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‘Look deep into nature, and then you will understand
everything better.’

Albert Einstein, 1951
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SUMMARY

Biodiversity is declining at an accelerating rate unprecedented in human history.
Globally, most ecosystems are at high risk from multiple stressors related to
anthropogenic global change, including climate change and land use change.
Distinct stressors often co-occur in time and space, so joint effects are not only a
result of individual severity or the speed of change but also of how they interact.
To estimate and address (future) risks from intensified stressor regimes, it is
needed to best understand the mechanisms of stressor joint effects and
interactions. However, research on the topic is not well developed yet and current
knowledge is relatively low.

In the context of this thesis, the lack of (theoretical) knowledge will be reduced.
Chapter 1 provides a brief introduction outlining the need for the presented
research and the overall objectives of the thesis. Chapter 2 introduces a new
process-based, spatially explicit meta-population model for a generic freshwater
species which was applied to investigate how decreasing landscape permeability
and fragmentation following global change will impact species meta-populations.
It is shown that global change likely increases extinction risks by reduced habitat
connectivity, however, management actions to enhance patch density can
strengthen meta-populations resilience. Chapter 3 presents an extended version
of the meta-population model, used to investigate how two stressors (i.e.,
climatic events and land use) with different spatiotemporal profiles combine over
time. It was found that joint effects and interactions were mainly determined by
land use, demonstrating the effectiveness of regional management to
compensate for an intensified global stressor. Following on, Chapter 4 explores
potential changes from more realistic scenarios, by incorporating dynamic
stressor profiles (i.e., random climatic events and land use trends over time) plus
adaptation into the model. It is highlighted that such complex scenarios are
critical for understanding how species respond to global change, as simplified
static scenarios are likely insufficient for reliable prediction of joint effects and
interactions. Finally, chapter 5 briefly concludes the key findings of chapters 2-4,
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discusses the limitations of the individual studies’ approaches and gives a brief
general outlook.

Overall, the presented thesis provides new insights into the mechanistic
understanding of joint effects and interactions of multiple stressors and, thereby,
contributes to extending the conceptual framework of related research.
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1. INTRODUCTION AND OBJECTIVES

1.1 ANTHROPOGENIC GLOBAL CHANGE

Biodiversity loss, i.e., the extinction of species, is a natural process in Earth’s
history (Payne et al., 2023). Fossil records reveal most evolved species became
extinct over the past 600 million years, with five major mass extinction events
(i.e., a period of > 75 % species extinction) to date (McCallum, 2015; Tynan, 1986).
Today, the Earth is facing the beginning of a new, sixth mass extinction (Ceballos
et al., 2020; Raven and Wagner, 2021), however, unlike the previous, it is not of
natural origin, rather it is driven by anthropogenic activities (Ceballos et al., 2020;
Simmons et al., 2021a). Anthropogenic global change, i.e., climate change, land
use change, pollution, invasive species, or resource overexploitation (Pievani,
2014; Sage, 2020), has put biodiversity and thus ecosystems worldwide under
increasing pressure since the start of the Anthropocene (Brooks and Crowe,
2019). The pressure intensified continuously over the last 10,000 years, so the
decline in vertebrate biodiversity since the 1500s (with a sharp increase since the
1980s) can be compared to prior mass extinctions (Ceballos et al., 2015;
McCallum, 2015). Analogous trends can be observed in invertebrate species; e.g.,
sharp declines in insect biomass and diversity have been observed since the
1950s in Europe and the USA (Raven and Wagner, 2021).

If the current rate of biodiversity loss continues, many ecosystems will be
severely damaged or disappear (Ceballos et al., 2015). Next to the general
importance for Earth’s life itself, ecosystems provide diverse services for human
society, which are critical to mental and physical well-being, so the decline of
ecosystems poses serious risks (Guerry et al., 2015; Sage, 2020). Fortunately,
many drivers of anthropogenic global change that threaten Earth’s biodiversity
can (albeit increasingly less) likely still be moderated (Sage, 2020). Yet, optimal
planning and realization of management to address future, related risks requires
a clear mechanistic understanding of the drivers, to determine how related
stressors impact ecosystems (Jackson et al., 2018).
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Figure 1: Schematic isobologram for interactions of a two-stressor combination. The axes
represent the strength of stressors 1 and 2, respectively; the lines represent possible joint effects
resulting from the combined stressors. The following interactions result: Additivity exists when

the joint effect is equal to the sum of the individual effects of stressors 1 and 2 (grey line); when
the joint effect is lower (green line), i.e., the biological response is less than the additive effect,
antagonism emerges; and when the joint effect is higher (red line), synergism emerges.

Stressors frequently co-occur at different spatial and temporal scales, therefore
optimizing prediction of joint effects and resulting interactions is critical to
counteract ecosystem risks linked to global change (Jackson et al., 2021).
Particularly, as multiple co-occurring stressors interact not only in additive
effects (joint effect = sum of individual effects) but also in non-additive effects
(Fig. 1), i.e., antagonisms (joint effect < sum of individual effects) or synergisms
(joint effect > sum of individual effects)(Birk et al., 2020; Côté et al., 2016). Non-
additive effects can result from mechanistic stressor interactions (i.e., one
stressor modifies an organism’s response to another stressor), but also from
other factors (e.g., nonlinear stressor-response relationships) (Hunsicker et al.,
2016; Schäfer and Piggott, 2018; Turschwell et al., 2022). Synergisms resulting in
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rapid, disproportionate losses of biodiversity and ecosystem functions are
particularly dangerous and a key problem in multiple stressor environments
(Côté et al., 2016; Ratajczak et al., 2018; Turner et al., 2020). In the future,
synergies are expected to occur more frequently and with higher intensity driven
by anthropogenic global change (Jackson et al., 2021; Sage, 2020; Woodward et
al., 2016).

1.2 MULTIPLE STRESSOR RESEARCH

Research on multiple stressors has been present in the scientific community for
nearly a century and aims to understand and predict how stressors interact and
the potential risks to individual organisms or populations (Orr et al., 2020). It is
rapidly evolving in the face of global change and gained importance in ecology in
the last two decades, and has now expanded to a wide range of stressor
combinations (Bruder et al., 2019; Orr et al., 2020). Thereby, it revealed that the
combined effect of two or more stressors is frequently non-additive, i.e., stronger
(synergistic) or weaker (antagonistic) than predicted based on the individual
effects (Piggott et al., 2015; Schäfer and Piggott, 2018); yet high variability
emerged in the prevalence of antagonistic or synergistic interactions (Schäfer
and Piggott, 2018). Past research in the field of multiple stressors was largely
specific to either freshwater, marine, or terrestrial ecology (Orr et al., 2020) and
tended toward non-interacting stressors in isolation or focused on single events
of stressor co-occurrence at the local scale (Brooks and Crowe, 2019; Jackson et
al., 2021; Simmons et al., 2021a). Moreover, experimental multiple stressor
studies often used simplified, non-realistic stressor scenarios, resulting in
distorted, if not incorrect, assessments of joint stressor effects and interactions
if extrapolated on real-world situations (Catford et al., 2022; Rillig et al., 2021).
Therefore, related research did not or insufficiently incorporate spatiotemporal
stressor dynamics, temporally non-consistent stressor-response relationships,
and/or biotic processes in ecological networks developing over space and time
across ecosystems (Bruder et al., 2019; Jackson et al., 2021). It reveals that
knowledge of multiple stressors to date is still relatively low (Bruder et al., 2019;
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Jackson et al., 2021) and appears to be incomplete for longterm predictions at
higher ecological scales, e.g., ecosystems (Brooks and Crowe, 2019).

Meta-analyses of experimental studies with multiple stressors have yielded
limited consistent findings (Côté et al., 2016; Simmons et al., 2021b). Another
shortcoming of most previous research on multiple stressors is that adaptation
processes of organisms, through phenotypic plasticity (Bush et al., 2016) or the
evolution of life-history traits (Orr et al., 2021), have been largely ignored (Boyd et
al., 2018; Orr et al., 2021; Ryo et al., 2019). Adaptation can reduce species’
vulnerability to intensifying stressors so that lower effects can be expected,
relative to ignoring it (Jackson et al., 2021; Patrick et al., 2021). Moreover,
multiple stressors research also has been criticized for emphasizing interaction
classification, thereby neglecting mechanistic understanding of joint effects (De
Laender, 2018; Griffen et al., 2016).

Process-based models building on a theoretical understanding of ecological
processes (transformed into mathematical formulation) provide opportunities to
fill the knowledge gap (Jørgensen, 1994; Pirotta et al., 2022). Such process-
based models may have the potential to provide general insights into ecological
responses to novel, future environmental conditions and improve mechanistic
understanding of multiple stressors across scales (Jackson et al., 2021;
Turschwell et al., 2021). Unlike data-based models, which rely on much empirical
information to analyze existing relationships between stressors and effects to
identify and categorize interactions but have limited predictive power beyond the
observed of these, process-based models have very high predictive power (Baker
et al., 2018; Jager et al., 2014; Pirotta et al., 2022). Therefore, they can assist
future management and optimize species conservation (Oliver and Morecroft,
2014; Patrick et al., 2021; Turschwell et al., 2022), as they can account for future
risks (not yet present) from anthropogenic change beyond the range of observed
stressors (Pirotta et al., 2022).

In recent decades, various types of process-based models have been used to
simulate joint effects of multiple stressors mechanistically; e.g., dynamic energy
budget models (DEB) to capture energy flows for specifying the level at which
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multiple stressors operate on an individual organism (Jager et al., 2014) or
individual-based models (IBMs) to simulate how individual agents, characterized
by internal state variables, interact with dynamic multiple stressors over time
(Pirotta et al., 2022). In this context, also meta-population models have been
developed to analyze future risks on populations by multiple stressors at the
regional landscape level, taking into account population dynamics and dispersal
in ecological networks (Saura et al., 2014). Yet, meta-population models are
largely limited to purely terrestrial (e.g., Bocedi et al., 2014; Lakovic et al., 2017)
or purely freshwater species (Anderson and Hayes, 2018; e.g., Van den Brink et
al., 2007), but are scarce for species that rely on both aquatic and terrestrial
habitats to complete their life cycles. Here, dispersal is not restricted to one
habitat, but depends on the life stage (Tonkin et al., 2018); and meta-population
structure is determined by the environmental suitability of the terrestrial habitat,
but also by the spatial configuration of the aquatic habitat - specifically, for
streams or rivers, its dendritic structure (Anderson and Hayes, 2018; Tonkin et al.,
2018). This shortage makes it difficult to predict how multiple stressors
associated with anthropogenic global change will affect such species. E.g.,
models are entirely lacking for freshwater hemimetabolous insects, which
represent the largest group of aquatic insects (~ 2/3 of freshwater animal
diversity), thus often play a central role in food webs and contribute strongly to
nutrient transfer between aquatic and terrestrial habitats (Grigoropoulou et al.,
2023). In addition, roughly 1/3 of freshwater hemimetabolous insect species are
classified as threatened by global change, putting pressure on aquatic but also
terrestrial communities (Grigoropoulou et al., 2023).

1.3 OBJECTIVES AND OUTLINE

This thesis seeks to improve our knowledge of how multiple stressors
associated with anthropogenic global change operate across space and time.
Thereby, it is intended to contribute to the mechanistic understanding of the
effect of multiple stressors in real-world environments (with a focus on
freshwater hemimetabolous insect species) by highlighting and explaining
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general principles. The effects of (i.) modified (multiple) stressor regimes (ii.),
associated complex spatiotemporal dynamics, and (iii.) adaptation of organisms
under global change were specifically investigated.

Figure 2: Conceptual overview of the structure of the research process underlying this thesis. The

conceptual framework of multiple stressors research will be progressively expanded based on
the work described in Chapters 2-4 by increasing the complexity and realism of the model

scenarios.
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A new process-based, spatially explicit meta-population model for a generic
hemimetabolous freshwater insect, parameterized based on the traits of the
damselfly Coenagrion mercuriale, was developed. As conceptually structured in
Figure 2, the model was then applied to scenarios of multiple stressors that
increased in complexity and realism. Chapter 2 introduces the model’s underlying
framework and, moreover, investigates how land use change impacts habitat
connectivity and the resulting risks to species meta-populations. In this regard,
the model was applied for varying stream networks and patch assemblages
under different land use scenarios associated with varying landscape
permeability and fragmentation. Chapter 3 presents an extended version of the
meta-population model to examine how a discrete stressor and a continuous
stressor with different spatiotemporal profiles combine over time. Scenarios of
repetitive climatic events (the discrete stressor) with fixed frequency were added
to the model, and the temporally constant land use (the continuous stressor)
also determines patch qualities in a meta-population network, in addition to
connectivity. In Chapter 4, a follow-up to the previous chapters is presented to
further improve the mechanistic understanding of stressor interactions across
scales. Redesigned scenarios reflect dynamic stressor profiles, featuring land
use shifts in varying trends over time, and climatic events in random sequences,
moreover, adaptation now translates into mitigation of climatic events.

We expect the present thesis to contribute to optimizing the planning and
implementation of future management by expanding the conceptual framework
of multiple stressor research, helping to counteract the risks of anthropogenic
global change to the Earth’s threatened biodiversity.
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HIGHLIGHTS
• Process-based meta-population model for hemimetabolous freshwater

insects

• Analysis of how habitat connectivity affects patch colonization

• ANOVA of key habitat parameters

• Patch colonization success strongly influenced by habitat connectivity

• Habitat patch number most important, followed by landscape permeability

ABSTRACT

Climate and land-use change constitute major threats to biodiversity. Beside
pure habitat loss, changing environmental conditions are likely to result in
decreasing landscape permeability and increasing landscape fragmentation.
This compromises habitat connectivity and, thereby increases threats to meta-
population persistence. Comprehensive theoretical knowledge and general
understanding of key parameters affecting habitat connectivity are therefore
mandatory to assess risks of environmental change. However, related studies
are scarce for hemimetabolous freshwater insects, which depend on both
aquatic and terrestrial sites to complete their life cycle.

We developed a process-based, spatially explicit meta-population model for a
hemimetabolous freshwater insect, parameterized based on the traits of a
damselfly, and analyzed the influence of varying landscape permeability on patch
colonization for differently structured coextensive habitat networks. The in total
675,000 networks were set up by varying (1) landscape scenarios, representing
different levels of permeability, (2) stream networks and (3) derived habitat patch
assemblages, using least-cost path analysis.

We found that habitat connectivity in general strongly determined the proportion
of colonized habitat patches (Spearman’s ρ = 0.64). Moreover, a multi-factorial
ANOVA of the parameters used for habitat network set up showed that the
number of habitat patches had the largest effects on the colonization success



META-POPULATIONS UNDER MULTIPLE STRESSOR RISKS 18

(18.6 % explained variance) followed by varying proportions of three landscape
types incurring increasing dispersal costs (13.1 %) and the spatial arrangement
of habitat patches (7.1 %).

The introduced model generated theoretical knowledge how changing
environmental conditions (e.g. landscape permeability) can influence the habitat
connectivity of hemimetabolous freshwater species and, thus, has the potential
to support conservation through habitat management within changing
landscapes. Its design facilitates future adaptation to real hemimetabolous
species and real-world habitats.

KEYWORDS

Dispersal ⋅ Environmental change ⋅ Habitat network ⋅ Landscape permeability ⋅
Meta-population ⋅ Spatial ecology

1. INTRODUCTION

Climate and land-use change constitute major threats to biodiversity resulting in
pure habitat loss and in decreasing landscape permeability (Lechner et al., 2017;
Titeux et al., 2016; Vos et al., 2006) and, in turn, in increasing landscape
fragmentation (Hanski, 2011; Opdam and Wascher, 2004; Wilson et al., 2016).
This situation jeopardizes the persistence of meta-populations because these
rely on the capability of individuals to disperse between subpopulations and to
recolonize extincted patches (Bocedi et al., 2014; Moilanen and Nieminen, 2002).
Extinction risks of local subpopulations or whole meta-populations, therefore,
increase if subpopulations become unconnected and extirpated patches
inaccessible (Chisholm et al., 2011; Heino et al., 2017; Wilson et al., 2016).
Knowledge of spatial conditions affecting habitat connectivity (Didham et al.,
2012; Purse et al., 2003; Saura et al., 2014) consequently is fundamental for
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habitat management of species affected by environmental change (Laita et al.,
2011; Wilson et al., 2016).

Process-based models building on theoretical understanding of ecological
processes (transformed into mathematical formulation) can provide general
insights into ecological responses to novel, future environmental conditions
(Cuddington et al., 2013; Evans et al., 2012; Petchey et al., 2015). One advantage
of such models, as compared to statistical or rule-based, explanatory models
based on past empirical data is the ability to forecast the effects of changing
environments (Cuddington et al., 2013; Evans, 2012; Gustafson, 2013; Urban et al.,
2016). Given that process-based models rely on causal relations based on
ecological theory rather than on correlations within past data sets, they can
facilitate general understanding of ecological processes, especially under novel
environmental conditions (Evans, 2012; Marquet et al., 2014).

Accordingly, process-based, spatially explicit meta-population models are useful
tools to study species dispersal (Hanski, 1989; Saura et al., 2014). They can be
used to quantify the theoretical importance of habitat parameters on the capacity
of species to disperse between suitable habitat patches (Hanski, 1989; Urban,
2005) and, in turn, to analyze potential risks to meta-population persistence
under changing environmental conditions. The key habitat parameters in the
context of connectivity have been identified as (1) landscape permeability, (2) the
spatial arrangement of habitat patches and (3) habitat patch number, since those
determine, in combination with species-specific dispersal traits, the overall
habitat connectivity (Fahrig and Merriam, 1994; Luque et al., 2012). Nevertheless,
the relative importance of those parameters and their interactions on meta-
population persistence is uncertain and under discussion (Doerr et al., 2011;
Hodgson et al., 2011; Villard and Metzger, 2014).

