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Abstract

Context-aware systems use their functional environment to provide relevant information
or functions to their users. Currently available context-aware systems, for example,
advanced driving assistant systems or mobile learning applications, primarily rely on
physical activity or direct user input. This thesis makes the next step and introduces
the concept of mental-imagery-aware systems that could enable a more sophisticated
perception of users. Mental imagery includes multiple dimensions, whereas this thesis
focuses on the two most common forms occurring in daily life: mind-wandering and
spatial imagery.

Mind-wandering-aware systems are especially relevant in learning settings, where
mind-wandering itself is primarily associated with low learning performance. This work
proposes a novel approach for detecting episodes of mind wandering using physiological
sensors and machine learning methods. For the first time, it is demonstrated that the
electrodermal activity is sufficient for classifying the episodes of mind wandering with
outstanding classification accuracy. The fusion of eye-tracker and electrodermal activity
data additionally improves the classification performance of the machine learning
algorithms.

Next, this thesis introduces a prospect towards spatial imagery and engagement-aware
systems. With the rapid increase of automation levels in serial vehicles, there is a need
for a better understanding of its impact on spatial imagery required for successful
navigation. For this purpose, a highly immersive driving simulation system with an
integrated eye-tracking system is deployed. With a real-time application in mind, the
proxy of spatial imagery “engagement with a driving task” is used to infer the driver’s
presence in the driving loop. The work demonstrates the feasibility of the eye-tracking
features combined with the Gradient boosting algorithm to recognize the disengagement
of the driver from the driving loop outperforming the state-of-the-art. Finally, this work
pave the wave for the driver’s engagement recognition using a UWB-radar and deep
learning algorithms. Six driving activities are recorded with a UWB radar and classified
using state-of-the-art deep learning models showing promising outcomes.
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1 Introduction

The increasing amount of available data and the number of sensors embedded in
electronic devices of daily use enhance a comprehensive perception of users, their
physical and mental state, intention, and goals. As a result, daily live devices supplied
with context-aware applications have grown enormously and spread from mobile devices
up to driving assistant systems. Thus, Apple Watches Series 4 can automatically detect
a hard fall of its owner and make an emergency call (see Figure 1.1). Advanced driving
assistant systems can detect distracted drivers’ behavior, trigger a warning signal, or
adapt the vehicle’s behavior accordingly. Learning assistant systems can provide with
more tailored environment enhancing personal feed and elaborating more effective
learning strategies. In particular, eye-tracker-equipped learning systems can recognize
possible difficulties in topic understanding based on users’ gaze and thus adopt the
information representation accordingly [119] (see Figure 1.1).

The interest in context-aware systems has been gradually increasing, as the tendency
of the last five years shows [64]. This development primarily emerges as a logical step
to maximize the use of constantly growing available contextual and sensory data. The
goal is to enhance the user experience by tailoring the systems or services to user’s
needs at the given moment. A system is defined to be context-aware if: it uses context

to provide relevant information and/or services to the user, where relevancy depends

on the user’s task [106, 6]. The term context itself can be defined as any information

that can be used to characterize the situation of an entity, where the entity is a person,

place, or object that is considered relevant to the interaction between a user and its

application, including the user and the application themselves [106].
In the midst of increasing automation and adaptation level of assistant systems, more

complex information about users might be required to guarantee the proper system
response and an appropriate safety level. Thus, recognising physical activities like
the presence of the drivers’ hands on the steering wheel does not provide sufficient
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Figure 1.1: Example of context-aware systems. Top left: Apple Smartwatches Series 4
with a fall detection recognition [3]. Top right: Bosch interior monitoring
system [28]. Bottom: Gaze-aware learning assistant system Hypermind
[109].

inference whether they are fully aware of the ongoing road situation [118]. Neither the
position of the gaze on a particular part of the text is always revelatory to understanding
whether the user perceives the information. Considering these limitations, this thesis
focuses on the concept of mental imagery that, by now, has not received much attention
in context-aware systems.

1.1 Motivation

Mental imagery is the ability of the brain to generate, inspect, and manipulate the
internal mental representation of objects, events, and environments that are physically
not presented [176]. It is assumed to be a quasi-perceptual experience resembling
a perception but without any direct sensory input [208]. The forms and vividness
of mental imagery vary from individual to individual, making it a strictly subjective
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Figure 1.2: Common forms of mental imagery in daily life. Left: Spatial imagery.
Right: Mind wandering. Credits: Adobe Stock.

experience. Both extremes on the mental imagery scale can indicate mental illnesses
and clinical disorders. Thus, the lack of ability to voluntarily experience mental images
is called aphantasia [162, 79], which can occur both in healthy individuals [121] and
those with a brain injury. Aphantasia’s counterpart is an involuntary experience of
vivid, intensive mental images decoupled from the direct sensory input [162], typical for
patients with schizophrenia, depression, and anxiety Parkinson’s disease. Apart from
both extremes, there is strong evidence that mental imagery is a regular function of the
healthy brain. It allows individuals to simulate the future, analyze past events, engage
in self-related thoughts, and moderate goal-oriented and planning behavior [136].

Mental imagery is a general term aggregating several cognitive functions, including
mind wandering and navigation or spatial imagery [162]. Mind wandering can be
defined as attentional decoupling from physical activity to internal thoughts [195]. It
was shown to force creativity and problem-solving ability [216, 195], as well as to
moderate reading comprehension [202]. The navigation is heavily based on spatial

imagery - the cognitive ability to inspect and evaluate spatial features (e.g. distance,
relative position) of mentally generated images [176]. The planning ability of spatial
navigation has a crucial role in everyday life, especially in the context of driving,
since a good navigation ability is a crucial component for on-road safety, accident
prevention, and pollution and energy consumption [110]. Successful navigation is only
possible when individuals are fully engaged in the navigation process: they perceive the
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environment, know their position, and can identify the destination point from the current
position. Therefore, engagement with driving is further considered as an essential
component moderating the strengths of spatial imagery. Considering the prevalent
role of mind wandering and spatial imagery in such daily activities as learning and
driving, the development of mental imagery-aware systems can significantly enhance
the learning and driving experience in the respective domains.

1.2 Existing Challenges

Although the research on mind wandering in the context of learning assistant systems
has been experiencing a rapid increase, mental imagery itself is not a primary focus
of context-aware systems. Several factors could be accountable for it: (1) the hidden
nature of mental imagery, and therefore (2) the absence of stable sampling methods,
(3) high subjectiveness, (4) context dependency, and finally, (5) the antagonistic nature
of mental imagery to be both detrimental and beneficial. Because of the covert and, in
some cases, uncontrolled nature of mental imagery [165], the dominant research tool
for mental imagery has been remaining self-reported questionnaires and experience
sampling methods. However, both these techniques lack sufficient subjectivity [163]: a
questionnaire provides only a proxy representation of experienced imagery and heavily
depends on participants’ awareness of their thoughts [182]. In addition, a continuous
request to report the presence of mental imagery might disturb the communication flow
between the user and the system. In contrast, neuro-imagery and brain stimulation tech-
niques can reveal keen insights about the brain activity associated with mental imagery.
Nevertheless, their deployment is restricted to clinical settings due to complexity and a
limited degree of freedom for users, making them impractical for context-aware appli-
cations. Finally, the observation and registration of the mental imagery are typically
limited to inference statistics and do not translate to context-aware applications.

1.3 Problem Formulation and Approach

Addressing the aforementioned limitations from Section 1.2, this work aims to investi-
gate the feasibility of low-cost, scalable physiological sensors combined with machine
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Figure 1.3: Pipeline for mental imagery-aware system development: Five successive
steps for a robust system framework.

learning algorithms to provide prospectives towards mental imagery-aware systems.
Considering the subjective and hidden manner of mental imagery, this thesis sets a goal
to design systems with a strong generalization ability for new, previously unseen users
in mental imagery classification tasks.

In this thesis, a mental-imagery aware system is designed as a system that uses users’

data to infer the presence of mental imagery in a particular context. Considering the
need for the precise definition of the system context and multidimensionality of mental
imagery itself, the thesis investigates two application scenarios for mental imagery-
aware systems, namely learning and driving, as these two activities are an integral part
of daily life. Importantly, as mentioned in Section 1.1, engagement is a key component
of spatial image. Therefore, it can provide a proxy of an ongoing spatial imagery
process in cases the latter one can not be directly captured by the sensors [176].

The system prototyping for both application scenarios follows the schema introduced
in Figure 1.3. The proposed pipeline includes five successive steps: (1) System Design,
(2) Behavioral and Sensory Data Collection, (3) Statistical Analysis, (4) Machine Learn-

ing, and (5) Model Explainability. System Design introduces a particular architecture
and sensors used in the system. In the second step, data containing user responses are
collected. These data are further used as ground truth for sensory data. In the third step,
statistical analysis is performed to test pre-defined hypotheses regarding user behavior
and designed context. Next, machine learning models are built to enable the system
to correctly classify the presence of the mental imagery by the user. Finally, model

explainability techniques are used to reveal the feature’s impact on the classification per-
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formance of the built models. These five steps should ensure a robust and substantiated
framework for developing mental imagery-aware systems.

The physiological sensors, namely an eye tracker, an electrodermal activity sensor
and a radar used in this thesis for mental imagery-aware systems, were selected accord-
ing to their scalability, cost, privacy, interchangeability among application scenarios,
and performance reliability under learning and driving conditions. Taking into account
that failures in visual attention are responsible for a significant number of traffic acci-
dents [118], there is no wonder that eye tracking is widely employed in autonomous
driving research and partly integrated into serial vehicles [149, 128, 77]. For the driver
monitoring systems, the radar sensor is additionally deployed, as it overcomes the
limitations of the camera-based systems, such as sensitivity to the lighting conditions,
as well as privacy issues.

Thus, the main research question of this thesis is:

Can machine learning combined with physiological sensors enhance the
quantification of mental imagery in context-aware systems?

First, finding sensors that can depict the episodes of mental imagery without intruding
into users’ privacy and autonomy [106] is of high importance. Second, deploying
machine learning techniques for acquired sensory data should enable the system to
automatically classify the presence of mental imagery in the defined context. Taking
into account the system dependency on a precise context definition, the main research
question of this thesis is divided into three subquestions:

1. Question: How can the features extracted from the electrodermal activity and
eye movement, combined with machine learning, contribute to detecting episodes
of mind wandering in a learning context?

2. Question: How can machine learning contribute to detecting spatial imagery and
engagement with a driving task under various driving conditions?

3. Question: How can the radar system contribute to driver-independent, privacy-
driven monitoring solutions in the context of engagement-aware systems?
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1.4 Contributions

In the following, the key contributions of this thesis are summarized. All contributions
have been published in papers or are in preparation, as listed below.

1. This thesis introduces a novel method for user-independent classification of
episodes of mind wandering using electrodermal activity, an eye-tracker, and
machine learning methods. It demonstrates for the first time that using features
extracted from electrodermal activity alone is sufficient for outstanding classi-
fication performance. The eye-tracking feature-based model outperformed the
state-of-the-art mind wandering classification task. Finally, it provides a pipeline
for developing mind wandering-aware assistant systems. This work has been
published in:

Brishtel, I.; Khan, A.A.; Schmidt, T.; Dingler, T.; Ishimaru, S.; Dengel,
A. Mind Wandering in a Multimodal Reading Setting: Behavior Analysis
& Automatic Detection Using Eye-Tracking and an EDA Sensor. Sensors
2020, 20, 2546, doi.org/10.3390/s20092546.

2. This thesis fills the gap in understanding how autonomous and navigated driving
impacts spatial imagery and cognitive maps, informing future advancements in
driver-assistance technologies. Thus, the impact of printed maps, navigation
systems, and autopilot in a virtual environment was compared to examine the
development of spatial knowledge and cognitive demands under various driving
conditions. Learning a new route with printed maps was associated with a higher
cognitive demand than the navigation system and autopilot. Conversely, driving
a route by memory resulted in an increased cognitive workload if the route had
been previously learned with the navigation system or autopilot. Way-finding
performance was found to be less prone to errors when learning a route from a
printed map. This work has been published in:

Brishtel, I.; Schmidt, T.; Vozniak, I.; Rambach, J.R.; Mirbach, B.; Stricker,
D. To Drive or to Be Driven? The Impact of Autopilot, Navigation System,
and Printed Maps on Driver’s Cognitive Workload and Spatial Knowledge.
ISPRS Int. J. Geo-Inf., 2021, doi.org/10.3390/ijgi10100668.
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3. This thesis introduces a novel, user-independent approach to classify the presence
of the driver in the driving loop based on the gaze data. Built upon the data
collected from the study on spatial imagery and driving conditions, this work
demonstrates the feasibility of the eye-tracking features combined with the Gra-
dient Boosting algorithm to recognize the disengagement of the driver from the
driving loop, even when the eyes are directed on the road. The proposed method
of classification performance of the driving mode outperforms the state-of-the-art.
This work has been published in:

Brishtel, I.; Krauss S.; Schmidt, T.; Rambach, J.R.; Vozniak, I.; Stricker,
D. Classification of Manual Versus Autonomous Driving based on Machine
Learning of Eye Movement Patterns. 2022 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, 2022,
pp. 700-705, doi.org/10.1109/SMC53654.2022.9945234

4. This thesis shows that drivers’ engagement and activity classification can be
performed using ultra-wideband radar technology, providing ultimate advantages
in terms of privacy and robustness to environmental conditions. It is demonstrated
for the first time how a convolutional neural network, a long short-term memory
network, and a visual Transformer can facilitate driver activity and engagement
recognition using Doppler data.

5. Finally, a novel, previously not existing dataset RaDa containing driving activities
is introduced and made publicly available for the research community. A total of
10.406 frames are included in the dataset, each with Doppler range information.
This work has been published in:

Brishtel, I.; Krauss, S.; Chamseddine, M.; Rambach, J.R.; Stricker, D.
Driving Activity Recognition Using UWB Radar and Deep Neural Networks.
Sensors 2023, 23, 818, doi.org/10.3390/s23020818.

1.5 Organization of the Thesis

This thesis is organized as follows: Chapter 2 introduces notations and provides relevant
information for understanding the thesis. It includes the description of physiological
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sensors used in this work, their working principles and provides background about the
physiological mechanisms measured by these sensors. Finally, it discusses the basic
idea and mathematical background behind the in this thesis deployed machine learning
methods. Chapter 3 provides information about the case study on mind-wandering recog-
nition in a learning setting. It discusses the preprocessing steps, feature engineering,
and feature importance for automatic, user-independent mind-wandering classification
tasks. Chapter 4 provides a prospective towards developing the engagement-aware
system in a driving context. For this purpose, it investigates the user-model and spatial
imagery of drivers under various navigation conditions to fill the existing gap in the
state-of-the-art. Based on the observed results it offers a prospective to classify spatial
imagery through the observed engagement level of the driver while navigating in a
virtual city using gaze data and machine learning algorithms. Chapter 5 provides a
study addressing the engagement recognition of the driver with the driving task using
a radar-based system. Moreover, it introduces a novel dataset, the first of its kind.
The radar preprocessing steps are addressed in the chapter, and the classical machine
learning algorithm is compared to deep learning methods. Finally, Section 6 concludes
the thesis and provides suggestions and outlooks for future work.
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1.6 Publications

Most of the work presented in this thesis has been accepted and presented at peer-
reviewed conferences. In the following, a list of the papers published during the time of
the PhD is provided:

Journals

1. Brishtel, I.; Krauss, S.; Chamseddine, M.; Rambach, J.R.; Stricker, D. Driving
Activity Recognition Using UWB Radar and Deep Neural Networks. Sensors
2023, 23, 818, doi.org/10.3390/s23020818.

2. Brishtel, I.; Schmidt, T.; Vozniak, I.; Rambach, J.R.; Mirbach, B.; Stricker, D.
To Drive or to Be Driven? The Impact of Autopilot, Navigation System, and
Printed Maps on Driver’s Cognitive Workload and Spatial Knowledge. ISPRS
Int. J. Geo-Inf., 2021, doi.org/10.3390/ijgi10100668.

3. Brishtel, I.; Khan, A.A.; Schmidt, T.; Dingler, T.; Ishimaru, S.; Dengel, A. Mind
Wandering in a Multimodal Reading Setting: Behavior Analysis & Automatic
Detection Using Eye-Tracking and an EDA Sensor. Sensors 2020, 20, 2546,
doi.org/10.3390/s20092546.

Conference Papers

1. Brishtel, I.; Krauss S.; Schmidt, T.; Rambach, J.R.; Vozniak, I.; Stricker, D.
Classification of Manual Versus Autonomous Driving based on Machine Learning
of Eye Movement Patterns. 2022 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), Prague, Czech Republic, 2022, pp. 700-705,
doi.org/10.1109/SMC53654.2022.9945234

Following publications belong to research activities out of the Ph.D scope :

Conference Papers

1. Brishtel, I.; Ishimaru, S.; Augereau, O.; Kise, K.; Dengel, A. Assessing Cognitive
Workload on Printed and Electronic Media using Eye-Tracker and EDA Wristband

28

https://doi.org/10.3390/s23020818
https://doi.org/10.3390/ijgi10100668
https://doi.org/10.3390/s20092546
https://doi.org/10.1109/SMC53654.2022.9945234


(2018). In Proceedings of the 23rd International Conference on Intelligent User
Interfaces Companion. Association for Computing Machinery, New York, NY,
USA, Article 45, 1–2.
doi.org/10.1145/3180308.3180354

2. Loch, F.; Quint, F.; and Brishtel; I.. Comparing Video and Augmented Real-
ity Assistance in Manual Assembly (2016). 12th International Conference on
Intelligent Environments (IE), London, UK. doi.org/10.1109/IE.2016.31
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2 Background

2.1 Forms and Functions of Mental Imagery

As motivated in Section 1, this work seeks to provide prospectives towards mental
imagery-aware systems enhanced by low-cost sensors and machine learning algorithms.
Considering a broad spectrum and types of mental imagery, the thesis focuses on
mental imagery in the context of learning and driving activities. Before stepping
forward the particular mental-imagery aware systems, this chapter provides background
information about the phenomena of mental imagery and its underlying subcomponents
– mind-wandering and spatial imagery. Next, sensors used in this thesis and underlying
physiological mechanisms used for sensing mental imagery are introduced. Finally,
state-of-the-art machine learning algorithms, performance metrics and AI-explainability
methods are discussed.

2.1.1 Mind-Wandering

The phenomenon of mind-wandering is probably well-known to everybody: While
reading, driving, or engaging in a routine task, people often find their attentional
focus drifting to internal thoughts or concerns. Mind-wandering is defined as “a shift

in the contents of thoughts away from an ongoing task and/or external environment

to self-generated thoughts and feelings” [195]. Roughly, mind-wandering can be
classified along two dimensions: task-related thoughts (TRTs) and task-unrelated

thoughts (TUTs). These types affect task performance and the mental well-being of
people differently. While task-related thoughts foster creativity and problem-solving
ability [195, 216], task-unrelated thoughts are associated with decreasing learning
performance and reading comprehension [192, 202].

As in the case of mental imagery, the quantification of mind-wandering and the
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complexity of its detection are the central issues in mind-wandering research. The
frequently-used technique for mind-wandering measurement is experience sampling.
Experience sampling itself has various forms, including self-caught and probe-caught

methods, that are the most common in the research field. See the extensive review
of [228] for other methods. Both forms have their advantages and disadvantages.
Thus, the self-caught method is less disruptive, allowing participants to report mind-
wandering whenever it occurs freely. At the same time, it heavily depends on partici-
pants’ awareness of their thoughts and therefore works for each individual differently.
The probe-caught method can compensate for the lower ability to be aware of the
content of own thoughts increasing the chances of revealing the overlooked episodes of
mind-wandering. Nevertheless, it might be perceived as disruptive and even enhance
involuntary mind-wandering [182, 228].

