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ABSTRACT

An important aspect of optimising public transport is finding a good timetable. On the
one hand, short travel times are important from the passengers’ point of view. On the
other hand, tight timetables without buffer times are prone to delays, which are inevitable
in practice and highly dissatisfactory for the passengers. Hence, a good timetable should
also have some degree of delay resistance. Often a periodic timetable is desirable, i.e. a
timetable which repeats in a regular pattern (e.g. every hour). However, delays do in
general not occur periodically, so many robust timetable models only consider aperiodic
timetables.

In our work we analyse different robustness concepts in the context of periodic time-
tabling, where we allow aperiodic delays. The main focus lies on recoverable robustness,
which in our context leads to the integration of the Periodic Event Scheduling Problem
(PESP) and Delay Management (DM). These two problems are usually considered in two
different networks: while PESP is formulated in a periodic network, DM is considered
in an aperiodic network, whose construction uses the timetable as input. Hence, a first
challenge when integrating these two problems is to bridge the gap between periodicity
and aperiodicity by solving PESP also in the aperiodic network. For this purpose we
develop a new timetabling model – Periodic Timetabling in Aperiodic Network (PTTA) –
which finds a periodic timetable using the aperiodic network.

Using this preparatory work, we then develop the Recoverable Robust Periodic Timetabling
Problem (RRPT), which is the first one to consider periodic timetables with aperiodic
delays. Since we have multiple objective functions, namely the travel time and the worst-
case delay, we consider several variants of the problem. Furthermore, we present three
equivalent formulations for RRPT, compare their performance in a computational study
and identify some properties of recoverable robust timetables.

Due to the high complexity of the problem, which is due to both PESP and DM being
NP-complete, solving RRPT to optimality on large networks is an unrealistic goal. Hence,
we develop several heuristics for finding feasible and “good” solutions. By modifying
the heuristics and testing them for different parameter choices, we identify the most
promising variants.

Apart from recoverable robustness, many other robustness concepts exist in the liter-
ature, among them strict robustness, light robustness and adjustable robustness. We apply
them to the problem at hand and analyse the relations between the resulting models in
special cases. Furthermore, we compare them with respect to the real travel time, which
is the sum of the travel time in the undisturbed setting and the worst-case delay, and
discuss for which of these concepts considering aperiodic delays is actually equivalent to
only considering periodic delays, and for which it does indeed make a difference. We
conclude that recoverable robust timetables are superior, but come with the disadvantage
of being the most difficult to compute.
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ZUSAMMENFASSUNG

Ein wichtiger Aspekt bei der Optimierung von öffentlichen Verkehrssystemen ist die
Suche nach einem guten Fahrplan. Einerseits sind kurze Fahrzeiten aus Sicht der Fahr-
gäste wichtig. Andererseits sind knapp geplante Fahrpläne ohne Pufferzeiten anfällig
für Verspätungen, die in der Praxis unvermeidlich und für die Fahrgäste höchst unbe-
friedigend sind. Daher sollte ein guter Fahrplan auch eine gewisse Verspätungsresistenz
aufweisen. Oft ist ein periodischer Fahrplan wünschenswert, d. h. ein Fahrplan, der sich
regelmäßig wiederholt (z. B. jede Stunde). Verspätungen treten jedoch im Allgemeinen
nicht periodisch auf, sodass viele robuste Fahrplanmodelle nur aperiodische Fahrpläne
betrachten.

In unserer Arbeit analysieren wir verschiedene Robustheitskonzepte im Kontext peri-
odischer Fahrplanung, wobei wir aperiodische Verspätungen zulassen. Das Hauptau-
genmerk liegt dabei auf der wiederherstellenden Robustheit, was in unserem Kontext zur
Integration des Periodic Event Scheduling Problems (PESP) und Delay Managements (DM)
führt. Diese beiden Probleme werden normalerweise in zwei verschiedenen Netzwer-
ken betrachtet: Während das PESP in einem periodischen Netzwerk formuliert wird,
wird DM in einem aperiodischen Netz betrachtet, dessen Konstruktion den Fahrplan als
Input verwendet. Daher besteht eine erste Herausforderung bei der Integration dieser
beiden Probleme darin, die Lücke zwischen Periodizität und Aperiodizität zu schließen,
indem das PESP auch im aperiodischen Netz gelöst wird. Zu diesem Zweck entwickeln
wir ein neues Modell für die Fahrplanerstellung – Periodic Timetabling in Aperiodic Net-
work (PTTA) – das einen periodischen Fahrplan unter Verwendung des aperiodischen
Netzwerks findet.

Anhand dieser Vorarbeiten entwickeln wir dann das Recoverable Robust Periodic Time-
tabling Problem (RRPT), das erstmals periodische Fahrpläne mit aperiodischen Verspä-
tungen betrachtet. Da wir mehrere Zielfunktionen haben, nämlich die Reisezeit und die
Worst-Case-Verspätung, betrachten wir mehrere Varianten des Problems. Außerdem prä-
sentieren wir drei äquivalente Formulierungen für RRPT, vergleichen ihre Performance
und identifizieren einige Eigenschaften von wiederherstellend robusten Fahrplänen.

Aufgrund der hohen Komplexität des Problems, die daraus resultiert, dass sowohl
PESP als auch DM NP-vollständig sind, ist die optimale Lösung von RRPT auf großen
Netzen ein unrealistisches Ziel. Aus diesem Grund entwickeln wir mehrere Heuristiken,
um zulässige und „gute“ Lösungen zu finden. Durch Modifizierung der Heuristiken und
Testen verschiedener Parameter identifizieren wir die vielversprechendsten Varianten.

Neben der wiederherstellbaren Robustheit gibt es in der Literatur noch viele andere
Robustheitskonzepte, darunter strenge Robustheit, leichte Robustheit und anpassbare Robust-
heit. Wir wenden diese Konzepte auf das vorliegende Problem an und analysieren die
Beziehungen zwischen den resultierenden Modellen in Spezialfällen. Außerdem verglei-
chen wir sie im Hinblick auf die reale Reisezeit, die sich aus der Summe der Reisezeit im
ungestörten Zustand und der Worst-Case-Verspätung zusammensetzt, und diskutieren,
für welche dieser Konzepte die Berücksichtigung aperiodischer Verspätungen tatsächlich
äquivalent dazu ist, nur periodische Verspätungen zu berücksichtigen. Wir kommen zu
dem Schluss, dass RRPT qualitativ überlegene Fahrpläne liefert, allerdings den Nachteil
der schwierigen Berechenbarkeit mit sich bringt.
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1
INTRODUCT ION

motivation

Public transport plays an essential role in today’s mobility. In particular under considera-
tion of the omnipresent impact of climate change and the resulting necessity to reduce
greenhouse emissions, the need for good public transport systems becomes evident.
Therefore, it is vital to design public transport systems as attractively as possible for the
passengers.

An important task when pursuing this goal is finding a good timetable. In European
transport systems, periodic timetables are widely used, i.e. timetables which repeat in a
regular pattern (for example every hour). One advantage of such timetables is the better
memorability for the passengers. Since passengers want to reach their destination as fast
as possible, travel times should be short. However, in practice disturbances occur during
operation of the timetable. Hence, it is often not possible to stick to the plan, which –
due to numerous interdependencies in the public transport system – can lead to a lot
of delays in the entire network. This is very unsatisfactory for the passengers, who, as a
consequence, might refrain from using public transport in the future.

To prevent this, a good timetable should also have some degree of delay resistance – it
should be robust. Hence, robust optimisation might be the right tool to tackle the problem.
But what exactly does robust evenmean? A lot of different robustness concepts exist in the
literature, but not all of them are suitable for every problem. For timetabling, recoverable
robustness is a promising concept: we have to be able to recover the nominal feasible
timetable in every delay scenario, i.e. make it feasible for the realised scenario. The recov-
ery is achieved by doing delay management – a topic which itself is well-researched and an
important task in public transport. However, usually timetabling and delay management
are two sequential planning steps and the timetable is already given as input when doing
delay management. Hence, our goal is to integrate these two problems – periodic time-
tabling, which is usually modelled as Periodic Event Scheduling Problem (PESP), and Delay
Management (DM). The difficulty when doing so lies in the fact that – unlike PESP – delay
management is an aperiodic problem since delays do, in general, not occur periodically.
Hence, an interesting aspect of robust periodic timetabling is bridging the gap between
periodic timetabling and aperiodic delay management.

But is recoverable robustness really the right choice for timetabling? To answer this
question, we compare it to other robustness concepts from the literature, namely strict
robustness, light robustness and adjustable robustness.

1



2 introduction

literature review

Periodic Timetabling

Periodic timetabling is well studied in the literature. The problem is usually modelled as a
Periodic Event Scheduling Problem, which has first been introduced in [SU89], where it was
shown to be NP-complete. It aims at finding a feasible periodic timetable. Instead of only
considering the feasibility problem, one can also consider different objective functions.
In [Nac96] this is done by minimising the waiting times of the transferring passengers. A
common objective is to minimise the total travel time of the passengers. An extension
with variable trip time is presented in [KP03]. Apart from the standard formulation one
can also use alternative formulations using cycle bases, see e.g. [Nac98; Gov99; PK01;
Pee03; Lie03; LP02; LP09].

The practical use of PESP was demonstrated by the introduction of a new timetable for
the Berlin underground in 2005 [Lie08], which was the first mathematically optimised
railway timetable in practice. Also Nederlandse Spoorwegen, the largest railway company
in the Netherlands, introduced a completely new timetable in 2006 by solving PESP with
constraint programming techniques [Kro+09].

A constraint generation approach has been applied in [Odi96]. Branch-and-bound
[Nac96] and branch-and-cut [Lie06] have been used to solve PESP. SAT solvers have
proved to be particular useful [Gro11; Gro+12; Küm+15].

However, due to the high complexity of the problem, for many practical applications
one has to resort to heuristic approaches. Heuristics for PESP include genetic algorithms
[NV96], the modulo network simplex [NO08; GS13; GL17] and a matching approach
[PS16]. A concurrent approach running several solution methods in parallel is presented
in [BLR20]. It combines mixed integer programming techniques, the modulo network
simplex, SAT approaches and a new max cut heuristic.

Naturally, one can consider a lot of possible extensions for PESP, including more
modelling details, such as operational costs [Lin00], passenger routing [SS15; SS20] or
track choice [MLL23] to name just a few. In [LM07] it is shown how different planning
aspects can be modelled as PESP.

Surveys on periodic timetabling can be found in [Lus+11; CT12; CKL17].

Robust Optimisation

The roots of robust optimisation go back to [Soy73]. However, it started to emerge as
an own field of research much later with the pioneer work by Ben-Tal and Nemirovski
[BN98; BN99; BN00] and El Ghaoui et al. [EL97; EOL98]. Early approaches on robust
optimisation tend to be quite conservative, but many other concepts were introduced
over the last decades, e.g. light robustness [FM09; Sch14], adjustable robustness [Ben+04],
recoverable robustness [Lie+09] and many more. For a thorough introduction to robust
optimisation we refer to [BEN09]. A survey is given in [GMT14] and an overview on
many different robustness concepts can be found in [GS16].
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Robust Timetabling

The literature on robust timetablingmainly treats aperiodic timetabling, i.e. the timetables
are not required to follow a regular pattern. In [FM09] the concept of light robustness
has been introduced and applied to aperiodic timetabling. Recoverable robustness has
been introduced and used for the same application in [Lie+09]. Also [Cic+09; DAn+11]
use recoverable robustness for aperiodic timetabling and present pseudo-polynomial
algorithms for simple graph types (paths and trees) for a single delay. A version for arbit-
rarily many delays is considered in [Cic+08]. A similar concept, recovery-to-optimality,
is studied in [GS10; GS14]. Here, the idea is to recover the timetable not only to a feasible
but to an optimal solution for the realised scenario such that the recovery costs are min-
imal. The authors compare this new concept to several other robustness concepts in a
numerical study. A bicriteria approach considering the travel time and the robustness
of the timetable as objective functions is studied in [SK09]. Three different robustness
measures based on waiting time rules are used. In [CCF12] a Lagrangian relaxation
heuristic is used for finding approximately Pareto optimal aperiodic timetables, where
both the nominal efficiency and the estimated robustness of the timetable are used as
objective functions.

Improving a given timetable with regards to robustness is considered in [FSZ09]
using stochastic programming and light robustness methods. In [Mül+21; Mül+22]
the robustness of a transportation system – not only a timetable – is estimated with
the help of machine learning. This oracle is then used in a local search heuristic and a
genetic algorithm to improve robustness. Increasing the robustness of a given timetable
– aperiodic or periodic – is also studied in [Jov+17] by reallocating buffer on headway
activities. The authors show that this problem can be modelled as a multidimensional
knapsack problem.

In the literature on robust periodic timetabling, usually also the disturbances are as-
sumed to be periodic. This is the case in [Goe15] for the concept recovery-to-optimality.
While small instances can be solved exactly, the author presents heuristic approaches
which are suitable for different instance sizes. Similar to our idea, periodic timetabling
and delaymanagement are integrated in [Pät21]. However, only periodic disturbances are
considered, while we do not require any periodicity in the delays. Two simplified models,
using a no-wait policy (i.e. trains do not wait for delayed feeder trains) or shrinking the
scenario set, are presented. A similar approach is also presented in [Pol+19]. Here, the
timetable is required to be adjustable such that it is still feasible in every scenario, which
can be interpreted as integrating delay management with an always-wait strategy.

[Lie+10] is one of the few papers where periodic timetabling with possibly aperiodic
source delays is considered. Similar to our approach, the objective when computing a
periodic timetable consists of a timetabling part and a delay management part. However,
there are some key differences to ourmodel. It is a stochasticmodel, using the approximate
expected delay as part of the objective function. Several simplifying assumptions, like
a strict no-wait policy and fixed driving times, are used. Furthermore, the objective
function is approximated by a convex piecewise-linear function. The authors describe
their approach as an extension of light robustness. After computing the timetable, it
is then evaluated using a more detailed delay management model. Another stochastic
programming approach is pursued in [Kro+06; KDV07]. The authors consider both the
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computation of a timetable for a single line and the improvement of a given timetable for
a network. A branch-and-bound algorithm for this model is given in [Mar17].

Instead of taking specific source delays into account, another approach is to use the
structure of the network. This is done in [Goe12], where a local search algorithm for
robust periodic timetabling is presented. The robustness of the timetable is evaluated
with a linear function depending on the position of each activity within its trip.

For surveys on robust timetabling we refer to [CT12], [CKL17] and [LLB18].
In total, we can say that so far most robust optimisation models in the literature either

consider aperiodic timetabling, i.e. timetables which are not required to repeat in a regular
pattern, or periodic timetabling where also the source delays are assumed to be periodic.
Robust periodic timetabling with aperiodic source delays has hardly been treated in the
literature so far.

contribution and outline

In this thesis, we investigate robust periodic timetabling problemswith possibly aperiodic
source delays, where we consider several robustness concepts from the literature: strict
robustness, light robustness, adjustable robustness and recoverable robustness. The main
focus lies on the latter, which leads to an integration of two well-researched problems,
the Periodic Event Scheduling Problem and the Delay Management Problem. The novelty
of our approach lies in considering periodic timetables with aperiodic disturbances.
Apart from developing models for robust periodic timetabling, we also present heuristic
methods and show the qualitative superiority of recoverable robust timetables over
timetables obtained using other robustness concepts.

The remainder of this thesis is structured as follows. In Chapter 2 we summarise the
basic notations, definitions and models from public transport optimisation and robust
optimisation needed in the course of this thesis.

In Chapter 3 we briefly explain how we model uncertainties in periodic timetabling.
Since our goal is to integrate the Periodic Event Scheduling Problem (PESP) with the

aperiodic Delay Management Problem (DM), Chapter 4 is dedicated to the question
how PESP can be solved in an aperiodic network, such that both problems of interest can
be considered in the same network. We develop several equivalent formulations for the
problem and compare them in a computational study.

These insights are then used in Chapter 5 to formulate the Recoverable Robust Periodic
Timetabling Problem (RRPT). Since the problem has multiple objectives, we consider
different variants of the problem, putting a different emphasis on nominal travel time
and worst-case delay. Furthermore, we develop several equivalent formulations for RRPT
and compare them in a numerical study.

In Chapter 6we have a look at some properties of recoverable robust periodic timetables.
First of all, we identify several intuitive characteristics of timetables which do not hold
any more when considering the recoverable robust version. Furthermore, we analyse the
influence of the parameters in one of the problem variants from the previous chapter,
namely the oneminimising the nominal travel timewhile bounding the delay, and identify
a special case in which the uncertainty set can be reduced.

Due to the high complexity of the problem RRPT, solving it exactly for large instances
is a too ambitious goal. Hence, in Chapter 7 we develop several heuristic approaches



introduction 5

and test their performance compared to the standard approach of solving PESP and DM
sequentially.

Finally, Chapter 8 is concerned with applying some of the numerous other robustness
concepts, namely strict robustness, light robustness and adjustable robustness, to the
periodic timetabling problem. We present formulations for all of these concepts, analyse
their relations to each other in special cases, and put a focus on the question to which ex-
tend they are able to incorporate the aperiodicity of the delays. Furthermore, we compare
them with respect to their real travel time – both theoretically and in a computational
study.

We conclude this thesis in Chapter 9 and give directions for further research.

publications

Parts of this thesis have already been published. Large parts of Chapter 4 have been
published in [GS21]. The results of Chapter 5 have been previously published in [GS23].





2
PREL IM INAR IES

In this chapter we introduce the basic notions and concepts used in this thesis. We assume
basic knowledge on graph theoretical concepts and linear and integer programming. For
an introduction to these topics we refer to [HK00] and [NW88].

Public transport planning consists of several planning steps, e.g. stop location, line
planning, timetabling, vehicle scheduling, delaymanagement and crew scheduling. In this
thesis, we focus on the steps timetabling and delay management, which are introduced in
the following sections. Furthermore, we consider robust optimisation. A lot of different
robustness concepts exist in the literature. The ones relevant for this thesis are explained
in Section 2.5.

For simplicity we will sometimes use the term train when talking about a vehicle in a
public transport system. However, everything also applies to buses, metros and similar
modes of transport.

2.1 public transport networks and line plans

Since timetabling is part of a chain of planning steps, we first establish some basic notions
from the previous planning stages, from which the input of the actual timetabling step is
derived. One central structure in the early planning stages is the public transport network.

Definition 2.1 (Public Transport Network (PTN)). A public transport network is an un-
directed graph (𝑉, 𝐸) consisting of a set 𝑉 of stations and a set 𝐸 of direct connections
between them.

Given the PTN, we can describe how vehicles move through the system along lines.

Definition 2.2 (Line concept). A line is an (undirected) path in the PTN. The line plan ℒ is
the set of all lines. For every line 𝑙 ∈ ℒ we have a frequency 𝑓𝑙 ∈ ℕ, describing how often
the line 𝑙 is operated in a given planning period 𝐼. Together we obtain a line concept (ℒ, 𝑓 ).

The lines are served in both directions and each line yields several trips.

Definition 2.3 (Directed line, trip). Given a PTN (𝑉, 𝐸) and a line concept (ℒ, 𝑓 ), we
obtain two directed lines 𝑙+, 𝑙− for every line 𝑙 ∈ ℒ. The set of directed lines is denoted by
ℒ𝑑𝑖𝑟. We define a trip 𝑡 as the journey of a vehicle from the beginning of a line to its end.
It is given as a directed path in the PTN. Note that every line 𝑙 yields 2𝑓𝑙 trips, namely 𝑓𝑙
trips in each direction.

These definitions are illustrated in Figure 2.1. For further details on line planning,
including models and solution methods, see [Sch12].

7
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A B

C D

line 𝑙1 = (𝐴, 𝐵), 𝑓𝑙1 = 2
line 𝑙2 = (𝐴, 𝐶, 𝐷), 𝑓𝑙2 = 1

(a) PTN with two lines.

A B

C D

(b) PTN with directed lines.

A B

C D

(c) The line concept yields
2(𝑓𝑙1

+ 𝑓𝑙2
) = 6 trips.

Figure 2.1: Example for a PTN and a line concept.

2.2 periodic timetabling

The goal of timetabling is to assign arrival and departure times to the services in a
public transport system. In the classic planning process, timetabling is situated after stop
location and line planning, i.e. the public transport network is already given and different
lines have already been established. In this thesis we consider periodic timetabling, i.e.
the timetable is required to repeat in a regular pattern, namely every 𝑇 minutes for
some 𝑇 ∈ ℕ>0. In particular, for periodic timetabling it is not necessary to consider every
single trip, but because of the repetitious behaviour it suffices to look at the (directed)
lines (and their repetitions within the period in case of line frequencies higher than one).
Based on the PTN and the line concepts we construct the event-activity network.

Definition 2.4 (Event-ActivityNetwork (EAN)). Let a PTN (𝑉, 𝐸) and a line concept (ℒ, 𝑓 )
be given. We denote an arrival event as a triple (𝑣, 𝑙, 𝑎𝑟𝑟), meaning that the line 𝑙 ∈ ℒ𝑑𝑖𝑟

arrives at station 𝑣 ∈ 𝑉. Analogously, we have departure events of the form (𝑣, 𝑙, 𝑑𝑒𝑝). We
define the set of events as ℰ ≔ ℰarr ∪ ℰdep, where

ℰarr ≔ {(𝑣, 𝑙, 𝑎𝑟𝑟) ∶ line 𝑙 ∈ ℒ𝑑𝑖𝑟 arrives at station 𝑣 ∈ 𝑉}

is the set of arrival events and

ℰdep ≔ {(𝑣, 𝑙, 𝑑𝑒𝑝) ∶ line 𝑙 ∈ ℒ𝑑𝑖𝑟 departs from station 𝑣 ∈ 𝑉}

the set of departure events.
We also need to model processes between the events. Distinguishing between different
process types we define a set of activities 𝒜 = 𝒜drive ∪ 𝒜wait ∪ 𝒜transfer ∪ 𝒜head, where:

𝒜drive ≔ {((𝑣1, 𝑙, 𝑑𝑒𝑝), (𝑣2, 𝑙, 𝑎𝑟𝑟)) ∈ ℰdep × ℰarr ∶ line 𝑙 directly goes from
station 𝑣1 to station 𝑣2}

𝒜wait ≔ {((𝑣, 𝑙, 𝑎𝑟𝑟), (𝑣, 𝑙, 𝑑𝑒𝑝)) ∈ ℰarr × ℰdep}

𝒜transfer ≔ {((𝑣, 𝑙1, 𝑎𝑟𝑟), (𝑣, 𝑙2, 𝑑𝑒𝑝)) ∈ ℰarr × ℰdep ∶ there is a required transfer
from 𝑙1 to 𝑙2 at station 𝑣}

𝒜head ≔ {(𝑖, 𝑗) ∈ ℰ × ℰ∶ there has to be at least distance ℎ𝑖𝑗 ∈ ℕ between 𝑖 and 𝑗}.
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𝑖 𝑗
𝐿(𝑖,𝑗) = ℎ𝑖𝑗

𝐿(𝑗,𝑖) = ℎ𝑗𝑖

𝑖 𝑗
𝐿(𝑖,𝑗) = ℎ𝑖𝑗

𝑈(𝑖,𝑗) = 𝑇 − ℎ𝑗𝑖

Figure 2.2: In periodic timetabling a pair of headway activities can be replaced by a single activity.

Together, the events and activities form the event-activity network 𝒩 = (ℰ, 𝒜).

Driving activities 𝒜drive model a train line driving from one station to another, while
waiting activities 𝒜wait represent a line waiting at a station. Passengers have the possibility
to transfer between different lines, which is included by the transfer activities 𝒜transfer.
Headway activities 𝒜head are used to model safety regulations requiring a minimal distance
between two consecutive departures or arrivals, or the safety restriction on single-track
lines. They usually come in pairs: if we require security distances between 𝑖 and 𝑗, we
need two arcs (𝑖, 𝑗) and (𝑗, 𝑖).

For every activity 𝑎 ∈ 𝒜 a lower bound 𝐿𝑎 ∈ ℕ and an upper bound 𝑈𝑎 ∈ ℕ are
given. The lower bound 𝐿𝑎 is the minimal time necessary to perform the activity 𝑎, e.g.
for a driving activity this is the time needed for driving from one station to the next.
Waiting activities have to be long enough such that the passengers can board or alight the
vehicle and transfer activities have to be sufficiently long to allow passengers to switch
trains. The upper bound 𝑈𝑎 is the maximal time allowed for 𝑎. A motivation for the
upper bounds is that from the passengers’ view, activities should not take overly long,
e.g. passengers do not want to have a very long stop at every station. The purpose of the
headway activities is to ensure that the distance between two trains is sufficiently large by
imposing lower bounds. Since we consider periodic timetables, the events alternate, so
we can also formulate this using lower as well as upper bounds: if for 𝑎 = (𝑖, 𝑗) we have
𝐿𝑎 = ℎ𝑖𝑗 and 𝑈𝑎 = 𝑇 − ℎ𝑗𝑖, then the lower bound for the reversed arc (𝑗, 𝑖) is automatically
fulfilled, see Figure 2.2.

In the case that not all lines have the same frequency, we have to make copies of the
events which take place more often. We want to spread these equally over the period, so
in this case we have an additional type of activities, namely synchronisation activities 𝒜sync.

Now, we can formally define a timetable.

Definition 2.5 (Periodic Timetable). Given an EAN 𝒩 = (ℰ, 𝒜), a timetable with period 𝑇,
𝑇 ∈ ℕ>0, is a mapping 𝜋∶ ℰ → {0, … , 𝑇 − 1} assigning a time to every event. To simplify
notation, we set 𝜋𝑖 ≔ 𝜋(𝑖) for 𝑖 ∈ ℰ. A timetable is feasible if it respects the bounds on the
activities, i.e. for an activity 𝑎 = (𝑖, 𝑗) ∈ 𝒜 it has to hold

𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ∈ [𝐿𝑎, 𝑈𝑎]

for some 𝑧𝑎 ∈ ℤ. We call the values 𝑧𝑎 modulo parameters.

Note that due to the periodicity of the timetable we can assume without loss of gener-
ality that

0 ≤ 𝐿𝑎 ≤ 𝑇 − 1 and 𝐿𝑎 ≤ 𝑈𝑎 ≤ 𝐿𝑎 + 𝑇 − 1 for all 𝑎 ∈ 𝒜 (2.1)

since an interval of length greater than 𝑇 does not pose any restriction.
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(𝐴, 𝑙1,dep)

0

(𝐵, 𝑙1, arr)

22

(𝐵, 𝑙1,dep)

34

(𝐴, 𝑙1, arr)

54

(𝐴, 𝑙1,dep)

30

(𝐵, 𝑙1, arr)

52

(𝐵, 𝑙1,dep)

4

(𝐴, 𝑙1, arr)

24

(𝐴, 𝑙2,dep)

5

(𝐶, 𝑙2, arr)

18

(𝐶, 𝑙2,dep)

20

(𝐷, 𝑙2, arr)

39

(𝐷, 𝑙2,dep)

45

(𝐶, 𝑙2, arr)

4

(𝐶, 𝑙2,dep)

6

(𝐴, 𝑙2, arr)

19

[20,30]
drive

[20,30]
drive

[20,30]
drive

[20,30]
drive

[12,25]
drive

[2,5]
wait

[15,30]
drive

[15,30]
drive

[2,5]
wait

[12,25]
drive

[30,30]
sync

[30,30]
sync

[30,30]
sync

[30,30]
sync

[5,64]
transfer [5,64]

transfer

[5,64]
transfer

[5,64]
transfer

Figure 2.3: A possible EAN and a timetable with period 𝑇 = 60 for the PTN and line concept
from Figure 2.1.

Example 2.6. In Figure 2.3 we see a possible EAN for the PTN and line concept from Fig-
ure 2.1. Since line 𝑙1 has frequency 𝑓𝑙1 = 2, we have two copies of all events corresponding
to this line and synchronisation activities between them. At station 𝐴 it is possible to
transfer between both lines. For every activity 𝑎 the interval [𝐿𝑎, 𝑈𝑎] is written next to the
arc. The numbers above the nodes give a feasible timetable with period 𝑇 = 60.

The Periodic Event Scheduling Problem (PESP), which was introduced in [SU89], asks
for a feasible periodic timetable.

Periodic Event Scheduling Problem (PESP)

Input: EAN 𝒩 = (ℰ, 𝒜) with lower and upper bounds [𝐿𝑎, 𝑈𝑎] for 𝑎 ∈ 𝒜, period
length 𝑇.

Task: Find a feasible periodic timetable 𝜋.
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In the original version, PESP only asks for a feasible timetable. Additionally, we want
to minimise the total travel time summed over all passengers. For 𝑎 ∈ 𝒜 let 𝑤𝑎 ∈ ℕ be
the number of passengers using activity 𝑎. This yields the following IP formulation:

min 𝑓 PESP = ∑
𝑎=(𝑖,𝑗)∈𝒜

𝑤𝑎 ⋅ (𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇) (PESP)

s.t. 𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≤ 𝑈𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜 (2.2)
𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≥ 𝐿𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜 (2.3)
𝜋𝑖 ∈ {0, … , 𝑇 − 1} 𝑖 ∈ ℰ (2.4)
𝑧𝑎 ∈ ℤ 𝑎 ∈ 𝒜. (2.5)

Instead of using node potentials, another approach, see [Nac98], is to use tensions, i.e.
instead of assigning a time 𝜋𝑖 to every event 𝑖 ∈ ℰ we assign a duration 𝜉𝑎 to every
activity 𝑎 ∈ 𝒜.

Definition 2.7. Let 𝒩 = (ℰ, 𝒜) and 𝑇 ∈ ℕ. We call 𝜉 ∈ ℤ|𝒜| a periodic tension if there is a
periodic timetable 𝜋 with modulo parameters 𝑧 ∈ ℤ|𝒜| such that

𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 = 𝜉𝑎 for all 𝑎 = (𝑖, 𝑗) ∈ 𝒜.

In order to find a periodic tension, we can use a cycle basis. For this purpose, we choose
an arbitrary spanning tree 𝒯 in 𝒩. For every 𝑎 ∈ 𝒜\𝒯 there is a unique circuit 𝐶𝑎 in
𝒯 ∪ {𝑎}, called elementary circuit. Denoting the arcs in forward and backward direction
by 𝐶+

𝑎 respectively 𝐶−
𝑎 , we can define the network matrix Γ by

Γ𝑎,𝑎′ =

⎧{{
⎨{{⎩

1 𝑎′ ∈ 𝐶+
𝑎 ,

−1 𝑎′ ∈ 𝐶−
𝑎 ,

0 𝑎′ ∉ 𝐶𝑎

for 𝑎 ∈ 𝒜\𝒯, 𝑎′ ∈ 𝒜. An example is given in Figure 2.4.
The network matrix Γ can be used to find a periodic tension by using the following

theorem.

𝑎1

𝑎2

𝑎4

𝑎3
𝑎5

(a) A graph with a spanning tree marked in green.

𝑎1

𝑎2

𝑎4

𝑎3

𝑎1

𝑎2
𝑎5

(b) The elementary circuits for the given spanning
tree.

Γ =
⎛⎜⎜⎜⎜⎜
⎝

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5

𝑎3 1 −1 1 1 0
𝑎5 −1 1 0 0 1

⎞⎟⎟⎟⎟⎟
⎠

(c) The network matrix.

Figure 2.4: Example for a network matrix.
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Theorem 2.8 ([Pee03]). Let 𝒩 be an EAN and Γ the network matrix w.r.t. some spanning tree.
𝜉 ∈ ℤ|𝒜| is a periodic tension in 𝒩 if and only if there is some 𝑞 ∈ ℤ|𝒜|−|ℰ|−1 with Γ𝜉 = 𝑇𝑞.

Using this result yields the cycle basis formulation of PESP, which is equivalent to the
standard formulation, but needs significantly less computing time [PK01]:

min 𝑤𝑇𝜉 (PESP-cb)
s.t. Γ𝜉 = 𝑇𝑞 (2.6)

𝐿 ≤ 𝜉 ≤ 𝑈 (2.7)
𝜉𝑎 ∈ ℤ 𝑎 ∈ 𝒜 (2.8)
𝑞𝑎 ∈ ℤ 𝑎 ∈ 𝒜\𝒯 . (2.9)

The objective function minimises the weighted tension, i.e. the passengers’ travel time.
Constraint (2.6) ensures that 𝜉 is indeed a periodic tension with period 𝑇. The lower and
upper bounds are respected due to (2.7).

Details about periodic timetabling can be found in the literature on PESP, a good
introduction is given in [Lie06; Nac98].

2.3 rolling out the network

For later planning stages taking place when a timetable is already given, such as vehicle
scheduling or delay management, it is not sufficient to consider the periodic network
𝒩 = (ℰ, 𝒜), because we have to be able to distinguish between the physical trains serving
the same line. While in a periodic EAN the events represent the arrivals or departures
of a line at some station, in an aperiodic EAN they model the arrival or departure of a
single trip. Hence, instead of only considering the lines, we consider all trips of the lines
separately. This means we have to “roll out” the periodic EAN to an aperiodic one in
a time interval 𝐼 = [𝑡min, 𝑡max]. Let a feasible periodic timetable 𝜋 for the network 𝒩 be
given. For every 𝑖 ∈ ℰ set

𝜋first(𝑖) ≔ min{𝜋𝑖 + 𝑘𝑇 ∶ 𝜋𝑖 + 𝑘𝑇 ≥ 𝑡min, 𝑘 ∈ ℤ},

𝜋last(𝑖) ≔ max{𝜋𝑖 + 𝑘𝑇 ∶ 𝜋𝑖 + 𝑘𝑇 ≤ 𝑡max, 𝑘 ∈ ℤ}.

These are the first respectively last times the event 𝑖 occurs in the considered time horizon.
The roll-out process then works as follows:

• For every 𝑖 ∈ ℰ and 1 ≤ 𝑠 ≤ 𝐾𝑖 ≔ ⌊𝜋last(𝑖)−𝜋first(𝑖)
𝑇 ⌋ + 1 construct an aperiodic event 𝑖𝑠

with 𝜋𝑖𝑠 = 𝜋first(𝑖) + (𝑠 − 1)𝑇. Let ℰ(𝑖) ≔ {𝑖𝑠 ∶ 1 ≤ 𝑠 ≤ 𝐾𝑖} be the set of aperiodic
events corresponding to the periodic event 𝑖 and ℰ ≔ ∪𝑖∈ℰℰ(𝑖).

• For every 𝑎 = (𝑖, 𝑗) ∈ 𝒜\𝒜head and 𝑖𝑠 ∈ ℰ(𝑖) determine 𝑗𝑡 ∈ ℰ(𝑗) (if it exists)
such that 𝐿𝑎 ≤ 𝜋𝑗𝑡 − 𝜋𝑖𝑠 ≤ 𝑈𝑎. We create an aperiodic activity 𝑎𝑠𝑡 = (𝑖𝑠, 𝑗𝑡) and set
𝐿𝑎𝑠𝑡

= 𝐿𝑎, 𝑈𝑎𝑠𝑡
= 𝑈𝑎 and 𝑤𝑎𝑠𝑡

= 𝑤𝑎. For each pair 𝑎 = (𝑖, 𝑗), 𝑎′ = (𝑗, 𝑖) ∈ 𝒜head of
headway activities and 𝑖𝑠 ∈ ℰ(𝑖), 𝑗𝑡 ∈ ℰ(𝑗) create two aperiodic activities 𝑎𝑠𝑡 =
(𝑖𝑠, 𝑗𝑡), 𝑎𝑡𝑠 = (𝑗𝑡, 𝑖𝑠) with 𝐿𝑎𝑠𝑡

= 𝐿𝑎 and 𝐿𝑎𝑡𝑠
= 𝑇 − 𝑈𝑎. If 𝑗𝑡 does not exist, we are at

the end of [𝑡min, 𝑡max] and nothing has to be done. All the activities constructed in
this manner form the set 𝒜.
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Together, we obtain the rolled out network 𝒩 = (ℰ, 𝒜). Note that using (2.1) the 𝑗𝑡 in
the roll-out process is uniquely determined, if it exists.

A particularity are the headway activities which ensure a security distance between
two consecutive departures. For every pair of these headway arcs 𝑎𝑠𝑡, 𝑎𝑡𝑠 the lower bound
has to be respected for exactly one of them, i.e. the pair 𝑎 = (𝑖, 𝑗), 𝑎′ = (𝑗, 𝑖) ∈ 𝒜head yields
the following constraints:

For all 1 ≤ 𝑠 ≤ 𝐾𝑖, 1 ≤ 𝑡 ≤ 𝐾𝑗 either 𝜋𝑗𝑡 − 𝜋𝑖𝑠 ≥ ℎ𝑖𝑗 or 𝜋𝑖𝑠 − 𝜋𝑗𝑡 ≥ ℎ𝑗𝑖,

where ℎ𝑖𝑗 = 𝐿𝑎, ℎ𝑗𝑖 = 𝐿𝑎′.
For further details on the roll-out procedure, we refer to [Lie+10].

2.4 delay management

When the timetable is put into practice, we can often observe that not everything goes
as planned: technical failures, accidents on the tracks or bad weather conditions are
just a few examples for the occurrence of source delays. As a consequence, the original
timetable 𝜋 is not feasible any more and has to be adapted to the current situation. This
problem is called delay management and has been introduced in [Sch01] and developed
further in [Sch07]. It is important to note that delay management has to be done in the
rolled out network 𝒩 = (ℰ, 𝒜), because we have to be able to distinguish between the
physical trains serving the same line. We distinguish between two different kinds of
source delays: if an activity 𝑎 ∈ 𝒜train ≔ 𝒜drive ∪ 𝒜wait has a source delay of 𝑑𝑎 ∈ ℕ, this
means the lower bound for 𝑎 increases from 𝐿𝑎 to 𝐿𝑎 + 𝑑𝑎. If an event 𝑖 ∈ ℰ has a source
delay of 𝑑𝑖 ∈ ℕ, the event cannot happen earlier than 𝜋𝑖 +𝑑𝑖. The source delays propagate
through the network, causing follow-up delays at later events. Furthermore, we have to
make an important decision for each transfer activity that has become impossible due to
a delay of the feeder train: we can either wait for a delayed train, allowing passengers
to make their transfer but causing even more delays, or we have to cancel the transfer,
in which case the passengers who wanted to take this transfer have to wait for a later
connection. Hence, delay management consists of two tasks: deciding which transfers
need to be maintained and which should be cancelled, and assigning a new time to every
event. We call the resulting new timetable disposition timetable. Note that the upper bounds
for the activities are ignored in delay management since it is often impossible to respect
them in case of delays.

Delay Management (DM)

Input: EAN rolled out for timetable 𝜋, source delays 𝑑.

Task: Find wait/no-wait decisions for every 𝑎 ∈ 𝒜transfer and a disposition timetable
such that the sum of delays of all passengers is minimised.

