
Hardware and Software Codesign

Thesis approved by

the Department of Computer Science

University of Kaiserslautern-Landau

for the award of the Doctoral Degree

Doctor of Engineering (Dr.-Ing.)

to

Marcus Pirron

Date of Defense: 05.03.2024

Dean: Prof. Dr. Christoph Garth

Reviewer: Prof. Dr. Rupak Majumdar

Reviewer: Dr. Anne-Kathrin Schmuck

DE-386

H A R D W A R E A N D S O F T W A R E C O D E S I G N

marcus pirron

For my family.

A B S T R A C T

Modern robotic applications consist of a variety of robotic systems
that work together to achieve complex tasks. Programming these
applications draws from multiple fields of knowledge and typically
involves low-level imperative programming languages that provide
little to no support for abstraction or reasoning. We present a unifying
programming model, ranging from automated controller synthesis for
individual robots to a compositional reasoning framework for inter-
robot coordination. We provide novel methods on the topics of control
and planning of modular robots, making contributions in three main
areas: controller synthesis, concurrent systems, and verification. Our
method synthesizes control code for serial and parallel manipulators
and leverages physical properties to synthesize sensing abilities. This
allows us to determine parts of the system’s state that previously
remained unmeasured. Our synthesized controllers are robust; we are
able to detect and isolate faulty parts of the system, find alternatives,
and ensure continued operation. On the concurrent systems side, we
deal with dynamic controllers affecting the physical state, geometric
constraints on components, and synchronization between processes.
We provide a programming model for robotics applications that con-
sists of assemblies of robotic components together with a run-time and
a verifier. Our model combines message-passing concurrent processes
with motion primitives and explicit modeling of geometric frame shifts,
allowing us to create composite robotic systems for performing tasks
that are unachievable for individual systems. We provide a verification
algorithm based on model checking and SMT solvers that statically
verifies concurrency-related properties (e.g. absence of deadlocks) and
geometric invariants (e.g. collision-free motions). Our method ensures
that jointly executed actions at end-points are communication-safe and
deadlock-free, providing a compositional verification methodology for
assemblies of robotic components with respect to concurrency and
dynamic invariants. Our results indicate the efficiency of our novel
approach and provide the foundation of compositional reasoning of
robotic systems.

vii

Z U S A M M E N FA S S U N G

Moderne Roboteranwendungen bestehen aus einer Vielzahl von Ro-
botersystemen, die zur Bewältigung komplexer Aufgaben zusammen-
arbeiten. Die Programmierung dieser Anwendungen bedient sich
einer Vielzahl von Wissensgebieten und stützt sich üblicherweise
auf einfache imperative Programmiersprachen, die wenig bis keine
Unterstützung für Abstraktion oder Beweisbarkeit bieten. Wir stel-
len ein vereinheitlichendes Programmiermodell vor, welches von der
automatisierten Steuerungssynthese für einzelne Roboter bis hin zu
einem kompositorischen Argumentationsrahmen für die Koordination
zwischen Robotern reicht. Unter Verwendung modularer Roboter ent-
wickeln wir neuartige Methoden in drei Bereichen: Controllersynthese,
nebenläufige Systeme und Verifikation. Unsere Methode synthetisiert
Steuerungscode für serielle und parallele Roboter und nutzt physikali-
sche Eigenschaften, um durch intelligente Sensorlösungen Fähigkeiten
und Flexibilität dieser Systeme zu verbessern. Unsere synthetisierten
Steuerungen sind robust: Fehlerhafte Teile des Systems können er-
kannt und isoliert sowie Alternativen zu diesen gefunden werden,
um den weiteren Betrieb sicherzustellen; ebenso können wir zuvor
nicht bestimmbare Teile des Systemzustands messen. Unser Modell
kombiniert nebenläufige Prozesse mit atomaren Bewegungseinheiten
und der expliziten Überführung jeweiliger Ortskoordinatensysteme.
Die auf diese Weise erzeugten Robotersysteme eignen sich für die
Ausführung von Aufgaben, die für Einzelsysteme unausführbar sind.
Wir stellen einen auf Modellprüfung und SMT-Solvern basierenden
Verifikationsalgorithmus bereit, der nebenläufigkeitsbezogene Eigen-
schaften (z. B. das Fehlen von Deadlocks) und geometrische Invari-
anten (z. B. kollisionsfreie Bewegungen) statisch verifiziert. Dadurch
ist gewährleistet, daß gemeinsam ausgeführte Aktionen an Endpunk-
ten kommunikationssicher und deadlock-frei sind. Unsere Resultate
belegen die Effizienz unseres neuartigen Ansatzes und bilden die
Grundlage für die kompositorische Beweisbarkeit von Robotersyste-
men.

P U B L I C AT I O N S

Part of this work is based on these publications:

[111] MPERL: Hardware and Software Co-design for Robotic Ma-
nipulators
Marcus Pirron and Damien Zufferey
Proceedings of the International Conference on Intelligent Robots and
Systems (IROS), 2019

[112] Automated Controller and Sensor Configuration Synthesis
Using Dimensional Analysis
Marcus Pirron, Damien Zufferey, and Phillip Stanley-Marbell
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 2020.

[7] PGCD: Robot Programming and Verification with Geometry,
Concurrency, and Dynamics
Gregor B. Banusic, Rupak Majumdar, Marcus Pirron, Anne-Kathrin Schmuck,
and Damien Zufferey
Proceedings of the 10th International Conference on Cyber-Physical
Systems (ICCPS), 2019

Furthermore, the subsequent publication advances the concepts
presented in [7], but is not incorporated into the present treatise:

[84] Motion Session Types for Robotic Interactions
Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey
Proceedings of 33rd European Conference on Object-Oriented Pro-
gramming (ECOOP), 2019

Chapter 3 is based on work done in [111], Chapter 4 on work done
in [112], Chapter 5 on work in [7].

ix

A C K N O W L E D G M E N T S

I would like to express my gratitude to my advisors, Damien Zufferey
and Rupak Majumdar, for their teaching, guidance and support.
To my family, thank you — you made all of this possible.
To Heinz Dabrock and Albert Damm, who sparked the flame so many
years ago.

xi

C O N T E N T S

1 introduction 1

2 preliminaries 5

2.1 Robotic Systems . 6

2.2 Position and Orientation 7

2.3 Connectivity . 11

2.4 Kinematic Equations . 14

2.5 Representation as First Order Logic 17

2.6 Dynamical System . 17

3 controller synthesis for robotic manipulators 23

3.1 The Mperl Language . 25

3.1.1 Composing and Manipulating Elements 27

3.1.2 Actuating the system 28

3.2 Graph Representation 28

3.2.1 Single SCARA system 29

3.2.2 Dual SCARA system 30

3.3 Controller Synthesis . 34

3.3.1 Forward and Inverse Kinematics 35

3.3.2 Soundness . 39

3.3.3 Workspace Mapping and Singularities 40

3.3.4 Trajectory Generation 43

3.4 Sensors and Feedback 44

3.5 Example: SCARA System 46

3.6 Example: SCARA System as a Component 49

3.7 Evaluation . 51

3.8 Conclusion . 54

4 sensor configuration synthesis 57

4.1 Extensions to Mperl . 60

4.2 Preliminaries . 62

4.2.1 Quantities, Units and Dimensions 62

4.2.2 Buckingham Π Theorem 63

4.2.3 Reach Avoid Specification 64

4.2.4 Relevance to State Estimation 65

4.3 Synthesis of Sensor Configurations 66

4.3.1 Search algorithm. 68

4.3.2 Calibration and Run-time 71

4.3.3 Limitations and Extensions of the Method. . . . 73

4.4 Evaluation . 73

4.4.1 Quantitative Evaluation 74

4.4.2 Qualitative Evaluation 76

4.5 Conclusion . 81

5 multi-robot application programming 85

xiii

xiv contents

5.1 PGCD Programs . 88

5.1.1 Syntax . 88

5.1.2 Attached Composition 90

5.1.3 Programs . 92

5.1.4 Semantics . 93

5.2 Verification . 97

5.2.1 Communication safety 98

5.2.2 Trajectories and footprints 99

5.2.3 Specifications and Annotations 100

5.2.4 Extensions . 101

5.3 Implementation and Evaluation 101

5.3.1 Run-time System 102

5.3.2 Verifier . 102

5.3.3 Evaluation . 103

5.3.4 Setup . 104

5.3.5 Experiments . 104

5.4 Conclusion . 107

6 related work 111

6.1 Prototyping tools . 111

6.2 Physics Integration . 114

6.3 Robot Interaction . 115

7 future work 117

7.1 Progressing Sensor Integration and Material Science . 118

7.2 Verification of physical properties 119

Appendix
a Implementation Details of State Estimation 123

a.1 State Estimation 123

a.2 Error Detection 125

a.3 Limitations . 127

a.4 Evaluation . 127

b Technical Implementation Details of Robotic Systems . 128

c Additional PGCD Ressources 132

c.1 Motion Primitive Example 132

c.2 PGCD Code for Fetch 134

c.3 Promela Model Example 134

bibliography 137

L I S T O F F I G U R E S

Figure 1.1 Fetch experiment 1

Figure 1.2 Robotic systems used in the running example 2

Figure 1.3 Decomposition of handover motion primitives 3

Figure 1.4 Handover example. Variations of this example
are used throughout the thesis 3

Figure 2.1 Typical example of robotic systems 5

Figure 2.2 Serial chain system 6

Figure 2.3 Robotic Systems, Environment, and their inter-
actions . 7

Figure 2.4 Global and local reference frames 11

Figure 2.5 Schematic view of a closed loop system 13

Figure 2.6 Schematic view of an open chain system . . . 16

Figure 2.7 Dynamical System 19

Figure 3.1 Mperl workflow 24

Figure 3.2 Single SCARA robot 29

Figure 3.3 Graph of single SCARA system 30

Figure 3.4 Dual SCARA robot, as generated by Mperl . . 32

Figure 3.5 Graph of dual SCARA system 32

Figure 3.6 Example of a rigid chain 33

Figure 3.7 Graph representation of Fig. 3.6 33

Figure 3.8 Mperl controller and its contents 34

Figure 3.9 Chain decomposition 37

Figure 3.10 Types of Singularities 42

Figure 3.11 Dual scara arm 44

Figure 3.12 Embedding sensors directly into the structure
of a component 45

Figure 3.13 Mperl code for a single scara arm with flex sensor 45

Figure 3.14 Load induced deflection d 45

Figure 3.15 SCARA system 46

Figure 3.16 High level Mperl Controller 52

Figure 3.17 Systems tested with Mperl 53

Figure 4.1 Range restriction caused by payload 58

Figure 4.2 Quantities of the example cart-and-arm system 59

Figure 4.3 System overview 60

Figure 4.4 Sensor synthesis workflow 66

Figure 4.5 Workspace representation for the armsystem . 78

Figure 4.6 Arm pushing against a spring scale to simulate
load on the end-effector 82

Figure 5.1 PGCD Architecture 86

Figure 5.2 Schematic and actual representation of the cart-
and-arm system 92

xv

Figure 5.3 Schematic representation of Fetch PGCD pro-
cess interaction 94

Figure 5.4 Reduction rules for communication 96

Figure 5.5 Reduction rules for motion 97

Figure 5.6 Reduction rules for control flow. 98

Figure 5.7 Verification Process for PGCD programs 99

Figure 5.8 Fetch Experiment 106

Figure 5.9 Handover Experiment 107

Figure 5.10 Twist and Turn Experiment 108

Figure 5.11 Underpass Experiment 109

Figure .1 State Estimation in Mperl 123

Figure .2 Franka Emika Panda robot arm with 7 DoF
used in the evaluation of the error detection . 127

Figure .3 Input trajectory to test detection of impact and
sensor drift . 128

Figure .4 Entropy measurements (Eq. .13) while travers-
ing the trajectory from Fig. .3 128

Figure .5 Schematic of the global controller 129

Figure .6 Schematic of individual components 130

Figure .7 Sensors and electro-mechanical components of
the SCARA system 131

L I S T O F TA B L E S

Table 2.1 Degree of freedom of various joint types 14

Table 3.1 Selection of lower kinematic pairs. 27

Table 3.2 Overview of examined robotic systems 53

Table 3.3 Evaluation of the kinematics solvers 54

Table 3.4 Computation of the singularity map 54

Table 4.1 Base dimensions and units of the SI 62

Table 4.2 Parameters and Units for the armsystem . . . 75

Table 4.3 Components and the total number of quantities
in the manipulators. 75

Table 4.4 Dimensional analysis summary for the armsystem 76

Table 4.5 Dimensional analysis summary for the dual
SCARA system 77

Table 4.6 Dimensional analysis summary for the CoreXY
platform . 77

Table 4.7 Deflection measurements and calibration for
reference weights. 80

Table 4.8 Deriving force by different invariants 81

Table 4.9 Deriving deflection by different invariants . . . 81

Table 4.10 Results for autocalibration. 82

Table 5.1 Motion Primitives Implementation and Specifi-
cation . 105

Table 5.2 Programs, Annotations, and Checks 106

L I S T I N G S

Listing 3.1 Mperl Language 25

Listing 3.2 Input Description of SCARA system 29

Listing 3.3 Mperl code for a dual SCARA system 30

Listing 3.4 Input Description of SCARA system 47

Listing 3.5 SMT v2 Code for SCARA system 48

Listing 3.6 Results of running the code from Listing 3.5 . 49

Listing 3.7 Changes in SMT v2 Code for SCARA compo-
nent as opposed to the stand-alone system . . 50

Listing 3.8 Input description of the SCARA system mounted
on a cart . 50

Listing 4.1 Sensor synthesis algorithm 69

Listing 5.1 PGCD Grammar 89

Listing 5.2 Process Cart . 93

Listing 5.3 Process Arm . 93

Listing 1 Fold motion primitive implementation 133

Listing 2 PGCD program for Fetch 134

Listing 3 Promela Code of the cart 135

Listing 4 Promela Code of the Arm 135

Listing 5 Promela code of the Scheduler 136

xvii

1 I N T R O D U C T I O N

Modern robotic applications consist of a plethora of robotic systems
that work together to achieve complex tasks. Individual robotic sys-
tems are not in a fixed configuration, but can be (field-) modified,
depending on the task at hand. Tasks can be arbitrarily complicated,
resulting in complex, polyvalent motions that need to be coordinated
between multiple robots. As tasks may change, or the environment
in which they are performed, robotic systems need to be reconfig-
urable, thus able to adapt ad hoc. Reconfiguration also implies that
robotic systems can be composed from other robotic systems; e.g., an
otherwise independent robot arm can be placed on top of a cart. A
seemingly simple task like fetching an object from a known position
(Fig. 1.1) requires, for example, knowledge about the abilities of the
participating robots, including the maximum reach of the arm, feasible
load, or even whether the arm is able to grab the object at all. Com-
munication between the cart and the arm is needed, particularly if the
object is out of reach for the arm so that the cart has to relocate the
arm. Other points to consider include sensing the environment and
identifying obstacles to the robots, or even other robots working on
adjacent tasks. Solving such scenarios requires knowledge in multiple
domains such as control theory, physics, or concurrent systems.

One common denominator are motion primitives, which are abstrac-
tions of dynamic controllers. Using a motion primitive allows us to
use, e.g., a grab command that causes the arm to extend to a specific
position and grab an object, encapsulating the lower level specifics
such as dynamics or path planning. Motion primitives can be com-
bined to achieve more complex behaviors, e.g., the fetch command.
Contrary to grab, which is arm-specific and only able to grab an object
within arm’s reach, fetch also includes behavior of the cart. It takes
care of the dynamics of moving the cart to a suitable location, from
which grab can be executed successfully, and it ensures that the cart
and the arm are in a configuration that allows subsequent operations.
As both cart and arm are two separate robotic systems, the motion

Figure 1.1: A seemingly simple task. The cart-and-arm assembly has to fetch
an object in its vicinity.

1

2 introduction

(a) Carrier system (b) cart-and-arm system

Figure 1.2: Robotic systems used in the running example

primitive fetch also has to take care of any communication between
these two systems, as well as any necessary geometric transformations.

Throughout the thesis, we use a running example called handover
to illustrate how our system works. We need to examine two sides in
this running example: The technical side, concerned with the robotic
systems, and the task-specific side, which focuses on the actions and
interactions of the involved robotic systems.

On the technical side, we use a carrier and a cart-and-arm assem-
bly (See Fig. 1.2), both of which provide a set of functionality. Both
carrier and cart are identical in their functionality. They are equipped
with meccanum wheels [29], which allow them three degrees of free-
dom (horizontal, vertical, rotation around z-axis and any combination
thereof), and are able to move between two points. Moving between
points is done via the move motion primitive. Attached to the cart
is a robot arm, with a (detachable) end effector, allowing it to grab
objects in its vicinity by means of the motion primitive grab. In com-
bination with the cart, the robot arm is able to grab objects at arbitrary
positions, provided the cart can move close enough.

On the task-specific side, we use these robotic systems to accomplish
the goal of the handover scenario. The carrier transports an object and
meets with the cart, which has a robotic arm attached to it (cart-and-
arm assembly). Both the carrier and the cart-and-arm assembly use
move to meet at some previously defined location. This assumes that
the arm assembly is folded safely away (home). After meeting at the
arranged location, the arm grab the object from the carrier, folds itself
back into transport safe pose and both cart and carrier move to some
new location. Figures 1.3 and 1.4 describe the interactions between
those systems in the handover scenario.

Besides the full version, we also consider other variations, e.g., with
a stationary robot arm, which can only use grab, requiring an object
to be placed into its work space (we call this variation fetch).

In the following chapters, we develop the theory of both the techni-
cal side and the task-specific side. All robotic systems and all examples
and their variants will be accompanied by code examples and summa-
rized in situ or placed in the appendix.

introduction 3

t

Carrier

Cart

Arm

move move

move move

home grab home

Figure 1.3: Decomposition of the motion primitives in the handover scenario:
move motion primitive of the carrier in blue, fetch motion
primitive of the cart-and-arm system in red

(a) Like the fetch example, but the object is placed on a carrier system

(b) Cart and carrier meet at a suitable position and exchange the object

(c) Cart and Carrier return to their initial positions

Figure 1.4: Handover example. Variations of this example are used through-
out the thesis

This dissertation contributes to the fields of controller synthesis,
concurrent systems, and verification. Controller synthesis automati-
cally generates control software for a cyber physical system, given a
model of the environment and a system goal. The synthesized con-
troller is consistent in its behavior to the system goal (i.e., it satisfies
the specification), when executed in an environment coherent to the
assumed one. Concurrent systems are distinguished by their parallel
execution model, along with the necessary synchronization. Processes
are executed simultaneously, and their time periods can overlap.

An example of a contribution in the field of controller synthesis is
Mperl, which provides a unified approach to controller synthesis of
serial and parallel robotic systems (e.g., single and dual SCARA sys-
tems); a contribution in the field of verification would be PGCD, which
describes robotic systems as message-passing concurrent processes
that execute motion primitives.

4 introduction

This dissertation is structured as follows: Chapter 2 introduces pre-
requisites and the running example. Chapters 3, 4 describe the work
concerning individual robotic systems, in particular Mperl and its
extension, the synthesis configuration synthesis (SCS) that enhances
the synthesized controllers with physical properties, allowing the
derivation of additional functional dependencies. We use these results
in chapter 5 to illustrate how robotic systems interact with each other,
including message passing and verification. Chapter 6 discusses re-
lated work, and chapter 7 summarizes the dissertation and highlights
selected future work directions. An appendix provides supplementary
material.

2 P R E L I M I N A R I E S

Robotic systems, as considered in this thesis, are systems of rigid
bodies, connected by joints, which allow relative motion between those
bodies, governed by a controller. Properties of these rigid systems
include the placement of links and joints relative to each other, the
constraints these joints impose upon the motion of the robot (e.g.
rotation or displacement) or their location in their environment. Other
properties include mass and inertia of the systems components, and
resulting from that, velocity and acceleration of individual components
as well as the system as a whole. Each component of a robotic system
is expressed in reference to a coordinate reference frame (frames),
so a pose can not only be expressed by one component relative to
another, but also by their corresponding frames. Figure 2.1 shows
typical examples of robotic systems.

Each of these systems is placed either stationary or dynamically
(e.g. on top of a cart) in their environment, and each system is at
some point equipped with the possibility to attach different tools to
interact with their environment, e.g. grippers or sensing equipment
like cameras or probes. Fig. 2.2 shows an example of a typical industry
robot, whose components are arranged in a single serial chain, with
the base of the robot attached to the ground and the end of the robot
carrying the end effector. Other possible configurations are kinematic
trees, which are e.g. found in the model of a robotic hand, or parallel
structures, e.g. Gough-Stewart platforms. To facilitate the development
of robotic systems, controllers and trajectories are encapsulated into
motion primitives. The purpose of this chapter is to offer a concise
overview of the key concepts employed throughout the thesis, drawing

(a) (Serial) SCARA sys-
tem, mounted on top
of a cart

(b) Parallel or Dual
SCARA system

(c) Parallel cable driven
robot

Figure 2.1: Typical example of robotic systems. The two SCARA systems act
as running examples throughout the thesis.

5

6 preliminaries

Figure 2.2: Example of a serial chain robotic systems. Pictured is a Franka
Emica Panda robot arm [28].

inspiration from the works of Siciliano et al. [126] and Lynch et al. [81].

2.1 robotic systems

Multiple definitions of robots or robotic systems exists; for example, in
2021, the ISO [59] defines robot as a programmed actuated mechanism with
a degree of autonomy to perform locomotion, manipulation or positioning;
another definition outlines robots as an autonomous machine capable of
sensing its environment, carrying out computations to make decisions, and
performing actions in the real world [137]. Other attempts to define a
robot follow similar trajectories, e.g. [Industrial robots] are programmable
multi-functional mechanical devices designed to move material, parts, tools,
or specialized devices through variable programmed motions to perform a
variety of tasks [119].

Closely related to a robot is a manipulator, a machine or robotic
mechanism of which usually consists of a series of segments [...] for the
purpose of grasping and/or moving objects [...] [59].

Common parts to these definitions are the integration of mechanical
assemblies, computer control and the modularity of both, the me-
chanical aspect and the controlling aspect. We can thus define robotic
systems as systems typically consisting of one or more computer con-
trolled, potentially modular assemblies – such as manipulators – that
operate as part of the system within an environment.

The modularity of a robot, e.g. a manipulator in the form of a robot
arm, can be as simple as attachable tools at the end effector, or as
complex as modifying the actual structure. Consequently, we have

2.2 position and orientation 7

Controller

Structure

Controller

Structure

Controller

Structure

Robotic System Robotic System Robotic System

Environment

Dynamical System

Figure 2.3: Robotic systems consist of a mechanical structure, capable of
manipulating within an environment, and a controller. Within
the environment, multiple robotic systems may exist and mu-
tually influence each other. Together, robotic systems and their
environment form a dynamical system.

to consider the actual physical structure of the robot, its modularity,
and how it can be controlled. Control includes calculating the desired
position, velocity or other relevant variables, comparing them to their
actual, measured values, and outputting the corresponding drive
signals to actuate the robot. The path the robot follows between the
current position and the desired position, along with the time is called
the trajectory. The control problem thus asks whether a controller (and
by extension, the structure of the robot) exists that can follow a given
trajectory.

The environment serves a dual purpose; firstly, in a tangible view, it
represents the physical space in which a robotic system manipulates
objects, encounters obstacles or engages with other robotic systems.
Secondly, in a more abstract way, the environment is coupled to the
controller via an input/output cycle; i.e. based on inputs received
from the controller, the environment generates signals which serve
as input to the controller. The individual controller usually can only
perceive a subset of these output signals. In Figure 2.3, a visual
representation is presented to illustrate the interaction between the
individual components. We use the term robotic system synonymously
to robot, to accentuate their multifaceted nature and the interplay
between multiple components.

2.2 position and orientation

Each robotic system and each of their components have their own
coordinate reference frame L and must be expressed relative to a
frame. A coordinate reference frame, or for short frame, L consists of
an origin p, and three mutually orthogonal unit vectors ux, uy, and

8 preliminaries

uz for a 3−dimensional euclidean space. The physical world, in which
our robots operate, is represented by a three dimensional euclidean
space, called W, the world frame. The position of the origin of a frame
Li relative to a frame Lj with the same orientation can be expressed
by a vector jpi . Between frames with the same orientation, translations
and displacements can be calculated using vector addition. We require
translations to be affine transformations, i.e. transformations which
preserve collinearity and the ratio of distances on a line.

jv = iv + jpi (2.1)
npi = npn−1 + n−1pn−2 + ... + i+1pi (2.2)

for some vector v and consecutive frames i, ...,n.
Orientation of a frame Li relative to a frame Lj is given by the dot

product of the basis vectors of the two frames:

jRi =

uxi · uxj uyi · uxj uzi · uxj
uxi · uyj uyi · uyj uzi · uyj
uxi · uzj uyi · uyj uzi · uzj

 (2.3)

The set of all rotational matrices R, along with matrix multiplication,
forms the special group SO(3),

SO(3) = {R : R ∈ R3×3,RRT = 1,det(R) = 1} (2.4)

The set of all homogeneous transformation matrices T form the
special Euclidean group SE(3),

SE(3) =

{[
R p

0 1

]
: R ∈ SO(3),p ∈ R3

}
(2.5)

As SE(3) is a group of isometries of an euclidean space, transforma-
tion of that space preserves the euclidean distance between any two
points. In the case of the euclidean space, distance between two points
u = (u1,u2,u3), v = (v1, v2, v3) is given by a the length of the line
segment between those two points, and we use the euclidean distance
given by

d(u, v) =

√√√√ 3∑
i=1

(ui − vi)2 (2.6)

and analogously, we define the norm of some vector v = (v1, v2, v3) as
usual

‖v‖ =

√√√√ 3∑
i=1

(v2i) (2.7)

2.2 position and orientation 9

Elementary rotations of a frame L around the x,y, or z axis are given
by the rotation matrices

Rx(θ) =

1 0 0

0 cθ −sθ

0 sθ cθ

 (2.8)

Ry(θ) =

 cθ 0 sθ

0 1 0

−sθ 0 cθ

 (2.9)

Rz(θ) =

cθ −sθ 0

sθ cθ 0

0 0 1

 (2.10)

where for brevity of notation, we write sθ and cθ for sin(θ) and
cos(θ), resp., and Rx,Ry,Rz to indicate the rotation matrices of angle
θx, θy, θz around their respective axis.

We can calculate rotations between frames by matrix multiplication
of rotation matrices:

nRi =
nRn−1

n−1Rn−2...n−i+1Ri (2.11)

(2.12)

for a sequence of frames i, ...,n.
We represent the orientation of one frame relative to another frame

as a vector of three fixed angles [ψ, θ,φ]T , which can be directly
derived from the the rotation matrix jRi:

θ = Atan2(−R31,
√
R211 + R

2
21) (2.13)

φ = Atan2(
R32
cθ

,
R33
cθ

) (2.14)

ψ = Atan2(
R21
cθ

,
R11
cθ

) (2.15)

where Rij represents the entry at the i−th row and the j−th column.
This vector represents the orientation of a coordinate frame i relative
to a coordinate frame j. ψ is the yaw rotation of frame i around the
fixed uxj axis of frame j, θ the pitch rotation around fixed uyj axis,
and φ represents the roll rotation around fixed uzj axis

So far, we treated translations and rotations separately. In this thesis,
we use homogeneous transformations, which allows us to combine
rotational and translational movement. For combined orientation and
translation of frame i relative to frame frame j, we can write

jr = jRi
ir+ jpi (2.16)[

jr

1

]
=

[
jRi

jpi

O 1

][
ir

1

]
(2.17)

10 preliminaries

jTi =

[
jRi

jpi

O 1

]
is called the 4x4 homogeneous transformation

matrix and it transforms vectors from frame i to frame j. Its inverse,
(jTi)

−1, transforms vectors from frame j to frame i.

jT−1i =

[
jRTi −jRTi

jpi

O 1

]
(2.18)

Multiple rotations between frames are computed in the same man-
ner as the 3× 3 rotation matrices, and, since matrix multiplications
are not commutative, the order in which the rotations are computed is
important. Homogeneous transformations of rotations around an axis
are then given by

Rx(θx) =


1 0 0 0

0 cθx −sθx 0

0 sθx cθx 0

0 0 1

 (2.19)

Ry(θy) =


cθy 0 sθy 0

0 1 0 0

−sθy 0 cθz 0

0 0 0 1

 (2.20)

Rz(θz) =


cθz −sθz 0 0

sθz cθz 0 0

0 0 1 0

0 0 0 1

 (2.21)

Rotations around all three axis are always conducted in z− y− x
order:

R(θx, θy, θz) = Rz(θz)× Ry(θy)× Rx(θx) (2.22)

which is equivalent to using the yaw, pitch and roll angles of the
X− Y −Z fixed angles (θx = φ, θy = θ, θz = ψ).

Displacements are denoted by

D(p) =

[
13×3 λ

01×3 1

]
(2.23)

Both homogeneous transformation matrices (rotation and displace-
ment) can be composed by matrix multiplication, and we can write

nTi = nTn−1
n−1Tn−2 ...i+1Ti (2.24)

for some frames i, ...,n.

2.3 connectivity 11

xW

zW

yW

zc

xc
yc

yb

zb

xb

zsys
x
s

ze

ye

xe

zE

xE
yE

Figure 2.4: Components of the robot arm on top of a cart (cart-and-arm
system), along with their corresponding coordinate frames. The
orientation of these frames as shown are relative to the world
frame W, which represents a model of the physical world. The
default orientation of parts are upright, roll axis along the z-axis.
From W, frames represent the cart, rotating base of the robot
arm, shoulder and elbow part and the end effector.

In two frames, which differ in origin and in orientation, the transla-
tion is always preceded by the rotation:

ju = jRi
iu+ jpi (2.25)

Robotic systems, which consists of rigid bodies connected by joints
most often use joints from the group of lower kinematic pairs. This group
encompasses, among others, revolute, prismatic, helical, cylindrical,
spherical and planar joints, which correspond to subgroups of SE(3).
For example, prismatic joints are represented by displacements d ∈ R

, revolute joints by an angle θ ∈ [0, 2π).
We associate two particular frames to robotic systems: An anchor

frame WA , which anchors the robotic system to the world frame W

and is stationary with respect to the first component, and a tool- or
end effector frame E, which is attached to the system component
representing the end effector. E is not stationary and its position and
orientation depends on the configuration of the system.

2.3 connectivity

Robotic systems like the arm of the cart-and-arm system are modeled
as a sequence of components, linked together by joints. These systems
can be categorized into open chains (serial mechanisms), kinematic trees
and closed chains (parallel mechanisms).

12 preliminaries

One way of categorizing specific systems is by analyzing the se-
quence of frames between W and E. An open chain, for example our
robot arm from the cart-and-arm system, consists of exactly one an-
chor frame and one end effector frame, and for each frame in the
sequence of frames inbetween it holds, that each of those frames has
exactly one successor and exactly one predecessor. An open serial
chain with n links is thus given by the following sequence of frames:

WWA
WAT1

1T2 ...n−2Tn−1 n−1E (2.26)

Kinematic trees are systems comprised of multiple open chains, which
stem from at most one anchor frame and end in multiple end effectors
frames. A typical example would be the human hand.

Closed chains occur if the chain includes one or more loops, which
means that a (sub-) sequence of frames links back to a frame other
than E. We can characterize a closed loop of length k by the following
sequence of frames, which occurs at position i of an open serial chain:

iTi+1
i+1Ti+2 ...i+k−2Ti+k−1 i+k−1Ti (2.27)

In other words, the transformation matrix between frame i to i+ k,
which links back to frame i is equal to the identity matrix. An example
of a closed chain is given in Fig. 2.5 Contrary to open chains, not all
joints on closed chains need to be actuated, but can be implicitly set by
the other (actuated) joints in the system. This may lead to additional
constraints the system has to satisfy, but also to a larger variety of
design and capabilities.

graph representation An alternative way to describe the com-
position of a robotic system is by means of a connectivity graph, which
models components of a system and their connections with the help
of graph theory. This is addressed in Chapter 3.

mobility Closely linked to the connectivity of a robotic system is
the property of degrees of freedom. Degree of freedom is a measure
of the number of independent parameters which are needed to fully
specify a robotic system; it is directly dependent on the number
of joints in the system and is a measure of the dimension of the
configuration space.

A component in 3D-space has K = 6 degrees of freedom (three
directional, three orientational), and a system of n components has
K = 6n degrees of freedom. This number can be reduced if constraints
are introduced to these components, e.g. by restricting components
either to only rotation or only position (e.g. planar movements), the
mobility of each of these components would be K = 3. One of the most
common type of joints, the revolute joint, imposes five constraints on
the motion between the two connected bodies and allows only one
degree of freedom in the form of rotation along its rotation axis. Table

2.3 connectivity 13

2.1 gives an overview over the degrees of freedom and the imposed
constraints of various joint types.

l5

l1
l4

l2l3

θ5

θ1

θ4

θ2θ3

Figure 2.5: Schematic view of a closed loop system. θ1, ..., θ5 are the opening
angles of the joints, l1, ..., l4 the length of the beams, and l5 is
the distance between both anchors.

Only joints whose constraints reduce the dimensions of the configu-
ration space are taken into account (holonomic constraints), but no con-
straints, which do not reduce the configuration space dimension, but
instead impose restrictions on the trajectory (non-holonomic constraints).
An example for a joint with holonomic constraints is the revolute joint;
it restricts the movement of its two connecting rigid bodies to be on
an arc, and it is not possible for both bodies to move in a straight line
relative to each other. An example for non-holonomic constraints are
those imposed by car Ackermann steering. While steering (generally)
allows movement in all directions with arbitrary orientation, thus
not reducing any degree of freedom, constraints are imposed on the
trajectory, e.g. by not allowing sideways movement or turning on the
spot.

Thus, the mobility of a system can be stated by the well known
formula (e.g., [58] [132], or [46] for a discussion of potential issues)

F = K(n− 1) −

j∑
i=1

(K− fi) (2.28)

= K(n− j− 1) +

j∑
i=1

fi (2.29)

where n is the number of links in the system, j is the number of joints
in the system, fi is the number of constraint on K by the i-th joint,
provided that the constraints are independent.

In 3D-space, we set K = 6 to allow orientation and position and we
get the

F = 6(n− j− 1) +

j∑
i=1

fi (2.30)

which is known as the Kutzbach-Grübler formula [50]. By convention,
n includes a reference frame, e.g. W, relative to which the system
moves.

14 preliminaries

Joint Degree of freedom Constraints

Prismatic 1 5 (2)

Revolute 1 5 (2)

Cylindrical 2 4

Helical 1 5

Spherical 3 3

Screw 1 5

Universal 2 4

Planar 3 3 (0)

Table 2.1: Planar and spatial joint constraints. Number of constraints are for
the spatial joint types, in parentheses are for the planar version

The mobility formula does provide information about the inability
of a system to move. Overconstrained systems are systems with mobility
F 6 0 that can still move; well known examples include the Sarrus
linkage or Bennetts linkage. Likewise, underconstraint systems are
systems with mobility F > 0 which can still move, but they have the
disadvantage that they cannot follow any arbitrary trajectory.

For example, the planar dual SCARA (Fig. 2.5) consists of five
revolute joints, each allowing one degree of freedom and five links
inbetween. The mobility of the mechanism is thus 3(5− 1− 5) + 5 = 2.

Only systems with at least six degrees of freedom are able to arbi-
trarily position and orient its end effector in their workspace.

2.4 kinematic equations

Kinematic equations establish the link between the configuration of a
robot and the position and orientation of its end effector, possibly as
a sequence (path) or as a function over time (trajectory). In the case
of the serial scara system, the end effector can be described as the
vector [x,y, z, θe]T , describing the position in space and its rotation,
which is directly linked to the angular values of its joints θ1, θ2, θ3.
The configuration of a robot specifies the position of every point of the
robotic system. In the case of rigid body systems, this usually entails
only the value of the parameters of its joints, e.g. the opening angles or
displacement values; also, the number of degrees of freedom of such
a system is the smallest number needed to represent its configuration.
The configuration space C of a robot contains all possible configurations
of the robot, and a configuration in C is represented by a n-dimensional
vector c ∈ C ⊆ Rn, where n denotes the number of parameters of the
system.

2.4 kinematic equations 15

The workspace of a robot is a subset of W, in which it is physi-
cally located and where it performs its tasks. We can thus define the
workspace as

W = {x ∈W : x = f(q), for someq ∈ C} (2.31)

for some function f : C 7→W, which maps a configuration q to a point
in the robot’s workspace.

W describes the set of all reachable positions of the robot. The
workspace can be divided into a reachable workspace, which the robotic
system can reach with any orientation, and a dexterous workspace,
where both, position and orientation, must coincide. [72].