Research on mind-wandering plays an essential role in education since it is primarily
associated with a low task and learning performance [112, 192, 194]. The attentional
decoupling caused by mind-wandering is assumed to suppress information processing
from external sources (i.e., learning materials), impairing learning performance. More-
over, the awareness of experiencing mind-wandering is linked to meta-awareness–the
ability to track and monitor one’s thought process and subjective experience [181]. This
ability enormously varies among learners. On the other hand, some tasks require at-
tentional shifting to internal thoughts for a successful task performance [194]. For
example, mental arithmetic [185] as well as autobiographical memory recall all require
internally directed attention. Furthermore, a few studies investigating the effect of TRTs
on learning performance indicated their critical role in learning at early stages where
prior knowledge is low or absent [117]. In line with that, some cognitive psychologists
denoted the importance of contextual settings for the assessment of mind-wandering
[78]. Unfortunately, this antagonistic property of mind-wandering is often overlooked
in the context of learning systems.

As mentioned in Section 1.1, fMRI [170, 204, 201] and EEGs [216, 18, 31, 116]
provide great opportunities to register the episodes of mind-wandering on the neural
level. However, these methods are not transferable to daily life applications due
to their complexity, size, and costs. Simpler and more scalable detection can be
accomplished using eye-trackers [23, 224, 92, 190, 196, 202, 22] and the measurement
of electrodermal activity [191, 24, 51]. Notably, the sensory or neuro-imagery-based
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Figure 2.1: Six levels of automation und related driver assistant features. Adopted from
SAE [155].

techniques still require an ES sampling technique to provide a ground truth for the
experienced episodes of mind wandering.

Mind-wandering detection and intervention provide new opportunities for mind-

wandering-aware systems that can adapt to the mental state of learners [67, 103]. As
mentioned earlier, accurately detecting mind-wandering onset is still a challenging
task [18, 31, 23]. However, recent studies showed the general feasibility of low-cost
eye-trackers powered by machine-learning algorithms for mind-wandering detection
in learning tasks [105, 67, 23, 29]. Maintaining attentional states employing mind-
wandering-aware systems is supposed to support the learning process and increase
overall learning performance.

2.1.2 Spatial Imagery

Navigation is one of the most crucial abilities humans have adopted from their ancestors
for functioning in everyday life. Successful navigation requires contribution from multi-
ple cognitive processes, including memory, spatial imagery and planning [26]. Spatial
imagery refers to the inspection and assessment of spatial properties (e.g. distance,
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relative position to any reference point) and/or the spatial manipulation (e.g. rotation,
shifting, reorienting) of mentally generated images [176].

Spatial imagery retrieves from memory previously perceived spatial information and
builds environmental representations. The core of spatial knowledge builds the concept
of a “cognitive map” which is a mental representation of the physical environment [212].
Cognitive maps incorporate a person’s spatial knowledge and thus their ability to navi-
gate through a physical environment. The development of spatial knowledge is assumed
to include three successive steps: “landmark knowledge”, “route knowledge”, and
“survey knowledge”, as proposed by Siegel and White [108, 188]. According to their
framework, the development of spatial knowledge begins from landmark knowledge
or knowledge about scenes or eye-catching objects within these scenes. Landmarks
were found to enhance way-finding, spatial decision-making, and self-orientation in
space [77, 141, 40, 225]. Next, route knowledge includes the integration of sequences
of view-action pairs [125], for example “turn left to the big blue shopping centre”.
Finally, survey knowledge combines the observed sequences of routes and landmarks
into a unified spatial reference system [148, 14], where a cognitive map emerges from.

Navigation is one of three basic visual tasks that is performed while driving [118]
and takes a vital role in the hierarchical vehicle control loops [186]. Active navigation
requires full engagement of the driver, including situational awareness, vehicle control,
active planning and decision making, choosing and maintaining a target point in the
field of view, and thus maintaining a continuous update of the visual scene [41, 10, 217].
In contrast, driving with an autopilot changes the driver’s role to a passenger or a
passive operator [166]. This role change results in a different task responsibility level
between the system and driver, increasing passive fatigue [126] and reducing vigilance,
and lowering driving engagement compared to manual driving [174]. Expanding
technological innovations in the field of information technologies have enabled the
widespread integration of navigation systems into mass-produced vehicles, reducing
the demand for drivers to possess extensive spatial knowledge about a particular area.
The primary purpose of using these systems is to provide drivers with topographical
information about new or unknown locations and to improve route planning and spatial
decision-making [42, 77]. In addition, modern navigation systems share information
about road works, speed limits and traffic jams, which should reduce the number of
traffic delays. Thus, navigation systems can reduce driver mental stress and enhance
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navigation performance leading to safer driving behavior. Navigation systems are even
considered ecologically beneficial, as they can significantly decrease pollution, driving
time, and energy consumption [110]. While the main intention behind integrating
navigation systems into serial vehicles was to mitigate drivers’ cognitive and physical
workload and assist them in way-finding [42, 77], significant adverse effects on spatial
knowledge have also been substantiated.

The presence of a navigation system while a driving task was associated with poorer
way-finding ability [151] and less precise scene recognition and ordering [42] compared
to printed maps. Interestingly, navigation with a printed map was associated with the
experienced increase in cognitive workload. A significantly higher cognitive workload
was observed while driving with a printed map. However, this finding was inferred from
post-experimental interviews and was not validated by the experimental task itself [42].
Finally, persons who travelled in a passive driving condition were observed to have
sparser spatial knowledge [148]. These results suggest that frequent use of navigation
systems is more likely to hinder the acquisition of spatial knowledge so that unknown
environments remain unknown for a longer time [168]. Despite the large number of
studies investigating the effects of navigation systems on spatial knowledge, only a few
of them examined participants in real driving environments or highly immersive driving
simulations [42, 9, 141, 91, 223, 96, 108].

The deployment of autonomous driving systems in serial vehicles is expected to usher
in a new era of traffic navigation and driving in general. While the currently approved
level of autonomy is ”2” (see Figure 2.1), the vision of leading manufacturers is a fully
autonomous system in production vehicles that does not expect the driver’s presence in
the driving loop during the entire driving time, providing the full control to the system.
Despite the increasing number of studies on autonomous driving and driver behavior,
their main focus has been on technology acceptance, reliance, attention [65], trust, and
mental load induced by the used system [150]. In contrast, drivers’ spatial cognition
and knowledge have been rather neglected.

2.1.3 Spatial Imagery & Engagement

By now, no studies have been explicitly exploited the link between behavioural engage-
ment and spatial imagery. From the studies on mental imagery (to recall the difference
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Figure 2.2: Theoretical link between engagement with driving, spatial imagery, cogni-
tive maps and spatial knowledge proposed by the thesis. Engagement with
driving moderates the strengths of spatial imagery, which activates spatial
knowledge. Spatial knowledge provides a unified reference system which is
integrated in the form of a cognitive map. The groove of spatial knowledge
results in an updated and sophisticated cognitive map.

between mental and spatial imagery, see Section 2.1.2), it is, however, known that
active dealing with a task can promote mental imagery, its vividness, and thus facilitate
a planning and goal-oriented behaviour [175]. This thesis suggests that behavioural
engagement in driving is a crucial component to reinforce spatial imagery and thus fa-
cilitates accessibility and further development of cognitive maps and spatial knowledge.
Figure 2.2 provides a graphic representation of the proposed link between engagement,
spatial imagery and spatial knowledge. Engagement itself can be easier recognized
with the sensors than spatial imagery through behavioural patterns and physical activity.
Thus, the driver’s engagement with driving can be used to indicate active spatial imagery
in a navigation task. Considering the growing demand for driver monitoring under an
increasing automation level, engagement-aware systems can provide a building block
to contribute to an in-car safety level.
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2.2 Physiological Sensors

The following section introduces background information about the sensors deployed
in this thesis to ensure the appropriateness of the selected physiological sensors. In
particular, the section focuses on eye-tracking, electrodermal activity and radar technol-
ogy for potential mental imagery-aware systems. It lists their relevant properties and
underlying physiological mechanisms.

2.2.1 Eye-Tracking

In 1967 Yarbus demonstrated how the pattern of fixations and eye movements across the
same picture depends on the viewer’s intentions [233]. For instance, when the task was
to judge the age of the depicted persons, observers systematically scanned their faces,
whereas determining their wealth led to the scanning of clothing and furniture. This
principle holds true in the context of mental imagery where gaze behavior is strongly
moderated by the presence of mind-wandering [103, 190] as well as spatial imagery
and engagement [211, 13, 118].

Among the variety of available eye-tracking technologies, one of the most simple
and handy systems is corneal-reflection-based eye-tracking. The corneal-reflection-
based eye-tracking system emits infrared light (IR) that is reflected by the cornea
of the eyes and measured relative to the location of the pupil center [111, 74]. The
individuals usually do not perceive the IR light; the stationary version of these eye-
tracking systems does not come in direct contact with the individuals, making them
comfortable for data recordings. Given an appropriate calibration of the eye-tracker, a
viewer’s point of regard (or the point being gazed at) can be estimated and mapped into
the coordinate system of the existing system environment. Regardless of the type of
eye-tracking technology, several fundamental gaze features with a strong association
with the underlying cognitive functions can be extracted from nearly every eye-tracking
system [235, 43, 52].

Figure 4.16 represents a gaze scan path while reading behavior. A fixation is an eye
movement stabilizing the retina over a stationary area of interest [74]. It is also known
as gaze time and is typically measured in milliseconds. Depending on a particular task,
the threshold of a single fixation lays within a range of 200-300 milliseconds but might
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Figure 2.3: Eye movement while text reading: The size and color (red is associated with
longer duration) represent fixation duration.

exceed both the upper and lower border [43]. The experiment run by Chen et al. [52]
showed that the latency of fixation duration might be associated with the increasing load
on working memory and attentional resources. They also found a positive correlation
between task difficulty and fixation duration. Fixation rate or a number of fixations

is the total number of fixations observed within a certain period. With the increasing
difficulty of text comprehension or visual task complexity, the number of fixations was
found to increase significantly [172].

A saccade is a rapid transition between two fixation points that takes about 30-80
ms to complete [239]. The length between two fixation points is defined as saccade

length. Typically, for visualization of saccades, scan path graphics are used. Several
studies demonstrated that saccade duration negatively correlates with increasing task
affordance [52, 215]. Saccade length was found to be a highly discriminating indicator
of cognitive workload in an experiment with variable task difficulties [52]. Saccade
length also allows predicting the type of reading behavior [43]. The saccadic transition
can be divided into three types: read forward, skim forward, and long skim jumps. A
read forward means a normal reading behavior, whereas a skim forward or long skim
jumps indicate a lack of attention to the reading task.

While reading (in European languages), any transition between two fixation points
from right to left (excluding line breaks) is called regression. The amount and type of
regressions indicate a reading or skimming behavior that might correlate with cognitive
workload [43]. Regression length and the number of regressions were found to have a
positive linear dependency on the mental workload. In addition, several studies reported
a dependency between these two variables, lower reading comprehension and increased
working memory demand.
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Figure 2.4: Left: Empatica E4 wristband with two (highlighted) snap-on silver (Ag)
plated electrodes for recording of EDA signal. Image adopted from [1].
Right: Example of EDA signal with underlaying SCL and SCR components.
(Top): Normalized raw EDA signal (z-score). (Middle): Tonic component.
(Bottom ): Phasic component.

2.2.2 Electrodermal Activity

The electrodermal activity (EDA), also known as skin conductance response (SCR) or
galvanic skin response (GSR)), is an activity associated with alternations in the electrical
properties of the skin mediated by the level of physiologically-induced sweating [93].
Even though sweating is primarily linked to a thermoregulation function, clinical studies
investigating schizophrenia, assessment of pain, and peripheral neuropathy could state a
dependency between the emotional arousal of a human and electrodermal skin response
[19]. Increasing interest and broad implementation of sensors capturing EDA beyond
clinical studies are due to the simplicity and non-invasiveness of data acquisition. Two
electrodes placed on the skin’s surface (bipolar recording) measure changes in skin
resistance triggered by stimuli. Traditionally, the electrodes are placed on the thenar
eminences of the palms and the volar surface of the medial or distal phalanges of the
fingers [62]. Modern EDA electrodes are integrated into a wristband that can be easily
placed on a participant’s or patient’s wrist, providing them an almost unrestricted degree
of freedom in their activities (see Figure 2.4). Notably, the strength and quality of the
EDA signal strongly depend on the surface where the sensor is placed: The number of
sweat glands on a human wrist is lower than on the palms, resulting in a lower EDA
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response.
The EDA mechanism can be described as follows: when the sudomotor nerves

stimulate sweat production, the conductivity on the skin surface changes due to sweat
secretion. Historically, both sympathetic and parasympathetic branches of the autonomic
nervous system were assumed as potential regulators of EDA. At the end of the 20th
century, studies investigating sympathetic action potentials in the peripheral nervous
system while simultaneously recording EDA showed evidence for sympathetic control
of EDA. Neuroimaging technology has shown several consistent patterns in the brain,
where activations associated with attentional and emotional responses correlated with
changes in the electrodermal conductivity [62].

A raw EDA signal consists of two main components: Skin Conductance Level (SCL)
or tonic components and Skin Conductance Responses (SCRs or phasic component)
[62]. SCL relates to slow drifting components, and its common properties are a gradual
decrease while participants are at rest and a rapid increase when a new stimulus is
presented. It is related to general information about psycho-physiological state [93] and
can also be linked to the attentional state [100]. SCR is a fraction of SCL that represents
small waves superimposed on the drifts in SCL and reflects sudomotor activity. The
SCR is associated with short-term changes in EDA as a reaction to stimuli. The phasic
component includes higher frequency components, in particular, a phasic driver. The
spike density observed in SCR is linearly related to the number of recruited sweat
glands and, therefore, SCR amplitude [19].

The typical size of SCL components ranges between 2 and 20 µS (microsiemens),
and an increase in SCR triggered by a stimulus ranges between 0.1 and 1.0 µS. How-
ever, these values enormously vary across individuals (individual differences). Both
components can be described in terms of several additional properties and subcompo-
nents but they are not considered in this work (for more information and further reading,
see: [62, 32, 93]).

2.2.3 Radar

Radar technologies experience a growing interest in human activity recognition (HAR)
and human monitoring. Compared to other optical systems, radar provides unrivalled
advantages in terms of privacy, robustness to environmental conditions, low sensitivity to
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Figure 2.5: Left: Xethru X4M200 UWB pulse-Doppler Respiration Radar. Im-
age adopted from [177]. Right: Doppler-range data recorded by Xethru
X4M200 and visualized by Xethru-Explorer software.

obstacles and hazards, and usability [132], enlarging the number of potential application
areas. While the central area of radar applications for HAR remains indoor activity
classification [39, 30, 241, 205, 231, 183, 232, 153, 132], vital sign monitoring [145,
234, 177] and fall detection [76, 115], another prospective field is driver monitoring.
Several companies have already integrated radar-based solutions for presence and seat
occupancy detection [171] as well as vital sign recognition [107, 130, 147]. Recent
studies also have pointed to radar systems’ feasibility in recognising drivers’ behavior
and physical state even in moving vehicles using radar [66, 122].

A wide range of radar types can be found in the field of HAR [132]. The most com-
mon types used can be divided into two families: Continuous-Wave (CW) and Pulsed
radars. Continuous-wave radars continuously transmit radio energy at high frequencies,
and the radar echo is received and processed continuously. Frequency-Modulated
Continuous-Wave (FMCW) radars belong to the CW group and transmit a frequency-
modulated electromagnetic wave and capture its scattering from the targets. Based
on the properties of the captured scattering, distance, velocity, size, and orientation of
the targets can be calculated [219]. In contrast to CW radars, pulsed radars transmit
briefly, followed by a long pause while the radar is in receive mode. Ultra-wideband
(UWB) (see Figure 2.5) is a family of pulsed radars that transmit low-powered pulses
over a wide spectrum [39]. It allows them to have a higher range resolution resulting
in more fine-graded information about the target [84]. The UWB radars are able to
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resolve the conflict between Doppler and range resolution while capturing the Doppler
information of each scattering center of the human body [132]. Moreover, they are
robust to multi-path distortion [240] and have a low energy consumption.

The research on HAR demonstrated outstanding results and multiple advantages
of deep learning techniques for classifying radar data. In particular, previous studies
showed that radar echo data can be treated as an image in a spectrogram or as time
series of the intensity values [132].
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2.3 Machine Learning for Sensory Data

In this thesis, the methods of machine learning are used to enable the classification of
sensory data for the presence of episodes of mental imagery. In particular, both classical
methods from machine learning and deep learning techniques are deployed. In a
nutshell, machine learning is a subfield of Artificial intelligence and describes the ability
of the system to acquire its knowledge by learning relevant patterns from the input data
and to generalize it for new, unseen data. The classical machine learning algorithms are
based on statistical learning theory, which attempts to build consistent estimators from
the data [70] and requires hand-crafted features as input data calculated by engineers
and researchers. In contrast, Deep Learning is a biologically motivated framework
mimicking a human brain’s learning ability. It can extract relevant features and patterns
from raw data and use them to learn complex, high-dimensional, nonlinear mappings for
a recognition task. Another characteristic of Deep learning is the gradient-based learning
approach, where the network parameters can be updated with the back-propagation
algorithm [129].

The selection of machine learning methods described and used in this thesis is
motivated by the review of related studies in the field that are further introduced in
Chapters 3, 4 and 5.1.

2.3.1 Logistic Regression

One of the most popular and straightforward machine learning algorithms is logistic
regression. Logistic regression is a classification algorithm originating from statistics
and used to calculate the class membership probability for one of two possible classes
in the given data set using the logistic sigmoid function [70]. The logistic regression
model is given by:

p =
1

1 + e−(b0+b1x)
(2.1)

where p is the probability of one observation belonging to one of the two classes, x is
the independent variable of interest, b0 is the y-intercept, and b1 is the coefficient for
the independent variable. The observed results are the ratio between the probability
of an event occurring and the probability of an event against the same outcome [199].
There are several optimization algorithms used for model parameter estimation. Usually,
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however, they are estimated by maximum-likelihood estimation [70]:

θ̂MLE = argmax
θ

, L(θ) = argmax
θ

n∏
i=1

f(xi; θ) (2.2)

where θ is parameter values. The main advantages of logistic regression are the low
model complexity, a low number of model parameters, and thus a lower risk of model
overfitting, and good model interpretability [70].

2.3.2 SVM

Support Vector Machine (SVM) was introduced in 1995 by Cortes and Vapnik for
optical character recognition tasks [56]. It was based on the idea of mapping input
vectors (x) in a non-linear manner to a high-dimension feature space z = ϕ(x) to make
the separation easier. Importantly, SVM was developed for binary classification tasks.
An optimal hyperplane or a decision boundary is estimated to separate the input into two
classes in the resulting feature space. The SVM algorithms select that decision boundary
that maximizes the margin between two classes. A margin is defined as the sum of the
distances to the hyperplane from the closest points of two classes [157]. There are two
types of margin: Hard Margin SVM and Soft Margin SVM, where the latter can handle
noisy data and outliers using hyperparameters. However, these techniques perform well
only with linearly separable data.

