MODULI SPACES OF DECOMPOSABLE MORPHISMS OF SHEAVES AND
QUOTIENTS BY NON-REDUCTIVE GROUPS
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ABSTRACT. We extend the methods of geometric invariant theory to actions of non—
reductive groups in the case of homomorphisms between decomposable sheaves whose auto-
morphism groups are non-reductive. Given a linearization of the natural action of the group
Aut(E)xAut(F) on Hom(E,F), a homomorphism is called stable if its orbit with respect to
the unipotent radical is contained in the stable locus with respect to the natural reductive
subgroup of the automorphism group. We encounter effective numerical conditions for a lin-
earization such that the corresponding open set of semi-stable homomorphisms admits a good
and projective quotient in the sense of geometric invariant theory, and that this quotient is in
addition a geometric quotient on the set of stable homomorphisms.
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1. INTRODUCTION

Let X be a projective algebraic variety over the field of complex numbers. Given two coherent
sheaves £, F on X the algebraic group G = Aut(€) x Aut(F) acts naturally on the affine space
W = Hom(&,F) by (g,h).w = howo g !. If two morphisms are in the same G-orbit then
they have isomorphic cokernels and kernels. Therefore it is natural to ask for good quotients
of such actions in the sense of geometric invariant theory. However, in general £ and F will be
decomposable such that G is not reductive. More specifically let £ and F be direct sums

E= & M;®¢& and F= & NQF,

1<i<r 1<I<s
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where M; and N, are finite dimensional vector spaces and &;, F; are simple sheaves, i.e. their
only endomorphisms are the homotheties, and such that Hom(&;, &) = 0 for 4 > j and
Hom(F;, Frp) = 0 for [ > m. In this case we call homomorphisms & — F of type (r,s).
Then the groups Aut(€) and Aut(F) can be viewed as groups of matrices of the following type.
The group Aut(E), say, is the group of matrices

U21 g2 :
: 0
Uprr = Upr—1 Gr

where g; € GL(M;) and uj; € Hom(M;, M; ® Hom(&;, &;)).

In the literature on moduli of vector bundles and coherent sheaves many quotients of spaces
PHom(&, F) of type (1,1) by the reductive group Aut(€) x Aut(F) have been investigated, see
for example [4], [10], [14], [19]. In case of type (r,s) there are good and projective quotients if
one restricts the action to the reductive subgroup

Grea = [ [ GL(M;) x ] GL(V).

This has been shown recently by A. King in [15]. The quotient problem for Hom(&, F) of type
(r,s) with respect to the full group Aut(E) x Aut(F) is however the generic one and of great
importance in the theory of moduli of vector bundles. The homomorphisms in a Beilinson
complex of a bundle on projective n—space, for example, have in general arbitrary type (r, s)
depending on the dimensions of the cohomology spaces of the bundle. If one wants to investigate
moduli of such bundles, in particular for small Chern classes, it is desirable to use spaces of
such homomorphisms. In several papers, see [18], [23] for example, semi-stable sheaves or ideal
sheaves of subschemes of projective spaces, are represented as quotients of injective morphisms
of type (r, s), and one should expect that the moduli spaces of such sheaves are isomorphic to a
good quotient of an open subset of the corresponding space of homomorphisms. In some cases
of type (2, 1) this has been verified for semi-stable sheaves on Py in [5].

Unfortunately the by now standard geometric invariant theory (GIT) doesn’t provide a direct
answer for these quotient problems in case Aut(£) x Aut(F) is not reductive. There are several
papers dealing with the action of an arbitrary algebraic group like [11], [12], [1], [2] and older
ones, but their results are insufficient for the above problem. The conditions of [11] are close
to what we need, but they don’t allow a concrete description of the set of semi—stable points
in our case and they don’t guarantee good or projective quotients, see remark 4.2.

Our procedure is very close to standard GIT and we finally reduce the problem of the
quotient to the one of a reductive group action. We first introduce polarizations A =
(A, o Ap, —p1, - -, —pis) for the space W, consisting of weights \;, i for the factors M; ® &;
and N; ® F;, which satisfy > A\; dim(M;) = >y dim(NV;). We use then the numerical criterion
of A. King, [15], as definition for semi-stability with respect to the reductive group Greq- An
element w € W is (Gyeq, A)-stable if for any proper choice of subspaces M C M;, N C N,
such that w maps &(M] ® &;) into &(N] ® F;), we have Y A\, dim(M]) < > p dim(N]), or
semi-stable if equality holds. Let W*(Gyeq, A) C W (Greq, A) denote the set of stable and
semi-stable points so defined. If H C G is the unipotent radical of G, which is generated by



the homomorphisms & — &; and F; — F,, for i < j and [ < m, we say that w is (G,A)~-
(semi-)stable if h.w is (Gyeq, A)—(semi-)stable for any h € H, see 4.1. We thus have open
subsets W (G, A) C W*(Gpeq, A) and W3 (G, A) C W3 (Greq, A).

The main result of our paper is that there are sufficient numerical and effective bounds for the po-
larizations A such that W**(G, A) admits a good and even projective quotient W**(G,A)//G and
that in addition W*(G, A) admits a geometric quotient, which is smooth and quasi—projective,
see proposition 6.1 and the results 7.3, 7.7, and section 8.

All this is achieved by embedding the action G x W — W into an action G x W — W of a
reductive group and then imposing conditions for the equality W*(G,A) = W N W*(G, A),
where A is the associated polarization. The quotient is then the quotient of the saturated
subvariety GW** C W* (G, A). The quotient will be projective if G.W ~. G.W doesn’t meet
W*$(G, A). Also for this numerical conditions can be found in section 8.

One would expect that the quotients of W could be obtained by first forming the quotient
W/H with respect to the unipotent radical H and then in a second step a quotient of W/H
by G/H 2 G,.q- However, the actions of unipotent groups behave generally very badly, [13],
and we are not able to prove that the algebra C[WW/H] is finitely generated. This would be
an essential step in a direct construction of the quotient. Of course, the main difficulty also
in this paper arises from the presence of the group H. The counterexample of M.Nagata, [21],
also shows that the finite generatedness depends on the dimensions of the problem. So from a
philosophical point of view we are determining bounds for the dimensions involved under which
we can expect local affine G-invariant coordinate rings which are finitely generated, and thus to
obtain good quasi—projective quotients, even so the bounds might not be the best. The simple
example 6.2 shows that W*(G, A)/G might not be a geometric quotient if the conditions are
not fulfilled.

In the last section 10 we are investigating a few examples in order to test the strength of
the bounds. Here we restrict ourselves to small type (2,1),(2,2),(3,1) in order to avoid long
computations of the constants which give the bounds for the polarizations. What we discover
in varying the polarizations are flips between the moduli spaces, as one has to expect from the
general results on the variation of linearizations of group actions, cf. [24], [3], [27]. In example
10.1 we have a very simple effect of a flip, but in example 10.4 the chambers of the polarizations
look already very complicated.

The idea of embedding the non-reductive action G x W — W into the action G x W — W is
simply to replace the & by & using the evaluation maps Hom(&1, &) @ & — &;. It is explained
in 5.1 and 5.2 that this is the outcome when we start to replace the sheaves &; step by step and
similarly for the sheaves ;. Since we have to deal everywhere with the dimension of the vector
spaces Hom(&;, £;) and Hom(F;, F,,) which form the components of the unipotent group H,
we have translated the whole setup into an abstract multilinear setting and related actions by
technical reasons. This gives more general results although we have only applications in the
theory of sheaves. The reader should always keep in mind the motivation in 5.1.

The paper is organized as follows: In section 2 we describe our problem in terms of multilinear
algebra. In section 3 we recall results of A. King, [15]. The reductive group actions considered
in this paper, the action of G,¢q on W and that of G on W, are particular cases of [15]. We
also discuss the relation of A—(semi-)stability in W with that in the projective space PW.



But we cannot work solely on the projective niveau, because the embedding W C W is not
linear. After defining G—(semi-)stability for the non-reductive group in section 4 we describe
the embedding in section 5 and introduce the associated polarizations. Section 6 contains the
step of constructing the quotient W**(G, A)//G using the GIT-quotient W**(G, A)//G of A.
King. Sections 7 and 8 are the hard parts of the paper. Here the conditions of the weights which
define good polarizations are derived. It seems that the constants appearing in these estimates
had not been considered before. In the most important case of the symmetric algebra some of
these constants are estimated. In order to avoid further computations we restrict ourselves to
the cases used in the examples in section 10.

By using correspondences between spaces of morphisms, called mutations, it is possible to
deduce from our results other polarizations such that there exists a good projective quotient

(see [7], [8]).

Acknowledgement. The first author wishes to thank the University of Kaiserslautern, where
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2. THE MODULI PROBLEM FOR DECOMPOSABLE HOMOMORPHISMS

Let £ =@ & ® M; and F = & F; ® N; be semi—simple sheaves as in the introduction. In order
to describe the action of G = Aut(€) x Aut(F) on W = Hom(&, F) in greater detail we use
the abbreviations

H; = Hom(&;,F)
B,y = Hom(F;, Fpn),

such that we are given the natural pairings

Hlj ® Aji — le’ for 1< ]

Akj X Aji — Aki for 1< ] <k
Bml ® Hl'i — Hmz for 1 <m
B,, ® B,y — DBy for [ <m<n.

The group G consists now of pairs (g, h) of matrices

g1 0 e 0 hl 0 . 0

g= U'21 92 : and = U?l ho
0 . 0
Upr = Upr—1 Gr Ust ++° Uss—1 hs

with diagonal elements g; € GL(M;), hy € GL(N,) and uj; € Hom(M;, M; ® Aji),
Uml € HOIII(Nl, Nm X Bml)

Similarly a homomorphism w € Hom(&, F) is represented by a matrix w = (¢;;) of homomor-
phisms ¢; € Hom(M;, N; ® H;) = Hom(H;; ® M;, N;). Using the natural pairings, the left



action (g, h).w = hwg™" of G on W is described by the matrix product

-1

hy 0 - 0 ou o G 0 - 0
va1  ha 3 o : : o U21 G2 .
Vst ="+ Ugis—1 hs Ps1 7 Psr Upr - Upr—1 Gr )

where the compositions vy, o ¢ and ¢;; o uj; are compositions as sheaf homomorphisms but
can also be interpreted as compositions induced by the pairings of the vector spaces above.
Thus the group G, the space W and the action are already determined by the vector spaces
Aji, By, Hj; and the pairings between them. Therefore, in the following we define G, W and the
actions G X W — W by abstractly given vector spaces and pairings. The resulting statements
can then be applied to systems of sheaves by specifying the spaces as spaces of homomorphisms
as above.

2.1. The abstract setting

m < s finite dimensional

Let r, s be positive integers and let for 1 < < j < r, <[ <
C and By = C. Moreover we

1<
vector spaces Aj;, By, Hj; be given, where we assume that A;;
suppose that we are given linear maps, called compositions,

!

Hlj®Aji — Hy for 1<i<53<, 1<1i<s
AM@Aﬁ — Aki for 1S’LS]SI€ST’
B, ®H; — Hy; for 1<i1<r, 1<I<m<s
B,,, ® B,y — By for 1<I<m<n<s.

We assume that all these maps and the induced maps

are surjective. This is the case when all the spaces are spaces of sheaf homomorphisms as

above for which the sheaves & and F; are line bundles on a projective space or each of them is
a bundle Q”(p).

We may and do assume that these pairings are the identities if ¢ = j, [ = m etc. . Finally, we
suppose that these maps verify the natural associative properties of compositions. This means
that the induced diagrams

A @ Aji @ Aipy, —— Ak @ Ay, Bon @ By @ By —— Boym, @ By

l l | l

A @ Ajy —— Ap Bon ® By —— By

Hyp @ A @ Aji —— Hi; ® Aj; By ® By @ Hy —— By ® Hy

l l l !

Hlk X Akz — le’ Bnm X Hmz —_— Hm



B ® Hj @ Ajj —— Hpj @ Ay,

J l

B, ® Hy; E— H,;
are commutative for all possible combinations of indices.

In our setup we also let finite dimensional vector spaces M; for 1 <i:<rand N;for1 <[l <s
be given and we consider finally the vector space
W = E% HOIII(MZ', Nl X le) = G% HOIII(H;; ® MZ‘, Nl)
i, 1,
where summation is over 1 <7 <r and 1 <[ < s. This is the space of homomorphisms in the
abstract setting. The group G and its action on W are now also given in the abstract setting
as follows.

2.2. The Group G

We define G as a product G, x G of two groups where the left group G, replaces Aut(€) and
the right group G replaces Aut(F) in our motivation. Let G, be the set of matrices

g 0 e 0
U21 g2 :

0
Urr - Upr—1 Gr

with g; € GL(M;) and uj; € Hom(M;, M; ® Aj;) = Hom(A}; ® M;, Mj). The group law in G,
is now defined as matrix multiplication where we define the compositions wu; * u;; naturally
according to the given pairings as the composition

id®@comp

wjj i ®id
M, —J>MJ®AJ, M)Mk(@Akj@Aji —>Mk®AIm

Explicitly, if g has the entries g;,u;; and g’ has the entries g;, u}; then the product
9"=44y

n

in G, is defined as the matrix with the entries g/’ = g} o g; in the diagonal and

u%z = u;cz °g;+ Z u;cj * Ujs + (g;c ® Zd) O Uk;
i<j<k
for 1 <4 < k < r. The verification that this defines a group structure on GG, is now straight-
forward.

As a set G, is the product of all the GL(M;) and all Hom(M;, M; ® Aj;) for i < j and thus
has the structure of an affine variety. Since multiplication is composed by a system of bilinear
maps it is a morphism of affine varieties. Hence GG, is naturally endowed with the structure of
an algebraic group. The group Gg is now defined in the same way by replacing the spaces M;
and Aj;; by N; and B,,;. Finally G = G, x G is defined as an algebraic group.



