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Abstract

Abstract

Software systems are ubiquitous in our society and in everyday life. However, bugs make
them insecure and vulnerable to attacks. Rust is a novel programming language that uses
static code analysis to prevent memory corruption bugs and thread-safety bugs at compile
time. This can reduce certain vulnerabilities, but Rust programs are still insecure when
using vulnerable external dependencies.
The tool cargo-audit scans Rust projects for external dependencies with known vulnera-
bilities using the RustSec Database as backend (a Rust-specific vulnerability database).
However, cargo-audit does not verify if these vulnerabilities are triggered in the code.
Therefore, manual work is still necessary to verify if the code is actually vulnerable.
Other tools like MirChecker, Rudra or CRUST perform automated vulnerability audits
at the source code level but focus on specific types of bugs and cannot be used to detect
all vulnerabilities reported in the RustSec Database.
This thesis introduces a hybrid code analysis tool that queries the RustSec Database to
identify vulnerabilities in external dependencies on the project level and then verifies if
these vulnerable libraries are used in vulnerable ways. The tool checks if vulnerable func-
tions are actually called and, where applicable, if parameters are actually in the vulnerable
range of values. This code analysis tool leverages an algorithm for conditional data-flow
analysis, which was developed as part of the thesis. The thesis furthermore shows that
extending the RustSec Database to include ranges of vulnerable parameter values for
applicable vulnerabilities increases the precision of detecting these vulnerabilities.
The development of the tool is grounded in a set of requirements that were derived from
comparing several program representations for Rust code regarding their applicability for
data-flow analysis and from studying real-world vulnerabilities with a high reach in the
Rust ecosystem. These vulnerabilities were selected based on their frequency in a data
set that was produced in the context of this thesis using a structured dependency analysis
on all 817.417 package versions published in the Rust Package Registry.
The feasibility of the hybrid approach is demonstrated in the evaluation, which shows
that the developed tool works as designed and can be used to find real vulnerabilities
in real-world applications in a reasonable time frame. Still, exotic code patterns were
identified that result in long analysis times and require future work. Furthermore, many
characteristics of the Rust language are currently not supported by the tool, as has been
identified by a microbenchmark developed in this thesis to test support for analyzing the
Rust language.
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Introduction 1

1 Introduction

Software systems are ubiquitous in our society and in everyday life. As software sys-
tems become more complex, it is increasingly challenging to understand and control their
behavior and to ensure their security.
Insecure systems can be attacked and abused for unintentional purposes, threatening
individuals, businesses, and society as a whole. For example, the global economic impact
of cybercrime was estimated to be greater than US $400 billion in annual costs (McAfee
& CSIS, 2014).
For software-intensive systems, it is therefore of the utmost importance to include security-
related considerations throughout the software development lifecycle to create systems
that are “secure by design” (Bodden, 2018b).
Static code analysis, a major component of software analysis, is a method of reasoning
about program code without the need for actual program execution. Static code analysis
can detect potential problems early in the software development lifecycle, improving code
quality, reducing vulnerabilities, and increasing robustness.
As most software systems use many external dependencies, any bugs in those external
dependencies directly influence the security of the entire system. Therefore, external
dependencies are highly relevant in the context of software security. The OWASP Top 10
List (The OWASP Foundation, 2021) represents industry consensus on critical security
risks and lists “Vulnerable and Outdated Components” in the sixth position.

1.1 Rust – A New, Safer Language

The Rust programming language has experienced massive adoption during the past 10
years and addresses problems that native languages usually have with a unique approach.
It provides a strong type system that helps to prevent memory and thread safety issues at
the time of compilation. This is achieved by enforcing a strict ownership model through
static analysis performed in the compiler. In this way, the code is rejected by the compiler
if it contains such bugs. The runtime performance of Rust code is comparable to that of
C++, making it a viable choice even for embedded software development.
Still, Rust programs can be vulnerable, especially when relying on vulnerable external
dependencies. Rust offers a unified approach to managing software dependencies using the
official Rust Package Registry1 and allows users to easily integrate external dependencies
through the Package Manager Cargo. Cargo enforces a project layout, which increases
compatibility between projects. This has resulted in Rust projects relying heavily on
external dependencies. Kikas, Gousios, Dumas, and Pfahl (2017) reported an average

1https://crates.io

https://crates.io
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of 9.6 transitive dependencies per project. Therefore, it can be concluded that Rust
projects often have many external dependencies, making the problem of using vulnerable
or outdated dependencies highly relevant. Moreover, dealing with extensive dependency
trees makes it difficult to manually assess security vulnerabilities.

1.2 Automated Vulnerability Audits in Rust

To address the issue of vulnerable dependencies in Rust at scale, automated vulnerability
audits are needed. The RustSec Database2 provides information on vulnerable packages
in the Rust Package Registry, and is used by the static analysis tool cargo-audit to detect
if any external dependencies are listed as vulnerable using dependency analysis. However,
this approach identifies complete software projects as vulnerable, as opposed to individual
sections of the project’s source code. Furthermore, it is not detected if vulnerable parts
of the code are ever executed. Rejecting vulnerable packages altogether can lead to the
use of outdated versions, which themselves might cause other security risks and provide
limited functionality. In addition, security experts may need to manually assess whether
the software system is actually vulnerable at the code level, which can be costly.
Automated vulnerability audits at the code level are beneficial in reducing this man-
ual verification work. Previous research has employed data-flow analysis and constraint
solving techniques; however, these have been limited to detecting only specific kinds of
vulnerabilities. For example, Rudra (Bae, Kim, Askar, Lim, & Kim, 2021) has used taint
analysis to detect memory safety bugs, undefined behavior, and security threats in Rust
code. MirChecker (Li, Wang, Sun, & Lui, 2021) has used Abstract Interpretation to
identify denial-of-service attacks and memory safety bugs in Rust code. CRUST (Toman,
Pernsteiner, & Torlak, 2015) uses the model checker CBMC to identify memory safety
bugs. The advantage of these approaches is that they can uncover previously unreported
vulnerabilities. The drawback is that they only detect certain types of vulnerabilities that
are explicitly supported. Also, most related approaches do not monitor data flows into all
external dependencies in the dependency tree, which is a problem as the exploitability is
increased by the many external dependencies used. For example, the library time, which
provides access to the system time, is one of the most transitively dependent libraries in
the Rust ecosystem (Kikas et al., 2017) and is vulnerable to RUSTSEC-2020-00713.
In conclusion, automated vulnerability audits are necessary to identify security prob-
lems at scale, but existing tools do not solve the problem of vulnerable dependencies
completely. They either do not utilize the RustSec Database and thereby only focus on
certain vulnerability types, or they utilize the database allowing them to identify any

2https://rustsec.org
3https://rustsec.org/advisories/RUSTSEC-2020-0071.html

https://rustsec.org
https://rustsec.org/advisories/RUSTSEC-2020-0071.html
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reported vulnerability but only operate on the project level and do not verify if the code
actually triggers the vulnerability causing additional manual effort.

1.3 Hybrid Approach: Dependency Analysis and Subsequent
Data-Flow Analysis

This thesis proposes a hybrid approach as shown in Figure 1-1 that performs both a
dependency analysis and a data-flow analysis to automatically audit the source code to
identify if the vulnerable parts of the code are ever used.
The approach of cargo-audit is reused on a conceptual level to perform the dependency
analysis by querying the RustSec Database for vulnerable dependencies. This part is
shown on the left side of Figure 1-1.
When vulnerable dependencies are found, a subsequent data-flow analysis is performed to
identify whether the vulnerability can be confirmed at the code level, thereby increasing
the precision of the automated vulnerability audit. This part is shown on the right side
of Figure 1-1.

Dependency
Analysis

Vulnerable
Dependency

Found

Data Flow
Analysis

Data Flow
Found

No
Vulnerable
Dependency

Found

No
Data Flow

Found

Figure 1-1: Hybrid Approach Combining Dependency Analysis With Subsequent Data-Flow
Analysis



Introduction 4

1.4 Research Questions

The following questions guide through this thesis and drove the research behind it:

RQ1 How can the RustSec Database be utilized to support data-flow analysis?

RQ2 How can data-flows across external dependencies be analyzed?

RQ3 What program representations of Rust code are suitable for data-flow analysis?

Research Question RQ1 (How can the RustSec Database be utilized to support data-flow
analysis) is defined. The RustSec Database is an established repository of known security
vulnerabilities and forms the back-end of the tool cargo-audit. The vulnerability defini-
tions in this database have the granularity of individual Rust crates. However, as data-
flow analysis relies on more fine-grained information, the applicability of this database for
data-flow analysis needs to be explored.
Research Question RQ2 (How can data-flows across external dependencies be analyzed)
is defined. In the context of this thesis, a data-flow analysis is proposed to analyze the
Rust code including their external dependencies. It has to be identified if the data-flow
analysis can be extended to multiple projects and in particular how data-flows at the
boundary between two dependencies can be maintained.
Research Question RQ3 (What program representations of Rust code are suitable for data-
flow analysis) is defined. In the Rust ecosystem, specific program representations are em-
ployed to represent the Rust code. These representations are used to perform analyses as
well as to compile the Rust program. Therefore, the applicability of these representations
for data-flow analysis needs to be explored.

1.5 Contributions of This Thesis

This thesis introduces a hybrid code analysis tool that queries the RustSec Database
to identify vulnerabilities in external dependencies on the project level and then verifies
if these vulnerable libraries are used in vulnerable ways. The tool checks if vulnerable
functions are actually called and, where applicable, if parameters are actually in the
vulnerable range of values.
The thesis contributes the underlying algorithm for conditional data-flow analysis that
evaluates if conditions to increase precision.
The thesis furthermore contributes an extension to the RustSec Database schema to in-
clude ranges of vulnerable parameter values for applicable vulnerabilities and extends the
respective vulnerability entries in the database to include the corresponding data.
The thesis contributes a comparison of several program representations that can be used
to perform static analysis on Rust code.
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Furthermore, the thesis contributes a data set that describes the frequency of vulnera-
bilities in the Rust ecosystem. This data set is produced using a structured dependency
analysis on all 817.417 package versions published in the Rust Package Registry.
The evaluation demonstrates that the developed tool works as designed and can be used
to find real vulnerabilities in real-world applications in a reasonable time frame, but for
exotic code patterns analysis is currently slow and the coverage of the Rust language
characteristics is currently low.

1.6 Thesis Structure

This thesis is organized as follows. Chapter 2 introduces the foundational concepts used
in this thesis, including used terms for describing the static code analysis, the Rust pro-
gramming language, the Rust ecosystem, and prevalent program representations of Rust
code. Chapter 3 outlines the requirements for the developed static analysis tool. This
chapter examines the particularities of significant vulnerabilities in the Rust environment
and chooses a program representation to work with. Chapter 4 conceptualizes a high-level
architecture for the tool based on the defined requirements and also describes the design
of the tool by presenting the used data-structures and algorithms. Chapter 5 outlines
the implementation of the tool in the Rust language. The implementation interfaces with
existing components, such as the Rust compiler and Cargo, the Rust build tool. The im-
plementation also uses optimized data-structures to increase run-time performance and
decrease memory usage. Chapter 6 evaluates the tool on both synthetic benchmarks and
real-world programs and discusses the quality of the findings and the measured run-time
performance. Chapter 7 compares the approach of this thesis with related approaches
in the field, including a highly related approach using abstract interpretation. Chap-
ter 8 concludes the thesis, provides answers to the research questions, and highlights key
insights, as well as possible further research.
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2 Background

This chapter introduces the background concepts and the theory used in this thesis.
Section 2.1 covers fundamental concepts of static analysis. Section 2.2 highlights the
distinctive features of the Rust programming language. Section 2.3 describes the Pack-
age Manager Cargo and the Rust Package Registry. Section 2.4 introduces the RustSec
Database1, which is a Rust-specific vulnerability database. Section 2.5 introduces and
analyzes program representations of Rust code that are prevalent in the Rust ecosystem
and applicable for Rust code analysis.

2.1 Static Code Analysis

Static code analysis (Møller & Schwartzbach, 2018) is a technique used in software security
to examine the source code of a program without executing it. It can be used to identify
potential vulnerabilities, bugs, and security issues by analyzing the code structure, control
flow, and data-flow. In static code analysis, entry points refer to specific locations in a
program where the analysis starts. Field sensitivity in static code analysis describes the
tracking of individual fields or data members within data structures and allows the analy-
sis to capture how data is manipulated within these structures, enhancing the precision of
the analysis. Alias sensitivity aims to differentiate between different pointers, references,
or variables and determine whether they may point to the same or distinct memory lo-
cations. In security analysis, understanding aliasing relationships helps uncover potential
vulnerabilities that originate from unintended data sharing or manipulation.

2.1.1 Intraprocedural Analysis

Intraprocedural analysis is a type of static code analysis that focuses exclusively on the
code within an individual function and is used to understand its behavior and properties in
isolation. It usually involves analyzing control flow, data-flow, and local variables within
that function. For analyzing the control flow of an application and understanding control
flow relationships, the subject of analysis can be represented as a directed graph (Allen,
1970).
A control flow graph is a representation of a program’s control flow. It uses nodes to
represent basic blocks of code and edges to represent how control flows between these
blocks. In security analysis, it helps identify potential vulnerabilities related to branching
and program execution flow.

1https://rustsec.org

https://rustsec.org
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2.1.2 Data-Flow Analysis and Abstract Interpretation

Data-flow analysis (Møller & Schwartzbach, 2018) is a technique used to track how data
propagates through a program by examining how data is read, modified, and passed
between variables and functions through the application of flow functions. A flow function
defines how a value is transformed into another value when evaluating an individual
statement that is part of the analyzed program. Constant propagation is a specialized
form of data-flow analysis that focuses on constant values of variables within a program
by propagating known values at each statement in the program and reasoning how a
statement reads and updates these variable values.
Due to Rice’s theorem (Rice, 1953), which states that any non-trivial semantic property
of the program is undecidable, it is not feasible to create a general algorithm that can
accurately reason about all potential states or properties of a program at run-time.
To cope with this fact, the analysis can be performed on abstract values representing
multiple states at once to reduce the problem space for the analysis. This way of analyzing
the program is called Abstract Interpretation (Cousot & Cousot, 1977).

2.1.3 Lattice Theory

⊤

0− +

⊥

Fig. 2-1: Lattice Used
for Sign Analysis

Lattice Theory is a mathematical model grounded in order theory.
In the context of program analysis, lattices are used to describe
the set of possible abstract values that a variable can have at any
given point in the program. The lattice can be defined for a specific
analysis, and the elements and operations performed on the lattice
depend on the concrete analysis performed.
Figure 2-1 shows an exemplary lattice that can be used to repre-
sent the sign of a numeric variable, which can be negative, zero, or
positive. As multiple numeric values are represented by one lattice element, the lattice
describes abstract values. In this example, the element ⊥ (bottom) represents the initial
state before a variable has a known value and the sign of the value is still unknown.
The lattice element + represents positive numbers, and the element - represents negative
values. The element ⊤ (top) represents the state that occurs if during analysis multiple
signs are possible for one single variable, which can happen when considering multiple
paths that the program can take.
The following set of definitions are based on Møller and Schwartzbach (2018) and Kam
and Ullman (1977).
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Definition 1 (Join Semilattice). A join semilattice is a set L with two partial orders ⊑,
⊏ and a join operation ⊔ such that:

1. Regarding ⊑ it holds that: ∀x, y ∈ L : x ⊑ y ⇔ x ⊔ y = y.

2. Regarding ⊏ it holds that: ∀x, y ∈ L : x ⊏ y ⇔ x ⊔ y = y ∧ x ̸= y.

Definition 2 (Bounded Chain). A chain x1 ⊏ x2 ⊏ . . . ⊏ xn of lattice elements is
bounded if for each x in the chain, there is a constant bx, such that each chain beginning
with x has length at most bx.

Definition 3 (Bounded Semilattice). A bounded semilattice L is a semilattice, where:

1. The element ⊤ ∈ L (top) is the unique maximum element with respect to ⊑.

2. The element ⊥ ∈ L (bottom) is the unique minimum element with respect to ⊑.

3. Every chain in the lattice is bounded.

2.1.4 Monotone Framework

The Monotone Framework (Kam & Ullman, 1977) is based on lattice theory and ensures
that as information flows through the analysis, it never decreases, providing a foundation
for maintaining consistent results and for proving correctness and termination.

Definition 4. A Monotone data-flow analysis framework is a triple D = (L,⊔, F ), where

1. L is a bounded semilattice with join operation ⊔.

2. F are monotone functions that operate on elements of L.

Definition 5. A function f ∈ F is monotone if: ∀x, y ∈ L : x ⊑ y ⇒ f(x) ⊑ f(y).

Fixed-point computation is a method used in data-flow analysis which iteratively refines
the results until a stable solution is achieved. For monotone functions, this fixed-point
exists.
Therefore, to guarantee a sound data-flow analysis, the analysis described in this thesis
will be designed to perform a fixed-point computation of monotone functions as required
by the Monotone Framework.
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2.1.5 Interprocedural Analysis

Interprocedural analysis (Møller & Schwartzbach, 2018) extends the analysis beyond the
boundaries of individual functions. It considers how functions or procedures interact
with one another, including how data is passed between them and how control flows
between function calls to provide a more comprehensive view of a program’s behavior by
considering the effects of function calls on data and control flow. This is important because
security issues can span multiple functions. For interprocedural analysis, understanding
the interaction of function calls can be aided by a directed, acyclic graph (Ryder, 1979).
A call graph is a representation that encodes functions as nodes and function calls as
edges.

2.1.6 Context Sensitivity

Context Sensitivity (Møller & Schwartzbach, 2018) in static code analysis determines how
the analysis considers the calling context of a function, which is the sequence of function
calls and their parameters that lead to the execution of a specific code segment. A
context-sensitive analysis is used to capture more precise and detailed information about
the program behavior by considering the specific context the functions are called in. In
this thesis, the focus is put on context-sensitive, interprocedural static analysis, as they
are by their very nature more suitable for the here conducted work.
Sharir and Pnueli (1978) describe two approaches to achieve a context-sensitive analysis:
The call-strings approach and the functional approach. The call-strings approach keeps
track of the call stack, enabling precise tracking of the function call history. In contrast,
the functional approach works by creating reusable summaries that abstract function
behavior and focus on the essence of what functions do. When handling a function call
and a reusable summary already exists for that function, the existing summary is applied,
and the function is not analyzed another time.
The choice between these approaches affects the precision and run-time of the analysis.
Bodden (2018a) mentions that the call-strings approach can lead to an exponential blow-
up in the number of contexts that the analysis handles, which may make it impractical
for realistic programs as it might require a massive amount of resources. In the context
of this thesis, the focus will therefore be on the functional approach to achieve context
sensitivity.
Function summaries can be created using either a top-down summarization approach or
a bottom-up summarization approach. The top-down approach propagates information
from function callers to callees, while the bottom-up approach propagates information
from the callees to the callers.
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Zhang, Mangal, Naik, and Yang (2014) describe that “top-down analyses only analyze
procedures under contexts in which they are called in a program”, leading to summarizes
that track details to individual calling contexts, while “bottom-up analyses analyze pro-
cedures under all contexts”, making them highly reusable and easier to parallelize. In
the context of this thesis, the focus will be on the bottom-up summarization approach,
as it allows to analyze external dependencies compositionally and comprehensively before
analyzing their dependents.

2.2 Rust Programming Language

Rust is a strongly-typed programming language with a strong emphasis on safety, perfor-
mance, and concurrency. It offers a set of features that are enforced by the Rust compiler
and collectively contribute to preventing common classes of program errors, such as mem-
ory corruption bugs and thread safety violations. The Rust Book2 mentions that Rust
enforces an ownership model that requires each value to have one single and unique owner.
When the owner is deallocated, the owned value is deallocated as well. This ownership
model is more effective than manual memory management in avoiding heap corruption,
double frees, and undefined behavior. Rust also tracks the lifetime of every value and
reference to a value, ensuring that every value lives at least as long as any reference to it.
Additionally, Rust does not allow the use of raw pointers or pointer arithmetic by default
to prevent similar classes of bugs. Furthermore, Rust differentiates between mutable and
immutable references, preventing two mutable references to one value from existing at the
same time. This prevents race conditions in multithreaded code and allows performance
optimizations. Finally, Rust tracks which values can be safely transferred into another
thread and which values are safe to be referenced by another thread by inductively rea-
soning about the type of the value.
The Rust language rules, as mentioned in the preceding section, are very stringent, and
thus it is possible that the compiler enforcing those regulations may reject a program that
does not actually contain any memory-related or thread-safety bugs. This also leads to
the situation that programs might not be expressable in the Rust language at all. Rust
provides a language superset, referred to as unsafe code. This unsafe code can be mixed
with regular Rust code and allows for manual memory management using raw pointers,
as well as bypassing the lifetime checks, mutable aliasing checks, and thread-safety checks
of the compiler.
Bae et al. (2021) studied the consequences of using unsafe code at the ecosystem level.
Rust code must adhere to the ownership rules, and for safe Rust, the compiler checks
those rules. Unsafe code can escape compiler checks, but if unsafe code violates these
2https://doc.rust-lang.org/book/

https://doc.rust-lang.org/book/
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rules, undefined behavior can occur, which is the source of many reported vulnerabilities.
When an application only uses safe Rust, the chances of introducing vulnerabilities related
to memory management or thread management are significantly reduced. However, any
external dependencies used by the application may contain unsafe code, which in turn
can contribute undefined behavior that affects the complete application.

2.3 Rust Crates and Cargo

Rust provides encapsulation of the code by using so-called crates. These crates are either
applications or libraries. An application crate contains a function main, which is the entry
point for the program and is usually defined in the file main.rs itself or in a submodule
of it. A library crate provides common functionality that other crates can import. The
exported items of a library crate have public visibility and are usually defined in the file
lib.rs or in a submodule of it.
Rust allows composing multiple crates into so-called packages. In Rust, a package includes
metadata such as package name, version, and any dependencies with a valid version range.
The Rust language has an official package manager, Cargo, which simplifies the creation
and compilation of Rust packages. Package metadata is defined in the configuration file
Cargo.toml. A lock file, Cargo.lock, is used to ensure reproducible builds for multiple
developers. Cargo is integrated with the Rust Package Registry3 to allow the downloading
and publishing of Rust packages.

2.4 RustSec Database

The RustSec Database is a collection of vulnerabilities that affect the Rust ecosystem.
It is managed as a git repository with markdown files that provide textual descriptions
of each vulnerability. Each markdown file contains a section that adheres to the TOML
syntax (Preston-Werner, Gedam, et al., 2019) and provides structured information about
the vulnerability. The structure of this section is shown in Figure 2-2. A vulnerability
record is called an Advisory and includes details of the affected functions, architectures,
and operating systems. It also outlines the range of affected versions of the crate. Rust
follows the Semantic Versioning Standard (Preston-Werner, 2013).
As an example, Listing 2-1 shows the definition for vulnerability RUSTSEC-2023-0044.
The RustSec Database was accessed on June 22, 2023 (git revision 9cf72357c8) and
contained 553 vulnerabilities at that time. These 553 entries can be subdivided into 533
entries for crates published in the official Rust Package Registry, 18 vulnerabilities in the
standard library, one vulnerability in the Rust Package Manager Cargo and one in the

3https://crates.io

https://crates.io
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Figure 2-2: RustSec Database Schema

1 [advisory]
2 id = "RUSTSEC-2023-0044"
3 package = "openssl"
4 date = "2023-06-20"
5 url = "https://github.com/sfackler/rust-openssl/issues/1965"
6 categories = ["memory-exposure"]
7 aliases = ["GHSA-xcf7-rvmh-g6q4"]
8
9 [affected]

10 functions = { "openssl::x509::verify::X509VerifyParamRef::set_host" = ["< 0.10.55,
↪→ >=0.10.0"] }

11
12 [versions]
13 patched = [">= 0.10.55"]

Listing 2-1: Vulnerability Definition RUSTSEC-2023-0044

automatic documentation generator Rustdoc.
The 533 vulnerability entries related to published crates can be further subdivided into
104 informational entries, which either inform about an unmaintained package (101 cases)
or report a package that only exists to present a vulnerability (3 cases). The remaining
429 entries refer to actual, code-related vulnerabilities in published crates.
Vulnerability entries can also refer to the part of the source code, which is affected by the
vulnerability by defining affected functions, which represent the functions in the source
code that contain the vulnerability. This can be helpful information for the data-flow
analysis that is designed in this thesis because it can be used to configure the analysis to
identify the invocation of such affected functions.
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In the RustSec Database, 101 vulnerability entries of the 429 relevant entries define the
affected functions. Therefore, this thesis focuses on vulnerabilities for which the affected
functions are known.

2.5 Rust Program Representations

The Rust Compiler Development Guide (The Rust Project Developers, 2018) mentions
several program representations that are used within the Rust compiler and are shown
in Figure 2-3. These representations model the state of the source code as it is being
compiled. The compilation process is subdivided into multiple transformations. After
each major transformation step, the code is represented in a respective Intermediate
Representation (IR) that explicitly models the properties and invariants that hold at the
respective compilation stage.
The compiler accepts textual source code and then successively transforms it into more
low-level representations until it eventually emits machine code. The first transforma-
tion parses the textual source code into an AST (Abstract Syntax Tree), which is then
successively lowered into specialized representations called HIR (High-Level Intermedi-
ate Representation), THIR (Typed High-Level Intermediate Representation), MIR (Mid-
Level Intermediate Representation) and LLVM IR (LLVM Intermediate Representation).
The SMIR (Stable Mid-Level Intermediate Representation) is a proposed representation,
which is not usable in practice currently.

AST HIR THIR MIR LLVM-
IR

Source
Code

Stable
MIR

Machine
Code

Rust Compiler

Figure 2-3: Rust Compilation Process and Intermediate Representations
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2.5.1 Abstract Syntax Tree

The Abstract Syntax Tree (AST) is one-to-one representation of the textual source code,
which is obtained by parsing the textual representation into a tree form describing the
syntax elements that are part of the Rust source code. Figure 2-4 shows an excerpt of
the AST representation that has been deduced from the Rust compiler source code.4

The AST distinguishes between items, expressions and statements. Items as represented
by the type Item denote structural language items, like the definition of a type, a module
or a function while expressions and statements appear within the context of a function’s
body. Statements, as represented by the type Stmt and represent an instruction that
does not necessarily provide a return value. Expressions, as represented by the type
Expr, inherently represent a value or the calculation of a value and can be nested to form
an expression tree that can be evaluated to retrieve the calculated expression value.
The Rust language provides advanced concepts like Macros5 and Pattern Matching6.
Macro definitions are represented in the AST via the item kind MacroDef and a macro call
is represented by the expression kind MacCall as well as the statement kind MacCallStmt.
The Rust keyword match, which enables pattern matching, is represented by the expres-
sion kind Match. Rust supports three kinds of loops: The for loop, while loop and the
unconditional loop, which are represented by the expression types ForLoop, While and
Loop. In the AST, name lookup is not yet performed and thus elements reference each
other only via their name.