The non-linear mapping is performed by using a kernel trick – a technique that maps
data from a lower dimensional space to a characteristic space where the data are linearly
separable [179]. Typically it is performed by using the radial basis function (RBF) also
Gaussian kernel, or Polynominal kernel. Thereby, RBF results in the most complex
decision boundary and thus provide better classification results. RBF kernel is defined
as:

K(x,x′) = exp

(
−∥x− x′∥2

2σ2

)
(2.3)

where ||x − x′||2 represents the squared Euclidean distance between two feature
vectors, and σ is a free kernel parameter regulating nonlinear mapping from input space
[73]. After the optimal decision boundary has been estimated, it is projected on the
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datasets’ original space to attain a discriminant function [179]. The class prediction is
performed as follows:

wTΦ(x) + b ≥

≥ 1 if yi = 1

≤ −1 if yi = −1
i = 1, . . . , n (2.4)

where wTΦ(x)+b denotes a hyperplane consisting of feature mapping function Φ(x),
weight factor w regulating orientation of the hyperplane, and a bias term b. The margin
from the closest point of each class to the decision boundary is defined by 1/||w||, and
the distance between two classes is 2/||w||.

SVM has several advantages making it incredibly popular among other machine
learning techniques. Thus, it has few hyperparameters and works well when data has
more dimensions than samples. Finally, due to available kernel tricks, it can handle
various data types [218].

2.3.3 Random Forest

Random Forest is a tree-based ensemble learning method for classification (including
multiclass classification) and regression tasks introduced by Breiman in 2001 [34]. The
idea behind Random Forest is to use aggregated predictions from several randomized,
uncorrelated decision trees as base learners to get the most frequently predicted class
(majority voting) [57]. One of the main advantages of Random Forest is its robustness
towards overfitting, which is achieved using two different sources of randomization: (1)
training each of the individual decision trees on the independent bootstrap sample with
replacement from the input data and (2) selection of the subset from predictor variables
(or features) at each node split to search for the best split [21].

The major voting is performed by function defined as:

f(x) = argmax
y∈Y

J∑
j=1

I(y = hj(x)). (2.5)

where I(·) is the indicator function , hj(x) is a base learner used for building ensemble
predictor f(x). The margin function estimates to which extent the average number of
votes of X, Y exceeds the average vote for any other class [57].
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Random Forest has numerous hyper-parameters that can be tuned, making the model
training process more complex than SVM 2.3.2. At the same time, using the default
hyper-parameter setting for model training was shown to be associated with a solid
average performance [21, 82].

The Random Forest algorithm has several considerable advantages making it for
the vast number of researchers the first selection while training a machine learning
model, namely: (1) relative robustness to noise in the data, (2) availability of internal
estimates of error, strength, correlation, and variable importance, (3) ability to handle
both continuous and categorical data, and (4) high level of parallelization [34]. Despite
this method’s wide range of advantages, Random Forest performs poorly when handling
data with linear combinations of predictor variables [57].

2.3.4 Gradient Boosting

The Gradient Boosting algorithm was proposed by Friedman in 2001 for classification
and regression tasks [86]. Boosting implies the idea of growing the trees sequentially
instead parallelly. Like Random Forest, Gradient boosting uses an ensemble of decision
trees for a particular learning task. However, the Gradient boosting algorithm does
not rely on averaging the models in an ensemble. Instead, with each learning step, a
weak, base learner model is trained regarding the error of the whole ensemble [152].
It is performed by constructing new base learners to be maximally correlated with the
negative Gradient of the loss function. Thus, given a training dataset S = {xi, yi}1N ,
with input features x = ({x1, . . . , xz}) and y = ({y1, . . . , yz}) corresponds to the labels
of the response variable, the goal is to reconstruct unknown functional dependence
between the explanatory variables and the labels of corresponding response variables
with the function estimate f̂(x):

f̂(t)← f̂t−1 + pth(x, θt) (2.6)

such that specified loss function L(y, f) is minimized [152]:
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(pt, θt) = argmin
p, θ

N∑
i=1

L(yi, f̂t−1) + ph(xi, θ),

where h(x, θ) is a parameterized base learner, pt is an iteration specified step-size.
Importantly, solving the optimization problem occurs with each pt, which can be

considered as a greedy step in finding an optimal local solution at each step. Depending
on the responding variable, several families of the loss function can be used: Gaussian,
Laplace, Huber, Binominal loss function, and others [152].

Unlike the bagging strategy used in Random Forest, where new models are trained
separately using randomly sampled data with replacement, the boosting method can use
the same training data to build new learners. Retaining training data provides a potential
for overfitting: if the model is not properly regularized, the probability of overfitting
increases. In addition, Gradient Boosting has more hyperparameters, including learning
rate and regularization, to be tuned for a good performance. One of the main drawbacks
of Gradient boosting is a high memory consumption with the increasing number of
boosting iterations required for learning [152]. By properly selected hyperparameters,
however, Gradient Boosting has a robust predictive performance achieved through the
iteratively refined model. It can handle a mixture of data types, such as categorical,
numerical, and ordinal variables providing researchers with a wide range of potential
applications.

2.3.5 Convolutional Neural Network

Convolutional neural network (CNN) is one of the most commonly used neural network
architectures for image classification tasks, inspired by the primary visual cortex (V1)
of a mammalian brain [60], and used for processing data with a grid-like topology
(including 2-D images) [90]. The first CNN architecture was introduced in 1998
by Lecun et al. [129] for a digit recognition task. The proposed architecture LeNet

(see Figure 2.6) consisted of five hierarchical convolutional layers, followed by two
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Figure 2.6: Architecture of a CNN LeNet-5. Image adopted from [129].

fully connected layers. In 2012, a new CNN architecture AlexNet was introduced by
[124] Krizhevsky et al., demonstrating outstanding performance on the series of image
classification tasks.

The convolution layer performs a convolutional operation while scanning an input X
accordingly to its dimensions. The output of a convolution layer is a feature map with the
equivalent dimension as X [4]. Learning local features occurs through receptive fields
regulated by hyperparameters filter size F and stride S. The output of a convolutional
operation is a feature map (see Figure 2.6). The pooling operation is typically applied
after a series of convolutional layers to reduce the spatial size of the obtained feature
map. This step minimizes the computational cost and forces the network to learn
the features extracted from the previous layer. Average pooling and Max pooling are
particular types of pooling where the average and maximum values are taken. Typically,
max pooling is the first selection when performing a pooling operation. After a series
of convolutional layers, each linear activation undergoes a nonlinear activation function,
the most common activation function used for this purpose is Rectified Linear Unit

(ReLU) [8], but also the Tanh and Sigmoid functions can be used. Finally, the feature
maps are propagated to the fully connected layer (it can be one or two of them), which
is a classifier, connecting the input with the output space.

2.3.6 Long Short-Term Memory Network

Long Short-Term Memory Network (LSTM) can be considered an extension of Recur-
rent Neural Networks (RNNs), a group of neural networks for processing sequential data
x(1)..., x(τ). As the name suggests, RNNs have recurrent connections allowing them to
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Figure 2.7: Architecture of an LSTM cell. In contrast to an RNN architecture, it has
three additional gates: 1) input gate, 2) input modulated gate, 3) and forget
gate. Image adopted from [68].

use their internal state, or memory, to process sequences. The LSTM was introduced in
1997 by Hochreiter and Schmidthuber [101] to overcome the error back-flow problem
(vanishing and exploding gradient problem) by storing long-term dependencies. The
error back-flow problem occurs when the layerwise back-propagated gradients for the
weight update of the network parameters are exploding (or vanishing) due to high (or
small) numbers. The storing and updating of information in the cell is achieved by
deploying three gates: 1) input gate it ∈ RN , 2) forget gate ft ∈ RN , and 3) output

gate ot ∈ RN . The forget gate estimates when the cell state should be forgotten, and the
remaining two gate control input and output, respectively. Thus, the LSTM updates for
a particular timestamp t follow the equations:

it = σ(Wxi
xt +Whi

ht−1 + bi)

ft = σ(Wxf
xt +Whf

ht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

(2.7)

The resulting three values provide a base for calculating the internal cell state ct and
hidden cell state ht as follows:
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Figure 2.8: Basic Transformer-model architecture. The architecture uses stacked self-
attention and fully connected layers for the encoder and decoder (left and
right halves). Image adopted from [220].

c′t = tanh(Wc[ht−1,xt ] + bc)

ct = ft ∗ ct−1 + it + c′t
ht = ot + tanh(ct)

(2.8)

Initially proposed for sequential data, the modern modification of LSTM architectures
allows coping with images and 2-D input data.

2.3.7 Transformer Network

The first Transformer network was introduced in 2017 by Vaswani et al. in machine
translation [220] to resolve the need to use convolutional or recurrent layers [87].
Instead, the authors proposed the self-attention mechanism, which allows capturing
global features simultaneously, resulting in a high parallelization level and increasing
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performance on the data with long-range dependencies.
Figure 2.8 represents the architecture of the Transformer network. Like in sequence

transduction models, the core of the Transformer builds an encoder and decoder. The
Transformer encoder block extracts the features while processing the input sequence.
The encoder consists of multiple identical layers comprising two sublayers: a multi-head
self-attention mechanism and a position-wise fully connected feedforward network.
In addition, a residual connection around each of the sublayers is used, followed by a
layer normalization to attain an appropriate gradient flow and better training stability
[220, 227]. The decoder block of the Transformer has an additional third sublayer which
performs multi-head attention over the input from the encoder stack. The Transformer’s
attention is a projection of a query and a set of key-value pairs to the output [220]. The
attention of the Transformer is based on Skaled Dot-Product Attention , which consists
of three linear layers running simultaneously, namely query, key and value (Q,K, V ).
The attention score between a query and a key determines the importance of the key’s
value in computing the weighted sum. The attention function is computed parallel as
follows:

Attention(Q, K, V) = softmax
(
QKT

√
dk

)
V (2.9)

where Q represents the matrix with the packed set of queries, K and V are the ma-
trices containing keys and values, respectively. dk rerpesents a dimension. Another
characteristic feature of the Transformer is a positional embedding – a dense vector
incorporating a position of words in a sequence. It helps the network to learn local
and global dependencies within an input sequence [87], overcoming the absence of
recurrence and convolution [220].

The Transformer network proposed by Vaswani et al. became a starting point for de-
veloping the Vision Transformer (ViT), the network architecture developed for computer
vision applications. Dosovitskiy et al. demonstrated that a pure Transformer applied
to image patches could perform on the level of the state-of-the-art CNN networks (e.g.
ResNet) in the image recognition task [69]. At the same time, it requires significantly
less computational resources for model training.
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2.4 Performance Metrics

Figure 2.9: Estimation of Precision, Recall, F1score and Accuracy within a confusion
matrix for binary classification problem. TP represents correctly predicted
positive instances. FP represents instances that were incorrectly predicted
as positive. FN are positive instances that were incorrectly predicted as
negative. TN represents correctly predicted negative instances.

This thesis uses several metrics to evaluate the performance of Machine Learning
algorithms deployed for mental-imagery classification tasks. The proposed metrics
are selected for the classification task and based on a literature review to enhance the
comparison to the state-of-the-art.

Precision and Recall are two frequently used performance metrics to report the
fraction of retrieved data from a dataset or collection. More specifically, Precision

refers to the fraction of true positive instances (TP) to all instances or labels that were
predicted by the model as positive (TP + FN). Recall is the fraction of true positive
instances to the total number of all existing positive instances in the given dataset. The
value of both metrics ranges from 0.0 to 1.0, and the higher values refer to better model
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performance. These metrics are primarily for binary classification tasks and undesirable
for unbalanced datasets with uneven class distribution.

F1-score is a harmonic mean of the Precision and Recall. It can be used to report
binary and multiclass classification task results. It provides a more balanced summa-
rization of the classification performance and therefore is frequently deployed in cases
with imbalanced datasets [95]. In this case, weighted-averaged F1 score can be used,
where metrics for each class are calculated and then averaged by the number of true
instances for each class.

Yet another frequently used metric for evaluating classification models is Accuracy.
It measures the proportion of true instances retrieved, both positive (TP) and negative
(TN), among all data from the dataset [58]. Accuracy is a reasonable choice when
the classes in the dataset are balanced and have equal importance. The value range of
Accuracy is between 0 and 1, where 1 means the highest Accuracy. The calculation of
F1-score, Precision, Recall, and Accuracy are summarized in Figure 2.9.

Area Under the curve (AUC) describes the capability of the classifier to distinguish
between classes and is a summary of Receiver Operating Characteristic curve (ROC
curve). ROC shows how the number of correctly predicted positive examples varies
with that of incorrectly predicted negative examples [61]. AUC generates a probability
curve with sensitivity (True positive rate) versus Specificity (True Negative Rate) within
the value range of 0 and 1.

A confusion matrix is used to evaluate the consistency of a classification model with
the ground truth data while estimating its accuracy [99]. It has a size of m x m, where m
represents the number of defined classes in the dataset. The confusion matrix provides
a detailed breakdown of the model’s classification performance and can be used for
binary and multiclass classification models. Figure 2.9 represents a confusion matrix
for a binary classification task.

2.5 Model Explainability

The complexity of the machine learning algorithms frequently prevents researchers and
engineers from interpreting the outcomes obtained from a particular model. However,
modern research standards expect machine learning models to achieve a high prediction
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Figure 2.10: SHAP values estimation schematic overview. Image adopted from [140].

power and generalization level and be highly interpretable [137]. For the interpretation
of the deployed machine learning models from Sections 3 and sections 4, this thesis
focuses on the SHAP values method.

Introduced by Lundberg and Lee [140], the SHAP values are an additive explanation
approach based on the Cooperative game theory (Shapley values) and propose a unified
method for calculating feature importance. This method uses the contribution of the
features within a given dataset to the model output to explain the observed prediction
[142]. More precisely, the SHAP method approximates Shapley values [184, 142] since
their exact computation is a challenging task because of the exponential complexity.
The approximations through SHAP are performed through several techniques, including
special weighted linear regressions or different assumptions about feature dependence
for ensemble tree models [142].

The sum of the SHAP values of each feature is equal to the final prediction. In this
case, a SHAP value is not the difference between the prediction with and without a
feature but a feature’s contribution to the difference between the actual prediction and
the mean prediction.

The estimation of SHAP values is performed by solving the equation:

f(h(x(z′))) = E[f(z | zS)] SHAP explanation model simplified input mapping

= Ez [E[f(z)] | zS] expectation over zS given z

≈ Ez [E[f(z)]] assume feature independence

≈ f ([zS;E[zS]]) assume model linearity

(2.10)
where zS represents missing values for features not in the set S.
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Figure 2.10 represents a diagram for calculating SHAP values. SHAP values attribute
to each feature value explaining how to get from the base value E[f(z)] that would be
predicted if none of the features to the current output f(x) is known. ϕi is the impact
of including or excluding feature i on the model’s performance. Thus, the outcome of
the Shapley value can be interpreted as a contribution ϕi of the value i compared to the
average prediction for the given dataset. The Shapley values work for classification and
regression tasks making their application area broad.
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3 Towards Mind Wandering - Aware

System

3.1 Proposed Study

Mind wandering detection and intervention provide new opportunities for the learning
assistant systems where the goal is to adapt the learning material and information
representations to the mental state of learners. Accurate detection of mind wandering
onset is a challenging task [18, 31, 23], but recent studies showed the general feasibility
of mind wandering detection in learning tasks by using low-cost eye-trackers powered
by machine learning algorithms [105, 67, 23, 29]. Maintaining attentional states
employing context-aware technologies and adaptable presentation systems is supposed
to support the learning process. In some situations, mind wandering may be desirable
and necessary for successful learning. A few studies investigating the effect of TRTs
on learning performance indicated their critical role in learning at early stages where
prior knowledge is low or absent [117]. In line with that, cognitive psychologists such
as Faber et al. [78] identified the importance of contextual settings for assessing mind
wandering.

This chapter introduces low-cost and scalable techniques for deploying a mind-
wandering-aware system. Thereby, reading is selected as a context since it is essential
to any learning process. This chapter consists of two parts. The first part introduces a
behavioral analysis and focuses on the effects of semantics and music on the frequency
and content of mind wandering in a reading task. This step is essential to evaluate
the user behavior in a given context properly, thus increasing the study’s reliability
level. The second part addresses the feasibility of sensory and behavioral data combined
with machine learning models to classify mind wandering in the learning context. The
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Figure 3.1: Overview of the proposed system for the collection of the episodes of mind
wandering in a learning scenario. Beside the acquisition of mind wandering
using self-reported method, the system controls audio playbacks and text
representation and collects behavioral data.

content introduced in this chapter is published in Brishtel et al. [35].

3.2 Related Work

Triggers

The episodes of mind wandering were found to be induced by multiple internal and ex-
ternal stimuli. Thus, there is strong evidence that interest [88], task difficulty, emotional
state [195, 204], monotone [194], and distractibility [85, 229] are strong determinants of
mind wandering. Episodes of mind wandering can also occur in response to a semantic
stimulus if the latter evokes memories [17, 78]. Interestingly, the temporal focus of
mind wandering was found to be influenced by the experience with a topic [193]. Thus,
people with a corresponding background experience episodes of mind wandering more
frequently. Faber and D’Mello investigated relationships between stimulus type and the
content of mind wandering [78]. Their experiment with 88 participants demonstrated
that the content of mind wandering is widely spread across multiple thought categories
and associated with various triggers. Semantically rich content was found to force mind
wandering associated with memory retrieval.
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Along with semantics, music was also found to impact the frequency and content
of mind wandering [81, 204, 47]. Taruffi et al. [204] showed that music triggering
sad, low-arousal emotions caused more frequent episodes of mind wandering by their
participants, compared with music triggering happy, high-arousal emotions. Feng and
Bidelman’s study [81] investigated the relationship between music and mind wandering
in the context of a lexical processing task. Their results yielded similar findings as the
study of [204], showing that mind wandering occurred more frequently in conditions
with unfamiliar music. The authors suggested that the increased frequency of mind
wandering resulted from boredom, negative mood, and distractibility as a response
to lower emotional arousal in unfamiliar music. The nature and content of mind
wandering is, therefore, complex and multifaceted, and treating this mental state as
merely detrimental to the performance can be misleading. There needs to be more
information about possible interaction effects between different contextual factors on
mind wandering.

Eye-Tracking & Mind Wandering

A strong relationship exists between the episodes of mind wandering and eye movement
patterns [22, 224, 92, 190, 196, 214, 202]. In particular, fixations, blink rate, pupil
diameter, eye vergence, and saccades were found to be strong indicators for the presence
of mind wandering. Benedek et al., for instance, provided a comparative analysis of
oculomotor behavior in conditions with internally (IDC) and externally (EDC) directed
cognition using anagram and sentence generation tasks [20]. The results showed that
IDC was associated with fewer and longer fixations, higher variability in pupil size
diameter and eye vergence, and a lower angle of eye vergence. In a meditation task
with a self-caught sampling method, Grandchamp et al. found a significantly smaller
pupil diameter during episodes of mind wandering [92]. Smilek et al. investigated
changes in a blink rate during mind wandering in a reading task using an auditory probe-
caught method [196]. They found a higher blink frequency during mind wandering than
when participants were focused on a task. The abovementioned changes in oculomotor
behavior may indicate attentional decoupling and the resulting suppression of the visual
input within the episodes of mind wandering (for more details, see [181]).

Using neuropsychology findings and machine-learning techniques, several research
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groups succeeded in building automated eye-based detectors of mind wandering. For
example, Bixler and D’Mello [23] recruited 178 participants and asked them to read
four texts and report mind wandering using the self-caught method. Among other
features, they used 40 global gaze features to build a user-independent mind-wandering
detector. The reported models achieved accuracy between 67% and 72%. Unfortunately,
the authors used a high-end, expensive eye tracker, which restricts the deployment of
their method on a large scale.

Addressing this issue, Hutt et al. [104] demonstrated the feasibility of using low-cost
eye trackers for automatic mind wandering detection in a classroom setting. Using eye
tracking data of 135 high school students recorded during computerized learning, their
model achieved an F1-Score of 0.59.

