at each vertex j, if a sortie o of cardinality |o| = 3 is performed
(i. e., if the expression with coefficient M evaluates to 0). Note that, in these cases, a
sufficiently large value of M is relatively small; in fact, M = argmaxi,j∈V 2 · tij and
M = argmaxi,j∈V tij are sufficient for the value in (6.47) and (6.48), respectively.
Finally, as a general remark, note that the variables wt

j and wd
j might also prove useful

when some constraints are imposed that might limit the maximum waiting time of the
truck or drone or when it is of interest to associate a specific cost with waiting (as it is
the case in, e. g., (Ha et al., 2018)).

6.5 Computational Experiments and their Numerical Results

All experiments were performed on an Intel Xeon E5-2640v3 Processor with access to 8 GB
of RAM. As MILP solver, we chose Gurobi Optimizer 9.0.0 (Gurobi Optimization, LLC,
2023) with a runtime limit of one hour. For the design of the B&C algorithm introduced
in Section 6.4, a natural choice is to use the callback framework of the solver, i. e., we
apply the cut scheme proposed in Algorithm 6.1 at each new Mixed-Integer Programming
(MIP) incumbent node in the B&C tree. Through this process, we rely on an established

180

6.5 Computational Experiments and their Numerical Results

external framework for primal heuristics, the generation of general MILP cuts, branching-
decisions, and so forth (Fischetti et al., 2016; Fischetti et al., 2017). As we have outlined
towards the end of Section 6.2, there are no commonly accepted problem assumptions.
As a consequence, we selected three different types of benchmark instances to conduct
our computational experiments. In Section 6.5.1, we begin with instances introduced by
Bouman et al. (2018b) (used in (Agatz et al., 2018)). Afterwards, in Section 6.5.2, we test
on the instances proposed by Poikonen et al. (2019). Finally, in Section 6.5.3, we conclude
our experiments using instances of Murray and Chu (2015).

6.5.1 Instances proposed by Bouman et al.

In this section, we describe our computational experiments on the instances proposed by
Bouman et al. (2018b), which have been used in, e. g., (Agatz et al., 2018; Bouman et al.,
2018a; Poikonen et al., 2019). We begin in Section 6.5.1.1 by reporting the experimental
setup. Afterwards, the numerical results are discussed in Section 6.5.1.2.

6.5.1.1 Experimental Setup

Bouman et al. (2018b) provide a wide range of instances with different numbers of vertices.
For our experiments, we use instances with n ∈ {9, 19} customers (i. e., n+1 ∈ {10, 20} ver-
tices), where the coordinates were drawn uniformly and independently from {0, . . . , 100}.
It is assumed that both vehicles follow the Euclidean distance metric and the drone’s en-
durance is limited by flight distance. In particular, the velocity of the drone is α ∈ {1, 2, 3}
times that of the truck (which moves at a velocity of one distance unit per time unit).
Moreover, the overhead times are assumed to be negligible, i. e., tl = tr = 0. Regarding
the endurance, let E = argmaxi,j∈V dij be the edge with maximum length in the graph
G. Using this value of E , for each instance, the drone’s range of operation is restricted by
a parameter R ∈ {20%, 40%, 60%, 100%, 150%, 200%} that is multiplied by E . In order to
incorporate this parameter into our models, for MILP-A and MILP-BC, constraints (6.10)
are replaced as follows:∑

i∈VL,
i ̸=w

diwyiw +
∑
j∈VR,
w ̸=j

dwj ỹwj ≤ R · E , ∀w ∈ VN . (6.49)

Moreover, for MILP-B, we adjust constraints (6.28) as follows:∑
i∈VL,
i ̸=w

diwyiw +
∑
j∈VR,
w ̸=j

dwjywj ≤ R · E +Mrw, ∀w ∈ VN . (6.50)

181

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

Finally, for all formulations, the endurance for round trips defined in (6.11) is instead
restricted as follows: ∑

i∈VL,
i ̸=w

(
diw + dwi

)
ziw ≤ R · E , ∀w ∈ VN . (6.51)

6.5.1.2 Numerical Results

The resulting set of 360 instances was solved using formulations MILP-A, MILP-B (with
their respective VIEQs) as well as with MILP-BC and MILP-BC-VI, yielding a total
of 1440 experiments. Table 6.5.1 provides detailed results on the performance of each
approach. Based on the instance size n, the relative velocity α, and relative endurance
R, this table shows the MIP gap and runtime (averaged over 10 instances) as well as the
share of instances solved to optimality by each approach. Moreover, for MILP-BC and
MILP-BC-VI, the average number of cuts of types (6.38) and (6.39), which are added
during the search, are shown.
Based on the results presented in Table 6.5.1, we can make the following observations.

The formulation MILP-A can be used to effectively solve instances with n = 9 customers,
requiring no more than 2 seconds on average. In contrast, the alternative formulation
MILP-B is slightly worse in terms of average runtime. Beyond this size, i. e., for n = 19,
the performance of MILP-A is noticeably better: 16.1% of these instances can be solved
optimally with an average remaining MIP gap of 16.1%. Overall, the B&C algorithm that
utilizes MILP-BC shows promising performance. While MILP-A is on average slightly
faster for n = 9 customers, the B&C approach shows a slightly superior performance in
tackling instances with n = 19 customers. To be more precise, through MILP-BC we can
solve a slightly larger share (22.2%) to proven optimality with an average remaining MIP
gap of 16.2%. In contrast, MILP-BC-VI solves fewer instances to optimality (19.2%);
however, with an improved MIP gap of 15.7%. A closer look at these two formulations
reveals that the cuts of type (6.38) and (6.39), which are added during the search, are
about half if MILP-BC-VI is used. Table 6.5.1 also displays the quality of the relative root
relaxation %r associated with each formulation. We provide this information by using the
following Formula (6.52) as a performance metric:

%r :=
root relaxation objective value

objective value of the best feasible solution after runtime (6.52)

Overall, the quality of the root relaxation associated with MILP-B is noticeably worse.
In fact, on average, the relative root relaxation of MILP-A is about 13% better which
also helps to explain why MILP-A performs significantly better. When we look at the

182

6.5 Computational Experiments and their Numerical Results

Table 6.5.1: Average MIP gap, average runtime (in seconds), the share of instances solved to op-
timality (opt.), and the average relative root relaxation %r depending on the number of customers
n, the relative velocity α, and the relative endurance R on the (Bouman et al., 2018b) instance
set (10 instances per row). For MILP-BC and MILP-BC-VI, this table shows also the average
number of constraints (6.38) and (6.39) added as cuts.

In
st

an
ce

M
IL

P
-A

M
IL

P
-B

M
IL

P
-B

C
M

IL
P

-B
C

-V
I

n
α

R
ga

p
tim

e
op

t.
%

r
ga

p
tim

e
op

t.
%

r
ga

p
tim

e
op

t.
%

r
cu

ts
ga

p
tim

e
op

t.
%

r
cu

ts

9
1

20
%

0.
0%

0.
2

10
0.

0%
71

.6
%

0.
0%

0.
2

10
0.

0%
69

.7
%

0.
0%

0.
2

10
0.

0%
72

.8
%

4.
5

0.
0%

0.
2

10
0.

0%
72

.9
%

4.
5

40
%

0.
0%

0.
3

10
0.

0%
63

.5
%

0.
0%

1.
0

10
0.

0%
37

.1
%

0.
0%

0.
3

10
0.

0%
65

.0
%

23
.4

0.
0%

0.
4

10
0.

0%
66

.9
%

10
.3

60
%

0.
0%

1.
6

10
0.

0%
47

.1
%

0.
0%

3.
7

10
0.

0%
33

.7
%

0.
0%

1.
7

10
0.

0%
47

.7
%

38
.2

0.
0%

2.
7

10
0.

0%
48

.1
%

21
.6

10
0%

0.
0%

5.
2

10
0.

0%
45

.2
%

0.
0%

9.
3

10
0.

0%
35

.1
%

0.
0%

5.
2

10
0.

0%
45

.4
%

16
2.

3
0.

0%
7.

9
10

0.
0%

45
.4

%
10

6.
4

15
0%

0.
0%

6.
4

10
0.

0%
47

.1
%

0.
0%

7.
7

10
0.

0%
36

.6
%

0.
0%

7.
3

10
0.

0%
47

.4
%

53
1.

8
0.

0%
10

.8
10

0.
0%

47
.4

%
36

5.
4

20
0%

0.
0%

6.
0

10
0.

0%
47

.1
%

0.
0%

13
.6

10
0.

0%
36

.6
%

0.
0%

7.
3

10
0.

0%
47

.4
%

52
9.

4
0.

0%
9.

0
10

0.
0%

47
.4

%
32

5.
3

2
20

%
0.

0%
0.

2
10

0.
0%

71
.5

%
0.

0%
0.

2
10

0.
0%

69
.4

%
0.

0%
0.

1
10

0.
0%

72
.7

%
2.

3
0.

0%
0.

1
10

0.
0%

72
.7

%
1.

7
40

%
0.

0%
0.

3
10

0.
0%

61
.3

%
0.

0%
0.

6
10

0.
0%

33
.5

%
0.

0%
0.

3
10

0.
0%

64
.0

%
8.

3
0.

0%
0.

3
10

0.
0%

65
.1

%
5.

6
60

%
0.

0%
0.

7
10

0.
0%

43
.2

%
0.

0%
2.

0
10

0.
0%

26
.6

%
0.

0%
0.

9
10

0.
0%

44
.0

%
21

.6
0.

0%
1.

7
10

0.
0%

44
.7

%
14

.2
10

0%
0.

0%
1.

7
10

0.
0%

40
.6

%
0.

0%
3.

4
10

0.
0%

29
.5

%
0.

0%
2.

3
10

0.
0%

40
.8

%
67

.6
0.

0%
3.

6
10

0.
0%

41
.0

%
36

.3
15

0%
0.

0%
3.

1
10

0.
0%

42
.3

%
0.

0%
3.

9
10

0.
0%

31
.7

%
0.

0%
3.

8
10

0.
0%

42
.6

%
15

2.
4

0.
0%

4.
7

10
0.

0%
42

.8
%

69
.3

20
0%

0.
0%

2.
7

10
0.

0%
42

.5
%

0.
0%

4.
5

10
0.

0%
31

.9
%

0.
0%

4.
2

10
0.

0%
42

.8
%

18
6.

9
0.

0%
4.

2
10

0.
0%

43
.0

%
60

.3
3

20
%

0.
0%

0.
2

10
0.

0%
71

.1
%

0.
0%

0.
2

10
0.

0%
69

.0
%

0.
0%

0.
1

10
0.

0%
72

.6
%

3.
3

0.
0%

0.
2

10
0.

0%
72

.6
%

3.
3

40
%

0.
0%

0.
3

10
0.

0%
59

.6
%

0.
0%

0.
7

10
0.

0%
32

.1
%

0.
0%

0.
3

10
0.

0%
62

.8
%

9.
9

0.
0%

0.
4

10
0.

0%
63

.5
%

7.
8

60
%

0.
0%

0.
7

10
0.

0%
40

.5
%

0.
0%

1.
4

10
0.

0%
22

.6
%

0.
0%

0.
9

10
0.

0%
41

.8
%

20
.7

0.
0%

1.
2

10
0.

0%
42

.6
%

16
.3

10
0%

0.
0%

1.
1

10
0.

0%
35

.7
%

0.
0%

1.
7

10
0.

0%
24

.7
%

0.
0%

1.
4

10
0.

0%
35

.9
%

51
.5

0.
0%

2.
3

10
0.

0%
36

.1
%

26
.6

15
0%

0.
0%

2.
1

10
0.

0%
38

.7
%

0.
0%

2.
4

10
0.

0%
28

.6
%

0.
0%

2.
9

10
0.

0%
39

.2
%

85
.4

0.
0%

3.
1

10
0.

0%
39

.3
%

47
.5

20
0%

0.
0%

2.
1

10
0.

0%
39

.1
%

0.
0%

2.
9

10
0.

0%
28

.9
%

0.
0%

3.
6

10
0.

0%
39

.6
%

14
6.

2
0.

0%
2.

9
10

0.
0%

39
.8

%
58

.4

Av
g.

(n
=

9
)

0.
0%

1.
9

10
0.

0%
50

.4
%

0.
0%

3.
3

10
0.

0%
37

.6
%

0.
0%

2.
4

10
0.

0%
51

.4
%

11
3.

7
0.

0%
3.

1
10

0.
0%

51
.7

%
65

.6

19
1

20
%

1.
4%

1,
52

7.
9

60
.0

%
60

.7
%

1.
9%

1,
55

6.
7

60
.0

%
38

.8
%

0.
0%

61
8.

5
10

0.
0%

62
.2

%
21

.2
0.

2%
81

1.
0

90
.0

%
62

.8
%

12
.3

40
%

18
.0

%
3,

60
0.

0
0.

0%
44

.0
%

20
.3

%
3,

60
0.

0
0.

0%
31

.7
%

12
.1

%
3,

54
5.

3
10

.0
%

44
.4

%
24

1.
6

12
.5

%
3,

60
0.

0
0.

0%
44

.3
%

13
1.

5
60

%
26

.5
%

3,
60

0.
0

0.
0%

43
.7

%
30

.9
%

3,
60

0.
0

0.
0%

33
.6

%
22

.2
%

3,
60

0.
0

0.
0%

43
.8

%
61

8.
3

22
.7

%
3,

60
0.

0
0.

0%
43

.8
%

34
3.

7
10

0%
23

.9
%

3,
60

0.
0

0.
0%

45
.1

%
32

.2
%

3,
60

0.
0

0.
0%

35
.0

%
23

.6
%

3,
60

0.
0

0.
0%

45
.1

%
1,

44
8.

1
23

.7
%

3,
60

0.
0

0.
0%

45
.2

%
83

7.
9

15
0%

22
.8

%
3,

60
0.

0
0.

0%
45

.8
%

30
.8

%
3,

60
0.

0
0.

0%
35

.6
%

23
.3

%
3,

60
0.

0
0.

0%
45

.9
%

1,
47

2.
5

22
.3

%
3,

60
0.

0
0.

0%
45

.9
%

76
5.

7
20

0%
24

.3
%

3,
60

0.
0

0.
0%

45
.5

%
31

.6
%

3,
60

0.
0

0.
0%

35
.4

%
23

.8
%

3,
60

0.
0

0.
0%

45
.6

%
1,

50
5.

2
23

.4
%

3,
60

0.
0

0.
0%

45
.6

%
1,

01
3.

3
2

20
%

0.
2%

1,
07

9.
2

90
.0

%
60

.2
%

1.
0%

1,
23

6.
4

80
.0

%
37

.8
%

0.
0%

74
0.

6
10

0.
0%

61
.7

%
12

.2
0.

1%
78

4.
7

90
.0

%
62

.0
%

9.
9

40
%

9.
4%

3,
12

9.
4

20
.0

%
40

.5
%

11
.3

%
3,

30
6.

3
10

.0
%

24
.6

%
5.

7%
2,

60
5.

3
50

.0
%

41
.5

%
12

1.
1

7.
1%

2,
92

0.
9

30
.0

%
41

.5
%

51
.9

60
%

22
.9

%
3,

60
0.

0
0.

0%
38

.8
%

27
.1

%
3,

60
0.

0
0.

0%
27

.9
%

19
.0

%
3,

60
0.

0
0.

0%
38

.9
%

24
8.

3
18

.1
%

3,
60

0.
0

0.
0%

39
.0

%
13

6.
3

10
0%

24
.2

%
3,

60
0.

0
0.

0%
40

.8
%

36
.0

%
3,

60
0.

0
0.

0%
30

.4
%

22
.8

%
3,

60
0.

0
0.

0%
40

.9
%

50
4.

9
24

.9
%

3,
60

0.
0

0.
0%

40
.9

%
20

3.
5

15
0%

23
.8

%
3,

60
0.

0
0.

0%
40

.9
%

38
.2

%
3,

60
0.

0
0.

0%
30

.5
%

24
.3

%
3,

60
0.

0
0.

0%
41

.0
%

70
5.

1
23

.3
%

3,
60

0.
0

0.
0%

41
.0

%
25

2.
0

20
0%

24
.4

%
3,

60
0.

0
0.

0%
40

.6
%

35
.8

%
3,

60
0.

0
0.

0%
30

.3
%

24
.5

%
3,

60
0.

0
0.

0%
40

.7
%

65
9.

7
22

.0
%

3,
60

0.
0

0.
0%

40
.7

%
24

9.
4

3
20

%
0.

5%
1,

10
7.

0
90

.0
%

58
.6

%
1.

1%
1,

27
4.

6
70

.0
%

37
.5

%
0.

3%
75

1.
6

90
.0

%
61

.1
%

10
.2

0.
2%

80
1.

4
90

.0
%

61
.3

%
9.

7
40

%
6.

6%
3,

09
1.

2
30

.0
%

38
.3

%
7.

6%
3,

14
1.

3
30

.0
%

20
.7

%
5.

2%
2,

58
8.

5
50

.0
%

39
.9

%
10

0.
2

5.
0%

2,
93

4.
8

50
.0

%
40

.1
%

58
.9

60
%

19
.6

%
3,

60
0.

0
0.

0%
34

.8
%

24
.3

%
3,

60
0.

0
0.

0%
23

.9
%

16
.0

%
3,

60
0.

0
0.

0%
34

.9
%

20
6.

4
14

.7
%

3,
60

0.
0

0.
0%

35
.2

%
94

.3
10

0%
25

.3
%

3,
60

0.
0

0.
0%

36
.9

%
39

.1
%

3,
60

0.
0

0.
0%

26
.9

%
24

.2
%

3,
60

0.
0

0.
0%

37
.0

%
43

5.
9

22
.0

%
3,

60
0.

0
0.

0%
37

.0
%

13
5.

2
15

0%
24

.0
%

3,
60

0.
0

0.
0%

37
.0

%
40

.6
%

3,
60

0.
0

0.
0%

27
.0

%
22

.9
%

3,
60

0.
0

0.
0%

37
.1

%
53

3.
8

20
.6

%
3,

60
0.

0
0.

0%
37

.1
%

19
4.

2
20

0%
23

.9
%

3,
60

0.
0

0.
0%

37
.4

%
39

.7
%

3,
60

0.
0

0.
0%

27
.2

%
21

.0
%

3,
60

0.
0

0.
0%

37
.4

%
67

8.
7

20
.3

%
3,

60
0.

0
0.

0%
37

.5
%

16
0.

1

Av
g.

(n
=

1
9
)

17
.9

%
3,

15
1.

9
16

.1
%

43
.9

%
25

.0
%

3,
18

4.
2

13
.9

%
30

.8
%

16
.2

%
3,

00
2.

8
22

.2
%

44
.4

%
52

9.
1

15
.7

%
3,

05
8.

5
19

.4
%

44
.5

%
25

8.
9

183

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

formulations MILP-BC and MILP-BC-VI, we notice that their relative root relaxations
are just slightly better (about 1%) than those associated with MILP-A.
In Figure 6.5.1, we provide an insight into the savings (w. r. t. the TSP solution) that

are calculated as follows:

∆ := 100%− objective value of the feasible solution after runtime
optimal objective value of the TSP solution (6.53)

Moreover, Figure 6.5.2 highlights the share of customers served by the drone. These
figures are plotted for the results obtained through MILP-BC-VI. Regarding the savings
shown in Figure 6.5.1, we can make the following observations. As might be expected, the
savings generally increase as the drone’s velocity and endurance are increased. However,
for a given value of α, no significant gains can be obtained once a certain threshold of
the endurance parameter R is reached. In any case, savings of about 35% w. r. t. the TSP
solution are possible. This magnitude of savings is consistent with previous observations
(see, e. g., (Agatz et al., 2018; Schermer et al., 2019b)). In Figure 6.5.2, overall, the number
of customers served by the drone is significant and grows as the relative velocity α of the
drone is increased. What is interesting about these figures is that the shares of operations
do not grow monotonic with α and R. In particular, we can observe that as these values
change, round trips tend to be substituted with multi-leg sorties.

20 40 60 100 150 200
0%

10%

20%

30%

40%

R (%)

Sa
vi
ng

s
w
.r
.t
.T

SP

n = 10

20 40 60 100 150 200
0%

10%

20%

30%

40%

R (%)

n = 20

α = 1
α = 2
α = 3

Figure 6.5.1: The savings w. r. t. the TSP solution depending on the drone’s relative velocity α
and its relative endurance R for the results obtained through MILP-BC-VI.

Finally, let us investigate the makespan components according to the objective function
(6.34). For this purpose, we use the results obtained through the formulation MILP-BC-

184

6.5 Computational Experiments and their Numerical Results

20 40 60 100 150 200

10%

20%

30%

40%

50%

R (%)

C
us
to
m
er
s
se
rv
ed

by
dr
on

e

n = 10

20 40 60 100 150 200

10%

20%

30%

40%

50%

R (%)

n = 20

α = 1
α = 2
α = 3

Figure 6.5.2: The share of customers served by the drone depending on its relative velocity α
and its relative endurance R for the results obtained through MILP-BC-VI. Solid lines represent
multi-leg sorties and dashed lines indicate round trips.

VI. Table 6.5.2 provides a breakdown of the makespan (recall that tl = tr = 0) and is best
viewed in conjunction with Figure 6.5.2.

The time spent traveling on arcs has the largest contribution with more than 97% on
average. Moreover, the time spent waiting by the truck for the drone to join from a
multi-leg is less than 1.5% on average (similar observations were made in (Es Yurek and
Ozmutlu, 2018)). However, there is a strong dependence on the relative velocity α as a
faster drone (and a drone with an increased relative endurance R) typically also causes
the (non-synchronized) waiting time to increase.

6.5.2 Instances proposed by Poikonen et al.

If we assume that a drone can make an autonomous delivery to a customer, it might need
to land at the customer’s location. After landing, if we ask that the drone can delay its
departure for a sufficient amount of time, only the time in-flight or the distance covered
(given that the velocity is constant) are decision-relevant (for a detailed discussion, refer to
(Schermer et al., 2019b)). This assumption is present in several papers (see, e. g., (Agatz
et al., 2018; Murray and Chu, 2015)) and was investigated in Section 6.5.1. However, in
some situations, e. g., for the sake of operational or safety reasons, it might be required
that the drone must depart immediately; therefore, the drone only performs a flyover at
the customer’s location. In such a scenario, if the drone arrives at the retrieval location
before the truck and is not permitted to land it will need to hover. While hovering,

185

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

Table 6.5.2: The proportion of the time spent moving, waiting for the drone to arrive from a
multi-leg (non-synchronized waiting time), and the time spent waiting while the drone is doing
round trips. The presented results were obtained through MILP-BC-VI and have been averaged
over 10 instances per entry.

Instance n = 9 n = 19
α R move wait round trip move wait round trip
1 20% 99.7% 0.3% 0.0% 99.6% 0.4% 0.0%

40% 99.8% 0.2% 0.0% 99.2% 0.8% 0.0%
60% 97.8% 2.2% 0.0% 98.7% 1.3% 0.0%
100% 98.5% 1.5% 0.0% 98.5% 1.5% 0.0%
150% 99.1% 0.9% 0.0% 99.5% 0.5% 0.0%
200% 98.9% 1.1% 0.0% 99.4% 0.6% 0.0%

2 20% 99.0% 0.0% 1.0% 97.4% 0.1% 2.5%
40% 98.9% 0.1% 0.9% 96.8% 0.5% 2.7%
60% 97.0% 1.8% 1.2% 96.4% 2.3% 1.3%
100% 95.8% 1.8% 2.4% 98.0% 1.6% 0.4%
150% 96.5% 2.5% 0.9% 99.5% 0.5% 0.0%
200% 96.6% 2.5% 0.9% 98.0% 1.6% 0.4%

3 20% 99.1% 0.0% 0.9% 96.5% 0.0% 3.5%
40% 97.9% 0.0% 2.1% 96.3% 0.7% 3.0%
60% 98.5% 0.7% 0.8% 95.1% 2.0% 2.9%
100% 96.7% 1.2% 2.1% 97.6% 1.5% 0.9%
150% 90.6% 4.4% 5.1% 98.1% 1.7% 0.3%
200% 91.0% 5.1% 3.9% 96.6% 2.3% 1.1%

Average 97.3% 1.4% 1.2% 97.8% 1.1% 1.1%

battery charge is consumed at approximately the same rate as during straight flight (refer
to (Dorling et al., 2017)). Such a case is investigated by Poikonen et al. (2019) and in
this section, we experiment using the instances provided in (Poikonen et al., 2019). We
begin by describing the experimental setup in Section 6.5.1.1. Afterwards, we present the
numerical results in Section 6.5.1.2.

6.5.2.1 Experimental Setup

Poikonen et al. (2019) propose a large set of instances where coordinates are distributed
uniformly on a 50 by 50 grid. From this set, we test on 25 instances for each size of
n ∈ {9, 14, 19} customers. In these instances, as opposed to Section 6.5.1, it is generally
assumed that the truck follows the Manhattan metric instead. The drone is still modelled
with a relative velocity of α ∈ {1, 2, 3} w. r. t. the truck and the overhead times are fur-
thermore assumed to be negligible, i. e., tl = tr = 0. However, in contrast to Section 6.5.1,
the drone has a battery life of E ∈ {10, 20, 30} time units and must be recovered by the
truck within a time window of length E after each launch.

186

6.5 Computational Experiments and their Numerical Results

Due to the relatively poor performance of MILP-B in Section 6.5.1 and the computa-
tional overhead, for the remainder of this paper, we only consider MILP-A, MILP-BC, and
MILP-BC-VI for solving the resulting set of 675 problems; hence, a total number of 2025
experiments were performed. In order to match our models to the changed endurance
assumption, some adjustments are necessary. For this purpose, in MILP-A, we should
replace the endurance constraints (6.10) with the following ones:

(aj − si)−M(2− yiw − ỹwj) ≤ E ∀i ∈ VL, w ∈ VN , j ∈ VR, i ̸= w, i ̸= j, w ̸= j. (6.54)

These constraints state that if a drone performs a sortie (i, w, j) then the total flight and
hovering time for that sortie may not exceed E . Preliminary experiments have shown that,
to enable a fairer comparison, it is in fact appropriate to keep constraints (6.10) in MILP-
A as VIEQs, i. e., E is a valid upper bound on the time in motion (excluding hovering).
As constraints (6.10) are not affected by the M -coefficient, this has a positive impact on
the effectiveness of Gurobi Optimizer in solving MILP-A. In addition, for MILP-BC, we
propose the following endurance constraints:∑

i∈VL,
i ̸=w,
i≠j

tiwyiw + twj ỹwj + wd
j ≤ E ∀w ∈ VN , j ∈ VR, w ̸= j. (6.55)

These constraints state that the flyover time and hovering (non-synchronized waiting) time
at the retrieval location may not exceed the maximum endurance. Note that, round trips
do by their nature not include a drone hovering time. Hence, the endurance constraints
for round trips displayed in (6.9) remain unaffected for either formulation.

6.5.2.2 Numerical Results

The detailed numerical results are presented in Tables 6.5.3 and 6.5.4. To be more pre-
cise, Table 6.5.3 shows the MIP gap, runtime, the share of optimal solutions, and the
relative root relaxation as average values. In addition, for formulations MILP-BC and
MILP-BC-VI, the average number of cuts of type (6.38) and (6.39) is shown. More-
over, Table 6.5.4 provides an insight in the composition of the makespan and the share of
customers served by the truck and drone, respectively.

Compared to the observations made in Section 6.5.1, as Table 6.5.3 reveals, the change
in the assumptions has a noticeable influence on the solver. In more detail, small instances
with n = 9 customers are still solved in less than 2 seconds on average by either formu-
lation. For n = 14, almost all instances can be solved to proven optimality within one

187

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

Table 6.5.3: Average MIP gap, average runtime (in seconds), the share of instances solved to op-
timality (opt.), and the average relative root relaxation %r depending on the number of customers
n, the relative velocity of the drone α, and the endurance R on the Poikonen et al. (2019) instance
set (25 instances per row). For MILP-BC and MILP-BC-VI, this table shows also the average
number of constraints (6.38) and (6.39) added as cuts.

