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Abstract: In this paper we show that for each prime p > 7 there exists a translation
plane of order p? of Mason-Ostrom type [11]. These planes occur as 6-dimensional ovoids
being projections of the 8-dimensional binary ovoids of Conway, Kleidman and Wilson
[3]. In order to verify the existence of such projections we prove certain properties of two
particular quadratic forms using classical methods form number theory.
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1. Introduction. Mason and Ostrom [10] construct some translation planes of order p?
admitting Fz(32) - Sym(5) as a group of automorphisms (an extension of an extraspecial
group of order 32 by Sym(5)). We call such planes of Mason-Ostrom type. In [9] Mason
constructs translation planes of order 49 admitting SL(2,9) as automorphisms. We call
translation planes of order p? admitting SL(2,9) of Mason type. In [11] Mason and Shult
use the Klein correspondence, which relates rank 2 translation planes with 6-dimensional
ovoids to produce all planes of Mason-Ostrom type of order p?, p a prime < 23. Similarly,
Biliotti and Korchmaros [1] find all translation planes of Mason type of order p?, p < 19.
These results give evidence that both types of planes should constitute infinite series of
planes, i.e. that for each prime p > 11 there planes of order p? of both types. The aim of
this paper is to verify this conjecture. To construct such planes we use projections of the
8-dimensional binary ovoids of Conway, Kleidman and Wilson [3] to 6-dimensional ovoids
which transfer by the Klein correspondence to planes of the desired type. The crucial
step in the existence proof is the verification that some particular quadratic forms produce
certain integers with specific congruence restrictions.

2. Spreads, Ovoids, and Projections. For convenience we repeat some notions and
basic facts on spreads and ovoids. Let V be a 4-dimensional space over the finite field
K = GF(q). A spread S on V is a collection of 2-spaces in V such that V = UxecsX, and
XNnY=0for X,Y €S8, X #Y. Let L be the set of all cosets of the form v+ X, v € V,
X € 8. Then the triple (V, L, €) defines an affine plane of order ¢2. In fact, this plane is
a translation plane, since the maps z — z + v (v € V fixed) induce translations.

Let U be an orthogonal space of type O3 (K), i.e. a K-space of dimension 2n with a
symmetric nondegenerate bilinear form (-, ), such that U has Witt index n. An ovoid O
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is a set of 1-dimensional isotropic spaces in U such that |O| = ¢"~! +1 and (u,u’) # 0 for
<u><u >0, <u>#E< u >.

Suppose V is a 4-dimensional K-space and U = /\2 V. Then U has a nondegenerate
bilinear symmetric form such that U has type O (K) and {v; A va|v1,vs € V} is the set
of isotropic vectors. The Klein correspondence x maps a 2-space X =< v1,v2 > in V on
k(X) =< w1 Avg >, a 1-space in U. Then [11]:

Proposition 2.1: k is a bijection between the set of 2-spaces and V' and the set of isotropic

1-spaces in U. It induces a bijection between the set of spreads on V and the set of ovoids
onU.

The natural representation D of SL(V) on V induces on U the representation /\2 D and
/\2D(SL(V)) ~ Q(V), i.e. Ker(\”> D) =< —1 >. From this we conclude

Proposition 2.2: a) A spread S is of Mason-Ostrom type iff k(O) admits the group
Ei6: Sym(5) as automorphisms.
b) A spread S is of Mason type iff K(O) admits the group Alt(6).

Proof: If G is a group as in planes of Mason-Ostrom type or Mason type, then Z(G) =<
—1 >, giving one direction of the assertion. If, however, O is an ovoid in U which admits
G ~ Es : Sym(5) or Alt(6), then the spread x~1(O) does have a group G such that
G < —-1>/<—-1>~G. It is easy to see (but also follows from [12]) that < —1 >C G,
proving the other direction.

Assume finally that W is of type Of (K) and O is an ovoid in W. Let < u > be an
isotropic 1-space, < u >¢ O. The bilinear form induces on U =< u > / < u > again a
nondegenerate form such that U is of type Of (K). Moreover if

Oy ={<T>|<T>=(<w>+<u>)/<u><w>O0N<u>}
then O, is an ovoid in U (see [3]).