Electrodermal acitivity & Mind Wandering

So far, only a small number of studies used EDA as a neural marker for mind-wandering
detection. The first studies employing EDA for mind wandering detection pointed at
induced alternations in dermal properties during episodes of mind wandering. Thus,
Blanchard et al. used EDA, skin temperature (ST), and context features (i.e., text,
timing, and text difficulty) to build a supervised classification model for automatic mind
wandering detection in a learning setting [24]. Using the Affectiva Q with a sampling
rate of 8 Hz, they recorded data from 70 undergraduate students using a combination
of self-caught and probe-caught methods. From EDA and ST, authors calculated the
following physiological features: the standardized signal, an approximation of the time-
derivative of the signal, the frequency and magnitude from Fast Fourier transformation,
the spectral density of the signal and the autocorrelation of the signal at lag 10 (for
a comprehensive review see [24]). Then, for the physiological features, the mean,
standard deviation, maximum, ratio of maxima, and the ratio of minima were calculated,
resulting in 43 features for EDA and ST, respectively. Context features included 11
elements. The model using the combination of features from EDA and contextual
features achieved the highest kappa coefficient of 0.15. Kappa ranges from 0 (chance
agreement) to 1 (perfect agreement). Following a classification by Landis and Koch
[127], a value of 0.14 indicates ”slight agreement”. The combination of EDA, ST, and
context features achieved a ”moderate agreement” with a kappa of 0.22. Unfortunately,
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their work did not consider a solely EDA-based classification model.
Cheetham and colleagues [51] investigated the feasibility of using only EDA features

for the automatic detection of mind wandering in the context of meditation. Using peaks
observed from a low-pass filtered EDA signal as a feature, the authors reported an area
under the curve (AUC) of 0.81. AUC ranges from 0.5 (chance) to 1 (perfect agreement).
An AUC of 0.81 is better than Blanchard et al.’s kappa of 0.22, but still needs to be higher.
However, the episodes of mind wandering and resulting physiological changes during
meditation might differ from those in tasks requiring higher cognitive functions [204].
Nevertheless, both of these studies did not consider the underlying sub-components of
EDA in their analysis.

3.3 System Design

For the text, music, comprehension questions, and a behavioral questionnaire represen-
tation, eye-tracker control, and collection of mind wandering reports Electron based
[75] (see Figure 3.1). It allowed exact control over the experimental flow (including text
and audio randomization) and ensured the proper data recording, including eye-tracking
data. The collected data were accordingly stored for further user-model evaluation and
the building of a machine learning model. EDA data were recorded and stored separately
since this system design of the sensor does not provide direct access to the data storage
and thus could not be integrated into the developed system. Self-caught reports included
timestamps of the episodes of mind wandering, behavioral data included responses
from a questionnaire relating to text and self-perception. The exact experimental flow is
described below.

Apparatus The reading task was performed on an NEC MultiSync EA241WM
monitor with a resolution of 1920x1200 pixels operating at 60 Hz. The distance
between the participant and the monitor was fixed at 60 cm (see Figure 3.2). A Tobii 4C
gaming eye-tracker [2] with 90 Hz sampling frequency and a scientific license was used
to capture eye movement. A head chin rest was used to achieve high accuracy of the
eye-tracker and avoid any head movement artefacts. To measure the EDA, an Empatica
E4 wristband [1] with a sampling frequency of 4 Hz was used. The wristband E4 does
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not require any calibration. It was placed on the wrist of the non-dominant hand. Since
the fingers have the highest density of sweat glands, lead wires were used for the index
and ring fingers to acquire a higher EDA signal. The lead wires were snapped instead
of plated electrodes. The data recording continued throughout the experimental session.

Research Design

To investigate the effects of the context factors on the frequency of mind wandering,
two independent variables were defined, namely Text Type and Music Type, and their
levels were additionally manipulated. Three different music types were differentiated:
Sad, Happy and No-Music as a control condition. The factor Text Type contained
three levels: Computer Science, Psychology and Random Text Type. Six dependent
variables, Interest, Difficulty, Tiredness, Perceived Mood, Attentional Focus and Type
of Thoughts, were acquired from behavioral data and are discussed below. A repeated-
measure design where each participant underwent all experimental conditions were used.
Thus, the proposed experiment has a 3×3 repeated-measures design (see Table 3.1). On
each level, self-report, behavioral data and physiological measures were used to assess
the ongoing mental state.

Table 3.1: Experimental Design: experimental and control conditions with a total sam-
ple size.

3 × 3
Music Type

Sad Happy No-Music

Text Type
Psychology 80 80 160

Computer Science 80 80 160
Random Topic 80 80 160

Participants

21 graduate and undergraduate students (17 male) with an average age of 25.3 (SD =

2.6) years were recruited from the University of Kaiserslautern at the Department of
Computer Science via a mailing list. All participants were native German speakers with
normal or corrected-to-normal vision. All students had a major in computer science. For
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Figure 3.2: Participant performing the reading task. Eye movements were collected
using an eye-tracker Tobii 4C, EDA was recorded with a wristband Empatica
E4. Occurrences of mind wandering were collected through self-reports.
Image adopted from [35].

participation in the study, participants were offered either course credits or a 10-euro
gift card.

Reading Material

12 scientific texts in the German language were selected from an online platform
[230] that publishes articles in popular science. Since one of the goals of this study
was to investigate the role of semantic information on the frequency and content of
mind wandering, eight texts from the categories of Psychology and Computer Science
were deliberately selected that were assumed to match the personal and academic
background of our participants. Texts in Computer Science included topics about
Storage and Algorithms, Cryptography, and Artificial Intelligence. Texts in Psychology
included topics about Names and Stereotypes, Conscious and Unconscious Self, and Self
Perception. The remaining four texts belonged to the category of Random Text Type and
consisted of topics with a low probability of matching one’s personal or/and academic
background. These texts included information about Photosynthesis, Metaphors, Bovine
Diseases, and the Australian Football game “Footy”. All the texts had a comparable
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length (Mean = 230.4, SD = 19.6) and difficulty level (LIX score [167] Mean =

57.3, SD = 9.3). The average text difficulty resembled the university literature for
home works or exams. In the next step, each text was split into four paragraphs of
comparable length (mean number of words = 60.9, SD = 6.3). The effectiveness of this
text-splitting strategy for mind-wandering research was demonstrated in related studies
[22, 24]. Thus, one experimental session contained two texts from each text type, split
into four paragraphs presented one by one. This resulted in 24 reading segments (2 text
x 3 categories x 4 paragraphs). The order of text types was randomized within each
participant. The text paragraphs were presented in the center of the computer screen in
a Sans-Serif font, font size 18 pixels, and in black color.

Music Stimuli

Audio stimuli were selected from the pool provided by Taruffi et al. [204]. Their
stimulus pool was pretested for homogeneity of happy and sad compositions with
significant differences to the opposite affective tone. The set of their sad stimuli was
rated as highly pleasant, slightly arousing, clearly sad, and unfamiliar. For the happy
conditions, the musical stimuli were rated as highly pleasant, very arousing, clearly
happy, not sad, and unfamiliar. In this study, unfamiliar musical stimuli (without vocals)
were selected to avoid possible memory effects on mind wandering. Our experimental
stimulus set included eight happy and eight sad compositions. Each of them was clipped
into 45-second segments and normalized by following the documentation provided
by Audacity [16]. In the next step, sad and happy music segments were randomized
among paragraphs with respect to their condition and counterbalanced with respect
to the No-Music conditions. Thus, the participants read 12 paragraphs with and 12
paragraphs without music in the background in one session. The onset and offset of
the music playback was synchronized with each text paragraph’s beginning and end.
The music volume was set to a comfortable level and was kept at the same level in all
conditions. Laptop speakers were used to play the music (see Figure 3.2).

Procedure

The experiment was performed in accordance with the institutional ethical guidlines of
the German Research Centre for Artificial Intelligence. Before starting the experimental
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session, participants were provided general information about the purpose of the study.
After they gave their informed consent, the experiment was started. Participants were
also informed that they could withdraw from the study at any point in time. The
experimental room was quiet, and light, temperature and possible noise distractors
within it were controlled.

The experiment was performed in accordance with the institutional ethical guide-
lines of the German Research Centre for Artificial Intelligence. Before starting the
experimental session, participants were provided with general information about the
purpose of the study. After they gave their informed consent, the experiment was started.
Participants were also informed that they could withdraw from the study at any time.
The experimental room was quiet, and light, temperature and possible noise distractors
were controlled.

The experiment was split into two 45-minute sessions. Each session was run on
different days to avoid fatigue and interaction effects between Happy and Sad conditions.
Depending on the Music Type playing in the background, each session belonged to the
Happy or Sad condition. Prior to the experimental session, participants received the
following instruction:

You will be presented with six different texts split into paragraphs. Each

text contains 4 paragraphs. Please read each paragraph as attentively as

possible. Ignore possible music in the background. While reading text, your

attention might drift from reading to internal thoughts or concerns, which

is totally natural. If it happens, please press the space button and focus

back on the reading task.

Next, participants were asked to take a comfortable sitting position which they could
keep for at least the next ten minutes. To prevent any discomfort that could restrict
normal reading behavior, the chin rest was adjusted for each participant individually.
To avoid motion induced artifacts in EDA, participants were asked to keep their hand
with the attached wristband on the table. After each text (or four paragraphs), par-
ticipants were allowed to make a short break, where they were reminded to report
mind wandering in the reading task. The eye-tracker was re-calibrated after each break
using a standard 5-point method. To ensure attentive reading behavior of participants,
there was a comprehension question after each paragraph with one possible correct
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Table 3.2: Questionaire used for collection of behavioral data including text relevance,
text perception and direction of experienced thoughts.

Question Scale
Q1. How interesting did you find 0%: not interesting at all,
the last paragraph? 100%: very interesting

Q2. How difficult did you find 0%: not difficult at all,
the last paragraph? 100%: very difficult

Q3. How tired did you feel 0%: not tired at all,
while reading the last paragraph? 100%: very tired

Q4. What was your level of happiness 0%: not happy at all,
while reading the last paragraph? 100%: very happy,

Q5. What was your level of sadness? 0%: not sad at all,
while reading the last paragraph? % 100%: very sad

Q6. Did the context of the last paragraph 0%: no matched at all,
match your academical 100%: fully matched
or personal background?

Q7. While reading the last paragraph, -5: fully lost in thoughts
where was your attention focused? +5: fully focused on the text

Q8. While reading the last paragraph, yes/no
did you have some text-related thoughts.

Q9. While reading the last paragraph, yes/no
did you have some text irrelevant thoughts
(i.e., personal worries, future planning,
dreams, thoughts about your relatives or friends)?

answer, “yes” or “no”. In the next step, the participants rated each paragraph on Interest,
Difficulty, Tiredness, Personal/Academic Relevance, Perceived Mood (Sadness and
Happiness), Attentional Focus and Type of Thoughts (task-relevant or task-irrelevant)
(the questionnaire was adopted with changes from Giambra and Grodsky [88]) (see
Table 3.2).

For the questions Q1 – Q6, a 5-point rating scale with step sizes of 20% was used.
Question 7 Attentional Focus was used as an additional retrospective sampling method
[228] to increase the awareness about the content of own thoughts. If participants rated
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their attentional focus with less than +3 (step size 1 point), two additional questions
related to the type of thoughts (Q8 and Q9) were displayed:

The proposed questionnaire is considered further as behavioral data. Additionally,
time spent to read one paragraph was recorded within each participant and considered
as a behavioral feature Reading Duration. The questions Q4 and Q5 are not in the scope
of the analysis in this study.

3.4 Statistical Analysis

To ensure the correctness of the assumptions regarding the personal and external triggers
of mind wandering by the users, this section provides results of statistical analysis
of behavioural data. To examine possible influence of text and music type on the
frequency and content of mind wandering, within-subject contrast effects were tested
using a two-way ANOVA (analysis of variance) for a two-factorial repeated-measure
design. One participant was discarded from the final analysis after he admitted to
having misunderstood the experimental instructions. The final sample size used for the
statistical analysis included 20 participants.

The mean values of each variable underwent a planned pairwise comparison as
outlined in Table 3.1. All reported F-values for the main and contrast effects are
Greenhouse-Geisser corrected. All significant tests are reported. The simple effects
within each factor were analyzed using Helmert contrasts where the first two non-
control conditions (Happy and Sad Music, Computer Science and Psychology Text
Types) were compared, followed by the comparison of those two conditions with the
control (No-Music, Random Text Type).

Personal/Academic Relevance

In order to confirm the validity of assumptions for personal/academic text relevance
(PAR), the effect of Text Type on perceived PAR was examined. An ANOVA yielded
a significant main effect of Text Type on PAR (see Table 3.3). The contrast analysis
showed that the paragraphs from Computer Science (mean = 52.08, SD = 29.08) were
rated as significantly more relevant than those from Psychology (mean = 20.98, SD =
25.29). The relevance of the paragraphs from Random Text Type (mean = 6.17, SD
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Table 3.3: Analysis of Variance. Bold font denotes main and interaction effects.

Source df F p

PAR

Text Type 1.9 79.7∗∗ 0.01
C vs P 1.0 64.3∗∗ 0.01
RT vs (C+P) 1.0 94.3∗∗ 0.01

MW

Music Type 1.6 3.5∗ 0.05
S vs H 1.0 0.4 0.52
(S + H) vs NM 1.0 10.3∗∗ 0.01
Text Type 1.7 1.2 0.30
Text x Music 2.7 2.8∗ 0.05
S CS vs (S RT + S
P)

1.0 6.6∗ 0.02

H RT vs (H CS +
H P)

1.0 5.1∗ 0.04

TRTs

Text Type 1.7 4.3∗ 0.03
R vs (C + P) 1.0 6.1∗ 0.02
Music Type 1.7 4.3 0.11
Text x Music 2.8 1.2 0.31

TUTs

Text Type 1.9 0.1 0.87
Music Type 1.4 0.6 0.48
Text x Music 3.1 0.8 0.53

PAR: Personal/Academic Relevance. MW: Mind Wandering. NM: No-Music, S: Sad, H:
Happy. C: Computer Science. P: Psychology. RT: Random Topic. ∗ p < 0.05, ∗∗ p <
0.01.

= 13.74) was perceived as significantly lower than those from Computer Science and
Psychology (see Table 3.3).
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Table 3.4: Average frequency of mind wandering and TRTs by experimental condition.

Condition Mind Wandering M(SD) TRTs M(SD)

Sad Computer Science 0.34(0.38) 0.77(0.88)
Sad Psychology 0.18(0.26) 0.87(0.98)
Sad Random Topic 0.19(0.27) 0.91(1.05)
Happy Computer Science 0.22(0.35) 0.47(0.67)
Happy Psychology 0.25(0.42) 0.53(0.76)
Happy Random Topic 0.39(0.52) 1.01(1.06)
No music Computer Science 0.12(0.18) 0.60(0.72)
No music Psychology 0.08(0.11) 0.60(0.75)
No music Random Topic 0.15(0.14) 0.87(0.92)
M: mean; SD: standard deviation.

Frequency of Mind Wandering

Table 3.4 represents the average mind wandering frequency reported within a particular
condition. A significant main effect of Music Type on mind wandering was observed
(see Table 3.3). Although there was no significant contrast effect between Happy and
Sad Music, participants experienced episodes of mind-wandering significantly more
frequently in conditions with music than in conditions without music (see Table 3.3).
There were no significant effects of Text Type on the mind-wandering frequency.
Nevertheless, there was a significant interaction effect between Music Type and Text
Type on mind wandering. Thus, while reading texts in Computer Science and listening
to Sad Music, participants reported more episodes of mind wandering compared to the
conditions with the same Music Type but texts in Psychology or Random Topic. For the
Random Text Type, this effect was the opposite: Participants reported mind-wandering
significantly more frequently while listening to Happy Music compared to Sad Music
and the control condition.
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Task-Related Thoughts/ Task-Unrelated Thoughts

To meet ANOVA requirements, the binary variables Q8 and Q9 were transformed, using
arcsine transformation:

Y ′ =


2arcsin( 1

2N
), if y = 0

2arcsin(1− 1
2N

), if y = 1

2arcsin(
√
Y ), otherwise

where Y denotes an observed response, and N the total number of all observations.
There was a significant main effect of Text Type on TRTs. The contrast analysis

showed that reading paragraphs from Random Topics was associated with a signifi-
cantly higher number of TRTs (see Table 3.4) compared to the residual text types (see
Table 3.3). The main effect of Music Type on TRTs was not significant, no significant
interaction was observed. For TUTs neither significant main effects nor interactions
were observed.

Correlation Analysis

A multivariate Pearson’s R analysis was run to investigate possible correlations among
behavioral variables (see section 3.3) and mind wandering. Figure 3.3 represents the
obtained correlation plot. Importantly, significant correlations within behavioral data
are not further discussed here as they are not in the scope of this work. Only significant
correlations with the Pearson’s r coefficient ≥ ± 0.2 are considered here.

There was a highly significant, moderate and negative correlation between mind
wandering and Attentional Focus. Attentional Focus had a statistically significant
but low to moderate positive correlation with Personal/Academic Relevance. A sig-
nificant, moderate, positive correlation was observed between Attentional Focus and
Interest. Moderate to low negative correlations were observed between Attentional
Focus, Tiredness, and Difficulty. There were highly significant, moderate to low, nega-
tive correlations between Attention Focus, TRTs, and TUTs. A statistically significant,
moderate, negative correlation between TRTs and Interest was observed. Significant,
small, positive correlations between TRTs and Tiredness and Difficulty were present.
Finally, a positive, moderate correlation was present between the frequency of mind
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Figure 3.3: Pearson’s R correlation analysis for behavioural data and reported episodes
of mind wandering. **: significant on ≤ 1% level; *: significant on ≤ 5% level.

wandering and the reading length of a paragraph.

3.5 Machine Learning Approach

Before building machine learning models to classify episodes of mind wandering,
several preprocessing steps on sensory and behavioral data were carried out. Figure 3.4
represents the pipeline for sensory data synchronization, data preprocessing, and feature
engineering. All steps were performed using Python’s libraries numpy, pandas, scipy,
sklearn and matplotlib. Thus, in the first step, all recorded data were synchronized
using the Unix timestamp. The sensory and behavioural data related to the paragraph
reading were extracted in the second step. Next, signal and data preprocessing were
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Figure 3.4: Data collection, synchronization and preprocessing pipeline. Self-reported
episodes of mind wandering were used as ground truth.

performed in accordance with a signal type. Finally, the processed data were used for
feature engineering. The sections below introduce a detailed overview of preprocessing
steps and feature engineering for the particular data type.

3.5.1 Feature Engineering

Eye-Tracker Feature

Tobii Pro software was used to extract the raw eye data and information about the
pupil diameter. Clustering of the raw gaze points into fixations was performed using
the Dispersion-Threshold Identification algorithm [180]. In the next step, fixations
points lying outside the reading area were removed. 59 paragraphs with insufficient
recording accuracy of gaze data were excluded from the classification tasks. The final
data set size contained eye movement and relating behaviour data from 871 paragraphs.
Figure 3.5 represents visualized eye movements within the paragraph with reported
mind wandering versus normal reading behavior.

For each paragraph, fixation-related features such as the mean fixation points etc.
were extracted (see Table 3.5). In the next step, saccades and saccade-related features,
such as mean saccade length, number of regression, etc., were calculated on the para-
graph and participant level. Table 3.5 provides a detailed description of each included
feature. In total, 19 eye movement features were calculated.
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Figure 3.5: Eye movements during the reading task (fixation points in blue and regres-
sion points in red). Top: Paragraph with reported mind wandering. Bottom:
Paragraph with focused reading behaviour. Image adopted from [35].

Table 3.5: Eye movement feature description. For all features mean was calculated, for
bolded features min, max values were additionally calculated.