Instance MILP-A MILP-BC MILP-BC-VI
n α E gap time opt. %r gap time opt. cuts %r gap time opt. cuts %r

9 1 10 0.0% 0.1 100% 72.7% 0.0% 0.1 100% 7.0 74.5% 0.0% 0.2 100% 3.3 75.1%
20 0.0% 0.3 100% 63.3% 0.0% 0.4 100% 20.0 65.4% 0.0% 0.4 100% 16.6 66.1%
30 0.0% 0.8 100% 53.6% 0.0% 0.8 100% 46.3 54.9% 0.0% 1.0 100% 31.8 55.7%

2 10 0.0% 0.3 100% 62.4% 0.0% 0.3 100% 20.4 65.1% 0.0% 0.4 100% 12.1 65.7%
20 0.0% 1.3 100% 43.4% 0.0% 1.6 100% 82.4 43.9% 0.0% 2.2 100% 37.4 44.4%
30 0.0% 3.8 100% 41.7% 0.0% 3.8 100% 147.7 42.0% 0.0% 4.1 100% 79.2 42.3%

3 10 0.0% 0.7 100% 49.4% 0.0% 0.9 100% 37.4 51.5% 0.0% 1.1 100% 16.5 52.4%
20 0.0% 3.1 100% 36.0% 0.0% 4.0 100% 172.0 36.3% 0.0% 4.3 100% 65.6 36.7%
30 0.0% 3.8 100% 41.3% 0.0% 5.7 100% 213.0 41.9% 0.0% 4.0 100% 94.4 42.3%

Avg. (n = 9) 0.0% 1.6 100% 51.5% 0.0% 2.0 100% 82.9 52.8% 0.0% 2.0 100% 39.7 53.4%

14 1 10 0.0% 1.8 100% 73.0% 0.0% 1.3 100% 4.3 74.4% 0.0% 1.4 100% 4.8 74.5%
20 0.0% 22.6 100% 59.6% 0.0% 10.6 100% 38.7 61.7% 0.0% 12.2 100% 21.8 62.5%
30 0.6% 445.1 96.0% 48.1% 0.3% 359.7 96.0% 162.0 48.5% 0.4% 343.4 96.0% 65.9 48.8%

2 10 0.0% 23.5 100% 57.0% 0.0% 15.9 100% 23.4 59.7% 0.0% 16.8 100% 13.0 60.4%
20 0.0% 404.3 100% 41.8% 0.5% 412.1 96.0% 291.0 41.9% 1.0% 552.5 92.0% 85.3 42.1%
30 0.5% 890.1 92.0% 45.9% 0.2% 664.1 96.0% 513.7 46.0% 0.0% 370.3 100% 165.4 46.1%

3 10 0.3% 227.7 96.0% 37.1% 0.0% 136.7 100% 166.3 38.5% 0.6% 211.1 96.0% 45.0 39.4%
20 0.0% 873.8 100% 39.0% 1.4% 1,510.4 76.0% 714.4 39.1% 0.0% 492.4 100% 167.0 39.4%
30 0.0% 559.2 100% 43.8% 0.0% 432.7 96.0% 612.6 43.9% 0.0% 137.9 100% 130.8 44.2%

Avg. (n = 14) 0.1% 383.1 98.2% 49.5% 0.3% 393.7 95.6% 280.7 50.4% 0.2% 237.5 98.2% 77.7 50.8%

19 1 10 0.0% 28.0 100% 71.9% 0.0% 15.0 100% 13.2 73.2% 0.0% 15.7 100% 10.0 73.9%
20 2.0% 1,071.3 84.0% 51.6% 1.0% 648.1 88.0% 150.0 52.8% 0.8% 539.9 92.0% 89.1 53.6%
30 10.1% 3,259.9 20.0% 49.7% 6.4% 2,837.3 36.0% 414.5 49.9% 5.4% 2,716.9 44.0% 184.7 50.0%

2 10 1.0% 910.0 88.0% 49.4% 0.5% 542.8 96.0% 104.4 51.5% 0.6% 480.1 96.0% 50.2 52.3%
20 12.7% 3,350.9 16.0% 43.3% 8.8% 3,120.0 36.0% 527.0 43.4% 7.7% 2,991.7 32.0% 168.8 43.5%
30 14.8% 3,479.7 4.0% 47.0% 12.1% 3,309.4 16.0% 525.1 47.1% 7.6% 2,688.0 52.0% 160.9 47.2%

3 10 5.6% 2,405.1 52.0% 36.2% 3.6% 1,997.9 68.0% 399.2 36.9% 3.9% 2,078.3 64.0% 133.8 37.1%
20 19.7% 3,600.1 0.0% 40.2% 15.8% 3,600.0 0.0% 634.4 40.3% 13.1% 2,917.0 32.0% 194.2 40.4%
30 14.4% 3,407.5 12.0% 43.2% 10.7% 3,365.3 12.0% 917.6 43.3% 6.3% 2,097.6 56.0% 211.2 43.4%

Avg. (n = 19) 8.9% 2,390.3 41.8% 48.1% 6.5% 2,159.6 50.2% 409.5 48.7% 5.0% 1,836.1 63.1% 133.6 49.0%

hour. In particular, MILP-BC-VI is more effective than MILP-BC and solves the same
amount of instances (a share of 98.2%) to optimality as MILP-A in about half the time
(237.5 seconds versus 383.1 seconds) on average. In contrast, MILP-BC solves a fraction
of instances less to optimality (a share of 95.6%) with an average runtime that is similar
to MILP-A (393.7 seconds). However, the difference in performance is especially visible
for n = 19. Here, MILP-BC-VI dominates the other approaches and we can solve about
63.1% of all instances to proven optimality within one hour (in 1836.1 seconds with a
remaining gap of just 5% on average). This is about 21% (respectively, 13%) more than
can be solved by MILP-A (respectively, MILP-BC) in much shorter time. In general, the
relative root relaxations are of a similar order of magnitude for all formulations with slight

188

6.5 Computational Experiments and their Numerical Results

Table 6.5.4: The proportion of the time spent moving, waiting for the drone to arrive from a
multi-leg, and the time spent waiting while the drone is doing round trips. Moreover, the share
of customers served by the truck and drone (through multi-legs and round trips, respectively) is
shown. The presented results were obtained through MILP-BC-VI and have been averaged over
25 instances per entry.

Instance makespan compositon customers served by
n α R move wait round trip truck multi-leg round trip
9 1 10 99.7% 0.2% 0.1% 96.9% 2.2% 0.9%

20 97.0% 2.2% 0.8% 82.2% 16.0% 1.8%
30 95.2% 3.4% 1.3% 72.9% 25.8% 1.3%

2 10 96.5% 0.8% 2.7% 80.9% 8.9% 10.2%
20 94.4% 2.7% 2.9% 63.6% 29.8% 6.7%
30 92.1% 4.4% 3.4% 54.7% 39.6% 5.8%

3 10 92.9% 0.6% 6.5% 68.0% 11.1% 20.9%
20 85.5% 3.3% 11.2% 49.8% 32.4% 17.8%
30 84.7% 3.9% 11.4% 44.0% 39.6% 16.4%

Avg. (n = 9) 93.1% 2.4% 4.5% 68.1% 22.8% 9.1%
14 1 10 99.4% 0.1% 0.5% 95.7% 3.4% 0.9%

20 96.0% 2.3% 1.7% 77.1% 20.9% 2.0%
30 94.1% 4.4% 1.5% 65.7% 33.4% 0.9%

2 10 92.5% 0.7% 6.8% 76.3% 10.0% 13.7%
20 92.4% 3.5% 4.0% 58.9% 36.9% 4.3%
30 94.2% 3.9% 1.9% 52.6% 44.3% 3.1%

3 10 87.4% 0.9% 11.8% 61.4% 14.3% 24.3%
20 89.9% 4.4% 5.7% 50.0% 41.1% 8.9%
30 90.4% 3.1% 6.5% 45.1% 45.1% 9.7%

Avg. (n = 14) 92.9% 2.6% 4.5% 64.8% 27.7% 7.5%
19 1 10 98.8% 0.5% 0.7% 93.7% 4.8% 1.5%

20 95.9% 3.0% 1.1% 73.3% 25.9% 0.8%
30 94.4% 4.0% 1.6% 65.7% 33.5% 0.8%

2 10 92.7% 1.5% 5.8% 71.6% 17.9% 10.5%
20 94.0% 3.8% 2.2% 56.2% 40.0% 3.8%
30 96.0% 2.4% 1.7% 54.1% 43.2% 2.7%

3 10 90.1% 1.8% 8.1% 61.5% 23.6% 14.9%
20 93.1% 3.0% 3.8% 50.9% 41.1% 8.0%
30 93.8% 3.1% 3.0% 49.1% 45.1% 5.9%

Avg. (n = 19) 94.3% 2.6% 3.1% 64.0% 30.5% 5.5%

differences in favor of MILP-BC-VI. In particular, the relative velocity α and endurance
R have a noticeable influence on the quality of the root relaxation. When we compare the
cuts inserted through Algorithm 6.1, we notice that MILP-BC-VI generates noticeably
fewer cuts than MILP-BC.

Noteworthy, for several cases in Table 6.5.3 where the relative velocity α ∈ {2, 3},

189

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

instances with E = 20 appear to be more difficult to solve (based on increased runtimes or
gaps) than instances with E = 30. Intuitively, one might argue that a reduced endurance
should also make it easier to solve the TSPD, as the resulting solution space is more
confined. However, a change in endurance often results in structural changes to the nature
of optimal solutions. Indeed, when the endurance is large, the number of round trips is
more limited, many long-range sorties are performed, and the drone is rarely taken along
by the truck. As an example, Figure 6.5.3 shows two sample solutions.

Figure 6.5.3: Optimal solutions for a problem instance with n = 15 vertices where the relative
velocity is α = 3 and the endurance E is 20 and 30 units in the left-hand and right-hand solutions,
respectively. The sorties are indicated by dotted and dashed lines: the former can be performed
with an endurance E ∈ [0, 20] and latter require an endurance E ∈]20, 30].

Figure 6.5.4 provides insights into the savings∆ (refer to formula (6.53)). At first glance,
the strong dependence on both the endurance R and relative velocity α is visible. Overall,
for these instances where the truck follows the Manhattan instead of the Euclidean metric,
we see that the savings are slightly larger than those observed in Figure 6.5.1.

Finally, Table 6.5.4 reveals that the time in motion has the largest contribution to the
makespan. Moreover, waiting times are generally small and increase as R and α increase
– that also causes an increase in the share of customers served through multi-legs. Similar
observations apply to round trips, even though, their share is generally larger compared
to Table 6.5.2.

6.5.3 Instances proposed by Murray and Chu

In this section, we complete our numerical study by testing on the instances proposed by
Murray and Chu (2015). We describe the experimental setup in Section 6.5.3.1. After-
wards, the numerical results will be presented in Section 6.5.3.2.

190

6.5 Computational Experiments and their Numerical Results

10 20 30

10%

20%

30%

40%

50%

R

Sa
vi
ng

s
∆

w
.r
.t
.t
he

T
SP

n = 9

α = 1
α = 2
α = 3

10 20 30

10%

20%

30%

40%

50%

R

n = 14

10 20 30

10%

20%

30%

40%

50%

R

n = 19

Figure 6.5.4: The average savings ∆ w. r. t. the TSP solution depending on the drone’s relative
velocity α and its endurance E for the results obtained through MILP-BC-VI on the instances
proposed by Poikonen et al. (2019).

6.5.3.1 Experimental Setup

Murray and Chu (2015) propose small instances with n = 10 customers for the FSTSP and
some larger instances with n = 20 customers for the Parallel Drone Scheduling Problem
(refer to (Murray and Chu, 2015)) that we adapt. In these instances, customers are
uniformly and independently distributed across an 8-mile square region. Moreover, the
depot location corresponds either to the center of gravity, the average of the customer’s
x-coordinate with y-coordinate of zero (edge), or at the southwest corner of the region
(origin). For these instances, it is assumed that the truck moves at 25 miles per hour on
the Manhattan metric. When n = 10, a drone flying with 15, 25, or 35 miles per hour on
the Euclidean metric is considered. In contrast, for n = 20, the drone is fixed at 25 miles
per hour (Murray and Chu, 2015). Furthermore, the endurance is either 20 or 40 minutes.
For these instances, it is also assumed that the overhead times are tl = tr = 1 minute.

We follow the assumption of Murray and Chu (2015) and do not permit round trips,
i. e., we set ziw = 0, ∀i ∈ VL, w ∈ VN , i ̸= w. Additionally, in these instances, only a limited
subset VD ⊂ VN of customers (that contains 80% to 90% of all customers) is eligible to be
served by the drone. Hence, we must add the following restrictions to the models:

yiw = 0 ∀i ∈ VL, w ∈ VN \ VD, i ̸= w, (6.56)

ỹwj = 0 ∀w ∈ VN \ VD, j ∈ VR, w ̸= j. (6.57)

191

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

In total, Murray and Chu (2015) provide 72 instances with n = 10 customers and 240
instances with n = 20 customers. To limit the number of experiments, we only solve these
instances through MILP-A and MILP-BC-VI, as they have shown the best performance.

6.5.3.2 Numerical Results

Tables 6.5.5 and 6.5.6 present the results for the instances with n = 10 and n = 20

customers, respectively. In these tables, we present the MIP gaps, runtime, and relative
root relaxation (as well as the cuts for MILP-BC-VI) as average values. Moreover, we also
indicate the components that contribute to the makespan as well as the share of customers
served through multi-legs.
In Table 6.5.5, we observe that both formulations can solve instances with n = 10

customers to optimality in short computation time. As in the previous sections, here,
MILP-BC-VI also outperforms MILP-A and can solve all small instances in 16 seconds
on average. However, on these instances, the time to compute the optimal solution is
almost one order of magnitude larger compared to the small instances (n = 9) considered
in Sections 6.5.1 and 6.5.2.
Table 6.5.5: Average MIP gap, average runtime (in seconds), and the average relative root relax-
ation %r depending on the drone velocity vd and endurance E on the Murray and Chu (2015)
instance set (12 instances per entry). For MILP-BC-VI, the average number of constraints (6.38)
and (6.39) added as cuts is shown. Moreover, this table presents the makespan composition and the
share of customers served by the drone through multi-legs (based on the results of MILP-BC-VI).

Instance MILP-A MILP-BC-VI makespan
vd E gap time %r gap time %r cuts move wait overhead multi-legs

15 20 0% 11.3 54.7% 0% 8.2 56.4% 47.1 97.9% 0.0% 2.1% 6.7%
40 0% 53.9 53.1% 0% 33.8 53.8% 575.6 96.3% 0.0% 3.7% 10.8%

25 20 0% 29.9 53.2% 0% 16.6 53.6% 172.3 91.7% 0.8% 7.5% 20.0%
40 0% 17.4 54.5% 0% 16.9 54.9% 304.6 89.8% 1.3% 8.9% 23.3%

35 20 0% 12.5 54.8% 0% 10.0 55.3% 197.2 84.2% 3.2% 12.6% 30.8%
40 0% 16.3 55.1% 0% 10.6 55.6% 241.8 84.5% 2.8% 12.7% 30.8%

Avg. (n = 10) 0% 23.6 54.2% 0% 16.0 54.9% 256.4 90.7% 1.4% 7.9% 20.4%

In Table 6.5.6, we present the results for n = 20 customers. As the drone speed is fixed
to 25 miles per hour on these instances, the table highlights performance w. r. t. the depot
location. Generally, we observe that MILP-BC-VI also performs better than MILP-A on
these instances: we observe improved MIP gaps, runtimes, and a larger share of instances
solved to optimality. In particular, we observe a strong impact of the depot location and
endurance on the difficulty of the problem. Generally, going from E = 20 to E = 40

makes the problem more difficult. Moreover, instances where the depot is located along
the center of an edge appear to be the most difficult.

192

6.6 Conclusion

Table 6.5.6: Average MIP gap, average runtime (in seconds), the share of optimal solutions (opt.),
and the average relative root relaxation %r depending on the depot location and endurance E on
the Murray and Chu (2015) instance set (40 instances per entry). For MILP-BC-VI, the average
number of constraints (6.38) and (6.39) added as cuts is shown. Moreover, this table presents the
makespan composition and the share of customers served by the drone through multi-legs (based
on the results of MILP-BC-VI).

Instance MILP-A MILP-BC-VI makespan
Depot E gap time opt. %r gap time opt. %r cuts move wait overhead multi-legs

Center 20 12.4% 3,115.3 22.5% 49.9% 6.7% 2,730.6 30.0% 50.6% 256.2 93.5% 1.2% 5.3% 21.0%
40 18.3% 3,600.0 0.0% 49.9% 13.4% 3,585.1 2.5% 50.2% 705.7 92.1% 1.7% 6.1% 22.8%

Edge 20 18.4% 3,600.0 0.0% 47.2% 12.9% 3,536.6 5.0% 47.6% 347.2 92.1% 1.9% 5.9% 17.1%
40 17.7% 3,600.0 0.0% 48.9% 14.7% 3,600.0 0.0% 49.3% 674.0 93.5% 0.4% 6.1% 16.9%

Origin 20 7.9% 3,158.8 22.5% 51.8% 3.5% 2,528.2 45.0% 52.4% 204.6 94.0% 1.6% 4.5% 18.0%
40 17.6% 3,600.0 0.0% 50.8% 12.7% 3,520.2 5.0% 51.1% 1,852.9 93.1% 2.0% 4.9% 18.1%

Avg. (n = 20) 15.4% 3,445.7 7.5% 0.5 10.6% 3,250.1 14.6% 50.2% 673.4 93.1% 1.5% 5.5% 19.0%

Finally, it is worth highlighting that the share of customers served by the drone (through
multi-legs) is generally smaller in both tables (i. e., Tables 6.5.5 and 6.5.6) than what we
observed in previous sections. The reason might be related to the presence of overhead
times. Even though their value is relatively small, summed up over all operations, they
can account for up to 12.7% of the total makespan (refer to Table 6.5.5).

6.6 Conclusion

In this paper, we investigated the TSPD. More precisely, in Section 6.2, we reviewed
existing MILP formulations and exact methods that are used for solving variants of the
problem. Given the current state of research, only small-sized instances can be solved to
proven optimality – even for the special case of serving every customer exactly once that
is the most common one studied in the literature. Motivated by this fact, we proposed
two new MILP formulations in Section 6.3. As an alternative, attempting to leverage
the respective strengths of existing MILP and ILP approaches in the literature and moti-
vated by our VIEQs, in Section 6.4, we proposed a B&C algorithm for solving the TSPD.
Afterwards, in Section 6.5, we conducted an extensive computational study in order to
analyze the quality of the different formulations in finding optimal TSPD solutions on
various benchmark instances from the literature. As our detailed numerical study reveals,
the performance of our formulations in solving the different benchmark instances varies.
However, we have confirmed that the B&C approach MILP-BC-VI showed strong perfor-
mance throughout the different instance sets. Indeed, using this approach, we can solve
small instances with 9 or 10 customers in just a few seconds and several larger instances
with 19 or 20 customers within an hour. Thus, this B&C algorithm challenges the existing

193

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

state-of-the-art in solving the TSPD.
From a modeling perspective, naturally, we believe that our formulation might also be

used to study variants that consider, e. g., multiple trucks or drones (refer to (Poikonen
et al., 2017; X. Wang et al., 2017)). Moreover, the additional variables in Section 6.4,
that model the waiting time of the truck and drone, could be helpful in cases where these
times might be constrained or associated with some cost (as it is the case in, e. g., (Ha
et al., 2018)). We also believe that this formulation might be adjusted in a way to achieve
the possibility of allowing each vertex to be visited more than once by the truck (refer to
(Agatz et al., 2018)).
From a computational perspective, using formulation MILP-BC-VI and a customized

B&C scheme lead to the best performance overall. However, we also showed that perfor-
mance varied over the different benchmark sets. Therefore, it might be worth to further
investigate how the different assumptions affect the difficulty of the problem. Finally, in
order to obtain a further boost, it might be worthwhile to investigate if the cutting scheme
proposed in this work can be enhanced by merging it with other type of cuts proposed in,
e. g., (Dell’Amico et al., 2019; Dell’Amico et al., 2021b). For example, one might integrate
a separation procedure into the B&C framework in order to cut off infeasible subtours as
required instead of using explicit MTZ constraints.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments and sugges-
tions that helped us in improving the quality of this paper.

6.7 References

Agatz, Niels, Paul Bouman, and Marie Schmidt (2018). “Optimization Approaches for the
Traveling Salesman Problem with Drone”. In: Transportation Science 52.4, pp. 965–981.

Aurambout, Jean-Philippe, Konstantinos Gkoumas, and Biagio Ciuffo (2019). “Last mile
delivery by drones: an estimation of viable market potential and access to citizens across
European cities”. In: European Transport Research Review 11, pp. 1–21.

Bouman, Paul, Niels Agatz, and Marie Schmidt (2018a). “Dynamic programming ap-
proaches for the traveling salesman problem with drone”. In: Networks 72.4, pp. 528–
542.

Bouman, Paul, Niels Agatz, and Marie Schmidt (2018b). Instances For The Tsp With
Drone (And Some Solutions).

194

6.7 References

Dell’Amico, Mauro, Roberto Montemanni, and Stefano Novellani (2019). “Models and
algorithms for the Flying Sidekick Traveling Salesman Problem”. In: arXiv:1910.02559
[math].

Dell’Amico, Mauro, Roberto Montemanni, and Stefano Novellani (2021b). “Drone-assisted
deliveries: new formulations for the flying sidekick traveling salesman problem”. In: Op-
timization Letters 15.5, pp. 1617–1648.

Dorling, Kevin et al. (2017). “Vehicle Routing Problems for Drone Delivery”. In: IEEE
Transactions on Systems, Man, and Cybernetics: Systems 47.1, pp. 70–85.

Drexl, Michael (2012b). “Synchronization in Vehicle Routing—A Survey of VRPs with
Multiple Synchronization Constraints”. In: Transportation Science 46.3, pp. 297–316.

Es Yurek, Emine and H. Cenk Ozmutlu (2018). “A decomposition-based iterative op-
timization algorithm for traveling salesman problem with drone”. In: Transportation
Research Part C: Emerging Technologies 91, pp. 249–262.

Fischetti, Matteo, Ivana Ljubić, and Markus Sinnl (2016). “Benders decomposition with-
out separability: A computational study for capacitated facility location problems”. In:
European Journal of Operational Research 253.3, pp. 557–569.

Fischetti, Matteo, Ivana Ljubić, and Markus Sinnl (2017). “Redesigning Benders Decom-
position for Large-Scale Facility Location”. In: Management Science 63.7, pp. 2146–
2162.

Freitas, Júlia Cária de and Puca Huachi Vaz Penna (2018). “A Randomized Variable
Neighborhood Descent Heuristic to Solve the Flying Sidekick Traveling Salesman Prob-
lem”. In: Electronic Notes in Discrete Mathematics 66, pp. 95–102.

Freitas, Júlia Cária de and Puca Huachi Vaz Penna (2020). “A variable neighborhood
search for flying sidekick traveling salesman problem”. In: International Transactions in
Operational Research 27.1, pp. 267–290.

Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual.
Ha, Quang Minh et al. (2018). “On the min-cost Traveling Salesman Problem with Drone”.
In: Transportation Research Part C: Emerging Technologies 86, pp. 597–621.

Ha, Quang Minh et al. (2020). “A hybrid genetic algorithm for the traveling salesman
problem with drone”. In: Journal of Heuristics 26, pp. 219–247.

Kim, Sungwoo and Ilkyeong Moon (2018). “Traveling Salesman Problem With a Drone
Station”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 49.1,
pp. 42–52.

Marinelli, Mario et al. (2018). “En route truck–drone parcel delivery for optimal vehicle
routing strategies”. In: IET Intelligent Transport Systems 12.4, pp. 253–261.

Miller, C. E., A. W. Tucker, and R. A. Zemlin (1960). “Integer Programming Formulation
of Traveling Salesman Problems”. In: Journal of the ACM 7.4, pp. 326–329.

195

6 A Branch-and-Cut Approach and Alternative Formulations for the TSPD

Morandi, Nicola et al. (2023). “The Traveling Salesman Problem with Drones: The Benefits
of Retraversing the Arcs”. In: Transportation Science 57.5, pp. 1340–1358.

Murray, Chase C. and Amanda G. Chu (2015). “The flying sidekick traveling salesman
problem: Optimization of drone-assisted parcel delivery”. In: Transportation Research
Part C: Emerging Technologies 54, pp. 86–109.

Otto, Alena et al. (2018). “Optimization approaches for civil applications of unmanned
aerial vehicles (UAVs) or aerial drones: A survey”. In: Networks 72.4, pp. 411–458.

Poikonen, Stefan, Bruce Golden, and Edward A. Wasil (2019). “A Branch-and-Bound
Approach to the Traveling Salesman Problem with a Drone”. In: INFORMS Journal on
Computing 31.2, pp. 335–346.

Poikonen, Stefan, Xingyin Wang, and Bruce Golden (2017). “The vehicle routing problem
with drones: Extended models and connections”. In: Networks 70.1, pp. 34–43.

Ponza, Andrea (2016). “Optimization of drone-assisted parcel delivery”. MA thesis. Uni-
versità Degli Studi di Padova.

Rojas Viloria, Daniela et al. (2020). “Unmanned aerial vehicles/drones in vehicle routing
problems: a literature review”. In: International Transactions in Operational Research
28.4, pp. 1626–1657.

Sacramento, David, David Pisinger, and Stefan Ropke (2019). “An adaptive large neigh-
borhood search metaheuristic for the vehicle routing problem with drones”. In: Trans-
portation Research Part C: Emerging Technologies 102, pp. 289–315.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2019a). “A hybrid VNS/Tabu search
algorithm for solving the vehicle routing problem with drones and en route operations”.
In: Computers & Operations Research 109, pp. 134–158.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2019b). “A matheuristic for the
vehicle routing problem with drones and its variants”. In: Transportation Research Part
C: Emerging Technologies 106, pp. 166–204.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2020b). “The Drone-Assisted Travel-
ing Salesman Problem with Robot Stations”. In: Proceedings of the Hawaii International
Conference on System Sciences, pp. 1308–1317.

Wang, Xingyin, Stefan Poikonen, and Bruce Golden (2017). “The vehicle routing problem
with drones: several worst-case results”. In: Optimization Letters 11.4, pp. 679–697.

196

7 Leveraging Machine Learning for the Per-Instance
Configuration of MIP Solvers: An Algorithm
Selection Approach

Abstract

Mixed-Integer Programming (MIP) solvers have undergone remarkable advancements, con-
sistently integrating and refining algorithmic techniques developed over several decades of
dedicated research. Given the complexity and feature-richness of these solvers, in principle,
most of them allow the execution of the inherent Branch-and-Cut (B&C) framework to be
configured in various ways that influence the optimization. Despite the potential for per-
formance gains, it is non-trivial to make such adjustments sensibly a priori. Consequently,
it is common practice to rely on a default configuration, which is generally assumed to be
expertly-tuned, enabling it to work well for a wide range of applications.

In this paper, we challenge the conventional approach of relying on the default configuration.
Instead, we propose a novel perspective through the Algorithm Selection Problem (ASP). The
data-driven methodology leverages Random Forest (RF) regression as a Machine Learning
(ML) model to approximate solver performance. This ML model is used to derive the com-
ponents of a prescriptive optimization problem, seeking the optimal configuration for a given
instance. It is demonstrated that this problem can be efficiently solved by a tailored Branch-
and-Bound (B&B) procedure that exploits the structure of the underlying RF ML model.
All things considered, this methodology empowers us to select the (predictably) optimal con-
figuration on a per-instance basis with minimal computational overhead. We evaluate our
approach by using a state-of-the-art solver and the well-established MIPLIB. The extensive
numerical results demonstrate that the performance gap between the default and virtual-best
solver can be closed by about half with respect to the average runtime and MIP gap.

7.1 Introduction

MIP is a fundamental and widely used tool in Operations Research (OR) (see, e. g.,
(Petropoulos et al., 2023) and references therein). Both academic and commercial MIP
solvers have made remarkable advancements, consistently integrating and refining algo-
rithmic techniques developed over several decades of dedicated research (Koch et al., 2022).
Given the complexity and feature-richness of these solvers, in principle, most of them al-

197

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

low the execution of the inherent B&C framework to be configured in various ways that
influence the optimization. Despite the potential for performance gains, it is non-trivial
to make such adjustments sensibly a priori. Consequently, it is common practice to rely
on a default configuration, which is generally assumed to be expertly-tuned, enabling it
to work well for a wide range of applications.

In this paper, we challenge this assumption by exploring the problem of configuring a
MIP solver on a per-instance basis, adopting the perspective of the ASP (Rice, 1976).
Given a set of algorithms and a set of instances, the ASP consists of finding a mapping
from instances to algorithms. This must be done in such a way that the performance of the
selected algorithm is optimal according to a given performance criterion. The established
approach to the ASP involves learning a regressor for each algorithm (Kerschke et al.,
2019). However, the scalability of such an approach is clearly limited, and therefore it is
only feasible for a handful of algorithms, as commonly studied in the context of the ASP.