3. Ejg lattice, Binary Ovoids, and the Main Theorem. The set L of all vectors of

the form .
§(a15-"aa8)a a; € Za a; = a’](2)a 1< ?’a.j < Sa Zai = 0(4)5

is the Fg-lattice in R®. For z € L the integer (z,z) = Y. z? is divisible by 2. Set
L, ={z € L|(z,x) = 2n}. Then A = L, is the set of 240 root vectors and one has

1
A= {iei + €j|1 <j <j < 8} U {528i6i|8i =41,1Ig; = 1}.

The Weyl group W = W(FEg) of L is the group < o.|r € A >C O(R?), where the
reflection o, is defined by o,.(z) = x — (z,r)r. Let p > 7 be a prime. Set V = L/pL.
Then (-,-) induces on the GF(p)-space V an orthogonal scalar product such that V' is of
type Og (GF (p)) Moreover, W is faithfully represented on V' as a subgroup of O(V).
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For x € L set Sy(z) = {v € Ly|z = v mod 2L}. In [3] it is shown that for x € L, there
is 7 € A with Sa(z) = S2(r) and that the set O = Oz(x) = {< v > |[v € Sa(x)} is
an ovoid in V (here v = v + pL). It is shown that the stabilizer of r in W, the group
W, =2y ®W(E7) ~ Zy ® Zs & Sp(6,2), is the automorphism group of O. In the sequel
we choose the fixed root r = e; — es.

Lemma 3.1: The stabilizer of e, ea, ez in W contains a group
W, D Gy~ W (Ds) ~ Eq5 : Sym(5).

If Uy =< e1,e3,e3 >C V, then Uy is nondegenerate with discriminant §(Uy) = 1.

Proof: The vectors {£e; + ¢j|4 < i < j < 8} form a root system of type D5 and are
orthogonal to ey, e2, e3. The assertion about G follows from [2]. The second assertion is
obvious.

Lemma 3.2: The stabilizer of ey, eo, v = ez +...+eg in W contains a group W, O G ~
W(As) ~ Sym(6). If Up =< €;1,€2,0 >C V, then U, is nondegenerate with discriminant
d(Uy) = 6.

Proof: {£(e; —e;)|3 < i < j < 8} is a root system of type As. As before all assertions
follow.

Lemma 3.3: Let U be a nondegenerate orthogonal 3-space over GF(p). Then U =<
vg >1 H, where H is a hyperbolic plane and vy is anisotropic. If u € U is anisotropic
then there is an isotropic vector 0 # v €< u >1 iff (u,u)/(vo,vo) is a square in GF(p).

Proof: The first assertion is well known [6]. The second one follows from Witt’s theorem.

Lemma 3.4: Let V, U = Uy or Us have the same meaning as in 3.1 and 3.2. Forx € V
set t =29+ 2° withzo €U, 2° e UL. If <z >, <z’ >€ O can be chosen in such a way
that (zo, zo) is a nontrivial square and (x}, x(,) a nonsquare in GF(p), then there exists a
projection O, of O such that k=*(0,) is of Mason-Ostrom type if U = Uy and of Mason
type if U = U,.

Proof: By 3.3 and assumption we can choose < x >¢€ O such that z( is anisotropic and
that there is an isotropic vector 0 # u €< z >+ NU =< x¢ >+ NU. Moreover, G; (G; as in
3.1 or 3.2 for ¢ = 1, 2) fixes both O and u and induces therefore a group of automorphisms
on O,. Tt is obvious that the representation of G; on < u >+ / < u > is faithful. The
assertion follows by 2.2.

The elements of Sy(r) have the form z = (zy,...,x8) € Z8 such that

Z$i50(4), T1 =T Z w3 =...=18(2) (%)

and



Lemma 3.5: Suppose the quadratic form F has solutions x,x’ € Z® satisfying (x) such
that Fy(z) is a square, F1(z') is a nonsquare in GF(p), where Fy(x) = 2% + 23 + 3. Then
O has a projection O, such that k=1(0,) is of Mason-Ostrom type.

. _ _ _ 8 _ .
Proof: Since z¢ = z1€; + T9€2 + z3€3, 20 = > i—4 Ti€;i, the assertion follows from 3.4 and

3.1.