Feature Description

Fixation duration Duration of a fixation point in msec
Pupil size Diameter of pupil in pixels (z-score)
Saccade length Distance in pixels between 2 subsequent fixations
Saccade velocity Transition between 2 subsequent fixations in msec
Saccade angle Angle between x axis and the ray to the point (x, y)
Regression length Backward transition between 2 fixation points in px
Number of regressions Total number of regressions within 1 paragraph
Number of fixations Total number of fixation points within 1 paragraph
Number of saccades Total number of saccades within 1 paragraph

EDA Feature

As mentioned in Section 2.2.2, the EDA signal consists of two main components:
Skin Conductance Level (SCL) and Skin Conductance Responses (SCRs). To extract
these components from the raw EDA signal, the Convex Optimization approach was
used. The convex optimization approach proposed by Greco and colleagues [93] is a
common technique to extract underlying tonic and phasic components. This method
postulates that EDA can be described as a function of three components: a slow tonic,
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the output of convolution between an infinite impulse response function (IIR), and a
sparse non-negative sudomotor nerve activity (SNMA).

In line with the recommendations on signal preprocessing prior to convex optimiza-
tion [93] for EDA decomposition, a z-standardization was applied to the acquired
signal on the individual level In the next step, statistical features from extracted EDA
components were calculated. Table 3.6 provides an overview of calculated features for
raw signal, tonic and sparse components. The generated data set included 18 features
in total. For the sparse component, peak amplitude (A), number of peaks within one
paragraph (NA), and the number of peaks above 1µS (NA>1µS) [45] were additionally
calculated. The 59 paragraphs excluded because of the low eye-tracking accuracy were
also excluded from EDA model building. Figure 2.4 represents the results of the Convex
optimization method applied to a raw EDA signal.

Table 3.6: EDA extracted features.

Component Feature

Raw z-standardized X , σ, min, max
Tonic X , σ, min, max
Sparse X , σ, Amin, Amax, NA, NA>1µS

3.5.2 Model Building

The user-independent classification of the episodes of mind wandering while reading
paragraphs where achieved by deploying machine learning models. Depending on
participants’ responses, each reading paragraph received either ”1” if mind wandering
was reported there otherwise ”0” (see Figure 3.5). The data of one participant were
excluded since he had not reported any episodes of mind wandering. The final data set
used for model training and evaluation contained data from 19 participants.

Three machine learning algorithms were selected to classify episodes of mind wan-
dering: Logistic Regression (baseline classifier), Support Vector Machine (SVM), and
Random Forest. Before model building, training and testing data were separately nor-
malized using StandardScaler to achieve equal scaling among input features. Next,
because the class “1” was reported in 15.8% of all paragraphs only, after splitting
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all data into training and testing sets, the training dataset was oversampled using the
synthetic minority over-sampling technique (SMOTE) [50]. The same approach for the
particular classification was deployed by Bixler and D’Mello [23].

To prevent model overfitting and to ensure that the best hyper-parameters are selected
to build the models, a nested cross-validation procedure [48] was performed. The
nested cross-validation procedure is required to avoid model biasing, resulting in overly-
optimistic scores that cannot be handled by single cross-validation (not-nested). The
outer loop in nested cross-validation is for model assessment, and the inner loop is for
hyperparameter tuning.

3.5.3 Baseline Classification

Table 3.7: Baseline classification results for logistic regression and feature sets. Bold
font represents the best classification F1− Score performance. The Fusion
of Eye, EDA and Behaviour features achieved the highest classification
accuracy.

Model Feature Kappa Accuracy AUC F1-Score

Eye 0.25(0.21) 0.72(0.14) 0.70(0.12) 0.75(0.12)
Logistic EDA 0.23(0.28) 0.70(0.17) 0.66(0.19) 0.73(0.16)

Regression FusionEye,EDA 0.26(0.22) 0.73(0.13) 0.71(0.16) 0.76(0.11)
FusionEye,EDA,Behavior 0.31(0.27) 0.76(0.13) 0.72(0.17) 0.79(0.10)

Logistic regression was selected as a baseline classifier for classifying the episodes
of mind wandering. The data preprocessing steps before the model building were
equivalent to those described in Section 3.5.2. Since logistic regression has no essential
hyperparameters to be tuned, the main focus was ensuring testing data is withheld
from training by deploying the leave-one-participant-out cross-validation method. The
validation was repeated 19 times following the number of participants.

Table 3.7 represents baseline classification results using single gaze and EDA data
sets, their fusion, and the fusion of physiological and behavioral data. Because of
an unequal distribution of classes (84.2 % of all data belonged to the paragraphs
without reported mind wandering) and to enhance the comparison to the state-of-the-
art [24, 23], four evaluation measures are provided: F1-Score, Receiver Operating
Characteristic curve (AUC), Accuracy and Kappa. For better readability, all results are
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Table 3.8: Classification results for SVM and Random Forest. Bold font represents
the best classification performance. The fusion of Eye and EDA Features
achieved the highest classification accuracy. Random Forest models demon-
strated the highest F1-Scores.

Model Feature Kappa Accuracy AUC F1-Score

Eye 0.25(0.21) 0.80(0.09) 0.66(0.12) 0.80(0.09)
Random EDA 0.15(0.15) 0.83(0.08) 0.62(0.13) 0.78(0.08)
Forest FusionEye,EDA 0.29(0.27) 0.83(0.08) 0.65(0.16) 0.83(0.08)

FusionEye,EDA,Behavior 0.31(0.27) 0.76(0.13) 0.69(0.15) 0.82(0.09)

Eye 0.26(0.24) 0.78(0.13) 0.68(0.13) 0.78(0.11)
SVM EDA 0.26(0.23) 0.73(0.14) 0.67(0.16) 0.76(0.12)

FusionEye,EDA 0.37(0.27) 0.79(0.15) 0.73(0.17) 0.80(0.12)
FusionEye,EDA,Behavior 0.41(0.28) 0.80(0.14) 0.77(0.14) 0.82(0.07)

further reported using F1-Score. Thus, the highest observed F1− Score of 0.79 was
achieved through the fusion of eye, EDA and behavioral data. Probably, the observed
correlation among several input features (see Figure 3.3) could explain this moderate
classification performance, as Logistic Regression does not perform optimally when
high correlation structures underlay the input features [179].

3.5.4 Results

Table 3.8 represents the classification performance of the two machine learning mod-
els, Random forest and SVM, for automatic classification of mind wandering. The
lowest classification accuracy was observed by SVM (see table 3.8). Unlike Logistic
Regression, SVM is not sensitive to the correlation between features by selecting an
appropriate kernel and performs better with heterogeneous data [179]. Considering
the fusion of sensory and behavioral data ( Eye + EDA + Behavior ), Random Forest
achieved the highest F1-Score of 0.83. Notably, compared to SVM and Logistic Re-
gression, Random Forest consists of a significantly larger number of hyperparameters
resulting in a higher computational cost when tuning them [200]. Interestingly, using
the combination of gaze, EDA and behavior data (Eye + EDA + Behavior), Random
Forest was outperformed by SVM (see Table 3.8 Kappa, Accuracy and AUC). The
fusion of sensory and behaviour data in SVM and Random Forest models outperformed
the defined baseline by three percentage points.
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3.5.5 Model Explanability

As mentioned in Section 2.5, the classification performance itself does not contribute to
the model interpretability, particularly in cases where a large set of heterogeneous data is
used. To understand how individual features contribute to the classification performance,
SHAP values (Shapley Additive Explanations) [140] method was deployed. The feature
importance was evaluated for each Random Forest model type tuned with the best
hyperparameters.

Figure 3.6: Feature importance graph for the Random Forest classification models using
the SHAP method. Top left: Eye-based model. Top right: EDA-based
model. Bottom left: Eye and EDA-based model. Bottom right: Sensory
and Behavior-based model.

Figure 3.6 represents the SHAP values for the four models depending on the used
features. The eye-based model achieved an F1-Score of 0.80 (see Table 3.8). Pupil size,
saccade velocity, number of saccades and number of fixations had the highest impor-
tance for the ability of the model to discriminate the episodes of mind wandering from
the normal reading behaviour (see Figure 3.6). The observed feature importance resem-
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bles the finds of prior studies [92, 20, 214]: Statistical features of pupil size, saccades
and fixations were observed to be sensitive to the occurrence of mind wandering.

Next, the EDA-based model achieved a slightly lower F1-Score of 0.78. The number

of peaks had the highest contribution for the prediction of mind-wandering followed
by the number of peaks above 1 µS, and the min value of the tonic component. The
latter two features showed comparable feature importance. The combination of EDA
and eye features resulted in an improvement of the classification performance by five
percentage points achieving the highest observed F1-Score of 0.83 among all models
(see Table 3.8). The data from both sensors could bear complementary information
to each other, capturing different dimensions of the participant’s mental state, thus
enhancing the overall classification performance. Thus, electrodermal activity can be
moderated by emotional arousal triggered by the episodes of mind wandering, whereas
eye movements are related to readers’ visual attention and reading comprehension.
Another critical point is a difference in the speed of physiological processes: while
changes in eye movements caused by cognitive processes are on a millisecond level
(and even on a microsecond level) [74], whereas for EDA it might take three seconds
and more before any stimuli-driven alternations in the signal can be differentiated from
the basic tonic activity [62]. Finally, for the Random Forest, fusing behavioral data
with the sensory as proposed earlier (Eye + EDA + Behavioral) did not improve
classification performance, albeit reading duration was the second important feature for
classifying mind wandering. In contrast, it provided a countereffect where the F1-Score
dwindled at one percentage point (see Figure 3.6).

3.6 Conclusion

This work demonstrates the feasibility of EDA sensor data and eye movements in com-
bination with machine learning for user-independent mind-wandering quantification
in the context of a mind-wandering aware system. Electrodermal activity is related to
emotional arousal triggered by episodes of mind wandering, whereas eye movements
are related to the visual attention of learners. The model based on these two feature
sets achieved the highest classification accuracy for mind wandering and outperformed
the eye-based model by three percentage points. At first glance, this improvement can
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appear relatively moderate. It points, however, to the general possibilities for combining
features acquired from an eye-tracker and an EDA sensor. Moreover, combining the
two sensors can be helpful because they operate in different time frames: the changes in
eye movements caused by cognitive processes can be observed on a millisecond level
[74], whereas the alternations in EDA can be visible up to three seconds after a stimulus
occurred [62]. Therefore, it is presumed that when reading longer texts, the combina-
tion of EDA and eye-tracker may result in higher classification accuracy because the
shortness of the paragraphs may have led us to miss some information in the EDA if the
mind-wandering occurred towards the end of the paragraph. The further inclusion of
behavioral features did not show a remarkable contribution to detecting mind wandering,
albeit reading duration strongly contributed to the classification accuracy. This result
shows that for an automatic mind-wandering detector, the sensory data are sufficient,
eliminating the necessity to use additional behavioral questionnaires and thus reducing
the amount of user-related information for a potential mind-wandering aware system.

The study presented here has several limitations. First, the used self-caught method
cannot guarantee that all experienced episodes of mind wandering were reported. This
method’s reliability depends entirely on participants’ awareness of the context of
their thoughts. Second, the proposed method is an offline mind-wandering detection
technique. A moment-to-moment detection of mind wandering using EDA features
is a challenging task since, as mentioned earlier, the physiological time course of
electrodermal responses varies from individual to individual and has a considerable
delay between the onset of mind wandering and related alternations in the signal. Finally,
the proposed multimodal sensor setup for mind wandering detection was investigated
in a controlled experimental setup. Verifying these finds in a ”wild” setting will be
necessary. In addition, this study used a binary classification to detect the presence
or absence of mind wandering. Future research must investigate the possibilities to
identify the particular type of mind wandering (TRT or TUT). This distinction is
important from a pedagogical point of view, where task-unrelated thoughts are a part
of metacognition about unfamiliar, demanding, or tedious tasks and may contribute
to the ultimate learning success. This aspect should be considered while building
mind-wandering-aware systems.
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4 Towards Engagement - Aware

System

4.1 Proposed Study

The extended use of navigation aids and autonomous driving systems may come at the
expense of reduced navigational competence in the driver. Highly automated navigation
aids and autopilots can be expected to reduce mental workload in the short run, but they
may be detrimental to fundamental spatial skills in the long term, for instance, in way-
finding and homing behavior, route planning, distance estimation, and the general
development of cognitive map of the current environment [209, 42, 168]. Such deficits
could be of great practical importance when drivers have to switch to a non-automated
vehicle when an automated device fails or when a detour becomes necessary that the
automated system is not yet prepared for.

This chapter seeks a way to build an engagement-aware system. For this purpose,
in the first step, a user model under autonomous versus manual driving mode is in-
vestigated to understand how different driving modes impact the spatial imagery of
drivers. Without these insights, reliable deployment of spatial imagery or engagement
imagery-aware systems is not possible. For this purpose, an extensive study with a
mounted, highly immersive driving simulator and a virtual unfamiliar environment is
performed, where passive transportation (autopilot) is contrasted with active driving
assisted by a navigation system and a printed map. Active driving is associated with high
engagement levels, and passive navigation is associated with low engagement levels.
Next, based on the outcomes of the user-model study, an automized, user-independent
engagement-aware system is proposed, where the particular driving mode level is clas-
sified using eye-movement data. The main results of this chapter have been published
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Figure 4.1: Overview of the successive steps for system design: Collection of sensory
(gaze and EDA) and behavioral data, data preprocessing, statistical analysis,
machine learning and model explainability. Image partially adopted from:
Adobe Stock.

in Brishtel et al. [38] and Brishtel et al. [37].

4.2 Related Work

Under increasing automation levels, the driver-aware systems attempt to ensure the
driver’s presence in the driving loop. For this purpose, several technologies, including
system messages [149], hands-on-wheels recognition and in-cabin driver monitoring
camera [207, 206, 222] were integrated into production cars. Each technology has its
strengths, but the considerable weaknesses are associated with perceptual failures [149],
privacy issues or lack of information regarding the driver’s ongoing attentional and
engagement level with driving [221]. For the latter one, eye-tracking technology can
be a good solution. Taking into account that failures in visual attention are responsible
for a significant number of traffic accidents [118], there is no wonder that this sensor
is widely employed in autonomous driving research and partly integrated into serial
vehicles [149, 128, 77]. For instance, system messages might harm drivers’ attention,
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including perceptual failures or inappropriate [149]. Studies showed that two seconds
of off-road glances are already enough for an increased risk of accidents [135, 221].
Despite the high precision of distraction recognition, in-cabin cameras are considered by
many drivers as an intrusion into their privacy. While meeting the privacy requirements,
the hand-on-wheel recognition technology does not provide reliable information about
the driver’s attentional state and engagement with the driving task [221]. In laboratory
settings, it was shown that ‘hand-on-wheel’ had not been a reliable predictor for collision
avoidance on the road.

Spatial knowledge & Navigation Modes

Qin and Karimi [168] proposed one of the first studies that explicitly investigated
the differences between cognitive maps gained while autonomous and conventional
(manual) driving. In their work, the experience of driving in autonomous mode was
treated as an equivalent form as those when driving as a passenger. The online survey
with 204 participants run in their study showed that individuals who often travel as
passengers have trouble navigating using their cognitive maps. Additionally, they are
more prone to get lost in a direct neighbourhood. The authors also suggested a possible
reduction in spatial knowledge for drivers switching to autonomous driving.

Related studies are consistent with the assumption that the driver’s role in automotive
driving will change to “passenger-like”. Using a survey and a map drawing task
with 101 London residents, Minaei examined the effects of different travel modes on
cognitive map development [146]. The author found a positive correlation between
using a car in active mode and the number of roads recalled in the map drawing task.
Mondschein et al observed comparable outcomes. [148]. They contrasted active car
drivers with adults who used public transport more frequently than a car. It was shown
that car drivers were significantly more accurate in estimating driving distance than
public transportation users. It was also demonstrated that active car drivers were more
likely to identify their home position using a landmark. Stülpnagel and Steffens found
that backseat drivers of a tandem bicycle in a passive navigation condition had better
landmark recognition than an active navigation condition [223]. Similarly, travelling by
bus through a city is presumed to allow passengers to observe more of the environment
and to attend more to the landmarks [96]. Bus drivers were observed to develop better
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survey knowledge of a city compared to their passengers, who could gain only route
knowledge [54, 15]. Unfortunately, with the exception of Stülpnagel and Steffens [223],
none of the aforementioned studies deployed a real or a simulated driving scenario.
Instead, they evaluated surveys or compared the spatial knowledge of active drivers and
passengers, who, in principle, have a different perception of the environment. Even
taking into account the view that in autonomous driving, the driver will change his or
her role to that of a passenger, an examination of the possible changes in spatial learning
under autonomous driving conditions in a more realistic situation is crucial.

Spatial imagery & Electrodermal activity

Navigation systems are developed to support drivers in way-finding and spatial decision-
making tasks, which in turn should reduce drivers’ mental and physical workload
[42, 94, 160]. Similar effects are expected through the utilization of highly or fully
autonomous driving systems. Not surprisingly, studies in human factors and ergonomics
observed a reduction in the mental and physical workload of the human operator
while using autonomous systems [158, 7]. Surprisingly little is known about cognitive
workload in the context of navigation and spatial learning. Evans et al. observed
that stress can be beneficial for the formation of cognitive maps [77]. Based on this
observation, Burnett and Lee hypothesized that the initial demand for cognitive map
development using printed maps is high [42]. With growing spatial knowledge, this
demand significantly decreases.

One of the most established techniques for measuring cognitive workload is the
NASA-TLX test that captures a self-reported level of the experienced cognitive demand
required to solve a particular task [98, 97]. Along with this self-report method, physi-
ological and neurological signatures can be used to indicate increasing workload and
stress levels. Together with the heart rate, EDA is one of the most frequently employed
physiological properties to track the driver’s stress level [150, 53, 138].

Eye-tracking & Spatial imagery

Liang et al. investigated how the engagement level in not-driving-related tasks (NDRT)
prior to a takeover request (TOR) influences takeover performance and situational
awareness [134]. They asked 30 participants to accomplish three driving tasks on SAE
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Figure 4.2: Schematic representation of experimental steps in learning and test phases.
Image partially adopted from: Adobe Stock.

Level 3. In each of the driving tasks, they had to engage in three NDRT tasks prior to
TORs: 1) Surrogate reference task (searching for a target circle among distractor circles);
2) Peripheral detection task (responding to visual stimuli presented in peripheral vision);
and 3) a monitoring task. Among other measures, authors used pupil size, fixation
duration, fixation number, a fraction of time in the area of interest (AOI), scan path
length, gaze count in AOI, and spatial density to access drivers’ states before and right
after TOR. The gaze was mainly off-road in the surrogate reference task (SRT). In
contrast, in a monitoring task, the driver’s gaze distribution covered more ambient space
and dispersed more than in SRT. The authors concluded that a longer time for scene
viewing and more dispersed attention allocation are associated with better situational
awareness. Louw and Merat observed similar results [139]. They investigated horizontal
and vertical gaze dispersion in conventional and automated (SAE Level 2) driving. The
authors found that during manual driving, the gaze is less dispersed.

4.3 Research Design

The experiment consisted of a learning phase and a test phase. In the learning phase,
participants sat in a driving simulator. They were either passively driven by autopilot
through a simulated town or drove the car themselves using either a navigation system
or a printed map. In the test phase, they were required to repeat the route from the
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Table 4.1: Experimental design: experimental conditions with the total sample size.

2 × 3 Phase

Learning Test

Assistant Type
Autopilot 20 20

Navigation System 20 20
Map 20 20

learning phase by driving the car themselves without any navigation aids. The learning
phase also consisted of a memory test requiring them to identify and order landmarks
along the route.