Example 2.9. We are given (parts of) an EAN in Figure 2.5. Note that this is the rolled out
version, i.e. we do not only consider lines but the single trips. There are two source delays:
the departure of trip 𝑡1 at station A is delayed by 5 minutes and the driving activity of
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(𝐴, 𝑡1,dep)

8∶ 05
8∶ 00

𝑑 = 5

(𝐵, 𝑡1, arr)

8∶ 23
8∶ 20

(𝐵, 𝑡2,dep)

8∶ 28
8∶ 25

(𝐶, 𝑡2, arr)

8∶ 51
8∶ 40

(𝐶, 𝑡3,dep)

8∶ 46

(𝐷, 𝑡3, arr)

9∶ 03

[18,25] [5,30] [13,20]
𝑑 = 10

[5,3
0]

[20, 30]

Figure 2.5: An example for a disposition timetable.

trip 𝑡2 from station B to station C needs additional 10 minutes. The delays propagate
through the network, where buffer times in the timetable can be used to absorb some of
the delay. Note that the dotted arcs are transfer activities. In this example, 𝑡2 waits for the
delayed trip 𝑡1, which causes further delay. On the other hand, the transfer from 𝑡2 to 𝑡3
is cancelled and 𝑡3 departs on time.

For the decisions on the transfers we use binary variables

𝑦𝑎 =
⎧{
⎨{⎩

1 if 𝑎 is cancelled,
0 if 𝑎 is maintained.

Variables 𝑥 give the new time of the events. Furthermore, we have to take care of the
security distances: if we have a pair (𝑖, 𝑗), (𝑗, 𝑖) ∈ 𝒜head of headway activities, only for one
of them the constraint imposed by the lower bound is active, depending on which of the
events takes place first. Hence, we have further binary variables

𝑝𝑖𝑗 =
⎧{
⎨{⎩

1 if 𝑖 takes place before 𝑗,
0 otherwise,

see [SS10]. The objective is to minimise the delay the passengers have at their destination.
If passengers miss a transfer, we use the common assumption that they take the next trip
𝑇 minutes later and that this trip does not have a delay. Let 𝑤𝑖 ∈ ℕ be the number of
passengers leaving the transport system at event 𝑖 ∈ ℰ. For a fixed timetable 𝜋 and source
delays 𝑑 this yields the following IP formulation (for an appropriately large constant 𝑀):

min ∑
𝑖∈ℰ

𝑤𝑖(𝑥𝑖 − 𝜋𝑖) + 𝑇 ∑
𝑎∈𝒜transfer

𝑤𝑎𝑦𝑎 (DM)

s.t. 𝑥𝑖 ≥ 𝜋𝑖 + 𝑑𝑖 𝑖 ∈ ℰ (2.10)
𝑥𝑗 − 𝑥𝑖 ≥ 𝐿𝑎 + 𝑑𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜train (2.11)
𝑀𝑦𝑎 + 𝑥𝑗 − 𝑥𝑖 ≥ 𝐿𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜transfer (2.12)
𝑀(1 − 𝑝𝑖𝑗) + 𝑥𝑗 − 𝑥𝑖 ≥ 𝐿𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜head (2.13)
𝑝𝑖𝑗 + 𝑝𝑗𝑖 = 1 (𝑖, 𝑗), (𝑗, 𝑖) ∈ 𝒜head (2.14)
𝑥𝑖 ∈ ℕ 𝑖 ∈ ℰ (2.15)
𝑦𝑎 ∈ {0, 1} 𝑎 ∈ 𝒜transfer (2.16)
𝑝𝑖𝑗 ∈ {0, 1} (𝑖, 𝑗) ∈ 𝒜head. (2.17)
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The objective function minimises the sum of the deviation from the original timetable
(weighted with the number of passengers leaving the public transport system at every
event) and the number of missed transfers (weighted with the number of passengers
using the transfers and a penalty 𝑇). The event source delays are respected due to (2.10).
Note that we set 𝑑𝑖 = 0 if 𝑖 ∈ ℰ does not have a source delay, and analogously for the
activity delays we can also have 𝑑𝑎 = 0 for 𝑎 ∈ 𝒜train. Constraints (2.11) ensure that
the delay is propagated correctly along driving and waiting activities and the source
delays are respected. Similarly, Constraints (2.12) make sure that the delay propagation is
handled correctly along transfer activities which aremaintained. For each pair of headway
activities, we have to respect the lower bound for exactly one of them, which is ensured
by (2.13) and (2.14).

For the large constant, in [Sch09] it is shown that

𝑀 ≔ max
𝑖∈ℰ

𝑑𝑖 + ∑
𝑎∈𝒜train

𝑑𝑎 + ∑
(𝑖,𝑗)∈𝒜head∶

𝜋𝑖>𝜋𝑗

(𝜋𝑖 − 𝜋𝑗 + 𝐿𝑖𝑗)

is sufficiently large.
Note that the objective function, which is commonly used in the literature on delay

management, can overestimate the actual delay. However, if the so-called never-meet prop-
erty is fulfilled, which roughly speaking means that the paths of two delayed customers
never meet, it is exact [Sch07].

Delay management was shown to be NP-complete in [Gat+05]. Heuristic approaches
determining which trains should wait for delayed feeder trains are presented in [SS10;
KS11; BS14; Rüc+17]. Numerous extensions of the model have been considered, for
example integrating passenger re-routing [Dol+12], station capacities [Dol+15] and
vehicle circulations [Fli+08; GSS22]. Overviews on delay management can be found in
[Dol+18; Kön20].

2.5 robust optimisation

When solving optimisation problems, we usually assume that all data is known exactly.
However, when handling real-world problems, we often face some form of uncertainty.
The parameters in the model might only be determined approximately. Or they might not
be known yet, so we can only use a forecast. Maybe some disturbances occur and change
the parameters. Hence, we want to take these uncertainties into account when solving
the optimisation problem: we want to have a solution which is “robust”. But what does
robust even mean? The literature has a lot of different answers to this question in store.
In this section we introduce those robustness concepts which are used in the course of
this thesis.

A standard optimisation problem without any uncertainty might have the following
form:

min 𝑓 (𝑥) (P)
s.t. 𝑔(𝑥) ≤ 0

𝑥 ∈ ℝ𝑛,
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where 𝑓 ∶ ℝ𝑛 → ℝ and 𝑔 ∶ ℝ𝑛 → ℝ𝑚 for some 𝑛, 𝑚 ∈ ℕ. If we take uncertainty into
account, the objective function as well as the constraints can depend on some parameter
from a given uncertainty set 𝒰. Hence, we do not have a single problem any more, but a
whole family of problems (P(𝑟))𝑟∈𝒰 of the following form:

min 𝑓 (𝑥, 𝑟) (P(𝑟))
s.t. 𝑔(𝑥, 𝑟) ≤ 0

𝑥 ∈ ℝ𝑛,

where 𝑓 (⋅, 𝑟) ∶ ℝ𝑛 → ℝ and 𝑔(⋅, 𝑟) ∶ ℝ𝑛 → ℝ𝑚. In this thesis, we assume a finite
uncertainty set, i.e. the scenarios are given explicitly. For an overview on different types
of uncertainty see [GS16].

2.5.1 Strict Robustness

Robust optimisation has first been introduced by [Soy73] and [BN98]. To distinguish
their concept from others, we call it strict robustness. Here, a feasible solution has to fulfil
the constraints for every 𝑟 ∈ 𝒰. An optimal solution minimises the objective function in
the worst case, i.e. the problem becomes

min sup
𝑟∈𝒰

𝑓 (𝑥, 𝑟) (SRC)

s.t. 𝑔(𝑥, 𝑟) ≤ 0 𝑟 ∈ 𝒰
𝑥 ∈ ℝ𝑛.

This problem is called the strictly robust counterpart (SRC).
In many applications this strict approach is necessary, e.g. in matters of security. If we

build a bridge, we need to be sure that it will not collapse when there is a lot of traffic
or a heavy storm. However, for a lot of settings this high level of caution leads to overly
conservative solutions, which is why different robustness concepts were developed.

2.5.2 Light Robustness

For the application to timetabling, strict robustness is too conservative. To allow more
flexibility, [FM09] and [Sch14] have hence introduced the concept of light robustness. In
this concept, we consider a fixed nominal scenario ̂𝑟. This could e.g. be the most likely
scenario or the one without any disturbances. While the lightly robust solution should
be feasible for ̂𝑟, for other scenarios we allow infeasibility to some extend. However, the
objective value should not deviate too much from the optimal objective value in the
nominal case.

To formalise this, we define the grade of infeasibility of 𝑥 w.r.t. constraint 𝑖, 𝑖 ∈ {1, … , 𝑚},
as

goi𝑖(𝑥) ≔ max{0, sup
𝑟∈𝒰

𝑔𝑖(𝑥, 𝑟)}
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and the grade of infeasibility of 𝑥 as

goi(𝑥) ≔ ‖(goi𝑖(𝑥))𝑖∈{1,…,𝑚}‖

for some norm ‖ ⋅ ‖. Hence, the grade of infeasibility describes, in some sense, how close
the solution is to the strictly robust solution (which has a goi of zero). Our goal is to
find a solution 𝑥 whose objective value 𝑓 (𝑥, ̂𝑟) in the nominal scenario differs at most by
𝜌 ≥ 0 from the optimal objective value ̂𝑓 of the nominal problem 𝑃( ̂𝑟). The objective is to
minimise goi(𝑥).

Hence, the lightly robust counterpart (LRC) is given by

min ‖𝛾‖ (LRC(𝜌))
s.t. 𝑓 (𝑥, ̂𝑟) ≤ ̂𝑓 + 𝜌

𝑔(𝑥, ̂𝑟) ≤ 0
𝑔(𝑥, 𝑟) ≤ 𝛾 𝑟 ∈ 𝒰
𝑥 ∈ ℝ𝑛

𝛾 ∈ ℝ𝑚.

2.5.3 Adjustable Robustness

Ben-Tal et al. [Ben+04] argue that in real-world problems often not all decisions have
to be made before the realisation of the uncertain data becomes known. Rather, only a
subset of the variables has to be fixed “here and now”, while for the others we can “wait
and see” until the data becomes certain. For example, when producing some goods, in
the beginning we have to decide on the quantity before we know the actual demand.
However, for later production periods we can use the knowledge on the previous demand.

Formally, this means the set of variables is partitioned into two parts (𝜇, 𝜈), where 𝜇
is the non-adjustable part (i.e. the “here-and-now variables”) and 𝜈 the adjustable part
(the “wait-and-see variables”). Let us again consider our uncertain problem (P(𝑟))𝑟∈𝒰.
Using the variable partition 𝑥 = (𝜇, 𝜈) we can rewrite this as

min 𝑐
s.t. 𝑓 (𝜇, 𝜈, 𝑟) ≤ 𝑐

𝑔(𝜇, 𝜈, 𝑟) ≤ 0
𝜇 ∈ ℝ𝑛1, 𝜈 ∈ ℝ𝑛2

and can hence assume without loss of generality that the adjustable part 𝜈 as well as the
uncertain data 𝑟 only show up in the constraints, but not in the objective function.

The adjustable robust counterpart (ARC) asks for values for the “here-and-now vari-
ables” 𝜇 such that for every scenario 𝑟 ∈ 𝒰 there are values for the “wait-and-see vari-
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ables” 𝜈𝑟 such that together (𝜇, 𝜈𝑟) is feasible for scenario 𝑟. The objective function stays
the same. We hence write:

min 𝑐 (ARC)
s.t. 𝑓 (𝜇, 𝜈𝑟, 𝑟) ≤ 𝑐 𝑟 ∈ 𝒰

𝑔(𝜇, 𝜈𝑟, 𝑟) ≤ 0 𝑟 ∈ 𝒰
𝜇 ∈ ℝ𝑛1

𝜈𝑟 ∈ ℝ𝑛2 𝑟 ∈ 𝒰.

2.5.4 Recoverable Robustness

The main focus in this thesis lies on recoverable robustness, which has been introduced
in [Lie+09], also with the aim to apply it to timetabling. The idea is to find a solution
for the nominal scenario such that for every scenario 𝑟 ∈ 𝒰 it is possible to recover this
solution, i.e. make it feasible for the scenario 𝑟 with limited effort. This recovery is achieved
by applying a recovery algorithm 𝐴 from a set 𝒜 of admissible algorithms. By “limited
effort” we mean that we have the possibility to restrict the actions the recovery algorithm
is allowed to take by choosing the set 𝒜. For example, we could require that the recovered
solution does not deviate too much from the nominal feasible solution.

Given a feasible solution 𝑥 to the nominal problem and a scenario 𝑟 ∈ 𝒰, the algorithm 𝐴
returns a solution 𝐴(𝑥, 𝑟). The goal is that this solution is feasible for the scenario 𝑟. A
schematic illustration of the concept is shown in Figure 2.6.

Denoting the set of feasible solutions for the undisturbed setting by 𝒳, we can formulate
the problem as follows:

min
(𝑥,𝐴)∈𝒳×𝒜

{𝑓 (𝑥) ∶ ∀𝑟 ∈ 𝒰 ∶ 𝑔(𝐴(𝑥, 𝑟), 𝑟) ≤ 0}. (2.18)

In this version of the problem, no costs for the recovery are considered in the objective
function. Hence, the solution 𝐴(𝑥, 𝑟) only needs to be feasible. Alternatively, we can
incorporate the recovery costs (which in some way measure the difference between the
solution 𝑥 and the new solution 𝐴(𝑥, 𝑟)) in the objective function. For this purpose, let 𝑐
be some function measuring the recovery costs. We require 𝑐(𝐴(𝑥, 𝑟)) ≤ 𝜆, where 𝜆 ∈ Λ

𝑥
𝐴(𝑥, 𝑟)

algorithm 𝐴

feasible solutions for ̂𝑟 feasible solutions for 𝑟

Figure 2.6: Schematic illustration of the concept of recoverable robustness.
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is a variable (for an appropriately chosen set Λ) which is incorporated in the objective by
some additional objective function 𝑓 ′. Then our problem can be formulated as

min
(𝑥,𝐴,𝜆)∈𝒳×𝒜×Λ

{𝑓 (𝑥) + 𝑓 ′(𝜆) ∶ ∀𝑟 ∈ 𝒰 ∶ 𝑔(𝐴(𝑥, 𝑟), 𝑟) ≤ 0 ∧ 𝑐(𝐴(𝑥, 𝑟)) ≤ 𝜆} (2.19)

or even

min
(𝑥,𝐴,𝜆)∈𝒳×𝒜×Λ

⎧{
⎨{⎩

⎛⎜⎜
⎝

𝑓 (𝑥)
𝑓 ′(𝜆)

⎞⎟⎟
⎠

∶ ∀𝑟 ∈ 𝒰 ∶ 𝑔(𝐴(𝑥, 𝑟), 𝑟) ≤ 0 ∧ 𝑐(𝐴(𝑥, 𝑟)) ≤ 𝜆
⎫}
⎬}⎭

(2.20)

if we consider a multi-objective version.
In this thesis, we consider several of these variants.





3
MODELL ING UNCERTA INT IES IN T IMETABL ING

In this chapter we explain which kind of uncertainty we have in timetabling and how the
uncertain PESP looks like.

First, we re-write the standard PESP formulation such that it has the same form as the
generic optimisation problem P from Section 2.5. For this purpose, note that the optimal
modulo variables 𝑧𝑎 can be easily determined if 𝜋 is fixed, namely

𝑧𝑎(𝜋) ≔ min{𝑧 ∈ ℤ ∶ 𝜋𝑗 − 𝜋𝑖 + 𝑧𝑇 ≥ 𝐿𝑎}.

Hence, by defining

𝑓 PESP(𝜋) ≔ ∑
𝑎=(𝑖,𝑗)∈𝒜

𝑤𝑎(𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎(𝜋)𝑇)

𝑔𝑈
𝑎 (𝜋) ≔ 𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎(𝜋)𝑇 − 𝑈𝑎

𝑔𝐿
𝑎 (𝜋) ≔ 𝐿𝑎 − 𝜋𝑗 + 𝜋𝑖 − 𝑧𝑎(𝜋)𝑇

we can then also write PESP as

min 𝑓 PESP(𝜋)
s.t. 𝑔𝑈(𝜋) ≤ 0

𝑔𝐿(𝜋) ≤ 0
𝜋 ∈ {0, … , 𝑇 − 1}ℰ,

where 𝑔𝑈(𝜋) ≔ (𝑔𝑈
𝑎 (𝜋))𝑎∈𝒜, 𝑔𝐿(𝜋) ≔ (𝑔𝐿

𝑎 (𝜋))𝑎∈𝒜.
In the context of timetabling, we assume that the uncertainty of the data lies in the

lower bounds for the duration of the driving and waiting activities, i.e. in scenario 𝑟 ∈ 𝒰
there might occur some source delay 𝑑𝑟

𝑎 on an activity 𝑎 ∈ 𝒜train, which increases the
minimal time necessary to perform this activity from 𝐿𝑎 to 𝐿𝑎 + 𝑑𝑟

𝑎. Such a delay 𝑑𝑟
𝑎 ≥ 0 is

not known in advance. Note that although we only have source delays for activities from
the set 𝒜train, for simpler notation we sometimes do not distinguish between the different
activity types by simply setting 𝑑𝑟

𝑎 ≔ 0 for 𝑎 ∈ 𝒜\𝒜train.
There are applications where it makes sense to consider periodic delays, e.g. in case of

construction sites which cause delays in a regular pattern. However, in general delays are
not periodic. Hence, in this thesis we consider aperiodic delays.

To be able to take the aperiodicity of the delays into account, it is not sufficient to
consider the periodic network 𝒩 = (ℰ, 𝒜). Like for the problem of delay management
we need an aperiodic network 𝒩 = (ℰ, 𝒜), which treats every repetition of an event
or activity (within a certain planning interval 𝐼 of 𝐾 periods) separately. This means
that actually we do not have a source delay for some arc 𝑎 ∈ 𝒜 in the periodic network,
but for every period 𝑠 ∈ {1, … , 𝐾} the corresponding aperiodic activity 𝑎𝑠 can have a
different delay. Hence, for every scenario 𝑟 ∈ 𝒰 we have a vector 𝑑𝑟 ∈ ℕ𝐾|𝒜|, containing
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a source delay for every repetition of every activity. Therefore, when considering the
uncertain PESP, it does not suffice to have a single constraint for every constraint from
the original PESP, but every constraint 𝑔𝐿

𝑎 (𝜋) ≤ 0 induces 𝐾 constraints 𝑔𝐿
𝑎 (𝜋) + 𝑑𝑟

𝑎𝑠
≤ 0

for 𝑠 ∈ {1, … , 𝐾}. We define

𝒰𝑟 ≔ {(𝑑𝑟
𝑎𝑠

)𝑎∈𝒜train
∶ 𝑠 ∈ {1, … , 𝐾}} (3.1)

and

𝑔𝐿(𝜋, 𝑟) ≔ (𝑔𝐿(𝜋) + 𝑑)𝑑∈𝒰𝑟.

The uncertain PESP for some 𝑟 ∈ 𝒰 is then given by

min 𝑓 PESP(𝜋)
s.t. 𝑔𝑈(𝜋) ≤ 0

𝑔𝐿(𝜋, 𝑟) ≤ 0
𝜋 ∈ {0, … , 𝑇 − 1}|ℰ|,

and by plugging in the definitions we get

min ∑
𝑎=(𝑖,𝑗)∈𝒜

𝑤𝑎(𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇) (PESP(𝑟))

s.t. 𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≤ 𝑈𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜 (3.2)
𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≥ 𝐿𝑎 + 𝑑𝑟

𝑎𝑠
𝑎 = (𝑖, 𝑗) ∈ 𝒜, 𝑠 ∈ {1, … , 𝐾} (3.3)

𝑧𝑎 ∈ ℤ 𝑎 ∈ 𝒜 (3.4)
𝜋𝑖 ∈ {0, … , 𝑇 − 1} 𝑖 ∈ ℰ. (3.5)

Note that we only have uncertainty in the constraints given by 𝑔𝐿, but neither in the
constraints given by 𝑔𝑈 nor in the objective function. Furthermore, note that some of the
constraints (3.3) in the formulation above are redundant. We could instead write

𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≥ 𝐿𝑎 + max
𝑠∈{1,…,𝐾}

𝑑𝑟
𝑎𝑠

𝑎 = (𝑖, 𝑗) ∈ 𝒜.

However, for the recoverable robust approach it is essential that we keep the formulation
PESP(𝑟) as given since only then we can incorporate the aperiodicity of the source delays.
For other robustness concepts it does not matter which of the two formulations we choose.
We will look into this issue in more detail in Chapter 8.

Recall that in delay management we have two different types of source delays: in
addition to the activity delays, which increase the lower bound for an activity 𝑎 ∈ 𝒜,
we can also have event delays 𝑑𝑖 for an event 𝑖 ∈ ℰ, which means that the event 𝑖 cannot
start on time. Since our aim is to integrate timetabling and delay management, we also
want to incorporate this type of delay. However, since the event delays model a deviation
from the planned timetable, and hence imply that the timetable is infeasible, we cannot
include this when writing down the uncertain PESP. However, note that event delays can
be re-written as activity delays by considering a modified network as shown in [Sch09].
An example is given in Figure 3.1. If we have an event 𝑖 with a source delay 𝑑𝑖 = 𝛿 > 0,
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𝑖

𝑑𝑖 = 𝛿

𝑗

(a) The original EANwith a source delay on an event.

𝑖

̃𝑑𝑖 = 0

𝑗𝑖0
̃𝑑(𝑖0,𝑖) = 𝛿

(b) The modified EAN without source delays on
events.

Figure 3.1: Event delays can be transformed into activity delays.

we add a virtual event 𝑖0 and an activity (𝑖0, 𝑖) with [𝐿(𝑖0,𝑖), 𝑈(𝑖0,𝑖)] = [0, 0], 𝑤𝑖0 = 1 and
𝑤(𝑖0,𝑖) = 0. We can then simply replace the event delay 𝑑𝑖 by an activity delay ̃𝑑(𝑖0,𝑖). As
an illustration, imagine that the event delay 𝑑𝑖 is caused by a crew member being late.
The activity (𝑖0, 𝑖) can then be interpreted as the crew member going to work and the
activity delay as some disturbance on the work way. Using this transformation we can
assume that we only have activity delays. However, since this comes at the cost of a larger
network, we usually treat both types of delays separately when doing delay management
– and will also do so in the integrated problem.





4
A MODEL FOR PER IOD IC T IMETABL ING IN AN
APER IOD IC NETWORK

Our aim is to develop a recoverable robust model for periodic timetabling. To this end,
we have to integrate periodic timetabling and delay management. As pointed out in Sec-
tions 2.2 to 2.4, timetables are determined in a periodic network, but delay management
is done in an aperiodic network since in general delays do not occur periodically. In order
to integrate delay management into timetabling, we hence have to find a way to solve
both problems in the same network.

One way for such an integration is to develop a timetabling model which computes a
periodic timetable in an aperiodic network, which is the goal of this chapter. We call the
new model Periodic Timetabling in Aperiodic Network (PTTA).

Computing a periodic timetable in an aperiodic network was already considered in
[VV06]. As opposed to our model, in [VV06] the decision on which transfer activities
are needed is not part of the optimisation process but is fixed before by a simple heuristic
rule. In [BL08] the problem is considered only for a single train line between two stations.
A model putting an emphasis on passenger satisfaction and including the passenger
routing is proposed in [Rob+16]. It uses the assumption that all drive and dwell times
are fixed and it does not consider track safety constraints.

outline In Section 4.1 we introduce the new timetabling model and make several
modifications to the model such that it better meets our needs. In Section 4.2 we compare
the new model PTTA to the established model PESP and show that they are equivalent.
We present some computational results in Section 4.3 and conclude the chapter with
some final remarks and suggestions for further research.

4.1 a new timetabling model

In Section 2.3 we saw how the periodic EAN can be rolled out for some planning ho-
rizon [𝑡min, 𝑡max], which is a necessary step before doing delay management. The goal
of this chapter is to compute the timetable in the rolled out EAN. Hence, we cannot
use the timetable when rolling out. However, the timetable information is important for
determining the activities between the correct arrival and departure events. This is shown
in Figures 4.1c and 4.1d, where two different timetables are used for the roll-out of the
periodic EAN shown in Figure 4.1a, leading to two different aperiodic networks. Since
we do not know beforehand which activities will be needed for the optimal timetable,
we allow all possibilities (see Figure 4.1b) and leave it to the optimisation to choose the
correct activities together with the optimal timetable. Note that every periodic event has
several, say 𝐾, repetitions within the planning horizon 𝐼. Since it is possible that some
activities start within 𝐼 but end outside of it, we add a certain number 𝑏 of periods at the
end of the planning horizon, which we define formally in the following.
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𝑖 𝑗 𝑖′ 𝑗′drive
[50,70]

wait
[5,10]

drive
[30,40]

(a) Periodic EAN with [𝐿𝑎, 𝑈𝑎] given below the arcs.

𝑖1

𝑖2

𝑖3

𝑖4

𝑖5

𝑗1

𝑗2

𝑗3

𝑗4

𝑗5

𝑖′1

𝑖′2

𝑖′3

𝑖′4

𝑖′5

𝑗′1

𝑗′2

𝑗′3

𝑗′4

𝑗′5

(b) EAN rolled out with all possible activities (𝑏 =
2).

𝑖1

8∶00

𝑖2

9∶00

𝑖3

10∶00

𝑗1

8∶50

𝑗2

9∶50

𝑗3

10∶50

𝑖′1

8∶55

𝑖′2

9∶55

𝑖′3

10∶55

𝑗′1

8∶25

𝑗′2

9∶25

𝑗′3

10∶25

(c) Rolled out EANafter choosing a feasible timetable
and the corresponding activities. The dashed arcs
indicate the connections entering or leaving the
planning horizon.

𝑖1

8∶50

𝑖2

9∶50

𝑖3

10∶50

𝑗1

8∶00

𝑗2

9∶00

𝑗3

10∶00

𝑖′1

8∶05

𝑖′2

9∶05

𝑖′3

10∶05

𝑗′1

8∶40

𝑗′2

9∶40

𝑗′3

10∶40

(d) Rolled out EAN with another feasible timetable,
which results in different activities.

Figure 4.1: Rolling out a periodic EAN without knowing the timetable for the time interval
[8:00,10:59] with 𝑇 = 60, i.e. 𝐾 = 3.
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We adapt the roll-out procedure in the following way.

• We set 𝐾 ≔ ⌊ 𝑡max−𝑡min
𝑇 ⌋ + 1 and 𝑏𝑎 ≔ ⌈

𝑈𝑎
𝑇 ⌉ for 𝑎 ∈ 𝒜, 𝑏 ≔ max𝑎∈𝒜 𝑏𝑎.

• For every periodic event 𝑖 ∈ ℰ and 1 ≤ 𝑠 ≤ 𝐾 + 𝑏 create an aperiodic event 𝑖𝑠. Let
ℰ(𝑖) ≔ {𝑖𝑠 ∶ 1 ≤ 𝑠 ≤ 𝐾 + 𝑏} be the set of all aperiodic events corresponding to 𝑖. The
set of all events is ℰ ≔ ∪𝑖∈ℰℰ(𝑖).

• For every periodic activity 𝑎 = (𝑖, 𝑗) ∈ 𝒜\𝒜head, for exactly one arc 𝑎 = (𝑖, 𝑗) of
every pair of headway activities and for every 1 ≤ 𝑠 ≤ 𝐾, 𝑠 ≤ 𝑡 ≤ 𝐾 + 𝑏𝑎 create
a possible (aperiodic) activity 𝑎𝑠𝑡 with 𝐿𝑎𝑠𝑡

= 𝐿𝑎, 𝑈𝑎𝑠𝑡
= 𝑈𝑎 and 𝑤𝑎𝑠𝑡

= 𝑤𝑎. Let
𝒜(𝑎) ≔ {𝑎𝑠𝑡 = (𝑖𝑠, 𝑗𝑡) ∶ 1 ≤ 𝑠 ≤ 𝐾, 𝑠 ≤ 𝑡 ≤ 𝑠 + 𝑏𝑎} be the set of possible activities
corresponding to 𝑎. The set of all possible activities is

𝒜 ≔ ⋃
𝑎∈𝒜

𝒜(𝑎). (4.1)

The final network (ℰ, 𝒜) is called the rolled out network. From now on, if we refer to the
EAN rolled out with a given timetable 𝜋 as constructed in Section 2.3, we use the notation
(ℰ(𝜋), 𝒜(𝜋)).

If we have a timetable 𝜋 and an activity 𝑎 = (𝑖, 𝑗), for some 𝑠 there may be no 𝑡 such that
𝜋𝑗𝑡 − 𝜋𝑖𝑠 ∈ [𝐿𝑎, 𝑈𝑎], since the time of the event we would theoretically have to choose
exceeds the planning horizon. Hence, we add 𝑏 periods at the end, to ensure that we can
define these activities. We will show in Lemma 4.4 that this is a reasonable choice.

We remark that when rolling out with a timetable, the number 𝐾𝑖 of aperiodic events
corresponding to a periodic event 𝑖 depends on 𝑖. This is not the case when rolling out
without knowing the timetable, where we have a constant 𝐾. However, this only makes a
difference if our planning horizon [𝑡min, 𝑡max] covers a fractional number of periods. For
example, if we consider 3.5 periods, some events will take place three times and some
four times. Since this depends on the timetable, we cannot make this distinction when
rolling out without knowing the timetable, so we have to consider each event four times.
If we assume that we only consider whole periods, 𝐾𝑖 is constant for all 𝑖 ∈ ℰ and thus
both procedures yield the same number of events. Additionally, we assume 𝐾 > 1, since
for 𝐾 = 1 rolling out the network becomes obsolete.

The rolled out network contains not only the actual activities, but all possibilities for the
activities. Thus, when fixing the timetable, we have to simultaneously solve an assignment
problem: for each periodic activity we have to choose exactly one of the corresponding
arcs in every considered period.

We can formulate our problem as follows:

Periodic Timetabling in Aperiodic Network (PTTA)

Input: Periodic EAN 𝒩 = (ℰ, 𝒜) with period 𝑇, interval 𝐼 = [𝑡min, 𝑡max].

Task: Find a timetable 𝜋 with corresponding assignments in the network 𝒩 rolled
out for 𝐼 such that the travel time summed over all passengers is minimal.
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In order to formulate this as an MIP, we introduce binary variables

𝑢𝑎 =
⎧{
⎨{⎩

1 if 𝑎 is chosen,
0 otherwise

for the assignment problem. Below we give our first formulation for finding a periodic
timetable in the rolled out network:

min ∑
𝑎=(𝑖1,𝑗𝑡)∈𝒜

𝑤𝑎 ⋅ 𝑢𝑎(𝜋𝑗𝑡 − 𝜋𝑖1) ⋅ 𝐾 (PTTA1)

s.t. 𝜋𝑗𝑡 − 𝜋𝑖𝑠 + 𝑀(𝑢𝑎 − 1) ≤ 𝑈𝑎 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜 (4.2)
𝜋𝑗𝑡 − 𝜋𝑖𝑠 + 𝑀(1 − 𝑢𝑎) ≥ 𝐿𝑎 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜 (4.3)
𝜋𝑖𝑠 − 𝜋𝑖𝑠−1

= 𝑇 𝑖𝑠 ∈ ℰ, 2 ≤ 𝑠 ≤ 𝐾 + 𝑏 (4.4)

∑
𝑎=(𝑖𝑠,𝑗𝑡)∈𝒜

𝑢𝑎 = 1 𝑎 = (𝑖, 𝑗) ∈ 𝒜, 1 ≤ 𝑠 ≤ 𝐾 (4.5)

𝜋𝑖 ≥ 𝑡min 𝑖 ∈ ℰ (4.6)
𝜋𝑖1 ≤ 𝑡min + 𝑇 − 1 𝑖 ∈ ℰ (4.7)
𝜋𝑖 ∈ ℕ 𝑖 ∈ ℰ (4.8)
𝑢𝑎 ∈ {0, 1} 𝑎 ∈ 𝒜. (4.9)

The objective function minimises the total travel time over all passengers. Note that due to
the periodicity of input data and timetable it is sufficient to consider only the first period
here andmultiply by 𝐾. In the case that an activity 𝑎 is chosen, i.e. 𝑢𝑎 = 1, Constraints (4.2)
and (4.3) ensure that the upper and lower bounds for this activity are respected. If 𝑎 is not
selected, the constraints become redundant for appropriately chosen 𝑀. These constraints
are the timetabling constraints. Constraints (4.4) are called periodicity constraints and ensure
that the timetable has period 𝑇. For every periodic activity the assignment constraints (4.5)
choose exactly one of the corresponding aperiodic activities in every period in such a
way that it fits to the timetable constraints (4.2) and (4.3). Constraints (4.6) and (4.7)
enforce that no event is scheduled earlier than 𝑡min and that the first event takes place in
the first period we consider.

Note that when rolling out with a timetable, we handled the headway activities
differently than when rolling out without knowing a timetable. However, both ways of
handling the headways are actually equivalent. Recall that we assume 𝐾 > 1 since in the
case 𝐾 = 1 no roll-out is necessary.

Lemma 4.1. Let 𝑎 = (𝑖, 𝑗), 𝑎′ = (𝑗, 𝑖) ∈ 𝒜head. The following statements are equivalent:

(a) For all 1 ≤ 𝑠, 𝑡 ≤ 𝐾 we have either 𝜋𝑗𝑡 − 𝜋𝑖𝑠 ≥ 𝐿𝑎 = ℎ𝑖𝑗 or 𝜋𝑖𝑠 − 𝜋𝑗𝑡 ≥ 𝐿𝑎′ = ℎ𝑗𝑖.

(b) For all 1 ≤ 𝑠 ≤ 𝐾 there is some 𝑠 ≤ 𝑡 ≤ 𝐾+𝑏𝑎 such that𝜋𝑗𝑡−𝜋𝑖𝑠 ∈ [𝐿𝑎, 𝑈𝑎] = [ℎ𝑖𝑗, 𝑇−ℎ𝑗𝑖].

Proof. First, note that 𝑈𝑎 = 𝑇 − ℎ𝑗𝑖 ≤ 𝑇 for 𝑎 = (𝑖, 𝑗) ∈ 𝒜head, i.e. 𝑏𝑎 = 1.
“(a)⇒(b)” Let 1 ≤ 𝑠 ≤ 𝐾. We consider the event 𝑗𝐾+2. Since the event 𝑖𝑠 takes place in the 𝑠-
th period, we have 𝜋𝑗𝐾+2

−𝜋𝑖𝑠 > 𝑇 > ℎ𝑖𝑗. Let now 𝑡 beminimal such that 𝜋𝑗𝑡 −𝜋𝑖𝑠 ≥ ℎ𝑖𝑗 = 𝐿𝑎.
It remains to show that 𝜋𝑗𝑡 − 𝜋𝑖𝑠 ≤ 𝑇 − ℎ𝑗𝑖 = 𝑈𝑎.
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First case: 𝑡 > 1. By minimality of 𝑡 we have 𝜋𝑗𝑡−1
− 𝜋𝑖𝑠 < ℎ𝑖𝑗 and hence, 𝜋𝑖𝑠 − 𝜋𝑗𝑡−1

≥ ℎ𝑗𝑖.
This yields 𝜋𝑗𝑡 − 𝜋𝑖𝑠 = 𝜋𝑗𝑡−1

+ 𝑇 − 𝜋𝑖𝑠 ≤ 𝑇 − ℎ𝑗𝑖 = 𝑈𝑎.
Second case: 𝑡 = 1. Since 𝑡 ≥ 𝑠, this implies 𝑠 = 1 < 𝐾, i.e. 𝑠+1 = 2 ≤ 𝐾. Hence, we can use
that (a) holds for the event 𝑖2. Assume 𝜋𝑗1 −𝜋𝑖1 > 𝑇 −ℎ𝑗𝑖. Then 𝜋𝑗1 −𝜋𝑖2 = 𝜋𝑗1 −𝜋𝑖1 −𝑇 >
−ℎ𝑗𝑖, i.e. 𝜋𝑖2 − 𝜋𝑗1 < ℎ𝑗𝑖. Hence, we must have 𝜋𝑗1 − 𝜋𝑖2 ≥ ℎ𝑖𝑗, which in particular means
that 𝜋𝑗1 ≥ 𝜋𝑖2. Since 𝑗1 takes place in the first period and 𝑖2 in the second period, this is a
contradiction. Thus, our assumption was false and we have 𝜋𝑗1 − 𝜋𝑖1 ≤ 𝑇 − ℎ𝑗𝑖 = 𝑈𝑎.
The bounds on 𝑡 will follow from Lemma 4.4.
“(b)⇒(a)” Let 1 ≤ 𝑠 ≤ 𝐾. By assumption there is some 𝑡′ such that 𝜋𝑗𝑡′ −𝜋𝑖𝑠 ∈ [ℎ𝑖𝑗, 𝑇 −ℎ𝑗𝑖].
For 𝑡 ≥ 𝑡′ we have 𝜋𝑗𝑡 − 𝜋𝑖𝑠 ≥ 𝜋𝑗𝑡′ − 𝜋𝑖𝑠 ≥ ℎ𝑖𝑗. On the other hand, for 𝑡 < 𝑡′ we have
𝜋𝑗𝑡 ≤ 𝜋𝑗𝑡′ − 𝑇 and hence 𝜋𝑖𝑠 − 𝜋𝑗𝑡 ≥ 𝜋𝑖𝑠 − 𝜋𝑗𝑡′ + 𝑇 ≥ ℎ𝑗𝑖. Thus, for every 𝑡 one of the
conditions is fulfilled.

For simplicity, we will always handle the headways as given by the constraints in (b),
regardless whether we roll out with or without using a given timetable. In the following
we analyse and strengthen PTTA1.

The objective function of PTTA1 is quadratic since the 𝜋 variables are multiplied with
the 𝑢 variables. However, we can easily linearise this using standard techniques. For
this purpose we introduce a new variable 𝐹𝑎 for 𝑎 = (𝑖1, 𝑗𝑡) ∈ 𝒜 to obtain the following
equivalent formulation:

min ∑
𝑎=(𝑖1,𝑗𝑡)∈𝒜

𝑤𝑎𝐹𝑎 ⋅ 𝐾 (PTTA2)

s.t. (4.2) − (4.9)
𝐹𝑎 ≥ 𝑀(𝑢𝑎 − 1) + 𝜋𝑗𝑡 − 𝜋𝑖1 𝑎 = (𝑖1, 𝑗𝑡) ∈ 𝒜 (4.10)
𝐹𝑎 ∈ ℕ 𝑎 = (𝑖1, 𝑗𝑡) ∈ 𝒜. (4.11)

Lemma 4.2. PTTA1 and PTTA2 are equivalent.

Proof. “⇒” Let (𝜋, 𝑢) be a feasible solution to PTTA1. For 𝑎 = (𝑖𝑠, 𝑗𝑡) set

𝐹𝑎 =
⎧{
⎨{⎩

𝜋𝑗𝑡 − 𝜋𝑖𝑠 if 𝑢𝑎 = 1,

0 otherwise.