2.3. The action of G and W

We will define a left action of G and a right action of Gy on W such that the action of G
on W can be defined by (g,h).w = h.w.g~'. Both actions are defined as matrix products as
described above in the case of sheaf homomorphisms using the abstract compositions as in the
definition of the group law.

If w has the entries ¢;; € Hom(H}; @ M;, N;) and g € G, has the entries g; and u;; then w.g is
defined as the matrix product

o o P Y11 o Py g 0 e 0
— U21 92 :

: 0

90{91 T Per ©Ps1 = Psr Upr ** Upp—1 Gr

with
! oL - .
0 = i ° g + Z @i ¥ uj;  (if 2 = r the last sum is 0),
i<j
where ;; * u;; is the composition
Mi _>M]®AJZ _)Nl®Hlj®Aji _>Nl®Hli
or dually the composition

The left action of G is defined in the same way. In the next two sections we give an analysis
of stability and semi-stability for the action of G' and its natural reductive subgroup G, ¢q. In
the reductive case this is due to A. King.

2.4. Canonical subgroups of G

We let H;, C G and Hg C Gg be the maximal normal unipotent subgroups of Gy and Gg
defined by the condition that all g; = idys, and all h; = idy,. Then H = Hj, x Hp is a maximal
normal unipotent subgroup of G. Similarly we consider the reductive subgroups Gy ;.4 and
GRyrea of G, and G defined by the conditions u;; = 0 and v,,; = 0 for all indices. Then
Gred = GLred X GRyred is a reductive subgroup of G and it is easy to see that G/H = G,¢q. The
restricted action of Geq is much simpler and reduces to the natural actions of GL(M;) on M;
and GL(N[) on Nl



3. ACTIONS OF REDUCTIVE GROUPS

3.1. Results of A. King

Let ) be a finite set, I' C () X Q) a subset such that the union of the images of the two projections
of ' is Q. For each v € Q, let m, be a positive integer, M, a vector space of dimension m,,
and for each (o, 3) € T, let V5 be a finite dimensional nonzero vector space. Let

Wo= & HOHl(Ma ® Va/j, Mﬂ)
(a,B)€T

On W, we have the following action of the reductive group
Go = | [ GL(M.)
acqQ
arising naturally in this situation. If (fs,) € Wy and (g,) € Gy, then

(ga)'(fﬂa) = (gﬂ o fﬁa ° (ga X id)_l)'

Let (eq)acq be a sequence of integers such that
Z eaMe = 0.
To this sequence is associated the character y of Gy defined by
x(9) = | [ det(ga).

ac@

This character is trivial on the canonical subgroup of Gy isomorphic to C* (for every \ € C*,
the element (g,) of G corresponding to A is such that g, = A.id for each «). This subgroup
acts trivially on Wy. A point z € Wj is called x-semi-stable if there exists an integer n > 1 and
a polynomial f € C[Wj] which is x"-invariant and such that f(z) # 0 (f is called x"-invariant
if for every w € Wy and g € Gy we have f(gw) = x"(g)f(w)). The point z is called x-stable if
moreover

dim(Goz) = dim(Gy/C*) and if the action of Gy on {w € Wy, f(w) # 0} is closed.

A. King proves in [15] the following results :

(1) A point x = (fza) € Wy is x-semi-stable (resp. x-stable) if and only if for each family
(M), a € Q, of subspaces M| C M, which is neither the trivial family (0) nor the given
family (M,) and which satisfies

foa(M}, ® Vop) C M}
for each (o, ) € I', we have

Zea dim(M)) < 0 (resp. <0).
acQ
(2) Let W§*® (resp. W() be the open subset of W, consisting of semi-stable (resp stable) points.
Then there exists a good quotient
T W — M

by Go/C* which is a projective variety.



(3) The restriction of this quotient
Wg — M° =n(Wy)

is a geometric quotient and M?® is smooth.

3.2. Polarizations

The (semi-)stable points of Wy remain the same if we replace (e,) by (ceqn), ¢ being a positive
integer. So the notion of (semi-)stability is fully described by the reduced parameters (%),

t
where
t = E €aMg.-

a€Q,eq>0

So we can define the polarization of the action of Gy on W, by any sequence (cy)qcq of nonzero

rational numbers such that
anmaz(), Z CaMq = 1.
€ a€Q,ca>0

By multiplying this sequence by the smallest common denominator of the ¢, we obtain a
sequence (e,) of integers and the corresponding character of Gy. Therefore the loci of stable
and semi-stable points of W, with respect to Gy and a polarization Ay = (c,) are well defined
and denoted by

W(f (Go, A()) and WOSS(G(), Ao)

3.3. Conditions imposed by the non-emptiness of the quotient

If W§ is not empty, the e, must satisfy some conditions. We will derive this only in the three
situations which occur in this paper. Polarizations satisfying these necessary conditions will be
called proper. The first is that of the action of G,.4 in 2.4 and the second is that of G and W
in section 5, and the third is the case in between occurring in 7.5.2.

3.3.1. First case

Let 7, s be positive integers. We take

Q:{al--' aaraﬂla"' aﬂs}a F:{al--- 7a’r} X {/81:"' ’IBS}'

This is the case of morphisms of type (r,s). For 1 <i <, let M = My, if es > 0, and
{0} otherwise, and for 1 <1 < s, let My = Mp,. Then if one e,, is not positive, we have

> eqdim(M}) > 0
ac®

and (M) # (M,), so in this case no point of W is stable. So we obtain , if W{ is non-empty,
the conditions

€q; > 0, for any 4, and eg <0, for any .



A proper polarization is in this case a sequence (A1,..., A, —p1, ..., —ps) of rational numbers
such that the )\; and the p; are positive and satisfy

z /\Z-mal. = Z mimeg, = 1.
1<i<r 1<i<s
3.3.2. Second case

This case appears when we use a bigger reductive group to define the quotient (this is the case
of W later on). Let r, s be positive integers. Here we take

Q = {al cee s Oy ﬂla s :ﬂs}a I'= {(ai: ai*l), 2 S ? S r, (alaﬂs)a (ﬂla/@lfl)a 2 S l S 8}.
Then the necessary conditions for W3 to be non-empty are:

Z €a;Mqa; > 0 for any ¢, and Z egmg < 0 for any m.
1<j<r 1<l<m

To derive the first set of conditions we consider for any i the family (M) for which M = 0 if
i <j <rand M/ = M, for all other v € Q. Then fo5(M; ® V,5) C M for any f € W, and
any (o, 3) € T'. If f is stable we obtain

— Z Ca;Ma; = ZeﬁydimMé <0
i<j<r 7EQ
Moreover, if the family (M) is defined by Mc’yj =0for1<j<r,Mg =0ifm<l<sand
M. = M, else, we obtain directly

Z esmg, = 267 dim M < 0.

1<I<m vEQ
A proper polarization in this case is then a sequence (pi,... ,pr, —01,...,—0s) of rational
numbers satisfying
E PiMeg; = E oymg, = 1.
1<i<r 1<I<s

and
Z pPjMa; >0 for any ¢ and Z oymg, > 0 for any m.
i<j<r 1<i<m

We could also drop the normalization condition.

3.3.3. Third case

This case is a combination of the first and second case. It appears in the proof of the equivalence
of semi—stability in 7.4. Here @) is the same as in the previous cases and

['={(os,0;-1), 2<i<r, (a,3), 1 <1< s}
Now the necessary conditions for W;j to be non-empty are:

Z €q;Mq; >0 foranyi, and e <0 foranyl.

1<j<r
The first condition follows as in the second case when we consider the family (M) with M, =0
fori < j <r and MA’Y = M, for all other v € ). The second condition follows when all M;



are zero except M él = Mp, for one [. Again a proper polarization in this case is a sequence
(/01, cee s Pry THL _N'l) with

Z pimai = z /’leﬂl =1

1<i<r 1<I<s
and

Z pPjMa; >0 forany i and g >0 for any [.
i<j<r

3.4. The action of Gy on P(W))

We suppose that we are in one of the first two preceding cases and that there exist stable points
in Wy. Let P be a nonzero homogeneous polynomial, x"-invariant for some positive integer n.
The x"—invariance implies that P has degree n.t where in case 1 (action of Geq on W)

and in case 2 (action of G on W)

t= Z 1€a; Mg, — Z (s — eg,myg,.

1<i<r 1<i<s

To see this let A € C* and let g be given by g, = A 'id and gs, = id in the first case and by
9o; = A7"id and g5, = \'=%id in the second case. Then gz = Az and x"(g) = A™ in both cases,
such that P(Az) = \"p(z).

Now we will see that there exists a Gy-line bundle £ on P(IW,) such that the set W§* of semi-
stable points is exactly the set of points over P(1W,)®**(Gy, £), which is the set of semi-stable
points in the sense of Geometric Invariant Theory corresponding to

Here the action of Gy on L is the natural action multiplied by x. More precisely, the action of
Gy on W, induces an action of this group on S*W, and on S*W; by:
(9-F)(w) = F(g 'w)

for all g € Gy, w € Wy and F € S'W, viewed as an homogeneous polynomial of degree ¢
on Wy. The line bundle space L of £ is acted on by Gy in the same way : if & € L.~ then
9.§£ € Legys 1is the form on < gw >*®'= L_,,~ given by (9.£)(y) = £(¢7'y). We modify
now the action of Gy on L (resp. S*W§) by multiplying with x(g) :

g*E=x(9)g€ for€ € Leys, or g+ F=x(g)g.F for F e H'(P(Wy), L) = S'Wg.

Now P € H(P(W,), £L2™) is an invariant section if and only if P is a homogeneous polynomial
of degree tn which satisfies

Pgw) = x"(9)P(w).
From the definition of semi-stable points in W, and P(W,) with respect to the modified G-
structure on £ = Opw,)(t), we get immediately



3.5. Lemma: Assume that W§(Go, No) # D and let t be defined as above in the two cases of
Wo. Then the set W§*(Go, Ao) is the cone of the set P(Wo)**(Go, Orwy)(t)) as defined in G.1.T.

However, the cone of the set of stable points in P(W;) does not coincide with W§ because
every point of P(W;) has a stabilizer of positive dimension. In fact there is a subgroup of
Gy/C* of positive dimension which acts trivially on P(W;). In the first case for example
such a group is given by g,, = Aid and g3, = pid with A\, p € C*. Then the cone over
P(W5)*(Go/C* x C*, Opwy)(t)) coincides with ;. If we want this coincidence for one and
the same group we would have to consider the action of a smaller reductive group in order to
eliminate additional stabilizers. We do this only in the first case.

3.6. The Group G’

Let G and W be as in section 2 and let A = (Aq, ..., Ap, —pi1, ..., —ps) be a proper polarization
as in 3.3.1 for the action of G,.q on W. It would suffice to consider the subgroup of G,.4
consisting of elements ((g;), (h;)) satisfying

I det(g:) = ] det(t) =1.

1<i<r 1<I<s

It will, however, be more convenient later to use the subgroup G, of G,.q consisting of elements
((9:), (1)) satisfying

H det(g;)** = H det(h;)*' = 1, where a;; = dim Aj; and b,,; = dim B,,;.

1<i<r 1<I<s

We consider the action of G, on £ induced by the modified y-action of G,.q. Now the set
W*(Grea, A) of x-stable points of W is exactly the cone over the locus P(W)*(GL,,, £) of stable
points of P(W) in the sense of Geometric Invariant Theory.

4. SEMI-STABILITY IN THE NON—REDUCTIVE CASE

Let G and W be as in section 2. A character x on G,.4 as in King’s setup can be extended to a
character of (G. Also the modified action of G,.; on £ can be extended to an action of G. Let
! !

G’ be the subgroup of G defined by the same equations as for G._,. It contains H and G,
and we have G'/H ~ G,

In the case of the action of G,., on W a proper polarization is given by a sequence

Alyeve s Ay b1, - - -, is Of positive rational numbers such that
Z )\Zm, = Z Himny = 1.
1<:<r 1<I<s
More precisely, the polarization is exactly the sequence (Ay,..., A, —p1,...,—ps). The pa-

rameter \; (resp. 1) will be called the weight of the vector space M; (resp. N;). We see that
the dimension of the set of possible proper polarizations is r + s — 2. Let ¢ denote the smallest



common denominator of the numbers )\; and p; and x the character of G,.; defined by the

sequence of integers (—tAy, ..., —t\., ti1, ... ,tus). Let
L=0puw(t) with t= ) myth;.
1<i<r

As we have seen, if we consider the modified action of G,.q on L, then the y-semi-stable points
of W are exactly those over the semi-stable points of P(W) in the sense of Geometric Invariant
Theory with respect to the action of G,eq/C* on L. The x"-invariant polynomials are the
G, eq-invariant sections of L.

We are now going to define a notion of (semi-)stability for the points of W with respect to the
given action of the non-reductive group G. Let H C G be the above unipotent group, see also
2.4.

4.1. Definition: A point w € W is called G—semi—stable (resp. G—stable) with respect to the
(proper) polarization A = (A1, ..., A\p, —p1, ..., —ps) if every point of Hw is Greq—semi-stable
(resp. Greqa—stable) with respect to this polarization.

We denote these sets by W*(G, A) resp. W*(G, A).

4.2. Remark: In [11], semi-stability is defined as follows : A point w € W is semi-stable if
there exists a positive integer k and a G'-invariant section s of £ such that s(w) # 0 (there
is also a condition on the action of H). It is clear that a semi-stable point in the sense of
Fauntleroy is also G-semi-stable with respect to (A1,..., A,, —p1,... , —fs). It is proved in [11]
that there exists a categorical quotient of the open subset of semi-stable points in the sense of
[11], but it is not clear that all G-semi-stable points are semi-stable. Moreover, in the general
situation of [11] there is no way to impose conditions which would imply that the categorical
quotient is a good quotient or even projective. Using definition 4.1 we are able to derive a
criterion for the existence of a good and projective quotient of W under the action of G.