Choose a new basis of R®: wu; = ey, us = ey, uz = v, ug = €3 — €4, Us = €5 — €g,
ug = er—es, Uy = e3+eq4—e5 —eg, ug = e3+...+eg—2(er+eg). Then {uy,...,ug} is an
orthogonal basis and U = Uy =< Wy, Us, U3 >, UL =< TUy,...,us >. Express the vector
T = Zle y;u; by the basis {e1,...,eg}. We get

z= (Y1, y2,¥3 +ya +y7r +ys,ys — ya + y7r + ys, ys + ys — y7 + ys,
Ys — Ys — Y7 + ys, Y3 + Ys — 2ys, Y3 — Y — 2Us).

We can guarantee that x € Sy(r) if y1,...,ys € Z,
Y1,Y2 Odd7 Y3, ..., Ysg €ven oOr Yi,Y2,Y4,...,Ysg €ven, ys Odd (**)

and
(z,z) = H(y) = y; +y3 +6y3 + 2(yi + v + v3) + 4y7 + 12y3 = 2p.

Note that replacing if necessary ya by —y2 we ensure Y x; = y1 + ya + 6y3 = 0(4).
Lemma 3.6: Suppose that the quadratic form H has solutions y,y' € Z8 satisfying ()

such that Hy(y) is a square, H1(y') is a nonsquare in GF(p), where H1(y) = y? +y3 +6y3.
Then O has a projection O, such that k=1(0,) is of Mason type.

Proof: With the above notation we have
8
Lo = Y1l + Yol + ysUs, «° = Z’!/z‘ﬂz‘
i—4

and (9, 7o) = y? + y2 + 6y3. The assertion follows from 3.4 and 3.2.

Theorem A: For each prime p > 11 there are x,2',y,y" € Z® N Sy(r) such that Fy(z),
Hy(y) are squares and Fy(z"), Hi(y') are nonsquares in GF(p).

From Theorem A and 3.5, 3.6 we deduce:

Theorem B: For each prime p > 11 there exist translation planes of order p?> of Mason-
Ostrom type and of Mason type.

Theorem A is proved in the next section by a series of number theoretic results.

4. Tools from Number Theory. This final section is devoted to a proof of the two main
theorems stated below which imply the validity of Theorem A from Section 3. We shall
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employ a variety of methods from Analytic Number Theory and the theory of quadratic
forms. In the sequel we let (]—)) denote the Legendre symbol corresponding to the odd
prime p.

Let p be a prime and denote by X, the set of z = (z1,...,23) € Z38 such that

8 8
F(x):Zx?:2p, inEOmodél, L1 =29 Z2T3=...=2xg mod 2.

Our first main result is

Theorem 4.1: Let p > 5 be prime, € € {—1,1}. Then there exists x € X, such that

(m%+x%+x§)
p

To state the second principal theorem we similarly define Y), as the set of y = (y1,...,ys) €
Z?® satisfying

G(y) =y} +ys + 6y + 2y; + 2y2 + 25 + 4y7 + 12y3 = 2p

and either
Yy1=y2=1mod 2, y3=...=yg=0mod?2,

or
y1=y2=0mod 2, y3=1mod2, ys=...=ys=0mod?2.

Our second main result is

Theorem 4.2: Let p > 11 be prime, € € {—1,1}. Then there exists y € Y, such that

(y%+y§+6y§> _.
p

Our results rely on a combination of properties of certain quadratic forms and analytical
tools. The latter will be introduced first.

Let k be a positive integer. A Dirichlet character modulo k is a map x : Z — C*, such
that x(ab) = x(a)x(b) for a,b € Z and, moreover, x(a) = 0 if a and k are not coprime.
Clearly, any such x can be viewed as a homomorphism Z; — C* of the group of residues
prime to k into the nonzero complex numbers. The set of all Dirichlet characters modulo &
is a group isomorphic to Z;. Consequently there are ¢(k) Dirichlet characters for fixed k.
The unit element of the character group is the principal character xo defined by xo(a) =1
whenever (a,k) = 1. Let k be a positive integer, b,r € Z with (k,r) = 1. We make use of
the well known orthogonality relation

> xonin- {50 Loz o

xmodk



A Dirichlet character x modulo k£ obviously is a periodic function on Z with period k. If
k is its least period, we call x primitive and imprimitive otherwise. If p denotes an odd
prime then the character x(a) = (%) (Legendre symbol) is a primitive character modulo p.