The relationship between some point x in the workspace and some
configuration q in the configuration space is established by the kine-
matic equations of a robotic system. The forward kinematics

f : C 7→W (2.32)

calculates the position and orientation of the end effector of the robotic
system from its configuration; the inverse kinematics

f−1 : W 7→ C (2.33)

calculates the configuration from the position and orientation of the
robotic system.

To illustrate the forward- and inverse kinematics, consider the robot
arm in Figure 2.6, which is also known as SCARA (Selective Compli-
ance Articulated Robot Arm). It is compliant in x− y plane and rigid
along the z−axis. Geometrically, the position of the end effector in the
x-y plane and its orientation for given values of θ1, θ2 can be given by:

x = l1cos(θ1) + l2cos(θ1 + θ2) (2.34)

y = l1sin(θ1) + l2sin(θ1 + θ2) (2.35)

θ = θ1 + θ2 (2.36)

where l1, l2 denote the known and fixed length of the robots beams.
By using the reference frames of the robot, we calculate the product

of the homogeneous transformation matrices

S = WT1
1T2 ...n−1TE (2.37)

The x and y coordinates and the orientation are then given by the
components WpE and WRE of S, respectively.

The inverse kinematic equations calculates the configuration θ1, θ2
for a specific position of the end effector, and its derivation is generally
much harder. In addition, solutions to a specific problem might not
exist (e.g., if the position is outside of the reachable workspace, or an
orientation is required which does not lie in the dexterous workspace),
or multiple solutions might exists (e.g., a mirrored configuration if

16 preliminaries

l1

θ1

l2

θ2

(a) θ1, θ2 are the opening angles of the
joints, l1 and l2 the length of the
beams

β

α

r

(x,y)

(b) The constructed triangles used
for calculation of the inverse
kinematics

Figure 2.6: Schematic view of an open chain system; its end effector moves
in the x− y plane.

the orientation is not specified, or, generally, in the case of redundant
manipulators). In simple cases like an open chain as in this example,
the inverse kinematic equation can be stated as a closed form expres-
sion. In other cases, e.g., closed chains, this is usually not the case, and
solving the inverse kinematics amount to using numerical or heuristic
approaches.

In this case, we can derive the inverse kinematics analytically, re-
sulting in a closed form. We use the law of cosine and construct a
triangle as shown in fig. 2.6; from that it follows that

α = cos−1
(
l21 − l

2
2 + x

2 + y2

2 ∗ l1r

)
(2.38)

β = cos−1
(
l21 + l

2
2 − x

2 − y2

2l1l2

)
(2.39)

γ = atan2(y, x) (2.40)

for r =
√
x2 + y2, which results in up to two possible solutions:

θ1 = γ−α, θ2 = π−β (2.41)

θ1 = γ+α, θ2 = −π+β (2.42)

If r /∈ [l1 − l2, l1 + l2], then no solution exists. In chapter 3, we will
show an alternative way on how to find values for θ0, θ1 for a specific
location of the end effector. In this example, we do not consider the ori-
entation of the end effector, which results in what is commonly known
as an elbow-up and elbow-down solution, i.e. a mirrored configuration
of the arm along the axis anchor - end-effector. For systems with more
than six degrees of freedom (redundant manipulators), e.g., a human
arm, an infinite number of solutions to the kinematic equations exist.

Depending on the number of degrees of freedom, the resulting
equations can be non-linear and solutions, if they exist, can not always
be expressed in closed form. In general, closed form solutions are
preferable, because they quickly return all solutions, but have the
disadvantages that they are system-specific and are possibly hard to
calculate. On the other side of the spectrum reside numerical methods,

2.5 representation as first order logic 17

which are not tied to a specific robotic system, but can be slower and
are not guaranteed to find all solutions.

2.5 representation as first order logic

Throughout the thesis, any equation or constraint is treated as a for-
mula in first order logic. This allows us to use logical connectives like
and ∧, or ∨, negation ¬, but also the use of the existential quantifier ∃
and the universal quantifier ∀. The problems we encounter throughout
this thesis consists for the most part of kinematic equations, along
with constraints and invariants, i.e. facts about the system which must
always hold true. Formulating the problem in this matter allows us
to use automated reasoning tools, in particular those which are able
to support the theory of reals with non-linear real functions. These
tools solve these formulas by either finding an assignment of parame-
ters, for which the formula evaluates to true (the formula is SAT, or
satisfiable), or they provide a minimal set of clauses that are unsatisfi-
able. A proper introduction to first order logic can be found in many
textbooks, e.g., [14].

2.6 dynamical system

A dynamical system models the interaction between a controller and
its environment over time as a mathematical model. The controller
perceives the state of the environment (or parts thereof) and calculates
its control input according to its control goal.

Figure 2.7 shows an overview of the individual parts of a dynamical
system, and their interaction.

environment The environment imposes restrictions upon the con-
troller, for example in the form of obstacles, but also, on a more
abstract level, it has full knowledge of the state of the robotic system.
For example, if the robotic system is an underactuated system, i.e. if
it has fewer actuated joints then degree of freedom, the non-actuated
joints can be considered as set by the environment. This can lead to
the robot not being able to follow certain trajectories, even if it would
be otherwise capable. A dynamical system evolves over time T , and at
any point of time t ∈ T , the environment can be in any state x(t) ∈ X.

In general, the controller cannot sense the entire state of the environ-
ment X. We call the state which the controller perceives Y; often, the
perceived state is some subset Y ⊂ X, but that is no necessary always
true, and can even be different. The output function models the input
from the environment to the controller, and it is limited by the sensors

18 preliminaries

and the appropriate rules available to the controller. It maps states to
the output of the controller over time.

g : X×U 7→ Y (2.43)

Only in theoretical settings it holds that X = Y; in practice, even with
a rich model of the environment, the controller still depends on sensor
readings, which are prone to noise and uncertainty.

controller Based on the perceived state of the environment, the
controller of a robotic system manipulates the mechanical part of the
robotic system, and by its actions influences the environment. Denote
by Y the set of inputs of the environment to the controller, and by U
the output of the controller to the environment. The actions of the
controller, which affect the environment, is given by the set of input
functions

Σ = {σ : Y 7→ U} (2.44)

which return the control input based on the perceived state Y. Here,
the controller uses Y for computing the control inputs, e.g., by means
of using sensors like positional sensors or force sensors. This is called
a closed loop controller. If the controller has no knowledge of Y, it is
considered an open loop controller, setting its control input without
any knowledge about the current state. In this case, the set of input
functions is given as

Σ = {σ : ∅ 7→ U} (2.45)

Typically, for a robot arm like the SCARA system, control inputs are
forces or accelerations, and X consists of the configuration q, along
with the velocities, or, if the robot can control the velocities directly,
X consists of q. The representation of the controller, in particular
the choice of σ generating the control inputs, is simplified. Because
the controller only partially perceives the state, and is subject to
noisy, uncertain or missing sensor readings, it tries to reconstruct
an estimated state x̂(t) from y(t), and based on the estimated state,
determines a control input u(t) which satisfies its control goal.

dynamical system We can now define formally a dynamic system.
Figure 2.7 summarizes the interactions between the controller and the
environment within a dynamical system. Given a set of inputs U, a
set of states X, a set of outputs Y, and a set of input functions Σ, the
state transition function f

f : X×U 7→ X (2.46)

calculates the state f(x(t),u(t)) = x(t) at time t ∈ T subject to the
input signal σ. The controller perceives y(t) = g(x(t),u(t)), based on
that chooses the next control input u(t).

2.6 dynamical system 19

Environment
ẋ(t) = f(x(t),u(t))
y(t) = g(x(t),u(t))

Controller
u(t) = σ(y(t))

Perceived
State y(t)

Control
input u(t)

Figure 2.7: Interactions between controller and environment in a dynamical
system. Note that f denotes the state transition function, which
is different from the kinematic mapping of Eq. 2.32

Then the continuous time-invariant dynamical system is given by

ẋ(t) = f(x(t),u(t)) (2.47)

y(t) = g(x(t),u(t)) (2.48)

u(t) = σ(u(t)) (2.49)

As outlined in Figure 2.3, the environment of a dynamical system
can accommodate multiple robotic systems. The global state X is
partitioned into a set of Xi for each individual controller i, and from
the point of view of controller i, the environment is given by

Wi = X \Xi (2.50)

making it explicit that other controllers interact alongside controller i.
We extend the state transition function f and the output function g to
reflect the influence of the environment by

f : Xi ×Wi ×Ui 7→ Xi (2.51)

g : Xi ×Wi ×Ui 7→ Yi (2.52)

We can then generalize the continuous time-invariant dynamical sys-
tem for controller i by

ẋi(t) = fi(xi(t),wi(t),ui(t)) (2.53)

yi(t) = gi(xi(t),wi(t),ui(t)) (2.54)

ui(t) = σi(yi(t)) (2.55)

trajectory A trajectory ξ represents the configuration of the robotic
systems as a function of time. Usually, this includes constraints which
are not strictly necessary for geometric reasoning, but also constraints
on joint velocities or torques. One commonly used approach is to first
define a path that is decoupled from time. It serves as a representation
of a curve in the robot’s configuration space, ranging from the starting
configuration to the target configuration. Subsequently, time is intro-
duced, regulating the rate at which each configuration in the path is
adopted by the robot. By adding time, further constraints such as as

20 preliminaries

those governing joint velocities, torques, or the desired smoothness of
the trajectory, can be formulated.

More formally, a path π is a mapping π : [0, 1] 7→ X, which maps an
interval, usually ranging between 0 and 1 to specific configurations of
the robotic system. π(0) represents the configuration at the start of the
path, π(1) the configuration at the end of the path. In particular, we
assume that the state space X is path connected, i.e. for any x0, x1 ∈ X,
there exists a continuous path connecting both points:

∀x0, x1 ∈ X∃π : π(0) = x0 ∧ π(1) = x1. (2.56)

A path is time-independent and is only concerned with the geo-
metrical position of the robotic system. In contrast, a trajectory is
time-dependent and considers, for example, speed and acceleration.
By adding a continuous, monotonic time scaling

s : [0, T] 7→ [0, 1] (2.57)

we assign a time scaling s to each t ∈ [0, T]. Thus, a trajectory ξ is
given by the tuple (π, s). If clear from the context, we write ξ(t) for
(π, s(t)).

Speed and direction directly follow from the derivatives of ξ:

ξ̇ =
dξ

ds
ṡ (2.58)

ξ̈ =
dξ

ds
s̈+

d2ξ

ds2
ṡ2 (2.59)

control goal The control goal describes the task the controller
tries to achieve. For example, the controllers in chapter 3 and 4 try
to follow an input trajectory ξ = (π, s), and their control goal can
be stated follows: Given an initial state x0, find a set of controls
σ : [0, T] 7→ U for each πi at time ti, such that ∀t ∈ [0, T], x(s(t)) = π(t).
Often related to this goal is the idea of robot learning (e.g. [122]),
where the input trajectory is given by a human directly physically
manipulating the robot. The robot then tries to reconstruct and follow
the learned trajectory.

Trajectories can be subject to various constraints which can affect
the states at the beginning, end and in between. For example, moving
the cart-and-arm system after grabbing an object requires the arm to
be positioned in such a way that the center of gravity is low enough
for the system to not get out of balance during movements. Ideally,
the final state x(T) of the arm trajectory should reflect the appropriate
configuration of the arm; likewise, as a prerequisite for x(0), the arm
should not already have grabbed an object. In addition, it is easy to
imagine additional constraints which have to hold for all points of
time 0, ..., T ; for example, if the weight of the lifted object is close to
the load limit of the arm, an additional constraint could state that the
arm moves in such a way that the load on the arm never rises, e.g.,

2.6 dynamical system 21

by not extending the arm, but only retracting it. Complex motions,
e.g., fetching an object, consist of several composite trajectories, each
with their own constraints. These parts of the trajectory, along with
their requirements and their underlying dynamical systems can be
encapsulated into motion primitives.

motion primitive Motion primitives can be considered as abstrac-
tions of dynamic controllers and the resulting trajectories. They pro-
vide encapsulated high-level capabilities, e.g. the home motion prim-
itive, that brings the robot arm into a predefined configuration. The
abstraction facilitates reasoning about dynamical systems by speci-
fying conditions under which the motion primitive can be applied,
conditions which hold during execution, and the conditions which are
established at the end of the motion primitive’s execution.

Formally, a motion primitive m is a tuple

m = (T , Pre, Inv, Post) (2.60)

consisting of a duration T , a pre-condition

Pre ⊂ X×W (2.61)

an invariant
Inv ⊂ ([0, T] 7→ X)× ([0, T] 7→W), (2.62)

and a post-condition
Post ⊂ X×W (2.63)

From the point of view of a dynamical system, motion primitives
encapsulate the control input u and the underlying perceived state y
for its duration, leaving only the changes in the state of the system xi
and the environment wi visible.

Thus, we can formalize a valid trajectory ξ of duration T of a motion
primitive m by requiring that at time t = 0 of the motion primitive,
the state of the system must satisfy the constraints in Pre, and at the
end at time T , the resulting state x(T) must be in Post. Similar, any
invariants must hold during the complete trajectory.

ξ(0) ∈ Pre (2.64)

∧ξ(T) ∈ Post (2.65)

∧∀t ∈ T , ξ(t) ∈ Inv (2.66)

Consider the motion primitive home, used in the Fetch example
(Fig. 1.3. It is used to retract the arm to a safe position, which enables
the cart to drive without tipping over. No preconditions are imposed,
i.e., Pre = {}, which means that at the beginning of home, the motion
primitive can be executed from any configuration the robot has. At
the end of the motion primitive, the arm is required to be folded, thus
after executing move, Post consists of the single state in which the arm
is folded: Post = {(θ1 = π/6), (θ2 = 5/6π)}. In this case, no invariants
need to be formulated.

3 C O N T R O L L E R S Y N T H E S I S F O R
R O B OT I C M A N I P U L ATO R S

Advances in rapid prototyping and manufacturing technology have
made building custom robots more accessible and affordable. Low-
cost rapid manufacturing tools such as 3D printers and other CNC
tools have simplified the creation of mechanical structures, and inex-
pensive micro controllers, sensors, and actuators can easily be added
to produce functional robots. Custom robotic systems are not any-
more limited to industrial settings; lower entry costs allow motivated
tinkerers to build robotic systems on a limited budget. However, as
designing and constructing robotic systems draw from many different
areas, domain specific knowledge for each of these steps is required:
designing the electromechanical components, figuring out how to
control the robot, and implementing the code.

Mperl (Multipurpose Parallel End effector Robotics Language) al-
lows non-expert users to create and test robotic manipulators program-
matically. These manipulators can subsequently be produced utilizing
3D printing technology. Our primary focus lies in streamlining the
programming process by automatically generating high-level motion
primitives. These primitives facilitate the movement of specific compo-
nents of a robotic manipulator, typically the end effector, to specific
target locations. To demonstrate the functionality of our approach, we
showcase its application in a SCARA system (Selective Compliance
Assembly Robot Arm) using the Mperl language.

Mperl integrates elements from computational design and fabrica-
tion, inverse kinematic solvers, and feedback control. Mperl’s input is
an abstract view of the general structure of the robot, i.e., its different
components and their connections to each other. Mperl supports any
element which generates a rigid motion and comes with default ge-
ometries which can be used for fabrication. On the software side, we
first perform an analysis to estimate the workspace of the structure and
find the singularities within or at the boundary of the workspace. We
then generate constraints corresponding to the structure in a form that
can be handled by an inverse kinematic solver. Figure 3.1 summarizes
the functionality of Mperl.

A structure in Mperl starts with anchors to which other components
are attached. Anchors have fixed coordinates and cannot move. The
other components’ positions are constrained by the rigid transfor-
mations between the components and the anchors. The components
roughly fill the following roles:

• actuators can be controlled, e.g. motors;

23

24 controller synthesis for robotic manipulators

B0 = Beam(length=1)
B1 = Beam(length=1)
R0 = Revolute(yaw in (-pi/2, pi/2),actuated)
R1 = Revolute()
R2 = Revolute()
Arm1 = R0 -> B0 -> R1 -> B1 -> R2
Arm2 = Clone(Arm1, preserve=R2)
DualScara = Merge(Arm1, Arm2)
Anchor(R0, (0,0,0))
Anchor(Arm2.head, (2,0,0))
EndEffector(R2)

Input description

Beam

Revolute actuator

Beam

Revolute actuator

Anchor

Revolute Actuator

Effector

Beam

Revolute actuator

Beam

Revolute actuator

Anchor

Structure graph

Controller synthesis

Manufacturable parts

Mperl

Parallel SCARA manipulator

Figure 3.1: Mperl workflow

• sensors are controlled by the environment but we can read the
components’ state;

• passive components are controlled by the environment and we
cannot read the component’s state.

The relative position of components is exposed with parameters which
can be static or dynamic. For instance, the angle of an actuated revolute
joint is a dynamic parameter while a beam is a prismatic joint with a
static parameter.

The sensing elements can give feedback on the motors and also on
the robot’s overall structure. 3D printed structures are typically made
of polymers and can be quite flexible. Origami style structures [90,
123] which have also been used to quickly build customized robots
share the same problem. Mperl can embed deflection sensors in the
structure at manufacturing time and when a load is applied to the
system the sensor reports the deflection back to the controller. The
controller can then account for the deflection and adapt the actuation
to reach the current end effector target position.

co-design. The term co-design is used to underline the equal
consideration of hardware and software components in the controller
synthesis of Mperl. Control software can be synthesized from an
abstract description, along with any missing values, but it can also
be synthesized by actually building the robot and analyzing and
querying the physical structure. Physical components are embedded
with electronics, which provide an uniform interface and the necessary

3.1 the mperl language 25

communication protocols. Virtual and physical components can be
mixed, which allows e.g. simulations of robotic systems incorporating
real-world sensor data. Furthermore, it is possible to generate 3D-
manufacturable parts from the abstract description.

In the following, we first introduce the graph representation and the
language constructs of Mperl. We describe the underlying controller of
Mperl, along with the elements which are synthesized, and we round
off the chapter by giving a detailed example and an evaluation.

3.1 the mperl language

In the following section, we describe the language constructs of Mperl
and their properties. Section 3.5 shows by means of the SCARA system
how Mperl is used, along with the resulting equations.

scope. In the scope of this work, we consider only kinematic mod-
els. Mechanical components are modeled as rigid bodies and the
relation between them are rigid motions. We use the special euclidean
group SE(3) for rigid movement; rigid transformations preserve dis-
tance and orientation.

1RS ::= Primitive Component

2| RS -> RS

3| Clone RS

4| Decompose RS

5| Merge RS RS

6Modifiers ::= EndEffector RS

7| Anchor RS Coordinate

8Action ::= Move RS Coordinate

9| Actuate RS Parameter Value

Listing 3.1: Mperl Language

Robots are created by composing small building blocks (Primitive
Components) together to form larger structures, that can also be part
of robotic systems, too. Operations like clone, decompose or merge help
with the composition of robotic systems. The Mperl language (List. 3.1)
supports the assignment of anchors and end-effectors to specific parts
of the robotic system, and it is able to provide the move and actuate
action. In the following, we explain in more detail each element.

Forming fundamental building blocks, primitive components fall
roughly into the following categories: anchors, beams, joints, and
actuators.

26 controller synthesis for robotic manipulators

Anchors are used to connect a robotic system to the world frame W.
They specify an absolute position and orientation, cannot move and
do not have any parameter.

Beams are static connections between components and have static
parameters, for instance, the length. Varying static parameters result
in different robots and they need to be fixed before the controller is
synthesized.

Joints are connections with dynamic parameters. In the simplest
form, the parameters are neither visible nor controlled. The position
of the joint is constrained by the other elements in the system and, if
under-constrained, the environment picks the joint configuration. If
a motor is connected to the joint then it becomes an actuator and the
controller can set the actuator’s configuration. Every component can be
equipped with sensors, which are able to read the actual configuration
of a component and relay it back to the controller.

Abstractly, components are described by their signature, a triple

(P,C,S) (3.1)

where P ⊆ C is the set of all parameters of a component (e.g., a
primitive component, or several components bundled together, form-
ing a larger component), C ⊆ C is the set of constraints imposed upon
a parameter, and S : P 7→W maps parameters to their state.

Constraints model the limits on an element’s motion, e.g. how
much a revolute joint can turn, or how large the displacement is of
a linear actuator. In general, constraints are predicates over the set
of parameters. In particular, we assume that every parameter has an
explicit lower and upper bound. These bounds are required to reason
about robotic systems using automated solvers.

The set of parameters P consists of active parameters Pa and passive
parameters Pp, i.e. P = Pa]Pp. Active parameters can be set explicitly,
e.g. the angular value of an actuator, and passive parameters are
set by the environment. Components with passive parameters are
encountered, for example, in underactuated components; the degree
of freedom of these components is larger than the number of their
actuated (active) parameters. This does not always has to be the case,
for example, the Gough-Stewart platform includes passive revolute
joints, but by design is not underactuated [31]. The value of passive
parameters is implicitly existentially quantified.

Given a component (P,C,S) and a target state XT , finding whether
the component can induce this motion reduces to solving:

∃p ∈ P : S(p) = XT ∧C(p) (3.2)

We provide an initial set of components including revolute, pris-
matic, and spherical joints, and Mperl can also be extended with user
defined components. Table 3.1 gives an overview of some of the sup-

3.1 the mperl language 27

Joint Rotation Matrix jRi Position vector jpi Parameter

Revolute R

cθ −sθ 0

sθ cθ 0

0 0 1


00
0

 θ

Prismatic P

1 0 0

0 1 0

0 0 1


d0
0

 d

Helical H

cθ −sθ 0

sθ cθ 0

0 0 1


dθ0
0

 dθ

Cylindrical C

cθ −sθ 0

sθ cθ 0

0 0 1


d0
0

 θ,d

Spherical

Planar P

cθ −sθ 0

sθ cθ 0

0 0 1


cθdx − sθdysθdx + cθdy

0

 θ,dx,dy

Table 3.1: Selection of lower kinematic pairs.

ported components in Mperl, along with their states, parameters and
constraints. The state matrix of component c is given by

S(c) =

[
jRi

jpi

0 1

]
(3.3)

3.1.1 Composing and Manipulating Elements

Primitive components are connected together to form a robotic system,
resulting in a graph of interconnected components. A robotic system
can contain other robotic systems; thus, Mperl can directly manipulate
and compose graphs of individual robotic systems. The primitives are
any joint natively supported by Mperl or provided by the user. The ->

operator concatenates components and is used to describe the general
structure of the robotic system. Cloning is used to duplicate an existing
structure; for example, modeling a system can be done by explicitly
modeling every part of the system, or, if the system is symmetric in its
structure, it is often sufficient to model one half, which is then cloned.
To simplify the creation of more complex structures, we support the
composition and decomposition of graphs into serial chains, and the
cloning/merging of robotic systems. Section 3.3.1 provides a more

28 controller synthesis for robotic manipulators

detailed explanation, while Listing 3.3 offers a concrete example in
form of the dual SCARA system.

Once a system is build, we can give specific roles to certain elements:
anchors and end-effectors, which correspond to their counterparts WA

and W. Frames of components which are marked with anchor are WA ,
and frames of end-effector components are treated as E frames. Assign-
ing these attributes imposes a direction on the otherwise undirected
graph structure and has direct influence on the resulting system. For
example, the dual SCARA system has two anchors, attached at R0 and
R′0, resp., and R2 is used as an end effector. Swapping the position
of anchors and end effectors results in R0 and R′0 being connected
to end effectors, and R2 being attached to an anchor. This reverses
the direction of the graph, thus transforming the closed chain to a
kinematic tree and the resulting mechanism resembles two finger.

3.1.2 Actuating the system

Actions include commands for manipulating robotic systems, most
notably actuating parts (forward kinematics) and moving the end
effector (inverse kinematic). We discuss how the inverse kinematic is
handled in the next section. It is worth mentioning that we can use
the action commands during the development to simulate the robotic
systems; in combination with the properties commands we can inspect
the robot’s state in specific configurations.

In the next section, we discuss the graph structure on which Mperl
operates and give concrete examples.

3.2 graph representation

Denote by G = (V ,E) a graph G with vertices V and edges E. Vertices
represent components, and an edge (vi, vj) between two components
vi, vj represents the connection between them. A labeling function
maps the vertices to the type of the component (revolute, prismatic,
etc.) and its properties (anchors, effector). A walk of a graph is a
sequence of alternating vertices and edges, starting and ending with
a vertex; a path is a walk whose vertices are distinct. A path is called
a loop, if the beginning and ending vertex is the same and each other
vertex inbetween appears exactly once. The direction of the graph is
given by assigning specific vertices the roles of anchor or end effector.
Two vertices vi, vj ∈ V are adjacent if they are directly connected by an
edge (vi, vj) ∈ E, and the adjacency matrix A of a graph representing
a robotic system with n components is a n×n matrix, where Aij = 1
if vi is adjacent to vj. The in-degree of a vertex is the number of
incoming edges, or, in terms of the adjacency matrix, the sum of the
corresponding column entries. Similar, the out-degree of a vertex is

3.2 graph representation 29

the number of outgoing edges or the sum of the corresponding row
entries of the adjacency matrix.

Using Mperl, we model a serial robotic manipulator in the form of
a single SCARA system, and parallel robotic manipulator in the form
of a dual SCARA robot and show the resulting systems and graphs.

3.2.1 Single SCARA system

Fig. 3.2 shows the single SCARA system, whose control code is gener-
ated by the Mperl code in Listing 3.2. The SCARA arm consists of two
beams (shoulder and elbow), each 100mm long, which are connected
to each other with a revolute actuator. The shoulder is attached to an
anchor via a revolute actuator, and the end effector is attached to the
revolute actuator at the end of the elbow beam.

Endeffector Revolute actuator R2

Beam B1

Revolute actuator R1

Beam B0

Revolute actuator R0

Anchor A0

Figure 3.2: Single SCARA robot

In Figure 3.2, lines 1-5 initialize the building blocks of the robot —
two beams with length 100 (mm), and three revolute actuators (i.e.
joints which are actuated). The angular motion of each actuators is
restricted to prevent self intersection, i.e. crashing into itself. If no
specific constraints on the length or angle are given, default bounds
are used. Line 6 uses the → operator to connect these elements into
a chain. The remaining two lines add anchor and endeffector to the
system.

1B0 = Beam(length=100)

2B1 = Beam(length=100)

3R0 = Revolute(yaw in (-2pi/3, 2pi/3), actuated)

4R1 = Revolute(yaw in (-2pi/3, 2pi/3), actuated)

5R2 = Revolute(yaw in -pi, pi)

6Scara = R0 -> B0 -> R1 -> B1 -> R2

7Anchor(R0, (0,0,0))

8EndEffector(R2)

30 controller synthesis for robotic manipulators

Listing 3.2: Input Description of SCARA system

From this description, Mperl builds the graph structure of the
system in Fig. 3.3. For each primitive component, a node is inserted
into the graph, and for each -> operator, an edge between its arguments
is inserted. The direction of the graph is given by the connectiveness
of its anchors and end effectors; with generally the direction being
from anchor to end effector. An exception are closed loops, which are
discussed in section 3.3.1.

A0 R0 B0 R1 B1 R2

v0 v1 v2 v3 v4 v5

Figure 3.3: Graph representation of single SCARA system

The adjacency matrix of the single SCARA system is given by

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0


(3.4)

Each row consists of the elements v1, v2, .., in order from left to right,
and each column likewise from top to bottom. An entry in the i-th row
and j−th column represents an edge from vi to vj. For example, the
entry in the first row, second column is 1 and indicates a connection
from vertex v0, which corresponds to the anchor A0, to vertex v1,
which corresponds to the revolute actuator R1.

The direction is given by the position of the anchor (A0, node v0),
and the end effector node v5, which represents the revolute actuator
R2. v0 has no incoming edges, and v5 no outgoing edges, indicating
their status as anchor and end effector. In addition, no vertex has an
in-degree and out-degree other than 0 or 1, which means that this
graph represents a chain.

3.2.2 Dual SCARA system

A slightly more interesting example is the dual SCARA system. Fig.
3.4 shows the dual SCARA system, generated by the Mperl code in
Listing 3.3.

3.2 graph representation 31

1B0 = Beam(length=50)

2B1 = Beam(length=50)

3R0 = Revolute(yaw in (-pi/2, pi/2),actuated)

4R1 = Revolute()

5R2 = Revolute()

6Arm1 = R0 -> B0 -> R1 -> B1 -> R2

7Arm2 = Clone(Arm1, preserve=R2)

8DualScara = Merge(Arm1, Arm2)

9Anchor(R0, (0,0,0))

10Anchor(Arm2.head, (80,0,0))

11EndEffector(R2)

Listing 3.3: Mperl code for a dual SCARA system

The code is similar to Listing 3.2 and results in the graph structure
shown in Fig.3.5. The adjacency matrix is given by

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0



(3.5)

The structure mirrors a single SCARA system, with R1 and R2 not
being actuated, and the construction in Line 6 is the same. Because
of the symmetry to the single SCARA system, Mperl allows us to
duplicate (clone) this structure, while at the same time preserving R2.
This is reflected in the adjacency matrix by extending its size from
6× 6 to 11× 11 and adding an additional edge between R2 and the
duplicated B1 node (B′1). The entries in the upper left block resemble
the adjacency matrix of the single SCARA system. The direction of
the graph is given by the position of the anchors (vertices v0, v10), and
vertex v5, which represents the revolute actuator R2. The in-degree of
v5 is 2, the out-degree is 0, indicating that v5 joins two chains and is
an endeffector; likewise, v0 and v10 have no incoming edges, making
them anchor points.

32 controller synthesis for robotic manipulators

Endeffector Revolute joint,
preserved

Beam

Beam

Revolute actuator

Anchor,

Revolute actuator

Figure 3.4: Dual SCARA robot, as generated by Mperl

A0 R0 B0 R1 B1

R2

A′0 R′0 B′0 R′1 B′1

v0 v1 v2 v3 v4

v5

v6 v7 v8 v9 v10

Figure 3.5: Graph representation of dual SCARA system

As previously mentioned, anchors and end effectors lend the graph
its direction. Swapping anchors and end effectors in the dual SCARA
example yields a kinematic tree anchored at R2, with end effectors at
R0 and R′0. If we do not change the order of vertices, the adjacency
matrix changes to

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0



(3.6)

3.2 graph representation 33

The previous anchor elements at v0 and v10 each now have an in
degree of 1, and the previous end effector at v5 has no incoming edges
anymore, but two outgoing edges (to v4 and v10, which represent B1
and B′1.

θ1
l1

θ2

l2

l3

θ3

Figure 3.6: The black component depicts a rigid (sub-) chain. It has zero
degree of freedom and has constant angles θ1, θ2, θ3 and con-
stant lengths l1, l2, l3. The grayed out parts show an example
mechanism, in which that component is embedded.

A0 R0 P0 R4

R3

B3

R1

B1

R2

B2R5P4B4A1

Figure 3.7: Graph representation of Fig. 3.6

The graph structure, along with the appropriate constraints, is also
able to model polygonal structures. Polygons can be modeled as
constrained rigid chains, i.e. chains with zero degree of freedom. For
example, the mechanism in Fig. 3.6 has such a chain – depicted in
black – embedded; its graph structure is given in Fig. 3.7. The subchain
consists of three revolute joints (R1, ...,R3) and three beams (B1, ...,B3),
and the set of constraints of the subchains restrict the corresponding
parameters θ1, ..., θ3, l1, ..., l3 to constant values, thus removing any
degree of freedom. The subchain itself can manipulated by the rest
of the mechanism; in this case, the subchain rotates around the tip
by adjusting the displacement of the prismatic actuator to the left,
resulting in a circular motion of the right corner at R2.

34 controller synthesis for robotic manipulators

Graph
Structure

Abstract description
Action

Constraints

Kinematic
Equations

Solver

Parameter
Synthesis

Actuation

Controller

Figure 3.8: The abstract input description, along with the trajectory acts as
input, from which the graph is generated. Graph and constraints
are used to derive the kinematic equations, from which the actua-
tion command (i.e. the control input) is calculated. The parameter
synthesis derives missing values based on the system’s model
and the input trajectory.

3.3 controller synthesis

The main benefit of using Mperl is not so much for realizing the
physical structure but in getting some baseline software functionality
implemented out-of-the-box. Not only can we generate commands to
set some actuator values but we also provide the more user friendly
move command where the user specifies a target position for the end
effector and Mperl computes the actuators values to reach the target
by solving the inverse kinematics.

The Mperl controller consists of these parts:

1. Deriving and pre-processing the graph structure from the ab-
stract input description

2. (Kinematic) control equations, derived via the system’s graph
from the abstract description

3. Synthesizing unknown parameters

4. Mapping the workspace and calculating singularities

5. Generating trajectories

6. Adding feedback loops for each sensor

Inputs to the controller are an action, i.e. a reference position the
robotic system should attain either in configuration space or in workspace,
along with the input description of the robotic system. The graph pre-
processing evaluates the the graph structure of the robotic system,
and, where appropriate, normalizes and reduces the graph. Based on
the processed graph, we generate kinematic equations, along with any

3.3 controller synthesis 35

additional constraints, and depending on the input, we either solve
the forward or the inverse version. In chapter 4, we introduce the
sensor configuration synthesis, an approach to place sensors and to
derive (additional) functional dependencies between components in
the system. This approach affects the controller synthesis; it especially
has effects on the workspace mapping (Adaptive Grid) and the singular
regions. In the case that a trajectory is provided, the controller adheres
to it accordingly. If only a list of specific configurations is supplied,
the controller performs trajectory interpolation, ensuring the inclusion
of each designated configuration. This interpolation process takes
into account both singular regions and the workspace. If sensors are
present in the system, feedback loops are generated for each sensor,
such that the system can compare the target configuration with the
actual configuration. This is implemented via a PI controller. For each
sensor, a Kalman filter ensures signal smoothing (see also appendix).

In particular, two parts are done offline: The parameter synthesis, as
it is used if an actual configuration of a component is not known, and
the creation of the workspace mapping, as it has high costs upfront.
After initialization, the workspace mapping can be updated during
operation of the robotic system without incurring additional costs.
It is also possible to use the system virtually, i.e. without actually
sending actuation commands, for example, during the construction of
the robotic system.

Fig.3.8 represents the controller synthesis workflow of Mperl.

3.3.1 Forward and Inverse Kinematics

From the graph structure of a robotic system, we can extract infor-
mation to solve the forward and inverse kinematics. The forward
kinematics compute the position of the structure given actuator val-
ues and the inverse kinematics computes the parameter values for a
target configuration. The difficulty for these problems depends on the
structure of the graph.

Chains, i.e., paths where all the vertices have degree 2 except the
start and end with degree 1, are simpler to handle. Chains are also
called serial structures. For graphs composed of a single chain, the
forward kinematics is easy and boils down to matrix multiplication.
On the other hand, the inverse kinematics and both the forward and
inverse kinematics for parallel structures are much more difficult.
These problems cannot, in general, be solved analytically and we
rely on numerical solvers and optimization of Mperl for non-linear
systems of equations. Below, we discuss how to find the parameters for
a single configuration. For trajectories, we compute the configurations
for points along the trajectories and interpolate the configurations
between these points.

36 controller synthesis for robotic manipulators

preprocessing the graph The first step is to normalize and
reduce the graph.

1. Splitting the anchors. As the anchors are fixed, having multiple
elements connected to a single anchor is semantically equivalent
to having these elements connected to their own copy of the
anchor. This transformation may increase the number of vertices
in the graph but preserves the edges. The goal of this splitting
is to increase the serial parts of the graph. Denote by Va the set
of all vertices v ∈ V , for which an edge (a, v) between anchor a
and v exists. Then, for any v ∈ Va, we add a duplicate a′ of a to
V and an edge (a′, v) to E.

2. Collapsing chains. Sequences of joints compose nicely and can
be simplified. Two joints (P1,C1,S1) and (P2,C2,S2) are simpli-
fied to (P1] P2,C1 ∧C2,S1S2) removing the intermediate node
altogether. In this step, the graphs for parallel structures may
become multigraphs.

open chains An open chain c of length n exists if exactly one
node va ∈ V labeled as anchor, exactly one node ve labeled as end
effector, and the vertices can be arranged such that there exists a path
from va to ve s.t. for a sequence of edges v1, v2, ..., vn, (vi, vj) ∈ E and
(va, v1), (vn, ve) ∈ E. For any two non-adjacent nodes vi, vj, it must
hold that (vi, vj) /∈ E.