5. EMBEDDING INTO A REDUCTIVE GROUP ACTION

We will construct an algebraic reductive group G, a finite dimensional vector space W on which
G acts algebraically, and an injective morphism

C:W—W
compatible with a morphism of groups

:G — G.

The traces of G-orbits on (W) will be exactly the G-orbits. The space W is of the same type
as those studied in 3.1. We will associate naturally to any polarization of the action of G on
W a character x of G/C*, i.e. a polarization of the action of G on W. We will prove that in
certain cases a point w of W is G—(semi-)stable with respect to the given polarization if and
only if {(w) is x-(semi-)stable with respect to the associated polarization. The existence of a
good and projective quotient of the open set of G-semi-stable points will follow from this.



5.1. Motivation in terms of sheaves

The idea for the embedding of W into a space W with a reductive group action is to replace the
sheaves &; in £ = ®(&; @ M;) by & ® Hom(&1, &;) and dually the sheaves F; in F = &(F; @ N,)
by F; ® Hom(F;, Fs)* and then to consider the induced composed homomorphisms v(®) for
® c Hom(E, F) =W

& ® Hom(EL E) = € — F — F, @ Hom(F, F,)*

in the bigger space W of all homomorphisms between & ® Hom(&;, £) and F, ® Hom(F, F,)*.
This space is naturally acted on by the reductive group G = GL(Hom(EL,E)) x
GL(Hom(F, F)*). However it is not suitable enough for our purpose by two reasons. It
does not allow enough polarizations as in section 3 for direct sums in order to have consistency
of (semi-)stability and, secondly the group actions G x W — W and G x W — W don’t have
consistent orbits. Both insufficiencies are however eliminated when we consider the following

enlargement of 1. We set
P, =Hom(&;,€) and @, = Hom(F, F)*,

and introduce the auxiliary spaces

W, = @ Hom(P, ® Hom(&_1,&;), Pim1), Wr= & Hom(Qi1 ® Hom(F;, Fiy1), Qi),

1<i<lr 1<i<s
and define
W :WL@Hom(Sl(X)Pl,fs@Qs) EBWR

There are distinguished elements
(o,0-- &) € Wi, (m1,-++ ,ms-1) € Wg

whose components are the natural composition maps. The embedding of W into W will be
defined as the affine map

WL)W’ ¢ — ((527 76?)77((1))7(7717"' 7775—1)):

where v(®) is the above composition for a given ® € W. The components of W and Wg
will guarantee a compatible action of a reductive group and at the same time the possibility of
choosing enough polarizations for this action.

5.2. Remark: One might hope to be able to do induction on r and/or s by simply replacing
M, 1®&E 19 MQE by (M, 1 &M, ® Hom(E, 1,&,)) @ 1 and keeping the other &; for
1 < r —1. But then we drop the information about the Homomorphisms & — &,. Therefore
we are lead to replace all £;,7 > 2, by & at a time, i.e. by

P1®51:(Ml@Mg@AQl@"'@MT®AT1)®51,

where A;; = Hom(&;, ;). Moreover, in order to keep the information of the homomorphisms
& — & for 2 <1 < j we consider also the spaces

P=M;® M1 ®Aif1;0...0 M, ® Ay



together with the maps P; ® A;;_1 — F;_1 in the following. The reader may convince himself
that only because of this the actions of the original group is compatible with the action of
the bigger reductive group. It is a beautiful outcome that then we are able to compare the
semi-stability with respect to related polarizations in section 7.

5.3. The abstract definition of W

The above motivating definition of the space W can immediately be turned into the following
final definition using the spaces Hj;, A;; and By, and the pairings between them. For any
possible 7 and [ we introduce the spaces

P= & M;®A; and Q= EB[Nm®Bl*m,

i<j<r 1<m<
and we denote by p; and ¢; their dimensions. For 1 <7 and | < s we let
&i
P®Aii =5 Py and Qi1 ® By — Q

be the canonical morphisms, defined as follows. On the component M; ® A;; of P;, the map &;
is the map

(M;® Aji) @ Aiy 1 — My @ Aji

induced by the composition map of the spaces A. The map 7; is defined in the same way. As
in 5.1 we set

Wi = & Hom(P, ® A;;—1, Pi1), Wgr= & Hom(Qi+1 ® Biy1y,Q1),
1<i<lr 1<il<s
and
W = WL ® HOIH(Pl, Qs ® Hsl) ® WR-
In order to define the embedding ¢ we define the operator v as follows. Given w = (¢y;) €
W with ¢y; € Hom(M;, N; ® Hy;), we let
v(w) € Hom(P1, Qs ® H,1) = Hom(Py ® Hyy, Q)

be the linear map defined by the matrix (y;;(w)), for which each 7;(w) is the composed linear

map
M;®@Ain — NQH,;,® Ay — N Hy — N, ® B, ® Hy,

where the first map is induced by ¢, the second by the composition Hy;; ® A;; — H;; and the
third by the dual composition H;; — B}, ® Hy;.

The map ¢ can now be defined by

Wi)wa w ((€2a 751")37(“05(771"" 3775—1))'

5.4. Lemma: The linear map vy 1s injective and hence the morphism ( is a closed embedding
of affine schemes.



Proof. From the surjectivity assumptions in 2.1 we find that dually the composition
Hli — Hll X A;kl — B:l (024 Hsl ® A;kl

is injective. Now it follows from the definition of v;;(w) that ¢;; can be recovered from ~;(w),
by shifting A;; to its dual. O

5.5. The new group G

We consider now the natural action on W as described in 3.1 in the general situation, where
the group is

G =Gy xGg, with G, = [[ GL(P), Gr= [] GL(Q).
1<i<r 1<i<s
To be precise, this action is described in components by
gi10xi1;0 (g ®id)™", hyovo(gi®id)™" and hjoyyio (b1 ®id)™,

with

ri1; € Hom(P; ® Ai;1,P1), % € Hom(PL ® H},Q,), Y41 € Hom(Quy1 ® Biy1y, Q1)
and with

gi € GL(F;), hy€ GL(Q).

The first and third expression describe the natural actions of G, on W, and of G on Wg.

There are also natural embeddings of G, Gg, G into G, Gg, G respectively. For that it is
enough to describe the embedding of G in G. Given an element g € G,

U .

g= .21 92
0
Upr +vo Upr—1 Gr

with ¢g; € GL(M;) and uj; € Hom(M;, M; ® A;;) we define 6;;(g) € GL(P;) as the matrix

G 0 ... 0

Us .. .

HL,i( ) — ’H:l,’L gi+1 .
ar,i e ar,r—l gr

with respect to the decomposition of P; with the following components: g; = ¢g; ®id on M;® Aj;
and for 7 < 7 < k the map ty; is the composition

M; @ Ajy — My @ Ay @ Aji — My, @ Api,

where the second arrow is induced by the given pairing. In case j = ¢ we have §; = ¢; and
Ug; = Ugi- Now we define the map

Gr % Gy by ¢+~ (0019, - ,0L,9).



It is then easy to verify that 6 is an injective group homomorphism and defines a closed
embedding of algebraic groups. With this embedding we consider G, as a closed subgroup of
G/. In the same way we obtain a closed embedding 6y of Gg C Gg. Finally we obtain the
closed embedding 6 = (0,,0r) of G C G.

5.6. Lemma: The subgroup G, C G (respectively Ggr C Gg) is the stabilizer of the distin-
guished element (&, ... &) € W, (respectively (m, .. ,ns—1) € Wg)

Proof. 1t is enough to prove the statement only for G, because of duality. The fact that G,
stabilizes (&, ... ,& ) is an easy consequence of the properties of the composition maps. The
converse can be proved by induction on r. It is trivial for » = 1. Suppose that » > 2 and that the
statement is true for r — 1. Let (71, ... ,7,) be an element of the stabilizer of (&, ... ,&,). When
we replace the space W by W', corresponding to the spaces M, ..., M, and the same spaces
N; and similarly W, by W', then (7s,...,,) is an element of the stabilizer of (&s,... &),
so by the induction hypothesis it belongs to G’ and there exists an element

go 0 Ce 0

g' _ U:'az g3 :
0

Upg - Upr—1 Gr

such that (y,...,7) = 07(¢"). Let now v, € GL(P;) have the components
MZ®A11£)M]®AJ1 for all 1§Z,]§7‘

The identity 71 0 & = & o 72 then shows that y;; = 0 for 7 < ¢, y; = g; for 2 < 4 and
Yji = uj for 2 < j <. Now let g1 = yi1, uj1 = yj1, for 2 < j < r, which are linear mappings
Ml — M] X Ajl- Then

g 0 - 0
u :
g= 21 G2
0
Upy = Upyp—1 Gr
is an element of G, and we have (vq,...,7,) = 0.(9). O

Remark: since the action of Gy, on Wy, is linear, it is clear that we have an isomorphism
GL/Gp ~ Gp(&,...,&), andsimilarly Ggr/Gr ~ Ggr(n,...,75-1)-

We will use this fact in section 8.

Using the associativity of the composition maps it is again easy to verify that the actions of G
on W and G on W are compatible, i.e. that the diagram

GxW — W

o L

GXxW — W



is commutative, in which the horizontal maps are the actions. In addition we have the

5.7. Corollary: Let w,w' € W. Then w and w' are in the same G-orbit in W if and only if
C(w) and ((w') are in the same G-orbit in W,

Proof. It follows from the compatibility of the actions that if g.w = w' in W then also
0(g).C(w) = ((w) in W by the last diagram. Conversely, if g € G and g.((w) = ((w') then g
stabilizes (&, -+, &, M1, -+ ,Mms—1) by the definition of ¢ in 5.3. By Lemma 5.6 g € G. O

5.8. The associated polarization

In 3.3.1 and 3.3.2 we had introduced polarizations for the different types of actions of G,.q on
W and of G on W. In the following we will describe polarizations on W and W which are
compatible with the morphism ¢ : W — W. Their weight vectors are related by the following
matrix equations and determine each other. The entries of the matrices are just the dimensions
of the spaces Aj; and By,.

In the sequel we will use the following notation: the dimension of a vector space will be
the small version of its name. So m; = dimM;, n, = dimN;,, p, = dimP;, ¢, =
dim Qm Qj; = dim Ajia bml = dim Bml etc.

A proper polarization of the action of G on W is a tuple A = (Ay,... , \r, —pi1,... , —lis), where
A; and p; are positive rational numbers such that

Z )\Zm, = Z miny = 1.

1<i<r 1<I<s
We define the new sequence of rational numbers o, ..., o, (1, ..., s by the conditions
Al 1 0 0 Q1 M1 1 by -++  bs B
: I I : : 10 1 : :
: 0 D : P by st :
)\r ar1 - Qpr—1 1 (078 Hs 0o --- 0 1 ﬂs

Then we have

1= Z Aim; = Z a;p; and 1= Z pany = Z Biar-

1<i<r 1<i<r 1<i<s 1<I<s

In particular the tuple A = (o4, -+, p, —B1, -+ ,—3,) is a polarization on W such that o; is
the weight of P; and —f; the weight of @);. It is called the associated polarization on W. It is
compatible with ¢ in the following sense: If M C M;, and N; C N, are linear subspaces, and
if the subspaces of P; and (); are defined by

Pi=@M;j®4; and Q= ®N®By
18] sm



respectively then we have

Z Aim; = Z a;p;, and Z puny = Z Big)-

1<i<r 1<i<r 1<I<s 1<i<s

If the set of stable points in W with respect to the associated polarization is non-empty then
by 3.3.2 the weights satisfy the conditions

Z a;p; >0 for any ¢ and Z Giqp > 0 for any m.

i<j<r 1<i<m
Equivalently the conditions may also be written as

Zajpj>0 for2<¢<7r and 1- Zﬂlql>0 for 2 <m < s.

1<j<r m<I<s

Substituting the weights of the original polarization on W, we can reformulate these conditions.
In the cases treated in the examples they reduce to the following

5.8.1. Weight conditions:
Let W be of type (r,s) and let A = (A1,..., A, —p1, ..., —ps) be a proper polarization of W

with positive A; and py. If the set W2(G, A) of stable points of W with respect to the associated
polarization A is non-empty, then in case of

type (2, 1) Ay —ag A >0,
type (3,1): A3 — azede + (as2a21 — agi) A1 >0,  Ai(my + aaima + azims) < 1,
type (2, 2) A9 — Qo1 A > 0, M1 — bzl,uQ > 0.

5.9. Comparison of invariant polynomaials

In the following we assume that A = (01y...,0p,—p1,...,—fs) is the polarization on W as-
sociated to the polarization A = (Ay,..., Ar, —fi1, ... , —pts). The semi-stable locus W*(G, A)
with respect to this polarization is more precisely defined by the character X associated to it
as in 3.1. If ¢ is lowest common denominator of «, ..., ., B1,...,Bs, we have

X(g) = ([ det(g) ™) ( ] det(h))
1<i<r 1<i<s
for an element g € G with components g; and h;. By the matrix relations between the
polarizations ¢ is also a common denominator of Ay,... , A, y1, ..., s, such that, if p denotes
the lowest, we have ¢ = pu for some u. The character xy with respect to the given polarization
can be defined by
x(g,h) = [] det(g:)™™ T det(hu)™,
1<i<r 1<I<s
where the g; resp. h; are the diagonal components of g resp. h, see 2.2. Now the relations
between the polarizations imply by a straightforward calculation that

X(0(g,h)) = x(g,h)".