We shall also need the famous Pdlya- Vinogradov inequality [4] to estimate character
sums. Thus let x # xo be a Dirichlet character modulo ¥ and N, M be integers. Then we

have
N4+M

> x(a)

a=N+1

< C(x)Vklogk, (2)

where C(x) = 1 if x is primitive and C(x) = 2 otherwise. In this generality the bound is
almost sharp.
We shall use inequality (2) as an essential tool in the proof of the next two results.

Proposition 4.3: Let p > 5 be prime, € € {—1,1}. Then there exists b € Z such that
2b
1<b<p, b=1mod2, (—) =c.
p

Proof: If p = 5 we have (%) = —1, (%2) =1, i.e. b=1 or b = 3 does the job. Similarly
for p =17, since (1) =1, (%) = —1.

Henceforth we assume p > 11. Let N(p, ) denote the number of odd b in the interval
[1,p — 2] such that (%’) = e. We must show N(p,e) > 0.

Since ,
2 if (22) =
1+5<2—b): 1 (2Pb) &
p 0 if (F) 7& €,

wwasy 8 pe@)-ns £ 0 o

we see that

b=1, b odd b=1, b=1(2)
To estimate the last sum note that 25;11 ( %) = 0. Thus
p—2 b p—2 b p—3 b
b:l,;zl(z) <p) B bz:; (p) b:2§0(2) (p>
—(5)-5 6)--(3)-() % 6)
p — \p p ) = \p

The Pdlya-Vinogradov inequality shows that the last sum is less than |/plogp in absolute
value. We therefore get from (3)

p—2

((0) 2, )] T s v

b=1,b=1(2)

1
= i(p_ 2 —/plogp) > 0,

-1
Nip.e)> 221 -
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since p > 11. This proves what we want.

Proposition 4.4: Let p > 137 be prime, r € Z, (r,24p) = 1, ¢ € {—1,1}. Then there
erists b € Z such that

1<b<p, b=rmod?24, (%):e.

Proof: Denote by N(p,e,r) the number of b satisfying the above conditions. We have to
show N(p,e,r) > 0. As in the proof of Proposition 4.3 we have

et S D)3 8 ek B0

b=1,b=r(24) b=1,b=r(24) b=1,b=r(24)

Using the orthogonality relation (2) with k& = 24, (k) = 8, we get

5 ()-: = x(r)p_lxw)(g). )

b=1,b=r(24) p xmod24 b=1

Now observe that b — X(b)(g) is a Dirichlet 1 character modulo 24p. Clearly, ¥ # g
(principal character), but ¢ may be imprimitive. In any case, Pélya-Vinogradov yields

p—1

0 (%)‘ < 2/Ziplog(24p).

b=1

Thus we obtain together with (5)

p—1

) (g)‘ < 4,/6plog(24p).

b=1,b=rmod24

Inserting into (4) gives

1 2=
‘N@@ﬂﬁ—g > 4s2vmm%@@)
b=1,b=r(24)

Since 25;11,1757«(24) 1=1+ [B] we get

1 1 — —
N(p.e,r) > 5+ [p > 4T] — 2/Bplog(24p) > F " — 2/6plog(24p)
— 23
zp% — 2,/6plog(24p) > 0,
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if p exceeds 4 - 10°. Hence our assertion is proved if p > 4 - 10°.

It remains to consider the range 137 < p < 4-10°. Here the assertion can be checked
numerically as follows. Firstly the prime p and the sign e € {—1, 1} are fixed. Then for
each integer 7 such that 1 < r < 24 and (r,24) = 1, the integers b = r(24) in the interval
[1,p — 1] are scanned and tested for (22) = ¢. If one b is found, we proceed with the next
value of r. Otherwise the assertion would be false for p. These steps are carried out for
all p with 137 < p < 4-10° and for ¢ = —1 and € = 1. The entire program takes only a
few minutes of CPU time on any common computing device. We thus conclude the proof

of Proposition 4.4.

It should be pointed out that Proposition 4.4 is not true for p = 131 and hence the bound
is sharp. If p =131, e = —1, r = 23, then no b exists satisfying the required conditions.

We now come to some arithmetical results concerning the representation of integers by
quadratic forms. Among others we use two classical theorems. The first is due to Lagrange
[5, p. 279]: each positive integer can represented as the sum of four squares. We also need
Legendre’s famous theorem on the representation of integers as the sum of three squares
[5, p-261], which is

Proposition L: Let n be a positive integer. Then the equation n = x2 +y? + 22 is solvable
in integers x,y, z if, and only if n is not of the shape n = 4*(8b+ 7) for integers a,b > 0.