To overcome this issue, we use a data-driven methodology that is based on Empirical
Model Learning (EML) (Lombardi et al., 2017). We consider several thousand distinct
configurations of a MIP solver as the set of algorithms and begin by learning an approxi-
mation of performance through a function dependent on universal MIP instance features
and the algorithmic configuration of the solver. To describe this relationship, we employ
RF regression as a ML model. This model is used to derive the components of a pre-
scriptive optimization problem, seeking the optimal configuration of the solver for a given
instance. All things considered, this approach empowers us to determine the (predictably)
optimal configuration on a per-instance basis with minimal computational overhead. We
evaluate our methodology by using a state-of-the-art solver and the well-known MIPLIB
(Gleixner et al., 2021), which attempts to reflect the richness of challenges in various OR
domains. In our paper, we make the following contributions:

1. We demonstrate the utility of RFs as a ML model to systematically derive the compo-
nents of a prescriptive optimization problem that cannot intuitively be established
in closed form. This problem enables us to determine the (predictably) optimal
configuration of a solver on a per-instance basis.

2. For efficiently solving the prescriptive optimization problem, a tailored B&B ap-
proach is proposed that exploits the structure of the underlying RF ML model.

3. As a proof-of-concept, an extensive numerical study is conducted, demonstrating
the effectiveness of the methodology on a benchmark of heterogenous problem in-
stances. The approach successfully closes the performance gap between the default
and virtual-best solver by about half with respect to the average runtime and MIP

198

7.2 Related Literature

gap.

4. Finally, we believe that this paper is a strong testament to the continued coalescence
of predictive and prescriptive analytics on a methodological level.

The remainder of this paper unfolds as follows. Section 7.2 presents a brief overview of
the related literature. As the problem of finding the optimal configuration for a MIP solver
on a per-instance basis is addressed from the perspective of the ASP, Section 7.3 provides
a concise definition of that problem. Section 7.4 outlines the proposed methodology in
detail. This concerns the use of RFs as a ML model and the subsequent extraction of
the components that enable us to formulate the prescriptive optimization problem. Em-
phasis is placed on how this optimization problem can be efficiently solved by a tailored
B&B approach. The computational experiments and their numerical results follow in
Section 7.5, where additional insights into the dataset and results obtained through the
proposed methodology are provided. Lastly, Section 7.6 concludes our work with some
final remarks.

7.2 Related Literature

In recent years, there has been growing interest in the intersection of MIP and ML (Ben-
gio et al., 2021). This section provides an overview of existing methodological approaches
that focus on improving the performance of MIP solvers by adjusting their default algo-
rithmic behavior. We begin in Sections 7.2.1 and 7.2.2 with an overview of the Algorithm
Configuration Problem (ACP) and ASP, respectively. Despite their seemingly close re-
lation, these problems are generally treated differently from a methodological standpoint
(Kerschke et al., 2019). Given the extensive literature in those fields and the existence of
excellent literature reviews (see, e. g., (Hoos, 2011; Kerschke and Trautmann, 2019; Kot-
thoff, 2016; Schede et al., 2022)), our aim is to provide only a general introduction that
emphasizes key concepts. We restrict ourselves to the application of MIP; although the
underlying methods have also found success in related domains (see, e. g., (Kotthoff et al.,
2015; Xu et al., 2008)). Both the ACP and ASP involve static adjustments, modifying
the configuration of a solver or selecting from a set of solvers. In contrast, in Section 7.2.3
recent approaches to changing the behavior of MIP solvers dynamically, at the iteration
level, are highlighted.

7.2.1 Algorithm Configuration in the context of MIP

The ACP can be briefly stated as follows: Given a configurable algorithm A(θ) (with
possible parameter settings Θ = Θ1 × . . . × Θn), a set of problem instances Π, and a

199

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

performance metric m, find a feasible configuration θ ∈ Θ such that A(θ) performs opti-
mally on Π according to m (Hoos, 2011; Kerschke and Trautmann, 2019). The underlying
assumption is that the instances in Π are relatively homogeneous, falling within a narrow
distribution of a specific problem class.
The ACP has some roots in the global optimization of black-box functions (see, e. g.,

(Jones, 2001; Jones et al., 1998; Mockus et al., 1978)). However, there are crucial differ-
ences, which make methods from that domain not directly applicable (Hutter et al., 2011):
In black-box optimization, the focus is generally on single, deterministic, and noise-free
functions that are queryable (i. e., evaluable at negligible cost). In contrast, in the ACP
a query involves executing a typically randomized or stochastic algorithm with a config-
uration, which is generally time-intensive, especially in MIP scenarios. Birattari (2009)
highlights the parallels between the ACP and challenges in ML. Particularly, the ACP
is concerned with a large set of instances and even though these instances may be ho-
mogeneous, performance can still vary considerably across instances, making a statistical
blocking design necessary (Hinkelmann and Kempthorne, 1994). The very fact that per-
formance is to be optimized on a large set of instances is also what differentiates the ACP
from hyperparameter optimization in ML (Kerschke et al., 2019).
The ACP is generally treated heuristically, and effective methods combine three dis-

tinct steps. These methods begin by sampling configurations, testing them on a subset
of instances to assess their performance, and apply local search to identify neighboring
configurations (Hutter et al., 2009). This iterative process continues until a given com-
putational budget is exhausted. Afterwards the performance of the final configuration is
evaluated against the (generally known) default configuration on a set of test instances
(López-Ibáñez et al., 2016). Approaches to the ACP vary in how they identify new config-
urations and attempt to discard underwhelming ones (e. g., by racing (Maron and Moore,
1997)).

In essence, these approaches can be classified into model-free and model-based methods.
Model-free methods (see, e. g., (Adenso-Díaz and Laguna, 2006; Ansótegui et al., 2009;
Birattari, 2009; Birattari et al., 2010; Hutter et al., 2007; Hutter et al., 2009; López-Ibáñez
et al., 2016)) iterate between generating configurations and subsequently altering them.
Such alterations include intensification mechanisms and the exploration of neighborhoods.
Model-based approaches (see, e. g., (Ansótegui et al., 2015; Bartz-Beielstein et al., 2021;
Hutter et al., 2011)) are computationally more expensive, as they use a statistical model
to build an approximation of algorithmic performance (Leyton-Brown et al., 2002). How-
ever, such approaches allow for the explicit consideration of problem features, facilitating
the systematic identification of new configurations that are expected to perform well, in
contrast to a purely randomized exploration (Hutter et al., 2011).

200

7.2 Related Literature

As discussed in Section 7.1, in the realm of MIP, a general assumption might be that
the default configuration of any MIP solver is already an optimum of the ACP for a large-
scale, heterogenous class of problems. However, it is not surprising that the ACP has
been intensively studied in this context. Such studies have shown that this can lead to
superior configurations of MIP solvers on homogeneous problem instances: e. g., Hutter et
al. (2010), Hutter et al. (2011), Hutter et al. (2007), and Hutter et al. (2009) demonstrate
that speedups of up to two orders of magnitude are possible. Although, it must be stressed
that these speedups are highly solver and benchmark dependent. Moreover, a known
caveat is that such problem-specific configurations do not generalize well, i. e., they can
perform significantly worse than the default configuration when used outside their special
scenarios (Hutter et al., 2011). It is for this reason that we do not pursue the ACP any
further in the context of this work. As discussed during Section 7.1, instead of a one-
size-fits-all approach, we aim to determine a promising configuration on a per-instance
basis.

7.2.2 Algorithm Selection in the context of MIP

Based on the ideas of Rice (1976), the ASP can be briefly stated as follows: Given a set of
algorithms A, a set of problem instances Π, and a performance metric m, determine for
each problem π ∈ Π which algorithm A ∈ A performs optimally according to m (for more
details refer to Section 7.3). In contrast to the ACP (see Section 7.2.1), the instances Π

may be assumed to be heterogenous. Therefore, it may not be appropriate to use a single
algorithm, but instead worth attempting to leverage performance complementarities.
The ASP is generally approached in two phases (Kotthoff, 2016). First, a ML model

is learnt with sufficient historical data. Then, in the second phase, this model is used for
algorithm selection. While it may seem compelling to learn a classifier, directly predicting
which algorithm to use for a given instance, the predominant approach involves the use of
regressors (see (Kerschke et al., 2019) and references therein). This may be explained by
the fact that a pure classification approach lacks information concerning the magnitude of
the performance difference between algorithms. In scenarios involving only two algorithms,
a single regressor can be used to compute (predict) the relative performance between them
(see, e. g., (Berthold et al., 2022)). And as long as the number of algorithms is small
(typically less than a dozen), the conventional approach is to learn a regressor for each
algorithm (see, e. g., (Kerschke et al., 2018; Leyton-Brown et al., 2003)). Still, a major
drawback is that such approaches are not suited to scale well in presence of numerous
algorithms, as both offline training and, particularly, online use may become too time-
consuming or resource-intensive.

201

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

A key requirement of the ASP is that the set of algorithms A must be fixed a priory.
Typically, an educated guess or preliminary experiments are made to determine which
parameters are most likely to influence the performance of a single, configurable algo-
rithm (see, e. g., (Hutter et al., 2006)). Alternatively, a portfolio of different algorithms
can be considered, each using their default configuration or, if computational resources
allow, finding an alternative configuration for each of them by means of the ACP (see,
e. g., (Kerschke et al., 2018)). Another approach to integrate the ACP in the ASP in-
volves clustering (Kadioglu et al., 2010). Assume that a single, configurable algorithm
A is given and any unsupervised ML algorithm is used to split the instances Π into k

clusters Π1, . . . ,Πk. Then, any approach to the ACP can be used to determine an optimal
configuration A(k) for each cluster k. For an unseen instance, an attempt is made to as-
sociate it with the closest cluster and select the corresponding algorithm. Kadioglu et al.
(2010) show that this approach works on average better than an instance-oblivious ACP
approach. Nevertheless, a pure clustering approach may be agnostic to instance hardness,
as structurally similar problems may still vary drastically in difficulty. Xu et al. (2011)
address this concern by training a set of RFs to classify, for each pair of algorithms, which
algorithm performs better. Following that, a majority rule can be applied by using all RFs
to determine the winner. They show that this approach yields superior results compared
to relying on a pure ACP approach.
The ASP has been scarcely investigated in the context of MIP solvers. Two notable

works focus on the binary selection of a single algorithmic component by means of the
ASP. These works are of particular interest, because they are said to have already been in-
tegrated in the commercial MIP solver FICO Xpress (Fair Isaac Corporation, 2023). One
of these works explores the decision of choosing between standard scaling and Curtis-Reid
scaling (Berthold and Hendel, 2021). Generally, the latter is more appropriate for numeri-
cally challenging problems; however, always using it would be computationally detrimental
(for details refer to (Berthold and Hendel, 2021) and references therein). The authors pro-
pose to use the coefficient ranges, that result from applying either scaling technique, as
features and the attention level, which is a proxy for the likelihood of numerical problems,
as a label. A linear model and RF are trained as regressors and, by defining appropriate
threshold values, these models are used classify which scaling method to apply for a given
instance. Their results show that even the simple linear model can improve the numerical
stability through autoscaling. In another work, Berthold et al. (2022) address whether
cuts should be generated globally (i.e., at the root node of the B&C tree) or also locally.
Beyond static features (e. g., size- and sparsity), they use dynamic features that capture
the results of applying a scaling and presolving routine, as well as the effect of global cuts
at the root node. They generate a dataset that captures the effects on instance-based

202

7.2 Related Literature

runtime depending on whether local cuts are used or not, and train a RF regressor that
learns to predict the speedup factor when using local cuts. When comparing the two base
strategies, i.e., always or never generating local cuts, the former dominates. However, by
using their RF to decide which strategy to use, an improvement w. r. t. runtime is achieved.
In the context of the ACP there has been some evidence that the configuration landscape

of an algorithm may be more benign than expected (see (Pushak and Hoos, 2018)). Al-
though, treating the selection of individual components of an algorithm separately might
fail to capture the interdependence of various algorithmic components, especially when
dealing with heterogenous instances. In that regard, Iommazzo (2021), Iommazzo et al.
(2020a), and Iommazzo et al. (2020b) study the ASP in the context of a unit commitment
problem. They consider the ASP to be the problem of configuring multiple algorithmic
components of a MIP solver (thus forming distinct algorithms) on a per-instance basis. A
dataset is constructed by sampling each algorithm on each instance and features specific
to unit commitment problems are used. Support Vector Regression (SVR) with linear or
radial-basis function kernels or a Decision Tree (DT) are employed to build an approxima-
tion. This approximation relies not only on problem features, but also on the algorithm’s
parameters (see also (Hutter et al., 2011)). The authors demonstrate how an optimal
algorithm can be extracted in the presence of an instance using an optimization model.
With this methodology (see also (Lombardi et al., 2017)), they can, on average, improve
over the default solver w. r. t. the MIP gap within a runtime limit; although, this comes
at the cost of a notably smaller share of feasible solutions after the runtime limit. One
general issue that the authors raise concerns scalability. On the one hand, the optimiza-
tion problems resulting from the DT and linear SVR can be solved relatively quickly.
On the other hand, SVR in conjunction with a radial-basis function implies a difficult
Mixed-Integer Non-Linear Programming (MINLP) problem, taking several seconds to be
solved by a state-of-the-art MINLP solver. As discussed in more detail in Section 7.3, a
near-instantaneous selection of an algorithm is crucial requirement for any effective ASP
approach.

7.2.3 Dynamic Configuration of MIP solvers

Statically adjusting (or selecting) an algorithm, as discussed in Sections 7.2.1 and 7.2.2,
can be seen as a high-level decision. However, there have also been efforts to enhance
MIP solvers at the iteration level. As such works are only loosely related to this paper,
we discuss them with utmost brevity.
Dynamic decisions in MIP solving by B&C concerns, e. g., issues such as node selection,

branching decisions, or when to apply primal heuristics (see, e. g., (Lodi and Zarpellon,

203

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

2017) and references therein). In practice, these decisions are generally made heuristically
(Lodi, 2013) and such problems have the typical characteristics of a Reinforcement Learn-
ing (compare to, e. g., (Mitchell, 1997; Russell et al., 2010; Sutton and Barto, 2018)) or
Multi-Armed Bandit Problem (see, e. g., (Auer et al., 2002; Gittins, 1979)): i. e., given
a state (of the B&B tree), possible actions (e. g., on which variable to branch in a given
node), and reward signals (e. g., the change in the integrality gap), the objective is to find
an optimal policy.

Nevertheless, learning to branch is commonly approached from the perspective of super-
vised ML, e. g., by creating a ranking of possible branching variables (Gupta et al., 2020;
Khalil et al., 2016; Zarpellon et al., 2021) in each B&B node. Similar methodologies have
been applied to dynamically run components of a solver, e. g., primal heuristics (Chmiela
et al., 2021; Khalil et al., 2017). These methods have demonstrated promising results in
terms of noticeable speedups.

7.3 Preliminaries & Problem Definition

In this study, we want to approach the problem of selecting a configuration for a MIP
solver on a per-instance basis, adopting the perspective of the ASP. Akin to Rice (1976)
(and, e. g., Hoos et al. (2021), Kerschke et al. (2019), and Kotthoff (2016)), we define the
ASP as follows. Given a set of instances Π that belong to a problem space P, we have a set
of algorithms A that are applicable to P. The performance of A ∈ A on π ∈ Π is specified
by a mapping p : Π × A → Rn; and the n components represent different performance
measures that are associated with executing A on π (e. g., runtime, memory consumption,
etc.). As the trade-off between these components can be intricate and domain-specific,
and may depend on user preferences, a norm ∥p∥ : Rn → R+

0 is commonly employed.
Without loss of generality, we focus on minimizing ∥p∥. In its most desirable form, the
ASP involves constructing a selector (recommender) S : Π → A such that the following
condition holds:

∥p(π, S(π))∥ ≤ ∥p(π,A)∥ ∀π ∈ Π, A ∈ A. (7.1)

Any selector S∗ that satisfies (7.1) is commonly referred to as an oracle or Virtual-Best
Solver (VBS), and it establishes a tight lower bound on the achievable performance for
any viable selector (Kerschke et al., 2019; Rice, 1976). Closely related to the VBS is
the concept of the Single-Best Solver (SBS), i. e., any single algorithm A∗ with the best
performance among all the A ∈ A; consequently, A∗ must satisfy the following condition

204

7.3 Preliminaries & Problem Definition

(Kerschke et al., 2019): ∑
π∈Π
∥p(π,A∗)∥ ≤

∑
π∈Π
∥p(π,A)∥ ∀A ∈ A. (7.2)

The SBS A∗ qualifies as an upper bound that must be maintained by any competitive
recommender S. An alternative is to derive an upper bound from the performance of a
known Default Solver (DS) A0 ∈ A (see, e. g., (Berthold et al., 2022; Iommazzo et al.,
2020a)).
A seemingly trivial approach to a VBS would be to define S(π) = argmin{p(π,A) |A ∈
A}, which may be achieved by exhaustively evaluating every algorithm in presence of an
instance. Such a recommender would guarantee that condition (7.1) always holds and
is therefore an oracle. However, this procedure is of limited practical use and illustrates
that several further (soft) constraints may apply to the ASP. A universal constraint is
that the (online) evaluation of S(π) must be near-instantaneous, with negligible resource
requirements (compared to executing the selected A), rendering the trivial approach im-
practical. In contrast, the (one-time offline) construction of S(π) is generally allowed to
be resource-intensive. This highlights the need for efficient and scalable methodologies for
algorithm selection in practice.
As recognized early by Rice (1976), a key component in constructing a competitive

selector is the use of features (see also (Kotthoff, 2016)). We assume that the feature
space F has lower dimensionality than P, and we define a feature mapping by f : P → F .
This allows us to reshape the selector as S : F → A and apply a function composition
S(f(π)) instead. For features to be useful, they must be computationally inexpensive
and sufficiently discriminative; and some argue that the design of high-quality features,
custom-tailored to match P, is a primary activity in the ASP (see (Kerschke et al., 2019)
and references therein).
To summarize, given a set of problems Π and a set of applicable algorithms A, the

ASP can be stated as searching for a feature mapping f : P → F and a selector S :

F → A, where S(f(π)) can be evaluated near-instantaneously, that solves the following
optimization problem:

min
∑
π∈Π
∥p(π, S(f(π)))∥ (7.3)

s. t.
∑
π∈Π
∥p(π, S∗(π))∥ ≤

∑
π∈Π
∥p(π, S(f(π)))∥ ≤

∑
π∈Π
∥p(π,A∗)∥ ≤

∑
π∈Π
∥p(π,A0)∥ (7.4)

Proving that a selector is optimal for (7.3)–(7.4) is non-trivial. As a result, algorithm
selection is generally treated as an empirical two-phase process (Kerschke et al., 2019;

205

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

Kotthoff, 2016). In the first phase, historical data is given or generated, features are
engineered, and a selector – generally, a ML model – is learnt offline using training data.
The selector is then used online, on a per-instance basis, to determine which algorithm to
use on test data. To evaluate the performance, a comparison is drawn to the VBS and DS
(or SBS) by means of ex-post control, with the primary objective of closing as much of the
performance gap between the DS (or SBS) and VBS as possible. Kerschke et al. (2019)
note that state-of-the-art algorithm selection procedures have been able to close such gaps
by 25% to 96%. However, they emphasize the need to recognize that the performance
gap between the SBS and VBS can be substantial, especially when numerous algorithms
display strong performance complementarities on different instances.

7.4 Methodological Approach

As discussed in Sections 7.2–7.3, the key to the ASP lies in the construction of a selector
S that utilizes instance-based features f(π). Evaluating S(f(π)) can be computationally
challenging, and in some cases, heuristic solutions might be necessary. Typically, the
number of algorithms is small in the ASP, and the standard approach is to learn a regressor
for each algorithm. An alternative could be to rely on pairwise classification and a majority
vote. However, such approaches face scalability challenges when dealing with more than
a few algorithms, as both offline training and, particularly, online use may become too
time-consuming or resource-intensive.
The methodology proposed in this paper adopts the paradigm of EML (Lombardi et al.,

2017), a process leveraging ML to derive components of a prescriptive optimization prob-
lem that cannot intuitively be established in closed form. In EML, the first step involves
learning the relation between decisions and observations through a ML model. Afterwards,
components of the learnt ML model are embedded into an optimization problem. In this
paper, we design this problem in a way to search for an optimal algorithm A ∈ A in pres-
ence of an instance π ∈ Π. This work employs RFs as a ML model (see Section 7.4.1) and
demonstrates how its components can be embedded within a combinatorial optimization
problem (see Section 7.4.2). The proposed approach, distinct from related works that
leverage tree-based learners (see, e. g., (Hutter et al., 2011; Hutter et al., 2006; Iommazzo,
2021)), introduces a novel and efficient way for solving the resulting optimization problem
by using a tailored B&B procedure that exploits the structure of the underlying RF.

The assumption about the algorithm space A = Θ1 × . . . × Θm is made with the only
requirement that each algorithm A ∈ A is characterized by a finite sequence of parameters,
each of which has a continuous or integer domain. This assumption is common when deal-
ing with configurable algorithms, where distinct algorithmic configurations (i. e., specific

206

7.4 Methodological Approach

instantiations) may be viewed as separate algorithms (Hutter et al., 2011; Kerschke et al.,
2019; López-Ibáñez et al., 2016).

7.4.1 Random Forests as a Machine Learning Model

RFs are a well-established technique in supervised ML for regression (Breiman, 2001). At
its core, a RF is an ensemble of rooted and directed binary DTs. Each DT within the
RF contains two types of nodes: internal (decision) nodes, characterized by a splitting
criterion acting on features, and external (leaf) nodes, which bear a numerical label (see
also Figure 7.4.1). The construction of DTs typically involves generating axis-aligned splits
through the greedy Classification and Regression Trees (CART) algorithm (Breiman et al.,
1998; Pedregosa et al., 2011). This algorithm recursively partitions the data, aiming to
group similar labels together. It is worth noting that while the construction of ‘optimal’
DTs (e. g., w. r. t. minimal prediction error, given a fixed complexity) has been a subject
of research interest (see, e. g., (Bertsimas and Dunn, 2017; Firat et al., 2020)), the CART
algorithm remains the commonly-used approach.

Node 0:
fπ,1 ≤ 10

Node 1:
fπ,2 ≤ 50

Node 3:
fθ,1 ≤ 1.5

Node 7:
r(l) = 0.10

Node 8:
r(l) = 0.40

Node 4:
r(l) = 0.25

Node 2:
fθ,1 ≤ 2.5

Node 5:
fθ,1 ≤ 1.5

Node 9:
r(l) = 0.05

Node 10:
r(l) = 1.00

Node 6:
fθ,1 ≤ 3.5

Node 11:
r(l) = 0.25

Node 12:
r(l) = 0.50

Figure 7.4.1: A single decision tree t that might be part of a forestM. Each decision node d ∈ Dt

is characterized by an (either algorithmic or instance) feature f(d) along with a threshold value
v(d) and each leaf node l ∈ Lt stores a learnt regression value r(l).

Randomness is injected into a RF through two key mechanisms: First, each DT is
constructed using a bootstrap sample (Breiman, 1996). Second, when constructing an
internal node, only a random subset of features is considered to determine the locally
optimal splitting criterion. The introduction of randomness through these mechanisms
is advantageous because it effectively addresses the variance problem, which is commonly
attributed to DTs (Breiman, 2001). By building an ensemble of trees with diverse training

207

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

sets and feature subsets, a RF tends to be more robust and less prone to overfitting.
Consider a learning sample L = {(x1, y1), . . . , (xk, yk)} with k tuples, where each tuple i

consists of a feature vector xi and a numerical label yi. The feature vector xi is represented
by an ordered list of m+ n features, denoted as F = (fθ,1, . . . , fθ,m, fπ,1, . . . , fπ,n), which
can be divided into two disjoint subsets. Fπ = (fπ,1, . . . , fπ,n) corresponds to n instance
specific features and Fθ = (fθ,1, . . . , fθ,m) to m features that characterize any algorithm
A ∈ A (more details follow in Section 7.5). Given a RFM that was trained (e. g., by the
CART algorithm) on L, each DT t ∈ M has (internal) decision nodes Dt and (external)
leaf nodes Lt. Each decision node d ∈ Dt is defined by a (univariate) feature f(d) ∈ F

and a threshold value v(d) ∈ R, which is a learnt constant. Additionally, each leaf node
l ∈ Lt stores a learnt regression value r(l) ∈ R. The total set of nodes in each DT is
Nt = Dt ∪ Lt, ∀t ∈M.
For a given sample xi, the inference process begins by traversing each DT t ∈ M

from the root decision node. At each decision node d ∈ Dt, it checks if the condition
f(d) ≤ v(d) holds for xi. By definition, if this condition is fulfilled it selects the left-hand
branch and the right-hand branch otherwise, and this process continues until a leaf l ∈ Lt

is reached. The computed regression value r(l) at this leaf node represents the predicted
value rt(xi) ∈ R for xi in that tree. As RFs are an ensemble method, the final regression
value for a given sample xi is the arithmetic mean over all DTs, i. e.:

r(M,xi) =
1

|M|
∑
t∈M

rt(xi). (7.5)

7.4.2 Optimizing by means of Empirical Model Learning

In Section 7.4.2.1 we demonstrate how components of the RF ML model can be integrated
into a combinatorial optimization problem. Specifically, we formulate a Mixed-Integer
Linear Program (MILP) that enables us to determine the optimal algorithm for a given
instance. Rather than solving this model by standard solver, in Section 7.4.2.2 we intro-
duce a B&B approach that exploits the inherent structure of the underlying RF to deduce
the logical implication for an optimal algorithm.

7.4.2.1 Embedding the Machine Learning Model into an Optimization Problem

Given a trained RFM and an instance π (characterized by Fπ) the search for an optimal
Fθ can be framed as a combinatorial optimization problem (see also (Bertsimas and Dunn,
2017; Iommazzo, 2021; Lombardi et al., 2017)). Let ytn, ∀t ∈ M, n ∈ Nt be the binary
variables indicating if node n is reached in DT t. Additionally, use xi (i = 1, ...,m,m +

208

7.4 Methodological Approach

1, . . . ,m + n) as variables that assign a value to feature i – n of which are going to be
fixed by Fπ and m of which are decidable, characterizing the optimal algorithm. The
notation left(d) and right(d) denotes pointers to the left-hand and right-hand child of
a node d in any DT t. With this notation, let us introduce the following optimization
model (7.6)–(7.13), where (7.6) is the objective function and (7.7)–(7.13) forms the set of
constraints.

min
1

|M|
∑
t∈M

∑
l∈Lt

r(l)ytl , (7.6)

subject to ytroot =
∑
l∈Lt

ytl = 1 ∀t ∈M, (7.7)

ytleft(d) + ytright(d) = ytd ∀t ∈M, d ∈ Dt (7.8)

xf(d) ≤ v(d) +M(1− ytleft(d)) ∀t ∈M, d ∈ Dt, (7.9)

xf(d) +M(1− ytright(d)) > v(d) ∀t ∈M, d ∈ Dt, (7.10)

xi ∈ Θi ∀i = 1, . . . ,m, (7.11)

xj+m = fπ,j ∀j = 1, . . . , n, (7.12)

ytn ∈ {0, 1} ∀t ∈M, n ∈ Nt. (7.13)

The objective function (7.6) aligns with (7.5), aiming to select leafs in a way that
minimizes the joint prediction of the ensemble. Constraints (7.7) guarantee that the root
node and exactly one leaf are visited in each DT t. To ensure connectivity from the root
to the leaf, constraints (7.8) enforce that if we visit a decision node d in a given DT then
exactly one child of that node must be visited. Constraints (7.9) and (7.10) represent the
branching constraints in each decision node. Constraints (7.11) indicate that the features
xi, concerning the algorithmic configuration, must be constrained to match their feasible
domain Θi – which may generally correspond to lower and upper bounds or integrality
requirements, as per the assumption at the beginning of this section. Moreover, any
variable xj+m (j = 1, . . . , n), representing the value of an instance-based feature, must
be explicitly fixed according to the instance π, as stated by constraints (7.12). Finally,
constraints (7.13) restrict the variables ytn to be binary.
The MILP (7.6)–(7.13) clearly reflects the structure of the learnt RF. However, solving

this model directly might be challenging, particularly due to the potentially poor linear
relaxation in light of the linearized disjunctive constraints (7.9) and (7.10). Moreover, the
amount of variables ytn grows exponentially with the height of the learnt tree t. While
alternative formulations or heuristic solutions could be explored (see, e. g., (Hutter et al.,

209

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

2011; Iommazzo, 2021)), we propose a different approach in Section 7.4.2.2 that addresses
the problem through a B&B approach.