Then constraints (4.10) are fulfilled. Note that 𝐹𝑎 ≥ 0, and hence 𝐹𝑎 ∈ ℕ, since 𝑢𝑎 = 1
implies that 𝜋𝑗𝑡 − 𝜋𝑖𝑠 ≥ 𝐿𝑎 ≥ 0. Since all other constraints are the same as before, (𝜋, 𝑢, 𝐹)
is feasible for PTTA2. Furthermore, the objective values coincide:

• If 𝑢𝑎 = 1: 𝑢𝑎(𝜋𝑗𝑡 − 𝜋𝑖𝑠) = 𝜋𝑗𝑡 − 𝜋𝑖𝑠 = 𝐹𝑎

• If 𝑢𝑎 = 0: 𝑢𝑎(𝜋𝑗𝑡 − 𝜋𝑖𝑠) = 0 = 𝐹𝑎.

“⇐” Let (𝜋, 𝑢, 𝐹) be a feasible solution to PTTA2 with objective value 𝑓 ′. Then obviously
(𝜋, 𝑢) is feasible for PTTA1. Let 𝑓 be the corresponding objective value. We have:

• If 𝑢𝑎 = 1: 𝐹𝑎 ≥ 𝑢𝑎(𝜋𝑗𝑡 − 𝜋𝑖𝑠) = 𝜋𝑗𝑡 − 𝜋𝑖𝑠

• If 𝑢𝑎 = 0: 𝐹𝑎 ≥ 𝑢𝑎(𝜋𝑗𝑡 − 𝜋𝑖𝑠) = 0.
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Plugging this into the objective function yields 𝑓 ≤ 𝑓 ′.

We still need to specify how to choose the large constant 𝑀.

Lemma 4.3. The constant 𝑀 ≔ 2𝑇 − 1 + max𝑎∈𝒜 𝑈𝑎 is sufficiently large.

Proof. We have to show that for every 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜 the following inequalities hold:

• 𝑀 ≥ 𝜋𝑖𝑠 − 𝜋𝑗𝑡 + 𝐿𝑎

• 𝑀 ≥ 𝜋𝑗𝑡 − 𝜋𝑖𝑠 − 𝑈𝑎

• 𝑀 ≥ 𝜋𝑗𝑡 − 𝜋𝑖𝑠 − 𝐹𝑎.

In order to see this, we use the following observations. First, using Constraints (4.4)
inductively yields 𝜋𝑖𝑠 = 𝜋𝑖1 + (𝑠 − 1)𝑇. Second, by definition of 𝒜, we have 𝑠 − 𝑡 ≤ 0 and
𝑡 − 𝑠 ≤ ⌈𝑈𝑎

𝑇 ⌉ ≤ 𝑈𝑎
𝑇 + 1. Finally, we have 𝑡min ≤ 𝜋𝑖1, 𝜋𝑗1 ≤ 𝑡min + 𝑇 − 1, which implies

𝜋𝑗1 − 𝜋𝑖1 ≤ 𝑇 − 1. Putting all this together we obtain

𝜋𝑖𝑠 − 𝜋𝑗𝑡 + 𝐿𝑎 = 𝜋𝑖1 − 𝜋𝑗1 + (𝑠 − 𝑡)𝑇 + 𝐿𝑎 ≤ 𝑇 − 1 + 𝐿𝑎 < 𝑀,

which shows the first inequality. Furthermore, it follows

𝜋𝑗𝑡 − 𝜋𝑖𝑠 = 𝜋𝑗1 − 𝜋𝑖1 + (𝑡 − 𝑠)𝑇 ≤ 𝑇 − 1 + (
𝑈𝑎
𝑇 + 1) 𝑇 = 2𝑇 − 1 + 𝑈𝑎 ≤ 𝑀.

Since 𝑈𝑎, 𝐹𝑎 ≥ 0, this implies the second and third inequality.

When rolling out the network we only consider arcs of the form (𝑖𝑠, 𝑗𝑡) for 𝑠 ≤ 𝑡 ≤ 𝑠+ 𝑏𝑎.
The following lemma shows that these are indeed the only possible arcs in a feasible
solution.

Lemma 4.4. Let (4.4), (4.6) and (4.7) be fulfilled for some 𝜋. Let 𝑎 = (𝑖, 𝑗) ∈ 𝒜 and 1 ≤ 𝑠 ≤ 𝐾.
Then for 𝑡 ≥ 𝑠 + 1 + 𝑏𝑎 or 𝑡 ≤ 𝑠 − 1 we have 𝜋𝑗𝑡 − 𝜋𝑖𝑠 ∉ [𝐿𝑎, 𝑈𝑎].

Proof. By periodicity we obtain for 𝑡 ≥ 𝑠 + 1 + 𝑏𝑎:

𝜋𝑗𝑡 − 𝜋𝑖𝑠 = (𝜋𝑗1 + (𝑡 − 1)𝑇) − (𝜋𝑖1 + (𝑠 − 1)𝑇) ≥ 1 − 𝑇 + (𝑡 − 𝑠)𝑇
≥ 1 − 𝑇 + (1 + 𝑏𝑎)𝑇 ≥ 1 + 𝑈𝑎 > 𝑈𝑎.

Similarly, for 𝑡 ≤ 𝑠 − 1 we have:

𝜋𝑗𝑡 − 𝜋𝑖𝑠 = (𝜋𝑗1 + (𝑡 − 1)𝑇) − (𝜋𝑖1 + (𝑠 − 1)𝑇)
≤ 𝑇 − 1 + (𝑡 − 𝑠)𝑇 ≤ 𝑇 − 1 − 𝑇 = −1 < 𝐿𝑎.

Hence, we do not have to consider arcs for other choices of 𝑠 and 𝑡. Note that this may be
a significant reduction, e.g. under the assumption (2.1) we have 𝑈𝑎 ≤ 𝐿𝑎+𝑇−1 ≤ 2(𝑇−1)
and hence 𝑏𝑎 ≤ 2.

We can reduce the activities we have to consider even further with the following reas-
oning: because of the periodicity of the timetable, the choice of 𝑢(𝑖1,𝑗𝑡) already determines
the value of 𝑢 for later periods. Hence, we only need to consider variables 𝑢(𝑖1,𝑗𝑡) ∈ 𝒜
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with 𝑖1 being the event in the first period instead of 𝑢(𝑖𝑠,𝑗𝑡) ∈ 𝒜 for all 𝑖𝑠 with (𝑖𝑠, 𝑖𝑡) ∈ 𝒜.
This affects constraints (4.2), (4.3), (4.5), and (4.9) in PTTA2 and reduces the number
of variables and constraints in our formulation considerably leading to the following IP:

min ∑
𝑎=(𝑖1,𝑗𝑡)∈𝒜

𝑤𝑎𝐹𝑎 ⋅ 𝐾 (PTTA3)

𝜋𝑗𝑡 − 𝜋𝑖1 + 𝑀(𝑢𝑎 − 1) ≤ 𝑈𝑎 𝑎 = (𝑖1, 𝑗𝑡) ∈ 𝒜 (4.12)
𝜋𝑗𝑡 − 𝜋𝑖1 + 𝑀(1 − 𝑢𝑎) ≥ 𝐿𝑎 𝑎 = (𝑖1, 𝑗𝑡) ∈ 𝒜 (4.13)
𝜋𝑖𝑠 − 𝜋𝑖𝑠−1

= 𝑇 𝑖𝑠 ∈ ℰ, 2 ≤ 𝑠 ≤ 𝐾 + 𝑏 (4.14)

∑
𝑎=(𝑖1,𝑗𝑡)∈𝒜

𝑢𝑎 = 1 (𝑖, 𝑗) ∈ 𝒜 (4.15)

𝐹𝑎 ≥ 𝑀(𝑢𝑎 − 1) + 𝜋𝑗𝑡 − 𝜋𝑖1 𝑎 = (𝑖1, 𝑗𝑡) ∈ 𝒜 (4.16)
𝜋𝑖 ≥ 𝑡min 𝑖 ∈ ℰ (4.17)
𝜋𝑖1 ≤ 𝑡min + 𝑇 − 1 𝑖 ∈ ℰ (4.18)
𝜋𝑖 ∈ ℕ 𝑖 ∈ ℰ (4.19)
𝑢𝑎 ∈ {0, 1} 𝑎 = (𝑖1, 𝑗𝑡) ∈ 𝒜 (4.20)
𝐹𝑎 ∈ ℕ 𝑎 = (𝑖1, 𝑗𝑡) ∈ 𝒜. (4.21)

Lemma 4.5. PTTA2 and PTTA3 are equivalent.

Proof. “⇒” Let (𝜋, 𝑢, 𝐹) be a solution to PTTA2. For 𝑎 = (𝑖1, 𝑗𝑡) set 𝑢′
𝑎 ≔ 𝑢𝑎. Clearly,

(𝜋, 𝑢′, 𝐹) is a feasible solution to PTTA3 and the objective values coincide.
“⇐” Let (𝜋, 𝑢′, 𝐹) be a solution to PTTA3. For 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜 set 𝑢𝑎 ≔ 𝑢′

(𝑖1,𝑗𝑡−𝑠+1). Note
that since 𝑎 ∈ 𝒜, we have 𝑠 ≤ 𝑡 ≤ 𝑠 + 𝑏𝑎 with 𝑎 ∈ 𝒜(𝑎) and therefore 1 ≤ 𝑡 − 𝑠 + 1 ≤ 1 + 𝑏𝑎,
which implies that also (𝑖1, 𝑗𝑡−𝑠+1) ∈ 𝒜. We show that (𝜋, 𝑢, 𝐹) is a feasible solution to
PTTA2:

• Let 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜. We have

𝜋𝑗𝑡 − 𝜋𝑖𝑠 + 𝑀(𝑢𝑎 − 1) = (𝜋𝑗𝑡−𝑠+1
+ (𝑠 − 1)𝑇) − (𝜋𝑖1 + (𝑠 − 1)𝑇) + 𝑀(𝑢𝑎 − 1)

=𝜋𝑗𝑡−𝑠+1
− 𝜋𝑖1 + 𝑀(𝑢′

(𝑖1,𝑗𝑡−𝑠+1) − 1) ≤ 𝑈(𝑖1,𝑗𝑡−𝑠+1) = 𝑈𝑎,

which shows constraints (4.2). Analogously we obtain (4.3).

• Let (𝑖, 𝑗) ∈ 𝒜, 1 ≤ 𝑠 ≤ 𝐾. We have

∑
𝑎=(𝑖𝑠,𝑗𝑡)∈𝒜

𝑢𝑎 = ∑
𝑎=(𝑖1,𝑗𝑡−𝑠+1)∈𝒜

𝑢′
𝑎 = 1

and hence, (4.5) holds.

• Constraints (4.4) and (4.6) to (4.11) follow immediately.

Consequently, (𝜋, 𝑢, 𝐹) is a feasible solution to PTTA2 with the same objective value as
(𝜋, 𝑢′, 𝐹).
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4.2 comparison of ptta and pesp

Wenowwant to compare the newassignment-basedmodelwith the establishedmodel PESP.
There are several questions we want to answer:

(a) Let an instance of PESP be given. We roll out the EAN without a timetable.
1. Let (𝜋̃, 𝑧) be a feasible (optimal) solution to PESP. Can we construct a feasible

(optimal) solution to PTTA?
2. Let (𝜋, 𝑢, 𝐹) be a feasible (optimal) solution to PTTA. Can we construct a

feasible (optimal) solution to PESP?

(b) Let (𝜋̃, 𝑧) be a feasible (optimal) solution to PESP. We define PTTA(𝜋̃) as the
corresponding instance of PTTA when rolling out with the solution (𝜋̃, 𝑧), i.e. the
activities are determined by 𝜋̃ and the assignment problem becomes trivial.

1. Is the solution which is constructed in the roll-out process feasible (optimal)
for PTTA(𝜋̃)?

2. Let (𝜋, 𝑢, 𝐹) be a feasible (optimal) solution to PTTA(𝜋̃). Can we construct a
feasible (optimal) solution to PESP?

While the questions in (b) are more of theoretical interest, the questions in (a) are vital
to achieve our goal: if we can answer them positively, PESP and PTTA are equivalent,
which will help us when integrating timetabling and delay management.

Let a periodic timetable be given. As an intermediate step we consider the roll-out
w.r.t. this timetable as described in Section 2.3. The following lemma ensures that for
any realisation 𝑖𝑠 of event 𝑖 (except for those at the end of the planning horizon) there
exists a corresponding realisation 𝑗𝑡 such that the timetabling constraints for the rolled
out activity (𝑖𝑠, 𝑗𝑡) are fulfilled.

Lemma 4.6. Let (𝜋̃, 𝑧) be a feasible solution to PESP and 𝜋 the solution constructed in the
roll-out process w.r.t. 𝜋̃. Let 𝑎 = (𝑖, 𝑗) ∈ 𝒜 and 𝑘, 𝑙 ∈ ℤ such that 𝜋first(𝑖) = 𝜋̃𝑖 + 𝑘𝑇 and
𝜋first(𝑗) = 𝜋̃𝑗 + 𝑙𝑇. For any choice of 1 ≤ 𝑠 ≤ 𝐾 and 𝑡 ≔ 𝑧𝑎 + 𝑘 − 𝑙 + 𝑠, the bounds on activity
(𝑖𝑠, 𝑗𝑡) are fulfilled, i.e. 𝜋𝑗𝑡 − 𝜋𝑖𝑠 ∈ [𝐿𝑎, 𝑈𝑎].

Proof. By definition of 𝜋 we have 𝜋𝑖𝑠 = 𝜋first(𝑖) + (𝑠 − 1)𝑇 = 𝜋̃𝑖 + (𝑘 + 𝑠 − 1)𝑇 and
𝜋𝑗𝑡 = 𝜋first(𝑗) + (𝑡 − 1)𝑇 = 𝜋̃𝑗 + (𝑙 + 𝑡 − 1)𝑇. Hence, it follows

𝜋𝑗𝑡 − 𝜋𝑖𝑠 = 𝜋̃𝑗 − 𝜋̃𝑖 + (𝑙 − 𝑘 − 𝑠 + 𝑡)𝑇 = 𝜋̃𝑗 − 𝜋̃𝑖 + 𝑧𝑎𝑇 ∈ [𝐿𝑎, 𝑈𝑎].

Corollary 4.7. In the situation of Lemma 4.6 for 1 ≤ 𝑠 ≤ 𝐾 there exists an 𝑠 ≤ 𝑡 ≤ 𝑠 + 𝑏𝑎 with
𝜋𝑗𝑡 − 𝜋𝑖𝑠 ∈ [𝐿𝑎, 𝑈𝑎].

Proof. We remark that by Lemma 4.4 it follows that for 𝑡 as chosen in Lemma 4.6 we have
𝑠 ≤ 𝑡 ≤ 𝑠 + 𝑏𝑎.

We can use these results to construct a solution in the network which was rolled out
without a solution.
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4.2.1 Rolling out without a timetable

Let an instance of PESP (ℰ, 𝒜) be given and (ℰ, 𝒜) be the EAN received by rolling out
without knowing a timetable. Let (𝜋̃, 𝑧) be a solution to PESP. We define 𝜋 as in the
roll-out process with the timetable given, i.e. 𝜋𝑖𝑠 = 𝜋first(𝑖) + (𝑠 − 1)𝑇. Furthermore, for
𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜 we choose 𝑘, 𝑙 as in Lemma 4.6 and set

𝑢𝑎 =
⎧{
⎨{⎩

1 if 𝑡 = 𝑧𝑎 + 𝑘 − 𝑙 + 𝑠,

0 otherwise,

and for 𝑎 = (𝑖1, 𝑗𝑡) we set

𝐹𝑎 =
⎧{
⎨{⎩

𝜋𝑗𝑡 − 𝜋𝑖1 if 𝑢𝑎 = 1,

0 otherwise.

This construction gives us a feasible solution to PTTA2 in the rolled out network as the
following lemma shows.

Lemma 4.8. Let (𝜋̃, 𝑧) be a feasible solution to PESP with objective value ̃𝑓. Then (𝜋, 𝑢, 𝐹) as
defined above is a feasible solution to PTTA2 and the corresponding objective value is 𝑓 = 𝐾 ̃𝑓.

Proof. We check that (𝜋, 𝑢, 𝐹) fulfils all constraints:

• (4.2) and (4.3) are fulfilled by choice of 𝑢 and Lemma 4.6.

• Let 𝑖𝑠 ∈ ℰ, 2 ≤ 𝑠 ≤ 𝐾 + 𝑏. By definition of 𝜋 it follows

𝜋𝑖𝑠 − 𝜋𝑖𝑠−1
= (𝜋first(𝑖) + (𝑠 − 1)𝑇) − (𝜋first(𝑖) + (𝑠 − 2)𝑇) = 𝑇,

which proves (4.4).

• Constraints (4.6) to (4.9) are obviously fulfilled.

• Let 𝑎 = (𝑖, 𝑗) ∈ 𝒜, 1 ≤ 𝑠 ≤ 𝐾. By Lemma 4.6 we have 𝜋𝑗𝑡 − 𝜋𝑖𝑠 ∈ [𝐿𝑎, 𝑈𝑎] for
𝑡 = 𝑧𝑎 + 𝑘 − 𝑙 + 𝑠, which by Lemma 4.4 implies 𝑡 ≤ 𝑠 + 𝑏𝑎. In particular, (𝑖𝑠, 𝑗𝑡) ∈ 𝒜.
By choice of 𝑢 it follows ∑𝑎=(𝑖𝑠,𝑗𝑡)∈𝒜 𝑢𝑎 = 1, i.e. constraints (4.5) are fulfilled.

• Let 𝑎 = (𝑖1, 𝑗𝑡) ∈ 𝒜.
First case: 𝑢𝑎 = 1. Then 𝐹𝑎 = 𝜋𝑗𝑡 − 𝜋𝑖1 = 𝑀(𝑢𝑎 − 1) + 𝜋𝑗𝑡 − 𝜋𝑖1.
Second case: 𝑢𝑎 = 0. Then 𝐹𝑎 = 0 > −𝑀 + 𝜋𝑗𝑡 − 𝜋𝑖1 = 𝑀(𝑢𝑎 − 1) + 𝜋𝑗𝑡 − 𝜋𝑖1.
Hence, constraints (4.10) are fulfilled.

• For (4.11), 𝐹𝑎 ∈ ℤ is clear. Note that by (4.3) 𝑢𝑎 = 1 is only possible if 𝜋𝑗𝑡 ≥ 𝜋𝑖1,
which in particular means that 𝐹𝑎 ≥ 0 and therefore 𝐹𝑎 ∈ ℕ.

Hence, (𝜋, 𝑢, 𝐹) is indeed a feasible solution. For the objective value we obtain:

𝑓 = 𝐾 ⋅ ∑
𝑎=(𝑖1,𝑗𝑡)∈𝒜

𝑤𝑎𝐹𝑎 = 𝐾 ⋅ ∑
𝑎=(𝑖1,𝑗𝑡)∈𝒜∶𝑢𝑎=1

𝑤𝑎(𝜋𝑗𝑡 − 𝜋𝑖1)

(∗)= 𝐾 ⋅ ∑
𝑎=(𝑖,𝑗)∈𝒜

𝑤𝑎(𝜋̃𝑗 − 𝜋̃𝑖 + 𝑧𝑎𝑇) = 𝐾 ⋅ ̃𝑓 ,
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where (∗) follows from the proof of Lemma 4.6.

Again, let an instance of PESP (ℰ, 𝒜) be given and (ℰ, 𝒜) be the EAN received by rolling
out without knowing a timetable. Let (𝜋, 𝑢, 𝐹) be a feasible solution to PTTA2. For 𝑖 ∈ ℰ
we set

𝜋̃𝑖 ≔ 𝜋𝑖1 mod 𝑇,

i.e. there is some 𝑟𝑖 ∈ ℤ such that 𝜋𝑖1 = 𝜋̃𝑖 + 𝑟𝑖𝑇. For 𝑎 = (𝑖, 𝑗) ∈ 𝒜 there is some 𝑡 such
that 𝑢(𝑖1,𝑗𝑡) = 1. Set

𝑧𝑎 ≔ 𝑟𝑗 − 𝑟𝑖 + 𝑡 − 1.

Also this construction works, i.e. we get a feasible solution to PESP with bounded
objective function value.

Lemma 4.9. Let (𝜋, 𝑢, 𝐹) be a feasible solution to PTTA2 with objective value 𝑓. Then (𝜋̃, 𝑧) as
defined above is a feasible solution to PESP and for its objective value ̃𝑓 we have ̃𝑓 ≤ 𝑓 ⋅ 1

𝐾 .

Proof. Let 𝑎 = (𝑖, 𝑗) ∈ 𝒜. The following holds:

𝜋̃𝑗 − 𝜋̃𝑖 + 𝑧𝑎𝑇 = (𝜋𝑗1 − 𝑟𝑗𝑇) − (𝜋𝑖1 − 𝑟𝑖𝑇) + 𝑧𝑎𝑇
= (𝜋𝑗𝑡 − (𝑡 − 1)𝑇 − 𝑟𝑗𝑇) − (𝜋𝑖1 − 𝑟𝑖𝑇) + 𝑧𝑎𝑇
= 𝜋𝑗𝑡 − 𝜋𝑖1 − (𝑟𝑗 − 𝑟𝑖 + 𝑡 − 1)𝑇 + 𝑧𝑎𝑇
= 𝜋𝑗𝑡 − 𝜋𝑖1 ∈ [𝐿𝑎, 𝑈𝑎].

Hence, (𝜋̃, 𝑧) is a feasible solution to PESP. For the objective value we have:

̃𝑓 = ∑
𝑎=(𝑖,𝑗)∈𝒜

𝑤𝑎(𝜋̃𝑗 − 𝜋̃𝑖 + 𝑧𝑎𝑇)

= ∑
𝑎=(𝑖1,𝑗𝑡)∈𝒜∶𝑢𝑎=1

𝑤𝑎(𝜋𝑗𝑡 − 𝜋𝑖1)

(∗)
≤ ∑

𝑎=(𝑖1,𝑗𝑡)∈𝒜∶𝑢𝑎=1
𝑤𝑎𝐹𝑎

(∗∗)
≤ ∑

𝑎=(𝑖1,𝑗𝑡)∈𝒜
𝑤𝑎𝐹𝑎 = 𝑓 ⋅

1
𝐾.

Here, (∗) follows from (4.10) and (∗∗) from 𝐹𝑎 ≥ 0.

Putting the two constructions together, we finally conclude that we can in fact construct
an optimal solution to PESP if we know an optimal solution to PTTA2 and vice versa.
In particular, it makes no difference whether one computes a solution with PTTA2 or
rolls out a solution obtained with PESP, i.e. PTTA2 and PESP are equivalent. The proof
directly follows from Lemma 4.8 and Lemma 4.9.

Corollary 4.10. If (𝜋̃, 𝑧) is an optimal solution to PESP, the solution (𝜋, 𝑢, 𝐹) constructed in
Lemma 4.8 is optimal for PTTA2. On the other hand, if (𝜋, 𝑢, 𝐹) is an optimal solution to PTTA2,
the solution (𝜋̃, 𝑧) constructed in Lemma 4.9 is optimal for PESP.
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Proof. Let (𝜋̃, 𝑧) be an optimal solution to PESP with objective value ̃𝑓. By Lemma 4.8 we
obtain a feasible solution (𝜋, 𝑢, 𝐹) to PTTA with objective value 𝑓 = 𝐾 ̃𝑓. Assume this is
not optimal, i.e. there is a solution (𝜋′, 𝑢′, 𝐹′) with objective value 𝑓 ′ < 𝑓. By Lemma 4.9
we get a solution (𝜋̄, ̄𝑧) to PESP with objective value ̄𝑓 ≤ 𝑓 ′ ⋅ 1

𝐾 < 𝑓 ⋅ 1
𝐾 = ̃𝑓, which is a

contradiction to (𝜋̃, 𝑧) being an optimal solution.
On the other hand, let (𝜋, 𝑢, 𝐹) be an optimal solution to PTTA with objective value 𝑓.
Lemma 4.9 yields a feasible solution (𝜋̃, 𝑧) to PESP with objective value ̃𝑓 ≤ 𝑓 ⋅ 1

𝐾 . Assume
(𝜋̃, 𝑧) is not optimal, i.e. there is a solution (𝜋̄, ̄𝑧) with objective value ̄𝑓 < ̃𝑓. By Lemma 4.8
we receive a solution (𝜋′, 𝑢′, 𝐹′) to PTTA with objective value 𝑓 ′ = 𝐾 ̄𝑓 < 𝐾 ̃𝑓 ≤ 𝑓, which is
a contradiction.

4.2.2 Rolling out with a timetable

Let (ℰ, 𝒜) be an instance of PESP and (𝜋̃, 𝑧) a feasible solution with objective value ̃𝑓. Let
(ℰ(𝜋̃), 𝒜(𝜋̃)) be the EAN received by rolling out with this solution and 𝜋 the solution
constructed in the roll-out process. Recall that in this case we do not have to solve an
assignment problem, since the activities are already fixed.

Lemma 4.11. Set 𝑢𝑎 = 1 for all 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜(𝜋̃) and 𝐹𝑎 = 𝜋𝑗𝑡 − 𝜋𝑖1 for all 𝑎 = (𝑖1, 𝑗𝑡) ∈
𝒜(𝜋̃). Then (𝜋, 𝑢, 𝐹) is a feasible solution to PTTA2(𝜋̃) with objective value 𝑓 = 𝐾 ̃𝑓.

Proof. Analogously to Lemma 4.8 we check the single constraints:

• In the roll-out process 𝒜(𝜋̃) is chosen such that (4.2) and (4.3) are fulfilled.

• Constraints (4.4) follow exactly as in the proof of Lemma 4.8.

• Let 𝑎 = (𝑖, 𝑗) ∈ 𝒜 and 1 ≤ 𝑠 ≤ 𝐾. By construction of 𝒜(𝜋̃) there is exactly one 𝑡 with
(𝑖𝑠, 𝑗𝑡) ∈ 𝒜(𝜋̃), namely the 𝑡 as chosen in Lemma 4.6. By choice of 𝑢 this implies
∑𝑎=(𝑖𝑠,𝑗𝑡)∈𝒜(𝜋̃) 𝑢𝑎 = 1, which shows constraints (4.5).

• Constraints (4.6) to (4.11) are obviously fulfilled by choice of 𝜋, 𝑢 and 𝐹.

Consequently, (𝜋, 𝑢, 𝐹) is a feasible solution to PTTA2(𝜋̃). For the objective value 𝑓 we
obtain

𝑓 = 𝐾 ⋅ ∑
𝑎=(𝑖1,𝑗𝑡)∈𝒜(𝜋̃)

𝑤𝑎𝐹𝑎 = 𝐾 ⋅ ∑
𝑎=(𝑖1,𝑗𝑡)∈𝒜(𝜋̃)

𝑤𝑎(𝜋𝑗𝑡 − 𝜋𝑖1)

(∗)= 𝐾 ⋅ ∑
𝑎=(𝑖,𝑗)∈𝒜

𝑤𝑎(𝜋̃𝑗 − 𝜋̃𝑖 + 𝑧𝑎𝑇) = 𝐾 ⋅ ̃𝑓 ,

where (∗) follows from the proof of Lemma 4.6.

Lemma 4.12. Let (𝜋′, 𝑢′, 𝐹′) be a feasible solution to PTTA2(𝜋̃)with objective value 𝑓 ′. For 𝑖 ∈ ℰ
we set 𝜋̄𝑖 ≔ 𝜋𝑖1 mod 𝑇, i.e. there is some 𝑟𝑖 ∈ ℤ such that 𝜋′

𝑖1 = 𝜋̄𝑖 + 𝑟𝑖𝑇. For 𝑎 = (𝑖, 𝑗) ∈ 𝒜
there is some 𝑡 such that 𝑢′

(𝑖1,𝑗𝑡) = 1. Set ̄𝑧𝑎 ≔ 𝑟𝑗 − 𝑟𝑖 + 𝑡 − 1. Then (𝜋̄, ̄𝑧) is a feasible solution to
PESP and for its objective value ̄𝑓 we have ̄𝑓 ≤ 𝑓 ′ ⋅ 1

𝐾 .

Proof. The proof is analogous to the one of Lemma 4.9.
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Corollary 4.13. If (𝜋̃, 𝑧) is an optimal solution to PESP, the solution (𝜋, 𝑢, 𝐹) constructed in
Lemma 4.11 is optimal for PTTA2(𝜋̃).

Proof. The proof is analogous to the first part in the proof of Corollary 4.10.

Remark 4.14. While Corollary 4.13 is the analogon to the first part of Corollary 4.10, we
do not get the same for the second part. In Lemma 4.11 we have only shown that the
solution (𝜋̃, 𝑧) to PESP we used for rolling out yields a solution to PTTA2(𝜋̃). However,
to do the proof like in Corollary 4.10, we would need that an arbitrary solution (𝜋̄, ̄𝑧)
to PESP yields a solution to PTTA2(𝜋̃). However, since the arcs present in the rolled
out EAN depend on (𝜋̃, 𝑧), this cannot be done in the same way for a different solution.
Indeed, if we start with a suboptimal solution (𝜋̃, 𝑧) when rolling out, then an optimal
solution to PTTA2(𝜋̃) will in general not yield an optimal solution to PESP. This can be
seen in Example 4.15.

Example 4.15. We consider the PESP instance given in Figure 4.2a with the timetable 𝜋̃
given above the nodes. If we roll out the EAN with this solution for 𝐼 = [8∶ 00, 9 ∶ 59] with
𝑇 = 60, i.e. 𝐾 = 2, we obtain the instance PTTA2(𝜋̃) together with a timetable 𝜋 given in
Figure 4.2b. However, this is not optimal, since we can improve the solution by replacing
some of the times with the ones given in green. Let 𝜋′ be this solution. Indeed, 𝜋′ is
optimal: we cannot schedule 𝑖61 later than 8:59 because of Constraints (4.7). On the other
hand, by (4.6) and periodicity we cannot schedule 𝑖12 earlier than 9:00, which together
with the lower bounds of the activities implies that the earliest possible time for 𝑖32 is 9:35.
Hence, we cannot reduce the transfer time from 𝑖6 to 𝑖3 any further. For all other activities
the timetable is tight. As shown in Lemma 4.9, we can convert 𝜋′ to a solution 𝜋̄ to PESP,
which is again given by replacing some of the times by the ones given in the green labels
in the upper figure. We can easily see that this is not an optimal solution to PESP: we
could reschedule the events 𝑖5 and 𝑖6 as given by the blue labels to obtain a solution for
which the duration of every activity is equal to the lower bound, and hence optimal.

Remark 4.16. The previous example showed that the solution used for rolling out the
EAN can have an enormous impact on the PTTA instance we obtain. The decision to
match 𝑖61 with 𝑖32 instead of 𝑖31 made us loose a lot of flexibility when choosing a timetable
in the rolled out network. If we had chosen the blue timetable for rolling out, we would
have obtained the EAN given in Figure 4.2c together with an optimal solution. This
emphasises that for different PESP solutions we obtain different PTTA instances with
different optimal objective values.

To summarise, we get back to the questions we posed at the beginning of the section.
As we have seen in Example 4.15, an optimal solution (𝜋, 𝑢, 𝐹) to PTTA(𝜋̃) does not
necessarily yield an optimal solution to PESP, if 𝜋̃ was not an optimal PESP solution in
the first place. However, we could answer all the other questions positively. In particular,
this means we can always solve PTTA instead of solving PESP – which will prove useful
when integrating timetabling and delay management.
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(c) PTTA instance for another timetable.

Figure 4.2: Rolling out a suboptimal timetable 𝜋̃ can yield a suboptimal timetable for PTTA(𝜋̃).



38 a model for periodic timetabling in an aperiodic network

Line concept |ℒ| |ℰ| |𝒜| |𝒜drive| |𝒜wait| |𝒜transfer| |𝒜head|

line concept 1 5 180 284 90 80 70 44
line concept 2 6 196 348 98 86 96 68
line concept 3 6 212 414 106 94 130 84

Table 4.1: Size of the periodic EAN for the used line concepts.

4.3 computational experiments

In this section, we test the performance of the new models when solving the IP formu-
lations with Gurobi [Gur23] and compare them to solving PESP. We used the dataset
lowersaxony, which contains data of the regional railway network in a region of Lower
Saxony in northern Germany and has a size for which our integer programs can still be
solved in reasonable time. The dataset is part of the open-source software framework
LinTim, see [Sch+23; Sch+]. An overview of the PTN of this dataset is given in Fig-
ure A.1 in the appendix. We used LinTim to generate different line concepts and the
resulting EANs. An overview of the number of lines |ℒ| and the size of the EANs is
given in Table 4.1. We solved PTTA2 and PTTA3 for different time horizons, varying the
number of periods 𝐾 ∈ {3, 4, … , 15}, observed the computing time and compared it to
the computing time when solving PESP.

We implemented the IP models in Python and ran them on an Lenovo laptop with
Intel(R) Core(TM) i5-10310U CPU @ 1.70 GHz, 2.21 GHz and 16 GB RAM using the
solver Gurobi 9.1.1 [Gur23]. The results are shown in Figure 4.3.

We first note that, as expected due to the higher number of variables and the additional
assignment constraints, for both versions of PTTA the solver takes much longer than for
PESP. However, recall that our motivation was to integrate delay management – a task
PESP is not suited for – so we do not have the aspiration to beat PESP when doing pure
timetabling. Since PTTA3 only solves the assignment for the first period, while PTTA2
does this for all periods, one would expect it to be faster solvable than PTTA2. Indeed, we
can see this behaviour in the instance line concept 3. For line concept 2 both models
perform quite similar. In the instance line concept 1we can observe that for larger 𝐾 the
computing time of PTTA2 increases more than for PTTA3, which can again be explained
with PTTA3 only solving the assignment in the first period. The peak of PTTA3 at 𝐾 = 11
is an exception. However, inspecting the progress of the solver shows that the optimal
solution was actually found much earlier and the most part of the computing time was
dedicated to proving optimality, so we treat this as a random outlier. The instance line
concept 3, which is the largest one, shows the largest variance. Investigating the solving
process shows that also here for both formulations the solver often has difficulties to
determine that the incumbent solution is indeed optimal, a well known phenomenon for
many integer problems. Thus, providing dual bounds has the potential to speed up the
solving process significantly.
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Figure 4.3: Average computing time (over four runs) for different line concepts with varying 𝐾.
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conclusion

We have developed a new model for periodic timetabling which uses a non-periodic
network as a basis. We have shown that the new model is equivalent to PESP and that –
although this was not our main focus – the achieved computing times are acceptable. We
also derived a streamlined version which uses significantly less variables and constraints.

The newmodel opensmany possibilities for future research. An obvious line of research
is to strengthen its IP formulation, e.g. by using dual bounds, to speed up the solving
process. A possible extension of our model could be to allow more flexibility in the
periodicity constraints, e.g. to allow that the differences between repetitions of events
are not exactly 𝑇 but in some interval [𝑇 − 𝜖, 𝑇 + 𝜖]. Our main interest, however, is to
use the model for integration purposes. In the next chapter, we use the new aperiodic
model for integrating timetabling and delay management in a two-stage model to achieve
recoverable robust timetables.



5
MODELS FOR RECOVERABLE ROBUST PER IOD IC
T IMETABL ING

After having established how to model periodic timetables in an aperiodic network by
introducing PTTA in the previous chapter, we now formulate the Recoverable Robust
Periodic Timetabling Problem (RRPT). The goal is to find a periodic timetable which can be
recovered in every delay scenario 𝑟 ∈ 𝒰. Note that we have two contradictory objectives:
nominal travel time and delay. Hence, we actually have a multi-objective problem. We
consider different single-objective versions, concentrating on the different objectives.
Furthermore, we develop several equivalent formulations for RRPT and look into their
computational efficiency.

outline In Section 5.1 we introduce different variants of the Recoverable Robust
Periodic Timetabling model, differing in their objective functions. Furthermore, we have
a look at how to overcome some modelling difficulties. In Section 5.2 we give a first
MIP formulation for the problem, which is based on the model PTTA from the previous
chapter. Two other equivalent formulations are presented in Section 5.3. Finally, we
compare the three formulations in Section 5.4.

5.1 applying recoverable robustness to timetabling

As mentioned before, we use delay management as recovery algorithm. In particular, for
the set 𝒜 of admissible algorithms we actually choose only a single algorithm solving
the delay management problem. Hence, for a nominal feasible timetable 𝜋 and a scen-
ario 𝑟 ∈ 𝒰 with source delays 𝑑𝑟 (as defined in Chapter 3) the recovery algorithm yields
a disposition timetable 𝑥𝑟 with wait/no-wait decisions 𝑦𝑟. By doing so, we actually do
not strictly stick to the definition of recoverable robustness given in Section 2.5: according
to (2.18), we would require that the output 𝐴(𝜋, 𝑟) of the recovery algorithm is feasible
for PESP(𝑟). In particular, the disposition timetable would need to be periodic – which is
not reasonable for our application. Furthermore, the constraints for cancelled transfers
should be omitted. Hence, to be able to fully use the power of delay management, we
have to relax the definition a bit. We hence formulate the constraints in the rolled out
network (as done in PTTA), drop the periodicity constraints, the upper bounds and those
constraints for cancelled transfers. For 𝑎 = (𝑖, 𝑗) ∈ 𝒜train we define

̂𝑔𝐿
𝑎 (𝜋, 𝑥𝑟, 𝑦𝑟) ≔

⎧{
⎨{⎩

𝐿𝑎 + 𝑥𝑟
𝑖 − 𝑥𝑟

𝑗 if 𝑢(𝜋)𝑎 = 1,

0 otherwise,

41
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and for 𝑎 = (𝑖, 𝑗) ∈ 𝒜transfer

̂𝑔𝐿
𝑎 (𝜋, 𝑥𝑟, 𝑦𝑟) ≔

⎧{
⎨{⎩

𝐿𝑎 + 𝑥𝑟
𝑖 − 𝑥𝑟

𝑗 − 𝑀′𝑦𝑟
𝑎 if 𝑢(𝜋)𝑎 = 1,

0 otherwise,

where 𝑢(𝜋) contains the assignments corresponding to the timetable 𝜋 and 𝑀′ is a large
constant. Furthermore, for 𝑎 = (𝑖, 𝑗) ∈ 𝒜head we define

̂𝑔𝐿
𝑎 (𝜋, 𝑥𝑟, 𝑦𝑟) ≔

⎧{
⎨{⎩

𝐿𝑎 + 𝑥𝑟
𝑖 − 𝑥𝑟

𝑗 if 𝑥𝑟
𝑗 − 𝑥𝑟

𝑖 ≥ 𝐿𝑎,

0 otherwise.

For 𝑟 ∈ 𝒰 we then set

̂𝑔𝐿(𝜋, 𝑥𝑟, 𝑦𝑟, 𝑟) ≔ ⎛⎜⎜⎜
⎝

( ̂𝑔𝐿
𝑎 (𝜋, 𝑥𝑟, 𝑦𝑟) + 𝑑𝑟

𝑎)𝑎∈𝒜train

( ̂𝑔𝐿
𝑎 (𝜋, 𝑥𝑟, 𝑦𝑟))𝑎∈𝒜transfer∪𝒜head

⎞⎟⎟⎟
⎠

,

where 𝑑𝑟
𝑎 ≔ 𝑑𝑟

𝑎𝑠
for 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜(𝑎), 𝑎 ∈ 𝒜, i.e. the activity 𝑎 is a repetition of the

periodic activity 𝑎 in the 𝑠-th period. For the output (𝑥𝑟, 𝑦𝑟) = 𝐴(𝜋, 𝑟) of the recovery
algorithm we then require

∀𝑟 ∈ 𝒰 ∶ ̂𝑔𝐿(𝜋, 𝑥𝑟, 𝑦𝑟, 𝑟) ≤ 0. (5.1)

Note that these constraints are indeed fulfilled for a solution of the Delay Management
Problem.