Over the last decades, multiple meta-population models have been developed.
However, these are often site-specific and largely restricted to fully terrestrial
(Bocedi et al., 2014; e.g. Heino and Hanski, 2001; Lakovic et al., 2017) or fully
freshwater species (Anderson and Hayes, 2018; e.g. Van den Brink et al., 2007),
i.e. species that complete their life cycle entirely in one ecosystem. Freshwater
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and terrestrial species differ strongly in terms of the factors that determine their
dispersal and the spatial structure of their meta-populations. For instance, the
dispersal of freshwater species without terrestrial life stage is restricted to the
stream network and influenced by its permeability (Tonkin et al., 2018b). The
number of habitat patches and their arrangement is determined, besides the
general environmental suitability, by the dendritic stream structure (Anderson
and Hayes, 2018; Eros and Campbell Grant, 2015; Tonkin et al., 2018a). By
contrast, the dispersal of most fully terrestrial species as well as the number and
arrangement of their habitat patches is generally less restricted by specific
spatial structures. The dispersal depends mainly on the landscape permeability
(Eros and Campbell Grant, 2015; Lechner et al., 2017, 2015), whereas, the number
and arrangement of habitat patches is mainly determined by the environmental
suitability of a landscape (Hodgson et al., 2011; Purse et al., 2003).

Insects are among the organisms that have suffered a strong decline in biomass
in the last decades (Hallmann et al., 2017; Sánchez-Bayo and Wyckhuys, 2019;
Simmons et al., 2019). However, spatially explicit meta-population models for
hemimetabolous freshwater insects, which constitute the largest group of
aquatic insects, are lacking. This impedes our capacity to forecast how changing
environmental conditions will impact these species, which rely on suitable
aquatic stream sites for larval development but primarily disperse and mate in
the terrestrial system.

We developed a hypothetical process-based, spatially explicit meta-population
model for a hemimetabolous freshwater insect, parameterized based on data of
the European damselfly Coenagrion mercuriale.

We simulated population dynamics and dispersal processes within multiple
generic habitat networks, starting with an initial configuration of fully colonized
habitat patches. The habitat networks were set up by varying the key habitat
parameters determining habitat connectivity: (1) Levels of landscape
permeability were simulated using artificial landscapes with different proportions
and spatial configurations of four landscape types combined with (2) different
arrangements and quantities of habitat patches along multiple stream network
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structures. Finally, we used the habitat patch occupancy after a simulation run as
an indicator of the colonization success.

Consistent with meta-population theory (Hanski, 1999; Leibold et al., 2004; e.g.
Moilanen and Nieminen, 2002) we expected that the colonization success in our
model would be strongly related to habitat connectivity. Furthermore, we
investigated the relative importance of the parameters (1) proportion and (2)
configuration of landscape types determining landscape permeability as well as
the (3) stream network structure, the (4) habitat patch proportion and (5)
arrangement on the colonization success of a hemimetabolous freshwater insect.

To our knowledge, this is the first study combining a high number of landscape
and habitat scenarios, and examining their influence on population persistence,
in particular for hemimetabolous freshwater insects.

2. MATERIAL & METHODS

The core parts of the presented process-based, spatially explicit meta-population
model are: the derivation of habitat networks (see Figure 1 - A) and the
simulation of population dynamics and dispersal (see Figure 1 - B).
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Figure 1: Flow chart of the meta-population model (A & B) and the data analysis approach (C). A:
derivation of the habitat networks (n = 675,000) using a least-cost path analysis - each parameter
is labeled below according to its number of levels. Dotted boxes represent the intermediate steps

‘Landscape scenarios’ (see Section 2.1.1) and ‘Habitat scenarios’ (see Section 2.1.2) and are
labeled below according to the number of implemented replications per step. B: three steps
composing the simulation of ‘Population dynamics & dispersal’ (see Section 2.2). C: final habitat

patch occupancy (1) compared to the ecological network connectivity measure ‘Integral Index of
Connectivity’ (see Section 2.3.1) and (2) used to investigate the relative importance of the habitat

parameters on the results (ANOVA; see Section 2.3.2).

2.1 Habitat Networks

We created multiple habitat scenarios that were set up by the following habitat
parameters: (1) landscape type proportions (LT.P), and their (2) spatial
configuration (LT.C), determining landscape permeability, (3) stream network
structure (SN.S), (4) proportion (HP.P) and (5) spatial arrangement (HP.A) of
suitable aquatic habitat patches. Using least-cost path analysis (Adriaensen et al.,
2003) these habitat scenarios were converted into habitat networks. The habitat
networks (in total 675,000) served as input for the simulation of population
dynamics and dispersal (see Section 2.2; see Figure 1 - B).
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2.1.1 Landscape scenarios: Proportions and configurations of landscape types

We used neutral landscape model (NLM) algorithms (Etherington et al., 2015) to
create multiple artificial landscapes with different levels of landscape
permeability. Each of the produced landscape rasters had an extent of 50 km x
50 km and an initial resolution of 25 m x 25 m per pixel.

The artificial landscapes were set up with varying (1) proportions and (2)
configurations of three initial landscape types (LT) incurring increasing dispersal
costs (LT 1 = 50, LT 2 = 75, LT 3 = 100; see Section 2.4.1). LT 1 represents ‘open
agricultural land’, LT 2 ‘forestry’ and LT 3 ‘urban area’. To investigate the effect of
increasing costs on dispersal we varied the proportion of each landscape type
from 0 to 100 % in steps of 25 % - the remaining proportion was accordingly
distributed equally between the other two landscape types. Furthermore, to
determine the effect of the landscape configuration on dispersal the differing
landscape type proportions were spatially distributed in three forms using the
NLM algorithms ‘random’, ‘random element nearest-neighbour’ and ‘random
cluster nearest-neighbour’. The NLM algorithm ‘random’ created landscape
rasters without spatial auto-correlation, each pixel was independently assigned a
landscape type (see Figure 2). The algorithm ‘random cluster nearest-neighbour’
created landscape rasters with unevenly sized and highly fragmented landscape
type clusters (Etherington et al., 2015; Saura and Martínez-Millán, 2000).
Landscape rasters produced by the algorithm ‘random element nearest-neighbor’
consisted of irregularly shaped but evenly sized and highly aggregated landscape
type clusters (Etherington et al., 2015).

To furthermore include a realistic stream network structure into the artificial
landscapes we used a section of a stream network from South-West Germany
(GeoPortal.rlp2017). Each raster-pixel intersecting a stream segment was
classified as LT 4 ‘aquatic’ and assigned with the lowest dispersal cost value of
25 reflecting the tendency of many freshwater insects to disperse along the
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stream corridor (Hallmann et al., 2017; Masters et al., 2007; Milko et al., 2012;
Tonkin et al., 2018a).

However, these interim artificial landscapes (see Figure 2 A. - C.) would be
characterized by sharp edges and omit edge effects in the transition zone
between different landscape types, with potentially reciprocal influence of the
types on each other, e.g. modification of micro-climate, resource availability
(Fahrig (2017); Fischer and Lindenmayer (2007)). We conceptualized that
adverse and beneficial edge effects (resulting in in- and decreased environmental
stress) to reduce and extend the capacity to disperse in affected areas,
respectively.

To account for edge effects in the model, we resampled all rasters to a new pixel-
size of 100 m x 100 m (see Figure 2 D. - F.) using the resampling algorithm
‘gdalwarp’ of the Python package ‘GDAL 3.0.2’ with the method ‘average’
(GDAL/OGR, 2018). Thereby, each pixel of a resampled raster is assigned with
the average cost of the (25 m x 25 m) pixels of the underlying interim ‘non-
resampled’ raster it covers.

Finally, we split each artificial landscape raster in 25 tiles of 10 km x 10 km to
represent a wide range of stream network structures SN.S in terms of stream
segments with varying densities and configurations. The resulting rasters are
hereafter defined as landscape scenarios.
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Figure 2: Examples of landscape scenarios created by the neutral landscape model algorithms
‘random’ (A. & D.), ‘random cluster nearest-neighbour’ (B. & E.) and ‘random element nearest-
neighbour’ (C. & F.) for a proportion of 25 % of landscape type 1 and a proportion of 37.5% of

landscape type 2 and 3 each. A. - C.: Interim ‘non-resampled’ rasters with a pixel-size of 25 m x 25
m. Light-green pixels represent landscape type 1 ‘open agricultural land’ (50 cost units), dark-
green pixels landscape type 2 ‘forestry’ (75 cost units), gray pixels landscape type 3 ‘urban area’

(100 cost units) and blue pixels represent landscape type 4 ‘aquatic’ (25 cost units). D. - F.:
Resulting ‘resampled’ rasters with a pixel-size of 100 m x 100 m. Pixel values correspond to the

average dispersal costs resulting from resampling the underlying interim ‘non-resampled’ raster.
Pixels are visualized by a continuous color scheme from dark-blue (25.0 cost units) over light-

green (50.0 cost units) and dark-green (75.0 cost units) to gray (100.0 cost units).

2.1.2 Habitat scenarios: Patch arrangement and initial source patches

We assumed that only a fraction of the stream network provides suitable
conditions for the modeled species. Suitable habitat patches within the
landscape scenarios were selected based on a given proportion of 10 or 20 %
pixels of the landscape scenarios intersecting the corresponding SN.S using
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three approaches (‘random’, ‘random around centers’ and ‘contiguous around
centers’; see Figure 3).

The approach ‘random’ randomly assigned the relevant percentage of all eligible
pixels as habitat patches. The approach ‘random around centers’ selected 5 % of
all eligible pixels as centers and then arranged the remaining pixels randomly
within a radius of 500 m around each of these centers along the stream network.
The same principle was used for the approach ‘contiguous around centers’
except that only 2.5 % of all eligible pixels are selected as centers resulting in a
more contiguous arrangement of the remaining habitat patches.

To provide comparable results among the different approaches, we defined
identical initial (fully colonized) source habitat patches for habitat scenarios
based on equal landscape scenarios and patch shares (Figure 3). To decrease
the variability and given our focus on landscape connectivity and related
landscape variables, we further assigned a constant habitat quality (HQ = 0.625)
to all habitat patches, though habitat quality likely varies in heterogeneous
landscapes (Brink et al., 2013; Ye et al., 2013) and along streams.

2.1.3 Least-cost path analysis

Dispersal of the hemimetabolous freshwater insect in our model is not restricted
to the stream network, it predominantly occurs overland by aerial movement
(Tonkin et al., 2018a).

To set up the final habitat networks for each habitat scenario we first determined
all possible connections of a habitat patch x with all other patches y (where x ≠ y)
that exhibit an euclidean distance less or equal to the maximum dispersal
distance ΓDmax of 2500 m through open agricultural land (see Table 1; see Section
2.4.1).

Second, all possibly connected patches within a habitat scenario in combination
with the corresponding landscape scenario served as input for the least-cost
path analysis (Galpern et al., 2011; Lechner et al., 2017). The analysis identified
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the connection exhibiting the minimal dispersal cost between two connected
habitat patches (see Figure 3). Thereby, the euclidean distance per connection is
converted into a ‘cost distance’ that also takes species-specific dispersal costs
per landscape scenario into account (Adriaensen et al., 2003; Lechner et al., 2017;
Tonkin et al., 2018a). The resulting least-cost paths indicate one likely dispersal
route between two habitat patches (Avon and Bergès, 2016) and, therefore, were
used for the dispersal simulation (see Section 2.2.2). To calculate the least-cost
paths we applied the algorithm ‘route_through_array’ from the ‘skimage.graph’
package (Walt et al., 2014) for Python (Python Core Team, 2021).

Figure 3: Examples of habitat networks resulting from three habitat patch arrangements (A. =
random, B. = random around centers and C. = contiguous around centers) for a habitat patch

proportion of 20 % based on the same landscape scenario. Small light-blue points represent
‘aquatic’ pixels. Dark-blue points represent habitat patches; initial source habitat patches are
highlighted in yellow. Black lines represent connections between habitat patches below the

maximum connectivity costs.

Only connections below the maximum connectivity cost threshold ΓCmax of 1250
cost units (see Table 1) were considered. ΓCmax translates the maximum
dispersal distance ΓDmax of 2500 m through open agricultural land to cost units:

����� =
�����
�����ℎ

⋅ �� (1)
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where Pwidth is the pixel width of the landscape scenarios (see Section 2.1.3) and
CV corresponds to the dispersal costs for pixels assigned to LT 1 (see Section
2.1.1).

2.2 Simulation of population dynamics & dispersal

At the start of each simulation run, the initially fully colonized habitat patches
were sources for the colonization of non-colonized, connected habitat patches
over the simulated timespan T (see Section 2.1.2). The colonization process is
initiated by density-dependent dispersal due to simulated population growth in
colonized habitat patches (Corbet, 1963; Córdoba-Aguilar, 2008), a mode of
dispersal likely caused by strong intra-specific competition (Murdoch and Oaten,
1975). We assumed that patches connected to a source with low dispersal costs
are preferably colonized (Nouhuys and Hanski, 2002) and thus receive a higher
proportion of individuals. Moreover, we expected that the colonization success
for habitat patches is directly related to the dispersal costs for a connection
(Baguette and Van Dyck, 2007; Purse et al., 2003).

2.2.1 Population growth

For each simulated time step t the current population size Nt is determined for all
colonized habitat patches using a logistic growth function. We use the classic
Verhulst model (e.g Tsoularis and Wallace, 2002) to calculate Nt(x) per habitat
patch x for the present t:

�� � = ���,�−1 � ⋅� �
���,�−1 � + � � −���,�−1 � ⋅�−�⋅1 (2)
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where r is the intrinsic growth rate, Nad,t-1(x) the population size adjusted by
changes due to dispersal processes (see Section 2.2.3) at the previous time step
(t - 1) and K(x) the carrying capacity of the habitat patches.

Given that in general demography and population-level fitness are strongly
dependent on habitat quality HQ (Sutherland and Norris, 2002; Ye et al., 2013) we
defined the carrying capacity K(x) per patch according to its specific HQ(x):

� � = �� � ⋅ ����� (3)

where Abmax is the maximal abundance of individuals per habitat patch and HQ
corresponds to the HQ value of habitat patch x.

2.2.2 Dispersal

Emigration potential

We assumed positive density-dependent dispersal (Corbet, 1963; Córdoba-
Aguilar, 2008) which can be expected for insect species (Matthysen, 2005; Purse
et al., 2003; Travis et al., 1999). Therefore, the number of emigrating individuals
per source habitat patch increases with abundance due e.g. to intra-specific
competition (Amarasekare, 2004; Bowler and Benton, 2005; Heino, 2013). The
specific number of emigrating individuals Nem,t per habitat patch x is calculated
as follows:

���,� � = ���� � ⋅�� � (4)

where Nt(x) is the current population size and Rdis(x) is the density-dependent
dispersal rate:
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where s quantifies the propensity to disperse due to density and ß is the per
capita emigration rate scaled by the intrinsic growth rate of the population
(Amarasekare, 2004). In case s > 0 the simulated emigration rate increases with
population density at an accelerating rate towards ß (Amarasekare, 2004).

Dispersion of emigrants

Next, the emigrating individuals Nem,t per habitat patch x disperse to all directly
connected patches y that are currently not fully colonized (i.e. Nt(y) < K(y)).
Following Nouhuys and Hanski (2002) as well as Purse et al. (2003), habitat
patches cost-effective connected to a colonized patch x are more likely to be
colonized. Hence, those receive a higher fraction Ft(x,y) of Nem,t(x) per t (for
technical details see Appendix A.1).

Dispersal mortality

The colonization success between two habitat patches x and y is directly related
to the dispersal costs C(x,y) of the specific connection, as mortality risks of
dispersing individuals (for damselflies e.g. caused by predation or traffic
(Rouquette, 2005)) or energetic reserve exhaustion increase with dispersal costs
(Baguette and Van Dyck, 2007; Córdoba-Aguilar, 2008; Rankin and Burchsted,
1992).

Hence, the number of individuals Nim,t(x,y) immigrating from x into y is calculated
by reducing the fraction Ft(x,y) of the total number of emigrants Nem,t(x)
depending on the ratio of the connectivity costs of the specific connection C(x,y)
and the maximum connectivity costs ΓCmax:
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2.2.3 Adjustment of the population size

Finally, the population size for each habitat patch was adjusted for dispersal. At
the end of each time step, the sum of immigrating individuals from all directly
connected source habitat patches (y in Sinter) was added to the population size
Nt(x). In the case of a source habitat patch, the number of emigrated individuals
Nem,t(x) was subtracted:

���,� � = �� � + ��������
 ���,�� �,� −���,� � (7)

Furthermore, colonized habitat patches become source habitat patches in the
next time step as soon as their population exceeds a predefined threshold ΓsHP.

2.3 Model application

We created 10 artificial landscapes for each of the 15 landscape type
proportions (LT.P) and the three spatial compositions of the landscape types
(LT.C) to minimize bias from a specific realization (in total 450; see Section
2.1.1). Moreover, any artificial landscape was split in 25 even landscape
scenarios (in total 11,250; see Section 2.1.1), which represent varying densities
and configurations of stream network structures (SN.S).

We further used three approaches to create varying habitat patch arrangements
(HP.A) along the stream-network within the landscape scenarios (see Section
2.1.2). Again to minimize bias from individual realizations, each arrangement
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was applied 10 times with two habitat patch proportions (HP.P) of 10 % or 20 %
of all ‘aquatic’ pixels selected as habitat patches (see Section 2.1.2).

Overall, this resulted in a total of 675,000 different habitat networks (10 x (15
LT.P x 3 LT.C x 25 SN.S) x 10 x (3 HP.A × 2 HP.P).

Population dynamics and dispersal were simulated for each habitat network over
a timespan T of 100 reproductive periods based on varying configurations of
initial (fully colonized) source habitat patches. Therefore, 10 times per network a
proportion of 10 % of the patches was selected as initial source habitat patches
(see Section 2.1.2). To provide comparable results among the different HP.A
approaches, we defined identical initial source habitat patches for habitat
scenarios based on equal landscape scenarios and patch proportions (see
Figure 3).

2.4 Model Parameterization

Although the presented model is in general hypothetical, several model
parameters were parameterized relative to traits of the European damselfly
Coenagrion mercuriale (see Table 1).

