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Kurzfassung

Die Auswahl geeigneter Materialien stellt im Rahmen der zunehmenden Elektrifizierung
von Fahrzeugen eine anspruchsvolle Aufgabe dar. Dies liegt vor allem darin begründet,
dass nicht nur mechanische, sondern multiphysikalische Anforderungen an die Mate-
rialeigenschaften simultan berücksichtigt werden müssen. Ein Beispiel hierfür ist die
Forderung nach einem elektrisch isolierenden, aber gut wärmeleitenden Material mit ge-
ringer Wärmeausdehnung. Kunststoffbasierte Verbundwerkstoffe bieten die Möglichkeit
die physikalischen Materialeigenschaften durch Verwendung entsprechender Füllstoffe
gezielt zu beeinflussen. Die makroskopischen Materialeigenschaften ergeben sich hierbei
gemäß dem Ursache-Wirkungs-Prinzip: Herstellungsprozess → Struktur → Eigenschaften
in Abhängigkeit der komplexen Mikrostruktur des Kunststoffverbunds. Das Design von
Materialien erfordert eine Betrachtung dieser Prozesskette in umgekehrter Reihenfolge
und kann als inverse Problemstellung aufgefasst werden. Entsprechend vielfältig und her-
ausfordernd gestaltet sich der Entwurf solcher Funktionswerkstoffe. In der vorliegenden
Arbeit soll die Frage beantwortet werden, wie die Mikrostruktur von Verbundwerkstof-
fen beschaffen sein muss, um ein gewünschtes effektives thermomechanisches Material-
verhalten aufzuweisen. Eine rein experimentelle Entwicklung solcher Materialien stellt
im Allgemeinen einen zeitaufwändigen und kostspieligen Prozess dar, da viele Prototy-
pen hergestellt und getestet werden müssen. Computergestützte Multiskalenmethoden
ermöglichen durch direkte Modellierung der Heterogenität auf Mikrostrukturebene ei-
ne rein virtuelle Charakterisierung von Verbundwerkstoffen. Diese Verfahren bieten so-
mit das Potenzial teure Experimente zu ersetzen und die Produktentwicklungszeit zu
verkürzen. In dieser Arbeit wird eine simulationsbasierte Optimierungsmethodik zum
Design von Funktionswerkstoffen präsentiert. Hierzu wird ein metamodellbasierter An-
satz vorgeschlagen, der auf einer Approximation der Struktur-Eigenschafts-Beziehungen
in Abhängigkeit physikalischer Parameter der Mikrostruktur basiert. Dies ermöglicht eine
effiziente Lösung multiphysikalischer Materialoptimierungsprobleme in hochdimensiona-
len Parameterräumen. Die Methodik wird anschließend zur Optimierung thermomecha-
nischer Eigenschaften partikelgefüllter und kurzfaserverstärkter Kunststoffe angewendet.

In Kapitel 2 werden einige grundlegende Aspekte der Kontinuumsmechanik zur Modellie-
rung thermoelastischer Materialien und der Wärmeleitung beschrieben. Die eingeführten
Notationen und Beziehungen werden in den folgenden Kapiteln zur Berechnung effektiver
Materialeigenschaften durch numerische Simulation auf Mikrostrukturebene verwendet.
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In Kapitel 3 wird die metamodellbasierte Optimierungsmethodik zum Design von Funk-
tionswerkstoffen vorgestellt. Dazu wird für das Materialdesign ein Strukturoptimierungs-
problem formuliert. Durch Beschreibung der makroskopischen Materialeigenschaften in
Form tensorieller Größen wird eine Berücksichtigung richtungsabhängiger (anisotroper)
Anforderungen an die Materialien ermöglicht. Als Designvariablen werden physikalische
Parameter der Mikrostruktur gewählt, da diese beim Herstellungsprozess direkt beein-
flusst werden können. Diese setzen sich aus Parametern der geometrischen Mikrostruktur
(z. B. dem Füllgrad) und den Materialeigenschaften (z. B. dem Elastizitätsmodul) der
einzelnen Konstituenten zusammen. Verschiedene Aspekte wie der große Rechenaufwand
und der Einfluss stochastischer Effekte bedingt durch die heterogene Mikrostruktur mo-
tivieren die Entwicklung der metamodellbasierten Optimierungsmethodik. Diese basiert
auf einer Approximation der Struktur-Eigenschafts-Beziehung innerhalb des gesamten
Parameterraums. Ein wesentlicher Vorteile solcher Metamodelle besteht im effizienten
Einsatz globaler Optimierungsverfahren im Vergleich zur direkten Anwendung des mi-
kromechanischen Simulationsmodells, insbesondere für hochdimensionale Probleme. Zur
Erstellung der Metamodelle werden in einem ersten Schritt auf Grundlage von Verfahren
der statistischen Versuchsplanung bestimmte Parameterkombinationen (experimentelle
Designs) festgelegt. Für jedes dieser Designs wird ein repräsentatives Volumenelement
generiert, das die jeweilige Konfiguration der Mikrostruktur wiedergibt. Die entspre-
chenden effektiven Materialeigenschaften werden durch numerische Homogenisierungs-
methoden unter Vorgabe periodischer Randbedingungen berechnet. Als Resultat dieser
Schritte steht eine Materialdatenbank zur Verfügung, welche die Struktur-Eigenschafts-
Beziehung für eine diskrete Menge parametrisierter Mikrostrukturen beschreibt. Der
nächste Schritt besteht darin, die effektiven Eigenschaften auf Grundlage dieser Ma-
terialdaten innerhalb des gesamten Parameterraums zu approximieren. Hierzu werden
Polynome (Response Surface Modelle) und Kriging-Interpolationen vorgestellt. Die Ver-
wendung von (globalen) Methoden der Sensitivitätsanalyse zur Quantifizierung der re-
lativen Bedeutung der einzelnen Designvariablen wird diskutiert. Des Weiteren wird ein
simples Konzept zur Bewertung der Robustheit der Designs bzw. für die robuste Opti-
mierung vorgestellt.

Kapitel 4 bietet einen kompakten Überblick zu partikelgefüllten und kurzfaserverstärkten
Kunststoffen. Neben der Beschreibung für technische Anwendungen relevanter Matrix-
und Füllstoffmaterialien und deren Einfluss auf die makroskopischen Eigenschaften wird
kurz auf die Herstellung und die Anwendungsgebiete dieser Materialien eingegangen.

In Kapitel 5 wird das metamodellbasierte Optimierungsverfahren anhand konkreter Ma-
terialbeispiele demonstriert. Hierzu wird in Kapitel 5.1 ein dreiphasiger partikelgefüllter
Werkstoff mit großem Kontrast in den Wärmeleitfähigkeiten der einzelnen Konstitu-
enten betrachtet, bei dem eine bestimmte thermische Leitfähigkeit eingestellt werden
soll. Als Designvariablen werden der Füllgrad und die Phasenanteile, sowie geometrische
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Parameter der Füllstoffpartikel betrachtet. Es stellt sich heraus, dass mit einer relativ
geringen Anzahl experimenteller Designs eine gute Approximation der makroskopischen
Wärmeleitfähigkeit erstellt werden kann. Der Füllgrad und die Phasenanteile erweisen
sich neben dem Aspektverhältnis der plättchenförmigen Partikel als wesentliche Ein-
flussgrößen. Als Optimierungsverfahren wird die Differentielle Evolutionsstrategie ange-
wandt, um verschiedene optimale Mikrostrukturen zu ermitteln. Eine Validierung der
Optimierungsergebnisse durch Auswertung des mikromechanischen Modells zeigt nur
geringfügige Abweichungen. Anschließend werden als alternative Optimierungsmetho-
den ein gradientenbasiertes Optimierungsverfahren und ein sequentielles metamodellba-
siertes Verfahren angewendet und mit dem präsentierten Ansatz verglichen. Eine Va-
lidierung der Homogenisierungsmethode anhand experimenteller Messungen zeigt eine
gute Übereinstimmung. In Kapitel 5.2 wird die Methodik zur Optimierung der viskoela-
stischen Eigenschaften kurzfaserverstärkter Polymere eingesetzt. Neben dem Füllgrad
werden die Faserorientierungsverteilung sowie die linear-elastischen Materialeigenschaf-
ten des Fasermaterials als Designvariablen betrachtet. Im Rahmen des Konzepts des
Advani-Tucker-Faserorientierungstensors zweiter Stufe kann die Faserorientierungsver-
teilung durch lediglich zwei Parameter beschrieben werden, die innerhalb des Faserori-
entierungsdreiecks liegen. Zur Modellierung des viskoelastischen Verhaltens der Polymer-
matrix wird ein verallgemeinertes Maxwell-Modell verwendet und die Materialparameter
werden anhand experimentell ermittelter Kriechkurven bestimmt. Auf Grundlage von
Kriechsimulationen wird eine viskoelastische Materialdatenbank generiert. Diese wird
zu Erstellung von Kriging-Interpolationen der orthotropen Komponenten des Kriech-
nachgiebigkeitstensors verwendet. Zur Lösung des Materialoptimierungsproblems wird
die Differentielle Evolutionsstrategie unter Berücksichtigung des durch das Faserorientie-
rungsdreieck beschränkten Designraums verwendet. Eine Validierung der Optimierungs-
ergebnisse anhand des mikromechanischen Modells zeigt auch hier nur geringfügige Ab-
weichungen. In Kapitel 5.3 wird die vorgeschlagene Methode schließlich zur Lösung mul-
tiphysikalischer Probleme eingesetzt. Um thermische und mechanische Anforderungen an
den dreiphasigen Werkstoff simultan zu berücksichtigen wird ein Mehrzieloptimierungs-
problem formuliert. Eine relativ große Anzahl von insgesamt zehn Designvariablen wird
betrachtet, die neben dem Füllgrad und den Phasenanteilen die thermomechanischen Ei-
genschaften der Füllstoffe umfassen. Basierend auf der für thermische und mechanische
Eigenschaften gesondert generierten Materialdatenbanken werden Kriging-Modelle zur
Approximation der effektiven thermomechanischen Eigenschaften erstellt. Für die Opti-
mierung wird ein genetischer Algorithmus auf den Metamodellen angewendet. Die An-
wendung der Methode wird anhand zweier Beispiele demonstriert. Die Ergebnisse zeigen,
dass durch Änderung der Phasenanteile die Wärmeausdehnung auf Kosten der thermi-
schen Leitfähigkeit optimiert werden kann. Die Einhaltung eines maximalen makroskopi-
schen E-Moduls in Form einer Nebenbedingung kann im Vergleich zum unrestringierten
Problem durch Reduktion des E-Moduls der plättchenförmigen Partikel erreicht werden.
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Die wesentlichen Erkenntnisse dieser Arbeit lassen sich wie folgt zusammenfassen: Die
bei Einsatz globaler Optimierungsverfahren große Anzahl benötigter Funktionsauswer-
tungen ist mit einem hohen numerischen Aufwand bedingt durch die Generierung re-
präsentativer Volumenelemente und der Simulation verschiedener Lastfälle verbunden.
Aus diesem Grund wird in der vorliegenden Arbeit eine metamodellbasierte Optimie-
rungsmethodik vorgeschlagen, die zum Teil überhaupt erst eine wirtschaftliche Lösung
thermomechanischer Strukturoptimierungsprobleme ermöglicht. Weitere Vorteile die-
ser Methode liegen im effizienten Auffinden unterschiedlicher Designalternativen, der
Berücksichtigung variierender Zieleigenschaften ohne die Notwendigkeit erneuter nume-
rischer Simulationen, sowie der Bewertung der Robustheit verschiedener Designs und
der Sensitivität individueller Parameter. Vorhandene Modelle können zudem um weitere
physikalische Eigenschaften erweitert werden und bei multiphysikalischen Optimierun-
gen eingesetzt werden. Im Gegensatz zu existierenden Arbeiten wird in dieser Arbeit eine
ganzheitliche Prozesskette zur Optimierung physikalischer Parameter der Mikrostruktur
partikelgefüllter und kurzfaserverstärkter Polymere präsentiert. Eine Validierung der mit
dieser Methodik erhaltenen Optimierungsergebnisse durch Vergleich mit einer Auswer-
tung des numerischen Modells zeigt bei den vorgestellten Beispielen nur geringfügige Ab-
weichungen. Der Ansatz erweist sich als recht allgemeingültig und kann auch für andere
Arten von Verbundwerkstoffen eingesetzt werden. In Kombination mit fortschrittlichen
Fertigungstechniken und der Auswahl geeigneter Füllstoffe bietet die vorgeschlagene Me-
thode das Potential den Produktentwicklungsprozess zu beschleunigen und die Anzahl
zeitaufwändiger Experimente zu reduzieren.
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Abstract

The selection of suitable materials represents a demanding task in the context of the
increasing electrification of vehicles. This is mainly due to the fact that not only me-
chanical but also multiphysical requirements for the material properties have to be taken
into account simultaneously. An example of this is the requirement for an electrically
insulating yet good heat-conducting material with low thermal expansion. Polymer-
based composites offer the possibility of specifically influencing the physical material
properties by the use of suitable fillers. The macroscopic material properties result from
the cause-effect principle: manufacturing process → structure → properties depending
on the complex microstructure of the polymer matrix composite. The design of ma-
terials requires the consideration of this process chain in the reverse order and can be
regarded as an inverse problem. Consequently, the design of such functional materials
is diverse and sophisticated. The present work aims to answer the question of how the
microstructure of composite materials must be tailored in order to exhibit the desired
effective thermomechanical material behavior. A purely experimental development of
such materials is generally a time-consuming and cost-intensive process, as many pro-
totypes have to be produced and tested. Computer-aided multiscale methods enable a
virtual characterisation of composites by a direct modelling of the heterogeneity at the
microstructure level. These methods offer the potential to replace expensive experiments
and to shorten the product development time. In the work at hand, a simulation-based
optimization methodology for the design of functional materials is presented. For that
purpose, a metamodel-based approach is proposed, which relies on the approximation
of the structure-property relationship (SPR) in dependence of physical parameters of
the microstructure. This enables an efficient solution of multiphysical material opti-
mization problems in high-dimensional parameter spaces. The developed methodology
is subsequently applied to the optimization of thermomechanical properties of particle
reinforced and short fiber reinforced polymers.

Chapter 2 covers some basic aspects of continuum mechanics for the modeling of ther-
moelastic materials and heat conduction. The introduced notations and relations are
applied in the following sections to compute effective material properties of composites
by numerical simulation at the microscopic level.

In Chapter 3, the metamodel-based optimization methodology for the design of func-
tional composites is presented. For this purpose, a structural optimization problem is
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formulated for the material design. A description of the macroscopic material properties
in terms of tensor quantities enables a consideration of direction-dependent (anisotropic)
requirements imposed on materials. As design variables, physical parameters of the mi-
crostructure are selected, since these can be directly affected during the manufacturing
process. These comprise parameters of the geometrical microstructure (e.g., the filler vol-
ume fraction) and the material properties (e.g., the Young’s modulus) of the individual
constituents. Several aspects such as the large computational effort and the influence of
stochastic effects caused by the heterogeneous microstructure, motivate the development
of the surrogate-based optimization methodology. This is based on an approximation of
the SPR within the entire design space. A major advantage of such metamodels is the
efficient use of global optimization methods compared to the direct application of the
micromechanical simulation model, especially for high-dimensional problems. To create
the metamodels, in a first step certain parameter combinations (experimental designs)
are specified on the basis of an experimental design scheme. For each of these designs, a
representative volume element is generated that represents the particular configuration
of the microstructure. The corresponding effective material properties are computed
by numerical homogenization under specification of periodic boundary conditions. As
a result of these steps, a material database is provided that describes the SPR for a
discrete set of parameterized microstructures. In the next step, the effective properties
are approximated within the entire parameter space on the basis of this material data.
Polynomial response surface models and Kriging interpolations are introduced for that
purpose. The use of (global) sensitivity analysis methods to quantify the relative impor-
tance of the different design variables is discussed. Moreover, a simple concept for the
evaluation of the robustness of the designs and for robust optimization is presented.

Chapter 4 provides a compact overview of particle reinforced and short fiber reinforced
polymers. In addition to a description of the matrix and filler materials relevant for
technical applications and their influence on the macroscopic properties, the manufac-
turing and application areas of these materials are briefly discussed.

In Chapter 5, the metamodel-based optimization method is demonstrated by means
of specific material examples. For that purpose, in Section 5.1 a three-phase particle
reinforced material with large contrast in the thermal conductivities of the individual
constituents is considered, where a certain thermal conductivity is to be adjusted. The
filler volume fraction and phase fractions as well as geometrical parameters of the filler
particles are considered as design variables. It turns out that with a relatively small
number of samples a reasonably good approximation of the macroscopic thermal con-
ductivity can be obtained. The filler volume fraction and the phase fractions prove to be
significant influencing variables, in addition to the aspect ratio of the platelet-shaped par-
ticles. As optimization method, differential evolution is employed to determine different
optimal microstructures. A validation of the optimization results by an evaluation of the
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micromechanical model shows only slight deviations. Subsequently, a gradient-based op-
timization method and a sequential metamodel-based method are utilized as alternative
optimization methods and are compared with the presented approach. A validation of
the homogenization method by experimental measurements shows a satisfactory agree-
ment. In Section 5.2, the methodology is applied to optimize the viscoelastic properties
of short fiber reinforced polymers. In addition to the fiber volume fraction, the fiber
orientation distribution and the linear elastic material properties of the fiber material
are considered as design variables. Within the concept of the second-order Advani-
Tucker fiber orientation tensor, the fiber orientation distribution can be described by
only two parameters lying within the fiber orientation triangle. A generalized Maxwell
model is used to model the viscoelastic behavior of the polymer matrix and the corre-
sponding material parameters are determined based on experimentally determined creep
curves. A viscoelastic material database is established from the results of creep simu-
lations. This is used to create Kriging interpolations of the orthotropic components
of the creep compliance tensor. Differential evolution is employed to solve the mate-
rial optimization problem considering the constrained design space imposed by the fiber
orientation triangle. A validation of the optimization results using the micromechanical
model shows only minor deviations here as well. Finally, the proposed method is applied
to solve multiphysical optimization problems in Section 5.3. To consider thermal and
mechanical requirements of the three-phase material simultaneously, a multi-objective
optimization problem is formulated. A relatively large number of ten design variables are
considered, which include the thermomechanical properties of the fillers in addition to
the filler volume fraction and the phase fractions. Based on the material databases gen-
erated separately for thermal and mechanical properties, Kriging models are created to
approximate the effective thermomechanical properties. An genetic algorithm is applied
to the metamodels for optimization. The application of the method is demonstrated
by two examples. The results show that by changing the phase fractions, the thermal
expansion can be optimized at the expense of the thermal conductivity. Compared to
the unrestricted problem, compliance with a maximum macroscopic Young’s modulus
in the form of a constraint can be achieved by reducing the Young’s modulus of the
platelet-shaped particles.

The main findings of this work can be summarized as follows: The large number of func-
tion evaluations required when using global optimization methods is associated with a
large numerical effort caused by the generation of representative volume elements and
the simulation of different load cases. For this purpose, a surrogate-based optimization
methodology is proposed in that work, which partly enables an economical solution of
thermomechanical structural optimization problems at all. Further advantages of this
method are the efficient identification of different design alternatives, the consideration
of varying target properties without the necessity of renewed numerical simulations,
as well as the evaluation of the robustness of different designs and the sensitivity of
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individual parameters. Existing models can also be extended to include other physical
properties and can be used for multiphysical optimization. In contrast to existing works,
this thesis presents a holistic process chain for the optimization of physical parameters
of the microstructure of particle reinforced and short fiber reinforced polymers. A vali-
dation of the optimization results obtained with this methodology by comparison with
an evaluation of the numerical model shows only minor deviations for the presented ex-
amples. The approach proves to be quite general and can also be applied to other types
of composite materials. In combination with advanced manufacturing techniques and
the selection of suitable fillers, the proposed method offers the potential to accelerate the
product development process and to reduce the number of time-consuming experiments.
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Chapter 1

Introduction

1.1 Motivation

In connection with the increasing electrification of vehicles, novel, challenging, and partly
contradictory requirements are placed on the physical properties of materials. In this
context, it is generally not sufficient to limit the consideration to individual, e.g., me-
chanical properties. In fact, multiphysical material requirements must be taken into
account simultaneously. An example of this is the demand for an electrically insulating
yet well thermally conductive material with low thermal expansion.

Polymer matrix composites offer the potential to modify and optimize the physical
material properties by the use of suitable fillers. The application of polymers as ma-
trix material is primarily motivated by their low density, easy processability, and low
costs. The inherently low thermal conductivity of polymers (typically in the range of
0.1 - 0.5 W/mK) can be significantly increased by adding thermally conductive filler
particles. Such particle reinforced polymers (PRPs) are therefore primarily used in the
field of power electronics, where adequate heat dissipation is necessary to ensure proper
functionality. Short fiber reinforced polymers (SFRPs) exhibit outstanding mechanical
properties in terms of high stiffness and strength in relation to their weight. This makes
them a predestined material for lightweight construction applications, which is increas-
ingly replacing other materials such as metals.

The macroscopic material properties result from the partially complex microstruc-
ture of the polymer composite. The most important factors comprise the physical ma-
terial properties of the individual constituents as well as geometrical parameters of the
microstructure such as the filler volume fraction and the dispersion of the fillers (e.g.,
the orientation of fibers) within the polymer matrix. The computation of the overall
properties of a particular microstructural configuration is often referred as the forward
problem or the structural analysis problem. For technical applications, it is often possible
to concretely quantify the desired physical material properties required for the perfor-
mance of a product. These properties are often the result of a multiphysical optimization
at the component (macroscopic) level. This means that the conventional direction in
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which information flows in materials science: processing → structure → property → per-
formance [131], [130] should ideally occur in the opposite direction. To this end, the
essential aim of this work consists in the developement of an optimization methodology
for the design of functional composites. This should be illustrated by the following ex-
ample: Consider a component consisting of a PRP as depicted in Fig. 1.1. Let Ψeff

denote a generic macroscopic property depending on parameters of the heterogeneous
microstructure such as the filler volume fraction Vf and the material properties of the
filler Ψ1 and the polymer Ψ2, i.e., Ψeff = Ψeff(Ψ1, Vf ,Ψ2, ...). Please note that there are
also other influencing variables (indicated by the dots), which will be explained in the
further course of the work. The task in the inverse problem is to adjust these parame-
ters so that the microstructure exhibits the desired macroscopic material property Ψ∗

eff.
The need to exchange information across different length scales in material design is ex-
tensively described within the integrated computational materials engineering (ICME)
[133] paradigm. In the work at hand, in addition to the simultaneous consideration of
multiphysical material properties, a specific anisotropic material behavior should also be
taken into account. It has to be kept in mind that the optimization of a certain material
property can lead to a deterioration of another material property. In the following, a
brief overview of the state of the art for the determination of the overall properties of
composites and for material optimization is provided.

Macroscale Microscale

Homogenization

Ψeff = Ψeff(Ψ1, Vf ,Ψ2, ...)
Target

property
Ψ∗

eff

Ψeff

Ψeff

Ψ1, Vf

Ψ2

Figure 1.1: Linkage of macro- and microscale: Dependence of a macroscopic material
property on physical parameters of the heterogeneous microstructure

1.2 State of the art

Experimental test procedures are usually employed in practice to determine the
overall properties of composites. However, this only allows the consideration of a cer-
tain material at a time. Furthermore, it may be impractical to manufacture specific
microstructural configurations due to process-related reasons. Pure experimental devel-
opment of such functional materials is therefore usually quite costly and time-consuming
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1.2 State of the art

and represents a tedious trial-and-error process.

Analytical homogenization methods have been established for the determination of
macroscopic properties of heterogeneous materials. A common class of approximation
methods is given by the so-called mean field approaches. These are based on the inclu-
sion theory of Eshelby [43] and basically assume elliptical inclusions embedded within a
matrix material. Another class of homogenization approaches provides theoretical up-
per and lower bounds of the effective properties of composites. For example, the simple
rule of mixture is obtained by averaging the individual properties of the constituents
weighted by their volume faction. They do not take into account the morphology of the
microstructure and often provide a very rough estimate, especially for large contrasts
in the material properties of the constituents. More complex microstructures and the
interaction of physical effects at large filler volume fractions cannot be captured accu-
rately enough with this methods for the materials considered in this work.

To overcome these drawbacks, multiscale computational homogenization meth-
ods [51] were developed. These are based on the geometrical and physical modeling
of the microstructure of the composite on the microscale. A direct resolution of the
heterogeneity on the macroscopic (component) level would be computationally far too
expensive. Because of that, computational homogenization methods employ so-called
representative volume elements (RVEs) which capture the local microstructural setting
and are attached to each macroscopic point. Suitable simulation software [14] offer the
possibility to compute the macroscopic properties in terms of appropriate averaging (ho-
mogenization) relations. This is based on the formulation of boundary value problems
(BVPs) on the RVE level and its solution by numerical methods such as the finite el-
ement method (FEM). Besides the use of FEM, fast Fourier transform (FFT)-based
techniques [121], [122] operating on a regular voxel grid represents a more efficient nu-
merical method. This simulation-based approach enables the consideration of different
microstructural configurations in short time and offers the potential to shorten the prod-
uct development time. Hence, such computational homogenization methods are utilized
in the work at hand.

Topology optimization (TO) methods have been applied for the design of hetero-
geneous materials [178]. In [76], a numerical method for addressing different physical
demands on effective properties of composites is presented. TO methods were employed,
for example, to identify structures for maximum thermal and electrical conductivity
[180] and extreme thermal expansion [165]. From a practical point of view, a drawback
of TO is that the resulting structures are difficult to realize by traditional processing
techniques. This is mainly caused by the complex morphology of the resulting structures
and the dependence on conventional fillers. For this reason, topology optimization is not
further considered in the current work.
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Microstructure-sensitive design (MSD) [3] has been established as a very generic
paradigm for the design of microstructures. MSD is based on spectral representations of
statistical distribution functions yielding the microstructure hull (i.e., the complete set
of relevant microstructural designs). Starting from this representation, homogenization
relations are formulated which delineate a so-called property closure [49]. This property
closure enables the inverse design by the identification of microstructures with target
properties. Because MSD is based on spectral representations, it is especially suitable
for the design of anisotropic, polycrystalline materials and is therefore not further inves-
tigated in the work at hand.

In recent years, machine learning (ML) techniques [143] have been gaining much
popularity for the design and analysis of materials at different length and time scales.
Commonly, surrogate models [168], a special case of supervised learning models, are
established to model the unknown structure-property relationship (SPR). These models
rely on the use of training data and require the selection of descriptors (input parame-
ters) for the representation of the material system (e.g., the material composition or the
morphology of microstructures), which are linked to corresponding material properties
(output parameters). Such surrogate models are used to replace physical models such as
experiments or numerical simulations and offer the advantage of an efficient prediction
and parametric optimization by the use of optimization algorithms. Nowadays, surro-
gate models are often trained with data from computer simulations. This is partly due
to recent advances in computing power, data acquisition and storage, ML algorithms
as well as material models. Propelled at least by the Material Genome Initiative [109],
a plethora of research articles concerning the application of ML in materials science
has been published over the last two decades. Most of them rely on the use of density
functional theory or molecular dynamics methods (considering phenomena occuring at a
lower length scale as regarded in this work) to generate training data for the ML model
to predict corresponding material properties. High-throughput computations [35] have
been applied to generate large amounts of data. This led to the emergence of open
source databases such as the open quantum material database [151] or Materialsmine - a
database for nanocomposites (Nanomine [25], mostly created by experimental data) and
mechanical metamaterials (Metamine). An overview of such interdisciplinary “material
informatic” approaches can be found in one of the numerous articles, e.g., [103], [184] or
[5].

The following review focuses on current research on ML techniques for the optimiza-
tion of effective material properties of microstructured materials. In [193] and [194],
a physical descriptor-based methodology for the design of heterogeneous materials is
proposed. State-of-the-art (ML) methods such as design of experiments (DoE), surro-
gate modeling, sensitivity analysis, and multi-objective optimization are used to identify
optimal microstructures. Based on training data obtained from latin hypercube sam-
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pling (LHS), a Kriging surrogate model is constructed to accelerate the optimization
procedure using a genetic algorithm. Bessa et al. [18] developed a data-driven com-
putational framework for the analysis of material systems and structures. Its essential
steps integrate DoE (sampling), computational analysis (numerical homogenization) of
each sample leading to a material database, and the creation of an ML model on the
basis of this database. Three different types of descriptors, geometrical microstructure
descriptors, material property descriptors, as well as boundary condition descriptors are
investigated. Neural networks and Kriging models are utilized as ML models trained
on data generated by space-filling sampling schemes such as the Sobol’ sequence and
LHS. These models serve as multiscale models and depict the (nonlinear) macroscopic
constitutive material behavior. The possibility of using these models for optimization
is mentioned, but not further elaborated. Further recent attempts for the design of
microstructured materials make use of deep neural networks [9], generative adversarial
networks [198], and convolutional neural networks [2]. Beside the application to mechan-
ical properties, in [59] an ML model is generated to optimize the thermal conductivity
of a particle reinforced composite. Recently, Chen et al. [32] proposed a data-centric
approach for the design of microstructural material systems. This contains elements of
design representation, design evaluation, and design synthesis. Computational methods
for each of these elements are presented. A latent variable Gaussian process model [202]
introduced by some of the authors to handle both qualitative and quantitative variables
for design representation is used as surrogate model. For design synthesis, a Bayesian
optimization approach is used, which employs an adaptive sampling technique to identify
the global optimum in an efficient way. In [79], this approach is used for mixed-variable
multicriteria optimization of nanocomposites. A recent overview of ML methods utilized
for the analysis and design of polymer composite materials is given in [164]. Apart from
the aforementioned works, research dealing with such parametric material optimization
problems for composites is still limited. Gu and Chen [30] indicated that ML models have
been used mainly for predicting the properties of composites rather than for the design
of new materials. General purpose frameworks for solving such multiphysical material
optimization problems for polymer matrix composites are currently still lacking.