Recall from (2.20) one variant of the recoverable robust problem:

min
(𝑥,𝐴,𝜆)∈𝒳×𝒜×Λ

⎧{
⎨{⎩

⎛⎜⎜
⎝

𝑓 (𝑥)
𝑓 ′(𝜆)

⎞⎟⎟
⎠

∶ ∀𝑟 ∈ 𝒰 ∶ 𝑔(𝐴(𝑥, 𝑟), 𝑟) ≤ 0 ∧ 𝑐(𝐴(𝑥, 𝑟)) ≤ 𝜆
⎫}
⎬}⎭

.

As explained above, we replace 𝑔 by ̂𝑔𝐿. The function 𝑓 is the objective function of the
nominal problem. We still have to specify 𝑐 and 𝑓 ′. For this purpose, we first introduce
different evaluation functions of a timetable and its resulting delay.

Definition 5.1. Let a timetable 𝜋 be given. Every 𝑟 ∈ 𝒰 yields an instance of DM, which
we denote by DM(𝑟), to which we can find a solution (𝑥𝑟, 𝑦𝑟). Let

𝑍𝑟
1(𝜋, 𝑥) ≔ ∑

𝑖∈ℰ(𝜋)
𝑤𝑖(𝑥𝑟

𝑖 − 𝜋𝑖)

be the weighted event delay and

𝑍𝑟
2(𝜋, 𝑦) ≔ ∑

𝑎∈𝒜transfer(𝜋)
𝑤𝑎𝑦𝑟

𝑎

the number ofmissed transfers in scenario 𝑟. Furthermore, denote𝑍1(𝜋, 𝑥) ≔ max𝑟∈𝒰 𝑍𝑟
1(𝜋, 𝑥)

and 𝑍2(𝜋, 𝑦) ≔ max𝑟∈𝒰 𝑍𝑟
2(𝜋, 𝑦).
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The nominal travel time of 𝜋, i.e. the travel time of all passengers in the undisturbed setting,
is denoted by

𝑓 nom(𝜋) ≔ ∑
𝑎=(𝑖1,𝑗𝑡)∈𝒜train(𝜋)∪𝒜transfer(𝜋)

𝑤𝑎(𝜋𝑗𝑡 − 𝜋𝑖1) ⋅ 𝐾.

Note that 𝑓 nom(𝜋) = 𝐾 ⋅ 𝑓 PESP(𝜋). Let (𝑥𝑟, 𝑦𝑟) be an optimal solution to DM(𝑟) for every
𝑟 ∈ 𝒰. We denote by

𝑓 del(𝜋) ≔ max
𝑟∈𝒰

(𝑍𝑟
1(𝜋, 𝑥) + 𝑇𝑍𝑟

2(𝜋, 𝑦))

the worst-case delay of 𝜋 and by

𝑓 real(𝜋) ≔ 𝑓 nom(𝜋) + 𝑓 del(𝜋)

the real travel time of 𝜋 with respect to 𝒰. The problem of minimising 𝑓 del(𝜋) for fixed 𝜋,
i.e. solving DM(𝑟) for all 𝑟 ∈ 𝒰, is called DM(𝒰).

As function 𝑐 measuring the recovery costs we choose

𝑐(𝜋, 𝑥𝑟, 𝑦𝑟) = 𝑍𝑟
1(𝜋, 𝑥) + 𝑇𝑍𝑟

2(𝜋, 𝑦),

i.e. the recovery is measured by a weighted sum of the weighted event delay and the
number of missed transfers – which is also the objective function of DM. As the second
objective 𝑓 ′ we simply choose 𝑓 ′(𝜆) = 𝜆. In particular, for an optimal solution we have

𝑓 ′(𝜆) = max
𝑟∈𝒰

(𝑍𝑟
1(𝜋, 𝑥) + 𝑇𝑍𝑟

2(𝜋, 𝑦)) = 𝑓 del(𝜋).

Our goal can hence be formulated as follows:

Multi-objective Recoverable Robust Periodic Timetabling (MR-
RPT)
Input: Periodic EAN 𝒩 = (ℰ, 𝒜) with period 𝑇, uncertainty set 𝒰.

Task: Find a feasible periodic timetable𝜋 anddisposition timetables 𝑥𝑟 withwait/no-
wait decisions 𝑦𝑟 for every 𝑟 ∈ 𝒰 such that the nominal travel time 𝑓 nom(𝜋)
and the worst-case delay 𝑓 del(𝜋) are minimal.

Recall from Chapter 3 that we can re-write event delays as activity delays. Hence, using
this transformation we can also consider event delays in the model described above.
While the delay transformation is shown for delay management in [Sch09], we will also
prove it for the integrated model in Lemma 5.8.

The following example illustrates how the source delays in an instance of the recoverable
robust periodic timetabling problem are given.

Example 5.2. We look at Figure 5.1, where the periodic EAN is given on the left. The
events and activities have labels 𝑑 indicating their source delays for every single period,
in this case for 𝐾 = 2 periods. We have two different delay scenarios, 𝑟1 (in red) and 𝑟2
(in orange). If a node or edge is without a label, it does not have any source delays. In
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𝑖
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(a) Periodic EAN with aperiodic source delays.
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(b) Rolled out EAN (without a timetable) together
with the source delays.

Figure 5.1: Example for source delays.

scenario 𝑟1, the event 𝑖 has a source delay of 5 minutes in the first period and of 2 minutes
in the second period, i.e. 𝑑𝑟1

𝑖1 = 5 and 𝑑𝑟1
𝑖2 = 2 in the rolled out EAN on the right. The

activity (𝑖, 𝑗) has no delay in the first period, but 3 minutes delay in the second period,
i.e. 𝑑𝑟1

(𝑖2,𝑗2) = 𝑑𝑟1
(𝑖2,𝑗3) = 3. For the other scenario 𝑟2 we have 𝑑𝑟2

(𝑖1,𝑗1) = 𝑑𝑟2
(𝑖1,𝑗2) = 5 and

𝑑𝑟2
(𝑖2,𝑗2) = 𝑑𝑟2

(𝑖2,𝑗3) = 1.

The problem has several objective functions: the nominal travel time and the worst-case
delay, where the latter can be split into the weighted event delay and the number of
missed transfers. However, since delving deeply into multi-objective optimisation is out
of the scope of this thesis, we will mostly be using a weighted sum scalarisation:

Recoverable Robust Periodic Timetabling (RRPT)

Input: Periodic EAN 𝒩 = (ℰ, 𝒜) with period 𝑇, uncertainty set 𝒰.

Task: Find a feasible periodic timetable𝜋 anddisposition timetables 𝑥𝑟 withwait/no-
wait decisions 𝑦𝑟 for every 𝑟 ∈ 𝒰 such that the real travel time 𝑓 real is minimal.

We denote an optimal timetable by 𝜋RR. Concerning the computational complexity, it
is not surprising that RRPT is hard.

Theorem 5.3. RRPT is NP-hard.

Proof. This follows easily from PESP being NP-hard. Let an instance of PESP with EAN 𝒩
and period length 𝑇 be given. We construct an instance of RRPT without any source
delays, leaving 𝒩 and 𝑇 untouched. Then an optimal solution (𝜋̃, 𝑧) to PESP yields a
feasible solution to RRPT by taking the rolled out timetable 𝜋 and setting 𝑥 ≡ 𝜋 and
𝑦 ≡ 0. Since this solution does not have any delay, it is indeed optimal. Vice versa, let
(𝜋, 𝑥, 𝑦) be an optimal solution to RRPT. Then the corresponding timetable (𝜋̃, 𝑧) in the
periodic network is an optimal solution to PESP since any better solution could be used
to construct a better solution for RRPT without any delays.
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Instead of using a weighted sum scalarisation, we can also minimise only one objective
function while bounding the others. Hence, we will also the consider the following
versions of the problem:

• RRPT(𝛼, 𝛽): For given 𝛼, 𝛽 ≥ 0, minimise the nominal travel time 𝑓 nom such that the
weighted event delay and the number of missed transfers are bounded by 𝛼 and
𝛽, respectively, i.e. 𝑍1(𝜋, 𝑥) ≤ 𝛼, 𝑍2(𝜋, 𝑦) ≤ 𝛽. We denote an optimal timetable by
𝜋RR,𝛼,𝛽.

• RRPT( ̄𝑓): For given ̄𝑓, minimise the worst-case delay 𝑓 del such that the nominal travel
time is bounded by ̄𝑓, i.e. 𝑓 nom(𝜋) ≤ ̄𝑓. We denote an optimal timetable by 𝜋RR, ̄𝑓.

The problem definition above can easily be adapted for these different versions.
Note that there are different possibilities to handle the delay: in RRPT and RRPT( ̄𝑓) we

consider 𝑓 del to appropriately account for the delays the passengers face. Alternatively,
one can also consider the weighted event delay and the number of missed transfers
separately, which is also done in [Lie+09]. However, this can overestimate the real delay.
Since both types of delay should not be too high, in RRPT(𝛼, 𝛽) we have a bound for each
of them.

Observation 5.4. Per definition we get the following inequalities:

(a) 𝑓 real(𝜋RR) ≤ 𝑓 real(𝜋) for every feasible timetable 𝜋.

(b) 𝑓 nom(𝜋RR,𝛼,𝛽) ≤ 𝑓 nom(𝜋) for every feasible timetable 𝜋 with DM(𝑟)-solutions
(𝑥𝑟, 𝑦𝑟)𝑟∈𝒰 such that 𝑍1(𝜋, 𝑥) ≤ 𝛼 and 𝑍2(𝜋, 𝑦) ≤ 𝛽.

(c) 𝑓 del(𝜋RR, ̄𝑓) ≤ 𝑓 del(𝜋) for every feasible timetable 𝜋 with 𝑓 nom(𝜋) ≤ ̄𝑓.

To derive MIP formulations for these problems, we can now use the preparatory work
we did when introducing PTTA: since we have formulated the timetabling problem,
which is a subproblem of RRPT, already in the aperiodic network, we can now simply
add the delay management constraints for every scenario 𝑟 ∈ 𝒰. Of course we only have
constraints for those arcs 𝑎 which are actually chosen in the assignment subproblem of
PTTA, i.e. those with 𝑢𝑎 = 1. Hence, we have to add the delay propagation constraints as
big-𝑀-constraints. We choose

𝑀′ ≔ max
𝑟∈𝒰

⎛⎜
⎝
max
𝑎∈𝒜

(𝐿𝑎 + 𝑑𝑟
𝑎) + max

𝑖∈ℰ
𝑑𝑟

𝑖 + ∑
𝑎∈𝒜

𝑑𝑟
𝑎
⎞⎟
⎠

+ 𝑡max +
𝑇 ⋅ |𝒜head|

2

and will see later in Lemma 5.7 that this constant is sufficiently large.
Another problemwe have to deal with is the passengers leaving our planning horizon 𝐼,

as the following example demonstrates.

Example 5.5. We consider a part of a rolled out EAN as depicted in Figure 5.2 for two
different timetables and only a single delay scenario. In Figure 5.2a there are 10 passengers
arriving at 𝑖′1 with 10 minutes delay, so we have 𝑍1(𝜋, 𝑥) = 10. However, if we shift the
timetable by 30 minutes as seen in Figure 5.2b, different arcs are chosen, so we have the
arc (𝑖1, 𝑗2) leaving the planning horizon. In this case there is no delay at the event 𝑖′1. Since
the event 𝑗2 which is delayed in this case has weight zero, the weighted event delay is
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𝑖1

8∶00

𝑖2

9∶00

𝑗1

8∶40
8∶ 30

𝑗2

9∶30

𝑖′1

8∶50
8∶ 40

𝑤 = 10

𝑖′2

9∶40

+10
𝑤 = 10 𝑤 = 10

(a) All passengers arrive with a delay.

𝑖1

8∶30

𝑖2

9∶30

𝑗1

8∶00

𝑗2

9∶10
9∶ 00

𝑖′1

8∶10

𝑖′2

9∶10

+10

(b) The passengers’ delays are not counted.

Figure 5.2: The delay of passengers leaving the planning horizon is not counted correctly.

𝑍1(𝜋, 𝑥) = 0. The reason for this is that the passengers’ delays are counted when they
arrive at their final destination. With the shifted timetable, the arrival is outside of our
planning horizon, so no delay is recognised by our objective function. To prevent this,
we count the last known delay of those passengers leaving the planning horizon: in this
case these are the 10 minutes delay at the event 𝑗2, which we weight with the number of
passengers using the arc (𝑖1, 𝑗2).

Notation 5.6. We denote the rolled out driving, waiting and transfer activities leaving
the planning horizon 𝐼 by 𝒜out ≔ {𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜train ∪ 𝒜transfer ∶ 𝑡 > 𝐾} and adapt the
definition of the weighted event delay:

𝑍𝑟
1(𝜋, 𝑥) ≔ ∑

𝑖∈ℰ(𝜋)
𝑤𝑖(𝑥𝑟

𝑖 − 𝜋𝑖) + ∑
𝑎=(𝑖,𝑗)∈𝒜out(𝜋)

𝑤𝑎(𝑥𝑟
𝑗 − 𝜋𝑗).

We will also need big-𝑀-constraints for the activities 𝒜out, so we set

𝑀″ ≔ max
𝑟∈𝒰

⎛⎜
⎝
max
𝑖∈ℰ

𝑑𝑟
𝑖 + ∑

𝑎∈𝒜
𝑑𝑟

𝑎
⎞⎟
⎠

+
𝑇 ⋅ |𝒜head|

2 ,

which is sufficiently large as we will see in Lemma 5.7.
Recall that while in periodic timetabling headway activities can be treated in the

same way as driving, waiting and transfer activities, this is not the case for aperiodic
timetabling and delay management. To enable us to change the order of trains in case
of delays, we need precedence constraints between all pairs of events using the same
piece of infrastructure. Additionally to the headways 𝒜head we now also need to respect
headways between repetitions of the same periodic event: if the event 𝑖𝑠 has a big delay,
there can be a conflict with the next event 𝑖𝑠+1. Therefore, we define

𝒜 ′
head ≔ {(𝑖𝑠, 𝑗𝑡) ∶ (𝑖, 𝑗) ∈ 𝒜head, 1 ≤ 𝑠, 𝑡 ≤ 𝐾} ∪ {(𝑖𝑠, 𝑖𝑡) ∶ 𝑖 ∈ ℰ, 1 ≤ 𝑠, 𝑡 ≤ 𝐾}.

For an example see Figure 5.3. We will need these activities for the delay propagation
constraints. Note that 𝒜 ′

head is not a subset of 𝒜, since it also contains arcs of the form
(𝑖𝑠, 𝑗𝑡) for 𝑡 < 𝑠 and 𝑡 > 𝑠 + 𝑏. This is due to the fact that delays can change the order of
the events.
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𝑖1 𝑗1

𝑖2 𝑗2

Figure 5.3: 𝒜 ′
head induced by 𝒜head = {(𝑖, 𝑗), (𝑗, 𝑖)}.

5.2 formulations using ptta

Now we can formulate the different recoverable robust problems from the previous
section as MIPs. We use PTTA2 for the timetabling subproblem to simplify notation. To
indicate that these formulations use the aperiodic network and to distinguish them from
other formulations we will introduce later, we mark them with “-a”. We start with the
multi-objective version.

min ∑
𝑎=(𝑖1,𝑗𝑡)∈𝒜train∪𝒜transfer

𝑤𝑎𝐹𝑎 ⋅ 𝐾 (MRRPT-a)

min 𝑍
s.t. 𝜋𝑗 − 𝜋𝑖 + 𝑀(𝑢𝑎 − 1) ≤ 𝑈𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜 (5.2)

𝜋𝑗 − 𝜋𝑖 + 𝑀(1 − 𝑢𝑎) ≥ 𝐿𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜 (5.3)
𝜋𝑖𝑠 − 𝜋𝑖𝑠−1

= 𝑇 𝑖𝑠 ∈ ℰ, 2 ≤ 𝑠 ≤ 𝐾 + 𝑏 (5.4)

∑
𝑎′=(𝑖𝑠,𝑗𝑡)∈𝒜

𝑢𝑎′ = 1 (𝑖, 𝑗) ∈ 𝒜, 1 ≤ 𝑠 ≤ 𝐾 (5.5)

𝐹𝑎 ≥ 𝑀(𝑢𝑎 − 1) + 𝜋𝑗𝑡 − 𝜋𝑖1 𝑎 = (𝑖1, 𝑗𝑡) ∈ 𝒜train ∪ 𝒜transfer
(5.6)

𝜋𝑖 ≥ 𝑡min 𝑖 ∈ ℰ (5.7)
𝜋𝑖1 ≤ 𝑡min + 𝑇 − 1 𝑖 ∈ ℰ (5.8)
𝑥𝑟

𝑖 ≥ 𝜋𝑖 + 𝑑𝑟
𝑖 𝑖 ∈ ℰ, 𝑟 ∈ 𝒰 (5.9)

𝑀′(1 − 𝑢𝑎) + 𝑥𝑟
𝑗 − 𝑥𝑟

𝑖 ≥ 𝐿𝑎 + 𝑑𝑟
𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜train, 𝑟 ∈ 𝒰 (5.10)

𝑀′(1 − 𝑢𝑎) + 𝑀′𝑦𝑟
𝑎 + 𝑥𝑟

𝑗 − 𝑥𝑟
𝑖 ≥ 𝐿𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜transfer, 𝑟 ∈ 𝒰 (5.11)

𝑀′(1 − 𝑝𝑟
𝑖𝑗) + 𝑥𝑟

𝑗 − 𝑥𝑟
𝑖 ≥ 𝐿𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜 ′

head, 𝑟 ∈ 𝒰 (5.12)

𝑝𝑟
𝑖𝑗 + 𝑝𝑟

𝑗𝑖 = 1 (𝑖, 𝑗), (𝑗, 𝑖) ∈ 𝒜 ′
head, 𝑟 ∈ 𝒰 (5.13)

∑
𝑎∈𝒜transfer

𝑤𝑎𝑦𝑟
𝑎 ≤ 𝑍𝑟

2 𝑟 ∈ 𝒰 (5.14)

∑
𝑖𝑠∈ℰ∶𝑠≤𝐾

𝑤𝑖𝑠(𝑥𝑟
𝑖𝑠 − 𝜋𝑖𝑠) + ∑

𝑎∈𝒜out

𝑤𝑎𝐻𝑟
𝑎 ≤ 𝑍𝑟

1 𝑟 ∈ 𝒰 (5.15)

𝑍𝑟
1 + 𝑇𝑍𝑟

2 ≤ 𝑍 𝑟 ∈ 𝒰 (5.16)
𝐻𝑟

𝑎 ≥ 𝑀″(𝑢𝑎 − 1) + 𝑥𝑟
𝑗 − 𝜋𝑗 𝑎 = (𝑖, 𝑗) ∈ 𝒜out, 𝑟 ∈ 𝒰 (5.17)

𝜋𝑖 ∈ ℕ 𝑖 ∈ ℰ (5.18)
𝑥𝑟

𝑖 ∈ ℕ 𝑖 ∈ ℰ, 𝑟 ∈ 𝒰 (5.19)
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𝑦𝑟
𝑎 ∈ {0, 1} 𝑎 ∈ 𝒜transfer, 𝑟 ∈ 𝒰 (5.20)

𝑢𝑎 ∈ {0, 1} 𝑎 ∈ 𝒜 (5.21)
𝐹𝑎 ≥ 0 𝑎 = (𝑖1, 𝑗𝑡) ∈ 𝒜train ∪ 𝒜transfer

(5.22)
𝑝𝑟

𝑖𝑗 ∈ {0, 1} (𝑖, 𝑗) ∈ 𝒜 ′
head, 𝑟 ∈ 𝒰 (5.23)

𝐻𝑟
𝑎 ≥ 0 𝑎 ∈ 𝒜out, 𝑟 ∈ 𝒰 (5.24)

𝑍𝑟
1, 𝑍𝑟

2 ≥ 0 𝑟 ∈ 𝒰 (5.25)
𝑍 ≥ 0. (5.26)

As mentioned before, the objective functions are the nominal travel time (i.e. the objective
function of PTTA), and the worst-case delay. Constraints (5.2) to (5.8) are the same as in
PTTA2. The subsequent constraints are the constraints from DM adapted to our needs:
(5.9) ensure that for every delay scenario and every event the time in the disposition
timetable is not earlier than in the original timetable and the event delays are respected.
Constraints (5.10) make sure that the delays are propagated along the driving and
waiting activities for those arcs 𝑎 fulfilling 𝑢𝑎 = 1. Similarly, the delay propagation
along maintained transfers is ensured by (5.11). The delay propagation along headway
constraints is handled by (5.12), while (5.13) makes sure that for each pair of headways
exactly one is chosen. The number of missed transfers and the weighted event delay are
counted by (5.14) and (5.15), respectively, and the worst-case delay is determined in
Constraints (5.16). Note that for the weighted event delay we count the weighted delay of
every event within the planning horizon (i.e. those 𝑖𝑠 with 𝑠 ≤ 𝐾) as well as the weighted
delay of the arcs 𝒜out leaving the planning horizon. To ensure that only those arcs in 𝒜out
with 𝑢𝑎 = 1 are respected here, we need another set of big-𝑀-constraints given in (5.17).

Lemma 5.7. 𝑀′ and 𝑀″ are sufficiently large.

Proof. Let (𝜋, 𝑢, 𝐹) be a feasible solution to the subproblem PTTA . We have to show
for every 𝑟 ∈ 𝒰 there is an optimal solution (𝑥𝑟, 𝑦𝑟) to DM(𝑟) fulfilling the following
constraints:

• 𝐿𝑎 + 𝑑𝑟
𝑎 − 𝑥𝑟

𝑗 + 𝑥𝑟
𝑖 ≤ 𝑀′ for 𝑎 = (𝑖, 𝑗) ∈ 𝒜train, 𝑟 ∈ 𝒰

• 𝐿𝑎 − 𝑥𝑟
𝑗 + 𝑥𝑟

𝑖 ≤ 𝑀′ for 𝑎 = (𝑖, 𝑗) ∈ 𝒜transfer ∪ 𝒜 ′
head, 𝑟 ∈ 𝒰

• 𝑥𝑟
𝑗 − 𝜋𝑗 − 𝐻𝑟

𝑎 ≤ 𝑀″ for 𝑎 = (𝑖, 𝑗) ∈ 𝒜out, 𝑟 ∈ 𝒰.

For DM(𝑟) it is known (see [Sch09]) that there is an optimal solution (𝑥𝑟, 𝑦𝑟) fulfilling

𝑥𝑟
𝑖 − 𝜋𝑖 ≤ max

𝑙∈ℰ(𝜋)
𝑑𝑟

𝑙 + ∑
𝑎∈𝒜(𝜋)

𝑑𝑟
𝑎 + ∑

𝑎=(𝑙,𝑗)∈𝒜head(𝜋)∶
𝜋𝑙>𝜋𝑗

(𝜋𝑙 − 𝜋𝑗 + 𝐿𝑎) (5.27)

for all 𝑖 ∈ ℰ(𝜋). We consider the last term in (5.27):

∑
𝑎=(𝑙,𝑗)∈𝒜head(𝜋)∶

𝜋𝑙>𝜋𝑗

( 𝜋𝑙 − 𝜋𝑗⏟
≤𝑈(𝑙,𝑗)=𝑇−ℎ𝑙𝑗

+ 𝐿𝑎⏟
=ℎ𝑙𝑗

) ≤ ∑
𝑎=(𝑙,𝑗)∈𝒜head(𝜋)∶

𝜋𝑙>𝜋𝑗

𝑇 ≤
𝑇 ⋅ |𝒜head|

2 .
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Hence, for (𝑖, 𝑗) ∈ 𝒜out we obtain

𝑥𝑟
𝑗 − 𝜋𝑗 − 𝐻𝑟

𝑎
𝐻𝑟

𝑎≥0
≤ 𝑥𝑟

𝑗 − 𝜋𝑗 ≤ max
𝑙∈ℰ(𝜋)

𝑑𝑟
𝑙 + ∑

𝑎∈𝒜(𝜋)
𝑑𝑟

𝑎 +
𝑇 ⋅ |𝒜head|

2 ≤ 𝑀″, (5.28)

which shows the last inequality. Furthermore, for 𝑎 = (𝑖, 𝑗) ∈ 𝒜train we have

𝐿𝑎 + 𝑑𝑟
𝑎 − 𝑥𝑟

𝑗 + 𝑥𝑟
𝑖

≤ 𝐿𝑎 + 𝑑𝑟
𝑎 + 𝑥𝑟

𝑖
(5.28)

≤ 𝐿𝑎 + 𝑑𝑟
𝑎 + 𝜋𝑖 + max

𝑖∈ℰ(𝜋)
𝑑𝑟

𝑖 + ∑
𝑎′∈𝒜(𝜋)

𝑑𝑟
𝑎′ +

𝑇 ⋅ |𝒜head|
2

≤ 𝐿𝑎 + 𝑑𝑟
𝑎 + 𝑡max + max

𝑖∈ℰ(𝜋)
𝑑𝑟

𝑖 + ∑
𝑎′∈𝒜(𝜋)

𝑑𝑟
𝑎′ +

𝑇 ⋅ |𝒜head|
2

≤ 𝑀′,

showing the first inequality. The second one follows in the same manner.

Adapting MRRPT-a to obtain formulations for the other versions is straightforward.
For the weighted sum scalarisation we only have to adjust the objective function:

min 𝑓 real = ∑
𝑎∈𝒜train∪𝒜transfer

𝑤𝑎𝐹𝑎 ⋅ 𝐾 + 𝑍 (RRPT-a)

s.t. (5.2) − (5.26).

If we bound the delays and only minimise the nominal travel time we get:

min 𝑓 nom = ∑
𝑎∈𝒜train∪𝒜transfer

𝑤𝑎𝐹𝑎 ⋅ 𝐾 (RRPT-a(𝛼, 𝛽))

s.t. (5.2) − (5.13)
(5.17) − (5.24)

∑
𝑎∈𝒜transfer

𝑤𝑎𝑦𝑟
𝑎 ≤ 𝛽 𝑟 ∈ 𝒰 (5.29)

∑
𝑖𝑠∈ℰ∶𝑠≤𝐾

𝑤𝑖𝑠(𝑥𝑟
𝑖𝑠 − 𝜋𝑖𝑠) + ∑

𝑎∈𝒜out

𝑤𝑎𝐻𝑟
𝑎 ≤ 𝛼 𝑟 ∈ 𝒰. (5.30)

Finally, we can also bound the nominal travel time and minimise the delays:

min 𝑓 del = 𝑍 (RRPT-a( ̄𝑓))
s.t. (5.2) − (5.26)

∑
𝑎∈𝒜train∪𝒜transfer

𝑤𝑎𝐹𝑎 ⋅ 𝐾 ≤ ̄𝑓 . (5.31)

It remains to show that the delay transformation, transforming an event delay into an
activity delay by considering an extended network, does not change the problem, so we
can indeed handle the event delays.
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Lemma 5.8. Using the transformation described in Chapter 3, every optimal solution for an
instance of RRPT is still optimal for the transformed instance and vice versa.

Proof. First, note that for the new activity 𝑎0 = (𝑖0, 𝑖) we have 𝑈𝑎0 = 0 and hence also
𝑏𝑎0 = 0, meaning that we only have one possible rolled out activity in every period and
thus can set 𝑢(𝑖0𝑠 ,𝑖𝑠) = 1 for all 𝑠 ∈ {1, … , 𝐾}.

Let (𝜋, 𝑢, 𝐹, 𝑥, 𝑦, 𝑍1, 𝑍2, 𝑍, 𝐻, 𝑝) be a feasible solution to RRPT-a (with event delays). We
set 𝑥𝑟

𝑖0𝑠
= 𝜋𝑖0𝑠 = 𝜋𝑖𝑠 for all 𝑠 ∈ {1, … , 𝐾} and 𝐹(𝑖0𝑠 ,𝑖𝑠) = 0. Since 𝜋𝑖0𝑠 = 𝜋𝑖𝑠 and 𝑈𝑎0

= 𝐿𝑎0
= 0,

the timetabling constraints (5.2) to (5.8) follow immediately. Due to ̃𝑑𝑟
𝑖𝑠 = 0 also (5.9)

follows. We treat the virtual activities as those in 𝒜train. We have 𝑥𝑟
𝑖𝑠 − 𝑥𝑟

𝑖0𝑠
= 𝑥𝑟

𝑖𝑠 − 𝜋𝑖𝑠 ≥
𝑑𝑟

𝑖𝑠 = ̃𝑑𝑟
𝑎0

𝑠
, so also (5.10) is fulfilled. Since 𝑥𝑟

𝑖0𝑠
= 𝜋𝑖0𝑠 , also the worst-case delay does not

change and the other constraints are not affected by the transformation, so the constructed
solution is feasible for the transformed instance with the same objective value.

Vice versa, if we have a solution for the larger instance without event delays, restricting
it to the smaller instancewith event delays gives a feasible solutionwith the same objective
value.

This holds for all considered variants of the problem.

5.3 formulations using pesp

In this section we will derive two formulations equivalent to RRPT-a. All results can be
transferred to the other problem variants.

We assume 𝑡min
𝑇 ∈ ℤ. If the period length is, for example, one hour, this means the

planning horizon starts at the full hour.

5.3.1 Event-based formulation

So far we have used the PTTA constraints and added delay management constraints
to obtain a formulation for RRPT. An alternative approach is to use the regular PESP
constraints and use our knowledge from the development of the model PTTA to retrieve
the assignment variables 𝑢 from the modulo variables 𝑧. Indeed, as we have seen in
Lemma 4.8, if we have a feasible solution (𝜋̃, 𝑧) to PESP, setting

𝑢𝑎 =
⎧{
⎨{⎩

1 if 𝑡 = 𝑧𝑎 + 𝑘 − 𝑙 + 𝑠,

0 otherwise,

for 𝑎 = (𝑖, 𝑗) ∈ 𝒜, 𝑎 = (𝑖𝑠, 𝑗𝑡), where 𝑘, 𝑙 such that 𝜋̃𝑖 + 𝑘𝑇 ≔ min{𝜋̃𝑖 + 𝑐𝑇 ∶ 𝜋̃𝑖 + 𝑐𝑇 ≥
𝑡min, 𝑐 ∈ ℤ} and 𝜋̃𝑗 + 𝑙𝑇 ≔ min{𝜋̃𝑗 + 𝑐𝑇 ∶ 𝜋̃𝑗 + 𝑐𝑇 ≥ 𝑡min, 𝑐 ∈ ℤ}, yields a feasible PTTA
solution. Since we assume 𝑡min

𝑇 ∈ ℤ, it follows 𝑘 = 𝑙, so we set 𝑢𝑎 = 1 if and only if 𝑡 = 𝑧𝑎+𝑠.
To formulate this as linear constraints, we again need big-𝑀-constraints. Fortunately, for
the big-𝑀 we can choose 𝑏, which is usually quite small (≈ 2).
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This yields the following formulation, which we denote by RRPT-pe, since, in contrast
to the previous formulation, it uses only the periodic events.:

min 𝑓 real = ∑
𝑎=(𝑖,𝑗)∈𝒜

𝑤𝑎(𝜋̃𝑗 − 𝜋̃𝑖 + 𝑧𝑎𝑇) ⋅ 𝐾 + 𝑍 (RRPT-pe)

s.t. 𝜋̃𝑗 − 𝜋̃𝑖 + 𝑧𝑎𝑇 ≤ 𝑈𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜 (5.32)
𝜋̃𝑗 − 𝜋̃𝑖 + 𝑧𝑎𝑇 ≥ 𝐿𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜 (5.33)
𝜋𝑖𝑠 − 𝜋̃𝑖 = 𝑡min + (𝑠 − 1)𝑇 𝑖 ∈ ℰ, 1 ≤ 𝑠 ≤ 𝐾 + 𝑏 (5.34)
𝑏(1 − 𝑢𝑎) + 𝑡 − 𝑠 − 𝑧𝑎 ≥ 0 𝑎 ∈ 𝒜, 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜(𝑎) (5.35)
𝑏(𝑢𝑎 − 1) + 𝑡 − 𝑠 − 𝑧𝑎 ≤ 0 𝑎 ∈ 𝒜, 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜(𝑎) (5.36)
(5.5)
(5.9) − (5.21)
(5.23) − (5.26)
𝜋̃𝑖 ∈ ℕ 𝑖 ∈ ℰ (5.37)
0 ≤ 𝜋̃𝑖 ≤ 𝑇 − 1 𝑖 ∈ ℰ (5.38)
𝑧𝑎 ∈ ℤ 𝑎 ∈ 𝒜. (5.39)

The objective function minimises the weighted sum of the nominal travel time and the
worst-case delay. Constraints (5.32) and (5.33) are the constraints from PESP. Constraints
(5.34) ensure that the times for the rolled out events are set correctly. As explained above,
the values of the modulo variables already determine the values of the assignment
variables. This relation is accounted for in (5.35) and (5.36). The other constraints are
taken from our previous formulation RRPT-a.

We will now show that this formulation is actually equivalent to RRPT-a. First we need
the following lemma.

Lemma 5.9. Let (𝜋, 𝑧) be a feasible solution to PESP. Then 0 ≤ 𝑧𝑎 ≤ 𝑏 for all 𝑎 ∈ 𝒜.

Proof. By feasibility of (𝜋, 𝑧) we have

1 − 𝑇
(2.4)
≤ 𝜋𝑖 − 𝜋𝑗 ≤ 𝜋𝑖 − 𝜋𝑗 + 𝐿𝑎

(2.3)
≤ 𝑧𝑎𝑇

(2.2)
≤ 𝜋𝑖 − 𝜋𝑗 + 𝑈𝑎

(2.4)
≤ 𝑇 − 1 + 𝑈𝑎

for 𝑎 = (𝑖, 𝑗) ∈ 𝒜 and hence 1
𝑇 − 1 ≤ 𝑧𝑎 ≤ 𝑇−1

𝑇 +
𝑈𝑎
𝑇 , which by integrality of 𝑧𝑎 implies

0 = ⌈
1
𝑇 − 1⌉ ≤ 𝑧𝑎 ≤ ⌊

𝑇 − 1
𝑇 +

𝑈𝑎
𝑇 ⌋ ≤ ⌈

𝑈𝑎
𝑇 ⌉ ≤ 𝑏.

Theorem 5.10. RRPT-a and RRPT-pe are equivalent.

Proof. Let (𝜋, 𝑢, 𝐹, 𝑥, 𝑦, 𝑍1, 𝑍2, 𝑍, 𝐻, 𝑝) be a solution to RRPT-a. Let 𝑎 = (𝑖, 𝑗) ∈ 𝒜. Choose
the unique 𝑡 such that 𝑢(𝑖1,𝑗𝑡) = 1, which exists due to (5.5), and define 𝑧𝑎 ≔ 𝑡 − 1. For
𝑖 ∈ ℰ set 𝜋̃𝑖 ≔ 𝜋𝑖1 −𝑡min. Note that since 𝑡min ≤ 𝜋𝑖1 ≤ 𝑡min+𝑇−1, it follows 0 ≤ 𝜋̃𝑖 ≤ 𝑇 −1.
We now show that (𝜋̃, 𝑧, 𝜋, 𝑢, 𝑥, 𝑦, 𝑍1, 𝑍2, 𝑍, 𝐻, 𝑝) is feasible for RRPT-pe with the same
objective value.
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• 𝜋̃𝑗 − 𝜋̃𝑖 + 𝑧𝑎𝑇 = (𝜋𝑗1 − 𝑡min) − (𝜋𝑖1 − 𝑡min) + (𝑡 − 1)𝑇 = 𝜋𝑗1 − 𝜋𝑖1 + (𝑡 − 1)𝑇 =
𝜋𝑗𝑡 − 𝜋𝑖1 ∈ [𝐿𝑎, 𝑈𝑎] by choice of 𝑡 and (5.2) and (5.3), which shows (5.32) and
(5.33).

• Let 𝑖 ∈ ℰ, 1 ≤ 𝑠 ≤ 𝐾 + 𝑏. We have 𝜋𝑖𝑠
(5.4)= 𝜋𝑖1 + (𝑠 − 1)𝑇 = 𝜋̃𝑖 + 𝑡min + (𝑠 − 1)𝑇, so

(5.34) is satisfied.

• Let 𝑎 ∈ 𝒜, 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜(𝑎). We know from Lemma 4.5 that 𝑢(𝑖𝑠,𝑗𝑡) = 𝑢(𝑖1,𝑗𝑡−𝑠−1).
Hence, if 𝑢𝑎 = 1, then also 𝑢(𝑖1,𝑗𝑡−𝑠−1) = 1, so by definition 𝑧𝑎 = 𝑡−𝑠. For the other case,
note that by construction of 𝒜 we have 0 ≤ 𝑡 − 𝑠 ≤ 𝑏. Furthermore, by Lemma 5.9
we know 0 ≤ 𝑧𝑎 ≤ 𝑏. Hence, it follows 𝑏 + 𝑡 − 𝑠 − 𝑧𝑎 ≥ 0 and −𝑏 + 𝑡 − 𝑠 − 𝑧𝑎 ≤ 0,
which implies that (5.35) and (5.36) are fulfilled.

• All other constraints are clearly fulfilled since they are the same in both formulations.

Furthermore, as seen above, 𝜋̃𝑗 − 𝜋̃𝑖 + 𝑧𝑎𝑇 = 𝜋𝑗𝑡 − 𝜋𝑖1 ≤ 𝐹𝑎, with 𝑡 such that 𝑢(𝑖1,𝑗𝑡) = 1,
so the objective value of the constructed solution is not higher than that of the RRPT-a
solution.

Now, let a solution (𝜋̃, 𝑧, 𝜋, 𝑢, 𝑥, 𝑦, 𝑍1, 𝑍2, 𝑍, 𝐻, 𝑝) to RRPT-pe be given. In particular,
(𝜋̃, 𝑧) is a solution to PESP. By constraints (5.5), (5.35) and (5.36) we know that 𝑢(𝑖𝑠,𝑗𝑡) = 1
if and only if 𝑡 = 𝑠 + 𝑧𝑎. If we additionally set

𝐹𝑎 =
⎧{
⎨{⎩

𝜋𝑗𝑡 − 𝜋𝑖1 if 𝑢(𝑖1,𝑗𝑡) = 1,

0 otherwise,

we know from Lemma 4.8 that (𝜋, 𝑢, 𝐹) is feasible for PTTA2, i.e. (5.2)-(5.8) are fulfilled.
Since all other constraints are fulfilled as well, (𝜋, 𝑢, 𝐹, 𝑥, 𝑦, 𝑍1, 𝑍2, 𝑍, 𝐻, 𝑝) is feasible for
RRPT-a. The equality of the objective function values also follows from Lemma 4.8.