2.4.1 Parameterization: Habitat networks

Based on a literature review we identified a maximum dispersal distance and
four main landscape types LT affecting the dispersal of Coenagrion mercuriale.
Consequently, we assigned different relative levels of permeability to the
landscape types ‘aquatic’, ‘open agricultural land’, ‘forestry’ and ‘urban area’. The
type-specific level was assessed based on previous studies and, subsequently,
transformed to relative, numeric dispersal cost values.

Streams are identified as the most important dispersal corridors and dispersal
along a watercourse is more likely than dispersal via terrestrial landscape types,
hence leading to a high connectivity of patches allocated along the same stream
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(Hepenstrick et al., 2014; Kastner et al., 2015; Keller et al., 2013). Therefore, the
landscape permeability for LT 4 ‘aquatic’ was assumed highest and its dispersal
cost was set to the lowest value of 25. Frequent dispersal between populations
of Coenagrion mercuriale connected solely via continuous open agricultural land
was found by several studies (Keller et al., 2012; Keller and Holderegger, 2013).
Hence, we assumed the second highest permeability for the LT 1 ‘open
agricultural land’ and set its dispersal cost to 50. In contrast, forest patches as
well as urban areas have been identified as potential barriers and may impede
dispersal of Coenagrion mercuriale (Kastner et al., 2015; Keller et al., 2012; Watts
et al., 2004), in particular, urban areas have been described as impermeable
(Watts et al., 2004). Consequently, we set the dispersal cost as 75 for LT 2
‘forestry’ and as 100 for LT 3 ‘urban areas’.

The maximum dispersal distance ΓDmax for Coenagrion mercuriale implemented in
the model refers specifically to dispersal through open agricultural land, i.e. LT 1.
Keller et al. (2012) and Keller and Holderegger (2013) found a good connectivity
of meta-populations within a radius of 1.5 - 2 km linked via continuous open
agricultural land. In addition, they found evidence for overland dispersal over
larger distances in rare cases. Accordingly, we set ΓDmax to 2500 m. To generalize
the LT 1 specific maximum dispersal distance ΓDmax to a parameter valid for all
four landscape types we converted it into the unspecific maximum connectivity
cost threshold ΓCmax (see Section 2.1.3).

2.4.2 Parameterization: Simulation

The maximum abundance per habitat patch Abmax was set to 100 as empirical
values for abundances of Coenagrion mercuriale ranged from 68.3 (Hepenstrick
et al., 2012) to 211.5 individuals (Kastner et al., 2015) per 100 m transect.
Salcher and Schiel (2015) reported abundances up to 100 individuals per 100 m
transect in the region around Tübingen, Germany. The parameter intrinsic growth
rate r was set to 2, as K.-J. Contze (personal communication, June 16, 2017)
stated it can be expected that habitat patches are fully colonized by European
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damselflies 2 - 3 years after an initial colonization. In the absence of literature
data, we set the per capita emigration rate ß as well as the parameter governing
density-dependent dispersal s: ß to 0.2 and s to a moderate positive value of 0.5.

Table 1: Parameter values used for setting up the habitat networks and the simulation of
population dynamics and dispersal.

Parameter Symbol Value Unit Reference Comment

habitat quality HQ 0.625

max. dispersal

distance
ΓDmax 2500 m

Keller et al.
(2012) &

Hepenstrick et
al. (2014)

For Coenagrion
mercuriale

through open
agricultural land

max.
connectivity

costs
ΓCmax 1250 costs

derived from
Keller et al.

(2012) &
Hepenstrick et

al. (2014)

2.1.3

timespan T 100
reproduction

periods

maximal
abundance

Abmax 100

Hepenstrick et
al. (2012) &

Kastner et al.

(2015)

For Coenagrion
mercuriale per

100 m transect:

68.3 - 211.5

intrinsic growth
rate

r 2

K.-J. Contze
(personal

communication,
June 16, 2017)

Habitat patches
expected to be

fully colonized by
damselflies 2 - 3
years after initial

colonization

emigration rate ß 20 %
Amarasekare

(2004)

propensity to
disperse

s 0.5
Amarasekare

(2004)

threshold source ΓsHP 20 individuals
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habitat patch

2.5 Data analysis

We used the final patch occupancy per habitat network as an indicator for the
colonization success (see Figure 1 - C). To determine how habitat connectivity is
related to the colonization success, we compared the results to the ecological
network connectivity measure ‘integral index of connectivity’ (IIC).

Although there is a big variety of graph-theoretic connectivity measures (Laita et
al., 2011), we selected the IIC as it is based on shortest paths and provides
reliable information on the degree of connectivity between patches (Laita et al.,
2011; Pascual-Hortal and Saura, 2006). It is a graph-based index measuring
habitat connectivity in terms of the probability that two randomly selected habitat
patches x and y are directly or indirectly connected (Lechner et al., 2017). The IIC
is calculated as follows:
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where AHP is the area of each habitat patch (here: one raster pixel, 0.01 km²) and
nlxy is the number of links per connection (topological distance) between
connected patches x and y. AL is the total landscape area. In the context of the
present study, we define AL as the total area of sustainable aquatic habitat
patches or rather raster pixels per landscape scenario intersecting a habitat
patch (see Section 2.1.2). The IIC ranges from 0 to 1 and increases with
improved connectivity; for details see Pascual-Hortal and Saura (2006).

To investigate the relative importance of the habitat parameters (1) landscape
type proportions (LT.P), (2) landscape type configuration (LT.C), (3) stream
network structure (SN.S), (4) habitat patch proportion (HP.P) and (5) habitat
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patch arrangements (HP.A) as well as their two-way interactions, we used eta
squared (η2) (Lakens, 2013) as a measure of effect size derived from analysis of
variance (ANOVA) with F-test. The calculations of the ANOVA and the η2 were
done in R version 3.5.1 (R Core Team, 2018) using the package ‘sjstats’ for η2

(Lüdecke, 2018).

3. RESULTS & DISCUSSION

3.1 Habitat connectivity

Our analysis based on the IIC values indicated that colonization success of the
modeled species is strongly influenced by habitat connectivity: the percentage of
colonized suitable habitat patches increased with decreasing IIC values (see
Figure 4).

Figure 4: Relation between the integral index of connectivity IIC (x-axis) and the proportion of
colonized suitable habitat patches (y-axis) per habitat network. Overlapping points are colored by
density using the 2D kernel density estimation function from the R package ‘MASS’ (Ripley et al.,

2019). The black line represents a smoothing curve (generalized additive model). Due to the high
number of habitat networks, a random subset of 10 % (675.000) of the total results is shown.
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The positive relationship (Spearman’s ρ = 0.64, p < 0.001) between the IIC and
the proportion of colonized habitat patches matches our expectation (see Figure
4). In addition, the result is in agreement with ecological theory (Baguette and
Van Dyck, 2007; Chisholm et al., 2011; Matisziw and Murray, 2009; e.g. Moilanen
and Nieminen, 2002), which states that habitat connectivity generally determines
colonization probability.

The relatively high variability in the results (see Figure 4) may be explained by the
high number of habitat networks produced resulting in different arrangements of
habitat patches and source habitat patches for similar overall dispersal costs per
habitat scenario the least-cost path analysis was based on. Habitat networks
with low IIC values typically consisted of multiple non-connected clusters of
habitat patches. In case each cluster contained an initial source habitat patch,
the colonization rate was likely high, although no dispersal between these
clusters occurred. Conversely, the majority of habitat patches could be highly
connected in one to very few clusters, containing all initial source patches.
Therefore, the remaining patches were not connected to a source patch, resulting
in comparably low colonization rates.

Furthermore, the IIC ignores the dispersal costs per connection (Laita et al.,
2011). Thus, a high connectivity of habitat patch clusters may not correspond to
a high colonization rate over T due to high dispersal costs and related mortality
in the case of an unsuitable distribution of source habitat patches. This effect
conforms to the known limitation of the IIC due to the oversimplified binary
representation of connections (Laita et al., 2011; Saura and Pascual-Hortal,
2007).

3.2 Importance of parameters

The evaluation of individual effects and the two-way interactions of the habitat
parameters (see Table 2) showed that the proportion of habitat patches (HP.P)
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had the strongest effect on the colonization success, followed by landscape type
proportions (LT.P), habitat patch arrangement (HP.A) and stream segment
structure (SN.S). The landscape type configuration (LT.C) explained only a
negligible proportion of the variance. Furthermore, the explanatory power of the
two-way interaction effects was low.

3.2.1 Landscape permeability

The results indicated that decreasing average dispersal costs per habitat
scenario led to increasing colonization success (see Figure 5). The LT.P, one of
two habitat parameters determining landscape permeability, explained the
second highest proportion (13.1 %) of the variance in the colonization success.
This suggests that the varying landscape permeability of the artificial landscape
scenarios, resulting from different proportions of the four landscape types (see
Section 2.1.1), strongly affects the dispersal of hemimetabolous freshwater
species.

The general relevance of landscape permeability for animal dispersal and
population dynamics has been widely recognized in terrestrial ecology (Pinto and
Keitt, 2009; Zeller et al., 2012). With decreasing landscape permeability mortality
rates during dispersal between habitat patches increase (Strien and Grêt-
Regamey, 2016). In the worst case, connections disappear (Baguette and Van
Dyck, 2007; King and With, 2002) resulting in lower habitat connectivity and, in
turn, lower colonization success. Comparable effects of landscape permeability
on dispersal can be expected for aquatic species, which primarily disperse
overland (Smith et al., 2009; Tonkin et al., 2018a).

However, even though previous studies showed that species rather disperse
through homogeneous areas with low costs than through heterogeneous areas
with variable costs (King and With, 2002; Ricketts, 2001) the explanatory power
of LT.C, the other parameter determining landscape permeability, was low (0.2 %).
Although the graphical analysis (see Figure 5) showed minor differences
between the three NLM algorithms used.
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Table 2: Multi-factorial ANOVA for main and two-way interactive effects of landscape type
proportions (LT.P), landscape configuration (LT.C), habitat patch proportion (HP.P), habitat patch

arrangement (HP.A) and stream segment (SN.S) on the colonization success. The p-values of all
parameters were below 0.001.

Term
Degrees of
freedom

Sum of squares F value Eta squared

HP.P 1 17410 17410 0.186

LT.P 14 12262 135663 0.131

HP.A 2 6654 515376 0.071

SN.S 24 5749 37102 0.061

HP.P : LT.P 14 3308 36595 0.035

HP.P : SN.S 24 1812 11693 0.019

HP.P : HP.A 2 813 62969 0.009

HP.A : SN.S 48 768 2477 0.008

HP.A : LT.P 28 549 3038 0.006

LT.P : SN.S 336 367 170 0.004

LT.C 2 217 16771 0.002

LT.C : HP.P 2 56 4337 0.001

LT.C : LT.P 28 91 503 0.001

LT.C : HP.A 4 10 385 0

LT.C : SN.S 48 9 30 0

Residuals 6749422 43574

3.2.2 Stream network

In our study, the stream network structure SN.S explained 6.1 % of the variance.
The number of pixels per 10 km x 10 km landscape tile intersecting a SN.S
correlated positively with the percentage of colonized habitat patches (see
Figure 5). Higher habitat patch densities generally produced better connected
habitat networks and we expect that the resultant enhanced connectivity of
habitat networks explained a significant proportion of the variance explained by
the SN.S. However, the influence of the SN.S on the connectivity certainly
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depends on further parameters, such as the geometry of the network (e.g.
number and spatial arrangement of branches).

In general, stream networks exhibit a dendritic spatial structure and the dispersal
of hemimetabolous species is necessarily influenced by the individual network
structure (Brown et al., 2011; Tonkin et al., 2018a, 2018b). Furthermore, the
strength of the influence of the spatial network structure on the habitat
connectivity depends on dispersal potential (Keitt et al., 1997; Tonkin et al.,
2018a), where strong aerial dispersers are less influenced than poor dispersers
(Tonkin et al., 2018a). Future studies should therefore further examine the
influence of the SN.S to precisely analyze how e.g. dispersal traits and network
structure, but also habitat quality and the potential variability of streams (e.g.
due to droughts), influence the colonization. Particularly since spatial stream
network structures but also the stability of stream habitats can vary widely in
time and between different geological and climatic regions (Frissell et al., 1986).

3.2.3 Habitat patches: proportion & arrangement

The results further showed that doubling the HP.P per stream network had the
strongest effect on the colonization success, accounting for 18.6 % of the
variance. Since we run only two levels (10 and 20 %) of HP.P, no conclusion
regarding the general relationship between HP.P and the habitat connectivity as
well as the resulting colonization success can be drawn.

However, generally an increase of patches within a habitat leading to higher
patch density results in enhanced connectivity of habitat networks (Hanski, 1999;
Villard and Metzger, 2014). Due to generally shorter distances between patches,
first, dense networks possess more pairwise direct connections per patch and,
thus, more indirect connections between habitat patches, via intermediate
patches (Laita et al., 2011; Minor and Urban, 2008). Second, within dense
networks the costs per connection are generally lower. Consequently, decreasing
landscape permeability less likely results in the loss of direct connections and,
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moreover, the loss of direct connections can be compensated (over time) by
indirect connections.

The habitat patch arrangement HP.A accounted for 7.1 % of the variance. The
graphical analysis furthermore showed that the HP.A approach ‘random’ resulted
in clearly higher colonization success compared to the two other approaches
(see Figure 5), which both led to more clustered HP.A.

The arrangement of patches generally determines (under otherwise identical
conditions) the connectivity of habitats (Chisholm et al., 2011; Laita et al., 2011;
Villard and Metzger, 2014). Randomly or rather variously arranged habitat
patches create more indirect connections within a network (Anderson and Hayes,
2018; Baguette and Van Dyck, 2007), whereas clustered habitat patch
arrangements lead to more cost-effective connections within the clusters, but the
clusters often remain unconnected (Anderson and Hayes, 2018; Hodgson et al.,
2011). The presented results indicate that those generally positive effects of
variously arranged patches on the colonization also apply to variously (randomly)
arranged patches along streams; although (given the dendritic stream structure)
the patch arrangement is much more predetermined in any instance.
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Figure 5: Interaction plot for the main and two-way interaction effects on the rate of colonized
habitat patches (y-axis) per habitat parameter (x-axis). The main effects are arranged diagonally

and labeled in the lower right: LT.P - landscape type proportions, LT.C - landscape type
configuration, HP.A - habitat patch arrangement, HP.P - habitat patch proportion and SN.S -
stream network structure. The parameter LT.P is sorted by the mean dispersal costs of the

resulting specific habitat scenarios in descending order. The parameter SN.S is sorted ascending
by the number of pixels per 10 km x 10 km landscape tile intersecting the stream network. The

specifications of the parameter LT.C results from three varying spatial distributions of the
different landscape type proportions using the neutral landscape model (NLM) algorithms (1)

random (NLM.R), (2) random element nearest-neighbour (NLM.RE) and (3) random cluster
nearest-neighbour (NLM.RC); see Section 2.1.1 for details. The specifications of the parameter
HP.A result from three habitat patch arrangement approaches ‘random’, ‘random around centers’
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and ‘contiguous around centers’; see Section 2.1.2 for details. The two-way interaction effects are
arranged as follows: the interactions are colored according to the gray scale of the factor in the

corresponding horizontal sub-plot of the main effect; the number of factors corresponds to those
of the main effect in vertical direction. The dotted line per sub-plot represents the average
colonization of all simulations.

3.2.4 Two-way interactions

The explanatory power of all two-way interaction effects was low (equal or less
than 3.5 %; Table 2). The three strongest interaction effects all involved HP.P:
HP.P and LT.P (3.5 %), HP.P and SN.S (1.9 %), HP.P as well as HP.A (0.9 %).

The effect of decreasing landscape permeability, primarily caused by the LT.P, on
the colonization success was less pronounced for habitat networks with a high
potential connectivity resulting from comparably dense networks with a high
HP.P. We assume losses of direct connections because of exceeding the
maximal connectivity costs, can often be compensated by indirect connections.
Accordingly, the HP.P and the SN.S interacted comparably strongly, as the patch
number per habitat scenario was directly related to stream network density.
Furthermore, networks with a random HP.A were less affected by decreasing
landscape permeability compared to the other arrangements. This can be
explained by randomly arranged patches resulting in more indirect connections
making networks less sensitive against the loss of direct connections.
Colonization success was differently affected by the other arrangements
‘random around centers’ and ‘contiguous around centers’ depending on the
respective SN.S.

3.2.5 Unexplained variance

The five habitat parameters including their two-way interactions explained 53.4 %
of the variance in the colonization success. The remaining variance can largely
be explained by the stochastic variability of the habitat networks. The random
distribution of initial source habitat patches within the networks as well as the 10
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random habitat networks set up for each patch arrangement approach and patch
proportion per habitat scenario likely were responsible for a relevant proportion
of the unexplained variance. Moreover, higher level interactions may explain
additional, albeit likely a low proportion, of the remaining variance.

3.3 Model parameters and omission of processes

The development of process-based, spatially explicit meta-population models is
complicated by factors such as the degree of abstraction and the relatively
complex analyses and interpretation required. The necessity to control the
complexity of the model structure and to approximate parameter values based
on literature references lead to simulation results that are difficult to verify for
specific real-world species (Forbes et al., 2008; Hanski, 1994; Saura et al., 2014).

In this context, several parameters used in setting up the habitat networks and
the simulation represented estimates (e.g. cost values of landscape types) in
the absence of precise values which affects the results (see Section 2.4).
Moreover, we did not consider the potential effects of (1) isolation such as
reduction of genetic variability (Hanski, 1989; Watts et al., 2006) and (2) deferred
costs of dispersal, both of which can compromise meta-population viability
(Baguette and Van Dyck, 2007; Burgess et al., 2012). We further omitted potential
negative impacts of high connectivity on population viability such as the effects
of diseases that may spread rapidly in highly connected habitats (Minor and
Urban, 2008). However, such aspects could relatively easily be incorporated into
the current process-based model and parameter estimates could be updated in
the light of new knowledge or to reflect the traits of a different model species
(Cuddington et al., 2013).