7.4.2.2 A Branch-and-Bound Approach for solving the Optimization Problem

The nature of DTs allows them to be evaluated very efficiently. Recall that we assumed
that for every DT t ∈ M, the internal (decision) nodes can be partitioned into two
sets of nodes: Dt(Fθ) and Dt(Fπ); i. e., the sets of internal nodes that use algorithmic
features Fθ or instance-based features Fπ as a splitting criterion. Given an instance that
is characterized by Fπ, we begin by constructing an equivalent DT t′ that depends only
on features Fθ as follows (see also (Iommazzo, 2021)). We start with an empty DT t′ and
traverse DT t from the root, inferring from Fπ until we reach the first internal node or
leaf u ∈ Dt(Fθ) ∪ Lt. We copy this node as the root node of t′ and if this node is a leaf
node then we are done. Otherwise, we continue to both children of u in t and proceed
with the process of inference (given Fπ) until we reach the next decision nodes (or leafs)
ul(u), ur(u) ∈ Dt(Fθ) ∪ Lt. We add these nodes to t′ and also include the directed arcs
(u, ul) and (u, ur) to t′, where u ∈ Dt(Fθ), ul, ur ∈ Dt(Fθ) ∪ Lt. This process continues
recursively for any node ul, ur /∈ Lt. In practice, this can be achieved by traversing every
DT t ∈ M in a depth-first, from left to right, fashion, as sketched in Algorithm 7.1. As
an example, for the DT depicted in Figure 7.4.1 and given a problem characterized by
features Fπ, applying Algorithm 7.1 may yield one of the DTs depicted in Figure 7.4.2.

Node 0:
fθ,1 ≤ 2.5
rlb = 0.05

Node 1:
fθ,1 ≤ 1.5
rlb = 0.05

Node 3:
rlb = 0.05

Node 4:
rlb = 1.00

Node 2:
fθ,1 ≤ 3.5
rlb = 0.25

Node 5:
rlb = 0.25

Node 6:
rlb = 0.50

Tree 1

Node 0:
fθ,2 ≤ 1.5
rlb = 0.20

Node 1:
fθ,1 ≤ 1.5
rlb = 0.20

Node 3:
rlb = 0.75

Node 4:
rlb = 0.20

Node 2:
fθ,1 ≤ 1.5
rlb = 0.25

Node 5:
rlb = 0.60

Node 6:
rlb = 0.25

Tree 2

Figure 7.4.2: A collection of two trees t′ that depend only on Fθ. The left-hand tree can be
constructed by applying Algorithm 7.1 to the tree in Figure 7.4.1 given that, e. g., fπ,1 > 10.

Now let us consider having a RF M′, in which each tree t′ ∈ M′ has been processed

210

7.4 Methodological Approach

Algorithm 7.1 Depth-first search traversal of a tree t to obtain a tree t′ that, given Fπ,
behaves identical and depends only on Fθ.

1: function TreeReduction(t, Fπ)
2: node ← getRoot(t)
3: node ← traverseTree(t, node, Fπ)
4: t′ ← initTreeByRoot(node)
5: if ¬ leaf(node) then
6: stack.push([rightChild(node), node])
7: stack.push([leftChild(node), node])
8: end if
9: while stack is not empty do

10: node, parent ← stack.pop()
11: node ← traverseTree(t, node, Fπ)
12: if ¬ leaf(node) then
13: stack.push([rightChild(node), node])
14: stack.push([leftChild(node), node])
15: end if
16: t′.appendChild(parent, node)
17: end while
18: return t′

19: end function

according to Algorithm 7.1. In the trivial case, i. e., ifM′ is formed by only a single DT
t′, computing the (predictably) optimal algorithm corresponds to selecting the leaf l′ ∈ Lt′

with (without loss of generality) minimal r(l′). Following that, the branching constraints
that are encountered on the path from the root node of t′ to l′ form the logical implication
for the optimal algorithm.
In the more general case where there is more than one DT in the RFM, we propose a

novel way to search for the optimal algorithm through a B&B procedure (Land and Doig,
1960). To facilitate that approach, we use rt′lb(d′) as a lower bound for the regression value
that can be found in the subgraph of t′, rooted at the decision node d′ ∈ Dt′ . We initialize
these values for all decision nodes to ‘∞’; and for the leaf nodes l′ ∈ Lt′ it follows that
rt

′
lb(l

′) = r(l′). Then, ∀t′ ∈ M′, starting at each leaf l′ ∈ Lt′ we traverse the DT upwards,
towards its root node. During this process, we overwrite the label rt′lb(p) with rt

′
lb(d), where

p is the parent of d, iff rt
′
lb(p) > rt

′
lb(d) holds (see also Figure 7.4.2).

The search for an optimal algorithm by means of B&B follows a straightforward process
(Algorithm 7.2). We initialize a series of pointers that reference the root node of each
DT t′ ∈ M′ and the initial bound corresponds to

∑
t′∈M′ rt

′
lb(root). We consider a node

in the B&B search tree to be feasible, iff all pointers reference leaf nodes. In that case,
the branching constraints encountered on each path from root to leaf in all trees t′ ∈ M′

211

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

Algorithm 7.2 B&B to determine the optimal algorithm, given a RFM′, in which each
tree was processed according to Algorithm 7.1.

function BranchAndBound(Reduced Random ForestM′)
M′ ← propgatateBoundsFromLeafs(M′)
bestFeasible ←∞
bestState ← initializeRootState(M′)
if bestState.isFeasible(M′) then

return bestState
else

pq = priorityQueue()
pq.push(bestState.branch(M′))

end if
while ¬ pq.isEmpty() do

state = pq.pop()
if state.getBound(M′) ≥ bestFeasible then

return bestState
else if state.isFeasible(M′) then

if state.getValue(M′) < bestFeasible then
bestState ← state
bestFeasible ← state.getValue(M′)

end if
else

pq.push(state.branch(M′))
end if

end while
end function

form the logical implication for the optimal algorithm. Following the scheme of best-first
search, to add a branching constraint, we start by selecting the DT t′ in which the pointer
references a decision node d′ with minimal value of rt′lb(·) compared to all other DTs. Based
on that decision node d′ – i. e., its splitting criterion characterized by feature f(d′) and
threshold value v(d′) – we add two branches to our B&B search tree (with corresponding
branching constraints f(d′) ≤ v(d′) and f(d′) > v(d′), respectively). For each newly added
branch, we move the pointer in DT t′ accordingly and continue the process of inference in
that tree (given Fπ and existing branching constraints), until we reach a new decision node
that splits on Fθ (or a leaf). In all other DTs, the newly introduced branching constraint
may make further traversal now possible; therefore, we also attempt to move these pointers.
Precisely, for any DT t′ ∈M′, we check if the pointer currently references a decision node
d′ that acts on the same feature f(d′) as the most recent branching constraint. If either
f(d′) ≤ v(d′) or f(d′) > v(d′) is now already implied by an added branching constraint,
we move the pointer accordingly. Then, we continue the process of inference (given Fπ

212

7.5 Computational Experiments and their Numerical Results

and existing branching constraints), until we reach a new decision node d′ that acts on a
feature Fθ (or a leaf). After that, we calculate the updated bound for the current node in
the B&B search tree. We continue processing our B&B search tree for as long as we have
found no feasible solution and until no unexplored node remains in the B&B search tree
with a bound that is less than the value of the incumbent solution. Figure 7.4.3 illustrates
this procedure using the B&B search tree that results from applying Algorithm 7.2 to the
two DTs in Figure 7.4.2.

B&B node 0:
p = (0, 0)

Bound = 0.25

B&B node 1:
p = (1, 0)

Bound = 0.25

B&B node 3:
p = (3, 0)

Bound = 0.25

B&B node 5:
p∗ = (3, 3)

Bound = 0.80

B&B node 6:
p∗ = (3, 5)

Bound = 0.65

B&B node 4:
p′ = (4, 0)

Bound = 1.20

B&B node 2:
p = (2, 0)

Bound = 0.45

B&B node 7:
p = (2, 4)

Bound = 0.45

B&B node 9:
p∗ = (5, 4)

Bound = 0.45

B&B node 10:
p∗ = (6, 4)

Bound = 0.70

B&B node 8:
p′ = (2, 6)

Bound = 0.50

Node 0 in DT 1:
fθ,1 ≤ 2.5

Node 1 in DT 1:
fθ,1 ≤ 1.5

Node 0 in DT 2:
fθ,2 ≤ 1.5

Node 0 in DT 2:
fθ,2 > 1.5

Node 1 in DT 1:
fθ,1 > 1.5

Node 0 in DT 1:
fθ,1 > 2.5

Node 0 in DT 2:
fθ,2 ≤ 1.5

Node 2 in DT 1:
fθ,1 ≤ 3.5

Node 2 in DT 1:
fθ,1 > 3.5

Node 0 in DT 2:
fθ,2 > 1.5

Figure 7.4.3: An illustration of the B&B procedure to determine the implication for the optimal
algorithm. This figure results from applying Algorithm 7.2 to the DTs in Figure 7.4.2. Each
B&B node is characterized by its identifier, the local pointer p, which shows the currently active
nodes in trees 1 and 2 (in Figure 7.4.2), respectively, and the local bound. Feasible solutions are
highlighted by a pointer p∗ and corresponding B&B nodes pruned by feasibility. B&B nodes that
can be pruned by bound (B&B nodes 4 and 8) are highlighted by a pointer p′. As no open node
remains, the optimal solution corresponds to the B&B node 9 and the path from the root to that
node forms the implication 2.5 < fθ,1 ≤ 3.5 and fθ,2 ≤ 1.5 for the optimal algorithm.

7.5 Computational Experiments and their Numerical Results

For the remainder of this paper, we consider MILP as a problem space P and the solver
Gurobi Optimizer 9.5.2 (Gurobi Optimization, LLC, 2023) as an algorithm space A. A

213

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

brief overview of these concepts is provided in Section 7.5.1. In Section 7.5.2, the gener-
ation procedure of the dataset is described. This includes an exploratory analysis to see
if there may be any merit to approaching this dataset from the perspective of the ASP.
Finally, Section 7.5.3 discusses the numerical results of the computational experiments in
detail.

7.5.1 Problem Space and Algorithms

Following Gleixner et al. (2021), a canonical form of a MILP optimization problem is the
following. Let V ∈ N be the number of variables (columns) and C ∈ N be the number of
constraints (rows). Variables are further categorized into continuous variables VC , general
integer variables (excluding binary) VI , and binary variables VB, such that VC+VI+VB =

V. The coefficient matrix is denoted by H ∈ QC×V . The left-hand and right-hand side
vectors, that place lower and upper bounds on each constraint, are represented by lH ∈ RC

and uH ∈ RC , respectively. Additionally, the lower and upper bounds of the decision
variable vector x are specified by the vectors lx, ux ∈ RV . Finally, the objective coefficient
vector is denoted by c ∈ RV . Using this notation, the canonical form of any MILP is the
following:

min
{
c⊤x : lH ≤ Hx ≤ uH , lx ≤ x ≤ ux, x ∈ {0, 1}VB × ZVI × RVC

}
. (7.14)

In our work, we use the commercial MIP solver Gurobi Optimizer 9.5.2 (Gurobi Opti-
mization, LLC, 2023) as a configurable algorithm that is applicable to problems of type
(7.14). Comparative studies have demonstrated that the default configuration of this
solver is already highly optimized, making it an effective choice even when compared to
other state-of-the-art solvers (Hutter et al., 2010): In fact, improvements in performance
on homogeneous problems through parameter tuning by means of the ACP were relatively
modest, indicating the solver’s robust default settings.
Given the computational intractability of exhaustively sampling the entire parameter

space for this solver, as in similar studies (Iommazzo et al., 2020a; Iommazzo et al.,
2020b), we focus on a subset of parameters that impact the B&C algorithm’s execution on
a high level. Specifically, we consider the following parameters, along with their respective
domains (refer to (Gurobi Optimization, LLC, 2023) for details):

1. Cuts: Determines global cut aggressiveness. Domain: {−1, 0, 1, 2, 3}

2. Disconnected: Indicates the effort spent by the solver in identifying independent
sub-models within the problem. Domain: {−1, 0, 1, 2}.

214

7.5 Computational Experiments and their Numerical Results

3. Heuristics: Designates the time spent applying MIP heuristics. Domain:
{0, 5, 10, 15}%.

4. (Node)Method: Sets the method used for solving linear relaxations. Domain:
{−1, 0, 1, 2}.

5. Presolve: Correlates with the time spent during presolve. Domain: {−1, 0, 1, 2}.

6. Symmetry: Detection level for identifying the symmetry. Domain: {−1, 0, 1, 2}.

This results in 5120 distinct configurations. The DS is obtained by leaving all parameters
at -1, except for Heuristics, which has a default value of 5%. For the remainder of this
paper, any instantiation of Gurobi Optimizer using one of these configurations is referred
to as an algorithm (or solver).

7.5.2 Dataset

Our experiments make use of the MIPLIB, which originated from the work of Bixby et al.
(1992) and is currently in its sixth iteration. This ongoing project provides a carefully
curated library of problem instances, collected in a data-driven and scientifically rigorous
manner (Gleixner et al., 2021). The MIPLIB aims to represent the diversity of chal-
lenges faced by both academic and industrial researchers in various domains, making it
a widely accepted benchmark for comparing different solvers or versions thereof (Mittel-
mann, 2020). It is worth noting that this diversity contrasts sharply with most works
discussed in Section 7.2 (except for (Berthold et al., 2022; Berthold and Hendel, 2021),
who also relied on the MIPLIB). A common characteristic in these works involves focusing
on (homogeneous) instances specific to a particular problem. This generally leads to the
development of highly problem-specific features that may not readily be transferred to
related problems within the same domain.
In the most recent iteration of the MIPLIB, Gleixner et al. (2021) tested eight different

MIP solvers, each using its default configuration, on a set of 1065 benchmark instances.
Notably, each of these eight solvers demonstrated superior performance on at least one of
the 1065 instances. While performance variability is inherent to MIP (Lodi and Tramon-
tani, 2014), this observation underscores the potential advantages of employing algorithm
selection in this context.

7.5.2.1 Generation Procedure and Preprocessing

To facilitate data collection, we focus on a subset of 677 instances from the MIPLIB
labeled as ’easy‘. It is important to note that the label ’easy’ should be approached

215

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

with caution, as the only other categories are ‘hard’ and ‘open’, comprising 144 and 244
instances, respectively. Additionally, we only considered problems that are inherently
solvable, meaning instances that are neither infeasible nor unbounded. This filtering
results in 629 instances. Further, we excluded an additional four instances due to their
extensive main memory requirements, which would adversely affect the data generation
phase of our study.1

We collected the performance data for each of the 5120 possible algorithms (see Sec-
tion 7.5.1) on each of the 625 instances, by running the solver five times, utilizing five
different random seeds. Consequently, we obtained a total of 5120× 625× 5 = 16 million
data points. This dataset was generated by running the solver with a single thread, a
time limit of 60 seconds, and an allocation of sufficient (8 GB of) RAM on compute nodes
equipped with Intel® Xeon® Gold 6126 Processors.

For a given algorithm, instance, and random seed, we collected the values of the primal
objective bound (incumbent solution) zp, the dual objective bound zd, and the runtime.
Gurobi Optimization, LLC (2023) defines the MIP gap as follows for minimization prob-
lems, which we also add to the dataset:

MIP gap :=
|zp − zd|
|zp|

. (7.15)

As Laporte and Toth (2022) stress, this definition must not be confused with optimality
gaps, which measure the deviation from zp to a (known) optimal objective value z∗. We
use the MIP gap because, outside of benchmarks, z∗ is generally not known in advance,
making MIP gaps a well-suited surrogate to monitor how close a solver is to certifying
optimality for a solution.
In situations where no primal solution zp is found within the allotted runtime, MIP

gaps according to (7.15) are, in principle, undefined. Initially, in these cases, the assigned
MIP gap label was ‘∞’. To address this numerical issue, the following transformation was
applied once all data had been collected. First, the 95th-percentile MIP gap, denoted by
gap95%, was identified – representing the value for which 95% of all recorded MIP gaps are
smaller or equal to. Then, the MIP gaps that exceeded this threshold were set to 10 times
gap95%, inspired by the commonly used PAR-10 scoring (see, e. g., (Bischl et al., 2016)).
Overall, we spent approximately 20.53 CPU-core-years to generate the dataset. At sev-

eral points, we performed analysis and consistency checks on our dataset. These inspec-
tions revealed that the solver could behave erraticly or numerically unstable in presence of
a few algorithms. This had caused the solver to classify some problems as, e. g., unbounded

1Namely, neos-4332801-seret, neos-4332810-sesia, t11nonreg, and supportcase11.

216

7.5 Computational Experiments and their Numerical Results

or infeasible, or to return implausible solutions. As pointed out by Berthold and Hendel
(2021), Eggensperger et al. (2019), and Tang et al. (2020), care must be taken when ad-
justing any default algorithm, as this may lead to unforeseen effects, e. g., exceptions or the
return of implausible results. In the extreme case, e. g., when purely optimizing runtime,
the ‘best-performing’ algorithm may – mistakenly – be the one that causes the algorithm
to terminate prematurely, e. g., by returning an incorrect result. Still, it is important to
acknowledge that these misclassifications may actually, i. e., within numerical tolerance,
be considered to be correct. Nevertheless, in order to have a clean dataset, we removed
six further instances.2 Therefore, the final dataset consists of 5120× 619× 5 = 15 846 400

entries.

7.5.2.2 Exploratory Analysis

In this section, we provide a first glance at the dataset that was generated according to
Section 7.5.2.1. Note that, for the remainder of this paper, we abbreviate an instance-
seed-pair by an instance. In the context of our study, when comparing two different
algorithms A1 and A2 on a single instance purely based on runtimes and MIP gaps, it is
straightforward to establish a dominance relation: A1 ≻ A2 if t1 < t2 ≤ 60 seconds (i.e.,
g1 ≈ 0%) or t1 = t2 = 60 seconds and g1 < g2. When taking multiple instances into
account, establishing an overall dominance relation becomes non-trivial. As a thought ex-
periment, consider Table 7.5.1 where each algorithm dominates the others on one instance.
In particular, the algorithm that yields the shortest runtime on average has the worst gaps
and vice versa. Clearly, an optimal (ex-post) policy would be to select algorithm i on in-
stance i, ∀i ∈ {1, 2, 3}. This example illustrates that there may be an inherent trade-off in
MIP between short runtimes and small gaps (given a runtime limit). This will be further
explored in the experiments (refer to Section 7.5.3).

Table 7.5.1: An example of three algorithms on three instances where each algorithm dominates
the other ones on exactly one instance.

Instance 1 Instance 2 Instance 3 Average
time gap time gap time gap time gap

Algorithm 1 15s 0% 60s 75% 60s 75% 45s 50%
Algorithm 2 20s 0% 10s 0% 60s 300% 30s 100%
Algorithm 3 60s 10% 60s 10% 60s 10% 60s 10%

In any case, for the remainder of this section, we are going to investigate our dataset as
2Namely, bley_xs2, control20-5-10-5, dale-cta, neos-1223462, neos-3083784-nive, and trans-

portmoment.

217

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

follows:

• For each of the 5120 algorithms, average runtime and MIP gap are calculated for
solving the 3095 instances. This allows us to identify the SBS (see (7.2) in Sec-
tion 7.3) w. r. t. runtime and MIP gap.

• For each of the 3095 instances, the algorithms are sorted lexicographically by dom-
inance, i. e., first by MIP gap and then by runtime. For each instance, we assign a
rank to every algorithm, proceeding in ascending order. This way, the first rank on
a particular instance corresponds to the solver that dominated all others. For each
rank 1 to 5120, we aggregate the runtime and MIP gaps across all 3095 instances.
Consequently, rank 1 (rank 5120) corresponds to the VBS (virtual-worst solver) (see
(7.1) in Section 7.3).

The analysis aims to address key questions to evaluate the viability of applying the method-
ology proposed in Section 7.4. These questions include:

1. What is the performance gap between the DS and SBS? A marginal gap might
suggest little benefit in deviating from the DS when using a single algorithm for
solving all instances.

2. How significant is the performance gap between the SBS and VBS? If the gap is
marginal, it could be reasonable to stick with the SBS instead of employing algorithm
selection.

3. On average, how much does a competitive selector need to close the performance
gap between the DS and VBS to match or surpass the SBS?

4. Does the VBS consist of a large and diverse set of algorithms, or is it composed of
only a small portfolio? If the latter is true, considering per-set algorithm selection
might be more effective (see (Kerschke et al., 2019) and references therein).

To address these questions, Figure 7.5.1 provides an initial insight by showcasing the
average runtime of the solvers across the complete dataset. The DS exhibits an average
runtime of approximately 35.47 seconds, making it the 501st-single-best and placing it into
the top ten percentile of all solvers. The SBS records an average runtime of around 32.81

seconds, surpassing the DS by 2.66 seconds, constituting a 7.5% decrease. In contrast,
the VBS achieves an average runtime of 25.10 seconds, outperforming the SBS by 7.71
seconds, representing a 23.5% decrease. This implies that the SBS manages to close only
around 25.7% of the performance gap between the DS and VBS. The figure also highlights

218

7.5 Computational Experiments and their Numerical Results

2,000 3,000 4,000 5,000

30

40

50

60

357 501 859 151525.1

32.8
35.5

Solver

Av
er
ag

e
ru
nt
im

e

Sorted by single-best to single-worst
Sorted by virtual-best to virtual-worst

Figure 7.5.1: Average runtime for all solvers.

2,000 3,000 4,000 5,000

2

3

4

5

6

7

8

295 618 1,040 1,594
0.48
1.07
1.29

Solver

Av
er
ag

e
M
IP

ga
p

Sorted by single-best to single-worst
Sorted by virtual-best to virtual-worst

Figure 7.5.2: Average MIP gap for all solvers.

the potential of algorithm selection, as the DS is rivalled by the virtual-1515th solver, and
a virtual-859th solver would yield an average runtime nearly identical to that of the SBS.
Figure 7.5.2 reveals analogous observations regarding the average MIP gap. The DS

performs as the 618th single-best with an average gap of 1.29, closely resembling the
virtual-1594th solver. In comparison, the SBS achieves an average gap of 1.07, almost
mirroring the virtual-1040th solver. Notably, the VBS attains an average gap of only 0.48,
indicating that the SBS reduces about 27.2% of the performance gap between the DS and
VBS.
Analyzing the VBS reveals its utilization of 1264 distinct algorithms across the 3095

219

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

instances. Notably, this suggests that different solvers might outperform others on the
same base instance when using different random seeds, underscoring the inherent perfor-
mance variability of MIP solvers (Lodi and Tramontani, 2014). Among these 1264 distinct
solvers, the most frequently used occurs 46 times, the second most frequent 25 times, and
the third most frequent 23 times. In contrast, 668 solvers are only applied to a single
instance by the VBS. Surprisingly, the most frequently used solver exhibits comparatively
poor average performance: 39.79 seconds runtime and a 2.02 MIP gap (compare with
Figures 7.5.1 and 7.5.2). In contrast, the SBSs w. r. t. runtime and MIP gap are only used
by the VBS in 0 and 4 cases, respectively, and the DS is absent altogether. This result
is surprising for two reasons. First, it could be interpreted as confirming that algorithms
with poor average performance may still play a vital role in a competitive selector. Second,
addressing the ASP with a portfolio of algorithms determined through the ACP (refer to
Section 7.2.2) is unlikely to ever include such algorithms.

Lastly, Figure 7.5.3 offers a brief glimpse at the tunability (Probst et al., 2019). The
tunability concerns the ceteris paribus effect of altering a single parameter of the DS.
In summary, the insights derived from the analysis of Figures 7.5.1 and 7.5.2 are encour-

aging. Undeniably, there is a significant potential for performance degradation compared
to even the DS; however, a more optimistic perspective is that even a virtual-859th (or
virtual-1040th) solver can outperform the SBS in terms of average runtime (or average
MIP gap). Hence, by adhering to the methodology proposed in Section 7.4, achieving a
selector that consistently opts for a solver within the top 16.8% of all solvers would already
surpass the performance of the SBS.

7.5.3 Numerical Results for Offline Learning and Online Inference

Following best-practices, k-fold cross-validation is used, as commonly recommended in
the literature (Bischl et al., 2016; Eggensperger et al., 2019; Kerschke et al., 2018). This
means that the 3095 instances are randomly shuffled, before dividing them into k = 5 folds
(akin to (Berthold et al., 2022; Berthold and Hendel, 2021)). This implies that the same
base instance may be present in the training set multiple times (with different random
seeds) or not at all. For each iteration of cross-validation, we use (k − 1) folds with the
associated performance data of the 5120 algorithms to train the RF (see Section 7.5.3.1).
The remaining fold is reserved for testing. In more detail, for each instance in the test set
we leverage the trained RF and apply the B&B methodology described in Section 7.4.2 to
decide which algorithm to use. This allows us to compare the performance of the proposed
approach (refer to Section 7.4) against the DS, SBS, and VBS (see Section 7.5.3.2). As
illustrated in Figure 7.5.4, we repeated this process k times, such that each of the k subsets

220

7.5 Computational Experiments and their Numerical Results

−1 0 1 2 3
0

20

40

60

Cuts

Ru
nt
im

e

−1 0 1 2
0

20

40

60

Disconnected
0 0.05 0.10 0.150

20

40

60

Heuristics

−1 0 1 2
0

20

40

60

(Node) Method

R
un

tim
e

−1 0 1 2
0

20

40

60

Presolve
−1 0 1 2

0

20

40

60

Symmetry

−1 0 1 2 3
0

2

4

6

8

10

Cuts

M
IP

G
ap

−1 0 1 2
0

2

4

6

8

10

Disconnected
0 0.05 0.10 0.150

2

4

6

8

10

Heuristics

−1 0 1 2
0

2

4

6

8

10

(Node) Method

M
IP

G
ap

−1 0 1 2
0

2

4

6

8

10

presolve
−1 0 1 2

0

2

4

6

8

10

Symmetry

Figure 7.5.3: This figure illustrates the tunability, i. e., the ceteris paribus effect of adjusting only
a single parameter of the DS. The box plots highlight the mean, maximum, and minimum values
along with the 25th and 75th percentile.

221

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

is used for testing exactly once.

Instances (3095 instance-seed pairs)

Shuffle and divide into
k = 5 folds of equal size.

For training, extend (k − 1) folds with the
performance of the 5120 algorithms.

Reserve the remaining fold for testing.

Figure 7.5.4: The process of k-fold cross validation illustrated for k = 5.

7.5.3.1 Offline Learning

Given our interest in using heterogenous benchmark instances, we must abstain from us-
ing highly problem-specific features, which are generally used in the context of the ASP
(see (Kerschke and Trautmann, 2019) and references therein). Moreover, due to the large
scope of algorithms under consideration, probing for dynamic information is not a feasi-
ble option. Instead, we are curious if high-level features of MILPs, which are generally
applicable across a wide range of problems, can already be sufficiently informative for
a successful ASP approach. It is important to note that there are limited approaches
in the literature (see, e. g., (Loreggia et al., 2016)) that acknowledge the challenging na-
ture of feature engineering and the fact that the resulting features are typically confined
to very specific problems. In that regard, we use two types of generic MILP features
to characterize problem instances: Size Related Properties (SRP) and Constraint Related
Properties (CRP) that were introduced by Gleixner et al. (2021). The SRP are the number
of variables V, the number of constraints C, as well as the non-zero density of the matrix.
These properties also include the proportion of continuous (VC), binary (VB), and inte-
ger variables (VI) w. r. t. the total number of variables V. Finally, the SRP include the
proportion of implicit integers, indicating variables for which integrality is implied by the
model. The CRP is discussed in-depth by Gleixner et al. (2021) and for completeness,
we include their categorization of linear constraints in Table 7.5.2. The CRP measure the
proportion with which these categories occur. A given constraint may fall into multiple
categories (e. g., set packing and knapsack). In such cases, the authors suggest using the
most specific (i. e., topmost in Table 7.5.2) type. Apart from the classification of linear
constraints in Table 7.5.2, the CRP also includes the share of (fundamentally non-linear)
Indicator Constraints. Such constraints may be handled internally by the solver in

222

7.5 Computational Experiments and their Numerical Results

a more advantageous way, rather than relying on the (in)famous big-M linearization.

Table 7.5.2: Classification of linear constraints as illustrated by Gleixner et al. (2021) (sorted from
most specific to most general). In this table, a, b, c ∈ R denote coefficients whereas x, y, and z
represent decision variables.