∗

∗

Crate Item ItemKind

Fn Mod Struct Enum MacroDef

Block Stmt StmtKind

ExprStmt SemiStmt LocalStmt ItemStmt MacCallStmt EmptyStmt

Expr ExprKind

ForLoop While Loop Match MacCall

Figure 2-4: Excerpt of Abstract Syntax Tree

4https://github.com/rust-lang/rust/tree/1.70.0/compiler/rustc ast
5https://doc.rust-lang.org/book/ch19-06-macros.html
6https://doc.rust-lang.org/book/ch18-00-patterns.html

https://github.com/rust-lang/rust/tree/1.70.0/compiler/rustc_ast
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/book/ch18-00-patterns.html
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2.5.2 High-Level IR

The HIR is created by transforming the AST into a format that is better qualified for
the algorithmic analyses and transformations performed in the Rust compiler. Figure 2-5
shows an excerpt of the internal structure of the HIR that has been deduced from the
Rust compiler source code.7

∗

Node ParentedNode OwnerNodes OwnerInfo

Crate

Body

CrateMod StmtKind Stmt Block ExprItem

ItemId ItemStmt LocalStmt ExprStmt SemiStmt ExprKind

ItemKind

Enum Struct Trait Union

Loop

Figure 2-5: Excerpt of the High-Level Intermediate Representation

In the HIR, many of the advanced language features that Rust provides are transformed
into a more unified form. Similarly to the AST, the HIR also contains items that represent
structural language items (e.g. enumerations, structs, traits, unions, among others).
While these items refer to each other by name in the AST, on the HIR level these references
are resolved, and therefore these data structures are traversable.
The HIR introduces the concept of so-called body owners, which represent items that
contain code. Functions and constant initializers are both body owners. The code that is
contained in the body owners consists of statements and expressions.
In HIR, macros are expanded by inlining the generated macro code at the call-site of the
macro, and the different loop constructs part of the Rust Language provides are unified
as a single loop element Loop, which contains the exit conditions necessary to emulate
the other loop types as part of the loop body.
In Rust, items can be re-exported to other modules using the keyword pub use8. The
information about these re-exports is available in the HIR and is relevant for the inter-crate
7https://github.com/rust-lang/rust/tree/1.70.0/compiler/rustc hir
8https://doc.rust-lang.org/beta/std/keyword.pub.html

https://github.com/rust-lang/rust/tree/1.70.0/compiler/rustc_hir
https://doc.rust-lang.org/beta/std/keyword.pub.html
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analysis that is explored in relation to the Research Question RQ2 (How can data-flows
across external dependencies be analyzed).
In summary, the HIR represents structural parts of the code as so-called items, the ref-
erences between items are resolved, macros are expanded, re-exports are known and the
concept of body owners is introduced that represents elements containing code and are
identified by an ID, which allows subsequent IRs to refine the code of these body owners.

2.5.3 Typed High-Level IR

The THIR9 is generated from HIR after type checking. Unlike the HIR, the THIR pro-
vides a modified version of the code a with filled-in types after the completion of type
checking. It exclusively represents executable code bodies, such as function bodies and
const initializers, excluding items like structs or traits.
The THIR is used to generate MIR. In particular, THIR bodies are temporary and dis-
carded when no longer needed, contrasting with the HIR, which persists until the com-
pilation process concludes. Additionally, the THIR incorporates desugaring beyond type
information, explicitly representing automatic references and dereferences. Rust allows
the program to omit the reference and dereference operators when enough context infor-
mation is known to add implicit reference and dereference operations as necessary. THIR
makes this explicit by adding the dereference expressions. THIR converts method calls
and overloaded operators into regular function calls and makes destruction scopes explicit.
In summary, THIR refines the code as represented by body owners by adding type infor-
mation and preparing the IR to generate MIR.

2.5.4 Mid-Level IR

The MIR was introduced to the Rust language in the Rust RFC1211 (Matsakis, 2015)
and refines the function bodies for the body owners as first introduced in HIR and later
enriched by type info from THIR. The MIR provides a control flow graph (CFG) to make
the control flow explicit. Figure 2-6 shows an excerpt from MIR that was deduced from the
Rust compiler source code.10 In MIR, a basic block contains arbitrarily many statements
followed by a single terminator statement. This terminator statement is located at the
end of the basic block and describes how to terminate the basic block (e.g. by defining the
successor basic block). In this way, MIR models the control flow of the function explicitly.
The assignment statement as represented by the type Assign assigns an Rvalue to a place.
A place describes an access path to a variable and is used on the left-hand side of an

9https://rustc-dev-guide.rust-lang.org/thir.html
10https://github.com/rust-lang/rust/blob/1.70.0/compiler/rustc middle/src/mir

https://rustc-dev-guide.rust-lang.org/thir.html
https://github.com/rust-lang/rust/blob/1.70.0/compiler/rustc_middle/src/mir
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Figure 2-6: Excerpt of the Mid Level Intermediate Representation

assignment. The access path starts at a local variable and furthermore consists of several
segments, called PlaceElem. One such segment is the Field, which describes a field access
using the dot operator, and the ConstantIndex and Index segments, which represent an
array access using square bracket notation. Other segments are the Deref operator, which
dereferences a pointer using the ∗ operator, as well as several operators for casting and
accessing subslices. The right-hand side of an assignment is represented by the type
Rvalue and represents either a used place, a binary expression, or a unary expression.
The binary expression refers to two operands, a left-hand side and right-hand side, while
the unary expression refers to a single operand. The statement SwitchInt compares a
discriminant operand to multiple constant values of type u128 and performs a jump to
a target basic block depending on which number is equal to the operand. An additional
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target represents the default target to jump to if no value matches.
A data-flow analysis needs access to the control flow graph, and the MIR explicitly models
the control flow of the program, which makes it a relevant candidate for the use in this
thesis.

2.5.5 Stable Mid-Level IR

The SMIR is proposed by the Stable MIR Librarification Project Group (2023) to provide
a stable API for external consumption by clients like static analysis tools. This is relevant
because in general, the IRs in the compiler are not meant to be used outside of the
Rust compiler and therefore do not define a stable API and no serialization format. The
Rust internal IRs are tightly coupled to the Rust compiler, change frequently and are
therefore highly unstable and are generally considered an implementation detail of the
Rust compiler. When using the internal data structures of the Rust compiler as a library
in a separate application, the application can only be executed if a compatible version
of the Rust toolchain is installed. This forces users of such an application to install a
compatible Rust toolchain on their system, which might not be the most recent version
of Rust, if applications are not kept up-to-date with the latest changes in Rust. While it
is possible to install multiple Rust toolchains on the same system, relying on old software
versions is generally not advisable.
SMIR is a new IR that is still in the draft phase. The idea of SMIR is that it can solve
this problem by proposing a stable serialization format for MIR that can be used safely
by external analysis tools without losing compatibility to other Rust toolchain versions.
However, as SMIR is still in the draft phase, it cannot be used in this thesis.

2.5.6 LLVM IR

The LLVM IR is part of the LLVM compiler framework published by Lattner and Adve
(2004). The Rust compiler uses the LLVM framework to generate efficient machine code
for a multitude of platforms. The architecture of the LLVM Framework is shown in
Figure 2-7.
The LLVM Framework is language-agnostic supporting multiple source code languages via
dedicated frontends that transform language-specific code to language-agnostic LLVM IR
code. The LLVM Framework performs code optimizations on the IR. Finally, the IR can
be transformed to native code for a multitude of target architectures via dedicated LLVM
backends.
This architecture enables one to transform n source code languages into m compilation
targets, leading to n × m supported configurations. Furthermore, new languages can
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Figure 2-7: LLVM Architecture

easily utilize the LLVM compilation and optimization capabilities by providing a dedicated
LLVM frontend, which was also done for the Rust language.
Figure 2-8 shows an excerpt of internal structure of the LLVM IR, which was deduced
from the LLVM 17 Source Code.11 The IR consists of modules, which represent one single
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Type
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Figure 2-8: Excerpt of the LLVM Intermediate Representation

unit of compilation (also called translation unit). A module contains global variables and
named functions. The body of a function is described using a control flow graph (CFG)
that consists of basic blocks. A basic block consists of instructions. The values of the
LLVM IR are SSA (Single Static Assign) values, which means that they can only be
assigned once in the program.
Overall, the LLVM IR is language-agnostic and represents code in a control flow graph,
as needed by a data-flow analysis. This makes the LLVM IR a relevant candidate for use
in this thesis.

11https://github.com/llvm/llvm-project/tree/llvmorg-17.0.4

https://github.com/llvm/llvm-project/tree/llvmorg-17.0.4
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3 Definition of Requirements

This chapter defines the requirements for the static code analysis tool developed in this
thesis based on background information about the Rust ecosystem and the program rep-
resentations, as outlined in Chapter 2. In Section 3.1, seven vulnerabilities are selected
for further inspection. In Section 3.2, a well-defined scope for the data-flow analysis is
defined. In Section 3.3, the selected vulnerabilities are analyzed and requirements are
derived from them. In Section 3.4, the differences between program representations are
analyzed and IRs are selected for the approach. Section 3.5 concludes the chapter with a
summary of the requirements defined for the static code analysis tool.

3.1 Selected Rust Vulnerabilities for Further Analysis

In this section, vulnerabilities are selected for later analysis based on the entries in the
RustSec Database, as introduced in Section 2.4. The RustSec Database contains vulner-
abilities in Rust crates published in the Rust Package Registry.
To select vulnerabilities, the number of transitively affected crates is used. Although the
dependents of vulnerable crates are potentially vulnerable themselves, these dependents
are not listed explicitly in the RustSec Database. The database only lists the top-level
crate that defines the vulnerable code. To acquire the number of transitively affected
crates, a pre-evaluation was performed. The underlying data set has been produced
by automated download of all crates from the Rust Package Registry and a subsequent
dependency analysis on each of them, as described in Section A2.2.
The CVSS score (Mell, Scarfone, & Romanosky, 2006) is a metric that defines the impact
of a vulnerability. It was deliberately decided not to order the vulnerabilities by their
impact, as defined by the CVSS score, but rather by the number of transitively affected
crates because ordering by CVSS score would have put vulnerabilities in the center of
attention that only affect a very limited number of potentially rather obscure crates.
For instance, RUSTSEC-2021-0021 (nb-connect invalidly assumes the memory layout of
std::net::SocketAddr) has been assigned a CVSS score of 9.8 and 381 crates were found to
be affected. In contrast, the vulnerability RUSTSEC-2020-0071 (potential segfault in the
time crate) affects 24,525 crates and has been assigned a CVSS score of 6.2.
Table 3-1 shows important Rust vulnerabilities that are prevalent in the Rust ecosystem
and will be further analyzed in this chapter to derive requirements for the approach.
The table column Count (T ) lists the number of different crates that are affected by the
vulnerability. The table column Count (T × V ) lists the number of distinct versions of
the crate that are vulnerable (if multiple versions of the same crate are affected, they are
counted separately).
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The first four vulnerabilities are, consequently, selected because a large number of crates
are vulnerable to them. These four vulnerabilities are chosen by ordering the vulnerability
definitions by their Count (T ×V ) value in descending order, rejecting vulnerabilities that
do not define affected functions (as required by the proposed approach), and then selecting
those vulnerabilities with a value of T > 10.000.
The last three vulnerabilities in the table have been found to occur only when a certain
parameter value is passed to the affected function. This type of vulnerability is of par-
ticular interest, as a data-flow analysis can be used to determine whether the value of
the vulnerable parameter reaches the affected function or not, potentially leading to more
precise results. The actual values that cause the vulnerability were manually deduced
from the affected source code. These derived information are marked with an asterisk in
the table. Although only three vulnerabilities of this kind were identified with reasonable
effort, there might be more vulnerabilities occurring only for specific parameter values.

Vulnerability Crate
Count

(T)

Count

(T×V)
Functions Parameters

High Reach
RUSTSEC-2020-0071 time 24525 179415 time::OffsetDateTime::now_local ∅

time::OffsetDateTime::try_now_local,

time::UtcOffset::current_local_offset,

time::UtcOffset::local_offset_a,

time::UtcOffset::try_current_local_offset,

time::UtcOffset::try_local_offset_at,

time::at,

time::at_utc,

time::now

RUSTSEC-2023-0018 remove dir all 12321 85713 remove_dir_all::ensure_empty_dir ∅

remove_dir_all::remove_dir_all,

remove_dir_all::remove_dir_contents

RUSTSEC-2021-0124 tokio 11208 68598 tokio::sync::oneshot::Receiver::close ∅

RUSTSEC-2022-0078 bumpalo 10091 64676 bumpalo::collections::vec::Vec::into_iter ∅

Known Parameter Values
RUSTSEC-2023-0044 openssl 8328 53657 openssl::X509VerifyParamRef::set_host P1 = ”” (∗)

RUSTSEC-2023-0024 openssl 7646 49244
openssl::X509Extension::new,

openssl::X509Extension::new_nid
P2 = None (∗)

RUSTSEC-2022-0051 lz4-sys 177 1261
lz4_sys::LZ4_decompress_safe (∗)

lz4_sys::LZ4_decompress_safe_continue (∗)
P4 < 0 ∧ P3 ̸= 0 (∗)

P5 < 0 ∧ P4 ̸= 0 (∗)

(∗) = Information is not part of the RustSec Database
Pi = Parameter number i of respective function(s)

Table 3-1: Selected Rust Vulnerabilities for Further Analysis
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3.2 Scope for the Approach

It is acknowledged that commercial static code analysis products should be able to support
alias sensitivity, field sensitivity, array sensitivity, and dynamic function calls. However,
in the scope of this thesis, it is not anticipated that these characteristics will have a major
impact on the research questions as outlined in Section 1.3. Therefore, Requirement R1
(No support for alias sensitivity, field sensitivity or array sensitivity, and no support for
dynamic function calls) is defined.

3.3 Analysis of Selected Vulnerabilities

In this section, the seven selected vulnerabilities as shown in Table 3-1 are analyzed. For
each vulnerability, the underlying problem is discussed, and vulnerable code is presented
and analyzed. The insights are then used to define the requirements for the approach.

3.3.1 RUSTSEC-2020-0071 – Potential Segfault in the Time
Crate

RUSTSEC: RUSTSEC-2020-0071
CVE: CVE-2021-45710
CVSS: 5.3
CVE Vector: CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
CWE: CWE-825 – Expired Pointer Dereference

The vulnerability RUSTSEC-2020-00711 is associated with the crate time2, which allows
retrieving the system time and calculating time durations. The vulnerability describes
a possible segmentation fault on Unix systems if an environment variable is set on one
thread and an affected function is called on another thread, as they access the environment
variables in a way that is not thread-safe. The crate utc-0.1.03 has been identified as a
directly affected crate and will be investigated next. The crate utc defines an application
that only invokes the function time::now_utc() and prints the time in a formatted way
on the console. The file main.rs contains the source code of the crate and is shown
in Listing 3-1. The main function invokes the exported function time::now_utc(). The
definition of the called function is shown in Listing 3-2.

1https://rustsec.org/advisories/RUSTSEC-2020-0071
2https://crates.io/crates/time
3https://crates.io/crates/utc

https://rustsec.org/advisories/RUSTSEC-2020-0071
https://crates.io/crates/time
https://crates.io/crates/utc
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1 extern crate time;
2
3 fn main() {
4 let utc = time::now_utc();
5 let format = "%Y-%m-%d %H:%M:%S";
6 println!("{}", utc.strftime(format).expect("format string error"));
7 }

Listing 3-1: Source Code of Crate utf-0.1.0

The function time::now_utc() invokes the function time::at_utc(), which is listed
as an affected function in the vulnerability definition. Note that the time::now_utc()
function itself is not marked as affected in the vulnerability definition. In conclusion, the
function time::now_utc() is transitively affected, but is not marked as affected itself.
412 /// Returns the current time in UTC
413 pub fn now_utc() -> Tm {
414 at_utc(get_time())
415 }

Listing 3-2: Function now utc in Crate time-0.1.45

The fact that a transitively affected function is omitted in the vulnerability definition has
consequences for the approach. It can be argued that listing transitively affected functions
in the vulnerability definition is superfluous because they describe redundant information
that can be obtained by analyzing the code. Moreover, it requires the submitter of the
vulnerability definition to find all the calling functions, which is a technical task that
can be prone to human errors when done manually. This task is much better suited for
a data-flow analysis. So, to obtain this redundant information, the data-flow analysis
will need to analyze into the vulnerable crate itself to find transitively affected functions
and must not rely entirely on the information provided in the vulnerability definition.
Requirement R2 (Infer transitively affected functions in vulnerable crate) represents this
requirement.
The software project analyzed by the data-flow analysis can be an application program
(in this case the utc program) or it can be a software library (in this case the time
library). Software libraries provide functionality for other software projects to use by
exporting functions that can be called by dependents. Therefore, in the context of software
security, every function that is exported by a software library can be considered an entry
point for security threats. Application programs usually define a single point of entry,
which is the main method of the program. In order for the data-flow analysis to support
both application programs and software libraries, Requirement R3 (Support application
programs and software libraries) is defined.
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3.3.2 RUSTSEC-2023-0018 – Race Condition Enabling Link
Following and Time-Of-Check Time-Of-Use (Toctou)

RUSTSEC: RUSTSEC-2023-0018
CVE: Not assigned
CVSS: 4.9
CVE Vector: CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H
CWE: CWE-367 – Time-of-check Time-of-use (TOCTOU) Race Condition

The vulnerability RUSTSEC-2023-00184 is associated with the crate remove_dir_all5,
which provides functionality to delete a directory and its contents recursively. This func-
tionality is also provided by the function std::fs::remove_dir_all in the Rust standard
library, but the crate implements a specialized version for the Windows platform. For all
other platforms, the crate delegates to the std::fs::remove_dir_all function in the
Rust standard library. This is done using conditional compilation, which selects one of
multiple pub use statements in the lib.rs file of the remove_dir_all crate as shown in
Listing 3-3.

1 #[cfg(windows)]
2 pub use self::fs::remove_dir_all;
3
4 #[cfg(not(windows))]
5 pub use std::fs::remove_dir_all;

Listing 3-3: Reexport of Different Implementations Based on Selected Platform

The vulnerability describes a possible race condition in the Windows-specific implemen-
tation of the crate remove_dir_all, which involves deleting unexpected parts of the
filesystem if a symbolic link is created at the right time. This can occur because the
function remove_dir_call checks for symbolic links initially, but if the operating system
performs a context switch to a different thread after the function already checked for
symbolic links, an attacker could interfere at that time and create a symbolic link in the
file system, which will not be recognized by the function. This is a TOCTOU (Time of
Check to Time of Use) problem.

4https://rustsec.org/advisories/RUSTSEC-2023-0018
5https://crates.io/crates/remove dir all

https://rustsec.org/advisories/RUSTSEC-2023-0018
https://crates.io/crates/remove_dir_all
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The crate uu_rm-0.0.16 was identified to be affected by the vulnerability, as it invokes the
affected function remove_dir_all in an internal function handle_dir via several calls:

1. uu_rm::main (entry point, generated by macro)

2. uu_rm::uumain7

3. uu_rm::remove8

4. uu_rm::handle_dir9

5. remove_dir_all::remove_dir_all10 (vulnerable)

In this crate, the main function automatically generated by the macro call
uucore_procs::main!(uu_rm)11. For the data-flow analysis to find this flow, it needs to
support Rust macros. Therefore, Requirement R4 (Support Rust macros) is defined and
in Section 3.4, the program representations in the Rust compiler are analyzed according
to the way they represent macros.
The vulnerability RUSTSEC-2023-0018 can only be reproduced on the Windows platform
because the vulnerable code is only conditionally compiled if the Windows platform is
targeted. Therefore, Requirement R5 (Support analyzing platform-specific Rust code)
is defined to support analyzing code that uses conditional compilation to provide func-
tionality for a specific platform. The keyword pub use is used to re-export different
implementations based on the selected platform, as shown in Listing 3-3.
The Rust Book12 recommends using this language feature when creating libraries that
export items from several modules, as this allows one to hide the internal module structure
of the library and allows clients of the library to import the items from one single place
without specifying the internal module names in the library.
Therefore, it is expected that this feature is prevalent in Rust libraries and thus the static
code analysis should support it. Consequently, Requirement R6 (Support re-exported
functions) is defined.

6https://crates.io/crates/uu rm
7https://github.com/uutils/coreutils/blob/0.0.1/src/rm/rm.rs#L48
8https://github.com/uutils/coreutils/blob/0.0.1/src/rm/rm.rs#L157
9https://github.com/uutils/coreutils/blob/0.0.1/src/rm/rm.rs#L191
10https://github.com/XAMPPRocky/remove dir all/blob/v0.5.1/src/fs.rs#L33
11https://crates.io/crates/uucore procs
12https://doc.rust-lang.org/book/ch07-04-bringing-paths-into-scope-with-the-use-keyword

.html#re-exporting-names-with-pub-use

https://crates.io/crates/uu_rm
https://github.com/uutils/coreutils/blob/0.0.1/src/rm/rm.rs#L48
https://github.com/uutils/coreutils/blob/0.0.1/src/rm/rm.rs#L157
https://github.com/uutils/coreutils/blob/0.0.1/src/rm/rm.rs#L191
https://github.com/XAMPPRocky/remove_dir_all/blob/v0.5.1/src/fs.rs#L33
https://crates.io/crates/uucore_procs
https://doc.rust-lang.org/book/ch07-04-bringing-paths-into-scope-with-the-use-keyword.html#re-exporting-names-with-pub-use
https://doc.rust-lang.org/book/ch07-04-bringing-paths-into-scope-with-the-use-keyword.html#re-exporting-names-with-pub-use
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3.3.3 RUSTSEC-2021-0124 – Data Race When Sending and
Receiving After Closing a Oneshot Channel

RUSTSEC: RUSTSEC-2021-0124
CVE: CVE-2021-45710
CVSS: 8.1
CVE Vector: CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H
CWE: CWE-362 – Concurrent Execution using Shared Resource

with Improper Synchronization (’Race Condition’)

The vulnerability RUSTSEC-2021-012413 is associated with the crate tokio14, which pro-
vides a platform for writing asynchronous applications. The vulnerability describes a race
condition that can occur after a one-shot channel is closed using the method close on
the type tokio::sync::oneshot::Receiver. The following code in Listing 3-4 invokes
the vulnerable function.
1 fn main() {
2 let (tx, mut rx) = tokio::sync::oneshot::channel::<usize>();
3 rx.close();
4 let _ = rx.try_recv();
5 }

Listing 3-4: Reproducer for Vulnerability RUSTSEC-2023-0044

Race condition bugs can be hard to spot during software testing, as they may not always
materialize when the program is executed. Testing may not uncover these issues. However,
the static analysis approach discussed in this thesis can detect them reliably. For this
vulnerability, no further requirements need to be defined.

13https://rustsec.org/advisories/RUSTSEC-2021-0124
14https://crates.io/crates/tokio

https://rustsec.org/advisories/RUSTSEC-2021-0124
https://crates.io/crates/tokio
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3.3.4 RUSTSEC-2022-0078 – Use-After-Free Due to a Lifetime
Error in Vec::into iter()

RUSTSEC: RUSTSEC-2022-0078
CVE: Not assigned
CVSS: 8.2
CVE Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:H
CWE: CWE-416 – Use After Free

The vulnerability RUSTSEC-2022-007815 is associated with the crate bumpalo16, which
provides functionality to allocate memory efficiently in an arena. An arena is a memory
pool that allows clients to allocate data in it and allows to deallocate all data at once by
dropping the arena.
The vulnerability definition describes a possible use-after-free bug when a vector iter-
ator is created by the function bumpalo::collections::vec::Vec::into_iter and is
used after the arena providing the underlying memory for the vector has already been
dropped. An example code is provided in description text, which demonstrates a possible
memory corruption that can arise from executing that code. This reproducer code is
shown in Listing 3-5.

1 fn main() {
2 let bump = bumpalo::Bump::new();
3 let mut vec = bumpalo::collections::Vec::new_in(&bump);
4 vec.extend([0x01u8; 32]);
5 let into_iter = vec.into_iter();
6 drop(bump);
7
8 for _ in 0..100 {
9 let reuse_bump = bumpalo::Bump::new();

10 let _reuse_alloc = reuse_bump.alloc([0x41u8; 10]);
11 }
12
13 for x in into_iter {
14 print!("0x{:02x} ", x);
15 }
16 println!();
17 }

Listing 3-5: Reproducer for Vulnerability RUSTSEC-2022-0078

In line 2 of the reproducer code, a new bump arena is allocated, and in line 3 a vector
is allocated, which is backed by the arena’s memory. The vector is filled with 32 values
and an iterator over the vector is created using the affected function into_iter in line 5.
15https://rustsec.org/advisories/RUSTSEC-2022-0078
16https://crates.io/crates/bumpalo

https://rustsec.org/advisories/RUSTSEC-2022-0078
https://crates.io/crates/bumpalo
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In line 6, the arena is dropped, but in line 13 the iterator is still used to read from the
deallocated arena. Lines 8 to 11 allocate new arenas and fill them with data to increase
the chance that memory of the old arena is reused by a new arena and the data of a
new arena is printed at runtime while reading from the old iterator. Overall, the affected
function is invoked in the main function in line 5 and the data-flow analysis needs to be
able to identify it as such.
Rust enforces that the lifetime of a reference does not exceed the lifetime of the referenced
value using the borrow checker. The implementation of the bump arena escapes this check
by using unsafe code. Using the iterator after dropping the underlying arena is a use-
after-free, which is undefined behavior. For this vulnerability, no further requirements
need to be defined.

3.3.5 RUSTSEC-2023-0044 – Openssl
X509VerifyParamRef::set host Buffer Over-Read

RUSTSEC: RUSTSEC-2023-0044
CVE: Not assigned
CVSS: 7.3
CVE Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L
CWE: CWE-416 – Use After Free

The vulnerability RUSTSEC-2023-004417 is associated with the crate openssl18, which
provides access to the cryptography library OpenSSL. The vulnerability description refers
to a corresponding issue in the Github Repository that mentions a reproducing example
code, as shown in Listing 3-6.
1 extern crate native_tls;
2
3 use native_tls::TlsConnector;
4 use std::io::{Read, Write};
5 use std::net::TcpStream;
6
7 fn main() {
8 let connector = TlsConnector::builder().use_sni(false).build().unwrap();
9 let host = ""; // <-- Here, an empty string is used as host (!)