We conclude that the presented model has the potential to generate (at a
minimum) theoretical knowledge and general understanding how changing
environmental conditions influence the habitat connectivity of hemimetabolous
freshwater species under varying scenarios.
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4. CONCLUSION

The results indicate that habitat connectivity for hemimetabolous freshwater
species is strongly determined by similar parameters affecting terrestrial habitat
connectivity. Comparable with terrestrial species the number and arrangement of
habitat patches as well as the permeability of the surrounding landscape largely
determine the colonization success (Hanski, 1989; Hodgson et al., 2011; Lechner
et al., 2017). Here, it is especially noteworthy that high potential network
connectivity, primarily resulting from a high number of patches, had a relevant
positive effect on the resilience of habitat networks to decreasing landscape
permeability. Nevertheless, the modeled colonization is considerably regulated
by the spatial structuring of the stream network.

The persistence of species threatened by environmental change will strongly
depend on the preservation of habitat connectivity and, therefore, on habitat
management on landscape-scales (Hanski, 1989; Hodgson et al., 2011; Lechner
et al., 2017; Watts et al., 2006). To preserve or improve habitat connectivity,
management for hemimetabolous freshwater species must, in addition to the
protection and improvement of the single patches, focus on the habitat as a
whole (Hassall and Thompson, 2012; Sarremejane et al., 2017). Thereby,
management measures should particularly focus - as presented above - on patch
density and landscape permeability.

Process-based models can generally improve effective habitat management
(Cuddington et al., 2013; Evans, 2012; Jacoby and Freeman, 2016; Petchey et al.,
2015; Saura et al., 2014). For example, a simplified version of our model revealed
information on the minimum time required to colonize habitat patches added to
an existing network (Heer et al., 2019).

The presented model has the potential to be parameterized with species-specific
traits and, in combination with real-world landscapes, streams and habitat patch
assemblages, may serve, for instance, to support future site-specific habitat
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management planning. Moreover, it can be adopted in future studies to simulate
how singular and periodic (e.g. resulting of an increased likelihood of drought
events caused by climate change) or permanent effects (e.g. resulting from
land-use change) on patch quality affects meta-population persistence.
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APPENDIX A

We developed the following formula to calculate the specific fraction Ft(x,y) of
Nem,t(x) per t that a habitat patch y directly connected to a source patch x receives:

�� �,� = ����
3 �,�

�,� ����� �
 ����

3� �,�
(A.1)

where Scon(x) represents the set of all direct connections from a source habitat
patch x to all empty or not fully colonized patches. Cred(x,y) is calculated as
follows:

���� �,� = ���� � −� �,� +���� � (A.2)

where C(x,y) are the costs of the connection form source habitat patch x to patch
y. Cmax(x) is the maximum and Cmin(x) is the minimum cost of all connections in
Scon(x). Once patch y is fully colonized (Nt(y) = K(y)), the connection from x to y is
removed from Scon(x). However, the specific connection is added again to Scon(x)
as soon as the patch population of y decreases due to dispersal in the following t.

APPENDIX B

Supplementary material (Python code plus Input-Data) for this publication can be
found online at: https://github.com/luclucky/HabitatConnectivity_Colonization
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GRAPHICAL ABSTRACT

ABSTRACT
Ecosystems are increasingly threatened by co-occurring stressors associated
with anthropogenic global change. Spatial stressor patterns range from local to
regional to global, and temporal stressor patterns from discrete to continuous.
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To date, most multiple stressor studies covered short periods and focused on
local effects and interactions. However, it remains largely unknown how
stressors with different spatiotemporal profiles interact in their effects over
longer periods. In particular, at higher spatial scales, biotic dynamics in
ecological networks complicate the understanding of stressor interactions.

We used a spatially explicit meta-population model for a generic freshwater
insect, parameterized based on traits of the European damselfly Coenagrion
mercuriale, to simulate scenarios of discrete climatic extreme events and
continuous land use-related stress. Climatic extreme events were modeled as
repetitive mortality in all patches, whereas land use permanently influenced
meta-populations via patch qualities and network connectivity.

We found that the risk of discrete climatic extreme events to meta-populations
depended strongly on the proportion of land use types, with effects ranging from
negligible to extinction. Land use-related stress limited recovery and thereby
buffering of the effects of climatic extreme events in meta-populations, resulting
in synergistic stressor interactions. Moreover, the spatial configuration of land
use type influenced the combined stressor effects with clustered configurations
resulting in lower effects compared to a random configuration. Finally, we found
that stressor effects and interactions can vary with the time point at which they
were determined, indicating that inconclusive results in multiple stressor
research can partly be due to differences in the time of determination.

We conclude that conservation should focus on regional landscape management
to mitigate risks on meta-populations from future, intensified extreme climate
events. Reducing land use effects, thus improving patch quality and network
connectivity, can buffer the effects of additional discrete stressors and, in turn,
synergistic interactions.
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1 INTRODUCTION
Ecosystems are increasingly threatened by stressors associated with climate
and land use change (IPCC, 2019; Orr et al., 2020), where a stressor is defined as
an environmental variable outside of its normal range with adverse ecological
effects (Brown et al., 2013). Stressors vary in their spatial and temporal patterns.
Spatial patterns range from locally (e.g., chemical pollution), to regionally (e.g.,
reduced habitat connectivity), to globally acting stressors (e.g., global climate
change) (Brown et al., 2014; Côté et al., 2016). Temporal patterns range from
discrete, short stressor events (e.g., climatic extreme events) to continuous,
permanent stressor presence (e.g., modified micro-climates) (Cash et al., 2006;
IPCC, 2019; Pinek et al., 2020).

In most ecosystems stressors co‐occur spatially and temporally (Birk et al., 2020;
Schäfer et al., 2016). The effects of co-occurring, interacting stressors are
broadly classified into (1) additive (combined effect = sum individual effects), (2)
antagonistic (combined effect < sum individual effects), or (3) synergistic
(combined effect > sum individual effects) (Birk et al., 2020; Côté et al., 2016).
Particularly synergistic effects have attracted attention in conservation and
ecosystem management, as they can produce disproportional, long-term losses
in biodiversity and ecosystem functioning by amplifying biotic and abiotic
feedbacks (Brook et al., 2008; Côté et al., 2016). In this context, previously stable
ecosystems can be pushed beyond their tipping points, resulting in abrupt,
possibly irreversible shifts (Dakos et al., 2019; Oliver and Morecroft, 2014). For
example, landscape degradation can slow down the dynamics of populations or
communities to the extent that brief additional stress events, which previously
caused minor short-term effects, can trigger sharp declines up to extinction.
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From a practical perspective, local and regional stressors are often addressed by
management measures, whereas global stressors, such as climate change, are
largely beyond the control of ecosystem management (Brown et al., 2014; Oliver
and Morecroft, 2014). Reducing the level of local and regional stressors may
mitigate the effects of increasing global stressors, thereby buffering against
crossing tipping points (Brown et al., 2013; Côté et al., 2016; Woodward et al.,
2016). Indeed, for ecological networks, the optimization of the landscape matrix
can enhance the resilience to temporary climatic extreme events by higher patch
reproduction and network connectivity (Cid et al., 2020). Given limited resources,
conservation requires knowledge on the implementation of landscape-related
measures, i.e., to improve the entire matrix moderately or selected areas strongly
(Grass et al., 2019; Kremen and Merenlender, 2018; Van Teeffelen et al., 2012).

Most previous manipulative stressor studies focused exclusively on the local
scale, e.g., microcosm or mesocosm experiments. Furthermore, studies rarely
considered the temporal dynamics of multiple stressor events (Jackson et al.,
2021). Accordingly, comparatively little is known on how stressors with different
spatial and temporal profiles interact (Birk et al., 2020; Hunting et al., 2019;
Jackson et al., 2021) and a framework to predict their effects is missing (Oliver
and Morecroft, 2014; Rillig et al., 2021). At the landscape scale, the spatial profile
of the stressor may determine the dynamics in ecological networks (Gonzalez et
al., 2017; Schiesari et al., 2019) and alter the resilience to discrete events of an
additional stressor. The long-term effects for networks depend on whether
repetitive short-term local effects of a discrete stressor are compensated over
time (Schäfer et al., 2017), e.g., if extinct patches can continuously be
recolonized. An improved understanding of co-occurring stressors with different
spatial and temporal profiles is critical to address future risks to ecosystems
(Oliver and Morecroft, 2014).

Spatially explicit, process-based models, based on ecological theory, can
enhance our understanding by simulating future risks for ecological networks in
multiple stressor environments (Cuddington et al., 2013; Evans et al., 2012;
Petchey et al., 2015). However, previous studies with meta-population models
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focused mainly on extinction-recolonization dynamics as well as patch
distribution and number but ignored the influence of the landscape on patch
qualities or network connectivity (Howell et al., 2018; Schooley and Branch, 2011;
Titeux et al., 2016).

To examine the effects for meta-populations we simulated scenarios of co-
occurring stressors. We used a modified version of a meta-population model for
a generic, hemimetabolous freshwater insect with a terrestrial life-stage
parameterized based on traits of the European damselfly Coenagrion mercuriale
(Streib et al., 2020). As stressors, we selected land use and climatic extreme
events, implemented with different profiles. Land use scenarios, defined by
different proportions of three land use types in three spatial configurations,
determined patch qualities and network connectivity. Climatic extreme event
scenarios, defined by different mortalities and frequencies, repetitively reduced
the population of all patches of a meta-population. We compared the effects of
scenarios with co-occurring stressors to a baseline scenario. The baseline
scenario corresponded to optimal landscape conditions, without extreme events,
where the landscape exhibited the highest patch qualities and lowest dispersal
costs. Moreover, we examined the influence of the spatial land use configuration
(i.e., random or clustered in two different forms) on the findings at identical
stressor scenarios. As suggested by previous meta-analyses on landscape
management (Côté et al., 2016; Oliver and Morecroft, 2014), we hypothesized
that low land use-related stress can buffer the long-term effects of extreme
climatic events, preventing synergies.

2 MATERIAL & METHODS
We used the meta-population model of Streib et al. (2020) to (1) set up generic
meta-population networks and, subsequently, (2) to simulate population
dynamics and dispersal in the networks. In addition to Streib et al. (2020), we
further incorporated land use-related patch qualities, influencing the specific
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carrying capacity and extinction risk, and multiple scenarios of temporary
extreme events (Fig. 1).
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Figure 1: Overview of the simulation process, i.e., A. the set-up of meta-population networks
MPNs, B. the set-up of extreme event scenarios EES, C. the simulation process, and D. the data

analysis approach. A.: MPNs were set up by 270 land use scenarios (resulting of a stream
network combined with 3 land use types in 9 different distributions and 3 spatial configurations)
combined with 10 random patch arrangement scenarios using least-cost path analysis. B.: EES

were set up by combining 3 mortalities with 3 frequencies occurring at regular intervals. C.:
Stylized simulation process for one MPN over 110 time steps t. START: The initial population size
N per patch x is set to 10 % of its carrying capacity K(x). time steps t 1-10: Simulation of

population dynamics and dispersal without local patch extinction and extreme events to arrive at
an initially stable state. t 11-110 (or until ΣN(x) == 0): Simulation of population dynamics and

dispersal with local patch extinction and specific extreme events. END D.: Calculation of stressor
effects in terms of population decline relative to baseline scenarios. The effects of the stressors
were subsequently quantified and classified regarding their interaction type, using a multiplicative

null model.

2.1 Set up of meta-population networks
We set up multiple meta-population networks based on (1) land use scenarios
combined with (2) patch arrangement scenarios, using least-cost path analysis
(Adriaensen et al., 2003; Lechner et al., 2017). The resulting meta-population
networks consist of quality-assigned patches and the most cost-efficient
connections between those. Patches were only connected when the dispersal
costs were below a given maximum (Barthélemy et al., 2005); for details see
Streib et al. (2020).

A landscape scenario is a raster with a cell size of 25 x 25 m and an area of 12.5
km x 12.5 km, composed of three terrestrial land use types (LT; LT1 = extensive
agriculture, LT2 = forestry, and LT3 = intensive agriculture) and a section of a real
stream network (LT4 = aquatic). The proportion of each terrestrial LT varied from
0 to 100 % in steps of 50 %, with the remaining proportion distributed equally
among the other two terrestrial LT. This resulted in 9 different distributions of LT.
Moreover, to study the influence of the spatial configuration, each of this LT
distribution was arranged in three spatial configurations using the neutral
landscape model (NLM) algorithms (1) random (nlmr), (2) random element
nearest-neighbour (nlmre), and (3) random cluster nearest-neighbour (nlmrc)
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(Etherington et al., 2015). (1) resulted in land use scenarios with a random LT
configuration, (2) in regularly shaped but unevenly sized fragmented LT clusters,
and (3) in irregularly shaped but evenly sized aggregated LT clusters (Etherington
et al., 2015) (Fig. 2).

Each LT was associated with species-specific qualities and dispersal costs. Land
use-related qualities represent a proxy for pollution caused by intensive
agriculture (LT3), reducing patch quality if present upstream (Allan, 2004; Feld,
2013; Sweeney and Newbold, 2014). The (numeric) dispersal costs represent the
permeability of the LTs (LT1 = 50, LT2 = 75, LT3 = 50, LT 4 = 25) because the
dispersal of the model species predominantly occurs by aerial movement as an
adult, where elevated structures impede dispersal (Streib et al., 2020). Higher
dispersal costs per connection result in enhanced dispersal mortality (Chaput-
Bardy et al., 2010; Córdoba-Aguilar, 2008).

Figure 2: Examples of three land use scenarios (LSs), based on a 50 % proportion of land use

type 2, combined with a random patch arrangement scenario (PA), and the resulting three meta-
population networks (MPNs). MPNs consist of both, patches, represented as white points, and
the most cost-efficient connections represented as black lines. The left LS with a random

configuration was set up by the neutral landscape model algorithm random (nlmr), the center LS
consisting of fragmented clusters by random element nearest-neighbour (nlmre), and the right LS
consisting of aggregated clusters by random cluster nearest-neighbour (nlmrc). Light-green

colored pixels represent land use type 1 (extensive agriculture), dark-green pixels land use type 2
(forestry), gray pixels land use type 3 (intensive agriculture), and blue pixels land use type 4
(aquatic).
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The patch arrangement scenarios were set up by randomly selecting 10% of the
LT4 (aquatic) cells of the central inner 10 km x 10 km landscape scenario area as
eligible meta-population patches (Fig. 2). Thereby, we assumed that only the
selected cells of the stream network provide suitable conditions for larval
development.

To minimize bias, we created 10 land use scenarios for each proportion and
configuration of LT and 10 random patch arrangement scenarios.

2.1.1 Derivation of patch quality
Following Richards and Host (1994) and Lammert and Allan (1999), the quality
QP of the patches in a meta-population network was determined by the upstream
land use composition in a catchment. We created a two-sided upstream buffer
(width: 0.1 km, maximal length: 10 km) as the catchment area for each patch x
within a meta-population network; for technical details see Appendix B.

We set QP for a patch x to 1 in the absence of intensive agriculture in the
upstream catchment (i.e., 0% LT3). Otherwise, we reduced QP linearly, with a
minimum value of 0.25 for 100% LT3:

��(�) = 1.0 −
�LT3

�B−�LT4
∗ 0.75 (1)

where AB is the total area of the buffer. ALT4 the area covered by LT 4 aquatic and
ALT3 the area covered by LT3.



META-POPULATIONS UNDER MULTIPLE STRESSOR RISKS 67

2.2 Simulation of meta-population dynamics
The simulation of meta-population dynamics within each network is detailed in
Streib et al. (2020). Briefly, the simulation includes (1) population growth (using
the classic Verhulst model; e.g., Tsoularis and Wallace (2002); Ross (2009)), (2)
potential stress events resulting in population decline (Section 2.3), and (3)
dispersal processes between meta-population patches. Reproduction in a
colonized patch results in positive density-dependent dispersal in terms of the
emigration of individuals into connected patches. Here, the dispersal costs per
connection, determined by the land use between two connected patches, act in
two ways. First, patches connected via low costs receive a higher proportion of
dispersing individuals. Second, dispersal mortality increases with connection
costs.

2.3 Stressor scenarios
We simulated (1) land use-related stress (LUS) and (2) extreme event-related
stress (EES). LUS affected a meta-population through permanent effects on
patch quality and network connectivity. EES resulted in temporary, extreme
events of mortality reducing the population of all meta-population patches.

2.3.1 Land use-related stress (LUS)
The landscape scenario, combining the distribution between LTs and their spatial
configuration, affects the related meta-population on the regional scale through
patch qualities QP and network connectivity (Fig. A-1 LUS).

The local patch quality QP represents the impact of land use on the water quality
of a patch (see 2.1.1). Low-quality patches were assumed to have smaller
carrying capacities, thereby having lower reproduction and being more
susceptible to environmental, genetic, or demographic stochasticity (Hodgson et
al., 2009; Oliver and Morecroft, 2014; Schooley and Branch, 2007). Hence, we
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defined the carrying capacity K and the stochastic extinction probability PE of a
patch x as a function of QP(x):

�(�) = ��(�) ⋅ ����� (2)

The probability PE of a patch x, i.e., the probability that the patch population N(x)
is set to 0, was defined to linearly decrease with QP from 0.1 for the minimum QP

(0.25) to 0.01 for the maximum QP (1):

��(�) = 0.12 ∗ (1 −��(�)) + 0.01 (3)

The network connectivity decreases with the proportion of LT2 (forestry) in a
landscape scenario (Streib et al., 2020). LT2 has the highest dispersal cost
(Section 2.1) and results in meta-populations with a lower number and also more
cost-intensive connections.

2.3.2 Extreme event-related stress (EES)
Global environmental change will very likely increase the intensity and frequency
of extreme events in most non-marine ecosystems (IPCC, 2019; Ummenhofer
and Meehl, 2017). Most extreme events are likely to act temporarily at the
regional scale (e.g., droughts, or floods) (Harrison, 1991; Schooley and Branch,
2007) and reduce the size of entire meta-populations (Bergen et al., 2020; Lande,
1998).

Thus, we extended the meta-population model by temporary scenarios of
extreme events that impact all patches in a network simultaneously (Fig. A-1
EES). The EES scenarios were set up by three mortalities (high = 75.0, medium =
50.0, and low = 25.0 individuals) in three frequencies (high = 5, medium = 10, and
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low = 20 time steps), occurring at regular intervals, i.e., at the last time step of a
frequency.