Remark 5.11. We note that there are two different intuitive possibilities to define 𝜋̃𝑖 when
𝜋𝑖1 is given:

(a) 𝜋̃𝑖 = 𝜋𝑖1 − 𝑡min

(b) 𝜋̃𝑖 = 𝜋𝑖1 mod 𝑇.

Under the assumption 𝑡min
𝑇 ∈ ℤ, these are equivalent, but they differ when we drop this

assumption. For example, if 𝑇 = 60 and 𝑡min = 510, i.e. the planning horizon starts at
8∶ 30, and we have 𝜋𝑖1 = 550 =̂ 9∶ 10, then 𝜋𝑖1 − 𝑡min = 40 but 𝜋𝑖1 mod 𝑇 = 10. This is
relevant for constraints (5.34): 𝜋𝑖𝑠 − 𝜋̃𝑖 = 𝑡min + (𝑠 − 1)𝑇, which is fulfilled using the first
definition. However, if we use the second one, this is not true any more. In the example
we have 𝜋𝑖1 − 𝜋̃𝑖 = 550 − 10 = 540 ≠ 550 = 𝑡min + (1 − 1)𝑇. In general, the following
holds in case (b):

Assume 𝑡min
𝑇 ∉ ℤ, i.e. 𝑡min = 𝑞1𝑇 + 𝜔 for 𝑞1 ∈ ℤ, 𝜔 ∈ {1, … , 𝑇 − 1}. Furthermore, using

definition (b), we have 𝜋𝑖1 = 𝑞2𝑇 + 𝜋̃𝑖 for some 𝑞2 ∈ ℤ, where 𝑞2 is minimal such that
𝜋𝑖1 ≥ 𝑡min due to constraints (5.8). Hence, if 𝜋̃𝑖 ≥ 𝜔, we have 𝑞1 = 𝑞2 and therefore
𝜋𝑖1 − 𝜋̃𝑖 = 𝑡min − 𝜔. Otherwise, it holds 𝑞2 = 𝑞1 + 1 and hence 𝜋𝑖1 − 𝜋̃𝑖 = 𝑡min − 𝜔 + 𝑇.

Of course it is possible to adapt constraints (5.34) accordingly. However, to obtain a
linear formulation, we would need to introduce further big-M-constraints, which makes
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̂𝑖 𝑖 𝑗
𝑎𝒫𝑖 = 𝒫𝑗\{𝑎}

(a) Case (𝑖, 𝑗) ∈ 𝒯 with 𝒫𝑗 = 𝒫𝑖 ∪ {𝑎}.

̂𝑖 𝑗 𝑖
𝑎𝒫𝑗 = 𝒫𝑖\{𝑎}

(b) Case (𝑖, 𝑗) ∈ 𝒯 with 𝒫𝑗 = 𝒫𝑖\{𝑎}.

̂𝑖

𝑗

𝑖

𝒫𝑖 ∩ 𝒫𝑗

𝒫𝑖\𝒫𝑗

𝒫𝑗\𝒫𝑖

(c) Case (𝑖, 𝑗) ∉ 𝒯.

Figure 5.4: Paths 𝒫𝑖 and 𝒫𝑗 in (5.40) and (5.41).

the formulation more complicated. Hence, at this point it makes more sense to use the
first definition. However, the second definition is also used in the literature on rolling out
timetables, see [Lie+10], and might be considered more intuitive.
Since 𝑡min

𝑇 ∈ ℤ seems reasonable, we use this assumption. Hence, both definitions are
equivalent and we do not face the problem explained above.

5.3.2 Cycle-based formulation

Apart from the standard PESP formulation, we can also use the cycle basis formulation
as stated in Section 2.2. However, since we need the times of the events, and these are not
present in the cycle basis formulation, we have to extract them from the tensions. We first
need to introduce some notation.

Notation 5.12. Let 𝒯 be a spanning tree in 𝒩 = (ℰ, 𝒜) and ̂𝑖 ∈ ℰ some fixed event. For
𝑖 ∈ ℰ let 𝒫𝑖 be the unique path from ̂𝑖 to 𝑖 in 𝒯. The set of arcs in 𝒫𝑖 can be partitioned
into the sets 𝒫+

𝑖 and 𝒫−
𝑖 of forward and backward arcs.

Note that for 𝑎 = (𝑖, 𝑗) ∈ 𝒯 it holds either

𝒫+
𝑗 = 𝒫+

𝑖 ∪ {𝑎}, 𝒫−
𝑗 = 𝒫−

𝑖 or 𝒫+
𝑗 = 𝒫+

𝑖 , 𝒫−
𝑗 = 𝒫−

𝑖 \{𝑎}. (5.40)

On the other hand, for 𝑎 = (𝑖, 𝑗) ∈ 𝒜\𝒯 we have

𝐶+
𝑎 = (𝒫+

𝑖 \𝒫𝑗) ∪ (𝒫−
𝑗 \𝒫𝑖) ∪ {𝑎} and 𝐶−

𝑎 = (𝒫+
𝑗 \𝒫𝑖) ∪ (𝒫−

𝑖 \𝒫𝑗). (5.41)

An illustration is given in Figure 5.4.
Now, if we have a feasible solution to PESP-cb given by (𝜉 , 𝑞), we can use it to obtain the

time for every event 𝑖 by adding respectively subtracting the tensions along the path 𝒫𝑖:

𝜋̃𝑖 = ∑
𝑎∈𝒫+

𝑖

𝜉𝑎 − ∑
𝑎∈𝒫−

𝑖

𝜉𝑎 + 𝜋̃ ̂𝑖 + ̂𝑞𝑖𝑇

for some ̂𝑞𝑖 ∈ ℤ such that 𝜋̃𝑖 ∈ {0, … , 𝑇 − 1}.
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We can use 𝑞 and ̂𝑞 to obtain the values of 𝑧 in the formulation RRPT-pe, namely for
𝑎 = (𝑖, 𝑗) ∈ 𝒜 we have

𝑧𝑎 =
⎧{
⎨{⎩

̂𝑞𝑖 − ̂𝑞𝑗 if 𝑎 ∈ 𝒯 ,

̂𝑞𝑖 − ̂𝑞𝑗 + 𝑞𝑎 if 𝑎 ∉ 𝒯 ,

as we will see in the proof of Theorem 5.13. Then, as before, we also know the values of
the assignment variables 𝑢, which leads to the following IP formulation:

min 𝑓 real = ∑
𝑎=(𝑖,𝑗)∈𝒜

𝑤𝑎𝜉𝑎 ⋅ 𝐾 + 𝑍 (RRPT-cb)

s.t. Γ𝜉 = 𝑇𝑞 (5.42)
𝜋̃𝑖 = ∑

𝑎∈𝒫+
𝑖

𝜉𝑎 − ∑
𝑎∈𝒫−

𝑖

𝜉𝑎 + 𝜋̃ ̂𝑖 + ̂𝑞𝑖𝑇 𝑖 ∈ ℰ (5.43)

(5.34)
𝑏(1 − 𝑢𝑎) + 𝑡 − 𝑠 − ̂𝑞𝑖 + ̂𝑞𝑗 ≥ 0 𝑎 ∈ 𝒯 , 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜(𝑎) (5.44)
𝑏(𝑢𝑎 − 1) + 𝑡 − 𝑠 − ̂𝑞𝑖 + ̂𝑞𝑗 ≤ 0 𝑎 ∈ 𝒯 , 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜(𝑎) (5.45)
𝑏(1 − 𝑢𝑎) + 𝑡 − 𝑠 − ̂𝑞𝑖 + ̂𝑞𝑗 − 𝑞𝑎 ≥ 0 𝑎 ∈ 𝒜\𝒯 , 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜(𝑎) (5.46)
𝑏(𝑢𝑎 − 1) + 𝑡 − 𝑠 − ̂𝑞𝑖 + ̂𝑞𝑗 − 𝑞𝑎 ≤ 0 𝑎 ∈ 𝒜\𝒯 , 𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜(𝑎) (5.47)
(5.5)
(5.9) − (5.21)
(5.23) − (5.26)
(5.37) − (5.38)
𝜉𝑎 ∈ ℕ 𝑎 ∈ 𝒜 (5.48)
𝐿𝑎 ≤ 𝜉𝑎 ≤ 𝑈𝑎 𝑎 ∈ 𝒜 (5.49)
𝑞𝑎 ∈ ℤ 𝑎 ∈ 𝒜\𝒯 (5.50)

̂𝑞𝑖 ∈ ℤ 𝑖 ∈ ℰ. (5.51)

The objective function minimises the weighted sum of the nominal travel time and
the worst-case delay. Constraint (5.42) ensures that 𝜉 is indeed a periodic tension (as in
PESP-cb). Constraints (5.43) construct the event times from the tensions as explained
above. The correspondence between 𝑢, 𝑞, ̂𝑞 is respected in Constraints (5.44) to (5.47).
The other constraints are the same as in the formulation of RRPT-pe.

Theorem 5.13. RRPT-pe and RRPT-cb are equivalent.

Proof. Let (𝜋̃, 𝑧, 𝜋, 𝑢, 𝑥, 𝑦, 𝑍1, 𝑍2, 𝑍, 𝐻, 𝑝) be a solution to RRPT-pe. In particular, (𝜋̃, 𝑧) is
a solution to PESP.

• From the literature on PESP, see [Pee03], we know that by setting 𝜉𝑎 ≔ 𝜋̃𝑗 −𝜋̃𝑖 +𝑧𝑎𝑇
for 𝑎 = (𝑖, 𝑗) ∈ 𝒜 and 𝑞𝑎 ≔ ∑𝑎′∈𝐶+

𝑎
𝑧𝑎′ − ∑𝑎′∈𝐶−

𝑎
𝑧𝑎′ we obtain a periodic tension 𝜉

such that Γ𝜉 = 𝑇𝑞, i.e. (5.42) holds.
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• We define ̂𝑞𝑗 ≔ ∑𝑎∈𝒫−
𝑗

𝑧𝑎 −∑𝑎∈𝒫+
𝑗

𝑧𝑎. By definition of 𝜉 and induction on the length

of the unique path 𝒫𝑗 from ̂𝑖 to 𝑗 in 𝒯 we obtain

𝜋̃𝑗 = 𝜋̃ ̂𝑖 + ∑
𝑎∈𝒫+

𝑗

(𝜉𝑎 − 𝑧𝑎𝑇) + ∑
𝑎∈𝒫−

𝑗

(−𝜉𝑎 + 𝑧𝑎𝑇) = 𝜋̃ ̂𝑖 + ∑
𝑎∈𝒫+

𝑗

𝜉𝑎 − ∑
𝑎∈𝒫−

𝑗

𝜉𝑎 + ̂𝑞𝑗𝑇.

See Figure 5.5 for an illustration. This shows (5.43).

• For 𝑎 = (𝑖, 𝑗) ∈ 𝒯 by (5.40) it follows ̂𝑞𝑖 − ̂𝑞𝑗 = 𝑧𝑎, so by (5.35) and (5.36) also (5.44)
and (5.45) are fulfilled.

• For 𝑎 = (𝑖, 𝑗) ∉ 𝒯 we get

̂𝑞𝑖 − ̂𝑞𝑗 + 𝑞𝑎

= ⎛⎜⎜
⎝

∑
𝑎′∈𝒫−

𝑖

𝑧𝑎′ − ∑
𝑎′∈𝒫+

𝑖

𝑧𝑎′
⎞⎟⎟
⎠

− ⎛⎜⎜⎜
⎝

∑
𝑎′∈𝒫−

𝑗

𝑧𝑎′ − ∑
𝑎′∈𝒫+

𝑗

𝑧𝑎′
⎞⎟⎟⎟
⎠

+ ⎛⎜⎜
⎝

∑
𝑎′∈𝐶+

𝑎

𝑧𝑎′ − ∑
𝑎′∈𝐶−

𝑎

𝑧𝑎′
⎞⎟⎟
⎠

(∗)= ∑
𝑎′∈𝒫−

𝑖 ∪𝒫+
𝑗 ∪𝐶+

𝑎

𝑧𝑎′ − ∑
𝑎′∈𝒫+

𝑖 ∪𝒫−
𝑗 ∪𝐶−

𝑎

𝑧𝑎′

(∗∗)= 𝑧𝑎,

where (∗) follows from the fact that the sets we unite are pairwise disjoint and (∗∗)
follows from

𝒫−
𝑖 ∪ 𝒫+

𝑗 ∪ 𝐶+
𝑎

(5.41)= 𝒫−
𝑖 ∪ 𝒫+

𝑗 ∪ (𝒫+
𝑖 \𝒫𝑗) ∪ (𝒫−

𝑗 \𝒫𝑖) ∪ {𝑎}

= (𝒫−
𝑖 \𝒫𝑗) ∪ (𝒫−

𝑖 ∩ 𝒫𝑗) ∪ (𝒫+
𝑗 \𝒫𝑖) ∪ (𝒫+

𝑗 ∩ 𝒫𝑖) ∪ (𝒫+
𝑖 \𝒫𝑗) ∪ (𝒫−

𝑗 \𝒫𝑖) ∪ {𝑎}

= (𝒫−
𝑖 \𝒫𝑗) ∪ (𝒫𝑖 ∩ 𝒫−

𝑗 ) ∪ (𝒫+
𝑗 \𝒫𝑖) ∪ (𝒫𝑗 ∩ 𝒫+

𝑖 ) ∪ (𝒫+
𝑖 \𝒫𝑗) ∪ (𝒫−

𝑗 \𝒫𝑖) ∪ {𝑎}

= 𝒫+
𝑖 ∪ 𝒫−

𝑗 ∪ (𝒫+
𝑗 \𝒫𝑖) ∪ (𝒫−

𝑖 \𝒫𝑗) ∪ {𝑎}
(5.41)= 𝒫+

𝑖 ∪ 𝒫−
𝑗 ∪ 𝐶−

𝑎 ∪ {𝑎}.

Hence, also (5.46) and (5.47) are satisfied.

• Constraints (5.48) to (5.51) are trivially fulfilled.

On the other hand, let (𝜉 , 𝜋̃, 𝑞, ̂𝑞, 𝜋, 𝑢, 𝑥, 𝑦, 𝑍1, 𝑍2, 𝑍, 𝐻, 𝑝) be a solution to RRPT-cb. For
𝑎 = (𝑖, 𝑗) ∈ 𝒜 we define

𝑧𝑎 ≔
⎧{
⎨{⎩

̂𝑞𝑖 − ̂𝑞𝑗 if 𝑎 ∈ 𝒯 ,

̂𝑞𝑖 − ̂𝑞𝑗 + 𝑞𝑎 if 𝑎 ∉ 𝒯 .

• For 𝑎 = (𝑖, 𝑗) ∈ 𝒜 by (5.43) we have

𝜋̃𝑗 −𝜋̃𝑖 = ⎛⎜⎜⎜
⎝

∑
𝑎′∈𝒫+

𝑗

𝜉𝑎′ − ∑
𝑎′∈𝒫−

𝑗

𝜉𝑎′ + 𝜋̃ ̂𝑖 + ̂𝑞𝑗𝑇
⎞⎟⎟⎟
⎠

−⎛⎜⎜
⎝

∑
𝑎′∈𝒫+

𝑖

𝜉𝑎′ − ∑
𝑎′∈𝒫−

𝑖

𝜉𝑎′ + 𝜋̃ ̂𝑖 + ̂𝑞𝑖𝑇
⎞⎟⎟
⎠

.
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◦ For the case 𝑎 ∈ 𝒯 this term simplifies to 𝜉𝑎 + ( ̂𝑞𝑗 − ̂𝑞𝑖)𝑇 = 𝜉𝑎 − 𝑧𝑎𝑇.

◦ If 𝑎 ∉ 𝒯, the term above is equal to

∑
𝑎′∈𝐶−

𝑎

𝜉𝑎′ − ⎛⎜⎜
⎝

∑
𝑎′∈𝐶+

𝑎

𝜉𝑎′ − 𝜉𝑎
⎞⎟⎟
⎠

+ ( ̂𝑞𝑗 − ̂𝑞𝑖)𝑇 = 𝜉𝑎 − (Γ𝜉)𝑎 + ( ̂𝑞𝑗 − ̂𝑞𝑖)𝑇

= 𝜉𝑎 − (𝑞𝑎 − ̂𝑞𝑗 + ̂𝑞𝑖)𝑇 = 𝜉𝑎 − 𝑧𝑎𝑇.

Hence, in both cases we have 𝜋̃𝑗 − 𝜋̃𝑖 + 𝑧𝑎𝑇 = 𝜉𝑎 ∈ [𝐿𝑎, 𝑈𝑎], which shows (5.32)
and (5.33).

• Constraints (5.35) and (5.36) are satisfied by definition of 𝑧 and constraints (5.44)
to (5.47).

Overall, we have shown that from each feasible solution to one of the problems we
can construct a feasible solution to the other problem with the same objective function
value.

̂𝑖 𝑖 𝑗

𝜋̃𝑗 − 𝜋̃ ̂𝑖 = (𝜋̃𝑗 − 𝜋̃𝑖) + (𝜋̃𝑖 − 𝜋̃ ̂𝑖) = (−𝜉𝑎2 + 𝑧𝑎2𝑇) + (𝜉𝑎1 − 𝑧𝑎1𝑇)

𝑎2𝑎1

Figure 5.5: The event times can be retrieved from the tension.

Recall that for PTTA2 we derived the reduced version PTTA3 by noticing that the
assignment variables are periodic. We can apply this also for the different versions of
RRPT, so for each formulation we obtain an equivalent reduced version with a smaller
number of variables. Of course all proofs above can analogously be done for the reduced
version, but for simpler notation we used the full version. As already seen for PTTA, we
will see in the next section that also for RRPT the reduction does not have a considerable
effect on the computing times when solving the IP.

5.4 computational experiments

In the previous sections, we derived three equivalent formulations of the recoverable
robust periodic timetabling problem. An obvious question is which of these formulations
is best. To answer this, we run some experiments and compare their computing times
for solving the MIP. However, RRPT is a very hard problem: PESP and DM both are
NP-complete [SU89; Gat+05] and RRPT integrates PESP and several delay management
problems. Therefore, we are not able to solve RRPT on any large instances. For the
experiments we thus used a rather small artificial network from the LinTim library
[Sch+23; Sch+] with 156 periodic events and 188 periodic activities without headway
constraints, which we call toy. An overview of the dataset is given in Figure A.2 and
Table A.1 in the appendix. The period length is 60 minutes. For the delay scenarios we
generated uniformly distributed source delays: in every scenario we generated a source
delay between 1 and 15 minutes for 1% of all aperiodic events and activities.
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(a) Computing times for 𝐾 = 4 with an increasing
number of scenarios |𝒰|.
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(b) Computing times for |𝒰| = 10 with an increasing
number of periods 𝐾.

Figure 5.6: Computing times for solving the MIP formulations of RRPT.

We implemented the MIP formulations in Python and solved them using Gurobi
8.1.1 [Gur23] on a compute server with 48 cores @2.9 GHz and 196 GB RAM. The MIP
optimality gap of the solver was set to 0.015%.

We ran two different experiments: one where the number 𝐾 of periods is fixed to 4
with a varying number of scenarios |𝒰|, and one with |𝒰| = 10 and a varying number
of periods. These numbers are quite small, which is due to the high complexity of the
problem. However, the experiments provide some insights on the performance of the
different formulations. For every formulation we also tested its reduced version with less
variables, as we did for PTTA when considering the formulations PTTA2 and PTTA3,
which is indicated by an apostrophe behind the name.

The results are shown in Figure 5.6. For the first experiment we can see that RRPT-a
has the highest computing times. This is not surprising, since it is based on PTTA, which
is slower than PESP for the pure timetabling problem, as we have seen in Chapter 4.
The lowest computing times are achieved for RRPT-pe. Since the cycle basis formulation
PESP-cb is faster than the standard formulationwhen only looking for a timetable, this is a
bit surprising. However, RRPT-cb not only uses variables for the tensions, but additionally
also for the event times, since they are needed for the delay management part. This could
be an explanation for the worse performance. For RRPT-a the variable reduction yields a
small improvement. For the other formulations the variable reduction does not have a
significant effect on the computing time.

For the second experiment, we have similar results. RRPT-pe performs best, while for
RRPT-a and RRPT-cb the computing times become much larger with increasing 𝐾.

conclusion

We have introduced the Recoverable Robust Periodic Timetabling Problem, which is the
first to apply the concept of recoverable robustness to periodic timetabling with aperiodic
source delays. We have considered several versions of the problem differing in the focus
they put on the different objectives. Furthermore, we have developed three equivalent
formulations based on different ways to incorporate the timetabling subproblem. We
have compared these formulations with respect to their computing time when solving
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them with a state-of-the-art solver, showing that – as opposed to the pure timetabling
problem – a cycle-base approach is not the best choice.

Due to the high complexity of the problem, the IP formulation is only able to handle
rather small instances. Hence, developing heuristic approaches for solving the problem
will be the focus of Chapter 7.



6
PROPERT IES OF RECOVERABLE ROBUST
T IMETABLES

In this chapter we investigate some properties of recoverable robust timetables.

outline First, we will see that some intuitive properties of PESP do not hold any more
when considering recoverable robust timetables. Then, we will have a closer look at the
parameters 𝛼, 𝛽 in RRPT(𝛼, 𝛽) and see how we can reduce the number of scenarios if we
use an always-wait policy, i.e. do not allow any cancelled transfers. Finally, we will say
something about which activities are a good choice for placing buffer times.

An important property of timetables is that they can be shifted by a constant without
changing the travel time. Note that due to the aperiodicity of the source delays this does
not hold true for the delay, as the following example demonstrates. In particular, for
recoverable robust timetables shifting does indeed make a difference.

Example 6.1. We consider the instance given in Figure 6.1a. An optimal solution is given
in Figure 6.1b: it has a nominal travel time of 303 and 20 minutes total delay. The source
delay of 5 minutes at event 𝑖′2 actually does not have any effect, since the 10 minutes delay
from event 𝑖1 spread to 𝑖′2 making the constraint respecting the source delay of 5 minutes
redundant. However, if we shift the timetable by 19 minutes, we obtain the timetable
given in Figure 6.1c. Using this timetable, the total delay increases to 30. This is due to the
chosen arcs in the rolled out network being different. As a result, the two source delays
do not “meet” and the delay propagation is different. Hence, we can see that shifting a
timetable by a constant can increase its delay.

Recall that for PESP we can assume without loss of generality that

0 ≤ 𝐿𝑎 ≤ 𝑇 − 1 and 𝐿𝑎 ≤ 𝑈𝑎 ≤ 𝐿𝑎 + 𝑇 − 1 for all 𝑎 ∈ 𝒜 (6.1)

since otherwise we can subtract multiples of 𝑇 such that this holds without changing the
problem. However, for RRPT this is actually not the case, as can be seen in the following
example.

Example 6.2. We consider Figure 6.2, with the original instance given in Figure 6.2a. The
activity (𝑗, 𝑖′) does not fulfil (6.1). An optimal solution is given in 6.2b. If we subtract 𝑇
from the lower and upper bound of activity (𝑗, 𝑖′), i.e. [𝐿(𝑗,𝑖′), 𝑈(𝑗,𝑖′)] = [1, 5], an optimal
solution is given in Figure 6.2c. While the nominal travel time changes by 𝐾 ⋅ 𝑇 = 180
as expected, the delay does increase, because with 𝑈𝑗,𝑖′ also 𝑏 changes. This results in a
different delay propagation, which leads to the same phenomenon as in Example 6.1.

We now have a closer look at the influence of the parameters 𝛼 and 𝛽 in the problem
variant RRPT(𝛼, 𝛽) with bounded delay.

59
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𝑖

𝑑 = (10, 0, 0)

𝑗 𝑖′
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𝑤 = 2

(a) Instance, 𝐼 = [8∶00, 10∶59], 𝑇 = 60, (𝐾 = 3).
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(b) Optimal solution to RRPT. 𝑓 nom(𝜋RR) = 303, 𝑓 del(𝜋RR) = 20.
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(c) Optimal solution to RRPT when 𝜋𝑖1
= 8∶00 is fixed. 𝑓 nom(𝜋) = 303, 𝑓 del(𝜋) = 30.

Figure 6.1: Shifting a timetable can increase its delay.
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(a) Instance, 𝐼 = [8∶00, 10∶59], 𝑇 = 60, (𝐾 = 3).
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(b) Optimal solution to RRPT. 𝑓 nom(𝜋RR) = 483, 𝑓 del(𝜋RR) = 20.
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(c) Optimal solution to RRPT for the same instance with reduced bounds. 𝑓 nom(𝜋RR) = 303, 𝑓 del(𝜋RR) = 30.

Figure 6.2: Subtracting multiples of 𝑇 from the lower and upper bounds changes the problem.
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Definition 6.3. We are given a scenario set 𝒰. A timetable 𝜋 is called (𝛼, 𝛽)-recoverable-
robust w.r.t. 𝒰 if it is feasible for RRPT(𝛼, 𝛽), i.e. for every 𝑟 ∈ 𝒰 there is a disposition
timetable such that the total delay and the number of missed transfers (both weighted
with the number of passengers) are bounded from above by 𝛼 respectively 𝛽.

Lemma 6.4. Let 𝜋 be an optimal (𝛼, 𝛽)-recoverable-robust timetable and 𝜋′ an optimal (𝛼′, 𝛽′)-
recoverable-robust timetable with 𝛼′ ≥ 𝛼 and 𝛽′ ≥ 𝛽. Then 𝑓 nom(𝜋′) ≤ 𝑓 nom(𝜋).

Proof. 𝜋 is (𝛼, 𝛽)-recoverable-robust. Since 𝛼′ ≥ 𝛼, 𝛽′ ≥ 𝛽, 𝜋 is also (𝛼′, 𝛽′)-recoverable-
robust. By optimality of 𝜋′ it follows 𝑓 nom(𝜋′) ≤ 𝑓 nom(𝜋).

For the rest of this chapter we assume 𝒜head = ∅. This is for example a reasonable
assumption in a bus network. Furthermore, note thatwe assume𝑤𝑎 > 0 for all 𝑎 ∈ 𝒜transfer,
because we can delete all transfers which are not used by any passengers.

For strict robustness it is known that a robust feasible solution remains robust feasible if
the uncertainty set is extended to its convex hull and hence it is sufficient to only consider
the extreme points of 𝒰 [BEN09]. For recoverable robustness this is not true in general,
as shown in [CGS17]. In the following, we investigate what effect the extension to the
convex hull has on RRPT(𝛼, 𝛽) and identify a special case in which it indeed suffices to
only solve the problem for the extreme points of 𝒰.

Note that we slightly abuse notation here: when writing conv(𝒰) we actually mean
{ ̄𝑟 ∶ 𝑑 ̄𝑟 ∈ conv({𝑑𝑟 ∶ 𝑟 ∈ 𝒰})}.

Theorem 6.5. If 𝜋 is (𝛼, 𝛽)-recoverable-robust w.r.t. 𝒰, then it is (𝛼, 𝛽′)-recoverable-robust w.r.t.
conv(𝒰) with 𝛽′ = ∑ 𝑎∈𝒜transfer∶

∃𝑟∈𝒰∶𝑦𝑟
𝑎=1

𝑤𝑎 if the integrality constraint on 𝑥 is relaxed.

Proof. Since 𝜋 is (𝛼, 𝛽)-recoverable-robust w.r.t. 𝒰, for every 𝑟 ∈ 𝒰 there is a DM(𝑟)-
solution (𝑥𝑟, 𝑦𝑟)with delay bounded by 𝛼 andmissed transfers bounded by 𝛽. In particular,
for every 𝑟 ∈ 𝒰 and for all 𝑎 = (𝑖, 𝑗) ∈ 𝒜𝑟

fix(𝜋) ≔ 𝒜train(𝜋) ∪ {𝑎′ ∈ 𝒜transfer(𝜋) ∶ 𝑦𝑟
𝑎′ = 0}

we have 𝑥𝑟
𝑗 − 𝑥𝑟

𝑖 ≥ 𝐿𝑎 + 𝑑𝑟
𝑎. Recall that only activities in 𝒜train have source delays, so for

simpler notation we set 𝑑𝑟
𝑎 ≔ 0 for 𝑎 ∈ 𝒜transfer. Let ̄𝑟 ∈ conv(𝒰), i.e. all source delays

are of the form 𝑑 ̄𝑟
𝑎 = ∑𝑟∈𝒰 𝜆𝑟𝑑𝑟

𝑎 for 𝑎 ∈ 𝒜train respectively 𝑑 ̄𝑟
𝑖 = ∑𝑟∈𝒰 𝜆𝑟𝑑𝑟

𝑖 for 𝑖 ∈ ℰ
with ∑𝑟∈𝒰 𝜆𝑟 = 1. For every 𝑖 ∈ ℰ define 𝑥 ̄𝑟

𝑖 ≔ ∑𝑟∈𝒰 𝜆𝑟𝑥𝑟
𝑖 and set 𝑦 ̄𝑟

𝑎 ≔ max𝑟∈𝒰 𝑦𝑟
𝑎 for all

𝑎 ∈ 𝒜transfer. It follows for 𝑎 = (𝑖, 𝑗) ∈ 𝒜 ̄𝑟
fix(𝜋):

𝑥 ̄𝑟
𝑗 − 𝑥 ̄𝑟

𝑖 = ∑
𝑟∈𝒰

𝜆𝑟(𝑥𝑟
𝑗 − 𝑥𝑟

𝑖 ) ≥ ∑
𝑟∈𝒰

𝜆𝑟(𝐿𝑎 + 𝑑𝑟
𝑎) = ∑

𝑟∈𝒰
𝜆𝑟𝐿𝑎 + ∑

𝑟∈𝒰
𝜆𝑟𝑑𝑟

𝑎 = 𝐿𝑎 + 𝑑 ̄𝑟
𝑎. (6.2)

Analogously, we obtain 𝑥 ̄𝑟
𝑖 ≥ 𝜋𝑖 + 𝑑 ̄𝑟

𝑖 for 𝑖 ∈ ℰ. The weighted event delay is

∑
𝑖𝑠∈ℰ∶𝑠≤𝐾

𝑤𝑖𝑠(𝑥 ̄𝑟
𝑖𝑠 − 𝜋𝑖𝑠) + ∑

𝑎=(𝑖,𝑗)∈𝒜out

𝑤𝑎(𝑥 ̄𝑟
𝑗 − 𝜋𝑗)

= ∑
𝑖𝑠∈ℰ∶𝑠≤𝐾

𝑤𝑖𝑠
⎛⎜
⎝

∑
𝑟∈𝒰

𝜆𝑟𝑥𝑟
𝑖𝑠 − 𝜋𝑖𝑠

⎞⎟
⎠

+ ∑
𝑎=(𝑖,𝑗)∈𝒜out

𝑤𝑎
⎛⎜
⎝

∑
𝑟∈𝒰

𝜆𝑟𝑥𝑟
𝑗 − 𝜋𝑗

⎞⎟
⎠

= ∑
𝑟∈𝒰

𝜆𝑟
⎛⎜⎜
⎝

∑
𝑖𝑠∈ℰ∶𝑠≤𝐾

𝑤𝑖𝑠(𝑥𝑟
𝑖𝑠 − 𝜋𝑖𝑠) + ∑

𝑎=(𝑖,𝑗)∈𝒜out

𝑤𝑎(𝑥𝑟
𝑗 − 𝜋𝑗)

⎞⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑍𝑟
1(𝜋,𝑥)

≤ max
𝑟∈𝒰

𝑍𝑟
1(𝜋, 𝑥) ≤ 𝛼

(6.3)
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and the weighted number of missed transfers is

∑
𝑎∈𝒜transfer

𝑤𝑎𝑦 ̄𝑟
𝑎 = ∑

𝑎∈𝒜transfer∶
𝑦 ̄𝑟

𝑎=1

𝑤𝑎 = ∑
𝑎∈𝒜transfer∶
∃𝑟∈𝒰∶𝑦𝑟

𝑎=1

𝑤𝑎 = 𝛽′.

Corollary 6.6. If 𝜋 is (𝛼, 0)-recoverable-robust w.r.t. 𝒰, then it is also (𝛼, 0)-recoverable-robust
w.r.t. conv(𝒰) if the integrality constraint on 𝑥 is relaxed.

Proof. This follows immediately from Theorem 6.5 since 𝛽 = 0 implies 𝑦𝑟
𝑎 = 0 for all

𝑎 ∈ 𝒜transfer, 𝑟 ∈ 𝒰 and hence also 𝛽′ = 0.

Corollary 6.7. For 𝛽 = 0 and integral source delays it is sufficient to solve RRPT(𝛼, 𝛽) for the
extreme points of 𝒰.

Proof. Let 𝒰 ′ be the set of extreme points of 𝒰, i.e. 𝒰 = conv(𝒰 ′). Let 𝜋 be an optimal
timetable w.r.t. 𝒰 ′, i.e. 𝜋 is (𝛼, 0)-recoverable-robust w.r.t. 𝒰 ′ such that the nominal travel
time 𝑓 nom(𝜋) is minimal. By Corollary 6.6 𝜋 is also (𝛼, 0)-recoverable-robust w.r.t. 𝒰 if
the integrality constraint on 𝑥 is relaxed, i.e. for all 𝑟 ∈ 𝒰 there is a solution (𝑥𝑟, 0) with
weighted event delay 𝑍𝑟

1(𝜋, 𝑥) ≤ 𝛼. Due to the DM-constraints we have for all 𝑗 ∈ ℰ:

𝑥𝑟
𝑗 ≥ max{𝜋𝑗 + 𝑑𝑟

𝑗 , max
𝑎=(𝑖,𝑗)∈𝒜𝑟

fix(𝜋)
𝑥𝑟

𝑖 + 𝐿𝑎 + 𝑑𝑟
𝑎}.

This inequality is fulfilled with equality in an optimal solution. Since 𝜋, 𝐿, 𝑑 are integral,
it also follows that 𝑥𝑟 is integral. Hence, 𝜋 is (𝛼, 0)-recoverable-robust w.r.t. 𝒰.

We now show that𝜋 is also optimalw.r.t.𝒰. Assume there is an (𝛼, 0)-recoverable-robust
solution 𝜋′ with 𝑓 nom(𝜋′) < 𝑓 nom(𝜋). Since 𝒰 ′ ⊆ 𝒰, 𝜋′ is also (𝛼, 0)-recoverable-robust
w.r.t. 𝒰 ′, which is a contradiction to the optimality of 𝜋.

However, if we add headway activities to our EAN, this nice property does not hold
any more, as can be seen in the following example.

Example 6.8. We consider the EAN in Figure 6.3. The given timetable is (4,0)-recoverable-
robust w.r.t. both the red and the orange scenario. However, for the violet scenario, which
is contained in the convex hull, we get a weighted event delay of 6 when not cancelling
any transfers. To see this, note that without a delay, the events 𝑖31 and 𝑖71 would take
place one minute apart from each other. Due to the delay propagated to them on the two
delayed activities in the violet scenario, they would take place at the same time – which is
forbidden due to the headways. Hence, one of the events has to be delayed even further,
which increases the total delay.

Next we want to get an idea of which activities should have slack in the timetable and
which should not.

Theorem 6.9. Let 𝑎 = (𝑖, 𝑗) ∈ 𝒜 with ingoing activities 𝛿−(𝑖) = {𝑎1, … , 𝑎𝐵} such that for
the passenger weights we have ∑𝐵

𝑘=1 𝑤𝑎𝑘 < 𝑤𝑎 and no source delays on any node in ℰ(𝑖) or
any arc in 𝒜(𝑎) in any scenario. Furthermore, let the (𝐾 + 1)-th repetition of 𝑖 not be reachable
from any source delay. Let (𝜋, 𝑢, 𝐹, 𝑥, 𝑦, 𝐻) be an optimal solution to RRPT(𝛼, 𝛽) and (𝜋̃, ̃𝑧) the
corresponding timetable in the periodic network. If Δ𝑎𝑘 ≔ 𝜋̃𝑖 − 𝜋̃𝑖𝑘 + ̃𝑧𝑎𝑘𝑇 − 𝐿𝑎𝑘 < 𝑈𝑎𝑘 − 𝐿𝑎𝑘 for
all 𝑘 ∈ {1, … , 𝐵}, we have Δ𝑎 ≔ 𝜋̃𝑗 − 𝜋̃𝑖 + ̃𝑧𝑎𝑇 − 𝐿𝑎 = 0, i.e. it is better to put slack on 𝑎1, … , 𝑎𝐵

than on 𝑎.
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𝑖1

𝜋 = 0

𝑖2

𝜋 = 10

𝑖3

𝜋 = 11

𝑖4

𝜋 = 21

𝑤 = 1

𝑖5

𝜋 = 1

𝑖6

𝜋 = 11

𝑖7

𝜋 = 12

𝑖8

𝜋 = 22

𝑤 = 2

[10, 20]
𝑤 = 2

𝑑 = (2, 0)
𝑑 = (4, 0)

[1, 5]
𝑤 = 1

[10, 20]
𝑤 = 1

[10, 20]
𝑤 = 1

[1, 5]
𝑤 = 1

𝑑 = (2, 0)
𝑑 = (1, 0)

[10, 20]
𝑤 = 2

[2, 10]𝑤
=

1

[1,59][1
,5

9]

Figure 6.3: Theorem 6.5 does not hold if the EAN has headways (𝑇 = 60, 𝐾 = 2).

... 𝑖 𝑗

𝑖1

𝑖𝐵

𝑎

𝑎1

𝑎𝐵

Figure 6.4: Subgraph in Theorem 6.9.

Proof. Assume there is an optimal solution with Δ𝑎𝑘 < 𝑈𝑎𝑘 − 𝐿𝑎𝑘 for all 𝑘 ∈ {1, … , 𝐵} and
Δ𝑎 > 0. Let 𝜀 ≔ min{min𝑘=1…,𝐵{𝑈𝑎𝑘 − 𝐿𝑎𝑘 − Δ𝑎𝑘}, Δ𝑎, 𝑇} > 0. We construct a new solution

𝜋̃′
𝑙 =

⎧{
⎨{⎩

𝜋̃𝑖 + 𝜀 − 𝑧𝑇 if 𝑙 = 𝑖,

𝜋̃𝑙 otherwise,

where 𝑧 ∈ {0, 1} such that 𝜋̃′
𝑖 ∈ {0, … , 𝑇 − 1}. Let 𝜋′ be the corresponding rolled out

timetable with assignment 𝑢′. By choice of 𝜀, 𝜋′ is a feasible timetable and for the nominal
travel times 𝑓 , 𝑓 ′ of 𝜋 respectively 𝜋′ we obtain

𝑓 ′ = 𝑓 + 𝐾 ⋅ 𝜀 ⎛⎜
⎝

𝐵
∑
𝑘=1

𝑤𝑎𝑘 − 𝑤𝑎
⎞⎟
⎠

< 𝑓 .