1.3 Scope and outline

The main goal of this work is the development of an optimization methodology for
the design of functional materials according to multiphysical requirements. The focus
will be placed on the thermomechanical material properties of particle reinforced and
short fiber reinforced polymers. In addition to the application of the methodology for
the optimization of thermal and mechanical properties, the simultaneous consideration
of thermomechanical properties by multi-objective optimization methods is considered.
Robustness evaluation and robust optimization aspects are also taken into account. It
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should be emphasized that the developed surrogate models can also serve as multi-
scale material models as input for component simulations. However, the focus of this
work is on the adjustment of specific, generally anisotropic thermomechanical material
properties. The approach proves to be quite general and can also be applied to other
composite materials and other physical (e.g., electromagnetic) material properties. The
optimization results can be incorporated into the manufacturing process by tailoring the
microstructure using appropriate processing techniques.

This thesis is organized as follows: Chapter 2 covers some basic principles of continuum
mechanics, including the constitutive modeling of linear thermoelastic materials and the
description of heat conduction problems. The notation used in the context of computa-
tional homogenization is introduced.

Chapter 3 provides the surrogate-based multiscale optimization method for the design of
functional composites and represents the methodological background of this work. The
material design problem is formulated in terms of a parametric optimization problem
in the standard setting of nonlinear structural optimization problems. Based on the
characteristics of this problem, the concept of the surrogate-based optimization method-
ology is developed. In the further sections, the individual elements of the framework are
described in greater detail. This includes a brief overview of homogenization and opti-
mization methods. The essential steps include DoE, the generation of RVEs, surrogate
modeling, and global optimization. Moreover, sensitivity analysis methods and a robust
design method are presented.

Chapter 4 deals with the polymer matrix composites investigated in this thesis. Some
basic aspects of particle reinforced and short fiber reinforced polymers are addressed.
This includes technically relevant matrix and filler materials and their influence on the
overall properties.

In Chapter 5, the optimization framework is demonstrated by means of specific ma-
terial examples. A three-phase PRP is investigated with view of its thermomechanical
properties. In the first example, the method is applied to identify different microstruc-
tures of that material with a specific effective thermal conductivity [107]. The demand of
different physical material requirements in a multiphysics setting is addressed by adopt-
ing the surrogate-based method and the use of multi-objective optimization techniques.
Furthermore, the framework is employed for the optimization of the overall viscoelastic
behavior of SFRPs [106].

Finally, Chapter 6 summarizes the main results. An outlook to future work is given.
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Chapter 2

Foundations of continuum mechanics and
heat conduction

2.1 Continuum mechanics

This section focuses on the modeling of linear thermoelastic materials and the descrip-
tion of heat conduction problems. For this purpose, some basic concepts of continuum
mechanics in the form of kinematic relations, balance equations, and constitutive models
are briefly reviewed and the notation used in the remainder of this work is introduced.
The inferred relations apply both at the macroscopic level and at the microscale, intro-
duced later in the context of homogenization. For a more comprehensive description of
continuum mechanics approaches, the reader is referred to, e.g., [61] or [69].

2.1.1 Kinematics

The motion and deformation of a body under the action of forces is given in terms of
kinematic relations. This is illustrated in Fig. 2.1. The position of a material point in the
reference (undeformed) configuration Ω0 at time t = t0 is denoted by the position vector
X ∈ R3. The position of a material point x ∈ R3 in the current (deformed) configuration
Ωt at time t > t0 is described by a nonlinear deformation map

x = ϕ(X, t) (2.1)

with respect to the reference configuration. Based on this mapping, the displacement
vector u is defined as the difference of the position vectors of current and reference
configuration

u = x(X, t) −X. (2.2)

For the description of deformation processes, the deformation gradient

F = ∂x

∂X
(2.3)

and the displacement gradient

H = ∂u

∂X
= F − I (2.4)
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Ωt

t > t0

Ω0

t = t0

0

x(X, t)
X

u = x(X, t) −X

ϕ(X, t)

X1, x1

X2, x2

X3, x3

Figure 2.1: Kinematics of rigid bodies

are introduced, where I denotes the second order identity tensor. By means of the
deformation gradient, a transformation between infinitesimal material lines, surfaces,
and volume elements [7] from the current to the reference configuration can be described
as

dx = F dX,

n da = JF −TN dA,

dv = J dV

(2.5)

with the determinant of the deformation gradient J = det(F ) > 0 and the outward
normal n of the surface area da. Another measure of the deformation state is given by
the Green-Lagrange strain tensor

E = 1

2
(F TF − I) = 1

2
(H +HT +HTH). (2.6)

The definition of E is motivated to describe the difference between the squares of in-
finitesimal material line elements from the reference to the current configuration. Due
to its definition, rigid body motions are not considered and E vanishes for this case. If
the displacement gradient is small (∥H∥ ≪ 1), HTH in (2.6) becomes negligible and
the theory of small deformations is obtained. This results in the linearized strain tensor
ε, which is given by the symmetric part of the displacement gradient, i.e.,

ε = 1

2
(H +HT ) = 1

2
(∇u +∇Tu) . (2.7)
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2.1 Continuum mechanics

In the context of this work, the validity of the theory of small deformations is assumed.
In this case, both configurations coincide, so no distinction has to be made and all
observation relate to the same configuration Ω in the following. Due to the symmetry
of ε, a common notation, which is also used later in this work, is the Voigt notation. In
Voigt notation, ε can be expressed as a vector εV ∈ R6 by

εV = (ε11, ε22, ε33, 2ε23, 2ε13, 2ε12)T . (2.8)

2.1.2 Balance equations

To describe the deformations inside a body under the action of external forces, the static
balance equation is employed. For their derivation, a deformable body (with density ρ)
associated with the domain Ω and the boundary ∂Ω as shown in Fig. 2.2 is considered.

∂Ω

Ω

∂ΩN

∂ΩD
u∗

t∗

b

dm = ρ dv

Figure 2.2: Solid body under the action of volume and surface forces

The regarded mechanical forces are volume forces f = ρb (per unit volume dv) acting
inside the body and surface tractions t acting on ∂Ω. If static problems are considered
(neglecting inertia forces), the balance of linear momentum yields

−∫
∂Ω
t da

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
surface tractions

= ∫
Ω
f dv

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
body forces

, (2.9)

i.e., the equilibrium of volume and surface forces. Substituting the traction vector t
by Cauchy’s stress theorem t = σ ⋅n with the Cauchy stress tensor σ and the outward
normal n of the surface area da, this leads to

− ∫
∂Ω
σ ⋅n da = ∫

Ω
f dv. (2.10)

Applying Gauss’ divergence theorem, the surface integral in (2.10) can be transformed
into a volume integral, so (2.9) can be written as

− ∫
Ω
(div σ) dv = ∫

Ω
f dv. (2.11)
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Since (2.11) is valid for arbitrary volumes Ω, the local form of the static balance equation
is given as

− div σ = f . (2.12)

Moreover, the symmetry of the Cauchy stress tensor σ = σT results from the balance of
angular momentum

∫
∂Ω
x × t da + ∫

Ω
x × f dv = 0, (2.13)

so σ can be expressed in Voigt notation σV = (σ11, σ22, σ33, σ23, σ13, σ12)T ∈ R6 too.

2.1.3 Linear thermoelasticity

The connection between stresses and strains describes the mechanical material behavior
and is expressed in form of constitutive equations. In linear elasticity, the stresses and
strains are related via Hooke’s law

σV = CV ⋅ εV (2.14)

by a symmetric stiffness tensor CV ∈ R6×6 (in Voigt notation). The inverse relation is
given as εV = SV ⋅σV with the compliance tensor SV = C−1

V . For isotropic materials, σ
can be expressed as

σ = λtr(ε)I + 2µε (2.15)

and C is defined by two parameters, the so-called Lamé constants λ and µ. The Lamé
constants can also be expressed in terms of the Young’s modulus E and the Poisson’s
ratio ν,

λ = Eν

(1 + ν)(1 − 2ν) and µ = E

2(1 + ν) (2.16)

commonly used in engineering applications.

A thermoelastic material is subjected to strains under a variation of temperature. The
total strain ε can be expressed as the sum of an elastic εel and an thermal part εtherm as

ε = εel + εtherm (2.17)

and εtherm is given by
εtherm = α ⋅∆T (2.18)

with the (linearized) thermal expansion tensor α and a small temperature change ∆T =
T − T0 with the current temperature T and a reference temperature T0. Thus, the
constitutive material law (in Voigt notation) is given in terms of the Duhamel-Neumann
law

σV = CV ⋅ εV,el = CV ⋅ (εV −αV ⋅∆T ). (2.19)
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2.2 Heat conduction

This section deals with the modeling of heat conduction in solid bodies. In the following,
it is assumed that the volume change remains small due to the thermal expansion, i.e.,
the process is considered to be isochoric. The heat conduction equation can be derived
from the energy balance equation (first law of thermodynamics). Considering a closed
system on which no external mechanical forces act, this states the change in internal
energy is equal to the heat transfer rate. In integral form, this can be expressed as

d

dt
∫

Ω
ρu dv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
change of internal energy

= ∫
Ω
ρr dv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
heat source/sink

− ∫
∂Ω
q ⋅n da

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
heat flow over boundary

(2.20)

with the specific internal energy u. The heat transfer rate is given by the heat added or
removed by heat sources or sinks r and the heat flux through ∂Ω expressed by the heat
flux vector q(x) ∈ R3. Utilizing the same arguments as in the previous subsection, the
local form of (2.20) is given as

ρ
du

dt
= −div q + ρr. (2.21)

A constitutive law of heat conduction is given in the form of Fourier’s law

q = −k ⋅ ∇T. (2.22)

In 2.22, k denotes the symmetric second-order thermal conductivity tensor. For isotropic
materials, k reduces to a scalar value, i.e., k = kI, which states that the heat flux q in
Ω is proportional to the negative temperature gradient −∇T . Moreover, the change
of internal energy is given as du = cv dT with the specific heat capacity cv = cv(T )
as material parameter. Substituting these two material laws into (2.21), the following
expression for the heat conduction equation in homogeneous and isotropic materials is
obtained:

ρcv
dT

dt
= div (k ⋅ ∇T ) + ρr. (2.23)

Please note that k depends on the temperature for some materials. If steady-state heat
conduction is considered and in the absence of heat sources/sinks r, the heat conduction
equation (2.23) reduces to Laplace’s equation:

∆ T = 0. (2.24)

To summarize, Table 2.1 compares the field quantities and governing equations used to
describe elastostatic and steady-state heat conduction problems. Also provided are the
boundary conditions (BCs) that must be specified to solve the differential equations 2.12
and 2.24.
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Table 2.1: Comparison of field quantities and governing equations including BCs for
elastostatic and steady-state heat conduction problems

Elastostatics Steady-state heat conduction

Field quantities

Displacement vector u Temperature T

Strain tensor ε Temperature gradient ∇T
Stress tensor σ Heat flux vector q

Governing equations

ε = 1
2
(∇u +∇Tu) ∇T

σ = C ∶ ε q = −k ⋅ ∇T
div σ + f = 0 div q = 0

Boundary conditions

σ ⋅n = tbc q ⋅n = qbc

u = ubc T = T bc

Energy

Wel = 1
2ε ∶ C ∶ ε ∆Q =m ⋅ cv ⋅∆T

There can be distinguished between two basic types of BCs: Dirichlet BCs are given by
specification of displacements ubc = u or temperatures T bc = T acting on the Dirichlet
boundary ∂ΩD, while Neumann BCs comprise predefined tractions tbc = σ ⋅ n or heat
fluxes qbc = q ⋅ n acting on the Neumann boundary ∂ΩN . These must be defined on
the entire boundary ∂Ω = ∂ΩD ∪ ∂ΩN . A combination of both BCs on disjoint subsets
(∂ΩD ∩ ∂ΩN = ∅) represent mixed BCs, see Fig. 2.2 for a schematic illustration in
elastostatics.
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Chapter 3

Surrogate-based multiscale optimization
method

This chapter concerns with the proposed surrogate-based multiscale optimization method
for the design of composite materials. A formulation of the material optimization prob-
lem in terms of physical descriptors of microstructured materials is introduced. Based
on a characterization of this optimization problem, the surrogate-based optimization
framework and its individual steps are explained in more detail in the following sections.

3.1 Formulation of the material optimization problem

In the following, the selection of design variables for the representation of a microstruc-
tural design is outlined (Section 3.1.1). In order to obtain materials with target prop-
erties, these design variables are used for the formulation of a parametric optimization
problem, which is introduced and characterized in Section 3.1.2.

3.1.1 Parameterization of microstructured materials

In order to describe the processing-structure-property relationship [28] of a composite
material, microstructure characterization and reconstruction (MCR) techniques have
been developed. Following [21], MCR techniques can be categorized into five categories:
(1) statistical functions, (2) physical descriptors, (3) spectral density functions, (4) ML-
based, and (5) texture synthesis and multiple-point statistic-based methods. According
to the aim of this thesis, suitable design variables have to be chosen for the formulation of
a structural optimization problem. Descriptors from the categories (1), (4), and texture
synthesis are generally not applicable for material design, as they do not yield design
variables that are necessary for the formulation of a structural optimization problem [21].
Spectral density function descriptors are used for example for crystals to describe the
microstructure hull in the context of microstructure-sensitive design [3]. The most con-
venient yet capable category for material design is the physical descriptor-based method
[193], [194], [59]. In this thesis, physical descriptors are considered, because these can be
adjusted by locally influencing the microstructure during the manufacturing process. For
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the describtion of a microstructured material by physical descriptors, three stages can
be considered [193], allowing an increasingly detailed description of the microstructure:
Composition of the constituents, spatial distribution (dispersion), and geometry of the
filler particles. For the description of the SPR, the design variables are classified into two
categories in the context of this work: Design variables of the geometrical microstructure
and physical material property descriptors. The geometrical microstructure descriptors
represent the geometrical setting (the morphology) of the microstructure. Examples
of design variables of the geometrical microstructure are the filler volume fraction, the
dispersion of the fillers within the matrix, and the shape and size of the filler particles.
The material property descriptors typically comprise material parameters that are used
to specify the constitutive material behavior of the individual constituents. Considering
linear (isotropic) materials, these can be, e.g., the thermal conductivity k, the Young’s
modulus E and the Poisson’s ratio ν, or the coefficient of thermal expansion α. The pa-
rameterization of a microstructured material is demonstrated by the following example:
A random heterogeneous material composed of spherical filler particles suspended in a
polymer matrix is investigated. For the representation of the geometrical microstruc-
ture, the filler volume fraction Vf and the mean diameter dsp of the spherical particles
are selected as design variables. As material property descriptors, the thermal conduc-
tivity km of the matrix material and the filler kp are investigated. Fig. 3.1 shows a
realization of this microstructure in form of a RVE represented by the design variables
vector d = (Vf , dsp, km, kp). Each design variable requires the specification of physically
meaningful upper and lower bounds. The dispersion of the filler particles in the matrix
was specified here as uniform. Further examples of parameterized structures are given
in Chapter 5.

3.1.2 Formulation and characterization of the material optimization problem

In order to find an optimal microstructural design with target macroscopic properties,
the following parametric minimization problem for the design variables d is introduced:

J(d) =
⎛
⎝
∥Ψeff(d) −Ψ∗

eff∥2

∥Ψ∗
eff∥2

⎞
⎠

2

→min, d ∈ Rn

s. t. di,low ≤ di ≤ di,up.

(3.1)

In (3.1), J = J(d) denotes an objective function to be minimized involving the effective
property of interest Ψeff = Ψeff(d) as a tensor quantity as a function of the design vari-
ables d and Ψ∗

eff represents the target effective material property. As effective properties,
the thermal conductivity keff, the linear elastic stiffness Ceff, and the thermal expansion
αeff will be investigated in that work. Formulation (3.1) allows a consideration of the full
anisotropic material behavior, which is essential in the work at hand to design materials
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3.1 Formulation of the material optimization problem

Figure 3.1: RVE of a parameterized PRP represented by the design variables vector
d = (15 %, 20 µm, 0.23 W/mK, 30 W/mK)

with direction-dependent macroscopic properties. It should already be pointed out at
this point that a consideration of different physical material properties is enabled by
introducing several objective functions and the use of constraints. The formulation of
such material optimization problems in the standard form of nonlinear structural op-
timization problems will be presented later in this thesis. In order to select a proper
optimization method, the generic material optimization problem (3.1) is analyzed in
further detail. The objective function exhibits the following characteristics:

• The evaluation is in general computationally expensive, since an RVE has to be
generated for each design specification and several load cases have to be computed.

• Non-convexity is encountered due to the variety of design variables and the influ-
ence of stochastic effects.

• No gradient information in closed form is available for the micromechanical (nu-
merical) model.

• Stochastic character due to the randomness of the heterogeneous microstructure.

• Deviations from the specifications in the structure (RVE) generation (even if these
deviations are quite small in the considered examples).

• Different optimal, or “near” optimal designs with different robustness may be
identified.
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Chapter 3 Surrogate-based multiscale optimization method

Beside the fact, that a single run with a gradient-descent algorithm may locate in a
local optimum resulting from the complex behavior of the structural response, the use
of gradient-based optimization methods poses further difficulties. The stochastic nature
of the RVEs leads to mutual fluctuations in the observed physical fields (e.g., strains
and stresses in the mechanical case and temperatures and heat fluxes in the thermal
case), which, in turn, leads to noise in the objective function. The use of gradient-based
methods carries the risk of being trapped in such a local optimum. Based on these
considerations, a global optimization method that attempts to find the global optimum
and can handle the problems of noisy behavior, non-convexity, and missing gradient
information is chosen. Common global methods such as evolutionary algorithms require
far more iterations than gradient-based methods. The application of such global methods
on the micromechanical model leads to a tremendous numerical effort, since each function
evaluation is associated with the generation of an RVE and the solution of several BVPs.
Hence, evolutionary methods cannot be applied directly on microstructural optimization
problems due to the enormous computational effort associated with some applications.
In order to cope with this computational burden, a surrogate-based optimization method
is suggested in the following section.

3.2 Development of a solution strategy

Based on the characterization of the optimization problem in the previous section, a
surrogate-based optimization approach [141] is proposed. A flowchart of the optimization
framework is shown in Fig. 3.2. The framework comprises the following methodologies:

• Design of Experiments

• Generation of RVEs

• Computational homogenization

• Surrogate modeling

• Sensitivity analysis (optional)

• Global optimization

• Robustness evaluation (optional)

The essential idea is based on the construction of a global approximation of the effective
properties of interest Ψeff (respectively its components Ψij,eff) as a function of the design
variables d within the entire material design space. This surrogate model serves as a
quick to evaluate representation of the SPR and substitutes the expensive to evaluate
computational homogenzation model. As starting point, the parametric optimization
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Figure 3.2: Flowchart of the surrogate-based multiscale material design framework

problem (3.1) has to be defined. This includes the specification of the design objectives
and constraints as well as the design variables with the feasible set. In the first step,
a DoE scheme is used for the exploration of the material design space. For each of
the experimental designs dl (l = 1, ...,m), a corresponding RVE is generated. Based on
this microstructural design representation, computational homogenization is performed
to evaluate the effective property Ψl

eff. For the complete determination of the effective
properties in the form of a tensor quantity, in general a total of three load cases must
be simulated for the calculation of the thermal conductivity and six load cases for the
calculation of the mechanical properties. So-called periodic BCs are used in these inves-
tigations. As a result of these previous steps, a material database (dl,Ψl

eff) is provided
that depicts the effective material behavior for a discrete set of m microstructural con-
figurations. In order to obtain a model for arbitrary design variables, the third step
employs surrogate modeling techniques to construct an approximation of the effective
property of interest within the entire material design space Ψij,eff = Ψij,eff(d). To identify
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Chapter 3 Surrogate-based multiscale optimization method

a microstrucural design with desired properties, a global optimization technique is em-
ployed on the surrogate representation of the parametric material optimization problem.
Compared to the application of the simulation model, the evaluation of the objective
function can be performed very fast in this way, i.e., the computational burden becomes
manageable. Therefore, sensitivity analysis and robustness evaluation methods can be
applied to gain further information from the design objectives. This enables a deeper
understanding of the property under consideration as a function of the design variables
and can support the designer in the selection of materials. Another main advantage of
the approach is that once the metamodel is created, it is possible to specify different
target values as well as to identify various microstructures for a target property without
renewed numerical simulations (except for validation). Since the optimization results are
obtained from the surrogate representation of (3.1), a validation simulation has to be
conducted by evaluating the optimum with the micromechanical model. The methodical
background of the individual steps are explained in more detail in the following sections.

3.3 Design of experiments (DoE)

3.3.1 Introduction

The construction of a surrogate model rely on training data, consisting of a set of input
samples (model input data) and the values of interest evaluated at these sampling points
(model output data or responses). The selection of the locations of these sampling points
in the design space is based on so-called design of experiments (DoE) schemes. In
general, the objective is to gain as much information as possible with as few as possible
sampling points (i.e., computational effort). While the theory of DoE originally emerged
in the context of planning physical experiments, appropriate design techniques used in
connection with computer simulations have been developed.

An experimental design can be described by a set of m experiments, each defined by
n input (design) variables di (i = 1, ..., n), called factors. In the context of this work,
the factors comprise design variables of the geometrical microstrucure and physical ma-
terial properties as introduced in Section 3.1.1. For each experiment (sampling point)
dl (l = 1, ...,m) to be evaluated by the computer code, the factors are set to specified
values, called levels. As denoted in the DoE literature, an experimental design can be
expressed as an (m × n) matrix D, where the rows of D represent the sampling points
and the columns refer to the corresponding factor settings.

Beside the use for the construction of surrogates, DoE is also used for other purposes
such as characterization, sensitivity analysis, screening, or uncertainty quantification.
In the following, a brief overview of different DoE schemes with a focus on surrogate
modeling is provided.
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3.3.2 Classical design methods

DoE schemes were originally developed to conduct physical experiments. Pioneering
work was carried out in the 1960s by Ronald Fisher [46] in the field of agriculture.
Physical experiments contain stochastic effects encounting random variations. For that
purpose, schemes incorporating statistical elements such as randomization, blocking,
and replication have been developed to cancel out such random errors. For example,
to consider random variations, the samples are selected on the boundary of the design
space and replicates are taken. To have an comprehensive overview of such schemes, a
short introduction to some of the most popular schemes is presented in the following.

Factorial and fractional factorial designs

Factorial designs [12] are the most basic experimental schemes and are characterized
by the fact that the n factors are varied on a specified number of l levels at a regular
grid. In a full factorial design, all factor-level combinations are considered, so the design
consists of a total number of ln sampling points. Besides the creation of a global approx-
imation, these design are often used for screening experiments to detect the influence of
different design variables and to test if negligible variables occur. Often, 2n and 3n with
2 and 3 levels respectively are used. While for 3 levels, a regression model including
main effects, interactions, and quadratic effects can be constructed, for 2 levels only
main effects and interactions can be taken into account. Their main drawback is the
exponentially increasing number of sampling points with the number of factors, making
them prohibitively for high-dimensional design spaces. For example, a full factorial de-
sign with 5 factors evaluated on 3 levels leads to a number of 35 = 243 experiments to be
evaluated. To circumvent this problem, fractional factorial designs were developed. As
the name suggests, such designs consists only of a fraction (a subset) of the full factorial
design. These designs consist of ln−p experiments, where p denotes the reduction of lev-
els compared to full factorial designs. However, depending on the number of levels (the
selection of p), this has the effect that some main effects and interactions may be aliased.
This means that an independent estimation from each other is not possible because the
corresponding term is missing in the regression model. Both full and fractional factorial
designs are illustrated in Fig. 3.3 with 3 (left) and 3-1 (middle) factors on 2 levels.

Central composite designs

For the construction of a linear approximation, (n+1) sampling points and for a quadratic
approximation (n + 1)(n + 2)/2 are required. To fit a quadratic approximation, a 3n or
3n−p design could be used, but often this implies too many sampling points. A com-
monly used design for fitting second-order polynomials with a limited number of sam-
pling points are the so-called central composite designs (CCD). This is illustrated in
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Chapter 3 Surrogate-based multiscale optimization method

Fig. 3.3 (right). CCD designs requires a number of 2n + 2n + 1 sampling points. The
2n samples are the same as in the full factorial design with two levels. Furthermore,
one center point (marked in blue) and 2n star points (marked in red) are selected. The
star points are placed with distance ±α from the origin. Depending on the selection of
α, there are obtained different variants of CCD. For example, α = 1 results in a face-
centerd CCD. Other classical design schemes for fitting response surface models include
Plackett-Burman designs, Box-Behnken designs, or Koshal designs. A comprehensive
overview can be found, for instance, in [116] or [158].

These classical schemes are mostly used for screening purposes and the construction of
low-order polynomial response surface models. They are designed more for the iden-
tification of trends rather than fitting complex metamodels. For a detailed overview
of classic DoE methods, the reader is referred to [116]. Since the structural responses
considered in this paper could be arbitrarily complex, the following section presents
sampling methods that can be used to approximate more complex structural responses.

Figure 3.3: Illustration of full factorial (left), fractional factorial (middle), and central
composite designs (right)

3.3.3 Design methods for computer experiments

In contrast to physical experiments, computer models are deterministic, which means
that a specific input yields always the same response. Noise resulting for example from
statistical influence is already included in the problem formulation and the error in-
volved with computer simulation is mostly systemic rather than random. Sacks et al.
[152] explained that the elements used in the classical schemes becomes irrelevenat if
deterministic simulations are considered. Following that, space-filling designs have
been developed, which try do spread the samples equally distributed over the entire
design space. Since the system responses considered in this work may represent a com-
plex interrelationship between many factors, in that way, all regions of the design space
are treated equally. In comparison to classical sampling methods, space-filling designs
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are in the most cases not restricted by the use of a certain metamodel type. A goal
of setting this points could be for example to minimize the integrated mean squared
error (IMSE) over the entire design space, which results in IMSE-optimal designs. Some
commonly employed space-filling designs comprise Monte-Carlo sampling, orthogonal
arrays, uniform designs, and latin hypercube sampling. A further class can be described
by so-called optimality criteria optimal designs. These designs try to fulfill for example a
distance criterion. An overview of different approaches can be found in [152]. Because of
their importance in the context of this work, latin hypercube (LH) designs are described
in more detail in the following.

Latin hypercube sampling (LHS)

LHS was introduced in 1979 by McKay et al. [110] and belongs to the class of sta-
tistical sampling methods. It is one of the most popular DoE method used in connection
with computationally intensive applications. LHS has the main advantage that it can be
initialized with an arbitrary number of samples and does not scale with the dimension
of the design space. This is especially relevant for high-dimensional problems, since the
computational effort can be reduced to a reasonable level compared to classical (e.g.,
factorial) designs and also some other modern DoE schemes. The creation of the sample
points in LHS can be described as follows. In a first step, the number of experiments
(sample size) m has to be defined. The domain for each factor is normalized to the
interval [0,1]. This makes large differences between feasible variable spaces for different
factors comparable. These intervalls are segmented into m equal-sized strata (size 1/m),
so that the entire design space is subdivided into mn cells. For the selection of the
first sampling point, one cell is chosen randomly. In most cases, the sample is centered
inside that cell, but in general the position of the sample in the cell can be chosen to
follow a given probability densitiy function. For the selection of the second sampling
point, all rows and columns containing the former sample are not allowed to be se-
lected. This will be repeated, until all m sample points are placed inside the hypercube.
The restriction that only a single sampling point is permitted in each row and column
leads to an equal distribution of the samples in the factor spaces and the advantageous
projection properties (by projection in 1D, each strata is filled with a single sampling
point). Another advantage of that scheme is, if negligible variables occur, the drawback
of replicated points gaining no further information as this would be in other space-filling
designs will be avoided. According to Koehler and Owen [92], the LH matrix can be
formally constructed as

Dij =
πj(i) −Uij

m
(3.2)

with 1 ≤ i ≤ m and 1 ≤ j ≤ n. In (3.2), πj(i) are independent random perturbations of
the integer sequence 1, ...,m and Uij is a uniform random value in the intervall [0,1]. A
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simple and commonly used variant of LH sampling is the lattice sampling with Uij = 0.5,
which means that the samples are centered in the strata. As explained in Section 3.3.1,
LH sampling leads to a design matrix D with levels as rows and the associated factor
settings in the columns. Following the construction rules, it is clear that there is no
unique distribution of the samples. In fact, a LH design can have poor space-filling
properties. This can be illustrated by considering a two-dimensional LH design in which
each cell diagonal is sampled, so the resulting sampling scheme has poor space-filling
properties (see Fig. 3.4, left). To overcome this disadvantages, several improvements
were developed. These try to optimize the sample distribution by optimizing a certain
distance criterion. For example, the so-called maximin approach of Morris and Mitchell
[120] tries to optimize the distance of the sampling points. Such a design is called
a maximin LH design. Another approach is to minimize the correlation between the
samples. The employed LH design is such an improved version of LHS. It is based on
an optimization of the sample distribution using the enhanced stochastic evolutionary
algorithm [80] and is implemented in the surrogate modeling toolbox (Python library
SMT) [22]. In Fig. 3.4 (right), a LH design for two factors (n = 2) and m = 10 with
improved space-filling properties is illustrated.

d1

d2

d1

d2

Figure 3.4: Two-dimensional LH design for m = 10 with poor (left) and improved
space-filling properties (right)

3.4 Generation of representative volume elements (RVEs)

The determination of a specific effective property Ψeff = Ψeff(d) of a microstructural
design represented by the design vector d requires the creation of an RVE. For the
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generation of three-dimensional RVEs of particle reinforced and short fiber reinforced
polymers, the GrainGeo [64] and FiberGeo [65] modules integrated in the voxel-based
software GeoDict [14] (https://www.math2market.com/index.html) are employed. Be-
side the generation of particle reinforced structures, GrainGeo allows the generation of
granular and sintered materials, which are relevant in various technical applications.
In these modules, all parameters required for the specification of the geometrical mi-
crostructure can be defined. This includes the specification of the geometrical shape
and the size distribution of the particles, the filler volume fractions (respectively the
weight fractions, the number of particles, or the density of the composite), as well as the
orientation of the fillers. Moreover, the distribution of the particles within the polymer
matrix can be defined in different ways. The implemented structure generation algo-
rithms randomly places the particles inside the matrix and then gradually removes the
overlap through several operations. The statistical distribution of the particles within
the matrix can be controlled by a random number (called random seed), which allows
the generation of different random RVEs. As RVE parameters, the edge length l and
the resolution (expressed by the voxel length h) of the structure must be specified. In
the work at hand, only cubical volume elements are considered. The particles are not
allowed to touch each other, which can be specified by the definition of an isolation
distance. For the generation of RVEs of SFRPs, there exists the so-called sequential
addition and migration method [159]. This algorithm allows the precise generation of
structures with large fiber aspect ratios and large volume fractions. A comprehensive
review of methods for generating three-dimensional RVEs can be found in [13].