2.4 Model application
At the start of a simulation for a meta-population network, the initial population
per patch x was set to 10 % of its specific carrying capacity K(x). Subsequently,
population dynamics for patches and dispersal in the network (Streib et al.
(2020): Section 2.2.1 - 2.2.3) were simulated for the first 10 time steps, i.e.,
reproductive periods. Local patch extinction and extreme events were omitted to
ensure an initially stable state. Then, over the following 100 time steps t or until
complete extinction of the meta-population, patch-related stochastic extinction
was simulated in each time step, in addition to population dynamics and
dispersal. We used the algorithm ‘numpy.random.choice’ of the Python package
‘NumPy v1.18’ (NumPy, 2020) to determine whether a patch will become extinct
based on its specific PE(x). Mortality resulting from extreme events was
simulated according to the specific design (mortality and date) of an EES
scenario. Overall, we ran 27.000 simulations based on 3.000 meta-population
networks (10 land use proportions x 3 NLM algorithms x 10 random spatial
configurations x 10 random patch arrangements; Section 2.1) combined or non-
combined with 9 extreme event scenarios (3 mortalities x 3 frequencies; Section
2.3.2).

2.5 Data analysis

2.5.1 Quantification of stressor effects
The effect size Es of stressors was determined as the mean population decline of
all meta-population networks related to one LT configuration y (LUSy; Section 2.1),
without (EES0) or with one of the 9 extreme event scenarios z (EESz; Section 2.3).
Es was calculated at the final time step with respect to baseline meta-population
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networks, based on the optimal LT configuration (LUS1, i.e., 100 % LT1) without
extreme events (i.e., EESn):

��(����,���0∨�) = 1 −
�110(����,���0∨�)
�110(���1,���0)

(4)

where N�110(LUSy, EES0∨z) is the mean population size (i.e., out of 300 replicates

per LUS-EES combination) at the final time step 110 for one specific LUS-EES
combination, i.e., the sum of individuals in all meta-population networks divided
by the number of meta-population networks.

Note that including additional extreme events in baseline meta-population
networks would lead to very similar results because they had negligible long-term
effects (Section 3.1.2).

Land use type configuration
To determine the influence of the LT configuration at identical LT proportions
and extreme event scenarios, we quantified stressor effects differentiated by the
three NLM algorithms used to arrange a specific LT proportion (i.e., 3 x 100
meta-population networks per LUS-EES combination; Section 2.1). We discuss
the results in the case of deviations, defined as a standard deviation greater than
0.01.

2.5.2 Assessment of stressor interactions
To classify stressor interactions as additive or synergistic, we compared the
simulated joint effects of a stressor combination to its predicted joint effects
using a multiplicative null model, given mortality as the ecological response
(Côté et al., 2016; Schäfer and Piggott, 2018). In the case of two co-occurring, but
independently acting stressor effects E1 and E2, the multiplicative null model
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(also known as Bliss Independence, Response Multiplication, or Response
Addition) assumes additivity in terms of the probabilistic sum of the individual
effects (Schäfer and Piggott, 2018):

��(�1,�2) = �1 +�2 − (�1 ∗�2) (5)

where E1 is equivalent to Es(LUSy, EES0), E2 is equivalent to Es(LUS1, EESz) and
Ep(E1, E2) is the predicted, additive effect resulting from their interaction.
Following the concept of model deviation ratio, we used the ratio of predicted
effects Ep to simulated effects Es to evaluate stressor interactions (Belden et al.,
2007). A ratio > 1 is defined as antagonistic and a ratio < 1 as synergistic
interaction. To discriminate noise in the data and minor interaction effects, we
only considered interactions as non-additive, where the absolute difference
between Es and Ep was greater than 0.05.

Time point of determination
In experimental studies, the time point of the determination of the interaction
effect varies across studies but may have a strong influence on the results. To
evaluate the influence of this time point, we also classified stressor effects and
interactions for time steps directly before and after an extreme event. For this
purpose, we compared the results for time steps 90 and 91. These were the last
to allow such a comparison across all stressor combinations simultaneously, as
our simulation always ended with an extreme event at time step 110.
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3 RESULTS

3.1 Individual effects of land use-related and extreme event-related stress
Land use-related stress (LUS) was almost exclusively driven by the proportion of
intensive agriculture (LT3). The effect of LUS was negligible in the absence of
LT3 (Fig. 3), but higher proportions of LT3 resulted in higher effect sizes (Fig. 3 -
first column; Appendix Fig. A-1). For the scenario of only intensive agriculture the
LUS effect size peaked with 0.79 (i.e., on average 79% lower meta-population
size compared to the baseline scenario).

By contrast, extreme event-related stress (EES) alone, i.e., extreme events
simulated at optimal LUS scenario featuring 100% extensive agriculture (LT1),
led to no or negligible effects (Fig. 3 - bottom row; Appendix Fig. A-2).

Figure 3: Effects of land use-related stress (LUS) and extreme event-related stress (EES). On the
x-axis, mortality corresponds to the number of individuals I that the extreme events reduced
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patch populations, and frequency to the number of s t in which the events were simulated; on the
y-axis, the proportion is given by the area covered by land use types LT 1, 2, and 3. The bottom

left (star shape) represents the baseline, i.e., 100% extensive agriculture LT1) and no EES (0, 0).
The diamonds represent the individual stressor effects for LUS and EES, and the points represent
the stressor effects for a LUS-EES combination. Labels and color saturation visualize the effect

size, i.e., the higher the number or more saturated the shapes are, the greater is the effect size.
The intensity of the background coloring of the rows reflects the proportion of intensive
agriculture (LT3). Land use type configurations were not considered, i.e., results represent the

average across the configurations.

3.2 Effects of combined stressors
The combination of EES and LUS led to stronger declines in meta-population size
compared to individual LUS (Figure 3). However, in the absence of intensive
agriculture (LT3), LUS scenarios buffered even the highest EES scenarios. By
contrast, LUS scenarios featuring intensive agriculture and high EES scenarios
resulted in strong declines in meta-population sizes.

At the highest LUS scenario of 100% intensive agriculture, the first extreme event
at any EES scenario resulted in an effect size of 1, which means instant meta-
population extinction. For intermediate LUS scenarios featuring 50% or 25%
intensive agriculture, only EES scenarios with high mortalities (50.0 or 75.0
individuals per patch) led to combined effects exceeding the individual LUS
effect, with effect size increasing with EES frequency.

LUS scenarios with a constant proportion of intensive agriculture resulted in
meta-populations with patches of similar quality. However, shifts in the
distribution of land use proportions between extensive agriculture (LT1) and
forestry (LT2) translated to changes in dispersal costs and in turn network
connectivity. Hence, a comparison of these scenarios (i.e., same LT3 but
different proportions of LT1 and LT2) allowed for assessing the effect of network
connectivity for meta-populations persistence. However, for a constant EES
scenario, the difference in effect sizes was mostly minor (Fig. 3; maximum
difference of 0.08).
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Land use configuration
Our analysis shows a clear influence of landscape configuration on the effects
(and the resulting interactions) for LUS scenarios with multiple land uses. At
equal proportions of land use types, we found strong differences in the effect
sizes (Fig. 4; Appendix A Fig. A-5).

Figure 4: Effects of land use-related stress (LUS) and extreme event-related stress (EES)
differentiated by the three land use type configurations, i.e., random (without autocorrelation),

fragmented clusters, and aggregated clusters. Only LUS-EES combinations are displayed, where a
standard deviation greater than 0.01 was detected. The coloring of lines (LUS) and points (EES)
corresponds to the label colors in Fig. 3. The dotted box shows all combinations where a random

land use type configuration resulted in lower effect sizes than a configuration with aggregated
clusters. For details on land use-related stress and extreme event-related stress scenarios see
Fig. 3 caption.
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Land use scenarios with a random configuration of land use type had higher
effect sizes in 92% and 75% of cases than scenarios with fragmented clusters
and aggregated clusters, respectively. Scenarios with fragmented clusters had
higher effect sizes than aggregated clusters in 67% of cases.

3.3 Interactions of combined stressors
We used the multiplicative null model to evaluate the interaction of combined
stressors. Interactions of LUS and EES were either additive or synergistic (Fig. 4).

Figure 5: Model deviation ratio of the predicted to observed interaction effects of stress (LUS)
and extreme event-related stress (EES), not differentiated by land use type configuration. The

color saturation and labels of the points give the model deviation ratio. Color saturation and
labeling visualize the size of the effect, i.e., the lower the number or the more saturated the
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shapes are, the greater is the synergistic effect. For details on land use-related stress and
extreme event-related stress scenarios see Fig. 3 caption.

All EES scenarios interacted additively in combination with LUS scenarios
without intensive agriculture. Also, EES scenarios with a mortality of 25
individuals per patch interacted additively with all LUS scenarios, except for the
highest LUS scenario with only intensive agriculture, where the interaction was
roughly 20% higher than predicted (synergism).

In contrast, synergistic interactions emerged for LUS scenarios with 25%
intensive agriculture combined with EES scenarios with a mortality of 75
individuals and for LUS scenarios with 50% intensive agriculture combined with
EES scenarios with a mortality of 50 and 75 individuals. The strongest synergy
occurred at the highest EES scenario with a mortality of 75 individuals and a
frequency of 5 time steps in combination with LUS scenarios featuring 25%
intensive agriculture.

Time point of determination
The time points of determining the stressor effects and interactions considerably
affected the results for several scenarios (Fig. 6).
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Figure 6: Impacts of time point of determination on effects A. and interactions B. of land use-
related stress (LUS; y-axis) and extreme event-related stress (EES; x-axis). The half circles

represent values calculated directly before (left part, time step 90) and after (right part, time step
91) an extreme event. Color saturation and size per half circle visualize effect size (underlying
shaded circles represent the maximum of 1) and interaction size (underlying shaded circles

represent the minimum of 0). Dotted and dashed boxes show examples discussed in Section 4.2.
For details on land use-related stress and extreme event-related stress scenarios see Fig. 3
caption.

For all stressor combinations except for those causing meta-population
extinction, we found that effect sizes calculated directly after (i.e., for time step
91) an extreme event were consistently higher than those calculated directly
before (i.e., for time step 90). In contrast, the response of interactions after an
extreme event was inconsistent. Besides consistent additive interactions, we
found changes from additive to synergistic interactions as well as stronger and
weaker synergistic interactions.

4. DISCUSSION

4.1 Stressor effects and interactions

Individual effects
We modeled the effects of stress related to land use and extreme climatic events
on insect meta-populations and found that increased land use-related stress
individually resulted in severe meta-population declines. In contrast, climatic
extreme events had no negative effects when simulated individually, i.e., for
optimal landscapes featuring 100% extensive agriculture (detailed discussion in
next section).

Our findings on land use-related stress are consistent with recent studies that
linked global declines and extinctions of insect populations to intensified
agriculture (Benton et al., 2021; Raven and Wagner, 2021; Seibold et al., 2019).
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For example, a study on twelve streams found that intensive agricultural land use
in the catchment was a major determinant of local population declines of stream
invertebrates (Wahl et al., 2013). For ecological networks, a review of Van
Teeffelen et al. (2012) identified landscape as the main factor determining the
size of meta-populations, meaning that land use stress would cause meta-
population decline.

In our model, intensive agriculture governed mean patch quality and, thereby,
primarily the individual effect of land use-related stress. Intensive agriculture
negatively impacted patch quality (Appendix A Fig. A-4) and, thus, reduced the
mean carrying capacity and increased extinction risks in a meta-population.
Reduced carrying capacities had a major impact, as it lowered the potential
meta-population size and inevitably increased the effect size. In contrast, the
additional effect of stochastic patch extinction was lower, yet also evident. With
the start of simulated patch extinction at time step 10, we detected a clear drop
in population size (Appendix A Fig. A-1). We assume that high reproduction and
network connectivity within a network buffered most patch extinctions via
recolonization from connected patches, i.e., through mass effects (Leibold et al.,
2004). The effect likely resulted from extinctions shortly before the determination
(i.e., time step 110), and isolated patches that failed to recolonize. Furthermore,
despite an expected strong effect (Moilanen and Nieminen, 2002; Van Teeffelen
et al., 2012), we found that lower network connectivity at higher proportions of
forestry, but equal proportions of intensive agriculture had little additional effect.
We hypothesize that even for meta-populations split into multiple, disconnected
parts (Streib et al., 2020) the number of colonized patches was sufficient to
largely compensate for stochastic patch extinctions.

Combined effects
The combined effects of extreme event-related and land use-related stress were
mainly governed by land use via the proportion of intensive agricultural land use
(Figure 4). Similar to the optimal landscape scenario, extreme events had little to
no effect in the absence of intensive agriculture. For landscapes containing
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intensive agriculture, combined effects generally increased with its proportion, up
to 1, i.e., meta-population extinction.

Our finding that the landscape can buffer extreme climate events match a review
by Woodward et al. (2016) on the effects of climatic variability and extreme
events on stream ecosystems, suggesting that land use at catchment scale often
exacerbates local effects of extreme events. For meta-populations, Oliver and
Morecroft (2014) also indicated that (besides network area) the optimization of a
landscape can buffer extreme events by improving patch quality and connectivity.
Based on field survey data for butterflies, Oliver et al. (2013) or Piessens et al.
(2009) showed empirically that the landscape determined responses to extreme
droughts and meta-population decline were lower with better quality. Using a
monitoring dataset and climate data from the UK, Newson et al. (2014) found
also that meta-populations of birds inhabiting high-quality landscapes recovered
quickly from climatic extreme events.

Accordingly, extreme events had no to little effect on meta-populations
consisting of only high-quality patches resulting from land use scenarios without
intensive agriculture. Temporary population losses in all patches were
compensated rapidly by local recovery in any extreme event scenario. However,
increased land use stress resulted in lower mean patch qualities making a meta-
population vulnerable to extreme events. As theoretically expected for
ecosystems (Dai et al., 2012), with higher continuous stress level, i.e., higher
proportion of intensive agriculture, the resilience against additional, temporary
events decreased. The landscape no longer allowed full recovery between
extreme events at the patch and, in turn, meta-population level. Increasingly more
patches had populations that were extirpated by the extreme event mortality. We
assume that, both, the failure to recolonize isolated extinct patches and
insufficient neighboring mass effects contributed to meta-populations declined
and consequently to the determined effects. However, effect sizes varied
depending on patch quality, network connectivity, and time available for recovery
(Dai et al., 2013; Schooley and Branch, 2007). For equal extreme event scenarios,
effects increased with lower mean patch quality, i.e., a higher proportion of
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intensive agriculture. For example, we found no effects for landscapes with 25%
agricultural land use, but clear effects for landscapes with 50% agricultural land
use for events with a mortality of at least 50 individuals at a frequency of 10 or 5
time steps (Fig. 3). Fewer patch populations survived and, in turn, recolonization
via mass effects was lower and compensated less for patch extinctions. Worst
case landscapes featuring 100% intensive agriculture resulted in meta-
populations of patches with small populations. Hence, the first extreme event at
any scenario resulted in the extinction of all patches instantly. Reduced network
connectivity likely lowered recolonization further via fewer patch connections but
higher dispersal losses and explains the (slight) differences between land use
scenarios with the same intensive agriculture but higher forestry. Time available
for recovery was determined by extreme event frequency and, thus, we found
higher effects for scenarios with the same mortality, but higher frequency. This
matches a study of Johansson et al. (2020) for meta-populations of an
endangered butterfly using post-drought turnover data. For the same mortality,
high frequency resulted in strong additional effects, with no or little additional
effects at low frequency.

Land use configuration
We found for most extreme event scenarios that land use scenarios based on
clustered land use configurations resulted in lower effects than those based on a
random configuration. For the former, a dominant presence of one land-use type
was likely in the individual patch catchments, resulting in heterogeneous patch
qualities in the associated meta-populations, whereas for the latter, the
distribution of types was mostly uniform across patch catchments, resulting in
homogeneous patch qualities (Appendix A - Fig. A-4).

Land use at catchment scale drives the local responses to extreme events
(Woodward et al., 2016). Oliver and Morecroft (2014) and Van Teeffelen et al.
(2012) found evidence that meta-populations with patches of heterogeneous
quality are likely to perform better against temporary stressors than meta-
populations with homogeneous patches. They described that single high-quality
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patches can promote more stable population dynamics by surviving events of
temporary mortality and, thus, driving recovery processes afterward. Also, two
empirical studies showed for butterfly species in the UK (Oliver et al., 2010) and
Finland (Bergen et al., 2020) that in heterogeneous meta-populations persistent,
high-quality patches can buffer against climatic extreme events. These are more
stable than meta-populations with homogeneous patches, which are vulnerable
to extreme events due to the lack of resilient patches.

The outlined mechanisms also apply to our model. The difference was generally
highest for scenarios with aggregated land use clusters, as more high-quality
patches resulted form scenarios with fragmented land use clusters. For the few
stressor combinations where random configurations resulted in lower effect
sizes (Fig. 3: dotted box), we assume that all patches in the associated meta-
populations survived the extreme events, whereas patches with lower quality,
found only at clustered configurations, became extinct, and were incompletely
recolonized.

4.2 Stressor interactions
The interacting effects of combined stressors were largely additive. However,
synergism occurred when a meta-population did not recover between extreme
events, i.e., for those stressor combinations where both stressors or land use-
related stress was high.

Similarly, a review on interactions between climate change and land use change
(Oliver and Morecroft, 2014) suggested that the type and size of the stressor
interaction are determined by the continuous stressor (e.g., the landscape). This
defines if an additional, discrete stressor (e.g., extreme events) is buffered over
time, thereby preventing a synergistic effect. Moreover, a recent empirical study
of habitat loss and climate change effects on population dynamics of birds in the
US found that, in the absence of land use change, the landscape prevented meta-
population declines by climate change (Northrup et al., 2019).
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In the absence of intensive agriculture, meta-populations remained stable in the
long term against any extreme event scenario and stressor interactions were
additive. However, with increasing land use-related stress, even low extreme
event-related stress scenarios resulted in (partly high) effects and synergistic
interactions emerged.

