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Abstract

We propose a new discretization scheme for solving ill-posed integral equations of the
third kind. Combining this scheme with Morozov’s discrepancy principle for Landweber
iteration we show that for some classes of equations in such method a number of arithmetic
operations of smaller order than in collocation method is required to approximately solve
an equation with the same accuracy.



1 Introduction

In his fundamental papers on integral equations D.Hilbert [5] introduced the notion of
integral equations of the first, second, and of the third kind. A linear integral equation

o+ Ko = r)alt) + k(e (r)dr = y(8) (1)

is said to be of the first kind if » = 0, of the second kind if r is a non-zero constant,
and of the third kind if r is a function with zeros in its domain, otherwise the equation
is equivalent to an equation of the second kind. If the function r is continuous and has
a finite number of zeros, then the equation (1) is a special case of non-elliptic singular
integral equations investigated by S.Préssdorf [11]. For above-mentioned function r
with known zeros the approximate methods for solving integral equations (1) were
proposed by N.S.Gabbasov (see, for example, [3]). But these methods are completely
unusable if r is, for example, a characteristic function of a proper subset of positive
measure. Moreover, as indicated in [12], if for each neighbourhood V' of zero the inverse
r~1(V) of V has positive measure, then the problem of solving the equation (1) is not
well posed in the sense of J.Hadamard and regularization techniques are required for
solving (1). In our opinion it makes sense to apply the regularization methods, even
though the function r has a finite number of zeros but we do not know theirs location.

Usually, the application of some regularization method is preceded by the dis-
cretization of the problem and there is a close connection between an amount of discrete
information and the choice of the regularization parameter. The aim of this paper is to
discuss this connection for the approximate solution of ill-posed equations (1). More-
over, some estimate for the number of arithmetic operations required in order to reach
fixed accuracy ¢ will be obtained too.

2 The discretization scheme

Throughout this paper we shall consider the integral equations (1) with operators K
acting continuously from L, to the Sobolev space Wy and with y € W, where Ly is
the Hilbert space of square-summable functions on [0, 1] with the usual norm || - || and
the usual inner product (-,-), and Wy is the normed space of functions f(¢) having
square-summable derivatives f' € Ly. Therewith

d
£ lwz = 1A+ 1= £

Moreover, it will be assumed that the operators K have some additional smoothness.
Namely,

K€K = {K5 1K zsws <7 1K lzswp < e,
s R R )

1



where || - ||x_y is the usual norm in the space of all linear bounded operators from X
into Y; B* denotes the adjoint operator of B : Ly — Lo. If the kernel k(¢,7) of the
integral operator K has mixed partial derivatives and

8”% t,T)
/ / ST dth <oo, 1,7=0,1,

then it is easy to see that K € IC}Y for some 7.
Let us consider the Haar orthonormal basis x1, X2, - - -, Xm, - - - Of piecewise con-
stant functions, where x;(t) =1, and form =21+ k=1,2,...;5=1,2,...,2k 1

20D e [(5 - 1)/25 (5 - 1/2)/2)
Xm(t) = 20702t e[(j —1/2)/24, 5 /24) )

0, t& (5 —1)/25" /25

and let P, be the orthogonal projector on span{xi, X2, - - -, Xm}, that is,

m

me(t) = Z(f’ Xz)Xz(t)-
i=1
It is well known that [6],p.81,82
11 = Pullwiosp, <em™, (2)

where [ is the identity operator and c is some absolute constant. Moreover, if |r'(¢)| < d
then for any ¢ € [0,1]
7(t) — Ppr(t)| < 3dm™'. (3)

To construct an efficient method for discretizing ill-posed equations (1) we shall
use a specific ”hyperbolic cross” approximation of the kernel function k(¢,7). This
means that instead of (1) we consider now the equation

xPonr + Ko = Py, (4)

where

Z Por — Por—1 KPQ’I’L ¥+ PLK Py = Z X XzaKXJ)(Xja')v
k:1 (’L,_])Ern

I, ={1} x [1,2"] k@ (2571 2F) x [1,277H].