10 let stream = TcpStream::connect("google.com:443").unwrap();
11 let mut stream = connector.connect(host, stream).unwrap();
12 stream.write_all(b"GET / HTTP/1.0\r\n\r\n").unwrap();
13 let mut res = vec![];
14 stream.read_to_end(&mut res).unwrap();
15 println!("{}", String::from_utf8_lossy(&res));
16 }

17https://rustsec.org/advisories/RUSTSEC-2022-0044
18https://crates.io/crates/openssl

https://rustsec.org/advisories/RUSTSEC-2022-0044
https://crates.io/crates/openssl
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Listing 3-6: Reproducer for Vulnerability RUSTSEC-2023-0044

The vulnerability describes a possible buffer overread when passing an empty string to
the affected function set_host on the type openssl::X509VerifyParamRef, which then
allows an attacker to read arbitrary memory.
The reproducer code does not directly interact with the crate openssl but opens a TLS
connection using the crate native_tls, which itself delegates to OpenSSL on certain
platforms. This TLS connection is established in the code by invoking the function
native_tls::TlsConnector::connect, which internally calls the affected function
X509VerifyParamRef::set_host via several calls:

1. reproducer::main (entry point)

2. native_tls::TlsConnector::connect

3. native_tls::imp::TlsConnector::connect

4. openssl::ssl::connector::ConnectConfiguration::connect

5. openssl::ssl::connector::ConnectConfiguration::into_ssl

6. openssl::ssl::connector::setup_verify_hostname

7. openssl::x509::verify::X509VerifyParamRef::set_host (vulnerable)

The functions that are part of this call chain originate from three different crates: The top-
level crate containing the reproducer code, the crate native_tls and the crate openssl.
To identify vulnerabilities that span multiple crates, the data-flow analysis must scan
across multiple levels of dependencies. To explore the possibilities of supporting a data-
flow analysis that can operate across external dependencies, the Requirement R7 (Analyze
across dependency boundaries) is defined.
This type of vulnerability is of particular interest, as a data-flow analysis can be used to
determine if an empty string of the vulnerable parameter reaches the affected function or
not, potentially leading to more precise results. To support this, the RustSec Database
must contain information that the empty string is vulnerable for the method set_host.
As the database schema does not support this information, it needs to be extended,
which is represented by Requirement R8 (Expand the structure of the RustSec Database
to incorporate security-related parameter values and identify these values in the data-flow
analysis).
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3.3.6 RUSTSEC-2023-0024 – Openssl X509Extension::new and
X509Extension::new nid Null Pointer Dereference

RUSTSEC: RUSTSEC-2023-0024
CVE: Not assigned
CVSS: 7.5
CVE Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CWE: CWE-476 – NULL Pointer Dereference

The vulnerability RUSTSEC-2023-002419 is associated with the crate openssl20 and de-
scribes a possible segmentation fault if the method new or the method new_nid of type
X509Extension is executed with a context argument of None. Both methods accept the
context argument at their fourth parameter. The artificial reproducer code shown in List-
ing 3-7 was created to intentionally invoke both affected functions with a context argument
of None. This code should be recognized as vulnerable by the data-flow analysis.
This type of vulnerability is of particular interest, as a data-flow analysis can be used to
determine if the value None of the vulnerable parameter reaches the affected function or
not, potentially leading to more precise results. To support this, the RustSec Database
must contain the special value None for the second parameter so that the analysis can
access them. Requirement R8 (Expand the structure of the RustSec Database to incorpo-
rate security-related parameter values and identify these values in the data-flow analysis)
is already defined and therefore, no further requirements are being defined.
1 fn main() {
2 openssl::x509::X509Extension::new(
3 None,
4 None, // <-- context is None here (!)
5 "",
6 ""
7 );
8 openssl::x509::X509Extension::new_nid(
9 None,

10 None, // <-- context is None here (!)
11 openssl::nid::Nid::from_raw(0),
12 ""
13 );
14 }

Listing 3-7: Artificial Reproducer Code for Vulnerability RUSTSEC-2023-0024

19https://rustsec.org/advisories/RUSTSEC-2023-0024
20https://crates.io/crates/openssl

https://rustsec.org/advisories/RUSTSEC-2023-0024
https://crates.io/crates/openssl
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3.3.7 RUSTSEC-2022-0051 – Memory Corruption in liblz4

RUSTSEC: RUSTSEC-2023-0051
CVE: Not assigned
CVSS: 9.8
CVE Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CWE: CWE-787 – Out-of-bounds Write,

CWE-190 – Integer Overflow or Wraparound

The vulnerability RUSTSEC-2022-005121 is associated with the crate lz4-sys22, which
bundles the LZ4 system library to enable Rust programs to compress and decompress data.
System packages usually provide the necessary system functionality to Rust programs
in a safe manner. If this is not possible, the API is marked with the keyword unsafe.
Therefore, functions that are not labeled as unsafe guarantee that the observable behavior
of the function is safe. In this particular vulnerability, the problematic code is located
within the liblz4 library itself. The crate lz4-sys provides access to this vulnerable
code through a safe function, but the observable behavior of that function is actually
unsafe, and therefore the crate lz4-sys itself is vulnerable.
The original vulnerability in the used C library liblz423 is located in its private helper
function LZ4_decompress_generic24, which provides functionality to decompress an LZ4
archive. The function LZ4_decompress_generic receives the size of the compressed input
data and the size of the output buffer through its parameters, as can be seen in the
signature of the function shown in Listing 3-8.
1 LZ4_decompress_generic(
2 const char* const src,
3 char* const dst,
4 int srcSize,
5 int outputSize,
6 earlyEnd_directive partialDecoding,
7 dict_directive dict,
8 const BYTE* const lowPrefix,
9 const BYTE* const dictStart,

10 const size_t dictSize
11 );

Listing 3-8: Function Signature of C-Function LZ4 decompress generic

In general, buffer sizes are never negative, but the function LZ4_decompress_generic
declares the corresponding parameters as signed integers (using the C keyword int). This
technically allows negative numbers to be passed to it. Internally, the function does not
21https://rustsec.org/advisories/RUSTSEC-2023-0051
22https://crates.io/crates/lz4-sys
23https://github.com/lz4/lz4/tree/8301a21773ef
24https://github.com/lz4/lz4/blob/8301a21773ef/lib/lz4.c#L1738

https://rustsec.org/advisories/RUSTSEC-2023-0051
https://crates.io/crates/lz4-sys
https://github.com/lz4/lz4/tree/8301a21773ef
https://github.com/lz4/lz4/blob/8301a21773ef/lib/lz4.c#L1738
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check for this case but unconditionally adds the output size to the output base pointer to
calculate a pointer to the end of the output data. In the case of a negative size argument,
this leads to a wrong calculation of the end pointer, which can then point to arbitrary
data.
The vulnerable function LZ4_decompress_generic is not exported to Rust and, there-
fore, is not mentioned as affected function in the vulnerability definition. However, upon
further inspection, it was identified that the functions LZ4_decompress_safe25 and
LZ4_decompress_safe_continue26 are accessible from Rust and actually call the vulner-
able function LZ4_decompress_generic internally. Therefore, these two functions should
be marked as affected in the vulnerability definition.
Furthermore, it became obvious that the vulnerability is prevented when the number zero
is passed as the input buffer size because the C function checks for this case and then
leaves the function early. Therefore, the data-flow analysis can have increased precision
when it does not report a vulnerability in this case.
The artificial reproducer code shown in Listing 3-9 was created to invoke the affected
function with a negative output size and a non-zero input size. This code should be
recognized as vulnerable by the designed data-flow analysis.
1 fn main() {
2 unsafe {
3 let source = [0u8; 8];
4 let mut target = [0u8; 64];
5 lz4_sys::LZ4_decompress_safe(
6 source.as_ptr() as *const std::ffi::c_char,
7 target.as_mut_ptr() as *mut std::ffi::c_char,
8 8, // <-- inputSize is not equal to 0 (!)
9 -1, // <-- outputSize is negative (!)

10 );
11 }
12 }

Listing 3-9: Artificial Reproducer Code for Vulnerability RUSTSEC-2022-0051

This type of vulnerability is of particular interest, as a data-flow analysis can be used to
determine whether vulnerable values reach the corresponding parameters of the affected
function or not. By checking for vulnerable parameter ranges, more precise results can be
achieved. To support this, the RustSec Database must mark negative values as vulnerable
for the parameter representing the output size as well as mark the value zero as not
vulnerable for the parameter representing the input size. Requirement R8 (Expand the
structure of the RustSec Database to incorporate security-related parameter values and
identify these values in the data-flow analysis) is already defined and therefore, no further
requirements are being defined.
25https://github.com/lz4/lz4/blob/8301a21773ef/lib/lz4.c#L2171
26https://github.com/lz4/lz4/blob/8301a21773ef/lib/lz4.c#L2322

https://github.com/lz4/lz4/blob/8301a21773ef/lib/lz4.c#L2171
https://github.com/lz4/lz4/blob/8301a21773ef/lib/lz4.c#L2322
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For the function LZ4_decompress_safe, the third parameter represents the input size,
and the fourth parameter represents the output size and for the function
LZ4_decompress_safe_continue, the fourth parameter represents the input size, and
the fifth parameter represents the output size. In Table 3-1, the respective parameter
conditions are encoded accordingly.

3.4 Selection of Program Representation

In this section, the program representations used in the Rust compiler as introduced in
Section 2.5 are compared in terms of their applicability in the approach.
The AST, HIR and THIR do not explicitly define the control flow but rather describe
implicit control flow that is not formally encoded in the IR. Therefore, they are not selected
as candidates to perform a data-flow analysis on them. The HIR provides access to the
structural items of the Rust code. In the context of a code analysis, this information
are helpful to reason about the type hierarchy and to generate a callgraph. The MIR
describes code of function bodies that has been lowered into a control flow graph and
therefore contains only explicit control flow. In MIR, macros are expanded, types are
resolved, and functions are resolved. Therefore, the MIR is considered as a candidate in
the context of the designed static data-flow analysis. LLVM IR is generated from the
MIR and thus has comparable properties (macros are expanded). The LLVM IR models
the control flow of functions explicitly using a control flow graph. Therefore, the LLVM
IR is considered as a candidate in the context of the designed static data-flow analysis.
As both the MIR and LLVM IR enable data-flow analysis, the applicability of these
IRs in the context of this thesis is explored next. The LLVM IR is language-agnostic,
which allows to write analyses that operate on code originating from different source code
languages like Rust, C, C++ and others. As the LLVM IR code generated by the Rust
compiler can originate from multiple software projects that are part of the compilation
process, the LLVM IR represents the code of the complete dependency tree, while the
MIR represents code originating from one single software project and only lives during
compilation of one software project. While generally the interaction between software
projects is modeled in MIR by referring to external crates, it is expected that a data-flow
analysis on the MIR needs to perform additional work to correlate code fragments that
originate from different software projects and interact with each other.
In the context of this thesis, the applicability of tracking data flows across external de-
pendencies of the IRs is explored next in response to Requirement R7 (Analyze across
dependency boundaries). The database-based approach described in this thesis utilizes
the RustSec Database to query for vulnerable functions in published software libraries.
The database stores the name of the software project in which the vulnerability originates
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and the version of that software project. It is therefore necessary that the selected IR
contains the function names and the names of the software project to query the database
for results. In the presence of external dependencies, there are multiple software projects
that contribute to the code that is being compiled into a single executable. Therefore,
the approach requires detailed information for each function in the program, from which
software project they originated and in which version that software project is present to
query the RustSec Database for the corresponding vulnerability information.
The Rust Compiler has access to this information when used with the Package Manager
Cargo. The MIR contains complete type information of the Rust types using provenance
data that refers back to the corresponding items in the HIR. The MIR provides fully
qualified function names as used in the RustSec Database and provides access to the
version of the compiled software via data passed from Cargo to the Rust Compiler.
This makes MIR the representation with the highest level of abstraction where the needed
information for an inter-crate analysis is still present and can be used to query the RustSec
Database for specific functions and project versions.
The LLVM IR does not explicitly model the concept of software projects, crate version
numbers, or fully qualified names of Rust functions, as it is a language-agnostic IR and
Rust is only one language that transforms into it. Still, a name-mangling scheme27 is
used by the MIR to LLVM transformation step that encodes additional information in
the function names. While name manglings are intended to support the linking process,
it is acknowledged that they can be used to reverse engineer Rust-specific information
about the function.
To explore which Rust-specific information is included in this mangled name, a small Rust
program is shown in Figure 3-1a that executes the function dep::Widget::do_work(),
which is defined in the external software library and Figure 3-1b shows the definition of
that software library.

1 pub fn main() {
2
3 let w = dep::Widget;
4
5 w.do_work();
6 }

(a) Application “app”

1 pub struct Widget;
2 impl Widget {
3 pub fn do_work(&self) {
4 // empty
5 }
6 }

(b) Software Library “dep”

Figure 3-1: Rust Code Involving Application and Library

27https://rust-lang.github.io/rfcs/2603-rust-symbol-name-mangling-v0.html

https://rust-lang.github.io/rfcs/2603-rust-symbol-name-mangling-v0.html
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The generated LLVM IR code for this Rust program is shown in Listing 3-10. The func-
tion name _ZN3dep6Widget7do_work17he2591b8ef31ebe04E is mangled and refers to the
method do_work on the struct Widget in the crate dep. Additionally, a comment in line 9
hints at the fully qualified function name as well. While this representation is considered
useful for debugging purposes, relying on them for a data-flow analysis seems fragile, as
these names are implementation details of the MIR to LLVM transformation that could
easily change in the future in subtle ways, because the MIR-to-LLVM transformation
evolves quickly.
1 ; app::main
2 ; Function Attrs: uwtable
3 define internal void @_ZN6app4main17ha969bc26af2b8f99E() unnamed_addr #1 !dbg !174
4 {
5 start:
6 %_1 = alloca %"dep::Widget", align 1
7 %x.dbg.spill = alloca %"dep::Widget", align 1
8 call void @llvm.dbg.declare(metadata ptr %x.dbg.spill, metadata !178, metadata !

↪→ DIExpression()), !dbg !182
9 ; call dep::Widget::do_work

10 call void @_ZN3dep6Widget7do_work17he2591b8ef31ebe04E(ptr align 1 %_1), !dbg !183
11 ret void, !dbg !184
12 }

Listing 3-10: Generated LLVM IR

Since the recently released version LLVM 1728, the use of Typed Pointers is no longer
supported as part of a transition29 to Opaque Pointers, which carry no type information.
As a consequence of this change, it is expected that structs with the same memory layout
are merged into a single struct to enable low-level optimizations.30 This makes it harder
to correlate them with a RustSec Database or to query high-level type information on the
level of structs, traits and crates. Being language-agnostic, it gives up Rust-specific infor-
mation, and supporting low-level optimizations, it gives up high-level type information.
Moreover, the development of Stable MIR (SMIR) suggests that the designers of Rust
assume that this is the right place to introduce a stable API for the interaction with
static code analyses.
Table 3-2 summarizes the discussed properties of the compared program representations.

28https://releases.llvm.org/17.0.1/docs/ReleaseNotes.html
29https://llvm.org/devmtg/2022-04-03/slides/keynote.Opaque.Pointers.Are.Coming.pdf
30https://llvm.org/docs/OpaquePointers.html#issues-with-explicit-pointee-types

https://releases.llvm.org/17.0.1/docs/ReleaseNotes.html
https://llvm.org/devmtg/2022-04-03/slides/keynote.Opaque.Pointers.Are.Coming.pdf
https://llvm.org/docs/OpaquePointers.html#issues-with-explicit-pointee-types
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AST HIR THIR MIR LLVM IR
Language Agnostic NO NO NO NO ✓
Macros Expanded NO ✓ ✓ ✓ ✓

Explicit Control Flow NO NO NO ✓ ✓
Resolved Rust Type Information NO ✓ ✓ ✓ NO

Table 3-2: Comparison of Program Representations for Rust Code

Overall, it is estimated that using the Rust IRs provides the most Rust-specific information
for a data-flow analysis across software projects and integrates best with the RustSec
Database. Therefore, in the context of this thesis, the MIR is selected as the IR on
which the data-flow analysis is performed. Additionally, the HIR is used to gain access
to higher-level type information on the level of structs, traits, and crates. Consequently,
Requirement R9 (Operate on the MIR and HIR) is defined.

3.5 Conclusion

This chapter discussed important security vulnerabilities in the Rust ecosystem based
on the number of crates affected by them and established requirements for the proposed
solution. The following chapters present an approach to detect these vulnerabilities in
actual Rust code. This will be done by performing a data-flow analysis after a dependency
analysis, which is expected to give more accurate results than those obtained from the
dependency analysis alone. The identified requirements for the analysis tool are listed
below.

R1 No support for alias sensitivity, field sensitivity, or array sensitivity, and no support
for dynamic function calls.

R2 Infer transitively affected functions in vulnerable crate.

R3 Support application programs and software libraries.

R4 Support Rust macros.

R5 Support analyzing platform-specific Rust code.

R6 Support re-exported functions.

R7 Analyze across dependency boundaries.

R8 Expand the structure of the RustSec Database to incorporate security-related pa-
rameter values and identify these values in the data-flow analysis.

R9 Operate on the MIR and HIR.
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4 Concept of the Static Code Analysis

This chapter outlines the concept and design of a static analysis tool that implements a
hybrid approach combining a dependency analysis of the RustSec Database, followed by
a subsequent data-flow analysis that scans external dependencies to automatically audit
the Rust code for vulnerabilities. The design process is based on the requirements defined
in Section 3.5. The High-Level Architecture is shown in Section 4.1 and outlines the
components involved in the approach. The behavior of these components are discussed
in individual sections. Section 4.2 discusses an extension to the RustSec Database, as
required by the approach. Section 4.3 outlines process performed in the Data-Flow Ana-
lyzer component and discusses the data structures and algorithms used for the data-flow
analysis. The Data-Flow Analyzer operates on a single crate. Section 4.4 outlines the
so-called inter-crate analysis that extends the capabilities of the tool to analyze across
crate boundaries and scan into the complete dependency tree of the analyzed crate. Fig-
ure 6.4.1 denotes the criteria that define whether a vulnerability is reported to the tool
user based on the type of analyzed crate and the information collected during analysis.

4.1 High-Level Architecture

The high-level architecture depicted in Figure 4-1 enables a data-flow analysis that covers
all external dependencies. The Cargo Subcommand is the user interface of the developed
tool, which extends the Package Manager Cargo and takes Rust Source Code and the
Extended RustSec Database as input.
The first step of the Cargo Subcommand is to build a dependency tree. This tree exists
because Cargo forbids cyclic dependencies. The root of this tree is the crate that the tool
is executed on. The transitive dependencies of this top-level crate contained as nodes in
the tree. The leaf nodes of the tree are crates that do not depend on any other crates.

Rust
Source
Code

Cargo Subcommand

Build Dependency Tree

Call Analyzer on each
dependency tree node

Dependency Analysis

Collect Summaries

Report Findings

Data-Flow Analyzer

Generate HIR and MIR

Bottom-Up Summarization

Basic Blocks

Functions

Crate Entry-Points

Generate Analysis IR

Extended
RustSec
Database

Figure 4-1: High-Level Architecture
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The second step of the Cargo Subcommand is to perform a dependency analysis on the
dependency tree to identify dependencies that are associated with known vulnerabilities in
the RustSec Database. This is done using the rustsec1 client library that allows issuing
queries on the RustSec Database. Depending on the results of the dependency analysis,
the next step is decided.
In case no potentially vulnerable dependencies are identified, the tool stops further analy-
sis and reports to the user that no vulnerabilities were found.
If potentially vulnerable dependencies are identified, the tool continues to perform a data-
flow analysis that operates on the whole dependency tree.
For this, the Data-Flow Analyzer is called on each tree node in the dependency tree so
that dependencies are analyzed before their dependents (bottom-up).
The Data-Flow Analyzer assesses the security of a single crate and the resulting summaries
for each crate are persisted on the filesystem. After all crates are summarized, the Cargo
Subcommand collects the persisted summaries, and reports the contained results of the
data-flow analysis for the top-level crate as well as the results of the dependency analysis
to the user.

4.2 Extended RustSec Database

The High-Level Architecture shown in Figure 4-1 shows that the Cargo Subcommand
requires the Extended RustSec Database as input. In this chapter, this extension to
the RustSec Database is outlined. In Chapter 3 it has been identified that there are
vulnerabilities that are only triggered when a function is called with specific parameter
values passed as arguments. Still, the RustSec Database as introduced in Section 2.4,
does not define specific parameter values that trigger a vulnerability. In response to
Requirement R8 (Expand the structure of the RustSec Database to incorporate security-
related parameter values and identify these values in the data-flow analysis), the schema
is now extended to include such parameter values as outlined in Figure 4-2.
Affected functions are represented in the schema by the type Function. The exten-
sion allows to define parameter specifications for an affected function. The parameter
specification is represented by the type AffectedParameterSpec and describes a pa-
rameter that is vulnerable to a specific value or range of values. The 1-based index
of the affected parameter is stored in the attribute parameter. The literal value is
stored in the attribute rustValue and the type of the literal value is stored in the
attribute rustType. The supported comparison operators are represented by the type
AffectedParameterComparisonOperator.

1https://crates.io/crates/rustsec

https://crates.io/crates/rustsec


Concept of the Static Code Analysis 39
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Figure 4-2: Schema of Rustsec Database and the Proposed Extensions

Table 4-1 shows the Rust types and Rust values supported by the schema extension. The
tool validates that no unsupported combinations of types and values are used.

Rust Types Supported Rust Values
Type Option None
Type String "" (empty string)

Type bool true, false
i8, i16, i32, i64, i128, isize (all conforming signed integer values)
u8, u16, u32, u64, u128, usize (all conforming unsigned integer values)

f32, f64 (all conforming floating point values)

Table 4-1: Rust Types and Rust Values Supported by the Schema Extension

If multiple parameter specifications exist for the same function, then they are combined
using Boolean-and semantics, which means that all parameter specifications must be
fulfilled for the function to be considered vulnerable. It is not possible to express Boolean-
or semantics for a single vulnerability so that any parameter specification triggers the
vulnerability. However, it is possible to define multiple vulnerability definitions for these
cases since the tool inherently reports whether any defined vulnerability is identified.
The RustSec Database has been forked2 and the vulnerability definitions are modified to

2Folder masterthesis-advisory-db-fork in submitted zip file
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include the parameter specifications as identified in Chapter 3.
The changes to the vulnerability definition RUSTSEC-2023-0044 are shown in Listing 4-1.
The first parameter of the method set_host is vulnerable to an empty string.

1 [affected.parameters]
2 "openssl::x509::verify::X509VerifyParamRef::set_host" = [{parameter = 1, operator =

↪→ "==", rust_type = "String", rust_value = ""}]

Listing 4-1: Extension to Vulnerability Definition RUSTSEC-2023-0044

The changes to the vulnerability definition RUSTSEC-2023-0024 are shown in
Listing 4-2. The second parameter of the methods new and new_nid are vulnerable to the
value Option::None.

1 [affected.parameters]
2 "openssl::x509::X509Extension::new" = [{parameter = 2, operator = "==", rust_type =

↪→ "Option", rust_value = "None"}]
3 "openssl::x509::X509Extension::new_nid" = [{parameter = 2, operator = "==",

↪→ rust_type = "Option", rust_value = "None"}]

Listing 4-2: Extension to Vulnerability Definition RUSTSEC-2023-0024

The changes to the vulnerability definition RUSTSEC-2022-0051 are shown in
Listing 4-3. The functions LZ4_decompress_safe and LZ4_decompress_continue were
identified as affected functions. The fourth parameter of these functions is vulnerable to
negative numbers if the third parameter is not equal to zero as identified in Section 3.3.7.

1 [affected.functions]
2 "lz4_sys::LZ4_decompress_safe" = ["*"]
3 "lz4_sys::LZ4_decompress_safe_continue" = ["*"]
4
5 [affected.parameters]
6 "lz4_sys::LZ4_decompress_safe" = [{parameter = 4, operator = "<", rust_type = "i32"

↪→ , rust_value = "0"}, {parameter = 3, operator = "!=", rust_type = "i32",
↪→ rust_value = "0"}]

7 "lz4_sys::LZ4_decompress_safe_continue" = [{parameter = 5, operator = "<",
↪→ rust_type = "i32", rust_value = "0"}, {parameter = 4, operator = "!=",
↪→ rust_type = "i32", rust_value = "0"}]

Listing 4-3: Extension to Vulnerability Definition RUSTSEC-2022-0051
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4.3 Data-Flow Analyzer

The Data-Flow Analyzer (as depicted in the High-Level Architecture in Figure 4-1) per-
forms the data-flow analysis and Section 4.3.1 illustrates this analysis using an example.
The analyzer is invoked on a single crate in the dependency tree such that dependencies
are analyzed before their dependents. The analyzer assesses the code of the respective
crate and accesses information present in the RustSec Database as well as analysis results
for its crate dependencies that are already available.
The first step in the analyzer is to generate the High-Level Representation (HIR) and Mid-
Level Representation (MIR) for the analyzed crate. This is done by integrating the Data-
Flow Analyzer with the Rust Compiler, which provides access to these representations.
The next step in the analyzer is to generate the Analysis IR, which represents a supported
subset of MIR and HIR, as described in Section 4.3.2.
Then, the Analysis IR is examined using a data-flow analysis that performs Abstract
Interpretation, as introduced in Section 2.1.2. The abstract domain that the analysis
operates on, is formally introduced in Section 4.3.3.
The data-flow analysis is performed at various levels of abstraction, from individual basic
blocks, to functions, and finally all entry points of the crate. Section 4.3.4 shows an
algorithm for analyzing an individual basic block by analyzing each contained statement
in control flow order. Section 4.3.5 shows an algorithm for analyzing a function consisting
by first the contained basic blocks in control flow order. Section 4.3.6 shows an algorithm
for analyzing multiple functions that are contained in a Rust crate, starting at the entry
points. Functions are analyzed before their callers in a bottom-up way. The results of
each analysis are represented by summaries that describe whether the code is vulnerable
at the respective level of abstraction.

4.3.1 Example of Data-Flow Analysis

This section illustrates the analysis algorithm on a simple example, to introduce the
underlying ideas before the following subsections go into details.
For this, an example program is introduced along with its interprocedural control flow
graph, as depicted in Figure 4-3. This example program is vulnerable, and the algorithm
shows that it is vulnerable.
The algorithm works by analyzing basic blocks and functions and creating summaries for
them. These summaries describe the circumstances under which the summarized code is
vulnerable and, in case of a function summary, the return value of the function. In the
example program presented in this section, the functions do not return values, so this
part of the summary is not relevant and is omitted here.
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1
2 fn main() {
3
4 let a = 3;
5
6 let b = 4;
7
8 f(a + b, a - b);
9

10 }
11
12 fn f(p: i32, q: i32) {
13
14 if p > 0 {
15
16 vulnerable_if_negative(q);
17
18 } else {
19
20 vulnerable();
21
22 }
23
24 }

(a) Rust Source Code

main():

ENTRY

a = 3
b = 4

f(a+b, a-b)

EXIT

f(p1, p2):

external call

[p1 > 0] [p1≤ 0]

ENTRY

EXIT

external call

Intraprocedural Control Flow

Interprocedural Control Flow

Entry Point Control Flow

(b) Interprocedural Control Flow Graph

Figure 4-3: Example Program Containing Two Distinct Vulnerabilities

The example program calls the vulnerable function vulnerable and the vulnerable func-
tion vulnerable_if_negative. Let us assume that the RustSec Database contains vul-
nerability definitions that define these functions as vulnerable, as follows:

• The function vulnerable is always vulnerable.

• The function vulnerable_if_negative(param) is only vulnerable if its parameter
is negative.