To examine the impact of different assistant systems on the drivers’ spatial knowledge
and cognitive workload, two independent variables were varied: assistant type (autopi-
lot, navigation system, or printed map) and phase (learning or test) (see Table 4.1).
To characterize the behavioral performance in the test phase, five dependent variables
were employed: proportion of correctly selected landmarks, or ”hits”; proportion of
selected foils, or ”false alarms”; proportion of landmarks placed in the correct order;
and number of wrong turns. Furthermore, the NASA-TLX score was measured during
both the learning and test phases to trace cognitive workload. While driving tasks,
gaze data were continuously recorded using in OpenDs integrated software. In addi-
tion to the behavioral and eye-tracking data, skin conductance, was recorded during
both study phases and decomposed into two components, the tonic component (SCL)
and phasic component (SCR). These components were derived from the EDA signal
as a neurological marker of the induced stress level. In addition, participants were
asked to draw a map of the virtual city, but this dependent measure is not the focus of
the current paper because they are not related to the hypotheses described above. A
repeated-measures within-subjects design was used where each participant underwent
all experimental conditions. In such designs, statistical power depends jointly on the
number of participants and the number of trials per participant and condition [197].
Figure 4.1 provides an overview of the system and data recording pipeline.
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Participants

A total of 22 participants were recruited in the German Research Center for Artificial In-
telligence (DFKI) from different departments via an employee mailing list. Recruitment
occurred under the restrictions of the COVID-19 pandemic, which avoided bringing
unnecessary visitors into the DFKI facilities. Inclusion criteria were the absence of
motion sickness, a minimum of two years of driving experience, and a driving license
valid in Germany. Despite being informed about the inclusion criteria, two participants
reported severe symptoms of motion sickness. The experiment was then immediately
stopped, and their recorded data were discarded from further analysis. The residual 20
participants (7 female) were between 22 and 50 years of age (mean = 29.9, SD = 6.5)
and drove a car on average at least five times a week. All participants had normal or
corrected-to-normal vision. Participants were not informed about the goals of the study
prior to the experimental session. Participation was voluntary and compensated through
working hours.

Driving Simulator

Figure 4.3 shows a schematic representation of the technical setup of the driving
simulator. The mounted driving simulator was assembled from a Jaguar XJ 4.2 V8
Executive cockpit and an integrated input controller set (Logitech G27 Driving Force),
which includes a steering wheel and two pedals for throttle and brake but no clutch
pedal. The transmission was set to automatic mode so that no gear shift was necessary
and the simulator could be operated without extensive training. A projector with a
resolution of 1920× 1080 (Full HD) displayed the driving scene on a large screen about
two meters in front of the participant. The experimenter’s place was set behind the
driving simulator. The driving simulator setup resembled those of Feld et al. [80]. The
virtual city consisted of three maps representing different parts of the city. Each map
included buildings, traffic lights, road signs, road markers, and pavements with bus
stops, trees, and small parkways but did not include any pedestrians or traffic.
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Figure 4.3: Schematic representation of the technical setup in the driving simulator.

4.4 System Design

Sensors

A wrist-worn Empatica E4 device was used to trace the participant’s electrodermal
activity during the driving tasks. Besides sensors for skin conductance, the Empatica E4
wristband has three more integrated sensors: a photoplethysmography sensor, a 3-axis
accelerometer, and an optical thermometer. By default, Empatica E4 transmits the data
from all four sensors. The EDA signal is conducted through two snap-on silver (Ag)
plated electrodes with a sampling frequency of 4 Hz. The wristband does not require
any calibration procedure. It was placed on the volar surface of the wrist according to
the manufacturer’s recommendations after the training phase in the driving simulator.
The data recording continued over the entire experimental period.

Along with EDA, eye movements were recorded using a Tobii 4C gaming eye-tracker
with a default sampling frequency of 90 Hz under a scientific license. The OpenDS
software supports gaming eye trackers, including Tobii 4C. It provides processed
eye-tracking data, including fixations, saccades (a transition between two successive
fixations), and information about the gazed objects in the virtual environment. To
achieve the highest calibration and recording accuracy, the eye-tracker was individually
set for each participant and re-calibrated every time before the start of a driving task.
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Figure 4.4: Three printed maps corresponding to the driving routes employed. To com-
pensate for the relative shortness of the second map (top right), the change
of the driving direction (blue highlight) was integrated into the driv-
ing route.

Virtual Environment and Driving Assistants

The open-source simulation software OpenDS Pro Complete [156] was used to simulate
the driving environment. This application provides high flexibility for creating and
customizing controlled driving environments, including map creation and 3D model
integration. OpenDS is based on jMonkeyEngine V3.2 [113] with a variety of supported
features, open standards (openDrive, openSCENARIO, SCENIC), and supported hard-
ware (VR glasses, motion platforms, input controllers, etc.). The system also supports
gaming eye-trackers (e.g., Tobii X and Tobii 4C) and provides processed eye-tracking
data, including fixations, saccades, and information related to the fixated objects in the
virtual environment.

The city center of the German city of Saarbrücken was taken as a prototype for the
virtual city. From the city plan, three maps with three driving routes of comparable
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Figure 4.5: Schematic representation of the successive steps deployed in VR-scene
development.

length and complexity were created (see Figure 4.4). On average, it took three minutes
and thirty seconds to finish each route using the autopilot. Apart from one route segment
that was shared by two maps, the maps did not overlap with each other. The shared
segment was passed in opposite directions in the different routes so that carryover effects
should be minimal. The environment of each map consisted of buildings, traffic lights,
road signs, road markers, and pavements with bus stops, trees, and small parkways,
resulting in a fairly rich and complex environment. The driving environment did not
contain any pedestrians or traffic. In all three maps, the lighting conditions corresponded
to diffuse skylight at noon. The lighting gave some information about the orientation
of buildings with respect to the sun, but no strong shadows were cast. Figure 4.5
summarizes the procedural steps in the deployment of the virtual environment and route
programming for the autopilot driving condition.

A Din A4 color print for each virtual map with a designated driving route was created,
including start and finish points (see Figure 4.4). In the learning phase, the respective
map was placed on the cockpit’s dashboard where the participant could easily see

90



(a) Driving with autopilot (b) Driving with map

(c) Driving with navigation system
(red squares projected on the
road)

Figure 4.6: Overview of the driving modes used in the learning phase.

and handle it (see Figure 4.6(b)). The navigation system in the learning phase was
represented as a blue, continuous line with red squares projected on the road and going
from the start to the end of the entire driving route (see Figure 4.6(c)). This projection
was programmed separately for each route. Finally, the autopilot condition of the
learning phase was designed as a passive drive on a coordinate-based pre-programmed
route for all three virtual maps.

Landmarks

For each map, six unique virtual landmarks were selected. Several landmarks were
downloaded from Sketchfab [189] and adopted to the virtual environment using jMon-

91



Figure 4.7: Examples of the landmarks and foils. Top (objects in the blue frame): the
landmarks presented in the virtual environment. Bottom (objects in the red
frame): foils used in the landmark recognition test.

keyEngine and Blender [25]. The landmarks were selected to be eye-catching so that
they would be noticed and recalled by participants independently of the context [144]
(see Figure 4.7). The landmarks were placed either along the driving route on the left
or right side or next to an intersection of the roads. In the participant’s instruction and
test application (discussed below), the word ”landmark” was deliberately avoided using
”object” instead to exclude biasing the participant with respect to landmark-based vs.
route-based learning strategies. In the experimental instruction, the word “scene” was
used to describe the virtual environment and to avoid any confusion with a printed map.

Procedure

The experiment was approved by the local ethics board (TU Kaiserslautern). To avoid
any order or learning effects, the order of the driving assistants and maps was random-
ized within subjects using the Balanced Latin Square method [123].

The experiment took place in a quiet room under controlled lighting conditions.
After arriving at the laboratory, participants received a written informed consent form
containing general information about the purpose, possible risks, and benefits of the
study and also a sheet to permit the camera recording. After these forms were signed,
general information was collected, including age, gender, visual acuity, and the driving
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frequency per week. Subsequently, the participants received instructions about the
experimental process. It was explained that they would drive three routes twice: once
using a driving assistant, such as a printed map, autopilot, or a navigation system (learn-
ing phase), and once without using the assistant (test phase). Importantly, participants
were aware that they would later have to drive the same route themselves by memory.
After ensuring the participants had no questions regarding the experimental procedure,
the familiarization phase was started, where participants learned to steer the driving
simulator system in a training environment. The familiarization period lasted between
ten and twelve minutes. The participants were instructed to follow general driving rules,
including holding the proper traffic line, avoiding crashes with objects, and controlling
their speed.

After the familiarization phase, the learning phase began. For the autopilot condition,
the participants were instructed not to use the steering wheels and pedals, keeping
the hands possibly on the knees. In the navigation system condition, participants
were asked to follow the navigation projection as precisely as possible. In the map
condition, participants were given unlimited time to learn the route from the map
prior to driving. In the learning phase, they were also allowed to use the map for
navigation. If participants had problems reading the map, the experimenter gave short
hints to facilitate understanding. Deviations from the route while driving with the
map were not counted as an error in the learning phase. As soon as the participants
arrived at the destination, the map was removed from the cockpit. In the autopilot and
navigation system conditions, the end of the route was indicated by the pop-up message
“Destination”.

Participants had to repeat the just-driven route in the test phase without the navigation
aid. At this point, each deviation from the original route (e.g., wrong turn or skipping
the right turn) was counted as a “wrong turn”. If participants did not notice they were
driving the wrong route within ten seconds, the experimenter shortly warned participants
against the deviation and helped them to drive back to the position where the deviation
from the right route had occurred. From that point, participants had to find the correct
direction on their own.

Subsequently, the participants were informed about the NASA-TLX test conducted
after every driving segment. The test was followed by the scene recognition and route
knowledge tests after every first driving phase, and by the map drawing task after every
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second driving phase. For every driving segment, the scene recognition test included six
real scenes with correctly placed objects in them and six fake scenes (foils) containing
the objects in the wrong places, resulting in twelve scenes in total (see Figure 4.7).
The participants were informed about the number of foils and asked to select exactly six
scenes. In the next step, route knowledge was tested by asking participants to put the
selected scenes into the order they were encountered while driving. No feedback was
provided either for the selected scenes’ correctness or their order by the application.

The weighted NASA-TLX test, landmark recognition, and route knowledge task
were programmed in JavaScript using the VUE framework and run on macOS Big Sur.

4.5 Statistical Analysis

To investigate the possible effects of the assistant type and the driving phase, a two-way
within-subjects analysis of variance (ANOVA) was conducted. All reported p-values
for the main and contrast effects are Greenhouse–Geisser corrected to safeguard against
underestimation of p-values when the statistical assumption of compound symmetry is
violated. To analyze simple effects within each factor, planned pairwise t-tests were
employed with Bonferroni correction. All significant results are reported. A p < 0.05
threshold was used for the statistical significance. The data aggregation and signal
processing were performed using Python; statistical analysis was run using R.

Cognitive Workload

Figure 4.8 represents the descriptive statistics for reported cognitive workload among
the assistant types and driving phases. The ANOVA showed neither a significant main
effect of assistant type [F(2, 38) = 1.38, p = 0.61], nor of the driving phase [F(1,
19) = 1.38, p = 0.25]. However, a highly significant interaction effect between these
two variables was present [F(2, 38) = 19.33, p < 0.01]. Whereas for the autopilot
and navigation system, cognitive load was lower in the learning phase than in the test
phase t(119) = −6.05, p < 0.01 and t(119) = −7.10, p < 0.01, the reverse effect was
observed for the printed map t(119) = 9.69, p < 0.01. This data pattern suggests that
first investing cognitive effort when learning the environment by map lowers cognitive
costs at retrieval. In contrast, the reduced cognitive effort when driving passively or by a
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Figure 4.8: Descriptive statistics for NASA-TLX score by assistant type and driving
phase: mean, standard deviation. Black vertical lines represents standard
error. Learning a new route with a map was associated with the highest
NASA-TLX score. In contrast, the lowest NASA-TLX score was observed
in the test phase after learning a new route with a map.

navigation system comes at the expense of greater cognitive costs when those assistant
systems become unavailable.

EDA

To extract underlying SCL and SCR components from the EDA signal, the Convex Op-
timization Approach (cvxEDA) was applied as proposed by Greco and colleagues [93].
This method is a reasonable choice when SCRs occur to multiple stimuli and overlap
over the entire period of interest [46].

The raw EDA signal was filtered with an 8th order Chebyshev Type I low-pass filter
(0.1 Hz) for all participants. In the next step, a Z-score normalization was applied
to the filtered data. Then, cvxEDA was run on filtered and normalized data for all
driving segments (see Figure 2.4). To avoid any residual motion artefacts in the signal,
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Table 4.2: Descriptive statistics for the tonic and phasic components by the assistant
type and driving phase. All values are Z-score normalized.

Tonic Phasic
Assistant Type Phase Mean SD Mean SD

Autopilot Learning −0.12 0.84 0.03 0.03
Autopilot Test −0.05 0.79 0.08 0.07
Navigation system Learning −0.20 0.85 0.06 0.06
Navigation system Test 0.17 0.97 0.07 0.08
Map Learning −0.26 0.94 0.08 0.08
Map Test −0.35 0.75 0.05 0.04

the first 30 and the last 10 seconds from the signal of each driving segment were
deliberately excluded. After tonic and phasic components were extracted from the EDA
data, an average value was calculated for each participant within each driving segment.
The data of one participant were excluded from the analysis (and the correlation analysis
discussed below) because of insufficient recording quality.

In the next step, possible influences of the driving phase, assistant type, and their
interaction on the EDA components were investigated. Table 4.2 represents descriptive
statistics for the tonic and phasic components. For the tonic component, neither driving
phase [F(1, 18) = 0.95, p = 0.34)], nor assistant type, [F(2, 36) = 0.61, p = 0.54], nor
their interaction [F(2, 36) = 1.54, p = 0.23] were significant. In contrast, a statistically
significant interaction effect between the driving phase and assistant type was observed
for the phasic component [F(2, 36) = 5.38, p < 0.05]. There were no significant main
effects of either driving phase or assistant type on the phasic component [F(2, 36) =
0.17, p = 0.80] and [F(1, 18) = 2.82, p = 0.11] respectively.

The pattern of results was similar to that of the NASA-TLX scores. A pairwise t-test
yielded a significant difference between learning and test phases with the autopilot in
the phasic component values, t(18) = −3.19, p = 0.005. The mean value of the phasic
component was significantly lower in the learning phase with the autopilot, compared
to the corresponding test phase (see Table 4.2). In the map condition, this effect was
reversed and of similar size, but failed to meet the significance criterion, t(18) = 2.06,
p = 0.054. No difference between the learning and test phases was detectable for the
navigation system, t(18) = −1.01, p = 0.33.
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Figure 4.9: Distribution of the number of wrong turns for the different assistant types.
Black dots represent outliers. Learning a new route with a printed map
resulted in the lowest number of wrong turns in the test phase.

Landmark Recognition, Route Knowledge, and Way-Finding

To investigate possible differences in scene and landmark recognition among the three
types of driving assistants, the proportions of ”hits” and ”false alarms” were calculated
for each subject and transformed by arcsin transformation to meet ANOVA requirements.
Route knowledge was calculated as a proportion of landmarks placed in the correct
order and also arcsin-transformed. One-way ANOVA with the single factor assistant
type showed neither any significant influence on hit rate [F(2, 38) = 0.75, p = 0.48], nor
on false alarm rate [F(2, 38) = 1.06, p = 0.36], nor on the number of landmarks placed
in the correct order [F(2, 38) = 0.31, p = 0.74].

Finally, the way-finding performance was evaluated. Way-finding performance
was assessed through the number of wrong turns within the test phase (Figure 4.9).
On average, each participant made a wrong turn 1.35 (SD = 1.93) times after learning
with the autopilot, 0.35 (SD = 0.49) times after learning with the map, and 1.50 (SD =
1.93) times after learning with the navigation system. Due to pronounced outliers in
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Figure 4.10: Histogram plot with mean values standard errors for average fixation
duration by driving conditions. Standard deviations are represented in
parentheses. Driving with autopilot resulted in the highest average fixation
duration.

the number of wrong turns after learning with the autopilot or the navigation system,
the normality assumption was violated (Shapiro–Wilk test W = 0.67, p < 0.01). Hence,
the Friedman rank-sum test was employed to compare the group means. The results
showed statistically significant changes in the frequency of making a wrong turn
depending on the driving assistant in the learning phase, χ2(2) = 6.23, p = 0.05. Next,
post-hoc Wilcoxon signed-rank tests with Bonferroni corrections were performed.
The analysis confirmed a significantly lower number of wrong turns after learning
with a printed map than after learning with the navigation system (Z = 12, p = 0.02).
The difference between the autopilot and printed map conditions was not significant
(Z = 66, p = 0.1). Similarly, there was no significant difference between autopilot and
navigation system (Z = 81.5, p = 1.0).
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Figure 4.11: Box plots of the number of fixations grouped by the driving conditions and
types of AOIs. The number in the box plots represents the average value
within each driving condition and type of AOI. The black dots outside
the box plots represent outliers. While driving with autopilot, participants
primarly gazed at environmental objects and landmarks. In contrast, while
driving with a map the most of fixations were associated with gazing at
the road.

Eye Movement

To examine possible impact of navigation mode on eye-movement, eye-features were
additionally analysed. Since the used three scenes were slightly different in geometries
and in the number of curves and road intersections (but with similar overall complexity),
only time-related and AOI-related features were analysed: fixation duration, the total

number of environment-directed gazes, the total number of landmark-directed gazes,
and total number of on-road gazes. The analysis was performed on the data averaged on
the individual level and grouped by the driving condition. Data normality was examined
using the Shapiro-Wilk test. The reported F-values are Greenhouse-Geisser corrected.
Post hoc analysis was run using Tukey’s HSD.

There was a highly significant main effect of driving condition on the fixation duration
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[F(2, 38) = 26.24, p < 0.001], with the longest fixations in the autopilot condition,
followed by the navigation system and finally, the map condition (see Fig. 4.10). Post
hoc Tukey’s HSD showed that the average fixation duration was higher in the autopilot
condition compared to driving with the navigation system [p < 0.001] and also to
driving with a map [p = 0.01]. No significant difference was observed between the map
and navigation system [p = 0.60].

Next, AOI-related features (see Fig. 4.11) were analyzed. There was a significant
main effect of driving condition on the total number of landmark-related objects [F(2,
38) = 4.96, p = 0.02], with a higher number in the autopilot than in the map condition [p
= 0.05] and the navigation system condition [p = 0.02]. No differences were observed
between driving with a map or navigation system [p = 0.87]. The number of on-road
gazes also was significantly impacted by the driving condition [F(2, 38) = 12.88, p <

0.001]. In particular, the number of on-road gazes in the map condition was significantly
higher than in autonomous driving mode [p = 0.002]. Again, no significant difference
was observed between the map and navigation system conditions [p = 0.29]. Finally,
a significant main effect was observed for the total number of environment-directed
gazes [F(2, 38) = 7.34, p = 0.003]. The post-hoc test showed that this difference was
only significant between autopilot and navigation system conditions [p = 0.01].

Correlation Analysis

To explore possible linear associations between cognitive workload, the number of
wrong turns and the EDA components, a multivariate product-moment correlation
analysis Pearson’s r was computed. Since the number of wrong turns was only recorded
in the test phase, the NASA-TLX score and EDA components (tonic and phasic) from
the learning phase were discarded from the correlation analysis. The correlation strength
is reported following the classification by Dancey and Reaidy [12, 59].

A significant, weak, and positive correlation was observed between the number of
wrong turns and the NASA-TLX score (r = 0.32, p < 0.05) (see Figure 4.12). Moreover,
a highly significant, moderate, and positive correlation was obtained between the
number of wrong turns and the phasic component (r = 0.43, p < 0.01). In the next phase,
Pearson’s r correlation analysis was run separately for the autopilot, navigation system,
and printed map driving assistants using the same variables as before (see Figure 4.12).
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Figure 4.12: Correlation analysis. Top left: Test phase including all assistant types.
Top right: Test phase for assistant type ‘Autopilot’. Bottom left: Test
phase for assistant type ‘Navigation System’. Bottom right: Test phase
for assistant type ‘Map’.