Type Linear constraints…
Free with no finite side
Singleton with a single variable
Aggregation of the form ax+ by = c
Precedence of the form ax− ay ≤ b
Variable Bound of the form ax+ by ≤ c, x ∈ {0, 1}
Set Partitioning of the form

∑
xi = 1, xi ∈ {0, 1} ∀i

Set Packing of the form
∑

xi ≤ 1, xi ∈ {0, 1} ∀i
Set Covering of the form

∑
xi ≥ 1, xi ∈ {0, 1} ∀i

Cardinality of the form
∑

xi = k, xi ∈ {0, 1} ∀i, k ≥ 2
Invariant Knapsack of the form

∑
xi ≤ b, xi ∈ {0, 1} ∀i, b ∈ N, b ≥ 2

Equation Knapsack of the form
∑

aixi = b, xi ∈ {0, 1} ∀i, b ∈ N, b ≥ 2
Binpacking of the form

∑
aixi + ax ≤ a, x, xi ∈ {0, 1} ∀i, a, ai ∈ N ∀i, a ≥ 2

Knapsack of the form
∑

aixi ≤ b, xi ∈ {0, 1} ∀i, b ∈ N, b ≥ 2
Integer Knapsack of the form

∑
aixi ≤ b, xi ∈ Z ∀i, b ∈ N

Mixed Binary of the form
∑

aixi +
∑

bjzj{≤,=}c, xi ∈ Z ∀i, zj ∈ R ∀j
General Linear with no special structure

The SRP and CRP may be considered to be appropriate features due to their align-
ment with the ideal properties outlined by Kerschke et al. (2019): they are informative,
interpretable, cheaply computable, and in particular broadly applicable to the domain of
MILP. Importantly, for a given problem these features are invariant to mathematically
equivalent transformations (e. g., shuffling the order of rows or columns).
We implemented the RF using scikit-learn version 1.0.0 (Pedregosa et al., 2011).

Hyperparameters were left at their default values (the RF consists of 100 DTs). However,
to account for regularization and randomness, we tuned two hyperparameters through
nested cross-validation (Stone, 1974) (with four internal folds) by grid-search. The first
hyperparameter is min_samples_split (i. e., the minimal number of samples required in
each node to consider splitting further) for which we considered 0.01%, 0.1%, and 1%
of the training set. The second hyperparameter is max_features (i. e., the number of
random features considered in each decision node for splitting) for which we considered
5 (i. e., approximately

√
|F |) or 10 features. Given that tree-based learners are invariant

to scaling, no special feature engineering is required; in particular, this also concerns the
encoding of the algorithm’s parameters (Hastie et al., 2009). We repeated our experiments
thrice, to study the effects of using one of the following three training labels:

1. Runtime, scaled to a maximum value of 1.

223

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

2. MIP gap, scaled to a maximum value of 1.

3. The equally weighted sum of both of the above, divided by a factor of 2.

Table 7.5.3 presents the mean coefficients of determination (R2) and mean absolute
errors of the models, after the training procedure. Additionally, these metrics are included
for the test sets (for that purpose, by associating each instance with the performance data
of the 5120 algorithms). While these values suggest an acceptable model fit, it is essential
to note that standard ML metrics might have limited utility in the context of combinatorial
optimization pipelines (Accorsi et al., 2022). Our primary focus remains on assessing
whether these learnt models facilitate effective decision-making (refer to Section 7.5.3.2).

Table 7.5.3: Average coefficient of determination (R2) and mean absolute errors of the trained
models for the three considered labels (averaged across all learnt models).

Runtime MIP Gap Weighted Sum
Training Set Test Set Training Set Test Set Training Set Test Set

R2 0.873 0.858 0.841 0.823 0.875 0.860
MAE 0.078 0.084 0.068 0.073 0.071 0.076

It is worth noting that preliminary experiments have indicated that the effects of (se-
quential forwards or backwards) feature selection have a negligible impact on these scores;
therefore, we did not pursue this any further. Figure 7.5.5 shows the impurity-based rela-
tive feature importance (Breiman, 2001) when using either the runtime, MIP gap, or the
weighted sum as training labels. Unsurprisingly, the number of variables, constraints, and
non-zero density appear to have the largest feature importance. And considering that the
cardinality of most algorithm parameters is relatively small (refer to Section 7.5.1), which
might put them at a disadvantage when it comes to impurity-based feature importance,
their values also stand out. Noticeably, the importance of the parameters Disconnected
and Symmetry seems to be almost negligible, which we find surprising in light of Fig-
ure 7.5.3.

7.5.3.2 Online Inference

After training a RF according to Section 7.5.3.1, it remains to leverage the model to de-
termine the (predictably) optimal algorithm for a given instance. Let it be known that
directly solving the model (7.6)–(7.13) presented in Section 7.4.2.1 results in a computa-
tional overhead far exceeding the potential performance gains through algorithm selection
(see also Figure 7.5.1). To address this, the B&B procedure suggested in Section 7.4.2.2
was implemented. Using this approach, the optimal algorithm can be determined in a

224

7.5 Computational Experiments and their Numerical Results

C
ut
s

D
isc

on
ne

ct
ed

H
eu

ris
tic

s
(N

od
e)

M
et
ho

d
Pr

es
ol
ve

Sy
m
m
et
ry

Fr
ee

Si
ng

le
to
n

A
gg

re
ga

tio
ns

Pr
ec
ed

en
ce

Va
ria

bl
e
Bo

un
d

Se
t
Pa

rt
iti
on

in
g

Se
t
Pa

ck
in
g

Se
t
C
ov
er
in
g

C
ar
di
na

lit
y

In
v.

K
na

ps
ac
k

Eq
.K

na
ps
ac
k

Bi
n
Pa

ck
in
g

K
na

ps
ac
k

In
t.
K
na

ps
ac
k

M
ix
ed

Bi
na

ry
G
en

er
al

Li
ne

ar
In
di
ca
to
r

Va
ria

bl
es

C
on

st
ra
in
ts

Bi
na

rie
s

In
te
ge
rs

C
on

tin
uo

us
Im

pl
ic
it

In
te
ge
rs

N
on

ze
ro

D
en

sit
y

0.05

0.1

0.15

0.2

Runtime
MIP gap

Weighted sum

Figure 7.5.5: Gini importance (normalized to [0, 1]) and the corresponding standard deviation.
The values are averaged (for each training label) over all models learnt during the five rounds of
cross-validation.

matter of a few milliseconds, primarily attributed to the time spent building the reduced
trees (see Algorithm 7.1). The subsequent B&B process (see Algorithm 7.2) takes only
a fraction of this time. This gives the proposed methodology the desired property of
near-instantaneous online selection, as deemed necessary in Section 7.3.

The performance of the Solver found by means of Algorithm Selection (SAS) was evalu-
ated against that of the DS, SBS, and VBS on each instance of the test set. As a reminder,
the VBS acts as an oracle, fulfilling condition (7.1) (refer to Section 7.3). In contrast, for
each test set, the SBS is defined as the algorithm A∗ that fulfils condition (7.2) (refer to
Section 7.3) on the corresponding training set w. r. t. the given training label.

Tables 7.5.4–7.5.6 illustrate the numerical results obtained during the five rounds of
cross-validation when using runtime, MIP gap, or the weighted sum as training label,
respectively. Each table shows the number of unique algorithms used to solve the 3095
instances (# algorithms), the number of instances that have been solved optimally (#
optimal), and the number of instances for which at least a feasible solution was found
within the runtime limit (# feasible). Moreover, the tables show the average (µ) runtime
and MIP gap as well as their respective standard deviation (σ). All of these values are

225

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

shown for the SAS, DS, SBS, and VBS. The tables also include an instance-wise compar-
ison, indicating the share of wins, ties, and losses with respect to runtime and MIP gap.
A win (lose) w. r. t. runtime or MIP gap denotes a smaller (larger) runtime or smaller
(larger) MIP gap after runtime on a particular instance against another solver. Ties occur
when both approaches reach the 60-second runtime limit or when the MIP gap is (approx-
imately) identical. The instance-wise comparison further includes the number of times
each approach finds an optimal solution or primal feasible solution compared to another
approach.

Figures 7.5.6–7.5.8 further illustrate the instance-wise comparison. These scatter plots
highlight the runtime and MIP gap of the SAS and VBS compared to the DS and SBS on
a per-instance basis. To interpret these figures effectively, referencing Tables 7.5.4–7.5.6
is recommended: e. g., when considering the runtime (MIP gap) of the VBS w. r. t. the
DS or SBS in Figure 7.5.6, many points are located in the top right corner, implying that
both runs timed out on several instances. While this is also signified by the enlarged
marks, Table 7.5.4 provides a detailed answer: exactly 963 (138) data points are located
in the top right corner of the runtime (MIP gap) plot. To enhance the clarity of the point
distribution, a linear regression is included in each plot as the line with the best fit for the
given data.

When it comes to runtime as the performance metric of interest (see Table 7.5.4 and
Figure 7.5.6), the DS, SBS, and VBS exhibit mean runtimes of 35.47s, 32.93s, and 25.10s,
respectively. When training with runtime as label, a mean runtime of 30.58s was achieved
by the SAS. This closes the performance gap w. r. t. runtime between the DS (respec-
tively, SBS) and VBS by approximately 47.2% (respectively, 30.0%). When we put these
numbers into the perspective of Figure 7.5.1, an average runtime of 30.58s corresponds
approximately to the virtual-373rd solver, which is in the top 7.3% of all virtual solvers. In
other words, given that the DS corresponded approximately to the virtual-1515th solver,
we close the gap between a virtual-solver that performs on average nearly identical to the
DS and the VBS by approximately 75.4%.
Notably, both the VBS and SAS approach rely on many algorithms to tackle the 3095

instances (787 for the SAS and 1264 for the VBS). In particular, the SAS solves more
instances to optimality than either the DS or SBS (1863 vs. 1626 or 1682). However,
it must be noted that training with runtime as a label comes at a cost: the number of
instance for which a feasible solution is found after runtime by the SAS is smaller than the
same metric for the DS and the SBS (2514 vs. 2711 or 2762). Moreover, the average MIP
gap is nearly 50% larger than that of the DS with a noticeable standard deviation. When
considering the instance-wise comparison, the SAS beats the DS (SBS) in 47.9% (35.4%)
and loses in only 13.0% (25.8%) of all cases w. r. t. runtime. However, the relatively weak

226

7.5 Computational Experiments and their Numerical Results

Table 7.5.4: Results obtained when using runtime as the training label.

SAS DS SBS VBS
algorithms 787 1 2 1264

feasible 2514 2711 2762 2957
optimal 1863 1626 1682 2134

µ runtime & gap 30.58s 1.91 35.47s 1.30 32.93s 1.13 25.10s 0.48
σ 26.45s 3.85 26.10s 3.25 26.80s 3.06 26.23s 2.04

SA
S

wins vs. w. r. t. runtime / gap - - 47.9% 16.4% 35.4% 12.6% 0.0% 0.0%
ties vs. w. r. t. runtime / gap - - 39.1% 62.6% 38.8% 63.4% 31.3% 65.0%

losses vs. w. r. t. runtime / gap - - 13.0% 20.9% 25.8% 24.0% 68.7% 35.0%
both optimal / primal feasible - - 1588 2426 1641 2451 1859 2514

only row optimal / primal feasible - - 271 88 218 63 0 0
only column optimal / primal feasible - - 25 285 38 311 273 443

neither optimal / primal feasible - - 1211 296 1198 270 963 138

D
S

wins vs. w. r. t. runtime / gap 13.0% 20.9% - - 11.0% 9.6% 0.0% 0.0%
ties vs. w. r. t. runtime / gap 39.1% 62.6% - - 44.4% 66.5% 31.1% 58.2%

losses vs. w. r. t. runtime / gap 47.9% 16.4% - - 44.6% 23.9% 68.9% 41.8%
both optimal / primal feasible 1588 2426 - - 1572 2684 1613 2711

only row optimal / primal feasible 25 285 - - 41 27 0 0
only column optimal / primal feasible 271 88 - - 107 78 519 246

neither optimal / primal feasible 1211 296 - - 1375 306 963 138

SB
S

wins vs. w. r. t. runtime / gap 25.8% 24.0% 44.6% 23.9% - - 0.0% 0.0%
ties vs. w. r. t. runtime / gap 38.8% 63.4% 44.4% 66.5% - - 31.3% 60.5%

losses vs. w. r. t. runtime / gap 35.4% 12.6% 11.0% 9.6% - - 68.7% 39.5%
both optimal / primal feasible 1641 2451 1572 2684 - - 1679 2762

only row optimal / primal feasible 38 311 107 78 - - 0 0
only column optimal / primal feasible 218 63 41 27 - - 453 195

neither optimal / primal feasible 1198 270 1375 306 - - 963 138

V
B

S

wins vs. w. r. t. runtime / gap 68.7% 35.0% 68.9% 41.8% 68.7% 39.5% - -
ties vs. w. r. t. runtime / gap 31.3% 65.0% 31.1% 58.2% 31.3% 60.5% - -

losses vs. w. r. t. runtime / gap 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% - -
both optimal / primal feasible 1859 2514 1613 2711 1679 2762 - -

only row optimal / primal feasible 273 443 519 246 453 195 - -
only column optimal / primal feasible 0 0 0 0 0 0 - -

neither optimal / primal feasible 963 138 963 138 963 138 - -

performance w. r. t. MIP gap is also visible here: the SAS beats the DS (SBS) in only
16.4% (12.6%) and loses in 20.9% (24.0%) of all cases w. r. t. MIP gap.

When it comes to the MIP gap as the performance metric of interest (see Table 7.5.5
and Figure 7.5.7), the DS, SBS, and VBS exhibit mean MIP gaps of 1.30, 1.14, and 0.48,
respectively. At first glance, the SBS w. r. t. MIP gap performs very similar to the SBS
w. r. t. runtime (see also Table 7.5.4). However, when using the MIP gap as training
label, the performance of the SAS is quite different with a mean MIP gap of 0.79 and
mean runtime of 32.31s. This closes the performance gap w. r. t. MIP gap between the
DS (respectively, SBS) and VBS by approximately 62.2% (respectively, 53.0%). Once

227

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

Figure 7.5.6: Instance-wise comparison when using runtime as the training labels. Red circles
represent the default solver and blue crosses the single-best solver.

again, putting these numbers into the perspective of Figure 7.5.2, an average MIP gap
of 0.79 corresponds approximately to the virtual-295th solver, which is in the top 5.8%
of all virtual solvers. Therefore, given that the DS corresponded approximately to the
virtual-1594th solver, we close the gap between a virtual solver that behaves on average
nearly identical to the DS and the VBS by approximately 81.5%.
As was the case when using runtime as training label, the SAS relies on many algorithms

to approach the 3095 instances. Similarly, the SAS also solves more instances to optimality
than either the DS or SBS (1789 vs. 1626 or 1674). Unsurprisingly, when training for MIP
gap, the number of feasible solutions found is also increased compared to the DS and
SBS (2868 vs. 2711 and 2761). When considering the instance-wise comparison, the SAS

228

7.5 Computational Experiments and their Numerical Results

approach beats the DS (respectively, SBS) in 29.5% (respectively, 23.4%) and loses in only
9.2% (respectively, 14.4%) of all cases w. r. t. MIP gap. And in contrast to Table 7.5.4,
Table 7.5.5 also shows that training for MIP gap does not cause the SAS to perform
significantly worse than the DS or SBS w. r. t. runtime (32.31s vs. 35.47s and 33.46s).
However, the losses w. r. t. runtime (21.5% and 32.3% vs. the DS and SBS) are more
pronounced.

Table 7.5.5: Results obtained when using MIP gap as the training label.

SAS DS SBS VBS
algorithms 815 1 5 1264

feasible 2868 2711 2761 2957
optimal 1789 1626 1674 2134

µ runtime & gap 32.31s 0.79 35.47s 1.30 33.46s 1.14 25.10s 0.48
σ 26.17s 2.57 26.10s 3.25 26.71s 3.06 26.23s 2.04

SA
S

wins vs. w. r. t. runtime / gap - - 37.6% 29.5% 27.4% 23.4% 0.0% 0.0%
ties vs. w. r. t. runtime / gap - - 41.0% 61.3% 40.3% 62.2% 31.3% 64.3%

losses vs. w. r. t. runtime / gap - - 21.5% 9.2% 32.3% 14.4% 68.7% 35.7%
both optimal / primal feasible - - 1571 2698 1608 2743 1785 2868

only row optimal / primal feasible - - 214 170 177 125 0 0
only column optimal / primal feasible - - 42 13 66 18 347 89

neither optimal / primal feasible - - 1268 214 1244 209 963 138

D
S

wins vs. w. r. t. runtime / gap 21.5% 9.2% - - 15.6% 12.2% 0.0% 0.0%
ties vs. w. r. t. runtime / gap 41.0% 61.3% - - 44.0% 63.5% 31.1% 58.2%

losses vs. w. r. t. runtime / gap 37.6% 29.5% - - 40.4% 24.3% 68.9% 41.8%
both optimal / primal feasible 1571 2698 - - 1554 2672 1613 2711

only row optimal / primal feasible 42 13 - - 59 39 0 0
only column optimal / primal feasible 214 170 - - 120 89 519 246

neither optimal / primal feasible 1268 214 - - 1362 295 963 138

SB
S

wins vs. w. r. t. runtime / gap 32.3% 14.4% 40.4% 24.3% - - 0.0% 0.0%
ties vs. w. r. t. runtime / gap 40.3% 62.2% 44.0% 63.5% - - 31.2% 60.0%

losses vs. w. r. t. runtime / gap 27.4% 23.4% 15.6% 12.2% - - 68.8% 40.0%
both optimal / primal feasible 1608 2743 1554 2672 - - 1674 2761

only row optimal / primal feasible 66 18 120 89 - - 0 0
only column optimal / primal feasible 177 125 59 39 - - 458 196

neither optimal / primal feasible 1244 209 1362 295 - - 963 138

V
B

S

wins vs. w. r. t. runtime / gap 68.7% 35.7% 68.9% 41.8% 68.8% 40.0% - -
ties vs. w. r. t. runtime / gap 31.3% 64.3% 31.1% 58.2% 31.2% 60.0% - -

losses vs. w. r. t. runtime / gap 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% - -
both optimal / primal feasible 1785 2868 1613 2711 1674 2761 - -

only row optimal / primal feasible 347 89 519 246 458 196 - -
only column optimal / primal feasible 0 0 0 0 0 0 - -

neither optimal / primal feasible 963 138 963 138 963 138 - -

The accumulated evidence strongly supports the effectiveness of the SAS in line with
our expectations. Training for runtime (MIP gap) results in the SAS exhibiting a smaller
mean runtime (MIP gap) compared to the DS or SBS, thereby closing the default-VBS

229

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

Figure 7.5.7: Instance-wise comparison when using MIP gap as the training label. Red circles
represent the default solver and blue crosses the single-best solver.

performance gap by 47.2% (62.2%). Training for MIP gap not only led to the SAS per-
forming favorably to the DS or SBS in terms of MIP gap but also in terms of runtime.
However, the reverse did not hold when training for runtime. For practitioners who can-
not express a clear preference for either runtime or MIP gap as the primary objective, our
study suggests that using the MIP gap as a training label may be preferable. It is worth
noting that this conclusion stands in contrast to the literature, where MIP is often treated
as a decision problem using PAR-10 scoring on runtime, while completely neglecting the
effects of the MIP gap after a runtime limit (see Section 7.2 and references therein).

The SAS, trained with a weighted sum as the label (Table 7.5.6 and Figure 7.5.8),
closely mirrors mean runtimes and MIP gaps compared to explicit training for individual

230

7.5 Computational Experiments and their Numerical Results

objectives (30.6s, 0.77 vs. 30.58s, 0.79). Notably, it outperforms explicit training for
MIP gap by finding more feasible solutions (2875 vs. 2868, Table 7.5.5) and matches the
number of optimal solutions found in training for runtime (1862 vs. 1863, Table 7.5.4).
Moreover, when compared to the DS (SBS), it only loses concerning runtime and MIP gap
in 12.9% and 11.7% (25.6% and 15.5%) of all cases, respectively. In comparison to training
with distinct labels (see Tables 7.5.4–7.5.5), the losses concerning the metric outside the
used training label were nearly twice as large. In summary, this straightforward approach
achieves the most balanced performance among the three tested training labels.

Table 7.5.6: Results obtained when using the weighted sum of runtime and MIP gap as the training
label.

SAS DS SBS VBS
algorithms 848 1 3 1264

feasible 2875 2711 2767 2957
optimal 1862 1626 1678 2134

µ runtime & gap 30.60s 0.77 35.47s 1.30 33.05s 1.12 25.10s 0.48
σ 26.48s 2.54 26.10s 3.25 26.79s 3.03 26.23s 2.04

SA
S

wins vs. w. r. t. runtime / gap - - 47.9% 27.2% 35.7% 21.8% 0.0% 0.0%
ties vs. w. r. t. runtime / gap - - 39.2% 61.2% 38.7% 62.6% 31.3% 66.1%

losses vs. w. r. t. runtime / gap - - 12.9% 11.7% 25.6% 15.5% 68.7% 33.9%
both optimal / primal feasible - - 1592 2702 1639 2753 1860 2875

only row optimal / primal feasible - - 268 173 221 122 0 0
only column optimal / primal feasible - - 21 9 38 14 272 82

neither optimal / primal feasible - - 1214 211 1197 206 963 138

D
S

wins vs. w. r. t. runtime / gap 12.9% 11.7% - - 11.4% 9.1% 0.0% 0.0%
ties vs. w. r. t. runtime / gap 39.2% 61.2% - - 44.4% 66.6% 31.1% 58.2%

losses vs. w. r. t. runtime / gap 47.9% 27.2% - - 44.2% 24.3% 68.9% 41.8%
both optimal / primal feasible 1592 2702 - - 1569 2688 1613 2711

only row optimal / primal feasible 21 9 - - 44 23 0 0
only column optimal / primal feasible 268 173 - - 108 79 519 246

neither optimal / primal feasible 1214 211 - - 1374 305 963 138

SB
S

wins vs. w. r. t. runtime / gap 25.6% 15.5% 44.2% 24.3% - - 0.0% 0.0%
ties vs. w. r. t. runtime / gap 38.7% 62.6% 44.4% 66.6% - - 31.4% 60.3%

losses vs. w. r. t. runtime / gap 35.7% 21.8% 11.4% 9.1% - - 68.6% 39.7%
both optimal / primal feasible 1639 2753 1569 2688 - - 1677 2767

only row optimal / primal feasible 38 14 108 79 - - 0 0
only column optimal / primal feasible 221 122 44 23 - - 455 190

neither optimal / primal feasible 1197 206 1374 305 - - 963 138

V
B

S

wins vs. w. r. t. runtime / gap 68.7% 33.9% 68.9% 41.8% 68.6% 39.7% - -
ties vs. w. r. t. runtime / gap 31.3% 66.1% 31.1% 58.2% 31.4% 60.3% - -

losses vs. w. r. t. runtime / gap 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% - -
both optimal / primal feasible 1860 2875 1613 2711 1677 2767 - -

only row optimal / primal feasible 272 82 519 246 455 190 - -
only column optimal / primal feasible 0 0 0 0 0 0 - -

neither optimal / primal feasible 963 138 963 138 963 138 - -

To underline the seemingly superior performance of using the weighted sum as a training

231

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

Figure 7.5.8: Instance-wise comparison when using the weighted sum of runtime and MIP gap as
the training label. Red circles represent the default solver and blue crosses the single-best solver.

label, a series of one-sided Wilcoxon signed-rank tests were performed to determine the
statistical significance of our results (Wilcoxon, 1945). The following hypotheses were
used:

• H0,t(x): The distribution underlying the pairwise instance runtime differences be-
tween the x solver minus the SAS is stochastically less or equal to a distribution
symmetric about zero.

• H1,t(x): The distribution underlying the pairwise instance runtime difference be-
tween the x solver minus the SAS is stochastically greater than a distribution sym-
metric about zero.

232

7.6 Conclusion

The corresponding hypotheses H0,g(x) and H1,g(x) were used concerning MIP gap instead
of runtime. Given a 5% confidence level the following holds for both the DS and SBS (as
arguments x). When using the runtime as training label, we can reject H0,t but cannot
reject H0,g. Conversely, when using the MIP gap as training label, we can reject H0,g but
fail to reject H0,t. Only when training for the weighted sum of runtime and gap are we
able to reject both H0,t and H0,g.

7.6 Conclusion

In this paper, the problem of selecting a configuration for a MIP solver on a per-instance
basis was studied from the perspective of the ASP. The study began in Section 7.2 with
a literature overview that discussed existing approaches for enhancing the performance
of MIP solvers. This concerned the ACP and ASP as static approaches and further,
dynamic approaches. In Section 7.3, a concise problem definition of the ASP was provided,
following the foundational work of Rice (1976). The standard approach in the literature
is to learn a regressor for each algorithm or to perform a binary classification for all pairs
of algorithms (Kerschke et al., 2019); however, this approach becomes impractical with
a large number of algorithms. Therefore, in Section 7.4 a methodology that follows the
general idea of EML (Lombardi et al., 2017) was proposed. In a nutshell, EML employs ML
to derive the components of a prescriptive optimization problem that cannot intuitively be
established otherwise. In more detail, given historical performance data, a RF regressor
was learnt (offline) as an approximation of a solver’s performance that depends on its
algorithmic configuration and instance features. The learnt RF model was integrated
into a prescriptive optimization model, and a tailored B&B procedure allowed for the
efficient computation of the (predictably) optimal configuration of a solver for a given
instance. The methodology was evaluated in Section 7.5, using the MIPLIB benchmark
and a state-of-the-art solver. Noteworthy, the MIPLIB attempts to reflect the richness
of challenges in various OR domains. By using heterogenous instances and considering
thousands of algorithms, the study differs from related works in the context of the ASP.
The experiments provided strong evidence that the proposed methodology can significantly
narrow the performance gap between the default solver and the virtual-best solver in terms
of average runtime and MIP gap. To be more precise, we were able to close the performance
gap between the default and virtual-best solver by about half w. r. t. average runtime and
MIP gap; and this corresponds approximately to the performance of a virtual solver that
is located in the top ten percentile of all solvers. Concerns were raised regarding the use
of runtime as a training label, as commonly done in the literature, particularly due to the
impact on the number of feasible solutions and MIP gap. The experiments suggested that

233

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

a weighted training label, considering both runtime and MIP gap, is preferable.
We believe that this paper provides not only a compelling argument for the benefits

of studying the ASP in the context of MIP, but also to the more general, continued
coalescence of predictive and prescriptive analytics on a methodological level. Despite the
success demonstrated in this proof-of-concept, there remain open research questions that
extend beyond the scope of this paper. One avenue for further exploration is the search for
alternative features that are broadly applicable to MIP. Moreover, the current framework
only makes a static choice. Exploring a more dynamic variant that incorporates feedback
during the algorithm’s execution could lead to superior performance. Finally, we believe
that a larger community effort is required when it comes to nurturing and curating an
even larger and more diverse dataset. We hope to explore some of these options in the
future.

7.7 References

Accorsi, Luca, Andrea Lodi, and Daniele Vigo (2022). “Guidelines for the computational
testing of machine learning approaches to vehicle routing problems”. In: Operations
Research Letters 50.2, pp. 229–234.

Adenso-Díaz, Belarmino and Manuel Laguna (2006). “Fine-Tuning of Algorithms Us-
ing Fractional Experimental Designs and Local Search”. In: Operations Research 54.1,
pp. 99–114.

Ansótegui, Carlos, Meinolf Sellmann, and Kevin Tierney (2009). “A Gender-Based Genetic
Algorithm for the Automatic Configuration of Algorithms”. In: Principles and Practice of
Constraint Programming. Lecture Notes in Computer Science 5732. Berlin, Heidelberg:
Springer, pp. 142–157.

Ansótegui, Carlos et al. (2015). “Model-Based Genetic Algorithms for Algorithm Con-
figuration”. In: Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, pp. 733–739.

Auer, Peter, Nicolò Cesa-Bianchi, and Paul Fischer (2002). “Finite-time Analysis of the
Multiarmed Bandit Problem”. In: Machine Learning 47, pp. 235–256.

Bartz-Beielstein, Thomas, Martin Zaefferer, and Frederik Rehbach (2021). “In a Nutshell
– The Sequential Parameter Optimization Toolbox”. In: arXiv:1712.04076 [cs.MS].

Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost (2021). “Machine learning for com-
binatorial optimization: A methodological tour d’horizon”. In: European Journal of Op-
erational Research 290.2, pp. 405–421.