Consequently, the algorithm creates two function summaries for these functions that de-
scribe exactly these conditions under which each function is vulnerable.
The function main calls function f. Due to the bottom-up analysis order, f is analyzed
first. Analysis starts at the level of basic blocks. The basic blocks of the example program
are shown in the interprocedural control flowgraph depicted in Figure 4-3b.
Step 1⃝ of the exemplary analysis: The entry basic block of f does not contain any
vulnerable code and thus its summary contains the vulnerability condition false.
Step 2⃝ of the exemplary analysis: The if statement produces a branch in the control
flow, and the then block invokes the external function vulnerable_if_negative(q) in
line 16, which has a summary of size < 0. The summary is applied, and size is replaced
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by the argument q producing q < 0. The precondition for entering the basic block is
p > 0 and thus the complete basic block summary is q < 0 && p > 0.
Step 3⃝ of the exemplary analysis: The basic block representing the else-block has the in-
verted precondition p <= 0 and calls the function vulnerable() which has the summary
true. Therefore, the basic block summary is p <= 0 && true, which can be shortened
to p <= 0.
Step 4⃝ of the exemplary analysis: In the EXIT basic block of function f, the con-
trol flow merges, and it is vulnerable if any of the two incoming basic blocks are vul-
nerable. The summaries are combined using the Boolean-or operator that produces
(p > 0 && q < 0)) || (p <= 0).
Step 5⃝ of the exemplary analysis: The function main evaluates the assignments to the
variable a in line 4 and to variable b in line 6. In line 8, function f is called. Before the call,
it evaluates the first argument a + b to the value of 7 and the second argument a - b
to the value of -1. It then calls f(7, -1) using the previously calculated vulnerability
condition of the function f. Inserting the calculated argument values into the vulnerability
condition of f produces (7 > 0 && -1 < 0) || (7 <= 0), which evaluates to true and
consequently, the call of f produces a vulnerability condition of true. As the call is
located in the main function, the function main also gets a vulnerability condition of
true. This is evidence that a vulnerability exists whenever the main function is called
and consequently a security violation is reported for the main function.
To add more context, time::now() is a real-world function with a parameterless signature
like the exemplary function vulnerable() and is vulnerable to RUSTSEC-2020-00713.
Likewise, the function LZ4_decompress_generic is vulnerable to RUSTSEC-2022-00514

only if a negative value is passed as a parameter, similarly to the exemplary function
vulnerable_if_negative. Both of these vulnerabilities were discussed in Chapter 3.

3https://rustsec.org/advisories/RUSTSEC-2020-0071
4https://rustsec.org/advisories/RUSTSEC-2022-0051

https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2022-0051
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4.3.2 Analysis IR

The tool operates on a subset of MIR and HIR. The subset of MIR is a result of Re-
quirement R1 (No support for alias sensitivity, field sensitivity or array sensitivity, and
no support for dynamic function calls). A subset of HIR is used to support re-exported
functions, as a result of Requirement R6 (Support re-exported functions). For further
elaborations, the combined subset will be referred to as Analysis IR and is shown in
Figure 4-4.
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(see Figure 4-9)
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Local
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If Local.id < Function.numParameters, then this is a parameter localIf Local.id < Function.numParameters, then this is a parameter local

Expression

(from Figure 4-5)

Figure 4-4: Analysis IR

Analysis IR describes the part of the code that is available to the data-flow analysis
when analyzing a single crate. In order to support flows into external dependencies, the
type SummarizedExternalCrates contains summarized data-flow information of external
crates.
The program code of the analyzed crate is represented by the type Crate. It consists
of functions, and the control flow inside these functions is modeled using a control flow
graph. A basic block contains arbitrarily many regular statements and one terminator
statement at its end. Analysis IR supports five kinds of terminator statements: Switch,
Call, Goto, Return, and Unreachable.
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The Switch statement in Analysis IR represents a conditional jump to one successor
basic blocks. It defines one condition for each potential successor. At the MIR level, this
is referred to as the SwitchInt instruction, which involves a discriminant operand and
several immediate values to compare the operand to. In contrast, Analysis IR creates
explicit comparisons for each case, allowing data-flow analysis to use these comparisons
as preconditions at the start of a basic block.
The Call instruction is used to call an internal or external function. An internal function
call refers to a function within the same crate, while an external function call refers to
a function defined in an external crate or the Rust standard library via a fully qualified
function name. For external functions, a summary lookup is performed based on the
external summaries provided by the type SummarizedExternalCrates.
The Goto instruction is an unconditional jump to another basic block, while the Return
instruction leaves the current function and either returns the value of a local variable
or does not return a value in the case of a void function. The Unreachable statement
represents a program point that should not normally be reached, usually terminating the
program. For instance, this statement is generated by the Rust Macro panic.
The only regular statement supported by Analysis IR is the assignment statement. Anal-
ysisIR does not support assignments to or from fields, as a result of Requirement R1 (No
support for alias sensitivity, field sensitivity or array sensitivity, and no support for dy-
namic function calls). The assigned value is an expression that can be calculated with no
side-effects. The expression model is shown in Figure 4-5. The expression model consists

operatoroperator

local

operand
lhs
rhs

Local

(from Figure 4-4)

Expression
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Figure 4-5: Analysis IR: Expression Model

of five kinds of expressions: a local expression, a constant, an unsupported expression, a



Concept of the Static Code Analysis 46

binary expression and a unary expression. A binary expression has two operands and a
binary operator, which is either an arithmetical operator, comparison operator or boolean
operator. A unary expression has one operand and a unary operator, which is either a
negation or a Boolean-not operation. The constant expression refers to an integer, floating
point, String or Option value. Boolean values are encoded as integer values with false
being represented by the number zero and true by the number one, and the local expres-
sion refers to the value of a local variable. For strings, the analysis tracks if the string is
empty and for the Option type, the analysis tracks if the Option represents a missing or
present value (Option::None and Option::Some, respectively).

4.3.3 Abstract Domain

This subsection formally introduces the abstract domain that the analysis uses, showing
that it is a bounded semi-lattice, as introduced in Section 2.1.3. It starts by introducing
abstract values as tracked by the analysis and shows that they are a bounded semi-lattice.
The actual abstract domain of the analysis is a tuple of abstract values with a per-element
join operation, inheriting the bounded semilattice properties.
To represent these abstract value types, an expression model is introduced as shown in
Figure 4-6. The abstract domain contains the lattice elements Bottom (⊥) and Top (⊤).

operatoroperator

expression
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AbstractValue
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id: uint
Constant

Integer

value: BigInt

Float

value: BigFloat

String

empty: bool

Option

none: bool
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BinaryOp
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UnaryOp

(from Figure 4-5)

Figure 4-6: Abstract Values

A numeric value is represented by the type Constant supporting the same values as in
Analysis IR. A formula to calculate values based on other values is represented by the ex-
pressions UnopValue and BinopValue supporting one and two operands, respectively. The
operands are abstract values again to enable nesting of these expressions and expressing
more complicated formulas. Parameter values are represented by the type ArgumentExpr,
which refers to the numeric position of the parameter in the function signature. The ac-
tual value for the parameter is not known during analysis of the function, and therefore
these expressions serve as a marker representing the value of the parameter.
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Any expression that contains an ArgumentExpr, is called symbolic and can only be fully
evaluated when concrete values are provided for all ArgumentExpr in the expression.
Figure 4-7 shows an excerpt of the bounded semilattice that includes all possible instances
of the expression tree. The lattice is bounded by the Bottom and Top elements and the
middle area of the lattice contains all constants, all argument values, all binary operations
and all unary values. As there are infinitely many of these values, the diagram only shows
one instance of each type. The element Bottom (⊥) represents the initial value for a

⊤

⊥

. . .Arg(0). . .0. . . . . . Arg(0) + 1 . . . −Arg(0) . . .

Constants Arguments Binop Values Unary Values

Figure 4-7: Excerpt of Bounded Semilattice

variable before a value is assigned to that variable in the program code. The element Top
(⊤) represents the state of a variable that is obtained when multiple possible values are
joined. This can happen if multiple basic blocks with conflicting values for a single variable
enter the same successor basic block. This situation is called a join in the control-flow
graph and executes the Join operation on the set of values contributed by all predecessor
basic blocks to retrieve a single value for that variable to use going forward.
Listing 4-4 shows the code for the functions Join, Limit and Evaluate that interact with
abstract values. The Join operation combines the abstract values and returns the result-
ing joined abstract value. The join operation was formally introduced in Section 2.1.3
and calculates the least upper bound of the lattice shown in Figure 4-7.
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For this lattice, the following semantics are sufficient:

• The value ⊥ is the minimum value of the lattice and therefore joining any value
with ⊥ keeps the respective other value as the upper bound.

• The value ⊤ is the maximum value in the lattice, and therefore joining any value
with ⊤ must keep ⊤ as the upper bound.

• In general, the join of distinct elements that are unordered with respect to the
partial order ⊑ (in the middle area of the lattice) returns ⊤.

The Limit function limits the number of nodes in the expression tree to not exceed the
constant value K. This is necessary to prevent expressions from becoming too complex
for the analysis to handle efficiently and to prevent too much memory consumption at
run-time. If the limit is exceeded, then ⊤ is returned. The function Evaluate evaluates
parts of an expression that are not symbolic.

1 function Join(expressions)
2 expressions := expressions \ {⊥}
3 if expressions = ∅ then return ⊥ end if
4 if all expressions are equal then return expressions(0) end if
5 return ⊤
6 end function

8 function Limit(expression)

9 return

{
expression if number of tree nodes in expression ≤ K

⊤ else
10 end function

12 function Evaluate(expression)
13 evaluate the operations in each sub-expression of expression recursively
14 return Limit(⟨evaluated expression⟩)
15 end function

Listing 4-4: Operations on Abstract Values

Next, an algorithm for analyzing the program code on different levels of granularity is de-
signed, starting with one basic block and finishing with analyzing a complete dependency
tree.

4.3.4 Basic Block Analysis

This subsection explains the AnalyzeBasicBlock algorithm which analyzes a single basic
block in Analysis IR. This algorithm gathers data for each basic block which can be
used to create a function summary. For example, the function summary includes an
expression tree that outlines the function return value based on the arguments and the
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condition for which the function is vulnerable. The AnalyzeBasicBlock algorithm collects
this information on the basic block level, as demonstrated in Listing 4-5.
1 function AnalyzeBasicBlock(b)
2 State ← deep clone Incoming(b)
3 L ← Locals(State)
4 for each statement in ControlFlowOrder(Statements(b)) do
5 switch statement
6 case Assignment(lhs, rhs) ⇒ L(lhs) ← ReplaceLocals(rhs, L)
7 end switch
8 end for
9 switch Terminator(b)

10 case Call(f ′, Args, ReturnV ar) ⇒
11 L(ReturnV ar) ← Evaluate(ReplaceArgs(Returns(f ′), Args))
12 V ← Evaluate(ReplaceArgs(V ulnerableIf(f ′), Args) ∧ Precondition(State)))
13 V ulnerableIf(State) ← Evaluate(V ulnerableIf(State) ∨ V )
14 case Return(V ar) ⇒
15 Returns(f) ← Join(Returns(f), L(V ar))
16 V ulnerableIf(f) ← Evaluate(V ulnerableIf(f) ∨ V ulnerableIf(State))
17 end switch
18 for each succ ∈ Successors(b) do

19 Outgoing(b, succ) ←
{

SwitchTransition(State, b, succ) if Terminator(b) is Switch
State else

20 end for
21 end function

23 function ReplaceArgs(Expression, Arguments)
24 switch Expression
25 case ArgumentExpr(arg) ⇒ return Arguments(arg)
26 else recursive descend
27 end switch
28 end function

30 function ReplaceLocals(Expression, L)
31 switch Expression
32 case LocalExpr(local) ⇒ return L(local)
33 else recursive descend
34 end switch
35 end function

Listing 4-5: Summarizing one Basic Block

The variable State is used to represent the state of the basic block b, which is initialized
using the incoming state Incoming(b) that holds before the basic block. The algorithm
then updates the state by first evaluating the assignment statements and then the termi-
nator statement at the end of the basic block. This produces the outgoing state Post,
which holds after the basic block and will be the incoming state for its successor basic
blocks. If the terminator statement is a Switch statement, then the outgoing state can
differ for each successor basic block and is thus stored for each successor basic block
succ ∈ Successors(b) as Outgoing(b, succ).
The state of a basic block consists of the abstract values of the local variables represented
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by Locals(State) and L, the precondition Precondition(State) of the basic block and
the condition V ulnerableIf(State) that describes under which circumstances the state is
vulnerable.
The values of local variables, represented by Locals(State) and L, are initially set based
on the incoming state, which represents the abstract values available from the preceding
basic blocks. In the first for-loop, these values are then modified for each assignment
within the basic block. In Analysis IR, an assignment to a local variable uses an expression
on the right-hand side to define the value to assign. This expression can refer to other local
variables. The algorithm replaces any such references to local variables in the expression
with the actual value already known for them in L and evaluates the expression using the
Evaluate function, as explained in Section 4.3.3.
The terminator statement is the last statement in the basic block and is therefore handled
last. The call statement calls a function and assigns its return value to a local variable,
and this assignment affects the state of the current basic block. The return statement
adds any returned values to the set of values returned by the function Returns(f).
The Goto and Unreachable terminators, which only affect the control flow but do not
have any side effects on the current basic block; and the Switch terminator, which adds
new preconditions to the successor basic blocks.

4.3.5 Intraprocedural Analysis

This subsection describes the algorithm AnalyzeFunction that analyzes one function in
Analysis IR and creates a function summary for it.
As shown in Figure 4-8, a function summary contains two expressions. The first expression
represents the formula to calculate the return value and the second expression represents
the formula to calculate the condition for a vulnerability to be triggered when the function
is invoked.

returnValue

vulnerableIf
FunctionSummary AbstractValue

(from Figure 4-6)

Figure 4-8: Function Summary Model

The algorithm AnalyzeFunction is shown in Listing 4-6. It invokes the algorithm An-
alyzeBasicBlock as shown in Listing 4-5 to analyze the basic blocks contained in the
function. The algorithm starts by setting the incoming state for the entry basic block
Incoming(bentry) to the initial state of the function Initial. The initial state of the func-
tion is defined as follows: The vulnerable condition V ulnerableIf(Initial) is initialized
with false, as initially no vulnerable calls are known. The Precondition(Initial) is ini-
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tialized with true, because the initial basic block is entered unconditionally. The local
variables are initialized using the following convention: The first local variables represent
the parameter values of the function and are therefore initialized using an ArgumentExpr
refering to their respective parameter index. All other locals are initialized with ⊥. This
convention stems from the Mid-Level Representation and is used in Analysis IR as well.
1 function AnalyzeFunction(f)
2 p ← number of parameters of function f
3 Initial ← new empty state
4 Locals(Initial) ← (ArgumentExpr(0), . . . , ArgumentExpr(p),⊥, . . . ,⊥)
5 V ulnerableIf(Initial) ← false
6 Precondition(Initial) ← true
7 Incoming(bentry) ← Initial
8 AnalyzeBasicBlock(bentry)
9 worklist ← Successors(bentry)

10 while worklist ̸= ∅ do
11 Remove basic block b from worklist
12 Incoming(b) ← JoinStates({Outgoing(p, b) ∀p ∈ Predecessors(b)})
13 AnalyzeBasicBlock(b)
14 worklist ← worklist ∪ {succ ∈ Successors(b) where Outgoing(b, succ) has changed }
15 end while
16 return (Returns(f), V ulnerableIf(f));
17 end function

19 function SwitchTransition(State, b succ)
20 JumpCondition ← find jump condition from b to succ in Switch
21 Precondition(State) ← Evaluate(Precondition(State) ∧ JumpCondition)
22 return State
23 end function

25 function JoinStates(states)
26 State = new empty state
27 Precondition(State) ← Evaluate(Precondition(states(0)) ∨ . . . ∨ Precondition(states(n))
28 V ulnerableIf(State) ← Evaluate(V ulnerableIf(states(0)) ∨ . . . ∨ V ulnerableIf(states(n))
29 Locals(State) ← JoinLocals(Locals(states(0)), . . . , Locals(states(n))
30 return State
31 end function

33 function JoinLocals(locals)
34 return (Join(locals(0)(0), locals(1)(0), . . .), Join(locals(0)(1), locals(1)(1), . . .), . . .)
35 end function

Listing 4-6: Analyzing one Function

The algorithm uses a worklist to refer to functions that need analysis.
Initially, the analysis starts at the entry basic block and adds all successor basic blocks
to the empty worklist.
After that, the algorithm iterates over the worklist and each loop iteration takes one
item from the worklist which is the next basic block b to analyze. The algorithm com-
putes the incoming state Incoming(b) for the basic block by merging the outgoing states
Outgoing(p, b) of all predecessors of b as assigned by the last execution of the function An-
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alyzeBasicBlock. The loop continues until no successor state has to be updated anymore
and a fixed-point is reached. The algorithm returns the constructed function summary
consisting of the possible return values Returns(f) and the vulnerable condition for the
function V ulnerableIf(f).

4.3.6 Interprocedural Analysis

This subsection describes the algorithm AnalyzeProgram that analyzes in Analysis IR.
The algorithm is shown in Listing 4-7 and analyzes a crate by analyzing the functions in
the crate using the previously described algorithm AnalyzeFunction.
The analysis starts at the entry point functions of the crate. In response to Require-
ment R3 (Support application programs and software libraries), both application programs
and software libraries are supported. For an application crate the entry point function is
the function main and for library crates, all public functions are entry points, as they are
exported by the library and can be used by clients of the library.
The algorithm starts analyzing the entry point functions FE of the analyzed crate. If a
function f calls unsummarized functions FU , those functions are summarized before f .
This makes sure that the bottom-up order is adhered to. Otherwise, f is summarized
using the intra-procedural algorithm described in the previous subsection.
Recursive calls (detected through a pre-calculated call graph) receive special treatment.
If function f calls function g as part of a recursive cycle, then an empty function summary
is stored initially, and f is analyzed based on it, and f ’s (preliminary) function summary
is stored. Then g is analyzed based on this preliminary summary and so on, joining each
iteration’s summary with the previous one. The domain’s bounded semi-lattice properties
guarantee that this iteration reaches a fixed-point (i.e. the joined summary is eventually
identical to the previous iteration’s summary) in a finite amount of steps. The iteration’s
fixed-point is the algorithm’s final summary for a given function.
1 function AnalyzeProgram(FE)
2 worklist ← FE

3 while worklist ̸= ∅ do
4 f ← remove function from worklist
5 if f calls unsummarized functions FU without recursive cycles with f then
6 Append functions FU to the worklist
7 else
8 Summary(f) ← AnalyzeFunction(f)
9 if Summary(f) has changed then worklist := worklist ∪ Callers(f) end if

10 end if
11 end while
12 return (Summary(fe),∀fe ∈ FE)
13 end function

Listing 4-7: Analyzing one Crate
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4.4 Inter-Crate Analysis

As shown in the High-Level Architecture in Figure 4-1, the Cargo Subcommand calls the
Data-Flow Analyzer on each dependency tree node to perform a data-flow analysis across
the boundaries of single crates in response to Requirement R7 (Analyze across dependency
boundaries) and is referred to as inter-crate analysis in further elaborations.
The inter-crate analysis uses summaries for external crates as represented by the type
SummarizedExternalCrates shown in Figure 4-9. These external summaries are used to

∗

∗ ∗

∗

∗

SummarizedExternalCrates

SummarizedCrate HirReexportMap
HirFunctionReexport

originalName: String
reexportedNames: String[]

ExternalFunctionSummary

functionName: String
FunctionSummary

Includes information from HIR

Figure 4-9: AnalysisIR: Summarized External Crates

resolve calls into external crates, as mentioned in Section 4.3.4.
The result of analyzing one crate is represented by the type SummarizedCrate which
contains function summaries identified by their fully qualified function names. These
results are persisted and are available to be used in the analysis of dependent crates.
In Rust, functions can be re-exported for other modules using the keyword pub use. In
response to Requirement R6 (Support re-exported functions) all instances of pub use in
the code are identified in the HIR and the HirReexportMap is generated, which lists re-
exported functions as identified by their fully qualified name. A re-exported function is
represented by the type HirFunctionReexport, which contains the original name and the
reexported name of the function.
The algorithm AnalyzeDependencyTree as shown in Listing 4-8 calls the Data-Flow An-
alyzer for each crate in the dependency tree.
1 function AnalyzeDependencyTree(crates)
2 for each crate in ReverseTopologicalOrder(crates) do
3 load summaries ∀dep ∈ Dependencies(crate)
4 AnalyzeProgram(Entrypoints(crate))
5 persist generated summaries
6 end for
7 end function

Listing 4-8: Analyzing Dependency Tree
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This algorithm iterates over all crates in the dependency tree and creates summaries for
their entry point functions. The iteration happens such that dependencies are analyzed
before dependants. Such an ordering is guaranteed to exist because Cargo prevents re-
cursive dependencies between crates, and the partial order defined by dependencies is
therefore guaranteed to be cycle-free.
The crate that is associated with the vulnerability is part of the dependency tree, and
therefore it is also analyzed. This allows to identify other affected functions in the vulner-
able crate that were left out in an incomplete vulnerability specification, which is required
to satisfy Requirement R2 (Infer transitively affected functions in vulnerable crate).
The loop can be parallelized as long as it is guaranteed that dependencies are analyzed
before dependents. This makes it possible to execute each crate analysis in a different
process, which maps well to the compilation model used by Cargo and the Rust Compiler.

4.5 Report Findings

The last two steps of the High-Level Architecture in depicted in Figure 4-1 are to collect
the summaries and to report findings.
After all crates are summarized by the Data-Flow Analyzer, the Cargo Subcommand col-
lects the summaries and opens the summary for the top-level crate (on which the analysis
was originally started).
The vulnerability condition for the entry points is used to decide if a finding is reported.
For the values ⊥ and false, no vulnerability is reported, and for the values ⊤ and true,
a vulnerability is reported.
In the context of a Rust application program, the function main is the only entry point.
It has no function parameters, and therefore the vulnerability condition does not refer to
parameter values and can be evaluated to either of the four mentioned values.
In the context of Rust software libraries, the entry-point functions are exported functions
of the library as they can be called by dependents of the library. As regular functions
can have parameters, the vulnerability condition can depend on the parameter values and
cannot be evaluated but remains symbolic. If the vulnerability condition of an exported
library function remains symbolic, a vulnerability is reported. This is significant because
the data-flow analysis assesses the possibility of a vulnerability occurring with any pa-
rameter value of the function. Consequently, it must operate under the assumption that
the condition could evaluate to true for specific parameter values.
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The resulting rules for reporting findings at entry points are:

• The value ⊥ (bottom) and false report no vulnerability.

• The value ⊤ (top) and true report a vulnerability.

• Symbolic values that reference parameters report a vulnerability.

A limitation of the described design is that the format of the summaries does not enable
one to report the data-flow or call stack that leads to a vulnerable function call, as this
information are not included in the function summary. It is estimated that the format of
such data must be carefully designed to avoid a huge increase in the complexity of the
summaries.
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5 Implementation

This chapter illustrates the implementation of the static code analysis tool for automatic
vulnerability audits based on the design presented in Chapter 4. Section 5.1 outlines the
implementation of the Data-Flow Analyzer as shown in the high-level architecture de-
picted in Figure 4-1. Section 5.2 describes the implementation of the Cargo Subcommand
also shown in the high-level architecture. Section 5.3 outlines the implementation of the
persistable summary store, which is required to pass analysis results from one invocation
of the analyzer to another invocation of the analyzer and back to the Cargo Subcommand.
Section 5.4 outlines the implementation of the Analysis IR data structures and discusses
performance considerations as well as functionality to print the IR textually. Section 5.5
concludes this chapter and highlights insights gained during implementation phase of this
thesis.

5.1 Implementation of the Data-Flow Analyzer “flowcheck”

The Data-Flow Analyzer uses the Rust compiler as a library and adds a data-flow analy-
sis after the internal program representations are generated. This section describes the
implementation of this compiler extension. Listing 5-1 shows code that uses the Rust
compiler as a library.
1 #![feature(rustc_private)]
2 extern crate rustc_driver;
3 extern crate rustc_hir;
4 extern crate rustc_middle;
5 extern crate rustc_data_structures;
6
7 struct FlowcheckCallbacks;
8
9 fn main() {

10 let mut callbacks = FlowcheckCallbacks;
11
12 // 2) Run Compiler
13 let exit_code = rustc_driver::catch_with_exit_code(|| {
14 let args: Vec<String> = std::env::args().into_iter().collect();
15 rustc_driver::RunCompiler::new(&args, &mut callbacks).run()
16 });
17
18 // 3) Exit process with exit code from compiler
19 std::process::exit(exit_code);
20 }

Listing 5-1: Running the Compiler with Callbacks

The Rust Compiler consists of crates that contribute a well-defined part of the com-
piler’s functionality: The crate rustc_driver contributes the Compilation Driver, which
manages the compilation process and defines the behavior of the rustc Command Line
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Interface (CLI) programm. The crate rustc_hir contributes the High-Level Intermediate
Representation (HIR) and the crate rustc_middle contributes the Mid-Level Intermedi-
ate Representation (MIR).
The code in Listing 5-1 runs the compiler driver using the crate rustc_driver. Rust
provides a dedicated way to use parts of the Rust compiler as dependencies. This method
involves two changes to the top-level module of the client crate. First, the annotation
#![feature(rustc_private)] on line 1 acquires access to the Rust compiler internals.
Second, the individual crates that are required as dependencies are explicitly defined using
the keyword extern crate, as used in lines 2–5. This keyword does not allow to specify
the version of the dependency and therefore it makes the implementation dependent on
the specific version of the Rust toolchain that is installed. To ensure that the correct Rust
toolchain is used to compile the extension, the required toolchain is declared in the file
rust-toolchain.toml as shown in Listing 5-2.
1 [toolchain]
2 channel = "nightly-2023-04-16"
3 components = [ "clippy", "rustfmt", "rustc-dev", "rust-src", "rust-std", "llvm-

tools-preview" ]

Listing 5-2: Toolchain File Defines Required Rust Tools

The rustc_driver crate provides the trait1 Callbacks that allows a compiler extension
to contribute functionality, which is then invoked by the compiler driver at specific points
in time during the lifecycle of the compilation process. Listing 5-3 shows the definition of
the trait Callbacks,
1 pub trait Callbacks {
2 fn config(&mut self, _config: &mut interface::Config) {
3 }
4
5 fn after_parsing<’tcx>(
6 &mut self, _compiler: &interface::Compiler, _queries: &’tcx Queries<’tcx>
7 ) -> Compilation {
8 Compilation::Continue
9 }

10
11 fn after_expansion<’tcx>(
12 &mut self, _compiler: &interface::Compiler, _queries: &’tcx Queries<’tcx>
13 ) -> Compilation {
14 Compilation::Continue
15 }
16
17 fn after_analysis<’tcx>(
18 &mut self, _compiler: &interface::Compiler, _queries: &’tcx Queries<’tcx>
19 ) -> Compilation {
20 Compilation::Continue
21 }
22 }

1In Rust, Traits define abstract methods to be implemented by other types; similar to Java Interfaces.
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Listing 5-3: Trait Callbacks of the Rust Compiler

which also provides default implementations for each trait methods. The callback method
config is invoked before creating the compiler instance and allows to modify the in-
ternal configuration of the compiler. The after_parsing callback is called after the
source code is parsed, gives access to the parsed data-structures and allows to return
a value that decides whether to continue or stop the compilation process. Similarly,
the after_expansion and after_analysis callback methods are called after macro ex-
pansion and after program analysis, respectively and also allow to stop the compilation
process early.
The callbacks implemented by the type FlowcheckCallbacks are shown in Listing 5-4.