The kinematic equations are the state S(c) and are then given by

S(c) =

n∏
i=1

S(vi) (3.7)

The parameters are given by

P(c) =

n⋃
i=1

P(vi) (3.8)

and, analogously, its constraints

C(c) =

n∧
i=1

C(vi) (3.9)

For the inverse kinematics, ve typically assumes a fixed position (and
orientation, if applicable). Denote the state of ve by XT , and the inverse
kinematic is given by equation 3.2.

parallel structures To handle parallel structures, we reduce the
problem to finding a common solution for multiple chains at the same
time. We distinguish implicit and non-implicit chains (Fig. 3.9b, 3.9c).

For the inverse kinematics, the end effector is assigned a fixed
position assigned and, therefore, it becomes an anchor in the graph.

3.3 controller synthesis 37

(a) For serial chains, no processing is needed

(b) Implicit chains are decomposed into a collection of serial
chains. No additional constraints need to be generated

(c) Non-implicit chains are decomposed into a minimal set of
paths covering all edges. Additional constraints are generated
(possible node duplication)

Figure 3.9: Chain decomposition

Splitting that node is often sufficient to turn the graph into a collection
of chains. We call these types of architectures implicit chains. Implicit
chains can be decomposed into serial chains and are characterized
by having multiple anchor and end effectors, but no loops, i.e there
is no sequence of edges ei, ei+1, ..., ei+j with a corresponding vertex
sequence vi, vi+1, ..., vi+j, vi. Kinematic trees, for example, are a typical
example of implicit chains. They have exactly one anchor, multiple
end effectors, and no loop.

Denote by vs the splitting node, i.e. the node with out degree > 1,
and by Ve the set of end effectors. For each ve ∈ Ve, we build a
sequence va, v1, ..., vs, ..., ve. As vs is the splitting node and the chain
does not include loops, it follows that for each ve ∈ Ve, the sequence
vs, ..., ve is itself at least an implicit chain, if not a serial chain. If the
resulting sequence forms an implicit chain again, we split again until
all resulting chains are serial. We can then proceed to calculate the
kinematic equations for each split chain in the same way as for serial
chains. The case for out degree of vs > 1 follows analogously. For
systems which do not decompose into chains, the first step is to find a
minimal set of simple paths which covers all the edges in the graph.
We do this using a depth-first search algorithm. Assume that the graph
gets decomposed into n simple paths called Pi with 1 6 i 6 n. We
use these paths to generate the constraints.

First, for each path Pi which starts and ends with anchors, we
generate the same constraints as for chains. Second, for each vertex
v in the graph which is not an anchor, we generate constraints to

38 controller synthesis for robotic manipulators

make sure all the paths going through v agree on the position of that
vertex. More precisely, for each pair of paths Pi, Pj going through v,
we compute the partial path constraints from one of the anchor to v.
Let us call these positions Pi ↓ v and Pj ↓ v. The additional constraint
Pi ↓ v = Pj ↓ v makes sure the solutions for individual chains are
consistent in the global structure.

Solving the inverse kinematics requires finding a solution to the
conjunction of all the constraints generated in the two steps described
above. Implicit chains are easier to handle for the inverse kinematics
solver as each chain can be solved independently. Otherwise, we need
to solve the constraints over the entire graph. While we generate a
number of constraints polynomial in the size of the graph constraints
solvers are exponential in the number of parameters.

parameter synthesis If the abstract input description is missing
some values of parameters, which should be set prior to running
the system, e.g., the length of a beam, we can use the kinematic
equations, along with any constraints, to compute values for missing
static parameters. This is especially useful if a target configuration /
position or an input trajectory is provided. We can solve for values
of the static parameters such that the system can reach all the target
points with the same static parameters values.

Consider the single SCARA system from the running example, a
target point of (

√
2/2,
√
2/2, 0), and unspecified lengths of both the

beams and the joints. Mperl returns a solution which contains possible
values for the length of B0 and B1:

B0length = 0.765; B1length = 0.999;

R0yaw = 1.963; R1yaw = −1.964;

R2yaw = 0

limitations The kinematic equations include parameters which we
cannot actuate (underconstraint mechanism); actuating the system may
not give the expected result. To warn the user of potential problems we
compute the degrees of freedom using the Grübler-Kutzbach criterion
[50] and report an error if it does not match the number of active
parameters. This approach can lead to false positives, as indicated
in Chapter 2. For example, by partitioning the dual SCARA system
into two single SCARA systems, each of these single SCARA systems
yields a set of parameters P = θ, but by the Grübler-Kutzbach criterion,
the system has two degrees of freedom. In this case, one of the revolute
joints is not actuated and can not be controlled by Mperl. To resolve
this, the joint can either be restricted to a fixed value, thus removing
one degree of freedom, or the joint can be actuated, thus increasing
the parameter set.

3.3 controller synthesis 39

At this point, Mperl does not check for self-intersection, i.e. the
robotic system crashing into itself, as we allow the user to provide
a custom geometry for the components. In Chapter 5, we show how
robot interactions are verified for intersections.

3.3.2 Soundness

Mperl uses dReal [39], a SMT solver with theory of reals to solve its
non-linear constraints. SMT (Satisfiability modulo theories) generalizes
the Boolean satisfiability problem (SAT), which asks if a propositional
boolean formula f(x1, x2, .., xn) evaluates to true. It produces a witness
in the form of an assignment to the formula’s arguments if the formula
is satisfiable, or it produces a counter example if the formula evaluates
to false. While SAT only targets propositional logic, SMT is able to
check the satisfiability of formulas in decidable first order theories by
providing additional information in the form of theories (e.g. theory of
reals, or the theory of arrays). In our case, generated equations involve
trigonometrics over real numbers, for which the standard decision
problem is undecidable, and thus, the SMT approach is not directly
usable. Instead, we use a relaxed formulation called δ−decision prob-
lem [39], [40]. δ is a user specific numerical error bound, and for any
formula φ we can decide whether that formula is unsatisfiable, i.e. no
solution exists, or δ-satisfiable, i.e. a solution is guaranteed to exists
up to some numerical perturbation of at most δ.

All variables xi in φ can take any value from within a bounded
interval Ii and we use a bounded quantifier ∃Ixi.φ = ∃xi.(xi ∈ I∧φ).
Formally, the delta weakening is defined as: Let δ ∈ Q+

0 be constant
and φ be a Σ1 sentence in standard form,

φ = ∃Ix(∧mi=1(∨
ki
j=1fij(x) = 0)), x = x1, x2, .., xn (3.10)

The δ−weakening of φ is defined as

φδ = ∃Ix(∧mi=1(∨
ki
j=1|fij(x)| 6 δ)), x = x1, x2, .., xn (3.11)

A typical formula φ in our setting consists of the conjunction of
kinematic equations, along with constraints on the opening angles of
the revolute actuators and constraints on the load bearing of each com-
ponent. We use dReal [40], which implements a δ-complete decision
procedure. In addition to determining the (un-) satisfiability of input
formulas, it also produces a witness (i.e. a solution, if applicable), or
a proof tree in case of unsatisfiability. In particular, this means that
if dReal classifies an input formula φ as δ−sat, it provides a solu-
tion a ∈ Rn s.t. φδ(a) is true. The δ weakening can lead to spurious
solutions; we address this issue in the relevant chapters.

While dReal returning unsat guarantees that no solution exists, a
δ−sat only guarantees solutions up to some numerical error bound δ,
i.e. solutions which satisfy a δ-perturbation of the input. In practice,

40 controller synthesis for robotic manipulators

the reduction in accuracy does not carry much weight; physical robotic
systems are not arbitrarily exact, and installed sensors and actuators
have limited resolution. Instead, limiting the accuracy can lead to a
much faster solving time. A highly accurate solution may not only be
useless, but can potentially lead to time-outs or take so much time, that
the produced solution is obsolete when found. This implies a possible
soundness issue in our synthesis process, especially for larger values
of δ. Therefore, any synthesized solution is cross-checked against the
model, and if the tentative solution cannot be verified, it is dismissed.
In addition, if a trajectory is provided, Mperl uses the discretized
workspace (section 3.3.3) to check that every (discrete) state of the
trajectory is path connected and that this path does not cross any
singularity region. If the trajectory crosses a cell, we assume that the
robot can be anywhere within that cell (over-approximation); if the
cell is close to a singularity, we try to find an exact partial path in that
cell without crossing the singularity. This idea is similar to interval
abstraction [6, 102]. In praxis, we did not encounter any problems
arising from this problem, especially considering the nature of the
(additive) manufacturing process and that Mperl is not intended for
safety critical systems, but for simplifying creation and programming
of robotic systems by combining programming language and robotic
design.

3.3.3 Workspace Mapping and Singularities

We follow trajectories by computing the joints configuration for points
along the trajectories and interpolate between these configurations.
This only works if the robotic system is not in a singular configuration,
i.e. a configuration in which the system looses some degree of freedom
and cannot operate as expected. These singularities happen at the
boundary of the workspace, e.g. when a serial arm is fully extended
(boundary singularity), or inside the work space, e.g. if two or more axis
of motion are aligned (internal singularities); singularities can also lead
to sudden occurrences of very high input joint velocities.

serial structures The (forward) kinematic mapping S : C 7→W,
maps a robots configuration to the position of the end effector x,
and for x = f(q), the first order differential equation is given by
differentiating x after time.

ẋ = J(q)q̇ (3.12)

where ẋ is the vector denoting positional velocity of the end effector,
q̇ the vector denoting the change in velocity of the configuration, and
J(q) is the m×n analytic Jacobian ∂p/∂q and q is a n× 1 vector.

For a general purpose manipulator, which is able to freely position
and orient its end effector in its dexterous workspace, m = 6, and x

3.3 controller synthesis 41

contains a (minimal) representation of position and orientation, e.g
[x,y, z,ψ, θ,φ], and J has full rank if rank J(θ) = min(m,n).
J becomes singular at configuration θs, if rankJ(θs) < maxθrank(θ);

in other words, J looses degrees of freedom at configuration θs, com-
pared to other configurations, and the robotic system is not able to
move in at least one direction. a The mobility of a robotic system is
also reflected in J; if J is in a non-singular configuration, if n = m,
the system has full mobility, and if n < m, or n > m, J reflects kine-
matically deficient systems, which are not able of all m degree of
freedom, and redundant systems, which can attain multiple solutions
for a given end effector position and orientation, respectively.

parallel structures We follow the approach in [47] to guide
the singularity analysis for parallel structures. Reformulating the
kinematic mapping from Eq. 2.32 as an implicit function, we can write
the relation between x and q as

F(q, x) = 0 (3.13)

where 0 is the n-dimensional zero vector. By taking the derivative of F
with respect to time yields

[
∂F
∂q ...∂F∂x

] [q̇
ẋ

]
= Jq(q̇) + Jx(ẋ) = 0 (3.14)

Depending on which Jacobian (Jq or Jx) looses rank, three different
types of singularities can be distinguished for general closed loop
chain. Type 1 singularities occur if det(Jq) = 0∧ det(Jx) 6= 0 and is
comparable to a kinematic singularity of a serial mechanism. This
implies that ∃θ̇ 6= 0 s.t. ẋ = 0, i.e. the mechanism looses degree of
freedom. While the position and orientation of the end effector does
not change, at least one joint can travel an infinitesimal distance; in
particular. If the input trajectory to a system consists of points in the
configuration space, this type of singularity is not critical and the
system can operate in their vicinity. In the case of the input being
points in the workspace, generated joint velocities can reach infinity.
These type of singularities are found at the edge of the workspace,
and involve collinearity of at least two components (Fig. 3.10a) or if
links of a chain are folded back on to themselves.

If det(Jx) = 0∧ det(Jq) 6= 0, this leads to ẋ 6= 0 for q̇ = 0, which
occurs, e.g., if two joints are locked (Type 2 singularity). Even though
joints are locked up, the end effector can still be moved. Multiple
solutions of the forward kinematics may be found for one configu-
ration, and the system gains one or more degrees of freedom and
gets uncontrollable. The system can get stuck in these configurations
and cannot proceed by itself; therefore, parallel systems are typically
not operated close to these singular regions [25]. Type 2 singularities
can be found inside the workspace and represent a border, where

42 controller synthesis for robotic manipulators

(a) Singularity type 1. The dashed
line represents the edge of the
workspace, where the singular-
ity occurs.

(b) Singularity type 2. The
dashed line represents an
inner workspace boundary; it
forms a transition from one
configuration space to another.

Figure 3.10: Examples of type 1 and type 2 singularities of a dual scara arm

two configuration spaces met. [16]. In Fig. 3.10b, such singularity is
shown. The dual SCARA system workspace is separated at this border
and special precautions have to be undertaken if that border is to be
passed, e.g. by temporarily underactuating the system.

A type 3 singularity occurs if both Jacobians, Jq and Jx, are rank
deficient. A typical example for this type of singularity is when the
output variable is constant for any value of the input variable.

A robotic system can also loose degrees of freedom if parameters
are constrained and the current value(s) of that parameter are at the
border of the constraint, effectively prohibiting any further movement
of the end effector.

closeness to singularities For practical purposes, it is not only
interesting to see if a configuration is singular, but also how close to a
singularity it is. The determinant itself does not give any information
about the closeness to a singularity; instead, we turn to the singular
values as a measure. Mperl uses Singular Value Decomposition to
find the direction towards which the manipulator is most difficult to
move, and therefore, to get the closeness to a singularity [34, 83]. More
precisely, we compute the Minimum Singular Value (MSV) [66, 67] as
follows.

The Jacobian of the robotic system can be written as

J = UΣVT (3.15)

where U is a m×m diagonal matrix, V a n×n diagonal matrix, and
Σ the m×n diagonal matrix consisting of the singular values σi:

Σ =


σ1 0 . . . 0

0 σ2
...

...
. . . 0

0 . . . 0 σm

 (3.16)

The MSV is then given by min(σ1, . . . ,σm), and if the robot is in a
singular configuration, then min(σ1, . . . ,σm) = 0.

3.3 controller synthesis 43

To find Σ, we need to derive U and V . In a first step, we find the
orthonormal eigenvectors of JT J, which define the matrix V . Denote by
λ1, λ2, ... the eigenvalues of JT J. Then, v1, v2, .., vi are the correspond-
ing orthonormal eigenvectors to λi, and V is given by

V =
[
v1 v2 ...

]
(3.17)

Σ has the same dimensions as J, and its diagonal entries Σii consist
of λ2i ; all other entries are 0.

If λi 6= 0, the i-th column if U is given by λ−1i Jvi; otherwise, the
remaining columns of U can be arbitrarily extended to form an or-
thonormal basis in Rm.

adaptive grid During initial setup of the robotic system, we dis-
cretize the manipulator’s workspace into cells, marking each cell with
its distance to a singularity. When moving the robotic system near a
possible singularity, the grid can be refined only in this area, and if
a trajectory moves towards or through a singular region, an error is
reported. Figure 3.11 shows the singularity map for the dual scara
arm. The workspace is discretized evenly into k cells of size s, each
cell labeled with the minimum singular value the mechanism attains
in the center of each cell. If a trajectory passes through a singular cell,
this cell again is split into k cells of size s/k, each of which is again
marked with its minimum singular value.

Mperl is able to adjust the precision of it calculations and thereby,
of the resulting motion of the system. If there are no additional con-
straints on ξ or parts thereof, Mperl allows the user to use the cell size
s as an upper bound on the numerical error δ. In this case, the actual
target position is automatically adjusted to be the midpoint of the cell
containing the actual target and δ is set to s/2. Thus, for large parts of
ξ, the calculation of the control input can be sped up by allowing less
precise solutions, and in parts, where the trajectory is near singular
regions or close to the final state, the precision can be increased (at the
cost of computation time).

3.3.4 Trajectory Generation

The final part of the controller synthesis is the trajectory generation,
which takes as input a list of configurations or coordinates. While it is
preferable to generate trajectories in the configuration space, Mperl
also allows the trajectory to consist of coordinates in the workspace.
Depending on the user’s preference, Mperl offers simple linear in-
terpolation and spline curve generation. In particular, using splines
allows for smoother trajectories, as continuous acceleration can be
emphasized. Generated trajectories respect the adaptive grid and the
calculated singular regions. If a path crosses a singular region, the

44 controller synthesis for robotic manipulators

(a) Synthesized dual SCARA sys-
tem

(b) Singularity Map for the dual
SCARA system. The smaller
the dots, the closer the end ef-
fector is to a singularity.

Figure 3.11: Dual scara arm

adaptive grid can be refined in that area, or the system can try to find
an alternative route which does not lead close to a singularity.

The synthesized controller so far consists of the generation of the
kinematic equations, based on the graph structure, along with the
singularity mapping and the trajectory generation. Control inputs
depend solely on the input trajectory, and the controller cannot sense
its state. In this case, we have an open-loop controller; its control
inputs to the environment are done without any knowledge about the
environment. In the next section, we add a feedback loop to the system
in form of two types of sensors, which enables the system to sense
its current state. Adding this loop effectively allows the controller to
read (part of) the environment, and thus, the resulting controller can
be considered a closed loop controller.

3.4 sensors and feedback

Sensors can be embedded in beams (see Figure 3.12) or in actuators
and become extra nodes in the graph. A sensor reports the error
between the expected configuration and the current state. In the case
of an actuator, this is the distance to the set point and, for structural
elements, this is the deflection. For example, if the sensed position is
equal to the target position, the sensor’s configuration matrix is the
identity matrix I; otherwise it reflects the error. At run-time the sensors
are polled, the corresponding transformation matrices are updated,
and the inverse kinematics solver uses this information to update the
actuation values. We currently use a simple proportional feedback
controller as more complex controllers such as PID controllers are
often unstable in parallel structures.

3.4 sensors and feedback 45

Figure 3.12: Embedding sensors directly into the structure of a component

Listing 3.13 gives the source code for a single scara arm, which
automatically adjusts load induced deflection. The FlexBeam consists
of a beam embedding a load cell. As soon as the system polls the
sensor and notices a deviation, it automatically engages the actuated
joint in R1 to counter the difference in position (Fig. 3.14). As soon as
the weight is attached or removed from the arm, the position of the
arm will change. The load cell senses the change in position and the
system corrects for it by actuating the revolute actuator located at the
elbow of the arm.

1S0 = FlexBeam(length=150mm)

2B0 = Beam(length=150mm)

3R0 = Revolute(yaw in (-pi/2, pi/2),actuated)

4R1 = Revolute(yaw in (-pi/2, pi/2),actuated)

5

6Arm = R0 -> S0 -> R1 -> B0

7Anchor(R0, (0,0,0))

8Anchor(Arm.head, (2,0,0))

9EndEffector(B0)

Figure 3.13: Mperl code for a single scara arm with flex sensor

d

Figure 3.14: Load induced deflection d

46 controller synthesis for robotic manipulators

xW

zW

yW

ys

zs

xs

ze

ye

xe

zt

xt

yt

zE

xE
yE

Figure 3.15: SCARA system

By embedding flex sensors into the beams and positional sensors
into revolute joints and actuators, feedback is provided to the controller
about the actual state of the system. The control input u now depends
no longer only on time t, but also depends on the current (perceived)
state Y the system is in. The synthesized controller is thus a closed
loop controller.

3.5 example: scara system

The SCARA system (Fig. 3.15) is a serial kinematic chain, consists of
alternating revolute actuators (R0, R1, R2) and beams (B0, B1). The
abstract description in Listing 3.4 acts as input to Mperl. Both beams
are 100mm long, and all three revolute actuators are actuated, i.e. their
angle can be explicitly set, their opening angle being restricted to be
in the interval [−2π/3, 2π/3] for the elbow and shoulder beams, and
[−π,π] for the end effector (Line 1-5). In line 6, the general structure of
the system is determined, the following two lines set anchor and end
effector of the structure. The anchor R0 is located at position (0, 0, 0)
in the world frame.

3.5 example: scara system 47

1B0 = Beam(length=100)

2B1 = Beam(length=100)

3R0 = Revolute(yaw in (-2pi/3, 2pi/3), actuated)

4R1 = Revolute(yaw in (-2pi/3, 2pi/3), actuated)

5R2 = Revolute(yaw in -pi, pi)

6Scara = R0 -> B0 -> R1 -> B1 -> R2

7Anchor(R0, (0,0,0))

8EndEffector(R2)

9Move Scara (170,170,0)

Listing 3.4: Input Description of SCARA system

From this description, Mperl builds the graph structure of the
system. As the system is a serial chain, there is no graph preprocessing
to do.

From the graph structure, Mperl generates the orientation and
position formulas of the end effector R2, that are then translated into
the SMT v2 format, ready to be used with a SMT solver, e.g. dReal.
Listing 3.5 shows the generated first-order formula in smt v2 format.
For clarity, the orientatin formulas are omitted. Lines 4-11 declare
all parameters which occur in the system, directly corresponding to
the set P. The relevant constraints for each parameter are declared in
Lines 12-23. For this example, we restrict the opening angles of the
revolute actuators and set a fixed length for the beams. Lines 24-26

set the target position. Lines 27 - 29 represents the position of the end
effector. These lines directly correspond to Eq. 3.2.

48 controller synthesis for robotic manipulators

1(set-logic QF_NRA)

2(declare-const pi Real)

3(assert (= pi 3.1415926535))

4(declare-fun theta0_yaw () Real)

5(declare-fun Target_x () Real)

6(declare-fun theta1_yaw () Real)

7(declare-fun l1_length () Real)

8(declare-fun theta2_yaw () Real)

9(declare-fun l0_length () Real)

10(declare-fun Target_y () Real)

11(declare-fun Target_z () Real)

12(assert (>= theta0_yaw (- (* (/ 2 3) pi))))

13(assert (<= theta0_yaw (* (/ 2 3) pi)))

14(assert (>= theta1_yaw (- (* (/ 2 3) pi))))

15(assert (<= theta1_yaw (* (/ 2 3) pi)))

16(assert (>= theta2_yaw (- pi)))

17(assert (<= theta2_yaw pi))

18(assert (<= l0_length 100))

19(assert (>= l0_length 100))

20(assert (>= theta1_yaw (- pi)))

21(assert (<= theta1_yaw pi))

22(assert (<= l1_length 100))

23(assert (>= l1_length 100))

24(assert (= (+ 100 (* 50 (^ 2 (/ 1 2)))) Target_x))

25(assert (= (* 50 (^ 2 (/ 1 2))) Target_y))

26(assert (= 0 Target_z))

27(assert (= (+ (* 100 (cos theta0_yaw)) (- (* 100 (sin theta0_yaw) (sin

theta1_yaw))) (* 100 (cos theta0_yaw) (cos theta1_yaw))) Target_x))

28(assert (= (+ (* 100 (sin theta0_yaw)) (* 100 (cos theta0_yaw) (sin

theta1_yaw)) (* 100 (cos theta1_yaw) (sin theta0_yaw))) Target_y))

29(assert (= 0 Target_z))

30(check-sat)

31(exit)

Listing 3.5: SMT v2 Code for SCARA system

After running dreal with the input from Listing 3.5, the solver
either returns delta-unsat, if no solution exists, or delta-sat, if a solution
exists, along with a set of parameter as witness. See also 3.3.2 for a
discussion on why a solution is found if one exists. In our example, we
provided a target position the arm can reach and found an appropriate
configuration (Listing 3.6, Lines 8-10). We can use a smaller or larger
delta to speed up the solution finding, depending on how accurate
our solution has to be.

3.6 example: scara system as a component 49

1< delta-sat with delta = 0.001

2pi : [3.14159265349999961, 3.141592653500000054]

3l1_length : [100, 100]

4l0_length : [100, 100]

5Target_x : [170.7106781186547551, 170.7106781186547551]

6Target_y : [70.71067811865475505, 70.71067811865475505]

7Target_z : [0, 0]

8theta0_yaw : [-0.7858981633749999585, -0.7848981633750000686]

9theta1_yaw : [0.7848981633750000686, 0.7858981633749999585]

10theta2_yaw : [0,0]

Listing 3.6: Results of running the code from Listing 3.5

In the input description (Listing 3.4, Lines 3-5), we saw that the rev-
olute actuators had the keyword actuated, which assigned their param-
eters to the set of active parameters Pa. For each of these parameters,
Mperl sends the numerical value to the corresponding component,
which actuates the system.

The SCARA system itself can be considered a component itself, sim-
ilar to, e.g., a revolute joint, and can be reused. Thus, we can consider
the SCARA system as a component with parameters θ0, θ1, θ2, l0, l1,
which represent the angles of the revolute actuators and the length
of the beams. The rotation matrix jRi and position vector jpi follow
directly from the state matrix of the end effector.

3.6 example: scara system as a component

If we change line 7 in the description of the SCARA system (Listing
3.4) to

Anchor(R0)

the anchor ist not set to a fixed position (e.g., at position (0,0,0)), but
the position becomes a parameter. Thus, the set of parameters consists
of

P = {anchorx,anchory,anchorz, θ1, θ2} (3.18)

and the equations change subsequently to reflect the parameterized
position of the arm (Listing 3.7).

50 controller synthesis for robotic manipulators

1(declare-fun anchor_x () Real)

2(declare-fun anchor_x () Real)

3(declare-fun anchor_z () Real)

4(assert (= (+ Anchor0_x (* 100 (cos theta0_yaw)) (- (* 100 (sin theta0_yaw)

(sin theta1_yaw))) (* 100 (cos theta0_yaw) (cos theta1_yaw)))

Target_x))

5(assert (= (+ Anchor0_y (* 100 (sin theta0_yaw)) (* 100 (cos theta0_yaw) (

sin theta1_yaw)) (* 100 (cos theta1_yaw) (sin theta0_yaw))) Target_y)

)

6(assert (= Anchor0_z Target_z))

Listing 3.7: Changes in SMT v2 Code for SCARA component as opposed to
the stand-alone system

The SCARA component can be reused or combined with other com-
ponents; for example, the whole system can be rotated π/2 rad along
the y-axis and put onto a cart. The cart’s position and orientation can
be represented, e.g., by a planar joint, which results in a system similar
to the cart-and-arm system (Fig. 1.2a). The arm’s anchor position is
then set relative to the position on the cart and the absolut position
of the arm in W would then be dependent on the location of the cart.
Listing 3.8 shows the Mperl code for this example.

1scara = Scara()

2cart = Planar()

3cart_arm = cart -> scara

4Move cart_arm (0,0,0)

5Move Scara (170,170,0)

Listing 3.8: Input description of the SCARA system mounted on a cart

limitations Using the compositional aspects of Mperl allows to
quickly prototype systems like the cart-and-arm system. In this setting,
the cart-and-arm system is considered to be one system, with no clear
distinction between the cart and the arm. While it is possible to set
individual parameters of the arm, and to only re-calculate the arm,
there is no higher level functionality like communications. For instance,
if moving the scara arm (e.g., Line 5 in Listing 3.8) to a non-reachable
point of the arm, the cart does not automatically update its position
to allow the arm that movement. Chapter 5 addresses this issue by
modelling the cart as well as the arm as processes, which control
the physical parts individually, have the ability to communicate and
execute motion primitives.

3.7 evaluation 51

3.7 evaluation

We implemented Mperl in Python. The equations and constraints are
manipulated using the Sympy library [94] and, to solve kinematics
equations, we provide support for the dReal SMT solver [41], least
squares optimization1, and our own implementation of cyclic coordi-
nate descent [134].

Nodes in the graph can be either actual physical devices or virtual
nodes (loop devices). As an actual physical device, each actuated or
sensing building block consists of a standardized interface, running on
an Atmega micro processor and the component which does the acting
or sensing, e.g. a motor or a rotary sensor. Communication between
nodes is done using UART or SPI. As a virtual device, we provide an
implementation as Python classes. It is also possible to mix virtual and
physical classes, e.g. to have a simulation of a robotic system, which
incorporates real-world sensor data. We support all lower kinematic
pairs and also provide some support for higher kinematic pairs and
wrapping pairs.

To generate physical parts from the structural description, we pro-
vide parameterized OpenSCAD2 descriptions, which can be user mod-
ified, e.g. different beam designs. These parts are then 3D printed (in
the case of the dual scara system), or manufactured by both additive
(3D printer) and subtractive process (milling machine).

controller Each robotic system’s central controller is running on
a raspberry pi, that takes as input the graph of the system, from which
the kinematic equations are derived. Each component in the system
has a micro controller attached (component controller), which is able
to interface with the electro-mechanical component (either directly,
or via a component driver) of the component, or is able to read out
and convert sensor readings. Each component controller implements
a standardized interface and is connected to a common message bus.
The advantage in using component controllers (instead of directly
interfacing with the electro mechanical parts) over a message bus is
in an additional abstraction. In place of translating the results of the
calculation, e.g., into steps or torque / current values, the controller
just sends the numerical values of the parameters as control input to
the associated component controller. This keeps the controller itself
simple, allowing even a casual user to modify and extend the system.
The component controller takes care of translating the numerical
values into a signal the component or its driver understands, and, if
sensors are present, implements a local feedback loop. The controller
can also query component controllers for their current state, as well as

1 We use scipy.optimize.least_squares.
2 https://www.openscad.org/

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://www.openscad.org/

52 controller synthesis for robotic manipulators

query additional properties like mass, material, etc. (See also chapter
4)

Fig. 3.16 shows the high level block diagram of the controller which
underlies Mperl. Additional information about the implementation
can be found in the appendix b.

Controller
Component
Controller 2

Component
Driver 2

Robotic
System Pose

Component
Controller 1

Component
Driver 1

... ...

Ref. Pose

Actuation
Command

Output

Positional
Feedback

Figure 3.16: High level block diagram of the Mperl Controller. Inputs to
the controller are the reference pose and the input description.
Based on the input description, the controller generates the
structure graph and the corresponding kinematic equations,
which are solved for the reference position. Based on these
calculations, an actuation command is send to each compont
controller, which takes care of interacting with the electro me-
chanical parts.

Depending on the reference position, either the forward kinematic
equations are solved (if component parameters are provided), or the
inverse kinematic equations (if an absolute position is given). Relating
thereto, the workspace of the robotic system is mapped with regards to
workspace boundaries and singularities. After solving these equations,
the controller sends actuation commands to each component controller,
provided that the target position is reachable and no singular region
is crossed. These commands take the form of a high level command,
e.g. a value in radians for revolute actuators, or a distance value for
prismatic actuators. The component controller converts the actuation
command into a signal, which is fed into the component driver and
then into the component itself. After each component is actuated, the
robotic system attains the pose resulting from the reference pose.

We test Mperl on the single and dual version of the SCARA system
[85], a redundantly constraint Cable Robot [2] with 8 cables, a Delta
robot [21], and a Gough-Stewart platform [130]. Figure 3.17 shows the
overall structure of these examples.

Table 3.2 gives statistics about these examples. We report the size
of the graph representation of the robotic systems and the number of
parameters as a measure of the complexity of the examples. Table 3.2
also reports the setup time of the example in Mperl, which is the
time for the system to initialize a new system: building the graph,
traversing and checking for constraints, and generating the kinematic
equations (but not solving them). The setup is needed once or when
the structure of the robot changes. We run Mperl on a single core of
an Intel i7-6920HQ (2.9GHz) with Debian Linux.

3.7 evaluation 53

(a) Single
SCARA
system

(b) Dual SCARA system (c) Cable robot

(d) Delta robot (e) Gough Stew-
art platform

Figure 3.17: Systems tested with Mperl

Robotic System Type
Size of
graph |Pp| |Pa|

Setup
[ms]

Single SCARA Arm Serial 7 Nodes 2 3 316

Dual SCARA Arm Parallel 13 Nodes 8 2 641

Cable Robot Parallel 40 Nodes 48 8 917

Delta Robot Parallel 15 Nodes 4 3 612

Gough Stewart Parallel 30 Nodes 36 6 1366

Table 3.2: Overview of examined robotic systems. |Pp| and |Pa| denote the
number of passive and active parameters

Table 3.3 shows the time to calculate forward and inverse kinematics
for different robotic systems. We take the average for 20 different arbi-
trary but valid configurations (forward kinematics) and for arbitrary
but reachable points in the working space (inverse kinematics). For
the inverse kinematics, we compare the three solvers but we use only
dReal for the forward kinematics.

Table 3.4 summarizes the time needed to compute the singularities.
Starting from the center, the work space is evenly divided in each
direction. For the single and dual SCARA arm, this results in an initial
81 cells, for the Cable Robot, Delta Robot and the Gough Stewart
Platform, we sample 541 cells. Figure 3.11 shows the initial grid for
the dual scara system. For each point, we calculate the singular value
decomposition of the robotic system (serial chains), which gives the
closeness to singularities. If a target point is near a singularity, the

54 controller synthesis for robotic manipulators

Robotic System Inverse kinematics [ms] Forward
kinematics [ms]

dReal LS CCD

Single SCARA Arm 52 124 439 44

Dual SCARA Arm 156 448 918 138

Cable Robot 594 955 825 217

Delta Robot 367 822 1287 177

Gough Stewart 516 755 640 273

Table 3.3: Evaluation of the kinematics solvers

cell containing the singularity can be further divided and the map
gets more refined. Refinement steps add to the computation time but
increase the usable work space with a better approximation of the
singular regions.

Robotic System Initialization [s] Refinement step [s]

Single SCARA Arm 67 64

Dual SCARA Arm 34 30

Cable Robot 621 615

Delta Robot 432 402

Gough Stewart 489 463

Table 3.4: Computation of the singularity map

3.8 conclusion

In this chapter, we have introduced a controller synthesis approach
for serial and parallel manipulators and evaluated it on several com-
mon manipulator architectures. As the generated controllers are quite
simple, we introduce sensor configuration synthesis in the next chapter
and enhance the model to consider dynamic effects in addition to
the hitherto kinematic-only model. This allows for more sophisticated
motion primitives, which find their use in chapter 5, which deals with
the coordination of actions of multiple robots. In the future, we plan
to address the aforementioned limitations and to extend Mperl by
connecting it to a wider ecosystem of components, including legs and

3.8 conclusion 55

wheels taking inspiration from the work of Schulz et al. [123] and Ha
et al. [52].

4 S E N S O R C O N F I G U R AT I O N
S Y N T H E S I S

The previous chapter introduced Mperl, a way to build robotic sys-
tems and to synthesize controllers to provide some basic functionality.
Based on the rigid body model, simple controllers could be synthe-
sized, able to solve forward and inverse kinematics, which provides
a first foundation for motion primitives. By 3D printing parts, not
only is the manufacturing process sped up, but it is possible to in-
tegrate computation, actuation, and especially, sensing, directly into
materials [13, 57, 60, 96]. This has a direct impact on the complexity of
synthesized controllers, and in particular, on the amount of available
information [77, 88, 101, 129, 140]. Instead of first building a robotic
system, and then adding the sensing infrastructure in a second step,
information provided by sensors are available at build time, and func-
tional dependencies between relevant parts have to be found. These
functional dependencies can be used to describe parts of the state,
which are otherwise not measurable, and it extends the capabilities
of the motion primitives. For example, consider the SCARA system
(Fig. 1.3), which is tasked with lifting an object with hitherto unknown
weight. Its upper beam is 3D-printed in Nylon, and it includes a
deflection sensor, which measures the amount of flex of the beam
it is embedded into; the lower beam is made from aluminum. The
robotic system is capable of safely lifting objects weighing around 78g
within its entire workspace without encountering a motion error that
could result in the payload being dropped or the system crashing.
If the load is increased to 100g, the robotic system can still function,
although its operation is contingent upon not fully extending the arm
to its maximum range of 300mm. This can be achieved by restricting
the opening angles of all joints in the system, which ensures that the
system operates within safe and functional parameters while handling
heavier payloads. The range has to be restricted to 200mm to have
similar safety margins as when lifting 78g (Fig. 4.1).

Without sufficiently accurate information about the mass of the
object, the robotic system may not be able to lift the object at all, may
not traverse the entirety of its workspace, or it may even overshoot
the desired target position, leading to an oscillating movement. This
can lead to the system destroying itself, e.g., by exerting too much
torque and burning out the motors, or crashing down. To this effect,
the controller ideally should dynamically adjust the arm’s working
envelope depending on the load attached to the effector. Thus, the
motion primitive move would be extended by the ability to determine

57

58 sensor configuration synthesis

Nm

rad
300mm, 100g
200mm, 100g
300mm, 78g

max. τ

3

π/2

Figure 4.1: The arm system is capable of safely lifting 78g in its com-
plete range without exceeding the maximum torque ratings
(dashed line). In this configuration, the arm can be fully ex-
tended (300mm). If the weight is 100g, the arm can only operate
safely in a limited range (max. extension 200mm, blue line) or is
unsafe to operate (red line).

the attached weight and would restrict its movement based on the
load.

Instead of treating the structure of the robot as black box, and
trying to reconstruct the missing information, we make use of the
detailed knowledge of its components and their properties. Fig. 4.2
shows the example SCARA system as used in this chapter, along
with physical quantities associated with each component. We annotate
properties of robotic systems with their physical dimensions, thus
treating them as physical quantities. A property, in this context, is
considered any information, e.g., a (constant) property like length or
material, a functional dependency like stalling current, or the output
of a sensor. This opens up the system to adhere to physical rules, in
particular rules regarding the composition of dimension.