Berthold, Timo, Matteo Francobaldi, and Gregor Hendel (2022). “Learning to Use Local
Cuts”. In: arXiv:2206.11618 [math.OC].

234

7.7 References

Berthold, Timo and Gregor Hendel (2021). “Learning To Scale Mixed-Integer Programs”.
In: Proceedings of the AAAI Conference on Artificial Intelligence 35.5, pp. 3661–3668.

Bertsimas, Dimitris and Jack Dunn (2017). “Optimal classification trees”. In: Machine
Learning 106.7, pp. 1039–1082.

Birattari, Mauro (2009). Tuning metaheuristics: a machine learning perspective. 2nd ed.
Studies in Computational Intelligence Vol. 197. Berlin: Springer.

Birattari, Mauro et al. (2010). “F-Race and Iterated F-Race: An Overview”. In: Experimen-
tal Methods for the Analysis of Optimization Algorithms. Ed. by Thomas Bartz-Beielstein
et al. Berlin, Heidelberg: Springer, pp. 311–336.

Bischl, Bernd et al. (2016). “ASlib: A benchmark library for algorithm selection”. In:
Artificial Intelligence 237, pp. 41–58.

Bixby, Robert E., Andrew E. Boyd, and Ronni R. Indovina (1992). “MIPLIB: a test set
of mixed integer programming problems”. In: SIAM News 25.2, p. 16.

Breiman, Leo (1996). “Bagging predictors”. In: Machine Learning 24.2, pp. 123–140.
Breiman, Leo (2001). “Random Forests”. In: Machine Learning 45.1, pp. 5–32.
Breiman, Leo et al. (1998). Classification and regression trees. 1st ed. Boca Raton: Chap-
man & Hall/CRC.

Chmiela, Antonia et al. (2021). “Learning to Schedule Heuristics in Branch and Bound”.
In: Advances in Neural Information Processing Systems. Vol. 34, pp. 24235–24246.

Eggensperger, Katharina, Marius Lindauer, and Frank Hutter (2019). “Pitfalls and Best
Practices in Algorithm Configuration”. In: Journal of Artificial Intelligence Research 64,
pp. 861–893.

Fair Isaac Corporation (2023). FICO Xpress Optimizer Reference Manual.
Firat, Murat et al. (2020). “Column generation based heuristic for learning classification
trees”. In: Computers & Operations Research 116, p. 104866.

Gittins, J. C. (1979). “Bandit Processes and Dynamic Allocation Indices”. In: Journal of
the Royal Statistical Society: Series B (Methodological) 41.2, pp. 148–164.

Gleixner, Ambros et al. (2021). “MIPLIB 2017: data-driven compilation of the 6th mixed-
integer programming library”. In: Mathematical Programming Computation 13, pp. 443–
490.

Gupta, Prateek et al. (2020). “Hybrid Models for Learning to Branch”. In: Advances in
Neural Information Processing Systems. Vol. 33, pp. 18087–18097.

Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual.
Hastie, Trevor, Robert Tibshirani, and J. H. Friedman (2009). The elements of statistical

learning: data mining, inference, and prediction. 2nd ed. Springer series in statistics.
New York: Springer.

235

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

Hinkelmann, Klaus and Oscar Kempthorne (1994). Design and analysis of experiments.
Rev. ed. Wiley series in probability and mathematical statistics. New York: Wiley.

Hoos, Holger H. (2011). “Automated Algorithm Configuration and Parameter Tuning”.
In: Autonomous Search. Ed. by Youssef Hamadi, Eric Monfroy, and Frédéric Saubion.
Berlin, Heidelberg: Springer, pp. 37–71.

Hoos, Holger H., Frank Hutter, and Kevin Leyton-Brown (2021). “Automated Configura-
tion and Selection of SAT Solvers”. In: Handbook of Satisfiability. Ed. by Armin Biere
et al. Frontiers in Artificial Intelligence and Applications 336. IOS Press, pp. 481–507.

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown (2010). “Automated Configura-
tion of Mixed Integer Programming Solvers”. In: Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems. Lecture Notes
in Computer Science 6140. Berlin, Heidelberg: Springer, pp. 186–202.

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown (2011). “Sequential Model-
Based Optimization for General Algorithm Configuration”. In: Learning and Intelligent
Optimization. Lecture Notes in Computer Science 6683. Berlin, Heidelberg: Springer,
pp. 507–523.

Hutter, Frank, Holger H. Hoos, and Thomas Stützle (2007). “Automatic Algorithm Con-
figuration Based on Local Search”. In: Proceedings of the 22nd national conference on
Artificial intelligence. Vol. 2. AAAI Press, pp. 1152–1157.

Hutter, Frank et al. (2006). “Performance Prediction and Automated Tuning of Random-
ized and Parametric Algorithms”. In: Principles and Practice of Constraint Program-
ming. Lecture Notes in Computer Science 4204. Berlin, Heidelberg: Springer, pp. 213–
228.

Hutter, Frank et al. (2009). “ParamILS: An Automatic Algorithm Configuration Frame-
work”. In: Journal of Artificial Intelligence Research 36, pp. 267–306.

Iommazzo, Gabriele (2021). “Algorithmic configuration by learning and optimization”.
Ph.D. thesis. Institut polytechnique de Paris.

Iommazzo, Gabriele et al. (2020a). “A Learning-Based Mathematical Programming For-
mulation for the Automatic Configuration of Optimization Solvers”. In: Machine Learn-
ing, Optimization, and Data Science. Lecture Notes in Computer Science 12565. Cham:
Springer, pp. 700–712.

Iommazzo, Gabriele et al. (2020b). “Learning to Configure Mathematical Programming
Solvers by Mathematical Programming”. In: Learning and Intelligent Optimization. Lec-
ture Notes in Computer Science 12096. Cham: Springer, pp. 377–389.

Jones, Donald R. (2001). “A Taxonomy of Global Optimization Methods Based on Re-
sponse Surfaces”. In: Journal of Global Optimization 21.4, pp. 345–383.

236

7.7 References

Jones, Donald R., Matthias Schonlau, and William J. Welch (1998). “Efficient Global
Optimization of Expensive Black-Box Functions”. In: Journal of Global Optimization
13.4, pp. 455–493.

Kadioglu, Serdar et al. (2010). “ISAC – Instance-Specific Algorithm Configuration”. In:
Proceedings of the 19th European Conference on Artificial Intelligence. IOS Press,
pp. 751–756.

Kerschke, Pascal and Heike Trautmann (2019). “Automated Algorithm Selection on Con-
tinuous Black-Box Problems by Combining Exploratory Landscape Analysis and Ma-
chine Learning”. In: Evolutionary Computation 27.1, pp. 99–127.

Kerschke, Pascal et al. (2018). “Leveraging TSP Solver Complementarity through Machine
Learning”. In: Evolutionary Computation 26.4, pp. 597–620.

Kerschke, Pascal et al. (2019). “Automated Algorithm Selection: Survey and Perspectives”.
In: Evolutionary Computation 27.1, pp. 3–45.

Khalil, Elias B. et al. (2016). “Learning to branch in mixed integer programming”. In:
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Vol. 30. AAAI
Press, pp. 724–731.

Khalil, Elias B. et al. (2017). “Learning to Run Heuristics in Tree Search”. In: Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 659–
666.

Koch, Thorsten et al. (2022). “Progress in mathematical programming solvers from 2001
to 2020”. In: EURO Journal on Computational Optimization 10, p. 100031.

Kotthoff, Lars (2016). “Algorithm Selection for Combinatorial Search Problems: A Sur-
vey”. In: Data Mining and Constraint Programming. Lecture Notes in Computer Science
10101. Cham: Springer, pp. 149–190.

Kotthoff, Lars et al. (2015). “Improving the State of the Art in Inexact TSP Solving Using
Per-Instance Algorithm Selection”. In: Learning and Intelligent Optimization. Lecture
Notes in Computer Science 8994. Cham: Springer, pp. 202–217.

Land, A. H. and A. G. Doig (1960). “An Automatic Method of Solving Discrete Program-
ming Problems”. In: Econometrica 28.3, pp. 497–520.

Laporte, Gilbert and Paolo Toth (2022). “A gap in scientific reporting”. In: 4OR 20,
pp. 169–171.

Leyton-Brown, Kevin, Eugene Nudelman, and Yoav Shoham (2002). “Learning the Em-
pirical Hardness of Optimization Problems: The Case of Combinatorial Auctions”. In:
Principles and Practice of Constraint Programming. Lecture Notes in Computer Science
2470. Berlin, Heidelberg: Springer, pp. 556–572.

237

7 Leveraging ML for the Per-Instance Configuration of MIP Solvers: An AS Approach

Leyton-Brown, Kevin et al. (2003). “A Portfolio Approach to Algorithm Selection”. In:
Proceedings of the 18th international joint conference on Artificial intelligence. Morgan
Kaufmann Publishers Inc., pp. 1542–1543.

Lodi, Andrea (2013). “The Heuristic (Dark) Side of MIP Solvers”. In: Hybrid Metaheuris-
tics. Ed. by El-Ghazali Talbi. Studies in Computational Intelligence 434. Berlin, Hei-
delberg: Springer, pp. 273–284.

Lodi, Andrea and Andrea Tramontani (2014). “Performance Variability in Mixed-Integer
Programming”. In: Theory Driven by Influential Applications. Ed. by J. Cole Smith.
Theory Driven by Influential Applications, pp. 1–12.

Lodi, Andrea and Giulia Zarpellon (2017). “On learning and branching: a survey”. In:
TOP 25.2, pp. 207–236.

Lombardi, Michele, Michela Milano, and Andrea Bartolini (2017). “Empirical decision
model learning”. In: Artificial Intelligence 244, pp. 343–367.

López-Ibáñez, Manuel et al. (2016). “The irace package: Iterated racing for automatic
algorithm configuration”. In: Operations Research Perspectives 3, pp. 43–58.

Loreggia, Andrea et al. (2016). “Deep learning for algorithm portfolios”. In: Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence. Vol. 30. AAAI Press, pp. 1280–
1286.

Maron, Oden and Andrew W. Moore (1997). “The Racing Algorithm: Model Selection for
Lazy Learners”. In: Artificial Intelligence Review 11.1, pp. 193–225.

Mitchell, Tom M. (1997). Machine Learning. McGraw-Hill series in computer science. New
York: McGraw-Hill.

Mittelmann, Hans D. (2020). “Benchmarking Optimization Software - a (Hi)Story”. In:
SN Operations Research Forum 1.2, pp. 1–6.

Mockus, J., V. Tiesis, and A. Zilinskas (1978). “The application of Bayesian methods for
seeking the extremum”. In: Towards Global Optimization 2, pp. 117–129.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12, pp. 2825–2830.

Petropoulos, Fotios et al. (2023). “Operational Research: Methods and Applications”. In:
arXiv:2303.14217 [math.OC].

Probst, Philipp, Anne-Laure Boulesteix, and Bernd Bischl (2019). “Tunability: Importance
of Hyperparameters of Machine Learning Algorithms”. In: Journal of Machine Learning
Research 20.1, pp. 1934–1965.

Pushak, Yasha and Holger H. Hoos (2018). “Algorithm Configuration Landscapes: More
Benign Than Expected?” In: Parallel Problem Solving from Nature. Lecture Notes in
Computer Science 11102. Cham: Springer, pp. 271–283.

238

7.7 References

Rice, John R. (1976). “The Algorithm Selection Problem”. In: Advances in Computers.
Vol. 15. Elsevier, pp. 65–118.

Russell, Stuart J., Peter Norvig, and Ernest Davis (2010). Artificial intelligence: a mod-
ern approach. 3rd ed. Prentice Hall series in artificial intelligence. Upper Saddle River:
Prentice Hall.

Schede, Elias et al. (2022). “A Survey of Methods for Automated Algorithm Configuration”.
In: Journal of Artificial Intelligence Research 75, pp. 425–487.

Stone, M. (1974). “Cross-Validatory Choice and Assessment of Statistical Predictions”. In:
Journal of the Royal Statistical Society. Series B (Methodological) 36.2, pp. 111–147.

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement learning: an introduction.
2nd ed. Adaptive computation and machine learning series. Cambridge, The MIT Press.

Tang, Yunhao, Shipra Agrawal, and Yuri Faenza (2020). “Reinforcement Learning for
Integer Programming: Learning to Cut”. In: Proceedings of the 37th International Con-
ference on Machine Learning, pp. 9367–9376.

Wilcoxon, Frank (1945). “Individual comparisons by ranking methods”. In: Biometrics
Bulletin 1.6, pp. 80–83.

Xu, Lin et al. (2008). “SATzilla: Portfolio-based Algorithm Selection for SAT”. In: Journal
of Artificial Intelligence Research 32, pp. 565–606.

Xu, Lin et al. (2011). “Hydra-MIP: Automated algorithm configuration and selection for
mixed integer programming”. In: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence. AAAI Press, pp. 16–30.

Zarpellon, Giulia et al. (2021). “Parameterizing Branch-and-Bound Search Trees to Learn
Branching Policies”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35(5). AAAI Press, pp. 3931–3939.

239

8 Summary, Conclusion, and Outlook

This thesis addresses several challenges associated with introducing autonomous auxiliary
vehicles, e. g., drones or robots, into a logistics system from the perspective of Operations
Research (OR). To this end, optimization models are formalized that enable the assessment
of potential benefits of integrating such vehicles into last-mile delivery. As the resulting
models are computationally challenging, the thesis continuously refines the formulations
and develops appropriate algorithms that are capable of producing high-quality solutions
with reasonable computational effort. This facilitates effective problem-solving and aids in
shaping the design of future delivery fleets, laying the groundwork for future decision sup-
port systems. In OR, Mixed-Integer Programming (MIP) solvers play a pivotal role. As is
evident by this thesis, this concerns solving Mixed-Integer Linear Program (MILP) formu-
lations directly or integrating parts of them in matheuristic frameworks. This raises the
fundamental question if the performance of such solvers can be enhanced in any meaning-
ful way, by adjusting their default algorithmic behavior on a per-instance basis. We trace
the roots of this problem to the Algorithm Selection Problem (ASP) and develop a novel
methodology that leverages Machine Learning (ML) to formalize a prescriptive optimiza-
tion problem. By using a tailored Branch-and-Bound (B&B) approach, this methodology
enables us to effectively compute the (predictably) optimal configuration of a MIP solver
on a per-instance basis with minimal computational overhead. The potential impact ex-
tends beyond specific problem domains, fostering a more comprehensive and synergistic
approach to decision-making and optimization.
This chapter summarizes the contents of this thesis and lists its main contributions in

Section 8.1. The conclusion of this thesis includes an outlook concerning possibilities for
future research in Section 8.2.

8.1 Summary and Conclusion

In Chapter 2 we introduce the Vehicle Routing Problem with Drones and En Route Op-
erations (VRPDERO) (Schermer et al., 2019a). This problem involves the collaborative
operation of trucks and drones in last-mile delivery. The distinguishing feature of the
VRPDERO is that it allows drones to be launched and retrieved by the truck not only
at customer locations but also en route. We formulate the VRPDERO as a MILP; in

241

8 Summary, Conclusion, and Outlook

addition, several effective Valid Inequalities (VIEQs) are proposed. The computational
experiments affirm the effectiveness of the VIEQ; however, using a commercial solver only
some small-sized problems can be solved optimally within reasonable time. To address this
limitation, a heuristic is introduced that leverages the concepts of Variable Neighborhood
Search and Tabu Search. This heuristic incorporates a drone insertion procedure as a local
search operator, which is embedded within a scalable framework. An extensive computa-
tional study is presented, investigating the impact of various drone design parameters on,
e. g., the makespan and algorithmic runtime.
This work contributes by formally exploring en route launch and retrieval, an aspect

scarcely investigated in the literature. The numerical results demonstrate the potential
advantages of reducing the makespan and enhancing drone utilization. Particularly, en
route operations prove most beneficial when either the drone’s endurance is small, al-
lowing for operations that might otherwise be infeasible, or when the drone’s relative
velocity is sufficiently high, enabling more efficient execution of multiple operations. De-
spite these benefits, it remains crucial to acknowledge that introducing en route operations
substantially increases the computational difficulty of the problem, especially when using
a commercial solver. Nonetheless, the proposed heuristic was able to provide high-quality
solutions within short computation time.
In Chapter 3 our focus shifts to the Vehicle Routing Problem with Drones (VRPD)

(Schermer et al., 2019b). The chapter begins with an overview of related problems that
feature trucks and drones in last-mile delivery, highlighting their intricate synchronization
requirements. Following that, we provide an improved MILP formulation of the VRPD and
derive several VIEQs for that model. Noteworthy is the introduction of the matheuristic,
designed to efficiently exploit the structure of the VRPD. At the core of the matheuristic
lies the Drone Assignment and Scheduling Problem (DASP). Given a feasible routing,
the DASP aims to determine an optimal assignment and schedule of drones such that
the makespan is minimized. In this context, we provide two MILP formulations for the
DASP, demonstrating that these formulations can be adjusted to match the most common
assumptions found in the literature. The chapter concludes by presenting the outcomes
and insights gained from extensive computational experiments.
The formal model introduced in this work refines the truck-drone interactions in several

ways, e. g., by incorporating round trip operations. The numerical results underscore the
substantial potential for makespan reduction, achievable by using drones. Moreover, the
results demonstrate that comparable makespan reductions can be achieved with various
drone designs. Despite employing a simple route generation procedure, in terms of compu-
tational efficiency, the matheuristic is fast and able to consistently provide optimal or near
optimal solutions. This underscores the relevance of the DASP as heuristic component for

242

8.1 Summary and Conclusion

solving such problems. In comparison to Best Known Solutions (BKSs), the matheuristic
performs favorably, reliably finding solutions that are within a 0.5% margin to the BKSs.
Notably, the model and matheuristic also contributed to the discovery of several new and
improved BKSs. Overall, the matheuristic can be seen as a natural evolution of the drone
insertion procedure proposed in Chapter 2. As demonstrated, this approach is scalable
and easily adaptable to the most common assumptions. Consequently, this work also
serves as an attempt to unify the divergent streams in the fast-growing literature.
In Chapter 4, the focus is on introducing the Traveling Salesman Drone Station Location

Problem (TSDSLP) (Schermer et al., 2020c). This chapter provides a different perspective
on last-mile logistics where, instead of directly pairing trucks with auxiliary vehicles, the
latter are located in micro-depots. Two MILP formulations for the problem are presented:
one is compact and the other one features an exponential number of constraints. To
address the latter, a dynamic separation procedure is proposed. An extensive numerical
study is conducted, revealing that suitable auxiliary vehicles, strategically positioned in
micro-depots, can yield a significant reduction in the delivery time.
In contrast to the computational challenges posed by the VRPD, the study demonstrates

that the TSDSLP is less challenging, due to the reduced need for synchronization between
different vehicles. Despite this, significant savings w. r. t. delivery time are possible, espe-
cially if the number of stationed robots is sufficiently large. Notably, this holds true even
for slow-moving auxiliary vehicles (e. g., wheeled robots). This finding is highly relevant,
as such vehicles are generally less beneficial in related problems such as the Traveling
Salesman Problem with Drone (TSPD) or VRPD.
Chapter 5 introduces the Drone-Assisted Traveling Salesman Problem with Robot Sta-

tions (TSPDRS) (Schermer et al., 2020b), merging the previous concepts of the TSPD
with the TSDSLP. The problem is formulated as a MILP that substantially improves
upon previous formulations. The chapter presents the numerical results of our compu-
tational study, showcasing that a state-of-the-art solver yields acceptable results within
reasonable runtime for small-sized instances. Moreover, the results indicate that inte-
grating a truck-drone tandem with properly situated robot stations can bring significant
reductions in the delivery time or operational costs.
The prevailing objective in the related scientific literature typically revolves around

minimizing the makespan. The study demonstrates a crucial relationship where optimizing
the makespan aligns closely with reduced costs. In contrast, optimizing the operational
costs may increase the makespan substantially. Importantly, our experiments indicate
that the makespan objective is far more challenging from a computational perspective.
Furthermore, the findings highlight that the operational utilization of vehicles varies based
on the chosen objective function. Specifically, when the goal is to minimize costs, drone

243

8 Summary, Conclusion, and Outlook

round trips prove to be a suitable mode of operation. However, it is important to note
that such operations may lead to a significant increase in mission time. This emphasizes
the trade-offs and considerations involved in selecting the appropriate objective function
to align with specific logistics goals and constraints.

Chapter 6 is dedicated to investigating the TSPD (Schermer et al., 2020a). The chapter
begins with a review of existing MILP formulations and other exact methods that are
used for solving variants of the problem. Given the state of research, it becomes evident
that only small-sized instances can be solved to proven optimality. In response to this
challenge, we propose two new and improved MILP formulations. Still, these formulations
have one major disadvantage: numerous big-M constraints are required to accurately
model the complex interactions between the truck and drone. To address this limitation,
motivated by this disadvantage and corroborated by the findings of previous chapters,
a third formulation for the TSPD is introduced that features an exponential number of
constraints. By taking into account the possible modes of operation, this formulation
cleverly decomposes the temporal relationships of the TSPD into separate components.
Consequently, the model eliminates the need for big-M constraints entirely. To manage
the exponential number of constraints, a dynamic separation procedure through a Branch-
and-Cut (B&C) algorithm is proposed. An extensive computational study is conducted,
analyzing the quality of the different formulations in finding optimal TSPD solutions across
various benchmark instances from the literature.
The study contributes by offering additional insights into how the formulations perform

in solving various benchmark instances from the literature and understanding the factors
that influence their performance. Notably, the B&C approach showed strong performance
across the different instances. Indeed, using this approach, small instances with 9 or 10
customers can be solved in just a few seconds and several larger instances with 19 or
20 customers within an hour. Consequently, this B&C algorithm challenges the existing
state-of-the-art in solving the TSPD and allowed for the identification of several further,
previously unknown optimal solutions. This advancement stands in stark contrast to the
earliest work of Murray and Chu (2015), where even small-sized instances with only 10
customers could not be solved optimally within 30 minutes. Thereby, this study underlines
the potentials of refining existing formulations through adept problem modeling.
In Chapter 7 the problem of selecting a configuration for a MIP solver on a per-instance

basis is studied from the perspective of the ASP (Schermer, 2023). This study begins with
a literature overview that discusses existing approaches for enhancing the performance of
MIP solvers. Following the foundational work of Rice (1976), a concise problem definition
of the ASP is given. Generally, the standard approach in the literature is to learn a
regressor for each algorithm or to perform a binary classification for all pairs of algorithms;

244

8.2 Outlook

however, this approach is not scalable and is therefore only suitable in presence of a
handful of algorithms. Therefore, a novel methodology is proposed that follows the general
idea of Empirical Model Learning (EML) (Lombardi et al., 2017). In a nutshell, EML
employs ML to derive the components of a prescriptive optimization problem that cannot
easily be established otherwise. In our case, given historical performance data, a Random
Forest (RF) regressor is learnt (offline) as an approximation of a solver’s performance
that depends on its algorithmic configuration and instance features. It is demonstrated
that this allows us to derive a prescriptive optimization problem whose components result
directly from the RF ML model. Given an instance, this problem can be efficiently solved
by a tailored B&B procedure. All things considered, this empowers us to compute (online)
the (predictably) optimal configuration of a solver on a per-instance basis with minimal
computational overhead. By using the well known MIPLIB and a state-of-the-art solver,
the proposed methodology is evaluated in an extensive numerical study.
This study is the first of its kind to explore the viability of high-level features of MILPs

and several thousand distinct algorithms across heterogeneous instances in the context of
the ASP, thereby making unique contributions to the field. Following the computational
experiments, compelling evidence supports the viability of the proposed methodology. To
be more precise, the effective integration of ML and OR concepts is demonstrated through
a sophisticated mapping from instances to configurations of a state-of-the-art solver. This
approach successfully narrows the performance gap between the default and virtual-best
solver by about half w. r. t. the average runtime and MIP gap. We believe that this paper
is a strong testament not only to the benefits of applying the ASP in the context of MIP,
but also underscores the more general, continued coalescence of predictive and prescriptive
analytics on a methodological level.

8.2 Outlook

In exploring the challenges addressed in this thesis, several promising future research
avenues have emerged. With regard to the challenges and opportunities related to aux-
iliary vehicles, we have hinted at possibilities for extending the current state of research
throughout this thesis. Indeed, there are three essential focal points. First, improving
existing models and further advancing exact methods. Second, the refinement and design
of heuristic methods. Third, the continuous evolution of more generalized models. In this
section, these aspects are emphasized, while also providing a glance at the developments
that occurred since the related papers have been published.
As hinted in Chapter 6, a straightforward improvement of the model in that chapter

may be achieved by adjusting the subtour elimination constraints (Dantzig et al., 1954).

245

8 Summary, Conclusion, and Outlook

Therefore, it comes as no surprise that the research on improved models and exact al-
gorithms has not halted since that paper has been published. This concerns the TSPD
in particular and includes approaches that are based on B&B (Dell’Amico et al., 2021a),
B&C (Cavani et al., 2021; Dell’Amico et al., 2022), or Branch-and-Price (B&P) (Roberti
and Ruthmair, 2021). Currently, the most effective of these approaches is a B&P approach
that can solve most instances with 19 customers in the order of a few minutes and several
instances with 29 customers in nearly an hour (Roberti and Ruthmair, 2021). Research on
improved models and exact algorithms for the VRPD has also continued. In this regard,
it is well known that Branch-Price-and-Cut (BPC) is the leading exact method for many
variants of Vehicle Routing Problems (VRPs) (Costa et al., 2019). Consequently, it is not
surprising that new ideas based on B&C (Tamke and Buscher, 2021; Tiniç et al., 2023)
and B&P or BPC (Schmidt et al., 2023; Zhen et al., 2023; Zhou et al., 2023) exist in the
literature. Nevertheless, the VRPD also remains difficult to be solved optimally, as the
best of these approaches can only tackle some instances with 29 customers in a matter of
nearly an hour. Still, it is important to reflect on what has already been achieved in this
thesis and subsequent works that followed: small-sized problems with only 9 customers,
which could not be solved within 30 minutes nearly 10 years ago (Murray and Chu, 2015),
no longer pose a major challenge. Nevertheless, taking into account these references, there
is a large opportunity to advance B&C methods to address the TSPD or B&P methods to
address the VRPD. Noteworthy, several of these papers (see, e. g., (Schmidt et al., 2023))
confirm the observation that we made in Chapter 5: i. e., from a computational point of
view, the minimum makespan objective remains far more challenging than the minimum
cost objective. This reinforces the need for further developments in optimization tech-
niques, especially tailored for makespan-related objectives. The temporal decomposition
showcased in Chapter 6 could be a starting point for future endeavors.