It is obvious that K, is the integral operator with degenerate kernel

kn(t,7) = > k1, )x(8)x,(7),

(Z,])EFn
where k(z,7) denotes the Fourier coefficients of function k(t,7) with respect to Haar
system, i.e.
. 1,1
ko) = [ [ ke @)t

Let now card(T',,) be the number of Fourier coefficients lAf(z, ) required to construct
kn(t, 7). It is easily verified that

card(Ty) < n2".

As usual, we write T'(u) < S(u) if there are constants ¢, ¢; such that for all u belonging
to the domain of definition 7'(u), S(u)

cT'(u) < S(u) < 1 T(u).

Moreover, for simplicity we often use the same symbol ¢ for possibly different constants.
If we denote by Ny the number of all Fourier coefficients

~

k(,9) = Oa, Kxp),  7(0) = (1,06),  9(1) = (1, x) (5)
taking part in the definition of the equation (4), then
Nyise < 2" + card(T,,) < n2™. (6)

The direct solution of (4) by means of some exact solution method for system of
2" linear algebraic equations would take too many arithmetic operations, even when we
assume for the moment that the solution of (4) exists and is unique. A more favorable
way is the use of regularization methods which are degenerated by iteration procedures.
In this paper we will consider the Landweber iteration

xm,n = xm—l,n - /'LB:;(anm—l,n - P2ny)7 m = 17 27 cee 7~T0,n = 07 (7)

where

an = fPQnT + an, B:Lf = fPQnT + K;f,
0 < 1 < 2/||Bullf,os L

Further examples of iterative methods are discussed in [13].
The number of iteration steps m acts as a regularization parameter and the usual
discussion of rates of convergence of iterative methods for ill-posed equations is done



under the assumption, that the exact solution Z of (1) belongs to the range of operatpr
| B|P for some p > py, where |BJP = (B*B)?/? and

Bf(t) =r(t)f(t) + Kf ().

Therefore from now on we assume that the exact solution of (1) fulfills the smoothness
property
z=[Bl"v, vl <p (8)

for some p > py > 1, and K € KL, |r'(¢)| < d,

yeWs, ={f:fews, Ifllw <1}.

In the following for class of such equations (1) we use the notation ®2° (of course, p
depends on v and d).
In what follows we need

Lemma 2.1 Let K € K} and |r'(t)| < d. Then
”B - BTLHL2—>L2 < cn27",

where constant ¢ depends on v and d.
Proof: From the definion of operator K, we find
P2nK — Kn = Z(PZk - P2k—1)K(I - PZn—k) + P]_K(I — Pgn)
k=1

With an argument like that in the proof of Lemma 3.2 of [8] for K € K} we get the
estimate
||(P2k - P2k—1)K(I - P2n—k)||L2_>L2 S 62_n.

Then by virtue of (2) we have
|K — Kullzysz, < ||( = Pon) K ||y, + [|[Pon K — K|y 1, <

< 27| K| ppmwy + k2—31 | (Poe — Poe-1) K(I = Pont)|| 1,51,

P (T = Pt < €21+ en2 " + (I = Ppr)K* 10001, <

<27y + 72) +en2™™ < en27™



Using this bound and (3) we obtain the estimate

1B = Bullzas, < max Ir(t) = Prr(t)] + K = Kullzaor, <

<3d27™" 4+ cen2™" < cn27",

as claimed.

An appropriate discretization (4) and the number of iteration steps m in depen-
dence of the predetermined order of accuracy O(g) for ||z — || have to be chosen.
One of the most widely used strategies for choosing regularization parameter m which
are also called ”stopping rules” in literature is Morozov’s discrepancy principle. We
shall consider this discrepancy principle in the form tailored to the discretized version
of Landweber iteration (7) for equations (1) from ®2°: Let d; > 1. A stopping rule for

(7) is given by choosing the first integer m such that m < mmpay < e %7 and

po+1

||P2"f_anm,n” S d1€ Po .