In addition we need further results of a similar type for special quadratic forms occurring
in Section 3. Next we give a result similar to Lagrange’s four square theorem.

Proposition 4.5: The quadratic form F(x) = x3 + x3 + 23 + 223 + 622 represents every
positive integer.

Proof: Let N € N be given. If N is not of the form N = 4%(8n 4 7), where a,n > 0 are
integers, then there exist integers x1, T9, z3 such that N = 22 +12+22 = F(z1, 79, 3,0,0).
This follows from Proposition L.

Thus assume N = 4%(8n+ 7) with non negative integers a, n. By Proposition L again,
there exist integers z1, T2, x3 such that 8n+5 = 22 + 23+ 22, If a = 0 take 74 = 1, x5 = 0;
if a > 0 take £4 = x5 = 29~ 1. Then 223 + 612 =2=2-4% fora =0 and, if a > 0

273 + 627 = 2(x3 + 322) = 2(22°72 +3-22%72) = 2. 4%,
Therefore in any case 223 + 622 = 2 - 4%, Hence

N=N-2-4942-4°=48n+7) —2-4°+2-4° = 4%(8n + 5) 4+ 2 - 4°

=22 (g2 + 22 + x%) +2(z3 + 3:1:%) = F(2%x1,2%4,2%3, T4, T5),
as was to be shown.

The next result is an analogue of Legendre’s theorem for the quadratic form F(z) =
T2 + 22 + 623



Proposition 4.6: Let N be a positive integer. Then the equation N = z? + 3 + 623
is solvable in integers x1,x2,x3 if, and only if N is not of the shape N = 9%(9b + 3) for
integers a,b > 0.

Proof: The determinant D of F(z) = 3 + z3 + 623 is equal to d = 6. As is well known
[8, Ch. 50], N is represented by a form belonging to the genus of F' if F(z) = N(p"*!) is
solvable for all primes p|2d and p"||N (p > 2) or p"||AN (p = 2). If these conditions are
not satisfied, then N cannot be represented by any form of the genus of F'.

According to Eisenstein [7] there are exactly two reduced forms with d = 6, namely F
as above and G(z) = z? + 223 + 3x2. Since these do not lie in the same genus, we conclude
that the class of F' coincides with the genus of F.

We now investigate the solvability of the congruences for p|2d = 12, i.e. p € {2, 3}.

p=2:

Let N = 2%n, where n is odd. Then we must show that F(z) = 2%n mod 2%73
is always solvable. If « is even, write a = 23. Squares modulo 8 are the residue
classes of 0,1,4. From this it follows at once that 22 + x2 + 6232 = n(8) is solvable
for all integers n, and consequently

F(2Pxq,2Px4,2P23) = 2%n mod 2273,
as desired. If « = 28 + 1 is odd, we consider the squares modulo 16, i.e. the
residue classes of 0,1,4,9. Again 22 + 22 + 6232 = 2n(16) can be solved for any

integer n, and then

F(2Px1,2P2,,2P23) = 22P+1p = 2% mod 2973,

: Write N = 3%n, where n is not divisible by 3. We must investigate whether

F(z) = 3%n mod 3%t is solvable. We proceed as before. If a is even consider
F(z) = n(3), i.e. 2 + 23 = n(3). Clearly this congruence is solvable for any
n. Then F(3Pxy,3P1s,3Px3) = 39n(32*Y). If a is odd consider F(z) = 3n(9).
Squares modulo 9 are among @ = {0,1,4,7}, and 6Q = {0,6}. Thus Q+Q+6Q =
{0,1,2,4,5,6,7,8}. The congruence is therefore solvable if 3n # 3(9), i.e. if
n # 3b+ 1. Again F(3°xq,3"1,,3Px3) = 3%n(3%1T1). To complete our argument
we show that F(z) = 3*n(3%*1) is not solvable for n = 3b + 1. Otherwise, there
were integers x; such that

22 4 22 4+ 622 = 3%(3b+ 1) = 320 F2p 4 32PF1 = 32 +1 (32042
In particular, 2 + z3 + 622 = 3(9), which is impossible. We have thus shown

that F(xz) = 3%n(3%*1) is solvable if, and only if n # 3b+ 1. This means that N
must not be of the form 3%(3b + 1) with o odd, i.e. N # 9%(9b+ 3).