Based on the fact that both the TSPD and VRPD remain difficult to be solved op-
timally, our introductory call for the development of problem-specific heuristics remains
relevant. Throughout this thesis, we have illustrated that the development of heuristics is
complicated by the fact that problem assumptions in the literature often deviate slightly.
As such, this can require the development of problem-specific local search operators that
respect the intricate synchronization requirements, which may not readily be adjusted to
match different assumptions (see, e. g., (Chen et al., 2021; Moeini et al., 2023; Sacramento
et al., 2019)). This observation reaffirms our belief in the relevance of the matheuristic
that was presented in Chapter 3. We demonstrated that this approach can easily be ad-
justed to match the most common problem assumptions. Although, the simplistic route
generation procedure in that chapter allowed for very promising results, further refine-
ment seems possible. A straightforward extension would be to integrate state-of-the-art

246

8.2 Outlook

algorithms for VRPs (e. g., (Accorsi and Vigo, 2021; Vidal, 2022)) into the matheuristic
framework. Moreover, the DASP may be improved by drawing from the recent advance-
ments in modeling. Finally, there is an opportunity to directly apply the matheuristic
idea to all other problems that were presented in Chapters 2–6 or related problems (see,
e. g., (Kloster et al., 2023)).
Concerning the continued development of more general models, the models that were

treated in this thesis are subject to certain simplifying assumptions. The term ‘rich’ VRP
has been coined to denote problems that feature many or all aspects of real-word VRP
applications (Drexl, 2012a). In this regard, the problems studied in the literature are
progressively embracing richness, e. g., by incorporating drones that possess multiple com-
partments (Amine Masmoudi et al., 2022; Sonnenberg et al., 2019) or vehicles that travel
on time-dependent networks (Y. Wang et al., 2022). In addition, there are more realistic
state-of-charge considerations, which more adequately capture the load-dependency and
its impact on the endurance of drones or robots (Cheng et al., 2020; Di Puglia Pugliese
et al., 2021; Kirschstein, 2020; Zhang et al., 2021). Related to that point, several studies
investigate the effects of adjustable speeds of drones in particular (Raj and Murray, 2020;
Tamke and Buscher, 2023) and the consequential impacts on energy consumption. De-
spite these advancements, the actual routing and trajectory optimization of drones may
yet remain more complex than any of the current models can account for (see (Coutinho
et al., 2018) and references therein). On a related note, we find it difficult to find com-
pelling arguments why the launch and retrieval location of drones should be prohibited
from coinciding. Although this assumption simplifies the truck-drone-interaction and is
common in the literature (see, e. g., (Ha et al., 2018; Murray and Chu, 2015; Sacramento
et al., 2019)), more recent works have largely embraced the approach advocated in this
thesis, allowing for such operations (see, e. g., (Roberti and Ruthmair, 2021; Tiniç et al.,
2023)). This point also applies to the en route operations, illustrated in Chapter 2, which
are gaining more traction in the literature (see, e. g., (Masone et al., 2022; Thomas et al.,
2023)). Taking all of these considerations into account, there are several avenues for refin-
ing existing optimization models, to better reflect the intricacies of energy management
and routing when using autonomous auxiliary vehicles.
All of these ideas and developments are a testament to the fact that drones and other

emerging technologies still present unique challenges and research opportunities, which
may be addressed from an OR perspective. However, with great prospects comes great
uncertainty and bridging the proof-of-concept to production gap remains an elusive chal-
lenge for the moment. This requires further contributions, likely extending beyond what
OR can provide on its own as a scientific discipline (Chung et al., 2020; Poikonen and
Campbell, 2020): Thus, it may be important to reflect as a scientific community whether

247

8 Summary, Conclusion, and Outlook

we are accurately modeling the key capabilities of auxiliary vehicles correctly, if we are fo-
cusing on the right objective function (e. g., makespan vs. cost), and in which cases both of
these aspects are embedded in the right model (e. g., one presented in Chapters 2–6). This
introspection will be crucial in ensuring that research aligns with practical implementation
challenges and contributes meaningfully to the evolution of last-mile logistics.
In essence, these overarching questions lead us back to Ackoff’s “unsolved problems in

problem solving” (Ackoff, 1962) and set the stage for a final outlook concerning Chapter 7.
Extending the dataset used in that chapter, e. g., by including the MILP models from pre-
vious chapters or related works (e. g., (Caspar et al., 2023)) is a straightforward possibility.
This raises the question of how new knowledge may be integrated into the RF, once it
has been trained. The trivial approach involves retraining the entire ML model; although
this process is fast, it may not be the most efficient (and certainly not the most elegant)
way. However, the integration of new knowledge concerns not only new instances, but also
different resource limitations than the ones which we considered, in particular different
runtime limits that may be relevant to the end-user. A straightforward possibility could
be to explicitly include such resource limits as features into a single model, which would
make our proposed methodology directly applicable. This would allow determining the
anytime-behavior of any configuration and could be a key component for allowing more
dynamic control throughout the algorithmic process. While the B&B approach can al-
ready determine optimal configurations in a matter of split seconds, further exploration of
different branching strategies than the one which we proposed or the search for improved
bounds could be worthwhile. Exploring alternative, generally applicable MIP features or
other ML models (see also (Lombardi et al., 2017)) also appears to be a viable option.
Although, it must be stressed that the RF is extremely well-suited, because it lends itself
particularly well to be efficiently exploited by our B&B approach. Nonetheless, this may
also hold for other models, such as neural networks. In any case, even when using RFs
as a ML model there are further opportunities. As is most common, the RFs were con-
structed by generating axis-aligned splits; however, testing the same methodology with
RFs that are constructed by using oblique cuts may be worthwhile, as these are able to
express more complex patterns (Murthy et al., 1994). In any case, a weakness of the
demonstrated approach – and to some extent, ML in general – is the fact that a large
dataset is required to effectively train the model. Investigating how performance varies
when only sparse data is available is a crucial question to explore, as this will also prove
to be a key question for scaling the methodology to an even larger set of algorithms and
instances. These considerations set the stage for future research, emphasizing the need
to revisit foundational questions in problem-solving (Ackoff, 1962) and adapting to the
dynamic landscape of prescriptive and predictive optimization (Bengio et al., 2021).

248

8.3 References

We intend to close this thesis with a quote that was popularized by Donald E. Knuth
(Hyde, 2009): “Premature optimization is the root of all evil”. Based on the results of
this thesis, we remain unconvinced that the opposite of that adage has any truth when it
comes to OR. That is to say, we remain highly skeptical that the belated optimization of
poorly designed algorithms and models is the ideal solution to any problem. Instead, we
advocate for a future where the carefully executed development of prescriptive optimization
algorithms and models, as demonstrated in Chapters 2–6, will continue to thrive in a
mutualistic symbiosis with predictive approaches that leverage ML to bring them to their
full potential, as demonstrated in Chapter 7. This symbiosis could hold great promise for
further advancing parts of the discipline.

8.3 References

Accorsi, Luca and Daniele Vigo (2021). “A Fast and Scalable Heuristic for the Solution
of Large-Scale Capacitated Vehicle Routing Problems”. In: Transportation Science 55.4,
pp. 832–856.

Ackoff, Russell L. (1962). “Some Unsolved Problems in Problem Solving”. In: Operational
Research Quarterly 13.1, pp. 1–11.

Amine Masmoudi, M. et al. (2022). “Vehicle routing problems with drones equipped with
multi-package payload compartments”. In: Transportation Research Part E: Logistics
and Transportation Review 164, p. 102757.

Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost (2021). “Machine learning for com-
binatorial optimization: A methodological tour d’horizon”. In: European Journal of Op-
erational Research 290.2, pp. 405–421.

Caspar, Marvin, Daniel Schermer, and Oliver Wendt (2023). “Formulations for the Split
Delivery Capacitated Profitable Tour Problem”. In: Computational Science and Its Ap-
plications. Lecture Notes in Computer Science 13956. Cham: Springer, pp. 82–98.

Cavani, Sara, Manuel Iori, and Roberto Roberti (2021). “Exact methods for the traveling
salesman problem with multiple drones”. In: Transportation Research Part C: Emerging
Technologies 130, p. 103280.

Chen, Cheng, Emrah Demir, and Yuan Huang (2021). “An adaptive large neighborhood
search heuristic for the vehicle routing problem with time windows and delivery robots”.
In: European Journal of Operational Research 294.3, pp. 1164–1180.

Cheng, Chun, Yossiri Adulyasak, and Louis-Martin Rousseau (2020). “Drone routing with
energy function: Formulation and exact algorithm”. In: Transportation Research Part
B: Methodological 139, pp. 364–387.

249

8 Summary, Conclusion, and Outlook

Chung, Sung Hoon, Bhawesh Sah, and Jinkun Lee (2020). “Optimization for drone and
drone-truck combined operations: A review of the state of the art and future directions”.
In: Computers & Operations Research 123, p. 105004.

Costa, Luciano, Claudio Contardo, and Guy Desaulniers (2019). “Exact Branch-Price-
and-Cut Algorithms for Vehicle Routing”. In: Transportation Science 53.4, pp. 946–985.

Coutinho, Walton Pereira, Maria Battarra, and Jörg Fliege (2018). “The unmanned aerial
vehicle routing and trajectory optimisation problem, a taxonomic review”. In: Computers
& Industrial Engineering 120, pp. 116–128.

Dantzig, George B., R. Fulkerson, and S. Johnson (1954). “Solution of a Large-Scale
Traveling-Salesman Problem”. In: Journal of the Operations Research Society of America
2.4, pp. 393–410.

Dell’Amico, Mauro, Roberto Montemanni, and Stefano Novellani (2022). “Exact models
for the flying sidekick traveling salesman problem”. In: International Transactions in
Operational Research 29.3, pp. 1360–1393.

Dell’Amico, Mauro, Roberto Montemanni, and Stefano Novellani (2021a). “Algorithms
based on branch and bound for the flying sidekick traveling salesman problem”. In:
Omega 104, p. 102493.

Di Puglia Pugliese, Luigi, Francesca Guerriero, and Maria Grazia Scutellá (2021). “The
Last-Mile Delivery Process with Trucks and Drones Under Uncertain Energy Consump-
tion”. In: Journal of Optimization Theory and Applications 191.1, pp. 31–67.

Drexl, Michael (2012a). “Rich vehicle routing in theory and practice”. In: Logistics Research
5.1, pp. 47–63.

Ha, Quang Minh et al. (2018). “On the min-cost Traveling Salesman Problem with Drone”.
In: Transportation Research Part C: Emerging Technologies 86, pp. 597–621.

Hyde, Randall (2009). “The Fallacy of Premature Optimization”. In: ACM Ubiquity 10.3,
pp. 1–5.

Kirschstein, Thomas (2020). “Comparison of energy demands of drone-based and ground-
based parcel delivery services”. In: Transportation Research Part D: Transport and En-
vironment 78, p. 102209.

Kloster, Konstantin et al. (2023). “The multiple traveling salesman problem in presence
of drone- and robot-supported packet stations”. In: European Journal of Operational
Research 305.2, pp. 630–643.

Lombardi, Michele, Michela Milano, and Andrea Bartolini (2017). “Empirical decision
model learning”. In: Artificial Intelligence 244, pp. 343–367.

Masone, Adriano, Stefan Poikonen, and Bruce L. Golden (2022). “The multivisit drone
routing problem with edge launches: An iterative approach with discrete and continuous
improvements”. In: Networks 80.2, pp. 193–215.

250

8.3 References

Moeini, Mahdi, Oliver Wendt, and Marius Schummer (2023). “A Bi-objective Routing
Problem with Trucks and Drones: Minimizing Mission Time and Energy Consump-
tion”. In: Computational Science and Its Applications. Lecture Notes in Computer Sci-
ence 14106. Cham: Springer, pp. 291–308.

Murray, Chase C. and Amanda G. Chu (2015). “The flying sidekick traveling salesman
problem: Optimization of drone-assisted parcel delivery”. In: Transportation Research
Part C: Emerging Technologies 54, pp. 86–109.

Murthy, S. K., S. Kasif, and S. Salzberg (1994). “A System for Induction of Oblique
Decision Trees”. In: Journal of Artificial Intelligence Research 2, pp. 1–32.

Poikonen, Stefan and James F. Campbell (2020). “Future directions in drone routing
research”. In: Networks 77.1, pp. 116–126.

Raj, Ritwik and Chase C. Murray (2020). “The multiple flying sidekicks traveling salesman
problem with variable drone speeds”. In: Transportation Research Part C: Emerging
Technologies 120, p. 102813.

Rice, John R. (1976). “The Algorithm Selection Problem”. In: Advances in Computers.
Vol. 15. Elsevier, pp. 65–118.

Roberti, Roberto and Mario Ruthmair (2021). “Exact Methods for the Traveling Salesman
Problem with Drone”. In: Transportation Science 55.2, pp. 315–335.

Sacramento, David, David Pisinger, and Stefan Ropke (2019). “An adaptive large neigh-
borhood search metaheuristic for the vehicle routing problem with drones”. In: Trans-
portation Research Part C: Emerging Technologies 102, pp. 289–315.

Schermer, Daniel (2023). “Leveraging Machine Learning for the Per-Instance Configura-
tion of MIP Solvers: An Algorithm Selection Approach”. Preprint. Chair of Business
Information Systems & Operations Research, University of Kaiserslautern-Landau.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2019a). “A hybrid VNS/Tabu search
algorithm for solving the vehicle routing problem with drones and en route operations”.
In: Computers & Operations Research 109, pp. 134–158.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2019b). “A matheuristic for the
vehicle routing problem with drones and its variants”. In: Transportation Research Part
C: Emerging Technologies 106, pp. 166–204.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2020a). “A branch‐and‐cut approach
and alternative formulations for the traveling salesman problem with drone”. In: Net-
works 76.2, pp. 164–186.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2020b). “The Drone-Assisted Travel-
ing Salesman Problem with Robot Stations”. In: Proceedings of the Hawaii International
Conference on System Sciences, pp. 1308–1317.

251

8 Summary, Conclusion, and Outlook

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2020c). “The Traveling Salesman
Drone Station Location Problem”. In: Optimization of Complex Systems: Theory, Mod-
els, Algorithms and Applications. Advances in Intelligent Systems and Computing 991.
Cham: Springer, pp. 1129–1138.

Schmidt, Jeanette, Christian Tilk, and Stefan Irnich (2023). Exact Solution of the Vehicle
Routing Problem With Drones. Working Paper 2311. Gutenberg School of Management
and Economics, Johannes Gutenberg-Universität Mainz.

Sonnenberg, Marc-Oliver et al. (2019). “Autonomous Unmanned Ground Vehicles for Ur-
ban Logistics: Optimization of Last Mile Delivery Operations”. In: Proceedings of the
Hawaii International Conference on System Sciences, pp. 1538–1547.

Tamke, Felix and Udo Buscher (2021). “A branch-and-cut algorithm for the vehicle routing
problem with drones”. In: Transportation Research Part B: Methodological 144, pp. 174–
203.

Tamke, Felix and Udo Buscher (2023). “The vehicle routing problem with drones and
drone speed selection”. In: Computers & Operations Research 152, p. 106112.

Thomas, Teena, Sharan Srinivas, and Chandrasekharan Rajendran (2023). “Collaborative
truck multi-drone delivery system considering drone scheduling and en route operations”.
In: Annals of Operations Research, pp. 1–47.

Tiniç, Gizem Ozbaygin et al. (2023). “Exact solution approaches for the minimum total
cost traveling salesman problem with multiple drones”. In: Transportation Research Part
B: Methodological 168, pp. 81–123.

Vidal, Thibaut (2022). “Hybrid genetic search for the CVRP: Open-source implementation
and SWAP* neighborhood”. In: Computers & Operations Research 140, p. 105643.

Wang, Yong et al. (2022). “Truck–drone hybrid routing problem with time-dependent road
travel time”. In: Transportation Research Part C: Emerging Technologies 144, p. 103901.

Zhang, Juan et al. (2021). “Energy consumption models for delivery drones: A comparison
and assessment”. In: Transportation Research Part D: Transport and Environment 90,
p. 102668.

Zhen, Lu et al. (2023). “Branch-price-and-cut for trucks and drones cooperative delivery”.
In: IISE Transactions 55.3, pp. 271–287.

Zhou, Hang et al. (2023). “An exact algorithm for the two-echelon vehicle routing problem
with drones”. In: Transportation Research Part B: Methodological 168, pp. 124–150.

252

9 Bibliography

Accorsi, Luca, Andrea Lodi, and Daniele Vigo (2022). “Guidelines for the computational
testing of machine learning approaches to vehicle routing problems”. In: Operations
Research Letters 50.2, pp. 229–234.

Accorsi, Luca and Daniele Vigo (2021). “A Fast and Scalable Heuristic for the Solution
of Large-Scale Capacitated Vehicle Routing Problems”. In: Transportation Science 55.4,
pp. 832–856.

Achterberg, Tobias and Roland Wunderling (2013). “Mixed Integer Programming: Ana-
lyzing 12 Years of Progress”. In: Facets of Combinatorial Optimization. Ed. by Michael
Jünger and Gerhard Reinelt. Berlin, Heidelberg: Springer, pp. 449–481.

Ackoff, Russell L. (1962). “Some Unsolved Problems in Problem Solving”. In: Operational
Research Quarterly 13.1, pp. 1–11.

Adam, Stavros P. et al. (2019). “No Free Lunch Theorem: A Review”. In: Approximation
and Optimization: Algorithms, Complexity and Applications. Springer Optimization and
Its Applications, 145. Cham: Springer, pp. 57–82.

Adenso-Díaz, Belarmino and Manuel Laguna (2006). “Fine-Tuning of Algorithms Us-
ing Fractional Experimental Designs and Local Search”. In: Operations Research 54.1,
pp. 99–114.

Agatz, Niels, Paul Bouman, and Marie Schmidt (2018). “Optimization Approaches for the
Traveling Salesman Problem with Drone”. In: Transportation Science 52.4, pp. 965–981.

Amine Masmoudi, M. et al. (2022). “Vehicle routing problems with drones equipped with
multi-package payload compartments”. In: Transportation Research Part E: Logistics
and Transportation Review 164, p. 102757.

Ansótegui, Carlos, Meinolf Sellmann, and Kevin Tierney (2009). “A Gender-Based Genetic
Algorithm for the Automatic Configuration of Algorithms”. In: Principles and Practice of
Constraint Programming. Lecture Notes in Computer Science 5732. Berlin, Heidelberg:
Springer, pp. 142–157.

Ansótegui, Carlos et al. (2015). “Model-Based Genetic Algorithms for Algorithm Con-
figuration”. In: Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, pp. 733–739.

Applegate, David L. et al. (2007). The Traveling Salesman Problem: A Computational
Study. Princeton University Press.

253

9 Bibliography

Archetti, Claudia and M. Grazia Speranza (2014). “A survey on matheuristics for routing
problems”. In: EURO Journal on Computational Optimization 2.4, pp. 223–246.

Auer, Peter, Nicolò Cesa-Bianchi, and Paul Fischer (2002). “Finite-time Analysis of the
Multiarmed Bandit Problem”. In: Machine Learning 47, pp. 235–256.

Aurambout, Jean-Philippe, Konstantinos Gkoumas, and Biagio Ciuffo (2019). “Last mile
delivery by drones: an estimation of viable market potential and access to citizens across
European cities”. In: European Transport Research Review 11, pp. 1–21.

Azadeh, Kaveh, René De Koster, and Debjit Roy (2019). “Robotized and Automated
Warehouse Systems: Review and Recent Developments”. In: Transportation Science 53.4,
pp. 917–945.

Bartz-Beielstein, Thomas, Martin Zaefferer, and Frederik Rehbach (2021). “In a Nutshell
– The Sequential Parameter Optimization Toolbox”. In: arXiv:1712.04076 [cs.MS].

Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost (2021). “Machine learning for com-
binatorial optimization: A methodological tour d’horizon”. In: European Journal of Op-
erational Research 290.2, pp. 405–421.

Berthold, Timo, Matteo Francobaldi, and Gregor Hendel (2022). “Learning to Use Local
Cuts”. In: arXiv:2206.11618 [math.OC].

Berthold, Timo and Gregor Hendel (2021). “Learning To Scale Mixed-Integer Programs”.
In: Proceedings of the AAAI Conference on Artificial Intelligence 35.5, pp. 3661–3668.

Bertsimas, Dimitris and Jack Dunn (2017). “Optimal classification trees”. In: Machine
Learning 106.7, pp. 1039–1082.

Bertsimas, Dimitris and Nathan Kallus (2020). “From Predictive to Prescriptive Analyt-
ics”. In: Management Science 66.3, pp. 1025–1044.

Birattari, Mauro (2009). Tuning metaheuristics: a machine learning perspective. 2nd ed.
Studies in Computational Intelligence Vol. 197. Berlin: Springer.

Birattari, Mauro et al. (2010). “F-Race and Iterated F-Race: An Overview”. In: Experimen-
tal Methods for the Analysis of Optimization Algorithms. Ed. by Thomas Bartz-Beielstein
et al. Berlin, Heidelberg: Springer, pp. 311–336.

Bischl, Bernd et al. (2016). “ASlib: A benchmark library for algorithm selection”. In:
Artificial Intelligence 237, pp. 41–58.

Bixby, Robert E., Andrew E. Boyd, and Ronni R. Indovina (1992). “MIPLIB: a test set
of mixed integer programming problems”. In: SIAM News 25.2, p. 16.

Bouman, Paul, Niels Agatz, and Marie Schmidt (2018a). “Dynamic programming ap-
proaches for the traveling salesman problem with drone”. In: Networks 72.4, pp. 528–
542.

Bouman, Paul, Niels Agatz, and Marie Schmidt (2018b). Instances For The Tsp With
Drone (And Some Solutions).

254

Boysen, Nils, Stefan Fedtke, and Stefan Schwerdfeger (2021). “Last-mile delivery concepts:
a survey from an operational research perspective”. In: OR Spectrum 43.1, pp. 1–58.

Boysen, Nils, Stefan Schwerdfeger, and Felix Weidinger (2018a). “Scheduling last-mile
deliveries with truck-based autonomous robots”. In: European Journal of Operational
Research 271.3, pp. 1085–1099.

Boysen, Nils et al. (2018b). “Drone delivery from trucks: Drone scheduling for given truck
routes”. In: Networks 72.4, pp. 506–527.

Breedam, Alex van (1994). “An Analysis of the Behavior of Heuristics for the Vehicle
Routing Problem for a selection of problems with Vehicle-related, Customer-related,
and Time-related Constraints Contents”. Ph.D. thesis. University of Antwerp.

Breiman, Leo (1996). “Bagging predictors”. In: Machine Learning 24.2, pp. 123–140.
Breiman, Leo (2001). “Random Forests”. In: Machine Learning 45.1, pp. 5–32.
Breiman, Leo et al. (1998). Classification and regression trees. 1st ed. Boca Raton: Chap-
man & Hall/CRC.

Camm, Jeffrey D., Amitabh S. Raturi, and Shigeru Tsubakitani (1990). “Cutting Big M
down to Size”. In: Interfaces 20.5, pp. 61–66.

Carlsson, John Gunnar and Siyuan Song (2018). “Coordinated Logistics with a Truck and
a Drone”. In: Management Science 64.9, pp. 3971–4470.

Caspar, Marvin, Daniel Schermer, and Oliver Wendt (2023). “Formulations for the Split
Delivery Capacitated Profitable Tour Problem”. In: Computational Science and Its Ap-
plications. Lecture Notes in Computer Science 13956. Cham: Springer, pp. 82–98.

Cavani, Sara, Manuel Iori, and Roberto Roberti (2021). “Exact methods for the traveling
salesman problem with multiple drones”. In: Transportation Research Part C: Emerging
Technologies 130, p. 103280.

Chauhan, Darshan, Avinash Unnikrishnan, and Miguel Figliozzi (2019). “Maximum cov-
erage capacitated facility location problem with range constrained drones”. In: Trans-
portation Research Part C: Emerging Technologies 99, pp. 1–18.

Chen, Cheng, Emrah Demir, and Yuan Huang (2021). “An adaptive large neighborhood
search heuristic for the vehicle routing problem with time windows and delivery robots”.
In: European Journal of Operational Research 294.3, pp. 1164–1180.

Cheng, Chun, Yossiri Adulyasak, and Louis-Martin Rousseau (2020). “Drone routing with
energy function: Formulation and exact algorithm”. In: Transportation Research Part
B: Methodological 139, pp. 364–387.

Chmiela, Antonia et al. (2021). “Learning to Schedule Heuristics in Branch and Bound”.
In: Advances in Neural Information Processing Systems. Vol. 34, pp. 24235–24246.

255

9 Bibliography

Chung, Sung Hoon, Bhawesh Sah, and Jinkun Lee (2020). “Optimization for drone and
drone-truck combined operations: A review of the state of the art and future directions”.
In: Computers & Operations Research 123, p. 105004.

Clarke, Geoff and John W. Wright (1964). “Scheduling of Vehicles from a Central Depot
to a Number of Delivery Points”. In: Operations Research 12.4, pp. 568–581.

Cormen, Thomas H. et al. (2014). Introduction to Algorithms. 3rd ed. Cambridge: MIT
Press.

Costa, Luciano, Claudio Contardo, and Guy Desaulniers (2019). “Exact Branch-Price-
and-Cut Algorithms for Vehicle Routing”. In: Transportation Science 53.4, pp. 946–985.

Coutinho, Walton Pereira, Maria Battarra, and Jörg Fliege (2018). “The unmanned aerial
vehicle routing and trajectory optimisation problem, a taxonomic review”. In: Computers
& Industrial Engineering 120, pp. 116–128.

Crainic, Teodor Gabriel, Nicoletta Ricciardi, and Giovanni Storchi (2009). “Models for
Evaluating and Planning City Logistics Systems”. In: Transportation Science 43.4,
pp. 432–454.

Dantzig, George B., R. Fulkerson, and S. Johnson (1954). “Solution of a Large-Scale
Traveling-Salesman Problem”. In: Journal of the Operations Research Society of America
2.4, pp. 393–410.

Dantzig, George B. and John. H. Ramser (1959). “The Truck Dispatching Problem”. In:
Management Science 6.1, pp. 80–91.

Dell’Amico, Mauro, Roberto Montemanni, and Stefano Novellani (2019). “Models and
algorithms for the Flying Sidekick Traveling Salesman Problem”. In: arXiv:1910.02559
[math].

Dell’Amico, Mauro, Roberto Montemanni, and Stefano Novellani (2022). “Exact models
for the flying sidekick traveling salesman problem”. In: International Transactions in
Operational Research 29.3, pp. 1360–1393.

Dell’Amico, Mauro, Roberto Montemanni, and Stefano Novellani (2021a). “Algorithms
based on branch and bound for the flying sidekick traveling salesman problem”. In:
Omega 104, p. 102493.

Dell’Amico, Mauro, Roberto Montemanni, and Stefano Novellani (2021b). “Drone-assisted
deliveries: new formulations for the flying sidekick traveling salesman problem”. In: Op-
timization Letters 15.5, pp. 1617–1648.

Di Puglia Pugliese, Luigi and Francesca Guerriero (2017). “Last-Mile Deliveries by Us-
ing Drones and Classical Vehicles”. In: Optimization and Decision Science: Methodolo-
gies and Applications. Springer Proceedings in Mathematics & Statistics 217. Cham:
Springer, pp. 557–565.

256

Di Puglia Pugliese, Luigi, Francesca Guerriero, and Maria Grazia Scutellá (2021). “The
Last-Mile Delivery Process with Trucks and Drones Under Uncertain Energy Consump-
tion”. In: Journal of Optimization Theory and Applications 191.1, pp. 31–67.

Dorling, Kevin et al. (2017). “Vehicle Routing Problems for Drone Delivery”. In: IEEE
Transactions on Systems, Man, and Cybernetics: Systems 47.1, pp. 70–85.

Drexl, Michael (2012a). “Rich vehicle routing in theory and practice”. In: Logistics Research
5.1, pp. 47–63.

Drexl, Michael (2012b). “Synchronization in Vehicle Routing—A Survey of VRPs with
Multiple Synchronization Constraints”. In: Transportation Science 46.3, pp. 297–316.

Eggensperger, Katharina, Marius Lindauer, and Frank Hutter (2019). “Pitfalls and Best
Practices in Algorithm Configuration”. In: Journal of Artificial Intelligence Research 64,
pp. 861–893.

Es Yurek, Emine and H. Cenk Ozmutlu (2018). “A decomposition-based iterative op-
timization algorithm for traveling salesman problem with drone”. In: Transportation
Research Part C: Emerging Technologies 91, pp. 249–262.

Fair Isaac Corporation (2023). FICO Xpress Optimizer Reference Manual.
Firat, Murat et al. (2020). “Column generation based heuristic for learning classification
trees”. In: Computers & Operations Research 116, p. 104866.

Fischetti, Matteo, Ivana Ljubić, and Markus Sinnl (2016). “Benders decomposition with-
out separability: A computational study for capacitated facility location problems”. In:
European Journal of Operational Research 253.3, pp. 557–569.

Fischetti, Matteo, Ivana Ljubić, and Markus Sinnl (2017). “Redesigning Benders Decom-
position for Large-Scale Facility Location”. In: Management Science 63.7, pp. 2146–
2162.

Fragapane, Giuseppe et al. (2021). “Planning and control of autonomous mobile robots
for intralogistics: Literature review and research agenda”. In: European Journal of Op-
erational Research 294.2, pp. 405–426.

Freitas, Júlia Cária de and Puca Huachi Vaz Penna (2018). “A Randomized Variable
Neighborhood Descent Heuristic to Solve the Flying Sidekick Traveling Salesman Prob-
lem”. In: Electronic Notes in Discrete Mathematics 66, pp. 95–102.

Freitas, Júlia Cária de and Puca Huachi Vaz Penna (2020). “A variable neighborhood
search for flying sidekick traveling salesman problem”. In: International Transactions in
Operational Research 27.1, pp. 267–290.

Gendreau, Michel and Jean-Yves Potvin (2010). Handbook of Metaheuristics. 2nd ed.
Cham: Springer.

Gentry, Nicholas Kristofer, Raphael Hsieh, and Luan Khai Nguyen (2016). “Multi-use
UAV docking station systems and methods”. US9387928B1 (United States Patent).

257

9 Bibliography

Ghiani, Gianpaolo, Gilbert Laporte, and Roberto Musmanno (2013). Introduction to logis-
tics systems management. 2nd ed. Wiley series in operations research and management
science. Chichester: John Wiley & Sons, Ltd.