(9)

If there is no m < Myay, such that (9) holds, then choose m = [Mpax] + 1,  [Mmax)
denoting the largest integer which is not greater than mp,y, < ¢=%/7°.
Now we can state the main result.

+1
Theorem 2.1 Let n2™" < 522%1_, and let the number of iteration steps m in (7) be
chosen according to the discrepancy principle (9). If equation (1) belongs to the class

Q0. po > 1, then

12 = Zmall = O(e).
Proof. The regularization method (7) is generated by function
Im(A) = A1 = (1 =)™, A>0.
Namely, T n = Ry, nPony, where
Riyn = gm(BnBn) B,
We put Sy, = I — Ry, nBy,. From [10] one sees that

||Rm,’n |L2—>L2 S Clm1/27 ||Sm,n||L2—>L2 S Ca,

I — BpRmn

|L2—>L2 < la ||Sm,n|Bn|p||L2—>L2 < cl,pm_p/Q’ (10)

(p+1)
||BnSm,n‘Bn‘p||L2—>L2 < cQ,pm_pT



Using (2), (10) and Lemma, from the definition z,,, we find
12 = Zmpll = [[Smn® + Bmpl(I — Pon)y — (B = By)z]|| <

< N1SmanZll + em(I(I = Py )yll + 1B = Bullar,) <

(11)

< |Smnz|| + eml/2 (27" + n27") <

maXx

+1
< NSl + ce= 1060 < || S| + .
Let us estimate ||Sy,»,Z||. Using the inequality

min{1,
1B = [BulPll sy < €l|B — Bal[E™ P In (|| B — Ballior,))|

(see [14], p.93), (8), (10) and Lemma 2.1 for p > py > 1 we have
[SmnZll < [1Smn| Bal"vll + | Smn (| BIP = [Bnl?)o]| <

(12)
+1
< Crppm 2 4 o227 < ¢(mP2 £ 0 Ind).

If m > ¢=%/?, the assertion of the theorem follows from (11), (12).
Assume now that m < m; = [¢"%?] 4+ 1. With an argument like that in the proof
of Theorem 3.3 of [10] we get the estimate

1Smazll” < ([ Smynll® + mul| BaSmazll’)- (13)
On the other hand, from (2), (9), (10) and Lemma 2.1 we know that
1 BrSmaZ|l < |[Pory = Bumn|l + |1 = Bn Bl

Lo—Lo X

potl
x(Il(Bn = B)Z| + lly — Prryll) < dhe 70 +c(n27"+27") <
po+1
=g Po .

Moreover, using the inequality (12) we obtain

- potl 12
||‘S’m1,niﬁ||2 < C(m1 p/2 +¢e 7 In —) < 052_
5
Thus, from (13) one sees that for m < m; and p > py
2(po+1) 2,2 )

|Smnl? < ce® +mye” n0 <e(e2+e 7 ) < e
Combining this estimate and (11) for m < m; we have
17 = Zmall = O(e)-

The theorem is proved.



Corollary 2.1 Let Ny, be an amount of discrete information (5) required to construct
an approzimate solution Xy, . From the Theorem 2.1 and (6) it follows that within the
framework of discretization scheme (4) we can guarantee on the class Lo, the order of

accuracy € in the case when
_potl 5]
Ngise <& 7?0 In” —.
€

3 Complexity of the algorithm

Let us estimate the number N,, of arithmetic operations on the values of Fourier
coefficients (5) required to construct an approximate solution zy, .

Proposition 3.1 Let .
g(t) = z; 9x(t)
-
be an arbitrary element of subspace span{xi, X2, ..., Xan}. To represent an element
f(@) = g(t)Panr(t) € span{x1, X2, .- ., Xon}
in the standard form

£ =3 Fx(® (14)

it suffices to perform no more than c2™ arithmetic operations on the coefficients g, and

7(2).