In this chapter, we introduce the sensor configuration synthesis, a
method to explore possible instrumentations which allow the system
to keep track of a specific property – in the example, the weight of the
object. Figure 4.3 illustrates the connections between the components,
inputs, and stages of the method. Using dimensional analysis 1, the
method derives multiple candidate invariants from these properties
and then filters these candidates in order to find a possible equation
which can be used to derive the target quantity. These candidate
invariant are then calibrated to the system they are used in.

For the example system, an obvious solution would be to add a
sensor at the end effector, which directly measures the weight of
the object. Expanding the search, we include the upper beam as the
next-closest element, which explores the properties of the beam includ-
ing its length, height, width, flexural rigidity and deflection. These
components together yield the Euler-Bernoulli beam equation, which

1 Automated by Newton [79]

sensor configuration synthesis 59

Force f
Position x,y, z

Deflection d
Dimensions w1,h1, l1

Flexural rigidity EI
Resistance u

Dimension w0,h0, l0motor current i1

angle θ1
angular speed θ̇1

motor current i0
angle θ0

angular speed θ̇0

Position xa,ya, za

Figure 4.2: All properties of a robotic system are treated as physical quanti-
ties, i.e. a pair consisting of numerical value and physical dimen-
sion. This allows us to use dimensional analysis to (automatically)
detail functional relationships between them

estimates the payload by measuring the deflection in the beam. Contin-
uing the search will reach the revolute actuator, along with its current
sensor; these properties, along with the length of the beam, can be
used to compute the load by looking at the force exerted by the actu-
ator. These different possibilities are presented to the user, who can
select the most appropriate one. The sensor configuration synthesis
can also suggest adding specific sensors. For example, assume the
revolute actuator has no sensor attached. By considering properties
of its actuators, within the motor specification is a table provided
which specifies the torque produced by the motor in relation to the
rotational speed and current consumption. To use the latter found
equation, the sensor configuration synthesis considers quantities with
dimension T−1 (rotational speed) and I (current). Because the actuator
contains a rotary encoder, the rotational speed can be determined. The
current consumption, on the other hand, is unknown; our method
then suggests the addition of a current sensor to the motor. While
usually some notion of cost dictates the type of sensor used, multiple,
redundant ways of determining the same quantity can prove benefi-
cial; see also section 4.3.2. In this chapter, we describe how we can
use dimensional analysis to automatically search over the space of
physically well-typed expressions in order to derive a combination of
sensors to measure and estimate the system’s state (sensor configuration
synthesis). Our method leverages the knowledge of physical units in
the model of a system to find ways of directly or indirectly measuring
parts of the system’s state which cannot be measured directly.

We present a physics-based search strategy to find configurations of
sensors to directly or indirectly estimate the overall state of the system.

60 sensor configuration synthesis

Input description

Effector position: x (L), y (L), z (L)
force: f (L M T-2)

Anchor position: x (L), y (L), z (L)

Revolute actuator angle: θ
angular speed: θ (T-1)
motor current: i (I)

Rigid beam dimension: w (L), h (L), l (L)

Flex beam dimension: w (L), h (L), l (L)
deflection: d (L)
flexural rigidity: EI (L M2 T-2)
resistance: u (M L2 T-3 I-2)

Revolute actuator angle: θ
angular speed: θ (T-1)
motor current: i (I)

Structure graph

Sensor
configuration

synthesis

Controller
synthesis

State estimation

Manufacturable parts

Mperl-Π

SCARA manipulator

Figure 4.3: System overview

We have implemented a prototype tool into Mperl (Fig. 4.3), and we
evaluate our approach with both simulated and real experiments.

In the following, we show how to use dimensional analysis to auto-
matically search over the space of physically well-typed expressions.
We can thereby derive a combination of sensors to measure and esti-
mate the system’s state. Our technique bridges these robotic design
tools with more advanced controller synthesis techniques.

4.1 extensions to mperl

Every value in Mperl is annotated with with is associated physical
unit, from which the dimension is derived. For example, a beam
whose length parameter l ∈ R is extended to l ∈ R×D, where D

represents the set of physical dimensions. For example, the length of a
beam is no longer just a numerical value of 100, but now 100cm, with
dimension L (length). The underlying control structures also reflect
these changes, e.g. the state space ist no longer some X ⊂ Rn, but
X ⊂ (R×D)n. We use dim : R×D 7→ D, to map quantities to their
respective dimensions.

Similar to a type system, which classifies expressions of a program-
ming language in terms of computed values, and governs rules on
composition on these terms, adding physics, and in particular, dimen-
sional analysis, results in additional rules for composition of quantities.
Common conventions / rules encompass

• Comparing, adding and subtracting two quantities is only pos-
sible if both have the same dimension. This implies, that both

4.1 extensions to mperl 61

quantities have the same unit, up to some scaling factor (e.g. km
and cm).

• Multiplying two quantities v1, v2 changes their dimensions to
dim(v1)dim(v2).

• Differentiation and derivation of a physical equation changes
the dimensions, but preserve the dimensional homogeneity.

We go into greater detail in section 4.2.1.
We extended Mperl to compute certain dynamic effects on its struc-

ture, in particular the forces at different points of the structure. For
each component, additional information is provided; for example,
torque ratings and stalling currents for revolute actuators, or flexural
rigidity and deflection for beams. These properties originate from
datasheets, from the abstract input description, or from sensor read-
ings. While the conception and elaboration is generally applicable, we
focus the technique to Mperl to gain a larger understanding of our
end-to-end tool chain. The sensor synthesis approach presented here
is a natural extension to Mperl and its high-level description of robotic
manipulators. In the first step, our method considers the model of
the dynamical system as a white box and allows the controller to
read from the whole system’s state. In a second step, the controller is
then inspected to extract elements within the overall system’s state
that are used by the controller. Thirdly, the method runs a search
procedure to find the required sensors to measure the signals which
the controller uses. This search procedure tries to match each dimen-
sion of the state with a sensor, or otherwise expands the search by
generating dimensionally-plausible candidate invariants that can be
used for indirect measurement.

By first finding a local solution, and only then extending the search,
we take into account the modular concept of Mperl. Robotic systems
themselves can be composed from other robotic systems; in the exem-
plary single SCARA system, we can partition it into the individual
systems gripper (end effector), arm, and cart platform. A general
search boundary is given by the graph of an individual, and the user
can decide if that boundary is extended to adjoining systems. By
adding a weight sensor directly at the end effector, the resulting invari-
ant can be reused even if the remaining systems are changed; on the
other hand, if the weight at the endeffector is determined by placing
load cells at the wheels derived via measuring the load distribution,
this invariant depends on the structure of the whole system. In this
case, a good middle course is to restrict the search to the end effector
and the arm, thus ensuring that the cart and the arm system remain
independent.

62 sensor configuration synthesis

Base dimension Symbol Base unit Symbol

Time T Second s

Length L Meter m

Mass M Kilogramm kg

Electric current I Ampere A

Absolute temperature θ Kelvin K

Amount of substance N Mole mol

Luminous intensity J Candela cd

Table 4.1: Base dimensions and units of the SI

4.2 preliminaries

In the following sections, we provide some fundamentals concerning
physical dimension and units as well as dimensional analysis, which
leads to dimensional analysis and the formulation of the Buckingham
Π−theorem, a fundamental theorem which forms the basis of the
sensor configuration synthesis presented in this chapter. The section is
rounded of by providing a brief definition of reach-avoid specifications,
which are used to guide the synthesis procedure.

4.2.1 Quantities, Units and Dimensions

A quantity (v,d) ∈ (R×D) consists of a numerical value v ∈ R and a
physical dimension d ∈ D. To obtain the dimension of a quantity, we
use dim : (R×D) 7→ D.

Let D be the set of physical dimensions, and let DB be the set of
base dimensions. Base dimensions are indepedendent and mutally
exclusive; each base dimension cannot be expressed in terms of other
dimensions in DB. D is formed by building the monomial consisting
of base dimensions di ∈ DB and dimensional exponents ri

D =

{
n∏
i=1

d
ri
i , ri ∈ Z

}
(4.1)

For a dimensionally independent set of dimensions,

dim(

n∏
i=1

d
ri
i) = 1 (4.2)

holds only for ri = 0, i = 1, ...,n (linear independence of D). The
International System of Units (SI) defines seven base dimensions, along
with a commonly associated standard unit of measure (Table 4.1).
These seven base units form a dimensionally independent set.

4.2 preliminaries 63

All other dimensions are derived from these seven base dimensions,
and we can thus formulate DB as

DB = {T, L,M, I, θ,N, J} (4.3)

Dimensions and units are different, in that dimensions describe the
nature, or the qualitative properties, of the physical quantity, and units
describe a measurement, i.e. a quantitative property. Quantities can
only be compared if their dimensions are the same, and multiplying
dimensions follows the rules of multiplying monomials

d1d2 =

n∏
i=1

d
ri
i

n∏
i=1

d
si
i (4.4)

=

n∏
i=1

d
ri+si
i ,d1,d2 ∈ D (4.5)

and forms new physical dimensions. For example, by dividing the
physical dimensions of length L by time T, we get the dimension of
velocity T−1L. The dimension of a quantity can be 1 if each dimen-
sional exponent is 0; the quantity is then called dimensionless. This
can happen if the dimensional exponents cancel each other out; for
example, the unit radian is defined as the coefficient of arc length and
radius, which results in a dimension of L

L
= 1.

A physical law f : (R×D)× ...× (R×D) 7→ (R×D) establishs the
relationship between quantities. For this law to be physically meaningful,
it must fulfill the property of dimensional homogeneity, which means,
that both sides of the law must have the same dimension. By rewriting
f(v1, v2, ..., vn−1) = vn implicitly as f′(v1, v2, ..., vn) = c, c ∈ R being a
dimensionless constant, it must hold that dim(f′) = 1. We call dim(f′)

a dimensionless product, and all variables in f are captured in a set
S = {v1, v2, ..., vn}.

4.2.2 Buckingham Π Theorem

The idea of the Buckingham Π theorem states that any physical law
establishing a relationship between physical quantities, can be equiva-
lently expressed by as a relation between dimensionless quantities.

The theorem bounds the number of variables that have to be
grouped in order to find dimensionless groups. Denote by n the
number of quantities in a physical law, i.e. n = |S|, and k = |D∗|

the number of basic dimensions forming a dimensionally indepen-
dent basis with which the quantities in S can be expressed. From the
parameters in S, n− k dimensionless products πi can be formed

πi = q
a1
1 q

a2
2qann (4.6)

These n− k dimensionless products form the root of some function φ
with

φ(π1,π2, ...,πn−k) = 0 (4.7)

64 sensor configuration synthesis

φ can be rearranged into φ′ such that

φ′(π1,π2, ...,πi−1,πi+1, ...,πn−k) = πi (4.8)

The Buckingham Π Theorem is more commonly used to form an
unknown physical law in terms of dimensionless variables, and to
reparameterize physical laws in terms of smaller number of parame-
ters. Recently, Wang et al. [136] showed that this theorem can be used
to efficiently generate candidate invariants of physical systems.

For example, we want to establish a physical law connecting quan-
tities force F, mass m and acceleration a, with dim(F) = ML/T−2,
dim(m) = M, and dim(a) = L/T−2.

We have n = 3 variables and D∗ = {M, LT−2} consists of two inde-
pendent dimensions. This means that we have one resulting dimen-
sionless Π−group.

We thus form the dimensionless physical law

f(F,m,a) = 0 (4.9)

The Π−group given by

dim(F)α dim(m)β dim(a)γ = 0 (4.10)

must be dimensionless for a choice of dimensional exponents are
α,β,γ. Solving these constraints yields α = −1,β = γ = 1, which
results in

C = F−1ma (4.11)

where C is a dimensionless constant; in this case, C = 1. Generally, the
value of C is not known a priori and must be found experimentally.
While invariants of physical systems are dimensionally correct, the
converse is not true and further analysis is required to identify actual
invariants within the space of dimensionless groups.

4.2.3 Reach Avoid Specification

We use reach avoid specifications to guide the controller governing the
robotic system to goal states, while avoiding fail states. A reach avoid
specification consists of a target state set Xt, and any trajectory ξ(t)
starting from an initial state ξ(0) = x0 should end in Xt. Equation 2.56

asserts that all states on a trajectory are connected by a path. Therefore,
if a trajectory starts at x0 and ends at some state x ∈ Xt, it is possible
to find a control input that allows the system to move from x0 to x.

Let Xp denote the set of permissible states the system is allowed
to assume during operation, and let Xf denote the set of states the
system is not allowed to assume. Xf can be seen as the complement of
Xp.

We can thus formalize a safe set A as

A(Xf) = {x ∈ X : ∃t > 0 : ξ(t) /∈ Xt ∧ ξ(0) = x} (4.12)

4.2 preliminaries 65

which denotes the set of states from which trajectories exist whose
states are never fail states.

Likewise, we can define the set R of all states from which trajectories
exist that reach states in Xt

R(Xt) = {x ∈ X : ∃t > 0 : ξ(t) ∈ Xt ∧ ξ(0) = x} (4.13)

We can then instruct the controller to reach a goal state while
avoiding any fail state as the reach avoid specification RA:

RA(Xt,Xf) = {x ∈ X : t > 0 :

ξ(t) ∈ Xt ∧ ∀tp ∈ [0, t], ξ(tp) /∈ Xf ∧ ξ(t), ξ(tp) = x}
(4.14)

4.2.4 Relevance to State Estimation

In section 2.6, we introduced dynamical systems, which model the
interaction between the environment and a controller that generates
control inputs u depending on the perceived state y. This is a gener-
alization; in reality, typically the controller tries to estimate a state x̂
from y to get a more accurate representation of the current state, and
the control input u is then bases on x̂ instead of y. Such a closed loop
controller requires sensors to provide feedback on the system’s state.
For each sensor, a functional relationship is needed to map its output
to the desired target quantity.

One of the most common approaches is to use (extended) Kalman
filters [62, 87, 128] or one of its varieties. Kalman filters use a state
transition function that describes the behavior of the system, and
an observation function h, which creates a functional dependency
between measurements taken in the system and the output of the
state transition function. We are interested in finding these functional
dependencies.

The observation function h is a mathematical function that maps
sensor readings to values in Y. h could be a linear or non-linear
function, depending on the relationship between the sensor readings
and the state variables. In order to enable the estimation of the state
of a system, it is necessary to identify a suitable combination of Y
and the observation function h, which not only has a feasible physical
implementation but also provides sufficient information.

We refer to the problem of identifying the optimal combination of
sensors that can provide accurate and relevant information about the
state of a system as the sensor configuration synthesis problem. This
problem is related to the observation function in state estimation, as
the choice of sensor configuration affects the accuracy and structure of
the observation function. An appropriate sensor configuration should
be capable of measuring the relevant quantities of interest while
minimizing certain pre-defined factors like redundancy, cost, and
complexity.

66 sensor configuration synthesis

Partial
solution

Goals
System

description

Synthesis
algorithm

User check Done

User preferences User input

Candidate
measure-
ment config-
uration

YesNo

Mperl

Figure 4.4: Sensor synthesis workflow

4.3 synthesis of sensor configurations

Figure 4.4 shows the different parts of the sensor synthesis workflow
and their interaction. Inputs to the sensor synthesis algorithm are
the input description of the system, from which Mperl generates the
control code for the system (Chapter 3), and unobservable parts from
the controller, along with any user specified preference. The synthesis
algorithm leverages dimensional analysis to find candidate invariants,
that establish a functional dependency between the unobservable tar-
get quantity and sensors or properties present in the system. These
candidate equations are presented to the user, who is responsible
for checking the sensor configuration proposed by the synthesis al-
gorithm. The algorithm is also able to exclude specific sensors. This
proves useful in finding alternative ways of determining a quantity,
for example, if a sensor malfunctions.

goal state-space The goal state space consists of elements in Y
which are not observable. We assume the controller in the dynamical
system to be a state-feedback controller, i.e., all state variables are
available for observation. In particular, we assume that the controller
keeps a history of the mapping between the system trajectory and
the corresponding control input. In this step, which depends on the

4.3 synthesis of sensor configurations 67

structure of C, we find out which part of the state the controller
actually needs. For instance, if C is a linear function of the form
u(t) = −K(τ(t)), we select all columns of K with a non-zero entry. If
the internal structure of the controller is not available, we can over-
approximate necessary parts of the state by taking the full state. In the
rest of this section, we denote by Y∗ ⊆ Y the part of the state we need
to reconstruct.

sensors While multiple sensors with different ranges, precision,
and accuracy, can be present in the robotic system, for the sake of
simplicity, we assume at most one sensor per dimension. The available
sensors are represented by the function sensor which maps elements
of D to sensors or ⊥ when no sensor exists

sensor : D 7→

D, |D| > 0

⊥,otherwise
(4.15)

Furthermore, the cost function maps the sensor to an additive cost.
Cost in this context is to be understood as general cost; for example,
it can be understood in terms of monetary cost, e.g. when building
a preferably cost-efficient system, or in terms of power consumption,
for when the goal is to maximize the autonomy of a battery-powered
system. To simplify the presentation of the algorithm, we assume that
cost(⊥) = ∞. Our synthesis procedure minimizes the overall cost of
the sensors.

extended system description The sensor configuration synthe-
sis greatly benefits from an abstract model with detailed physical
descriptions of its components. A highly detailed model allows for
finding a wide range of sensing possibilities. This includes not only
finding a way of measuring or deducing a hitherto unknown quantity
in the system, but also finding alternative ways of measuring the same
quantity. Consider the controller of the SCARA arm from Figure 4.2
needs to limit the range of the arm depending on the payload weight;
otherwise, the maximal torque of the motors could be exceeded. For
instance, in a minimal model consisting of speed and acceleration of
the payload and the torque exerted by the motor. our algorithm would
suggest the use of a torque sensor. With a more general model of the
system, our algorithm can explore some details in more detail. For
instance, the motor, being an electric motor, turns electric energy into
torque, and the datasheet of an electric motor provides information
about the relationship torque - speed - current consumption, which is
(ideally) reflected in the description of that component. Using these
elements, the system would suggest measuring the current consump-
tion going into the motor, along with its speed, to derive the applied
torque.

68 sensor configuration synthesis

distance between components The downside of having access
to all this information is the great increase in size of the search space
and the number of Π groups. Owing to the modular nature of our
systems, quantities and their functional relationships are often in closer
proximity, which allows us to prioritize elements which are close
together, and then successively widening the search space. Therefore,
we assume that we have a function distS which returns the distance,
for some notion of distance in S, between two quantities in the system.
When generating the Π groups to measure a quantity q, we restrict
the search by considering only elements below some distance from
q. Mperl represents the structure of the robotic system by means of a
graph, and the distance measurement follows naturally by choosing
the shortest path between two elements in the graph. Because the
graph must be connected, i.e., it is not allowed to have components in
a system which are disjoined, for any two nodes in the graph, such a
path exists. If a physically meaningful relationship between two nodes
in the graph exists, the search algorithm will eventually discover
a Π−group between them, irrespective of a potential cost function.
This follows from the fact, that the sensor configuration synthesis
successively widens the search, eventually covering the whole graph,
and from the Buckingham Π−theorem.

4.3.1 Search algorithm.

Our search procedure, shown in Algorithm 4.1, is a backtracking
search which progressively adds more sensors to the system while
keeping the current best found solution to prune the search.

We start the search with the available sensors, their cost, the known
constant quantities, and the variables x0 . . . xn we need to measure. In
our running example, known constant quantities are elements like the
length of the beam, or motor characteristics like current consumption,
which can be used without incurring any cost. For each variable, we
try to find out if a sensor exists or expand the search by generating a
candidate invariant involving that variable. The cost function drives
the search into generating candidate invariants even if we have a
sensor or cut the search if a branch becomes too expensive.

The expansion uses dimensional analysis to find candidate invari-
ants involving the variable to measure. When we find a candidate
invariant, we remove the variable to measure from the goal and add
all other expressions occurring in the invariant to the goals. In the
algorithm, this search is done by calling FindPiGroups(q, Q). Q is the
set of all the quantities that can be used to find the Π groups and q is
a quantity which must be part of the Π groups, i.e., the exponent for q
must be nonzero. FindPiGroups is implemented using the algorithm
by Wang et al. [136] and filtering the groups where q is not present.
As the number of candidate invariants grows exponentially with the

4.3 synthesis of sensor configurations 69

Require: y0 . . . yn ∈ Y∗, the quantities to measure
Require: initStatus, all the known constant quantities of S
Require: ∆ (> 0), the scope of the search

1: function Search(q, NA, status, ccurr, cmax)
2: if (q, _) ∈ status then
3: return (status, ccurr)

4: (statusbest, cbest)← (⊥, cmax)
5: if cost(sensor(dim(q))) + ccurr 6 cmax then
6: statusbest ← status∪ {(q, sensor(dim(q)))}

7: cbest ← ccurr + cost(sensor(dim(q)))

8: Q← {q ′ | distS(q,q ′) 6 ∆} \ NA
9: G← FindPiGroups(q,Q)

10: for G ∈ G do
11: (s, c)← (status, ccurr)
12: for q ′ ∈ G∧ c 6=∞ do
13: (s, c)← Search(q ′, NA∪ {q}, s, c, cbest)
14: if c 6 cbest then
15: (statusbest, cbest)← (s∪ {(q,G)}, c)

16: if statusbest 6= ⊥ then
17: return (statusbest, cbest)
18: else
19: return (Failure,∞)

20: . Apply the search to all the yi
21: s← initStatus
22: c← 0

23: for y ∈ y0 . . . yn ∧ s 6= Failure do
24: (s, c)← Search(yi, ∅, s, c,∞)

25: return s

Listing 4.1: Sensor synthesis algorithm

available number of variables, and many can be spurious, we use the
distance function to search only for candidate invariants involving
quantities close to each other.

The algorithm search procedure (line 1–19) keeps track of (1) q the
quantity that needs to be measured, (2) NA the quantities not available,
(3) status a partial solution, (4) ccurr the current cost, and (5) cmax
the maximal cost. In the set NA, we keep track of the elements below
the current branch of the search tree. These elements cannot be used
as it would introduce circular dependencies in the result. status is a
set containing pairs of quantities and how they are measured: either
directly with a sensor or derived indirectly through an invariant. The
maximal cost cmax cuts the search when a better solution is already
known.

70 sensor configuration synthesis

In the search, we first try to check if a quantity is already known
(line 2), in which case there is nothing to do. Then, we try to find a
sensor which matches the quantity’s dimension (line 5); if that fails, we
consider indirect measurements. We gather the elements in the system
in the neighborhood of q (line 8), find the dimensionless groups over
these elements, and search recursively on them (line 9–15). The search
is applied to all the elements we need to measure (line 21–25).

Restricting the search according to a distance has two goals: 1. im-
proving the accuracy of the solution and 2. limiting the complexity
of the search. Currently, we rely on the state estimation to deal with
measurement errors. Measuring a quantity over a large distance means
multiplying multiple terms between the measurements and the goals.
This compound errors and further measurements are less likely to
yield good data. In Section 4.3.3, we discuss methods to improve error
handling. The second aspect is the scalability of the method. The num-
ber of Π groups is exponential in the size of the overall system, and a
naive application of the search only works on small systems. On the
other hand, the size of neighborhoods within a system should contain
roughly the same number of elements independently of the overall
system, which makes it possible to apply the search to larger systems.

user constraints on the search Algorithm 4.1’s presentation
is minimal. Minor modifications of the starting state allows the algo-
rithm to not only return one solution, but to explore other solutions.
For instance, by adding a specific sensor to initStatus, it is possible to
enforce the usage of that sensor; conversely, the use of a specific sensor
can be prevented by adding the corresponding quantity to NA at the
beginning of the search. If the algorithm fails to find a solution, the
scop δ can be increased successively. Searching for different solutions
can also be used to generate multiple ways of measuring the same
quantity. Using multiple sensors can improve the quality of the state
estimation if the elements used are independent across measurements.
This mechanism can also be utilized to search for alternative measure-
ments with reduced cost, or in the case of a sensor malfunctioning.
In the case of determining the weight of the load at the end effector,
if the torque sensor is not working, or its measurements are only
intermittend available, the derivation via bending sensor or current
consumption can be substituted in. In the context of filtering, com-
bining multiple alternative measurements can significantly reduce
uncertainty and improve the accuracy of the information obtained.
In particular alternative measurements from (physically) disparate
sources lead to smoother signals [141].

checking candidate solutions The sensing configurations stem
from dimensionally-correct equations, but these equations may not
correspond to actual physical processes in the system. We can distin-

4.3 synthesis of sensor configurations 71

guish between two sources of spurious solutions: (1) the Π group does
not correspond to any physical law and (2) the Π group corresponds
to a physical law, but associates the (right) dimension to the wrong
element. The first case requires checking if there exists any law of
physics corresponding to what the algorithm suggested. The sensing
configuration can also be tested against a small number of known
configurations to check if they hold. The second case happens because
the search does not differentiate quantities with the same dimension.
Such errors are harmless when they stem from constant terms, e.g.
using the width instead of the length of a beam, as the Π groups are
an equality up to a constant. When the error is not about a constant
term, then the process to discard such solutions is similar to the first
case.

Checking candidate solutions still requires some knowledge from
the user, but as checking a given solution is easier than finding a
solution, our method still lowers the expertise requirement to build
CPS. A non-expert may be overwhelmed and might not know how to
solve the problem; the algorithm gives them a “place to start.” For an
expert user, the system can help them to accomplish the task faster.

4.3.2 Calibration and Run-time

After the generation and selection of meaningful candidate sensor
configurations, the output space Y and the observation functions H
are generated. The observation function corresponds to extracting the
equations stored in status and reordering them such that their value is
a function of the state. The proportionality constants that stem from
the Π−groups are still contained in the observation functions and
a specific numerical value has to be found. This can only be done
experimentally and is done in a system-specific calibration process. In
Section 4.4.1 we explain how we did this in our evaluation. If no other
invariant is present, this requires user involvement. Currently, we only
use the Π groups vetted by the user but we can also take advantage of
this phase to reduce the burden on the user. As a mitigation technique,
once the user has selected a sensor configuration, we gather all Π
groups for that configuration and later, during the calibration phase,
use regression to find the relevant ones automatically. Furthermore,
if the sensors and their placement get cheap enough [77, 88, 101,
129, 140], we can embed more sensors for Π groups which have not
been checked by the user. The additional data is then used during
calibration to learn which Π groups correspond to actual invariants of
the system. If multiple (tentative) invariants with conjunct parameter
sets are available, or the system is sufficiently equipped with sensors,
the calibration can be done automatically.

In fact, in some cases, it may be more efficient to use previously
calibrated invariants as part of the sensor configuration synthesis

72 sensor configuration synthesis

process to calibrate a newly found invariant. By doing so, the number
of direct measurements can be reduced, and the accuracy of the new
invariant may be improved by leveraging existing knowledge.

For example, we have a calibrated invariant which determines the
load on the end effector by means of beam deflection and beam
properties. We use the sensor configuration synthesis to find an other
invariant based on the current consumption of the revolute actuator,
the angular speed of the motor and the beam length. Each quantity in
this new found invariant can be traced back to a direct measurement
(current sensor at the revolute actuator), or an indirect measuremt
(angular speed derived from previous states, beam length a known
constant); the target quantity determining the load is given by the
already calibrated invariant. Thus, the newly found invariant can be
calibrated automatically.

Denote by ic an already calibrated invariant, and by param(ic)

the set of quantities in ic; analogoulsy, denote by inc the invariant
which is not calibrated, and its parameter set param(inc). The target
quantity must then be in the intersection of both parameter sets. Then
we require that each parameter can be traced back to either a direct
measurement, or an invariant:

∀p ∈ param(ic),p ∈ sensor∨ ∃i,q : i(q) = p (4.16)

where i is a calibrated invariant which determines p from its input
quantities q, and p ∈ sensor means that a sensor exists which mea-
sures p. Assuming there is only one sensor, this means that that sensor
measures dim(p).This ensures that ic determines qt, which is then
used to determine the dimensionless constant C.

In many cases, the calculation of a specific invariant may depend on
the values of other input variables, which themselves are calculated
by a sequence of other invariants. In this case, we can use a directed
acyclic graph, whose nodes nodes represent invariants and directed
edges represent dependencies between them. To evaluate the invari-
ants in this grpah, a topological sort can be used to find a sequence of
nodes such that all dependencies are satisfied, resulting in an order in
which the invariants should be evaluated.

The strength of the automatic calibration process lies in providing
multiple ways of determining the same quantities. The controller can
either switch between them, depending on their cost, or, in case of
errors or filter divergence, multiple measurements can be aggregated,
e.g. by consensus. Due to the abstraction provided by the dimensional
analysis, invariants can be found which measure the same target
quantity in physically different ways (depending on the equipped
sensors), which allows significantly better results in sensor fusion [53,
141], consenus [106, 138] or general state estimation [27, 38].

In chapter a.1, we show how Mperl and the sensor configuration syn-
thesis is integrated in the state estimation and how the state estimator
handles measurement errors.

4.4 evaluation 73

4.3.3 Limitations and Extensions of the Method.

The sensor configuration synthesis as outlined in this chapter has
two major drawbacks. The first stems directly from the Buckingham
Π-theorem, in that dimensionless groups – while phyically well typed
– not necessarily correspond to physically meaningful equations. Es-
pecially in new systems without existing invariants, we rely on the
user’s judgment for checking the meaningfulness of a Π group. In the
context of providing (non-expert) users a starting point from which to
use and extend a system, this is a reasonable limitation; however, in
light of a more robust system, which uses these invariants for sensor
fusion or as alternative ways of determining the state of a component
in case of a failure, a more automated method is needed. During the
calibration, we need to get accurate measurements, which implies the
possibility of measuring the entirety of the system’s state. For some
systems, this might not be possible.

The second drawback is that while running the system, we need to
take measurement errors and the model adequacy into account. We
use an extended Kalman filter for the potentially non-linear dynamics
of the system. Unlike the (linear) Kalman filter, the extended Kalman
filter is not optimal, and thus cannot yield any guarantees on the qual-
ity of the estimation. The filter also assumes Gaussian noise on the
measurements, and therefore, we need to ensure that the sensors have
this noise profile. Regarding sensor selection and sensor placement,
our model can be extended to provide better results. Sensors can sense
over different ranges, accuracies, and sampling frequencies. The range
requirements for sensors could be established using interval analysis
[3]. We currently use a sample-and-hold controller, and therefore, the
controller-loop frequency determines the required sampling speed
of the sensors. This method could be used with event-triggered con-
trol [26] for sensors which support programmable interrupts. Sensor
placement can also affect the quality of their output. Some sensors
are simple to place, such as a current sensor which can be placed any-
where on a wire, but sensors related to material properties are much
more sensitive to location. For instance, optimizing the placement of
a deflection sensor requires finite element analysis [22]. The model
adequacy is obviously outside of our control.

4.4 evaluation

In the following, we show by means of two examples, a quantitative
one, and a qualitative one, the validity of our method. In the quanti-
tative evaluation, we search for common quantities in three different
robotic systems (single SCARA, dual SCARA, CoreXY) and report the
performance of the sensor configuration synthesis. In the qualitative

74 sensor configuration synthesis

evaluation, we elaborate on our running example by providing con-
crete, experimentally verified data and we show how the calibration
process is executed. For this, we run Mperl, combined with the sensor
configuration synthesis, on real hardware and show, that accurate
measurements are provided to the controller.

4.4.1 Quantitative Evaluation

We evaluate Algorithm 4.1 on three different robotic manipulator ar-
chitectures. These experiments only evaluate the search, without the
physical implementation of the robots. We show that sensor config-
urations can be efficiently generated and that our search heuristic
effectively reduces the number of Π-groups to a manageable number.
In this section, we use the term quantities and parameters interchange-
ably as the quantities are parameters of the design space for Mperl.
Constants like physical dimensions are only fixed at manufacturing
time and they can “vary” during the exploration of the design space.

search for measurements. We show that our synthesis algo-
rithm can effectively generate possible ways of measuring a goal
quantity that is given by its dimension and and the location where we
want to measure it. We evaluate the search on three manipulator ar-
chitectures: 1. The single SCARA manipulator as shown in Figure 4.2,
2. a dual SCARA manipulator [85], and 3. a CoreXY platform [98]. We
report the number of quantities in the search space in Table 4.2 and
4.3. Quantities include constant properties, e.g. the size of structural el-
ements like beams, or variables like current consumption of an electric
motor. Anchors are mounting points, used to attach the manipulator
to the ground, the end effector is the element which effects the world;
in this case, the part which carries an object. Beams are divided into
rigid aluminum beams which do not deform under load, and 3D
printed beams made of plastic which slightly deform under load. The
flexible beams have a cavity where a flex sensor is inserted during
printing; the sensor is fully enclosed and acts as a variable resistor,
along with a Wheatstone bridge, which makes resistance and voltage
drop parameters of the flexible beam.

For each manipulator, we show that our method can synthesize
physically meaningful ways of measuring quantities of the system’s
state. We gather a set of 9 dimensions as goals to measure, includ-
ing acceleration, velocity, momentum, their equivalents for rotation,
torque, flexural modulus, and second area moment. For each goal, we
try to take measurements at various points in the system, and for each
manipulator and each goal, we search for physically valid Π groups
which contain the goal, i.e., Π groups which can be used to derive the
goal.

4.4 evaluation 75

Element (# Parameters) Parameters

Anchor (3) position (x,y, z)

End effector (4) position (x,y, z), force f

Revolute joint (1) angle θ

Revolute actuator (2) angle θ, current i

Revolute actuator with pulley (3) angle θ, current i, radius r

Rigid beam (3) width w, height h, length l

Flex beam (8) width w, height h, length l,

flexural rigidity EI, density ρ,

deflection d, resistance u,

voltage drop v

Pulley (4) position (x,y, z), radius r

Table 4.2: Parameters for the robot’s components. Each parameter has the
standard dimension associated with the parameter’s name.

A
nc

ho
r

En
d

ef
fe

ct
or

R
ev

ol
u

te
jo

in
t

R
ev

ol
u

te
ac

-
tu

at
or

R
ev

ol
u

te
ac

-
tu

at
or

w
it

h
pu

lle
y

R
ig

id
be

am

Fl
ex

be
am

Pu
lle

y
∑ P

ar
am

e-
te

rs

Single SCARA 1 1 2 1 1 22

Dual SCARA 2 1 3 2 2 2 41

CoreXY 2 1 2 8 48

Table 4.3: Components and the total number of quantities in the manipula-
tors.

In Tables 4.4, 4.5, and 4.6, we report statistics about the search. We
provide the starting node, from which the search originates, along with
the range needed to find suitable Π−groups. We direct the search in
such a way that no direct measurement, i.e., via sensor, is allowed; thus,
a range of 0 is not possible. As starting node for the single SCARA
system, we use the following numbering: (0) end effector, (1) wrist, (2)
lower arm, (3) elbow actuator, (4) upper arm, (5) shoulder actuator.
For the dual SCARA system, we use the following numbering of the
starting node: (0) end effector, (1) revolute joint middle, (2) beams
(distal), (3) revolute joint, (4) beams (proximal), (5) revolute actuators
to anchors. Due to the system’s symmetry, the starting nodes are only
in one half of the system.

As starting node for the CoreXY system, we use the following
numbering: (0) revolute actuators, (1-4) pulleys. Similar to the dual
SCARA system, the starting nodes are only in one half of the system
due to the symmetry of the system.

76 sensor configuration synthesis

Starting Range Π groups Time

Goal node needed searched [s]

Velocity 0 1 93 0.049

2 1 63 0.023

4 1 54 0.024

Momentum 1 1 19 0.045

3 3 278 0.398

5 5 575 1.020

Acceleration 0 1 93 0.032

2 1 63 0.063

4 1 54 0.032

Angular 1 1 75 0.482

momentum 3 3 152 0.403

5 5 385 1.202

Flexural modulus 2 2 148 0.243

Torque 3 2 261 0.560

5 5 586 1.403

Table 4.4: Single SCARA arm, dimensional analysis summary.

The search uses iterative deepening and we report the value of the
distance ∆ in Algorithm 4.1, at which we find a valid Π group. Goals
which can be found directly on the node where the search starts are
omitted from the tables. As number of Π group searched we report the
number of Π groups which are generated until a valid one is found.
We only count unique Π groups by filtering out equivalent Π groups,
e.g. groups where all the exponents are multiplied by −1. The times
reported in the tables correspond to Mperl-Π running on a single core
of an Intel i7-6920HQ (2.9Ghz) with Debian Linux.

We observe that the synthesis algorithm efficiently explores the
search space of our manipulator designs even though the designs
contain at least 20 and up to 48 parameters. The running time is low
even when the search range spans large portions of the systems. For
larger distances, the number of Π groups considered can grow above
1000 but the local search usually keeps the number low.