Hence our proof of Proposition 4.6 is complete.

We are now prepared to prove the main theorems of the present section.

9



Proof of Theorem 4.1: By Proposition 4.3 there exists an odd integer b such that
1<b<pand (%’) = e. Since 2b = 2(4), Legendre’s theorem guarantees the existence of
integers x1, 9, x3 with
2b = 23 + x5 + 3.

Not all of the z; can be odd, since then z? + z3 + 22 = 3(4). Thus we may assume z3 is
even. Since then z2 = 0(4), we get z2 + z3 = 2b = 2(4). Hence both z; and x5 are odd.
Now choose their signs according to x1 = 1(4), z2 = 3(4).

Since b is odd, p%b is a positive integer. Write it as a sum of five squares (by Legendre’s

Theorem it can even be written as a sum of four squares). Hence pT_b = Z?: 4 y? for suitable
yi- Let ; = 2y;, 4 < i < 8. Then x = (z1,...,xs) satisfies

x1 =1(4), z2 = 3(4), z; =0(4), 3 <i<8.

Therefore Z?zl x; = 0(4). Moreover,

8 8
2 2 2 2 2 p—>b
C = + + -+ 2y;)° = 2b+ 4—— = 2p,
;_1 x; =z + 5 + 3 ;_4( Yi) 5 D

(ac%-l—:v%-l—a:g) B <2_b) .
p D ’

we conclude the proof of Theorem 4.1.

which implies z € X,,. Since

Proof of Theorem 4.2: The assertion will first be verified for primes p > 137, where
Proposition 4.4 applies.

We start by considering the case p = 1(4). Take r = 1 in Proposition 4.4. Hence there
exists b € Z with

1<b<p, b=1(24), (%) =ec.

Since 2b is not divisible by 3, Proposition 4.6 tells us that 2b = y§ + y2 + 6y3 for suitable
integers ;. Since 2b = 2(16), we get y? + y3 + 6y3 = 2(16). If now y3 were odd, then
y2 = 1(8), 6y2 = 6(16). But then 2 = 2b = y? + y2 + 6(16) and y? + y3 = 12(16)
which is impossible. Hence we conclude that ys is even. We further get 6y2 = 0(8) and
2 = 2b = y? + y2(8). Thus y;,y2 are both odd.

Now consider the positive integer pT_b. By Proposition 4.5 we can represent it in the
form

p%b=xi+x§+x§+2x$+6x§.
Set y; =2x;,4<i<8 Theny; =y Zys=...=ys =0(2) and
H(y) = yi +y3 + 6y2 + 2y3 + 2y + 292 + 4y? + 12y2
=2b+8(a:i+a:§+x§+2a:$+6x§):2b+8p%b

= 2p.
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Hence y € Y),. Finally

<y%+y§+6y§) _ (2_1’) .
p p ’

and the theorem follows for p = 1(4).

It remains to treat p = 3(4). This time we take r = 7 in Proposition 4.4. Hence we
can find b € Z with

1<b<p, b=T7(24), (2—b> =ec.
p

Again 2b = y? +y2 +6y32 for integers y; by Proposition 4.6. If y3 were even, then 6y3 = 0(8)
and 6 = 2b = y2 + y2 + y2 = y? + y2(8), which is impossible. Therefore y3 is odd. This
leads to y2 = 1(8) and 6y2 = 6(8). Hence 6 = 2b = y? +y2 +6(8), implying y% +y2 = 0(8).
Consequently y,y2 are even.

By Proposition 4.5 we can find integers x4, ..., xg such that

—b
%:xi+$§+x§+2x$+6x§.

If we now define y; = 2x; for 4 < <8, it is easily verified as before that y € Y,, and

(y%+y§+6y§> _ (2_1)) _.
p p

This finishes the proof for p = 3(4).

We have thus shown that Theorem 4.2 is true for p > 137. For the primes in the range
between 11 and 131 (inclusively) a straightforward computer search shows that for e = +1
there is always a solution y € Y, for the equation in 4.2. Hence the proof is complete.

A final remark. For a given p different solutions of the quadratic form may yield isomor-
phic or nonisomorphic 6-dimensional ovoids. Similarly our approach may be applied to
the ternary ovoids in [3] giving even more projections. However, to decide the isomor-
phism problem between ovoids would require the concrete structure of the solutions of the
quadratic form.
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