Proof. Note that g(t), Py=7(t) and f(t) are the constants on the dyadic intervals

A, = (22_—”121”) 1 =1,2,...,2"

Keeping in mind that (see [6],p.78)

Pyp(t) = 2”/ o(r)dr, te,,

7,1

forany t € A,,,0=1,2,...,2", we have
Py f(t) =2" [a,, 9(7) Pyer(T)dr =
=2" [a,. g(T)dr - 2™ Ian. Pyur(7)dr = (15)
= Pong(t)Ppnr(t) = g(t) Ponr (t) = f(2).
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Thus7 f(t) = PZ“f(t) € Span{Xh X2y -+ XQ"}
Let us denote by hy,, &k =1,2,...,n, 7= 1,2,...,2"71 the Haar functions
X2, X3, - - -, X2n, labeled by two indices. Namely, for m = 25~ 4

Xm (t) = P,y(t)-

Then for any ¢ € Ly we put ¢(k,7) = ¢(2871 4+ 7). We also introduce the averages
@(k, g) of o(t) on Ay, as

(p(kaj) = |Ak,j -

[, e

5

where |A,| denotes the length of Ay ,. It is well known (see, for example, [6], p.78)

that ~ X
@(1,1) = ¢(1) + (1,1),
(16)
and further
o(m, 27— 1) = g(m — 1, 7) + 20"=D2p(m, 3),
@(ma 2.7) = @(m - 1’.7) - 2(m_1)/2(10(m7])7 (]‘7)

m=2,3,...,n; j=12...,2m"

It is easy to see that using (16), (17) we can compute the averages g(n,1),7(n,?), =
1,2,...,2", of functions g(t),r(t), and evaluating the whole set of these averages re-
quires no more than ¢2" arithmetic operations on the coefficients g,, #(7).

If the averages g(n,1), 7(n, 1) are known then by virtue of (15)

f(n,z) = g(n,1)7(n,2), i=1,2,...,2",

and evaluating the whole set of f(n,7) requires 2" multiplications. Now according to
the method for calculating the Haar coefficients [1] the rest of the averages f(m, 7) and
the Fourier coefficients f(m, 7) can be computed from the formulas

fm—1,7) = 3(f(m,25— 1) + f(m, 2y)),

f(m, ) =27mD2(f(m, 27— 1) — f(m,29)),



One can see that evaluating the whole set of averages and Fourier coefficients requires
2"+l — 2 additions and 27! multiplications. To complete the proof it only remains for
us to note that in representation (14) f; = f(1) and for 1 = 281 4 4

fi=f(k), k=1,2,...,n, j=1,2,... 2"

With an argument like that in the proof of Lemma 18.2 of [9],p.300 we get the following
assertion.

Proposition 3.2 Let g(t) be an arbitrary element of span{xi, xa2,-..,xan}. To rep-
resent the elements K,g, K}g € span{xi,X2,.--,Xan} in the standard form (14) it
suffices to perform no more than cn2™ arithmetic operations on the coefficients §(1) and

k(z,7).

Theorem 3.1 In conditions of Theorem 2.1 we can guarantee on the class ¥, the
order of accuracy € for

Nop = O(es_p?“:3 In? 1)

- (18)

Proof. By virtue of (7) for any m =1,2,..., we have
Tmpn = Tm—-1,n — ,U'&m—IPQRT - ﬂKy*Lém—la
6m—1 = -Tm—l,nPZ"T + Knxm—l,n - PQ"y-

From the definition of operator K, and (15) one sees that 2., , € span{xi, x2,.- -, Xaon}
for any m. Let card(AO) be the number of arithmetic operations required for the
passage from z,,_1 5 t0 Zp, . From the Theorem 2.1 and Propositions 3.1, 3.2 it follows
that

_ ot 1
card(AO) < cen2" < ¢ o In? -
€

On the other hand, within the framework of stopping rule (9)

Nop < Mimaxcard(AO) < s_%card(AO) =<

_pot3
< ¢e ro In

21
e

as claimed.