22 impl rustc_driver::Callbacks for FlowcheckCallbacks
23 {
24 fn config(&mut self, config: &mut rustc_interface::interface::Config) {
25 // Set config options
26 config.opts.unstable_opts.always_encode_mir = true;
27 config.opts.maybe_sysroot = find_sysroot(); // runs ‘rustc --print=sysroot‘
28 config.opts.debug_assertions = false; // disables overflow-checks (!)
29 config.opts.unstable_opts.mir_opt_level = Some(0);
30 config.opts.cg.panic = Some(rustc_target::spec::PanicStrategy::Abort);
31 }
32
33 fn after_analysis<’tcx>(
34 &mut self,
35 compiler: &rustc_interface::interface::Compiler,
36 queries: &’tcx rustc_interface::Queries<’tcx>
37 ) -> rustc_driver::Compilation {
38
39 // Abort if there are errors in the session
40 compiler.session().abort_if_errors();
41
42 // Get access to the global context (tcx)
43 queries.global_ctxt().unwrap().enter(|tcx| {
44
45 let hir = tcx.hir();
46 let mir = tcx.instance_mir(/*...*/);
47
48 // [analysis on HIR and MIR]
49
50 }
51
52 // Always continue to generate code so that artifacts of dependencies
53 // are built before being accessed by dependents
54 rustc_driver::Compilation::Continue
55 }
56 }

Listing 5-4: Implementation of Callbacks of Flowcheck
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The method config initializes the configuration of the Rust compiler. It specifies to
always generate MIR, defines the sysroot directory of the Rust Toolchain, disables
debug assertions, selects the MIR optimization level zero and sets the panic strategy
PanicStrategy::Abort. The debug assertions are disabled to disable overflow checks
when performing numeric operations on primitive numeric values, which makes the gen-
erated MIR code simpler to analyze. The panic strategy is changed because the default
panic strategy PanicStrategy::Unwind throws an exception whenever a panic is trig-
gered and generates instructions specific to exception-handling in the MIR. This is an
implicit control flow, which is currently not supported by the analysis. In contrast, the
selected panic strategy PanicStrategy::Abort aborts the program whenever a panic is
triggered (e.g. when an internal invariant of the Rust language is violated) by generating
the MIR statement Unreachable, which is supported by the analysis.
The method after_analysis is called after MIR code is generated. It is implemented by
the compiler extension to execute the data-flow analysis by first acquiring access to the
global context containing the generated MIR code and then executing the analysis on that
generated MIR code. The method always returns Compilation::Continue to ensure that
the complete compilation process is executed and compiled artifacts are created. This is a
requirement for compiling a dependency tree because the Rust compiler relies on compiled
artifacts being present for all dependencies of the currently compiled project.
In summary, it was possible to extend the Rust compiler from the outside and to use it
as a library by interfacing with the compiler directly using the keyword extern crate.
This dedicated method for dependency management diverges from the regular way to
manage dependencies in Rust: Crate dependencies are usually managed by the official
Package Manager Cargo. Here, the project configuration file Cargo.toml specifies the
dependencies of the project, and Cargo takes care of downloading, compiling, and linking
the dependencies. This method cannot be used to use crates from the Rust compiler as
dependencies because the Rust compiler depends on other parts of the Rust toolchain,
which are not managed using crates.
Still, it was possible to implement the Data-Flow Analyzer as a separate crate, which
has several benefits: The compiler extension does not need to be directly included in the
Rust compiler source code tree and it simplifies the installation of the tool as third-party
software. Still, a specific Rust toolchain must be installed to execute the tool.
In the future, the Stable MIR (SMIR) format, which was briefly introduced in Sec-
tion 2.5.5, might provide a stable serialization format that is common across different
versions of the Rust toolchain and mitigate this drawback.



Implementation 60

5.2 Implementation of the Cargo Subcommand
“cargo-flowcheck”

The design describes an extension to the Package Manager Cargo that enables the inter-
crate analysis. Cargo has the capability to compile a Rust crate including its dependencies.
The Cargo Subcommand “cargo-flowcheck” uses and refines this capability by delegating
invocations of the Rust Compiler to the extended Rust Compiler “flowcheck”, which also
performs the data-flow analysis on that crate.
This is possible by implementing the trait cargo::core::ops::Executor, which is used
to invoke the Rust compiler. The main function of the Cargo Subcommand “cargo-
flowcheck” is shown in Listing 5-5.

1 struct FlowcheckExecutor {
2 lockfile: PathBuf
3 }
4
5 fn main() {
6 // Parse command line arguments
7 let args: &Args = parse_command_line_arguments();
8
9 // Configure cargo using arguments

10 let mut config = cargo::Config::default().unwrap();
11 config.configure(args);
12
13 // Activate "cargo check" style compilation
14 let workspace = args.workspace(&config).unwrap();
15 let mut compile_opts = args.compile_options(
16 &config,
17 cargo::core::compiler::CompileMode::Check { test: false },
18 Some(&workspace),
19 cargo::util::command_prelude::ProfileChecking::Custom
20 ).unwrap();
21
22 // Open existing lockfile or generate new lockfile
23 let lockfile = workspace.root().join("Cargo.lock");
24 if !lockfile.exists() { cargo::ops::generate_lockfile(&workspace).unwrap(); }
25
26 // Compile with custom executor
27 let exec1: Arc<dyn Executor> = Arc::new(FlowcheckExecutor { lockfile });
28 cargo::ops::compile_with_exec(&workspace, &compile_opts, &exec1).unwrap();
29
30 // Load persisted summaries and display results
31 display_results();
32 }

Listing 5-5: Main function of the Cargo Subcommand “cargo-flowcheck”

The main function begins by parsing the command line arguments using the clap2 parser.

2https://crates.io/crates/clap

https://crates.io/crates/clap
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The command-line argument --json is defined to export the generated analysis results
into a JSON file for manual inspection or automatic evaluation. The command-line ar-
gument --target allows to define the target platform to use for the compilation. Rust
supports conditional compilation for a specific platform and platform specific code might
only be vulnerable on that specific platform. In such cases, the vulnerability can only be
detected when compiling for the vulnerable platform. This functionality is required by
Requirement R5 (Support analyzing platform-specific Rust code).
In line 14, Cargo is configured to use the check mode (CompileMode::Check). This
mode is usually used to only perform analyses on the source code. In line 23, the path
to the lockfile required for the dependency analysis is acquired and the lockfile is auto-
generated if it does not exist. In line 27, a FlowcheckExecutor is created and in line 28,
the compilation process is started using the custom executor.
Listing 5-6 shows the custom executor for the Cargo Subcommand “cargo-flowcheck”. It
implements the methods exec and force_rebuild.

34 impl cargo::core::compiler::Executor for FlowcheckExecutor {
35 fn exec(
36 &self,
37 cmd: &ProcessBuilder,
38 id: PackageId,
39 target: &Target,
40 mode: CompileMode,
41 on_stdout_line: &mut dyn FnMut(&str) -> CargoResult<()>,
42 on_stderr_line: &mut dyn FnMut(&str) -> CargoResult<()>,
43 ) -> CargoResult<()> {
44
45 // Construct new process builder
46 let mut cmd = cmd.clone();
47 cmd.program("flowcheck");
48 cmd.args(&["--cap-lints", "allow"]);
49 cmd.env("FLOWCHECK_LOCKFILE", &self.lockfile);
50
51 // Execute Command by delegating to default executor
52 DefaultExecutor.exec(&cmd, id, target, mode, on_stdout_line, on_stderr_line)
53 }
54
55 fn force_rebuild(&self, _unit: &Unit) -> bool {
56 true // No fingerprint => always reconstruct all summaries
57 }
58 }

Listing 5-6: Custom Executor for the Cargo Subcommand “cargo-flowcheck”

The method exec executes the Data-Flow Analyzer “flowcheck” and passes it additional
arguments and environment variables. First, it clones the immutable process builder in
line 46 to get writable access and make changes. The program name is set to flowcheck
and the additional argument --cap-lints allow is set. This setting prevents the com-
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piler from handling linting errors as fatal errors, which allows a data-flow analysis to be
performed even if there are linting warnings.
The environment variable FLOWCHECK_LOCKFILE passes the path to the lock file of the
analyzed project, which is necessary to perform the dependency analysis in “flowcheck”.
Passing values via environment variable has the benefit that the command-line interface
of the Rust compiler does not need to be changed.
The method force_rebuild always returns true to invalidate the file system-based cache
of compilation artifacts created by Cargo. The reason for this is a safety measure and
has to do with the way the cache operates. Cargo creates a fingerprint for the compiled
code based on properties such as version numbers and modification dates, to invalidate
the cache once any code contributing to the compilation was modified. The fingerprint
does not include information about the analysis results generated by flowcheck and thus
Cargo decides if a compilation is necessary only based on the compilation artifacts. In
case no analysis results are present, but compilation artifacts are present, then flowcheck
would not be called, and the respective results would be missing.
The tool does not use the regular target folder to persist compilation artifacts, to prevent
interference with regular Cargo builds. This is mainly because the tool sets compiler flags
that are specifically intended for static analysis. Persisting compilation artifacts that
were generated with these flags can result in the problem that the regular Cargo picks
them up in a regular compilation of the code that is performed afterwards. In order to
circumvent this problem, the tool uses a temporary directory as target folder by default,
and the command line switch --target can be used to set a specific target folder to
enable debugging uses cases.

5.3 Implementation of the Persistable Summary Store

The Cargo Subcommand cargo-flowcheck supports analyzing crates with dependencies,
but the compiler extension flowcheck only analyzes a single crate. Therefore, if a crate
has crate dependencies, flowcheck is invoked multiple times, once for each crate in the
dependency tree. The analysis results of each flowcheck execution are then persisted
on the disk and are picked up by later invocations of flowcheck when dependents are
analyzed. To persist these analysis results on the disk, the serialization framework serde3

is used, which enables serializing and deserializing Rust data structures by annotating
them with the annotations [derive(Serialize, Deserialize)]. Listing 5-7 shows the
data structures of the persistable summary store. The type SummaryFile is a persistable
datastructure and contains all data that are passed between analysis invocations.
The SummaryFile contains the version of the file format to support the detection of
3https://serde.rs/

https://serde.rs/
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summary files that are inconsistent with an evolved version of the schema. The name of the
crate that is summarized is also included to prevent applying summaries to inappropriate
crates. The PersistedSummaryStore is included in the file and stores the summaries of
all exported functions. For an application program, the summary of the main function is
persisted, and for a library, summaries for all public functions are persisted.
The re-export map contains the names of the re-exported items and allows the data-flow
analysis to analyze into functions that are re-exported using the keyword pub use4 and
are therefore present in several modules via different fully qualified names as described in
Section 4.4.

1 #[derive(Serialize, Deserialize)]
2 pub struct SummaryFile {
3 pub file_format_version: String,
4 pub crate_info: CrateInfo,
5 pub store: PersistableSummaryStore,
6 }
7
8 #[derive(Serialize, Deserialize)]
9 pub struct PersistableSummaryStore {

10 pub exported_functions: BTreeMap<String, PersistableFunctionSummary>,
11 pub reexport_map: BTreeMap<String, Vec<String>>,
12 }

Listing 5-7: Data structures for the Persistable Summary Store

5.4 Analysis IR

The Analysis IR is implemented using Rust structs and enumerations, and an excerpt is
shown in Listing 5-8. Rust Enumerations can have different attributes for each variant,
which makes them a candidate for modeling class hierarchies. In classical object-oriented
programming languages, inheritance is the predominant feature for implementing class
hierarchies. Classical inheritance enables one to extend classes that are not defined in
the same project. This means that it is not possible to know all subclasses statically at
compile time, and method calls on the class need to use dynamic dispatch to support
implementations in external subclasses. In contrast, Rust enumerations list every variant
explicitly in the definition of the enumeration, similar to sealed classes in Kotlin. Using
enumerations, a static dispatch can be performed, which is more efficient at run-time.
One potential drawback of this technique is that it is not possible to extend the IR from
the outside, but because the IR serves as an internal contract for several parts of the
analysis pipeline and is not visible outside of the tool, this is not considered a problem.

4https://doc.rust-lang.org/nightly/rustdoc/write-documentation/re-exports.html

https://doc.rust-lang.org/nightly/rustdoc/write-documentation/re-exports.html
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1 pub struct Program {
2 pub functions: Vec<Function>,
3 pub entry_points: BitSet,
4 }
5 pub struct Function {
6 pub basic_blocks: Vec<BasicBlock>,
7 pub num_parameters: usize,
8 pub num_locals: usize,
9 pub fqn: StringSymbol,

10 pub initial_summary: Option<FunctionSummary>,
11 }
12 pub struct BasicBlock {
13 pub statements: Vec<Statement>,
14 pub terminator: Terminator,
15 }
16 pub enum Statement {
17 Assign { lhs: LocalIndex, rhs: Expression },
18 }
19 pub enum Terminator {
20 Goto { target: BasicBlockIndex },
21 Switch { conditional_jumps: Vec<ConditionalJump> },
22 Call {
23 function: FunctionReference,
24 arguments: Vec<LocalIndex>,
25 return_value_local: Option<LocalIndex>,
26 goto_block: Option<BasicBlockIndex>
27 },
28 Return { value: Option<LocalIndex> },
29 Unreachable,
30 }
31 pub struct ConditionalJump {
32 pub condition: LocalIndex,
33 pub target: BasicBlockIndex
34 }

Listing 5-8: Excerpt of the Analysis IR data structures

The name of a function is stored in the attribute fqn, as a fully qualified name using the
type StringSymbol. This symbol is an index into a deduplicated symbol table storing
interned strings. This design has been shown to reduce the memory footprint of an
analysis (Kawachiya, Ogata, & Onodera, 2008) and can also lead to performance gains,
since functions are contained in a vector that is iterated by the hot part of the algorithm.
In this scenario, packing the data in the vector more densly allows for better spatial cache
locality, which can lead to less cache misses when reading from the vector often.
The Analysis IR supports printing to a textual syntax to enable debugging use cases.
Figure 5-1 shows the exemplary program that was first introduced in Section 4.3.1 as well
as the generated textual representation of the code in the Analysis IR.
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1 fn main() {
2
3 let a = 3;
4
5 let b = 4;
6
7 f(a + b, a - b);
8
9 }

10
11
12 fn f(p1: i32, p2: i32) -> {
13
14 if p1 > 0 {
15
16 vulnerable_if_negative(p2);
17
18 } else {
19
20 vulnerable();
21
22 }
23
24 }

(a) Rust Source Code

1 fn f0() { // entry point
2 bb0 {
3 $1 = 3;
4 $2 = 4;
5 $4 = $1 + $2;
6 $5 = $1 - $2;
7 $3 = f1($4, $5);
8 goto bb1;
9 }

10 bb1 { return; }
11 }
12 fn f1($1, $2) {
13 bb0 {
14 $3 = $1 > 0;
15 $8 = 0 == $3;
16 $9 = 0 != $3;
17 switch bb2 if $8, bb1 if $9;
18 }
19 bb1 { f2($2); goto bb4; }
20 bb2 { f3(); goto bb4; }
21 bb4 { return; }
22 }
23 extern fn f2($1);
24 extern fn f3();

(b) Analysis IR

Figure 5-1: Example Program and Corresponding Analysis IR

5.5 Conclusion

The implementation of the developed tool consists of the Data-Flow Analyzer flowcheck,
which extends the Rust compiler as well as the Cargo Subcommand cargo-flowcheck,
which extends the build tool Cargo. By extending these existing components, it was
possible to reuse functionality present in the Rust ecosystem, to be compatible with
existing technology as well as reduce the overall implementation work. The compilation
cache of Cargo has been disabled to prevent relying on invalid earler analysis results. This
results in the complete recompilation and re-analysis of the source code each time the tool
is executed but is was estimated to be crucial to prevent unintended interference with the
regular Cargo builds. To support caching of these results, the fingerprinting system of
Cargo could be further adapted to include data about the persistable summary store.
The implementation of the Analysis IR employs best practices of software engineering
and uses internal representations that are best suitable for the access patterns that are
common in a static analysis tool.
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6 Evaluation

In this chapter, the developed tool cargo-flowcheck for automatic vulnerability audits
is evaluated. The experimental setup used throughout the evaluation is described in
Section 6.1. In Section 6.2, a microbenchmark is introduced that was developed in the
context of this thesis to test cargo-flowcheck’s support for individual features of the Rust
language, and the results are discussed. In Section 6.3, the support of the tool to identify
vulnerabilities with affected parameters is evaluated. In Section 6.4, the tool is executed
on a larger set of published Rust programs to identify findings and measure run-time
performance. In Section 6.5 possible threats to the validity of these results are discussed.
In Section 6.6, reproducibility of the results presented in this evaluation is addressed. In
Section 6.7, the key findings and limitations discovered in the evaluation are concluded.

6.1 Experimental Setup

To increase the reproducibility of the evaluation, the setup comprising its hardware and
software components is described in this section. The evaluation was carried out on
a MacBook M1 Pro Model 18.1 machine with the following system specifications and
analysis parametrization:

• CPU: 10 cores, 3.2 GHz

• RAM: 16 GB

• Architecture: ARM (64-Bit)

• Operating System: Mac OS Ventura 13.6

• Rust Nightly Toolchain, version nightly-2023-04-16

• Parameter K = 30 (Complexity Limitation)

The Rust Nightly Toolchain, version nightly-2023-04-16, was used to carry out the
evaluation. The nightly version was selected because it is required by the developed
tool. The developed tool depends exactly on this version of the Rust toolchain because it
accesses the internal data structures of the Rust Compiler in version nightly-2023-04-16
and thus requires this version of the toolchain to be used. The value for the parameter K

that limits the complexity of expressions as introduced in Section 4.3.3 is provided here
to increase the reproducibility of the evaluation. The value was chosen as a compromise
between performance and precision. Identifying the optimal value for K was beyond the
scope of this thesis and can be studied in future work. However, by randomly selecting
some sample programs, we achieved reasonably precise results with K = 30.
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6.2 Evaluation of Support for Rust Language Features

It was deliberately decided that the tool focuses on a subset of Rust’s Mid-Level Interme-
diate Representation (MIR), and therefore it is expected that not all language features of
the Rust language are supported. It is not straightforward to predict in advance which
language features will be supported by the tool, as the MIR is created by transforming
the Rust source code into an internal representation, and multiple language features may
be mapped to the same patterns in the MIR. Therefore, a microbenchmark consisting of
test cases for individual Rust language features was developed in the context of this thesis
to test cargo-flowcheck’s support for these features on the Rust source code level.
The supported Rust language features of the tool are evaluated using a microbenchmark1

that was developed in the context of this thesis and consists of a set of positive and
negative test cases. The Rust Book2 was used to infer a set of 44 language features that
were used to build the microbenchmark testing these features, and for each language
feature represented in the microbenchmark there are multiple tests for assessing different
aspects of that feature. In total, the microbenchmark contains 178 test cases.
The microbenchmark is designed so that for each feature tested there are both positive
and negative tests. The positive tests expect to find a vulnerability, and the negative
tests expect to find no vulnerability. This is important because unsupported language
features might result in either a false positive or a false negative test. Thus, both the
positive test and the negative test must pass in order for a language feature to be marked
as supported. Figure 6-1 shows one pair of positive and negative tests that assess the
support to assign a value to a mutable variable. The functions assert_vulnerable and
assert_not_vulnerable are provided by the microbenchmark and are used to define a

1 #[test]
2 fn test_positive_variable_mutable() {
3 assert_vulnerable(quote! {
4 fn main() {
5 let mut a = false;
6 a = true;
7 vulnerable_if(a);
8 }
9 });

10 }

(a) Positive Test Asserts Vulnerability

1 #[test]
2 fn test_negative_variable_mutable() {
3 assert_not_vulnerable(quote! {
4 fn main() {
5 let mut a = true;
6 a = false;
7 vulnerable_if(a);
8 }
9 });

10 }

(b) Negative Test Asserts No Vulnerability

Figure 6-1: Testing the Assignment to a Mutable Variable

1Folder masterthesis-implementation/microbenchmark in submitted zip file
2https://doc.rust-lang.org/book

https://doc.rust-lang.org/book
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positive or negative test, respectively. The test code uses special functions vulnerable
and vulnerable_if. The microbenchmark provides summaries that define the func-
tion behavior: The function vulnerable triggers a vulnerability unconditionally and the
function vulnerable_if receives a Boolean argument and triggers a vulnerability if the
argument is true.
This setup allows to calculate the number of true positives, true negatives, false positives,
and false negatives. These numbers are then used to calculate the precision and recall of
the results.

6.2.1 Results of Microbenchmark

The results of the microbenchmark are shown in Table 6-1. There are only 16 of all 44
language features, which passed all tests. This is quite a low number. For each language
feature, the column True Positives shows the number of positive tests that passed, as
well as the total number of positive tests, and likewise the column True Negatives shows
the number of negative tests that passed and the total number of negative tests. Passing
positive tests are counted as true positives, and passing negative tests are counted as true
negatives. Failing negative tests are counted as a false positive result, and failing positive
tests are counted as a false negative result. In total, there are 78 true positives, 54 true
negatives, 36 false positives, and 10 false negatives. The calculated precision is 68.4% and
the calculated recall is 88.6%.
The microbenchmark shows that 28 of 44 language features are not fully supported. There
are seven reasons that have been identified as the cause of this, which will be discussed
next.
The first reason is that the analysis lacks field sensitivity, array sensitivity, and alias
sensitivity. This causes the test cases for the Slice Type, Tuple Type, Arrays, Structs and
References to fail.
The second reason is that the analysis only supports a subset of Rust Types. The Char-
acter Type, Enum Types, Result Type and Function Pointers are not supported in the
abstract domain, and therefore the corresponding tests fail. To support Function Pointers,
both the abstract domain and call handling need to be extended.
The third reason is that Boolean Operators are transformed into multiple basic blocks
by the Rust Compiler, which are harder to analyze. According to the Rust Book3, the
Boolean Operators && and ∥ have short-circuiting semantics and the right-hand side of
the operator is conditionally evaluated depending on the value of the left-hand side. The
Rust Compiler generates a code pattern with multiple basic blocks. The operator value is
then calculated using the switch instruction, which joins the results of those basic blocks.
3https://doc.rust-lang.org/book/appendix-02-operators.html

https://doc.rust-lang.org/book/appendix-02-operators.html
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If the values differ, then the analysis over-approximates, which leads to a false positive
finding in the microbenchmark.
The fourth reason is that a model of the Rust Standard Library is missing. The Rust
Standard Library contains additional data structures, like Collection Types, Iterators and
Smart Pointers. The corresponding tests fail because the behavior of these data structures

Tested Language Feature True Positives True Negatives Passed all tests
Variables 3/3 3/3 ✓

Constants 2/2 0/2 ✗
Integer Overflow 0/1 1/1 ✗

Numeric Type Casts 2/2 2/2 ✓
Arithmetic Operators 6/6 6/6 ✓

Boolean Operators 6/6 4/6 ✗
Bitwise Operators 3/4 0/4 ✗

Comparison Operators 7/7 7/7 ✓
Boolean Type 2/2 2/2 ✓

Character Type 1/1 0/1 ✗
String Literals 2/2 0/2 ✗

Tuples 1/1 0/1 ✗
Arrays 1/1 0/1 ✗

Block Expression 1/1 1/1 ✓
Parameter Passing 1/1 1/1 ✓

Comments 1/1 1/1 ✓
If Statement 1/1 1/1 ✓
If Expression 4/4 2/4 ✗

Loops 4/4 4/6 ✗
Slice Type 0/1 1/1 ✗
References 1/2 1/2 ✗

Structs 1/1 0/1 ✗
Methods 2/2 2/2 ✓

Enum Types 0/1 1/1 ✗
Match Expression 2/2 1/2 ✗
Match Statement 1/1 1/1 ✓

Option Type 2/2 0/2 ✗
Modules 1/1 1/1 ✓

Collection Types 3/3 0/3 ✗
Panic 1/1 1/1 ✓

Result Type 0/3 3/3 ✗
Traits 1/2 2/2 ✗

Iterators 1/1 0/1 ✗
Smart Pointers 4/4 0/4 ✗

Deref Trait 1/1 0/1 ✗
Trait Objects, Dynamic Calls 2/2 1/2 ✗

Pattern Matching 1/1 0/1 ✗
Unsafe Block 1/1 1/1 ✓

Pointers 1/1 0/1 ✗
Type Aliases 1/1 1/1 ✓

Function Pointers 0/1 1/1 ✗
Return Closure from Function 1/1 0/1 ✗

Macros 1/1 1/1 ✓

Table 6-1: Supported Rust Language Features



Evaluation 70

are not modeled. of the Rust Standard Library is missing.
The fifth reason is that Rust Constants are not explicitly supported by the analysis. In
MIR, constants are handled as global entities, even if they are defined within a function.
To support constants in the analysis, the subset of supported MIR instructions needs to
be extended.
The sixth reason is that the static analysis does not check for overflows of numeric values,
which causes the integer overflow to be undetected and the corresponding tests to fail.
The seventh reason is that dynamic calls are not handled by the analysis, and therefore
language features that depend on them are not supported. Trait methods allow dynamic
dispatch in Rust and use dynamic calls. These dynamic calls are assumed to refer to
the default implementation of the Trait if it exists. Test cases that define traits without
a default implementation show that no function is called. Instead of this behavior, the
analysis should correctly identify that the method is called on types that implement the
trait based on a type hierarchy or callgraph.

6.3 Evaluation of Support for Vulnerabilities with Affected
Parameters

The support for vulnerabilities with affected parameters is evaluated using a second mi-
crobenchmark4 developed in the context of this thesis. This microbenchmark uses a
synthetic RustSec Database that includes the definition of 10 vulnerabilities, each test-
ing individual aspects of a specification of affected parameters. The test code in the
microbenchmark is defined in a library crate, and all test functions are defined as public
functions. The tool analyzes all public functions and creates vulnerability reports for each
of them. The microbenchmark defines one positive and one negative test for each feature
tested. Table 6-2 shows the test code and the definition of a vulnerability for testing the

1 fn less_than_one(value: i32) { }
2
3 pub fn test_positive_less_than() {
4 less_than_one(0);
5 }
6
7 pub fn test_negative_less_than() {
8 less_than_one(2);
9 }

(a) Test Code: Positive And Negative Test

[affected.parameters]
"test::less_than_one" = [

{
parameter = 1,
operator = "<",
rust_type = "i32",
rust_value = "1"

}
]

(b) Vulnerability Definition

Table 6-2: Testing Operator Less Than

4Folder masterthesis-implementation/extension-benchmark in submitted zip file
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less than operator. The results of all tests are shown in Table 6-3. The operators are

Tested Feature True Positives True Negatives Passed all tests
Operator < 1/1 1/1 ✓
Operator <= 1/1 1/1 ✓
Operator > 1/1 1/1 ✓
Operator >= 1/1 1/1 ✓
Operator == 1/1 1/1 ✓
Operator != 1/1 1/1 ✓
Option::None 1/1 1/1 ✓
Empty String 1/1 1/1 ✓
Boolean true 1/1 1/1 ✓
Boolean false 1/1 1/1 ✓

Table 6-3: Supported Specifications of Affected Parameters

tested by passing an integer i32 to the vulnerable function as the first parameter. All
test cases for the microbenchmark pass.