3.5 Micromechanics and homogenization

In this section, first, a concise summary of basic concepts and analytical methods of
micromechanics is provided. Secondly, the formulation of BVPs on the microscale in the
context of numerical homogenization is presented.

3.5.1 Heterogeneous materials - Basics and length scales

Most materials that are observed on a finer length scale exhibit a more or less pronounced
heterogeneity. These can be, for example, micropores, cracks, or grain boundaries in al-
loys. For the materials considered in this work, this heterogeneity is due to different
reinforcements such as fibers or other filler particles. The subject of micromechanics
is the investigation of the impact of these heterogeneities on the macroscopic material
behavior. Since these heterogeneities occur at different length scales, an essential task
of these theories is to link these scales in a suitable way. For that purpose, a coupling
between a finer scale (the microscale) and the macroscale is performed by assigning to
each macroscopic point the corresponding microstructure. Within this concept, a micro-
macro transition in terms of appropriate averaging technique is carried out, reffered to
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as homogenization. The properties of a homogeneous reference material determined in
this way are called effective or macroscopic material properties and describe the macro-
scopic constitutive behavior. For the determination of effective properties, a sample of
the heterogeneous material is considered, which must be representative to adequately
delineate the underlying microstructure. In the following, the prerequisites for the de-
termination of such a representative volume element suggested by Hill [67] is introduced.
A condition for the size of the RVE is that the characteristic length l of the RVE must be
much smaller than the characteristic length L of the macroscopic sample. That means,
if

l≪ L (3.3)

seperation of scales holds and the RVE can be regarded as a material point on the
macroscopic level. For the determination of an RVE, the effective properties must be
independent of the shape and size as well as the statistical distribution of the hetero-
geneities. Thus, another condition is that the RVE under consideration must contain a
sufficiently large number of heterogeneities. This can be expressed as

dh ≪ l (3.4)

with the characteristic length dh of the heterogeneities. These characteristic length scales
are illustrated in Fig. 3.5. If these conditions are fulfilled, the volume element is denoted
as representative volume element. In the mathematical theory of homogenization [11],
the ratio l/L is introduced. For l/L → 0 this results in homogenized properties. The
determination of a sufficient size of the RVE is described in more detail in Section 3.5.7.

Ω

L

l

dh

Figure 3.5: Considered length scales

In recent decades, there have been tremendous advances in the science as well as the tech-
nological development of heterogeneous materials. The multiscale methods developed
in this context can essentially be divided into two categories: (Semi-)analytical, hybrid,
and computational methods. Some of them will be briefly reviewed in the following.
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3.5 Micromechanics and homogenization

3.5.2 Bounds

An indication of the lower and upper bounds of the effective properties is provided by
the averaging rules proposed by Voigt [186] and Reuss [146]. Assuming a linear ma-
terial behavior of the constituents, these are obtained by averaging the properties of
the individual constituents, weighted according to their volume fractions. If a constant
macroscopic strain ⟨ε⟩ is supposed in the individual constituents of the material, follow-
ing Voigt [186], an upper bound of the overall stiffness tensor is given as

CVoigt =
P

∑
p=1

VfpCp. (3.5)

This assumption can be regarded as a simplified stiffness model of a composite where
the constituents are arranged in parallel, as illustrated in Fig. 3.6 (left). Respectively,
following Reuss [146], a lower bound of the overall stiffness tensor is given as

C−1
Reuss =

P

∑
p=1

VfpC
−1
p , (3.6)

subjecting the constitutents to a uniform macroscopic stress ⟨σ⟩, which corresponds to a
simplified stiffness model where constituents are arranged in series, see Fig. 3.6 (right).
In summary, the overall stiffness tensor Ceff of a composite ranges between these two
bounds, i.e,

CReuss ≤ Ceff ≤ CVoigt. (3.7)

⟨ε⟩ = ε1 = ε2

F

F

CVoigt

C1 C2

F

F

⟨σ⟩ = σ1 = σ2

CReuss

Figure 3.6: Simplified 2D material model with P = 2 for extraction of lower (right) and
upper (left) bounds
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In (3.5) and (3.6), Vfp (∑Pp=1 Vfp = 1) denotes the volume fraction of phase p with stiff-
ness tensor Cp of a material consisting of P phases. Theses relations apply analogously
to all other linear material properties. Hence, substituting Cp in (3.5) and (3.6) by
the thermal conductivity tensors kp, the so-called Wiener bounds are obtained, which
represent the upper and lower bounds of the thermal conductivity. The derivation of the
upper Wiener bound is based on the assumption of a constant macroscopic temperature
gradient and the heat flux results as the weighted sum of the heat fluxes through all
phases. Respectively, the derivation of the lower Wiener bound is based on the assump-
tion of a constant macroscopic heat flux vector and the temperature gradient results as
the weighted sum of temperature gradients across all phases. It is obvious that these
bounds do not take into account the morphology of the microstructure. Moreover, es-
pecially in the case of large contrasts in the properties (e.g., stiffness, conductivity) of
the constituents, the range between the upper and the lower bound can be quite large.
For example, the upper Wiener bound [190] implies a fully percolating network. Exten-
sions of these bounds for isotropic materials in the form of variational concepts are given
by the Hashin-Shtrikman bounds [60], which are known to be more rigorous than the
Voigt-Reuss bounds. Hereby a polarization field is introduced and a BVP is formulated
using that field relative to a reference material.

3.5.3 Analytical homogenization methods

The most simple approaches for the determination of effective properties is based on the
so-called rule of mixture. This only considers the properties of the individual phases
and their phase fractions by volume averaging of the phase properties weighted by their
volume percentages (see (3.5) and (3.6)) and yields a very coarse estimation of the effec-
tive properties. A common class of analytical methods is represented by the mean-field
approaches, which relate back to the inclusions theorie of Eshelby [43] suggested before
the advent of computers. These mean-field approximations are based on the analytical
solution of a boundary value problem in which an infinitely extended matrix with a single
elliptical inclusion under constant load is considered. The geometry of this inclusion is
taken into account by specification of microstructural tensors [54]. Extensions have been
developed to account for the interaction of multiple inclusions through the interaction
of their microscopic solution fields. The self-consistent scheme [97], [66], [26] considers
a single inclusion embedded in a material with the effective (unknown) properties and
achieves quite good approximations when the geometry exhibits some regularity. How-
ever, it is not suitable for more complex microstructures with large volume fractions
and large contrast in the individual phases. Another approach considering the inter-
action of different particles by taking the effective field operating on each inclusion in
terms of the field average across the matrix is provided by the approach of Mori and
Tanaka [119]. The Mori-Tanaka approach coincides with the Hashin-Shtrikman bounds
[54]. Extension of this approach are given in [17]. These methods are only sufficiently
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accurate for simple (basically elliptical) inclusions, low contrasts in the phase properties
and low volume fractions. For example, if a void volume fraction of 50% is considered,
the self-consistent approach yields a bulk and shear moduli tending to zero. Analytical
approximation methods generally cannot capture the strongly fluctuating microfields of
complex microstrucutres such as those considered in this work. A comprehensive intro-
duction into micromechanics can be found, for example, in the textbook of Aboudi [1]
or Torquato [179]. The utilization of the mentioned methods for the determination of
effective conductivity properties can be found in [82].

3.5.4 Computational homogenization

In this section, the computation of the effective thermal conductivity and the linear
elastic properties of composite materials within the concept of first-order computational
homogenization is presented. First, the basic concepts of coupling microscopic and
macroscopic quantities in terms of averaging relations are introduced. Then, in the fol-
lowing subsections, focus is put onto the associated BVPs formulated at the RVE level
and the derivation of appropriate BCs from macroscopic quantities. Finally it will be
shown, how effective properties can be extracted from the solution of the microscopic
solution fields.

First-order computational homogenization were first adressed in [145] in the context
of mechanical properties and are used in some multiscale methods. As stated in [94],
the principles of first-order homogenization techniques can be summarized in four steps:

• Definition of an RVE including the specification of the constitutive behavior of all
constituents

• Selection of suitable BCs derived from macroscopic quantities and application on
the boundary of the RVE (macro-micro transition)

• Determination of macroscopic properties from the solution of the micromechanic
BVP (micro-macro transition)

• Extraction of the effective material properties from the relation between prescribed
microscopic input and computed output variables

These principle steps are illustrated in Fig. 3.7 for heat conduction problems. On both
scales, the continuum mechanic framework introduced in Chapter 2 is valid. Because
linear properties and small deformations are considered in that work, a precomputation
of the effective properties needed for component simulations can be performed and no
microscopic problem has to be solved in parallel. However, the scheme is not restricted
to linear material behavior, thus arbitrary nonlinear material behavior and finite defor-
mations can be considered within a nested solution scheme, see [45], [94] or [172] for
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Figure 3.7: First-order computational homogenization for heat conduction

further details of handling such problems. In the first step, an RVE as defined in Section
3.5.1 describing the geometrical and physical properties of the underlying microstruc-
ture has to be identified. If a spatially varying microstructure has to be considered,
each macroscopic point is assigned a corresponding RVE. The selection of the size of
the RVE will be discussed in more detail in Section 3.5.7. In the remainder of this
section, it is assumed that a RVE that captures the physical behavior of the underlying
microstructure has been identified. To distinguish between micro- and macroscale, the
following notations are introduced. A physical point of the macrostructure X ∈ Ω ⊂ R3

is associated with an RVE with the domain ω = (0, l)3 ⊂ R3 and the boundary ∂ω. A
macroscopic quantity at the position X is denoted as ⟨a⟩ and the microscopic one at
position x ∈ ω is designated with plain letters a. In the second step, a BVP is formulated
on the microscale by specifying a macroscopic quantity. This could be a strain tensor
in the mechanical case or a temperature gradient in the thermal case. The derivation
of suitable BCs from macroscopic quantities and the formulation of a BVP on the mi-
croscale is treated in more detail in the following subsections. In the third step, the
macroscopic properties are obtained from the computed microscopic solution fields by a
volume-averaging process. The volume-averaging procedure of an arbitrary microscopic
quantity a, denoted with angle brackets ⟨a⟩, is defined as

⟨a⟩ = 1

∣ω∣ ∫ω a(x) dω. (3.8)
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If seperation of scales holds (see Section 3.5.1), it is postulated that a macroscopic quan-
tity ⟨a⟩ on a material point at the macroscale can be described by the volume average
of the quantity a over the RVE domain. This averaging process describes the scale-
transition relations. Finally, the effective material properties can be derived from an
energy-based criterion, which demands the equivalence of thermal, respectively mechan-
ical energy on micro- and macroscale.

To compute the associated microscopic field values, so-called localization problems to
be solved within the RVE domain ω are introduced in the following. The derivation of
appropriate BCs in terms of macroscopic quantities is described. The computation of
the effective thermal conductivity and the linear elastic stiffness tensor is outlined.

3.5.5 Effective thermal conductivity properties

For the determination of effective thermal material properties, the local quantities to be
computed are the heat flux vector q(x) and the temperature gradient ∇T (x). In each
point of the microscopic (RVE) domain ω, the thermal equilibrium equation (see Section
2.2)

div q(x) = 0 (3.9)

has to be fulfilled. The heat flux q(x) and the temperature gradient ∇T (x) are linked
via Fourier’s law 2.22. The solution of (3.9) requires the selection of appropriate BCs in
terms of macroscopic quantities. The requirement of equivalance of thermal energy on
both micro- and macroscale can be expressed as

⟨q ⋅ ∇T ⟩ = 1

∣ω∣ ∫ω q ⋅ ∇T dω = ⟨q⟩ ⋅ ⟨∇T ⟩. (3.10)

It can be shown that the energy criterion (3.10) is valid (not exclusively) for the following
BCs:

• Periodic BCs expressed as

T (x) = ⟨∇T ⟩ ⋅x + T̃ (x) x ∈ ∂ω (3.11)

with a periodic temperature fluctuation T̃ (x) in ω.

• Dirichlet BCs in terms of a macroscopic temperature gradient as

T (x) = ⟨∇T ⟩ ⋅x x ∈ ∂ω. (3.12)

• Neumann BCs in terms of a macroscopic heat flux vector as

q(x) = ⟨q⟩ ⋅n(x) x ∈ ∂ω (3.13)

where n denotes the unit outward normal on ∂ω.
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Chapter 3 Surrogate-based multiscale optimization method

In this work, only periodic BCs (3.11) are considered because it is known that they lead to
a more accurate estimation and faster convergence (with respect to the size of the RVE)
[84] of the effective conductivity. The local temperature gradient field may be expressed
in terms of the transferred macroscopic temperature gradient and an fluctuating part
due to the heterogeneities of the microstructure as

∇T (x) = ⟨∇T ⟩ + ∇T̃ (x). (3.14)

Note that this splitting operation can be used analogously for all other microscopic field
values. The periodic BVP for the homogenization of the thermal properties in the RVE
domain ω can be summarized as follows: For a given macroscopic temperature gradient
⟨∇T ⟩, find the temperature fluctuations T̃ such that

div q(x) = 0 x ∈ ω
q(x) = −k(x) ⋅ ∇T (x) x ∈ ω
∇T (x) = ⟨∇T ⟩ + ∇T̃ (x) x ∈ ω
T̃ (x) # x ∈ ∂ω
q(x) ⋅n(x) −# x ∈ ∂ω.

(3.15)

The notation # means periodicity, so the fluctuation on opposite edges (∂ω+ and ∂ω−)
of the RVE are equal. Respectively, −# means antiperiodicity, i.e., the heat flux vector
on opposite edges shows into opposite directions. The thermal conductivity tensors k
of the individual phases are assumed to be temperature independent, which is a valid
assumption for the considered materials and the considered temperature ranges. More-
over, perfect bonding between the filler particles and the matrix is considered. However,
it is also possible to consider contact resistance between the individual phases. The
macroscopic temperature gradient can be chosen arbitrarily for a constant temperature.
Finally, the effective thermal conductivity (ETC) tensor keff is derived from the energy
equivalence criterion. If a single component of the macroscopic temperature gradient
(e.g., in x1-direction) is prescribed, the macroscopic constitutive law can be expressed
as

⎛
⎜
⎝

⟨q1⟩
⟨q2⟩
⟨q3⟩

⎞
⎟
⎠
=
⎛
⎜
⎝

k11,eff k12,eff k13,eff

k12,eff k22,eff k23,eff

k13,eff k23,eff k33,eff

⎞
⎟
⎠
⋅
⎛
⎜
⎝

⟨∇T1⟩
0
0

⎞
⎟
⎠
. (3.16)

By specification of three perpendicular components of the heat flux vector (and setting
the remaining to zero), the full ETC tensor keff can be computed (see Fig. 3.7 for
illustration). This computations are performed with the ConductoDict module [15]
of GeoDict [14] employing the EJ-HEAT solver [189]. If an isotropic orientation and
uniform distribution of the fillers is considered, keff reduces to a scalar value, i.e., keff =
keffI and it is sufficient to compute a single load case.
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3.5 Micromechanics and homogenization

3.5.6 Effective linear elastic properties

For the extraction of the effective linear elastic material properties, the local quantities
to be computed are the displacements u(x), strains ε(x), and stresses σ(x). In each
point of the microscopic (RVE) domain ω, the static balance equation (see Section 2.1.2
by neglecting volume forces f)

div σ(x) = 0 (3.17)

has to be fulfilled. The stresses σ(x) and strains ε(x) are related via Hooke’s law
2.14. Perfect bonding between the filler particles and the matrix is considered. The
requirement of equivalance of mechanical energy on both micro- and macroscale can be
expressed as

⟨σ ∶ ε⟩ = 1

∣ω∣ ∫ω σ ∶ ε dω = ⟨σ⟩ ∶ ⟨ε⟩. (3.18)

It can be shown that energy is preserved (condition (3.18) is valid) over both scales (not
exclusively) for the following BCs:

• Periodic BCs expressed as

u(x) = ⟨ε⟩ ⋅x + ũ(x) x ∈ ∂ω (3.19)

whith a periodic displacement fluctuation ũ(x) in ω.

• Dirichlet BCs in terms of a macroscopic strain as

u(x) = ⟨ε⟩ ⋅x x ∈ ∂ω. (3.20)

• Neumann BCs in terms of a macroscopic stress as

t(x) = ⟨σ⟩ ⋅n(x) x ∈ ∂ω. (3.21)

Following the same arguments as in the thermal case, only periodic BCs are considered
in this work. The displacement fluctuations on opposite edges (∂ω+ and ∂ω−) of the
RVE are equal and the traction vectors show in opposite directions. This is illustrated
in Fig. 3.8. By decomposing the microscopic strain field into a constant macroscopic
strain (which is transferred according to (3.19)) and a fluctuating part, the following
kinematic relation

ε(x) = ⟨ε⟩ + ε(ũ) (3.22)

is obtained. The strain fluctuations ε(ũ) result from the heterogeneity of the microstruc-
ture and are given as

ε(ũ) = 1

2
(∇ũ +∇T ũ). (3.23)
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ω ∂ω+∂ω−
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Figure 3.8: Illustration of periodic boundary conditions

The periodic BVP for the computation of the effective linear elastic properties in the
RVE domain ω can be summarized as follows: For a given macroscopic strain ⟨ε⟩, find
the displacement fluctuation field ũ such that

div σ(x) = 0 x ∈ ω
σ(x) = C(x) ∶ ε(x) x ∈ ω

ε(x) = ⟨ε⟩ + 1

2
(∇ũ(x) + ∇T ũ(x)) x ∈ ω

ũ(x) # x ∈ ∂ω
σ(x) ⋅n(x) −# x ∈ ∂ω.

(3.24)

Finally, the full linear elastic stiffness tensor Ceff is derived from the energy equivalence
criterion. The macroscopic elastic constants can be computed by the specification of a
single component of a macroscopic strain (e.g., in x1-direction and setting the remaining
to zero) as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⟨σ1⟩
⟨σ2⟩
⟨σ3⟩
⟨σ4⟩
⟨σ5⟩
⟨σ6⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C11,eff C12,eff C13,eff C14,eff C15,eff C16,eff

C12,eff C22,eff C23,eff C24,eff C25,eff C26,eff

C13,eff C23,eff C33,eff C34,eff C35,eff C36,eff

C14,eff C24,eff C34,eff C44,eff C45,eff C46,eff

C15,eff C25,eff C35,eff C45,eff C55,eff C56,eff

C16,eff C26,eff C36,eff C46,eff C56,eff C66,eff

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⟨ε1⟩
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.25)

By specification of six perpendicular components of the macroscopic strain (and set-
ting the reamining components to zero), the full linear elastic stiffness tensor can be
computed. These computations are performed with an FFT-based solution scheme im-
plemented in the ElastoDict module [148] of GeoDict [14]. If an isotropic orientation
and uniform particle distribution is considered, only two load cases (one tension and one
shear load) need to be simulated to predict the linear elastic stiffness tensor.
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3.5 Micromechanics and homogenization

3.5.7 Determination of numerical RVEs

This subsection presents the procedure for determining a sufficient size of the RVE. It is
obvious that it is not possible to compute effective properties of RVEs with arbitrarily
large size l due to limited computational resources. For this purpose, numerical RVEs
[123] are considered, which need to exhibit sufficient accuracy for engineering purposes.
As mentioned in the previous section, the convergence of the effective properties with
respect to the size of the RVE also depends on the applied BCs. To determine a sufficient
size of the RVE, the most common approach is to carry out a convergence study exam-
ining an ensemble size criterion and a volume size criterion [123]. A rigorous procedure
for the determination of the size of RVEs can be found, e.g., in [84] and applications
are given in [112], [177]. To account for the influence of the statistical realization of
the microstructure (the distribution of the fillers within the matrix) [132], the ensemble
average

⟪Ψeff⟫N = 1

N

N

∑
k=1

Ψeff,k (3.26)

with the effective property of interest Ψeff,k of the kth statistical realization and the
number of realizations N is considered. In GeoDict [14], different statistical realizations
can be defined by a random number, the so-called random seed. The number of re-
alizations N might be chosen until the effective property saturates within a specified
tolerance. As a measure of the influence of these statistical realizations, the standard
deviation

sN =

¿
ÁÁÀ 1

N − 1

N

∑
k=1

(Ψeff,k − ⟪Ψeff⟫N)2 ≤ εens (3.27)

can be regarded. The value εens can be chosen according to the individual requirements.
In order to determine a sufficient RVE size in form of the edge length l, the following
volume size criterion is used:

∥⟪Ψeff⟫Nl+1
− ⟪Ψeff⟫Nl

∥2

∥⟪Ψeff⟫Nl
∥2

≤ εvol, (3.28)

where the relative change of the ensemble average of the quantity of interest is observed
by enlarging l. Again, the choice of εvol is made depending on the desired accuracy.
Please note that the larger the RVE, the lower the influence of the statistical realizations,
so sometimes criteria accounting for such statistical influences (e.g., (3.27)) are examined
to determine a sufficient edge length [84]. In order to determine a sufficient resolution
of the structure in form of the voxel length h, a similar approach can be adopted. For
this purpose, the effective property is computed for different resolutions, and the relative
deviation is observed:

∥⟪Ψeff⟫Nh+1
− ⟪Ψeff⟫Nh

∥2

∥⟪Ψeff⟫Nh
∥2

≤ εres. (3.29)
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In conclusion, the required size depends on the considered microstructural configuration,
which means that the specific settings (and ranges) of the design variables must be taken
into account in the context of this work.

3.6 Surrogate modeling

As shown in the previous sections, the computation of the effective properties includes
the generation of an RVE and the performance of a computationally expensive simula-
tion. In context of optimization, sensitivity analysis, and uncertainty quantification the
(expensive) system response has to be evaluated numereous times with different factor
settings of the design variables. Even with the strong increment in computer power and
the use of parallel processing, a direct use of the numerical model is often too time con-
suming (ranges from minutes to several hours). To overcome the computational burden,
the use of surrogate models is a widely used technique in engineering [141], [168]. A
surrogate model can be regarded as a model of a model (e.g., of a simulation model).
It serves as a global approximation of this original physical model. Surrogate models
are also referred to as response surface model, enumator, or just model. If such a model
is available, the analysis of the model output can be performed very fast, as it replaces
the computationally intensive simulation model. Surrogate modeling can be considered
as supervised machine-learning model. Based on a set of training data, the model can
predict the output for arbitrary model inputs.

Based on the observations made from the DoE scheme, an appropriate function type
has to be selected. There can be distinguished between approximation and interpolation
models and there exist different approaches for both. If the surrogate model type is
selected, the model parameters have to be chosen based on training data. In the fol-
lowing, the output of a surrogate model is denoted simply as scalar y and the input is
represented by the design variables vector d. A metamodel attempts to approximate or
interpolate the model output y as a function of d, i.e., y = f(d).

The benefits of surrogate models can be summarized as follows:

• Providing overall knowledge of the problem in the design domain.

• Reducing the cost of computational analysis by approximating the simulation
model.

• Supporting the optimization process.

• Parallel computing possible.

By using a surrogate model for optimization, it is in general not required to have a model
which covers the true behavior in every point of the design space with high accuracy.
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3.6 Surrogate modeling

Only in the vicinity of the optimum, the quality should be sufficient enough. Another
case is the use of the surrogate for design space approximation. In the context of this
work, such a design space approximation can be relevant, if the model should be used as
material model for example as an input for component simulations and for that purpose,
the accuracy in the whole design space has to be sufficient enough.

3.6.1 Response surface models (RSM)

The term response surface model (RSM) [125], [23] is mostly denoted to low-order poly-
nomial regression models, although the term is sometimes used as a synonym for meta-
models in a more general sense. In an RSM, a regression model of the form

y(d) = ŷ(d,β) + ε, (3.30)

with the approximation (response surface) ŷ(d,β) and a normally distributed random
error ε with mean zero is postulated. The functional relationship between dependent and
independent variable is established by regression [117], i.e., fitting the regression model
(3.30) to a set of m sampling points dl and the corresponding responses yl usually by
the method of least squares. If the regression model is linear in β, it is referred to as a
linear regression problem. In general, the regression model is not limited to polynomials
and can take various forms. The most simplest approach is given in terms of a first-
order polynomial to describe linear relationships. For the frequently used second-order
(quadratic) polynomial model, ŷ(d,β) can be expressed in n design variables as

ŷ(d,β) = β0 +
n

∑
i=1

βidi +
n

∑
i=1

n

∑
j≥1

βijdidj , (3.31)

where here only second-order interactions (effects involving two independent variables)
are considered. This results in a total number of p = (n + 1)(n + 2)/2 scalar regression
coefficients β to be determined. In general, also higher-order effects can be included. If
the response is evaluated at m sampling points dl, the vector of the m responses ŷ can
be expressed in matrix form as

ŷ =Dβ, (3.32)

with the m × p design matrix D and the vector of the p regression coefficients β. The
model can be expressed as a system of linear equations (in β):

⎛
⎜⎜⎜
⎝

ŷ1

ŷ2

⋮
ŷm

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

1 d11 ⋯ d1n d2
11 d11d12 ⋯ d1(n−1)d1n d2

1n

1 d21 ⋯ d2n d2
21 d21d22 ⋯ d2(n−1)d2n d2

2n

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 dm1 ⋯ dmn d2

m1 dm1dm2 ⋯ dm(n−1)dmn d2
mn

⎞
⎟⎟⎟
⎠
⋅
⎛
⎜⎜⎜
⎝

β0

β1

⋮
βp

⎞
⎟⎟⎟
⎠
. (3.33)
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The regression coefficients are determined by the method of least squares [124] by min-
imizing the sum of squared errors

min
β

m

∑
i=1

ε2i = min
β

m

∑
i=1

(yi − ŷ(di,β))2. (3.34)

The coefficient vector is given by

β = (DTD)−1DTy, (3.35)

where p <m is a necessary condition for invertibility, so a minimum of p sampling points
needs to be chosen. Once the coefficients are computed, the response at untried points
can be obtained by (3.31). In the current work, the Python library scikit-learn [138] is
used for the creation of the regression model.

3.6.2 Kriging

Kriging models are named after the South African mining engineer Danie G. Krige and
originate from mining and geostatic applications [108]. Since established within the “De-
sign and analysis of computer experiment” framework by Sacks et al. [153] in 1989, they
have been extensively used as global approximation technique for the interpolation of
deterministic computer simulations with various applications to structural optimization
problems [166], [90], [167]. A Kriging model can be described as

y(d) = f(d) +Z(d), (3.36)

with a known approximation model f(d), e.g., a polynomial model as mentioned in Sec-
tion 3.6.1 plus the realization of a stochastic process Z(d) with mean zero, variance σ2,
and non-zero covariance. While the polynomial provides a global trend of the underlying
functional behavior, the stochastic process influences the local behavior and leads to the
interpolating characteristic due to “local deviations” from the polynomial model. If a
constant term is used (f(d,β) = β), this is denoted as ordinary Kriging (respectively
if a constant and known term is used this is denoted as simple Kriging). A universal
Kriging model is characterized by the use of an arbitrary linear regression model and
can be expressed as

ŷ =Dβ +Z (3.37)

with the design matrix D and the regression coefficients β introduced in the previous
section and Z is a vector describing the stochastic process. The spatial covariance
function of the stochastic process Z is given by

Cov[Z(di), Z(dj)] = σ2R([R(di,dj)]) (3.38)

with the m×m symmetric correlation matrix R with a unit diagonal and the correlation
function R(di,dj) between any combinations di and dj of the m sampling points. The
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correlation function has to be defined by the user and there exist different approaches
[113]. A frequently used correlation function, that is also used in this work, is the
Gaussian correlation function, which can be expressed as

R(di,dj) =
n

∏
l=1

exp[−θl∣dil − d
j
l ∣

2] , θl ∈ R+ (3.39)

with the associated unknown correlation parameters θl to be determined, and ∣dil − d
j
l ∣

describing the distance of the lth component of the m sampling points di and dj . In
some applications it is sufficient to use a single correlation parameter, which is then
referred to as a isotropic model. The correlation paramters θl affects the influences
of the stochastic process near the associated sampling points. A low value indicates a
large correlation of the sampling points. For the construction of the Kriging model, the
regression coefficients β, the process variance σ2, and the correlation parameters θl can
be derived by maximum likelihood estimation. The estimated regression parameter are
given by

β̂ = (DTR−1D)−1DTR−1y. (3.40)

One can observe the similarity with (3.35) for the response surface model. The estimation
of the variance between the global model f(d) and y is given as

σ̂2 = (y −Dβ̂)R−1(y −Dβ̂)
m

. (3.41)

Both β̂ and σ̂2 are a function of R (and hence θl) and result by setting the partial
derivatives of the natural logarithm of the likelihood function ln(L) with respect to
these parameters equal to zero. For the derivation of the correlation parameters, no
analytical solution can be derived in this way for many correlation functions. That
means, estimations θ̂l have to be determined numerically by maximizing ln(L) as

ln(L(θ)) = −1

2
[m ln(σ̂2) + ln∣R∣] →max

θl>0
, (3.42)

where ∣R∣ denotes the determinant of R. The n-dimensional nonlinear optimization
problem (3.42) can be solved with a global optimization algorithm such as simulated
annealing. The correlation matrix may be ill-conditioned if the sampling points are
located close to each other and if special sampling schemes are used (the corresponding
columns in R are then almost identical). If the correlation parameter θl are computed,
both σ̂2 and β̂ can be predicted by (3.40) and (3.41). After the model parameter has
been identified, the Kriging prediction ŷ at unobserved points d can be expressed as

ŷ = fT (d)β + rT (d)R−1(y −Dβ), (3.43)

where the vector f(d) corresponds to the row of d in D, the correlation vector rT (d) =
[R(d,d1),R(d,d2), . . . ,R(d,dm)]T describing the individual correlations between an
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untried point d and the sampling points {d1, ...,dm}, the vector y containing the values
of the sample responses, and the residual vector (y −Dβ). In the current work, the
surrogate modeling toolbox (Python library SMT) [22] is used for the creation of Kriging
models. There are also Kriging models with special correlation functions leading to
approximation models that are used, for example, in the presence of noise [48]. It can
be shown that Gaussian process regression, which is especially used in machine learning
applications, provide identical expressions as the Kriging model under the assumption
of a multivariate normal distribution of the response data [144].