Remark. Let us assume that the equation (1) belongs to ®2°) but the function
r(t) has a finite number of known zeros. In this case the collocation method proposed in



[3] can be applied. Within the framework of this method finding the approximate solu-
tion z,, of (1) reduces to solving a system of O(n) linear algebraic equations. Moreover,
from the Theorem 1 [3] it follows that

1
1z — 2| = o(%).
Then for guaranteeing accuracy ¢ it is necessary to solve the system consisting of
n < £~ 2 algebraic equations. To solve this system, for example, by Gaussian elimination
it is necessary to perform N; < n® < £ arithmetic operations. When N; is compared
with estimation (18) it is apparent that for the class ®£°) the scheme (4), (7) with
stopping rule (9) is more economical than collocation method of [3].

4 Differential Equations and Integral Equations of the Third
Kind

Integral equations of the third kind are closely related to some singular problems in
differential equations.

4.1 Volterra Equations

Let A, B be (n,n)-matrices with entries a;, bj; and ¢ an n-vector with entries c;, which
are continuous resp. differentiable real or complex functions.
The system of linear ordinary differential equations

Ay'=By+c

is a system of differential-algebraic equations (see e.g. [4]), if the matrix A is singular.
On the other hand, since
(Ay)' = A'y + Ay,

we have

(An)(0) = [ () + BE)) y(r)dr + ().

This is a system of Volterra equations of the third kind.

In the special case n = 1, Kress ([7], p.34) has shown, that a Volterra integral
equation of the first kind is equivalent to a Volterra integral equation of the second
kind, if the kernel function does not vanish on the diagonal (k(7,7) # 0 for all 7).
If the kernel function has zeros on the diagonal, then this equation is equivalent to a
Volterra equation of the third kind.

10



4.2 Fredholm Equations

Let L be a linear differential operator with a continuous inverse 7', let A, B, c be as
above. Then the boundary problem

L(Ay) =By +c
is equivalent to the system of integral equations of the third kind
Ay=TBy+ Tc.

In the case n = 1 and if aq; has zeros, then we have boundary value problems with
"regular” and with ”irregular” singularities (see e.g. [2], p.299).
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A The finite-dimensional realization of the general residue
principle for Tikhonov regularization

In this appendix the discretized version of the general residue principle is studied and
within the framework of this principle the discretization scheme of the form (4) is
used. One shows that this scheme is more economical for some classes of equations
than standard Galerkin scheme.

A.1 Introduction

Let H be a real Hilbert space with the norm || - || and inner product (-,-). In this
appendix we study the schemes of discretization for solving ill-posed problems of the
form

Tx = f, (19)

where T is a linear compact operator from H into H and the free term f belongs to
the Range(T) :={f: f=Tg, g € H}, i.e. Eq. (19) is solvable. However, as a rule,
instead of the free term f we have some approximation f; € H such that ||f — f5|| <9,
where ¢ is a small positive number which is usually known.

To get an approximation to a solution of (19) we have to discretize the problem.
The traditional approach to such discretization lies in the following. We choose some
finite-dimensional operator Ty, such that rankTy,. = N and ||T — Tysellp—m < e,
where ey depends on 6. Further, as the approximate solution of (19) we take the
minimizer x%%¢ of the so-called Tikhonov functional

Qa(Tdisc: ,’E) = ||Tdisc$ - f(5||2 + Oj||$||2, (20)

where « is the regularization parameter depending on §. We may define 8¢ from the
Euler equation for (20)
ar + T;ischiSC‘T = T;iscf(;? (2]‘)

where the star denotes the adjoint operator. Note that the solution of (21) belongs
to the Range(T};,.), dim Range(Ty;..) = rank(T;,..) = N, and the finding an element
x%5¢ reduces to solving a system of N linear algebraic equations. The problem is now
to choose the regularization parameter « in dependence of § in order to obtain the best
possible order of accuracy with respect to § as § — 0.