Gittins, J. C. (1979). “Bandit Processes and Dynamic Allocation Indices”. In: Journal of
the Royal Statistical Society: Series B (Methodological) 41.2, pp. 148–164.

Gleixner, Ambros et al. (2021). “MIPLIB 2017: data-driven compilation of the 6th mixed-
integer programming library”. In: Mathematical Programming Computation 13, pp. 443–
490.

Glover, Fred (1986). “Future paths for integer programming and links to artificial intelli-
gence”. In: Computers & Operations Research 13.5, pp. 533–549.

Goeke, Dominik (2018). “Emerging trends in logistics”. Ph.D. thesis. Technische Univer-
sität Kaiserslautern.

Gomory, Ralph E (1963). “An algorithm for integer solutions to linear programs”. In:
Recent advances in mathematical programming 64.14, pp. 260–302.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. Adaptive
computation and machine learning. Cambridge: The MIT Press.

Guastaroba, G., M. G. Speranza, and D. Vigo (2016). “Intermediate Facilities in Freight
Transportation Planning: A Survey”. In: Transportation Science 50.3, pp. 763–789.

Gupta, Prateek et al. (2020). “Hybrid Models for Learning to Branch”. In: Advances in
Neural Information Processing Systems. Vol. 33, pp. 18087–18097.

Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual.
Ha, Quang Minh et al. (2018). “On the min-cost Traveling Salesman Problem with Drone”.

In: Transportation Research Part C: Emerging Technologies 86, pp. 597–621.
Ha, Quang Minh et al. (2020). “A hybrid genetic algorithm for the traveling salesman

problem with drone”. In: Journal of Heuristics 26, pp. 219–247.
Hansen, Pierre et al. (2017). “Variable neighborhood search: basics and variants”. In:

EURO Journal on Computational Optimization 5.3, pp. 423–454.
Hastie, Trevor, Robert Tibshirani, and J. H. Friedman (2009). The elements of statistical

learning: data mining, inference, and prediction. 2nd ed. Springer series in statistics.
New York: Springer.

Hinkelmann, Klaus and Oscar Kempthorne (1994). Design and analysis of experiments.
Rev. ed. Wiley series in probability and mathematical statistics. New York: Wiley.

Hof, Julian (2019). “Metaheuristics for Vehicle-Routing Problems Arising in Sustainable
Logistics”. Ph.D. thesis. Technische Universität Kaiserslautern.

Hoos, Holger H. (2011). “Automated Algorithm Configuration and Parameter Tuning”.
In: Autonomous Search. Ed. by Youssef Hamadi, Eric Monfroy, and Frédéric Saubion.
Berlin, Heidelberg: Springer, pp. 37–71.

258

Hoos, Holger H., Frank Hutter, and Kevin Leyton-Brown (2021). “Automated Configura-
tion and Selection of SAT Solvers”. In: Handbook of Satisfiability. Ed. by Armin Biere
et al. Frontiers in Artificial Intelligence and Applications 336. IOS Press, pp. 481–507.

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown (2010). “Automated Configura-
tion of Mixed Integer Programming Solvers”. In: Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems. Lecture Notes
in Computer Science 6140. Berlin, Heidelberg: Springer, pp. 186–202.

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown (2011). “Sequential Model-
Based Optimization for General Algorithm Configuration”. In: Learning and Intelligent
Optimization. Lecture Notes in Computer Science 6683. Berlin, Heidelberg: Springer,
pp. 507–523.

Hutter, Frank, Holger H. Hoos, and Thomas Stützle (2007). “Automatic Algorithm Con-
figuration Based on Local Search”. In: Proceedings of the 22nd national conference on
Artificial intelligence. Vol. 2. AAAI Press, pp. 1152–1157.

Hutter, Frank et al. (2006). “Performance Prediction and Automated Tuning of Random-
ized and Parametric Algorithms”. In: Principles and Practice of Constraint Program-
ming. Lecture Notes in Computer Science 4204. Berlin, Heidelberg: Springer, pp. 213–
228.

Hutter, Frank et al. (2009). “ParamILS: An Automatic Algorithm Configuration Frame-
work”. In: Journal of Artificial Intelligence Research 36, pp. 267–306.

Hyde, Randall (2009). “The Fallacy of Premature Optimization”. In: ACM Ubiquity 10.3,
pp. 1–5.

Iommazzo, Gabriele (2021). “Algorithmic configuration by learning and optimization”.
Ph.D. thesis. Institut polytechnique de Paris.

Iommazzo, Gabriele et al. (2020a). “A Learning-Based Mathematical Programming For-
mulation for the Automatic Configuration of Optimization Solvers”. In: Machine Learn-
ing, Optimization, and Data Science. Lecture Notes in Computer Science 12565. Cham:
Springer, pp. 700–712.

Iommazzo, Gabriele et al. (2020b). “Learning to Configure Mathematical Programming
Solvers by Mathematical Programming”. In: Learning and Intelligent Optimization. Lec-
ture Notes in Computer Science 12096. Cham: Springer, pp. 377–389.

Jones, Donald R. (2001). “A Taxonomy of Global Optimization Methods Based on Re-
sponse Surfaces”. In: Journal of Global Optimization 21.4, pp. 345–383.

Jones, Donald R., Matthias Schonlau, and William J. Welch (1998). “Efficient Global
Optimization of Expensive Black-Box Functions”. In: Journal of Global Optimization
13.4, pp. 455–493.

259

9 Bibliography

Jordan, Michael I. and Tom M. Mitchell (2015). “Machine learning: Trends, perspectives,
and prospects”. In: Science 349.6245, pp. 255–260.

Jünger, Michael et al., eds. (2010). 50 Years of Integer Programming 1958-2008. Berlin,
Heidelberg: Springer.

Kadioglu, Serdar et al. (2010). “ISAC – Instance-Specific Algorithm Configuration”. In:
Proceedings of the 19th European Conference on Artificial Intelligence. IOS Press,
pp. 751–756.

Kerschke, Pascal and Heike Trautmann (2019). “Automated Algorithm Selection on Con-
tinuous Black-Box Problems by Combining Exploratory Landscape Analysis and Ma-
chine Learning”. In: Evolutionary Computation 27.1, pp. 99–127.

Kerschke, Pascal et al. (2018). “Leveraging TSP Solver Complementarity through Machine
Learning”. In: Evolutionary Computation 26.4, pp. 597–620.

Kerschke, Pascal et al. (2019). “Automated Algorithm Selection: Survey and Perspectives”.
In: Evolutionary Computation 27.1, pp. 3–45.

Khalil, Elias B. et al. (2016). “Learning to branch in mixed integer programming”. In:
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Vol. 30. AAAI
Press, pp. 724–731.

Khalil, Elias B. et al. (2017). “Learning to Run Heuristics in Tree Search”. In: Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 659–
666.

Kim, Sungwoo and Ilkyeong Moon (2018). “Traveling Salesman Problem With a Drone
Station”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 49.1,
pp. 42–52.

Kirschstein, Thomas (2020). “Comparison of energy demands of drone-based and ground-
based parcel delivery services”. In: Transportation Research Part D: Transport and En-
vironment 78, p. 102209.

Kloster, Konstantin et al. (2023). “The multiple traveling salesman problem in presence
of drone- and robot-supported packet stations”. In: European Journal of Operational
Research 305.2, pp. 630–643.

Koch, Thorsten et al. (2022). “Progress in mathematical programming solvers from 2001
to 2020”. In: EURO Journal on Computational Optimization 10, p. 100031.

Kotthoff, Lars (2016). “Algorithm Selection for Combinatorial Search Problems: A Sur-
vey”. In: Data Mining and Constraint Programming. Lecture Notes in Computer Science
10101. Cham: Springer, pp. 149–190.

Kotthoff, Lars et al. (2015). “Improving the State of the Art in Inexact TSP Solving Using
Per-Instance Algorithm Selection”. In: Learning and Intelligent Optimization. Lecture
Notes in Computer Science 8994. Cham: Springer, pp. 202–217.

260

Kumar, Vipin and V. Nageshwara Rao (1987). “Parallel depth first search. Part II. Anal-
ysis”. In: International Journal of Parallel Programming 16.6, pp. 501–519.

Land, A. H. and A. G. Doig (1960). “An Automatic Method of Solving Discrete Program-
ming Problems”. In: Econometrica 28.3, pp. 497–520.

Laporte, Gilbert and Paolo Toth (2022). “A gap in scientific reporting”. In: 4OR 20,
pp. 169–171.

Leyton-Brown, Kevin, Eugene Nudelman, and Yoav Shoham (2002). “Learning the Em-
pirical Hardness of Optimization Problems: The Case of Combinatorial Auctions”. In:
Principles and Practice of Constraint Programming. Lecture Notes in Computer Science
2470. Berlin, Heidelberg: Springer, pp. 556–572.

Leyton-Brown, Kevin et al. (2003). “A Portfolio Approach to Algorithm Selection”. In:
Proceedings of the 18th international joint conference on Artificial intelligence. Morgan
Kaufmann Publishers Inc., pp. 1542–1543.

Lin, S. and B. W. Kernighan (1973). “An Effective Heuristic Algorithm for the Traveling-
Salesman Problem”. In: Operations Research 21.2, pp. 498–516.

Lodi, Andrea (2013). “The Heuristic (Dark) Side of MIP Solvers”. In: Hybrid Metaheuris-
tics. Ed. by El-Ghazali Talbi. Studies in Computational Intelligence 434. Berlin, Hei-
delberg: Springer, pp. 273–284.

Lodi, Andrea and Andrea Tramontani (2014). “Performance Variability in Mixed-Integer
Programming”. In: Theory Driven by Influential Applications. Ed. by J. Cole Smith.
Theory Driven by Influential Applications, pp. 1–12.

Lodi, Andrea and Giulia Zarpellon (2017). “On learning and branching: a survey”. In:
TOP 25.2, pp. 207–236.

Lombardi, Michele, Michela Milano, and Andrea Bartolini (2017). “Empirical decision
model learning”. In: Artificial Intelligence 244, pp. 343–367.

López-Ibáñez, Manuel et al. (2016). “The irace package: Iterated racing for automatic
algorithm configuration”. In: Operations Research Perspectives 3, pp. 43–58.

Loreggia, Andrea et al. (2016). “Deep learning for algorithm portfolios”. In: Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence. Vol. 30. AAAI Press, pp. 1280–
1286.

Macrina, Giusy et al. (2020). “Drone-aided routing: A literature review”. In: Transportation
Research Part C: Emerging Technologies 120, p. 102762.

Marinelli, Mario et al. (2018). “En route truck–drone parcel delivery for optimal vehicle
routing strategies”. In: IET Intelligent Transport Systems 12.4, pp. 253–261.

Maron, Oden and Andrew W. Moore (1997). “The Racing Algorithm: Model Selection for
Lazy Learners”. In: Artificial Intelligence Review 11.1, pp. 193–225.

261

9 Bibliography

Masone, Adriano, Stefan Poikonen, and Bruce L. Golden (2022). “The multivisit drone
routing problem with edge launches: An iterative approach with discrete and continuous
improvements”. In: Networks 80.2, pp. 193–215.

Miller, C. E., A. W. Tucker, and R. A. Zemlin (1960). “Integer Programming Formulation
of Traveling Salesman Problems”. In: Journal of the ACM 7.4, pp. 326–329.

Min, Hokey, Vaidyanathan Jayaraman, and Rajesh Srivastava (1998). “Combined location-
routing problems: A synthesis and future research directions”. In: European Journal of
Operational Research 108.1, pp. 1–15.

Mingers, John and Leroy White (2010). “A review of the recent contribution of systems
thinking to operational research and management science”. In: European Journal of
Operational Research 207.3, pp. 1147–1161.

Mitchell, Tom M. (1997). Machine Learning. McGraw-Hill series in computer science. New
York: McGraw-Hill.

Mittelmann, Hans D. (2020). “Benchmarking Optimization Software - a (Hi)Story”. In:
SN Operations Research Forum 1.2, pp. 1–6.

Mladenović, N and P Hansen (1997). “Variable Neighborhood Search”. In: Computers &
Operations Research 24.11, pp. 1097–1100.

Mockus, J., V. Tiesis, and A. Zilinskas (1978). “The application of Bayesian methods for
seeking the extremum”. In: Towards Global Optimization 2, pp. 117–129.

Moeini, Mahdi and Hagen Salewski (2020). “A Genetic Algorithm for Solving the Truck-
Drone-ATV Routing Problem”. In: Optimization of Complex Systems: Theory, Mod-
els, Algorithms and Applications. Advances in Intelligent Systems and Computing 991.
Cham: Springer, pp. 1023–1032.

Moeini, Mahdi, Oliver Wendt, and Marius Schummer (2023). “A Bi-objective Routing
Problem with Trucks and Drones: Minimizing Mission Time and Energy Consump-
tion”. In: Computational Science and Its Applications. Lecture Notes in Computer Sci-
ence 14106. Cham: Springer, pp. 291–308.

Morandi, Nicola et al. (2023). “The Traveling Salesman Problem with Drones: The Benefits
of Retraversing the Arcs”. In: Transportation Science 57.5, pp. 1340–1358.

Mortenson, Michael J., Neil F. Doherty, and Stewart Robinson (2015). “Operational re-
search from Taylorism to Terabytes: A research agenda for the analytics age”. In: Euro-
pean Journal of Operational Research 241.3, pp. 583–595.

Murray, Chase C. and Amanda G. Chu (2015). “The flying sidekick traveling salesman
problem: Optimization of drone-assisted parcel delivery”. In: Transportation Research
Part C: Emerging Technologies 54, pp. 86–109.

Murthy, S. K., S. Kasif, and S. Salzberg (1994). “A System for Induction of Oblique
Decision Trees”. In: Journal of Artificial Intelligence Research 2, pp. 1–32.

262

Nagy, Gábor and Saïd Salhi (2006). “Location-routing: Issues, models and methods”. In:
European Journal of Operational Research 177.2, pp. 649–672.

Otto, Alena et al. (2018). “Optimization approaches for civil applications of unmanned
aerial vehicles (UAVs) or aerial drones: A survey”. In: Networks 72.4, pp. 411–458.

Padberg, Manfred and Giovanni Rinaldi (1991). “A Branch-and-Cut Algorithm for the
Resolution of Large-Scale Symmetric Traveling Salesman Problems”. In: SIAM Review
33.1, pp. 60–100.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12, pp. 2825–2830.

Pelletier, Samuel, Ola Jabali, and Gilbert Laporte (2016). “50th Anniversary Invited
Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives”.
In: Transportation Science 50.1, pp. 3–22.

Petropoulos, Fotios et al. (2023). “Operational Research: Methods and Applications”. In:
arXiv:2303.14217 [math.OC].

Poikonen, Stefan and James F. Campbell (2020). “Future directions in drone routing
research”. In: Networks 77.1, pp. 116–126.

Poikonen, Stefan, Bruce Golden, and Edward A. Wasil (2019). “A Branch-and-Bound
Approach to the Traveling Salesman Problem with a Drone”. In: INFORMS Journal on
Computing 31.2, pp. 335–346.

Poikonen, Stefan, Xingyin Wang, and Bruce Golden (2017). “The vehicle routing problem
with drones: Extended models and connections”. In: Networks 70.1, pp. 34–43.

Ponza, Andrea (2016). “Optimization of drone-assisted parcel delivery”. MA thesis. Uni-
versità Degli Studi di Padova.

Probst, Philipp, Anne-Laure Boulesteix, and Bernd Bischl (2019). “Tunability: Importance
of Hyperparameters of Machine Learning Algorithms”. In: Journal of Machine Learning
Research 20.1, pp. 1934–1965.

Prodhon, Caroline and Christian Prins (2014). “A survey of recent research on location-
routing problems”. In: European Journal of Operational Research 238.1, pp. 1–17.

Pushak, Yasha and Holger H. Hoos (2018). “Algorithm Configuration Landscapes: More
Benign Than Expected?” In: Parallel Problem Solving from Nature. Lecture Notes in
Computer Science 11102. Cham: Springer, pp. 271–283.

Raj, Ritwik and Chase C. Murray (2020). “The multiple flying sidekicks traveling salesman
problem with variable drone speeds”. In: Transportation Research Part C: Emerging
Technologies 120, p. 102813.

Rao, Nageshwara N. and Vipin Kumar (1987). “Parallel depth first search. Part I. Imple-
mentation”. In: International Journal of Parallel Programming 16.6, pp. 479–499.

263

9 Bibliography

Rice, John R. (1976). “The Algorithm Selection Problem”. In: Advances in Computers.
Vol. 15. Elsevier, pp. 65–118.

Roberti, Roberto and Mario Ruthmair (2021). “Exact Methods for the Traveling Salesman
Problem with Drone”. In: Transportation Science 55.2, pp. 315–335.

Rojas Viloria, Daniela et al. (2020). “Unmanned aerial vehicles/drones in vehicle routing
problems: a literature review”. In: International Transactions in Operational Research
28.4, pp. 1626–1657.

Russell, Stuart J., Peter Norvig, and Ernest Davis (2010). Artificial intelligence: a mod-
ern approach. 3rd ed. Prentice Hall series in artificial intelligence. Upper Saddle River:
Prentice Hall.

Sacramento, David, David Pisinger, and Stefan Ropke (2019). “An adaptive large neigh-
borhood search metaheuristic for the vehicle routing problem with drones”. In: Trans-
portation Research Part C: Emerging Technologies 102, pp. 289–315.

Savelsbergh, Martin and Tom Van Woensel (2016). “50th Anniversary Invited Article—
City Logistics: Challenges and Opportunities”. In: Transportation Science 50.2, pp. 579–
590.

Schede, Elias et al. (2022). “A Survey of Methods for Automated Algorithm Configuration”.
In: Journal of Artificial Intelligence Research 75, pp. 425–487.

Schermer, Daniel (2019). “Integration of Drones in Last-Mile Delivery: The Vehicle Rout-
ing Problem with Drones”. In: Operations Research Proceedings 2018. Operations Re-
search Proceedings. Cham: Springer, pp. 17–22.

Schermer, Daniel (2023). “Leveraging Machine Learning for the Per-Instance Configura-
tion of MIP Solvers: An Algorithm Selection Approach”. Preprint. Chair of Business
Information Systems & Operations Research, University of Kaiserslautern-Landau.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2018a). “A Variable Neighborhood
Search Algorithm for Solving the Vehicle Routing Problem with Drones”. Technical
Report. Business Information Systems & Operations Research, Technische Universität
Kaiserslautern.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2018b). “Algorithms for Solving
the Vehicle Routing Problem with Drones”. In: Intelligent Information and Database
Systems. Lecture Notes in Computer Science 10751. Cham: Springer, pp. 352–361.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2019a). “A hybrid VNS/Tabu search
algorithm for solving the vehicle routing problem with drones and en route operations”.
In: Computers & Operations Research 109, pp. 134–158.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2019b). “A matheuristic for the
vehicle routing problem with drones and its variants”. In: Transportation Research Part
C: Emerging Technologies 106, pp. 166–204.

264

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2020a). “A branch‐and‐cut approach
and alternative formulations for the traveling salesman problem with drone”. In: Net-
works 76.2, pp. 164–186.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2020b). “The Drone-Assisted Travel-
ing Salesman Problem with Robot Stations”. In: Proceedings of the Hawaii International
Conference on System Sciences, pp. 1308–1317.

Schermer, Daniel, Mahdi Moeini, and Oliver Wendt (2020c). “The Traveling Salesman
Drone Station Location Problem”. In: Optimization of Complex Systems: Theory, Mod-
els, Algorithms and Applications. Advances in Intelligent Systems and Computing 991.
Cham: Springer, pp. 1129–1138.

Schmidt, Jeanette, Christian Tilk, and Stefan Irnich (2023). Exact Solution of the Vehicle
Routing Problem With Drones. Working Paper 2311. Gutenberg School of Management
and Economics, Johannes Gutenberg-Universität Mainz.

Sluijk, Natasja et al. (2023). “Two-echelon vehicle routing problems: A literature review”.
In: European Journal of Operational Research 304.3, pp. 865–886.

Sonnenberg, Marc-Oliver et al. (2019). “Autonomous Unmanned Ground Vehicles for Ur-
ban Logistics: Optimization of Last Mile Delivery Operations”. In: Proceedings of the
Hawaii International Conference on System Sciences, pp. 1538–1547.

Stone, M. (1974). “Cross-Validatory Choice and Assessment of Statistical Predictions”. In:
Journal of the Royal Statistical Society. Series B (Methodological) 36.2, pp. 111–147.

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement learning: an introduction.
2nd ed. Adaptive computation and machine learning series. Cambridge, The MIT Press.

Tamke, Felix and Udo Buscher (2021). “A branch-and-cut algorithm for the vehicle routing
problem with drones”. In: Transportation Research Part B: Methodological 144, pp. 174–
203.

Tamke, Felix and Udo Buscher (2023). “The vehicle routing problem with drones and
drone speed selection”. In: Computers & Operations Research 152, p. 106112.

Tang, Yunhao, Shipra Agrawal, and Yuri Faenza (2020). “Reinforcement Learning for
Integer Programming: Learning to Cut”. In: Proceedings of the 37th International Con-
ference on Machine Learning, pp. 9367–9376.

Thomas, Teena, Sharan Srinivas, and Chandrasekharan Rajendran (2023). “Collaborative
truck multi-drone delivery system considering drone scheduling and en route operations”.
In: Annals of Operations Research, pp. 1–47.

Tiniç, Gizem Ozbaygin et al. (2023). “Exact solution approaches for the minimum total
cost traveling salesman problem with multiple drones”. In: Transportation Research Part
B: Methodological 168, pp. 81–123.

265

9 Bibliography

Toth, Paolo and Daniele Vigo (2002). The vehicle routing problem. 1st ed. SIAM Series on
Discrete Mathematics and Applications. Philadelphia: SIAM.

Toth, Paolo and Daniele Vigo, eds. (2014). Vehicle routing: problems, methods, and appli-
cations. 2nd ed. MOS-SIAM series on optimization. Philadelphia: SIAM.

Vidal, Thibaut (2022). “Hybrid genetic search for the CVRP: Open-source implementation
and SWAP* neighborhood”. In: Computers & Operations Research 140, p. 105643.

Wang, Xingyin, Stefan Poikonen, and Bruce Golden (2017). “The vehicle routing problem
with drones: several worst-case results”. In: Optimization Letters 11.4, pp. 679–697.

Wang, Yong et al. (2022). “Truck–drone hybrid routing problem with time-dependent road
travel time”. In: Transportation Research Part C: Emerging Technologies 144, p. 103901.

Wilcoxon, Frank (1945). “Individual comparisons by ranking methods”. In: Biometrics
Bulletin 1.6, pp. 80–83.

Wolpert, D.H. and W.G. Macready (1997). “No free lunch theorems for optimization”. In:
IEEE Transactions on Evolutionary Computation 1.1, pp. 67–82.

Xu, Lin et al. (2008). “SATzilla: Portfolio-based Algorithm Selection for SAT”. In: Journal
of Artificial Intelligence Research 32, pp. 565–606.

Xu, Lin et al. (2011). “Hydra-MIP: Automated algorithm configuration and selection for
mixed integer programming”. In: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence. AAAI Press, pp. 16–30.

Zarpellon, Giulia et al. (2021). “Parameterizing Branch-and-Bound Search Trees to Learn
Branching Policies”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35(5). AAAI Press, pp. 3931–3939.

Zhang, Juan et al. (2021). “Energy consumption models for delivery drones: A comparison
and assessment”. In: Transportation Research Part D: Transport and Environment 90,
p. 102668.

Zhen, Lu et al. (2023). “Branch-price-and-cut for trucks and drones cooperative delivery”.
In: IISE Transactions 55.3, pp. 271–287.

Zhou, Hang et al. (2023). “An exact algorithm for the two-echelon vehicle routing problem
with drones”. In: Transportation Research Part B: Methodological 168, pp. 124–150.

266

Office: Gottlieb-Daimler-Straße – 67653 Kaiserslautern
Mail: daniel.schermer@rptu.de

Daniel Schermer
Curriculum Vitae

Scientific Career

2018–Today Research Associate & PhD Student
Chair of Business Information Systems & Operations Research
Prof. Dr. Oliver Wendt
University of Kaiserslautern-Landau

2016–2018 Master of Science
University of Kaiserslautern
Business Management and Engineering
in the Field of Electrical Engineering

2011–2016 Bachelor of Science
University of Kaiserslautern
Business Management and Engineering
in the Field of Electrical Engineering

267

	List of Abbreviations
	List of Algorithms
	List of Figures
	List of Tables
	Background, Organization, and Contribution
	Background
	Organization and Contribution
	References

	A Hybrid VNS/Tabu Search Algorithm for Solving the Vehicle Routing Problem with Drones and En Route Operations
	Introduction
	Related Research Works
	The Vehicle Routing Problem with Drones and En Route Operations
	Notation and Mathematical Model
	Valid Inequalities

	Variable Neighborhood Search for Solving the VRPDERO
	Route generation
	Drone Insertion
	Divide and Conquer
	Comments

	Computational Experiments and their Numerical Results
	Small Instances
	Results obtained through the MILP Formulation
	Results obtained through the Heuristic

	Large Instances

	Conclusion
	References
	Detailed Numerical Results

	A Matheuristic for the Vehicle Routing Problem with Drones and its Variants
	Introduction
	Related Literature
	Problem Definition
	Notation and Mathematical Model
	Valid Inequalities
	Makespan Bounds
	Symmetry in the VRPD
	Knapsack Inequalities

	Matheuristic
	Allocation and Sequencing
	Drone Assignment and Scheduling
	Three-Index-Operation Formulation
	Two-Index-Operation Formulation

	Discussion and Scalability

	Computational Experiments and their Numerical Results
	Small Instances
	Small Instances used by
	Small Instances used by

	Large Instances
	Comparison to Theoretical Bounds

	Conclusion
	References
	Possible Variations
	Limited Flight Distance without Recharge
	Limited Flight Time with Instantaneous Recharge
	Limited Flight Time without Recharge
	Limited Flight Time with Non-instantaneous Recharge
	Heterogeneous Drone Fleet
	Incorporating these Variations into the DASP

	Matching the Problem Formulation of
	Endurance: Limited Flight Distance vs. Limited Flight Time
	Detailed Numerical Results

	The Traveling Salesman Drone Station Location Problem
	Introduction
	Problem Definition
	Minimal Makespan TSDSLP
	Minimal Operational Cost TSDSLP

	Computational Experiments
	Conclusion
	References

	The Drone-Assisted Traveling Salesman Problem with Robot Stations
	Introduction
	Related Literature
	Problem Definition
	Minimal Makespan TSPDRS
	Minimal Operational Cost TSPDRS

	Computational Experiments and their Numerical Results
	Instance Generation
	Numerical Results
	MILP Solver Performance
	Makespan versus Cost Minimization
	Station Utilization
	Operational Characteristics

	Conclusion
	References

	A Branch-and-Cut Approach and Alternative Formulations for the Traveling Salesman Problem with Drone
	Introduction
	Related Literature
	Model-Based Literature
	Methodology-Based Literature

	The Traveling Salesman Problem with Drone
	Problem Definition
	A MILP formulation using a disjoint representation of multi-legs
	A MILP formulation using a joint representation of multi-legs
	Discussion

	A Branch-and-Cut approach for the TSPD
	Computational Experiments and their Numerical Results
	Instances proposed by Bouman et al.
	Experimental Setup
	Numerical Results

	Instances proposed by Poikonen et al.
	Experimental Setup
	Numerical Results

	Instances proposed by Murray and Chu
	Experimental Setup
	Numerical Results

	Conclusion
	References

	Leveraging Machine Learning for the Per-Instance Configuration of MIP Solvers: An Algorithm Selection Approach
	Introduction
	Related Literature
	Algorithm Configuration in the context of MIP
	Algorithm Selection in the context of MIP
	Dynamic Configuration of MIP solvers

	Preliminaries & Problem Definition
	Methodological Approach
	Random Forests as a Machine Learning Model
	Optimizing by means of Empirical Model Learning
	Embedding the Machine Learning Model into an Optimization Problem
	A Branch-and-Bound Approach for solving the Optimization Problem

	Computational Experiments and their Numerical Results
	Problem Space and Algorithms
	Dataset
	Generation Procedure and Preprocessing
	Exploratory Analysis

	Numerical Results for Offline Learning and Online Inference
	Offline Learning
	Online Inference

	Conclusion
	References

	Summary, Conclusion, and Outlook
	Summary and Conclusion
	Outlook
	References

	Bibliography