4.4.2 Qualitative Evaluation

We now present a more detailed end-to-end case study, including
a physical prototype of the robot arm, as seen in the cart-and-arm
assembly. The arm’s role is to perform pick-and-place tasks. While

4.4 evaluation 77

Starting Range Π groups Time

Goal node needed searched [s]

Velocity 0 1 93 0.083

2 1 63 0.054

4 1 54 0.053

Momentum 1 1 102 0.032

3 3 531 0.036

5 5 1667 1.356

Acceleration 0 1 93 0.045

2 1 63 0.036

4 1 54 0.060

Angular 1 1 74 0.041

momentum 3 3 361 0.683

5 5 1054 1.210

Flexural modulus 2 2 242 0.398

Torque 3 2 504 0.705

5 5 1382 1.225

Table 4.5: Dual SCARA arm, dimensional analysis summary.

Starting Range Π groups Time

Goal node needed searched [s]

Velocity 0 4 1464 1.302

1 3 662 0.892

2 2 452 0.714

3 1 272 0.352

Acceleration 0 4 1464 1.321

1 3 662 0.912

2 2 452 0.716

3 1 272 0.420

Torque 0 4 1328 1.453

1 3 568 1.032

2 2 398 0.786

3 1 244 0.596

Table 4.6: CoreXY platform, dimensional analysis summary.

78 sensor configuration synthesis

performing these tasks, it has to move different payloads, each with
their own weight, while the controller has to ensure that the forces on
the actuators stay within the operating ranges specified by the motors’
respective data sheets. Exceeding these values would result in the arm
collapsing in an uncontrolled way; therefore, the controller needs a
way of estimating the payload weight before deciding if it can reach
the target location. In Figure 4.5, we give a visual representation of
the arm’s workspace and how it is affected by the load.

Figure 4.5: Representation of the SCARA arm workspace while torque is
applied to the actuators. Grey regions are outside of the reachable
workspace. Regions with low torque are represented by lighter
colors, darker regions represent a higher load. Red regions are
unsafe regions of the workspace, where the motors’ maximal
torque is exceeded.

We describe how to use Mperl-Π from a user’s perspective and we
test two different sensor configurations found by our algorithm. First,
we explain how the sensor configurations are derived and how the
system is calibrated. Ensuing, we evaluate the measurement errors for
the two configurations and show, that we can estimate the payload’s
mass with a reasonable accuracy. The root-mean-square error is around
5g for payloads ranging from 40g to 200g.

The arm consists of two beams (shoulder and elbow), and two
revolute actuators. The shoulder beam is solid, the elbow beam is
allowed to flex and has a load cell embedded. The load cell is a resistor
that changes with its deflection and is connected to a Wheatstone
bridge for measuring the change in resistance (and therefore, the
deflection). Both revolute actuators are brushed dc motors, equipped
with 48 CPR quadrature encoders and gearboxes; in addition, their
electric current and power are monitored by two INA219B sensors.
Each actuator has a PID controller that follows the trajectory. The
actuators and sensors are build as self contained units communicating
with a central Mperl-Π controller via UART. The central controller

4.4 evaluation 79

computes trajectories for the overall system and dispatches commands
to the actuator’s controllers.

measurement with the euler-bernoulli beam model. We de-
scribe how to use the flexural rigidity of the elbow beam by polling the
system for its embedded sensors, creating the appropriate Π groups
and calibrating the resulting equations by means of reference weights.
We start with a description of the SCARA system which already con-
tains a flex sensor. In that work, the controller was simply adjusting
the actuator’s angle to compensate for the deflection, but this was
not tied to any force. Now we use Mperl-Π to find how to use this
sensor to compute the weight attached to the beam. As we do not
know the equation, we use dimensional function analysis to synthesize
suitable candidate equations. Starting with a local search of distance
1 from our beam, we get the following building parts: the beam it-
self, the effector, and the actuator. The beam has geometric properties
(length, width, height), the sensor input (an angle) and sensor output
(a resistance), and fabrication dependent parameters like the flexural
rigidity and density. The effector applies a downward force which is
proportional to the attached weight. Finally, the actuator’s properties
are its positions (angle), current, and torque.

From this generated description, we generate the Π groups; among
them, we get the candidate

F1(EI)−1L3d−1 (4.17)

where F is the force, L the length of the beam, EI the flexural rigidity,
and d the deflection. The Π group results in the tentative equation

C =
FL3

EId
(4.18)

It now remains to determine a value for C by calibration. We move
the systems to a known pose where the two actuators have the angles
θ0 = π/4 and θ1 = −π/4. These angles correspond to the pose where
the shoulder beam is vertical and the elbow beam is horizontal. We
attach known reference weights to the end effector and measure the
deflection. To average out any noise or outliers, we repeat this step 10
times. Table 4.7 summarizes the parameters and their values subject
to different weights. Using these values we estimate that the constant
C has the value 4.042.

measurement with the motor current. Instead of relying on
the flex sensor, we also have the possibility of deducing the weight
by combining the current consumption of the revolute actuators, the
length of the beams, and the known functional dependency between
torque and power consumption from the motor’s datasheet. Com-
pared to the previous experiment, we add to the actuator specification

80 sensor configuration synthesis

Reference weight [g] deflection [mm] C

0 0.00 –

100 3.58 4.045

140 5.03 4.032

200 7.18 4.044

Average – 4.042

Table 4.7: Deflection measurements and calibration for reference weights.

a torque vs current diagram and perform the Π-group generation and
calibration again. We now evaluate the accuracy of the sensor’s predic-
tions. Our model is idealized as it does not take the friction between
the elements into account, and therefore, the system can stabilize at
the same position but with different current consumption as long as
the difference in torque output is smaller than the gearbox friction.
Instead of relying on fixed, known weights, we put the robot into
a pose were it is possible for it to pull a precision spring scale. By
pulling with varying intensity, the current consumption changes and
can be used to draw conclusion about the force exerted (weight equiv-
alent). In order to measure the error, the actuator pulls on the spring
scale with similar intensity as when using reference weights and some
intermediate values. Table 4.8 reports the respective numbers. The first
row reports the force as measured with the precision spring scale. The
next two rows report the measured current (via current sensor) and
the derived force by means of the above mentioned invariant. The last
two rows repeat the deflection experiment, but the force is derived
via the torque/current invariant instead of being measured. We ob-
serve that the model’s simplification and change of setting results in
small measuring errors. Deriving force via torque/current diagram
and current sensor, we report a RMSE of 4.768g, as compared to the
actual values. Using this invariant to determine the force by means of
measuring the deflection results in a RMSE of 6.770g.

autocalibration. We now show how the auto calibration per-
forms in our running SCARA system if redundant invariants are
available. In this case, we assume a calibrated invariant which cal-
culates force based on the deflection, and a non-calibrated invariant
which used the torque/current approach. The experiment consists of
two steps. Firstly, the arm pulls against the spring scale with varying
intensity, during which the calibrated invariant records the calculated
force (Fig. 4.6). This serves as a reference for the uncalibrated invari-
ant, which can then be evaluated with this calculated value, along
with the timely reading of the current sensor; as all quantities in the
invariant are known, the dimensionless constant can be calculated.
During calibration, the dimensionless constant is averaged as long as

4.5 conclusion 81

Force [N] Current [A] Force [N] Deflection Force [N]

(Spring) (Sensor) (Invariant 1) [mm](calc.) (Invariant 2)

0.39 (40) 0.20 A 0.33 (33.9) 1.4223 0.49 (50)

0.59 (60) 0.31 A 0.52 (52.7) 2.1442 0.69 (70)

0.78 (80) 0.46 A 0.77 (78.16) 2.8262 0.83 (85)

0.98 (100) 0.60 A 0.99 (101.94) 3.5401 1.03 (105)

1.18 (120) 0.69 A 1.15 (117.24) 4.2498 1.18 (120)

1.47 (150) 0.85 A 1.42 (144.42) 5.2716 1.42 (145)

Table 4.8: We calculate Force via invariant 1 (torque/current curve) and
invariant 2 (deflection and invariant 1). The RMSE of invariant 1

compared to the actual force values is 4.768g, the RMSE of invari-
ant 2 is 6.770g. Numbers in parenthesis report weight equivalent
of force in [g].

Deflection [mm] Force [N] Force [N]

(calculated) (calculated) (measured)

1.4223 0.39 (40) 0.49 (50)

2.1442 0.59 (60) 0.69 (70)

2.8262 0.78 (80) 0.83 (85)

3.5401 0.98 (100) 1.03 (105)

4.2498 1.18 (120) 1.18 (120)

5.2716 1.47 (150) 1.42 (145)

Table 4.9: We measure the deflection when lifting weights, derive force from
the previously calibrated curve, and compare it to actual force
(measured via scale). The force columns has the weight equivalent
of the force [g] in parenthesis. The RMSE is 6.770 w.r.t to weight
in grams.

the arm pulls on the scale. Secondly, we move the robot arm again
to a pose where the shoulder beam is vertical and the elbow beam
is horizontal; we then pull at the spring scale to simulate different
weights and report the values as calculated by the manually calibrated
invariant and the automatically calibrated one. Table 4.10 summarizes
the result from the second step. The RMSE of the manually calibrated
invariant is 5.2414, the RMSE of the automatically calibrated invariant
is 7.8149.

4.5 conclusion

In light of recent advancements in controller synthesis and computa-
tional fabrication techniques for robotic systems, we have presented a

82 sensor configuration synthesis

Figure 4.6: Arm pushing against a spring scale to simulate load on the
end-effector

Force [N] Force [N] Force [N]

Spring Cal. Invariant Autocal. Invariant

0.39 (40) 0.44 (45.11) 0.42 (43.55)

0.59 (60) 0.68 (69.35) 0.52 (53.17)

0.78 (80) 0.84 (85.66) 0.71 (73.28)

0.98 (100) 0.97 (98.52) 0.91 (93.42)

1.18 (120) 1.19 (122.02) 1.29 (131.92)

1.47 (150) 1.43 (146.39) 1.55 (158.75)

Table 4.10: Results for autocalibration.

novel application of dimensional analysis. Specifically, we have applied
this approach to the design of a robotic arm and have demonstrated
the ability to identify two distinct sensor configurations that enable
accurate estimation of the system’s state.

One key factor of these types of methods is scalability. Moving for-
ward, the sensor configuration synthesis will benefit from enhanced
filtering techniques that minimize the number of irrelevant Π− groups
generated during the dimensional analysis process. This will enhance
scalability, particularly for larger systems, and will eventually allow
the integration of a more realistic physics model. While we adopt a
correct by construction strategy for the controller, our current method-
ology does not account for measurement precision during sensor
selection, and the state estimation lacks any guarantees. To address
these limitations, end-to-end correctness assurances for the system
should be obtained, and confidence bounds on the measurements
should be derived. A second key factor is the tighter integration into
the controller synthesis step. The algorithm itself should be enhanced
to provide a feed back loop that allows to return information about
the available sensors to the controller synthesis of Mperl. For instance,

4.5 conclusion 83

if the sensor configuration synthesis fails to derive direct or indirect
measurements for a specific quantity, the controller synthesis should
backtrack and try to find a controller which does not depend on that
quantity.

In the previous chapters, we outlined the concepts and language of
Mperl and how individual robotic systems can be created. While Mperl
is able to create simple controllers for non-expert users, the Sensor
Configuration Synthesis makes it possible to synthesize considerably
more sophisticated controllers by deriving physical invariants that
capture physical properties of the system. Motion primitives like
grab, which allows the arm to reach for an object can be enhanced
by adding ways to derive the weight of the object, which allows for
richer abilities of the robot, but also lends, in the case of redundant
invariants, a certain robustness to the controller.

5 M U LT I - R O B OT A P P L I C AT I O N
P R O G R A M M I N G

The techniques discussed in the previous chapters, aimed at synthe-
sizing controllers and configuring sensors, have provided valuable
tools for developing robotic systems. However, developing multi-robot
applications still presents significant challenges due to the complex
interplay between dynamic controllers, geometric constraints, and
concurrency and synchronization requirements. Motion primitives
involve continuous physical processes that can be coupled, and exe-
cuting one may affect the physical state of a concurrently executing
motion primitive. Additionally, since the robotic components exist in
3D space, the software must ensure that the range of motions exe-
cuted by the motion primitives are compatible with the geometry of
the components and that there are no collisions. This complexity is
illustrated in the example of a robotic assembly consisting of a mobile
cart with an arm attached to it.

To address these challenges, we present a new programming model
called PGCD in this chapter. PGCD consists of assemblies of robotic
components, along with a run time and a verifier, which combine
message-passing concurrent processes with motion primitives and
explicit modeling of geometric frame shifts. These features allow for
the continuous evolution of trajectories in geometric space under the
action of dynamic controllers and relative coordinate transformations
between components evolving in space. In addition, a verification algo-
rithm has been developed that can statically verify concurrency-related
properties and geometric invariants, providing a high level of confi-
dence in the correctness of PGCD programs. The PGCD programming
model, along with the methods developed in the previous chapters,
offer a powerful set of techniques for developing robotic systems.
While the previous chapters were focused on providing accessible
techniques for non-experts, the PGCD model is applicable to experts
and non-experts alike. The next chapter will delve into the details
of the PGCD programming model, exploring how it can be used to
develop collaborative robotic systems that are reliable, efficient, and
effective. Illustrating the challenges faced by robotics programmers,
let us consider the example of the task fetch, that requires a robotic
system consisting of a mobile cart with an attached arm. The objective
of this task is to execute a sequence of actions involving the grabbing
of an object by the arm. If the target object is out of the arm’s reach,
the cart to which the arm is attached must be moved to a suitable
location to facilitate the object’s retrieval. Both the cart and the arm
are equipped with specific capabilities, such as the ability to move and

85

86 multi-robot application programming

to grab objects within its reach. Despite the seemingly simple nature
of the task, implementing and verifying it is not straightforward due
to various reasons.

Firstly, controllers of the components are dynamically coupled. For
instance, the weight and center of mass of the arm affect the movement
of the cart. A light and small arm may allow for a faster motion planner
compared to a heavy or bulky arm. Secondly, since the cart and the
arm exist in a 3D space, their range of actions is influenced by their
surroundings. For example, whether the cart can navigate through a
passage may depend on the state of the arm. An extended arm may
collide with an obstacle and invalidate a path that the cart, by itself,
could traverse. Conversely, the base of the cart restricts the range of
motion of the arm. Thirdly, the motion primitives of the cart and the
arm refer to coordinates in their local frame. Therefore, when the cart
moves, the arm moves along, and any communication of the geometric
space between the cart and the arm requires a transformation of
information between their coordinate systems. Finally, an natural
approach to break down the fetch task involves the cart moving
towards the target while the arm is retracted, followed by the arm
grabbing the object, and then the cart moving back to the starting
point. Achieving this sequence necessitates coordination between the
code controlling the cart and the arm. The processes must signal which
step is currently in progress, the guarantees provided by each process
to the other, and manage the intricacies of concurrent programming.

Current state-of-the-art programming languages and tools do not
provide a comprehensive solution for simultaneously dealing with
these complexities, leading to challenges in developing robust and
efficient robotics applications. While messaging systems like the robot
operating system (ROS) [116] exist to support communication between
different components of a robotics system, there is a significant gap in
the availability of programming models and tools that enable reason-
ing about the interaction between these domains. As a result, robotics
application developers are often left to navigate these complexities
by themselves, using low-level robotics languages provided by robot
manufacturers or imperative languages like C++ or Python.

Geometric
Constraint
Reasoning

Message
Passing

Concurrency

Motion
Primitive
Dynamics

Communication
Synchro-
nization

Concurrent
Executability

PGCD Programs Verifier

Figure 5.1: PGCD Architecture

In this chapter, we present PGCD, a concurrent programming model
(Fig. 5.1), which combines geometric constraint reasoning of the robotic
components with message passing concurrency and motion primitives

multi-robot application programming 87

for dynamics. A program in our model consists of a set of processes
—each process represents a logical portion of a robotic assembly (“cart”
or “arm”). Processes run sequential code and send or receive mes-
sages as well as execute a set of motion primitives on the underlying
physical state. A program is structurally determined by assembling
processes through attachments: an attachment couples the physical
state of two components and also determines the relative coordinate
transformations between their geometries. For instance, for the Fetch
example, there is a process for the cart and a process for the arm. The
program is obtained by attaching the arm process to the cart process.
The semantics of PGCD programs define a transition system in which
communication occurs in logical “zero time” and motion primitives
execute in real time. The semantics include geometric transformations
between processes. Thus, the content of messages between the cart
and the arm processes is transformed to the recipient’s coordinate
system.

Our work involves the development of a verifier for PGCD pro-
grams, which takes as input a collection of robotic components, a
PGCD program, a specification of the motion primitives, and a de-
scription of the environment. The specification of a motion primitive
includes both constraints on a robot’s state and its footprint, i.e., the
region of space used by the robot when executing that motion prim-
itive. The verification process involves two steps. Firstly, we verify
communication and synchronization correctness, such as the absence
of deadlock. Secondly, we ensure concurrent executability of motion
primitives through assume-guarantee reasoning and separation of geo-
metric resources. By enforcing this separation, it is possible to maintain
the important invariant that different components of a system do not
collide with each other.

The programmer writes constraints and footprints of each process
in its local frame, while the run time and the verification engine
automatically performs frame shifts. Our implementation is in Python,
and we provide a run-time system to execute our programs on top of
ROS. We have used our implementation to verify actual multi-robot
co-ordination implementations and execute verified programs on real
robotic hardware. Our evaluation demonstrates that our framework
for programming of multi-robot co-ordination and manipulation can
lead to statically verified implementations that run on off-the-shelf and
custom-built robotics hardware platforms. Overall, our programming
model, run-time system, and verifier form the basis for correct design
and static verification of complex robotic applications that interact
dynamically in geometric space.

88 multi-robot application programming

5.1 pgcd programs

The proposed concurrent programming model, PGCD, is specifically
designed to handle cyber-physical components that operate within 3D
geometric space. In this model, a program is comprised of multiple
processes that execute concurrently, each responsible for controlling a
set of physical variables by executing motion primitives. These pro-
cesses must also communicate and synchronize with one another to
achieve their objectives. As the dynamics of physical variables are
coupled, the program structure reflects this coupling, with the compo-
sition of processes reflecting the couplings and frame shifts between
physical variables. Therefore, concurrent processes can operate in dif-
ferent reference frames relative to one another. For example, an arm
attached to a cart may describe its motion in its local frame, but its
local frame may move relative to the world frame if the cart moves.
The PGCD programming model includes constructs for hierarchical
frame shifting, and its semantics ensure that values exchanged be-
tween processes are transformed into the world frame by evaluating
values under sequences of frame shift operations. This programming
model is designed to provide a formal approach to programming
cyber-physical systems operating in 3D space.

The correctness of a program is determined by its syntax and its
semantics. Syntax refers to the formal rules that specify the structure of
the program and how the elements of the language can be combined to
form valid expressions, statements, and programs. Semantics, on the
other hand, defines the meaning and behavior of those expressions,
statements, and programs, and based on that, creates a model of
computation.

In this chapter, we will discuss both syntax and semantics of the
PGCD language.

5.1.1 Syntax

We consider a fixed finite set C of processes. Each process P ∈ C is a
tuple

(Var,M,S, ρ, rsrc) (5.1)

where Var is a set of variables, with two distinguished disjoint subsets
X and W of physical state and external input variables, M is a set
of motion primitives, ρ : Var → [[Var]] is a store mapping variables
to values, rsrc : ρ → 2R3 is a resource function, and S is a statement
generated by the grammar provided in Listing 5.1.

Within this grammar, a ∈ C represents a (different) component,
m ∈M is a motion primitive, x ∈ Var ranges over variables, l is a label
from a fixed finite set of labels, and expr comes from an (unspecified)
effectively computable language of arithmetic expressions.

5.1 pgcd programs 89

1S ::= x := expr

2| m

3| send(a, l, expr)
4| receive(m){(l, x,S)+}
5| S; S

6| if expr then S else S

7| skip

8| while expr do S

Listing 5.1: PGCD Grammar

To ensure ease of understanding and clarity, we have excluded type
annotations for variables in our implementation and we assume that
all processes and motion primitives used in the model are well-typed.

A process represents a unit of a program which controls a contin-
uous physical system through the application of motion primitives
and, additionally, communicates with other concurrently executing
processes. The store ρ gives values to the local process variables Var;
this includes valuations to the physical state variables. The resource
function gives an upper bound of the geometric space used by a
process. Part of the statements form a core imperative programming
language, with skip, assignments, sequential composition, condition-
als, and loops. In addition, a process can execute motion primitives
and send and receive labeled messages for synchronization. The mes-
sage labels come from a finite set known to all processes. As shorthand,
we often write labeled messages as l(v) where l is the label and v a
value. When the message does not carry a value, we simply write l.
Receiving messages operates on a list of triples of the form (l, x,S)
where l is a label, x is a name to which the received value is assigned,
and S is the continuation. Since receive is a blocking operation it also
takes as argument a motion primitive which is executed while the pro-
cess waits for a message. We consider messages with a single payload
value, but this can be generalized to tuples.

The resource function rsrc takes as input the state of the process and
returns an over-approximation of the space used by the robot (a subset
of R3). The resource function does not need to be precise but only
to over approximate the robot. Typically, we use 3D hyper-rectangles,
called bounding boxes, because checking collision between boxes is
efficient.

To illustrate this, consider the example of the cart of the cart-and-
arm system. The process that corresponds to the cart encapsulates
the motion primitives and implements a control program that decides
when to execute these motion primitives. The set

Var = {pcart, rcart, scart}∪ {mobj} (5.2)

gives the physical state and external input variables, respectively. The
program

1receive(idle(ρ(pcart))){step, _, forward(ρ(pcart,ρ(rcart)))}

90 multi-robot application programming

specifies that the cart remains idle at its current position ρ(x) until
it receives a step message (without other values), and then steps one
unit using the motion primitive forward.

Let dl, dw, dh be bounds on the cart’s length, width, and height,
s.t. their center point coincides with the cart’s center. The resource
function rsrc gives a bounding box around the cart’s position:p ′ ∈ R3

∣∣∣∣∣∣
− dl/2 6 (p ′ − pcart) · (rcartux) 6 dl/2

∧− dw/2 6 (p ′ − pcart) · (rcartuy) 6 dw/2
∧0 6 (p ′ − pcart) · (rcartuz) 6 dh

 (5.3)

We write the resource in this style, rather than the more obvious
predicate

{x | |x1 − pcart.x| 6
dl
2

, |x2 − pcart.y| 6
dw

2
, |x3 − pcart.z| 6

dh
2
} (5.4)

to make frame reasoning about resources easier; in Eq. (5.3), vectors
are defined as abstract elements that can be directly transformed
across frame shifts.

5.1.2 Attached Composition

Assuming that two processes, P1 and P2, have separate variable sets,
the most straightforward approach to combining them is by linking
certain physical variables of one process to the external variables of
the other, and vice versa. This connection results in the coupling of
the motion primitives of the two processes. A connection θ between P1
and P2 is a finite set of pairs of variables, θ = {(xi,wi) | i = 1, . . . ,m},
such that:

1. for each (x,w) ∈ θ, we have x ∈ P1.X and w ∈ P2.W or x ∈ P2.X
and w ∈ P1.W, and

2. there does not exist (x,w), (x ′,w) ∈ θ such that x and x ′ are
distinct.

Two connections θ1 and θ2 are compatible if θ1 ∪ θ2 is a connection.
Given a connection θ, we write

θ(x) = {w | (x,w) ∈ θ} (5.5)

and
rng(θ) = {w | ∃x.(x,w) ∈ θ} (5.6)

In a connection, it is possible for a physical state variable of a process
to be connected to several external variables. However, each external
variable of a process can only be connected to one state variable at
most. A connection between components couples the variables of
these processes, but they may be interpreted in distinct frames. As

5.1 pgcd programs 91

such, communicating geometric objects through a connection between
components may necessitate a frame shift. This need for frame shifting
is what led to the following definition of attached compositions.

Let θ be a connection between P1 and P2 and let M be a term over
the variables of P1. We assume M evaluates to a frame transformer in
SE(3). We define the attached composition operation P1 Cθ,M P2 which
connects variables through a connection θ and applies a frame shift M
for any communication of geometric objects (points or vectors) from
P2 to P1 and a reverse shift P1.ρ(M−1) for any communication from
P1 to P2. The semantic rules in section 5.1.4 apply the necessary frame
shifts automatically.

A connection introduces the following constraint on stores:

P1.ρ(w) = P1.ρ(M)(P2.ρ(y)) (5.7)

whenever
(y,w) ∈ θ, with y ∈ P2.X∧w ∈ P1.W (5.8)

and
P2.ρ(w) = P1.ρ(M−1)(P1.ρ(y)) (5.9)

whenever
(y,w) ∈ θ, with y ∈ P1.X∧w ∈ P2.W (5.10)

After the frame shift, the values in P1.W connected to P2.X are “set”
by the corresponding values in P2’s store, and the same applies in
reverse.

Let P1, P2, and P3 be processes, θ12 be a connection between P1 and
P2 and θ13 be a connection between P1 and P3. Let M12 and M13 be
relative frame shifts between P1 and P2 and P1 and P3, respectively.
The operation

P1 Cθ,M P2 (5.11)

is considered left associative and we write

P1 Cθ12,M12
P2 Cθ13,M13

P3 (5.12)

for
(P1 Cθ12,M12

P2)Cθ13,M13
P3 (5.13)

In this expression, both P2 and P3 are children of P1. Therefore, we
have

(P1 Cθ12,M12
P2)Cθ13,M13

P3 (5.14)

=(P1 Cθ13,M13
P3)Cθ12,M12

P2 (5.15)

Unlike the convention parallel composition of processes, attached
composition is not commutative. For example, the frame of the at-
tached composition P1 Cθ,M P2 is the frame of P1. Swapping P1 and

92 multi-robot application programming

Cart’s position Cart’s origin
(World frame)

Arm’s origin

Effector’s position

(a) Schematic representation. The
blue line shows the position of the
cart and the end effector relative
to the origin of W; the red line
the relative position of the end ef-
fector to the origin of the arm’s
reference frame

(b) Actual cart-and-arm sys-
tem

Figure 5.2: Schematic and actual representation of the cart-and-arm system

P2 results in a change of frame to P2, unless M = I. Therefore, the
attached composition is only of a restricted form of commutativity, i.e.

P1 Cθ,I P2 = P2 Cθ,I P1. (5.16)

To provide an example that illustrates the preceding results, consider
a second process of an arm mounted on the cart. The cart’s variables
are the three angles α,β,γ, representing the joints between each of
its parts, and marm which represents the overall mass of the arm
(motion platform, gripper, carried object). The frame of the arm is
the center of its base as shown in Figure 5.2a. We model this using
the attached composition operation CCθ,M A with M =

[
rcart pcart
01×3 1

]
which shifts the frame according to the cart’s position and heading.
θ = {(marm,mobj)} connects the arm’s mass to the cart’s payload.

5.1.3 Programs

A (concurrent) program Π connects processes using the attached com-
position operator

Π ::= P | ΠCθ,M Π (5.17)

where θ is a connection, and M is a term representing a frame trans-
former. Since attached composition is left associative, a program ar-
ranges processes in a tree structure which induces a parent-child
relationship between processes.

For simplicity of notation, we assume there is a virtual world process
W defined as

W = (_, ∅,CV , {idle},while(true)idle) (5.18)

with
CV = (∅, ∅, ∅, _→ ∅, _→ ∅) (5.19)

5.1 pgcd programs 93

This allows us to represent two components P and P ′ which are not
“physically attached” together by attaching both of them to W, i.e.,

WC∅,M PC∅,M ′ P ′ (5.20)

W may also be used to model features of the environment, e.g., attach-
ing obstacles to it. When M =M ′ = I, we just write P|P ′.

For instance, by mounting an arm onto the cart, it becomes feasible
to accomplish more sophisticated tasks that neither component could
perform on its own. To illustrate this, we developed a concurrent
program that controls both the arm and the cart, with the objective of
retrieving an object located at a remote site.

Two code fragments are presented in Algorithms 5.2 and 5.3 to
emphasize their communication, and the interaction is visually sum-
marized in Figure 5.3. To simplify the presentation, additional details
of the computation are omitted, and some notation is simplified for
readability. However, these programs can still be readily compiled into
our core grammar for statements.

1send(arm, fold);
2receive(idle)

3folded⇒ skip

4while (|target− p| > reach) do

5moveToward(target)

6send(arm,grab(target));
7receive(idle)

8grabbed⇒ skip

9send(arm, fold);
10receive(idle)

11folded⇒ skip

12while (p /∈ homeRegion) do
13moveToward(homeRegion)

14send(arm,done);

Listing 5.2: Process Cart

1while true do

2receive(idle)

3fold⇒
4move(origin)

5send(cart, folded)
6grab(loc)⇒
7grab(loc)

8send(cart,grabbed)
9done ⇒
10break

11

12

13

14

Listing 5.3: Process Arm

5.1.4 Semantics

The execution of PGCD programs can be intuitively divided into
rounds, each of which comprises two sub-rounds. During the first
sub-round, components exchange messages in logical zero time. In
the second sub-round, each component executes a motion primitive
for a duration of T . The real-time execution of these motion primitives
synchronizes all components. The semantics of our programming
model can be formally defined as labeled transition rules between
program states. A program state consists of a program Π and the
stores of each process in Π. Given a store ρ of a process and a variable

94 multi-robot application programming

move(origin)

send(cart, folded)

send(arm, fold)

grab(target)

send(cart,grabbed)

send(arm, grab(target))

send(arm, fold))

move(origin)

send(cart, folded)

break

moveToward(homeRegion)

send(arm, done)

Figure 5.3: Abbreviated schematic representation of Fetch PGCD process
interaction from the arm’s perspective. Motion primitives in red,
messages in blue, participants in green; actions of the cart are
below the arrow, actions of the arm above. Receive statements
are omitted.

x ∈ Var of that process, we write ρ(x) for the value of variable x and
lift this to expressions: ρ(e) is the evaluation of e in environment ρ.
We write ρ(x)← v for the store which maps variable x to v but agrees
with ρ on all other variables.

The transitions −→ between program states are of the form:

• τ−→: an internal step to a process.

• p!l(v)−−−−→: sending label l with value v to component p.

• p?l(v)−−−−→: p receiving a message with label l and value v.

• ξ,ν,T−−−→: the system follows the output trajectory ξ, with external
inputs ν for the duration T .

5.1 pgcd programs 95

5.1.4.1 Contexts.

We define the semantics in a contextual style. A statement context Σ
extracts the next statement to be executed in a sequence

Σ ::= [] | Σ;S (5.21)

and Σ[S] is obtained by replacing [] by a statement S in Σ.
The semantic rules presented below rely on several auxiliary func-

tions and predicates. For instance, the leftH function is used to return
the output of the leftmost process in a program and is recursively
computed using

leftH(P) = P.ρ (5.22)

leftH(ΠCθ,M Π ′) = leftH(Π) (5.23)

We use leftH for the frame shift in a composition that is a func-
tion of the output of the leftmost process. For example, we write
leftH(Π1 Cθ,M Π2)(M) for the transformation in SE(3) obtained by
evaluating the term M in the store of the leftmost process in the
program. disjoint(P,Q), with PCθ,MQ, is a shorthand for

P.rsrc(P.ρ)∩ leftH(P)(M)(Q.rsrc(Q.ρ)) = ∅ (5.24)

This predicate verifies the absence of overlap in the footprint of the
left and right components. Whenever a process undergoes a state
transition, the disjointness constraint must be preserved.

5.1.4.2 Transitions

The main transition rules (inter-process communication) are presented
in Figures 5.4 and 5.5; Figure 5.6 summarizes the reduction rules for
the control-flow. Inter-process communication happens by rendezvous
on a shared channel: a sender process sends a value v on a channel
a; simultaneously, a receiver process receives the value, shifted to its
own frame, and continues executing. The semantics take care of the
frame shift of value v from the sender to the receiver. This approach
of implicitly taking care of the frame shift is used in existing systems
like the tf2 library [33]. The (CommSend) and (CommRecv) rules
describe how processes send and receive messages. When sending a
message, the expression e is evaluated to a value v in the store of P
(ρ(e) ⇓ v). Sending does not change the local state, it only consumes
the send instruction. Receiving a message binds the value v carried
by the message to the receiving variable x in the store (ρ(x)← v) and
continues with the appropriate statement S determined by the label.

The rules (CompL) and (CompR) propagate communication and
silent steps. More specifically, if a component of a propagate can
make a transition labeled a, then the entire program can also make a
transition labeled a. During the propagation, the store is updated to

96 multi-robot application programming

(CommSend)
ρ(e) ⇓ v

(Var,M,Σ[send(a, l, e)], ρ, ·) a!l(v)−−−−→ (Var,M,Σ[skip], ρ, ·)

(CommRecv)
ρ ′ = ρ(x)← v

(Var,M,Σ[receive(m){. . . (l, x,S) . . .}], ρ, ·) P?l(v)−−−−→ (Var,M,Σ[S], ρ ′, ·)

(CompL)
P
α−→ P ′ disjoint(P ′,Q)

PCθ,MQ
α−→ P ′ Cθ,MQ

(CompR)
Q
α−→ Q ′ disjoint(P,Q ′)

α = α ′ = τ ∨ (α = a#l(v) ∧ leftH(P)(M)(v) ⇓ v ′ ∧ α ′ = a#l(v ′)∧ # ∈ {!, ?})

PCθ,MQ
α ′−→ PCθ,MQ ′

(CommSyncLR)

P
a!v−−→ P ′ Q

a?v ′−−−→ Q ′ leftH(P)(M−1)(v) ⇓ v ′ disjoint(P ′,Q ′)

PCθ,MQ
τ−→ P ′ Cθ,MQ ′

(CommSyncRL)

Q
a!v−−→ Q ′ P

a?v ′−−−→ P ′ leftH(P)(M)(v) ⇓ v ′ disjoint(P ′,Q ′)

PCθ,MQ
τ−→ P ′ Cθ,MQ ′

Figure 5.4: Reduction rules for communication

reflect the frame and connections. If the transition carries a message
from the right side of the composition, the value in the message is
shifted to match the overall frame inherited from the left process
(leftH(P)(M)(v) ⇓ v ′). Furthermore, the transition may update the
local state which changes the resources used by the processes, and it
is necessary to ensure that the two components are disjoint to avoid
conflicts between their resource usage.

The (CommSyncLR) and (CommSyncRL) rules match the send and
receive statements. Their structure is similar to the (CompL) and
(CompR) rules with both sides changing. Once the send and receive
are matched, the label of the action is not propagated further and the
action becomes an internal action (τ) of the composed processes.

The execution of motion primitives is illustrated in Figure 5.5. Tran-
sitions are labeled with the trajectory (ξ) of the local states, the external
inputs (ν), and the total time of the transition (T). The (Motion) rule
checks the conditions of the motion primitives and makes sure the
store matches the initial state and the final states of the trajectory. The
(Time) rule combines trajectories of individual processes; the trajectory
of one process is projected to become part of the disturbances of the
other process. Specifically, νP receives the external inputs projected

5.2 verification 97

(Motion)

∨
{
S=Σ[m] ∧ S ′=Σ[skip]
S=Σ[receive(m){...}] ∧ S ′=S

ξ(0) = ρ|X ρ ′ = ρ|Var ∪ ξ(T)
m.Pre(ξ(0),ν(0)) m.Post((ξ(T),ν(T)))

∀t ∈ [0, T]. m.Inv((ξ(t),ν(t)))

(Var,M,S, ρ, rsrc) ξ,ν,T−−−→ (Var,M,S ′, ρ ′, rsrc)

(Time)

P
ξP ,νP ,T−−−−−→ P ′ νP = ν|P ∪ ξ(M)(θ(ξQ))

Q
ξQ,νQ,T
−−−−−−→ Q ′ νQ = ν|Q ∪ ξ(M−1)(θ(ξP))

ξ = (ξP ∪ ξP(M)(ξQ))

∀t ∈ [0, T]. P.rsrc(ξP(t))∩ ξP(t)(M)(Q.rsrc(ξQ(t))) = ∅

PCθ,MQ
ξ,ν,T−−−→ P ′ Cθ,MQ ′

Figure 5.5: Reduction rules for motion

on P (ν|P), along with the output of Q through the connection (θ(ξQ))
to which we apply the frame shift (ξ(M−1)). Finally, we also check
that the resources used by the two processes stay disjoint during the
execution of the motion primitives.

The semantics of the internal control flow of the processes are
presented in Figure 5.6. These rules are typical for an imperative
programming language and involve silent transitions that follow the
usual semantics of such languages.