The usual discussion of the order of accuracy of solution techniques for ill-posed
problems (19) is done under the assumption that the minimum norm solution z lies in
the range of (T*T)", v > 0. From [7] it follows that under these assumptions for any
solution technique connected with Tikhonov regularization (20), (21) the best possible
order of accuracy in the power scale is 62//**1) v € (0, 1].
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One of the most widely used way to choose the regularization parameter « is by
the residue principle. The general form of such principle was proposed in [8]. Within
the framework of this general residue principle we choose o = «(d) such that

P

o
1T = fall < cpa’r (22

where p, g, ¢, , are some positive constants and z, is the solution of non-discretized
regularized equation
ax +TTx =T fs.

A special case of general residue principle (22) is well-known Morozov’s principle for
p =1, ¢ = 0. The discretized version of this special case was studied in [6], [4].
But Morozov’s principle leads to an optimal convergence rate §2*/(*+1) of Tikhonov
regularization only for v € (0,1/2]. For instance, within the framework of Morozov’s
principle we have not the possibility to obtain the best possible order of accuracy
of Tikhonov regularization 6*3. On the other hand, from [1], [3] it follows that for
p= %(q +1) a non-discretized version of the general residue principle (22) leads to the
order of accuracy §%/%. The aim of this paper is to study the residue principle (22) for
p < g+ 1 in the form tailored to the discretized version of Tikhonov regularization
(20), (21). Namely, we will choose o = «(d) such that

5;0 disc 5})
Cla <N Tgisexy* — fol] < C2aa (23)

where, and below, ¢y, co, etc. are positive generic constants which may take different
values at different contexts.

A.2 Convergence Analysis

Investigating a posteriori strategies of the sort (23) always starts by proving that choos-
ing « according to (23) is equivalent to a residue principle with exact data and exact
operator.

Lemma A.1 If « is chosen to satisfy (23) forp < q+ 1, ||T — Tascllusu < 9 then
there exist c3,cq such that

oP N oP
c3— <|Tzo — f]] < Ca—0s
a a

where &, = (ol + T*T) 'T*f.
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Proof. From Lemma 7 [2] it follows that

|1 Tasexe™ = fsll = T — Tasscll momllzll = 201 f = foll <

< NT2a = fIl < | Taisexe™ = foll + ENT = Taisellm—ull="l| + (24)
+2||f = full
Moreover, from Lemma 1 [8] we know that if o is chosen according to (23) then
a< 06(5‘1% (25)
and therefore for p < ¢ +1
9P o1
= §—— > bcg WPTITIE > ¢ (26)
ol ol

Combining (23)-(26) we obtain the assertion of the lemma.

Now we are in a position to obtain a discretized version of the main results
connected with general residue principle (22) for Tikhonov regularization (see [8], [1],

3])-

Theorem A.1 If 2" € Range((T*T)"), v € (0,1] and « is chosen according to (23)
forp <q+1, [T —Tascllsu <6 then

ot — 2| < e5?,
where s = min{q+1, 1— £ + 4q(q+1)}

Proof. Using Lemma 6 [2] we have

J N |T — Tisell a—mllzt||

t _ .disc < Vo<
|27 — 25" < 2 /a Ja + crer” <
)
< % + cpa”. (27)
From Lemma 2 [8] it follows that if « is such that
oP o
ML <\ Taa — foll < 22 (28)
ol
then
ﬁ < 5t %0 T 13t TD) (29)
va =t '



Let us verify the condition (28) for o chosen to satisfy (23). It is easy to see that

”Tioc - f” - ||T(i'a - xa)” - “f - fJ“ < ||T.’Ea - f&” < (30)
<|NTzo — I+ 1T (@a — za) | +[1f = fsll.

Moreover,
IT(&a — za)l| = |T(ad + T*T)'T*(f = f5)|| =
= (oI + TT)TT*(f — fo)l| < ll(@l + TT*) T T"||5rm < 6.