It remains to show that 𝜋′ is still (𝛼, 𝛽)-recoverable-robust. For all nodes 𝑙 ∉ ℰ(𝑖) we set
𝑥′𝑟

𝑙 ≔ 𝑥𝑟
𝑙 for all 𝑟 ∈ 𝒰. Furthermore, let 𝑦′ ≔ 𝑦. We have to show constraints (5.9) to (5.11)

for the subgraph in Figure 6.4.
First case: 𝑧 = 0. In this case 𝑢′ ≔ 𝑢. For 1 ≤ 𝑠 ≤ 𝐾+𝑏 and 𝑟 ∈ 𝒰we set 𝑥′𝑟

𝑖𝑠 ≔ max{𝑥𝑟
𝑖𝑠, 𝜋

′
𝑖𝑠}.

Constraints (5.9) are clearly fulfilled since by assumption the nodes 𝑖𝑠 do not have a source
delay. For 𝑖𝑘, 𝑘 ∈ {1, … , 𝐵}, let 1 ≤ 𝑠 ≤ 𝐾, 𝑠 ≤ 𝑡 ≤ 𝐾 + 𝑏 such that 𝑢′

(𝑖𝑘𝑠 ,𝑖𝑡)
= 1. Then it

follows 𝑥′𝑟
𝑖𝑡 − 𝑥′𝑟

𝑖𝑘𝑠
≥ 𝑥𝑟

𝑖𝑡 − 𝑥𝑟
𝑖𝑘𝑠

≥ 𝐿𝑎𝑘 + 𝑑𝑟
(𝑖𝑘𝑠 ,𝑖𝑡)

by feasibility of 𝑥. For 𝑠, 𝑡 such that 𝑢′
(𝑖𝑠,𝑗𝑡) = 1,



properties of recoverable robust timetables 65

𝑖𝑘𝑠

9∶30

𝑖𝑠

9∶59

𝑖𝑠+1

10∶59

𝑗𝑠+1

10∶15

𝑖𝑘𝑠

9∶30

𝑖𝑠

9∶01

𝑖𝑠+1

10∶01

𝑗𝑠+1

10∶15

𝜀 = 2

Figure 6.5: Example for the shift in the assignment variables in the proof of Theorem 6.9.

depending on for which value the maximum in the definition of 𝑥′𝑟
𝑖𝑠 is attained, we either

have

𝑥′𝑟
𝑗𝑡 − 𝑥′𝑟

𝑖𝑠 = 𝑥𝑟
𝑗𝑡 − 𝑥𝑟

𝑖𝑠 ≥ 𝐿𝑎

or

𝑥′𝑟
𝑗𝑡 − 𝑥′𝑟

𝑖𝑠 = 𝑥𝑟
𝑗𝑡 − 𝜋′

𝑖𝑠 = 𝑥𝑟
𝑗𝑡 − 𝜋𝑖𝑠 − 𝜀 ≥ 𝑥𝑟

𝑗𝑡 − 𝜋𝑖𝑠 − (𝜋𝑗𝑡 − 𝜋𝑖𝑠 − 𝐿𝑎)

= 𝑥𝑟
𝑗𝑡 − 𝜋𝑗𝑡 + 𝐿𝑎 ≥ 𝐿𝑎,

which shows (5.10). Recall that by assumption there is no source delay on (𝑖𝑠, 𝑗𝑡). The
proof for (5.11) is analogous.

Second case: 𝑧 = 1. In this case the assignment in the rolled out subgraph has shifted:
for 𝑘 ∈ {1, … , 𝐵} we have 𝑢′

(𝑖𝑘𝑠 ,𝑖𝑡)
≔ 𝑢(𝑖𝑘𝑠 ,𝑖𝑡−1) for 𝑡 ≥ 2 and 𝑢′

(𝑖𝑘𝑠 ,𝑖1) ≔ 0. Furthermore,
𝑢′

(𝑖𝑠,𝑗𝑡) ≔ 𝑢(𝑖𝑠−1,𝑗𝑡) for 𝑠 ≥ 2 and 𝑢′
(𝑖1,𝑗𝑡) ≔ 0, see Figure 6.5 for an example. For 𝑟 ∈ 𝒰 we set

𝑥′𝑟
𝑖1 ≔ 𝜋′

𝑖1 and 𝑥′𝑟
𝑖𝑠 ≔ max{𝑥𝑟

𝑖𝑠−1
, 𝜋′

𝑖𝑠} for 𝑠 > 1. Note that due to the assignment shift the
node 𝑖1 does not have any ingoing activities which could propagate delays, so 𝑥′𝑟

𝑖1 = 𝜋′
𝑖1

is feasible. For 𝑘 ∈ {1, … , 𝐵} let 1 ≤ 𝑠 ≤ 𝐾, 𝑠 ≤ 𝑡 ≤ 𝐾 + 𝑏 such that 𝑢′
(𝑖𝑘𝑠 ,𝑖𝑡)

= 1. Then
𝑥′𝑟

𝑖𝑡 − 𝑥′𝑟
𝑖𝑘𝑠

≥ 𝑥𝑟
𝑖𝑡−1

− 𝑥𝑟
𝑖𝑘𝑠

≥ 𝐿𝑎𝑘
+ 𝑑𝑟

(𝑖𝑘𝑠 ,𝑖𝑡−1). For 𝑠, 𝑡 such that 𝑢′
(𝑖𝑠,𝑗𝑡) = 1 we either have

𝑥′𝑟
𝑗𝑡 − 𝑥′𝑟

𝑖𝑠 = 𝑥𝑟
𝑗𝑡 − 𝑥𝑟

𝑖𝑠−1
≥ 𝐿𝑎

or

𝑥′𝑟
𝑗𝑡 − 𝑥′𝑟

𝑖𝑠 = 𝑥𝑟
𝑗𝑡 − 𝜋′

𝑖𝑠 = 𝑥𝑟
𝑗𝑡 − (𝜋𝑖𝑠 + 𝜀 − 𝑇) = 𝑥𝑟

𝑗𝑡 − 𝜋𝑖𝑠−1
− 𝜀

≥ 𝑥𝑟
𝑗𝑡 − 𝜋𝑖𝑠−1

− (𝜋𝑗𝑡 − 𝜋𝑖𝑠−1
− 𝐿𝑎) = 𝑥𝑟

𝑗𝑡 − 𝜋𝑗𝑡 + 𝐿𝑎 ≥ 𝐿𝑎.

Hence, (𝑥′, 𝑦′) yields a feasible disposition timetable. Since 𝑦′ = 𝑦, the bound 𝛽 is respec-
ted. Furthermore, note that for every 𝑟 ∈ 𝒰 in the first case (𝑧 = 0) we have

𝑥′𝑟
𝑖𝑠 − 𝜋′

𝑖𝑠 =
⎧{
⎨{⎩

𝑥𝑟
𝑖𝑠 − 𝜋𝑖𝑠 − 𝜀 < 𝑥𝑟

𝑖𝑠 − 𝜋𝑖𝑠 if 𝑥′𝑟
𝑖𝑠 = 𝑥𝑟

𝑖𝑠,

0 ≤ 𝑥𝑟
𝑖𝑠 − 𝜋𝑖𝑠 if 𝑥′𝑟

𝑖𝑠 = 𝜋′
𝑖𝑠.
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Analogous for the second case. In particular, we obtain

∑
𝑙𝑠∈ℰ∶𝑠≤𝐾

𝑤𝑙𝑠(𝑥′𝑟
𝑙𝑠

− 𝜋′
𝑙𝑠

) + ∑
𝑎′=(𝑙′,𝑙)∈𝒜out∶

𝑢′
𝑎′=1

𝑤𝑎′(𝑥′𝑟
𝑙 − 𝜋′

𝑙)

≤ ∑
𝑙𝑠∈ℰ∶𝑠≤𝐾

𝑤𝑙𝑠(𝑥𝑟
𝑙𝑠

− 𝜋𝑙𝑠) + ∑
𝑎′=(𝑙′,𝑙)∈𝒜out∶

𝑢′
𝑎′=1

𝑤𝑎′(𝑥𝑟
𝑙 − 𝜋𝑙)

(∗)
≤ ∑

𝑙𝑠∈ℰ∶𝑠≤𝐾
𝑤𝑙𝑠(𝑥𝑟

𝑙𝑠
− 𝜋𝑙𝑠) + ∑

𝑎′=(𝑙′,𝑙)∈𝒜out∶
𝑢𝑎′=1

𝑤𝑎′(𝑥𝑟
𝑙 − 𝜋𝑙) ≤ 𝛼.

To see (∗), we have to give special attention to the arcs in 𝒜out in the case that we have a
shift in the assignment variables (i.e. 𝑧 = 1). For all arcs 𝑎′ which are not in the considered
subgraph, the value of 𝑢𝑎′ does not change. Since 𝑖𝐾+1, and hence also 𝑖𝐾+𝑐 for 𝑐 ≥ 1,
is not reachable from any source delay, we have 𝑥𝑟

𝑖𝐾+𝑐
− 𝜋𝑖𝐾+𝑐

= 0, so we only have to
consider those arcs corresponding to (𝑖, 𝑗). If 𝑢′

(𝑖𝑠,𝑗𝑡) = 1, also 𝑢(𝑖𝑠−1,𝑗𝑡) = 1, which implies

{𝑡 ∶ ∃𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜out with 𝑢′
𝑎 = 1} ⊆ {𝑡 ∶ ∃𝑎 = (𝑖𝑠, 𝑗𝑡) ∈ 𝒜out with 𝑢𝑎 = 1}.

Since the passenger weights 𝑤 are periodic, (∗) follows.
Overall, we have found a better solution, which is a contradiction to 𝜋 being an optimal

timetable.

Example 6.10. Theorem 6.9 does not hold if the EAN contains headway activities. To
see this we consider the EAN given in Figure 6.6 with the induced subgraph given by
the nodes {𝑖2, 𝑖3, 𝑖4}. The assumptions of the theorem are fulfilled. However, putting one
minute of slack on the activity (𝑖3, 𝑖4) and no slack on (𝑖2, 𝑖3) yields an optimal solution.
We cannot simply shift the time of event 𝑖3 as done in the proof, because due to the
headway activities this also influences the time of event 𝑖7.

𝑖1

𝜋 = 0

𝑖2

𝑑 = (1, 0)
𝜋 = 10

𝑖3

𝜋 = 11

𝑖4

𝜋 = 22

𝑖5

𝜋 = 23

𝑖6

𝜋 = 33

𝑤 = 10

𝑖7

𝜋 = 12

𝑖8

𝜋 = 22

𝑤 = 8

[10, 20]
𝑤 = 10

[1, 5]
𝑤 = 2

[10, 20]
𝑤 = 3

[1, 1]
𝑤 = 3

[10, 20]
𝑤 = 10

[2, 30]𝑤
=

8
[10, 20]
𝑤 = 8

[1,59]

[1,59]

Figure 6.6: Theorem 6.9 does not hold if the EAN has headways (𝑇 = 60, 𝐾 = 2).



7
HEUR I ST ICS

Due to the high complexity of RRPT, it is unlikely to be solved to optimality in reasonable
time – even for medium-sized instances. Hence, this chapter is dedicated to developing
heuristic methods. We pursue iterative approaches, alternatingly solving the timetabling
subproblem and the delay management subproblem.

outline In Section 7.1 we describe three algorithms, which all follow the same idea,
but differ in the choice of activities on which to put buffer times. They all can be modified
by choosing some parameters. In Section 7.2 we compare them in a computational study
to assess their solution quality.

7.1 description of the algorithms

The idea of the first algorithm is simple. We first solve PESP and for the obtained solu-
tion 𝜋 we solve DM(𝒰), i.e. we solve DM for every scenario 𝑟 ∈ 𝒰. Then we choose some
transfer activity 𝑎′ ∈ candidates = 𝒜transfer(𝜋) and increase the lower bound for the
corresponding periodic activity 𝑎′, i.e. we enforce some buffer time on that transfer. If
the increased lower bound causes PESP to become infeasible, we decrease it again until
it becomes feasible. In every iteration we check if the worst-case delay has decreased
compared to the incumbent solution. If so, we continue. Otherwise, the algorithm ter-
minates with the incumbent solution. If all transfers are maintained, the algorithm also
terminates. Note that since the worst-case delay is a natural number which decreases in
every iteration, the algorithm terminates. The basic scheme of the heuristic is given in
Algorithm 1.

It remains to specify how we choose the transfer 𝑎′ and how we set the new lower
bound. For the choice of the transfer we give three options:

• simple: 𝑎′ ∈ argmax𝑎=(𝑖,𝑗)∈candidates
|{𝑟 ∈ 𝒰 ∶ 𝑥𝑟

𝑖 − 𝑥𝑟
𝑗 + 𝐿𝑎 > 0}|

• weighted: 𝑎′ ∈ argmax𝑎=(𝑖,𝑗)∈candidates
𝑤𝑎|{𝑟 ∈ 𝒰 ∶ 𝑥𝑟

𝑖 − 𝑥𝑟
𝑗 + 𝐿𝑎 > 0}|

• tight: 𝑎′ ∈ argmin𝑎∈candidates∶𝐶𝑎>0 𝐶𝑎, where 𝐶𝑎 ≔
∑𝑟∈𝒰 max(0,𝑥𝑟

𝑖 −𝑥𝑟
𝑗 +𝐿𝑎)

max(1,|{𝑟∈𝒰∶𝑥𝑟
𝑖 −𝑥𝑟

𝑗 +𝐿𝑎>0}|) for
𝑎 = (𝑖, 𝑗) ∈ candidates.

The option simple counts for every transfer activity in the set candidates in how many
scenarios 𝑟 ∈ 𝒰 it is cancelled and chooses that activity for which this number is maximal.
The option weighted basically does the same thing, but takes the passenger weights of the
transfers into account. For the option tight the idea is the following: if a transfer 𝑎 = (𝑖, 𝑗)
is cancelled in scenario 𝑟 ∈ 𝒰, we look at the time which would have been necessary to
still catch it, i.e. 𝑥𝑟

𝑖 − 𝑥𝑟
𝑗 + 𝐿𝑎. If this number is small, this means only a small additional

buffer would have been necessary to maintain that transfer, i.e. the increase in nominal

67
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travel time to decrease the number of missed transfers is small. Hence, we choose that
transfer for which the average time missing in order to secure the transfer is minimal.

For the choice of the new lower bound for the chosen transfer 𝑎′ = (𝑖, 𝑗) we also use
three different options. Let 𝑎′ = (𝑖, 𝑗) be the periodic activity corresponding to the chosen
transfer 𝑎′ = (𝑖, 𝑗). Recall that 𝐿𝑎′ = 𝐿𝑎′. We consider the following options:

• 0: 𝐿̃𝑎′ = 𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎′𝑇 + max𝑟∈𝒰 max(0, 𝑥𝑟
𝑖 − 𝑥𝑟

𝑗 + 𝐿𝑎′)

• 1: 𝐿̃𝑎′ = max𝑟∈𝒰 max(0, 𝑥𝑟
𝑖 − 𝑥𝑟

𝑗 + 𝐿𝑎′)

• 2: 𝐿̃𝑎′ = 𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎′𝑇 +
max𝑟∈𝒰 max(0,𝑥𝑟

𝑖 −𝑥𝑟
𝑗 +𝐿𝑎′)

2 .

We want to increase the lower bound such that 𝑎′ is cancelled less often. The term

max
𝑟∈𝒰

max(0, 𝑥𝑟
𝑖 − 𝑥𝑟

𝑗 + 𝐿𝑎′)

gives the maximal time missing to maintain the transfer. In option 0 we add this to the
current duration of activity 𝑎′ (respectively 𝑎′), with the idea to ensure the transfer 𝑎′ in
all scenarios. Since this new lower bound can be rather large, and hence might lead to
overly large nominal travel times, option 2 only adds half of the maximal time missing to
the current duration. Option 1 might choose bounds even lower than that. In fact, for this
option it is not guaranteed that 𝐿̃𝑎′ is larger than 𝐿𝑎′, in which case the lower bound is not
changed and the algorithm terminates.

The basic idea of the next heuristic is similar to the previous one. However, instead of
only adding buffer to a transfer activity in every iteration, we also choose a set critical-
wait consisting of ⌈𝑛 ⋅ |𝒜wait|⌉ waiting activities, 0 < 𝑛 < 1, for which we increase the
lower bound by a given percentage 𝑝. The heuristic is given in Algorithm 2.

For the choice of the set critical-wait we have two options:
• smallest: Choose the activities 𝑎 = (𝑖, 𝑗) ∈ candidates

𝑤𝑎𝑖𝑡 with the smallest buffer
(𝜋𝑗 − 𝜋𝑖 − 𝐿𝑎) mod 𝑇

• quotient: Choose the activities 𝑎 = (𝑖, 𝑗) ∈ candidates
𝑤𝑎𝑖𝑡 for which the ratio

𝑤𝑎
𝑤𝑒

of the passenger weights of 𝑎 and the succeeding driving activity 𝑒 is smallest.
The motivation for smallest is that buffer should be put on activities which currently

only have a small buffer. For the idea for the option quotient consider the following
situation: a small number of passengers sit in a train currently waiting at a station where
a lot of passengers board the train. Let 𝑎 be the waiting activity and 𝑒 the succeeding
driving activity, i.e. 𝑤𝑎 is small and 𝑤𝑒 is large. It might be a good idea to put buffer
on 𝑎, because the increase of the nominal travel time only affects 𝑤𝑎 passengers, but 𝑤𝑒
passengers might profit from it when the buffer can be used to decrease the delay.

A straightforward extension of Algorithm 2 is to also include driving activities. They
are then treated in the same manner as the waiting activities, i.e. we also choose a
subset critical-drive of the driving activities in every iteration. However, note that the
reasoning for the option quotient does not make sense for driving activities, so we only
use the option smallest. The procedure is given in Algorithm 3.

Due to the modular structure of the algorithms, we can also replace solving PESP and
DM exactly by using a heuristic of our choice. This will be necessary for large instances
due to the high complexity of PESP and DM.
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Algorithm 1: buffer-transfer

Input :Periodic EAN 𝒩 = (ℰ, 𝒜) with period 𝑇, uncertainty set 𝒰.
Output :Periodic timetable 𝜋 and disposition timetables (𝑥𝑟, 𝑦𝑟) for all 𝑟 ∈ 𝒰.

1 bound = ∞
2 Solve PESP 𝜋̃
3 Roll out w.r.t. 𝜋̃
4 candidates = 𝒜transfer(𝜋̃)
5 while true do
6 infeasible = true
7 for 𝑟 ∈ 𝒰 do
8 Solve DM(𝑟) ( ̃𝑥𝑟, ̃𝑦𝑟)
9 end

10 if 𝑓 del(𝜋̃) ≥ bound then
11 return 𝜋, (𝑥𝑟, 𝑦𝑟)𝑟∈𝒰
12 end
13 𝜋 = 𝜋̃, 𝑥𝑟 = ̃𝑥𝑟, 𝑦𝑟 = ̃𝑦𝑟, bound = 𝑓 del(𝜋̃)
14 if all transfers are maintained then
15 return 𝜋, (𝑥𝑟, 𝑦𝑟)𝑟∈𝒰
16 end
17 Choose critical transfer 𝑎′ ∈ candidates and determine 𝑎′ such that 𝑎′ ∈ 𝒜(𝑎′)
18 Choose new lower bound 𝐿̃𝑎′

19 while infeasible do
20 Solve PESP with new lower bound 𝐿̃𝑎′  𝜋̃
21 if PESP is infeasible then

22 Reduce lower bound: 𝐿̃𝑎′ = ⌊
𝐿̃𝑎′+𝐿𝑎′

2 ⌋

23 end
24 else
25 infeasible = false
26 candidates = candidates\{𝑎′}
27 Roll out w.r.t. 𝜋̃.
28 end
29 end
30 end
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Algorithm 2: buffer-transfer-wait

Input :Periodic EAN 𝒩 = (ℰ, 𝒜) with period 𝑇, uncertainty set 𝒰, 0 < 𝑛 < 1,
0 < 𝑝 < 1.

Output :Periodic timetable 𝜋 and disposition timetables (𝑥𝑟, 𝑦𝑟) for all 𝑟 ∈ 𝒰.
1 bound = ∞
2 𝑁 = ⌈𝑛 ⋅ |𝒜wait|⌉
3 Solve PESP 𝜋̃
4 Roll out w.r.t. 𝜋̃
5 candidates

𝑡𝑟𝑎𝑛𝑠 = 𝒜transfer(𝜋̃)
6 candidates

𝑤𝑎𝑖𝑡 = 𝒜wait
7 while true do
8 infeasible = true
9 for 𝑟 ∈ 𝒰 do
10 Solve DM(𝑟) ( ̃𝑥𝑟, ̃𝑦𝑟)
11 end
12 if 𝑓 del(𝜋̃) ≥ bound then
13 return 𝜋, (𝑥𝑟, 𝑦𝑟)𝑟∈𝒰
14 end
15 𝜋 = 𝜋̃, 𝑥𝑟 = ̃𝑥𝑟, 𝑦𝑟 = ̃𝑦𝑟, bound = 𝑓 del(𝜋̃)
16 if all transfers are maintained then
17 return 𝜋, (𝑥𝑟, 𝑦𝑟)𝑟∈𝒰
18 end
19 Choose critical transfer 𝑎′ ∈ candidates

𝑡𝑟𝑎𝑛𝑠 and determine 𝑎′ such that
𝑎′ ∈ 𝒜(𝑎′)

20 Choose new lower bound 𝐿̃𝑎′

21 Choose up to 𝑁 waiting activities critical-wait ⊆ candidates
𝑤𝑎𝑖𝑡

22 for 𝑎 ∈ critical-wait do
23 𝐿̃𝑎 = ⌈𝐿𝑎 ⋅ (1 + 𝑝)⌉
24 end
25 while infeasible do
26 Solve PESP with new lower bounds 𝐿̃ 𝜋̃
27 if PESP is infeasible then

28 Reduce lower bounds: 𝐿̃𝑎′ = ⌊
𝐿̃𝑎′+𝐿𝑎′

2 ⌋ , 𝐿̃𝑎 = ⌊ 𝐿̃𝑎+𝐿𝑎
2 ⌋

29 end
30 else
31 infeasible = false
32 candidates

𝑡𝑟𝑎𝑛𝑠 = candidates
𝑡𝑟𝑎𝑛𝑠\{𝑎′}

33 candidates
𝑤𝑎𝑖𝑡 = candidates

𝑤𝑎𝑖𝑡\critical-wait
34 Roll out w.r.t. 𝜋̃
35 end
36 end
37 end
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Algorithm 3: buffer-transfer-wait-drive

Input :Periodic EAN 𝒩 = (ℰ, 𝒜) with period 𝑇, uncertainty set 𝒰, 0 < 𝑛 < 1,
0 < 𝑝 < 1.

Output :Periodic timetable 𝜋 and disposition timetables (𝑥𝑟, 𝑦𝑟) for all 𝑟 ∈ 𝒰.
1 bound = ∞
2 𝑁1 = ⌈𝑛 ⋅ |𝒜wait|⌉
3 𝑁2 = ⌈𝑛 ⋅ |𝒜drive|⌉
4 Solve PESP 𝜋̃
5 Roll out w.r.t. 𝜋̃
6 candidates

𝑡𝑟𝑎𝑛𝑠 = 𝒜transfer(𝜋̃)
7 candidates

𝑤𝑎𝑖𝑡 = 𝒜wait
8 candidates

𝑑𝑟𝑖𝑣𝑒 = 𝒜drive
9 while true do
10 infeasible = true
11 for 𝑟 ∈ 𝒰 do
12 Solve DM(𝑟) ( ̃𝑥𝑟, ̃𝑦𝑟)
13 end
14 if 𝑓 del(𝜋̃) ≥ bound then
15 return 𝜋, (𝑥𝑟, 𝑦𝑟)𝑟∈𝒰
16 end
17 𝜋 = 𝜋̃, 𝑥𝑟 = ̃𝑥𝑟, 𝑦𝑟 = ̃𝑦𝑟, bound = 𝑓 del(𝜋̃)
18 if all transfers are maintained then
19 return 𝜋, (𝑥𝑟, 𝑦𝑟)𝑟∈𝒰
20 end
21 Choose critical transfer 𝑎′ ∈ candidates

𝑡𝑟𝑎𝑛𝑠 and determine 𝑎′ such that
𝑎′ ∈ 𝒜(𝑎′)

22 Choose new lower bound 𝐿̃𝑎′

23 Choose up to 𝑁1 waiting activities critical-wait ⊆ candidates
𝑤𝑎𝑖𝑡

24 Choose up to 𝑁2 driving activities critical-drive ⊆ candidates
𝑑𝑟𝑖𝑣𝑒

25 for 𝑎 ∈ critical-wait ∪ critical-drive do
26 𝐿̃𝑎 = ⌈𝐿𝑎 ⋅ (1 + 𝑝)⌉
27 end
28 while infeasible do
29 Solve PESP with new lower bounds 𝐿̃ 𝜋̃
30 if PESP is infeasible then

31 Reduce lower bounds: 𝐿̃𝑎′ = ⌊
𝐿̃𝑎′+𝐿𝑎′

2 ⌋ , 𝐿̃𝑎 = ⌊ 𝐿̃𝑎+𝐿𝑎
2 ⌋

32 end
33 else
34 infeasible = false
35 candidates

𝑡𝑟𝑎𝑛𝑠 = candidates
𝑡𝑟𝑎𝑛𝑠\{𝑎′}

36 candidates
𝑤𝑎𝑖𝑡 = candidates

𝑤𝑎𝑖𝑡\critical-wait
37 Roll out w.r.t. 𝜋̃
38 end
39 end
40 end
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7.2 computational experiments

To test the heuristics, we used the dataset lowersaxony from LinTim [Sch+23; Sch+],
which we already used in Chapter 4 for different line concepts. An overview of the EAN
used for the following experiments is given in Table 7.1. This dataset is small enough to
still be able to solve PESP and DM exactly, but already too large for RRPT. We rolled out
the network for 𝐾 ∈ {4, 12} periods and generated random source delays between 1 and
15 minutes for 5% of the aperiodic events and activities.

We implemented the algorithms in Python and ran them on a compute server with
48 cores @2.9 GHz and 196 GB RAM. For solving the MIP formulations we used Gur-
obi 8.1.1 [Gur23].

Name |ℰ| |𝒜| |𝒜drive| |𝒜wait| |𝒜transfer|

lowersaxony 180 187 90 80 17

Table 7.1: Size of the EAN.

algorithm 1 We have nine different variants of Algorithm 1, namely for each para-
meter combination from {simple, weighted, tight} × {0, 1, 2}. In Figure 7.1 we plotted
their solutions evaluated with respect to the worst-case delay, which is the objective of
DM, on the 𝑥-axis and the nominal travel time, i.e. the objective of PESP, on the 𝑦-axis
for |𝒰| ∈ {50, 100, 150, 200}. For comparison, we also added the PESP solution, which is
always in the bottom right corner, since it has the smallest possible nominal travel time
and does not take delays into account.

As we can see, with only a few exceptions the solutions for tight tend to be in the
bottom right corner, close to the PESP solution. For simple and weighted the algorithm
finds solutions with significantly less delay – of course this comes at the cost of an increase
in the nominal travel time.

Since we are interested in the real travel time, we also evaluated the solutions with
respect to the real travel time and computed how much it differs from the real travel
time of the PESP solution. In Tables 7.2 and 7.3 we see the results for those parameter
combinations which yield an improvement compared to the PESP solution. As we can
see, the combinations simple-2 and weighted-2 are the only ones yielding a significant
improvement. For 𝐾 = 4 the algorithm was able to improve the PESP solution by 3.6%,
for 𝐾 = 12 we have an improvement of 2.7%. For the option tight we were not able to
achieve any improvement.

Parameters 50 100 150 200 Average

simple-2 -2.85 -7.01 -1.71 -2.82 -3.6
weighted-2 -2.54 -1.51 -1.59 -2.15 -1.95

Table 7.2: Change (%) in real travel time for Algorithm 1 for 𝐾 = 4 compared to the PESP solution.
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Parameters 50 100 150 200 Average

simple-2 -1.74 -2.54 -1.43 -1.97 -1.92
weighted-1 -1.72 -2.06 0.74 0.81 -0.56
weighted-2 -2.5 -3.21 -2.84 -2.26 -2.7

Table 7.3: Change (%) in real travel time for Algorithm 1 for 𝐾 = 12 compared to the PESP
solution.
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Figure 7.1: Objective values of solutions of Algorithm 1.
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algorithm 2 For Algorithm 2 we chose 𝑝 = 0.1, i.e. the lower bound of the chosen
waiting activities critical-wait is increased by 10%. The percentage 𝑛 of the number
of chosen waiting activities was taken from the set {0.02, 0.05, 0.1}. In total, we tried 54
parameter combinations from

{simple, weighted, tight} × {0, 1, 2} × {smallest, quotient} × {0.02, 0.05, 0.1}.

The results for 𝐾 = 4 are depicted in Figure 7.3. Note that the legend can be found
separately in Figure 7.2. One can roughly say that the values for weighted are located in
the top left corner, those for tight in the bottom right corner, and the values for simple in-
between. Thuswe can say that weighted putsmore emphasis on reducing the delay, tight
yields solutions with small nominal travel time, and simple finds trade-offs between these
extremes. Due to the large number of different parameter combinations these graphics
are quite crowded. Hence, in Figure 7.3b we show a reduced version, where all points
which are dominated by others, and those which yield the same value as PESP, are
removed. As we can see, the remaining solutions mainly belong to simple-2, weighted-1
and weighted-2. The value for 𝑛 and the choice between smallest and quotient seems to
have less influence on the quality of the solution. If we increase the number of considered
periods from 𝐾 = 4 to 𝐾 = 12, the different emphasis of simple, weighted and tight on
the conflicting objectives becomes even more prominent, as can be seen in Figure 7.4.
Also in this setting we removed the dominated values, leaving those in Figure 7.4b. Here,
additionally to simple-2, weighted-1 and weighted-2 also weighted-0 and simple-1

yield values not dominated by the others.
Also for Algorithm 2 we investigated the improvement of the real travel time compared

to the PESP solution. The results are shown in Table 7.4 for 𝐾 = 4 and in Table 7.5 for
𝐾 = 12. Note that due to the large number of variants we only show those results with
an average improvement of at least 2% compared to the PESP solution. We can see that
simple-2 and weighted-2 always yield good results – regardless of the choice of 𝑛 and
whether we use smallest or quotient. While for 𝐾 = 4 simple-2 and weighted-2 seem
to be similarly good – both are able to improve the PESP solution by more than 5% – for
𝐾 = 12 weighted-2 yields the best solutions with an improvement of roughly 4.5% for
several parameter combinations. As already seen in the results for Algorithm 1, also for
Algorithm 2 the option tight does not prove useful.
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Figure 7.3: Objective values of solutions of Algorithm 2 for 𝐾 = 4.
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Figure 7.4: Objective values of solutions of Algorithm 2 for 𝐾 = 12.
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Parameters 50 100 150 200 Average

simple-2-smallest-0.02 -3.59 -5.13 -2.87 -4.98 -4.15
simple-2-smallest-0.05 -4.07 -5.18 -3.05 -5.98 -4.57
simple-2-smallest-0.1 -5.59 -5.05 -4.37 -5.73 -5.18
simple-2-quotient-0.02 -3.37 -5.06 -2.82 -2.91 -3.54
simple-2-quotient-0.05 -3.48 -5.07 -2.78 -2.87 -3.55
simple-2-quotient-0.1 -3.38 -5.73 -3.49 -5.62 -4.56

weighted-2-smallest-0.02 -5.12 -5.13 -4.15 -4.21 -4.65
weighted-2-smallest-0.05 -4.9 -5.18 -2.94 -4.59 -4.4
weighted-2-smallest-0.1 -4.2 -1.49 -1.35 -4.04 -2.77
weighted-2-quotient-0.02 -3.38 -2.46 -2.83 -4.4 -3.27
weighted-2-quotient-0.05 -4.14 -2.68 -2.82 -4.34 -3.49
weighted-2-quotient-0.1 -5.2 -6.22 -4.88 -5.62 -5.48

Table 7.4: Change (%) in real travel time for Algorithm 2 for 𝐾 = 4 for those parameter combina-
tions with at least 2% average improvement compared to the PESP solution.

Parameters 50 100 150 200 Average

simple-1-smallest-0.1 -3.29 -2.84 -2.01 -2.01 -2.54
simple-2-smallest-0.02 -1.2 -3.31 -2.3 -2.3 -2.28
simple-2-smallest-0.05 -1.16 -3.31 -2.3 -2.3 -2.27
simple-2-smallest-0.1 -1.7 -3.84 -3.26 -3.26 -3.02
simple-2-quotient-0.02 -1.12 -3.26 -2.23 -2.23 -2.21
simple-2-quotient-0.05 -1.21 -3.48 -2.48 -2.48 -2.41
simple-2-quotient-0.1 -3.31 -3.46 -3.11 -3.11 -3.25

weighted-1-quotient-0.1 -3.02 -1.24 -1.6 -2.19 -2.01
weighted-2-smallest-0.02 -4.43 -5.27 -4.43 -3.87 -4.5
weighted-2-smallest-0.05 -4.51 -4.54 -4.57 -4.57 -4.55
weighted-2-smallest-0.1 -3.54 -3.17 -5.09 -4.87 -4.17
weighted-2-quotient-0.02 -1.87 -3.74 -3.14 -2.77 -2.88
weighted-2-quotient-0.05 -2.51 -3.87 -3.62 -3.45 -3.36
weighted-2-quotient-0.1 -4.08 -5.25 -4.16 -4.53 -4.51

Table 7.5: Change (%) in real travel time for Algorithm 2 for 𝐾 = 12 for those parameter combina-
tions with at least 2% average improvement compared to the PESP solution.
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Parameters 50 100 150 200 Average

simple-2-0.02 -3.48 -7.02 -2.88 -4.31 -4.42
simple-2-0.05 -3.56 -5.45 -3.24 -4.67 -4.23
simple-2-0.1 -4.12 -5.8 -4.52 -5.96 -5.1

weighted-2-0.02 -3.54 -4.52 -3.93 -3.76 -3.94
weighted-2-0.05 -3.56 -5.07 -4.49 -4.67 -4.45
weighted-2-0.1 -4.12 -5.8 -4.52 -5.96 -5.1
tight-0-0.1 -5.66 -6.69 -6.82 -6.82 -6.5

Table 7.6: Change (%) in real travel time for Algorithm 3 for 𝐾 = 4 for those parameter combina-
tions with at least 2% average improvement compared to the PESP solution.

Parameters 50 100 150 200 Average

simple-2-0.02 -1.28 -3.27 -3.05 -3.05 -2.66
simple-2-0.05 -1.28 -3.46 -3.19 -3.19 -2.78
simple-2-0.1 0.0 0.0 -4.71 -4.71 -2.36

weighted-2-0.02 -5.63 -5.97 -4.26 -4.6 -5.12
weighted-2-0.05 -4.4 -4.63 -5.08 -2.98 -4.27
weighted-2-0.1 0.0 0.0 -4.71 -4.71 -2.36

Table 7.7: Change (%) in real travel time for Algorithm 3 for 𝐾 = 12 for those parameter combin-
ations with at least 2% average improvement compared to the PESP solution.

algorithm 3 Finally, we look at the results of Algorithm 3. Since the choice between
smallest and quotient does not have a significant influence for the waiting activities,
as we have seen in the experiments for Algorithm 2, and the option quotient is not
reasonable for driving activities, we omit this option for Algorithm 3. Hence, we test the
27 parameter combinations from

{simple, weighted, tight} × {0, 1, 2} × {smallest} × {0.02, 0.05, 0.1}.

Note that we omit the term “smallest” when specifying the parameter combination. As
before, we looked at the nominal travel time and the worst-case delay in Figures 7.5 and
7.6. The results look similar to those of Algorithm 2, with the exception of tight-0-0.1
for 𝐾 = 4. While in the previous experiments the option tight always yielded solutions
close to that of PESP, in this instance we have solutions with much smaller delay for
this specific parameter combination. In fact, when looking at the improvement of the
real travel time in Table 7.6, we can see that this is actually the best variant with an
improvement of 6.5%. Apart from that, simple-2 and weighted-2 are again a good choice
with an improvement of up to 5.1%. For 𝐾 = 12, see Table 7.7, these options again turn
out to be the best ones, with weighted-2 outperforming simple-2. Here, the option tight

cannot achieve a significant improvement.
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Figure 7.5: Objective values of solutions of Algorithm 3 for 𝐾 = 4.
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Figure 7.6: Objective values of solutions of Algorithm 3 for 𝐾 = 12.
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In total, we can say that simple-2 and weighted-2 are the only combinations which
yield good results in all considered instances, and for a larger planning horizon weighted-2
has an advantage over simple-2. Comparing the different algorithms, we see that putting
buffer on different activity types is better than only doing so for transfer activities.

computing times To conclude the evaluation of the algorithms, we examine their
computing times. Since we pursued iterative approaches, the computing times highly
depend on the number of iterations the algorithms need. Hence, for every algorithm
we plotted histograms of the number of iterations until termination which are shown
in Figure 7.7. We always fixed the length 𝐾 of the planning horizon as well as one of
the options simple, weighted and tight and looked at the number of iterations for all
combinations of the other parameters.

Hence, the sample size is

|{50, 100, 150, 200} × {0, 1, 2} × {smallest, quotient} × {0.2, 0.05, 0.1}| = 72

for Algorithm 2 and

|{50, 100, 150, 200} × {0, 1, 2} × {0.2, 0.05, 0.1}| = 36

for Algorithm 3. We can clearly see that for the option tight we have the lowest number
of iterations. In most cases the algorithms terminate in the second iteration, meaning
that they return the PESP solution. This fits to the previous results we looked at. For
simple the number of iterations is only slightly higher: most of the time we have three
iterations. Since we have seen that we can get good results for this option, this means that
the algorithm finds a good solution very early, but most of the time is not able to improve
this solution any further. For weighted the number of iterations is higher: we often have
six or even more iterations. Since the quality of the solutions is similar to those for simple
this means that instead of one big improvement we have several smaller improvements.

For Algorithm 1 the results are less clear. Here, we have a much larger variance in the
number of iterations, which could be due to the much smaller sample size of

|{50, 100, 150, 200} × {0, 1, 2}| = 12

since we have less variants of this algorithm.
Finally, we look at the computing times of the heuristics in Figure 7.8, where we restrict

the attention to the options which proved useful, namely simple-2 and weighted-2.
All instances could be solved within a few minutes. As expected, both the length of the
planning horizon and the number of scenarios have a significant impact on the computing
time. Comparing the different heuristics, we can see that they perform similarly, with
the option simple being a bit faster than weighted, which is in line with our previous
observations on the number of iterations. However, for Algorithm 3 some variants of
weighted are as fast as those using simple.
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(d) Algorithm 2 for 𝐾 = 12.
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(e) Algorithm 3 for 𝐾 = 4.
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Figure 7.7: Number of iterations until termination.
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conclusion

We have seen that simple heuristics iteratively solving the timetabling and the delay
management subproblems can yield good results if the algorithm parameters are chosen
with care – often yielding an improvement of the real travel time of around 5% compared
to the PESP solution. On the used dataset the heuristics run reasonably fast. Due to the
modularity of the algorithms it is even possible to speed them up by using heuristics for
the single subproblems.