6.4 Macrobenchmark

The objective of this part of the evaluation is to run the tool on real-world applications
to measure the runtime performance of the data-flow analysis and to obtain first insights
into the quality of the findings.
The evaluation is performed by running the developed tool on a set of crates that are
publicly available in the Rust Package Registry. The data set consists of 430 crates5

selected at random but containing at least one vulnerable dependency in their Cargo.lock
file and are compilable on the evaluation system. The tool is then executed iteratively on
each crate, and the timings and findings are recorded and persisted. If the total execution
time of the tool exceeds 60 minutes, the analysis will be stopped, and the corresponding
crate will be marked to exceed the time limit during the analysis.
The findings that are reported by the tool during the evaluation are recorded and analyzed
afterward to get insights into the quality of the reported findings. Additionally, the total
analysis time is measured, which is the duration in which the tool analyzes the complete
dependency tree. The individual analysis duration for each crate in the dependency tree
is measured, and then the sum is calculated afterwards to acquire the total analysis time.

5File masterthesis-implementation/macrobenchmark/compilable.txt in submitted zip file
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6.4.1 Results of Macrobenchmark

During the evaluation of 430 crates, 150 crates exceeded the maximum execution time of
60 minutes and were removed from the evaluation in retrospect. Figure 6-2 shows the
distribution of the analysis time. The figure only includes data for the 280 crates6 for
which the total execution time of the tool was below 3600 seconds and does not show the
150 cases that exceeded this limit. For these remaining 280 crates, the data7 shows that in
270 cases (96.4%), the analysis finishes in less than 600 seconds (10 minutes). These 270
cases correspond to 62.7% of the total 430 crates. 1358 of the 150 cases (90%) exceeding
the execution time limit take a long time analyzing the library unicode-normalization,
which they use as an external dependency. This library contains a function consisting
of a match statement with more than 700 comparisons between a character and a range.
This check causes the analysis to run into a complexity problem. Section 6.4.2 analyses
this problem in detail and identifies possible mitigations for future work. This problem
was not identified in the evaluation of the microbenchmark because the problem relies on
repetitive code, but the microbenchmark is designed to test only one language feature at
a time. In summary, it has been identified that the analysis finishes in under 10 minutes
in 62.7% of all cases and finishes in less than one hour in 65.1% of all cases. In 34.9% of
the cases, the total execution of the tool exceeds the limit of one hour, and for 90% of
those cases exceeding the limit, the reason is known and a possible mitigation was found

Figure 6-2: Distribution of Analysis Time

6File masterthesis-implementation/macrobenchmark/finished-below-one-hour.txt in submitted
zip file

7File masterthesis-implementation/macrobenchmark/analysis-times.txt in submitted zip file
8File masterthesis-implementation/macrobenchmark/dependents-of-unicode-normalization.txt
in submitted zip file
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that could also positively influence the analysis time of the other cases.
The findings for the crates that cargo-flowcheck finished analyzing within the time limita-
tion (286 crates), are discussed next. There are 138 crates that use an external dependency
with a potential vulnerability that specifies the affected functions in the vulnerability def-
inition. The tool can only check the data-flow for these 138 cases, where the affected func-
tions are known. The tool found two vulnerable crates, rzip-0.9.6 and weblab-0.2.27.
In both cases the vulnerability RUSTSEC-2020-00719 (Potential segfault in the time crate),
was found, which was already discussed in Section 3.3.1.
Therefore, there are two positive cases where crates are identified as vulnerable and 136
negative cases where crates are identified as not vulnerable. To verify these results, the
source code of the analyzed crates is inspected next. In one positive case, the tool found
the vulnerability in the function main of the application program rzip-0.9.610. This is
a simple command-line interface (CLI) tool for managing compressed files. This finding
is a true positive, since the application invokes the vulnerable function time::now().
The function calls that are involved in the vulnerability are shown below:

1. rzip::main()11 (entry point)

2. rzip::Zipper::archive()12

3. rzip::Zipper::append_entry()13

4. zip::write::FileOptions::default()14

5. time::now() (vulnerable)

The other positive case is found in the crate weblab-0.2.27, which contains two vulner-
able functions: main and error_main. This crate is a software library that can be used
to generate assignments to practice single concepts of Rust. Both functions main and
error_main are public and, therefore, exported by the library. The tool correctly handles
both of these functions as entry points and scans for possible vulnerabilities in each. Both
of these functions are actually vulnerable, and therefore the crate is correctly identified
as vulnerable.

9https://rustsec.org/advisories/RUSTSEC-2020-0071
10https://crates.io/crates/rzip/0.9.6
11https://github.com/mass10/rzip/blob/b8ea0caf79e7/src/main.rs#L59
12https://github.com/mass10/rzip/blob/b8ea0caf79e7/src/application/core.rs#L90
13https://github.com/mass10/rzip/blob/b8ea0caf79e7/src/application/core.rs#L78
14https://github.com/zip-rs/zip/blob/7edf2489d5cf/src/write.rs#L101

https://rustsec.org/advisories/RUSTSEC-2020-0071
https://crates.io/crates/rzip/0.9.6
https://github.com/mass10/rzip/blob/b8ea0caf79e7/src/main.rs#L59
https://github.com/mass10/rzip/blob/b8ea0caf79e7/src/application/core.rs#L90
https://github.com/mass10/rzip/blob/b8ea0caf79e7/src/application/core.rs#L78
https://github.com/zip-rs/zip/blob/7edf2489d5cf/src/write.rs#L101
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The function calls that are involved in the vulnerability are shown below:

1. weblab::main()15 (entry point)

2. weblab::error_main()

3. weblab::generate_zip()

4. zip::write::FileOptions::default()

5. time::now() (vulnerable)

In one negative case, the tool found no vulnerability in the code of the rustcat-1.1.0 ap-
plication program, which is a network application that enables listening to network ports.
The dependency analysis identified the potential vulnerability RUSTSEC-2021-011916 (Out-
of-bounds write in nix::unistd::getgrouplist) in the dependency nix-0.20.0 with the af-
fected function nix::unistd::getgrouplist. The dependency tree visualized by the
tool cargo tree17 showed that this dependency is only used by the intermediate depen-
dency rustyline-8.2.018. This dependency was further analyzed and it was identified
that it does not invoke the affected function nix::unistd::getgrouplist. Therefore,
this negative finding is a true negative and shows that the precision of the results in-
creases when the analyzed program does not call any affected function of a vulnerable
dependency.
In another negative case, the tool found no vulnerability in the code of the heatmap-0.6.4
software library that generates heatmaps and histograms. The dependency analysis iden-
tified the potential vulnerability RUSTSEC-2020-007119 (Potential segfault in the time
crate) in the dependency time-0.1.45, which was discussed in Section 3.3.1. The an-
alyzed library does not call any affected functions of the crate time. Therefore, this
negative finding is a true negative and shows that the precision of the results increases
when the analyzed program does not call any affected function of a vulnerable dependency.
The total number of analyzed crates including all dependencies is 11.195 (40 dependencies
on average per top-level crate), underlining the relevance of an inter-crate approach.
212 (74%) crates have a nonempty re-export map. This means that they use the keyword
pub use to re-export functions into different modules, and this re-export is visible to the
dependents of the crate, underlining the relevance of this feature.

15https://gitlab.ewi.tudelft.nl/cese/software-fundamentals/weblab-rs/-/blob/
b2eddaa4913f/weblab/src/cli.rs#L738

16https://rustsec.org/advisories/RUSTSEC-2021-0119
17https://doc.rust-lang.org/cargo/commands/cargo-tree.html
18https://crates.io/crates/rustyline/8.2.0
19https://rustsec.org/advisories/RUSTSEC-2020-0071

https://gitlab.ewi.tudelft.nl/cese/software-fundamentals/weblab-rs/-/blob/b2eddaa4913f/weblab/src/cli.rs#L738
https://gitlab.ewi.tudelft.nl/cese/software-fundamentals/weblab-rs/-/blob/b2eddaa4913f/weblab/src/cli.rs#L738
https://rustsec.org/advisories/RUSTSEC-2021-0119
https://doc.rust-lang.org/cargo/commands/cargo-tree.html
https://crates.io/crates/rustyline/8.2.0
https://rustsec.org/advisories/RUSTSEC-2020-0071
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6.4.2 Complexity Problem Analysis

During analysis of 135 crates (including the crate taos-optin-0.7.020), the external de-
pendency unicode-normalization21 was analyzed. This library provides functionality
for unicode character composition and decomposition. During analysis, the tool spends
most of the time analyzing the function is_public_assigned22 and does not finish af-
ter a time span of 60 minutes, hinting at a combinatorial explosion in the algorithm
AnalyzeBasicBlock.
The function is_public_assigned consists of 710 lines of Rust code, and an excerpt is
shown in Figure 6-3a. The function checks consecutively if a character is within a specific
range using Pattern Matching. To test if a character is within a range, both the lower
and upper bounds are tested, each with one comparison. Depending on the outcome of
the comparison, different basic blocks are branched to.
This branch in the control flow graph causes the algorithm to add two successor basic
blocks to the worklist. While two worklist items are added, the algorithm pops one element
at a time from the worklist causing the worklist to grow. The basic blocks that remain
on the worklist are not processed until the analysis reaches the bottom of the function for
the first time. At this point, the remaining basic blocks that are still on the worklist start
to be visited for the first time. Pairs of consecutive basic blocks have a common successor
basic block (in Figure 6-3b both basic blocks bb0 and bb1 have a common successor bb2,
same holds for bb2, bb3 and bb4 and so on). This leads to the scenario that the remaining
basic blocks on the worklist are predecessors to already visited basic blocks, which are
then visited a second time. Each basic block performs an assignment to a local variable,
which is used by the same basic block for the jump condition of the switch statement.
Because of this assignment, the state of the lattice changes. This happens for each basic
block.
There are an exponential number of combinations of local variables that are either initial-
ized or not yet initialized, and therefore the lattice state differs at the beginning of each
basic block for an exponential number of cases. This is an exponential explosion in the
complexity for the analysis depending on the number of variables. However, the algorithm
is bound to terminate eventually. Although the variables holding the jump conditions are
only used locally in one basic block by the corresponding switch statement, they prevent
reaching a fixed point on the function level. As a solution, a live-variable analysis could
be integrated into the approach to detect variables that are only used locally within one
basic block and keeps these values out of the basic block summary. It has been identified

20https://crates.io/crates/taos-optin/0.7.0
21https://crates.io/crates/unicode-normalization/0.1.22
22https://github.com/unicode-rs/unicode-normalization/blob/master/src/tables.rs#L33573

https://crates.io/crates/taos-optin/0.7.0
https://crates.io/crates/unicode-normalization/0.1.22
https://github.com/unicode-rs/unicode-normalization/blob/master/src/tables.rs#L33573
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1 #[inline]
2 fn is_public_assigned(c: char) -> bool {
3 match c {
4 ’\u{0000}’..=’\u{0377}’
5 | ’\u{037A}’..=’\u{037F}’
6 | ’\u{0384}’..=’\u{038A}’
7 | ’\u{038C}’
8 | ’\u{038E}’..=’\u{03A1}’
9 | ’\u{03A3}’..=’\u{052F}’

10 | ’\u{0531}’..=’\u{0556}’
11 | ’\u{0559}’..=’\u{058A}’
12 | ’\u{058D}’..=’\u{058F}’
13 | ’\u{0591}’..=’\u{05C7}’
14 | ’\u{05D0}’..=’\u{05EA}’
15 | ’\u{05EF}’..=’\u{05F4}’
16 | ’\u{0600}’..=’\u{070D}’
17 | ’\u{070F}’..=’\u{074A}’
18 | ’\u{074D}’..=’\u{07B1}’
19 | ’\u{07C0}’..=’\u{07FA}’
20 | ’\u{07FD}’..=’\u{082D}’
21 | ’\u{0830}’..=’\u{083E}’
22 | ’\u{0840}’..=’\u{085B}’
23 // (690 cases omitted)
24 => true,
25 _ => false,
26 }

(a) Excerpt of Rust Code

1 bb0 {
2 $1274 = unsupported <= $1;
3 $1276 = 0 == $1274;
4 $1277 = 0 != $1274;
5 switch bb2 if $1276, bb1 if $1277;
6 }
7 bb1 {
8 $1275 = $1 <= unsupported;
9 $1278 = 0 == $1275;

10 $1279 = 0 != $1275;
11 switch bb2 if $1278, bb1276 if $1279;
12 }
13 bb2 {
14 $1272 = unsupported <= $1;
15 $1280 = 0 == $1272;
16 $1281 = 0 != $1272;
17 switch bb4 if $1280, bb3 if $1281;
18 }
19 bb3 {
20 $1273 = $1 <= unsupported;
21 $1282 = 0 == $1273;
22 $1283 = 0 != $1273;
23 switch bb4 if $1282, bb1276 if $1283;
24 }
25
26 // (1274 basic blocks omitted)

(b) Excerpt of Analysis IR

Figure 6-3: Function unicode normalization::tables::is public assigned

that the Rust compiler already performs this live-variable analysis, and the MIR includes
special instructions StorageLive and StorageDead marking the lifetimes of individual
local variables. These instructions are currently not part of the supported subset of MIR.
Modifying the original source code to include a specific amount of range checks resulted
in the execution times shown in Table 6-4. The factor represents for each row the ratio

#range checks execution time factor
10 89 ms —
20 152 ms ×2.0
30 355 ms ×2.4
40 757 ms ×2.3
50 1538 ms ×2.0
60 2779 ms ×1.8
50 4768 ms ×1.7
60 7533 ms ×1.6
70 11483 ms ×1.5
80 16898 ms ×1.5
90 23810 ms ×1.4

100 32732 ms ×1.3

Table 6-4: Number of Range Checks and Analysis Time
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between the execution time and the previous execution time rounded to one decimal place.
The data suggests an exponential relationship between the number of range checks and
the resulting execution time.
Replacing all range checks in the original code by matches against a single value reduces
the analysis time of the function to 83ms, which is in an expected range.

6.5 Threats to Validity

Wohlin et al. (2012) provide a checklist to identify threats to the validity of experiments in
software engineering. This checklist incorporates the conclusion validity, internal validity,
construct validity, and external validity.
According to Wohlin, the conclusion validity is threatened if there are “issues that affect
the ability to draw the correct conclusion about relations between the treatment and
the outcome of an experiment”, including issues of low statistical power, violation of
assumptions of statistical tests, and threats of fishing and incorrect significance levels in
statistical tests.
The conclusion validity of the evaluation performed in this thesis is threatened because it
verifies the correctness of the results only by checking a small sample size. No false positive
cases were detected; still a larger sample size could have revealed false positive cases. Two
true positives were detected, showing that the approach can detect vulnerabilities, but
it cannot be concluded how reliably these vulnerabilities are found on the basis of the
small sample size. Two negative cases were investigated and were both found to be true
negatives. Still, this does not show the absence of false negative cases, and investigating
more negative cases could have revealed the existence of false negative results.
According to Wohlin, the internal validity is threatened if there are “influences that
can affect the independent variable with respect to causality, without the researcher’s
knowledge”, including the influence of selecting individual cases from a larger group of
cases and the influence of testing only a single time.
The internal validity of the evaluation performed in this thesis is threatened, because the
microbenchmark is designed to test a limited set of language features that are mentioned
in the Rust Book. Still, it is expected that this source contains the most relevant language
features of the Rust language. Moreover, the measured run-times are only tested once
and could therefore be dependent on external factors on the evaluation machine. Still, by
using a larger dataset of 430 crates, the effect of an individual measurement on the whole
result is expected to be reduced.
According to Wohlin, the construct validity is threatened if there are “concerns gener-
alizing the result of the experiment to the concept or theory behind the experiment”,
including design threats related to levels of constructs. Here, the level of support for a
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construct has an influence on the result of the evaluation.
The construct validity of the evaluation performed in this thesis is threatened because of
the architectural decision not to report the data-flow that leads to the vulnerability to
the user. This is a limitation of the design reducing the possibility to verify individual
data-flows in the evaluation. If a crate is vulnerable in the code, but the tool found a false
data-flow as evidence for the correct vulnerability, then the evaluation might incorrectly
treat this as a true positive, while in reality, there are both a false positive (for the
invalidly wrong data-flow) and a false negative (for this missing actual data-flow). To
mitigate this problem in the context of this evaluation, debugging code was temporarily
added to the tool allowing one to get insights into the nature of the identified data-flows
and confirming their correctness.
According to Wohlin, the external validity is threatened if there are “conditions limiting
the ability to generalize the results of the experiment to industrial practice” including the
interaction of selection and treatment, the interaction of setting and treatment, and the
interaction of history and treatment.
The external validity of the evaluation performed in this thesis is threatened, because the
macrobenchmark only analyzes a selected number of crates and rejects crates that do not
compile in the evaluation system or do not contain a vulnerable dependency. To mitigate
this threat, the crates were randomly selected, and it was tested for a small number of
cases that a crate with no vulnerable dependencies does not report any vulnerability as
required by the High-Level Architecture.
Another threat to the external validity is that crates were discarded in the macrobench-
mark whenever the total execution time of the tool exceeded one hour, which limits the
ability to generalize the measured run-times. To mitigate the threat, a qualitative analysis
was performed in Section 6.4.2 that affects 90% of all cases exceeding the time limit.
The hardware configuration can influence the results when platform-specific vulnerabilities
are analyzed and can also influence performance measurements. To mitigate this threat,
the hardware configuration used in the evaluation is shown in Section 6.1.
The complexity limitation parameter K limits the ability to generalize the results for
cases with a different value for K. However, stating the actual value of K = 30 as used
in the evaluation increases the reproducibility.
The evaluation does not compare the tool to other tools. This could reduce the ability to
generalize the results and, therefore, threaten the external validity. Still, the test cases of
the microbenchmark are provided to increase reproducibility.
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6.6 Reproducibility

To increase the reproducibility of the evaluation, the following steps have been taken. The
evaluated tool “cargo-flowcheck”23 is provided in a zip file and the installation process
is described in Appendix A1. The experimental setup of the evaluation is described in
Section 6.1, including information about the system configuration on which the evaluation
was performed.
The microbenchmarks can be executed in the directory microbenchmark and
evaluation-benchmark using the command cargo test or running the tests in an Inte-
grated Development Environment (IDE). The test cases are named with a naming con-
vention so that filtering only the positive or negative tests is possible. The command
cargo test positive shows the results of positive tests and cargo test negative
shows the results of negative tests. The macrobenchmark results are included in the
directory macrobenchmark. The tool cargo-flowcheck was invoked on each compilable
crate using the following command, which generates json output including the results of
the analysis and the analysis times:
cargo flowcheck --db masterthesis-advisory-db-fork --no-fetch --json

6.7 Conclusion

The tool supports 16 of 44 tested features in the Rust language completely (36%), and
the reasons for not supporting the remaining 28 features were discussed in detail. The
main reason is the focus on a subset of the Mid-Level Representation (MIR) as well as
the missing support for array sensitivity, field sensitivity, alias sensitivity and dynamic
calls. The tool supports the extension designed for the RustSec Database to specify the
values of the affected parameters.
The macrobenchmark shows that the developed tool works as designed and can be used to
find real vulnerabilities in real-world applications in a reasonable time frame (62.7% finish
in less than 10 minutes). The tool does not finish analyzing in one hour for 150 crates and
in 135 of these cases, the reason is a dependency on the library unicode-normalization,
which uses a specific programming pattern that causes the analysis to waste a lot of
time. Possible mitigations are identified for future work in Section 6.4.2. All two positive
findings were manually verified as true positives, and two negative findings were manually
verified to be true negatives. It is still possible that other negative cases are false negatives
because of an unsupported language feature that is involved in the data-flow that prevents
the analysis from tracing the data-flow completely.

23Folder masterthesis-implementation in submitted zip file
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7 Related Work

This chapter examines various related approaches to analyzing Rust code for bug detec-
tion. In Section 7.1, the MirChecker approach using Abstract Interpretation is presented.
In Section 7.2, approaches involving taint analysis are presented. In Section 7.3 ap-
proaches involving external verifiers and model checkers are shown. In Section 7.4 these
approaches are compared to the approach proposed in this thesis.

7.1 Approach Involving Abstract Interpretation

Li et al. (2021) introduces MirChecker, an automated bug detection framework for Rust
programs that performs Abstract Interpretation on Rust’s Mid-level Intermediate Repre-
sentation (MIR), tracking both numerical and symbolic information. MirChecker utilizes
constraint solving techniques to identify potential runtime crashes and memory-safety
errors and provides informative diagnostics to users. It is integrated as an additional
analysis step in the official Rust compiler and is seamlessly integrated with the official
Package Manager Cargo. The fundamental design of MirChecker adheres to the Monotone
Framework (Kam & Ullman, 1977). For every statement, transfer functions are defined
to describe how these properties are manipulated and passed on. It utilizes two abstract
domains, one for numerical values (used for the bound analysis) and one for symbolic
values (used as a memory model). A fixed-point algorithm is executed to propagate prop-
erties through the control flow graph. MirChecker supports interprocedural analysis but
skips recursive functions and only supports function calls for which the call target can
be statically determined and is defined in the same crate. This makes MirChecker highly
related. Still, MirChecker does not utilize the RustSec Database, does not scan deeply
into external dependencies, and unlike the implementation developed in this thesis, it
does not support recursion. On the other hand, MirChecker supports alias sensitivity for
local variables, which is a feature that this thesis does not support.

7.2 Approaches Involving Taint Analysis

Bae et al. (2021) introduce Rudra, an approach to detect bugs in unsafe Rust code using
taint analysis. The Rudra approach focuses on three safety guarantees that are enforced
by the Rust compiler for safe code, but need to be implemented manually, when writ-
ing unsafe Rust code. Firstly, it addresses “Panic Safety” by ensuring that the program
aborts in a controlled way in the presence of panics within unsafe code to prevent memory
safety bugs. Second, it enforces the “Higher Order Invariant” ensuring safe functions re-
ceive safe inputs without errors. Lastly, Rudra addresses the “Propagation of Send/Sync
in Generic Types,” tackling challenges in manually implementing thread safety traits for
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generic types, such as raw pointers. Rudra employs a hybrid analysis approach operating
on the High-Level Representation (HIR) to collect function declarations and trait imple-
mentations along with their declared safety and on the Mid-Level Representation (MIR)
to analyze the code semantics through a data-flow analysis on the control-flow graph.
Cui, Chen, Xu, and Zhou (2023) introduce SafeDrop, an approach that identifies memory
corruption bugs originating from heap memory deallocation in combination with unsafe
code. The approach focuses on issues with automatic deallocation associated with the
Rust ownership model and the resource acquisition is initialization (RAII) pattern. The
Rust ownership model aims to prevent dangling pointers and memory leaks but is observed
to cause critical bugs when combined with manually written unsafe code, where it can lead
to dropping buffers still in use, leading to use-after-free bugs. The approach uses taint
analysis and alias analysis on the Rust Mid-Level Representation (MIR), where it traverses
the control-flow graph of a function and identifies paths to check, and then performs the
analysis for invalid drops on these paths. Compared to the approach described in this
thesis, SafeDrop does not utilize the RustSec Database and does not scan deeply into
external dependencies, in the way that the inter-crate analysis described in this thesis
does.

7.3 Approaches Involving External Verifiers

Lindner, Aparicius, and Lindgren (2018) propose a contract-based verification process to
statically ensure memory safety and panic-free execution of Rust code transformed into
LLVM bitcode using the symbolic execution engine KLEE (Cadar, Dunbar, & Engler,
2008). The proposed solution addresses challenges with unchecked raw array indexing and
panic handling for safety-critical applications. The Rust compiler includes runtime checks
that lead to runtime panics on violation and downgraded performance of the program as
the checks. The approach detects panics at compile time, improving both correctness and
performance by eliminating the need for run-time verification code. The approach uses
contracts as formal specifications that define the expected behavior of a program or its
components. After successful verification of these contracts, the program is guaranteed
to be safe and free of run-time panics even without run-time checks, leading to improved
correctness, safety, and performance.
(Baranowski, He, & Rakamarić, 2018) propose a verification approach for Rust programs
using the SMACK verifier (Rakamarić & Emmi, 2014). The Rust Compiler is used to
transform the Rust program into LLVM IR, which is supported as input for the SMACK
verifier. Some Rust-specific functionality was added to support the specific patterns that
emerge in the LLVM IR generated for Rust programs Additionally models of Rust libraries,
particularly the Rust datastructure, Vec (a dynamically sized array) were added using
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SMACK’s existing modeling capabilities. SMACK then translates the LLVM IR code
into the Boogie Language (Leino, 2008), which is then verified using back-end Boogie
verifiers like Corral (Lal, Qadeer, & Lahiri, 2012).
CRUST (Toman et al., 2015) addresses memory safety concerns associated with unsafe
library code in Rust by idenfying essential functions containing unsafe code (so-called
drivers) and generating test cases in C language for them by automatically adding mem-
ory safety assertions and translating them into equivalent C code. This C code is then
subsequently verified using the CBMC (C Bounded Model Checker), a widely used model
checker introduced by Kroening and Tautschnig (2014) that further transforms the prob-
lem into SMT (Satisfiable Modulo Theories).
Prusti (Astrauskas et al., 2022) is a formal verification approach to checking invariants in
the Rust program code, which are derived from the program’s semantics (loop bounds)
and can also be annotated by the user. Prusti is based on the published master thesis
Rust2Viper (Hahn, 2016) and interfaces with the Rust compiler to obtain the High-Level
Intermediate Representation (HIR) and Mid-Level Representation (MIR) of the Rust
code to derive invariants for the program. Prusti also allows the user to define additional
invariants in the Rust source code using a set of Rust macros that are provided by Prusti
and allow one to describe conditions that must hold at a specific point in the program and
contribute to the specification for the verifier. The complete specification is then converted
to Viper Language (Müller, Schwerhoff, & Summers, 2016), a verification language in
which verification is performed. Prusti supports external crates, in general, but invariants
specified in external crates are not seen.

7.4 Conclusion

This chapter outlined related approaches for analyzing Rust code to identify bugs. The
commonality between all these approaches is that they utilize the Rust compiler to pro-
vide preprocessed representations of the Rust program, before performing any analysis
on it. While MirChecker, Rudra and SafeDrop operate on the Rust IRs directly, other
approaches like No Panic, SMACK and Prusti transform the code further to external
verification languages (KLEE, Boogie, Viper) in combination with off-the-shelf verifiers
as back-ends mapping the generated errors back to the Rust source code.
All of the identified approaches operate on one single crate in isolation, unlike the inter-
crate data-flow analysis implemented in this thesis, and according to the research per-
formed in the context of this thesis, there are no other hybrid approaches that combine
the RustSec Database with a data-flow analysis, as has been done in this thesis.
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8 Conclusion and Future Work

This chapter concludes the thesis and summarizes its results. Section 8.1 summarizes the
thesis and answers the three research questions, and Section 8.2 describes possible future
work.