Keeping in mind this estimate, (26), (30) and Lemma A.1 we can see that o chosen
according to (23) satisfies the condition (28). Now the assertion of the theorem follows
from (27), (25) and (29).

Corollary A.1 If « is chosen according to (23) for ||T — Tasellu—u < 6 and

pgmin{z(q—i_l) 2(q+1)} 31)

’ 1—v
21/+1 1+2—q

then .
ot — 22| < c6* (32)

.| pv p  (v+1)p
$g=minq ——,1 — — 4+ ————>.
' {q+1 2g  4q(q+1)

Proof. From Lemma 3 [3] it follows that if p and « satisfy the conditions (31)
and (28) respectively then

where

0 _», (wi+Dp
- S 051 2q+4q(q+1) .

Va

The assertion of the corollary follows from this estimate and (27), (25) .

Remark. For p = 2(¢+1) and v = 1 the estimate (32) leads to an optimal con-

vergence rate 62/% of Tikhonov regularization. But if zt € Range((T*T)"), v € (0,1),
then for p = 2(¢q 4 1) the residue principles (22), (23) lead to the convergence rate

with order §3*. For v € (0,3/4) this convergence rate is worse than convergence rate
of Tikhonov regularization with Morozov’s residue principle (p = 1, ¢ = 0). More-
over, for v € (0,1/2] Morozov’s principle leads to optimal convergence rate §2/(v+1)
automaticly. There is a very interesting open problem here. Namely, is it possible
to construct the residue principle for Tikhonov regularization leading automaticly to
optimal convergence rate 62*/*+1) for all v € (0,1]?
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A.3 Complexity of the discretization schemes.
Let eq,€s,...,€,,... be some orthonormal basis of Hilbert space H, and let P, be the

orthogonal projector on span{e;,es,...,e,}, that is

n

Pnf = Z(f, ez')ei-

=1

We denote by H”, r = 1,2,..., the linear subspace of H which is equipped with the
norm

[l == LA+ (LA

where L is some linear operator acting from H” to H, and for n =1,2, ...
I — Pullgr—u =cn".
It will be assumed now that the operators 7" have some ”smoothness”. Namely,
Ten, ={T:|Tllasm <7, [T"lgom <72, (L"T) |Homr < 73},

v = (71572, 73)-

It is easy to see that the space H" and the class H  are a generalization of the space
of smooth functions W2} and of the class IC}Y of integral operators with kernels having
square-summable mixed partial derivatives considered in Section 2.

The standard approach to the discretization of the problem (19) lies in the ap-
plication of the Galerkin method. This means that

Tyise = PuTP,. (33)
With an arguments like that in the proof of Theorem 5.5 [5] we get the estimate

sup ||T — P, TP, ||lg—u < || = Pu|lgrom =<n"".
TeH;,

Then from Theorem A.1 it follows that within the framework of the above mentioned
standard approach (33 and with residue principle (23 we can guarantee the same order
of accuracy of Tikhonov regularization as for non-discretized version (22 in the case
when n < 6=/,

Denote by Card(IP) the number of inner products of the form (e;, T'e;) required
to construct Tys.. Then for standard approach (33)

Card(IP) =n*=<§ ", (34)
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Now we combine the general residue principle (23) with ”hyperbolic cross” ap-
proximation (4). This means that now n = 2™ and

m

Tdisc == Z(PQk - P2k71)TP2m—k + PITPQ’m- (35)
k=1

We remind that for this discretization scheme
Card(IP) =< m2™.

Lemma A.2 If for discretization scheme (35) Card(IP) =< §='/" long/’"% and T €
M, then
||T - Tdisc”H—)H S (5

Proof. With an argument like that in the proof of Lemma 2.1 for 7" € H’ we
have (for some constant c)

T — Tuisel| o < em2™™ < (Card(IP)) " m"™™ <6
as claimed.

When Lemma A.2 is compared with (34) it is apparent that within the framework
of general residue principle (23) the discretization scheme (35) is more economical for
T € H!, than standard Galerkin scheme (33).
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