For the autopilot, a statistically significant, moderate, and positive correlation between
number of wrong turns and the average value of the phasic component (r = 0.45, p =
0.05 ) was found. For the navigation system, a similar correlation pattern was observed
between the number of wrong turns and the phasic component, resulting in r = 0.44, p

< 0.06, yet slightly exceeding the 95% significance level. For the map assistant type,
no significant correlations were observed.

4.6 Machine Learning Approach

Machine learning algorithms provide a powerful tool for the detection and classification
of eye movements both from raw and processed data [238]. In a way-finding study with
52 participants, Alinaghi and colleagues demonstrated the feasibility of the Gradient
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Table 4.3: Overview of extracted and calculated statistical features for the eye move-
ment.

Feature Description Features
Gaze X Gaze FX X coordinate in Tobii’s CS µ, σ, RMS
FX SC X Gaze FX X coordinate in screen CS µ, σ, RMS
FX SC Y Gaze FX Y coordinate in screen CS µ, σ, RMS
FX contact point Y Lateral Y position of FP in 3D space in the

SCS
µ, σ, RMS

FX duration FX duration in milliseconds µ, σ, min, max, RMS
TT between objects TT between 2 different objects in msec µ, σ, min, max, RMS
FX 2D distance Distance between 2 objects in 2D space µ, σ, min, max, RMS
FX 3D distance Distance between 2 objects in 3D space µ, σ, min, max, RMS

CS: coordinate system, FX: fixation, FP: fixation point, TT: transition time,
SCS: simulator coordinate system, RMS: root mean square.

Boosting algorithm for predicting drivers’ turning decisions [13]. Using saccade and
frequency-based features, they achieved an average classification accuracy of 86%
across three types of behavior in a three-second window: turning left, turning right,
and non-turning. Zahabi et al. ran a study to classify the driving situation of police
officers (normal vs. pursuit driving) in a virtual environment [236]. Using the gaze
data of 18 police officers (percentage change in pupil size and blink rate) along with
driver behavior, the authors were able to achieve a classification accuracy of about 90%
using Random Forest and Support Vector Machine (SVM) models. In a study on driver
takeover performance, Du and colleagues evaluated the performance of six machine
learning methods for the prediction of takeover performance (good or bad) [72]. Among
other physiological features, the authors used fixations, saccades, pupil size, blink rate,
gaze dispersion, scan pattern, and proportion of gazes focused on the road to build
SVM, Random Forest, Naive Bayes, k-Nearest Neighbour (kNN), discriminant analysis,
and logistic regression models. Random Forest showed the highest classification
performance with an average accuracy of 0.82 and an F1-score of 0.62 using gaze
and environmental features calculated within a three-second window. The second-
best performance was demonstrated by SVM. Taking these studies together, it can
be concluded that Random Forest, SVM, and Gradient Boosting algorithms provide
robust techniques for classifying the driver’s gaze in various scenarios. Alinaghi and
colleagues demonstrated the feasibility of a Gradient Boosting algorithm for predicting
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drivers’ turning decisions [13]. Using saccade and frequency-based features, they
achieved an average classification accuracy of 86% across three types of behavior
in a three-second window: turning left, turning right, and non-turning. Zahabi et al.
achieved an accuracy of about 53% using a Random Forest algorithm and gaze features
to classify the driving mode (normal vs pursuit driving) in a virtual environment [236].
Du and colleagues evaluated the performance of six machine learning models to predict
takeover performance. Random Forest-based model showed the highest classification
performance with an average accuracy of 0.82 and an F1-score of 0.62 using gaze and
environmental features calculated within a three-second window.

The limitations of the aforementioned studies and currently available eye-tracking
systems in serial vehicles [149, 128] are twofold. First, the driver’s engagement was
primarily considered as a function of the current gaze position (off- or on-road). Never-
theless, this binary splitting of the gaze location cannot guarantee real engagement and
proper perception of the situation on the road, including avoidance of some crash and
near-crash risks [209, 134, 221, 102]. Second, the driving situations employed mainly
were restricted to straight highway driving [33].

4.6.1 Feature Engineering

Table 4.3 overviews fixation-related features extracted from the OpenDS Gaze Analyzer.
Statistical features for each gaze feature were calculated using sliding windows without
overlap with frame lengths of four and ten seconds [13]. The calculation was carried
out on the level of single participants for each driving task. OpenDS Gaze Analyzer
additionally provides information related to the objects that were gazed at, e.g. buildings,
streets, and landmarks. All the objects were split into two groups of area of interest
(AOI): 1) environment and 2) on-road. For both groups, the percentage of the occurrence
within a sliding window was estimated. In total, 33 features were used to train the
machine learning models.

4.6.2 Model Building

Both binary and multi-class models were considered. For the multi-class models, all
three driving conditions (autopilot, map, and navigation system) were considered as
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Figure 4.13: Model building and evaluation pipeline for driving mode classification
using eye-tracking features.

separate classes. In the case of binary classification, two driving conditions (map and
navigation system) were combined into one class (manual driving) and contrasted with
the class autopilot. It is hypothesized that the driver’s engagement level with driving is
high in manual driving conditions and low in the autopilot condition.

Before being fed into the classification models, the data was processed in two ways:
At the beginning, StandardScaler was applied from the Scikit-learn library to achieve
equal scaling among input features. Next, the class distribution in the data set was not
equal. For the binary models, the distribution of class labels resulted in 38.65% for class
1 (autopilot) and 61.35% for class 2 (manual driving), respectively. For the multi-class
models, the label distribution was balanced, resulting in 38.65% for class 1 (autopilot),
30.17% for class 2 (map) and 31.18% for class 3 (navigation system). However,
after creating training and testing data sets, the minority classes in binary and multi-
class models were over-sampled using the synthetic minority over-sampling technique
(SMOTE). Figure 4.13 summarizes the model building and evaluation pipeline. The
SMOTE technique was applied only to the training data sets.

A nested cross-validation procedure was used to achieve a robust classification
performance and avoid the risk of model overfitting [48]. In the inner loop, the Grid-
SearchCV method was deployed to define a grid of hyper-parameters and perform
3-fold cross-validation. The model evaluation was performed 20 times on the validation
data following the total number of participants.

To cope with the computational costs increasing with the number of hyperparameters,
the definition of the parameter set and search space was partly adopted from [238] for
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Table 4.4: Hyper-parameter search grid with the lower and upper boundaries for the
used values.

Algorithm Hyper-Parameter* Lower Upper

Random
Forest

dmax 10 60
fmax 1 18
lmin 1 4
smin 2 10
n 2 180
Bootstrap {False}
Criterion {Gini}

Gradient
Boosting

n 200 800
λ 0.1 0.5
s 0.1 0.5
wmin 0.0 0.1
dmax 2 16
Early stopping {10}

*d: depth, f : features, l: sample leaf s: sample split
*n: number of estimators, λ: learning rate, w: weight leaf

Table 4.5: Classification results of the Gradient Boosting and Random Forest algorithms
using features calculated within a 4-seconds window. The standard deviation
for each metric is denoted in parentheses.

Model Classes 4 seconds
Accuracy AUC F1-score

Random Forest 2 0.893 (0.047) 0.945 (0.047) 0.891 (0.051)
3 0.744 (0.074) 0.893 (0.056) 0.741 (0.076)

Gradient Boosting 2 0.901 (0.043) 0.952 (0.051) 0.900 (0.046)
3 0.742 (0.075) 0.900 (0.060) 0.738 (0.077)

Random Forest and from [13] for Gradient Boosting. Table 4.4 lists the tuned hyper-
parameters and their value ranges. The results are reported using F1-score (weighted
average) [95], average accuracy [198] and the area under the Receiver Operating Char-
acteristic curve (AUC ROC).

4.6.3 Results

Tables 4.5 and 4.6 represent the classification results obtained for features calculated
within 4 and 10-second windows. The highest classification performance was achieved
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Table 4.6: Classification results of the Gradient Boosting and Random Forest algorithms
using features calculated within a 10-seconds window. Best results are
highlighted in boldface. The standard deviation for each metric is denoted in
parentheses.

Model Classes 10 seconds
Accuracy AUC F1-score

Random Forest 2 0.883 (0.050) 0.946 (0.057) 0.880 (0.053)
3 0.775 (0.075) 0.916 (0.056) 0.770 (0.078)

Gradient Boosting 2 0.890 (0.074) 0.945 (0.0479) 0.889 (0.075)
3 0.803 (0.077) 0.927 (0.050) 0.800 (0.079)

Figure 4.14: Confusion matrices for autonomous vs. manual binary and multiclass
classification.

with the Gradient Boosting algorithm. As it can be seen, the highest classification
performance for two classes was achieved with the features calculated within four-
second windows. For three classes, the highest classification performance was achieved
using a window size of ten seconds resulting in an accuracy of 0.8 (±0.07), F1-score of
0.81(±0.08), and AUC of 0.93 (±0.06). Figure 4.14 additionally presents confusion
matrices for both binary (four-second window) and multi-class (ten-second window)
classification performance. In the multi-class classification, the largest confusion
occurred between the classes map and navigation system. The lowest confusion was
observed between the classes autopilot and map.
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Figure 4.15: Feature importance graph for the Gradient Boosting classification models
using the SHAP method (top 12 features). Top: SHAP values for binary
model. Bottom: SHAP values for the multi-class model.

4.6.4 Model Explainability

To evaluate the contribution of individual features to the model classification perfor-
mance, the SHAP (Shapley Additive Explanations) method was deployed. In this
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method, each feature receives an importance value for a particular prediction [140].
Figure 4.15 represents SHAP values for binary (four-second window) and multi-class
(ten-second window) classifications. Interestingly, the top three most important features
for both binary and multi-class classification models are max transition time between

two objects, min fixation duration, and standard deviation in the transition time between

two objects. Remarkably, the AOI features relating to “off”- and “on”-road gazes did
not appear highly important for the classification performance.

Figure 4.16: Randomly selected scan paths of ten-second length in three navigation con-
ditions from the same participant. The red color represents long fixations,
and the blue short ones. Top: Driving with the autopilot. Middle: Driving
with the navigation system. Bottom: Driving with the map.

Figure 4.16 shows the scan path plots with respect to the three driving conditions.
Driving with the autopilot was characterised by dense, long-lasting fixations distributed
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Figure 4.17: Classification performance of user-dependent binary and multi-class mod-
els by window size.

horizontally across the screen center, resembling a scanning behaviour. Driving with
the navigation system showed a high variation in fixation duration which could be
primarily attributed to fixating the navigation trace provided by the navigation system.
Driving with the map showed two clusters of fixations: long-lasting, environment-
related fixations on the top left and sparse, short ones in the bottom right corner where
the printed map was placed.

User-dependent models

User-dependent models were built to examine whether a higher classification perfor-
mance could be achieved by training and evaluating data from the same person. The set
of parameters that performed best in the user-independent modality was used. In partic-
ular, for the binary classification, the best set of parameters was: λ = 0.2, dmax = 4,
fmax = 9, wmin = 0.0, n = 600, s = 0.4, and for multi-class λ = 0.2, dmax = 8,
fmax = 7, wmin = 0.0, n = 600, s = 0.4.

The models were built and trained (70% training split and 30% test split) on the level
of the individual 10 times to address the uncertainty within training and test splitting
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(i.e. 10 different random seeds). Accuracy, F1-score and AUC were computed for each
test split. Thus, the final individual scores are the average value from the ten respective
iterations.

Figure 4.17 represents user-dependent classification results by class type and window
size. Both for binary and multi-class classification models, the highest accuracy was
achieved using 4-second windows. On average, the individual models achieved an
accuracy of 0.92 (±0.06), F1-score of 0.92 (±0.06) and AUC of 0.96 (±0.04) for binary
classification, and an accuracy of 0.78 (±0.10), F1-score of 0.76 (±0.12) and AUC of
0.93 (±0.06) for multi-class, respectively. The drastic reduction in the amount of data
available for training could explain the comparably low user-dependent classification
performance for the multi-class case.

4.7 Conclusion

The presented study sought to understand spatial imagery development and provide a
prospect towards an engagement-ware system under manual and autonomous driving
conditions. For this purpose, spatial knowledge, mental workload and gaze data were
accessed. The results demonstrate a considerable difference in spatial knowledge, cog-
nitive workload and gaze-related features. Thus, initial learning of a new environment
through a printed map results in a higher cognitive demand that significantly diminishes
when driving the same route by memory. In contrast, this effect was the opposite for the
navigation system and the autopilot, for which the initially low cognitive workload in
the learning phase dramatically increased in the test phase. Moreover, after learning the
printed map, participants tended to drive the route in the test phase with fewer errors.
It is also shown for the first time that the phasic component of the skin conductance
response parallels behavioral measures so that EDA measurement may serve as a possi-
ble proxy for self-reported cognitive workload or stress. Despite minor expectations,
driving with the autopilot was not associated with benefits in landmark recognition.

The observed results demonstrate that driving with autopilot, a navigation system
or a printed map produces distinct eye movement patterns that can be classified with
considerable accuracy using machine learning algorithms. Random Forest achieved
comparable results for both binary and multi-class classification performance. In line
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with previous works, this performance was influenced by the window size selected for
the feature calculation [13]. For the binary models, the four-second window size showed
the highest classification performance, whereas, for the three classes, the performance
was higher with a ten-second window. The explanation could be two-fold. First, consid-
ering the feature importance obtained by the SHAP value method, it is assumed that the
minimum and maximum values could carry more information when calculated within
broader ranges (i.e. within larger windows), thus allowing for better discrimination
among the three classes. Second, when calculating features within four-second windows,
the noise ratio might remain high, which could drastically restrict the discrimination
power for multiple classes. The Gradient Boosting algorithm achieved the highest
classification accuracy of 90.1 % for binary driving mode prediction, (autopilot vs
manual driving), and an accuracy of 80.3% for multi-class classification, (autopilot,
map and navigation system). The classification performance varied between window
sizes similarly for both algorithms. Comparing this classification accuracy to the state
of the art is challenging since the related studies vary in experimental design and used
methods. Yet, as in the study by Alinaghi et al. [13], the Gradient Boosting achieved the
highest classification performance compared to Random Forest. Moreover, our binary
prediction accuracy of the driving mode exceeded those of Zahabi et al. [236] by 37,
and those of Du et al. by 8 percentage points.

Additionally, the contribution of single features to the classification performance were
evaluated. The min fixation duration showed the highest importance in the multi-class
classification performance, especially for the classes navigation system and map. The
short fixation duration could be explained due to the fact that participants used the
on-screen navigation trace, for which rapid fixations were sufficient to estimate the
driving direction. In the case of the map condition, the drivers had to permanently
compare their position with the printed map and simultaneously update their referential
position in the driving environment. Indeed, the decrease in fixation duration could
mean that the environmental objects receive less attention [49]. This assumption is
partly supported by the post-experimental interviews performed in the original study,
where some participants stated that they could not observe the environment because they
had to concentrate on the prescribed route. The max transition time between objects

was the second most important feature in the multi-class classification. While driving
with the autopilot, drivers used a visual scanning strategy that requires a vision with
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high acuity and excludes long saccades, which suppress sharp scene perception [164].
Considering these results, it can be concluded that eye-tracking technology provides
sufficient information about the drivers’ ongoing engagement and can serve as a solid
basis for engagement-aware assistant systems. Based on the recognized engagement
level, the system could adapt its warning behavior to keep the driver in the loop or even
to take the vehicle out of the traffic in case the human driver is detached from driving
and can pose a risk to other traffic participants.

This study has several limitations. First, the study design considered only a short-term
impact of the driving assistants when a route was driven only twice. Thus, the long-term
impact of the driving assistant types is still to be investigated. Second, a relatively
small and simple environment was used without complex turns, road forks, traffic,
and pedestrians. The use of a more complex and dynamic environment could bring
more insights into spatial learning and cognitive workload of drivers under different
navigation modes.

The final remark relates to the application of this study. The reduction in drivers’
mental workload through the utilization of the navigation system and the autonomous
driving mode was shown to occur at the cost of spatial learning. This should be
considered in the future when designing novel navigation and transportation means as
well as strategies to hand over vehicle control from the autonomous system to the driver,
e.g., when a complex navigational decision has to be made, the technology fails, or a
detour needs to be improvised that the navigation system is not prepared for. The goal
of modern navigation aids should be, therefore, not only to enhance the driving and
navigation experience but to avoid detrimental effects on the driver’s acquisition of
spatial knowledge.
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5 Radar-based Engagement - Aware

System

5.1 Proposed Study

Considering the safety issues, including driver’s disengagement from the driving loop
under long-term autopilot utilization on the one hand, on the other hand existing
limitations of eye-tracking systems on vehicle board, this chapter proposes a novel
driver monitoring approach using a UWB Radar. A Radar-based systems allow to track
the driver’s upper torso and, in contrast to the camera, provide unbeatable benefits
in terms of privacy. This chapter introduces a study where six activities associated
with conventional, autonomous, and distracted driving were recorded in the context
of engagement-aware systems. The study was performed under simulated driving
conditions because of safety issues for the driver and passengers and currently restricted
legal utilization of the autopilots under local law.

Using a Convolutional Neural Network (CNN), Pyramid Vision Transformer (PVT-
Tiny), and a Long Short-Term Memory neural network (LSTM), the generalization
ability of the network is evaluated in comparison to the prevalent practice of random
stratified data splitting versus the more strict leave-one-participant-out cross-validation
method. Doppler data were normalized with a simple interquartile range (IQR) normal-
ization method, avoiding extensive pre-processing steps which might heavily depend on
the used radar system [55]. This normalization method ensures the system’s real-time
application capability and enhances the method’s transferability among different radar
systems. Next, two data augmentation techniques were applied and evaluated on the
obtained dataset to facilitate the generalization ability of the deep learning models.
Finally, in contrast to prior work on the topic, access to the dataset acquired in this study
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is provided to encourage comparison and enable the reproducibility of results. While
several radar datasets in HAR and the healthcare domain are available [11, 83, 27],
to the best of the thesis author’s knowledge, so far, there are no publicly available
radar datasets consisting of driving activities. The results of this work were partially
published in Brishtel et al. [36].

5.2 Related Work

In-Cabin Diver Monitoring

Under the increasing level of automation available in production vehicles, continuous
driver monitoring becomes a crucial safety factor [114]. To ensure drivers remain
undistracted in the driving loop and to prevent a negative impact of the autonomous
system on the ability of drivers to take over [89, 231, 134, 38], multiple methods from
various research fields, including human-machine interaction, psychology, computer
science, and ergonomics have been investigated. Thus, in-cabin driver monitoring
cameras [120, 143] and eye-tracking systems were tested [221, 139, 237, 44, 89]
and partly integrated into production vehicles. Each of these technologies has its
strengths and weaknesses. For instance, despite the high precision of distraction
recognition [206, 222], in-cabin cameras are considered by many drivers as an intrusion
into their privacy. Furthermore, eye-tracking systems cannot fully infer the drivers’
engagement in the driving loop even if their eyes are directed on the road [221], despite
their overall great ability to discriminate among different driving modes [37]. As
mentioned in Section 5.1, radar technologies offer versatile advantages in resolving the
issues of conventional monitoring solutions. Despite the rising interest in radar in the
context of in-cabin driver monitoring, the current state-of-the-art comprises only very
few publications capturing this application area.