3.6.3 Surrogate model validation

Each surrogate model is just an approximation of the original (e.g., simulation) model
and must be verified with respect to its accuracy. In general, this is done by evaluating its
residuals, i.e., the difference between the exact model response, denoted in the following
as fi and the predicted response from the surrogate f̂i at different points in the design
space. For interpolating models the function value is equal to the value of the numerical
model, so it makes no sense to acces the quality of the surrogate using these points.
Different strategies and several error measures can be used to account for the accuracy
of the surrogate model [88]. The most simple approach is to split the dataset into a
training and a test data set. In that case, the surrogate model is created only with the
training data and the test data are used to access the accuracy of the model. Typical
sizes of these sets are 80% of all samples for the training and the remaining 20 % serve
as validation data. That method has the drawback that the error highly depends on the
chosen test data set, especially if the data set is relatively small. It is therefore important
to use a sufficiently large data set that covers the entire design space. Often, additional
datasets have to be created by performing additional simulations. To overcome this,
cross validation [111] (CV) methods have been developed. In k-fold CV, the sample
data are split in k subsets. The surrogate is fitted k times using k − 1 subsets for the
training of the model and the remaining subset for the validation of the model. The
error e of the model can be then predicted by the mean average of the k errors. If k
equals the sample size, the method is called leave-one-out CV. In the following, l denotes
the number of validation points. There exist several error measure to account for the
accuracy of the surrogate model. The mean squared error

eMSE = ∑
l
i=1(fi − f̂i)2

l
, (3.44)

the root mean squared error

eRMSE =
√
∑li=1(fi − f̂i)2

l
, (3.45)
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the mean absolut error

eMAE = ∑
l
i=1 ∣fi − f̂i∣

l
, (3.46)

the mean absolut percentage error

eMAPE =
∑li=1

∣fi−f̂i∣
fi

l
⋅ 100%, (3.47)

the maximum absolute error

eMaxAE = max ∣fi − f̂i∣ , i = 1, ..., l, (3.48)

and the coefficient of determination, denoted as R2 score

R2 = 1 − ∑
l
i=1(fi − f̂i)2

∑li=1(fi − f)2
= ∑

l
i=1(f̂i − f)2

∑li=1(fi − f)2
(3.49)

where f represent the mean value of the responses and a value of 1 indicates a perfect
fit. While eMSE, eRMSE, eMAE, and eMAPE provide measures for the overall accuracy,
eMaxAE accounts for the local accuracy of the surrogate model. The advantage of the
eMAPE is that it accounts for the relative deviations, which is useful if the responses
differ strongly in their values.

3.7 Sensitivity analysis

The functional relationship Ψij,eff = Ψij,eff(d) can be viewed as a black box model de-
scribing a more or less complex relation that might not be well understood. Gaining an
understanding of which design variables have the greatest impact on the effective prop-
erties is crucial in material design. In order to evaluate the contribution of individual
input parameters to the variability of the output, sensitivity analysis methods [77] are
suitable and commonly used in engineering. As stated in Saltelli [155], sensitivity analy-
sis is the study of how the uncertainty in the output of a mathematical model (numerical
or otherwise) can be divided and allocated to different sources of uncertainty in its in-
puts. These methods can be classified into local and global sensitivity analysis methods
[70]. In line with the objective of this work, the focus here is on global methods to get
a deeper understanding of the SPR within the entire design domain. In the following,
some basic concepts of variance-based sensitivity analysis are briefly reviewed and Sobol’
indices [170] are introduced as corresponding sensitivity measures. The importance of
surrogate models for the computation of these indices is highlighted. A comprehensive
introduction to global sensitivity analysis can be found in the textbook of Saltelli et al.
[156] and Saltelli [154].
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3.7.1 Sobol’ indices

In variance-based sensitivity analysis [155], [171], the variance of the model output is
decomposed into terms attributed to the model input parameters and their interactions.
Assuming the model of interest as a function y = f(x) with the independent parameter
x = (x1, ..., xn) being a square-integrable function defined in the n-dimensional unit
hypercube, i.e., x ∈ [0,1]n, it can be shown that y can be expressed as

f(x) = f0 +
n

∑
i=1

fi(xi) +
n

∑
i<j
fij(xi, xj) + ... + f12...n(x1, x2, ..., xn), (3.50)

where in the following the notations fi(xi) = fi, fij(xi, xj) = fij , etc. will be used. This
expansion is unique [171], if the orthogonality condition

∫
1

0
fi1...is(xi1 , ..., xis) dxiw = 0 (3.51)

with 1 ≤ w ≤ s and {i1, ..., is} ⊆ {1, ..., n} holds. Due to this orthogonality, the terms in
(3.50) can be described by the conditional expectations of y as

f0 = E(y),
fi = Ex∼i(y∣xi) − f0,

fij = Ex∼ij(y∣xi, xj) − fi − fj − f0,

(3.52)

and so on for higher-order terms, where the notation x∼i denotes the set of all factors
except xi. This means that fi describes the effect of the sole variation of xi. Furthermore,
fij reflects the effect of a simultaneous variation of xi and xj in addition to the effect
of their individual variations, hence it is called a second-order interaction. Squaring
both sides of (3.50) and integration over the hypercube yields the variance of the model
output

V = ∫
1

0
f2(x) dx − f2

0 =
n

∑
i=1

Vi +
n

∑
i<j
Vij + ... + V12...n (3.53)

with
Vi = Vxi[Ex∼i(y∣xi)],
Vij = Vxij [Ex∼ij(y∣xi, xj)] − Vi − Vj ,

(3.54)

and so on. Expression (3.53) indicates that the variance of the model output can be
decomposed into terms that can be assigned to the individual model inputs and their
interactions. Based on this, the following global sensitivity indices are derived.
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First-order indices

The first-order Sobol’ indices Si [171] are given as

Si =
Vi

V (y) (3.55)

and can be interpreted as the contribution of the output variance by varying xi alone
(depicting the main effect of xi). Dividing (3.53) by V (y), it can be observed that the
sum of all 2n − 1 first and higher-order indices sum up to one, i.e.,

n

∑
i

Si +
n

∑
i<j
Sij + ... + S12...n = 1. (3.56)

The indices related to higher-order terms (Sij , etc.) are formed in an analogous manner
and represent the fraction of V caused by interaction effects of the corresponding inputs.

Total-order index

The so-called total-order index STi [70] is defined as

STi =
Ex∼i[Vxi(y∣x∼i)]

V (y) = 1 − Vx∼i[Exi(y∣x∼i)]
V (y) . (3.57)

Compared to the first-order indices, the total-order index indicates the contribution to
the model output variance caused not only by the main effects of xi, but also by all
higher-order interactions of xi with any other model input parameter. The STi is often
used to rank the importance of the individual inputs for the model response and to iden-
tify insensitive model parameters. Please note that contrary to the first-order indices,

∑ni STi ≥ 1 due to the fact that interactions contribute to each individual STi . They only
sum up to one if there exist no interactiones, i.e., only main effect occur.

Computation of the indices

Since the variances cannot be determined analytically by evaluating the integral ex-
pressions of the functional decomposition, a standard practice is to estimate the indices
based on the following sampling schemes [155]:

Vxi[Ex∼i(y∣xi)] ≈
1

N

N

∑
j=1

f(B)j(f(A(i)B )j − f(A)j),

Ex∼i[Vxi(y∣x∼i)] ≈
1

2N

N

∑
j=1

(f(A)j − f(A(i)B )j))2.

(3.58)
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In 3.58, A and B are (m × n) sampling matrices created by m sampling points within

the n-dimensional input space and (A)j denotes the jth row of A. Moreover, A
(i)
B

indicates that the ith column from B is the ith column of A, while the other columns
remain unchanged. For the creation of the matrices, different sampling schemes can be
used. A common approach is the use of (quasi) Monte-Carlo sampling [170] or LHS.
The usually large number of samples required to appropriately compute the indices can
be considered as a main drawback of this method and again emphasizes the benefits of
surrogate models. In the work at hand, the Python library SALib [78], [63] is used to
compute the Sobol’ indices.

3.8 Optimization

In this section, some basic terms and definitions of structural optimization are summa-
rized. The standard form of structural optimization problems is introduced and some
common optimization methods for solving such problems are briefly reviewed. A com-
prehensive description of these methods is beyond the scope of this thesis, so reference
is made to literature at appropriate places. Solely the optimization algorithms used in
this thesis are described in more detail.

3.8.1 Basic terms and definitions

In structural optimization, a classical distinction is made between three different disci-
plines: Sizing, shape optimization and topology optimization. In size optimization,
the shape and topology of the structure are kept fixed, and the design variables provide
a description of the dimension (the size) of the structure, e.g., the thickness of sheets.
In shape optimization problems, the objective is to determine an optimal geometry of
the structure and the design variables represent the shape of the material boundaries. In
contrast, topology optimization considers the overall shape (topology) of the struc-
ture by determining a distribution of the material. The problems considered in this
work can be assigned to the discipline of sizing. A review about structural optimization
and its historical development can be found for example in the publications [182], [183].
Furthermore, there exist several excellent textbooks, e.g., [87], [57], or more recently
[33], which present a comprehensive insight to structural optimization methods.

The standard formulation of a structural optimization problem is given as follows:

J(d) →min d ∈ Rn

s. t. gj(d) ≤ 0 j = 1, ..., J

hk(d) = 0 k = 1, ...,K

di,low ≤ di ≤ di,up i = 1, ..., n.

(3.59)
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The target of optimization is to find values of the design variables d that minimize
the objective function J without violating some constraints. The constraints are dis-
tinguished between inequality constraints gj(d) and equality constraints hk(d).
If there are neither inequality or equality constraints, the problem is called an uncon-
strained optimization problem, otherwise it is a constrained problem. The design
variables d are limited by lower and upper bounds di,low and di,up, also called side con-
straints, defining the design space. If the design variables can take any value within
these bounds, they are continous while they are called discrete if they can take only
certain values within the design space. In this thesis, only continous design variables
are considerd. Designs that fulfill the constraints are denoted as feasible designs. If
the objectives and constraints are linear in their design variables, the problem is called
a linear programming problem. In general, this is not the case, and (3.59) describes
a nonlinear structural optimization problem. The solution vector of the optimization
problem is denoted as d∗ and can be a local or a global optimum. Please note that a
maximation problem J(d) →max can be transferred into a minimization problem by the
expression −J(d) → min. If there is more then one objective function to be minimized,
the problem becomes a multi-objective optimization (MOO) problem. That special
case will be described in Section 3.8.6 in more detail. An optimization problem can be
classified if it is convex or not. The notion of convexity for the objective function and
the admissible set will be introduced now. A set of points S is called a convex set, if for
all d1,d2 ∈ S and all 0 ≤ α ≤ 1 the following condition holds:

αd1 + (1 − α)d2 ∈ S. (3.60)

Roughly spoken, condition (3.60) means that each line segment between two arbitrary
points d1 and d2 lies completely in S. This is illustrated in Fig. 3.9.

d1

d2

d1

d2

Figure 3.9: Convex (left) and non-convex set (right)

A function is denoted as convex if it is defined on a convex set and if the following
condition holds:

J(αd1 + (1 − α)d2) ≤ αJ(d1) + (1 − α)J(d2). (3.61)

This is illustrated in Fig. 3.10. An optimization problem is denoted as convex if
the objective function is convex and the feasible set described by the constraints is a
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convex set. Such convex problems possess the important property that there exist only
one optimum, which is also the global optimum. In engineering practice it is generally
difficult to prove (also in the considered material optimization problems) if a optimization
problem is convex or not since there is no explicit expression for the objective function.
There are some algorithms that rely on the construction of local convex subproblems of
the nonlinear optimization problem to find an optimal solution. A very efficient method
of this kind is the so-called sequential quadratic programming (SQP) method [129], which
uses quadratic approximations of the objective function and linear approximations of the
constraints.

d1 d2
d

J(d)

d1 d2
d

J(d)

Figure 3.10: Convex (left) and non-convex function (right)

3.8.2 Optimization concepts

Most optimization methods attempt to iteratively determine the solution of the opti-
mization problem, which involves evaluating the objective function and constraints. In
the majority of engineering applications, it is not possible to explicitly formulate the ob-
jective function and the constraints, and these can only be determined pointwise by the
evaluation of a simulation model (e.g., a finite element (FE) model). Two basic concepts
can be distinguished in the optimization process. If the optimization is performed on
the basis of the simulation model, this is often denoted as direct optimization. This
approach seems intuitive and might be appropriate if the simulation is not too time-
consuming and/or if relatively few iterations are required to find the optimum solution.
In the context of this work, the evaluation of a design point involves the generation of
a RVE and the application of different load-cases, which can be a time-consuming pro-
cess. In such cases, it can be useful to create an approximation of the simulation model
and to perform metamodel-based optimization [141]. The metamodel representa-
tion allows a fast evaluation of the system responses, so the efficiency of the optimizer
(number of function evaluations) is not as important compared to direct optimization.
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However, the main drawback of this procedure is that the approximation of the simu-
lation model is always accompanied with an error. It must therefore be ensured that
the metamodel can represent the exact simulation model sufficiently accurately and a
validation of the optimization result must be performed by evaluating the numerical
model. Metamodel-based optimization is widely used in simulation-based optimization
with application in aerospace and automotive industry and has proven to be a powerful
tool. In metamodel-based optimization, a distinction is often made between single and
sequential approaches. In single level approaches, a metamodel of the entire design
space is created with a fixed number of sampling points. If the approximation accuracy
of that model is sufficient, optimization can be performed on this metamodel. There are
also methods that, based on an initially created metamodel, sequentially add points
in the design space to obtain the vicinity of the optimum. One of the most common
methods make use of the so-called EI criterion, which is also considered in this thesis
and described in further detail in Section 3.8.5. For a comprehensive overview of such
sequential strategies, please refer to, e.g., [48], [141], and [187].

3.8.3 Overview of optimization algorithms

There are a variety of different methods for solving optimization problems in terms of
(3.59). The selection of a suitable method needs to be chosen on the basis of the ini-
dividual problem statement, e.g., if constraints are imposed or not, if the problem is
convex or non-convex, or whether continuous or discrete design variables are to be con-
sidered. Due to these different circumstances, there is no “optimal” method that can be
applied to every optimization task and is superior to all others. In the following, some of
the most common optimization methods in structural optimization are briefly reviewed
and only the methods used in the context of this work are mentioned in more detail.
To get a more in-depth overview, reference is made to literature at the appropriate place.

There exist several ways to classify optimization methods. One often used is to differen-
tiate between local and global methods. A local optimization method attempt to find
a local optimum that is not guaranteed to be the global optimum if the optimization
problem is non-convex. This means that in the presence of several local minima, differ-
ent optima can be obtained depending for different starting points. The most common
local optimization methods are gradient-descent algorithms. These make use of gradi-
ent information of the objective function and constraints to iteratively descend from a
chosen starting point towards the closest local optimum. This can be described by the
following generic rule:

di+1 = di + αsi (3.62)

where in the first step, a search direction si is determined by making use of the gradi-
ent information. In the second step, a line-search is conducted and the step size α > 0
to establish the next iterate di+1 along the search direction is provided. This iterative
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procedure is repeated until a specific termination criterion is met. The several gradient-
descent algorithms differ in the kind to determine the search direction and the step
size. They can be distinguished by the required order of gradient information. For
example, the steepest descent method uses the direction of the steepest descent (the
opposite gradient direction of the objective function) as search direction. This methods
are widely used and are often very efficient with view of the number of iterations, even
for high-dimensional problems. These methods are generally not suitable in discrete
optimization problems and dealing with numerical noise can be difficult to handle. A
detailed overview of these methods including the handling of constraints and further
theoretical investigations like optimality conditions can be found in one of the numerous
textbooks, e.g., [169], [8], or [57]. Since the gradients are usually not available in analyti-
cal form, they can be approximated by finite differences (FD). However, this is associated
with a considerable additional effort and requires n additional analyses. It is particu-
larly advantageous if the gradients can be determined analytically or semi-analytically
from the simulation model via a sensitivity analysis, as is the case, for example, by
linear FE analyses. This procedure allows a generally more efficient and more accurate
determination of the gradients compared to the determination by FD. For the sake of
completeness, it should be mentioned here that there are also local methods that do not
use gradients (also denoted as non-derivative or zero-order methods). Two well-known
non-derivative methods are Powell’s method [139] and the Nelder-Mead method [127].

In many cases, one is interested in finding the global optimum of (3.59). In such cases,
global optimization algorithms provide a better chance of finding the global optimum
compared to local methods. A simple and common strategy of global optimization is to
use a so-called multistart approach [34] whereby multiple local optimizations are per-
formed from different starting points. These starting points can be generated for example
with a DoE-scheme. According to [199], global optimization methods can be classified
in deterministic and stochastic methods. Most of the deterministic methods make cer-
tain mathematical demands on the optimization problem, which usually do not exist in
structural optimization problems. Because of that they will not be described in more
detail here and reference should be made for example to [128]. Most stochastic methods
are inspired by evolution in nature inspired by Darwin’s theory of survival of the fittest.
Evolutionary algorithms are probably the best known representatives of these stochastic
methods. Pioneering work in evolutionary computation was carried out in the 1960s by
Holland (genetic algorithms) [68] and by Rechenberg and Schwefel (evolution strategies)
[19]. They employ randomly selected design points represented by a population and the
individuals are rated by their fitness (objective function value). These methods contain
elements like selection, crossover, mutation, and reproduction and attempt to iteratively
find better solutions. Compared to gradient descent algorithms discussed so far, they do
not require derivative informations and offer the advantages of being very robust (e.g., in
the handling of noise) and being simple to implement. Some drawback of these methods
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is that they often require significantly more iterations compared to local optimization
methods, and the handling of constraints demands special attention. Further common
stochastic methods are particle swarm optimization [85] and simulated annealing [86].
A more recent powerful stochastic method, differential evolution, will be described in
more detail in the following due to its importance in the context of this work. Finally,
it should be noted that there is no procedure that guarantees the finding of the global
optimum and the term global should rather be understood in the sense of the global
property regarding global optimization methods.

3.8.4 Differential evolution (DE)

Differential evolution (DE) belongs to the class of evolutionary algorithms and was first
introduced by R. Storn and K. V. Price in [175] with the target to find the global optimum
of objective functions defined in continous design spaces. Similar to other evolutionary
algorithms DE is population-based, stochastic in its nature and includes evolutionary
features like mutation, crossover, and selection. Unlike to other evolutionary algorithms,
in DE, the candidate solutions are represented as real-value vectors and new candidates
are generated by adding weighted differences between two vectors to a third vector. Due
to its mode of operations it does not require derivative information and the presence of
noise does in generally not lead getting stuck in a local optimum as this might be the
case if a gradient descent method is used. There is no proof of convergence for DE, but
it has been shown to be a simple and efficient method for a wide range of engineering
optimization problems [37]. For example, DE was shown to be superior to simulated
annealing in [175]. An overview of the state of the art relating to DE can be found in
[37] or more recently in [6].

The main steps of the DE algorithm include initialization, mutation, crossover, and
selection and are illustrated in Fig. 3.11. The three last steps are repeated until a
certain termination criterion is met. In DE, only three parameters need to be specified,
namely the population size Np, the mutant factor F , and the crossover probability Pcross.

Initialization

In the first step, an initial population with a size of Np individuums is randomly se-
lected in the n-dimensional design space. In the following, the Np parameter vectors
(candidate solutions)

di,G = [d1,i,G, d2,i,G, ..., dn,i,G] (3.63)

with i = 1, ...,Np and G denoting the generation number (respectively the iteration no.)
are introduced. The initial candidate solutions (G = 0) are generated as

dj,i,0 = dj,low + randi,j[0,1] ⋅ (dj,up − dj,low) (3.64)
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Initial population

Mutation

Crossover

Selection Termination?

Optimal solution

Yes

No

Figure 3.11: Main steps of the DE algorithm

expressed by the lower and upper bounds of the jth component of di and randi,j de-
scribes uniformly distributed random numbers lying between 0 and 1.

Mutation

In the mutation phase, mutant vectors vi,G are generated by a mutation operation on the
basis of parent vectors from the actual generation, the so-called target vectors. There
exist several mutation strategies. In the DE literature, different schemes are represented
in the format DE/x/y/z, where x describes the base vector randomly perturbed in the
mutation process, y is the number of involved difference vectors, and z stands for the
type of crossover. Four commonly used mutation schemes are given as follows:

DE/rand/1:
vi,G = dr1,G + F (dr2,G − dr3,G) (3.65)

DE/rand/2:
vi,G = dr1,G + F (dr2,G − dr3,G) + F (dr4,G − dr5,G) (3.66)
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DE/best/1:
vi,G = dbest,G + F (dr1,G − dr2,G) (3.67)

DE/best/2:
vi,G = dbest,G + F (dr1,G − dr2,G) + F (dr3,G − dr4,G) (3.68)

where r1, r2, ..., r5 ≠ i ∈ [1,Np] are indices of the candidate solutions and distinct from
each other. The index r1 denotes the base vector of the population and r2, ..., r5 are the
indices of randomly selected candidate solutions used to construct the mutant vector.
These indices were generated once for each mutant vector. The resulting mutant vector
is called the donor vector. dbest,G represents the best candidate solution used as target
vector. F is a mutant factor in the range between 0 and 1. A value closer to 0 can be
considered as a mutation strategy with more local character, while a value close to 1
has a more exploitative character. Thus, an appropriate choice of F is crucial for the
convergence towards the global optimum [37].

Crossover

After the donor vector has been generated, a crossover operation is applied to main-
tain the diversity of the population. During the crossover, a so-called trial vector
ui,G = [u1,i,G, u2,i,G, ..., un,i,G] is formed by exchanging components from the donor vec-
tor and the target vector. In the binomial (uniform) crossover method, the trial vector
is built as

uj,i,G = { vj,i,G if rand[0,1] ≤ Pcross or j = k
dj,i,G else

(3.69)

with the crossover probability Pcross lying in the range between 0 and 1. k ∈ [1, n] is a
randomly chosen index instantiated once for each candidate solution per generation that
ensures that the trial vector contains at least one element of the donor vector. Beside
the uniform crossover, another crossover operation is given by exponential crossover [37].

Selection

In the selection phase, it will be determined which candidate solutions are considered
during the next iteration. It is determined whether the trial vector or the target vector
“survives” and builds the next generation. This can be desribed as

di,G+1 = { ui,G if J(ui,G) ≤ J(di,G)
di,G else.

(3.70)

If the fitness (value of the objective function) of the trial vector ui,G yields a lower value
than the fitness of the target vector di,G, the trial vector replaces the target vector for
the next generation. Otherwise the target vector is retained. If the population of the
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next generation has been formed, the steps of mutation, crossover, and selection are
iteratively repeated (with the same number of individuums Np) until termination. A
version of DE to handle constraints using the concept of Pareto dominance (see Section
3.8.6) in the constrained design space is described in [100].

3.8.5 Efficient global optimization (EGO)

The efficient global optimization (EGO) algorithm was proposed in 1998 by Jones [81]
and belongs to the class of Bayesian optimization [114] approaches. The method seems
promising for optimization problems with an expensive to evaluate and potentially noisy
objective function, where derivative informations are not available. In such techniques,
the objective function is treated as a black box function and a statistical model is used
to construct a surrogate model. Then, a sequential approach is used in an attempt to
process as much information as possible about the underlying functional relationship to
find the global optimum within a few iterations. Due to this mode of operation, the
method seems highly suitable for solving the type of optimization problems considered
in this work. As stated in the introduction, such approaches have been utilized in recent
years in the context of material design [32].

The basic steps of EGO can be described as follows: In a first step, a limited number
of sampling points will be selected based on a DoE scheme. As mentioned in Section
3.3.3, this should be a space-filling design gaining as much information as possible. The
initial sampling points D = [d1,d2, ...,dm] are evaluated by the computer code yielding
the responses Y = [y1, y2, ..., ym], which are used to fit an initial Kriging surrogate y =
y(D,Y ) with mean prediction ŷ(d) and (local) variance ŝ2(d). If the best observation
of the initial designs is denoted by ymin = min(Y ), the improvement is defined as

I(d) = max(ymin − y,0). (3.71)

The next sampling point (design) is selected based on a so-called aquisition function. As
acquistion function, often the expected improvement (EI) [81], [160], defined as

E[I(d)] = E[max(ymin − y,0)] (3.72)

with the Kriging model output y is used. Expressing the expected value E in (3.72) by
an integral and applying integration by parts leads to the following form of the expected
improvement:

E[I(d)] = (ymin − ŷ(d))Φ(ymin − ŷ(d)
ŝ(d) ) + ŝ(d)φ(ymin − ŷ(d)

ŝ(d) ) (3.73)

if ŝ(d) > 0 and E[I(d)] = 0 otherwise. Moreover, Φ and φ denote the cumulative and
probability density function of the standard normal distribution, respectively. Besides
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the EI criterion, also other acquisition functions have been proposed. One of the most
popular alternatives is the lower confidence bound (LCB), given as

LCB(d) = ŷ(d) − κŝ(d) (3.74)

with a constant κ > 0. The next sampling point is computed by optimizing the acquisition
function (e.g., maximizing the EI criterion), i.e.,

dm+1 = arg max
d

(E[I(d)]). (3.75)

By means of the EI criterion, an attempt is made to select those points in the design
space at which the probability of an optimum is large, while also taking modeling inaccu-
racies into account. The first term in (3.73) is the exploitation term, where exploitation
means sampling in areas of low mean prediciton. The second term is the exploration
term, where exploration means sampling at locations of large uncertainty (variance of
the model). Hence, EGO performs a trade-off between local (exploitation) and global
(exploration) search to find the global optimum.

The individual steps of the employed EGO algorithm, implemented in the Python sur-
rogate modeling toolbox (Python library SMT) [22], can be summarized as follows:

1. Select a relatively small set of an experimental designD and evaluate the responses
Y at these points by running the computer simulation. Set counter to i = 0.

2. Use this data to create a Kriging surrogate model y = y(D,Y ).

3. Select the next sampling point di+1 by maximizing the EI criterion (3.73).

4. Evaluate the response at the new sample point yi+1 = y(di+1) and expand the data
set, D = [D,di+1],Y = [Y , yi+1].

5. If the termination criteria is not satisfied, set counter to i = i + 1 and go back to
step 2.

Finally, the algorithm returns the best solution find so far ymin. Please note that no
validation run is necesseray for this determined optimum, since this evaluation was
performed directly on the mathematical (simulation) model. As termination criteria, for
example, the value of the EI during the iterations can be considered until it is smaller
than a specified value. The operation of the EGO algorithm is illustrated in Fig. 3.12 by
means of a one-dimensional objective function. It can be observed that the exploiting
term leads to the first sampling point near a local optimum. In the second iteration,
the exploitation term is dominant and the next sampling point is selceted in the area
of large variance. After a few iterations, the method detects the global optimum. An
extention of the EI criterion to hande constraint is given in [161].
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Figure 3.12: Operation of the EGO algorithm for a specified analytical ob-
jective function (Fig. taken from Python surrogate modeling
toolbox (SMT) https://smt.readthedocs.io/en/latest/_src_docs/

applications/ego.html, [22])
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3.8.6 Multi-objective optimization (MOO)

Many technical applications require the consideration of several different design objec-
tives. Because the focus of this thesis is on the optimization of thermal and mechanical
material properties, simultaneous requirements on both physical material properties can
be addressed by the formulation of multiple design objectives in a multi-objective opti-
mization (MOO) problem. In the following, some basic notations and solution techniques
for MOO problems are introduced. The general formulation of a MOO problem is given
as

Jm(d) →min m = 1, ...,M, d ∈ Rn

s. t. gj(d) ≤ 0 j = 1, ..., J

hk(d) = 0 k = 1, ...,K

di,low ≤ di ≤ di,up i = 1, ..., n

(3.76)

with M ≥ 2 objective functions represented by the design objective vector J(d) to
be minimized, so sometimes MOO is referred as vector optimization. The remaining
notations introduced for the standard form of nonlinear (single-objective) optimization
problems (see (3.59)) apply here analogously. Due to the consideration of multiple design
objectives, each desicion vector d ∈ Rn can be mapped into an design objective space
J(d) = z = (z1, ..., zM)T ∈ RM . This is illustrated in Fig. 3.13. Compared to single-
objective optimization problems, there exist in general no feasible decision vector that
minimizes all design objectives simultaneously. MOO problems possess a set of solutions
that can be regarded as the best trade-offs between competing design objectives. More
precisley, a solution of (3.76) is indicated by a feasible desicion vector d∗ (and the
corresponding design objective vector z∗) that cannot be improved in any objective
without deteriorating at least one other design objective. Such a solution is called Pareto
optimal or Pareto efficient. For a more formal definition of Pareto optimal solutions,
the notion of dominance is introduced. A decision vector d1 is said to dominate another
decision vector d2 if it is feasible and

∀m ∈ {1, ...,M}, Jm(d1) ≤ Jm(d2) ∧ ∃m ∈ {1, ...,M}, Jm(d1) < Jm(d2). (3.77)

The Pareto optimal set is given by the set of all non-dominated (Pareto optimal) solu-
tions and the representation of this set in the design objective space is denoted as Pareto
front. This is illustrated in Fig. 3.13 for n =m = 2.

Several methods have been developed to solve MOO problems [55]. The selection of a
method depends, inter alia, whether single solutions of the front are sufficient or if the
entire front should be determined. According to [75], these methods can be categorized
as non-preference, a priori, a posteriori, and interactive methods, depending on the point
in time at which a decision is made between different solutions. In the following, a basic
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Figure 3.13: Design variable space (left) and objective function space (right)

overview of essential solution concepts will be provided. For a comprehensive overview,
please refer to the specialist literature, e.g., [24], [41].