An obvious line for further research lies in the modification of the algorithms, adding
even more options for the different parameters and investigating which of these are
reasonable. Furthermore, it could be interesting to have a look at different types of
heuristics, working more with the MIP formulations instead of the iterative approach we
pursued, or solving the problem for reasonably chosen subsets of 𝒰.





8
DI FFERENT ROBUSTNESS CONCEPTS APPL I ED TO
PER IOD IC T IMETABL ING

After having focussed on recoverable robustness so far, the goal of this chapter is to
also apply other robustness concepts to the periodic timetabling problem, namely strict
robustness, light robustness and adjustable robustness, which were briefly introduced
in Section 2.5. For recoverable robustness we were in particular interested in allowing
an aperiodic recovery by using delay management as recovery algorithm. By doing so,
we make sure that the aperiodicity of the source delays is taken into account. In this
chapter we investigate whether models using the other robustness concepts are also able
to handle the aperiodicity. Another aim is to compare the models with respect to the real
travel time of their solutions to see if some of them are superior to others.

outline In Sections 8.1 to 8.3 we apply the mentioned robustness concepts to the
periodic timetabling problem. We show that some of them are better able to take the
aperiodicity of the source delays into account than others. We compare the different mod-
els with respect to their real travel time, first theoretically in Section 8.4 and afterwards
in a computational study in Section 8.5.

In this chapter we assume that we only have source delays on the activities, not on the
events, i.e. 𝑑𝑟

𝑖 = 0 for all 𝑟 ∈ 𝒰, 𝑖 ∈ ℰ. This is due to the fact that for some of the considered
robustness concepts it does not make sense to consider this kind of uncertainty: for
example, there cannot exist a strictly robust timetable if we have a source delay 𝑑𝑟

𝑖 > 0 for
an event 𝑖 in some scenario 𝑟. Recall from Chapter 3 that we can theoretically transform
the event delays to activity delays. However, this might not be realistic, since the virtual
activities which have to be added model processes outside of the transport system.
Another assumption in this chapter is that the network does not have headway activities,
which is for example reasonable for a bus network.

Recall the uncertain PESP from Chapter 3:

min 𝑓 PESP(𝜋) (PESP(r))
s.t. 𝑔𝑈(𝜋) ≤ 0

𝑔𝐿(𝜋, 𝑟) ≤ 0
𝜋 ∈ {0, … , 𝑇 − 1}ℰ,

with

𝑔𝐿(𝜋, 𝑟) ≔ (𝑔𝐿(𝜋) + 𝑑)𝑑∈𝒰𝑟

87
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and

𝒰𝑟 ≔ {(𝑑𝑟
𝑎𝑠

)𝑎∈𝒜 ∶ 𝑠 ∈ {1, … , 𝐾}}.

8.1 strict robustness

Applying strict robustness to the periodic timetabling problem yields the strictly robust
periodic timetabling problem.

Strictly robust periodic timetabling (SRPT)

Input: Periodic EAN 𝒩 = (ℰ, 𝒜) with period 𝑇, uncertainty set 𝒰.

Task: Find a periodic timetable 𝜋 which is feasible in every scenario 𝑟 ∈ 𝒰 such that
the travel time of 𝜋 is minimal.

Writing the strictly robust counterpart as an IP we get the following form:

min 𝑓 PESP(𝜋)
s.t. 𝑔𝑈(𝜋) ≤ 0

𝑔𝐿(𝜋, 𝑟) ≤ 0 𝑟 ∈ 𝒰
𝜋 ∈ {0, … , 𝑇 − 1}|ℰ|

and plugging in the definitions yields

min ∑
𝑎=(𝑖,𝑗)∈𝒜

𝑤𝑎(𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇) (SRPT)

s.t. 𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≤ 𝑈𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜 (8.1)
𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≥ 𝐿𝑎 + 𝑑𝑟

𝑎𝑠
𝑎 = (𝑖, 𝑗) ∈ 𝒜, 𝑠 ∈ {1, … , 𝐾}, 𝑟 ∈ 𝒰 (8.2)

𝑧𝑎 ∈ ℤ 𝑎 ∈ 𝒜 (8.3)
𝜋𝑖 ∈ {0, … , 𝑇 − 1} 𝑖 ∈ ℰ. (8.4)

The variables and the objective function are the same as in PESP. The upper bounds are
taken into account by Constraints (8.1). Constraints (8.2) ensure that for all activities the
lower bounds and all possible source delays are respected. Note that for every periodic
activity the delays of all corresponding aperiodic activities need to be considered here.
The timetable 𝜋 in an optimal solution is denoted by 𝜋SR.

We can equivalently write (8.2) as

𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≥ 𝐿𝑎 + max
𝑟∈𝒰

max
𝑠∈{1,…,𝐾}

𝑑𝑟
𝑎𝑠

𝑎 = (𝑖, 𝑗) ∈ 𝒜
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and obtain the following formulation:

min ∑
𝑎=(𝑖,𝑗)∈𝒜

𝑤𝑎(𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇) (SRPT’)

s.t. 𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≥ 𝐿𝑎 + max
𝑟∈𝒰

max
𝑠∈{1,…,𝐾}

𝑑𝑟
𝑎𝑠

𝑎 = (𝑖, 𝑗) ∈ 𝒜 (8.5)

(8.1), (8.3), (8.4).

Remark 8.1. If we had not used the definition for 𝒰𝑟 from above, but instead 𝒰𝑟 ≔
{(max𝑠∈{1,…,𝐾} 𝑑𝑟

𝑎𝑠
)𝑎∈𝒜}, we would directly have received SRPT’ as the strictly robust

counterpart. Since SRPT and SRPT’ are equivalent, this means that both definitions of 𝒰𝑟

lead to the same strictly robust counterpart. Thus, we can say that it actually makes no
difference if the source delays are periodic or aperiodic, since for every 𝑎 ∈ 𝒜 only the
maximum delay over all corresponding aperiodic activities max𝑠∈{1,…,𝐾} 𝑑𝑟

𝑎𝑠
is relevant.

We can hence conclude that strict robustness is not suitable to take the aperiodicity of the
delays into account.

Remark 8.2. SRPT’ is again a PESP with lower bounds 𝐿𝑎 + max𝑟∈𝒰 max𝑠∈{1,…,𝐾} 𝑑𝑟
𝑎𝑠

for
𝑎 = (𝑖, 𝑗) ∈ 𝒜. Hence, it can be solved using the same methods as solving PESP.

The strictly robust model has another drawback: often, there does not exist a strictly
robust timetable.

Lemma 8.3. If there are some 𝑎 ∈ 𝒜, 𝑠 ∈ {1, … , 𝐾} and 𝑟 ∈ 𝒰 with 𝑑𝑟
𝑎𝑠

> 𝑈𝑎 − 𝐿𝑎, a strictly
robust timetable does not exist.

Proof. If 𝑑𝑟
𝑎𝑠

> 𝑈𝑎−𝐿𝑎, (8.1) and (8.2) contradict each other. Hence, SRPT is infeasible.

8.2 light robustness

For the context of periodic timetabling we first have to choose a nominal scenario 𝑟. This
is the undisturbed setting without any delays, i.e. the optimal solution for ̂𝑟 is the PESP
solution 𝜋PESP. We present the lightly robust periodic timetabling problem:

Lightly robust periodic timetabling (LRPT)

Input: Periodic EAN 𝒩 = (ℰ, 𝒜) with period 𝑇, uncertainty set 𝒰, optimal nominal
value 𝑓 PESP(𝜋PESP), 𝜌 ≥ 0.

Task: Find a periodic timetable 𝜋 which is feasible in the undisturbed scenario ̂𝑟
and has a travel time of at most 𝑓 PESP(𝜋PESP) + 𝜌 in all scenarios 𝑟 ∈ 𝒰 such
that the grade of infeasibility is minimal.
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The lightly robust counterpart can be written as follows:

min ‖𝛾‖
s.t. 𝑓 PESP(𝜋) ≤ 𝑓 PESP(𝜋PESP) + 𝜌

𝑔𝑈(𝜋) ≤ 0
𝑔𝐿(𝜋) ≤ 0
𝑔𝐿(𝜋, 𝑟) ≤ 𝛾 𝑟 ∈ 𝒰
𝜋𝑖 ∈ {0, … , 𝑇 − 1}|ℰ|

𝛾 ∈ ℝ𝐾|𝒜|.

Again, we plug in the definitions and obtain

min ‖𝛾‖ (LRPT(𝜌))
s.t. ∑

𝑎=(𝑖,𝑗)∈𝒜
𝑤𝑎(𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇) ≤ 𝑓 PESP(𝜋PESP) + 𝜌 (8.6)

𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≤ 𝑈𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜 (8.7)
𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≥ 𝐿𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜 (8.8)
𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 + 𝛾𝑎𝑠

≥ 𝐿𝑎 + 𝑑𝑟
𝑎𝑠

𝑎 = (𝑖, 𝑗) ∈ 𝒜, 𝑠 ∈ {1, … , 𝐾},
𝑟 ∈ 𝒰 (8.9)

𝛾𝑎𝑠
≥ 0 𝑎 ∈ 𝒜, 𝑠 ∈ {1, … , 𝐾} (8.10)

𝑧𝑎 ∈ ℤ 𝑎 ∈ 𝒜 (8.11)
𝜋𝑖 ∈ {0, … , 𝑇 − 1} 𝑖 ∈ ℰ. (8.12)

The PESP objective function value (i.e. the travel time) in the nominal (undelayed)
scenario is bounded by 𝑓 PESP(𝜋PESP) + 𝜌, which is ensured by Constraints (8.6). Con-
straints (8.7) and (8.8) are the same as in PESP since the timetable has to be feasible in
the nominal scenario. For all scenarios 𝑟 ∈ 𝒰 the constraints respecting lower bounds and
source delays are relaxed by allowing some deviation 𝛾, see (8.9). The objective function
minimises some norm of the vector 𝛾. We denote the timetable 𝜋 in an optimal solution
by 𝜋LR,𝜌.

Interestingly, if we rewrite the constraints

𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≥ 𝐿𝑎 + 𝑑𝑟
𝑎𝑠

𝑎 = (𝑖, 𝑗) ∈ 𝒜, 𝑠 ∈ {1, … , 𝐾}

in the uncertain problem PESP(𝑟) to

𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≥ 𝐿𝑎 + max
𝑠∈{1,…,𝐾}

𝑑𝑟
𝑎𝑠

𝑎 = (𝑖, 𝑗) ∈ 𝒜
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and then use this equivalent formulation to derive the lightly robust counterpart, we get

min ‖𝛾‖ (LRPT’(𝜌))
s.t. ∑

𝑎=(𝑖,𝑗)∈𝒜
𝑤𝑎(𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇) ≤ 𝑓 PESP(𝜋PESP) + 𝜌 (8.13)

𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≤ 𝑈𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜 (8.14)
𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≥ 𝐿𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜 (8.15)
𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 + 𝛾𝑎 ≥ 𝐿𝑎 + max

𝑠∈{1,…,𝐾}
𝑑𝑟

𝑎𝑠
𝑎 = (𝑖, 𝑗) ∈ 𝒜, 𝑟 ∈ 𝒰 (8.16)

𝛾𝑎 ≥ 0 𝑎 ∈ 𝒜 (8.17)
𝑧𝑎 ∈ ℤ 𝑎 ∈ 𝒜 (8.18)
𝜋𝑖 ∈ {0, … , 𝑇 − 1} 𝑖 ∈ ℰ. (8.19)

This is also the formulation we would receive when using the alternative definition of 𝒰𝑟

from Remark 8.1. In this formulation, we only have a slack variable 𝛾𝑎 for every 𝑎 ∈ 𝒜,
not for every corresponding aperiodic activity 𝑎𝑠. Furthermore, we only consider the
maximum max𝑠∈{1,…,𝐾} 𝑑𝑟

𝑎𝑠
. In general, LRPT(𝜌) and LRPT’(𝜌) are not equivalent.

For the lightly robust model we have to choose a norm ‖ ⋅ ‖ for the objective function.
In fact, the choice of the norm can have a large impact on the model.

Remark 8.4 (Choice of the norm). When using ‖ ⋅ ‖ = ‖ ⋅ ‖∞, the model does not take the
aperiodicity of the source delays into account, since for every 𝑎 ∈ 𝒜 only the maximum
max𝑠∈{1,…,𝐾} 𝑑𝑟

𝑎𝑠
is relevant. We have seen this already for strict robustness. However, for

‖ ⋅ ‖ = ‖ ⋅ ‖1, indeed all source delays are relevant. Another reasonable choice for evaluating
the vector 𝛾 is to take the activity weights into account: ‖𝛾‖𝑤 ≔ ∑𝑎∈𝒜,𝑠∈{1,…,𝐾} 𝑤𝑎𝛾𝑎𝑠

.
Note that if there are activities with weight zero (which might be reasonable, e.g. for
waiting activities), this is actually not a norm, since then we can have ‖𝛾‖𝑤 = 0 even if
𝛾 ≠ 0. However, we do not need the norm property and it still fulfils the purpose of
evaluating the vector 𝛾. Unless stated otherwise, we use ‖ ⋅ ‖ = ‖ ⋅ ‖1.

Lemma 8.5. For ‖ ⋅ ‖ = ‖ ⋅ ‖∞, LRPT(𝜌) and LRPT’(𝜌) are equivalent.

Proof. If we have a feasible solution (𝜋, 𝑧, 𝛾) to LRPT(𝜌), we can set 𝛾̃𝑎 ≔ max𝑠∈{1,…,𝐾} 𝛾𝑎𝑠
for 𝑎 ∈ 𝒜. Then (𝜋, 𝑧, 𝛾̃) is a feasible solution to LRPT’(𝜌) with the same objective value
since

‖(𝛾𝑎𝑠
)𝑎∈𝒜,𝑠∈{1,…,𝐾}‖∞ = max

𝑎∈𝒜
max

𝑠∈{1,…,𝐾}
𝛾𝑎𝑠

= max
𝑎∈𝒜

𝛾̃𝑎 = ‖(𝛾̃𝑎)𝑎∈𝒜‖∞.

On the other hand, for every feasible solution (𝜋, 𝑧, 𝛾̃) to LRPT’(𝜌) we obtain a feasible
solution (𝜋, 𝑧, 𝛾) to LRPT(𝜌) with the same objective value by setting 𝛾𝑎𝑠

≔ 𝛾𝑎 for all
𝑠 ∈ {1, … , 𝐾}.

In the following we will use LRPT(𝜌) when talking about lightly robust timetables. We
will sometimes omit the parameter 𝜌 and simply write LRPT.
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8.3 adjustable robustness

When applying adjustable robustness to periodic timetabling, we have to specify how we
partition the variables into “here-and-now variables” and “wait-and-see variables”. First,
we introduce the necessary notation.

Let ℰ = ℰ1 ∪ ℰ2 be a partition of the events. For 𝑖 ∈ ℰ1 we treat 𝜋𝑖 as here-and-now
variable, while the times for those events in ℰ2 are wait-and-see variables, which can
depend on the scenario.

The adjustable robust periodic timetabling problem then is as follows:

Adjustable robust periodic timetabling (ARPT)

Input: Periodic EAN 𝒩 = (ℰ, 𝒜) with period 𝑇, uncertainty set 𝒰, subset ℰ2 ⊆ ℰ.

Task: Find times 𝜋𝑖 for 𝑖 ∈ ℰ1 = ℰ\ℰ2 and 𝜋𝑟
𝑖 for 𝑖 ∈ ℰ2, 𝑟 ∈ 𝒰 such that for every

𝑟 ∈ 𝒰 the resulting timetable is periodic and feasible and the travel time in
the worst-case is minimal.

Due to the partition of the events we obtain four different cases for the activities, which
yield the following subsets:

𝒜1 = {(𝑖, 𝑗) ∈ 𝒜 ∶ 𝑖, 𝑗 ∈ ℰ1},

𝒜2 = {(𝑖, 𝑗) ∈ 𝒜 ∶ 𝑖 ∈ ℰ1, 𝑗 ∈ ℰ2},

𝒜3 = {(𝑖, 𝑗) ∈ 𝒜 ∶ 𝑖 ∈ ℰ2, 𝑗 ∈ ℰ1},

𝒜4 = {(𝑖, 𝑗) ∈ 𝒜 ∶ 𝑖, 𝑗 ∈ ℰ2}.

Consequently, for 𝑎 ∈ 𝒜1 the modulo variable 𝑧𝑎 does not depend on the realised scenario
𝑟 ∈ 𝒰 (here-and-now), while for 𝑎 ∈ 𝒜2 ∪ 𝒜3 ∪ 𝒜4 we have variables 𝑧𝑟

𝑎 for 𝑟 ∈ 𝒰 (wait-
and-see). Let 𝑛1 ≔ |ℰ1|, 𝑛2 ≔ |ℰ2|.

Denoting

𝑓 (𝜋, 𝜋𝑟) = ∑
𝑎=(𝑖,𝑗)∈𝒜1

𝑤𝑎(𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇) + ∑
𝑎=(𝑖,𝑗)∈𝒜2

𝑤𝑎(𝜋𝑟
𝑗 − 𝜋𝑖 + 𝑧𝑟

𝑎𝑇)

+ ∑
𝑎=(𝑖,𝑗)∈𝒜3

𝑤𝑎(𝜋𝑗 − 𝜋𝑟
𝑖 + 𝑧𝑟

𝑎𝑇) + ∑
𝑎=(𝑖,𝑗)∈𝒜4

𝑤𝑎(𝜋𝑟
𝑗 − 𝜋𝑟

𝑖 + 𝑧𝑟
𝑎𝑇),

the adjustable robust periodic timetabling problem (ARPT) can be be written as follows:

min 𝑐
s.t. 𝑓 (𝜋, 𝜋𝑟) ≤ 𝑐 𝑟 ∈ 𝒰

𝑔𝑈(𝜋, 𝜋𝑟) ≤ 0 𝑟 ∈ 𝒰
𝑔𝐿(𝜋, 𝜋𝑟, 𝑟) ≤ 0 𝑟 ∈ 𝒰
𝜋 ∈ ℝ𝑛1

𝜋𝑟 ∈ ℝ𝑛2 𝑟 ∈ 𝒰,
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which yields

min 𝑐 (ARPT(ℰ2))
s.t. 𝑓 (𝜋, 𝜋𝑟) ≤ 𝑐 𝑟 ∈ 𝒰 (8.20)

𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≤ 𝑈𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜1 (8.21)

𝜋𝑟
𝑗 − 𝜋𝑖 + 𝑧𝑟

𝑎𝑇 ≤ 𝑈𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜2, 𝑟 ∈ 𝒰 (8.22)

𝜋𝑗 − 𝜋𝑟
𝑖 + 𝑧𝑟

𝑎𝑇 ≤ 𝑈𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜3, 𝑟 ∈ 𝒰 (8.23)

𝜋𝑟
𝑗 − 𝜋𝑟

𝑖 + 𝑧𝑟
𝑎𝑇 ≤ 𝑈𝑎 𝑎 = (𝑖, 𝑗) ∈ 𝒜4, 𝑟 ∈ 𝒰 (8.24)

𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≥ 𝐿𝑎 + 𝑑𝑟
𝑎𝑠

𝑎 = (𝑖, 𝑗) ∈ 𝒜1, 𝑠 ∈ {1, … , 𝐾}, 𝑟 ∈ 𝒰 (8.25)

𝜋𝑟
𝑗 − 𝜋𝑖 + 𝑧𝑟

𝑎𝑇 ≥ 𝐿𝑎 + 𝑑𝑟
𝑎𝑠

𝑎 = (𝑖, 𝑗) ∈ 𝒜2, 𝑠 ∈ {1, … , 𝐾}, 𝑟 ∈ 𝒰 (8.26)

𝜋𝑗 − 𝜋𝑟
𝑖 + 𝑧𝑟

𝑎𝑇 ≥ 𝐿𝑎 + 𝑑𝑟
𝑎𝑠

𝑎 = (𝑖, 𝑗) ∈ 𝒜3, 𝑠 ∈ {1, … , 𝐾}, 𝑟 ∈ 𝒰 (8.27)

𝜋𝑟
𝑗 − 𝜋𝑟

𝑖 + 𝑧𝑟
𝑎𝑇 ≥ 𝐿𝑎 + 𝑑𝑟

𝑎𝑠
𝑎 = (𝑖, 𝑗) ∈ 𝒜4, 𝑠 ∈ {1, … , 𝐾}, 𝑟 ∈ 𝒰 (8.28)

𝜋𝑖 ∈ {0, … , 𝑇 − 1} 𝑖 ∈ ℰ1 (8.29)

𝜋𝑟
𝑖 ∈ {0, … , 𝑇 − 1} 𝑖 ∈ ℰ2, 𝑟 ∈ 𝒰 (8.30)

𝑧𝑎 ∈ ℤ 𝑎 ∈ 𝒜1 (8.31)

𝑧𝑟
𝑎 ∈ ℤ 𝑎 ∈ 𝒜\𝒜1, 𝑟 ∈ 𝒰. (8.32)

The upper bounds are respected due to Constraints (8.21) to (8.24). Depending on
whether the variables are here-and-now or wait-and-see variables, they may or may not
depend on 𝑟. Analogously, Constraints (8.25) to (8.28) ensure that the timetable respects
the lower bounds and source delays for every 𝑟 ∈ 𝒰. The objective function minimises the
travel time in the worst case. We denote the timetable ((𝜋𝑖)𝑖∈ℰ1, (𝜋𝑟

𝑖 )𝑟∈𝒰
𝑖∈ℰ2) in an optimal

solution by 𝜋AR,ℰ2
.

Remark 8.6. It has to be discussed which event partition is reasonable. One possibility
would be to choose ℰ1 as the events at the main stations, while ℰ2 might be events at
small intermediate stations, where only a small number of passengers enter or leave the
train, as those might be considered less important. However, such a timetable comes with
a drawback for the passengers. If 𝜋𝑖 for 𝑖 ∈ ℰdep was adjustable, this would mean that the
passengers do not know the departure time of their train beforehand. Hence, they would
have to be at the station early and wait for the departure. Besides being inconvenient,
this waiting time at the station would moreover not be counted in the objective function
and therefore not accurately represent the actual travel time the passengers face. A way
around this is to choose ℰ1 = ℰdep and ℰ2 = ℰarr such that all departure times are reliable
and only arrival times may vary. We use this partition later in our comparisons.
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Analogously to strict robustness, also in this case we can rewrite some of the constraints
and obtain the following equivalent formulation:

min 𝑐 (ARPT’(ℰ2))

s.t. 𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 ≥ 𝐿𝑎 + max
𝑟∈𝒰

max
𝑠∈{1,…,𝐾}

𝑑𝑟
𝑎𝑠

𝑎 = (𝑖, 𝑗) ∈ 𝒜1 (8.33)

𝜋𝑟
𝑗 − 𝜋𝑖 + 𝑧𝑟

𝑎𝑇 ≥ 𝐿𝑎 + max
𝑠∈{1,…,𝐾}

𝑑𝑟
𝑎𝑠

𝑎 = (𝑖, 𝑗) ∈ 𝒜2, 𝑟 ∈ 𝒰 (8.34)

𝜋𝑗 − 𝜋𝑟
𝑖 + 𝑧𝑟

𝑎𝑇 ≥ 𝐿𝑎 + max
𝑠∈{1,…,𝐾}

𝑑𝑟
𝑎𝑠

𝑎 = (𝑖, 𝑗) ∈ 𝒜3, 𝑟 ∈ 𝒰 (8.35)

𝜋𝑟
𝑗 − 𝜋𝑟

𝑖 + 𝑧𝑟
𝑎𝑇 ≥ 𝐿𝑎 + max

𝑠∈{1,…,𝐾}
𝑑𝑟

𝑎𝑠
𝑎 = (𝑖, 𝑗) ∈ 𝒜4, 𝑟 ∈ 𝒰 (8.36)

(8.20) − (8.24), (8.29) − (8.32).

Remark 8.7. As in Remark 8.1, using the alternative definition of 𝒰𝑟 yields the formulation
ARPT’(ℰ2), meaning that also for adjustable robustness it makes no difference if we
consider periodic or aperiodic delays.

Unfortunately, the adjustable robust model has the same disadvantage as the strictly
robust one: it becomes infeasible very easily.

Lemma 8.8. If there are some 𝑎 ∈ 𝒜, 𝑠 ∈ {1, … , 𝐾}, 𝑟 ∈ 𝒰 with 𝑑𝑟
𝑎𝑠

> 𝑈𝑎 − 𝐿𝑎, then no
adjustable robust timetable exists.

Proof. If 𝑑𝑟
𝑎𝑠

> 𝑈𝑎 − 𝐿𝑎 for some 𝑎 ∈ 𝒜1, (8.21) and (8.25) contradict each other. This
holds analogously for 𝑎 ∈ 𝒜2 ∪ 𝒜3 ∪ 𝒜4 and Constraints (8.22) to (8.24) and (8.26) to
(8.28).

The model depends a lot on the choice of the variable partition. The larger the set ℰ2,
the more flexibility the model has. Hence, the travel time in the worst case (neglecting
the passengers’ waiting times at their first stations) decreases when ℰ2 is increased.

Lemma 8.9. Let ℰ2 ⊆ ℰ̃
2
. Then the optimal objective value of ARPT(ℰ̃

2
) is less or equal to the

optimal objective value of ARPT(ℰ2).

Proof. Let (𝜋, 𝑧) be a feasible solution to ARPT(ℰ2). We define

𝜋̃𝑖 =𝜋𝑖 if 𝑖 ∈ ℰ̃
1
,

̃𝑧(𝑖,𝑗) =𝑧(𝑖,𝑗) if 𝑖, 𝑗 ∈ ℰ̃
1
,

which is well-defined since ℰ̃
1

⊆ ℰ1. Furthermore, for 𝑟 ∈ 𝒰 we set

𝜋̃𝑟
𝑖 =

⎧{
⎨{⎩

𝜋𝑟
𝑖 if 𝑖 ∈ ℰ2,

𝜋𝑖 if 𝑖 ∈ ℰ̃
2
\ℰ2,

̃𝑧𝑟
(𝑖,𝑗) =

⎧{
⎨{⎩

𝑧(𝑖,𝑗) if (𝑖, 𝑗) ∈ 𝒜1,

𝑧𝑟
(𝑖,𝑗) if (𝑖, 𝑗) ∈ 𝒜2 ∪ 𝒜3 ∪ 𝒜4.
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Then (𝜋̃, ̃𝑧) is feasible with respect to ℰ̃
2
. We check the constraints exemplary for the case

𝑎 = (𝑖, 𝑗) ∈ 𝒜̃
2
, i.e. 𝑖 ∈ ℰ̃

1
, 𝑗 ∈ ℰ̃

2
. Then 𝑖 ∈ ℰ1 and by definition we have 𝜋̃𝑖 = 𝜋𝑖. For

𝑟 ∈ 𝒰 we obtain

𝜋̃𝑟
𝑗 − 𝜋̃𝑖 + ̃𝑧𝑟

𝑎𝑇 =
⎧{
⎨{⎩

𝜋𝑟
𝑗 − 𝜋𝑖 + 𝑧𝑟

𝑎𝑇 if 𝑗 ∈ ℰ2(i.e. 𝑎 ∈ 𝒜2),

𝜋𝑗 − 𝜋𝑖 + 𝑧𝑎𝑇 if 𝑗 ∈ ℰ1(i.e. 𝑎 ∈ 𝒜1),

which is in the feasible interval due to Constraints (8.21) and (8.22). The other constraints
can be checked in the same manner.

Furthermore, for every 𝑟 ∈ 𝒰 the value on the left hand side of (8.20) is the same for
both solutions since every 𝑎 ∈ 𝒜 is part of exactly one of the four sums. Hence, also the
objective value stays the same and the claim follows.

In the following we will sometimes omit the parameter ℰ2 in the notation and simply
write ARPT.

8.4 comparison

In this section we compare RRPT and the models introduced in the previous sections.
Note that the output of the four models is different: the strictly, lightly and recoverable
robust models determine one timetable which is defined on all events. The strictly robust
timetable is feasible for all scenarios, while the lightly and recoverable robust timetables
only need to be feasible for the undisturbed scenario. For the latter, we already determine
disposition timetables separately for each scenario. The adjustable robust model “cheats”
a bit by only determining a timetable for those events in ℰ1 and leaving it open for the
events in ℰ2.

8.4.1 Relations between the models

We first analyse how the models relate to each other for specific parameter choices. For
an overview of the parameters see Table 8.1.

Model Parameter Optimal timetable Objective function

PESP - 𝜋PESP nominal travel time
SRPT - 𝜋SR nominal/real travel time

LRPT(𝜌) 𝜌 𝜋LR,𝜌 grade of infeasibility
ARPT(ℰ2) ℰ2 𝜋AR,ℰ2

real travel time
RRPT - 𝜋RR real travel time

RRPT(𝛼, 𝛽) 𝛼, 𝛽 𝜋RR,𝛼,𝛽 nominal travel time
RRPT( ̄𝑓) ̄𝑓 𝜋RR, ̄𝑓 worst-case delay

Table 8.1: The different (robust) periodic timetabling models and their parameters. The notations
can also be found on page 127 and following.
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Lemma 8.10. Every strictly robust timetable is also adjustable robust.

Proof. Let 𝜋̃ be a strictly robust timetable. Setting 𝜋𝑖 ≔ 𝜋̃𝑖 for 𝑖 ∈ ℰ1 and 𝜋𝑟
𝑖 ≔ 𝜋̃𝑖 for

𝑖 ∈ ℰ2, 𝑟 ∈ 𝒰 yields a feasible solution to ARPT (with appropriately chosen 𝑧).

Lemma 8.11. For ℰ2 = ∅, ARPT is equivalent to SRPT.

Proof. For the case ℰ1 = ℰ, ℰ2 = ∅ it follows 𝒜1 = 𝒜 and 𝒜2 = 𝒜3 = 𝒜4 = ∅. In the
formulation of ARPT most constraints vanish and what remains is exactly SRPT.

Next we show that, depending on the choice of 𝜌, the problem LRPT is related to either
PESP or SRPT, and can hence be seen as “in-between” these two models.

Lemma 8.12. If 𝜌 ≥ 𝑓 PESP(𝜋SR) − 𝑓 PESP(𝜋PESP) and SRPT is feasible, every optimal solution
to LRPT is strictly robust.

Proof. Since for the chosen 𝜌 Constraint (8.6) poses no restriction on the nominal travel
time any more, 𝜋SR with 𝛾 = 0 is feasible for LRPT. Since the objective is to minimise the
norm of 𝛾, it is also optimal. Hence, every optimal solution has objective value zero and
thus fulfils 𝛾 = 0. This implies that (8.1) to (8.4) are fulfilled, so every optimal solution
is strictly robust.

Remark 8.13. Note that in the proof of Lemma 8.12 we need that ‖𝛾‖ = 0 implies 𝛾 = 0,
which is fulfilled if ‖ ⋅ ‖ really is a norm. However, for ‖ ⋅ ‖𝑤 from Remark 8.4 this is only
true if we have strictly positive passenger weights 𝑤 on every activity.

Lemma 8.14. If 𝜌 = 0, every feasible solution to LRPT is an optimal solution to PESP.

Proof. Due to Constraints (8.7) and (8.8), any feasible solution is also feasible for PESP.
If 𝜌 = 0, (8.6) additionally implies that it is optimal for PESP.

Next we consider the bounded versions of the recoverable robust model.

Lemma 8.15. Every feasible solution to SRPT with 𝑓 PESP(𝜋SR) ≤ ̄𝑓 yields an optimal solution
to RRPT( ̄𝑓).

Proof. Every feasible solution to SRPT with 𝑓 PESP(𝜋SR) ≤ ̄𝑓 also yields a feasible solution
to RRPT( ̄𝑓) without any delay. Since the objective is to minimise 𝑓 del, this solution is
indeed optimal.

Lemma 8.16. If 𝛼 and 𝛽 are very large, RRPT(𝛼, 𝛽) is equivalent to PESP. For example, this is
the case for 𝛼 = 𝑀″𝐾 ⋅ ∑𝑖∈ℰ 𝑤𝑖 + 𝑀″ ⋅ ∑𝑎∈𝒜out

𝑤𝑎 and 𝛽 = ∑𝑎∈𝒜transfer
𝑤𝑎.

Proof. By Corollary 4.10 we know that PESP is equivalent to PTTA. Hence, it suffices to
show the equivalence of RRPT(𝛼, 𝛽) and PTTA.
Since PTTA is a subproblem of RRPT(𝛼, 𝛽) with the same objective function, one direction
is clear. On the other hand, if we have a solution to PTTA, we can simply extend it to
a solution to RRPT(𝛼, 𝛽) by doing delay management for every scenario. As shown in
Lemma 5.7, there is always an optimal solution with 𝑥𝑟

𝑖 − 𝜋𝑖 ≤ 𝑀″ for all 𝑖 ∈ ℰ, 𝑟 ∈ 𝒰,
so the 𝛼 as chosen above poses no restriction. Obviously also 𝛽 is an upper bound on
the number of missed transfers. Hence, there is always a feasible solution to RRPT(𝛼, 𝛽).
Since the objective value stays the same, the claim follows.
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8.4.2 Evaluation functions

The different models have different objective functions. To be able to compare them, we
evaluate their real travel time.We briefly repeat the necessary notation fromDefinition 5.1.

For the nominal travel time, note that we consider the whole planning horizon, i.e. for
models using the periodic network the duration of every arc has to be multiplied by 𝐾. In
particular, if 𝜋̃ is a feasible timetable for PESP, SRPT or LRPT, and 𝜋 the corresponding
timetable in the rolled out network, we have

𝑓 nom(𝜋) = 𝑓 nom(𝜋̃) = 𝐾 ⋅ 𝑓 PESP(𝜋̃) = 𝐾 ⋅ ∑
𝑎=(𝑖,𝑗)∈𝒜

𝑤𝑎 ⋅ (𝜋̃𝑗 − 𝜋̃𝑖 + 𝑧𝑎(𝜋̃)𝑇),

where 𝑧𝑎(𝜋̃) ≔ min{𝑧 ∈ ℤ ∶ 𝜋̃𝑗 − 𝜋̃𝑖 + 𝑧𝑇 ≥ 𝐿𝑎}. Note that for simplicity we use the same
notation for the nominal travel time of the timetable in the periodic and in the rolled out
network, but this should not lead to any confusion.

The worst-case delay can be calculated by computing an optimal disposition timetable
(𝑥𝑟, 𝑦𝑟) for every 𝑟 ∈ 𝒰 and taking the maximum

𝑓 del(𝜋) = 𝑓 del(𝜋̃) = max
𝑟∈𝒰

∑
𝑖∈ℰ(𝜋)

𝑤𝑖(𝑥𝑟
𝑖 −𝜋𝑖)+ ∑

𝑎=(𝑖,𝑗)∈𝒜out(𝜋)
𝑤𝑎(𝑥𝑟

𝑗 −𝜋𝑗)+𝑇 ∑
𝑎∈𝒜transfer(𝜋)

𝑤𝑎𝑦𝑟
𝑎.

These two components give the real travel time

𝑓 real(𝜋̃) = 𝑓 real(𝜋) = 𝑓 nom(𝜋) + 𝑓 del(𝜋).

Note that for the adjustable robust case we can neither define the nominal travel time
nor the delay, since we do not fix a timetable for the events in ℰ2. Nevertheless, we
can compute the real travel time which in this case is just the objective function value
multiplied by 𝐾, i.e. 𝑓 real(𝜋AR,ℰ2

) = 𝐾 ⋅ 𝑐.

8.4.3 Performance of the robustness concepts

The goal of this section is to establish an order for the real travel time of the optimal
solutions to the timetablemodels we have introduced so far. This means that for every pair
of models, we either prove that one of them is better than the other, or we demonstrate
that none of them is superior in general.

The recoverable robust model yields better timetables than the non-robust model PESP:

Lemma 8.17. It holds 𝑓 real(𝜋PESP) ≥ 𝑓 real(𝜋RR).

Proof. By Lemma 4.11 the solution 𝜋PESP can be rolled out to a feasible solution to PTTA.
For the rolled out timetable we can compute a disposition timetable (𝑥𝑟, 𝑦𝑟) for every
delay scenario 𝑟 ∈ 𝒰, which yields a solution to RRPT. Since RRPT minimises the real
travel time, it follows 𝑓 real(𝜋PESP) ≥ 𝑓 real(𝜋RR).

Lemma 8.18. Comparing strictly robust timetables to timetables using other robustness concepts,
we get the following inequalities:

(a) 𝑓 real(𝜋SR) ≥ 𝑓 real(𝜋AR,ℰ2
) for all ℰ2 ⊆ ℰ.
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(b) 𝑓 nom(𝜋SR) = 𝑓 real(𝜋SR) ≥ 𝑓 real(𝜋RR) ≥ 𝑓 nom(𝜋RR).

(c) 𝑓 nom(𝜋SR) ≥ 𝑓 nom(𝜋RR,𝛼,𝛽) for all 𝛼, 𝛽 ≥ 0.

(d) If RRPT( ̄𝑓) is feasible for some ̄𝑓, then there is an optimal solution with 𝑓 nom(𝜋SR) ≥
𝑓 nom(𝜋RR, ̄𝑓).

Proof. (a) This follows directly from Lemma 8.10 and the fact that both SRPT and ARPT
minimise the real travel time.

(b) Since a strictly robust timetable is by definition feasible for all 𝑟 ∈ 𝒰, we have
𝑓 del(𝜋SR) = 0 and hence 𝑓 nom(𝜋SR) = 𝑓 real(𝜋SR).
The optimal solution to SRPT (𝜋SR, 𝑧) is feasible for PESP and can therefore be rolled
out to a feasible solution to PTTA with objective value 𝑓 nom(𝜋SR). Furthermore, by
definition of SRPT, (𝜋SR, 𝑧) is feasible for all delay scenarios 𝑟 ∈ 𝒰. Hence, we can set
𝑥𝑟

𝑖 = 𝜋SR
𝑖 for 𝑖 ∈ ℰ, 𝑦𝑟

𝑎 = 0 for 𝑎 ∈ 𝒜transfer, 𝐻𝑟
𝑎 = 0 for 𝑎 ∈ 𝒜out and 𝑍1 = 𝑍2 = 𝑍 = 0.

This yields a feasible solution to RRPT, which implies 𝑓 real(𝜋SR) ≥ 𝑓 real(𝜋RR).
The last inequality is clear since 𝑓 del ≥ 0.

(c) Since it has no delay, the solution constructed above is also feasible for RRPT(𝛼, 𝛽),
so 𝑓 nom(𝜋RR,𝛼,𝛽) ≤ 𝑓 nom(𝜋SR).

(d) If ̄𝑓 ≤ 𝑓 nom(𝜋SR), the claim immediately follows since 𝑓 nom(𝜋RR, ̄𝑓) ≤ ̄𝑓 by Con-
straint (5.31). Otherwise, 𝜋SR can be rolled out to a feasible solution to RRPT( ̄𝑓).
Since 𝑓 del(𝜋SR) = 0, it is even optimal.