An analysis by Côté et al. (2016) pointed out that multiple stressors often
interact antagonistically at the community or ecosystem level. For example,
altered species communities and thus reduced competition (Sage, 2020) or
increasing tolerance of individuals through evolutionary adaptation or phenotypic
plasticity (Stoks et al., 2014; Walter et al., 2013) may result in antagonism.
Notwithstanding, we expect antagonism to be less likely at the (meta)-population
level that our model represents (Orr et al., 2020). Future studies should expand
our approach to the community or ecosystem level.

Time point of determination
The stressor effects and interactions varied, i.e., depending on whether
determined directly after or directly before an extreme event. For the former,
effects were consistently higher, whereas responses for interactions were mixed.

Based on data from long-term studies on global change in terrestrial ecosystems,
Leuzinger et al. (2011) found that effects of combined land-use and climatic
stressors can decline over time. This indicates that the time point of
determination, depending on whether and how much it accounts for recovery,
can affect effect size and, thus, alter the type and size of stressor interactions.
For example, the interaction type changed from additive to synergistic when
complete recovery over time was not ignored (Fig. 6: dotted boxes, 1), or lower
interaction sizes resulted when recovery for the optimal landscape scenario was
stronger than for an associated stressor combination (e.g., Fig. 6: dashed boxes,
2).

In environments with repetitive discrete stress events, a determination covering
only one or very few events may lead to biased evaluations of stressor effects
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and interactions. Moreover, our results caution against regarding interaction
types as constant over time. Our results show that multiple discrete events can
lead to increasing synergy (e.g., Appendix A - Fig. A-3: steady decline for extreme
event scenario ‘50 5’). The continuous stochastic extinction of high-quality
patches amplified the, otherwise constant, effects over time.

Overall, to become more predictive, we suggest that multiple stressor studies
should have a stronger focus on potential temporal discontinuities in effects and
interaction types.

4.3 Limitations of the modeling approach
Process-based simulation models represent a trade-off between simplicity and
complexity. More complex models require approximating a higher number of
parameter values incurring higher uncertainty. Limitations of the current model
have been discussed in Streib et al. (2020). Besides, our scenarios included only
two static stressors for one species. In real world ecosystems, a wider range of
stressors may occur (Sage, 2020) and stressor profiles may change over time
(Jackson et al., 2021). Additional stressors would probably exacerbate the
effects, as populations may further decline (e.g., invasive species reducing the
population size of another species). Different stressor profiles may lead to
different dynamics but are beyond the scope of the current study. For example,
we expect the buffering capacity of a meta-population to vary in changing
landscapes, hence events with equal mortality may have variable effects over
time. Or, extreme events with irregular frequency may produce stronger meta-
population declines, as the recovery time occasionally is shortened. We argue
that the consideration of multiple species and more stressors would complicate
the interpretation of results (Leuzinger et al., 2011), but findings regarding the
relevance of the continuous stressor and recovery dynamics would likely be
similar. Moreover, altered life-history and dispersal traits may quantitatively
modify our findings. However, we suggest that the general principles and
mechanisms underlying our findings would remain valid. Nevertheless,
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implementing dynamic stressor scenarios may lead to qualitatively novel insights
(Jackson et al., 2021).

5. CONCLUSION FOR MANAGEMENT
In line with Oliver and Morecroft (2014) and Côté et al. (2016), our study
demonstrates the effectiveness of regional landscape management to
compensate for global stressors. Management that reduces a continuous
stressor, thus improving patch quality (and connectivity) can mitigate or prevent
long-term additional effects of intensified extreme events, potentially preventing
synergistic interactions. This conclusion is supported by Johansson et al. (2020),
who recently found that active landscape management can almost completely
mitigate drought effects on a threatened butterfly species in Sweden. However, if
only limited landscape optimization is possible, we expect measures focused on
single high-value patches to be more effective than a moderate upgrade of the
entire landscape.
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APPENDIX A

Figure A-1: Individual effects of land use-related stress (LUS) on meta-population population size

from time step 5 to time step 110, i.e., simulation without extreme events. LUS scenarios are
labeled at the specific line-end, here, the first three digits stand for the proportion of land use type
1, the following three for land use type 2, and the last three for land use type 3. Colored lines

represent the mean of all 300 meta-population networks related to one LUS scenario, not
differentiate by land use configuration. The vertical dotted line at time step 10 represents the

start of simulation of local patch extinction. The dashes on the right outside the figure (3 x 100)
represent the final meta-population population size of all simulations split according to the

neutral landscape model algorithm: dark-yellow dashes represent the results for land use
scenarios of a random LT configuration, red-orange dashes represent the results for scenarios of
fragmented LT clusters, and dark-violet dashes represent the results for scenarios of aggregated

LT clusters.
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Figure A-2: Individual effects of extreme event-related stress (EES) on meta-population
population size from time step 5 to time step 110, i.e., simulated for the optimal land use

scenarios of 100 % land use type 1 (extensive agriculture). EES scenarios are labeled at the end
of the line, where the first number represents intensity and the second frequency. Colored lines
represent the mean of all related 300 meta-population networks, not differentiate by land use

configuration. The vertical dotted line at time step 10 represents the start of local patch
extinction and extreme events simulation. The vertical dotted line at time step 10 represents the

start of simulation of local patch extinction and extreme events. The dashes on the right outside
the figure (3 x 100) represent the final meta-population population size of all simulations split

according to the neutral landscape model algorithm: dark-yellow dashes represent the results for
land use scenarios of a random LT configuration, red-orange dashes represent the results for
scenarios of fragmented LT clusters, and dark-violet dashes represent the results for scenarios

of aggregated LT clusters.
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Figure A-3: Combined effects of land use-related stress (LUS) resulting from a land use
proportion of 25 % land use type 1, 25 % land use type 2, & 50 % land use type 3 and extreme

event-related stress (EES) on meta-population population size from time step 5 to time step 110.
EES scenarios are labeled at the end of the line, where the first number represents intensity and
the second frequency. Colored lines represent the mean of all related 300 meta-population

networks, not differentiate by land use configuration. The vertical dotted line at time step 10
represents the start of local patch extinction and extreme events simulation. The vertical dotted

line at time step 10 represents the start of simulation of local patch extinction and extreme
events. The dashes on the right outside the figure (3 x 100) represent the final meta-population

population size of all simulations split according to the neutral landscape model algorithm: dark-
yellow dashes represent the results for land use scenarios of a random LT configuration, red-
orange dashes represent the results for scenarios of fragmented LT clusters, and dark-violet

dashes represent the results for scenarios of aggregated LT clusters.
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Figure A-4:Box-whisker plots with an additional mean (diamond) showing ranges of patch quality
in meta-population networks differentiated by the three land use type configurations for identical

proportions of land use type 3 (intensive agriculture, LT 3). The boxes are colored according to
the configuration: random represent the results for land use scenarios of a random LT
configuration, clustered - fragmented scenarios of fragmented LT clusters, and clustered -

aggregated scenarios of aggregated LT clusters.
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Figure A-5: Effects of combined land use-related stress (LUS) and extreme event-related stress
(EES), differentiated by land use type (LT) configuration. random represents the results for land

use scenarios without spatial autocorrelation of LT, clustered - fragmented for scenarios of
fragmented LT clusters, and clustered - aggregated for scenarios of aggregated LT clusters. In
the matrix plots, the points represent the stressor interactions for a LUS-EES combination. Color

saturation and labels visualize the interaction size. The intensity of the plot-background coloring
reflects the proportion of land use type 3 (intensive agriculture). For details on land use-related

stress and extreme event-related stress scenarios see Fig. 3 caption.

APPENDIX B
Further supplementary material (software-framework, input-data, code &
additional graphs for all LUS-EES combinations) can be found at the
corresponding GitHub repository: https://github.com/luclucky/LUSEES
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GRAPHICAL ABSTRACT

ABSTRACT

Background: Biodiversity is declining worldwide as ecosystems are increasingly
threatened by multiple stressors associated with anthropogenic global change.
Stressors frequently co-occur across scales spatially and temporally, resulting in
joint effects that are additive or non-additive, i.e., antagonism or synergism.
Forecasting and counteracting threats from intensifying stressors requires
improved mechanistic understanding of joint effects, which is currently relatively
low. To date, research on multiple stressors has been biased toward simplified
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scenarios, emphasized classification of interactions over realized joint effects,
and mostly ignored adaptation (i.e., phenotypic plasticity or evolving life-history
traits) of organisms. We modified a spatially explicit meta-population model for a
generic freshwater insect to simulate different, hypothetical spatiotemporal
profiles of a continuous and a discrete stressor and evaluated their joint effects
and interactions. Land use represented the continuous stressor impacting meta-
population patch quality and network connectivity and related scenarios implied
different trajectories. Climatic events represented the discrete stressor
impacting all patches simultaneously by temporary mortality events, with related
scenarios implying different event severity. Adaptation mitigated the effects of
climatic events based on previous events.

Results: Excluding adaption, we found that at higher levels of the discrete
stressor (i.e., strong and frequent climatic events) strongly dominates the joint
effects, while at a low level (i.e., weak and infrequent climatic events) of the
discrete stressor, the continuous stressor (i.e., land use) dominates. Yet, the
continuous stressor always defined the interaction type, with decreasing land
use stress leading to antagonism, and increasing land use stress leading to
synergism. Adaptation reduced joint effects under decreasing land use stress,
yet had little compensatory influence under increasing land use stress. Moreover,
adaptation changed the interaction classification inconsistently across the
different land use and climate scenarios.

Conclusions: We highlight that complex stressor scenarios are critical for a
mechanistic understanding of how species respond to global change. To our
knowledge, this is the first modeling study to show that stressor interactions
depend on spatiotemporal stressor profiles and adaptation, following general
principles.

KEYWORDS

Global change ⋅ Multiple stressors ⋅ Spatiotemporal patterns ⋅ Joint effects ⋅
Interaction classification
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BACKGROUND

Worldwide terrestrial, marine and freshwater biodiversity is declining at an
accelerating rate (Newbold et al., 2015; Reid et al., 2019). Many ecosystems and
their species are threatened by intensifying stressors associated with
anthropogenic global change, including climate and land use change (IPCC,
2019). Stressors frequently co-occur at different spatial and temporal scales,
resulting in joint effects on ecosystems (Jackson et al., 2021). Spatially,
stressors may occur locally (e.g., pollution by point sources), regionally (e.g.,
droughts), or globally (e.g., ocean acidification) (Moe et al., 2013). Temporally,
stressors may have many profiles ranging from discrete events (e.g., single
climatic extremes) to continuous (e.g., constant discharge of toxic chemicals)
(IPCC, 2019; Pinek et al., 2020). Multiple co-occurring stressors can result in
additive effects (joint effect = sum of individual effects), but also in non-additive
effects, i.e., antagonisms (joint effect < sum of individual effects) or synergisms
(joint effect > sum of individual effects) (Birk et al., 2020; Côté et al., 2016). Non-
additive effects can result from mechanistic stressor interactions (i.e., one
stressor alters organisms’ response to a second stressor), but also from other
factors (e.g., nonlinear stressor-response relationships, choice of the null model
predicting joint effect, and experimental duration) (Hunsicker et al., 2016; Schäfer
and Piggott, 2018; Turschwell et al., 2022). The prevalence of additive and non-
additive interactions is forecasted to change significantly in response to global
anthropogenic changes (Jackson et al., 2021; Woodward et al., 2016). Notably,
synergisms, considered to produce rapid, disproportionate losses of biodiversity
and ecosystem functions (Côté et al., 2016; Ratajczak et al., 2018; Turner et al.,
2020), are forecasted to occur more frequently and with higher intensity in the
future (Sage, 2020).

However, research on multiple stressors has been criticized for emphasizing
interaction classification, thereby neglecting mechanistic understanding of joint
effects (De Laender, 2018; Simmons et al., 2021a). Nevertheless, the capacity to
forecast, and counteract the threats from intensifying stressor regimes requires
such predictive understanding, which is currently relatively low (Côté et al., 2016;
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Kaunisto et al., 2016; Maxwell et al., 2019). Indeed, meta-analyses of
experimental studies with multiple stressors have yielded few consistent findings
(Côté et al., 2016; Simmons et al., 2021b). Partly, this owes to a bias in previous
experimental studies toward simplified scenarios resulting in distorted, if not
false, assessments of joint effects and interactions when extrapolated to real-
world scenarios (Catford et al., 2022; Jackson et al., 2021; Rillig et al., 2021).

Process-based simulation models can simulate realistic spatiotemporal stressor
profiles and, thereby, significantly contribute to a better mechanistic
understanding of joint effects and related interactions across scales (Jackson et
al., 2021; Orr et al., 2024; Turschwell et al., 2021). In addition, they support the
development of corresponding theory (Simmons et al., 2021a; Stock et al., 2023).
Compared to data-based models, which rely on empirical information, often are
very specific, and make fewer assumptions, process-based models have a high
general predictive power, yet also structural uncertainty and associated risk of
bias, e.g., potentially resulting from inappropriate assumptions (Baker et al., 2018;
Pirotta et al., 2022). Process-based models support predictions beyond the range
of observed stressors and allow for broader extrapolation, as they do not
necessarily have to replicate real-world systems or pre-determined developments;
it is also reasonable to apply such models based on hypothetical scenarios,
focusing on the identification of general principles (Grimm and Railsback, 2005;
Pirotta et al., 2022; Stock et al., 2023). However, process-based models in
multiple stressor research are rare, although related studies can support future
management and thereby optimize species conservation by assessing and
predicting joint effects and related interactions (Patrick et al., 2021; Pirotta et al.,
2022; Turschwell et al., 2022).

By contrast, large-scale empirical experiments with multiple stressors are
technically difficult to realize (Brooks and Crowe, 2019; Simmons et al., 2021).
Therefore, in experiments, multiple stressors have mostly been implemented
with static profiles, where stressors are temporally constant or synchronous in
pulses, and spatially homogeneous (Jackson et al., 2021; Ogle et al., 2015).
However, at the landscape scale and beyond, multiple stressors typically occur
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discontinuously, i.e., intensities vary in space and time (Hughes et al., 2019;
Turschwell et al., 2021). Complex spatiotemporal stressor regimes (Brooks and
Crowe, 2019; Ryo et al., 2019) and thus associated complex patterns of joint
effects and interactions emerge (Jackson et al., 2021; Turner et al., 2020). For
example, a variable spatial intensity of a stressor together with another,
regionally uniform stressor creates locally dissimilar joint effects (Oliver and
Morecroft, 2014; Van Teeffelen et al., 2012). Yet, biotic exchange processes
between patches within ecological networks, e.g., driven by the dispersal of
organisms, can in turn compensate for local differences over time (Bruder et al.,
2019; Schiesari et al., 2019). Moreover, changes in the temporal stressor
intensity, in the interval between or the frequency of stress events, can also
modify the joint effects by altering the available recovery time (Côté et al., 2016;
Falk et al., 2019).

Another shortcoming in multiple stressor research is that adaptation processes
of organisms to stressors, likely modifying their effects and interactions, have
been largely unconsidered in most previous experimental and modeling studies
(Boyd et al., 2018; Orr et al., 2021; Ryo et al., 2019). Adaptation through
phenotypic plasticity (Bush et al., 2016) or the evolution of life-history traits (Orr
et al., 2021) can enable species to cope with changing stressor regimes.
Consequently, future stress of similar intensity may have a lower effect on
adapted individuals, populations, and communities, respectively (Jackson et al.,
2021; Patrick et al., 2021). Moreover, adaptation can determine the response to
additional stressors, for instance, through co-tolerance or trade-offs (Siddique et
al., 2021; Vinebrooke et al., 2004).

We aimed to identify how complex spatiotemporal stressor profiles and
adaptation influence the joint effects and thereby interactions of multiple
stressors at the landscape scale compared to simplified scenarios. Hereto, we
used a spatially explicit, process-based meta-population model (Streib et al.,
2021, 2020) to simulate hypothetical scenarios of two stressors considering
potential adaptation to one stressor. Land use and climatic events were
implemented as continuous and discrete stressors, respectively, as these are key
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global change stressors likely to have strong future impacts on ecosystems
(Aspin et al., 2019; Northrup et al., 2019). Land use-related stress continuously
affected patch qualities and was incorporated with multiple temporal profiles; i.e.,
steady ramping, and abrupt stepwise (positive or negative). Climate scenarios
resulted in numerous, irregularly timed mortality events, with the frequency and
intensity of events randomly drawn from three skewed normal probability
distributions. Adaptation was considered as different levels of adaptability to
climatic events based on previous events. Finally, we determined the response
(i.e., joint effect and interaction type and size) of meta-populations to multiple
combinations of stressors and adaptation levels.

Following recent conceptual studies (Jackson et al., 2021; Turner et al., 2020),
we hypothesize that scenarios incorporating complex spatiotemporal stressor
profiles and adaption profoundly change joint effects and interactions of multiple
stressors compared to simplified scenarios, specifically altering the frequency of
additive and non-additive effects. Given the lack of data, we had no specific
expectations regarding the directional change of the joint effects concerning the
multiple, interacting parameters that most likely either increase (e.g., random

discrete events) or decrease (e.g., adjustment) the effect sizes. METHODS

We used a spatially explicit meta-population model for a generic
hemimetabolous freshwater insect, parameterized based on traits of the
European damselfly Coenagrion mercuriale (Streib et al., 2021, 2020), to simulate
hypothetical scenarios incorporating complex, dynamic spatiotemporal profiles
of a continuous (land use) and a discrete stressor (repetitive climatic events),
considering adaptation. Compared to Streib et al. (2021), where we used the
model previously to examine multiple stressor interactions, the scenarios were
modified as follows:

i. Various scenarios of land use change are incorporated instead of constant
land use

ii. Various scenarios of episodic climatic extreme events with random mortality
are employed instead of synchronous events with constant mortality
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iii. Adaptation to climatic events in different levels is now considered

iv. Stochastic patch extinction was removed to simplify understanding of
climate scenario impacts

In the following, we provide an overview of the model, i.e., the set up of meta-
population networks and the simulation process of population dynamics (i.e.,
reproduction and dispersal) within these, as well as introduce the stressor
scenarios and the implementation of adaptation. The technical details of the
model are described in Streib et al. (2020) and Streib et al. (2021), respectively;
the software-framework as well as supplementary data and material used for the
present study is provided in a GitHub repository.