If F is a A™-invariant polynomial on W it follows that

F(C((g, h)-w)) = F(0(g, h)-C(w)) = x(g, h)*" F({(w)),

i.e. that F'o ( is a x*™-invariant polynomial on W. As a consequence we obtain the

5.10. Lemma: (~}(W*(G,A)) C W* (G, A),

ie. if w € W and ((w) is G-semi-stable in W with respect to the polarization A =
(1yev yp,—P1,...,—Bs) then w is G-semi-stable in W with respect to the polarization
A=A, Ay —p1, ..., —ps) (in the sense of 4.1).

Proof. There exists a X™-invariant polynomial F' on W such that F({(w)) # 0. Then
F(C((g,h)w)) = F(¢(w)) # 0

for any element (g,h) in the unipotent subgroup H C G. This means that w is G-semi-
stable. 0

5.11. Remark: When we consider the subgroup G’ C G defined by the condition
det(g1) = det(hy) =1,

we have 0(G') C G’ as follows from the definition of G’ in 3.6. With respect to these groups
the semi-stable points are those over the semi-stable loci in P(W) resp. P(W), with respect to
the line bundles

L= O]}»(W)(t) and L = O]Pv(w)(t),
where ¢ and t is defined as in 3.4 in the different cases endowed with the modified action
defined by the characters. However, we cannot compare P(W) and P(W) directly because the
morphism ¢ does not descend.

We need the analogous statement of Lemma 5.10 also in the case of stable points. For that is
is more convenient to use the subspace criterion (1) of A. King in the case of G,¢q and G. This
gives also another proof in the semi-stable case.

5.12. Lemma: With the same notation as in the previous Lemma

CHW?*(G,A)) C WG, A)

Proof. Let w = (¢;;) be a point of W with maps M; @ H}; RN N, and suppose that w is not
G—stable with respect to the polarization A. We can assume that it is not G,.4—stable, too.
Then there are linear subspaces M C M; and N; C N for all ¢ and [ such that the family
((M])), (N})) is proper and such that

éii(M; ® H};) C N/ and Z)\img — Z,um; > 0.
i I

With these subspaces we can introduce the subspaces P/ C P; and Q) C @, as
Pl=0oM;®A; and Q= mele;n ® B,

i<j



They form a proper family of subspaces and satisfy
GIP/®@Ai; 1) C Py, yw)(Pi®H;) CQp , m(Q® By CQ

for the possible values of ¢ and I. But by the definition of the spaces and because A is the
associated polarization, the formulas of 5.8 imply the dimension formula

doapi =Y B =Y Ami—> un; > 0.
i i .

This states that also {(w) is not G-stable. O

In section 7 we will derive sufficient conditions for the equality
CYW?(G,A) =W*(G,A) and (H(W*(G,A)) = W*(G,A).

In the following section we show how this equality implies the existence of a good and projective
quotient W**(G,A)//G using the result for W*(G, A)//G from Geometric Invariant Theory.

6. CONSTRUCTION AND PROPERTIES OF THE QUOTIENT

We keep the notation of the previous sections and let A be the polarization on W associated
to the polarization A on W. We do not require that they are proper here, but we will do that
later for the examples. In addition we introduce the saturation

Z=G((W)CW
of the image of W with respect to the action of G.

6.1. Proposition: Let W and W together with their G- and G-structure be as in section 2
and 5, let A be a polarization for (W,G) and A be the associated polarization for (W, G).

(1) If ("YW*(G,A)) = W*(G,A), then there erists a geometric quotient ~W*(G,A) — M?*
of W? by G, which is a quasi—projective nonsingular variety.

(2) If in addition ("' (W*(G,A)) = W*(G,A) and (Z~Z)NW?*(G,A) =0, then there
exists a good quotient W?*(G,A) 5> M, such that M is a normal projective variety, M® is
an open subset of M, and W*(G,\) — M? is the restriction of .

We recall here the definition of a good and a geometric quotient of C.S. Seshadri, see [22], [20].
Let an algebraic group G act on an algebraic variety or algebraic scheme X. Then a pair (¢,Y)

of a variety and a morphism X 2 Y is called a good quotient if

(i) ¢ is G—equivariant (for the trivial action of G on Y'),
(ii) ¢ is affine, open and surjective,
(iii) If U is an open affine subset of Y then ¢* is an isomorphism Oy (U) ~ Oy (¢ U)%, where
the latter denotes the ring of G-invariant functions,
(iv) If Fy, Fy are disjoint closed and G-invariant subvarieties of X then ¢(F}), p(F3) are closed
and disjoint.



If in addition the fibres of ¢ are the orbits of the action and all have the same dimension, the
quotient (¢,Y) is called a geometric quotient.

As usual we write X//G for a good quotient space and X/G for a geometric quotient space.

Proof. We will prove the second statement first, assuming that the conditions of (1) and (2) are
satisfied. We use the abbreviations W* = W* (G, A), W* = W*(G, A) and similarly W*, W*
for the subsets of the stable points. By the result of A. King, 3.1, there exists a good projective
quotient of W# by the reductive group G. So there exists also a good and projective quotient
of the closed invariant subvariety Z N W** which we denote by

ZNW* 2% M.
By assumption (2) G¢(W*) = ZNW?* = ZN W?*. We let m be the composition
W 5 GC(W™) ™ M.
We know already that M is projective. We will then verify that (7, M) is the good quotient of
the proposition. We consider first the commutative diagram

G x W o G¢(W*)

| [

we o T M

in which p is the projection and pu is defined by (g, w) — g((w). There is an action of G on
G x W* by g.(g,w) = (gf(g) ', g.w) and it follows that p is G-equivariant.

Claim: The morphism p is a geometric quotient of G x W** by G.

Proof of the claim: We show first that the fibres of y are the G-orbits. So let (g, w), (g',w’) be
two elements in G x W** such that u(g, w) = u(g’,w’). Then {(w) = g~'g'¢(w'). By Lemma
5.6 g =g 'g’ € G and g.(g,w) = (g',w'). The claim will be proved if we show that y has local
sections. For this it suffices to use the remark following Lemma 5.6 and a local section of the
quotient map G — G/G.

Now we are going to verify the 4 properties of a good quotient for 7. Clearly (i) is satisfied by
the definition of 7.

Proof of (ii). It is clear that 7 is surjective. If U C W** is open, then w(U) = m o u(p~'(U))
is open because 7y and p are open as good quotients. The morphism 7 is also affine because
m =7y o ( and 7y and ( are affine.

Proof of (iii). Let U C M be an affine open subset. Then
oU) c O(=~1(U))"

since 7 is G-invariant. Conversely let f € O(r *(U))%. The fop € O(Gxn (U)), and since
u is a geometric quotient, f o p descends to an f € O(u(G x 7=(U))), which is G-invariant.

Now again f descends because  is a good quotient. This proves equality O(U) = O(7~(U))¢.

Proof of (iv). Let Fj, Fy be disjoint, closed, G-invariant subvarieties of W?*.  Then
p '(F1),p ! (F},) are disjoint, closed and G-invariant subvarieties of G x W*. Since u is a
good quotient, u(p~(F1)), u(p~ (Fy)) are disjoint, closed and G-invariant in G{(W*¢). Finally,



since o is a good quotient, T o pu(p~'(F)), 7 o u(p~'(F3)) are disjoint and closed subvarieties
of M. But my o u(p~*(F;)) = w(F;), which proves (iv).

The normality of M follows from the fact that G{(W*®) is smooth and 7y is a good quotient,
[20], with respect to the reductive group G. That 7 becomes a geometric quotient on the open
set W* of stable points follows from the fact that the G—orbits in G{(W?*) = Z N 'W* intersect
W* in G-orbits. In particular the stabilizers of w in G and of ((w) in G are isomorphic, such
that all orbits have the same dimension.

The proof of (1) is a modification of the above. In any case 7y induces the geometric quotient
ZNW?* 2% M, with My open in M. Now G((W?*) = Z N 'W?* is a my-saturated open subset
of ZN'W?, such that we obtain a geometric quotient G{(W?*) —% M* with M*® C M, open.
By the same arguments as above applied to the diagram related to G x W* — G({(W?*) we
conclude that W* — M? is a geometric quotient. O

Remarks: 1) The idea of this proof comes from [26], and has already been used in [9] and [5].

2) If the second condition of (2) is not satisfied, we cannot even prove that W*(G, A) admits
a good quasi—projective quotient, because Z N W*° might not be saturated. Of course the
projectivity of the quotient depends on this condition.

6.2. Remark: If the assumption on the correspondence of (semi-)stability is violated then
W* (G, A) need not necessarily admit a geometric quotient. For an example let W be the space
of homomorphisms

O(-2)d O(-1) = C*" @ O(1)
over P, and let the homomorphism ¢y € W be given by the matrix
( zozy 2% \

oz 22
2022 0

\ 20:23 6 /

where the z, are homogeneous coordinates. The stabilizer of ¢ contains C* and the pairs

1 0 I, —al,
( azg 1 ) ’ ( 0 1, )
in Aut(O(-2) ® O(-1)) x GL(C*") and thus has dimension > 2. If A = (Ay, Ay, —p1) is a
polarization with 0 < A, 0 < Ay < %, then it is easy to see that ¢y is A—stable in the sense
of 4.1. For example (mf, m),n') = (0,1,n) is the dimension vector of a ¢y—invariant choice of
subspaces with \ym| + Aom), — pyn’ = Ay —1/2 < 0. There are however stable homomorphisms
¢ € W with stabilizer C*. Therefore W*(G, A)/G can never admit the structure of a geometric
quotient. In this example ((¢p) is not stable with respect to the associated polarization. We

will see in 7.3 that a sufficient condition for that in the case of this W is Ay > (n + 1)A; or

Ay > Z—:[; because A\; + Ay = 1.




6.3. S—equivalence

We suppose that the hypotheses of proposition 6.1 are satisfied, with polarization A for (W, G)
and associated polarization A for (W, G).

It is easy to define the Jordan-Hdlder filtration of G-semi-stable elements of W with respect to
A (cf.[15] for a more general situation). Using the preceding results we can also define a Jordan-

Hélder filtration of a G-semi-stable element of W with respect to A. Let w = (¢y;) € W**(G, A).
Then there exist a positive integer p, an element A € H and filtrations
M)={0}cM!c---c M =M;, N)={0}CN'c---C N =N,

with

> Aidim(M]) = pudim(N7)

i !
for each j, such that h.w = (¢;;) satisfies
¢u(Hj; ® M]) C N/,

and that if

i Hi @ (M} /M]™") — N] /N~
is the induced morphism, then (qﬁfz)h is G-stable with respect to A for any j. This filtration
and h need not be unique, but p is unique and the (¢7;), too, up to the order and isomorphisms.
Conversely, an element of W having such a filtration is G-semi-stable with respect to A. We
say that two elements (¢;) and (¢;;) of W**(G, A) are S-equivalent if they have Jordan-Holder

decompositions (¢7,), (¢',’) respectively of the same length, and if there exists a permutation
o of {1,...,p} such that (¢/,’) is isomorphic to (¢57) for any ;.

The following result is also easily deduced from 6.1.

6.3.1. Proposition: Let w,w' € W*(G,A). Then n(w) = w(w') if and only if w and w' are
S-equivalent.

It follows that the set of closed points of M is exactly the set of S-equivalence classes of elements
of W#s.

7. COMPARISON OF SEMI-STABILITY

We are going to investigate conditions for the weights of the polarizations under which a
(semi—)stable point w € W is mapped to a (semi-)stable point {(w) € W. For the estimates
we need the following constants which depend on the dimensions m; and the composition maps
H; ® Ay — Hp.

7.1. Constants: Let IC be the family of proper linear subspaces
Kc o M;® A

2<i



such that K is not contained in & M ® A;; for any family (M]) # (M;) of subspaces. For any
2<i

[ we let the map
* 6 %
&P Mi®Ai1®H11 —l) D M1®le
2<i 2<i
be induced by the maps A;; ® H}; — Hj; associated to the composition maps, which are supposed
to be surjective, see 2.1. We introduce the constant
_ codim §;(K ® H}})

Cl(mQa e 7mr) - Is(lé% pl(K) with pl(K) N codim K

Similarly we define the constants d;(ni,... ,ns 1) in the dual situation. Let
sy
I<s I<s

be induced by the maps By ® H}; — Hj; and let £ be the family of proper subspaces

I<s

which are not contained in @& N;® By, for any family (N]) # (IV]) of subspaces. Then we define
I<s

codim ¢ (L ® HZ)
di :dz oo g N = Z_ SZ.
)= i) =50 T codim L

7.1.1. Lemma: If m; < m; for alli > 2, then ¢;(mo, ... ,m,) < ¢ (Mg, ... ,m;).

Proof. Tt will be sufficient to assume that m; = m; for all 7 except one, my < my say. Then let
M; be vector spaces of dimensions m; and suppose that

MQZLQ@MQ and MZZMZ fOI"Lz?)
For any K € K we consider the subspace

K=(L,®An)dK C (My®Ay)® (26<9ij ® Aj1).

Then codim bar K = codim K and also codim &§(K ® H};) = codim &(K ® Hj;) because 9, is
a direct sum of the surjective operator A;; @ H}; — H}; such that 6;(L, ® Ay ® H};) equals
Ly ® Hf, and §;(K @ H};) = (L2 ® H}y) @ 6,(K @ H};). Therefore p;(K) = p;(K). Once we have
shown that also K belongs to the analogous family /C, the Lemma is proved. To see this let
M) C My and M} = M} C M; for i > 3 be subspaces such that

KcC oM ®A;,.

2<i

Then in particular
Ly ® Ayy C My ® Ay

and thus L, C M. But then M) = L, & M, with My, = M} N M, and it follows that

KcC & M ® A;.
2<i

Since K € K we obtain M} = M, for all 4 and then also My, = M,. O



7.2. Study of the converse I

Let A= (\1,... A\, —p1,---,—ps) be a polarization on W and let A= (1.0,

— B1,-..,—0Bs) be the associated polarization on W. We had shown in 5.10 and 5.12 that if
w € W and ((w) is (semi-)stable in W with respect to G and A, then so is w with respect
to G and A. We are going to derive sufficient conditions for the converse, i.e. whether ((w) is
(semi-)stable if w is (semi-)stable.