At the root of the Cθ,M tree, only τ−→ and ξ,ν,T−−−→ are allowed. Mes-
sages send and receive must be matched inside the system (closed
world hypothesis). Once send and receive are matched the label be-
comes τ.

5.2 verification

There are various ways in which a PGCD program may encounter
issues during execution and become unresponsive. One such scenario
arises when the message passing mechanism gets deadlocked because
the send operations are blocking. Another possibility is when a process
attempts to execute a motion primitive while its precondition is not
met. Finally, there can be a resource conflict between two processes ex-
ecuting their motion primitives concurrently. In the following section,
we present an algorithm for verifying PGCD programs to address
these issues.

The verification of PGCD programs is based on the separation of
the verification problem into two types of periods: logical zero-time
message-passing periods and real-time periods when time elapses
following the trajectories defined by motion primitives (Fig. 5.7).
Our verification algorithm uses a combination of model-checking

98 multi-robot application programming

(Seq)

(Var,M,Σ[skip;S], ρ, rsrc) τ−→ (Var,M,Σ[S], ρ, rsrc)
(Assign)

ρ(e) ⇓ v ρ ′ = ρ(x)← v

(Var,M,Σ[x := e], ρ, rsrc) τ−→ (Var,M,Σ[skip], ρ ′, rsrc)

(WhileT)
ρ(e) ⇓ true

(Var,M,Σ[while e do S], ρ, rsrc) τ−→ (Var,M,Σ[S; while e do S], ρ, rsrc)
(WhileF)

ρ(e) ⇓ false

(Var,M,Σ[while e do S], ρ, rsrc) τ−→ (Var,M,Σ[skip], ρ, rsrc)

(IteT)
ρ(e) ⇓ true

(Var,M,Σ[if e then S else S ′], ρ, rsrc) τ−→ (Var,M,Σ[S], ρ, rsrc)
(IteF)

ρ(e) ⇓ false

(Var,M,Σ[if e then S else S ′], ρ, rsrc) τ−→ (Var,M,Σ[S ′], ρ, rsrc)

Figure 5.6: Reduction rules for control flow.

and constraint-solving. The model-checker checks the correctness of
message communication between processes. A numerical solver for
non-linear constraints over the reals checks the correctness of motion
primitives.

5.2.1 Communication safety

For the messages, we want to show that the communication between
components is well-formed. In particular, we verify that the program
does not get into a state where some process is forever blocked on a
send operation and that there is no unbounded execution solely with
message passing (making time “stop”).

Our verification algorithm converts a program into concurrently
executing control flow automata (CFA) [54]. We abstract the code of
each CFA, preserving only the send, receive, and motion primitives.
Additionally, we abstract local computation and treat internal choices
(if then else) as non-deterministic. We then verify that there are no
loops (cycles) in each CFA without any motion primitives, which is
sufficient to prevent potentially infinite "0-time" computation.

Next, we take the synchronized product of all the CFAs, synchro-
nizing matching send and receive statements based on labels. Motion
primitives synchronize all processes globally in real-time. For receive
statements, a motion primitive executes only when no more communi-
cation is possible. Finally, we check for deadlock, which occurs when

5.2 verification 99

Model Checking
Communication safety
Message deadlocks
Motion primitive extraction

Constraint Solving
Motion primitive verification
Conditions hold
Footprints

System VerifiedVerification failed

fail

fail

Figure 5.7: Verification is done in two steps, logical zero-time message pass-
ing and real-time motion primitive periods. The model-checker
ensures correct message communication, while the constraint
solver checks the correctness of motion primitives.

a non-final state has no successor, by exploring the state space of
the synchronized product using a model checker. In our implemen-
tation, we encode the CFAs as Promela processes and perform the
exploration using the Spin model checker [55], instead of building the
product explicitly. It is worth noting that the construction presented
earlier results in a single final state where all processes have finished.
As a result, the deadlock check ensures that the processes are either
communicating, executing a motion primitive, or have terminated.
Additionally, we extract the set of motion primitives executed concur-
rently during the state space exploration, which is used in the second
part of the verification process.

5.2.2 Trajectories and footprints

To verify the correct execution of the abstract motion primitives, we
perform two checks, based on the combination of motion primitives
recorded during model checking. The first check involves motion prim-
itives from different processes executing concurrently. We ensure that
a trajectory satisfying the rules for motion (shown in Figure 5.5) exists.
The second check involves motion primitives executed sequentially by
the same process. We verify that the post-condition of the first motion
primitive implies the pre-condition of the following one. Currently
we rely on the user giving state invariants in the form of program
annotations to help with the verification process. These annotations
associate predicates with program locations. To verify that motion
primitives executing concurrently have a joint trajectory, we employ
an assume-guarantee style of reasoning. When two processes are at-

100 multi-robot application programming

tached, one process depends on the invariants of the other’s output
(which can be an external input) to satisfy its own invariant, and vice
versa. To obtain the assumption and guarantee for a predicate P of
process P (e.g., the invariant of a motion primitive), we project P onto
P’s external inputs to obtain the assumption, and onto P’s physical
state variables to obtain the guarantee. That is, AP ⇔ (∃x ∈ P.X. P)
and GP ⇔ (∀w ∈ P.W. P).

For assume-guarantee reasoning, we follow the method presented by
Nuzzo [104]. Given a program Π and an invariant IP for each process
P, we first traverse Π starting from the leaves to generate assume/guar-
antee contracts for each attached composition. Each PCθ,MQ gets a
contract based on the contract of their children:
• A⇔ (AP ∨M(AQ)∨¬(GP ∧M(GQ)))∧ ∀(x,y) ∈ θ. x = y
• G⇔ GP ∧M(GQ)∧ ∀(x,y) ∈ θ. x = y

These rules are the composition rules from [104, Section 2.3.2] to
which we have added the frame shifts. At each step of this process we
need to check that the well-formedness of the composed contracts:
• compatibility: A is satisfiable,
• consistency: G is satisfiable, and
• spatial separation: G⇒ P.rsrc∩M(Q.rsrc) = ∅ is valid.

The spatial separation check is new in our system and states that under
the guarantees provided by both P and Q, their respective resources
must be disjoint. Furthermore, when the root of Π is reached, the final
A must be implied by the environment assumption and the final G is
the overall behavior of the system.

5.2.3 Specifications and Annotations

The verifier for PGCD is not fully automatic; to help the verifier, the
programmer needs to provide some annotations. As mentioned earlier,
a motion primitive m is specified by (Pre, Inv, Post). Further, a resource
function for a robot with a complicated geometry can be complex; for
example, for a robotic arm, it can be the geometry of the arm itself. In
practice, the check for spatial separation uses programmer-specified
abstract footprint predicates which over-approximate P.rsrc and Q.rsrc
but for which the separation check is efficient.

For instance, in the grab motion primitive of an arm, we can over-
approximate the arm’s working envelope (which can be a complex
and non-convex set) by a half sphere around its base with a radius
corresponding to the arm’s maximal extension. This formula is simpler
than the arm’s resource function as it does not depend on the arm’s
state but may be sufficient to handle some scenarios. With the extra
footprint specification, it becomes possible to divide the collision check
in two parts:

1. we check that each component stays within the footprint of its
motion primitive and

5.3 implementation and evaluation 101

2. we check that the footprint of concurrently executing motion
primitives do not intersect.

The second type of user annotations are invariants given as con-
straints over the system’s state at particular program locations. For
instance, in Algorithms 5.2 and 5.3 when the cart is at line 6 and
the arm at line 2, we have |target −C.p| 6 target ∧A.γ = 0∧A.β =

minLowerAngle ∧A.α = maxUpperAngle. This is the conjunction of the
exiting the loop (Algorithms 5.2 line 4) and the arm in a folded state.
Similar to loop invariants, these invariants play a crucial role in our
reasoning process and enable us to break down the verification into a
finite number of checks.

5.2.4 Extensions

The following extension pertains specifically to the idle motion primi-
tive. Currently, our implementation only supports state formulas as
specifications and not relational formulas. However, the idle motion
primitive is a typical example of a relational property, where the state
after is the same as the state before. In our current implementation,
we also specify which part of the state each motion primitive mod-
ifies. The part of the state not modified is preserved like a frame
rule. Prior to performing the compatibility check, we perform a data
flow analysis. For each xi in the choreography, we associate a set
of predicates that hold at that point in the choreography. Predicates
that only involve unmodified variables are automatically transferred
across motion primitives. Another extension related to the idle mo-
tion primitive is the ability to have variable durations, also known
as preemptible motion primitives. If a motion primitive is followed
by a message rather than another motion primitive, we can infer its
duration from the other concurrent motion primitives. This enables us
to extend motion primitives to support variable durations.

5.3 implementation and evaluation

We have implemented PGCD, along with the various analyses, as an
interpreter, library, run-time system, and verifier in Python. The code
is publicly available at https://github.com/MPI-SWS/pgcd. To execute
a program, each robot runs a copy of the interpreter and the run-time
system. Each interpreter instance executes its respective processes on
the actual robot hardware, directly interacting with the hardware and
communicating through the run-time system. The run-time system
manages the messages by using an additional server that acts as
a central broker. This server keeps track of up-to-date frame shifts
between the different robots to ensure consistency across the system.
The verifier takes a program, along with its invariant annotations,

https://github.com/MPI-SWS/pgcd

102 multi-robot application programming

and specifications for the motion primitives and the environment as
input. It then decomposes the program into a list of processes, their
connections, and respective specifications. After this decomposition,
the verifier performs the checks described in Section 5.2. If any of
these checks fail, the verifier reports an error and provides detailed
information on the nature of the failure.

5.3.1 Run-time System

We use ROS for the message-passing layer [116]. ROS is a publish-
subscribe system where processes advertise topics, publish messages
or subscribe on specific topics. Topics can be hierarchically arranged
in namespaces. A ROS master node manages the topics. Each process
in our run-time system is assigned a namespace based on its identity,
and the labels of the messages correspond to topics in the ROS system.

To accurately model our semantics, we have implemented a syn-
chronous rendezvous communication on top of ROS, which by default
implements asynchronous message-passing. In our implementation,
when a process encounters a receive statement, it subscribes to the
topics corresponding to the labels occurring in the receive block, and
after receiving a message, it unsubscribes from the topics. This allows
the sender to query the ROS framework to check the presence of
a receiver and to block until a receiver is ready. Therefore, the send
operation blocks, accurately implementing our synchronous semantics.
The use of ROS lets us reuse a lot of robotics infrastructure available
in the ROS ecosystem. We build on ROS’s tf2 library [33] to deal with
frame shifts. In our implementation, every component periodically
publishes its frame shift relative to its children, as frame shifts are
dynamic and based on the current state. The receive operation for a
process queries tf2 for the frame shift from the sender’s frame to the
frame of the recipient process and transforms the content of the mes-
sage appropriately. Motion primitives are hardware specific and each
motion primitive is currently implemented directly for the correspond-
ing robot based on its Mperl description. Mperl (and its extension,
the sensor configuration synthesis) take care of interfacing with the
hardware of each individual robot and provide implementations of
the appropriate motion primitives.

5.3.2 Verifier

In our implementation, we use Promela models to check the commu-
nication between the different processes in the program. We generate
the Promela models from the program and its annotations and then
analyze them with SPIN. Promela (PROcess MEta LAnguage) [56]
is a process modeling language used to model concurrent systems.
SPIN [55] is a tool that checks Promela models for correctness using

5.3 implementation and evaluation 103

a model-checking algorithm. This allows us to detect communication
errors, such as deadlock or livelock, and ensure that the program
satisfies its communication specifications. For the geometric reasoning
we use SymPy [95], a symbolic manipulation package which contains
a module for 3D Cartesian coordinate systems.1 In our implementa-
tion, it is used to express formulas in their component’s frame and
to construct frames on top of their parent. When the frame shifts are
given, a formula can be automatically translated to a specific coor-
dinate system using symbolic manipulation in SymPy. As the frame
shift and motion primitives involve reasoning about non-linear arith-
metic, e.g., trigonometric functions arising from rotations, we use the
dReal solver [41] for non-linear theories over the real to discharge the
verification conditions.

Each motion primitive needs to have a specification in the form
of a (Pre, Inv, Post) triple. The specifications are written directly as
Python functions by extending the appropriate base classes provided
by the tool. The specification of a motion primitive describes frame
conditions by explicitly describing the variables modified (using a
modifies clause similar to ESC/Java [32]). Additionally, we allow the
programmer to separately specify footprints (regions of space used by
the motion primitive) for Pre, Inv, and Post. For example, the resource
function of an arm consists of a number of cylinders with spherical
joints, but the footprint can simply return a half-sphere bounding the
arm.

The verifier checks that the names of messages and motion prim-
itives coincide, and the values passed to the motion primitives syn-
tactically match those in the specification. Thus, correct programs,
which may perform local computations to provide values to the mo-
tion primitives, may be rejected. Verifying programs in the presence of
local computations would require implementing a symbolic execution
engine. The stronger syntactic check was sufficient for our examples.

5.3.3 Evaluation

We have implemented several examples involving multi-robot co-
ordination in our system. First, we describe our experimental setup,
both for the hardware and software. Then, we explain the experiments.
Finally, we report on the size of the programs, specifications, and
verification time. 2

1 http://docs.sympy.org/latest/modules/vector/index.html

2 A short video of our experiments can be seen at https://people.mpi-sws.org/

~mpirron/files/All_Experiments.mp4. Note that it uses older prototype versions of
the robots shown in this thesis.

http://docs.sympy.org/latest/modules/vector/index.html
https://people.mpi-sws.org/~mpirron/files/All_Experiments.mp4
https://people.mpi-sws.org/~mpirron/files/All_Experiments.mp4

104 multi-robot application programming

5.3.4 Setup

Our system for testing and evaluation is based on a carrier and the cart-
and-arm system. Both cart and carrier consists of two omnidirectional
driving platforms that allow for three degrees of freedom (two in
translation and one in rotation) when moving on a flat surface. This
wheel configuration enables the easy control of all three degrees of
freedom and does not require complex planning. The cart as a robot
arm mounted on top that is capable of grabbing objects.

The carts and the arm use stepper motors to accurately control
their motion. However, the carts do not have any global feedback
mechanism to determine their position and instead rely on a technique
called dead reckoning (e.g., [63]). This involves knowing the initial
position of the carts and subsequently updating their position by
counting the number of steps the motors make. If slippage is controlled
and the maximum torque of the motors is not exceeded, there is
relatively little error accumulation as long as the initial position is
accurately known. Furthermore, using stepper motors allows us to
know the time it takes to execute a given motion primitive by fixing
the rate of steps. Each robot is equipped with a Raspberry Pi 3 model
B, which is used to run the process and the run-time system. The
messaging services are provided by a separate Raspberry Pi, which
runs the ROS master node to which all the processes connect. The
Raspberry Pi runs Raspbian OS (based on Debian Jessie) with ROS
Kinetic Kame, along with the Mperl software, which provides the
motion primitive abstractions.

Table 5.1 estimates the implementation and specification effort for
motion primitives in terms of lines of code (LOC). Cart and Carrier
each have five motion primitives, the arm has eight. The implementa-
tion of the motion primitives for the carts require 92 and 97 lines of
code, while the implementation for the arm requires 154 lines. Addi-
tionally, there are 151 lines of shared code. The specification consists
of 174 and 75 LOC for the carts and 221 LOC for the arm. Note that
the two carts share much of the same specification, but their motion
primitives differ due to their specific hardware configurations.

5.3.5 Experiments

In the following, we provide a summary of four experiments on which
we evaluated our tools.

In the first experiment, called Fetch (Fig. 5.8), the arm, which is
mounted on top of the cart, is tasked with grabbing an object. If the
object is not in the vicinity of the arm, the cart has to relocate to a
suitable position to allow the arm to reach the object. After successfully
grabbing the object, the arm folds back into a transport pose, and the
cart moves back to its original position.

5.3 implementation and evaluation 105

Robot Motion Primitives Implementation Specification

(LoC) (LoC)

Arm SetTurntable 154 221

SetLowerArm

SetUpperArm,

SetPose, Grab,

Grip, Fold, Idle

Cart, Carrier Move, Strafe, 92 + 97 174 + 75

Rotate, Sweep.

Idle

Shared – 151 –

Table 5.1: Motion Primitives Implementation and Specification

The second experiment, Handover, is an extension of Fetch, where an
extra cart, i.e., the carrier, is added to the experiment that transports
the object. Both carts must meet before the arm takes the object placed
on top of the carrier. After the exchange, both carts go back to their
initial position (Fig. 5.9).

In the Twist and Turn experiment (Fig. 5.10), the carrier initially
starts in front of the cart, and the arm takes an object from it. Then, all
three robots move simultaneously: the cart rotates in place, the carrier
describes a curve around the cart, and the arm moves from one side
of the cart to the other. Finally, the arm places the object back on the
carrier.

In the last experiment, called Underpass (Fig. 5.11), the carrier cart
delivers an object to the arm which then picks it up. The carrier cart
moves around the arm, passing through an obstacle that is too low to
accommodate the object on top. Finally, the arm places the object back
onto the carrier on the other side of the obstacle.

The motion primitives used by the carts are explicitly implemented
and include moving straight, strafing, rotating, and sweeping. During
the underpass experiment, for example, the carrier cart executed a
sequence of motion primitives consisting of rotate, move straight,
rotate, and strafe to go around the arm. As gripping an object is
considered a collision, we exclude the gripper from the arm’s footprint
and do not model the objects it grips. Obstacles in the environment are
modeled as regions in three-dimensional space, and collision detection
is performed against these regions.

Table 5.2 shows the size of the programs in the core language of
Section 5.1 (summed across for all the robots) as well as the size of the
specifications. The program includes the statements for each process
and the connections between processes. As part of the program we
include the world description: the world is a virtual process which is

106 multi-robot application programming

(a) The cart and arm assembly is tasked to fetch an object

(b) Cart moves to the object’s position, arm grabs the object

(c) Arm retracts into its home position, cart returns to initial position

Figure 5.8: Fetch Experiment

Table 5.2: Programs, Annotations, and Checks

Experiment Program Annotations #VCs Time

(LoC) (LoC) (sec.)

Fetch 35 12 82 16

Handover 29 18 183 86

Twist and Turn 38 18 93 79

Underpass 52 40 393 103

the root of the parent-child attached composition. Additionally, the
world contains obstacles used for additional collision checks.

Finally, we show the number of verification conditions (#VCs) gen-
erated when checking the motion primitives and the total running
time. The communication protocols are simple and can be verified by
Spin in less than a second. However, verifying the motion primitives
requires more complex reasoning, which dominates the run time. The
total number of verification conditions is significant, as ensuring the
absence of collision is a quadratic problem in the number of compo-
nents. Overall, the experiments show that PGCD is expressive enough
for complex coordination tasks and, at the same time, the verifier can
scale to statically verify concurrency and geometric properties of these
tasks.

5.4 conclusion 107

(a) Like the fetch example, but the object is placed on a carrier system

(b) Cart and carrier meet at a suitable position and handover the object

(c) Cart and Carrier return to their initial position

Figure 5.9: Handover Experiment

5.4 conclusion

In conclusion, our language and verification system provide a compre-
hensive solution for specifying, verifying, and executing concurrent,
communicating components in a physical and geometric environment.
Motion primitives provide a powerful means of specifying and con-
trolling capabilities and behaviors of robots by allowing us to to define
a repertoire of fundamental actions that can be composed and orches-
trated to accomplish complex tasks. Due to their encapsulation and
compositionality, motion primitives enable robots to perform a wide
range of actions and adapt to different environments and scenarios.
By taking into account relative frames of reference and transforming
geometric data appropriately, our system enables precise coordination
and interaction among multiple robots. The verifier, a key component
of our system, ensures the absence of message passing deadlocks,
validates the properties of executed motion primitives, and detects
resource conflicts in concurrent execution. Through our evaluation, we
have demonstrated the effectiveness of our language and run time in
handling complex coordination tasks, while providing the necessary
verification. Overall, our approach offers a powerful framework for
developing and validating robot systems, facilitating the creation of
robust and reliable robotic applications.

108 multi-robot application programming

(a) Carrier (with object) and the cart and arm assembly face each other, the
arm grabs the object

(b) All three systems move: the carrier moves and rotates counterclockwise,
the cart rotates clockwise, the arm follows the movement of the carrier

(c) After moving, the arm returns the object to the carrier

Figure 5.10: Twist and Turn Experiment

5.4 conclusion 109

(a) The carrier with object is too high to clear the underpass

(b) The arm removes the object from the carrier, which is now able to drive
through the underpass

(c) After clearing the obstacle, the object is put back

(d) The carrier continues on its path

Figure 5.11: Underpass Experiment

6 R E L AT E D W O R K

In recent years, rapid prototyping tools and personal manufacturing
tools became readily available, leading not only to a democratization
of manufacturing, but also of innovation [42]. This trend has even
been compared to the way books have democratized information and
the way the internet has democratized information [48]. Machines like
3D printers or mills allow production even at home of mechanical
and electronical parts, and microcontrollers, along with a vast array
of easily obtainable driver boards, sensoric and actuatoric elements
lower the bar of entry intro developing and manufacturing robotics
significantly. This development has lead, and indeed, is still leading
a new generation of interactive tools and techniques that help non-
expert users to create, simulate, operate and optimize robotic systems.
Areas which have to be taken into account encompass the mechanical
structure, along with the appropriate actuation, which directly affects
kinematics and – by extension – dynamics of the robot, the sensing
infrastructure, which deals with perceiving and estimating the envi-
ronment and the state of the system, and motion planning. In light of
increasingly complex tasks, interaction and cooperation of multiple
robotic systems have also the be accounted for.

In the following, we take a look at various tools and techniques in
this context and see, how the work presented in this thesis is situated.

6.1 prototyping tools

Similar to Mperl are the robot compiler by Mehta et al. [89, 90] and
the work by Ha et al. [52].

The robot compiler [89, 90] uses a high level structural description,
along with a library of components, to generate manufacturable out-
puts. While targeting a much wider class of robots, only method stubs
to communicate with the hardware are generated, while the user has
to implement the actual control logic. The robot compiler has been
extended [92] to use reactive synthesis to generate a finite state ma-
chine software controller. This allows the robot compiler to generate
complex temporal behaviors, but it does not support complex calcula-
tions like inverse kinematics or finding the singularities of the system.
On the contrary, the work presented in this thesis targets only robotic
manipulators, but it generates higher level software functionalities.

Mehta et al. work on robot creation from functional specification [91]
is the closest to our work, as presented in chapter 3. The authors

111

112 related work

synthesize both a robot and its controller from a structured english
specification of the robot’s task. The Structured English description
is turned into Linear Temporal Logic (LTL); atomic propositions are
actions of the robot. On the controller side, the authors use reactive
synthesis to find a controller, and on the physical side, the authors
start with a common platform and add elements according to the
actions: moving requires wheels or legs, grabbing an object requires
a gripper, etc. Their method relies on a database mapping words to
components for both, actuators and sensors.

Ha et al. [52] use a library of components consisting of joints and
links which, together with a user specified input trajectory, generate
robotic systems following the input trajectory. Rather than trying to
design a structure that achieves a given motion, their tool generates the
software infrastructure to achieve any motion allowed by the structure.

Giusti et al. [44, 45] developed a framework for the generation of
modular manipulators which starts from a human demonstration of
the task to be accomplished. From this demonstration, a manipulator
is generated by searching over all possible robotic assemblies. Their
search method optimizes the structure, based on kinematic constraints,
and the software controller, based on the speed of accomplishing the
task.

Campos et al. [18] work on designing modular manipulators to
accomplish a given task. Given a task description with locations to
reach and regions to avoid, their algorithm searches the space of
physical designs to produce a robot which accomplishes the task. At
the same time they also produce the control configuration to move
the manipulator. Their controller is based on local feedback similar to
[111], and therefore, could also benefit from Mperl to handle a wider
range of tasks’ specification.

Related areas we have to consider are modular robotics, origami-
style robots, and domain specific languages (DSL).

modular robotics Modular robotics [142] – or modular (self-)
reconfigurable robotics – share similar goals in automating the design
and programming of modular robots. These systems are composed of
multiple independent, but often identical modules; e.g., a 2-modular
system contains only two types of modules, regardless of the number
of modules used in the system. Common to these system is their
ability to change their shape (variable morphology) and functionality
by rearranging their modules [68], or even by changing the modules
themselves [121]. The versatility and usefulness stem from the combi-
nation of many modules, and less so from individual modules. For
example, the PolyBot ?? consists of two modules with at most one
degree of freedom. By combining a sufficient amount of nodes, rolling
track locomotion and sinusoidal locomotion can be achieved by this
system.

6.1 prototyping tools 113

Automating the design and the programming of modular robots,
along with selecting the most appropriate configuration is an on-
going problem [61, 143]. Recent works in the area of modular robotics
[44, 45, 61, 108] have a similar goal of automating the design and
programming of modular robots by integrating modular and reusable
control manipulators and software, and possibly a task-based planning
software.

For example, the work of Jing et al. [61] proposes a system for modu-
lar self reconfiguring robots, consisting of a high level mission planner,
a design library with configurations and behaviors, and a design and
simulation tool. Their robots are made of many copies of a single
universal module; different behaviors are achieved through dynamic
reconfiguration. Given a specification, their motion planner searches
the space of actions and configurations for suitable configurations.

While inchworm like locomotion (e.g. [69]) is possible in Mperl, the
work presented in here is located on a lower level. It focuses on com-
posing electromechanical components to build robotic manipulators
and synthesizing the sensing infrastructure and is aimed mainly at
non-expert users, enabling them to design and manufacture a robotic
system with minimal domain specific knowledge.

origami style robots Origami robots are a different approach
of rapid prototyping of robots. These origami parts are designed in
a two dimensional plane, manufactured from flat sheets, and then
folded in to their three dimensional, final form. Typical examples are,
for example, deformable wheels [75], or foldable robot arms [65]. It is
not uncommon of origami robots to make heavy use of shape memory
alloys, which allow parts or even complete robots to be self-folding
(self-deploying) [30, 135], and to some extend, even actuation [10, 115].
Folded structures exhibit many material properties that robotics that
advantage of, for example nonlinear stiffness, multistability or impact
absorption [78]. Individual, origami style structures can be combined
with more rigid actuated structures [124]. Interactive robogami [123]
provides an end-to-end toolchain for manufacturing and simulating
foldable ground robots based on a library of pre-defined parts.

These larger origami-style structures lend themselves well for in-
tegration into the work presented in this thesis. These parts share
similar properties to 3D-printed parts (e.g., the inherent flexibility
due to the manufacturing process), and sensors can be embedded in a
similar fashion like the deflection sensor into the 3D-printed robot arm.
Smaller origami-styled parts or robots are not the target of this work,
but these devices often share similar goals like rapid prototyping,
reconfigurability, and also, to some extend, compositionality [139].

domain specific languages In contrast to general purpose pro-
gramming languages, which have no specialised feature pertaining

114 related work

a specifica are, domain specific languages are specialised to specific
areas and provide corresponding (language) constructs, concepts and
notations, but typically no end-to-end capabilites as presented in this
work. In their area, however, they provide abstractions and tools which
more closely associate the programming, and, to some extend, reason-
ing, to the intended domain. For a more detailed overview, we refer
to the Robotics DSL Zoo [103].

Several domain specific languages for rigid body kinematics and dy-
namics exists, i.a., [36, 37, 73], usually providing support for geometric
or dynamical relationsips, including position, orientation, velocities
and accelerations by standardizing terminology and notation and
providing semantic checks on these representations.

Similar in goal, Reckhaus et al. [118] presents a graphical program-
ming environment that eases the develops robot control programs,
focusing on parallel sequences of actions (similar to motion primitives).
It does not, however, generate control code of the motion primitives,
and is limited to a single robot, not considering multi robot interaction
or communication.

6.2 physics integration

Dimensional analysis, and the concept of dimensional analysis was
first proposed in 1822 by Fourier [35] and refined 1877 by Rayleigh
[117] and formalized by Buckingham [15]. Dimensional analysis has
long been used to analyse and develop mathematical models describ-
ing physical phenomena, e.g., in drip irrigation systems [144], weirs
[12], and other non-linear systems [109]. Recently, dimensional analy-
sis has even been applied to machine learning [107].

Integrating physical dimensions, units, and dimensional analysis
into type systems have a long history, e.g., the AMPERE programming
language [8], the strongly typed programming language presented
by Kennedy [64], the fully static dimensional analysis for C++ [133],
which verifies dimensional integrity and handles unit conversions,
or the work presented in [76], which applies dimensional analysis to
statistical modelling.

Often, these approaches use dimensional analysis to ensure dimen-
sional homogeneity of equations, thus making sure that equations are
physically well types and that quantities are used in a dimensionally
correct way.

Type systems and type information in the context of computer
science is not only used to ensure the well typedness of expression, but
it can also be used for code completion and code synthesis. Examples
encompass the work in [86], which synthesizes code fragments given
input and output types, or [51], which generates a list of expressions
with a specified type. Richer typing systems, e.g., inductive data types

6.3 robot interaction 115

and refinement types [114], allow even for synthesizing complete
methods like sorting algorithms.

In combining both aspects, Newton [136] is the only work we know
that uses physical information in the type system for synthesis. Taking
this approach further one step further, we apply dimensional analysis
to robotics to synthesize sensor configurations by providing a goal
directed search over the system’s components. Goals directly stem
from the controller and its unmeasurable parts.

6.3 robot interaction

Even more so than the development and manufacturing of individual
robots, robotic applications are typically programmed in low level
imperative programming languages, that provide little to no abstrac-
tions tailored to modelling the interactions between robotic systems, or
even reasoning about them. While programming robotics applications,
the programmer still has to deal with dynamic controllers and their
influence on the physical state, geometric constraints imposed upon
the components, as well as concurrency and synchronization. Writing
these programs draws from a multitude of domain specific knowledge,
and the prevailing programming languages such as C++ or Python,
or even more specialised, but still low level robotics languages (e.g.,
Rapid [49], KRL [99]) provide hardly any support in navigating these
complexities.

Many computational approaches have been developed for concur-
rent and real-time communication and computation, but few cover
the combination of communication, complex geometry, and dynamic
control of physical state. Modeling paradigms for hybrid systems
such as hybrid automata and its extensions [4, 5, 82] allow expressive
dynamics, but little support for compositional programming and rea-
soning about communication. Timed extensions to process algebras [9,
11, 97], Petri nets [93, 100, 127], or other concurrency models allow the
mixing of message passing and time, but do not combine geometric
reasoning and resource accounting. For the most part, analysis algo-
rithms for these models are intractable. In principle, logics such as
differential dynamic logic [113] and hybrid process algebras [11, 17,
74, 120] enable reasoning about arbitrarily complex concurrent and
hybrid programs, but their primary goal is the interactive verification
of models.

Cardelli and Gardner [19] define a process algebra for geometric
interaction, which combines communication and frame shifting, but
they do not consider dynamic flows of geometric objects over time,
which is crucial in a robotics context. Moreover, the objective in their
process algebra is an abstraction theorem, and not reasoning about
programs.

116 related work

Another approach is spatial logics, that have also been explored
from a topological perspective [20]. Here, modal operators describe
neighborhood relations. While such a framework can express and
check properties about arrangements, it cannot deal with temporal
evolutions.

From the perspective of DSLs for distributed robotic systems, recent
projects like StarL [80], Drona [24], and Koord [43] integrate a DSL,
specification, and verification support in the same framework. StarL
programs are composed of coordination and motion primitives which
have been specified in an interactive theorem prover which can be
used to verify the programs. Drona is built on top of a state-machine
based programming language, integrates a motion planner, and uses a
model-checker to test the programs. Koord is event based where events
trigger global actions which perform computations and call motion
primitives for different robots. The verification uses a bounded model
checker or user provided inductive invariants. None of these systems
integrate programming and reasoning with concurrency, dynamics,
and geometry.

To our knowledge, the work presented in Chapter 5 is the first
to simultaneously reason about the interaction between concurrency,
geometry, and dynamics, and it lays the the foundation for correct de-
sign and static verification of complex robotic applications interacting
dynamically in geometric space.

7 F U T U R E W O R K

This dissertation explored controller synthesis for reconfigurable robotic
systems, encompassing both serial and parallel configurations. This
broadened the scope to include diverse manipulators, ranging from
basic SCARA systems to intricate ones like cable and delta robots. In
particular, we laid our emphasis on the co-design of hardware and
software, putting both on equal terms. Controllers were synthesized
through two approaches: an abstract description or by constructing the
hardware and refining it based on the physical structure. Furthermore,
a combination of physical and virtual components was permitted,
offering valuable testing capabilities for robotic systems.

Using motion primitives provided a powerful means of specifying,
controlling and encapsulating basic capabilities of the robotic systems.
Motion primitives can be composed and orchestrated, enabling robots
to perform a wide range of actions and adapt to different environments
and scenarios.

In our co-design approach, we extended our focus to include sensor
selection and placement in form of the sensor configuration synthesis.
By carefully configuring and placing sensors on robots, we enable
these systems to perceive and understand their surroundings more
effectively. In addition, by providing physical dimensions and units
for each component, physical invariants that describe the functional
dependencies between specific parts of the system could be gener-
ated. These invariants were used to describe certain behaviours of the
system, and they found also use the the context of state estimation
and filtering. Additionally, by leveraging invariants, the system was
able to discover alternative approaches for coping with erroneous
parts, enabling the potential continuation of system operation. This
further contributed to the generation of motion primitives, which rep-
resented encapsulated actions that our robotic systems were capable
of executing.

With the ability to describe motion primitives in hand, we shifted
our focus to a higher level of robotics, namely the interactions between
multiple robotic systems. We examined the interactions among collab-
orative robotic systems that aimed to accomplish a shared objective,
such as a handover between two robotic systems. Robotic programs
were modeled as processes with associated motion primitives, thereby
addressing the concurrent nature of multiple robotic systems working
in unison towards a common goal. Each program was constructed
from processes that represented a logical segment of a robotic assem-
bly.

117

118 future work

The structure of the system was established through the attachment
of processes, which interconnected the physical state of two compo-
nents and facilitated the necessary coordinate transformations. The
PGCD processes had the capability to send and receive messages and
execute motion primitives, albeit limited to sequential code execution.
To ensure the correctness of communication and synchronization, such
as the prevention of deadlocks and the concurrent executability of mo-
tion primitives, we developed a verifier specifically designed for these
PGCD programs. This verification process involved assume-guarantee
reasoning and the separation of geometric resources.

Throughout the dissertation, each aspect, including controller syn-
thesis, concurrent systems, and verification, was accompanied by phys-
ical implementations and thorough evaluations to demonstrate the
effectiveness of our approach. These implementations provided tangi-
ble demonstrations of the proposed methodologies and allowed for
comprehensive assessments of their performance and capabilities. Our
work is distinctly situated at the intersection of physics and verifica-
tion, combining principles from both domains. This unique approach
opens up possibilities for further exploration and development.

In the following sections, we outline two potential directions in
which our work can be extended and expanded upon.

7.1 progressing sensor integration and ma-
terial science

Multiple materials are used in the creation of robotic systems, such
as aluminum and plastics, each possessing distinct characteristics like
strength, hardness, or elasticity. Material properties can vary over
time and are influenced by the environment in which the robot op-
erates, directly impacting its functionality and safety. For instance,
consider a structural part, such as a beam, within a robotic system.
If the beam is made from brittle material, it will fail more rapidly
compared to ductile materials that can withstand a higher degree
of plastic deformation. Moreover, ductility and brittleness also de-
pend on environmental factors like temperature (e.g., glass transition
temperature) or humidity (e.g., decreasing surface ductility). Thus,
ductile materials are potentially preferable in this case, as they allow
the system to return to a safe state, e.g., by controlled unloading. On
the contrary, other parts in the system may benefit from materials
that exhibit low plastic deformation. In an ideal scenario, the robotic
system should possess awareness of the material properties associated
with its components. This awareness can be achieved through direct
measurements, such as embedding sensors directly into the materi-
als, or indirect measurements, which involve utilizing invariants or
deducing information from other measurements. By leveraging these

7.2 verification of physical properties 119

measurements, the robotic system can make informed statements or
even assertions about the present and future state of the system as
well as its individual parts.

To tie in with the modular nature of Mperl, ideally the system is
able to figure out certain key properties of a component, even if the
material is unspecified or unknown, and make a projection of the
expected behavior and failure mode. In some preliminary tests, we
used a robot running Mperl, but modified material properties of the
robot, e.g., exchanged an arm made of PLA for one made of PETG.
In these first test, we were able to automatically derive the flexural
modulus and thus to relate observable properties (e.g. load induced
deflection when lifting known weights) to specific materials.