The most basic idea is to transform the MOO problem (3.76) into a single-objective
problem that can then be solved by standard methods. A common approach is to
formulate the single-objective function as a weighted sum of the individual design ob-
jectives as J̃(d) = ∑Mi=1wiJi [36]. The selection of the weighting factors is based on the
relative importance of the respective objective function. Depending on the choice of
these weighting factors, different points of the Pareto front are obtained. However, it
is not possible to find solutions in this way if the Pareto front is not convex. Another
approach is to optimize only a single objective function (typically the most important
one) and to treat all other objectives as constraints, as in the ε-constraint method [200].
These methods belong to the class of a priori methods because by the definition of the
weights or the definition of the constraints one selects preference information before a
solution of the MOO problem is found. Both approaches suffer from the disadvantage
that good knowledge of the optimization problem (i.e., the relevance of the individual
design objectives) is required, which is often not the case. Moreover, only individual
points of the Pareto front are obtained, i.e., several optimization runs are necessary to
determine an approximation of the Pareto front.

In the context of this work, it is of interest to obtain a wide variety of solutions. For
that purpose, multi-objective evolutionary algorithms (MOEAs) have been developed
over the past three decades and are nowadays frequently used in engineering applica-
tions [181], [38]. Because MOEAs operate on a set of candidate solutions exchanging
information with each other, they are promising for finding different Pareto optimal
solutions within a single optimization step. The requirements for these algorithms are
generally to find a set of solutions that are close to the Pareto front (convergence), to
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find well-distributed solutions that represent the entire Pareto front (diversity), and to
cover the entire Pareto front (coverage). There are a multitude of different approaches,
which are reflected in a corresponding amount of different MOEAs. A classification of
MOEAs can be found in [181]. The basic elements of MOEAs should be explained by the
well-known NSGAII algorithm, which is also used in this work. There are also indicator-
based and decomposition-based MOEAs specifically designed for MOO problems, as well
as hybrid MOEAs. These cases are not covered in this thesis, so these methods are not
described further.

In the NSGAII algorithm, three main elements are applied: Ranking, elitism, and diver-
sity preservation. Ranking is performed by iteratively assigning a rank to the candidate
solutions based on their dominance (the dominance criterion is used to rate the fitness).
Such a ranking based on Pareto dominance was first proposed in 1989 by Goldberg [52].
In a first step, all candidates that are not dominated by any other individual are assigned
the best rank, rank 1. Subsequently, the non-dominated individuals with rank 1 are re-
moved and the individuals that are not dominated by any of the remaining candidates
are assigned rank 2. This process is repeated until all candidates have been assigned a
rank. The steps of the NSGAII algorithm can be summarized as follows:

1. Initialize a population of size Np and evaluate the corresponding objective and
constraint functions. Rank the individuals using the non-dominance criterion.
Determine the crowding distance of each candidate.

2. Generate a child population of size Np by applying evolutionary operators such as
selection, crossover, and mutation and evaluate the child population.

3. Combine parent- and child population. Perform ranking and compute the crowding
distances.

4. Employ elitism: Select the Np best individuals from the combined population on
the basis of the ranking and the crowding distances. These individuals build the
parents of the next generation.

5. If termination criteria is not met, repeat and go back to step 2.

The crowding distance is a simple measure to compare the relative closeness (the diver-
sity) of a solution in the design objective space to other solutions. If individuals have the
same rank, this measure allows to differentiate between them and the most distant solu-
tions are preferred to preserve the diversity of the Pareto optimal solutions. The elitism
approach ensures that Pareto optimal solutions are not deleted during the iterations by
selecting only the individuals with the best rank. The MOEAs belong to the class of a
posteriori methods, because preference information is given after a set of Pareto optimal
solutions has been identified. A simple extension for dealing with constraints is provided
in [38].
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3.9 Robust design optimization

3.9.1 Introduction

In the generic material optimization problem (3.1), the design variables were treated
as deterministic values. The solution of this optimization problem with one of the
optimization methods presented in Section 3.8 yields a deterministic optimal design.
When manufacturing a material, it is almost impossible to realize such an optimal design
exactly, as there exist various uncertainties along the PSP processing chain. This should
be illustrated by means of the parameterized PRC introduced in Section 3.1.1. The
design variables of the geometrical microstructure may exhibit deviations in terms of
the size of the filler particles dsp or the filler volume fraction Vf . There may also be
deviations in the design variables of the material properties. In the context of this
example, this means deviations in the conductivities of the matrix km and the filler
kp. These uncertainties can lead to a design that is very sensitive to variations in the
design variables. Hence, one is interested in a design that is robust. Roughly spoken, a
design can be said to be robust, if it is unsensitive in view of uncertainties in the design
variables. The question of how these uncertainties affect the performance of a design and
how to identify a robust solution is the subject of robustness evaluation and robust design
optimization techniques [101], [135]. The concept of robust optimization is illustrated
in Fig. 3.14 using a 1D function. As depicted in this example, a variation in the design
variables ∆d may result that the robust optimum differs from the global optimum. In the
following, the kind of uncertainty as well as the robustness measure considered in that
work are introduced. Based on that, the evaluation of the robustness of a microstructural
design and the formulation and solution of the robust design optimization problem is
mentioned. A comprehensive survey of robust optimization is provided by [20].

3.9.2 Robustness evaluation and solution of robust optimization problems

To account for uncertainties in the design variables during material design, they need to
be included in the material optimization problem (3.1). Within the scope of this work,
the uncertainties are not modeled in terms of a probability density function, so the robust
optimization approach considered here is non-probalistic (deterministic). The reason for
this is that such functions are not known in general. There exist different measures to
quantify the robustness of a design. Commonly used metrics are, e.g., the expected value
and the variance. But there are many other statistical measures, including standard
deviation, quantile, and so on. An comprehensive overview can be found, for example,
in [147]. In this work, the worst-case criterion is employed for the quantification of the
robustness of microstructural designs. For this purpose, a hypercube

U(d∗, δ) = {ξ ∈ Rn ∣ d∗i (1 − δ) ≤ ξ ≤ d∗i (1 + δ)} (3.78)
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Figure 3.14: Global- and robust optimum

with i = 1, ..., n centered around an optimal design d∗ is considered. The size of the
hypercube is specified by the parameter δ and should be selected to cover the relevant
variations of the design variables (see Fig. 3.14 for an illustration). The worst-case cri-
terion assigns J(d∗) the maximum value of the objective function within the hypercube

ρR(d∗) = max
ξ∈U(d∗,δ)

J(ξ). (3.79)

In robust optimization, the objective function is replaced by a robust counterpart. Crite-
rion (3.79) can be used to form this robust counterpart. In that way, a design is obtained,
where the maximum of the objective function within the hypercube (the worst-case) is
minimal, so it is often referred to as min-max principle [39] or robust regularization [102].
The selection of the robustness measure depends on the requirements of the considered
problem. For example, the worst-case criterion should be chosen, if the worst-case should
be avoided in each case. If the result should be quite good in an average sense, the ex-
pected value is a more appropriate criterion, whereas the standard deviation is a good
choice, if the variance is to be taken into account. Finally, the robust optimization prob-
lem has to be solved with appropriate methods. The crucial point in the computation of
robustness measures is in general the high computational effort because it often requires
the evaluation of integrals. Common strategies of how to do so are sampling methods,
especially Monte-carlo sampling or Taylor series expansions. A detailed overview is be-
yond the scope of this work and can be found, e.g., in [20] or [16]. For the worst-case
criterion, this includes an (additional) optimization to evaluate the criterion. From the
construction of the criterion, it can be observed that (3.79) is not differentiable. For the
evaluation of this maximization problem, the DE algorithm according to Section 3.8.4
is employed in this work. Since surrogate-based optimization is performed, the com-
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putational burden associated with the evaluation of (3.79) as well as the optimization
procedure itself becomes managable.
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Chapter 4

Polymer matrix composites

4.1 Introduction

Composites are materials composed of two or more materials that are bonded together.
With the use of composites one attempts to combine the beneficial properties of the
individual constituents into a new material. As illustrated in Fig. 4.1, composites
can be distinguished by the type of reinforcements [149] into particle reinforced, fiber
reinforced, and sheet molding composites. Composites can also be classified according
to the base material, the so-called matrix. A distinction is made here between polymers,
metals and ceramics. The focus of this work is on polymer matrix composites consisting
of fibers or particulate fillers embedded in a continuous polymer matrix.

Figure 4.1: Classification of composites according to the type of reinforcement (Fig.
taken from [142])
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Polymers are commonly employed as matrix materials in engineering applications due
to their low density, easy moldability, and low costs. The use of certain fillers is an
attempt to achieve a material property required for a specific application. Therefore,
the term functional fillers is often used. Various filler particles with different physical
properties and geometric shapes are available for this purpose. It should be noted that
only fillers in the micrometer range are considered in this work, so nanocomposites are
not covered here. The properties of the composite depend essentially on the physical
properties of the individual constituents, their composition, the structure of the fillers,
and the effects at the interfaces of matrix and filler. These properties are also influenced
by the manufacturing process. This section provides an overview of fiber reinforced and
particle reinforced polymers. The technical relevance of these materials is addressed and
common matrix and filler materials are described.

4.2 Fiber reinforced polymers

Fiber reinforced polymers (FRPs) consists of a polymer matrix reinforced with fibers of
high stiffness and strength. The combination of polymer and fibers results in a com-
posite with beneficial stiffness/strength-to-weight ratio. Therefore, these materials are
predestined for use in lightweight construction applications. FRPs offer other exceptional
properties [142], such as superior durability, damping properties, flexural strength, and
resistance to wear, impact, and corrosion. Hence, FRPs are increasingly replacing tra-
ditional materials such as neat polymers and steels in the automotive industry [105].
Further applications can be found in the civil, mechanical, aerospace, biomedical, and
marine sectors, see [142] or [104] for an overview. Due to the possibility of aligning
the fibers in different (load) directions, FRPs generally exhibit a direction-dependent
material behavior. This provides the opportunity to design anisotropic composites ac-
cording to specific macroscopic requirements. FRPs can be distinguished according to
the length of the fibers in continuous (long) and discontinuous (short) fiber reinforced
polymers. The fibers are referred as continuous fibers if they have a length of more
than a few millimeters. Continuous fiber reinforced polymers often contain a large fiber
volume fraction (e.g., 60 %) and the fibers are aligned along the load direction. In order
to achieve maximum strength and stiffness in multiple load directions, continuous fibers
are prefabricated in the form of woven fabrics embedded in a thermoset polymer. In con-
trast, short fibers typically have a length of less than 1 millimeter and are often randomly
aligned. In the context of this work, only SFRPs are considered. The probably most
common SFRPs are glass fiber reinfored polymers (GFRPs). In 2014, a total of 1.043 kt
of GFRPs was processed in Europe [96]. Most components made of GFRP are man-
ufactured via cost-effective injection molding. As raw material, the already reinforced
polymer is usually supplied prefabricated by the manufacturer in the form of pellets.
During injection molding, the fibers in the molten mass orient more or less strongly in
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the flow, resulting in a generally anisotropic material behavior. A microscopic image of
a SFRP is depicted in Fig. 4.2 (left). For a comprehensive overview of manufacturing
processes, please refer to, for example [93], [104] or [142].

4.2.1 Polymer matrix materials

Following [104], the matrix of the composite has the following roles: “(1) to keep the
fibers in place, (2) to transfer stresses between the fibers, (3) to provide a barrier against
an adverse environment, such as chemicals and moisture, and (4) to protect the surface
of the fibers from mechanical degradation (e.g., by abrasion)”. The polymer matrix plays
a major role in the transfer of mechanical loads in the transverse fiber direction and has
a great influence on the shear strength of the composite. It also prevents the fibers from
buckling under compressive load. Polymers can be distinguished between two broad
classes: Thermoplastics and thermosets. In thermoplastics, the individual molecules are
not chemically bonded to each other. Only weak intermolecular forces are acting between
the molecular chains. A distinction must also be made here between amorphous and
semi-crystalline thermoplastics. While the molecular chains of amorphous thermoplastics
are disordered, semi-crystalline polymers show domains with a regular arrangement of
these chains. When exposed to heat, these chains dissolve and the polymer can be
deformed. When cooling down, the molecular chains remain in their new configuration.
Therefore, thermoplastics can be melted down and reshaped as often as desired. An
important term to describe the temperature-dependent behavior is the glass transition
temperature, denoted as Tg. Below Tg the energy-elastic range is present, where brittle
behavior can be observed to some extent. Approaching Tg, a softening of the material,
i.e., a decrease in stiffness can be observed. In the glass transition area, a pronounced
creep behavior can be found. Moreover, the coefficient of thermal expansion and the
damping increase. If the temperature is increased further, this behavior becomes even
more pronounced until the polymer finally melts. Semi-crystalline plastics can also be
used above Tg depending on their crystallinity. Commonly used thermoplastics include
polyamides, polypropylene, polyethylene, and polybutylenterephthalat. An overview
with some corresponding material properties can be found in Table 4.1. In contrast to
thermoplastics, the molecules of thermosets are chemically bonded to each other, forming
a cross-linked three-dimensional network. Therefore, thermosets cannot be deformed by
heating after they have cured and exhibit better thermal stability and a lower tendency
to creep. Thermosets are often used as matrix material in continuous fiber reinforced
polymers. Examples of common thermoset materials are epoxy, polyester, and vinyl
ester.
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Table 4.1: Different polymer materials and their properties [162], [47], [104], [157], [31]

Polymer material
Units

ρ
g/cm3

E
GPa

Tensile strength
MPa

ν
1

k
W/mK

Epoxy resin 1.20 3.4 90 0.35 0.17-0.21
Polyester resin 1.22 4.8 60 - -
Vinyl ester resin 1.14 4.0 83 - -
Polyamide 6.6 1.14 1.7 57 0.40 0.30
Polypropylene 0.90 1.3 37 0.40 0.18-0.24
Polyphenylene sulfide 1.36 3.3 82.7 - 0.30

4.2.2 Fiber materials

Due to their relatively high stiffness and strength, the fibers carry out a major part of
the load-bearing function of composites. The most relevant fibers employed in polymer
matrix composites are synthetic glass fibers, carbon fibers, and aramid fibers. Glass
fibers are the most frequently used polymer reinforcements in technical applications,
mainly due to their low cost. Two commonly used glass fiber types are E-glass and
S-glass [104]. E-glass is the lower cost and most widely used variant. The types differ
slightly in their chemical composition [140]. The raw materials for the production of
glass fibers are silicon oxide as main ingredients and also parts of other oxides such as
aluminum oxide and calcium oxide. These ingredients are melted at temperatures of
about 1370 °C. The molten mass emerges from small diameter spinnerets and is pulled
out at high speed into thin long filaments before being cooled. The filaments are then
coated and, depending on the desired form of delivery, bonded into a strand, for example.
Sometimes the coating contains an adhesive that provides a better bond with the matrix.
Typical dimensions of discontinuous glass fibers are a diameter of 10 µm and a length
of 200 µm and are also affected by the manufacturing process (e.g., injection molding).
If even higher requirements are placed on the stiffness and strength of the composite,
carbon fibers [29] can be considered as an alternative to glass fibers. Carbon fibers exhibit
high electrical and thermal conductivities and show a more or less pronounced anisotropic
material behavior. Due to their excellent stiffness-to-weight ratio, they are often used in
aerospace, sports, and automotive applications. Natural fibers are increasingly gaining
attention, especially from a sustainability perspective [44], [126]. The combination of
different fiber types in a hybrid composite material has also been investigated, e.g., to
toughen composite materials [176]. An overview of different fiber materials and their
properties is given in Table 4.2. A comprehensive overview of other fiber types can
be found, for example, in [142], [104]. The overall properties of the composite can be
significantly affected by the selection of the fiber type, the fiber volume fraction, the
fiber orientation, and the fiber length.
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Table 4.2: Overview of different fiber materials and their properties [104]

Fiber material ρ / (g/cm3) E / GPa Tensile strength / GPa ν

E-Glass 2.54 72.4 3.45 0.20
S-Glass 2.49 86.9 4.30 0.22
PAN Carbon 1.76 231 3.65 0.20
Kevlar 1.45 131 3.62 0.35
Boron 2.70 393 3.10 0.20
Aluminum oxide 3.90 380 3.10 -

Figure 4.2: Microscopic image of a SFRP [40] (left) and a PRP [50] (right)

4.3 Thermally conductive polymer composites

In view of the current trend towards miniaturization of electrical devices, thermal man-
agement is of crucial importance [74]. Due to their electrical insulation, low density, easy
moldability and low costs, plastics are a commonly used material for such applications,
e.g., electronic packaging [137]. In this context, the main disadvantage of polymers is
their intrinsic low thermal conductivity, typically in the narrow range of 0.1 - 0.5 W/mK.
An overview of the thermal conductivities of common polymers is given in Table 4.1.
The limited thermal conductivity of plastics can be considerably increased by adding
thermally conductive fillers [118], [31]. The use of such functional materials can prevent
thermal damage by improving heat dissipation, thus ensuring the performance and ser-
vice life of electronic devices. There are many ceramic and mineral fillers available for
this purpose [192]. In the context of this work, only electrically insulating particles are of
interest, since electrical insulation is required in the considered applications. Examples
of these fillers are aluminum oxide, magnesium oxide, aluminosilicate, aluminum nitride,
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Table 4.3: Different thermally conductive fillers and their thermal conductivities [31]

Filler material k / (W/mK)

Aluminum oxide 30
Silicon nitride 103-200
Aluminum nitride 100-300
Boron nitride 185-300

silicon carbide and boron nitride [71]. Some of them are listed in Table 4.3 with their
associated thermal conductivity. The particles are available in various sizes and geomet-
rical shapes. Apart from spherical particles, there are also platelet-shaped particles that
can be used to achieve anisotropic thermal conductivity dependent on their distribution
during the manufacturing process. A microscopic image of a PRP is shown in Fig. 4.2
(right). If electrical insulation is not required or if electrical conductivity is even to be
achieved, metallic or carbonaceous fillers are also conceivable. In general quite high fill-
ing levels are necessary to achieve technically relevant conductivities. At low filler levels,
the conductivity of the matrix is crucial. The heat transfer in polymers is essentially
caused by phonon transport [58]. In this case, the matrix separates the highly conductive
fillers and acts as a kind of thermal barrier. With increasing filling level, the formation
of a percolation network can be observed at some point. This is characterized by the
fact that there are heat conduction paths which solely lead through the highly conduc-
tive particles. In this case, a significant increase in conductivity can be observed [98].
When platelet-shaped particles with a high aspect ratio are used, the formation of such
a network can be observed even at lower filling levels compared to spherical particles.
However, the realization of such high filling levels is problematic for two main reasons.
On the one hand, it should be noted that highly conductive fillers are relatively expen-
sive, so that efforts are made to keep the fraction quite low. On the other hand, high
filler contents are also problematic because the compound is quite difficult to process.
For example, the melt has a very high viscosity, which encourages mold wear during
injection molding. Such highly filled polymers are also often quite stiff and exhibit low
failure strain and low impact strength. Therefore, the choice of filler and filler fraction
is always a compromise between thermal conductivity, processability, mechanical prop-
erties, and costs. Finally, the ETC of a composite is based on a complex relationship
between many different parameters such as the filling level [201], the thermal conduc-
tivity of the individual constituents, the shape and size of the particles [191], [203], the
interfacial thermal resistance [150], [73], surface treatment [195], [188], and the spatial
distribution (including the contact area between phases). A comprehensive overview of
such different influencing factors can be found in [31]. This article also addresses some
recent advances in the realization of microstructures for high conductivities.
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Optimization of effective material properties

In this chapter, the surrogate-based multiscale optimization method proposed in Chap-
ter 3 is demonstrated by means of specific material examples. The optimization of
thermomechanical material properties is presented on the basis of a three-phase PRP.
In Section 5.1, the optimization framework is used to find different design variants of
this material with a desired thermal conductivity. Subsequently, the method is extended
to linear viscoelastic properties of SFRPs (Section 5.2). The overall consideration of
effective thermomechanical properties by multiobjective optimization techniques is dis-
cussed in Section 5.3. It is shown how robust design methods can be used to account
for uncertainties that arise during manufacturing or due to deviating material parame-
ters. The surrogate-based optimization approach enables an efficient design of functional
composites considering multiphysical and anisotropic requirements imposed on material
properties especially in electromobility applications. In combination with advanced man-
ufacturing techniques, the method offers great application potential within the product
development process.

5.1 Optimization of the thermal conductivity of a three-phase
PRP

In this first example, the optimization of the thermal conductivity of an electrically
insulating three-phase PRP is considered. More precisley, the target is to find different
variants of this materials with a desired thermal conductivity. This allows a selection
of those variants that are the easiest to manufacture. Beside the application of the
surrogate-based optimization framework, it is shown that the use of the EGO algorithm
is an attractive alternative with view of the computational effort. Furthermore, the
application of a gradient-based method with adjusted step size to handle stochastic
effects is demonstrated. In particular, advantages and disadvantages of the different
optimization methods and other aspects such as efficiency are discussed. It turns out
that the proposed methodology allows an efficient detection of different design variants
accounting for different microstructural parameters, such as phase fractions and aspect
ratio and their influence on the overall thermal conductivity.
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5.1.1 Material description

Motivated by the research conducted in [157] and [72], a three-phase composite consisting
of a polybutylenterephthalat (PBT) matrix filled with two fillers of different geometries
and large contrast in conductivities is investigated. In these studies, significantly larger
conductivities in the range of 2 - 5 W/mK were obtained compared to neat polymers. As
the interest is in the design of a dielectric polymer, only electrically insulating particles
are examined. As fillers, low-conductive spherical aluminum oxide and high-conductive
flaky boron nitride particles are studied. A microscopic image of such filler particles
is shown in Fig. 5.1. The use of a second filler of low-conductive spherical particles
is mainly motivated by an improvement of the flow properties at large filler contents
and an reduction of costs, although the ETC is not significantly reduced compared
to the exclusive use of flaky (expensive) particles. The thermal conductivities of the
constituents are assumed to be isotropic and are listed in Table 5.1.

dh

th

dsp
ar = dh

th
pr = dh

dsp

Figure 5.1: Microscopic image of flaky boron nitride (left) and spherical aluminum
oxide particles (right) [163] and idealized (parameterized) geometries

Table 5.1: Thermal conductivities of the individual constituents

Phase index p Material kp / (W/mK)

1 PBT 0.23
2 Aluminum oxide 30
3 Boron nitride 400
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5.1.2 Optimization approach

To optimize the three-phase PRP to a desired ETC, the following minimization problem
for the design variables d is formulated:

J(d) =
⎛
⎝
∥keff(d) − k∗eff∥2

∥k∗eff∥2

⎞
⎠

2

→min

s. t. di,low ≤ di ≤ di,up.

(5.1)

In (5.1), keff = keff(d) is the macroscopic thermal conductivity tensor as a function of
the design variables d and k∗eff is the target ETC tensor. The target ETC tensor can be
derived on the basis of a specific application (e.g., in power electronics) so that sufficient
heat is dissipated and thermal damage is avoided. In this example, only descriptors of
the geometrical microstructure are investigated as design variables. As mentioned in
Section 4.3, it should be emphasized that the intrinsic thermal conductivity of the ma-
trix has a significant influence on the ETC, especially for low particle volume contents.
However, in practical applications one is often limited in the selection of the polymer
matrix due to costs or for reasons of manufacturability. The consideration of material
property descriptors of this three-phase PRP during optimization will be demonstrated
in Section 5.3. In order to parametrize the geometry and size of the filler particles, the
spherical particles are considered as perfect spheres and the flaky boron nitride particles
are approximated by platelet-shaped particles with six edges (see Fig. 5.1). As design
variables, the filler volume fraction Vf (including both filler fractions), the proportion
of the platelet-shaped boron nitride particles δbn, the thickness of the platelet-shaped
particles th, the mean aspect ratio ar, and the mean particle size ratio pr are selected.
The aspect ratio is defined as the ratio of the diameter dh to the thickness th of the
platelet-shaped particles. The particle size ratio pr results from the ratio of the diame-
ter of the platelet-shaped particles dh to the diameter of the spherical particles dsp. The
feasible set is listed in Table 5.2 and was chosen such that fillers available from material
manufacturers can be taken into account. For both fillers, a Gaussian distribution of the
particle diameters with a standard deviation of 16.66 % within a range of 33.33 % of the
mean particle diameters (only particle diameters within these bounds are considered) is
specified. In the following, the material optimization framework proposed in Chapter 3
is used for the solution of the material optimization problem (5.1). To be able to draw
a comparison with other optimization techniques, the use of the EGO algorithm and a
gradient-based optimizer is demonstrated. Advantages and disadvantages with respect
to their use for engineering applications are discussed.
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Table 5.2: Design variables with lower- and upper bounds

Index i Design variable di Lower bound di,low Upper bound di,up
1 Vf / % 0 34
2 δbn / % 0 75
3 th / µm 4 6
4 ar 4 8
5 pr 2 4

Design of experiments

For the exploration of the material design space, 60 LH samples are selected. In Fig. 5.2,
the sample distribution in the filler volume fraction-proportion boron nitride and in the
filler volume fraction-aspect ratio space are illustrated. Due to the space-filling prop-
erties of the LH scheme, a quite good distribution of the samples within the entire
design spaces can be observed. Each sample represents the realization of a specific mi-
crostructural configuration for which an RVE is generated. Based on these RVEs, the
macroscopic thermal conductivity is determined by numerical homogenization. These
steps are described in more detail in the following.
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Figure 5.2: Distribution of the LH samples in the d1−d2 (left) and d1−d4 space (right)

Microstructure generation

Based on the experimental designs specified by the LH scheme, cubic RVEs with voxel
length (resolution) h and edge length l (l = no. of voxels ⋅ h) are generated. A uniform
particle distribution and an isotropic orientation of the filler particles within the matrix
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is specified. The generation of the RVEs of the three-phase PRP is performed according
to the announcements in Section 3.4. The stochastic distribution of the fillers within the
matrix is controlled by the random seed, which allows the generation of different random
RVEs. When touching particles are considered, it can be observed that the voxel length
h has a strong influence on the ETC due to the large contrast in the conductivities of
matrix and fillers. In order to obtain a resolution independent solution, only isolated
(non-touching) particles are considered in that example. When carrying out examina-
tions in which the filler volume fraction is increased (and setting the remaining design
variables to their upper bounds), it can be observed that most of the contacts can be
avoided until a filler volume fraction of Vf = 34%. Following that, the upper bound of
the filler volume fraction d1,up will be limited to that value. If contacts are still present,
they are removed in a post-processing step by assigning the properties of the contact
voxel to the conductivity of the matrix material. In Fig. 5.4, the realization of a RVE
of the three-phase PRP with specified upper bounds of the design variables is depicted.

Computation of the ETC

Since in the considered example, relatively large filler levels and a large contrast in
the conductivities of the individual constituents are investigated, the use of analytic
methods for the computation of the ETC appears to be insufficiently accurate. More-
over, most of these approximation methods do not consider filler size effects, e.g., the
influence of the aspect ratio ar. For these reasons, the ETC is computed by numerical
homogenization according to Section 3.5.5. The RVE domain ω = (0, l)3 ⊂ R3 of the
three-phase composite consists of three subdomains (phases p) ωp (p = 1,2,3). In each
subdomain, the thermal conductivity tensor k(x) is assumed to be isotropic and con-
stant (spatialy and temperature-independent), thus it can be expressed as a scalar value
k(x) = kp if x ∈ ωp, where kp is the thermal conductivity of phase p (see Table 5.1).
The contacts between the matrix and the fillers are assumed to be perfect (no thermal
resistance occurs at the interface). Please note that imperfect contacts can be taken
into account in ConductoDict [15] by the specification of thermal contact resistances
between the individual phases. If the particles are distributed perfectly isotropic and
uniformly within the matrix, this results in an isotropic ETC tensor and the overall con-
ductivity can be computed by solving a single BVP. To account for the influence of the
statistical particle distribution and imprecise geometry generation, the full ETC tensor
is computed, so the heterogeneities in all three space-dimensions are considered. In the
following, the ETC tensor in (5.1) will be reduced to a scalar value keff=keff(d), which
will be determined from the mean value of the main diagonal components of the ETC
tensor, i.e., keff = 1

3tr(keff(d)). To compute the ETC tensor, the local temperature and
heat flux fields are computed by solving the BVPs as described in Section 3.5.5. Periodic
BCs with a prescribed macroscopic temperature gradient of ∇T = (294.15 − 293.15) K/l
are applied. In Fig. 5.3, the absolute value of the heat flux and the temperature (within
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the matrix) within an RVE with an edge length of l = 450 µm generated with the upper
bounds of the design variables and the specification of the temperature gradient in x3-
direction is illustrated. The pronounced heterogeneity of the structure leads to strong
fluctuations in the temperature field. Due to the large thermal conductivity and aspect
ratio of the platelet-shaped particles, the greatest heat flux within the RVE is located
in these particles. If the RVE is large enough, similar fluctuation fields in the individual
space directions are generated and it seems sufficient to plot the heterogeneities for a
single load case. The selection of a sufficient size of the RVE is elaborated on below.

l l

l l

x3 x3

x2 x2

Figure 5.3: Heat flux (abslolute value, left) and temperature (right) within an RVE for
prescribed periodic BCs under specification of a temperature gradient in
x3-direction

RVE convergence study

A representativeness study according to Section 3.5.7 is conducted to ensure a suffi-
ciently accurate computation of the ETC for each experimental design specified by the
LH scheme. The edge length l of the cubic RVEs is increased gradually, starting with
200 µm. A smaller edge length is not considered, because for lower edge lengths it can
be observed that the specified microstructure cannot be realized with efficient accuracy
(e.g., due to slight deviations in the filler level or in the phase proportions). The ex-
treme case of setting all design variables to their upper bounds is investigated. Fig. 5.4
shows keff with an ensemble size of N = 4 according to (3.26) as a function of the edge
length for a voxel length of 1 µm. For εvol = 3 ⋅ 10−2, criterion (3.28) is fulfilled for an
edge length of l = 400 µm (comparing the edge lengths of 400 and 500 µm). Since the
specification of the upper bounds of the design variables can be regarded as a worst-case
consideration for determining the size of the RVE, in the following an edge length of
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5.1 Optimization of the thermal conductivity of a three-phase PRP

l = 450 µm seems sufficiently accurate and each sample assigned RVE will be generated
with this edge length. For this edge length, the standard deviation according to (3.27) is
6.89 ⋅ 10−3 W/mK, which means that the statistical influence is quite small. After a suf-
ficient RVE size has been determined, the influence of the resolution of the RVE on the
homogenization results is investigated. For this purpose, the resolution of the structure
with the voxel length of 1 µm (edge length of 450 µm) is refined by the factor of 2 and
criterion (3.29) is examined. It can be observed that the difference in the ETC due to
the refinement is less than 1 %. That means from a practical point of view that the ETC
is independent of the resolution of the RVE and a finer resolution has no influence on
keff. Based on the results of these investigations, each microstructural design specified
by the LH scheme will be generated with an edge length of 450 µm and a voxel length
of 1 µm, so the resulting structures consist of 450 × 450 × 450 voxels.
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Figure 5.4: keff as a function of the edge length l and realization of an RVE of the
three-phase PRP

Surrogate modeling

In order to model the keff as a function of the design variables d, two types of sur-
rogate models, second-order polynomials (RSM according to Section 3.6.1) and Kriging
models (see Section 3.6.2) are investigated and compared with each other in terms of
their prediction capabilities. Both surrogate models are trained by k-fold CV with k = 5.
In each training step, the surrogates are constructed with k − 1 sets and the remaining
test set is used to estimate the accuracy of the surrogate model. For that purpose, the
coefficient of determination R2 (3.49) and the eMAE (3.46) are considered as error mea-
sures. The error measures were calculated in each of the 5 training steps and the mean
values for both surrogate types are listed in Table 5.3. It can be observed that both the
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second-order polynomials and the Kriging model can predict the ETC with high accu-
racy with R2 scores very close to 1. Fig. 5.5 shows a comparison of the ETCs predicted
by the surrogates (from the test data set where the largest eMAE occurs) with the results
of the micromechanical simulations. The Kriging model shows the best accuracy with
eMAE = 0.0048 W/mK. The predictions from the metamodel and the simulation results
differ only slightly with a maximum error of 3.8 % (0.892 W/mK (Kriging interpolation)
/ 0.927 W/mK (simulation)). Based on these observations, in the following the Kriging
model trained with all 60 samples is utilized for the solution of the material optimization
problem.
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Figure 5.5: Comparison of predictions
from the simulation model
and the surrogate model

Model R2 eMAE / (W/mK)

RSM 0.994 0.0106
Kriging 0.998 0.0048

Table 5.3: R2 and eMAE for the RSM and
Kriging surrogate

Fig. 5.6 shows the ETC as a function of the filler volume fraction and the phase propor-
tions (left) as well as the filler volume fraction and the aspect ratio (right) by setting the
remaining design variables to their upper bound values. As expected, the filler volume
fraction shows a great influence on the ETC. However, the influence of the mean aspect
ratio ar and the phase proportions δbn can also be clearly observed, especially for larger
volume fractions.