In the sequel we are going to use the following notation: Given a family M' = (M]) of
subspaces M C M; we set

P(M')= & M;® Aj
i<j
and call a subspace P/ C P; saturated if there is such a family with P/ = P,(M'). Note that in
this case > a;p, = > Aym}. Similarly we introduce the spaces Q;(N') for a subfamily N’ = (N/)
of (N;) and call them saturated.

Let w = (¢y;) be given and assume that ¢(w) is not semi-stable with respect to A. Then there
exist linear subspaces P/ C P; and (); C (), such that

gz(le ® Ai,i—l) C Pilfla fY(w)(Pll ® H:l) C Q{sa 771(Q2+1 @ Bl+1,l) C Q;
and such that

D aipi =) Big >0,
% l

where as before the small characters denote the dimension of the spaces. If there were subspaces
M! C M; and N} C N, with P/ = P;(M') and Q) = Q;(N') as in 5.12, then y(w)(P/®H},) C Q'
would imply that ¢,; (M} ® H};) C N] and we would have

S oxmi =Y =Y oupi =Y Big >0,
% l i l

and w would not be semi—stable. In the following we are going to construct families M", N"
of subspaces M|' C M; and N’ C N, such that P = P,(M") and Q] = Q,;(N") are as close to
P/, Q} as possible and such that there is a useful estimate for

n n
E Aimy; — E iy -
i l

Step 1: 'We can assume that P; has a decomposition
Pl=M;®X; in M;&(& M;®A;)
1<j

and such that X, = 0. To derive this, we remark that for a subspace S of a direct sum F & F
of vector spaces there exists a linear map F — F such that the isomorphism (i 2) of EF® F
transforms S into S’ @ S”, where S’ is the projection of S in EF and S” = SN F. Using this
and descending induction on ¢ we can find an element h € H;, C G, see 2.4, such that the
truncations 0y, ;(h) € GL(P;), see 5.5, map P/ onto a direct sum M] @ X; for any i. Since
& (P ® A;i—1) C P, we easily derive that

1<j 1<



for all possible 7. We put
pi = codim(® M; ® Aj;, X;) = codim(P;(M'), F;).

i<j

Note that p, = 0.

Step 2: Let MY',... M, be subspaces of My, ..., M, respectively such that
R(M") > P!

is minimal over P for any i. Then M, C M} since these spaces are the first components of
P C P,(M") respectively and we have M{ = M{'. We let

0i = Z(m}' — mj)aj; = codim(P; (M), P;(M")).

1<

Step 3: We are going to define the subspaces N; C N/ C N, as images.

Let P, ® H M N; be the map which is the sum of the composed maps
n

M; ® Ay ® H, — M; ® Hj, 2 N,.
Then we define
Nj = m(w)(P{® Hjy) = ¢u(M] ® H}}) + 7i(w) (X1 @ Hjy)
and

N = (w)(P(M") ® Hjy) = ¢u(M{ ® Hyy) + Y ¢y;(M] ® Hy).

2<j
It follows N; C N/’ for any [.
Step 4. If the weights (3; are supposed to be positive, we may assume that
Yw)(P{® Hy) =@, and  mi(Qy ® Biiig) = Q)

for | < s. Otherwise we could choose subspaces @} C @} by descending induction as images.
Then — > 3q > —>_ (g would improve the assumption on the choice of the spaces P/ and

l
Q). Now it follows that for any !

@ C Qi(N")
because P; ® HY is mapped to @& N/’ ® B, and the maps 7; are the identity on the spaces
1 sl 1<s l sl
N". Note that we even have Q) C Q;(N') since v, | P/ ® H?, factorises through & N} ® B, as
I<s

follows from the definition of V;.
7.2.1. Lemma: Suppose that all (1,...,3; >0, and let A =Y \mi — > wn]. Then
i 1

A > Z,qul' — Zuln; + Zai(ai —pi) — Z,ulcl(mg, ooy my) (o1 — pr1).
! 1 i 1



Proof. Let
Y2 = 5[(X1 ® Hl*l) C Zl = 262' Mz" ® H;;

Since X; is not contained in a direct sum with spaces smaller than M’ we get

codim(Y;, Z;) < ¢(my, ... ,m))codim(Xj, 262_MJ'-' ® Aj1).
<j

By Lemma 7.1.1 and above definitions we get

codim(¥;, 21) < cu(m, .., m) (Y- mlan —p}) = clms, .. m,) (S (m — mi)a — ).

1<i 2<i
The map >_ ¢y; sends (M7 ® H};) @ Z, onto N;' by definition of ;" and also maps (M{® H};)
(X; ® Hl’zl) onto NN]. Therefore, since M] = M]', we have a surjection

Z]Y, — N/'/N]
and the dimension estimate

ny —ny < c(may,...,m)(Y_(mf —m})ai — pr).
2<i

Now we can derive the estimate of the Lemma. If there is no summation condition it is
understood that the sum has to be taken over all indices of the given interval. We have

A= A =30 g
i l
= Z)\Zm; - Zl:,uln; + ZA](m;I — m;) — zl:,ul(n;' — ’I'L;)
7 J

Substituting for A; in the third sum and replacing the first by
Z Aim, = Z a; dim( ZG<91M ® Aj) = ; o; (p;
and using the deﬁmtlon of o; we get
D SED IUED DUCEVIES ST
Now using the assumed estimate for the first sum and the derived estimate for nj’ — nj we get
A > Z,@lql' - Zumﬁ + ZOZZ'(O'Z' — pz) — Z,ulcl(mQ, cee ,mT)(ol — ,01)
! ! i !

O

7.3. Corollary: Suppose that s = 1, let A = (A1, ..., A\, —n—ll) and let A be the associated

polarization (o, ... o, —n—ll) If all o;; > 0 and if
a
)\2 2 ﬂ01(7’712’ e 7m7‘)
ni
then

C'W*(G,A) = W*(G,A) and  (T'W*(G,A) = W*(G,A).



Remarks: (1) Note that by the normalization of the polarizations we must have pyn; = 1 such
that 1/n; is the only possible value for p; = ;.

(2) If all oy > 0, then the necessary conditions for W*(G, A) # 0 and W*(G, A) # () are both
satisfied, see 5.8. The condition of the corollary is an extra condition.

Proof. Let us first assume that ((w) is not semi—stable and let the spaces P/ and @)} be as at
the beginning of 7.2. The only ; = 1/n; is positive. Let the other spaces be chosen as in 7.2.
The difference Y Big; — > wn) reduces to ¢} /n1 —n'/ni, and since N| = v(w)(P{ ® Hy,) = Q},
this difference is zero. Therefore

1
A > Zai(ai — pz) — n—cl(mg, . ,m,)(ol — pl)

1
Since all the «; are positive we have

Za’i(ai — pi) > oq(01 — p1) + az(o2 — pa).

1

Moreover, & induces a surjection
PQ(M") X Agl/PQI X A21 — Pl(M”)/Pll

because M| = M;'. Therefore we obtain the dimensions estimate (0o — p2)as; > o1 — p1. It
follows that

1 Qg
A> (——ca(ma,...,m) + a1 +—)(01 — p1).
ny 21
Since Ao = anon + ap > P (ma, ... ,m,) the last expression is non—negative. This proves

the case of semi-stability. For the case of stability we assume that w is stable and that ((w) is
already semi-stable. If {(w) were not stable, we would find subspaces P/ and Nj as in 7.2 such
that ) a;p, — pun| = 0 and such that at least one P/ is different from P,. Now let the spaces
M and N7 be constructed as above. Then we have

A> E Q;8; — —TC; 81> E a;si + (A2 — a CL21)—81 >0,
. 1
2

n a
2<i 1 21

where s; = 0; — p; = dim P;(M")/P], and where we use that syas; > s;. If the family M" is
different from M, then 0 > A, and if it is equal, then A = 0. In order to obtain a contradiction
we have to show that M" is different from M. Assume that it is not. Then s; = dim P;/ P/
and we must have s; = 0 for i > 3 and s1(A\y — fl—llam) = 0. If also s; = 0, then by the above
estimate also s, = 0, contradicting the choice of the P/. Therefore s; # 0 and Ay = ;—110/21. But
then A = ay(sy — ;711) and we have ssag = s1. From this it is easy to see that P/ = P,~(M)
where M; = M; for i # 2 and M, = M} # M. Then we have

Z oy — g = Z Aipy — pany =0
i i

which contradicts the stability of w. O



7.4. Study of the converse I

We keep the notation of 7.2 and compare the (semi-)stability of points in W and W in two
steps, each reducing to the case s = 1. We consider the intermediate space

V=W;9® & Hom(P,®H},N)

1<I<s

and the maps

Here (; is defined by

w = (62; s ,57‘: Vl(w)a s :r)/s(w))a
where 7, (w) is the map defined by w = (¢y;) as in 7.2. The map (; is defined by

(Toy e v o Ty Y1y e 5 Ys) > (T oo Xy Yy Ty e e 5 Ms—1),
where now v : PLQ H}, — @, is induced by the tuple (74, ... , ;) as the sum of the compositions
P ®H;, - N®H;®H, - N QB
which are induced by the v, and the pairings By, ® H;; — Hg. It is obvious that
¢=CoG.
Note that both (; and (, are injective by the same reason as for (.

On V the group G, x G acts naturally and we have the embedding

G=GpxGp" 5 G x G,
see 5.5. It follows as in section 5 that (; is compatible with the group actions and that w,w’ € W
are on the same G—orbit if and only if (;(w), (1 (w') are on the same G x G orbit. Similarly
we have the group embedding G, x Gg — G X Gr = G and ( is equivariant and satisfies the
analogous statements for the orbits. Given the polarization A = (A1, ..., A\p, —p1, ..., —pus) for
(W, Q) we consider the polarization A = (o, ..., qp, —p1,...,—ps) for (V,Gr x Gg) where
the «; are defined as in 5.8. As in 5.10, 5.12 it is easy to show that

(TIV(GL x Gr, A) c W**(G,A)  and  (T'V3(Gp x Gg,A) € W3(G, A)
and similarly that
GIW*(G,A) C V*(GL x Gg,A) and G'W*(G,A) C V(G x Gg, A).

Note that as for W* W ? we have unipotent sub-orbits in V*¢ and V?, see 4.1. We are going
to show that in all 4 cases equality holds under suitable conditions on the weights of the
polarizations. Then the same is true for (.

7.5. Estimate for ¢,

Let w = (¢y;) in W be given and assume that (;(w) is not semi-stable. Then there are linear
subspaces P/ C P; and N/ C N; and a unipotent element h € Hg such that for (v{,...,7.) =
h.(vy1,...,7s) we have

&i(Py® A1) C Py and (P ® Hj}) CN|



for all 4 > 2 and all [, and such that
Zoz,-p; - Zuln; > 0.
i !

We may assume that A = id because Hg acts on W in the same way and we can replace w by
h.w. Moreover, we may assume that all N] are equal to v,(P| ® H};) since all yy > 0. Now we
proceed as in 7.2 replacing the spaces (); by N;. Therefore we find subspaces M; C M C M,
such that M{ = M{" and such that

Pl=Mi®X;, F(M)cCP cPrM)
and the family M" is minimal with this property. We denote
pi = codim(P;(M"), P]) , o; =codim(P;(M'"), P,(M"))
and let
N/'=y(P(M")® Hj;) D Nj.
As in 7.2.1 we consider the surjection
7Y, — N/'/N},
where Y; C Z; are the same, and we get the estimate
n; —n; < ¢ (mg,...,m.)(o1 — p1)

for any [. The estimation of the discriminant A is now simpler than in 7.2.

7.5.1. Lemma: With the above notation
A=) Aml =) i > ) ailoi—pi) = Y me(m) (o1 — pr)
i 1 i 1
where c;(m) = ¢;(ma, ... ,m,).

Proof. By replacing dimensions and inserting the estimate for n] — nj as in 7.2 we get
A = dloup;— El:/«tzni + 2 ailoi — pi) — El:m(ni' —m)
7 3
> Y ailoi = pi) = 22 mwa(m)(or — pr).
i I

O

7.5.2. Corollary: Let A = (A,..., A\, —pt1, ... ,—pis) be a polarization for W and let A =
(1, vy Qpy—p, ..., —ps) be the associated polarization for V as in 7.4. If all o; > 0 and

A2 > an Z e (m)
]

then
(T'V(GL x Gr, A) = W*(G,A)  and  (('V*(Gp x Gg,A) = W*(G, A).