7.2 verification of physical properties

The verification process in PGCD primarily focuses on the higher-
level composition of motion primitives, overlooking the lower-level
code implementation. However, in line with the earlier discussion
on physics integration, Mperl, together with its physical invariants,
presents an opportunity to not only semantically verify program code
but also physically verify robotic systems. This expanded approach to
verification encompasses various aspects, such as incorporating sup-
port for quantities and dimensions, accommodating uncertainties in
variables (stochastic variables), and checking invariants and assertions
that may be influenced by system configuration or environmental
factors. Additionally, with the ability to facilitate ad-hoc modifications
and reconfigurations of robotic systems, properties may dynamically
change during runtime, thereby necessitating verification to become a
continuous process throughout operation.

The adoption of motion primitives further reinforces this approach,
as motion primitives demonstrate varying behaviors contingent upon
their configurations. For instance, consider the scenario of the carrier
operating independently, where minimal constraints are imposed on
its motion. In contrast, when the carrier is coupled, e.g., with a trailer
and possesses a significant mass or high center of gravity, restrictions
on its degree of freedom are imposed, as well as boundaries for accel-
eration and deceleration are set, and limitations on its turning radius.
A verification process ideally should account for these variations, to
ensure the system’s compliance.

Both, the verification of low level robotics and the inclusion of
material science aspects lead to richer and more varied robotic systems.
As an example, consider an autonomous research drone used in a
remote area, where human interference is limited or not possible and
where the impact on the environment has to be minimized. We could
easily imagine the drone to be biodegradable, with assertions that

120 future work

the propulsion system can safely reach the intended position then
disintegrate, and the research appliance could report its measurements
with guarantees on its precision during its intended operation time.

Verifying these programs is challenging and adds a lot of complexity
to already existing verification approaches, but results in systems that
are verified not only on a code level or motion level, but on a physical
level, thus making them far safer and more capable.

A P P E N D I X

121

a implementation details of state estimation 123

In this chapter, we describe the technical implementation in more
detail. In particular, we describe how state estimation and filtering is
practically integrated into Mperl and the sensor configuration synthe-
sis and how certain types of failures can be detected.

a implementation details of state estima-
tion

In this section, we tie the findings of the previous chapters together and
show, how Mperl and the sensor configuration synthesis supplement
state estimation, and, in turn, how the state estimation provides insight
in potentially faulty sensors.

Fig. summarizes our approach. From Mperl, we derive the model
necessary for the state estimation, and by means of the sensor con-
figuraiton synthesis, unkown observation functions are derived, if
not provided otherwise. Estimated states and available observations
are analyzed by means of the Kullback-Leibler Divergence, while not
without its shortcomings, provides an intuitive measurement. If the
measured state and the predicted deviate, this indicates a potentially
faulty quantitiy, e.g., a sensor or an invariant. To continue using the
robotic system, an alternative way of determining the faulty quantity
has to be found. This can be by using an alternative invariant, or by
deriving a new one by means of the sensor configuration synthesis.

State Prediction
State Estimation

Mperl

SCS

Error Detection

Model

Invariants

Inoperable
Sensors and

Invariants

Figure .1: State estimation integrates the model from Mperl and invariants
from the SCS. Potentially faulty quantities are identified by analyz-
ing predicted and measured states, and the SCS is used to derived
alternative measurements.

a.1 State Estimation

In section 2.6, we introduced dynamical systems, which model the
interaction between the environment and a controller that generates
control inputs u depending on the perceived state y. This is a gener-

124 future work

alization; in reality, typically the controller tries to estimate a state x̂
from y to get a more accurate representation of the current state, and
the control input u is then bases on x̂ instead of y. Multiple reasons
exist why x may differ from y; often, inherent noisy and perhaps
unstable sensor readings are the cause, as are missing or intermittend
observations, which can occur if information is only shared between
mobile robots if they are in close proximity to each other. These obser-
vations or measurements have to be preprocessed before they can be
put to use. It is often assumed that the initial state X0 is known, and
every subsequent state is estimated. Kalman filters have long been
used as state estimators; for linear dynamical systems, the kalman
filter is an optimal estimator [62], and for non-linear systems, the
extended Kalman filter [87, 128] is widely used, but it may no longer
be optimal.

The standard extended Kalman filter is given by

x̂t|t−1 = φ(xt−1|t−1,ut) (.1)

Pt|t−1 = ΦtPt−1|t−1Φ
ᵀ
t +Qt (.2)

Kt = Pt|t−1H
ᵀ
t (HtPt|t−1H

ᵀ
t + Rt)

−1 (.3)

x̂t|t = x̂t|t−1 +Kt(zt − h(x̂t|t−1)) (.4)

Pt|t = (I−KtHt)Pt|t−1 (.5)

whereΦ is the Jacobian of φ(xt−1|t−1,ut),Ht the Jacobian of h(xt|t−1),
and Qt and Rt are the process and measurement uncertainty. We use
t as the discrete time index, x̂t|t−1 represents the predicted state for
time index t, given the data up to and including t− 1; similar, Pt|t−1
denotes the predicted estimate uncertainty and Kt the Kalman gain at
time t, possibly based on the data including t− 1.

The kalman filter uses φ : Y ×U 7→ X to reconstruct x̂ from the
perceived state y (i.e., the observations). φ differs from f, the actual
state transition equation of the environment; contrary to f, φ is often
an idealization of the actual system.

Using Mperl, we gain a comprehensive understanding of the sys-
tem’s behavior and trajectory. The model, φ, represents the rigid body
structure of the robotic system based on its input description.

For a robotic system with feedback from node v, meaning there is a
sensor measurement associated with the component, we calculate the
transition matrix from the anchor point to v. If a component, such as
a robot arm, is not attached directly to an anchor point, the resulting
model may have unbound variables, which become bound once the
component is attached to either another component, or to anchor
points.

Any alterations to the mechanical structure are thus reflected in φ,
which maintains the modularity and compositionality of Mperl. In the
case of parallel robots, multiple transition matrices exist due to the
partitioning into chains, each with potential additional sensors. Sensor
fusion is then used to achieve more accurate estimates.

a implementation details of state estimation 125

The observation function, h, describes the functional relationship
between a measurement and φ output, whether it’s direct or indirect. If
there is no known function mapping measurement space to state space,
sensor configuration synthesis is employed to derive the function.

a.2 Error Detection

We implement an error detection by means of measuring the relative
entropy between the observed values of the sensors and the corre-
sponding values of the Mperl model. For both we keep a history of
values. The compositionality of Mperl’s robotic systems lend itself
well to an error detection which stays model free and does not as-
sume any prior knowledge of the underlying distributions. Under
the assumption, that errors occur rarely, we can use relative entropy
(Kullback Leibler Divergence) to compare sequences of sensor readings
and their (theoretical) counterparts. If both sequences have little dif-
ference, the relative entropy between these two are is close to 0. To
estimate the distributions, we bin values using d

√
ke bins, where k can

be considered the size of a sliding window of values. We write bYc for
the bins created out of Y.

Denote by X a discrete random variable, e.g. a sensor reading which
is updated at specific time intervals, and Prob(P) the probability mass
function over P, then the (Shannon) entropy [125] is given by

SH(X) = −
∑
x∈X

Prob(x)logProb(x) (.6)

We can then define the relative entropy (i.e. the Kullback-Leibler
divergence) [23, 71] between two probability distributions P,Q

D(P,Q) =

n∑
i=1

P(xi)log(P(xi)/Q(xi)) (.7)

D(P,Q) is not a metric, i.e. DKL(P,Q) 6= DKL(Q,P); it is a measure of
information entropy of one distribution relative to a reference distri-
bution. The reference distribution comes from the theoretical values
of Mperl, which generates these values from the abstract description
(and the corresponding synthesized controller), along with the input
trajectory. We measure the difference in entropy between the mea-
surements and the predicted state, and if observations and estimated
state are close together, we observe low entropy between them. In the
case of high entropy, anomal values are expected, which hints at a
potential sensor malfunctioning. From the history, we can compute

126 future work

the Krichevsky-Trofimov estimator [70] of the observations; for each
z ∈ histZ (Z is in d

√
ke bins), we calculate

Ẑx(z) =
|{i | t− k < i 6 t∧ hi(xi) ∈ z}|+ 1/d

√
ke

d
√
ke+ 1

(.8)

Ẑo(z) =
|{i | t− k < i 6 t∧ zi ∈ z}|+ 1/d

√
ke

d
√
ke+ 1

(.9)

We look at the given observations (Ẑo) and the observations matching
the estimated states (Ẑx). From that, we compute the Kullback-Leibler
divergence of the two distributions by

Dt(Ẑx, Ẑo) =
∑
z∈bZc

Ẑx(z) log(Ẑx(z)/Ẑo(z)) (.10)

If both distributions Ẑx and Ẑo are the same, the Kullback-Leibler
Divergence Dt is zero, and if both distributions are similar, but not
the same (e.g., two different sensor measuring the same quantity), the
divergence is constant. For each new measurement, we calculate

gt−1 = Dt−1(x̂t−1|t−1 , . . . ot−1) (.11)

gt =
1

|Ot|

∑
o∈Ot

Dt(. . . x̂t−1|t−1 x̂t|t−1 , . . . ot−1o) (.12)

and calculate the gradient

g = gt/gt−1 (.13)

The gradient g is expected to be close to 1 during normal operation.

types of errors While a complete fault diagnostic is outside of
the scope of this dissertation, Eq. .13 holds some interesting properties
which can be used to narrow down the type of error.

If 1 < gt/gt−1 6 ∆, i.e. the entropy is continuously growing, but
not suddenly spiking, a possible sensor drift is detected. This means,
that the measured value from the sensor isslowly deviating from the
measured value. The measurement noise, instead of being distributed
along N(0,R) for some R, it comes from a distribution N(d(t),R) where
d(t) is a monotonic function. This can occur over time, if a sensor ages,
or due to environmental factors, e.g. a sensor which produces waste
heat while measuring temperature sensitive quantities. As the sensor
warms during use, the readings drift.

Large spikes, i.e. ∆ < gt/gt−1, indicate external events not ac-
counted for by the system design which influence its dynamic in a
sudden way, e.g. a crash, or the robot bumping into an object which
causes it to deviate from its path. Depending on the severity of the
external event, the robot may be able to resume operation and returns
to its original trajectory.

a implementation details of state estimation 127

Figure .2: Franka Emika Panda robot arm with 7 DoF used in the evaluation
of the error detection

a.3 Limitations

Using entropy in this way is not without its problems; in particular,
bounding ∆ is often more an engineering problem and depends on the
robotic system and the task the system should be solving, and there
exists a well-known problem with the Kullback-Leibler divergence
that can occur if Ẑx(z) approaches 0. Due to numerical issues, Ẑo(z)
can become very large, thus rendering the Kullback-Leibler divergence
unsuitable in these cases. This can happen especially when learning
continuous distributions from observations, e.g. when using Kalman
filters, and the distribution of Ẑo(z) is dominated by these anomalies. If
anomalies occur seldom, Ẑo(z) is fully characterized by the uncertainty
around the expected measurement with no empty bins. This is a
reasonable assumption in our case, as the reference trajectory ties
observations to the set value and thus, anomalies get detected early
on.

a.4 Evaluation

To give a concrete example, we run Mperl on a commercial robotic
manipulator (Fig. .2) with seven degrees of freedom.

It is equipped with 14bit position encoders, its pose repeatability
is ±0.1mm and it can follow a path within ±1.25mm. The task of the
robot arm is to move from its home position PH to position P1, pick up
an object, place it at P2, and return to PH (Fig. .3). Between PH and P1,

128 future work

P

P

P2

⁠H

1

Figure .3: Input trajectory to test detection of impact and sensor drift

0 50 100 150 200 250
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

En
tro

py

x-axis
y-axis

(a) During impact, PH − P1

0 100 200 300 400 500
t

0.00

0.02

0.04

0.06

0.08

En
tro

py y-axis
x-axis

(b) During drift, P2 − PH

Figure .4: Entropy measurements (Eq. .13) while traversing the trajectory
from Fig. .3

the robot arm is physically subjected to a bump, which throws it off
its position; the robot is able to resume operation afterwards. During
its return from P2 to PH, we introduce drift to the position encoders.
Both, the impact and the sensor drift, is successfully detected.

Figure .4 shows the entropy measurement during these phases.

b technical implementation details of robotic
systems

Components in Mperl that actuate or sense are equipped with compo-
nent controllers that provide an interface between high level commands
from the main controller and the low level interaction with the at-
tached electro-mechanical components.

The main controller receives as input the Mperl model, from which
it creates the graph, and, subsequently, the kinematics and dynamics.
It relays the relevant information as input to the component controllers
(e.g., the system model φi for node vi for use in the state estimation).

b technical implementation details of robotic systems 129

Main Con-
troller

Component
Controller 1

Component
Controller 2

Component
Controller ...

Output

Mperl

SCS

Action

Figure .5: Schematic view of the general control scheme. Black denotes an
input, e.g., a user provided trajectory; green depicts links between
the controllers and the synthesis architecture (Mperl and Sensor
Configuration Synthesis, SCS). Orange denotes feedback from the
component controllers to the main controller. Blue colored lines
indicate communication between controllers.

Based on the action that is to be performed, it calculates the target
configuration of each node, and sends a high level command via UART
or SPI, e.g. the angle in radians to revolute actuators, or displacement
in mm to linear actuators. In turn, the component controllers translate
these commands into signals which are fed into the electro-mechanical
component, e.g., a PWM signal in case of a servo, or pulses in the
case of a stepper motor. If a sensor is present, it can take two forms.
Firstly, it can provide local feedback only. For example, in the case of a
stepper motor, a hall effect sensor may only interface locally with the
component controller to ensure that no steps are missed. Secondly, it
can provide global feedback, which is fed back into the main controller.
The measurements that are taken typically need to be translated from
there measured value (often a voltage, or in the case of a quadrature
encoder, two square waves) to a high level observation that can be
used in the main controller (e.g., the deflection in mm, or the absolute
position in radians).

In case of a sensor only component, after filtering the measurements
and translating them into observations which match the expected
high level type, these observations are always fed back into the main
controller.

Multiple sensors can be embedded into one block; e.g., in the afore-
mentioned figure, we have a local feedback loop, which feeds its data
back to the local controller, which corrects the output locally, with-
out interaction wiht the main controller. A second feedback loop is
provided which relays its sensor readings directly back to the main
controller.

Figure . .6 provides a view of the controller and the relevant links
to Mperl and the sensor configuration synthesis. The motor driver is
optional, but many electro-mechanical components require additional
circuitry to be useful. Their complexity can be as simple as switching

130 future work

on or off power, e.g., in the case of a solenoid used as a simple end
effector, or they can be highly integrated and provide diagnostics and
additional sensoric [131]. The component controllers ensure that these
complexities are shielded from the main controller, and by extension,
from the non-expert user, but are available if so desired.

Component
Controller

Component
Driver

Electro-
mechanical
Component

Command

Feedback

Output

Local
Feedback

Global
Feedback

Mperl

SCS State
Estimation

Figure .6: Schematic view of an individual component. The component con-
troller receives high level commands from the main controller,
and translates them so that the electro mechanical component, or
an attached component driver, can be driven. Blue lines depict
the interactions with Mperl, SCS and the state estimation. Gobal
feedback is provided to the main controller, while local feedback
is only relayed to the local controller.

To provide a more specific example, consider the example SCARA
system. On the technical side, the system consists of one main con-
troller, and two local controllers. The local controllers control the
motion of the shoulder and the elbow. The system can be equipped
with two different motors: stepper motors (standard Nema17), and
brushed DC motors.

Depicted in Fig. .7 is the configuration with two stepper motor. In
this case, the sensors used for each local controller are hall effect sen-
sors (Allegro A1324), which provide feedback on the angular rotation
of the respective axis’, and a current sensor (via TMC2209) which is
used to solely detect if the steppers are stalling. In this case, a con-
tinuous monitoring of the current consumption is not possible. The
motor itself is driven by an TMC2209 driver; thus, the component
driver consists of the TMC2209 and the A1324 ICs, along with an
Raspberry Pi Pico, which assumes the role of the local controller. In
lieu of stepper motors, brushed DC motors can be used. They are
equipped with quadrature encoders, that are used get feedback on
the actual position, and they can be continuously monitored for their
current consumption (IN219). Here, the component driver consists
of the A1324, the IN219 and the H-Bridge for the motor. Regardless

b technical implementation details of robotic systems 131

Camera tracking

Hall effect sensor

Hall effect sensor
Current sensor

Hall effect sensor
Current sensor

Global feedback
to main controller

Commands
from main controller

Figure .7: Sensors and electro-mechanical components of the SCARA system.
Depicted are the types of sensor used in the system, along with
the local and global feedback (orange) and the input (blue) from
the main controller. Camera tracking is global feedback only, the
hall effect sensors on the joint axis’ are both, local and global. The
current sensors and the hall effect sensor of the upper motor is
local feedback only.

of the motor choise, in case of the elbow joint, a belt transmission is
used to offset the motor, and by that, to allow a lighter, more nimble
arm. To make sure that the input rotation is correctly transferred, a
hall effect sensor monitors the (remote) joint axis. The upper motor,
which drives the elbow joint, has an additional hall effect (or quadra-
ture encoder, resp.). This sensor is local feedback only and is used
to check if the input shaft rotation corresponds to the output shaft
revolution. In addition, a global feedback only sensor is available in
the form of a camera which tracks the orange marker at the end of
robot arm. The feedback from this sensor fed back directly into the
main controller. The feedback of the hall effect sensors on the elbow
axis and on the shoulder axis are also reported to the main controller;
each sensor (with the exception of the camera) provides local feedback
to the component controllers. The main controller is a Raspberry Pi
[110] which runs the Mperl software. All communication is done via
SPI and UART.

On the controlling side, we provide Mperl with an input description
of the system. For each local controller, we calculate the partial model
from vA , where v is the node in the graph at which that controller’s
component is located. This partial model is used in the state estimator;
the observation functions that establish the relationship between the
output of the hall effect sensor and the system model are user provided,
and the the current sensor (in the case of the brushed dc motors) are
integrated via the sensor configuration synthesis. For uncertainties,
which are not known or are not user provided, an automatic derivation
is done by means of autocovariance least squares [1, 105]. The main
controller provides specific motion primitives, which control the arm
in a specific way. Apart from primitives concerning forward and
inverse kinematics, the arm supports, i.a., fold, which folds up the

132 future work

arm so that it can safely be driven on top of the cart, or RetractArm,
which retracts the arm while minimizing the load to the system.

c additional pgcd ressources

In the following, we offer supplementary resources.

c.1 Motion Primitive Example

To provide a clearer understanding of the intricacies involved in speci-
fying motion primitives, listing 1 demonstrates the fold motion primi-
tive specification for the arm.

c additional pgcd ressources 133

1class Fold(MotionPrimitive):

2def __init__(self, name, component):

3super().__init__(name, component)

4

5def duration(self):

6return Int(10) # takes 10 seconds

7

8def modifies(self):

9# changes all the arm’s state variables

10return self.component.variables()

11

12def pre(self):

13return true # true as a Sympy formula

14

15def inv(self):

16return true

17

18def post(self):

19# lower arm: 130 degrees

20a = Eq(self.component.alpha(), self.component.maxAngle

)

21# upper arm: -130 degrees

22b = Eq(self.component.beta(), self.component.minAngle)

23# turntable at 0

24c = Eq(self.component.gamma(), 0)

25return And(a, b, c)

26

27def preFP(self, point):

28# reuse cmpt resources

29return self.component.resources(point)

30

31def invFP(self, point):

32i = self.component.resources(point)

33# lift formula to trajectories

34# (variables as function of time)

35return self.timify(i)

36

37def postFP(self, point):

38return self.component.resources(point

Listing 1: Fold motion primitive implementation

The MotionPrimitive base class is inherited by the given class. The
base class defines the interface for specifying motion primitives. The
constructor, which is denoted by the __init__ method, takes two
inputs: a name used by processes to call the class, and a specification
of the components on which it executes (Line 31) The duration of
the motion primitive is specified by the duration parameter (Line
5). The class also includes the methods pre, inv, and post, which
correspond to the precondition, invariant, and postcondition of the
motion primitive. The modifies method specifies which variables are

134 future work

modified by the motion primitive (Lines 12, 15, 18). In this case, the
precondition and invariant are trivial, and the postcondition speci-
fies specific angles for the upper/lower arm and the turntable. The
preFP, invFP, and postFP methods (Lines 27, 31, 37) are the footprints
of the precondition, invariant, and postcondition, respectively. They
correspond to the resource function of the arm to which the motion
primitive is attached. The function takes a point as input and returns
a formula that evaluates to true if the point is in the footprint. While
all the methods in the MotionPrimitive interface are redefined in
the given class, in most cases, motion primitives retain the default
behaviors. For example, the modifies method defaults to returning all
the component’s variables, which makes the specification shorter.

c.2 PGCD Code for Fetch

Listing 2 shows the PGCD source for the Fetch example.1

1// Process arm

2while true do

3receive(idle)

4fold⇒
5move(origin)

6send(cart, folded)
7grab(loc)⇒
8grab(loc)

9send(cart,grabbed)
10done ⇒
11break

12

13

14

1// Process cart

2send(arm, fold)
3receive(idle)

4folded⇒ skip

5moveToward(target)

6send(arm,grab(target))
7receive(idle)

8grabbed⇒ skip

9send(arm, fold)
10receive(idle)

11folded⇒ skip

12while (p /∈ homeRegion) do
13moveToward(homeRegion)

14send(arm,done)

Listing 2: PGCD program for Fetch

c.3 Promela Model Example

In Listings 3 - 5, we provide the Promela model for the Fetch example.
For comparison, Listing 2 show the corresponding PGCD code, from
which the promela code is generated.

The synchronization is achieved using standard Spin constructs
such as channels, and we employ an additional process called the
scheduler to oversee time management. Listing 3 shows the code of
the cart, along the the combination of concurrently executed motion
primitives, that are extracted during the state space exploration. The

1 Modified taken from https://github.com/MPI-SWS/pgcd/blob/master/pgcd/nodes/

verification/test/fetch_setup.py.

https://github.com/MPI-SWS/pgcd/blob/master/pgcd/nodes/verification/test/fetch_setup.py
https://github.com/MPI-SWS/pgcd/blob/master/pgcd/nodes/verification/test/fetch_setup.py

c additional pgcd ressources 135

code for the arm is displayed in Listing 4, while the code for the
scheduler can be found in Listing 5. There exists only one final state
in which all processes have completed their execution. Consequently,
processes are either engaged in communication (e.g., Line 14 of listing
3), executing a motion primitive (line 18), or in a terminated state (line
36).

1// Message motion primitives

2mtype = { fold, folded, grab, grabbed, done, idle, moveToward, move,

grabbing }

3chan channel[2] = [0] of { mtype }

4int busy_for[2] = 0

5mtype doing[2]

6bool terminated[2] = false

7

8#define set_mp(id, mp, time) { doing[id] = mp; \

9busy_for[id] = time; busy_for[id] == 0 }

10

11active proctype cart() {

12channel[1]!fold;

13do

14:: channel[0]?folded -> break

15:: timeout -> set_mp(0, idle, 1)

16od;

17do

18:: set_mp(0, moveToward, 1)

19:: break

20od;

21channel[1]!grab;

22do

23:: channel[0]?grabbed -> break

24:: timeout -> set_mp(0, idle, 1)

25od;

26channel[1]!fold;

27do

28:: channel[0]?folded -> break

29:: timeout -> set_mp(0, idle, 1)

30od;

31do

32:: set_mp(0, moveToward, 1)

33:: break

34od;

35channel[1]!done;

36EXIT_0: terminated[0] = true

37}

Listing 3: Promela Code of the cart

1active proctype arm() {

2do

3:: channel[1]?fold ->

4set_mp(1, move, 1);

136 future work

5channel[0]!folded

6:: channel[1]?grab ->

7set_mp(1, grabbing, 1);

8channel[0]!grabbed

9:: channel[1]?done ->

10goto EXIT_1

11:: timeout ->

12set_mp(1, idle, 1)

13od;

14EXIT_1: terminated[1] = true

15}

Listing 4: Promela Code of the Arm

1active proctype scheduler() {

2do

3:: busy_for[0] > 0 }\&\& busy_for[1] > 0 -> d_step{

4# code for printing time + motion primitives

5if

6:: busy_for[0] > busy_for[1] ->

7busy_for[0] = busy_for[0] - busy_for[1];

8busy_for[1] = 0

9:: else ->

10busy_for[1] = busy_for[1] - busy_for[0];

11busy_for[0] = 0

12fi;

13}

14

15:: terminated[0] \&\& terminated[1] ->

16break

17od;

18}

Listing 5: Promela code of the Scheduler

The code responsible for printing the time and motion primitive
state has been omitted due to its length. Printing the m_type variable
directly is not possible because of the way it is compiled in Spin. As a
workaround, we need to conduct a case analysis on the potential values
of m_type and then print the corresponding literal. Unfortunately, Spin

lacks support for functions, resulting in a lengthy expanded code.
Furthermore, the model must be compiled with the -DPRINTF flag
to ensure that the printing takes place during the model checking
process.

B I B L I O G R A P H Y

[1] Bernt M. Akesson, John Bagterp Jorgensen, and Sten Bay Jor-
gensen. “A Generalized Autocovariance Least-Squares Method
for Covariance Estimation.” In: 2007 American Control Confer-
ence. 2007, pp. 3713–3714. doi: 10.1109/ACC.2007.4282878.

[2] James Albus, Roger Bostelman, and Nicholas Dagalakis. “The
NIST robocrane.” In: Journal of Robotic Systems 10 (1993). doi:
10.1002/rob.4620100509.

[3] Götz Alefeld and Günter Mayer. “Interval analysis: theory and
applications.” In: Journal of Computational and Applied Mathe-
matics 121.1 (2000), pp. 421–464. issn: 0377-0427. doi: https:
//doi.org/10.1016/S0377-0427(00)00342-3.

[4] Rajeev Alur, Radu Grosu, Insup Lee, and Oleg Sokolsky. “Com-
positional modeling and refinement for hierarchical hybrid
systems.” In: J. Log. Algebr. Program. 68.1-2 (2006), pp. 105–128.

[5] Rajeev Alur and Thomas A. Henzinger. “Modularity for Timed
and Hybrid Systems.” In: CONCUR. Vol. 1243. LNCS. Springer,
1997, pp. 74–88.

[6] Eugene Asarin, Olivier Bournez, and Thao Dang. “Approxi-
mate Reachability Analysis of Piecewise-Linear Dynamical Sys-
tems.” In: Approximate Reachability Analysis of Piecewise-Linear
Dynamical Systems (May 2000).

[7] Gregor B. Banus̆ić, Rupak Majumdar, Marcus Pirron, Anne-
Kathrin Schmuck, and Damien Zufferey. “PGCD: Robot Pro-
gramming and Verification with Geometry, Concurrency, and
Dynamics.” In: ICCPS. ACM/IEEE, 2019.

[8] M Babout, H Sidhoum, and L Frecon. “AMPERE: a program-
ming language for physics.” In: European Journal of Physics 11.3
(May 1990), pp. 163–171. doi: 10.1088/0143-0807/11/3/007.

[9] Jos CM Baeten and Willem Paul Weijland. Process algebra. Cam-
bridge university press, 1991.

[10] Amine Benouhiba, Kanty Rabenorosoa, Patrick Rougeot, Mor-
van Ouisse, and Nicolas Andreff. “A Multisegment Electro-
Active Polymer Based Milli-Continuum Soft Robots.” In: 2018
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS) (2018), pp. 7500–7506.

[11] J.A. Bergstra and C.A. Middelburg. “Process algebra for hybrid
systems.” In: Theoretical Computer Science 335.2 (2005). Process
Algebra, pp. 215–280. issn: 0304-3975.

137

https://doi.org/10.1109/ACC.2007.4282878
https://doi.org/10.1002/rob.4620100509
https://doi.org/https://doi.org/10.1016/S0377-0427(00)00342-3
https://doi.org/https://doi.org/10.1016/S0377-0427(00)00342-3
https://doi.org/10.1088/0143-0807/11/3/007

138 bibliography

[12] Mohammad Bijankhan and Vito Ferro. “Dimensional analysis
and stage-discharge relationship for weirs: a review.” In: Journal
of Agricultural Engineering 48.1 (Feb. 2017), pp. 1–11. doi: 10.
4081/jae.2017.575. url: https://agroengineering.org/
index.php/jae/article/view/575.

[13] Sampada Bodkhe, Clara Noonan, Frederick P. Gosselin, and
Daniel Therriault. “Coextrusion of Multifunctional Smart Sen-
sors.” In: Advanced Engineering Materials 20.10 (2018), p. 1800206.
doi: https : / / doi . org / 10 . 1002 / adem . 201800206. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.

201800206. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/adem.201800206.

[14] Aaron Bradley and Zohar Manna. The calculus of computation:
Decision procedures with applications to verification. Jan. 2007. doi:
10.1007/978-3-540-74113-8.

[15] E. Buckingham. “On Physically Similar Systems; Illustrations
of the Use of Dimensional Equations.” In: Phys. Rev. 4 (4 Oct.
1914), pp. 345–376. doi: 10.1103/PhysRev.4.345. url: https:
//link.aps.org/doi/10.1103/PhysRev.4.345.

[16] Christoph Budde, Manfred Helm, Philipp Last, Annika Raatz,
and Jürgen Hesselbach. “Configuration Switching for Workspace
Enlargement.” In: Robotic Systems for Handling and Assembly. Ed.
by Daniel Schütz and Friedrich M. Wahl. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011. isbn: 978-3-642-16785-0. doi:
10.1007/978-3-642-16785-0_11. url: https://doi.org/10.
1007/978-3-642-16785-0_11.

[17] Joseph Campbell, Cumhur Erkan Tuncali, Peng Liu, Theodore
P. Pavlic, Ümit Özgüner, and Georgios E. Fainekos. “Modeling
concurrency and reconfiguration in vehicular systems: A π-
calculus approach.” In: CASE. IEEE, 2016, pp. 523–530.

[18] Thais Campos, Jeevana Priya Inala, Armando Solar-Lezama,
and Hadas Kress-Gazit. “Task-Based Design of Ad-hoc Mod-
ular Manipulators.” In: International Conference on Robotics and
Automation, ICRA 2019, Montreal, QC, Canada, May 20-24, 2019.
IEEE, 2019, pp. 6058–6064. doi: 10.1109/ICRA.2019.8794171.

[19] Luca Cardelli and Philippa Gardner. “Processes in space.” In:
Theor. Comp. Sci. 431 (2012), pp. 40–55.

[20] Vincenzo Ciancia, Diego Latella, Michele Loreti, and Mieke
Massink. “Model Checking Spatial Logics for Closure Spaces.”
In: Logical Methods in Computer Science 12.4 (Apr. 2016). doi:
10.2168/LMCS-12(4:2)2016. url: https://lmcs.episciences.
org/2067.

[21] Reymond Clavel. “Device for the movement and positioning of
an element in space.” Patent US4976582A (US). 1985.

https://doi.org/10.4081/jae.2017.575
https://doi.org/10.4081/jae.2017.575
https://agroengineering.org/index.php/jae/article/view/575
https://agroengineering.org/index.php/jae/article/view/575
https://doi.org/https://doi.org/10.1002/adem.201800206
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.201800206
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.201800206
https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.201800206
https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.201800206
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1103/PhysRev.4.345
https://link.aps.org/doi/10.1103/PhysRev.4.345
https://link.aps.org/doi/10.1103/PhysRev.4.345
https://doi.org/10.1007/978-3-642-16785-0_11
https://doi.org/10.1007/978-3-642-16785-0_11
https://doi.org/10.1007/978-3-642-16785-0_11
https://doi.org/10.1109/ICRA.2019.8794171
https://doi.org/10.2168/LMCS-12(4:2)2016
https://lmcs.episciences.org/2067
https://lmcs.episciences.org/2067

bibliography 139

[22] Robert Davis Cook. Finite Element Modeling for Stress Analysis.
1st. USA: John Wiley & Sons, Inc., 1994. isbn: 0471107743.

[23] T.M. Cover and J.A. Thomas. Elements of Information Theory.
Wiley, 2012. isbn: 9781118585771. url: https://books.google.
de/books?id=VWq5GG6ycxMC.

[24] Ankush Desai, Indranil Saha, Jianqiao Yang, Shaz Qadeer, and
Sanjit A. Seshia. “DRONA: a framework for safe distributed
mobile robotics.” In: ICCPS 17. ACM, 2017, pp. 239–248.

[25] Franz Dietrich, Jochen Maass, Carlos Cezar Bier, Ingo T. Pietsch,
Annika Raatz, and Jürgen Hesselbach. “Detection and Avoid-
ance of Singularities in Parallel Kinematic Machines.” In: Robotic
Systems for Handling and Assembly. 2011.

[26] M. C. F. Donkers and W. P. M. H. Heemels. “Output-Based
Event-Triggered Control With Guaranteed L∞-Gain and Im-
proved and Decentralized Event-Triggering.” In: IEEE Transac-
tions on Automatic Control 57.6 (2012), pp. 1362–1376.

[27] Wilfried Elmenreich. “An introduction to sensor fusion.” In:
Vienna University of Technology, Austria 502 (2002), pp. 1–28.

[28] Franka Emika. Datasheet Robot Arm and Control. https : / /

download.franka.de/Datasheet-EN.pdf. [Online; accessed
25-Apr-2023]. 2020.

[29] Ilon Bengt Erland. “Wheels For a course stable selfpropelling
vehicle movable in any desired direction on the ground or
some other base.” Patent US3876255A (US). Nov. 1972.

[30] Samuel M. Felton, Michael Thomas Tolley, ByungHyun Shin,
Cagdas D. Onal, Erik D. Demaine, Daniela Rus, and Robert J.
Wood. “Self-folding with shape memory composites†.” In: Soft
Matter 9 (2013), pp. 7688–7694.

[31] Eugene F Fichter. “A Stewart platform-based manipulator:
general theory and practical construction.” In: The international
journal of robotics research 5.2 (1986), pp. 157–182.

[32] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. “Extended Static
Checking for Java.” In: PLDI. ACM, 2002, pp. 234–245.

[33] Tully Foote. “tf: The transform library.” In: (TePRA) Technologies
for Practical Robot Applications. Open-Source Software workshop.
2013, pp. 1–6.

[34] George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler.
Computer Methods for Mathematical Computations. Prentice Hall
Professional Technical Reference, 1977. isbn: 0131653326.

https://books.google.de/books?id=VWq5GG6ycxMC
https://books.google.de/books?id=VWq5GG6ycxMC
https://download.franka.de/Datasheet-EN.pdf
https://download.franka.de/Datasheet-EN.pdf

140 bibliography

[35] J.B.J. Fourier. Théorie analytique de la chaleur. Manuscripta; His-
tory of science, 18th and 19th century. Chez Firmin Didot,
père et fils, 1822. url: https://books.google.de/books?id=
TDQJAAAAIAAJ.

[36] Marco Frigerio, Jonas Buchli, and Darwin G Caldwell. “Model
based code generation for kinematics and dynamics computa-
tions in robot controllers.” In: Workshop on Software Development
and Integration in Robotics, St. Paul, Minnesota, USA. Vol. 3. 1.
2012, p. 6.

[37] Marco Frigerio, Jonas Buchli, Darwin G Caldwell, and Claudio
Semini. “RobCoGen: a code generator for efficient kinematics
and dynamics of articulated robots, based on Domain Spe-
cific Languages.” In: Journal of Software Engineering for Robotics
(JOSER) 7.1 (2016), pp. 36–54.

[38] Man Lok Fung, Michael Z. Q. Chen, and Yong Hua Chen.
“Sensor fusion: A review of methods and applications.” In:
2017 29th Chinese Control And Decision Conference (CCDC). 2017,
pp. 3853–3860. doi: 10.1109/CCDC.2017.7979175.

[39] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. “Delta-
Complete Decision Procedures for Satisfiability over the Reals.”
In: CoRR abs/1204.3513 (2012). arXiv: 1204.3513. url: http:
//arxiv.org/abs/1204.3513.

[40] Sicun Gao, Soonho Kong, and Edmund M. Clarke. “dReal:
An SMT Solver for Nonlinear Theories over the Reals.” In:
CADE-24. Vol. 7898. LNCS. Springer, 2013, pp. 208–214.

[41] Sicun Gao, Soonho Kong, and Edmund M. Clarke. “dReal:
An SMT Solver for Nonlinear Theories over the Reals.” In:
Automated Deduction - CADE-24. Vol. 7898. Springer, 2013.

[42] Neil Gershenfeld. Fab: The Coming Revolution on Your Desktop–
from Personal Computers to Personal Fabrication. USA: Basic Books,
Inc., 2007. isbn: 0465027466.

[43] Ritwika Ghosh, Sasa Misailovic, and Sayan Mitra. “Language
Semantics Driven Design and Formal Analysis for Distributed
Cyber-Physical Systems: [Extended Abstract].” In: ApPLIED@PODC
2018. ACM, 2018, pp. 41–44.