Global sensitivity analysis

In order to quantitatively determine the impact of the different design variables on
the ETC, a global sensitivity analysis is conducted. In this way, the most important
parameters influencing the ETC can be detected and the dimension of the design space
for optimization can be reduced if non-sensitive parameters are present. For this pur-
pose, first-order and total-order Sobol’ indices are computed using the Kriging surrogate
representation with 216 samples according to Section 3.7.1. Table 5.4 lists both indices
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Figure 5.6: Kriging interpolation of keff as a function of d1 and d2 (left), and d1 and
d4 (right)

Si and STi of all five design variables. The filler level is by far the most sensitive param-
eter, followed by the proportion of the individual phases and the mean aspect ratio. The
thickness of the platelet-shaped particles and the mean particle ratio can be regarded
as negligible with STi ≤ 10−3. The comparison of first- and total-order Sobol’ indices
allows to detect interactions between the individual design variables. When examining
the second-order indices, it can be observed that there is an interaction between d1 and
d2 with S12 = 0.0415, d1 and d4 with S14 = 0.0089 as well as d2 and d4 with S24 = 0.0051.

Table 5.4: Sobol’ indices of the individual design variables

Index i Design variable di Si STi
1 Vf / % 8.56 ⋅ 10−1 9.10 ⋅ 10−1

2 δbn / % 7.06 ⋅ 10−2 1.20 ⋅ 10−1

3 th / µm 3.16 ⋅ 10−4 7.76 ⋅ 10−4

4 ar 1.43 ⋅ 10−2 3.12 ⋅ 10−2

5 pr 4.76 ⋅ 10−5 7.54 ⋅ 10−5

Optimization and identification of different design variants

Based on the results of the sensitivity analysis, design variables with STi ≤ 10−3 will
be neglected during optimization. This means that the thickness of the platelet-shaped
particles th and the mean particle ratio pr are neglected and the design space reduces
to three dimensions (Vf , δbn, and ar). The DE algorithm according to Section 3.8.4
implemented in the Python library SciPy [185] is used for the solution of the optimiza-
tion problem (5.1). A population size of Np = 75 is chosen. The initial population is
uniformly distributed within the design space by LHS. The DE/best/1/bin strategy is
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employed. A crossover probability Pcross of 0.7 is selected. The mutation constant F
is chosen to be in the range between 0.5 and 1 employing dithering. The use of such
population-based methods offer the advantage of providing more design candidates by
exploring promising areas of the design space. As stated in Section 3.2, this goes along
with a lot of function evaluations, but as the optimization is performed on the surrogate,
this does not limit the use of such methods. Since various realization options for a target
ETC are to be found, several runs with DE are carried out. Table 5.5 shows a set of four
different realization options that were determined on the surrogate representation of keff

in the three-dimensional design space for k∗eff = 0.75 W/mK by four optimization calls.
The neglected design variables were set to their mid range values (see Table 5.2). Due to
the aforementioned nature of DE, an alternative way to identify different design variants
is provided by considering the iteration history of the individual populations and select
only those variants that exhibit an acceptable deviation from the target value.

1

3

2

4

Figure 5.7: Set of four “optimal” microstructural designs

Since the optimization results were obtained by the surrogate representation of the op-
timization problem, an additional solver run is performed to determine keff(d∗) for each
optimum utilizing the micromechanical model. When evaluating the simulation model,
only minor deviations of a maximum of 2.667 % for the second design variant can be
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observed. Fig. 5.7 shows sectional views of the corresponding RVEs. The choice of
different realizations allows to select those variants that can be produced most easily.

Table 5.5: Approximation of optimal microstructural realizations and validation
through the evaluation of the micromechanical model

Design no.
Units

d∗1
%

d∗2
%

d∗4
1

J(d∗red)
1

keff(d∗)
W/mK

Deviation
%

1 24.813 0.689 6.711 0 0.744 0.800
2 28.077 0.496 7.166 0 0.770 2.667
3 31.157 0.319 7.003 0 0.743 0.930
4 29.633 0.526 5.780 0 0.755 0.667

Efficient global optimization (EGO)

In applying the surrogate-based optimization approach, a total number of 60 samples
was used to create a surrogate model that represents the entire material design space
sufficiently accurately. In general, one is interested in finding a global optimum of an
optimization problem with as few as possible costs (numerical effort). The EGO algo-
rithm seems to be a suitable method for such optimization tasks, since it operates on
the basis of a relatively small number of samples for the creation of an initial Kriging
surrogate and then attempts to locate the next sampling points towards the global op-
timum by optimizing and aquisition function. In the following, the EGO algorithm as
described in Section 3.8.5 is applied for the solution of the optimization problem (5.1).
For the creation of the initial Kriging surrogate, 6 LH samples are specified and a fix
number of 20 iterations are set to quantify the performance of the method. As acqui-
sition functions, the expected improvement (EI) (3.73) and the lower confidence bound
(LCB) (3.74) are investigated. Fig. 5.8 shows keff(d) as a function of the iterations for
k∗eff=0.75 W/mK (red dashed line). The initial samples are shown as black dots and the
samples evaluated on the basis of the infill criterias are illustrated as green dots. It can
be observed that structures with almost the desired ETC are identified after only a few
iterations. The EI criterion shows a slightly better performance in that example. During
the optimization process, a deterioration of the design objective (deviation of k∗eff) can
be observed to some extent. This is due to the exploration term of the acquisition func-
tions, where samples are added in areas of the design space where the model exhibits a
large prediction variance. Table 5.6 and 5.7 list the corresponding values of the design
variables for the three best identified designs (measured by the deviation from the target
conductivity) using the EI and the LCB criterion, respectively. The best design variant
is identified by the LCB criterion after 16 iterations.
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Figure 5.8: keff for the initial samples and as a function of the number of iterations of
the EGO algorithm by using the EI (left) and the LCB criterion (right)

Table 5.6: Best microstructural realizations identified by the EI criterion

Iteration no.
Units

d1

%
d2

%
d3

µm
d4

1
d5

1
keff(d)
W/mK

Deviation
%

14 31.92 0.32 5.60 6.30 3.78 0.744 0.8
16 27.05 0.65 6.00 5.34 3.89 0.732 2.4
19 30.15 0.34 4.00 7.54 2.26 0.736 1.9

Table 5.7: Best microstructural realizations identified by the LCB criterion

Iteration no.
Units

d1

%
d2

%
d3

µm
d4

1
d5

1
keff(d)
W/mK

Deviation
%

14 34.00 0.38 5.98 4.00 2.00 0.752 0.3
16 34.00 0.12 6.00 8.00 2.24 0.750 0.0
18 21.66 0.75 6.00 8.00 2.00 0.766 2.1

Sequential quadratic programming (SQP)

In the following, it shall be demonstrated exemplarily how the difficulties resulting
from the stochastic behavior of the objective function can be handled when applying
a gradient-based optimization method. The sequential quadratic programming (SQP)
method implemented in the Python scientific library SciPy [185] (named SLSQP) is con-
sidered. Since no analytical expression for the gradients is available, the FD method is
used to approximate the gradients. The forward differential quotient Df defined as
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∂J(dl)
∂di

≈ J(d
l + h ⋅ ei) − J(dl)

h
=Dfi (5.2)

is considered for this purpose. To prevent the method from converging in a local op-
timum caused by the stochastic nature of the numerical RVEs, an adjusted step size h
must be selected for the computation of Dfi . The step size should be chosen as small
as possible to approximate the gradients as closley as possible. However, the random-
ness of the structure and small deviations in the geometrical microstructure from the
specification should not lead to a falsification of the gradient info. For that purpose, the
design variables are scaled ranging from 0 (lower bound) to 1 (upper bound). A step
size of h = 5 ⋅ 10−3 is selected for the approximation of the gradients by Dfi . For the
computation of the gradients, n+1 (n = 5) simulations must be carried out. Central dif-
ferences and local averaging methods can be used to improve the approximation quality
of the gradients. There are special methods to handle such noisy optimization prob-
lems, see, e.g., [174]. However, it is obvious that this involves a large number of solver
evaluations, so these methods are not further investigated in this work. In the following
example, the initial values are specified as the mid range values of the design variables.
A RVE size of 450 µm is considered for the computation of the ETC and only a single
statistical realization is investigated. As termination criterion, a tolerance of 5 ⋅ 10−4 is
chosen. With these parameters, the algorithm terminates after 4 iterations and a total
number of 30 function evaluations. The optimum is determined as J(d∗) = 1.26 ⋅ 10−5

with d∗ = (30.35, 0.545, 5.23 ⋅ 10−6, 5.05, 2.40).

Comparison of the optimization methods

The purpose of this subsection is to compare the optimization methods used to solve
the optimization problem (5.1). The surrogate-based optimization approach enables the
application of population-based optimization methods due to the fast evaluability of
the structural response. By application of the DE method, it was demonstrated that
different design variants can be identified. A validation of these optima obtained the
surrogate model by evaluating the numerical model revealed only minor deviations. In
applying EGO, a surrogate model was generated with a very limited number of samples.
It turned out that almost optimal designs could be determined after just a few iterations.
The EI criterion performed slightly better compared to the LCB criterion. In view of
the numerical effort this represents an attractive method. However, it is well known
that EGO is not efficient in some cases, especially for high-dimensional design spaces.
By applying a gradient-based method, the oscillations of the objective function could be
controlled by normalizing the design variables and selecting a sufficiently large step size.
However, there is a risk of getting trapped in such a local optimum if the step size for
calculating the FD is choosen too small. One way to reduce the influence of such stochas-
tic effects might be the use of larger RVEs. This must be considered separately in each
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application. If different design variants are of interest or if changing target values should
be considered, gradient-based method would need different optimization runs which is
connected with an renewed evaluation of the numerical model. Furthermore, it is in
general not known, if the found optimum is a global one. To overcome that, for example
a multi-start strategy can be adopted. The comparison demonstrate the advantages of
the proposed approach in comparison with other common used optimization techniques
for the solution of nonlinear structural optimization problems. However, the selection of
an appropriate method depends on the example considered and has to be chosen care-
fully from case to case. A remarkable advantage of the surrogate model is that it allows
an understanding of the relationship of the ETC in dependence of the design variables.
If the samples can be evaluated in parallel, this allows an faster construction of the
surrogate model.

5.1.3 Experimental validation

In order to validate the numerical homogenization method, simulation results are com-
pared with corresponding measurements. In deviation from the previous considerations,
silicone (k = 0.18 W/mK) is considered as matrix material in the following for reasons of
limited manufacturing possibilities. Material specimens consisting of the silicone matrix
doped with spherical aluminum oxide particles with an mean diameter of 15 µm and flaky
boron nitride particles with a mean diameter of 25 µm were produced. The specimens
were prepared in a vacuum by Speedmixer DAC 600.1 FVZ and two specimens with a
filler volume fraction of 33.16 % and 40 % were analyzed. To account for stochastic
influences, the measurements were repeated five times with newly prepared specimens.
The bulk ETC was measured indirectly with the stationary cylinder method according
to ASTM D5470-12 [10] by TIM Tester from ZfW Stuttgart. For the simulation, cubic
RVEs with an edge length of 200 µm and a voxel length of 250 nm (800×800×800) voxels
and 125 nm (1600 × 1600 × 1600) voxels are generated and the particles were allowed to
touch each other. The thermal conductivities of the individual constituents were selected
according to Table 5.1. As in the previous studies, perfect spherical and platelet-shaped
particles with a uniform distribution and isotropic orientation are analyzed. The parti-
cle diameters distributions were specified according to the data sheet from the material
supplier and the aspect ratio of the platelet-shaped particles is set to 5. As can be seen
in Table 5.8 (No. 3 + 4), for a voxel length of 125 nm, this results in ksim = 0.81 W/mK
(simulation) and kmeas = 0.95 W/mK (measurement, mean value) for a particle volume
fraction of 33.16 % and ksim = 1.08 W/mK and kmeas = 1.04 W/mK for a particle volume
fraction of 40 %. The values in the square brackets indicate the value range of the five
measurements. The deviations may result from various uncertainties, such as discrep-
ancies in the exact conductivities of the fillers, an non-uniform distribution of the fillers
in the blend, the consideration of idealized particle geometries as well as measurement
errors. As mentioned above, the influence of the voxel grid (with voxel length h) on the
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approximation quality of the particle contact faces must also be taken into account. For
that purpose, for the three-phase material (No. 3 + 4), the ETC computed with a voxel
length of 250 nm is given additionally in Table 5.8. The reduction of the ETC by using
a smaller voxel length results from a better approximation quality of the particle contact
areas with a fine voxel grid (decreasing particle contact areas). Due to the enormous
numerical effort, it was not possible to carry out simulations with a finer resolution of the
structures (h < 125 nm). To reduce the influence of such uncertain parameters, further
validation studies will be performed. For this purpose, two compounds are investigated
in which only silicone filled with spherical alumina (mean diameter of 15 µm) is exam-
ined, taking into account filler volume fractions of 40 % and 50 %. In this case, the
uncertainties mentioned are much less pronounced compared to the three-phase PRP.
For that material, convergence of the ETC was achieved by an edge length of 200 µm and
a voxel length of 0.25 µm (according to εvol = 2.5 % and εvol = 1 % in relation to a RVE
with the half edge length respectively the double voxel length), so the influence of the
particle contact faces is by far not as dominant as in the three-phase material example.
As shown in Table 5.8, this results in ksim = 0.76 W/mK and kmeas = 0.79 W/mK for a
filler volume fraction of 40 % and ksim = 1.07 W/mK and kmeas = 1.18 W/mK for a filler
volume fraction of 50 % and differs less than 10 %. In analogy to the Voigt-Reuss bounds
in elasticity, the lower and upper Wiener bounds (designated as kWLB and kWUB) are
listed in Table 5.8. For comparison purposes a relative error

erel =
∣kmeas − ksim∣
kWUB − kWLB

(5.3)

is introduced. Due to the large contrast in the conductivities (especially in No. 3 + 4),
the relative error is quite small. These examples demonstrate the importance of thorough
material characterization in combination with the application of suitable manufacturing
techniques to realize the digital material.

Table 5.8: Validation of the homogenization results by comparison with corresponding
measurements

No.
Units

d1

%
d2

%
kmeas

W/mK
ksim

W/mK
kWLB

W/mK
kWUB

W/mK
erel

%

1 40 0 0.79 0.76 0.30 12.11 0.25
2 50 0 1.18 1.07 0.36 15.09 0.75
3 14.92 18.24 0.95 [0.91-0.98] 0.81 (0.89) 0.27 77.55 0.18
4 20 20 1.04 [0.99-1.11] 1.08 (1.25) 0.30 86.11 0.047
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5.2 Optimization of the linear viscoelastic properties of SFRPs

In this section, the optimization framework is applied for the optimization of the ef-
fective viscoelastic behavior of SFRPs. In contrast to the previous example, in which
an isotropic orientation of the filler particles was prescribed, arbitrary fiber orientation
states should now be taken into account. This results in a generally anisotropic ma-
terial behavior, which must be considered in the surrogate modeling process. Beside
the fiber orientation distribution, the fiber volume fraction, and the linear elastic fiber
material properties are specified as design variables. The aim is to find material designs
with a desired viscoelastic behavior and to examine the robustness of these designs.
A generalized Maxwell model is used to model the viscoelastic behavior of the poly-
mer matrix. In the numerical homogenization step, creep simulations are performed on
RVEs and the FFT-based homogenization method is employed to compute the associ-
ated microscopic solution fields. The optimizations results allow a consideration of the
local microstructure during the manufacturing of SFRPs in order to achieve a desired
macroscopic viscoelastic behavior of components.

5.2.1 Viscoelastic matrix material model and parameter identification

The viscoelastic behavior of SFRPs is almost completely governed by viscous effects of
the polymer matrix. The constitutive behavior of the fibers is modeled as linear elastic.
In the following, a generalized Maxwell model [83] is used to model the rate-dependent
viscoelastic behavior of the polymer matrix. The generalized Maxwell model can be
considered as a rheological model consisting of a spring connected in parallel with N
spring-damper (Maxwell) elements as sketched in Fig. 5.9. The kth Maxwell element is
described by the modulus Ek (k = 1, ...,N) and the relaxation constant τk (alternatively
expressed by the viscosity ηk = Ek ⋅ τk). In linear viscoelasticity, the stresses and strains
are connected via a convolution integral, considering arbitrary strain histories by the
superposition principle as follows:

σ(t) = ∫
t

0
Γ(t − s) ∶ ∂ε(s)

∂s
ds. (5.4)

In (5.4), Γ describes a symmetric fourth-order relaxation tensor. For the generalized
Maxwell model considered in the following, it is assumed that the relaxation tensor can
be expressed in a normalized form as

Γ(t) = ψ(t) ⋅Cr (5.5)

with the normalized relaxation function

ψ(t) = 1 +
N

∑
k=1

γk ⋅ exp(− t

τk
) (5.6)
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including the normalized relaxation coefficients γk = Ek

E0
. For t → ∞, Γ(t) tends to the

relaxed stiffness tensorCr and results in a pure linear elastic (relaxed) material described
by a single spring element. A detailed description, including a discretized form of the
viscoelasticity model, can be found in [83].

E0

E1

τ1

EN

τN

Figure 5.9: Principal sketch of the gen-
eralized Maxwell model

Element k Ek / MPa τk / s γk
1 47.40 1 ⋅ 101 0.095
2 15.00 1 ⋅ 102 0.030
3 187.61 1 ⋅ 103 0.376
4 197.39 1 ⋅ 104 0.396
5 200.04 1 ⋅ 105 0.401
6 200.30 1 ⋅ 106 0.402
7 145.39 1 ⋅ 107 0.292
8 99.91 1 ⋅ 108 0.200
9 51.24 1 ⋅ 109 0.103
10 20.35 1 ⋅ 1010 0.041

Table 5.9: Identified viscoelastic material
parameter (N = 10) for PA 66

Polyamide (PA) 66 (Zytel 101) is investigated as polymer material, which is a commonly
used material for technical applications. In [196] and [197], corresponding measurements
including a master curve for this material are presented. To specify the viscoelastic
behavior of the matrix material, the material parameters Ek and τk (respectively ηk)
in (5.6) have to be determined. Following [99], a constant Poisson’s ratio ν = 0.38 is
assumed for the isotropic polymer matrix. As a rule of thumb, according to [95] 10
Maxwell elements (N = 10, one for each time decade) are used to model the viscoelastic
material behavior in the time intervall t ∈ [0,1010.7] s. The relaxation constants τk are
specified to be constant, see Table 5.9. Consequently, only 10 stiffness parameters Ek
and E0 have to be determined. For that purpose, the following least squares optimization
problem is formulated:

J(E0,E1, ...,E10) =
M

∑
i=1

(εi,model(E0,E1, ...,E10) − εi,exp)2 →min. (5.7)

In (5.7), M = 10 strain values at each time decade (101,102, ...,1010)s are regarded.
The bounds for the stiffness of the individual springs are set to E0 ∈ [0.2,2] GPa and
Ek ∈ [0.015,1] GPa for the remaining spring elements. For solving (5.7), the sequen-
tial quadratic programming (SQP) method implemented in the Python scientific library
SciPy [185] is used. As start values, E0 = 0.5 GPa and Ek = 0.1 GPa for the remain-
ing spring elements are chosen. The optimum is calculated as J∗ = 3.84 ⋅ 10−4, which
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seems to be sufficiently accurate for engineering purposes. This results in a stiffness
of E0 = 498.5 MPa for the single spring element. The identified viscoelastic material
parameter of the 10 Maxwell elements are summarized in Table 5.9.

5.2.2 Optimization approach

The overall (anisotropic) viscoelastic behavior of SFRPs can be expressed by the macro-
scopic creep compliance tensor (respectively the relaxation tensor), which is generally
defined by 21 independent material parameters. In the following, the interaction between
normal stresses and shear strains will be neglected. This means that the effective consti-
tutive material behavior is treated as orthotropic. Further investigations show that the
neglected parameters are quite small compared to these orthotropic parameters. Hence,
the description of the effective viscoelastic behavior of SFRPs will be reduced in the
following to the consideration of 9 time-dependent elastic constants. These parameters
are comprised of three Young’s moduli E1,eff, E2,eff, E3,eff, three shear moduli G12,eff,
G13,eff, G23,eff, and three Poisson’s ratios ν12,eff, ν13,eff, ν23,eff and can be identified in the
Voigt notation of the creep compliance tensor as follows:

Υeff(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1,eff(t) −ν21,eff(t)

E2,eff(t) −ν31,eff(t)
E3,eff(t) 0 0 0

−ν12,eff(t)
E1,eff(t)

1
E2,eff(t) −ν32,eff(t)

E3,eff(t) 0 0 0

−ν13,eff(t)
E1,eff(t) −ν23,eff(t)

E2,eff(t)
1

E3,eff(t) 0 0 0

0 0 0 1
G23,eff(t) 0 0

0 0 0 0 1
G13,eff(t) 0

0 0 0 0 0 1
G12,eff(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.8)

Please note that Υeff is symmetric, i.e., Υij,eff = Υji,eff (i, j = 1,2, ...,6). In order to find
a microstructural design with a desired viscoelastic behavior, the following minimization
problem for the design variables d is considered:

J(d) =
⎛
⎝
E1,eff(d) −E∗

1,eff

E∗
1,eff

⎞
⎠

2

+
⎛
⎝
E2,eff(d) −E∗

2,eff

E∗
2,eff

⎞
⎠

2

+
⎛
⎝
E3,eff(d) −E∗

3,eff

E∗
3,eff

⎞
⎠

2

+

⎛
⎝
G12,eff(d) −G∗

12,eff

G∗
12,eff

⎞
⎠

2

+
⎛
⎝
G13,eff(d) −G∗

13,eff

G∗
13,eff

⎞
⎠

2

+
⎛
⎝
G23,eff(d) −G∗

23,eff

G∗
23,eff

⎞
⎠

2

+

⎛
⎝
ν12,eff(d) − ν∗12,eff

ν∗12,eff

⎞
⎠

2

+
⎛
⎝
ν13,eff(d) − ν∗13,eff

ν∗13,eff

⎞
⎠

2

+
⎛
⎝
ν23,eff(d) − ν∗23,eff

ν∗23,eff

⎞
⎠

2

→min

s. t. di,low ≤ di ≤ di,up.

(5.9)
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5.2 Optimization of the linear viscoelastic properties of SFRPs

Formulation (5.9) includes the 9 viscoelastic material parameters as a function of the
design variables and the desired values. In the following, the design variables are defined
that span the material design space for optimization. Both design variables of the
geometrical microstructure and material property descriptors are taken into account. As
design variables of the geometrical microstructure, the fiber volume fraction Vf and the
fiber orientation distribution are investigated, which are recognized to have a significant
influence on the overall mechanical (and viscoelastic) behavior. Vf ranges from 5-20 %,
which is a commonly found range in most materials used for engineering applications. For
the representation of the fiber orientation distribution state, the second-order symmetric
Advani-Tucker tensor [4]

A = 1

N

N

∑
i=1

pi ⊗ pi (5.10)

is investigated, in which pi describes the normalized fiber direction vector of fiber i and
N denotes the number of fibers. Please note that (5.10) is only valid for fibers with same
length. It is obvious that the expression (5.10) does not provide a unique description
of the fiber orientation distribution state, since the spatial distribution of the fibers is
not fully covered. However, it is the common output of injection molding software and
the larger the RVE considered, the less pronounced the influence of the spatial fiber
distribution on the overall properties. An overview of measures for the fiber orientation
distribution using higher-order moments can be found, e.g., in [115]. If A is the only
available measure of the fiber distribution, some homogenization methods requires a
closure approximation [115]. By making use of an eigenvalue decomposition (principal
component analysis), A can be expressed in terms of an orthogonal rotation matrix Rrot

defined by three Euler angels θ, γ, β ∈ [0, π] and two independent parameters λ1 and λ2

as

A =Rrot(θ, γ, β) ⋅ diag(λ1, λ2, λ3) ⋅Rrot(θ, γ, β) (5.11)

with λ1 ≥ λ2 ≥ λ3 = 1 − (λ1 + λ2) and tr(A)=1. Compared to the description of A by
(5.10), expression (5.11) depends on only two (λ1 and λ2) instead of five independent
parameters. The fiber orientation states can be visualized within the fiber orientation
triangle space, spanned by λ1 and λ2 satisfying the inequalities

1

3
≤ λ1 ≤ 1 and

1

2
(1 − λ1) ≤ λ2 ≤ min(λ1,1 − λ1). (5.12)

Köbler et al. [89] introduced a special coloring-scheme to characterize the different
fiber orientation states. The three special cases of isotropic, unidirectional, and planar
isotropic fiber orientation are described by the corners of the fiber orientation triangle
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Chapter 5 Optimization of effective material properties

as depicted in Fig. 5.10. To characterize the material behavior for arbitrary fiber
orientation states, each tangential stiffness tensor can be transformed as follows:

C
′

eff,V =Rrot ⋅Rrot ⋅Ceff,V ⋅RT
rot ⋅RT

rot. (5.13)

Figure 5.10: Illustration of the fiber orientation state (Fig. taken from [89]) by the
fiber orientation triangle and RVEs of the three extreme orientation states
(isotropic, unidirectional, and planar isotropic)

As material property descriptors, the linear elastic constants of the fiber material are
specified. These are the Young’s modulus Ef ranging from 25-250 GPa and the Poisson’s
ratio νf ranging from 0.2 to 0.4. This enables the consideration of many fiber materials
relevant in engineering. It is important to mention that due to the consideration of
arbitrary orientation states in a post-processing step by specification of three Euler
angles θ, γ, β in (5.13), the dimension of the design space to be considered in the
numerical model of the time-dependent viscoelastic behavior can be reduced from 8 to 5
independent design variables. This is an important aspect, since reducing the dimension
of the design space generally leads to a reduction in the number of samples required and
thus the numerical effort can be reduced. The design variables including their lower and
upper bounds are listed in Table 5.10.

Design of experiments

The LH scheme according to Section 3.3.3 is utilized to specify the samples to be evalu-
ated within the five-dimensional material design space. This requires the consideration
of the feasible area of the constraint fiber orientation space described by inequality
(5.12) to avoid unphysical descriptors. The samples that lie outside the feasible range
are neglected. A total number of m = 48 samples (experiments) spread in the feasible
area of the material design space are selected. In Fig. 5.11, the sample distribution in
the geometrical microstructure descriptor and in the fiber material property descriptor
space is illustrated. One can observe a quite uniform distribution of the samples over
the entire design spaces. An RVE is created for each sample and six load cases needs to
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5.2 Optimization of the linear viscoelastic properties of SFRPs

Table 5.10: Design variables with lower- and upper bounds

Index i Design variable di Lower bound di,low Upper bound di,up
1 Vf / % 5 20
2 λ1 0.33 1
3 λ2 0.5(1 − λ1) min(λ1,1 − λ1)
4 Ef / GPa 25 250
5 νf 0.2 0.4
6 θ / rad 0 π
7 γ / rad 0 π
8 β / rad 0 π

be computed to yield the full anisotropic compliance tensor in the form of (5.8). This
results in a total number of 48 ⋅6 = 288 required simulations. The corresponding material
database comprises nsamp sets of six inputs d ∈ R6 (since the orthotropic parameters are
time-dependent, the time can be assumed as additional parameter and nsamp =m ⋅ no. of
time-increments have to be considered in the surrogate model) and the nine orthotropic
parameters y ∈ R9 (y → E1,eff, E2,eff, E3,eff, G12,eff, G13,eff, G23,eff, ν12,eff, ν13,eff, ν23,eff as
outputs as

{(d(1),y(1)), (d(2),y(2)), ..., (d(nsamp),y(nsamp))}. (5.14)
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Figure 5.11: LH sample distribution in the geometrical microstructure descriptor (left)
and in the fiber material property space (right)

Microstructure generation

The generation of RVEs of SFRPs is performed according to the announcements in
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Section 3.4. In order to describe the microstructure of SFRPs, the fiber orientation
tensor A, the fiber volume fraction as well as the fiber length and the fiber diameters
needs to be specified. Fibers with a constant length of 200 µm and an aspect ratio
(=fiber length/fiber diameter) of 20 are investigated, which are typical values for SFRPs
in industrial applications. The fibers are not allowed to touch each other during the
generation of the structure. As RVE parameters, the voxel length h and the number of
voxels in each spatial dimension (respectively the edge length l = no. of voxels ⋅ h) has
to be defined. Only cubical volume elements are considered in the following.