8.1 Conclusion

This thesis shows the feasibility of a hybrid approach to identify security vulnerabilities
in Rust code. This hybrid approach uses the RustSec Database to identify vulnerabilities
in external dependencies on the project level and then performs a subsequent data-flow
analysis to confirm in the code if vulnerable libraries are used in vulnerable ways, checking
if vulnerable functions are actually called and, where applicable, if parameters are actually
in the vulnerable range of values. The thesis also contributes the developed tool “cargo-
flowcheck”1 and a microbenchmark2 for testing the support for language features of Rust
code in a static code analysis.
In the context of Research Question RQ1 (How can the RustSec Database be utilized to
support data-flow analysis), this thesis identified that extending the RustSec Database to
include vulnerable parameter values allows to increase the precision of detecting vulner-
abilities that only trigger for specific parameter values.
Only 101 of all 429 code-related database entries (23.5%) in the RustSec Database define
a list of affected functions. These lists were analyzed revealing instances where they were
incomplete. Incomplete vulnerability entries in the database are a threat to the approach
described in this thesis, as the approach relies on these definitions.
To deal with an incomplete list of affected functions, the data-flow analysis scans into the
vulnerable crate itself to identify transitively affected functions. If the affected functions
are not specified at all, no subsequent data-flow analysis can be performed, and the tool
operates only on the project level, similar to the related tool cargo-audit. Furthermore,
the thesis identified two affected functions, which are not part of the RustSec Database
and were added to a forked version of the database.
Some vulnerabilities were identified that are only triggered by specific parameter values.
This information is currently not specified for the vulnerabilities in the RustSec database.
The database schema was extended to enable specifying these parameter values via a
comparison with a literal value. An inequality is helpful to represent ranges of values: For
vulnerability RUSTSEC-2022-00513, all negative values triggered the vulnerability if passed
as argument for the parameter size, which expects only positive values. The RustSec
1Folder masterthesis-implementation in submitted zip file
2Folder masterthesis-implementation/microbenchmark in submitted zip file
3https://rustsec.org/advisories/RUSTSEC-2023-0051

https://rustsec.org/advisories/RUSTSEC-2023-0051
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database was forked4 and vulnerability entries were modified to include value ranges for
affected parameters and to add additional affected functions that were identified.
In the context of Research Question RQ2 (How can data-flows across external dependen-
cies be analyzed), this thesis identified that it is possible perform a data-flow analysis
by summarizing the data-flow behavior of all external dependencies individually in the
topological order of their inter-dependencies. This ensures that the analysis results of
dependencies are available before the analysis of dependents needs them. Performing a
data-flow analysis across the boundaries of individual software projects then allows to
identify vulnerabilities involving multiple software dependencies.
In the context of Research Question RQ3 (What program representations of Rust code are
suitable for data-flow analysis), the representations Abstract Syntax Tree (AST), High-
Level IR (HIR), Typed High-Level IR (HIR), Mid-Level IR (MIR) and LLVM IR were
compared. It was identified that, unlike the AST, HIR, and THIR, both the MIR and
LLVM IR model the control flow and can therefore be used for a data-flow analysis with
the LLVM IR standing out for its language-agnostic nature, supporting various source
code languages. Still, for the database-based approach, the MIR was preferred because it
provides the most Rust-related information, which is used to query the RustSec Database.
Furthermore, the HIR was used to identify re-exported functions in libraries, which was
shown to be relevant in 74% of programs that were analyzed in the evaluation.
For evaluation, a microbenchmark was created to assess support for Rust language fea-
tures. The microbenchmark revealed that 28 of 44 language features are not fully sup-
ported. The main reason for this is that only a well-defined subset of MIR instructions is
supported, and the analysis has no field sensitivity, array sensitivity, or alias sensitivity
capabilities. The tool fully supports the designed extension to the RustSec Database to
specify the values of the affected parameters.
To evaluate the findings in real-world programs, the tool was executed on randomly se-
lected crates from the Rust Package Registry that use at least one vulnerable dependency
and are compilable on the evaluation system. For the 138 crates in the evaluation, the
affected functions were available in the database, which is a prerequisite to performing
the data-flow analysis. The tool confirmed the vulnerabilities of two crates and both were
identified as true positives by manual inspection. For the other 136 crates, the tool did
not confirm the vulnerability in the code. Two negative cases were manually inspected
and identified to be true negatives.
The run-time performance of all analyzed crates was evaluated. 270 crates were completed
in less than 10 minutes (62.7%) with an average dependency tree size of 40, highlighting
the importance of including external dependencies in the analysis. For 90% of the crates

4Folder masterthesis-advisory-db-fork in submitted zip file
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that took more than one hour, a specific programming pattern was identified that triggers
the algorithm’s worst-case performance and a possible extension to the approach was
identified that could reduce this effect.

8.2 Future Work

The scope of this thesis was chosen to be inter-crate analysis, and some functionality was
not considered in the design, like alias sensitivity, field sensitivity, and array sensitivity. In
addition, as input for the analysis, only a subset of the MIR instructions is considered. The
evaluation showed that, because of this, not all language features of Rust are supported
by the approach. Therefore, one logical future work is to remove these limitations, adding
the sensitivities, and supporting a larger subset of MIR or the complete MIR to increase
the support for Rust language features. Furthermore, the influence of the parameter K

(complexity limitation) on the results can be investigated.
One limitation of the designed tool is that it does not report the data-flow that was
identified. Instead, only the function that serves as an entry point into the code is reported
(e.g. the main function). This makes it difficult to comprehend the reported findings.
Future work could address this problem and report the data-flow for each finding.
In the evaluation, a real-world pattern was determined that triggers the algorithm’s worst-
case performance. Detecting the scope of variables using a live-variable analysis or by
utilizing the lifetime data present in the MIR can reduce the impact of locally used
variables and can mitigate such code from causing exponential analysis complexity. The
RustSec Database could be extended further to support Boolean formulas that describe
more complex conditions with respect to the parameter values.
Furthermore, Cargo’s compilation cache can be extended to include the function sum-
maries produced by the analysis (the fingerprinting system might need adaptation). This
can lead to performance gains when analyzing the same project multiple times and could
make it feasible to integrate the tool into an Integrated Development Environment (IDE),
as the function summary approach enables one to invalidate and re-analyze only (transi-
tively) changed parts of the code. In general, more real-time feedback could be added to
the tool, including a live output of vulnerabilities found.
To further reduce analysis times, a public summary registry could be created that contains
analysis results for all published crates in the Rust Package Registry5. The tool could
then download precomputed summaries for external libraries. An interesting question is
how generic functions can be summarized, since MIR creates a copy for every combination
of generic arguments used (monomorphization), but when analyzing an external library,
it is not known which generic types will be used by clients of the library.
5https://crates.io

https://crates.io
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A Appendix

This appendix provides additional data to increase the reproducibility of the results pre-
sented in this thesis. Appendix A1 outlines the steps to install and use the static code
analysis tool developed in this thesis and Appendix A2 describes the process and the re-
sulting data of a pre-evaluation performed in the context of this thesis that systematically
analyzes all published crates in the Rust Package Registry using a dependency analysis
to identify how many published crates are susceptible to each vulnerability.



Appendix 90

A1 Installation and Usage of Cargo Flowcheck

The developed tool “cargo-flowcheck” can be installed using the following process:

1. Install Rust using Rustup.1

2. Install Rust Toolchain: rustup default nightly-2023-04-16

3. On Linux (X86 64) set shell variable
export LD_LIBRARY_PATH=$HOME/.rustup/toolchains/nightly-2023-04-16-x86_64-

↪→ unknown-linux-gnu/lib

4. On MacOSX (Aarch64) set shell variable
export DYLD_LIBRARY_PATH=$HOME/.rustup/toolchains/nightly-2023-04-16-

↪→ aarch64-apple-darwin/lib

5. Extract the zip file and change to the top-level directory cargo-flowcheck.

6. Execute the script ./install.sh

7. (Optional) Execute the script ./check.sh to perform a self test

8. Switch to a Rust project and run the tool: cargo flowcheck

To download and scan an external crate, cargo-download2 can be used. The following
example analyzes the utc-0.1.0 crate:

1. Install cargo-download by executing cargo install cargo-download

2. Download the external crate: cargo download -x utc==0.1.0

3. The crate is downloaded and extracted into the subdirectory utc-0.1.0

4. Switch directory: cd utc-0.1.0

5. Run Cargo Flowcheck: cargo flowcheck

1https://www.rust-lang.org/tools/install
2https://crates.io/crates/cargo-download

https://www.rust-lang.org/tools/install
https://crates.io/crates/cargo-download
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A2 Pre-Evaluation of Vulnerable Crates using Dependency
Analysis

This section outlines the process and results of a pre-evaluation as performed in the
context of this thesis. This pre-evaluation systematically analyzes all published crates
in the Rust Package Registry using a dependency analysis to identify which crates are
susceptible to which vulnerabilities.
This pre-evaluation was performed at the beginning of the thesis and does not perform
the data-flow analysis, which is developed in this thesis. Instead, it only uses the de-
pendency analysis, which is provided by the previously available tool cargo-audit. The
result of this pre-evaluation makes it possible to group all findings by the vulnerability
and thus enables one to derive a ranking of vulnerabilities that have a high reach in the
Rust ecosystem.
The objective of this pre-evaluation is to identify which vulnerabilities in the RustSec
Database are found in the dependency analysis and how often they are found. For this, the
raw data collected from dependency analysis is used to calculate the backward mapping
from the vulnerabilities to the affected crates. Using this information, it is possible to
create a ranking of vulnerabilities ordered by their number of occurrences in the Rust
ecosystem, as identified by a dependency analysis.
Related work (Decan, Mens, & Grosjean, 2018) has been identified that studies the evo-
lution of dependency networks for the Rust ecosystem but does not map dependency
networks to Rust vulnerabilities.

A2.1 Metrics

For the first research objective, the total number of vulnerable crates found by dependency
analysis in the Rust ecosystem must be obtained. This allows one to get insights on the
relevance of security audits in general. The raw data acquired is then used to calculate
the following metrics of the second research objective.
For the second research objective, which is to identify how often vulnerabilities are found
in the Rust ecosystem, four different metrics should be used. These metrics differ in
the way, transitive dependencies, and crate versions are counted related to the respective
vulnerability and the crate that is marked as vulnerable.
The metric direct dependents “D” counts all vulnerable dependents of the crate that
contains the vulnerability. This metric does not count each version of the published
crates separately.
The metric direct dependents, including crate versions “D×V” counts all crate versions
of all vulnerable dependents of the crate that contains the vulnerability.
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The metric transitive dependents “T” counts all vulnerable transitive dependents of the
crate that contains the vulnerability, but does not count each version of the crate sepa-
rately.
The metric transitive dependents, including crate versions “T×V” counts all crate versions
of all transitively vulnerable dependents of the crate that contains the vulnerability.

A2.2 Automated Download and Preprocessing of Rust Crates

This section describes the process of systematically downloading all crates the Rust Pack-
age Registry and analyzing them using a dependency analysis. The Rust Package Registry
provides a git repository3 containing an index of all published crates along with additional
metadata for each published version of each crate. This index contained 817.417 crate
versions at the access date of June 20, 2023. The package registry also stores the archived
source code for each crate version and makes them publicly available via a REST API.
The source code archives of all crates in the package registry were downloaded using the
open-source tool Panamax4.
Some archives contained invalid path names that involved backslashes as the path sepa-
rator instead of forward slashes, as required for tarballs. Experiments showed that Cargo
tolerates these crates and allows to use them as dependencies. Therefore, they should not
be rejected and need to be included in the evaluation and a special extraction tool was
created that detects and corrects these pathnames automatically.
In the case that a crate does not contain a lockfile Cargo.lock file, it is automatically
generated by Cargo. When generating lockfiles, Cargo does not include yanked depen-
dencies (crates that are marked as removed). For these cases, the hard-coded check was
removed on a local copy of the Cargo source code, and then the missing lockfiles were
generated. All crates have been audited using the tool cargo-audit.

A2.3 Results and Conclusion of Pre-Evaluation

The results of the pre-evaluation based on a dependency analysis and without a subsequent
data-flow analysis are shown in Table A2-2. The affected version range of vulnerabilities
was considered in the evaluation when collecting the data, but is not shown explicitly in
the table. The column headers have been abbreviated and the abbreviations are described
in Table A2-1. The results show detailed information on the effect that individual vulner-
abilities have on the Rust ecosystem. The most prevalent vulnerabilities were discussed
in Chapter 3.

3https://github.com/rust-lang/crates.io-index (revision eb6c9ada5a, accessed on June 20, 2023)
4https://github.com/panamax-rs/panamax

https://github.com/rust-lang/crates.io-index
https://github.com/panamax-rs/panamax
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Column Name Description

Vulnerability ID The identifier in the RustSec Database of the vulnerability in question.
Crate The crate that contains the vulnerability.
I The vulnerability informational status. For normal vulnerabilities, this field is

empty. For informational vulnerabilities, U means Unmaintained and N means
Notice.

F Number of affected functions specified in the vulnerability definition, or 0 if none
are defined. If the kind of vulnerability is not code-related (type U or I), then
the affected functions are not available (n/a).

D Number of direct dependents of the crate that contains the vulnerability.
D×V Number of versions of direct dependents of the crate that contains the vulnera-

bility.
T Number of transitive dependents of the crate that contains the vulnerability.
T×V Number of versions of transitive dependents of the crate that contains the vul-

nerability.

Table A2-1: Explanation of Column Names

Table A2-2: Pre-Evaluation Results
Vulnerability ID Crate I F D D×V T T×V

RUSTSEC-2021-0145 atty 0 967 9391 32641 237160
RUSTSEC-2020-0071 time 9 1477 10392 24525 179415
RUSTSEC-2021-0139 ansi term U n/a 812 7210 18666 137303
RUSTSEC-2022-0013 regex 0 3581 24077 13787 88587
RUSTSEC-2023-0018 remove dir all 3 56 448 12321 85713
RUSTSEC-2022-0041 crossbeam-utils 0 243 1736 12534 85579
RUSTSEC-2023-0005 tokio 0 6639 40239 12690 77040
RUSTSEC-2023-0034 h2 0 48 503 10987 70984
RUSTSEC-2020-0016 net2 U n/a 205 1658 10818 68904
RUSTSEC-2021-0124 tokio 1 4459 25080 11208 68598
RUSTSEC-2022-0078 bumpalo 1 28 230 10091 64676
RUSTSEC-2022-0006 thread local 0 44 310 9962 59864
RUSTSEC-2020-0159 chrono 0 3785 25083 8623 55831
RUSTSEC-2019-0036 failure 1 3417 17698 9420 55757
RUSTSEC-2020-0036 failure U n/a 3417 17698 9420 55757
RUSTSEC-2020-0070 lock api 5 41 214 8319 55691
RUSTSEC-2022-0022 hyper 0 2355 15446 8369 54758
RUSTSEC-2023-0044 openssl 1 747 6553 8328 53657
RUSTSEC-2021-0078 hyper 0 2326 15290 8189 53539
RUSTSEC-2021-0079 hyper 0 2326 15290 8189 53539
RUSTSEC-2020-0053 dirs U n/a 2275 16244 8235 52743
RUSTSEC-2023-0045 memoffset 1 43 257 7561 49342
RUSTSEC-2023-0022 openssl 1 693 6233 7646 49244
RUSTSEC-2023-0023 openssl 2 693 6233 7646 49244
RUSTSEC-2023-0024 openssl 2 693 6233 7646 49244

Continued on next page
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Table A2-2 – continued from previous page
Vulnerability ID Crate I F D D×V T T×V

RUSTSEC-2023-0001 tokio 0 4264 22688 6779 37356
RUSTSEC-2022-0048 xml-rs U n/a 383 2663 5366 33615
RUSTSEC-2020-0095 difference U n/a 86 1176 2418 32977
RUSTSEC-2022-0004 rustc-serialize 1 1042 7461 5664 32954
RUSTSEC-2021-0127 serde cbor U n/a 406 2938 4245 31973
RUSTSEC-2021-0093 crossbeam-deque 0 24 192 4211 26848
RUSTSEC-2023-0033 borsh 0 377 2462 2155 26710
RUSTSEC-2020-0056 stdweb U n/a 51 272 4143 26358
RUSTSEC-2018-0017 tempdir U n/a 441 3660 3416 23077
RUSTSEC-2021-0003 smallvec 1 208 1120 4513 22812
RUSTSEC-2020-0168 mach U n/a 9 33 3212 20755
RUSTSEC-2022-0040 owning ref 0 99 601 2692 20265
RUSTSEC-2018-0015 term U n/a 188 2077 3559 19299
RUSTSEC-2020-0080 miow 0 6 9 3630 18286
RUSTSEC-2020-0027 traitobject 2 9 123 2607 18103
RUSTSEC-2021-0144 traitobject U n/a 9 123 2607 18103
RUSTSEC-2020-0077 memmap U n/a 412 3263 2048 16900
RUSTSEC-2020-0078 net2 0 38 248 3426 16834
RUSTSEC-2021-0119 nix 1 410 3223 2388 15208
RUSTSEC-2021-0020 hyper 0 444 1814 2289 12803
RUSTSEC-2021-0064 cpuid-bool U n/a 0 0 2285 12736
RUSTSEC-2020-0146 generic-array 0 29 118 2235 12046
RUSTSEC-2023-0002 git2 0 753 7162 1514 11643
RUSTSEC-2023-0042 ouroboros 0 72 623 868 11313
RUSTSEC-2023-0004 bzip2 0 114 1592 1227 11308
RUSTSEC-2022-0019 crossbeam-channel 0 516 2539 2444 11295
RUSTSEC-2021-0060 aes-soft U n/a 25 114 1805 11071
RUSTSEC-2021-0059 aesni U n/a 13 67 1777 10963
RUSTSEC-2020-0060 futures-task 1 8 24 2265 10872
RUSTSEC-2023-0003 libgit2-sys 0 7 194 1378 10791
RUSTSEC-2020-0054 directories U n/a 774 4986 1694 10749
RUSTSEC-2022-0021 crossbeam-queue 0 34 139 2553 10724
RUSTSEC-2020-0079 socket2 0 38 280 2153 10155
RUSTSEC-2020-0059 futures-util 1 190 814 2111 9965
RUSTSEC-2021-0072 tokio 1 1518 5880 2325 9690
RUSTSEC-2022-0090 libsqlite3-sys 0 60 635 1178 9371
RUSTSEC-2021-0141 dotenv U n/a 710 4043 1477 9108
RUSTSEC-2022-0061 parity-wasm U n/a 111 845 1187 8549
RUSTSEC-2022-0092 rmp-serde 0 376 3119 1031 8424
RUSTSEC-2018-0018 smallvec 0 103 566 2086 8176
RUSTSEC-2021-0140 rusttype U n/a 195 1345 1251 7578
RUSTSEC-2021-0153 encoding U n/a 211 1925 1210 7482

Continued on next page
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Table A2-2 – continued from previous page
Vulnerability ID Crate I F D D×V T T×V

RUSTSEC-2021-0146 twoway U n/a 57 495 1172 7319
RUSTSEC-2020-0073 image 6 607 3727 1140 7245
RUSTSEC-2020-0163 term size U n/a 178 1665 973 7024
RUSTSEC-2020-0144 lzw U n/a 13 64 1109 7006
RUSTSEC-2023-0006 openssl-src 0 2 11 658 6843
RUSTSEC-2023-0007 openssl-src 0 2 11 658 6843
RUSTSEC-2023-0009 openssl-src 0 2 11 658 6843
RUSTSEC-2023-0010 openssl-src 0 2 11 658 6843
RUSTSEC-2021-0076 libsecp256k1 0 85 516 1054 6719
RUSTSEC-2020-0091 arc-swap 1 20 75 1359 6396
RUSTSEC-2023-0040 users U n/a 163 1169 404 5918
RUSTSEC-2020-0026 linked-hash-map 0 54 292 1217 5876
RUSTSEC-2021-0130 lru 2 193 1629 769 5792
RUSTSEC-2023-0031 spin 0 33 192 1204 5792
RUSTSEC-2022-0081 json U n/a 486 3486 794 5702
RUSTSEC-2022-0070 secp256k1 1 198 1272 923 5649
RUSTSEC-2022-0071 rusoto credential U n/a 82 479 819 5581
RUSTSEC-2021-0115 zeroize derive 0 3 11 862 5366
RUSTSEC-2021-0073 prost-types 1 130 868 851 5209
RUSTSEC-2020-0061 futures-task 1 5 12 1265 5200
RUSTSEC-2019-0011 memoffset 0 7 37 656 5130
RUSTSEC-2021-0080 tar 1 184 1299 712 5052
RUSTSEC-2023-0028 buf redux U n/a 27 186 739 4967
RUSTSEC-2016-0005 rust-crypto U n/a 554 2953 1227 4935
RUSTSEC-2022-0011 rust-crypto 0 554 2953 1227 4935
RUSTSEC-2020-0020 stb truetype U n/a 4 41 766 4742
RUSTSEC-2021-0070 nalgebra 0 352 2393 785 4728
RUSTSEC-2021-0131 brotli-sys 0 3 10 674 4707
RUSTSEC-2022-0032 openssl-src 0 2 8 494 4661
RUSTSEC-2022-0020 crossbeam 0 154 992 800 4631
RUSTSEC-2020-0008 hyper 0 505 2082 1185 4607
RUSTSEC-2022-0046 rocksdb 1 120 1130 353 4536
RUSTSEC-2019-0039 typemap U n/a 69 499 760 4244
RUSTSEC-2022-0074 prettytable-rs 0 378 2623 623 4130
RUSTSEC-2020-0082 ordered-float 0 84 740 727 4075
RUSTSEC-2021-0065 anymap U n/a 74 563 490 4004
RUSTSEC-2021-0081 actix-http 0 99 452 533 3679
RUSTSEC-2022-0014 openssl-src 0 1 1 401 3677
RUSTSEC-2016-0001 openssl 0 71 564 598 3294
RUSTSEC-2018-0006 yaml-rust 0 77 630 525 3260
RUSTSEC-2020-0049 actix-codec 0 51 251 429 3226
RUSTSEC-2020-0045 actix-utils 0 39 216 422 3166

Continued on next page
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Table A2-2 – continued from previous page
Vulnerability ID Crate I F D D×V T T×V

RUSTSEC-2020-0097 xcb 0 46 235 519 3090
RUSTSEC-2021-0019 xcb 0 46 235 519 3090
RUSTSEC-2022-0082 warp 0 285 1796 478 3018
RUSTSEC-2020-0048 actix-http 0 75 351 394 3008
RUSTSEC-2020-0162 tokio-proto U n/a 70 417 643 2955
RUSTSEC-2019-0014 image 1 284 1603 515 2954
RUSTSEC-2020-0018 block-cipher-trait U n/a 48 144 523 2952
RUSTSEC-2022-0029 crossbeam 0 91 521 500 2776
RUSTSEC-2022-0080 parity-util-mem U n/a 28 221 510 2654
RUSTSEC-2021-0095 mopa 0 37 263 519 2613
RUSTSEC-2021-0023 rand core 2 12 44 935 2599
RUSTSEC-2022-0008 windows 0 163 496 473 2538
RUSTSEC-2023-0015 ascii 0 16 93 326 2512
RUSTSEC-2020-0006 bumpalo 0 2 51 571 2408
RUSTSEC-2022-0054 wee alloc U n/a 180 1105 394 2364
RUSTSEC-2018-0001 untrusted 0 58 350 458 2352
RUSTSEC-2020-0158 slice-deque U n/a 15 54 419 2270
RUSTSEC-2021-0047 slice-deque 0 15 54 419 2270
RUSTSEC-2022-0035 websocket 0 67 410 166 2191
RUSTSEC-2021-0067 cranelift-codegen 0 47 794 256 2189
RUSTSEC-2021-0090 ash 0 33 227 444 2040
RUSTSEC-2019-0033 http 1 112 332 676 2018
RUSTSEC-2019-0034 http 1 112 332 676 2018
RUSTSEC-2019-0035 rand core 2 25 60 760 1979
RUSTSEC-2021-0089 raw-cpuid 0 17 117 321 1968
RUSTSEC-2021-0013 raw-cpuid 0 15 123 309 1944
RUSTSEC-2021-0097 openssl-src 0 0 0 294 1917
RUSTSEC-2021-0098 openssl-src 0 0 0 294 1917
RUSTSEC-2020-0043 ws 0 104 554 241 1800
RUSTSEC-2022-0055 axum-core 0 15 52 299 1794
RUSTSEC-2021-0137 sodiumoxide U n/a 161 1214 240 1759
RUSTSEC-2020-0151 generator 0 5 66 624 1750
RUSTSEC-2020-0058 stream-cipher U n/a 29 156 366 1749
RUSTSEC-2020-0062 futures-util 1 67 177 579 1651
RUSTSEC-2020-0145 heapless 1 118 481 339 1649
RUSTSEC-2020-0046 actix-service 0 67 381 312 1610
RUSTSEC-2020-0014 rusqlite 6 180 1291 228 1553
RUSTSEC-2023-0037 xsalsa20poly1305 U n/a 19 121 145 1549
RUSTSEC-2021-0122 flatbuffers 0 38 423 195 1513
RUSTSEC-2017-0002 hyper 0 282 1077 357 1507
RUSTSEC-2022-0056 clipboard U n/a 157 964 244 1486
RUSTSEC-2016-0002 hyper 0 279 1067 350 1480

Continued on next page
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Table A2-2 – continued from previous page
Vulnerability ID Crate I F D D×V T T×V

RUSTSEC-2021-0091 gfx-auxil 0 0 0 339 1469
RUSTSEC-2021-0096 spirv headers U n/a 10 71 355 1460
RUSTSEC-2022-0037 async-graphql 0 55 1168 78 1401
RUSTSEC-2023-0035 enumflags2 0 26 136 257 1392
RUSTSEC-2020-0100 sys-info 1 55 484 136 1374
RUSTSEC-2021-0021 nb-connect 0 2 17 381 1351
RUSTSEC-2021-0055 openssl-src 0 0 0 233 1328
RUSTSEC-2023-0019 kuchiki U n/a 84 478 235 1312
RUSTSEC-2022-0051 lz4-sys 0 4 27 177 1261
RUSTSEC-2020-0057 block-cipher U n/a 40 80 332 1231
RUSTSEC-2023-0020 const-cstr 0 40 146 253 1208
RUSTSEC-2021-0057 openssl-src 0 0 0 211 1198
RUSTSEC-2021-0058 openssl-src 0 0 0 211 1198
RUSTSEC-2017-0004 base64 0 58 317 212 1186
RUSTSEC-2022-0084 libp2p 0 48 321 186 1103
RUSTSEC-2020-0041 sized-chunks 0 2 18 307 1058
RUSTSEC-2020-0019 tokio-rustls 0 25 142 172 1053
RUSTSEC-2020-0096 im 0 112 458 301 1053
RUSTSEC-2020-0068 multihash 2 67 248 376 1029
RUSTSEC-2021-0134 rental U n/a 41 249 205 1028
RUSTSEC-2019-0006 ncurses 5 35 172 196 1017
RUSTSEC-2018-0005 serde yaml 0 121 550 209 975
RUSTSEC-2020-0081 mio 0 22 122 230 971
RUSTSEC-2021-0044 rocket 0 139 922 147 969
RUSTSEC-2022-0053 mapr U n/a 6 56 121 947
RUSTSEC-2021-0061 aes-ctr U n/a 50 254 219 939
RUSTSEC-2019-0025 serde cbor 0 70 447 159 900
RUSTSEC-2019-0013 spin 1 42 208 308 891
RUSTSEC-2023-0025 git-hash U n/a 20 466 67 854
RUSTSEC-2020-0029 rgb 0 21 88 225 827
RUSTSEC-2022-0075 wasmtime 0 80 518 151 826
RUSTSEC-2022-0076 wasmtime 2 80 518 151 826
RUSTSEC-2020-0052 crossbeam-channel 0 43 119 300 820
RUSTSEC-2021-0126 rust-embed 0 90 547 119 786
RUSTSEC-2020-0147 rulinalg U n/a 18 107 111 758
RUSTSEC-2022-0068 capnp 0 40 322 186 733
RUSTSEC-2019-0026 sodiumoxide 2 65 632 84 715
RUSTSEC-2020-0031 tiny http 0 79 294 164 705
RUSTSEC-2021-0147 daemonize U n/a 71 358 100 682
RUSTSEC-2021-0037 diesel 1 93 517 124 673
RUSTSEC-2020-0122 beef 0 14 108 124 667
RUSTSEC-2019-0040 boxfnonce U n/a 11 88 104 653