Meta-population networks and population dynamics

Meta-population networks

Meta-population networks form the basis for the simulation process and were
set up on a 12.5 km x 12.5 km landscape raster and consist of quality-assigned
patches and interpatch connections. The landscape raster was extracted from
real-world geospatial data, i.e., land cover data (OpenStreetMap.Contributors,
2021) around a stream network section (GeoPortal.rlp, 2017) from South-West
Germany. We classified the land cover data into three terrestrial types ‘Urban’
(LT1), ‘Forestry’ (LT2), and ‘Agriculture’ (LT3) and assigned the cells intersecting
the stream network as the aquatic land cover type ‘Stream’ (LT4) (Fig. 1-A). Each
type was associated with (numeric) dispersal costs (LT1 = 100, LT2 = 75, LT3 =
50, LT 4 = 25), representing species-specific landscape permeability.
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Figure 1: Flow of the set-up of meta-population networks - A. Landscape raster extracted from
real-world geospatial data, with following land cover types: grey = ‘Urban’ (LT1), green = ‘Forestry’

(LT2), white = ‘Agriculture’ (LT3), and blue = ‘Stream’ (LT4). B. Random patch arrangement
scenarios along LT4 of the landscape raster, patches are represented as ‘black’ points. C. Meta-
population networks determined via least-cost path analysis based on A and B; networks consist

of patches, represented by ‘black’ points, and the most cost-efficient connections, represented as
‘black’ lines.

The meta-population patches were defined by randomly selecting 10 % of LT4
cells from the inner 10 km x 10 km landscape area as suitable meta-population
patches (Fig. 1-B). The (most cost-efficient) interpatch connections (Fig.1-C)
were identified based on the patches and the LT-specific dispersal costs in the
landscape raster using least-cost path analysis (Adriaensen et al., 2003),
considering only connections below a maximum connectivity cost threshold
(Streib et al., 2020). To minimize bias because of the random patch distributions
along the stream network, we created a total of ten meta-population networks for
simulation.

To capture the land use scenario, simulating different shifts of ‘Agriculture’,
starting from an initial 50/50 split of LT3 into intensive (LT3-i) and extensive
(LT3-e) use, patch quality was determined time-step specific. Thereto, we
considered the terrestrial land cover composition in the complete upstream
catchment AP Total and set the specific quality for a patch QP to its maximum
1.0 in the absence of ‘Urban’ and intensive ‘Agriculture’; else, we linearly reduced
the QP as a function of proportion to a minimum value of 0.0 for 100% LT1 and
LT3-i land cover in the catchment of a patch AP:
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�� = 1− ����1 +����3−� /������� (1)

Population dynamics

Within each meta-population network, we simulated the following population
dynamics: (1) Reproduction in each patch up to the maximum carrying capacity
KP, and (2) inter-patch dispersal based on positive density-dependent emigration.
KP depended on time-step specific patch quality and linearly increased with
quality from 0 to 100 individuals (i.e., KP = QP x 100). Density-dependent
dispersal within the network, i.e., the emigration of individuals, occurred when
(directly) connected patches were not fully colonized, i.e., were below their
maximum KP due to prior mortality by climatic events. The outcome of dispersal
was determined by connection costs: dispersal mortality increased with cost,
which represented higher risks and reduced energy reserves, and more
dispersers were emitted to patches with lower costs when multiple patches were
connected (based on higher colonization probability).
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Stressor scenarios and adaptation

Land use scenarios
Land use represented a continuous stressor. We assumed that intensification or
extensification of agricultural land use in a catchment results in reduced or
increased patch qualities, respectively, and thereby reduced carrying capacities
of patches (Oliver and Morecroft, 2014). As we aimed to show general patterns,
we implemented four different, hypothetical scenarios of agricultural land use
change based on simple temporal profiles of a continuous stressor as suggested
in Jackson et al. (2021): steady ramping shifts (Fig. 2), or abrupt stepwise shifts
(Fig. A.1) to 100% extensive (LT3-e) or intensive (LT3-i) agricultural land use,
respectively, starting from 50% LT3-e and 50% LT3-i agricultural land use in the
landscape grid.

Figure 2: Temporal profile associated with the land use scenario for the ‘ramping’ scenario. Here,
the red lines show the trend of intensive agriculture (LT3-i), and the green lines show the trend of

extensive agriculture (LT3-e).

For both profiles, results were highly similar at the end of the simulation.
Therefore, we mainly present results for the ‘ramping’ scenarios, and differences
for the ‘stepwise’ scenarios profile are discussed only briefly (see Appendix A -
Fig. A.2 & A.3).

Climate scenarios
We implemented climate scenarios as discrete stressor events of mortality
resulting in population declines (i.e., reduction by an integer number of
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individuals) in a colonized meta-population patch, assuming the same effect is
present at the regional scale, uniformly across all meta-population patches.

We used normal probability distribution functions (PDFs; Figueiredo and Gomes
(2013)) with different skewness α to sample event mortality M in a range from 0
to 100 individuals for every time step. The PDFs provided probability weights for
M sampling based on a logarithmic vector between log(0.01) and log(10) with e
as the base and values rounded to integers. Three scenarios were simulated: (1)
‘moderate’ (α = 0), (2) ‘severe’ (α = -2.5), and (3) ‘intense’ (α = -5) (Fig. 3). Thus,
event mortality increased on average with the scenarios.

Figure 3: Probability density functions to sample event mortality associated with the climate
scenarios. Here, curves represent the skewed normal probability density functions; the lightgreen
curve shows the ‘moderate’ climate scenario with a skewness α of 0, the orange curve the

‘severe’ climate scenario with a skewness α of -2.5, and the red curve the ‘intense’ climate
scenario with a skewness α of -5. The bar chart below shows the mortality corresponding to the
respective probabilities in a range from 0 to 100.

To minimize bias, we sampled ten random sequences of climatic events (i.e.,
mortalities per time-step over the simulation) per climate scenario.

Adaptation

Adaptation comprises evolutionary or non-evolutionary processes and
phenotypic plasticity by which species can possibly adapt to changing
environmental conditions (Jackson et al., 2021; Stoks et al., 2014). We
implemented adaptation in a greatly simplified form as a generic concept, using
a hypothetical approach. Thereto, climatic event-induced mortality M for a time
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step t was buffered based on the mean mortality of the last five time steps Mt-5 in
percentage terms, with a factor A controlling the power of the buffering:

��� = ��� �� ∗ 1 −�∗��−5
100 (2)

Overall, we simulated three levels of A: ‘no’ adaption (A = 0), ‘low’ adaption (A =
0.5), and ‘high’ adaption (A = 1).

Simulation process

The simulation included the population dynamics under different land use and
climate scenarios as well as adaptation to the latter. 75 time steps were
simulated, starting from a fully colonized meta-population network, i.e., an initial
population of 100% of the carrying capacity K of all patches. Land use scenarios
and the resulting changes in patch qualities were simulated between time steps
25 and 50. Accordingly, patch qualities remained stable in the first and the last
25 time steps, so a stable initial and final state was achieved.
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Figure 4: Flowchart of the stylized simulation process for one meta-population network. START:
The initial population size N per meta-population patch P is set to its carrying capacity KP.

SIMULATION: Population dynamics and dispersal, discrete mortality events based on one climate
scenario are simulated over 75 time steps t or until an entire meta-population is extinct (i.e.,
ΣNt==0); between time steps 25 and 49, land use scenario related shifts in agricultural land ‘LT3’

use are simulated. The event mortality MAt of a time step is buffered over the respective
adaptation level A and subtracted from a patch population NPt-1. Based on the resulting NPt

(logistic) population growth is simulated; in the time steps concerned, the land use scenario

modifies the carrying capacity KP via the patch quality QP, determined as a function of the
proportion of ‘urban’ AP LT1 and intensive ‘agricultural’ AP LT3-i land use in a catchment AP Total.

Dispersal-driven processes are next simulated and result in changes in NPt based on the
difference of immigrants NEMt from directly connected patches and emigrants NIMt; for clarity, the
processes to calculate immigration and emigration are not shown here - these are described in

detail in Streib et al. (2020). STOP: Store and export the results for subsequent data analysis.

The latter was done to capture long-term land use impacts, i.e., whether joint
effects remain stable over time. Climate scenario-induced mortality events were
simulated over the entire simulation process and reduced the patch populations
depending on the adaptation level.

In total, we ran 4500 simulations based on 10 meta-population networks, 5 land
use scenarios, 10 sequences for each of the 3 climate scenarios, and 3
adaptation levels. Accordingly, 100 runs (10 meta-population networks x 10
climate scenario sequences) were simulated for each combination of land use
and climate scenario and adaptation, and the mean value was determined.

Data analysis

Quantification of joint effects

The joint effect E for a scenario combination S (i.e., land use x climatic events x
adaptation) was calculated as the mean change in meta-population size relative
to a baseline. The baseline B was defined as static land use (i.e., no land use
change), excluding the simulation of climatic events and, thus, adaptation. This
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baseline provided an easily interpretable comparison between the discrete and
continuous stressor. In addition, stressor levels were generic and defined to
systematically study the effect levels of a discrete and continuous stressor
rather than to represent a current or past climate scenario.

The meta-population size corresponded to the sum of individuals in all patches
at the end of a simulated time step i. For all 100 simulation runs (i.e., 10 meta-
population networks x 10 climatic events sequences) related to a scenario
combination, we determined the deviation of the resulting mean population size
NS from the mean population size of all baseline simulations NB at all simulated
time steps i and calculated E(i) as:

� � = 1 − ��
�
�

��
�

�
(3)

2.5.2 Assessment of stressor interactions

The type and size of a stressor interaction for a scenario combination S were
calculated using the multiplicative null model (also termed Response Addition),
given mortality as the ecological response (Côté et al., 2016; Schäfer and Piggott,
2018). We compared the simulated effect E(i) of a land use and climate scenario
combination to predicted effects P(i), i.e., the probabilistic sum of their individual
effects:

� � = �� � +�� � −�� � ∗�� � (4)

where Ec and Ed of a scenario combination S are the individual effects of the
continuous (i.e., simulated for one specific land use scenario without climatic
events) and discrete (i.e., simulated for one specific climatic event-scenario and
the ‘static’ land use scenario) stressor alone.
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Following the concept of model deviation ratio MDR (Belden et al., 2007), we
defined interactions I(i) by the ratio of predicted to simulated effect (i.e., (1 + P(i))
/ (1 + E(i))). A ratio of 1.0 corresponds to an additive, a ratio > 1.0 to a
antagonistic, and a ratio < 1.0 to a synergistic interaction. Consequently, the
magnitude of non-additive (antagonistic or synergistic) interactions increases
with departure from 1.0.

RESULTS

The present study intended to identify how complex spatiotemporal profiles and
adaptation influence joint effects and interactions of two stressors on meta-
populations. Excluding adaptation, we found that the discrete stressor (i.e.,
climatic events) primarily dominated joint effects, whereas the continuous
stressor (i.e., land use change) always dominated the interaction type.
Adaptation lowered joint effects but changed interaction classification
inconsistently across land use and climate scenarios; for decreasing land use
stress, adaptation (partly considerably) reduced meta-population declines, yet
had little effect for increasing land use stress. Details are presented below.

Joint effects

In the absence of adaptation, severe and intense climate stress dominated the
joint effects in any related scenario combination, with major declines or
extinctions of the meta-population (Fig. 5). Even for decreasing land use stress
(i.e., decreasing intensive agriculture), the joint effects were only slightly lower at
0.8 (i.e., 80% meta-population size reduction) than for increasing land use stress
(i.e., increasing intensive agriculture) at 0.95. However, for moderate climate
stress, the land use scenario dominated the joint effects.

Adaptation had negligible influence on the trajectory of joint effects in the
moderate scenario, but significant influence in the severe and intense climate
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scenarios (Fig. 5). Here, adaptation slowed down meta-population decline for
increasing land use stress, yet declines over time were still severe, virtually
resulting in extinction. For decreasing land use stress, however, adaptation had a
pronounced positive influence; high adaptation even yielded a slight recovery
close to the baseline in the moderate climate scenario.

The land use scenarios of the ‘stepwise’ profile showed qualitatively similar
patterns, resulting in comparable levels of meta-population sizes at the end of
the simulation (Fig. A1).

Figure 5: Development of joint stressor effects (y-axis) compared to the baseline B (black line)
over the simulation period (x-axis) for all stressor scenarios-adaptation level combinations, with
lines corresponding to the mean over 100 simulation runs per combination. Joint effects sizes >

0.0 imply a lower mean population size compared to B, and < 0.0 imply a higher mean population
size compared to B. The climate scenario is labeled at the top of the figure, and the land use

scenario at the right, where ↗ represents ‘ramping’ increasing extensive agricultural land use,

and ↘ ‘ramping’ decreasing extensive agricultural land use. The adaptation level is coded by the

line color: red is ‘no’, orange is ‘low’ adaptation, and green is ‘high’ adaptation.
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Interactions

In general, we found that non-additive interactions emerged over time triggered
by land use change (Fig. 6); however, no and low adaptation resulted in additive
interactions for the intense climatic scenario or close to additive interactions for
the severe climatic scenario. Antagonistic interactions progressively developed
with increasing land use stress and synergistic interactions with decreasing land
use stress. For any given stressor combination, adaptation changed the
interaction sizes, but changes depended on the climate scenario. The
interactions inconsistently decreased in the moderate climate scenario with
adaptation levels but increased in the severe and intense. As a result, for severe
climate stress low adaptation resulted in a similarly strong antagonism as high
adaptation and severe climate stress at decreasing land use stress, but in much
lower synergism at increasing land use stress (Fig. 6, I5). By contrast, in low
climate scenarios, the interaction size of synergism and antagonism decreased
consistently across land use scenarios with adaptation levels.
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Figure 6: Interaction size (y-axis) over the simulation period (x-axis) for all stressor scenarios-
adaptation level combinations, with lines corresponding to the mean over 100 simulation runs per

combination. Interaction sizes > 1.0 indicate antagonism, and < 1.0 synergism. The climate
scenario is labeled at the top of the figure, and the adaptation level is at the right and color-coded:

red is ‘no’, orange is ‘low’ adaptation, and green is ‘high’ adaptation. For the land use scenario, ↗

represents ‘ramping’ increasing extensive agriculture (i.e., decreasing land use stress), and ↘

‘ramping’ decreasing extensive agriculture (i.e., increasing land use stress).

DISCUSSION

We simulated two stressors (i.e., land use and climate) with complex
spatiotemporal profiles in varying scenarios and evaluated their effect on meta-
populations of a freshwater insect. Compared to a static baseline scenario, we
found that joint effects and interactions developed fairly differently over time,
depending on the stressor levels and dynamics. Adaptation to climatic stress
reduced joint effects and modified interactions.



META-POPULATIONS UNDER MULTIPLE STRESSOR RISKS 119

To our knowledge, this is the first modeling study to show that interactions
depend on spatiotemporal stressor profiles and adaptation, supporting previous
calls to place less emphasis on stressor classification as additive or non-additive.
We conclude that static stressor scenarios over short periods, as often used in
experiments, without including potential adaptation, may be insufficient to
reliably predict the joint effects and interactions of multiple stressors under real-
world conditions. Below we discuss our results in detail.

Relevance of discrete and continuous stressors under dynamic scenarios in the
absence of adaptation

We found that moderate climate stress had no or only negligible long-term
impact on meta-populations, yet became dominant for severe and intense stress.
For moderate climate stress, land use dominated the joint effects and a relatively
strong antagonism developed with increasing land use stress, whereas
decreasing land use stress resulted in synergism. For severe and intense climate
stress, the joint effects were largely or completely disjointed from land use, thus
only minor non-additive (‘severe’ scenario) or additive (‘intense’ scenario)
interactions emerged.

Côté et al. (2016) showed that management of a regional continuous stressor to
seagrass populations in multiple stressor environments lowered mortality and
thereby led to higher populations, in turn resulting in antagonism. Consequently,
higher continuous stress likely can have the opposite effect, i.e., synergism via
higher mortality and thus lower population sizes. Furthermore, optimizing land
use can mitigate long-term impacts from more severe extreme events and
thereby strong joint effects, as shown in a review of climate and land use change
feedbacks (Oliver and Morecroft, 2014). However, positive benefits from land use
optimization are only to expect if climatic stress remains below a certain level
and sufficient time for recovery is provided, as shown in a study on dry
coniferous forests in western North America under rapid climate change and
altered disturbance regimes (Falk et al., 2019). Otherwise, the discrete stressor
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dominates, resulting in additive interactions as the benefits of managing a
continuous stressor become minimal (Côté et al., 2016). This matches also a
recent review on abrupt changes in ecological systems, indicating that in multiple
stressor environments a strong increase of a discrete stressor likely results in
additive interactions (Ratajczak et al., 2018).

Under moderate climate stress, the dominant role of land use for the joint effects
is explained by intensive agriculture in the catchment, determining the mean
patch quality in the meta-population networks. Positive land use change resulted
in antagonism, whereas negative land use change resulted in synergism, as
higher patch qualities produced higher meta-populations based on increased
carrying capacities, while lower qualities produced lower meta-populations. Here,
extreme climatic events resulted only in temporal population declines, as mean
event mortality was on average low and, simultaneously, meta-populations had
sufficient time to fully recover between events (Bruder et al. (2019); for details on
underlying general processes see Streib et al. (2021)). For severe and intense
climate stress recovery after individual events may be incomplete and
insufficient to survive subsequent events, given that with more intense climatic
extreme events: (1) mean event mortality increased and (2) time to the next
intense events decreased; notably, a random event sequence, compared to a
synchronous, non-realistic sequence, can result in very short intervals (Jackson
et al., 2021). This produced strong joint effects that were predominantly or
entirely driven by climate stress, as events became so severe that even improved
patch quality with decreasing land use stress failed to prevent the extinction of
most or all patches over time (Fig. A.4.1 & A.4.2). Consequently, weak non-
additive interactions emerged for severe climate stress and additive interactions
emerged for intense climate stress, as meta-populations became extinct or were
reduced to almost zero.
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Role of adaptation on joint stressor effects and interactions under dynamic
scenarios

Adaptation reduced the joint effects for all scenario combinations. Consequently,
non-additive interactions decreased with adaption for the moderate climate
scenario, as the dominant impact of land use became even stronger. However,
non-additive interactions increased or emerged for the severe and intense
scenarios, as with adaptation climate stress no longer dominated, and joint
effects were strongly reduced. Here, antagonistic interactions based on
decreasing land use stress increased more than synergistic interactions based
on increasing land use stress, indicating that land use optimization may provide
more positive outcomes than to expect.