Note that although we have 𝑓 nom(𝜋SR) ≥ 𝑓 nom(𝜋RR,𝛼,𝛽), in general we do not have
𝑓 real(𝜋SR) ≥ 𝑓 real(𝜋RR,𝛼,𝛽), as we will see in Example 8.23. However, for the special case
𝛼 = 𝛽 = 0 this is indeed the case.

Corollary 8.19. It holds 𝑓 real(𝜋SR) ≥ 𝑓 real(𝜋RR,0,0).

Proof. Since 𝑓 del(𝜋RR,0,0) = 0 and 𝑓 del(𝜋SR) = 0, from Lemma 8.18 we get

𝑓 real(𝜋SR) = 𝑓 nom(𝜋SR) ≥ 𝑓 nom(𝜋RR,0,0) = 𝑓 nom(𝜋RR,0,0)+𝑓 del(𝜋RR,0,0) = 𝑓 real(𝜋RR,0,0).

One might think that actually 𝑓 real(𝜋SR) = 𝑓 real(𝜋RR,0,0), because in both models no
passenger is allowed to have any delay. However, we remark that the recoverable robust
model still has more flexibility than the strictly robust one, because there are events with
passenger weight zero, i.e. 𝑤𝑖 = 0 for some 𝑖 ∈ ℰ (e.g. all departure events). Hence, not
every source delay has to be absorbed immediately, as demonstrated in the following
example.

Example 8.20. We have a look at Figure 8.1. In a strictly robust timetable, non of the
events is allowed to have any delay in either one of the scenarios. Hence, we need to put
one minute of buffer time on activity (𝑖, 𝑗) (to ensure that 𝑗 is on time in the red scenario)
and one minute of buffer time on activity (𝑗, 𝑖′) (to ensure that 𝑖′ is on time in the orange
scenario). In a recoverable robust timetable it is sufficient to put the buffer only on (𝑗, 𝑖′).
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𝑖 𝑗 𝑖′ 𝑗′

𝑤 = 1
𝑤 = 1

𝑑 = (1, 1)
𝑤 = 1

𝑑 = (1, 0)
𝑤 = 1

Figure 8.1: The inequality in Corollary 8.19 can be strict.

Then the event 𝑗 will have one minute delay in the red scenario, but since 𝑤𝑗 = 0, this
does not have any effect on the weighted event delay. Hence, we need to put less buffer
times in the timetable and get a smaller nominal travel time.

Lemma 8.21. For every 𝜌 ≥ 0 we have 𝑓 real(𝜋LR,𝜌) ≥ 𝑓 real(𝜋RR).

Proof. Let (𝜋LR,𝜌, 𝑧, 𝛾) be an optimal solution to LRPT. Then (𝜋LR,𝜌, 𝑧) is a feasible solution
to PESP, which can be rolled out to a solution (𝜋, 𝐹, 𝑢) to PTTA such that for the objective
value we have 𝑓 nom(𝜋) = 𝐾 ⋅ 𝑓 PESP(𝜋LR,𝜌) ≤ 𝐾 ⋅ (𝑓 PESP(𝜋PESP) + 𝜌). For this timetable 𝜋
an optimal disposition timetable (𝑥𝑟, 𝑦𝑟) can be found for every 𝑟 ∈ 𝒰 by solving DM,
which gives the real travel time 𝑓 real(𝜋LR,𝜌). Then (𝜋, 𝐹, 𝑢, 𝑥, 𝑦) yields a feasible solution
to RRPT (by appropriately setting 𝐻, 𝑍1, 𝑍2). Since RRPT minimises the real travel time
we get 𝑓 real(𝜋LR,𝜌) ≥ 𝑓 real(𝜋RR).

Remark 8.22. Even if ̄𝑓 = 𝐾(𝑓 PESP(𝜋PESP) + 𝜌), i.e. the upper bounds for the nominal
travel time in RRPT( ̄𝑓) and LRPT are equal, the recoverable robust model can still be
better than the lightly robust model. This is due to the fact that the recoverable robust
model uses the real delay in the objective function, while ‖𝛾‖ only takes into account the
source delays, but not the propagated delays.

After having proved some relations for the real travel time, we will now see in several
examples that for some model pairs we do not have a general order.

Example 8.23. We now show that 𝜋SR and 𝜋AR,ℰ2
may have a better real travel time than

𝜋PESP, 𝜋LR,𝜌, 𝜋RR,𝛼,𝛽 and 𝜋RR, ̄𝑓. To see this, we consider the EAN in Figure 8.2 with 𝐾 = 2.
We have one delay scenario with a source delay of 5 minutes in the first period and 4
minutes in the second period on the first activity, which results in

𝑓 real(𝜋SR) = 2 ⋅ (35 + 5 + 5 ⋅ 30) = 2 ⋅ 190 = 380.

For ARPT with ℰ2 = {𝑗, 𝑗′} we obtain the same timetable for both the nominal and the
delayed scenario, and we also have 𝑓 real(𝜋AR,ℰ2

) = 380. We want to find a lightly robust
timetable with 𝜌 = 4. Note that 𝑓 PESP(𝜋PESP) = 30 + 5 + 5 ⋅ 30 = 185 with a delay of
𝑓 del(𝜋PESP) = 5 ⋅ 5 + 5 ⋅ 4 = 45, yielding

𝑓 real(𝜋PESP) = 2 ⋅ 185 + 45 = 415 > 𝑓 real(𝜋SR) = 𝑓 real(𝜋AR,ℰ2
).

Since we can put at most 4 minutes buffer time, the delay in the first period cannot be
absorbed completely, which means event 𝑗′, which has a passenger weight of 5, will have
at least one minute delay. We obtain

𝑓 real(𝜋LR,4) = 2 ⋅ (185 + 4) + 5 ⋅ 1 + 0 = 383 > 380 = 𝑓 real(𝜋SR) = 𝑓 real(𝜋AR,ℰ2
).
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𝑖 𝑗 𝑖′ 𝑗′

𝑤 = 5

[30, 35]
𝑤 = 1

𝑑 = (5, 4)

[5, 5]
𝑤 = 1

[30, 30]
𝑤 = 5

(a) Instance, 𝐾 = 2, 𝑇 = 60.

𝑖

0

𝑗

35

𝑖′

40

𝑗′
10

(b) Optimal solution to SRPT, 𝑓 real(𝜋SR) = 380.

𝑖

0

𝑗

(35,35)

𝑖′

40

𝑗′

(10,10)

(c) Optimal solution to ARPT with ℰ2 = {𝑗, 𝑗′},
𝑓 real(𝜋AR,ℰ2

) = 380.

𝑖

0

𝑗

30

𝑖′
35

𝑗′
5

(d) Optimal solution to PESP and RRPT(45, 0),
𝑓 real(𝜋PESP) = 𝑓 real(𝜋RR,45,0) = 415.

𝑖

0

𝑗

34

𝑖′
39

𝑗′
9

𝛾 = (1, 0) 𝛾 = (0, 0) 𝛾 = (0, 0)

(e) Optimal solution to LRPT(4) and RRPT(378),
𝑓 real(𝜋LR,4) = 𝑓 real(𝜋RR,378) = 383.

Figure 8.2: SRPT and ARPT can yield good results.

Note that the same is true for RRPT( ̄𝑓) with ̄𝑓 = 378. If we consider RRPT(𝛼, 𝛽) with a
large value for 𝛼 (here, 𝛼 = 45 is sufficient), then the constraint (5.30) does not impose
any restriction and thus becomes redundant. In this case the optimal solution will be
the PESP solution, which has no buffer times at all. The delay cannot be absorbed by the
timetable, which means that all passengers will have a delay of 5 respectively 4 minutes
at event 𝑗′1 respectively 𝑗′2, which results in a real travel time of

𝑓 real(𝜋RR,𝛼,𝛽) = 2 ⋅ 185 + 45 + 0 = 415 > 380 = 𝑓 real(𝜋SR) = 𝑓 real(𝜋AR,ℰ2
).

To summarise, we can see that although strictly robust timetables might be overly conser-
vative, there are indeed examples where they have a better real travel time than some
of the other models. An explanation is that by putting buffer on activities with a small
passenger weight, it might be possible to achieve a delay reduction which is larger than
the increased travel time caused by the buffer. Since LRPT and RRPT( ̄𝑓) bound the nom-
inal travel time, they might be too restrictive. If 𝛼 and 𝛽 are chosen very large, RRPT(𝛼, 𝛽)
neglects the delay and thus also focusses too much on the nominal travel time.

Example 8.24. In this example we will see that for a lot of the models there is no general
order for the real travel time. We consider Figure 8.3 on pages 102 to 104. The EAN
and two delay scenarios, given in red and orange, are shown in Figure 8.3a. We have
𝑓 nom(𝜋PESP) = 3 ⋅ (30 + 1 + 2 ⋅ 40) = 333 and 𝑓 del(𝜋PESP) = 34, i.e.

𝑓 real(𝜋PESP) = 333 + 34 = 367.

A strictly robust timetable is given in Figure 8.3c and has a travel time of

𝑓 real(𝜋SR) = 3 ⋅ (35 + 1 + 2 ⋅ 47) = 390.

An optimal adjustable robust timetablewith ℰ1 = {𝑖, 𝑖′}, ℰ2 = {𝑗, 𝑗′} is shown in Figure 8.3d
and has a travel time of 3 ⋅ (31 + 5 + 2 ⋅ 47) = 390 in the worst case (which is the orange
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scenario). We compute two different lightly robust timetables with 𝜌 = 10 in Figure 8.3e
and with 𝜌 = 1 in Figure 8.3f. To compare these timetables, we compute their real travel
times by doing delay management. We obtain

𝑓 real(𝜋LR,10) = 3 ⋅ (34 + 1 + 2 ⋅ 43) + 12 = 375 < 390 = 𝑓 real(𝜋SR) = 𝑓 real(𝜋AR,ℰ2
).

We consider three different versions of recoverable robust timetables, namely RRPT,
RRPT(𝛼, 𝛽) and RRPT( ̄𝑓) in Figures 8.3g to 8.3k with different parameter choices. Com-
paring lightly and recoverable robust timetables, Figures 8.3f and 8.3i show that

𝑓 real(𝜋LR,1) = 3 ⋅ (31 + 1 + 2 ⋅ 40) + 28 + 0 = 364 < 378 = 378 + 0 + 0 = 𝑓 real(𝜋RR,0,0),

while

𝑓 real(𝜋LR,10) = 375 > 366 = 354 + 12 + 0 = 𝑓 real(𝜋RR,12,0)

by Figures 8.3e and 8.3h. For the version with restricted nominal time we get

𝑓 real(𝜋LR,1) = 364 < 368 = 360 + 8 + 0 = 𝑓 real(𝜋RR,360) < 375 = 𝑓 real(𝜋LR,10)

by looking at Figures 8.3e, 8.3f and 8.3k. To compare the different versions of recoverable
robustness, consider

𝑓 real(𝜋RR,0,0) = 378 > 368 = 𝑓 real(𝜋RR,360) > 366 = 𝑓 real(𝜋RR,12,0)

in Figures 8.3h, 8.3i and 8.3k. For PESP we see

𝑓 real(𝜋RR,12,0) = 366 < 367 = 𝑓 real(𝜋PESP) < 378 = 𝑓 real(𝜋RR,0,0),

𝑓 real(𝜋RR,350) = 366 < 367 = 𝑓 real(𝜋PESP) < 368 = 𝑓 real(𝜋RR,360),

𝑓 real(𝜋LR,1) = 364 < 367 = 𝑓 real(𝜋PESP) < 375 = 𝑓 real(𝜋LR,10).

Example 8.25. We show that 𝜋AR,ℰ2
may have a better real travel time than 𝜋RR. To see

this, we consider the EAN in Figure 8.4a with two delay scenarios for 𝐾 = 2. An optimal
PESP solution is given in Figure 8.4b, which yields

𝑓 real(𝜋PESP) = 19690 + 3000 = 22690.

We compute an optimal adjustable timetable with ℰ2 = ℰ and a recoverable robust
timetable in Figures 8.4c and 8.4d, respectively. We obtain

𝑓 real(𝜋AR,ℰ) = 2 ⋅ 10835 = 21670 < 22180 = 𝑓 real(𝜋RR),

which shows that an adjustable robust timetable can be better than a recoverable robust
timetable. The intuition behind this is that, since ℰ2 = ℰ, ARPT finds a timetable for every
delay scenario separately, and thus has more flexibility than RRPT, where all disposition
timetables depend on the nominal timetable (i.e. it is not allowed that an event happens
earlier than planned).
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𝑖 𝑗 𝑖′ 𝑗′

𝑤 = 2

[30, 40]
𝑤 = 1

𝑑 = (5, 3, 1)

[1, 5]
𝑤 = 1

[40, 50]
𝑤 = 2

𝑑 = (5, 0, 3)
𝑑 = (5, 7, 0)

(a) Instance, 𝐼 = [8∶00, 10∶59], 𝑇 = 60, (𝐾 = 3).

𝑖

0

𝑗

30

𝑖′

31

𝑗′
11

(b) Optimal solution to PESP, 𝑓 nom(𝜋PESP) =
333, 𝑓 del(𝜋PESP) = 34.

𝑖

0

𝑗

35

𝑖′

36

𝑗′

23

(c) Optimal solution to SRPT, 𝑓 real(𝜋SR) = 390.

𝑖

0

𝑗

(31,35,31)

𝑖′

36

𝑗′

(16,21,23)

(d) Optimal solution to ARPT with ℰ1 = {𝑖, 𝑖′}, ℰ2 =
{𝑗, 𝑗′}, 𝑓 real(𝜋AR,ℰ2

) = 390.

𝑖

0

𝑗

34

𝑖′

35

𝑗′
18

𝛾 = (1, 0, 0) 𝛾 = (0, 0, 0) 𝛾 = (2, 4, 0)

(e) Lightly robust timetable with 𝜌 = 10.
𝑓 nom(𝜋LR,10) = 363, 𝑓 del(𝜋LR,10) = 12.

𝑖

0

𝑗

31

𝑖′

32

𝑗′
12

𝛾 = (4, 2, 0) 𝛾 = (0, 0, 0) 𝛾 = (5, 7, 3)

(f) Lightly robust timetable with 𝜌 = 1.
𝑓 nom(𝜋LR,1) = 336, 𝑓 del(𝜋LR,1) = 28.

𝑖1

8∶00

𝑗1

8∶35
8∶ 30

𝑖′1

8∶36
8∶ 33

𝑗′1

8∶13

𝑖2

9∶00

𝑗2

9∶33
9∶ 30

𝑖′2

9∶34
9∶ 33

𝑗′2

9∶21
9∶ 13

9∶ 18

𝑖3

10∶00

𝑗3

10∶31
10∶ 30

𝑖′3

10∶33

𝑗′3

10∶14
10∶ 13

10∶ 20

𝑖4

11∶00

𝑗4

11∶30

𝑖′4

11∶33

𝑗′4

11∶16
11∶ 13

+5

+5,+5

+3

+7

+1

+3

(g) Optimal solution to RRPT, 𝑓 nom(𝜋RR) = 339, 𝑓 del(𝜋RR) = 24.
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𝑖1

8∶00

𝑗1

8∶35
8∶ 30

𝑖′1

8∶36
8∶ 32

𝑗′1

8∶15

𝑖2

9∶00

𝑗2

9∶33
9∶ 30

𝑖′2

9∶34
9∶ 32

𝑗′2

9∶21
9∶ 15

9∶ 17

𝑖3

10∶00

𝑗3

10∶31
10∶ 30

𝑖′3

10∶32

𝑗′3

10∶15

10∶ 19

𝑖4

11∶00

𝑗4

11∶30

𝑖′4

11∶32

𝑗′4

11∶15

+5

+5,+5
+3

+7

+1

+3

(h) Optimal solution to RRPT(12, 0), 𝑓 nom(𝜋RR,12,0) = 354, 𝑓 del(𝜋RR,12,0) = 12.

𝑖1

8∶28

𝑗1

9∶03
8∶ 59

𝑖′1

8∶00

𝑗′1

8∶47
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(i) Optimal solution to RRPT(0, 0), 𝑓 nom(𝜋RR,0,0) = 378, 𝑓 del(𝜋RR,0,0) = 0.
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(j) Optimal solution to RRPT(350), 𝑓 nom(𝜋RR,350) = 350, 𝑓 del(𝜋RR,350) = 16.
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(k) Optimal solution to RRPT(360), 𝑓 nom(𝜋RR,360) = 360, 𝑓 del(𝜋RR,360) = 8.

Figure 8.3: Comparison of timetables using different robustness concepts and parameters.
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(a) Instance, 𝐼 = [8∶00, 9∶59], 𝑇 = 60, (𝐾 = 2).
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(b) Optimal solution to PESP, 𝑓 nom(𝜋PESP) = 19690, 𝑓 del(𝜋PESP) = 3000.
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(c) Optimal solution to ARPT with ℰ2 = ℰ, 𝑓 real(𝜋AR,ℰ2
) = 2 ⋅ 10835 = 21670.
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(d) Optimal solution to RRPT, 𝑓 nom(𝜋RR) = 22180, 𝑓 del(𝜋RR) = 0.

Figure 8.4: An adjustable robust timetable can be better than a recoverable robust timetable.
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) = 2⋅13 =

26.
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(c) Optimal solution to RRPT, 𝑓 nom(𝜋RR) = 6, 𝑓 del(𝜋RR) = 10.

Figure 8.5: Even with ℰ2 = ℰ ARPT can be worse than RRPT.

Example 8.26. Even in the case that ℰ1 = ∅, ℰ2 = ℰ, there are instances where RRPT is
still better than ARPT. Although the adjustable robust model has the advantage of not
having to respect some nominal timetable, it still has the disadvantage that the timetable
has to be periodic in every scenario, while for the recoverable robust model only the
nominal timetable has to be periodic. An example can be found in Figure 8.5. Here, we
have

𝑓 real(𝜋AR,ℰ) = 2 ⋅ 13 = 26 > 16 = 6 + 10 = 𝑓 real(𝜋RR).

We have seen that for some of the introduced models we have a general order between
the real travel times. In particular, the model RRPT is superior to most of the other
considered models. The relations between the travel times are summarised in Figure 8.6.
However, for many model pairs there is no general order. If we have two optimisation
problems (𝑃) and (𝑃′) with optimal solutions 𝜋 and 𝜋′, we write 𝑓 real(𝜋) ≶ 𝑓 real(𝜋′),
if there is some instance with 𝑓 real(𝜋) < 𝑓 real(𝜋′) and some instance with 𝑓 real(𝜋) >

𝜋RR

𝜋RR, ̄𝑓𝜋RR,𝛼,𝛽 𝜋LR,𝜌 𝜋SR

𝜋AR,ℰ2

𝜋PESP

5.4 5.
4

8.1
88.2

1 8.18

if 𝛼 = 𝛽 = 0
8.19

8.17

Figure 8.6: There is an arc from 𝜋 to 𝜋′ if 𝑓 real(𝜋) ≤ 𝑓 real(𝜋′). If there is no arc, there is no general
order between the real travel times. The dashed arc only holds in a special case.
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𝑓 real(𝜋′). Specifically, from the previous examples we obtain:

• 𝑓 real(𝜋SR) ≶ 𝑓 real(𝜋LR,𝜌) (8.23, 8.24)

• 𝑓 real(𝜋SR) ≶ 𝑓 real(𝜋RR, ̄𝑓) (8.23, 8.24)

• 𝑓 real(𝜋SR) ≶ 𝑓 real(𝜋RR,𝛼,𝛽) (8.23, 8.24)

• 𝑓 real(𝜋AR,ℰ2
) ≶ 𝑓 real(𝜋LR,𝜌) (8.23, 8.24)

• 𝑓 real(𝜋AR,ℰ2
) ≶ 𝑓 real(𝜋RR) (8.24, 8.25)

• 𝑓 real(𝜋AR,ℰ2
) ≶ 𝑓 real(𝜋RR, ̄𝑓) (8.24, 8.25)

• 𝑓 real(𝜋AR,ℰ2
) ≶ 𝑓 real(𝜋RR,𝛼,𝛽) (8.24, 8.25)

• 𝑓 real(𝜋RR,𝛼,𝛽) ≶ 𝑓 real(𝜋LR,𝜌) (8.24)

• 𝑓 real(𝜋RR, ̄𝑓) ≶ 𝑓 real(𝜋LR,𝜌) (8.24)

• 𝑓 real(𝜋RR, ̄𝑓) ≶ 𝑓 real(𝜋RR,𝛼,𝛽) (8.24)

• 𝑓 real(𝜋PESP) ≶ 𝑓 real(𝜋LR,𝜌) (8.24)

• 𝑓 real(𝜋PESP) ≶ 𝑓 real(𝜋RR,𝛼,𝛽) (8.24)

• 𝑓 real(𝜋PESP) ≶ 𝑓 real(𝜋RR, ̄𝑓) (8.24)

• 𝑓 real(𝜋PESP) ≶ 𝑓 real(𝜋AR,ℰ2
) (8.24, 8.25)

• 𝑓 real(𝜋PESP) ≶ 𝑓 real(𝜋SR) (8.23, 8.24).

8.5 computational experiments

After having compared the models theoretically, we now compare them in a computa-
tional study. For the experiments we used the dataset toy which we have already seen
in Chapter 5, which we rolled out over 4 hours. The period length of the timetable is 60
minutes. We considered several delay scenario sets 𝒰, differing in the number (given as
the percentage of aperiodic activities which have a source delay) and size (in minutes)
of the source delays. The different settings are summarised in Table 8.2.

We implemented the MIP formulations in Python and solved them using Gurobi 8.1.1
[Gur23] on a compute server with 48 cores @2.9 GHz and 196 GB RAM. Note that for
RRPT we used the formulation RRPT-pe.
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Experiment Activities with source delay Size of source delays

1 1% [1, 𝑈𝑎 − 𝐿𝑎]
2 5% [1,15]

Table 8.2: Experiment settings.

experiment 1 For the first experiment, we generated random source delays for 1% of
the (rolled out) activities. Recall that by Lemma 8.3 and Lemma 8.8, SRPT and ARPT are
infeasible for large source delays. Hence, for 𝑎 ∈ 𝒜, 𝑟 ∈ 𝒰 we chose 𝑑𝑟

𝑎 from the interval
[1, 𝑈𝑎 − 𝐿𝑎].

The results are shown in Figure 8.7. As expected, RRPT has the smallest real travel time.
However, the difference to PESP and LRPT is not too big. Also the restricted versions
RRPT(𝛼, 𝛽) and RRPT( ̄𝑓) find solutions very close to that of RRPT. For these five models
the real travel time hardly depends on the size of 𝒰. As expected, SRPT has by far the
highest real travel time and it increases with the number of scenarios. For ARPT we chose
the partition ℰ1 = ℰdep, ℰ2 = ℰarr as motivated in Remark 8.6. Here, the real travel time is
much smaller than for SRPT, but still far higher than for the other models.

For LRPT, RRPT(𝛼, 𝛽) and RRPT( ̄𝑓) we also looked at the real travel time for different
parameter choices. Since both RRPT( ̄𝑓) and LRPT have a bound for 𝑓 nom, we chose the
parameters such that these bounds are equal, i.e. ̄𝑓 = 𝐾(𝑓 PESP(𝜋PESP) + 𝜌). Additionally,
for LRPT we also used two different norms, namely ‖ ⋅ ‖1 (“sum”) and ‖ ⋅ ‖𝑤 (“weighted”)
from Remark 8.4.

The results are shown in Figure 8.8. For the sum norm we obtain slightly better results
than for the weighted norm, so taking the weights into account does not seem to be
beneficial. For RRPT(𝛼, 𝛽) we chose 𝛼2 < 𝑍1(𝜋RR, 𝑥) < 𝛼1 < 𝑍1(𝜋PESP, 𝑥PESP) and
𝛽2 < 𝑍2(𝜋RR, 𝑦) < 𝛽1 < 𝑍2(𝜋PESP, 𝑦PESP), where (𝜋RR, 𝑥, 𝑦) is an optimal RRPT solution
and (𝑥PESP, 𝑦PESP) is an optimalDM-strategy for𝜋PESP. The combinations (𝛼1, 𝛽1), (𝛼2, 𝛽2),
(𝛼1, 𝛽2), (𝛼2, 𝛽1) all yield rather good results (note that for two of them the objective
values coincide), but the ones with a smaller value for 𝛼 perform a bit better, meaning
that stronger restricting the total delay is beneficial.

Although RRPT yields a better real travel time than PESP, the difference is not as big
as one might have expected. Hence, we look at the real travel time in more detail by
evaluating 𝑓 nom and 𝑓 del separately. We expect that 𝜋RR has a higher nominal travel time
since buffer times are added to the timetable, but less delay, since said buffers can be used
to absorb some of the delay. As can be seen in Table 8.3, the increase in the nominal travel
time is only very small: it is at most 0.56%. On the other hand, the decrease in the delay
is significant: we can reduce the delay by up to 27%. This means that by increasing 𝑓 nom
only slightly, RRPT is able to decrease 𝑓 del considerably. However, since 𝑓 nom is much
larger than 𝑓 del, when we consider the sum 𝑓 real = 𝑓 nom + 𝑓 del, this advantage becomes
less significant: in total we have an improvement between 1.12% and 3.57%.

experiment 2 If the contribution of 𝑓 del to 𝑓 real becomes bigger, we expect that the
advantage of RRPT becomes more prominent. Hence, we repeated the experiment with
more and larger source delays: we chose source delays between 1 and 15 minutes for
5% of the (rolled out) activities. Since the dataset contains a lot of activities 𝑎 for which
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Figure 8.7: The real travel time of all models in Experiment 1.

Scenarios 10 15 20 25 30 35

𝑓 nom(𝜋PESP) 73184 73184 73184 73184 73184 73184
𝑓 nom(𝜋RR) 73304 73264 73592 73592 73224 73224

increase (%) 0.16 0.11 0.56 0.56 0.05 0.05
𝑓 del(𝜋PESP) 8970 11477 11477 11477 11477 11477
𝑓 del(𝜋RR) 7930 8376 8582 8582 9950 9950

increase (%) -11.59 -27.02 -25.22 -25.22 -13.3 -13.3
𝑓 real(𝜋PESP) 82154 84661 84661 84661 84661 84661
𝑓 real(𝜋RR) 81234 81640 82174 82174 83174 83174

increase (%) -1.12 -3.57 -2.94 -2.94 -1.76 -1.76

Table 8.3: 𝑓 nom, 𝑓 del and 𝑓 real for RRPT compared to PESP in Experiment 1.
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Figure 8.8: The real travel time of RRPT(𝛼, 𝛽), RRPT( ̄𝑓) and LRPT for different parameters in
Experiment 1.
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Figure 8.9: The real travel time of all models in Experiment 2.

𝑈𝑎 − 𝐿𝑎 is rather small (often only 1 or 2 minutes), SRPT and ARPT are infeasible for
this choice of 𝒰. Hence, in this experiment we can only compare the values of the other
models.

The results are presented in Figure 8.9 and Table 8.4. Here, the real travel time for
RRPT is 3.6% to 4.05% smaller than for PESP. We can conclude that the potential of RRPT
to reduce the real travel time increases with the delay, so it is especially suited in the
presence of many and large source delays. Again, RRPT(𝛼, 𝛽) and RRPT( ̄𝑓) are nearly as
good as RRPT, while LRPT performs similar to PESP.

Looking at the impact of the parameter choice in Figure 8.10, there is no significant
difference regarding the choice of the norm.

For RRPT(𝛼, 𝛽) we again use four different parameter combinations. The one where
both 𝛼 > 𝑍1(𝜋RR, 𝑥) and 𝛽 > 𝑍2(𝜋RR, 𝑦) (for an optimal solution (𝜋RR, 𝑥, 𝑦) to RRPT) is
a bit worse than the others.

computing times Finally, we investigate the computing times for solving the different
problems. The results can be found in Tables 8.5 and 8.6. While PESP, SRPT and LRPT
can be solved within seconds, the computing times increase tremendously for ARPT
and RRPT. This is a huge disadvantage of the recoverable robust approach. However,
since timetabling is part of the tactical planning phase, longer computing times might be
acceptable. Nevertheless, for large instances there is so far little hope of solving RRPT to
optimality. Heuristic approaches, as already considered in Chapter 7, could prove vital
to implement recoverable robust timetables in practice. Interestingly, RRPT(𝛼, 𝛽) and
RRPT( ̄𝑓) have even worse computing times than RRPT: for several instances the optimal
solution was not found within the time limit of one hour. Since these two models cannot
achieve a better real travel time than RRPT, they are not very promising.
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Scenarios 10 15 20 25 30 35

𝑓 nom(𝜋PESP) 73184 73184 73184 73184 73184 73184
𝑓 nom(𝜋RR) 74196 74196 74396 74276 74276 74276

increase (%) 1.38 1.38 1.66 1.49 1.49 1.49
𝑓 del(𝜋PESP) 30185 30185 30185 30185 30185 30185
𝑓 del(𝜋RR) 24990 24990 24810 25372 25372 25372

increase (%) -17.21 -17.21 -17.81 -15.95 -15.95 -15.95
𝑓 real(𝜋PESP) 103369 103369 103369 103369 103369 103369
𝑓 real(𝜋RR) 99186 99186 99206 99648 99648 99648

increase (%) -4.05 -4.05 -4.03 -3.6 -3.6 -3.6

Table 8.4: 𝑓 nom, 𝑓 del and 𝑓 real for RRPT compared to PESP in Experiment 2.
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Figure 8.10: The real travel time of RRPT(𝛼, 𝛽), RRPT( ̄𝑓) and LRPT for different parameters in
Experiment 2.
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Scenarios 10 15 20 25 30 35

PESP 0.44 0.49 0.61 0.77 1.02 1.09
RRPT 29.33 141.52 279.28 353.51 665.43 543.06

LRPT(29) 0.94 1.43 1.44 1.9 2.09 2.42
SRPT 0.35 0.48 0.79 0.47 0.72 0.57
ARPT 11.57 59.87 37.5 207.32 190.87 277.04

RRPT(10500, 80) 420.75 204.33 495.18 376.31 492.81 347.82
RRPT(9000, 60) 358.46 103.61 176.89 limit limit limit
RRPT(10500, 60) 220.34 185.58 172.92 634.73 1010.97 715.01
RRPT(9000, 80) 1052.87 103.71 327.98 1620.61 2671.88 limit
RRPT(73300) 70.06 579.07 469.95 1199.43 1320.62 1547.01
RRPT(74000) 445.29 1330.52 1045.85 3119.87 limit limit
RRPT(75000) 573.56 1029.34 1577.27 limit limit limit

Table 8.5: Computing times (seconds) in Experiment 1. The time limit was one hour.

Scenarios 10 15 20 25 30 35

PESP 0.68 0.49 0.69 0.88 1.22 1.13
RRPT 166.04 244.66 313.39 548.98 1065.72 2548.53

LRPT(29) 1.14 1.47 1.64 2.09 2.26 2.43
RRPT(28000, 150) 221.24 350.51 382.1 1555.72 812.28 1549.26
RRPT(25000, 60) 904.01 1137.82 1742.77 limit 2227.43 limit
RRPT(28000, 60) 320.39 253.99 840.53 972.05 1210.11 2076.08
RRPT(25000, 150) 658.83 678.57 2271.11 3355.26 2126.36 limit

RRPT(73300) 221.56 458.01 limit 1063.66 1268.75 1795.5
RRPT(74000) 279.31 812.98 609.74 1187.48 1931.34 2931.33
RRPT(75000) 296.14 653.24 987.42 2182.01 3121.89 limit

Table 8.6: Computing times (seconds) in Experiment 2. The time limit was one hour.
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conclusion

We have applied strict robustness, light robustness and adjustable robustness to the
Periodic Event Scheduling Problem. Putting a focus on the aperiodicity of the source
delays, we have seen that some of the derived models, namely the ones using strict
or adjustable robustness, are not suited for taking the aperiodicity of the delays into
account. We have compared these different models as well as the recoverable robust
model from Chapter 5 with respect to the real travel time of the passengers, showing that
recoverable robustness is particularly well suited for finding good timetables, especially
in networks with a lot of delay. However, in the computational study a big disadvantage
of the recoverable robust model has become clear, namely its large computing times.



9
CONCLUS ION AND OUTLOOK

In this thesis, we studied robust periodic timetabling in public transport. Recoverable
robust timetablingwas themain focus of our work since this concept fits the application in
a natural way. This becomes apparent in the fact that applying it to timetabling results in
the integration of two problemswhich are important steps in the classical public transport
planning process, namely timetabling and delay management. However, some obstacles
had to be overcome in the process of developing the robust models. Most strikingly, there
is a clash between the periodicity of the timetable and the aperiodicity of the source delays.
To resolve this problem, we made a first important step by introducing the problem PTTA
in Chapter 4, which translates the periodic timetabling problem to the aperiodic network.

With this preparatory work, we were able to formulate different variants of the Recov-
erable Robust Periodic Timetabling Problem in Chapter 5. When solving the problem, the
choice of the formulation can have a large impact on the computing time, which became
evident when we compared three equivalent formulations of RRPT, differing in the way
the timetabling subproblem is treated. Surprisingly, it turned out that for the integrated
model, the cycle base approach, which is superior for the pure timetabling problem, is
not the best choice. A direction for further research could be to further strengthen the
MIP formulation.

Also in other aspects there are significant differences between the robust models and
PESP, which transpires in the fact that some fundamental and intuitive properties of PESP
do not hold for our robust model, as shown in Chapter 6. We also showed that when
using an always-wait strategy for the delay management subproblem, the uncertainty set
can be reduced to its extreme points.

To be able to compute recoverable robust timetables in practice, one has to resort to
heuristic approaches. We made a first step by developing several algorithms for finding
timetables with increased robustness by introducing buffer times on selected activities in
Chapter 7. These algorithms were indeed able to find timetables with a smaller real travel
time. Here is a lot of potential for further research. While we only considered different
variants of one type of heuristic, which iteratively solves the timetabling and the delay
management subproblems, there are a lot of other paths one could pursue, for example
using ideas from the literature on either PESP heuristics or DM heuristics. Another option
could be to reduce the scenario set in a reasonable way to decrease the problem size.

Since numerous other robustness concepts exist in the literature, we also applied some
of these to the periodic timetabling problem, namely strict robustness, light robustness
and adjustable robustness, in Chapter 8. We developed periodic timetabling models
using these concepts and saw that the strict and the adjustable robust model are not able
to properly take the aperiodicity of the source delays into account. We compared the
models with respect to their real travel time, showing that recoverable robust models
are indeed superior. However, they come with a big disadvantage: finding an optimal
recoverable robust timetable is much more computationally challenging than solving the
other considered models, which emphasises the importance of finding good heuristics.
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116 conclusion and outlook

There are a lot of possible extensions to the problem, incorporating more aspects from
the real world. For instance, the extensions which were already considered for PESP and
DM in the literature could be also applied to RRPT, for example integrating passenger
(re-)routing, track choice or vehicle circulations. Of course, this will make the already
hard problem even more challenging. Instead of assuming a discrete scenario set, it might
also make sense to consider an infinite scenario set.

On the other hand, one could also consider special cases in which the problem might
simplify. This could include assuming a certain graph structure or using fixed delay
management strategies, such as an always-wait strategy or waiting time rules, instead of
doing optimal delay management.

Overall, there is still a lot of work to do in order to be able to use recoverable robust
periodic timetables in practice.



A
APPENDIX

a.1 datasets

Figure A.1: The PTN of lowersaxony.

Figure A.2: The PTN of toy.

Name |ℰ| |𝒜| |𝒜drive| |𝒜wait| |𝒜transfer| |𝒜sync|

toy 156 188 78 50 10 50

Table A.1: Size of the EAN of toy.
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NOTAT ION

ℒ line plan, 7
𝒩 periodic EAN, 9
𝒩 rolled out EAN, 13
ℰ events in the periodic EAN, 8
ℰdep departure events in the periodic EAN, 8
ℰarr arrival events in the periodic EAN, 8
ℰ events in the EAN, 12, 27
𝒜 activities in the periodic EAN, 8
𝒜drive driving activities in the periodic EAN, 8
𝒜wait waiting activities in the periodic EAN, 8
𝒜transfer transfer activities in the periodic EAN, 8
𝒜head headway activities in the periodic EAN, 8
𝒜sync synchronisation activities in the periodic EAN, 9

𝒜 activities in the EAN, 12, 27
𝒜train driving and waiting activities in the EAN, 13
𝒜out activities in the EAN leaving the planning horizon, 46
𝒜 ′

head headway activities used for the DM subproblem, 46
𝐿 lower bounds for activity durations, 9
𝑈 upper bounds for activity durations, 9
𝑤 passenger weights, 11
𝑇 period length, 8
𝐼 = [𝑡min, 𝑡max] planning horizon, 12
𝐾 number of periods in 𝐼, 27
𝑑 source delays, 13
𝒰 uncertainty set, 16
goi(𝑥) grade of infeasibility, 17
𝑍𝑟

1(𝜋, 𝑥) total event delay weighted with the number of passengers in scenario 𝑟
when using timetable 𝜋 and disposition timetable 𝑥, 42, 46

𝑍1(𝜋, 𝑥) maximal total event delay weighted with the number of passengers
when using timetable 𝜋 and disposition timetable 𝑥, 42

𝑍𝑟
2(𝜋, 𝑦) number of missed tranfers in scenario 𝑟 when using timetable 𝜋 and

wait/no-wait decisions 𝑦, 42
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𝑍2(𝜋, 𝑦) maximal number ofmissed tranferswhen using timetable 𝜋 andwait/no-
wait decisions 𝑦, 42

𝑓 PESP objective function of PESP, 11
𝑓 nom(𝜋) nominal travel time of timetable 𝜋, 43
𝑓 del(𝜋) worst-case delay of timetable 𝜋, 43
𝑓 real(𝜋) real travel time of timetable 𝜋, 43
𝜋RR optimal solution to RRPT, 44
𝜋RR,𝛼,𝛽 optimal solution to RRPT(𝛼, 𝛽), 45
𝜋RR, ̄𝑓 optimal solution to RRPT( ̄𝑓), 45
𝜋SR optimal solution to SRPT, 88
𝜋LR,𝜌 optimal solution to LRPT(𝜌), 90
𝜋AR,ℰ2

optimal solution to ARPT(ℰ2), 93



ACRONYMS

ARC adjustable robust counterpart, 17
ARPT adjustable robust periodic timetabling problem, 92
DM delay management problem, 13
DM(𝒰) delay management problem solving DM(𝑟) for all 𝑟 ∈ 𝒰, 43
DM(𝑟) delay management problem corresponding to delay scenario 𝑟, 42
EAN event-activity network, 8
LRC lightly robust counterpart, 17
LRPT lightly robust periodic timetabling problem, 89
MRRPT multi-objective recoverable robust periodic timetabling, 43
PESP periodic event scheduling problem, 10
PTN public transport network, 7
PTTA periodic timetabling in aperiodic network, 27
RRPT recoverable robust periodic timetabling, 44
RRPT(𝛼, 𝛽) recoverable robust periodic timetabling with restricted delay, 45
RRPT( ̄𝑓) recoverable robust periodic timetabling with restricted nominal travel

time, 45
SRC strictly robust counterpart, 16
SRPT strictly robust periodic timetabling problem, 88
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