Proof. The proof is the same as for 7.3, because the spaces P/ and P;(M") are defined in the
same way and we thus get the estimate (0o — pa)ag; > 01 — p;. O



7.6. Estimate for ¢,

The analogous estimate for (, follows by duality while we can assume that s = 1 or r = 1.
The proof could be done by formally transform it into a dual situation which is similar to that
of 7.5, but it is better to keep direct track of the weights. Let (za,..., 2, 71,...7s) be given
in Wy @V and assume that its image under (5 is not semi—stable. Then there are subspaces
P! C P, and Q] C @ such that

Ti(P} ® Aiy1) C Py, v(Pi@Hy) CQy, Q1 ®Biiy) C Q)
where v is defined as in 7.4, and such that

> = Big > 0.
% l

We assume that all a; > 0, and then we may assume that P/ is maximal, i.e. the inverse image
of Py ® A}, ; under P, — P;_; ® A}, , for i > 2, and similarly P; in P, under P, — Q,® Hy;.
As in 7.5 we can find subspaces N} C N, such that

Q,=N/® X, and hence (Q;/Q))" = (N;/N})* & X,.
We choose subspaces N,' C N] which are maximal such that
QuN") C Q@ C Qu(N').
We have N = N!. We let P/ be the inverse image of Qs(/N") under P, — Qs ® Hy;. Then

P! C P|. Furthermore we let inductively P;’ C P/ be the inverse images for ¢ > 2. Then we
have injections

(P{/P") ® Aij-1 — Py /P,
and induced by factorization the images
P[P ®Aii-1 ®...®@ Ay — (P//P]') ® An — P/ P/
The induced injections
P{/P — (P/P]) ® A}
imply the dimension estimates
pi — pi < an(py — py)
for 7 > 2. Next we consider the homomorphism

6V
7z = l@ (N/N[)" ® Hjy «— l@ (Ni/N/')* ® By ® Hj;.
<s <s

We have X, C @(V;/N]')* ® By, and consider the subspace

I<s
Y =6/(X, ® HY) C Z;.
By the definition of the constant di(n) = di(nq,... ,ns_1) we get
dim Z; /Y7 < di(n)codim(X,) = di(n)(os — ps)
where
oy = codim(Q] (N/N'), Q7 (N/N")) and  p = codim(Q; (N/N'), (Qi/ Q1))
Further we have a surjective map
Z\[Y1 — (P/P])" /(P P))*



which is induced by the map @ ® H}; — P; and the induced surjection Q%(N/N") ® H}, —
(P/P/")*, since N = N.. So we get

Py —pf < di(n)(os — ps).

Now we can estimate the discriminant in

7.6.1. Lemma: Let all the o;; be non-negative and let A == a;p! — > wnj. Then
5 !
A> N Bilor—p) = Y asandi(n) (o5 — py).
1 ;

Proof. Since > a;p; = Y wyny we also have
i 1

A= Z,Ul(nl —ny) — Za’i(pz' — ;)
1 i
with the same steps as in the previous proofs we get

A=, =Y B+ > Bilor—p) = Y culph — p})
i . l i

Inserting the assumption on the first difference and the estimate for p, —p! we get the result. [
As in the previous cases we obtain the

7.6.2. Corollary: In the above notation let all a; > 0, and all §; > 0, and let
Hs—1 > bs,sfldl (n) Z Q1 -

Then
G'WP(G,A) = V(G x Gp,A) and  'WH(G,A) = V(G x Gg,A).
Proof. : In the notation of 7.6 there is a surjection (Qs_1(N')/Q_;)*® Bss—1 = (Qs(N')/Q")*

because N = N!. Therefore (05_1 — ps—1)bs,s—1 > 05 — ps. If the condition of the Corollary is
satisfied, then A > 0 follows, where we use ps_1 = Bsbss—1 + Bs—1- O

Combining the results of 7.5.2 and 7.6.2 we get the
7.7. Proposition: Let A = (Ayeeo s Apy—pi1, ..., —lts) be a polarization for (W,G) and let

A= (a1,...,0p,—B1,...,—Bs) be the associated polarization for (W, G). Suppose that all
a; > 0, and all B, > 0 and that

Ao > agy Zﬂlcl(m) and  fprg_1 > by s_1di(n) Zaiail-
! i

Then
CIW*(G,A) = W*(G,A) and (T'W*(G,A) = W*(G,A).



8. PROJECTIVITY CONDITIONS

The projectivity of the quotient in 6.1 depends on the second condition in (2), i.e. whether the
boundary Z \. Z of the saturated set contains no semi-stable points of W. Again this condition
depends on the chosen polarization and conditions for the weights. In order to derive these
conditions in some cases we describe the boundary in terms independent of the group action.

8.1. Saturated boundary.
The elements of W are tuples w = (29, ... ,Zr,7,Y1,... ,Ys—1) Of linear maps
P®Ajm1 = Py, PI®HL5BQ, Qi By, ®Q

If w € Z, there are an element w € W and automorphisms p; € Aut(P;) , o, € Aut(Q;) such
that

z; = pimio&o (' ®id), y=0a10y(w)o(p! ®id), y=(id®o)omoo,.

Here id stands for the different identities of the spaces A, B and H. We let x; respectively 5,
be the mapping

PRA.1®.. QA1 - Pi1®Ai_1,2®...0 Ay

induced by z; respectively &; for ¢ > 3. From the relations between the z; and &; it follows
easily that for each 7 > 3 the composition x4 0 3 0 ... o Z; has a factorization

P®A;1® @Ay —=P
P ® Ai

where the vertical map is the surjection induced by the pairings. This follows from the com-
mutative diagrams induced by the automorphism p; and because & o0 &30 -+ -0 &; admits such a
factorization for each 1 > 3. We put zo; = x5. By the dual description for the maps y;, we are
given factorizations

B X Q

Yis
Qs —— B, 1®...0B;0Q

of the maps y;0...0y;_s0ys_1 for I < s—2. By similar arguments there are also factorizations

z1;®id

P oA ® HY >P1®H:17 = Qs

“; / (L)

P, ® HZ,




for all 4 > 2 and dually factorizations

Qi ® Hy
M [ (Rl)
P1—>Q5®Hslmle®Ql®Hsl

for all I. Moreover, there are further factorizations of the induced composed maps

7sz®ld

P,® H;® By 22 Q, @ By 2 @,
| / (L)
P ® Hj;
and dually
Q1 ® Hy;
‘I’li \I/ (Rlz)

Pi—>P1®Ai1W1Ql®Hll®Ail

All these factorizations are based on mappings induced by the pairings. All factorization
conditions are independent of the chosen automorphisms. One can rediscover the original
components ¢;; of w from ®;; or ¥, if x; = §; and y; = n; for all 7 and all /. In fact we have

8.1.1. Lemma: Let w = (o, ... ,Zr,Y,Y1,--- ,Ys_1) € W. Then w € Z if and only if

(1) rank z; = 32, ;mja;1  fori>2
(1*) rank y, = qu b eng forl <s—1

(2) mp0a30...0%Z; has a factorization P; ® Ay = Py for i >3

) Y10...0Ys 9 0Ys_1 has a factorization Qs —> ELN By ®Q forl <s—2
(3) vo (:ElZ ® id) has factorizations (L;) and (Ly)
(3*) (y1s ® id) o 7y has factorizations (R;) and (Ry;).

—~~
(V]
*
~

Proof. If w € Z, the three conditions are satisfied by the above, where rank x; is the dimension
of the image of §; and rank y, is the rank of n; as the map Q1 — By, ® ;. Let conversely
w satisfy these conditions. We proceed by descending induction to find automorphisms p;
by which the z; can be identified with the &. Note that the factorization conditions are
maintained under automorphisms. Since z, has maximal rank it is an injection M, ® A, ,_1 —
M,_1®&M,®A,,_1 = P._1. Hence we can find an automorphism p,_; of P._; such that p,_ioz,
becomes &,. Let us assume now that modulo some automorphisms p,_1, ... , p; we have z; = ¢;
for 7 > 1. We are going to find an automorphism p; ; such that p; | o x; = &;. Because of the
rank condition we can assume that ®;<;M; ® A;;_; is the image of z; in P;_;. Now using all

the z; o é“ o...0 E,c we find that z; has a factorization through the standard map

P®Aj; 1 — G<9M9 ® Aji LM, @ EPM] ® Aji1.
1<j 17



induced by the pairings. Now the rank condition implies that z; induces an automorphism on
®i<;jM; ® Aj;—1. This can be used to make z; the identity via an automorphism pj_;. Now
z; = &. By the analogous dual procedure we can also find automorphism o; € Aut(Q;) such
that we can assume that y; = ;. Finally the factorizations (Ly;) or (Ry;) resulting from (3) and
(3*) yield mappings ®;; or ¥;; from which we get ¢;; as composition
M; ® Hj; — P, ® Hy = Q, — N..

It follows from the special type of the &; and 7, that these are original components of an element
w = (¢y;) inducing y(w) = 7. O

8.1.2. Corollary: With the same notation as in 8.1.1, if w € Z \ Z, then
(1) rank x; < rank & and rank y, < rank n; with strict inequality for at least one i or I, and
(2), (2°), (3), (3) of 8.1.1 are satisfied.

Proof. All conditions are closed and thus hold for points in Z. If w € Z \ Z then by 8.1.1
equality in (1) cannot hold for all 7 and . O

We are going to derive effective sufficient conditions for the projectivity of the quotient in the
cases (2,1),(2,2),(3,1).

8.2. Proposition: Let the polarizations A and A be as in proposition 7.7 and let Z = G{(W).
Then 7Z . 7Z contains no semi-stable point in the following cases

(i) (r;s) =(2,1) and Ay > c1(ma)asin

(ii) (r,s) =(2,2) and
Ao > (pic1(ma) + pa(ca(me) — barci(mz))asr, pr > (Ai(di(m1)) = da(na)az) + Aada(ni))bor -
Proof. We present only the case (ii), case(i) is an easier version of (ii). Let (z2,7,y1) € Z \ Z

and let us assume that rank z, is not maximal. Let K be the kernel of My ® Ay —> P, and
let M} C M, be the smallest subspace such that K is contained in M ® Ay;. We put Py = M),

Pl =2y(My ® Az) , Qy=7(P[® H;)) and Q) =y1(Q) ® Ba)
and consider
A = a1p] + aoph — Bidi — Bas-

By definition p| = dim M} ® Ay /K. Diagram (L,) reduces in our case, with M, replaced by
M3, to

id
My ® Ay © Hy 222 Pl o Hy — Q)

@L /

M) ® H,,

and 7y, vanishes on 0y (K ® Hj,) because K is the kernel of z,. Therefore
¢y < dim M ® H3,/0,(K ® H3y) < ca(msy)p).



In order to estimate ¢; we consider diagram (Ls;) enlarged by the commutative square of
induced pairings

22 ®1td 1
M5®A21®H§1®Bz1%Mé(@H;Q@Bm,Y—%;Q,g@BmL?’QS-

M;® Ay ® HY;
Again the map ®,5 vanishes on 6; (K ® HY,) and we get
q < dim My ® H{y /6, (K ® H;) < ca(my)p).-
Now we have the estimate

A > agphy + (a1 — Biei(ma) — Baca(ms))pi-

Therefore the condition ay > (B1¢1(mg) + Baca(ms) would be sufficient, because aspl, > 0. We
modify the last estimate as follows. Since the weights in case (2,2) are related by

Al = o pe = [o
and
Ao = a1+ o t p1 = B+ Baba

and since we have
Ao — a1 A >0 and pIQCLZl - pll > Oa

we get the estimate

A
A > (—2 — pci(ma) — paca(ma) + paci (m2)ber)p.

Q21
This shows that A > 0 if 2, is degenerate and the first condition of (ii) is satisfied. In case
rank y; is not maximal the second condition follows by the dual procedure. O

8.3. The case (3,1)

In order to derive a similar result in case (3,1) we introduce the additional constant cj(msg)
analogous to c3(ms) := ¢1(0,m3) in 7.1. Let
Ms ® Asy @ Hi, = M3 ® Hj,

be the linear map induced by the pairing and let K be the family of all proper subspaces
K C M3 ® A3y which are not contained in M3 ® As, for any subspace Mj C Mj different from
Ms3. We put

, _ codim 7(K ® H7,)
¢s(ms) = Sup —— i K

For brevity we write ¢ = c4(ms3), cs = cs(ms) = ¢1(0,m3) and ¢; = ¢1(ma, m3).

8.3.1. Proposition: Let (r,s) = (3,1), let A = (A1, Ao, A3, —p1) be a polarization for (W, G)
and A = (aq, ag, a3, — 1) be the associated polarization for (W, G), and assume that all a; > 0.
(In this case p; = nl—I) If

(1) ages + Aicy > picscy



(2) A2 > agipcq
(3) Az > a1

then Z . Z contains no semi—stable point.
Moreover, condition (1) may be replaced by any of the conditions
(i) As > piciasze + asi\

(ii) A3 > picsas: + ase
(iii) A3 > [11C3032091

Remark: Z \ Z contains no semi-stable point also in each of the following cases

(a) A1 > pics
(b) ag > pch
(c) ag > picsasr or s > pichass.

This can be seen by a direct estimate of the discriminant A after substituting for ¢] in the
following proof.

Proof. Let (x2,23,7) € Z \ Z. We distinguish the following cases of degeneracy of z, and 3.

case 1: x3 1s injective: Then by the proof of 8.1.1 we can assume that 3 = &3 is the canonical
embedding and that z,3 and x5 have a factorization Z, in the following diagram

M; ® Az ® Ain“ (My ® M3 ® Asp) @ Aoy

Mz ® Asr T M; ® Ay @ M3 ® Az

3

T2

P .

Here also &} is the canonical embedding. Moreover it is easy to verify that in this case also the
composed map v o (T2 ® id) admits a decomposition

* * 5 * * gl
(My ® Ayy @ H)) @ (M ® Az @ HY)) — (Mo ® Hyy) & (M3 @ Hyy) Q1.

Here K = Ker(Zy) # 0 since Ty cannot be injective by the assumption on its rank. We choose
subspaces M3, M3 such that

K C M;® Ay & M; ® Az
and such that these subspaces are minimal with this property. Now we consider the spaces

Py=M;, Py=M,®(My® Az), P=z:(P,®An), Q) =~(P®H])
and their discriminant
A = onp + aoply + a3py — Bid).