Continued on next page



Appendix 98

Table A2-2 – continued from previous page
Vulnerability ID Crate I F D D×V T T×V

RUSTSEC-2021-0056 openssl-src 0 0 0 148 637
RUSTSEC-2020-0023 rulinalg 2 16 80 99 594
RUSTSEC-2021-0041 parse duration 1 37 276 66 584
RUSTSEC-2020-0009 flatbuffers 2 22 181 88 513
RUSTSEC-2020-0002 prost 0 83 372 129 494
RUSTSEC-2023-0036 tree magic U n/a 34 318 69 491
RUSTSEC-2020-0025 bigint U n/a 40 150 103 480
RUSTSEC-2021-0103 molecule 0 14 72 142 479
RUSTSEC-2019-0012 smallvec 1 8 16 206 458
RUSTSEC-2021-0116 arrow 0 44 248 80 453
RUSTSEC-2021-0117 arrow 0 44 248 80 453
RUSTSEC-2021-0118 arrow 0 44 248 80 453
RUSTSEC-2021-0128 rusqlite 7 64 225 94 453
RUSTSEC-2019-0009 smallvec 1 8 16 203 451
RUSTSEC-2022-0038 juniper 0 49 356 66 449
RUSTSEC-2021-0135 tower-http 0 13 47 50 444
RUSTSEC-2022-0043 tower-http 0 13 47 50 444
RUSTSEC-2020-0003 rust sodium U n/a 24 214 105 442
RUSTSEC-2020-0044 atom 0 1 1 106 434
RUSTSEC-2023-0026 git-path U n/a 12 184 51 432
RUSTSEC-2019-0019 blake2 0 42 290 74 419
RUSTSEC-2023-0039 buffered-reader 0 8 128 38 409
RUSTSEC-2023-0029 nats 0 20 156 44 403
RUSTSEC-2021-0151 ncollide2d U n/a 15 200 32 401
RUSTSEC-2020-0093 async-h1 2 14 48 76 399
RUSTSEC-2019-0005 pancurses 2 44 253 68 396
RUSTSEC-2021-0150 ncollide3d U n/a 18 168 51 382
RUSTSEC-2023-0043 ftp U n/a 12 98 44 376
RUSTSEC-2022-0003 ammonia 1 15 84 72 373
RUSTSEC-2021-0110 wasmtime 3 36 207 80 366
RUSTSEC-2021-0062 miscreant U n/a 14 249 22 359
RUSTSEC-2021-0054 rkyv 1 11 286 14 357
RUSTSEC-2021-0063 comrak 0 48 265 59 331
RUSTSEC-2022-0044 markdown U n/a 32 291 35 316
RUSTSEC-2022-0077 claim U n/a 3 18 41 316
RUSTSEC-2023-0014 cortex-m-rt 0 83 214 117 315
RUSTSEC-2023-0041 trust-dns-server 0 24 152 41 309
RUSTSEC-2020-0015 openssl-src 0 0 0 63 301
RUSTSEC-2021-0026 comrak 0 44 242 53 301
RUSTSEC-2021-0114 nanorand 1 10 49 70 298
RUSTSEC-2021-0011 fil-ocl 0 0 0 22 297
RUSTSEC-2023-0008 openssl-src 0 2 11 80 287

Continued on next page
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Table A2-2 – continued from previous page
Vulnerability ID Crate I F D D×V T T×V

RUSTSEC-2023-0011 openssl-src 0 2 11 80 287
RUSTSEC-2023-0012 openssl-src 0 2 11 80 287
RUSTSEC-2023-0013 openssl-src 0 2 11 80 287
RUSTSEC-2018-0014 chan U n/a 48 229 67 285
RUSTSEC-2022-0059 openssl-src 0 2 11 80 283
RUSTSEC-2022-0064 openssl-src 0 2 11 80 283
RUSTSEC-2022-0065 openssl-src 0 2 11 80 283
RUSTSEC-2021-0113 metrics-util 0 17 96 59 282
RUSTSEC-2022-0001 lmdb U n/a 16 185 29 268
RUSTSEC-2019-0027 libsecp256k1 1 19 68 94 264
RUSTSEC-2020-0028 rocket 1 66 261 66 261
RUSTSEC-2022-0025 openssl-src 0 1 1 79 255
RUSTSEC-2022-0026 openssl-src 0 1 1 79 255
RUSTSEC-2022-0027 openssl-src 0 1 1 79 255
RUSTSEC-2019-0037 pnet 1 43 170 62 254
RUSTSEC-2023-0027 async-nats 0 17 102 50 252
RUSTSEC-2019-0032 crust U n/a 2 119 14 251
RUSTSEC-2020-0167 pnet packet 0 10 31 67 251
RUSTSEC-2021-0149 nphysics2d U n/a 6 116 9 242
RUSTSEC-2021-0129 openssl-src 0 1 1 76 239
RUSTSEC-2020-0098 rusb 0 24 89 52 234
RUSTSEC-2021-0005 glsl-layout 0 12 59 45 233
RUSTSEC-2021-0120 abomonation 0 17 184 24 227
RUSTSEC-2021-0106 bat 0 26 122 44 223
RUSTSEC-2020-0161 array-macro 0 4 22 47 222
RUSTSEC-2020-0021 rio 0 8 60 22 218
RUSTSEC-2018-0007 trust-dns-proto 0 8 15 50 215
RUSTSEC-2022-0049 iana-time-zone 1 1 3 125 212
RUSTSEC-2020-0007 bitvec 1 33 104 67 208
RUSTSEC-2023-0038 sequoia-openpgp 0 28 187 36 208
RUSTSEC-2021-0035 quinn 0 8 59 15 200
RUSTSEC-2016-0004 libusb U n/a 38 133 52 197
RUSTSEC-2019-0003 protobuf 1 35 166 44 195
RUSTSEC-2021-0001 mdbook 0 41 176 43 193
RUSTSEC-2022-0028 neon 2 35 184 40 192
RUSTSEC-2016-0003 portaudio 0 20 88 33 182
RUSTSEC-2020-0149 appendix 0 6 41 37 175
RUSTSEC-2022-0002 dashmap 14 28 121 50 172
RUSTSEC-2022-0063 linked list allocator 0 20 112 37 167
RUSTSEC-2017-0001 sodiumoxide 0 17 123 21 166
RUSTSEC-2021-0015 calamine 0 15 116 18 155
RUSTSEC-2022-0083 evm 0 39 105 56 155

Continued on next page



Appendix 100

Table A2-2 – continued from previous page
Vulnerability ID Crate I F D D×V T T×V

RUSTSEC-2023-0046 cyfs-base 0 15 146 15 146
RUSTSEC-2020-0113 atomic-option 0 7 61 23 145
RUSTSEC-2017-0007 lz4-compress U n/a 14 74 27 144
RUSTSEC-2020-0076 routing U n/a 12 131 13 134
RUSTSEC-2020-0123 libp2p-deflate 0 1 3 29 129
RUSTSEC-2021-0069 lettre 3 22 91 28 127
RUSTSEC-2020-0072 futures-intrusive 0 18 51 39 121
RUSTSEC-2021-0048 stackvector 0 0 0 41 121
RUSTSEC-2022-0072 hyper-staticfile 0 21 104 26 121
RUSTSEC-2019-0028 flatbuffers 1 12 73 27 118
RUSTSEC-2022-0050 interledger-packet U n/a 28 102 34 118
RUSTSEC-2022-0069 hyper-staticfile 0 20 103 25 117
RUSTSEC-2020-0064 ffi utils U n/a 7 101 7 113
RUSTSEC-2020-0067 quic-p2p U n/a 4 39 9 113
RUSTSEC-2018-0019 actix-web 0 25 87 32 111
RUSTSEC-2018-0016 quickersort U n/a 9 69 19 106
RUSTSEC-2021-0074 ammonia 0 7 34 31 103
RUSTSEC-2022-0015 pty U n/a 7 51 12 101
RUSTSEC-2020-0111 may queue 0 1 45 11 99
RUSTSEC-2021-0136 sass-rs U n/a 11 85 14 98
RUSTSEC-2020-0086 safe core U n/a 8 92 8 92
RUSTSEC-2019-0017 once cell 4 20 56 33 88
RUSTSEC-2021-0017 postscript 0 4 62 11 85
RUSTSEC-2021-0142 dotenv codegen U n/a 20 56 28 82
RUSTSEC-2019-0004 libp2p-core 0 16 73 18 79
RUSTSEC-2020-0063 safe-nd U n/a 8 78 8 78
RUSTSEC-2020-0140 model 0 0 0 8 78
RUSTSEC-2021-0071 grep-cli 1 8 43 15 78
RUSTSEC-2021-0148 nphysics3d U n/a 6 78 6 78
RUSTSEC-2020-0065 fake clock U n/a 3 21 12 75
RUSTSEC-2022-0085 matrix-sdk-crypto 0 4 10 25 75
RUSTSEC-2022-0034 pkcs11 0 7 59 10 72
RUSTSEC-2019-0010 libflate 1 6 6 43 69
RUSTSEC-2021-0004 lazy-init 0 6 21 15 69
RUSTSEC-2021-0066 evm-core 0 3 49 5 62
RUSTSEC-2020-0128 cache 0 1 21 6 61
RUSTSEC-2021-0006 cache 0 1 21 6 61
RUSTSEC-2022-0073 alloc-cortex-m U n/a 12 46 17 61
RUSTSEC-2020-0069 lettre 3 12 37 17 58
RUSTSEC-2019-0001 ammonia 3 6 15 18 56
RUSTSEC-2020-0109 stderr U n/a 5 56 5 56
RUSTSEC-2020-0143 multiqueue 0 9 44 15 56
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RUSTSEC-2022-0010 enum-map 0 0 0 21 53
RUSTSEC-2022-0088 tauri 0 7 22 9 53
RUSTSEC-2018-0002 tar 0 5 17 17 52
RUSTSEC-2021-0121 crypto2 3 2 11 5 52
RUSTSEC-2020-0084 safe authenticator U n/a 3 45 4 50
RUSTSEC-2019-0002 slice-deque 0 7 16 18 49
RUSTSEC-2022-0012 arrow2 0 2 2 24 49
RUSTSEC-2021-0038 fltk 3 5 37 8 48
RUSTSEC-2022-0024 double-checked-cell U n/a 4 36 8 48
RUSTSEC-2022-0087 slack-morphism 0 2 48 2 48
RUSTSEC-2022-0086 slack-morphism 0 2 47 2 47
RUSTSEC-2020-0115 ruspiro-singleton 0 7 34 9 44
RUSTSEC-2020-0136 toolshed 0 8 38 11 44
RUSTSEC-2021-0029 truetype 0 2 40 4 44
RUSTSEC-2022-0052 os socketaddr 0 5 26 10 44
RUSTSEC-2018-0013 safe-transmute 0 1 6 2 43
RUSTSEC-2020-0035 chunky 0 1 43 1 43
RUSTSEC-2020-0101 conquer-once 0 5 41 5 41
RUSTSEC-2020-0066 safe bindgen U n/a 0 0 5 40
RUSTSEC-2020-0089 nanorand 0 3 6 17 39
RUSTSEC-2020-0137 lever 0 6 13 13 39
RUSTSEC-2022-0039 odbc U n/a 4 26 8 37
RUSTSEC-2020-0131 rcu cell 0 1 12 7 36
RUSTSEC-2020-0051 rustsec 0 5 26 8 35
RUSTSEC-2021-0132 compu-brotli-sys 0 1 12 5 34
RUSTSEC-2018-0022 temporary 0 0 0 8 33
RUSTSEC-2022-0009 libp2p-core 1 10 23 15 32
RUSTSEC-2021-0010 containers 0 5 20 9 31
RUSTSEC-2020-0004 lucet-runtime-internals 0 5 23 5 29
RUSTSEC-2020-0005 cbox 0 2 28 2 28
RUSTSEC-2020-0139 dces 0 11 18 12 26
RUSTSEC-2022-0060 orbtk U n/a 3 20 6 26
RUSTSEC-2021-0075 ark-r1cs-std 1 20 22 22 24
RUSTSEC-2020-0074 pyo3 0 8 20 8 20
RUSTSEC-2020-0112 buttplug 0 3 18 4 20
RUSTSEC-2020-0153 bite 0 1 20 1 20
RUSTSEC-2021-0009 basic dsp matrix 0 1 20 1 20
RUSTSEC-2021-0112 tectonic xdv 0 1 13 4 19
RUSTSEC-2021-0143 kamadak-exif 1 3 18 4 19
RUSTSEC-2022-0066 conduit-hyper 0 0 0 3 18
RUSTSEC-2020-0038 ordnung 0 1 17 1 17
RUSTSEC-2020-0083 safe app U n/a 2 17 2 17
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RUSTSEC-2021-0083 derive-com-impl 1 0 0 9 16
RUSTSEC-2021-0034 office U n/a 1 9 2 15
RUSTSEC-2021-0111 tremor-script 0 2 14 3 15
RUSTSEC-2022-0091 tauri 0 6 15 6 15
RUSTSEC-2018-0012 orion 0 0 0 1 14
RUSTSEC-2021-0049 through 0 3 7 4 14
RUSTSEC-2021-0088 csv-sniffer 0 3 13 4 14
RUSTSEC-2020-0138 lexer 0 2 12 2 12
RUSTSEC-2021-0007 av-data 0 5 12 5 12
RUSTSEC-2021-0025 jsonrpc-quic U n/a 1 12 1 12
RUSTSEC-2022-0016 wasmtime 1 5 8 7 12
RUSTSEC-2022-0036 r2d2 odbc U n/a 2 11 3 12
RUSTSEC-2018-0020 libpulse-binding 0 2 11 2 11
RUSTSEC-2019-0038 libpulse-binding 0 2 11 2 11
RUSTSEC-2020-0039 simple-slab 0 2 11 2 11
RUSTSEC-2021-0002 interfaces2 U n/a 2 11 2 11
RUSTSEC-2021-0028 toodee 1 1 11 1 11
RUSTSEC-2023-0021 stb image 0 2 8 5 11
RUSTSEC-2017-0006 rmpv 0 3 10 3 10
RUSTSEC-2020-0075 branca 2 2 10 2 10
RUSTSEC-2022-0018 totp-rs 1 1 10 1 10
RUSTSEC-2020-0119 ticketed lock 0 2 5 3 9
RUSTSEC-2019-0007 asn1 der 0 1 3 3 8
RUSTSEC-2019-0023 string-interner 0 1 2 5 8
RUSTSEC-2020-0118 tiny future 0 1 8 1 8
RUSTSEC-2021-0018 qwutils 1 4 8 4 8
RUSTSEC-2019-0022 portaudio-rs 0 0 0 3 7
RUSTSEC-2020-0001 trust-dns-server 0 2 4 3 7
RUSTSEC-2021-0100 sha2 0 2 5 3 7
RUSTSEC-2022-0030 rulex 0 2 7 2 7
RUSTSEC-2022-0031 rulex 0 2 7 2 7
RUSTSEC-2022-0067 lzf 2 2 4 3 7
RUSTSEC-2020-0012 os str bytes 0 3 6 3 6
RUSTSEC-2020-0024 tough 0 2 6 2 6
RUSTSEC-2020-0050 dync 0 1 4 2 6
RUSTSEC-2021-0068 iced-x86 1 3 6 3 6
RUSTSEC-2021-0084 bronzedb-protocol 0 3 4 5 6
RUSTSEC-2023-0032 ntru 2 0 0 2 6
RUSTSEC-2019-0030 streebog 0 1 5 1 5
RUSTSEC-2020-0011 plutonium N n/a 0 0 3 5
RUSTSEC-2020-0092 concread 0 2 3 3 5
RUSTSEC-2021-0033 stack dst 1 0 0 1 5
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RUSTSEC-2022-0005 ftd2xx-embedded-hal U n/a 0 0 2 5
RUSTSEC-2018-0003 smallvec 0 1 2 3 4
RUSTSEC-2020-0032 alpm-rs 0 1 4 1 4
RUSTSEC-2020-0087 try-mutex 0 2 4 2 4
RUSTSEC-2021-0039 endian trait 0 1 2 1 4
RUSTSEC-2021-0087 columnar 0 2 4 2 4
RUSTSEC-2022-0057 badge U n/a 2 4 2 4
RUSTSEC-2020-0033 alg ds 0 2 3 2 3
RUSTSEC-2020-0037 crayon 0 1 3 1 3
RUSTSEC-2021-0027 bam 1 1 3 1 3
RUSTSEC-2021-0043 uu od 0 0 0 1 3
RUSTSEC-2021-0094 rdiff 0 1 3 1 3
RUSTSEC-2021-0125 simple asn1 0 1 1 3 3
RUSTSEC-2022-0017 array-macro 0 2 3 2 3
RUSTSEC-2022-0079 elf rs 0 2 3 2 3
RUSTSEC-2020-0010 tiberius U n/a 2 2 2 2
RUSTSEC-2020-0017 internment 1 1 2 1 2
RUSTSEC-2020-0130 bunch 0 1 2 1 2
RUSTSEC-2020-0155 acc reader 0 2 2 2 2
RUSTSEC-2021-0030 scratchpad 1 0 0 1 2
RUSTSEC-2021-0031 nano arena 2 1 2 1 2
RUSTSEC-2021-0036 internment 0 1 2 1 2
RUSTSEC-2022-0007 qcell 0 1 1 2 2
RUSTSEC-2022-0062 matrix-sdk 0 1 2 1 2
RUSTSEC-2018-0004 claxon 0 1 1 1 1
RUSTSEC-2019-0020 generator 0 1 1 1 1
RUSTSEC-2020-0099 aovec 0 0 0 1 1
RUSTSEC-2020-0102 late-static 0 1 1 1 1
RUSTSEC-2020-0106 multiqueue2 0 1 1 1 1
RUSTSEC-2020-0107 hashconsing 0 1 1 1 1
RUSTSEC-2020-0116 unicycle 0 0 0 1 1
RUSTSEC-2020-0124 async-coap 0 1 1 1 1
RUSTSEC-2020-0126 signal-simple 0 1 1 1 1
RUSTSEC-2020-0134 parc 0 1 1 1 1
RUSTSEC-2020-0165 mozjpeg 1 0 0 1 1
RUSTSEC-2021-0046 telemetry 0 0 0 1 1
RUSTSEC-2021-0085 binjs io 0 1 1 1 1
RUSTSEC-2023-0017 maligned 4 1 1 1 1
RUSTSEC-2016-0006 cassandra U n/a 0 0 0 0
RUSTSEC-2017-0003 security-framework 0 0 0 0 0
RUSTSEC-2017-0005 cookie 0 0 0 0 0
RUSTSEC-2018-0008 slice-deque 0 0 0 0 0
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RUSTSEC-2018-0009 crossbeam 0 0 0 0 0
RUSTSEC-2018-0010 openssl 0 0 0 0 0
RUSTSEC-2018-0011 arrayfire 0 0 0 0 0
RUSTSEC-2018-0021 libpulse-binding 2 0 0 0 0
RUSTSEC-2019-0008 simd-json 0 0 0 0 0
RUSTSEC-2019-0015 compact arena 1 0 0 0 0
RUSTSEC-2019-0016 chttp 0 0 0 0 0
RUSTSEC-2019-0018 renderdoc 2 0 0 0 0
RUSTSEC-2019-0021 linea 0 0 0 0 0
RUSTSEC-2019-0024 rustsec-example-crate 0 0 0 0 0
RUSTSEC-2019-0029 chacha20 0 0 0 0 0
RUSTSEC-2019-0031 spin U n/a 0 0 0 0
RUSTSEC-2020-0013 fake-static 0 0 0 0 0
RUSTSEC-2020-0022 ozone 0 0 0 0 0
RUSTSEC-2020-0030 mozwire 0 0 0 0 0
RUSTSEC-2020-0034 arr 0 0 0 0 0
RUSTSEC-2020-0040 obstack 0 0 0 0 0
RUSTSEC-2020-0042 stack 0 0 0 0 0
RUSTSEC-2020-0047 array-queue 0 0 0 0 0
RUSTSEC-2020-0055 libpulse-binding 0 0 0 0 0
RUSTSEC-2020-0085 safe vault U n/a 0 0 0 0
RUSTSEC-2020-0088 magnetic 0 0 0 0 0
RUSTSEC-2020-0090 thex 0 0 0 0 0
RUSTSEC-2020-0094 reffers 0 0 0 0 0
RUSTSEC-2020-0103 autorand 0 0 0 0 0
RUSTSEC-2020-0104 gfwx 0 0 0 0 0
RUSTSEC-2020-0105 abi stable 0 0 0 0 0
RUSTSEC-2020-0108 eventio 0 0 0 0 0
RUSTSEC-2020-0114 va-ts 0 0 0 0 0
RUSTSEC-2020-0117 conqueue 0 0 0 0 0
RUSTSEC-2020-0120 libsbc 0 0 0 0 0
RUSTSEC-2020-0121 abox 0 0 0 0 0
RUSTSEC-2020-0125 convec 0 0 0 0 0
RUSTSEC-2020-0127 v9 0 0 0 0 0
RUSTSEC-2020-0129 kekbit 0 0 0 0 0
RUSTSEC-2020-0132 array-tools 0 0 0 0 0
RUSTSEC-2020-0133 scottqueue 0 0 0 0 0
RUSTSEC-2020-0135 slock 0 0 0 0 0
RUSTSEC-2020-0141 noise search 0 0 0 0 0
RUSTSEC-2020-0142 syncpool 0 0 0 0 0
RUSTSEC-2020-0148 cgc 0 0 0 0 0
RUSTSEC-2020-0150 disrustor 0 0 0 0 0
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RUSTSEC-2020-0152 max7301 0 0 0 0 0
RUSTSEC-2020-0154 buffoon 0 0 0 0 0
RUSTSEC-2020-0156 libsecp256k1-rs 0 0 0 0 0
RUSTSEC-2020-0157 vm-memory 0 0 0 0 0
RUSTSEC-2020-0160 shamir 0 0 0 0 0
RUSTSEC-2020-0164 cell-project 2 0 0 0 0
RUSTSEC-2020-0166 personnummer N n/a 0 0 0 0
RUSTSEC-2021-0008 bra 0 0 0 0 0
RUSTSEC-2021-0012 cdr 0 0 0 0 0
RUSTSEC-2021-0014 marc 0 0 0 0 0
RUSTSEC-2021-0016 ms3d 0 0 0 0 0
RUSTSEC-2021-0022 yottadb 4 0 0 0 0
RUSTSEC-2021-0024 safe-api U n/a 0 0 0 0
RUSTSEC-2021-0032 byte struct 0 0 0 0 0
RUSTSEC-2021-0040 arenavec 0 0 0 0 0
RUSTSEC-2021-0042 insert many 0 0 0 0 0
RUSTSEC-2021-0045 adtensor 0 0 0 0 0
RUSTSEC-2021-0050 reorder 0 0 0 0 0
RUSTSEC-2021-0051 outer cgi 0 0 0 0 0
RUSTSEC-2021-0052 id-map 0 0 0 0 0
RUSTSEC-2021-0053 algorithmica 0 0 0 0 0
RUSTSEC-2021-0077 better-macro 1 0 0 0 0
RUSTSEC-2021-0082 vec-const 0 0 0 0 0
RUSTSEC-2021-0086 flumedb 0 0 0 0 0
RUSTSEC-2021-0092 messagepack-rs 0 0 0 0 0
RUSTSEC-2021-0099 cosmos sdk U n/a 0 0 0 0
RUSTSEC-2021-0101 pleaser 0 0 0 0 0
RUSTSEC-2021-0102 pleaser 0 0 0 0 0
RUSTSEC-2021-0104 pleaser 0 0 0 0 0
RUSTSEC-2021-0105 git-delta 0 0 0 0 0
RUSTSEC-2021-0107 ckb 0 0 0 0 0
RUSTSEC-2021-0108 ckb 0 0 0 0 0
RUSTSEC-2021-0109 ckb 0 0 0 0 0
RUSTSEC-2021-0123 fruity 4 0 0 0 0
RUSTSEC-2021-0133 cargo-download U n/a 0 0 0 0
RUSTSEC-2021-0138 mz-avro 0 0 0 0 0
RUSTSEC-2021-0152 out-reference 1 0 0 0 0
RUSTSEC-2022-0023 static type map U n/a 0 0 0 0
RUSTSEC-2022-0033 openssl-src 0 0 0 0 0
RUSTSEC-2022-0042 rustdecimal 0 0 0 0 0
RUSTSEC-2022-0045 oqs 0 0 0 0 0
RUSTSEC-2022-0047 oqs 0 0 0 0 0
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RUSTSEC-2022-0058 inconceivable N n/a 0 0 0 0
RUSTSEC-2022-0089 aliyun-oss-client 0 0 0 0 0
RUSTSEC-2023-0016 partial sort 0 0 0 0 0
RUSTSEC-2023-0030 versionize 0 0 0 0 0
CVE-2015-20001 std 0 n/a n/a n/a n/a
CVE-2017-20004 std 0 n/a n/a n/a n/a
CVE-2018-1000622 rustdoc 0 n/a n/a n/a n/a
CVE-2018-1000657 std 1 n/a n/a n/a n/a
CVE-2018-1000810 std 1 n/a n/a n/a n/a
CVE-2018-25008 std 0 n/a n/a n/a n/a
CVE-2019-1010299 std 0 n/a n/a n/a n/a
CVE-2019-12083 std 0 n/a n/a n/a n/a
CVE-2019-16760 cargo 0 n/a n/a n/a n/a
CVE-2020-36317 std 0 n/a n/a n/a n/a
CVE-2020-36318 std 0 n/a n/a n/a n/a
CVE-2020-36323 std 0 n/a n/a n/a n/a
CVE-2021-28875 std 0 n/a n/a n/a n/a
CVE-2021-28876 std 0 n/a n/a n/a n/a
CVE-2021-28877 std 0 n/a n/a n/a n/a
CVE-2021-28878 std 0 n/a n/a n/a n/a
CVE-2021-28879 std 0 n/a n/a n/a n/a
CVE-2021-29922 std 3 n/a n/a n/a n/a
CVE-2021-31162 std 0 n/a n/a n/a n/a
CVE-2022-21658 std 1 n/a n/a n/a n/a
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