Computation of the effective viscoelastic material parameter

In the following, based on the explanations in Section 3.5.6, the transient microscopic
BVP in the RVE domain ω is described. Virtual creep experiments are carried out to
determine the overall viscoelastic material behavior in terms of (5.8). For this purpose,
a constant macroscopic stress

⟨σ⟩ = 1

∣ω∣ ∫ω σ(x, t) dω (5.15)

will be applied by the associated traction vector at the boundary ∂ω of the RVE. The
microscopic quantities to be computed are the local stresses σ, the fluctuating periodic
displacement fields ũ, and the macroscopic strain ⟨ε⟩. The static balance equation within
the RVE domain ω and the considered time intervall reads

div σ(ε(x, t)) = 0 x ∈ ω , t ∈ [0, T ]. (5.16)

As described in Section 3.5.6, the kinematic compatibility equation for the local strain
fields can be expressed in the small strain regime as

ε(x) = ⟨ε⟩ + 1

2
(∇ũ(x) + ∇T ũ(x)) x ∈ Ω. (5.17)

The following mixed BCs are prescribed on the boundary ∂ω of the RVE

t(x, t) = ⟨σ⟩ ⋅n(x) −# x ∈ ∂ω
ũ(x, t) # x ∈ ∂ω,

(5.18)

where n is a unit normal vector and t is the applied traction vector resulting from the
specification of a macroscopic stress (5.15). As denoted in Section 3.5.6, # in (5.18)
means equal strain fluctuations ũ on opposite RVE sides and −# means that the trac-
tion vector t shows in opposite directions on opposite RVE sides in order to consider
static balance. The constitutive behavior of the the polymer material is modeled as lin-
ear viscoelastic according to Section 5.2.1. Linear elastic (isotropic) material behavior
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5.2 Optimization of the linear viscoelastic properties of SFRPs

is assumed for the fiber material, which is fully described by the specification of the
Young’s modulus Ef and the Poisson’s ratio νf . Perfect bonding between the fibers
and the matrix is assumed. The unknown overall viscoelastic behavior is assumed to
be viscoelastic too. In strain formulation and by using the Voigt notation, it can be
expressed in the following form:

⟨εi⟩ = ∫
t

0
Υij,eff(t − s) ⋅ ⟨

∂σj(s)
∂s

⟩ ds, (i, j = 1,2, ...,6). (5.19)

Therein, Υ ∶ [0, T ] → R3 ⊗ R3 ⊗ R3 ⊗ R3 corresponds to the fourth-order symmetric
macroscopic creep compliance tensor to be determined. By specification of the jth
component of a stepped macroscopic stress tensor ⟨σj⟩ = H(t − t0) ⋅ σ0, the components
of the creep compliance tensor

Υij,eff = ⟨εi⟩
⟨σj⟩

, (i, j = 1,2, ...,6) (5.20)

can be computed by the solution of six BVPs (by prescibing three tension and three
shear loads according to (5.18) in perpendicular coordinate directions). The transient
BVP can be interpreted as a linear elastic problem to be solved in each time step. In the
following, a stress value of σ0 = 1 MPa is specified. The considered time interval is set
to T = 104 s. Investigations with varying step size reveal that 32 time increments (8 per
decade) equally spread over the logarithmic time scale provide sufficient accuracy. For
the solution of (5.16)-(5.18), an FFT-based solution scheme is applied. The conjugate
gradient (CG) method [53] with a tolerance of 5 ⋅ 10−5 is used. The computations are
performed by the FeelMath solver integrated in the ElastoDict module [148] of GeoDict
[14]. In Fig. 5.12, the RVE representation for a sample (left) and the creep curves for
the applied tensile and shear load are illustrated. The corresponding von Mises strain
fields within a cross-sectional area of the RVEs are illustrated in Fig. 5.13 for the last
time increment. Due to the relatively large stiffness of the fibers, the largest strain val-
ues are localized in the matrix material, especially in the immediate vicinity of the fibers.

RVE convergence study

In this subsection, the influence of the size of the RVEs and the influence of the reso-
lution on the homogenization results are examined. To investigate the influence of the
edge length, a RVE with an edge length of 1200 µm and a voxel length of 1 µm (10 vox-
els per fiber diameter) is considered as reference. The three extreme orientation states
(isotropic, planar isotropic, and unidirectional) with Vf = 20 % are investigated and the
edge length is gradually increased by 200 µm starting at 400 µm. As error metric, the
relative error of the macroscopic creep compliance tensor according to (5.8) in the Frobe-
nius norm is computed. The corresponding results evaluated at t = 104 s are illustrated
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Figure 5.12: RVE representation of a sample with d1 = 16.635 %, d2 = 0.543, d3 = 0.399
(left) and creep curves for a prescribed macroscopic tensile load in x1-
direction and a macroscopic shear load of 1 MPa in the x1x2-plane (right)

in Fig. 5.14 (left). It can be observed that for the isotropic and unidirectional fiber
orientation state, the error decreases from about 10 % for the smallest edge length to
less than 5 % for an edge length of 800 µm. The error of the planar isotropic orientation
state shows a nearly constant value of about 8 %. This may be due to the fact that
for the orientation states and fiber volume fractions considered here, the generation of
the geometrical microstructures at different edge lengths shows slight deviations from
each other. The influence of the resolution of the structure is investigated by varying
the number of voxels per fiber diameter. For this purpose, an RVE with an edge length
of 600 µm and a voxel number of 1200 (20 voxels per fiber diameter) is considered as a
reference. The resolution is gradually increased by 2 voxels per fiber diameter starting
with 6 voxels per fiber diameter. Again, the three extreme fiber orientation states are
examined. The relative error in the Frobenius norm for t = 104 s is depicted in Fig. 5.14
(right). By specification of 14 voxels per fiber diameter, the relative error is below 5 %
for all orientation states. It should be noted that this can be considered as a worst-case
assumption, since both the extreme fiber orientation states and the maximum stiffness
contrast are considered here. In the following, cubic RVEs with an edge length of 500
µm and a voxel length of 1 µm are generated for each sample, which seems to be a
reasonable tradeoff between computational effort and accuracy.

Surrogate modeling

Based on the created material database (5.14), Kriging surrogate models for the nine

88



5.2 Optimization of the linear viscoelastic properties of SFRPs

l l

l l

x3 x2

x2 x1

Figure 5.13: Von Mises strain fields for the considered load cases (tensile load: left,
shear load: right) at t = 104 s within a cross-sectional area (half RVE
length) of the associated RVE with d4 = 198.125 GPa and d5 = 0.3.

time-dependent effective viscoelastic material parameters will be created. This allows
the representation of the full anisotropic overall viscoelastic material behavior in the
form of (5.8) that is characterized by three Young’s moduli, three shear moduli, and
three Poisson’s ratios as a function of the design variables. In the following optimization
example, the time interval is chosen as t ∈ [100.125,104] s. The time dependence is mod-
eled on the logarithmic time scale considering five time steps for each material parameter
(one for each decade (t = 101, ..., 104 s) and one for the first time increment at t = 100.125

s). This results in a total number of nsamp = 48 ⋅ 5 = 240 samples used to build each
surrogate model. In order to test the prediction quality of the Kriging models, an error
analysis by k-fold cross validation with k = 6 is conducted. The eMAPE values (3.47) of
the individual Kriging surrogates are listed in Table 5.12. It can be observed that the
surrogate models can predict the viscoelastic behavior quite well with a maximum error
of 3.07 % for G13,eff.

Optimization and robustness evaluation

The description of the effective viscoelastic material parameters with surrogate mod-
els leads to a corresponding surrogate representation of the objective function according
to (5.9). The target values usually result from the specific product requirements and
can be derived by optimization at the component level. A possible technical application
are seals, for example, where the time-dependent viscoelastic material parameters can
be designed to satisfy a specific leak tightness. In the following, it is assumed that these
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Figure 5.14: Relative error of the creep compliance tensor in the Frobenius norm in
dependence of the edge length (left) and the resolution (right) for the
three extreme fiber orientation cases

target values are given as a result of such a component specification. For demonstration
purposes, the desired viscoelastic material parameters are obtained for the following mi-
crostructural configuration: d1=12 %, d2=0.57, d3=0.33 (λ3 = 0.1), d4 = 72 GPa, and
d5 = 0.22 (according to glass fibers) at room temperature (T = 23○C) at t = 104 s. These
are listed in Table 5.11. In the following example, the rotational degrees of freedom (d6

to d8) are not considered as additional design variables, thus the material behavior is
described in terms of 5 design variables.

Table 5.11: Target values of the orthotropic components

Component
Units

E∗
1,eff

GPa
E∗

2,eff

GPa
E∗

3,eff

GPa
G∗

12,eff

GPa
G∗

13,eff

GPa
G∗

23,eff

GPa
ν∗12,eff

1
ν∗13,eff

1
ν∗23,eff

1

5.17 4.29 3.83 1.71 1.42 1.37 0.3660 0.3756 0.4084

For the solution of the optimization problem, the constraint version of DE as mentioned
in Section 3.8.4 is employed. An initial population of size Np = 75 is generated. The can-
didates are uniformly distributed within the design space by LHS. The DE/best/1/bin
strategy is used. A crossover probability Pcross of 0.7 is selected and the mutant factor
F is chosen to be in the range between 0.5 and 1 employing dithering. In Fig. 5.15,
the objective function value (fitness) is plotted against the number of iterations. For
a termination tolerance of 1 ⋅ 10−3 (convergence is reached if the standard deviation of
the population energies normed by the mean is smaller than that value), the algorithm
stops after 48 iterations and 3638 function evaluations. The optimization result is listed
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Table 5.13: Optimization results obtained from the surrogate representation

Design no.
Units

d∗1
%

d∗2
1

d∗3
1

d∗4
GPa

d∗5
1

J(d∗)
1

1 12.02 0.56 0.34 70.92 0.28 2.33⋅10−4

2 11.12 0.55 0.34 84.10 0.29 5.22⋅10−4

3 12.92 0.58 0.34 61.33 0.26 8.56⋅10−4

4 10.28 0.55 0.34 99.80 0.29 1.18⋅10−3

in Table 5.13 (design no. 1). The discrepancies from the target values are quite small,
i.e., a value of J(d∗) = 9 ⋅ 10−4 implies a deviation of 3 % in one of the nine viscoelastic
constants in the expression of the objective function.
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Figure 5.15: Fitness versus number of itera-
tions for the first optimization
run

Component eMAPE / %

E1,eff 2.48
E2,eff 1.70
E3,eff 2.45
G12,eff 1.95
G13,eff 3.07
G23,eff 3.00
ν12,eff 2.35
ν13,eff 2.48
ν23,eff 1.79

Table 5.12: eMAPE of the individ-
ual Kriging surrogate
models

In a next step, alternative design variants should be found and examined for their ro-
bustness. For the evaluation of the robustness of the designs, the worst-case measure
ρR according to Section 3.9.2 is investigated and the size of the hypercube is specified
with δ = 0.075. Since one is interested in finding different design variants, user-specific
constraints, e.g., the hypercube area (3.78) with a size defined by specification of δ can
be added in (5.9) to find variants that differ to a certain level from the previous ones dur-
ing renewed optimization. Three additional optimizations are performed for illustration
purposes. The additional user-specific constraints are chosen here such that the upper
and lower bounds of the fiber volume fraction defined by the hypercube are established
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as additional constraints in (5.9). This can be regarded as an iterative process, con-
trolled by specifying the desired number of optimized designs and setting a maximum
value of the objective function that prevents the designs deviating too much from the
target behavior. The resulting design alternatives are listed in Table 5.13. It can be
observed that even for the alternative design variants (design no. 2-4), the deviation
from the desired viscoelastic behavior is quite small. The microstructural realizations
in the form of RVEs are shown in Fig. 5.16. In Table 5.14, the worst-case measure ρR
(3.79) of the four identified designs are listed. There are no major differences in the
robustness of the different variants. However, the results of such robustness evaluations
might be an additional criterion for the designer to select an appropriate variant.

Table 5.14: Worst-case measure and objective function value of the metamodel com-
pared with the results from the micromechanical model for the four iden-
tified “optimal” designs

Design no. ρR(d∗) J(d∗) Jnum(d∗)
1 4.17⋅10−2 2.33⋅10−4 6.40⋅10−4

2 4.15⋅10−2 5.22⋅10−4 7.21⋅10−4

3 4.52⋅10−2 8.56⋅10−4 3.92⋅10−4

4 4.15⋅10−2 1.18⋅10−3 1.64⋅10−3
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4

Figure 5.16: RVE representation of a set of four “optimal” microstructural designs
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Since the optimizations were carried out on a faulty surrogate model, each identified
optimum is validated by the evaluation of a micromechanical simulation. RVEs with an
edge length of 600 µm and a resolution of 14 voxels per fiber diameter are considerd.
Table 5.14 compares the objective function values of the optimas obtained by the surro-
gate model with the evaluation of the micromecahnical model. Only minor differences
can be observed. For the specified target viscoelastic parameters, the surrogate model
can predict the behavior quite well. When manufacturing composite parts, the designer
can therefore choose from different variants the one that is easiest or most cost-effective
to produce.

5.2.3 Experimental validation

In this subsection, the homogenization results were calibrated by comparison with cor-
responding measurements. For this purpose, the isochronous stress-strain curves for
the considered material (PA66, Zytel 70G30HSLR NC010) available from the polymer
material database CAMPUS (Altair Engineering GmbH 2022) [27] are investigated. A
fiber weight fraction of 30 % (corresponding to a fiber volume fraction of 17 %) is ana-
lyzed. The viscoelastic material parameters identified in Section 5.2.1 are used for the
specification of the simulation. A fiber orientation state of λ1 = 0.78 and λ2 = 0.1 is
considered, because this is a common fiber orientation state realized in test specimens.
In Fig. 5.17, the simulated creep curve for a macroscopic load of 32 MPa is compared
with the experimental measurements. This value is chosen because the stresses in the
polymer of the SFRP best corresponds to the stress for which the viscoelastic material
parameter of the neat polymer were identified. There can be observed only small differ-
ences within the considered time history with a deviation of less than 10 %. By further
varying the fiber orientation distribution, no better correspondence could be achieved.
The deviations can result from other test conditions or nonlinear viscoelastic effects.
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Figure 5.17: Comparison of creep simulation results with experimental results for an
applied tensile load of 32 MPa
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5.3 Multiphysical optimization of the three-phase PRP

Especially in the context of electromobility applications, it is usually not sufficient to
consider purely thermal or mechanical requirements for the material properties, as in the
previous examples. As stated in the motivation, different physical material properties
must be taken into account in their entirety in order to fulfil specific multiphysical prod-
uct requirements. In this section, the surrogate-based multiscale optimization method
is adopted to address such multiphysical issues. For that purpose, a formulation of
the material optimization problem as MOO problem is introduced. Surrogate models
for each effective physical material property (respectively the individual design objec-
tives and constraints) are constructed. These surrogate representations enables to find
an approximation of the conflicting design objectives in terms of the Pareto front by
population-based MOO methods in an efficient way.

5.3.1 Optimization approach

In the following, the surrogate-based MOO approach is demonstrated by the example of
the previously considered three-phase PRP (see Section 5.1). In addition to the require-
ment of a target ETC k∗eff, the multiphysical problem statement includes the demand for
a desired overall coefficient of thermal expansion (CTE) α∗eff and the specification of a
maximum effective stiffness in terms of the Young’s modulus Eeff,max as constraint. The
following MOO problem for the design variables d is formulated:

J1(d) = (keff(d) − k∗eff

k∗eff

)
2

→min

J2(d) = (αeff(d) − α∗eff

α∗eff

)
2

→min

s. t. g(d) = Eeff(d) −Eeff,max ≤ 0,

di,low ≤ di ≤ di,up.

(5.21)

In this example, both design variables of the geometrical microstructure and the material
properties of the filler particles are investigated. Besides the descriptor of the geometrical
microstructure in terms of the filler volume fraction Vf and the phase proportion of the
platelet-shaped particles δfp, the thermomechanical (isotropic) material parameter E,
ν, α, k of the filler particles are specified as design variables. The problem statement
comprises a total of n = 10 design variables chosen to cover a wide range of different
technical relevant fillers. The design variables and their lower and upper bounds are
listed in Table 5.15. The thermomechanical material parameter of the PBT matrix are
considered to be constant at room temperature and are listed in Table 5.16. Please
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Table 5.15: Design variables with lower- and upper bounds

Index i Design variable di Lower bound di,low Upper bound di,up
1 Vf / % 0 34
2 δfp / % 0 75
3 Esp / GPa 50 400
4 νsp 0.2 0.3
5 αsp / (ppm/K) 4 6
6 ksp / (W/mK) 2 40
7 Efp / GPa 10 320
8 νfp 0.1 0.3
9 αfp / (ppm/K) 0.1 5
10 kfp / (W/mK) 150 400

note that these material parameters are in general a function of the temperature, i.e.,
Em decreases with increasing temperature, while αm increases. Such thermomechanical
material optimization problems could be relevant for example for molding materials of
encapsulated circuits. For such applications, in addition to a target ETC, a certain CTE
(that coincides with the circuit board’s) is sought. The demand for a maximum stiffness
could be of importance in order to reduce stresses (and failure) due to a missmatch of
the CTEs of both materials under temperature loading.

Table 5.16: Thermomechanical material parameter of the PBT matrix

Em / GPa νm αm / (ppm/K) km / (W/mK)

2.3 0.4 60 0.23

Design of Experiments and microstructure generation

To create surrogate models of the individual objective functions, the thermomechani-
cal SPR is evaluated based on well-chosen samples within the material design space. It
is obvious that, except of the design variables of the geometrical microstructure d1 and
d2, not each effective material property considered in MOO problem (5.21) depends on
all 10 design variables. For example, the overall thermal material behavior is completely
specified by the design variables of the geometrical microstructure and the thermal con-
ductivities of the fillers (d6 and d10). Following that, the design space is splitted into
two subsets - one set of design variables describing the ETC keff and another set of
design variables for Eeff and αeff. In the first set, the 4-dimensional design space for the
modelling of the ETC is explored by the creation of 38 LH samples. For the modeling
of the thermoelastic behavior, 80 LH samples are selected within the 8-dimensional de-
sign space. For illustration purposes, the projections of the sample distributions within
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selected 2D and 3D material design spaces are illustrated for both subsets in Fig. 5.18.
A fairly even distribution of the samples within the design spaces can be observed. For
each individual sample, a microstructure according to the announcements in Section 5.1
is generated. The particle sizes are fixed to their upper bounds (see Table 5.2).
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Figure 5.18: Projections of the LH sample distribution within selected 2D and 3D
material design spaces

Computation of the effective thermal expansion tensor

In the following, the computation of the effective thermal expansion tensor αeff (con-
sidered in J2) to describe the overall thermoelastic material behavior of the three-phase
PRP is described. For that purpose, a corresponding BVP in the RVE domain ω is for-
mulated. This BVP is not further elaborated here, because it is a simple extension of the
pure linear elastic localization problem described in Section 3.5.6 by replacing Hooke’s
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law (2.14) by (2.19) and the specification of a temperature increment ∆T . Supplemen-
tary to the notations and explanations in Section 5.1, the RVE domain ω = (0, l)3 ⊂ R3 of
the three-phase PRP is subdivided into three subdomains (phases) ωp (p = 1,2,3), which
are associated by the stiffness tensor C(x) = Cp for x ∈ ωp and the thermal expansion
tensor α(x) = αp if x ∈ ωp. Please note that p = 1 corresponds to the thermomechanical
material properties of the matrix (index m, see Table 5.16), p = 2 those of the spherical
particles (index sp), and p = 3 those of the platelet-shaped particles (index fp), see Ta-
ble 5.15. Since isotropic material behavior of the constituents is assumed in (2.19), αp
can be expressed as a scalar value, i.e., αp = αpI. Correspondingly, the stiffness tensor
of each phase Cp is defined by the specification of the Young’s modulus Ep and the
Poisson’s ratio νp. In analogy to the local form of (2.19), the macroscopic thermoelastic
behavior can be expressed as

⟨σV ⟩ = Ceff,V ⋅ ⟨εV,el⟩ = Ceff,V ⋅ (⟨εV ⟩ −αeff,V ⋅∆T ) (5.22)

with the unknown effective thermal expansion tensor αeff,V. For the computation of
αeff, a macroscopic strain ⟨ε⟩ = 0 and a temperature increment of ∆T = 1 K acting in
the entire microscopic domain ω is prescribed. As result, the local strain field εtherm is
obtained and the effective thermal expansion tensor can be computed as

αeff,V = − 1

∆T
C−1

eff,V ⋅ ⟨σV,therm⟩ (5.23)

where ⟨σV,therm⟩ denotes the macroscopic stress due to the pure thermal macroscopic
strain ⟨εV,therm⟩. (5.23) indicates that the effective thermal expansion tensor is related
to the elastic constants of the composite and requires the knowledge of the full stiffness
tensor. The stiffness tensor is computed as described in Section 3.5.6 by specification of
periodic BCs with a prescribed macroscopic strain of 0.005 % at reference temperature
T0. The solver FeelMathVox implemented in the ElastoDict module [148] of GeoDict
[14] is employed for the computation of the thermoelastic properties. In summary, seven
load cases are computed (six load cases for the computation of Ceff and a single load
case for the computation of αeff according to 5.23) to determine the macroscopic ther-
moelastic material behavior. The CTE αeff(d) in (5.21) will be determined from the
mean value of the main diagonal components of the effective thermal expansion tensor,
i.e., αeff(d)=1

3tr(αeff(d)). The calculation of the ETC keff(d) is completely analogous
to the explanations in Section 5.1.

RVE convergence study

A representativeness study according to Section 3.5.7 is conducted to ensure a suffi-
ciently accurate calculation of the effective thermomechanical material properties. The
determination of the size and resolution of the RVE for the computation of the ETC
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has already been performed in Section 5.1. Based on these results, RVEs specified by
the LH samples for the computation of keff consist of 450 × 450 × 450 voxels. These in-
vestigations are now carried out in an analogous manner for Eeff and αeff. The extreme
cases of setting the design variables to their upper bounds are investigated. Starting
with an edge length of 200 µm, the size of the cubic RVEs is gradually increased by 100
µm. Fig. 5.19 depicts Eeff and αeff for an ensemble size of N = 4 as a function of the
edge length l for a voxel length of h = 1 µm. It can be observed that the influence of
the edge length is less pronounced compared to the consideration of the overall thermal
properties. Evaluating criterion (3.28) for the edge lengths of 300 and 450 µm reveals
that εvol < 7 ⋅ 10−3 for both Eeff and αeff. Hence, an edge length of l = 400 µm is chosen,
which seems to be a reasonable compromise between computational effort and accuracy.
To investigate the influence of the resolution of the RVE on the homogenization results,
the resolution of the structure with l = 400 µm and h = 1 µm is reduced by the factor 3
and criterion (3.29) is examined. It can be observed that the differences in the effective
Young’s modulus Eeff and in the CTE αeff amount to about 1 % due to the refinement.
From a practical point of view, this means that the effective thermomechanical prop-
erties are independent from the resolution of the RVE. Based on these investigations,
each microstructural design specified by the LH scheme for the thermoelastic case will
be generated with an edge length of l = 400 µm and a voxel length of h =1 µm, so the
resulting structures consist of 400 × 400 × 400 voxels. In Fig. 5.20, the von Mises stress
and strain fields within an corresponding RVE for an applied tensile load is shown. The
largest strains (only displayed here within the matrix material) can be observed in the
soft polymer matrix, especially in vicinity to the filler particles. The largest stresses
occur in the stiff filler particles (especially the platelet-shaped particles), which carry
most of the load of the composite.
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Figure 5.19: Eeff (left) and αeff (right) in dependence of the edge length l
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Figure 5.20: Von Mises strain (left) and stress (right) within an RVE of the three-phase
PRP under tensile load for prescribed periodic BCs

Construction of thermomechanical surrogate models

Kriging surrogate models are utilized for the modeling of the individual effective ther-
momechanical properties Eeff, αeff, and keff. The surrogates are trained by k-fold CV
with k = 5. The eMAPE (3.47) and eRMSE (3.45) are investigated as error metrics. In
Table 5.17, the average values of these measures are listed for all three surrogates. It
can be observed that the Kriging models exhibit quite good prediction capabilities for
each individual quantity. A maximum error of eMAPE =2.48 % is obtained for the surro-
gate model of keff. In order to visualize the SPR, some response surfaces are shown in
Fig. 5.21. In each case, the influence of two design variables on a specific thermomechan-
ical quantity is illustrated. The remaining design variables are set to their upper bounds
(see Table 5.15). The response surface of the ETC shows good agreement with Fig. 5.6.
The macroscopic Young’s modulus Eeff increases with increasing volume fraction Vf and
increasing proportion of the plateled-shaped particles δfp. The influence of Vf and δfp
on αeff is shown in the lower left panel. The volume fraction is much more sensitive,
however αeff slightly decreases for increasing δfp. The influence of Vf and the stiffness of
the platelet-shaped particles Efp on Eeff is illustrated in the lower right panel. Especially
for increasing volume fractions, a strong increase in Eeff can be observed for increasing
Efp.

Table 5.17: Error metrics of the individual thermomechanical surrogate models

Physical quantity keff Eeff αeff

eMAPE / % 2.48 1.38 0.31

eRMSE 0.015 / (W/mK) 0.083 / GPa 0.178 / (ppm/K)
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Figure 5.21: Response surfaces for individual thermomechanical properties of the
three-phase PRP within selected design spaces

Global sensitivity analysis

To gather more quantitative information about the impact of the individual design vari-
ables on a quantity of interest, a sensitivity analysis is conducted. Total-order indices
STi are computed for each design variable based on 2 ⋅ 1016 samples according to Sec-
tion 3.7. The corresponding indices are listed in Table 5.18. It can be observed that
the filler volume fraction is by far the most sensitive parameter and dominates the ther-
momechanical behavior. The phase proportion δfp also has a considerable effect on the
thermomechanical properties, especially for keff. Since isolated filler particles are con-
sidered, the thermal conductivities of the particles has almost no effect on the overall
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ETC. This is in agreement with results from literature, which indicate that for isolated
particles the ETC is only influenced up to a ratio of the conductivities of the fillers to
the matrix by a factor of about 10. The stiffness of the platelet-shaped particles Efl has
a significant impact on Eeff, while the stiffness of the spherical particles Esp is negligible.
This illustrates that the considered effective properties considered in this example are
almost exclusively determined by the filler volume fraction and the phase proportions δfp.

Table 5.18: Total-order index STi of the individual design variables

Index i STi − keff STi −Eeff STi − αeff

1 8.83 ⋅ 10−1 9.57 ⋅ 10−1 9.87 ⋅ 10−1

2 1.89 ⋅ 10−1 4.02 ⋅ 10−2 1.23 ⋅ 10−2

3 - 1.14 ⋅ 10−3 8.13 ⋅ 10−5

4 - 4.56 ⋅ 10−6 3.11 ⋅ 10−6

5 - - 1.54 ⋅ 10−4

6 3.05 ⋅ 10−3 - -
7 - 3.37 ⋅ 10−2 5.31 ⋅ 10−3

8 - 1.62 ⋅ 10−5 6.61 ⋅ 10−5

9 - - 5.99 ⋅ 10−4

10 2.42 ⋅ 10−4 - -

5.3.2 Case study 1

In the following, the NSGAII algorithm implemented in the Python library Platypus [56]
is utilized to obtain the solutions on the surrogate representation of the MOO problem
(5.21). In this implementation, the mutation and crossover operator are selected by
analyzing the individual problem using best practice. However, several individual set-
tings can be performed. For the problem at hand, a population size of Np = 100 is chosen.

In a first case study, the constraint in (5.21) is disregarded and k∗eff = 0.75 W/mK and
α∗eff = 25 ppm/K are specified as target values. Figure 5.22 shows the Pareto frontiers in
dependence of the specified number of function evaluations (NFE). It can be observed
that the approximation of the Pareto front seems to stabilize after about 10000 NFE.
A change in the population size, the mutation, and the crossover operators does not
show a significant effect on the resulting front. Observing the large number of function
evaluations, the advantage of the surrogate-based approach with view of computational
efficiency becomes directly clear.
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Figure 5.22: Pareto front in dependence of the number of function evalutions (NFE)

The Pareto front obtained with NFE=20000 is illustrated again in Fig. 5.23. It can
be observed that the desired ETC can be attained (see also the results in Section 5.1).
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The corresponding Pareto optimal point (PO1) shows a CTE of 33.54 ppm/K. If one
interprets the optimization results starting from this point, one can observe that αeff can
be improved only slightly at the expense of a relatively strong deterioration of the ETC.
Since the solution of the optimization problem is provided by a set of different solutions,
a decision has to be made which design should be the final one. The Pareto optimal
solution featuring the “optimal” ETC (PO1) is selected as final design. In addition, two
further points of the front, (PO2) and (PO3), are considered. The corresponding design
variables of all three Pareto optimal solutions are listed in Table 5.19. It can be observed
that the filler volume fraction reaches the upper limit for all three points. Observing
other points of the front, one can notices that it is mainly the phase fraction that differs.
Please note that the remaining variables have almost no impact on the solution of this
unconstrained optimization problem. For example, when evaluating the micromechani-
cal model by setting Efl to the upper bound, the CTE can only be improved by 0.8 %,
so the error of the surrogate model is still quite small. One possibility would therefore
be to neglect the non-sensitive parameters as in Section 5.1 and perform an optimization
in the reduced design space. But even for such high-dimensional parameter spaces, a
solution can be found in an efficient way with the surrogate representation. In summary,
it can be stated that αeff can only be slightly improved by increasing the phase fraction
δfp, which is accompanied by a disproportionate deterioration of keff.