By the definition of the constant ¢;(mb, m}) and the diagram

(My ® A9y & M3 ® A1) ® Hi} — P{ ® H} —= @

oo o

My ® Hi, & My ® Hiy



we obtain the estimate
g1 < er(my, my)py < c1(ma, ma)py,
where by the definition of P/ we have p| = mjas + mjas; — k. Inserting this we obtain
A > (p1er — M)k + (Mo — pacrag)my + (A3 — prcrass)my

If uyc; — A > 0, conditions (2) and (3) imply that A > 0. If, however, A\; > uic; we have the
direct estimate

A > (A — pic1)p| + agph + azpy > 0.
This proves the proposition in the first case.
case 2: x3 is not injective

Here we let K denote the kernel of z3 and we choose a subspace M C Mj such that K C
M} ® Asp and M} is minimal with this property. Then we consider the subspaces

Py=M;, Py=z3(My® Ap), Pl=x(P,®An), Q=7(P®H).
We have the exact sequences

0 - K - M\®As, = P, =0

Z13

0 - L — Mi®Ay — P — 0

where L denotes the kernel of z13. From the factorization properties restricted to the spaces
P! and )} we extract the following commutative diagram of surjections

M?I,®A31®HT1 - P1’®Hf1

/ \L'sl %

M3 ® Az ® Asy @ HY M; ® His 7 Q'

M ® Ay @ Hiy — P @ H, .

From this we get again the estimates
¢ < ca(my)py < es(ma)py  and  qp < c(my)py < c5(ms)ph,
where p| = mbas, — [ and p), = miazs — k. Let 0 <t < 1 be a real number. Then we have
¢; < tesph + (1 — t)cspy.
Substituting this into the discriminant we get
A > (M = (1= t)mes)ph + (g — tuicy)ph + azm.
Now condition (1) enables us to find ¢ with

A
1- 2L << 2
Hic3 H1Cy

such that the first two terms of the estimate are non-—negative. Therefore A > 0, and again
(z2, r3,7) is not semi-stable.

Y



In order to show that (1) can be replaced by one of (i), (ii) or (iii) we substitute «; and p} and
get after cancelation

A =Ml — aok + Agml — 1 q)
—)\1l — Oka + )\3mg - ulcg(mgagg — k)

—Ail 4 (picy — az)k + (A3 — pichase)my

[IAVAN|

If iy > p1cf, then by a direct estimate we get A > 0. Therefore we may assume that pcy—ay >
0. Since in addition [ < mfas;, we get

A > (/\3 — ,LLngag;Q — a31)\1)mg.

This shows that (1) can be replaced by (i). In the same way one shows that (1) can be replaced
by (ii), using the other estimate of ¢j. That finally (1) can be replaced by (iii) can be shown

by substituting first mj > % and canceling ayp), and then substituting pf, > % to get

A32091 A > )\110/1((132(121 - a31) + ()\3 - M103a32(121)pl1-

9. ESTIMATION OF CONSTANTS

We are going to estimate the constants in the previous statements for some cases by numerical
values. This will be done first for bilinear operators of finite dimensional vector spaces. There
doesn’t seem to be any statement of this kind in the literature. Let E, F and H be finite
dimensional vector spaces and let

EQHSLF

be a linear map. If M is any further finite dimensional vector space of dimension m, we are
given the induced operator 7, = 7 ® idys

EQHOM - FM

The constant c¢(m) is defined as follows. Let K be the set of all proper linear subspaces
K C H ® M such that K is not contained in H' ® M for any proper subspace of H. We
call such K generic. Then

codim 7,,,(E @ K)
c(m) := sup _ .
Kek codim K
We suppose that for any non—zero element v € H the restricted map F ® u — F' is surjective.
We are going to estimate c¢(m) by induction on m. For this we introduce the minimal length

of a subspace K C H® M to be the minimal integer d > 1 such that a non—zero element y € K
has a representation

Y=U QL1+ ...+ U R ZTyg

with u, € H and z, € M. If such a representation is minimal the vectors uq,... ,uq resp.
Zi,-...,Tq are linearly independent in H resp. M.



9.1. The bounds s(U) and sq

Given a subspace U C H we let Eyy C E be the kernel of the composed operator £ — FQH* —
F ® U* such that e € Ey iff 7(e ® U) = 0. Then the restricted map 7 has a factorization

Ey®H — Ey @ H/U — F,
and we define
s(U) := sup {dim F/7(Ey ® h) | h € H\ U},
and
sq:=sup {s(U) |UCH and dimU = d}.

9.2. The bounds t4(U) and t4
If U C H is a linear subspace of dimension d we let ¢4(U) be the supremum of the values
s(Up) +--- + s(Ug)
d
over all filtrations 0 =Uy, C Uy C ... C Uy = U with dimU, = v, and we define

t!, = sup{tq(U) | dimU = d} and tq:= sup tj.
1<k<d

Then

s1+...+s8
tg < sup l—k.
1<k<d k

9.3. Lemma: Let E® H 5 F be a linear map such that E @ v — F is surjective for any
non—zero u € H, and let the constants ¢(m),ty be defined as above, and let n = dim H. Then

c(m) < t’"T‘l if m<n,

c(m) < B2 if n<m.

- n

Proof. We can do induction on m = dim M. For m = 1 we have ¢(1) = 0 by the assumption
on 7. Let now m > 1, let K C H ® M be a proper generic subspace of minimal length d, and
let y € K be an element of minimal length,

Y=U QL1+ -+ Ug Q Xq.

We let M = M/{z4) and denote by K C H ® M the image of K. Then K is again non zero
generic and has minimal length d — 1 if d > 2. Writing also a bar for the image in F ® M, we
put

L=7,(E®K) and L=71,(FE®K)=17,1(F®K),
and

cd(K) =dim(H @ M/K), c¢d(L)=dim(F® M/L)

and similarly for K and L. We show now:
(1) If d = 1, then cd(L) = cd(L), cd(K) < cd(K),



(2) If d > 1, then cd(L) < cd(L) + s(Uy—1), cd(K) = cd(K) + n.
If d =1, then 7,,(F ® y) = F ® ; C L and therefore the codimensions of L and L are equal.

The estimate for cd(K) results from the standard 9-diagram for the quotient spaces. If d > 1,
we consider the spaces U; = Span(uy, ... ,u;) and we obtain

Tm(Buy_y ®y) C (F @2a) N L,

since the components e @ u; @ x; are mapped to 0 for e € Ey,_,. By the definition of s(Uj—1)
we obtain

dim(F Q@ zq)/(F®xg) NL < s(Ug—1).
Now the 9—diagram of the embedding of the exact sequence
0= (F®zy)NL—-L—L—0
yields cd(L) < cd(L) + s(Ug_1). Because K is generic, K — K is an isomorphism. It follows

again from the obvious 9-diagram that cd(K) = c¢d(K) 4+ dim H. This proves (2).

If d > 1 we obtain a quotient space M’ of M of dimension m—d+1 and a subspace K' ¢ H® M’
non zero and generic of minimal length 1 and L' = 7,,_4.1(E ® K') C FF ® M’ such that

cd(L) < cd(L') + s(Ur) + -+ - + s(Ug_1),
cd(K) = cd(K') + n(d — 1).

It follows that there exist positive integers dy, ... ,d; with

d1++dk§m,

and
cd(L) < s(U1) +...5(Ug-1),
i=1
k
cd(K) >n> (d; —1).
i=1
The estimate of the proposition follows now just from the definition of the bounds ¢,. O

9.4. Constants for the symmetric algebra
Let us now specialize to the case of the canonical mapping defined as contraction
SPHYV* eV ISPV,
where p > 1 and dimV = ¢+ 1 with ¢ > 2. If vy, ... ,v441 is any basis of V' and if V; is the
span of vy,... ,v;, we have
Ey. = SP"V+ and 7(Ey, ®@uiy) = SPVE
where V- C V;* is the orthogonal complement of V;. We thus obtain
si = s(Vi) = dim SPV* — dim SPV; " = (') (r*e7)

P



and therefore

c(m) < (h%l(p;q) — (q+1 ; (p+q Z) for m<gqg+1,
q—1 .
c(m) < qi—l(p;’q) - ﬁ 2:221 (p+§_z) for m>gq+1.

9.4.1. Remark: In case p = 1 the above estimates become

c(m) < form <g+1 and c(m) <% form>q+1.

i)

In this case we can easily obtain

c(2) = gq% and % <e(m) form <gq+1.

We conjecture that for p = 1 the constants are precisely

c(m)z% for m < ¢+ 1, and that c(m)ﬁ% ifm>q+1.

In case p = 2 the precise value of ¢(2) is ¢ +1/2¢ + 1.

9.5. Corollary: In the case of homomorphisms of type
Mi@O(-2)dM;®@0(-1) = N0 or —-NO0®dN,®O(1)

on the projective space PV of dimension q the constant ci(msg) is the constant c(m) of the

mapping S?V @ V* 5V and the constant cy(ms) is the constant of the mapping S°V @ V* =
S2V . Therefore

ci(me) < sty for mp < q+1 c2(m2)
X and
ci(mg) < 3 for my>q+1 ca(my)

SW for my<q+1
<

for mo >q+1.

»-Q
w|+

Proof. By definition in 7.1 the constants ¢;(mg) arise from the maps

My ® Agy ® Hy, 25 M, ® Hp.
For the given type of homomorphism we have
As; = Hom(O(-2), O(-1)) =V*
and similarly
Hy, = 8%V, Hyy, =V~ Hy = 83V, Hyy = SV,

Therefore the constant ci(ms2) is the constant c¢(m) for p = 1 in 9.4 and cy(m2) the same
constant in case p = 2. In both cases the bounds are obtained by specializing the bounds of
9.4. ]

9.6. Lemma: For homomorphisms of type
Mi®O(-d)®O(-2)® O(-1) > Ni® O
on the projective space PV the constant ¢1(1,1) is dim V/dim(S%1V).



Proof. We put s(p) = dim SPV. The homomorphisms §; of 7.1 reduces here to the canonical
map

(S @ STV @ SV — SV @ V.

If K is a proper subspace of S%~2V* @ S%1V* which is not contained in one of the summands,
it contains elements (f, g) with f # 0 or elements (f, g) with g # 0. But since f ® SV — S?2V
is surjective, the map 6(K) — S2?V is surjective. Hence codim §(K) < s(1). If K contains
an element (0,g) with g # 0, then §(K) = S?V @ V. For then §(K) contains V, and since
§(K) — S?V is surjective, if follows that §(K) = S*V & V. Therefore, if codim §(K) > 0, there
is a basis (f1,q1),--., (fx, gx) of K with fi,... fx linearly independent, i.e. dim K < s(d—2) or
codim K > s(d — 1). Therefore ¢;(1,1) < s(1)/s(d — 1). But now we can find subspaces which
realize this bound. For any z € V* we let K be the space of all (f, fz),f € S¥2V*. Then
K =2 8%-2V* and it follows also that in this case §(K) = S?V. Then codim §(K)/codim K =
s(1)/s(d —1). O

10. EXAMPLES

10.1. Flirst example of type (2,1)

We use the abbreviation mJF for C™ ® F for a sheaf and a positive integer and consider here
homomorphisms

20(~2) @ O(—1) 222,
over Py of type (2,1). The polarization A = (A, Ag, u11) is supposed to be proper for W and W,
i.e. \; > 0and «; > 0 for all 4. The only constant involved here is ¢;(mso) = ¢(1) = 0. Therefore
the conditions of 7.3 and 8.2 are automatically satisfied by ap = Ay — 3A\; > 0. Hence all the
quotients of W* (G, A) will be good and projective under this condition. Since 2A; + Ay = 1
and 3u; = 1, we can replace the polarization by the rational number p = A\A[' > 3. The
numerical condition for (semi-)stability then becomes

A =3my+3pmy— (p+2)n <0 (<0),

30

where (my, mg,n) is the dimension vector of a (@1, ¢2)-invariant sub-family of vector spaces,
such that m; < 2, my < 1, n < 3. One can easily check that p = 4 is the only value for
which A might be zero, and this is the case for the values (0,1,2) and (2,0,1). And indeed,
the homomorphisms ¢ given by matrices

* % 0 00 21
29 and 0 0 2z
Z3 * k23

with generically chosen entries and linear forms z; are semi-stable and not stable for p = 4.

10.1.1. The case 4 < p
It is easy to show that in this case (¢1, ¢2) is p-stable if and only if

® (¢, is nowhere zero



o for any (v1,v2) = h.(¢1,¢2) with h € H and any 1-dimensional subspace M; C
C? we have 1, (M;(®0(=2)) # 0.

The first condition says that Coker (¢9) is isomorphic to the universal quotient bundle @ on
Py, and the second that ¢; induces a 2-dimensional subspace of H°Q(2). It follows that the
sets W?*(p) of stable points are the same for 4 < p, which we denote by W3;. Moreover, from
the above characterization of stable homomorphism we deduce that the geometric quotient
M, = W23 /G is isomorphic to the Grassmannian

M, = Gr(2, HQ(2))

which is smooth of dimension 26. There is an interesting subvariety Z C M, which consists of
the images of the homomorphisms

which belong to W?. These are those (¢1, ¢2) for which the induced homomorphism 20(—2) —
@ is not injective. We will see next that Z is isomorphic to the non—stable locus of M, below
and is smooth of dimension 10.

10.1.2. The case p =4

We write Wg*® for W**(4). When considering the matrix representations we find that W3 C Wg?
and that the remaining part Wg* \ W7 consists of those homomorphisms for which ¢, is zero
in exactly one point. Such homomorphisms are equivalent to matrices

x %z

* kW (2)
f g 0

where z,w are independent linear and f, g are independent quadratic forms. Note, however,

that W3 intersects the non-stable locus of W;* in matrices equivalent to those of type (1). But
the orbit closures in W* of both types (1) and (2) of matrices contain the direct sums

0 0 =z
00 w (3)
f g 0

of independent linear and quadratic forms. It follows from that that the induced morphism
M+ — M()

of the quotients is bijective and moreover an isomorphism by Zariski’s main theorem, because
both spaces are normal. The points of the non-stable locus M~ M are represented by matrices
of type (3). It is again routine to deduce from this observation that

My~ M§ 2P, x Gr(2, H'O(2)).

The subvariety Z C M, corresponds to this set under the isomorphism. We can also identify
the set M of stable points with Gr(2, H'Q(2)) \ Z.