[44] A. Giusti and M. Althoff. “On-the-Fly Control Design of Mod-
ular Robot Manipulators.” In: IEEE Transactions on Control Sys-
tems Technology 26.4 (July 2018), pp. 1484–1491. issn: 1063-6536.
doi: 10.1109/TCST.2017.2707336.

[45] Andrea Giusti, Martijn Zeestraten, Esra İçer, Aaron Pereira,
Darwin G. Caldwell, Sylvain Calinon, and Matthias Althoff.
“Flexible Automation Driven by Demonstration: Leveraging
Strategies that Simplify Robotics.” In: IEEE Robotics & Automa-

https://books.google.de/books?id=TDQJAAAAIAAJ
https://books.google.de/books?id=TDQJAAAAIAAJ
https://doi.org/10.1109/CCDC.2017.7979175
https://arxiv.org/abs/1204.3513
http://arxiv.org/abs/1204.3513
http://arxiv.org/abs/1204.3513
https://doi.org/10.1109/TCST.2017.2707336

bibliography 141

tion Magazine PP (May 2018), pp. 1–1. doi: 10.1109/MRA.2018.
2810543.

[46] Grigore Gogu. “Mobility of mechanisms: a critical review.” In:
Mechanism and machine Theory 40.9 (2005), pp. 1068–1097.

[47] C. Gosselin and J. Angeles. “Singularity analysis of closed-
loop kinematic chains.” In: IEEE Transactions on Robotics and
Automation 6.3 (1990). issn: 1042-296X. doi: 10.1109/70.56660.

[48] Jason Griffey. “Absolutely Fab-Ulous.” In: Library technology
reports 48 (2012), p. 21.

[49] ABB Group. Operating manual – Introduction to RAPID. http:
//rovart.cimr.pub.ro/docs/OpIntroRAPID.pdf. [Online;
accessed 25-Apr-2023]. 2012.

[50] Martin Fürchtegott Grübler. Getriebelehre: eine Theorie des Zwanglaufes
und der ebenen Mechanismen. Springer, 1917.

[51] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac.
“Complete completion using types and weights.” In: ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013. Ed.
by Hans-Juergen Boehm and Cormac Flanagan. ACM, 2013,
pp. 27–38. doi: 10.1145/2491956.2462192.

[52] S. Ha, S. Coros, A. Alspach, J. M. Bern, J. Kim, and K. Yamane.
“Computational Design of Robotic Devices From High-Level
Motion Specifications.” In: IEEE Transactions on Robotics 34.5
(2018). issn: 1552-3098.

[53] J.K. Hackett and M. Shah. “Multi-sensor fusion: a perspective.”
In: Proceedings., IEEE International Conference on Robotics and
Automation. 1990, 1324–1330 vol.2. doi: 10.1109/ROBOT.1990.
126184.

[54] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and
Grégoire Sutre. “Lazy abstraction.” In: POPL. Ed. by John
Launchbury and John C. Mitchell. ACM, 2002, pp. 58–70.

[55] G.J. Holzmann. “The Model Checker SPIN.” In: IEEE Trans.
Software Eng. 23.5 (1997), pp. 279–295. doi: 10.1109/32.588521.

[56] Gerard J. Holzmann. Design and Validation of Computer Protocols.
USA: Prentice-Hall, Inc., 1990. isbn: 0135399254.

[57] Robert Hoyt, Jesse Cushing, and Jeffrey Slostad. SpiderFab:
Process Apertures for On-Orbit Construction of Kilometer-Scale.
Tech. rep. NNX12AR13G. Bothell, WA 98011: Tethers Unlimited,
Inc., July 2013.

[58] K.H. Hunt and K.H. Hunt. Kinematic Geometry of Mechanisms.
Oxford engineering science series. Clarendon Press, 1990. isbn:
9780198562337. url: https://books.google.de/books?id=
0rlqQgAACAAJ.

https://doi.org/10.1109/MRA.2018.2810543
https://doi.org/10.1109/MRA.2018.2810543
https://doi.org/10.1109/70.56660
http://rovart.cimr.pub.ro/docs/OpIntroRAPID.pdf
http://rovart.cimr.pub.ro/docs/OpIntroRAPID.pdf
https://doi.org/10.1145/2491956.2462192
https://doi.org/10.1109/ROBOT.1990.126184
https://doi.org/10.1109/ROBOT.1990.126184
https://doi.org/10.1109/32.588521
https://books.google.de/books?id=0rlqQgAACAAJ
https://books.google.de/books?id=0rlqQgAACAAJ

142 bibliography

[59] Robotics — Vocabulary. Standard. Geneva, CH: International
Organization for Standardization, Mar. 2021.

[60] R. Janeliukstis and D. Mironovs. “Smart Composite Structures
with Embedded Sensors for Load and Damage Monitoring – A
Review.” English. In: Mechanics of Composite Materials 57 (2021).
Russian translation published in Mekhanika Kompozitnykh
Materialov, Vol. 57, No. 2, pp. 189-222, March-April, 2021.,
pp. 131–152. issn: 0191-5665. doi: 10.1007/s11029-021-09941-
6.

[61] Gangyuan Jing, Tarik Tosun, Mark Yim, and Hadas Kress-
Gazit. “Accomplishing high-level tasks with modular robots.”
In: Auton. Robots 42.7 (Oct. 2018), pp. 1337–1354. issn: 0929-
5593. doi: 10.1007/s10514-018-9738-1. url: https://doi.
org/10.1007/s10514-018-9738-1.

[62] R. E. Kalman. “A New Approach to Linear Filtering and Predic-
tion Problems.” In: Journal of Basic Engineering 82 (1960). issn:
0021-9223. doi: 10.1115/1.3662552. url: https://doi.org/
10.1115/1.3662552.

[63] Y. Kanayama, D. MacPherson, and G. Krahn. “Two dimen-
sional transformations and its application to vehicle motion
control and analysis.” In: [1993] Proceedings IEEE International
Conference on Robotics and Automation. 1993, 13–18 vol.3. doi:
10.1109/ROBOT.1993.291928.

[64] Andrew Kennedy. “Dimension Types.” In: Programming Lan-
guages and Systems - ESOP’94, 5th European Symposium on Pro-
gramming, Edinburgh, UK, April 11-13, 1994, Proceedings. Ed. by
Donald Sannella. Vol. 788. Lecture Notes in Computer Science.
Springer, 1994, pp. 348–362. doi: 10.1007/3-540-57880-3_23.

[65] Sukjun Kim, Dae-Young Lee, Gwang-Pil Jung, and Kyu-Jin
Cho. “An origami-inspired, self-locking robotic arm that can
be folded flat.” In: Science Robotics 3 (Mar. 2018), eaar2915. doi:
10.1126/scirobotics.aar2915.

[66] Charles A. Klein and Bruce E. Blaho. “Dexterity Measures for
the Design and Control of Kinematically Redundant Manipula-
tors.” In: The International Journal of Robotics Research 6.2 (1987),
pp. 72–83.

[67] V. Klema and A. Laub. “The singular value decomposition: Its
computation and some applications.” In: IEEE Transactions on
Automatic Control 25.2 (1980), pp. 164–176.

[68] Keith Kotay and Daniela Rus. “Locomotion versatility through
self-reconfiguration.” In: Robotics Auton. Syst. 26 (1999), pp. 217–
232.

https://doi.org/10.1007/s11029-021-09941-6
https://doi.org/10.1007/s11029-021-09941-6
https://doi.org/10.1007/s10514-018-9738-1
https://doi.org/10.1007/s10514-018-9738-1
https://doi.org/10.1007/s10514-018-9738-1
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1109/ROBOT.1993.291928
https://doi.org/10.1007/3-540-57880-3_23
https://doi.org/10.1126/scirobotics.aar2915

bibliography 143

[69] Keith Kotay and Daniela Rus. “The Inchworm Robot: A Multi-
Functional System.” In: Autonomous Robots 8 (2000), pp. 53–
69.

[70] R. Krichevsky and V. Trofimov. “The performance of univer-
sal encoding.” In: IEEE Transactions on Information Theory 27.2
(1981), pp. 199–207. doi: 10.1109/TIT.1981.1056331.

[71] S. Kullback and R. A. Leibler. “On Information and Suffi-
ciency.” In: The Annals of Mathematical Statistics 22.1 (1951),
pp. 79–86. issn: 00034851. url: http : / / www . jstor . org /

stable/2236703 (visited on 04/25/2023).

[72] A. Kumar and K. J. Waldron. “The Workspaces of a Mechanical
Manipulator.” In: Journal of Mechanical Design 103.3 (July 1981),
pp. 665–672. issn: 0161-8458. doi: 10.1115/1.3254968. eprint:
https://asmedigitalcollection.asme.org/mechanicaldesign/

article-pdf/103/3/665/5662752/665_1.pdf. url: https:
//doi.org/10.1115/1.3254968.

[73] Tinne De Laet, Wouter Schaekers, Jonas de Greef, and Herman
Bruyninckx. Domain Specific Language for Geometric Relations
between Rigid Bodies targeted to robotic applications. 2013. arXiv:
1304.1346 [cs.RO].

[74] Ruggero Lanotte and Massimo Merro. “A Calculus of Cyber-
Physical Systems.” In: LATA. Springer, 2017, pp. 115–127. isbn:
978-3-319-53733-7.

[75] Dae-Young Lee, Ji-Suk Kim, Sa-Reum Kim, Je-Sung Koh, and
Kyu-Jin Cho. “The deformable wheel robot using magic-ball
origami structure.” In: International Design Engineering Technical
Conferences and Computers and Information in Engineering Con-
ference. Vol. 55942. American Society of Mechanical Engineers.
2013, V06BT07A040.

[76] Tae Yoon Lee, James V. Zidek, and Nancy Heckman. Dimen-
sional Analysis in Statistical Modelling. 2021. arXiv: 2002.11259
[math.ST].

[77] Jennifer A. Lewis and Bok Y. Ahn. “Three-dimensional printed
electronics.” In: Nature 518.7537 (Feb. 2015), pp. 42–43. issn:
1476-4687. doi: 10.1038/518042a.

[78] Suyi Li, Hongbin Fang, Sahand Sadeghi, Priyanka Bhovad, and
Kon-Well Wang. “Architected Origami Materials: How Folding
Creates Sophisticated Mechanical Properties.” In: Advanced Ma-
terials 31 (Feb. 2019), p. 1805282. doi: 10.1002/adma.201805282.

[79] Jonathan Lim and Phillip Stanley-Marbell. “Newton: A Lan-
guage for Describing Physics.” In: CoRR abs/1811.04626 (2018).
arXiv: 1811.04626. url: http://arxiv.org/abs/1811.04626.

https://doi.org/10.1109/TIT.1981.1056331
http://www.jstor.org/stable/2236703
http://www.jstor.org/stable/2236703
https://doi.org/10.1115/1.3254968
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/103/3/665/5662752/665_1.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/103/3/665/5662752/665_1.pdf
https://doi.org/10.1115/1.3254968
https://doi.org/10.1115/1.3254968
https://arxiv.org/abs/1304.1346
https://arxiv.org/abs/2002.11259
https://arxiv.org/abs/2002.11259
https://doi.org/10.1038/518042a
https://doi.org/10.1002/adma.201805282
https://arxiv.org/abs/1811.04626
http://arxiv.org/abs/1811.04626

144 bibliography

[80] Yixiao Lin and Sayan Mitra. “StarL: Towards a Unified Frame-
work for Programming, Simulating and Verifying Distributed
Robotic Systems.” In: LCTES 15. ACM, 2015, 9:1–9:10.

[81] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics,
Planning, and Control. 1st. USA: Cambridge University Press,
2017. isbn: 1107156300.

[82] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager.
“Hybrid I/O automata.” In: Inf. Comput. 185.1 (2003), pp. 105–
157.

[83] Anthony A. Maciejewski and Charles A. Klein. “The Singu-
lar Value Decomposition: Computation and Applications to
Robotics.” In: The International Journal of Robotics Research 8.6
(1989), pp. 63–79. doi: 10 . 1177 / 027836498900800605. url:
https://doi.org/10.1177/027836498900800605.

[84] Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien
Zufferey. “Motion Session Types for Robotic Interactions (Brave
New Idea Paper).” In: European Conference on Object-Oriented
Programming, ECOOP 2019. Ed. by Alastair F. Donaldson. Vol. 134.
LIPIcs. 2019, 28:1–28:27.

[85] Hiroshi Makino. “Assembly Robot.” Patent US4341502A (US).
1979.

[86] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman.
“Jungloid mining: helping to navigate the API jungle.” In: Pro-
ceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation, Chicago, IL, USA, June 12-
15, 2005. Ed. by Vivek Sarkar and Mary W. Hall. ACM, 2005,
pp. 48–61. doi: 10.1145/1065010.1065018.

[87] B. A. McElhoe. “An Assessment of the Navigation and Course
Corrections for a Manned Flyby of Mars or Venus.” In: IEEE
Transactions on Aerospace and Electronic Systems AES-2.4 (1966),
pp. 613–623. doi: 10.1109/TAES.1966.4501892.

[88] M. A. McEvoy and N. Correll. “Materials that couple sens-
ing, actuation, computation, and communication.” In: Science
347.6228 (2015). issn: 0036-8075. doi: 10.1126/science.1261689.
eprint: https : / / science . sciencemag . org / content / 347 /

6228/1261689.full.pdf.

[89] Ankur M. Mehta, Joseph DelPreto, and Daniela Rus. “Inte-
grated Codesign of Printable Robots.” In: J. Mechanisms Robotics
7.2 (2015).

[90] Ankur M. Mehta, Joseph DelPreto, Benjamin Shaya, and Daniela
Rus. “Cogeneration of mechanical, electrical, and software de-
signs for printable robots from structural specifications.” In:
IROS. 2014.

https://doi.org/10.1177/027836498900800605
https://doi.org/10.1177/027836498900800605
https://doi.org/10.1145/1065010.1065018
https://doi.org/10.1109/TAES.1966.4501892
https://doi.org/10.1126/science.1261689
https://science.sciencemag.org/content/347/6228/1261689.full.pdf
https://science.sciencemag.org/content/347/6228/1261689.full.pdf

bibliography 145

[91] Ankur M. Mehta, Joseph DelPreto, Kai Weng Wong, Scott
Hamill, Hadas Kress-Gazit, and Daniela Rus. “Robot Creation
from Functional Specifications.” In: Robotics Research, Proceed-
ings of the 17th International Symposium of Robotics Research, ISRR
2015, Sestri Levante, Italy, September 12-15, 2015, Volume 2. Ed. by
Antonio Bicchi and Wolfram Burgard. Vol. 3. Springer Proceed-
ings in Advanced Robotics. Springer, 2015, pp. 631–648. doi:
10.1007/978-3-319-60916-4_36.

[92] Ankur M. Mehta, Joseph DelPreto, Kai Weng Wong, Hadas
Kress-Gazit, and Daniela Rus. “Robot Creation from Functional
Specifications.” In: Springer Proceedings in Advanced Robotics.
2017.

[93] Philip M Merlin. “The Time-Petri-Net and the Recoverability
of Processes.” In: (1974).

[94] Aaron Meurer et al. “SymPy: symbolic computing in Python.”
In: PeerJ Computer Science 3 (2017). issn: 2376-5992. doi: 10.
7717/peerj-cs.103.

[95] Aaron Meurer et al. “SymPy: symbolic computing in Python.”
In: PeerJ Computer Science 3 (Jan. 2017), e103. issn: 2376-5992.
doi: 10.7717/peerj-cs.103.

[96] Aleksey Mironov, Alexandrs Priklonskiy, Deniss Mironovs,
and Pavel Doronkin. “Application of Deformation Sensors
for Structural Health Monitoring of Transport Vehicles.” In:
Reliability and Statistics in Transportation and Communication. Ed.
by Igor Kabashkin, Irina Yatskiv, and Olegas Prentkovskis.
Cham: Springer International Publishing, 2020, pp. 162–175.
isbn: 978-3-030-44610-9.

[97] Alvaro Miyazawa, Pedro Ribeiro, Wei Li, Ana Cavalcanti, Jon
Timmis, and Jim Woodcock. “RoboChart: modelling and verifi-
cation of the functional behaviour of robotic applications.” In:
Software & Systems Modeling 18 (2019), pp. 3097–3149.

[98] Ilan E. Moyer. CoreXY Cartesian Motion Platform. https://
corexy.com/index.html. [Online; accessed 25-Apr-2023]. 2012.

[99] Henrik Mühe, Andreas Angerer, Alwin Hoffmann, and Wolf-
gang Reif. On reverse-engineering the KUKA Robot Language. 2010.
arXiv: 1009.5004 [cs.RO].

[100] BB Muminov and Eshankulov Kh. “Modelling asynchronous
parallel process with Petri net.” In: International Journal of En-
gineering and Advanced Technology (IJEAT) 8 (2019), pp. 400–
405.

https://doi.org/10.1007/978-3-319-60916-4_36
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://corexy.com/index.html
https://corexy.com/index.html
https://arxiv.org/abs/1009.5004

146 bibliography

[101] Joseph T. Muth, Daniel M. Vogt, Ryan L. Truby, Yiğit Mengüç,
David B. Kolesky, Robert J. Wood, and Jennifer A. Lewis. “Em-
bedded 3D Printing of Strain Sensors within Highly Stretchable
Elastomers.” In: Advanced Materials 26.36 (2014), pp. 6307–6312.
doi: 10.1002/adma.201400334. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/adma.201400334.

[102] Venkatesh Mysore and Bud Mishra. “Algorithmic Algebraic
Model Checking III: Approximate Methods.” In: Electronic Notes
in Theoretical Computer Science 149.1 (2006). Proceedings of the
7th International Workshop on Verification of Infinite-State
Systems (INFINITY 2005), pp. 61–77. issn: 1571-0661. doi:
https://doi.org/10.1016/j.entcs.2005.11.017. url:
https://www.sciencedirect.com/science/article/pii/

S1571066106000545.

[103] Arne Nordmann, Nico Hochgeschwender, Dennis Leroy Wigand,
and Sebastian Wrede. “A Survey on Domain-Specific Modeling
and Languages in Robotics.” In: Journal of Software Engineering
in Robotics (JOSER) 7.1 (2016), pp. 75–99.

[104] Pierluigi Nuzzo. “Compositional Design of Cyber-Physical Sys-
tems Using Contracts.” PhD thesis. EECS Department, Univer-
sity of California, Berkeley, Aug. 2015. url: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2015/EECS-2015-189.html.

[105] Brian J. Odelson, Murali R. Rajamani, and James B. Rawl-
ings. “A new autocovariance least-squares method for estimat-
ing noise covariances.” In: Automatica 42.2 (2006), pp. 303–
308. issn: 0005-1098. doi: https : / / doi . org / 10 . 1016 / j .

automatica.2005.09.006. url: https://www.sciencedirect.
com/science/article/pii/S0005109805003262.

[106] R. Olfati-Saber and J.S. Shamma. “Consensus Filters for Sensor
Networks and Distributed Sensor Fusion.” In: Proceedings of
the 44th IEEE Conference on Decision and Control. 2005, pp. 6698–
6703. doi: 10.1109/CDC.2005.1583238.

[107] Michael W. Oppenheimer, David B. Doman, and Justin D.
Merrick. “Multi-scale physics-informed machine learning us-
ing the Buckingham Pi theorem.” In: Journal of Computational
Physics 474 (2023), p. 111810. issn: 0021-9991. doi: https://
doi.org/10.1016/j.jcp.2022.111810. url: https://www.
sciencedirect.com/science/article/pii/S0021999122008737.

[108] Christiaan J.J. Paredis, H. Benjamin Brown, and Pradeep K.
Khosla. “A rapidly deployable manipulator system.” In: Robotics
and Autonomous Systems 21.3 (1997). Critical Issues in Robotics,
pp. 289–304. issn: 0921-8890. doi: https://doi.org/10.1016/
S0921-8890(97)00081-X. url: https://www.sciencedirect.
com/science/article/pii/S092188909700081X.

https://doi.org/10.1002/adma.201400334
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201400334
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201400334
https://doi.org/https://doi.org/10.1016/j.entcs.2005.11.017
https://www.sciencedirect.com/science/article/pii/S1571066106000545
https://www.sciencedirect.com/science/article/pii/S1571066106000545
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-189.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-189.html
https://doi.org/https://doi.org/10.1016/j.automatica.2005.09.006
https://doi.org/https://doi.org/10.1016/j.automatica.2005.09.006
https://www.sciencedirect.com/science/article/pii/S0005109805003262
https://www.sciencedirect.com/science/article/pii/S0005109805003262
https://doi.org/10.1109/CDC.2005.1583238
https://doi.org/https://doi.org/10.1016/j.jcp.2022.111810
https://doi.org/https://doi.org/10.1016/j.jcp.2022.111810
https://www.sciencedirect.com/science/article/pii/S0021999122008737
https://www.sciencedirect.com/science/article/pii/S0021999122008737
https://doi.org/https://doi.org/10.1016/S0921-8890(97)00081-X
https://doi.org/https://doi.org/10.1016/S0921-8890(97)00081-X
https://www.sciencedirect.com/science/article/pii/S092188909700081X
https://www.sciencedirect.com/science/article/pii/S092188909700081X

bibliography 147

[109] Sushant M. Patil, R.R. Malagi, R.G. Desavale, and Sanjay H.
Sawant. “Fault identification in a nonlinear rotating system us-
ing Dimensional Analysis (DA) and central composite rotatable
design (CCRD).” In: Measurement 200 (2022), p. 111610. issn:
0263-2241. doi: https://doi.org/10.1016/j.measurement.
2022.111610. url: https://www.sciencedirect.com/science/
article/pii/S0263224122008211.

[110] Raspberry Pi. Datasheet Raspberry Pi 4 Model B. https : / /

datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.

pdf. [Online; accessed 25-Apr-2023]. 2020.

[111] Marcus Pirron and Damien Zufferey. “MPERL: Hardware and
Software Co-design for Robotic Manipulators ©.” In: 2019
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, IROS 2019, Macau, SAR, China, November 3-8, 2019. IEEE,
2019, pp. 7784–7790. doi: 10.1109/IROS40897.2019.8968188.
url: https://doi.org/10.1109/IROS40897.2019.8968188.

[112] Marcus Pirron, Damien Zufferey, and Phillip Stanley-Marbell.
“Automated Controller and Sensor Configuration Synthesis
Using Dimensional Analysis.” In: IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 39.11 (2020), pp. 3227–3238. doi: 10.
1109/TCAD.2020.3013044. url: https://doi.org/10.1109/
TCAD.2020.3013044.

[113] André Platzer. Logical Analysis of Hybrid Systems - Proving Theo-
rems for Complex Dynamics. Springer, 2010.

[114] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama.
“Program synthesis from polymorphic refinement types.” In:
Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2016, Santa
Barbara, CA, USA, June 13-17, 2016. Ed. by Chandra Krintz and
Emery Berger. ACM, 2016, pp. 522–538. doi: 10.1145/2908080.
2908093.

[115] Johannes Prechtl, Stefan Seelecke, Paul Motzki, and Gianluca
Rizzello. “Self-Sensing Control of Antagonistic SMA Actuators
Based on Resistance-Displacement Hysteresis Compensation.”
In: Sept. 2020. doi: 10.1115/SMASIS2020-2224.

[116] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. “ROS:
an open-source Robot Operating System.” In: ICRA workshop
on open source software. 2009.

[117] J.W.S. Rayleigh. The Theory of Sound. The Nineteenth Century.
General Collection Bd. 1. Macmillan and Company, 1877. url:
https://books.google.de/books?id=kvxYAAAAYAAJ.

https://doi.org/https://doi.org/10.1016/j.measurement.2022.111610
https://doi.org/https://doi.org/10.1016/j.measurement.2022.111610
https://www.sciencedirect.com/science/article/pii/S0263224122008211
https://www.sciencedirect.com/science/article/pii/S0263224122008211
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://doi.org/10.1109/IROS40897.2019.8968188
https://doi.org/10.1109/IROS40897.2019.8968188
https://doi.org/10.1109/TCAD.2020.3013044
https://doi.org/10.1109/TCAD.2020.3013044
https://doi.org/10.1109/TCAD.2020.3013044
https://doi.org/10.1109/TCAD.2020.3013044
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1115/SMASIS2020-2224
https://books.google.de/books?id=kvxYAAAAYAAJ

148 bibliography

[118] Michael Reckhaus, Nico Hochgeschwender, Paul G. Ploeger,
and Gerhard K. Kraetzschmar. A Platform-independent Program-
ming Environment for Robot Control. 2010. arXiv: 1010.0886
[cs.RO].

[119] Robotics Overview. https://www.osha.gov/robotics. Accessed:
2023-02-12.

[120] William C. Rounds and Hosung Song. “The Phi-Calculus: A
Language for Distributed Control of Reconfigurable Embedded
Systems.” In: HSCC. Springer, 2003, pp. 435–449.

[121] Daniela Rus and Marsette Vona. “A physical implementa-
tion of the self-reconfiguring crystalline robot.” In: Proceed-
ings 2000 ICRA. Millennium Conference. IEEE International Con-
ference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065) 2 (2000), 1726–1733 vol.2.

[122] Stefan Schaal and Christopher Atkeson. “Learning Control in
Robotics.” In: Robotics & Automation Magazine, IEEE 17 (July
2010), pp. 20–29. doi: 10.1109/MRA.2010.936957.

[123] Adriana Schulz, Cynthia R. Sung, Andrew Spielberg, Wei Zhao,
Robin Cheng, Eitan Grinspun, Daniela Rus, and Wojciech Ma-
tusik. “Interactive robogami: An end-to-end system for design
of robots with ground locomotion.” In: I. J. Robotics Res. 36.10

(2017).

[124] Sara Seager et al. “The Exo-S probe class starshade mission.”
In: Sept. 2015, 96050W. doi: 10.1117/12.2190378.

[125] C. E. Shannon. “A mathematical theory of communication.” In:
The Bell System Technical Journal 27.4 (1948), pp. 623–656. doi:
10.1002/j.1538-7305.1948.tb00917.x.

[126] Bruno Siciliano and Oussama Khatib, eds. Springer Handbook of
Robotics. 2nd ed. Springer Handbooks. Berlin: Springer, 2016.
doi: 10.1007/978-3-540-30301-5.

[127] José Reinaldo Silva and Pedro MG Del Foyo. “Timed petri
nets.” In: Petri Nets: Manufacturing and Computer Science. InTech,
2012, pp. 359–378.

[128] Gerald L. Smith, Stanley F. Schmidt, and Leonard A. McGee.
Application of Statistical Filter Theory to the Optimal Estimation of
Position and Velocity on Board a Circumlunar Vehicle. Tech. rep.
19620006857. National Aeronautics and Space Administration,
1962.

[129] Phillip Stanley-Marbell, Diana Marculescu, Radu Marculescu,
and Pradeep K Khosla. “Modeling computational, sensing, and
actuation surfaces.” In: Low-Power Processors and Systems on
Chips (2005), pp. 16–1.

https://arxiv.org/abs/1010.0886
https://arxiv.org/abs/1010.0886
https://www.osha.gov/robotics
https://doi.org/10.1109/MRA.2010.936957
https://doi.org/10.1117/12.2190378
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1007/978-3-540-30301-5

bibliography 149

[130] D. Stewart. “A Platform with Six Degrees of Freedom.” In:
Proceedings of the Institution of Mechanical Engineers 180.1 (1965).
doi: 10.1243/PIME_PROC_1965_180_029_02.

[131] Hamburg Trinamic. TMC2100 Datasheet. https://www.trinamic.
com/fileadmin/assets/Products/ICs_Documents/TMC2100_

datasheet_rev1.13.pdf. [Online; accessed 25-Apr-2023]. 2022.

[132] Lung-Wen Tsai. “Mechanism Design: Enumeration of Kine-
matic Structures According to Function.” In: Journal of Mechani-
cal Design 122.4 (Dec. 2000), pp. 583–583. issn: 1050-0472. doi:
10.1115/1.1334346. eprint: https://asmedigitalcollection.
asme . org / mechanicaldesign / article - pdf / 122 / 4 / 583 /

5687334/583_1.pdf. url: https://doi.org/10.1115/1.
1334346.

[133] Zerksis D. Umrigar. “Fully static dimensional analysis with
C++.” In: SIGPLAN Notices 29.9 (1994), pp. 135–139. doi: 10.
1145/185009.185036.

[134] L. -. T. Wang and C. C. Chen. “A combined optimization
method for solving the inverse kinematics problems of me-
chanical manipulators.” In: IEEE Transactions on Robotics and
Automation 7.4 (1991). issn: 1042-296X. doi: 10.1109/70.86079.

[135] Wei Wang, Nam-Geuk Kim, Hugo Rodrigue, and Sung-Hoon
Ahn. “Modular assembly of soft deployable structures and
robots.” In: Mater. Horiz. 4 (3 2017), pp. 367–376. doi: 10.1039/
C6MH00550K. url: http://dx.doi.org/10.1039/C6MH00550K.

[136] Youchao Wang, Sam Willis, Vasileios Tsoutsouras, and Phillip
Stanley-Marbell. “Deriving Equations from Sensor Data Using
Dimensional Function Synthesis.” In: ACM Trans. Embedded
Comput. Syst. 18.5s (2019), 84:1–84:22. doi: 10.1145/3358218.

[137] What Is a Robot? https://robots.ieee.org/learn/what-is-

a-robot/. Accessed: 2023-02-12.

[138] L. Xiao, S. Boyd, and S. Lall. “A scheme for robust distributed
sensor fusion based on average consensus.” In: IPSN 2005.
Fourth International Symposium on Information Processing in Sen-
sor Networks, 2005. 2005, pp. 63–70. doi: 10.1109/IPSN.2005.
1440896.

[139] Wenzhong Yan and Ankur Mehta. “A Cut-and-Fold Self-Sustained
Compliant Oscillator for Autonomous Actuation of Origami-
Inspired Robots.” In: Soft Robotics 9 (Nov. 2021). doi: 10.1089/
soro.2021.0018.

[140] Wenzhong Yan, Yun-Chen Yu, and Ankur Mehta. “Rapid De-
sign of Mechanical Logic Based on Quasi-Static Electromechan-
ical Modeling.” In: 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2019, Macau, SAR, China,

https://doi.org/10.1243/PIME_PROC_1965_180_029_02
https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2100_datasheet_rev1.13.pdf
https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2100_datasheet_rev1.13.pdf
https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2100_datasheet_rev1.13.pdf
https://doi.org/10.1115/1.1334346
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/122/4/583/5687334/583_1.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/122/4/583/5687334/583_1.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/122/4/583/5687334/583_1.pdf
https://doi.org/10.1115/1.1334346
https://doi.org/10.1115/1.1334346
https://doi.org/10.1145/185009.185036
https://doi.org/10.1145/185009.185036
https://doi.org/10.1109/70.86079
https://doi.org/10.1039/C6MH00550K
https://doi.org/10.1039/C6MH00550K
http://dx.doi.org/10.1039/C6MH00550K
https://doi.org/10.1145/3358218
https://robots.ieee.org/learn/what-is-a-robot/
https://robots.ieee.org/learn/what-is-a-robot/
https://doi.org/10.1109/IPSN.2005.1440896
https://doi.org/10.1109/IPSN.2005.1440896
https://doi.org/10.1089/soro.2021.0018
https://doi.org/10.1089/soro.2021.0018

150 bibliography

November 3-8, 2019. IEEE, 2019, pp. 5820–5825. doi: 10.1109/
IROS40897.2019.8967964.

[141] Guang-Zhong Yang, Javier Andreu-Perez, Xiaopeng Hu, and
Surapa Thiemjarus. “Multi-sensor Fusion.” In: Body Sensor Net-
works. Ed. by Guang-Zhong Yang. London: Springer London,
2014, pp. 301–354. isbn: 978-1-4471-6374-9. doi: 10.1007/978-
1-4471-6374-9_8. url: https://doi.org/10.1007/978-1-
4471-6374-9_8.

[142] M. Yim, Ying Zhang, and D. Duff. “Modular robots.” In: IEEE
Spectrum 39.2 (2002), pp. 30–34. doi: 10.1109/6.981854.

[143] Mark Yim, Wei-min Shen, Behnam Salemi, Daniela Rus, Mark
Moll, Hod Lipson, Eric Klavins, and Gregory S. Chirikjian.
“Modular Self-Reconfigurable Robot Systems [Grand Chal-
lenges of Robotics].” In: IEEE Robotics and Automation Magazine
14.1 (2007), pp. 43–52. doi: 10.1109/MRA.2007.339623.

[144] H. Yurdem, V. Demir, and A. Degirmencioglu. “Development
of a mathematical model to predict head losses from disc
filters in drip irrigation systems using dimensional analysis.”
In: Biosystems Engineering 100.1 (2008), pp. 14–23. issn: 1537-
5110. doi: https://doi.org/10.1016/j.biosystemseng.2008.
01.003. url: https://www .sciencedirect.com/science/

article/pii/S153751100800024X.

https://doi.org/10.1109/IROS40897.2019.8967964
https://doi.org/10.1109/IROS40897.2019.8967964
https://doi.org/10.1007/978-1-4471-6374-9_8
https://doi.org/10.1007/978-1-4471-6374-9_8
https://doi.org/10.1007/978-1-4471-6374-9_8
https://doi.org/10.1007/978-1-4471-6374-9_8
https://doi.org/10.1109/6.981854
https://doi.org/10.1109/MRA.2007.339623
https://doi.org/https://doi.org/10.1016/j.biosystemseng.2008.01.003
https://doi.org/https://doi.org/10.1016/j.biosystemseng.2008.01.003
https://www.sciencedirect.com/science/article/pii/S153751100800024X
https://www.sciencedirect.com/science/article/pii/S153751100800024X

bibliography 151

curriculum vitae

research interests
Programming Languages, Analysis and (Formal) verification of dy-
namical systems, especially under the influence of physics.

education
2024, Doctor of Engineering, Max Planck Institute for Software Sys-
tems.
2016, Master of Science, Saarland University
2013, Bachelor of Science, Saarland University

	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	2 Preliminaries
	2.1 Robotic Systems
	2.2 Position and Orientation
	2.3 Connectivity
	2.4 Kinematic Equations
	2.5 Representation as First Order Logic
	2.6 Dynamical System

	3 Controller Synthesis for Robotic Manipulators
	3.1 The Mperl Language
	3.1.1 Composing and Manipulating Elements
	3.1.2 Actuating the system

	3.2 Graph Representation
	3.2.1 Single SCARA system
	3.2.2 Dual SCARA system

	3.3 Controller Synthesis
	3.3.1 Forward and Inverse Kinematics
	3.3.2 Soundness
	3.3.3 Workspace Mapping and Singularities
	3.3.4 Trajectory Generation

	3.4 Sensors and Feedback
	3.5 Example: SCARA System
	3.6 Example: SCARA System as a Component
	3.7 Evaluation
	3.8 Conclusion

	4 Sensor Configuration Synthesis
	4.1 Extensions to Mperl
	4.2 Preliminaries
	4.2.1 Quantities, Units and Dimensions
	4.2.2 Buckingham Theorem
	4.2.3 Reach Avoid Specification
	4.2.4 Relevance to State Estimation

	4.3 Synthesis of Sensor Configurations
	4.3.1 Search algorithm.
	4.3.2 Calibration and Run-time
	4.3.3 Limitations and Extensions of the Method.

	4.4 Evaluation
	4.4.1 Quantitative Evaluation
	4.4.2 Qualitative Evaluation

	4.5 Conclusion

	5 Multi-Robot Application Programming
	5.1 PGCD Programs
	5.1.1 Syntax
	5.1.2 Attached Composition
	5.1.3 Programs
	5.1.4 Semantics

	5.2 Verification
	5.2.1 Communication safety
	5.2.2 Trajectories and footprints
	5.2.3 Specifications and Annotations
	5.2.4 Extensions

	5.3 Implementation and Evaluation
	5.3.1 Run-time System
	5.3.2 Verifier
	5.3.3 Evaluation
	5.3.4 Setup
	5.3.5 Experiments

	5.4 Conclusion

	6 Related Work
	6.1 Prototyping tools
	6.2 Physics Integration
	6.3 Robot Interaction

	7 Future Work
	7.1 Progressing Sensor Integration and Material Science
	7.2 Verification of physical properties

	Appendix
	a Implementation Details of State Estimation
	a.1 State Estimation
	a.2 Error Detection
	a.3 Limitations
	a.4 Evaluation

	b Technical Implementation Details of Robotic Systems
	c Additional PGCD Ressources
	c.1 Motion Primitive Example
	c.2 PGCD Code for Fetch
	c.3 Promela Model Example

	 Bibliography