Our findings support the idea that adaptation needs to be considered in
predicting joint effects and interactions of multiple stressors (Hughes et al., 2019;
Orr et al., 2021). As theoretically outlined by Bush et al. (2016) or Jackson et al.
(2021), reduced joint effects by adaption are expected, when ecosystems or
species have sufficient time to adapt to single or multiple changed
environmental stressors. In the best case, stressor effects are even reduced
despite more intense events. Hughes et al. (2019) showed empirically that
adaptation alleviated the effects of marine heat waves on coral reefs. Adapted
corals were significantly less affected by a second heat wave, albeit this was
more intense. The effect of joint stressors may be overestimated if not
considering adaptation as demonstrated in a modeling study on fruit flies (Bush
et al., 2016). Furthermore, beneficial impacts by management, e.g., land use
optimization, may be missed. Our second major finding, that adaptation
produces higher interactions in intensified stressor regimes despite strongly
reduced joint effects, is initially surprising yet supported by a recent study by Orr
et al. (2021). Using data from an evolutionary experiment with the rotifer
Brachionus calyciflorus, they showed that higher interaction sizes can emerge if
adaptation reduces both individual and joint effects compared to control. A
change in interactions from antagonism to synergism followed when the
reduction in individual effects was greater than the reduction in joint effects. For
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management, this implies that actions should focus on reducing joint effects
based on a mechanistic, predictive understanding of interactions (Pirotta et al.,
2022), rather than automatically seeking to prevent synergies (Orr et al., 2021;
Schäfer and Piggott, 2018). However, adaptation to new stressor regimes is
difficult to predict (Bush et al., 2016; Hoffmann and Sgró, 2011), making
predictions of joint stressor effects and thus interactions challenging (Bush et al.,
2016; Hoffmann and Sgró, 2011). While adaptation may occur in many species,
the speed and strength of adaptation remain unclear (Hill et al., 2011). Moreover,
species may also respond positively to an increasing stressor if the environment
shifts toward their niche optimum, or if competition or predation is reduced by
removing more vulnerable species, thereby increasing their robustness to other
stressors (MacLennan and Vinebrooke, 2021; Vinebrooke et al., 2004).

The changes observed in joint effects and interactions are explained by the
reduced extreme event mortality associated with adaptation. Notably under
severe and intense climate stress, meta-populations were more resilient as
single patches survived short intervals of high mortality more frequently and in
higher numbers when adaption is present allowing them and, subsequently, the
meta-population to recover. Compared to the absence of adaptation, it turns out
that the recovery potential is highly dependent on land use, as improved patch
quality now prevents more patches from extinction over time with decreasing
(Fig. A.4.1) than with increasing land-use stress (Fig. A.4.2). Consequently, (both
under ‘low’ and ‘high’) adaptation produced relatively stronger reductions in joint
effects and thereby stronger non-additive interactions for reduced land use
stress.

CONCLUSIONS

We provide theoretical evidence that scenarios of complex spatiotemporal
dynamics and adaptation are critical to understanding how species respond to
modified multiple stressor regimes under global change. Albeit the approach is
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primarily hypothetical we are confident that this work contributes to the
mechanistic understanding of how multiple stressors in real-world environments
act across space and time by demonstrating and explaining general principles.

Analysis of simplified static regimes at local scales over short periods is likely
insufficient for reliable prediction of future joint effects and interactions, notably
since recovery processes are not sufficiently considered. Moreover, adaptation
likely reduces joint effects and, thereby, can alter interactions with inconsistent
direction and size. We expect that these findings could be tested in an
experimental setting with moderate effort.

Consequently, regarding management, actions should focus on reducing the
strongest individual or joint effects, rather than placing too much emphasis on
interactions. Not considering adaptation can result in overestimating joint effects
and potentially missing beneficial management outcomes.
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APPENDIX A

Figure A.1: Temporal profile associated with the land use scenario for the ‘stepwise’ scenario. Here,
the red lines show the trend of intensive agriculture (LT3-i), and the green lines show the trend of
extensive agriculture (LT3-e).

Figure A.2: Development of joint stressor effects (y-axis) compared to the baseline B (black line)
over the simulation period (x-axis) for all stressor scenarios-adaptation level combinations, with

lines corresponding to the mean over 100 simulation runs per combination. Joint effects sizes >
0.0 imply a lower mean population size compared to B, and < 0.0 imply a higher mean population
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size compared to B. The climate scenario is labeled at the top of the figure, and the land use

scenario at the right, where ↑ represents ‘stepwise’ increasing extensive agricultural land use, and

↓ ‘stepwise’ decreasing extensive agricultural land use. The adaptation level is coded by the line

color: red is ‘no’, orange is ‘low’ adaptation, and green is ‘high’ adaptation.

Figure A.3: Interaction size (y-axis) over the simulation period (x-axis) for all stressor scenarios-

adaptation level combinations. Interaction sizes > 1.0 indicate antagonism, and < 1.0 synergism.
The climate scenario is labeled at the top of the figure, and the adaptation level at the right and
color-coded: red is ‘no’, yellow is ‘low’ adaptation, and green is ‘high’ adaptation. For land use

scenario, ↑ represents ‘stepwise’ increasing extensive agriculture (i.e., decreasing land use

stress), and ↓ ‘stepwise’ decreasing extensive agriculture (i.e., increasing land use stress).
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Figure A.4.1: Exemplary representation of A. total population size N and B. rate of colonized

patches (y-axis) over time i (x-axis; i.e., 75 time steps) for one meta-population network simulated
for one sequence of the severe climate scenario and the ‘ramping’ land use scenario with

decreasing intensive agriculture ↗. Event mortality M (secondary y-axis; i.e., population decline

per patch in the range of 0 to 100) per time step is represented by black lines vertically downward
from the top. In A. the red line shows the results for N with ‘no’ adaptation, the orange line with
‘low’ adaptation, and the green line with ‘high’ adaptation. In B. the red area shows the rate of

colonized patches in the range between 0 to 1 with ‘no’ adaptation, the orange area with ‘low’
adaptation, and the green area with ‘high’ adaptation; note that the red area is displayed in front
of the orange area, which is displayed in front of the green area.
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Figure A.4.2: Exemplary representation of A. total population size N and B. rate of colonized
patches (y-axis) over time i (x-axis; i.e., 75 time steps) for one meta-population network simulated

for one sequence of the severe climate scenario and the ‘ramping’ land use scenario with

increasing intensive agriculture ↘. Event mortality M (secondary y-axis; i.e., population decline

per patch in the range of 0 to 100) per time step is represented by black lines vertically downward
from the top. In A. the red line shows the results for N with ‘no’ adaptation, the orange line with

‘low’ adaptation, and the green line with ‘high’ adaptation. In B. the red area shows the rate of
colonized patches in the range between 0 to 1 with ‘no’ adaptation, the orange area with ‘low’

adaptation, and the green area with ‘high’ adaptation; note that the red area is displayed in front
of the orange area, which is displayed in front of the green area.

Notes on the graphs shown in Figures A.4.1 & A.4.2

Successive mortality events with low to medium mortality in the first time steps
result in only small changes in the meta-population size (~ -80%) and rate of
colonized patches (~ -50%). However, without adaption, a high mortality event in
time step 19 sharply reduces meta-population size and the rate of colonized
patches, with levels remaining relatively constant in the following; with adaption,
reduction in meta-population size and the number of colonized patches is less
severe, with a partial recovery following (more pronounced for ‘high’ relative to
‘low’). The effects of the land use scenarios simulated from time step 25 to time
step 50 are only pronounced with adaptation. Here, despite a high mortality event
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on time step 40, decreasing intensive agriculture (Fig. A.4.1) generally results in
progressively increasing meta-population size and a constant colonization rate
(both, ‘low’ and ‘high’ adaptation), while increasing intensive agriculture (Fig.
A.4.2) results in decreasing meta-population size and colonization rate (both,
‘low’ and ‘high’ adaptation). Consequently, without adaptation population sizes
and colonization rates are comparable for both land use scenarios, but with
adaptation they are clearly higher under decreasing land use stress. After time
step 50, the long-term effects of the land use scenarios become clear, i.e., high
mortality events in time steps 64 and 73 result in meta-population extinction
under increasing land use stress, whereas the meta-populations survive and
recover subsequently under decreasing land use stress.
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5. DISCUSSION & OUTLOOK

5.1 DISCUSSION

Overall, the results of the studies presented (Chapters 2-4) provide strong
theoretical evidence that an improved mechanistic understanding of co-
occurring stressors is needed to adequately assess how (hemimetabolous)
species respond to global change-related stressors. Scenarios with complex
spatiotemporal profiles of multiple stressors considering how space and time
combine, together with adaptation, are critical to predicting how joint stressor
effects and interactions develop.

5.1.1 CHANGING HABITAT CONNECTIVITY DRIVEN BY GLOBAL CHANGE

The modeling study presented in Chapter 2 clearly demonstrates that habitat
connectivity has positive effects on the resilience of meta-populations to
decreasing landscape permeability and fragmentation (Streib et al., 2020). Global
change is likely to reduce the connectivity of many terrestrial habitats, increasing
dispersal mortality within meta-populations as inter-patch connections degrade
(Strien and Grêt-Regamey, 2016), or worst case, are lost entirely (Baguette and
Van Dyck, 2007; King and With, 2002). The extinction risk of meta-populations
will thereby be increased (Chisholm et al., 2011; Heino et al., 2017; Wilson et al.,
2016), as they rely on the capability of individuals to disperse between sub-
populations in sufficient numbers to recolonize extinct patches (Bocedi et al.,
2014; Moilanen and Nieminen, 2002) or maintain genetic variability (Hanski, 1989;
Watts et al., 2006). Consequently, understanding spatial patterns shaping habitat
connectivity (Didham et al., 2012; Purse et al., 2003; Saura et al., 2014) is crucial
for future management of terrestrial or semi-terrestrial species (Laita et al., 2011;
Wilson et al., 2016).

Similar to terrestrial species, aside from landscape permeability and
fragmentation, habitat connectivity for freshwater hemimetabolous species is
primarily determined by the number of patches, but also by spatial patch



META-POPULATIONS UNDER MULTIPLE STRESSOR RISKS 137

arrangement (Hanski, 1989; Hodgson et al., 2011; Lechner et al., 2017); however,
for these species, which rely on aquatic and terrestrial sites, the spatial
structuring of the dendritic stream network additionally influences connectivity
significantly, determining the potential spatial distribution of patches (Streib et
al., 2020; Tonkin et al., 2018). The results indicate that management needs
(besides local actions) to focus on the landscape scale and, thereby, on the
preservation or improvement of habitat connectivity Lechner et al. (2017);
Hodgson et al. (2011); Hanski (1989); Watts et al. (2006)]. Here, Heer et al. (2019)
demonstrated, based on a simplified version of the presented model, that
mathematical optimization methods can be useful tools to identify highly
suitable habitat sites to enhance connectivity and thus plan management actions
in an effective way.

5.1.2 IMPACT OF SPATIOTEMPORAL STRESSOR PROFILE ON JOINT EFFECTS
AND INTERACTIONS

In Chapter 3, using an extended version of the meta-population model, it was
shown that the joint effects and, thereby, interactions of a discrete stressor
(extreme events) and a continuous stressor (land use) were mainly determined
by the latter (Streib et al., 2022). For meta-populations, the risk of a discrete
stressor (ranging from negligible to extinction) depends strongly on patch quality
and habitat connectivity, which determine the recovery potential following
temporary mortality (Newson et al., 2014; Oliver and Morecroft, 2014; Piessens et
al., 2009); increasing land use stress makes a meta-population more vulnerable
to extreme events (Dai et al., 2012). The study also showed that (under overall
comparable conditions) meta-populations in environments where land use stress
is homogeneously distributed are expected to perform worse against an
additional (discrete) stressor than ones in environments where stress is
heterogeneously distributed. Regional landscape homogeneity likely produces
meta-populations of patches with similar quality, while regional heterogeneity
promotes single, high-quality patches. These are more resilient to temporary
mortality and, therefore more likely to survive and, thus, can promote more stable
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population dynamics by maintaining and driving recovery processes, e.g.,
recolonization of extinct patches (Oliver and Morecroft, 2014; Van Teeffelen et al.,
2012). Moreover, it appeared that the size of joint effects and interaction
(classification) strongly depended on the determination time. The more time for
recovery, the lower the joint effects, and thereby the interactions may decrease
(Leuzinger et al., 2011) possibly changing even the classification from non-
additive to additive.

The study demonstrates the potential of regional landscape management in
counteracting the risks of stressors associated with global change. Management
that mitigates a continuous stressor, i.e., improves patch quality and habitat
connectivity, can likely reduce or prevent joint effects and synergistic interactions
from a co-occurring discrete stressor (Côté et al., 2016; Oliver and Morecroft,
2014). Here, actions focused on single high-quality patches are likely more
effective than moderate improvements across all patches (Bergen et al., 2020;
Oliver et al., 2010). However, when evaluating risks, a sharp focus regarding
potential temporal discontinuities in joint effects and interactions is needed; joint
effects and interaction (classification) do not necessarily remain stable over time.

5.1.3 MORE REALISTIC SCENARIO DESIGNS INCORPORATING DYNAMIC
STRESSOR PROFILES AND ADAPTATION

Following, in chapter 4 potential changes by more realistic stressor scenarios
designs, i.e., dynamic stressor profiles plus adaptation, were investigated. It
appeared that joint effects and interactions developed fairly differently over time
compared to a static baseline, moreover, adaptation reduced joint effects,
changing interactions inconsistently (Streib et al., 2023). Dynamic profiles can
produce rapid climatic event sequences preventing recovery processes within
meta-populations, so the discrete stressor drives the joint effects, resulting in
additive interactions (Falk et al., 2019; Ratajczak et al., 2018). Otherwise, the
continuous stressor determines the interaction classification, as lower or higher
land-use stress results in increased or decreased recovery, producing



META-POPULATIONS UNDER MULTIPLE STRESSOR RISKS 139

antagonism or synergism, respectively (Côté et al., 2016). Adaptation to the
discrete stress reduced joint effects under decreasing continuous stress, yet had
little compensatory influence under increasing stress. Reduced joint effects are
likely if ecosystems or species adapt to changing environmental stressors (Bush
et al., 2016; Jackson et al., 2021). However, this only applies unless another
stressor simultaneously increases, offsetting gains by adaptation. Moreover,
adaptation was found to produce higher interaction sizes despite reduced
concurrent joint effects, thereby, albeit counter-intuitive, inconsistently changing
the interaction classification. Here, even shifts from antagonism to synergism
can occur, if adaptation produces a greater reduction in individual effects
compared to joint effects (Orr et al., 2021).

The results imply that predicting joint effects and interactions of multiple
stressors under real-world conditions based on static, short-term stressor
scenarios without considering adaptations is likely unreliable (Jackson et al.,
2021). It has also been shown that the management of a continuous stressor is
ineffective once a discrete stressor dominates (Côté et al., 2016). Ignoring
adaptation can, moreover, result in an incorrect assessment of potential
management, e.g., actions can be incorrectly considered ineffective if adaptation
will result in joint effects being lower in reality than expected. Also, adaptation
can increase the interaction size, thereby inconsistently changing the
classification, e.g., additive interactions may shift to non-additive interactions.
Consequently, future management of threatened species should focus on
reducing joint effects based on a mechanistic understanding of joint effects,
rather than trying to prevent (high) synergies (Orr et al., 2021; Schäfer et al., 2023;
Schäfer and Piggott, 2018).

5.2 OUTLOOK

The present study shows that process-based simulation models can generate an
advanced (theoretical) understanding of how multiple stressors associated with
anthropogenic global change act across space and time. Such models always
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make a trade-off between simplicity and complexity, so the scenarios of the
studies presented reflected one or two stressors for one species with specific
characteristics only. In real ecosystems, typically more stressors are present
(Sage, 2020) with mostly very complex patterns (Jackson et al., 2021).

Recent research reveals that current technological developments in IT allow new
models to become more complex. High-performance computing environments
provide growing capabilities to apply computationally intensive statistical
models, e.g., Bayesian methods, and to process large data sets so model
uncertainties can be reduced and efficient calibration of complex process-based
models is possible (Fer et al., 2018). Deep learning algorithms are evolving in
their ability to automatically extract spatio-temporal features, thereby allowing
improved modeling of long-range spatial patterns across multiple time scales
(Reichstein et al., 2019). Also, a growing number of species trait databases have
been published in recent years (Gallagher et al., 2020), enabling models to be
parameterized for multiple species with low effort. These developments will
reduce the need to control the complexity of a model framework and allow for
parameterization that relies less on approximations or estimates in the absence
of precise values. Thus, the (primarily hypothetical) presented modeling
approaches have the potential to be applied to a wide variety of real-world
species and habitats based on probabilistic scenarios in the future. Here, we are
confident that the outlined principles of the mechanistic mode of action of
multiple stressors generally apply, so they continue to hold under increasing
complexity. This will likely allow these models to be used to identify individual
risks to species and thus support specific management planning in the real world
and, furthermore, potentially increase the acceptance of model results in the
(broader) scientific community (Grimm and Railsback, 2011).

In summary, although primarily theoretical, the presented findings will (at a
minimum) support further expanding the conceptual framework of research on
multiple stressors in the future, thereby contributing to the conservation of the
Earth’s threatened biodiversity. Nevertheless, conservation efforts will only be
successful if society and politics take the risks of anthropogenic global change
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seriously and act consequently to limit its environmental effects to the maximum
extent possible.
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