10.1.3. The case 3 < p <4

Similarly to the case W7 we find that here W* = W*(p) is independent of p and that W?* C W*.
The remaining part consists now of all homomorphisms which are equivalent to a matrix of type
(1). Note that now homomorphisms of type (2) are contained in W*. The induced morphism

M_—)MQ

is again surjective but not injective over My ~ M. Let Y be the inverse image of M, ~ M.
Then Y consists of the points which are represented by matrices of type (2) which are not
equivalent to matrices of type (3). It is easy to check that the restricted morphism

M_\Y — Mj
is bijective and therefore also an isomorphism by Zariski’s main theorem. We are going to
verify that Y is a divisor in M_. There is a morphism
vy &P,
which assigns to the class of (41, ¢2) the point x at which ¢, is degenerate. In this case
Coker(¢q) = O @ I,(1)

where Z, is the ideal sheaf of z. For such (¢1, ¢2) we are given an exact diagram

0
T
20(~2) 0
) )
0 = 20(-2)@0(-1) % 30 o  F 5 0
) || t
0 — O(-1) 2 30 5 0®T,(1) — 0
) )
0 20(~2)
T
0

such that (¢, ¢;) corresponds to a 2-dimensional subspace I' C H°(O(2) & Z,(3)). The condi-
tion of defining a element of Y is that T' is neither contained in H°Z,(3) nor in H°(O(2))s for
any section s of O @ Z,(1). We let U, C Gr(2, H*(O(2) ® Z,(3)) denote the open subvariety
of such I". By assigning to I' the class of (@9, ¢2) where ¢; is defined by a lifting in the above
diagram, we get a morphism U, — M_ whose image is the fibre Y, = p~'(x). The morphism

U, —»Y,

is nothing but the quotient of U, by the algebraic group Aut(O & Z,(1)). It follows that Y,
is a variety of dimension 23. Using the techniques of this paper for this quotient, we can even
prove that Y is smooth. Finally Y has dimension 25 and thus is a divisor in the irreducible
and normal variety M_.

Remarks: (1) One would like to interpret the matrices of type (2) as representing extensions
of the sheaves Coker(f, g) and Z,(1) = Coker(?). Indeed a matrix of type (2) defines such an

z
. . . . . . w .
extension, but this extension is isomorphic to the direct sum.



(2) The above correspondence between (¢1, ¢2) and I' indicates that the quotient spaces con-
sidered here are spaces of coherent systems as in [17].

10.1.4. The flip

The diagram M_ — M, & M, can be interpreted as a flip. It is induced by the inclusions
W2 Cc Wg* O W3. The orbits of stable points of type (2) in W* and of type (1) in W7 don’t
intersect in W;* but so do their closures in W§*. Thus the fibres of M_ — M, and M, + M,
correspond to the two different types of semi-stable orbits in W;* defining the same points in
M() AN Mg

10.2. General homomorphisms of type (2,1)

In a more general situation of type (2,1) we consider homomorphisms
m10(—2) & moO(—1) = n1O

over P,. By 7.3 and 8.2 the conditions

n+1

Ag > (n -+ I)Al and Ay >
ni

C1 (m2)

are sufficient for a polarization A = (A1, A, —p1) for W**(G, A) to admit a good and projective
quotient. A polarization in this case is determined by the rational number ¢ = mo)y with
0<t<land1l—t=mA, p =1/n;. A A(semi-)stable homomorphism is then called
t—(semi—)stable. We write W*(t) and W*(t) for W**(G,A) and W*(G, A). In terms of ¢ the

conditions are

(n+1)my and £ > (n+1)my

1>t>
(n+ 1)mg +my m

c1(mg).

Such polarizations exist if and only if
ny > (n+ 1)mgci(my).
By the 9.4.1 and 9.5 these conditions are satisfied if

m3 n+2
n1>0, TL1>1, n1>7, ny > 5

mgo

in case
mo=1, me=2, 2<mye<n, n<me
respectively. In order to measure ¢-stability we introduce the numbers

mi m}

) Tro = ) So =
my mg ni

!
rn = ﬁ
and call (r{,7,5s1) ¢—admissible if there are subspaces M| C M;, M} C My, N| C N of
dimensions m/, mi, n| such that ¢ maps M| @ O(-2) @ M}, ® O(—1) into N{ ® O. Then ¢ is
t—(semi-)stable if and only if for any ¢-admissible proper triple (ry, 79, s1), i.e. a triple which
is neither (0,0,0) or (1,1,1), we have

Ay=(1—t)r +tra— s <0 (<L0).



A polarization t is called critical if there are proper triples with A; = 0. Thus the critical values
of ¢ are the rational numbers

51 —T
)

To —T1

where we may assume s; # 0,1 and thus r # 5. We let ,,,; be the maximal critical value
if there are such with 0 < ¢ < 1 and put %¢,,,; = 0 otherwise. If £ is not critical we have
We(t) = W*(t).

10.2.1. Lemma: Suppose that my and ny are relatively prime and that t,,,, <t < 1. Then
& = (¢1, ¢2) is t-stable if and only if

(1) ¢ is stable with respect to the group GL(Ms) x GL(Ny).

(2) For any 1-dimensional subspace C <y My, and any h € Hom(M; ® O(—2), My @ O(—1))
the map (g1 +howy)oj : O(=2) = N1 ® O is not zero.

Proof. By the characterization of stability in section 3 the homomorphism ¢, is stable if and
only if for any proper pair M) C My, N{ C N; of ¢y—admissible subspaces ry < s;. Now let
(1, 2) be stable. If ¢ were not stable there would be a proper ¢o—admissible pair (2, s1) with
s1 < r9. But then s; < 75 because mg,n; are supposed to be relatively prime. Then s;/ro <t
because s1/rs is a critical value and thus A; = rot — s; > 0, contradicting the stability of
(¢1, ¢2). The condition (2) is trivially satisfied if (¢1, @2) is t—stable, because otherwise (1,0, 0)
would be admissible with Ay = 1 —¢ > 0. We have to show now that conversely (1), (2)
imply that (41, ¢2) is t-stable. For this let (1,79, 1) be a proper (¢1, ¢2)—admissible triple.
If 1y < 7y and 7y = 0, there is nothing to prove. If 7, > 0 then 5 < s; by (1) and we have
t(ro —r1) < s;—ry and hence Ay < 0. If however ry < r; we have A; < 0 in case r; < s;. Since
the case s; < ry is only possible if s; = 75 = 0 and then 71 = 0 by (2), we can assume that
9 < 81 < 7r1. But then

rL—S§
Ll R
L —"
because the fraction is a critical value, and last inequality is the inequality A; < 0. O

Now we are able to describe the space M, = W*(t)/G for t;q, < t which is independent of ¢.
According to the lemma W?*(¢) can only be non—empty if there are stable morphisms ¢,. This
is the case if and only if

L <M< o(n)

o(n)  my
where o(n) = $(n+ 1+ /(n+1)? — 4), see [4]. We restrict ourselves now to the case where
in addition to the previous conditions on ni, my we have ny > nmgy and (n;,me) = 1. Then
a stable ¢, is injective and a subbundle (except at finite number of points in case n; = nma,
see [4], [6]). The quotient space of this space of stable homomorphisms by GL(Ms) x GL(N;)
is denoted by N = N(n + 1,mg,ny). It is a smooth projective variety and there is a universal
sheaf £ on N x P,. For x € N let &£, denote the fibre sheaf representing x. Since it is the



cokernel of the representing homomorphism ¢,, we get

h°E,(2) = (n+1) (W — m2> :

Therefore p,£(2) is locally free on N where p denotes the first projection of N x P,,. Now M,
can be non-empty only if

my < (n+1) (M—m).

2

If conversely this is the case for any stable ¢y and any subspace M; C H°E,(2) where x = [¢s],
there is a lifting ¢; : M1 @ O(—2) = N1 ® O of M; ® O(-2) — &, and (¢1, ¢o) satisfies (1),
(2) of the lemma. It follows now easily by considering corresponding families that

M, = Gry(my,p£(2))

where Gry denotes the relative Grassmannian. It is more difficult to characterize the other
moduli spaces M (t) = W**(t)/G for the intervals between the critical values or for the critical
values and to interpret the flips between them.

10.3. Ezample of type (2,2)

We consider now a simple example of type (2,2) on P3 of homomorphisms

0(=2) @ O(-1) & 0 @ 30(1).

Again the polarizations A = (A1, Ay, —pu1, —io) are supposed to be proper for W and W such
that we have A\; > 0, p; > 0 and

/\2 > 4/\1 and M1 > 4#2

All constants ¢;(mg) and d;(n;) are again zero, because my = ny = 1. Then by the above
conditions also the conditions for proposition 7.7 and proposition 8.2 are satisfied, such that
there exists a good and projective quotient W*(G, A)//G for any polarization satisfying the
conditions. Since we have A\ + Ay = 1 and pu; + 3us = 1, the polarization A is determined
already by Ay and pq, for which the above conditions become

4 3
1>/\2>5 and ?>1—,u1>0. (1)

Next we derive the conditions for the occurrence of true semi—stable points. If (my, ma, nq,n2)
is the dimension vector of a ¢—invariant sub-family we have to consider the equation

1
A= (1 — )\g)ml + )\ng — Hing — —(1 - /,1,1)77,2 =0.

3
By inserting all possible dimension vectors we get the 6 conditions
3 3 3
1y =2 l— = —Ap+ - 2
M1 k)\g, M1 /{,‘)\2 + L ( )

for k = 1,2,3. If one of these is satisfied, there might be non-stable points in W* (G, A). In
the following figure 1 the lines with the equations (2) are shown together with the rectangle
(1) (lower right), for the points of which we get good and projective quotients.
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Figure 1

The homomorphism ¢ defined by the matrix

R E
2|4

3 5
2 <3 )

where the z; are homogeneous coordinates of P, is easily verified to be G—stable for each
polarization A in the rectangle (1). Therefore the moduli spaces are not empty. On each of the
3 lines in the rectangle (1) each point defines one and the same open set W9 (G, A) and hence
one and the same moduli space with semi-stable and non-stable points. Similarly, on each
of the 4 open triangles we have one and the same moduli space, which is a smooth projective
geometric quotient. Each of the 7 spaces has dimension 77. The reader may also verify that
the moduli space for an open triangle admits a morphism to the moduli space of each of its
edges, thereby defining a chain of flips.

10.4. More general homomorphisms of type (2,2)

More general homomorphisms for which we know the constants explicitly are homomorphisms
of type



over P3, say. By remark 9.4.1 the constants are here

e1(2) = do(2) = ; and  cp(2) = dy(2) = %

Let W be the space of those homomorphisms. A proper polarization
A = (A1, Ao, —p1, —p2) for W satisfies
ml)\l + 2A2 =1 y 2/1,1 + No g = 1
with A, A9, 1, o positive. We will also assume that as > 0, 87 > 0, i.e. Ay > 4); and
i1 > 4us. These four conditions can be replaced by
1 4

1
< Ag < = d < < = 1
Stm, ~725o MO g SHsg (1)

10.4.1. Claim: There are polarizations A such that W*(G,A) admits a good and projective
quotient in the following cases

(i) m1 <6 and ny < 8
(i’) my; <6 and ny = 8
(ii)) 8 < my +3 < ny and 8my + 8 < Tny

Proof. The conditions of 7.3 for the equivalence of (semi-)stability become
4 16
)\2 2 ?(/111 + 4/,62) and M1 2 7(4)\2 — 15)\1) (2)
and the conditions of 8.2 for the projectivity of the quotient become
4 4
)\2 2 ? and J251 Z ?)\2 . (3)

The first condition of (3) follows already from the first of (2). After replacing \; and s
conditions (2) and (3) are equivalent to

%ng)\g Z (77,2 - 8)#1 +4
E=mip > (4mg +30)A; — 15 (4)
M1 2> %/\2

Using (1) for A, we find that (4) has a solution (Mg, u11) if the system

g > (ng —8)u +4

16
P12 7@rm)

has a solution p;. For this we distinguish the cases ny < 8, no =8, 8 < ny. If ny < 8 the first
inequality of (5) has a solution p; < % if my; < 6. If ny = 8, then m; < 6, which is case (i’). If
ny > 8, the first inequality of (5) reduces to
777,2 - 4m1 — 32 S >
(nz—8)(mi+8) =" ny+s
Then (5) has a solution y4 if and only if
g —4mi —32 > 0
(7n2 —4my — 32) (TlQ + 8) > 4(7’1,2 — 8)(m1 + 8)
7(Tns — 4my — 32) > 16(ns — 8)

(5)

(6)
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10.5. Ezample of type (3,1)
As an example of type (3,1) we consider only the space of homomorphisms
O(—4)® O(-2)® O(—1) = 50

over P3. We assume again that all \; and all o; are positive. Then the conditions of 7.3 together
with the normalization of the polarization are

A+ A+ A3=1 M1 =
Ao > 10\ Ag >
A3 —4X + 200 > 0.

U =

c(1,1)

As additional condition for the projectivity of the quotient we use condition (a) of the remark
following proposition 8.3.1. Since in this case both the constants c3(1) and ¢(1) are zero, this
condition is just A; > 0 and is already satisfied by our assumption.

For homomorphisms of the above type the condition A3 < % is necessary if W*(G,A) # 0.

For if ¢ = (¢1, o, ¢3) is an element of W then ¢3 has degree 1 and thus contains at most 4
independent components. Then m; = my =0 and m3z = 1, ny = 4 is a choice of dimensions of

¢—invariant subspaces and the discriminant becomes A = A3 — %

By 9.6 the value of ¢;(1,1) is % Now it is easy to see that there exist polarizations A which

satisfy the above inequalities. That W?*(G,A) is then indeed non-empty follows from the
existence of generic matrices as in 10.3. Moreover there are again regions of polarizations for
which the sets W (G, A) are the same and which are responsible for flips.
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