Since the optimization results were determined on the surrogate representation of the op-
timization problem (5.21), a validation is conducted by evaluating the micromechanical
model. Table 5.20 shows a comparison of the optimas from the surrogate representation
(Surr.) with the evaluation of the micromechanical model (Sim.). Although Eeff is not
included in this first case study, the corresponding values are given here as additional
information. A relatively large deviation in the ETC of 5.63 % can be observed. This
may be due to the fact that the maximum filler volume fraction is analyzed, which can-
not be captured accurately enough by the surrogate. For this purpose, a common and
simple strategy is employed by adding the three Pareto-optimal points (PO1, PO2 and
PO3) to the training data set for the ETC model and repeating the MOO optimization.
The Pareto front obtained with that refined surrogate model is shown in Fig. 5.24. The
corresponding design variables are listed in Table 5.21. A renewed validation (see Table
5.22) shows a quite low deviation with a maximum error of 1.70 % for the ETC.
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Design variable PO1 PO2 PO3

d1 / % 34.00 34.00 34.00
d2 / % 29.99 50.79 75.00
d3 / GPa 367.93 373.93 363.76
d4 0.29 0.30 0.30
d5 / (ppm/K) 4.00 4.00 4.00
d6 / (W/mK) 2.06 2.00 2.00
d7 / GPa 184.49 185.84 203.42
d8 0.30 0.30 0.30
d9 / (ppm/K) 0.10 0.10 0.10
d10 / (W/mK) 204.05 164.75 157.55

Table 5.19: Pareto optimal solutions for
the initial surrogate model
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Figure 5.23: Pareto front for the initial
surrogate model

Table 5.20: Validation of the selected Pareto optimal solutions - initial surrogate

Physical
quantity

P01
Surr.

P01
Sim.

P01 Dev.
/ %

P02
Surr.

P02
Sim.

P02 Dev.
/ %

P03
Surr.

P03
Sim.

P03 Dev.
/ %

keff /
(W/mK)

0.75 0.71 5.63 0.957 0.926 3.35 1.178 1.206 2.32

αeff /
(ppm/K)

33.54 33.72 0.53 32.13 32.21 0.25 30.69 30.43 0.85

Eeff /
GPa

6.46 6.45 0.16 6.99 6.96 0.43 7.51 7.66 1.96

5.3.3 Case study 2

Observing the results of the first case study, it appears that the Pareto optimal designs
exhibit a quite large stiffness (about Eeff=7 GPa compared to 2.3 GPa of the neat
PBT material). As already explained with the example of the encapsulated circuit
board, there is often a demand for a material with a reduced stiffness in order to reduce
stresses, e.g., under temperature load. For that purpose, in the second case study,
the optimization problem includes the specification of a maximum Young’s modulus
of Eeff,max= 5 GPa as constraint. The target values of k∗eff = 0.75 W/mK and α∗eff =
25 ppm/K are maintained. In Fig. 5.25, the resulting Pareto front is shown. The
corresponding design variables are listed in Table 5.23. The main difference compared
to the first case study is the reduced stiffness of the filler particles, especially the platelet-
shaped particles Efl due to the stiffness constraint. Because of this, αeff deviates further
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Design variable PO1 PO2 PO3

d1 / % 34.00 34.00 34.00
d2 / % 35.73 53.42 75.00
d3 / GPa 375.78 371.03 370.90
d4 0.30 0.30 0.30
d5 / (ppm/K) 4.00 4.00 4.00
d6 / (W/mK) 2.00 2.00 2.00
d7 / GPa 192.99 188.82 196.73
d8 0.30 0.30 0.30
d9 / (ppm/K) 0.10 0.10 0.10
d10 / (W/mK) 165.79 150.09 150.01

Table 5.21: Pareto optimal solutions for
the refined surrogate model
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Figure 5.24: Pareto front for the refined
surrogate model

Table 5.22: Validation of the selected Pareto optimal solutions - refined surrogate

Physical
quantity

P01
Surr.

P01
Sim.

P01 Dev.
/ %

P02
Surr.

P02
Sim.

P02 Dev.
/ %

P03
Surr.

P03
Sim.

P03 Dev.
/ %

keff /
(W/mK)

0.750 0.754 0.53 0.956 0.94 1.70 1.20 1.23 2.44

αeff /
(ppm/K)

33.15 33.29 0.42 31.96 32.04 0.25 30.69 30.48 0.69

Eeff /
GPa

6.62 6.60 0.30 7.05 7.02 0.43 7.49 7.62 1.70

from the target value (respectively J2). In Table 5.24, the effective values obtained
from the surrogate representation are compared with an evaluation of the simulation
model. Only slight deviations with a maximum error of 1.25 % for αeff can be observed.
The constraint is only slightly violated. If necessary, the refinemend strategy could be
employed again to further improve the accuracy of the surrogate model in the vicinity
of the Pareto optimal points. However, this is not done here, as the deviations are quite
small.
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Design variable Value

d1 / % 34.00
d2 / % 35.89
d3 / GPa 55.84
d4 0.30
d5 / (ppm/K) 4.00
d6 / (W/mK) 2.02
d7 / GPa 20.87
d8 0.29
d9 / (ppm/K) 0.17
d10 / (W/mK) 153.18

Table 5.23: Case study 2 - Pareto optimal
solutions
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Figure 5.25: Case study 2 - Pareto front

Table 5.24: Case study 2 - Validation of the selected Pareto optimal solutions

Physical quantity Surrogate Simulation Deviation %

keff / (W/mK) 0.750 0.758 1.05
αeff / (ppm/K) 36.32 35.87 1.25
Eeff / GPa 5.00 5.05 0.99
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Conclusion and outlook

6.1 Summary and main results

In this work, an optimization methodology for the design of functional materials was
proposed. The need for such a design framework arises from the challenging multiphys-
ical requirements imposed on materials in the context of electromobility applications.
Focus was placed on the thermomechanical properties of polymer matrix composites.
The main results of this work consist in tackling two key issues in material design: On
the one hand, the computation of the overall thermomechanical properties of particle re-
inforced and short fiber reinforced polymers. This includes the geometrical and physical
modeling of the heterogeneous microstructure with the concept of representative vol-
ume elements, the numerical solution of boundary value problems at the microscale, and
the extraction of effective quantities by averaging (homogenization) relations. On the
other hand, the formulation and efficient solution of parametric material optimization
problems under consideration of physical descriptors of the microstructure as design vari-
ables. As solution method, a surrogate-based optimization approach is proposed, which
essentially integrates design of experiments (sampling), the results from computational
homogenization, surrogate modeling, and global optimization.

Concerning the constitutive modeling of thermomechanical materials, Chapter 2 cov-
ers some basic aspects of continuum mechanics and the description of heat conduction
problems. These notations and relations also apply at the microscale and are used in
the following sections to determine the overall thermoelastic properties of the polymer
matrix composites. The analogies between steady-state heat conduction and elastostatic
boundary value problems are presented.

In Chapter 3, the surrogate-based multiscale approach for the design of composite mate-
rials is presented. To facilitate the use of optimization algorithms, a structural optimiza-
tion problem is formulated for the material design. The established formulation allows
the consideration of manifold demands for the effective physical material properties,
taking into account the full anisotropic material behavior in terms of tensor quantities.
Physical parameter of the microstructure are selected as design variables as this enables
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a direct tailoring of the microstructure during the manufacturing process. These param-
eters are composed of design variables of the geometrical microstructure and the material
properties of the individual constituents and specify the material design space. For the
selection of a solution method, the properties of the generic optimization problem (3.1)
were considered. Several aspects such as non-convexity and the influence of stochas-
tic effects motivate the development of the surrogate-based optimization method. The
basic idea consists in the approximation of the structure-property relationship through
surrogate modeling techniques. Such surrogate models enables an efficient use of global
optimization methods compared to the direct application on the micromechanical (simu-
lation) model. Another important advantage is that these models allow an understanding
of the complex SPR. For the creation of such surrogate model, the first step is to con-
duct virtual experiments on the basis of a DoE scheme. For each experimental sample, a
RVE is generated and the corresponding effective properties are computed by numerical
homogenization under prescribed periodic BCs. This results in a material database that
describes the SPR for a discrete set of microstructural configurations. In a next step, this
database is used to approximate the quantity of interest within the entire material de-
sign space. Kriging and response surface models are investigated as surrogate models. It
should be noted that there exist also other models such as neural networks, splines, sup-
port vector machines, etc. that could also be used for this purpose. The use of (global)
sensitivity analysis methods allows the quantification of the relative importance of the
different design variables. A simple concept for the evaluation of the robustness of the
designs is presented. The surrogate representation of the material optimization problem
allows the use of global optimization algorithms which often require a large number of
function evaluations in an tracktable way. Another advantage of the surrogate represen-
tation is that it allows the consideration of different targets on the material properties
without the need of renewed simulations (except a validation simulation). Furthermore,
existing models can be easily extended to include additional material properties in a
multiphyics setting.

Chapter 4 provides a brief overview of particle reinforced and short fiber reinforced poly-
mers. Technical relevant matrix and filler materials are mentioned. Selected aspects such
as areas of application, manufacturing and important microscopic influencing factors are
covered.

In Chapter 5, the surrogate-based multiscale optimization method is demonstrated by
means of concrete material examples. In the first example (Section 5.1), a three-phase
PRP with large contrast in the conductivities of the individual phases is investigated
for which a certain effective thermal conductivity should be adjusted. Beside the filler
volume fraction and the phase proportions, different geometrical parameters of the filler
particles are specified as design variables. An analysis of the size and resolution of
the structure is performed to ensure a sufficiently accurate calculation of the ETC. It

108



6.1 Summary and main results

turns out that with a relatively small number of samples, an accurate model of the
ETC can be created. The filler volume fraction and the phase proportions prove to be
the most sensitive parameters, but also the aspect ratio of the platelet-shaped particles
should not be neglected. For optimization, the DE algorithm is applied to the surrogate
representation in order to identify different optimal microstructures. The validation of
the optimization results with an evaluation of the micromechanical model (validation)
shows only minor deviations. Subsequently, alternative optimization techniques such
as a gradient-based method and a Bayesian optimization approach (EGO) are applied.
Their advantages and disadvantages are discussed and compared with the proposed
approach. For the considered example, the scaling of the design variable space and the
adjustment of the step size to approximate the gradients by finite differences enables the
direct application of gradient methods on the simulation model. The application of the
EGO algorithm shows an identification of near optimal microstructures within only a few
iterations. Corresponding measurements were conducted to validate the homogenization
method. A comparison with the results of the micromechanic simulations shows a good
agreement.
In Section 5.2, the methodology is applied for the optimization of the overall viscoelastic
behavior of SFRPs. In addition to the fiber volume fraction and the fiber orientation
distribution, the linear elastic material properties of the fibers are specified as design
variables. Within the concept of the second-order Advani-Tucker fiber orientation tensor,
the fiber orientation distribution can be depicted by only two parameters lying inside the
so-called fiber orientation triangle. A generalized Maxwell model is employed to model
viscoelastic effects of the polymer matrix. The corresponding material parameters are
determined on the basis of experimental measurements. In a first step, virtual creep
simulations are performed for each experimental sample. The corresponding BVPs are
solved by FFT-based numerical homogenization for a prescribed macroscopic stress. This
results in a viscoelastic material database describing the macroscopic creep compliance
tensor for a discrete set of microstructural configurations. Based on this, Kriging models
of the individual orthotropic components are constructed which describe the viscoelastic
material behavior for arbitrary microstructures. A constraint version of DE is employed
for the solution of the material optimization problem. Different design variants are
identified for a target macroscopic creep compliance tensor and the robustness of these
designs is investigated. A validation of the simulation method shows good agreement
with experimentals as well.
An extension of the proposed method to address multiphysical problems is presented in
Section 5.3. The problem formulation from Section 5.1 is extended and includes in addi-
tion to a target ETC a certain CTE while maintaining a maximum stiffness (if terms of
the Young’s modulus). To consider such requirements on the thermomechanical material
properties, a formulation as MOO problem is introduced. A relatively large number of
10 design variables is specified, which covers the full thermomechanical behavior of the
filler particles. Kriging models for each individual physical properties are created. A

109



Chapter 6 Conclusion and outlook

validation of these models by appropriate error measures shows quite good prediction
accuracy with a maximum error of 2.38% for the model of the ETC. This surrogate rep-
resentations allows to find an approximation of the conflicting design objectives in terms
of the Pareto frontier by population-based MOO methods in an efficient way. This is
demonstrated by two examples. It can be observed that the Pareto optimal microstruc-
tures differ mainly in their phase fractions. This enables to select variants whether care
have to taken to the ETC or the CTE.

Compared to the state of the art in material design, in this work the combination of
different methods (DoE, numerical homogenization, metamodeling, sensitivity analysis,
robustness evaluation, and global optimization) were applied to find particle reinforced
and short fiber reinforced polymers with desired thermomechanical properties. The
proposed approach was also employed for materials with more than a single phase. At
this point, the importance of the microstructure simulation for the accuracy of the
optimal solution should be reiterated. If the morphology of the microstructure and the
physical material properties of the individual constituents are not accurate, an optimal
solution cannot be found. The metamodel-based approach proved to be quite efficient
to limit the high numerical effort of global optimization methods. A validation of the
optimization results from the metamodel with the numerical model showed a quite good
agreement in the considered examples.

6.2 Outlook and future work

By considering composites with high packing density and large contrasts in the conduc-
tivities of the constituents, a strong dependence of the ETC on the resolution of the
structure (voxel length) was observed if the particles were allowed to touch each other.
For this reason, isolated particles were considered in this work, which generally does
not result in an ETC greater than 2 W/mK required for power electronics applications.
In [72], the ETC of the considered three-phase material was experimentally determined
and conductivities of the relevant magnitude were obtained. For applications in power
electronics, so-called thermal interface materials (TIMs) are widely used. These mate-
rials are available in different forms, such as pastes or adhesives and exhibit very large
filler contents up to 70 %. They are often applied as gap filler to improve the dissipa-
tion of heat between two or more surfaces. A realistic modeling of the particle contacts
and the percolation network of such highly filled materials is a rather delicate task. An
increasing refinement of the resolution of the structure (i.e., the voxel length in the ap-
plied software) is associated with a strong increase in the degrees of freedom. Even the
generation of such structures may be connected with an enormous and partly unreal-
izable computational effort. In this context, it should be examined whether empirical
models such as the Lewis-Nielsen model or percolation path models represent a simple
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and sufficiently accurate alternative compared to numerical simulation methods.

The presented surrogate-based multiscale optimization method proves to be quite gen-
eral and can be used for the modeling and optimization of various structural responses
of composites. Hence, the approach can be applied for the optimization of other phys-
ical material properties as well as other types of composites than those considered in
this work. In the context of electromobility applications, special interest is given to
the electromagnetic properties of composite materials. In [136], a numerical method for
the computation of the electromagnetic properties of dielectric and magnetic particulate
composites is described. This method could be used in combination with the proposed
optimization framework to optimize the electromagnetic properties of polymer matrix
composites. Regarding mechanical properties, further material laws can be considered,
e.g., to model effects such as damage due to plastic effects or cyclic loading. This is
particularly important for technical applications of SFRPs and allows an accurate mod-
eling of the complex material behavior within the polymer matrix at the microscopic
level. The modelling of damage under static loading can be found in [173]. In [62],
a material model for the polymer matrix to describe the cyclic stiffness degradation of
GFRP is proposed. For such nonlinear material behavior, the dependence of the effective
material response on the load case must be taken into account. This load dependency
of the effective properties could be modelled similarly to the approach mentioned in [18]
by increasing the degrees of freedom of the material design space. The application of
the proposed optimization framework allows the optimization of the resulting material
properties, e.g., with regard to failure.

Once the optimization results are available in the form of a digital microstructure, prac-
tical applications raise the question of realizing them during manufacturing. The param-
eters were chosen in such a way that they can be realized by designing the morphology
of the microstructure and suitable filler materials. During the creation of the structures,
a certain shape of the particles as well as orientation and distribution within the matrix
were specified. In order to implement the optimization results, suitable manufacturing
processes in combination with appropriate fillers must be developed. In [31], an overview
of methods to tailor the microstructure and to realize anisotropic thermally conductive
composites is given. Within this context, an interesting possibility is the optimization of
components made of functional materials, e.g., in the setting of free material optimiza-
tion [91]. Especially the use of different functional materials offers the potential to better
realize the complex multiphysical requirements of componentes by locally designign the
macroscopic properties. Another interesting task could be additive manufacturing pro-
cesses with which more complex structures can be realized. An overview of the use of
such methods for polymer composites can be found in [42] and [134].
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Erste Abhandlung. Die Mittelwertsätze für Kraft, Polarisation und Energie. Teub-
ner, 1912.

[191] Wu, H. P., Wu, X. J., Ge, M., Zhang, G. Q., Wang, Y. W., and Jiang, J. Z.

”
Effect analysis of filler sizes on percolation threshold of isotropical conductive

adhesives“. Composites Science and Technology 67.6 (2007), pp. 1116–1120.

[192] Wypych, G. Handbook of Fillers. Elsevier Science, 2016.

[193] Xu, H., Li, Y., Brinson, L. C., and Chen, W.
”
A descriptor-based design method-

ology for developing heterogeneous microstructural materials system“. Journal of
Mechanical Design 136.5 (2014), p. 051007.

[194] Xu, H., Liu, R., Choudhary, A., and Chen, W.
”
A Machine Learning-Based Design

Representation Method for Designing Heterogeneous Microstructures“. Journal
of Mechanical Design 137.5 (2015), p. 051403.

[195] Xu, Y. and Chung, D. D. L.
”
Increasing the Thermal Conductivity of Boron

Nitride and Aluminum Nitride Particle Epoxy-Matrix Composites by Particle
Surface Treatments“. Composite Interfaces 7.4 (2000), pp. 243–256.

[196] Yang, J.-L., Zhang, Z., Schlarb, A. K., and Friedrich, K.
”
On the characterization

of tensile creep resistance of polyamide 66 nanocomposites. Part I. Experimental
results and general discussions“. Polymer 47.8 (2006), pp. 2791–2801.

127



Bibliography

[197] Yang, J.-L., Zhang, Z., Schlarb, A. K., and Friedrich, K.
”
On the characterization

of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and
prediction of long-term performance“. Polymer 47.19 (2006), pp. 6745–6758.

[198] Yang, Z., Li, X., Brinson, L. C., Choudhary, A. N., Chen, W., and Agrawal, A.

”
Microstructural Materials Design Via Deep Adversarial Learning Methodology“.

Journal of Mechanical Design 140.11 (2018), p. 111416.

[199] Younis, A. and Dong, Z.
”
Trends, features, and tests of common and recently

introduced global optimization methods“. Engineering Optimization 42.8 (2010),
pp. 691–718.

[200] Yv, Y. H., Lasdon, L. S., and Da, D. W.
”
On a bicriterion formation of the

problems of integrated system identification and system optimization“. IEEE
Transactions on Systems, Man, and Cybernetics (1971), pp. 296–297.

[201] Zhang, S., Cao, X. Y., Ma, Y., Ke, Y., Zhang, J., and Wang, F. S.
”
The effects of

particle size and content on the thermal conductivity and mechanical properties of
Al2O3/high density polyethylene (HDPE) composites“. Express Polymer Letters
5.7 (2011), pp. 581–590.

[202] Zhang, Y., Tao, S., Chen, W., and Apley, D. W.
”
A Latent Variable Approach to

Gaussian Process Modeling with Qualitative and Quantitative Factors“. Techno-
metrics 62.3 (2020), pp. 291–302.

[203] Zhou, W., Qi, S., Tu, C., Zhao, H., Wang, C., and Kou, J.
”
Effect of the Particle

Size of Al2O3 on the Properties of Filled Heat-Conductive Silicone Rubber“.
Journal of Applied Polymer Science 104.2 (2007), pp. 1312–1318.

128



List of Figures

1.1 Linkage of macro- and microscale: Dependence of a macroscopic material
property on physical parameters of the heterogeneous microstructure . . 2

2.1 Kinematics of rigid bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Solid body under the action of volume and surface forces . . . . . . . . . . 9

3.1 RVE of a parameterized PRP represented by the design variables vector
d = (15 %, 20 µm, 0.23 W/mK, 30 W/mK) . . . . . . . . . . . . . . . . . . 15

3.2 Flowchart of the surrogate-based multiscale material design framework . 17
3.3 Illustration of full factorial (left), fractional factorial (middle), and central

composite designs (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Two-dimensional LH design for m = 10 with poor (left) and improved

space-filling properties (right) . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Considered length scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Simplified 2D material model with P = 2 for extraction of lower (right)

and upper (left) bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 First-order computational homogenization for heat conduction . . . . . . 28
3.8 Illustration of periodic boundary conditions . . . . . . . . . . . . . . . . . . 32
3.9 Convex (left) and non-convex set (right) . . . . . . . . . . . . . . . . . . . . 43
3.10 Convex (left) and non-convex function (right) . . . . . . . . . . . . . . . . 44
3.11 Main steps of the DE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.12 Operation of the EGO algorithm for a specified analytical objective functi-

on (Fig. taken from Python surrogate modeling toolbox (SMT) https://
smt.readthedocs.io/en/latest/_src_docs/applications/ego.html, [22]) 52

3.13 Design variable space (left) and objective function space (right) . . . . . . 54
3.14 Global- and robust optimum . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Classification of composites according to the type of reinforcement (Fig.
taken from [142]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Microscopic image of a SFRP [40] (left) and a PRP [50] (right) . . . . . . 63

5.1 Microscopic image of flaky boron nitride (left) and spherical aluminum
oxide particles (right) [163] and idealized (parameterized) geometries . . 66

5.2 Distribution of the LH samples in the d1 −d2 (left) and d1 −d4 space (right) 68

129

https://smt.readthedocs.io/en/latest/_src_docs/applications/ego.html
https://smt.readthedocs.io/en/latest/_src_docs/applications/ego.html


List of Figures

5.3 Heat flux (abslolute value, left) and temperature (right) within an RVE
for prescribed periodic BCs under specification of a temperature gradient
in x3-direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 keff as a function of the edge length l and realization of an RVE of the
three-phase PRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Comparison of predictions from the simulation model and the surrogate
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Kriging interpolation of keff as a function of d1 and d2 (left), and d1 and
d4 (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.7 Set of four “optimal” microstructural designs . . . . . . . . . . . . . . . . . 74
5.8 keff for the initial samples and as a function of the number of iterations

of the EGO algorithm by using the EI (left) and the LCB criterion (right) 76
5.9 Principal sketch of the generalized Maxwell model . . . . . . . . . . . . . . 81
5.10 Illustration of the fiber orientation state (Fig. taken from [89]) by the

fiber orientation triangle and RVEs of the three extreme orientation states
(isotropic, unidirectional, and planar isotropic) . . . . . . . . . . . . . . . . 84

5.11 LH sample distribution in the geometrical microstructure descriptor (left)
and in the fiber material property space (right) . . . . . . . . . . . . . . . . 85

5.12 RVE representation of a sample with d1 = 16.635 %, d2 = 0.543, d3 = 0.399
(left) and creep curves for a prescribed macroscopic tensile load in x1-
direction and a macroscopic shear load of 1 MPa in the x1x2-plane (right) 88

5.13 Von Mises strain fields for the considered load cases (tensile load: left,
shear load: right) at t = 104 s within a cross-sectional area (half RVE
length) of the associated RVE with the fiber material properties d4 =
198.125 GPa and d5 = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.14 Relative error of the creep compliance tensor in the Frobenius norm in
dependence of the edge length (left) and the resolution (right) for the
three extreme fiber orientation cases . . . . . . . . . . . . . . . . . . . . . . 90

5.15 Fitness versus number of iterations for the first optimization run . . . . . 91
5.16 RVE representation of a set of four “optimal” microstructural designs . . 92
5.17 Comparison of creep simulation results with experimental results for an

applied tensile load of 32 MPa . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.18 Projections of the LH sample distribution within selected 2D and 3D

material design spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.19 Eeff (left) and αeff (right) in dependence of the edge length l . . . . . . . . 98
5.20 Von Mises strain (left) and stress (right) within an RVE of the three-phase

PRP under tensile load for prescribed periodic BCs . . . . . . . . . . . . . 99
5.21 Response surfaces for individual thermomechanical properties of the three-

phase PRP within selected design spaces . . . . . . . . . . . . . . . . . . . . 100
5.22 Pareto front in dependence of the number of function evalutions (NFE) . 102
5.23 Pareto front for the initial surrogate model . . . . . . . . . . . . . . . . . . 104

130



List of Figures

5.24 Pareto front for the refined surrogate model . . . . . . . . . . . . . . . . . . 105
5.25 Case study 2 - Pareto front . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

131





List of Tables

2.1 Comparison of field quantities and governing equations including BCs for
elastostatic and steady-state heat conduction problems . . . . . . . . . . . 12

4.1 Different polymer materials and their properties [162], [47], [104], [157], [31] 62
4.2 Overview of different fiber materials and their properties [104] . . . . . . 63
4.3 Different thermally conductive fillers and their thermal conductivities [31] 64

5.1 Thermal conductivities of the individual constituents . . . . . . . . . . . . 66
5.2 Design variables with lower- and upper bounds . . . . . . . . . . . . . . . . 68
5.3 R2 and eMAE for the RSM and Kriging surrogate . . . . . . . . . . . . . . 72
5.4 Sobol’ indices of the individual design variables . . . . . . . . . . . . . . . . 73
5.5 Approximation of optimal microstructural realizations and validation through

the evaluation of the micromechanical model . . . . . . . . . . . . . . . . . 75
5.6 Best microstructural realizations identified by the EI criterion . . . . . . . 76
5.7 Best microstructural realizations identified by the LCB criterion . . . . . 76
5.8 Validation of the homogenization results by comparison with correspon-

ding measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.9 Identified viscoelastic material parameter (N = 10) for PA 66 . . . . . . . 81
5.10 Design variables with lower- and upper bounds . . . . . . . . . . . . . . . . 85
5.11 Target values of the orthotropic components . . . . . . . . . . . . . . . . . 90
5.13 Optimization results obtained from the surrogate representation . . . . . 91
5.12 eMAPE of the individual Kriging surrogate models . . . . . . . . . . . . . . 91
5.14 Worst-case measure and objective function value of the metamodel compa-

red with the results from the micromechanical model for the four identified
“optimal” designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.15 Design variables with lower- and upper bounds . . . . . . . . . . . . . . . . 95
5.16 Thermomechanical material parameter of the PBT matrix . . . . . . . . . 95
5.17 Error metrics of the individual thermomechanical surrogate models . . . 99
5.18 Total-order index STi of the individual design variables . . . . . . . . . . . 101
5.19 Pareto optimal solutions for the initial surrogate model . . . . . . . . . . . 104
5.20 Validation of the selected Pareto optimal solutions - initial surrogate . . . 104
5.21 Pareto optimal solutions for the refined surrogate model . . . . . . . . . . 105
5.22 Validation of the selected Pareto optimal solutions - refined surrogate . . 105
5.23 Case study 2 - Pareto optimal solutions . . . . . . . . . . . . . . . . . . . . 106

133



List of Tables

5.24 Case study 2 - Validation of the selected Pareto optimal solutions . . . . 106

134



List of Abbreviations

BC . . . . . . . . . . . . . Boundary condition

BVP . . . . . . . . . . . Boundary value problem

CCD . . . . . . . . . . . Central composite design

CG . . . . . . . . . . . . . Conjugate gradient

CTE . . . . . . . . . . . Coefficient of thermal expansion

CV . . . . . . . . . . . . . Cross validation

DE . . . . . . . . . . . . . Differential evolution

DoE . . . . . . . . . . . Design of experiments

EI . . . . . . . . . . . . . . Expected improvement

EGO . . . . . . . . . . . Efficient global optimization

ETC . . . . . . . . . . . Effective thermal conductivity

FD . . . . . . . . . . . . . Finite Differences

FE . . . . . . . . . . . . . Finite element

FEM . . . . . . . . . . . Finite element method

FFT . . . . . . . . . . . Fast Fourier transform

FRP . . . . . . . . . . . Fiber reinforced polymer

GFRP . . . . . . . . . Glass fiber reinforced polymer

ICME . . . . . . . . . Integrated computational materials engineering

IMSE . . . . . . . . . . Integrated mean squared error

LCB . . . . . . . . . . . Lower confidence bound

LH . . . . . . . . . . . . . Latin Hypercube

135



List of Abbreviations

LHS . . . . . . . . . . . Latin Hypercube sampling

MCR . . . . . . . . . . Microstructure characterization and reconstruction

ML . . . . . . . . . . . . Machine learning

MOEA . . . . . . . . Multi-objective evolutionary algorithm

MOO . . . . . . . . . . Multi-objective optimization

MSD . . . . . . . . . . . Microstructure-sensitive design

NFE . . . . . . . . . . . Number of function evaluations

NSGA . . . . . . . . . Non-dominated sorting genetic algorithm

PA . . . . . . . . . . . . . Polyamide

PBT . . . . . . . . . . . Polybutylenterephthalate

PRP . . . . . . . . . . . Particle reinforced polymer

RVE . . . . . . . . . . . Representative volume element

RSM . . . . . . . . . . . Response surface model

SFRP . . . . . . . . . . Short fiber reinforced polymer

SMT . . . . . . . . . . . Surrogate modeling toolbox

SPR . . . . . . . . . . . Structure-property relationship

SQP . . . . . . . . . . . Sequential quadratic programming

TIM . . . . . . . . . . . Thermal interface material

TO . . . . . . . . . . . . . Topology optimization

WLB/WUB . . Wiener lower/upper bound

136



List of Symbols

Scalars

ν . . . . . . . . . . . . . . . Poisson’s ratio

E . . . . . . . . . . . . . . . Young’s modulus

G . . . . . . . . . . . . . . . Shear modulus

Ω . . . . . . . . . . . . . . . Macroscopic domain

ω . . . . . . . . . . . . . . . Microscopic (RVE) domain

ρ . . . . . . . . . . . . . . . Density

m . . . . . . . . . . . . . . Mass

λ . . . . . . . . . . . . . . . First Lamé constant
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