The potential of pulse ultra-wideband radar for in-cabin driver health monitoring
and smartphone utilization was demonstrated in a study by Leem et al. [130]. The
authors described the pre-processing and reconstruction of the leaking breathing pat-
tern under different driving activities. They also introduced an algorithm to detect
drivers’ smartphone usage, pointing at radar technology as a potential technique for
preventing car crashes. Similarly, Ding et al. used an FMCW radar to detect inattentive
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driver behavior [66]. The authors ran a series of experiments in a real car environ-
ment, where the drivers performed seven different activities, including head flexion,
rotation, and shaking, as well as body movement, sleepy behavior, and picking up a
smartphone. Using range-Doppler maps, they extracted a new activity representation
called a dynamic-Doppler trajectory (DRDT) map. Then, the associated activities from
the DRDT range of interest, Doppler energy change, and dispersion features were
extracted and used to build machine learning algorithms. Using decision trees, SVM,
KNN and ensemble classifiers, the highest average accuracy they achieved for the task
of in-cabin activity classification was 95%. It is important to note that the recorded
activities primarily considered head motions, flexion, and rotation.

Machine Learning for HAR using Radar

Several studies demonstrated the feasibility of CNNs’ model to handle radar data.
Thus, using a pre-trained and fine-tuned ResNet-18 and simulated micro-Doppler
spectrograms, Du et al. [71] achieved an average accuracy of 97.92% for six classes,
including walking, boxing, crawling, jumping, and standing. Shao et al. [183] recorded
six participants performing similar actions as in the previous work using a UWB radar.
Creating a simple CNN model and using only range information for model training,
they reached an average accuracy of 95.24% for activity recognition. However, their
validation dataset resulted from a random splitting of the data on the level of individual
samples and not participants. Using a dataset with 1633 micro-Doppler spectrograms
relating to six classes, including falling, Taylor et al. [205] evaluated six different
machine learning models. They showed that CNN (combined with PCA) achieved the
highest classification accuracy of 95.30%

Considering radar data as time series with time-varying properties, several authors
proposed LSTM-based classification approaches for HAR. Using raw spectrograms
of six obtained activities (walking, sitting down, standing up, picking up an object,
drinking water, and falling), Taylor et al. [205] reported an average accuracy of 80.48%
for Uni-LSTM and 83.53% for Bi-LSTM. Noori et al. [153] classified five activities
(lying, sitting on the bed with the legs on the bed, sitting on the bed with the legs
on the floor, standing, and walking) obtained from 13 participants using a UWB
radar. Using an Enhanced Discriminant analysis with LSTM, they achieved an average

115



classification accuracy of 99.6%. However, after applying the leave-one-out cross-
validation strategy, the overall classification performance dropped to 66%. Li et al. [133]
investigated a bi-directional LSTM approach for HAR. They used six activities (walking,
running, jumping, boxing, standing, creeping) from the MOCAP database [213] to
build an LSTM model. Their bi-directional LSTM achieved 90.3% accuracy. They
also evaluated the impact of the sequence length on the classification performance and
found a length between 0.6 and 1 second to be sufficient for the optimal classification
performance [133].

Figure 5.1: Setup of the recording environment using driving simulator with UWB
Radar Xethru X4M02. Adopted from Brishtel et al. [36].

The unique nature of radar data to be represented as image and time-varying signals
renders them highly attractive for Transformer networks. By now, however, only very
few works on HAR with Radar have used a Transformer-based network for classification
tasks. Qu et al. demonstrated the feasibility of a pre-trained Vision Transformer (ViT)
for a hand gesture classification task recorded by an FMCW radar [169]. They recorded
four classes, representing swipe, click, pinch and wave. Compared to 74.2% accuracy
achieved by their SVM quadratic classifier, the ViT obtained an average accuracy of
97.5%. Wang et al. evaluated the performance of three ViT networks for human activity
classification tasks and compared them with those of CNN and LSTM [227]. They
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extracted Micro-Doppler Maps with five activities: walking, running, squat and stand,
bowing, and turning around, recorded by a millimeter Wave (mmWave) radar. The
highest classification accuracy was obtained by the introduced modification of the Vision
Transformer-slice model with 99.12 %. In contrast, the average classification accuracy
for a CNN and LSTM reached 95.23 % and 92.68 %, respectively. Using a publicly
available dataset captured by an FMCW radar, Dey et al. introduced ViT-modifications
for binary fall detection based on the magnitude of range time plots, range-Doppler
plots and Micro-Doppler signatures [63]. Their modified ViT with Shifted Patch
Tokenization and Locality-Self Attention achieved the highest classification accuracy of
97.54% on Micro-Doppler signature data. The model validation was performed using
leave-one participant-out cross-validation method. In contrast, ResNet-50 demonstrated
the highest accuracy of 89.02% in the same setting.

Most studies deploying radar systems for HAR reported outstanding classification
performance of their machine learning models: in some cases, multi-class classifications
exceeded an average accuracy of 90% [183, 153, 231, 205, 66, 227]. However, a detailed
examination of these studies raises several questions regarding the generalization ability
of the models. In particular, radar data acquired from multiple persons are commonly
split randomly into training and test datasets [231, 153, 183, 205, 227]. Consequently,
data from the same participant can be seen by the model during training and validation.
Given the general ability of radar for biometric authentication [178, 131], this data
splitting technique can not adequately evaluate the ability of the model to generalize to
new users. Another area for improvement is the limited availability of radar datasets,
which is crucial for reproducing reported results.

Considering previous studies’ outcomes, both visual and time-varying representations
of radar data perform on a very high level in human action recognition tasks. At
the same time, only a few works [153, 219, 187] reported classification results from
datasets with random stratified data splitting and cross-validation, where a significant
difference was observed. Notably, the studies mentioned above used regular walking,
crawling, standing up, sitting down, or falling, where each action has unique, clearly
distinguishable patterns.
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Table 5.1: Technical settings of Xethru X4M02 used for data recording.

Parameter Value
Bandwidth (GHz) 7.25 - 10.20
Frames Per Second 50
Doppler Samples 1024
Doppler Frequency Range (Hz) -8.5 - 8.5
Range Bins 24
Measurement Range (m) 0.4 - 1.20

5.3 Dataset Generation

5.3.1 Radar

The ultra-wideband (UWB) radar respiration sensor XeThru [5] X4M02 was used
in the proposed study, which can detect and monitor human movements within the
operating detection range [177]. Its low power consumption allows it to be integrated
into portable devices. Table 5.1 lists the radar settings used for data recording. The radar
placement was carried out following the empirical evaluations of Thullier et al. [210].
The detection zone was set to 0.40 to 1.20 m; the sensor was placed at a height of
60 cm over the cockpit, directed at the center of the driver seat (see Figure 5.1) to
minimize obstacles and interference. It corresponded to a radar placement at the top of
the windshield in a real car.

Because the default software for data recording does not provide any option for
changing sampling frequency, the library ModuleConnector [154] was used to develop
own script for recording and extraction of Doppler data. The radar data were sampled
with an extended frequency of 50 fps. Due to the internal buffering process [5] of the
Xethru radar, the resulting Doppler data had a frequency of 2.9 fps. Pulse-Doppler data
was acquired containing the pulse magnitudes for all range bins and range values in the
measured domain as well as the Doppler frequencies.
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5.3.2 Driving Environment

The dataset was acquired in a mounted driving simulator consisting of a Jaguar XJ 4.2
V8 Executive cockpit and the integrated input controller Logitech G27 Driving Force
comprised of a steering wheel, throttle, and brake pedals. The highly immersive driving
simulation software OpenDS [156] was used to enhance realistic driving behavior for
the participants. All driving tasks were performed using an automatic transmission.

Table 5.2: Overview of the data extracted from RaDA. Each sample contains a one-
second window from a particular driving action.

Nr. Action Nb. of samples
1 Driving 1747
2 Autopilot 1844
3 Sleeping 1708
4 Driving & phone utilization 1692
5 Phone utilization 1715
6 Talking to passenger 1700

Total size 10.406

5.3.3 RaDA Dataset

Ten participants (one female) were asked to perform six activities as introduced in Table
5.2 and shown in Figure 5.2. Each participant performed the activities in the same
fixed order. Each activity was recorded separately in a continuous manner. The total
recording duration for each activity was set to one minute (minor deviations exceeding
one minute are possible). Thus, the provided dataset includes approximately 60 minutes
of driving activities. Table 5.3 provides information about the height and weight of
participants included in the dataset.

5.3.4 Action Performance Protocol

Figure 5.3 represents the Doppler spectrograms for each class. Figure 5.2 provides
graphical representations of the six recorded classes. Table 5.4 summarizes the six
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Figure 5.2: Overview of six driving activities recorded with UWB radar Xethru X4M02.
Top (left to right): Driving, Autopilot, Sleeping. Bottom (left to right):
Driving & Smartphone Utilization, Smartphone Utilization, Talking to
Passenger.

actions and their descriptions used during data collection. As mentioned earlier, the
driving activities belong to three driving behaviours: normal or (engaged) driving
(driving), autonomous driving (autopilot) and distracted driving (residual classes),
where the classes sleeping and smartphone utilization are considered as distracted
behaviour during autonomous driving. The definition of distracted driving behaviour
was adopted from [173].

As motivated in Section 2.2.3, a convolutional neural network ResNet-18, an LSTM
and a Transformer network PVT-Tiny were used to classify six different driving activities
recorded with a UWB radar. The radar hardware automatically outputs the pulse-
Doppler data after internally performing the fast Fourier transforms (FFT) on the time
domain samples. Thus, the elements of the range-Doppler map are defined as wk,f ∈ R,
where w denotes the Doppler pulse for a given range bin k, and Doppler frequency f .
Range-Doppler maps Wt are generated at each frame measurement t.
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Table 5.3: Weight and height of participants in the RaDA dataset.

Participant Height (cm) Weight (kg)
1 188 85
2 169 50
3 178 64
4 180 93
5 178 90
6 167 74
7 172 55
8 179 77
9 170 63

10 164 59

5.4 Machine Learning Approach

5.4.1 Data Extraction and Preprocessing

Based on empirical studies that showed two seconds of distracted behavior are sufficient
for an increased risk of accidents [135, 221], a window size of 1 second was selected.
Before being processed by deep learning models, the acquired data was cleaned from
outliers using the interquartile range (IQR). As outliers were considered data points
exceeding the range: Q3 + 1.5 * IQR, where Q3 is the third quartile (or 75th percentile).
Excessive amplitude values are caused by strong reflections from metallic objects, e.g.,
in parts of the car seats. The values exceeding this range were replaced by the maximum
value within this range. Importantly, the IQR coefficient was calculated on the training
data only and applied for data normalization in training as well as validation.

The following section describes the performed experiments for in-cabin driver activity
classification. First, the baseline definition is introduced based on the re-implementation
of the work of Ding et al. [66]. Then, the performance of ResNet-18 and an LSTM is
investigated.
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Table 5.4: Action performance protocol used for RaDA data acquisition. 10 participants
performed all actions sequentially one minute long.

Action Description

Autopilot While driving with autopilot, participants were
instructed to keep their hands on their knees
while sitting in the simulator and observing
the virtual environment.

Driving Participants were asked to drive freely through
the virtual city following the general traffic rules.
They were also instructed to turn at least once.

Sleeping For the sleeping action, participants were asked to take
a comfortable position in the driving chair
while keeping their head in ventral flexion,
close their eyes and relax.

Smartphone The same instruction as for autopilot was used,
utilization with the addition to check e-mails

or social media using their smartphone with both hands.

Driving During this action, the participants had to perform
& Smartphone driving while steering the wheel with the left hand and
utilization checking e-mails, social media, etc. using their right hand.

Talking to A second person was invited as a passenger to take
passenger the front seat. The drivers were instructed to actively

communicate with the passenger and rotate their head
to the passenger while performing regular driving.
They could use the right hand for gesticulation.

5.4.2 Experiments

This section describes the performed experiments for driver behavior recognition using
range-Doppler maps. The results are reported using Classification Accuracy (correctly
classified activity windows divided by the total number of activity windows) and the
F1-score for better comparison (see Table 5.6). For the deep learning models, the
PyTorch library was selected [161], while for the classic machine learning algorithms,
the scikit-learn library was used.

Two different experiments for data splitting and evaluation were run. In the first
experiment, random stratified data splitting was used for the acquired radar data into
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training (80%) and test (20%) sets as in studies [231, 153, 183, 205]. This was done to
evaluate the ability of the architecture to overfit on the radar data of specific persons.
In the second experiment, leave-one-out cross-validation was performed , where the
whole data of one participant was withheld from the training dataset and used for
validation only. The cross-validation was repeated 10 times according to the number of
participants. The final accuracy is reported as an average value of over 10 participants
(see Figure 5.5). In addition, confusion matrices only for the best-performing models
are provided (see Figure 5.8). Importantly, the goal is not to directly compare the
classification performance between LSTM and ResNet or LSTM and PVT-Tiny. Given
the difference in the model architectures and how they treat data, there is no way to
compare them honestly. Instead, rather the performance of these models on the given
dataset is evaluated.
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(a) Autopilot (b) Driving

(c) Sleeping (d) Smartphone utilization

(e) Driving & Smartphone utilization (f) Talking to passenger

Figure 5.4: Range-Doppler trajectories of six (a–f) in-cabin activities calculated using
the method of [66]. Each trajectory contains a single frame (0.34 s).
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5.4.3 Baseline Classification

Figure 5.5: Schematic representation of leave-one-participant-out cross-validation
method. The number of iterations corresponds to the number of partic-
ipants in the dataset.

Setting a baseline to compare the proposed method to is challenging due to the very
small number of existing radar-based driver monitoring approaches overall, with none
providing a source code or a dataset for comparison. Nevertheless, to define a baseline,
the method proposed by [66] was re-implemented based on the information provided in
their paper. The method generates features by using range-Doppler frames and time-
Doppler spectrograms obtained from the in-cabin driver recording. Because of hardware
differences, the main focus is put on the features extracted from the range-Doppler
trajectory (RDT), in particular, dynamic Doppler, Doppler range and dynamic power

because of the similarity to our output data. Among the 12 classifiers evaluated by [66],
the ensemble classifier with bagged trees achieved the highest classification accuracy
of 93.3% for the range-Doppler trajectory reported on their dataset. The features on
the level of single participants using a window size of one second (or three frames)
with 2/3 overlap were calculated. A high-pass filter of 10 Hz was not used to mask
low-frequency activities and the range of the Doppler was not manipulated as it was
proposed in the paper, since this information could be crucial for distinguishing our
classes (e.g., hands on the wheel while driving vs. autonomous driving). Instead, the
IQR-range normalization was performed where values exceeding the 75th percentile
were not considered for the Doppler-trajectory computation. In the next step, following
the architecture of the best-performing classifier and the training steps (see [66]), a
bagging classifier was built. The training and testing datasets were generated in two
ways: splitting the data as equally as possible into ten folds and using nine for training
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and one for validation as proposed by [66]. Next, leave-one-participant-out cross-
validation was performed to achieve a possible comparison to the proposed method (see
Figure 5.5). The reported results are the average over the validation splits.

Table 5.5: Baseline classification performance for driving activity recognition on the
RaDA dataset using re-implementation of Ensemble classifier ([66]*). The
obtained results show high similarities for both validation strategies.

Architecture Validation Type IQR Norm. Accuracy F1-Score

Ding et al. [66]* 10-fold CV ✓ 0.263 0.261
Ding et al. [66]* LOO CV ✓ 0.252 0.249

Table 5.5 and Figures 5.6 (a), (b) represent the obtained results for the classification
performance using the ensemble classifier of [66]. Using random stratified data splitting
for training and testing, the model achieved an average classification accuracy of 26.3%
over six classes. The highest classification accuracy of 37.16% was observed for the
class talking to passenger. Autopilot was the second best-predicted class with an
accuracy of 33.50%. The classification accuracy for the four remaining classes was
from 0.69 to 11.15 percentage points over the level of random guessing at 16.67%.

After applying leave-one-participant-out cross-validation, a slightly lower classifica-
tion accuracy but a similar classification pattern was observed. The highest classification
accuracy of 36.92% was observed for the class talking to passenger, followed by class
smartphone utilization. The residual classes were either slightly over or under random
guessing. The obtained performance drastically deviates from the one reported in the
original work of [66]. The low classification performance on the RaDA dataset can be
explained in several ways. First, fundamental differences between the used UWB radar
and the FMCW radar used in the original study. Secondly, the higher sampling rate
used in [66] could bear more available data for model training. In the present work,
the minimal size of the window was constrained by the frame rate of the used radar.
Next, the proposed method did not explicitly consider possible outliers in the data while
focusing on the high-frequency components. Finally, in the original work, the rotation,
nodding and flexion of the head were the class-discriminating activities, while our data
also includes scattering information from the torso. Taking these results together, the
proposed method of [66] did not perform well on the RaDa data.
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(a) RDT-features with random stratified data splitting.

(b) RDT-features with LOO cross-validation.

Figure 5.6: Confusion matrices of obtained classification results using Ensemble classi-
fier proposed by [66] using random stratified data splitting and leave-one
participant-out cross-validation method.
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5.4.4 ResNet

Figure 5.7: Flow diagram of the inference pipeline of the proposed approach. n rep-
resents the frame counter. The Doppler data are fed to the ring buffer
frame-wise, where the total number of frames capturing one second are
concatenated. The concatenated frame data is further forwarded to the linear
layer of the network.

The architecture of the proposed ResNet-based approach (see Figure 5.7) was designed
with the real-time application in mind. The radar data were transformed into spec-
trograms which represent range-Doppler maps. Three of them cover approximately
a time span of 1 second (more details in Section 5.3.1). Each range-Doppler map is
processed independently by the same ResNet-18 to extract features. The features of
the last three frames are kept in a ring buffer. This way, whenever a new frame arrives,
only this single frame must be processed by ResNet. Then the features of the three
frames are concatenated and classified jointly by a fully-connected layer. Training of
this architecture was performed using three parallel ResNet-18 instances that share
their weights. This ensures the proper flow of the gradients during training and enables
training with random shuffling.

For the proposed ring-buffer approach, a PyTorch implementation of ResNet-18 was
trained using weights pre-trained on ImageNet-1K. The stochastic gradient descent
(SGD) optimizer with a momentum of 0.9 was used. The One Cycle Learning Rate
scheduler [197] was selected to decrease the training time. This method is based on
the phenomena of ‘super-convergence’, which can be observed when training with the
one-cycle learning rate schedule. Furthermore, the larger possible maximum learning
rate can result in an additional increase in classification performance. The maximum
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learning rate was set to 0.01. The initial learning rate was chosen to be one-tenth of the
maximum learning rate. A mini-batch size of 40 was used and trained for 20 epochs. A
higher number of epochs did not lead to any significant improvement in classification
performance. For the training and validation, the input data was repeated 3 times in the
channel dimension and resized to 224 x 224 pixels.

5.4.5 LSTM

A uni-directional LSTM model was built. The number of features in the hidden state
was set to 6, and the number of recurrent layers was 2. The learning rate of 0.001 was
used. A dropout layer with a 20% dropout probability was used to prevent overfitting.
The mini-batch size was set to 8, and the number of epochs to 80. The number of input
features was set to 1024 x 24 corresponding to the Doppler frequency range and bin
range. Each action sequence was split into single frames (around 0.34 seconds per
frame) for training and validation. Because of a slight variation in the length of obtained
recordings, all sequences were cropped to the shortest length of 163 (56.21 s) frames
for the model training and evaluation. Data exceeding this range was neglected.

5.4.6 PVT-Tiny

A PVT-Tiny model with pre-trained weights PVTv2-B2 on ImageNet-1k was selected
because of it’s similarity to the ResNet-18 in terms of model complexity [226]. This
enhances the comparison of the performance of these two models on the RaDa dataset.
The Adam optimizer was used. To reduce the training time, a Cosine scheduler was
deployed. The maximum learning rate was set to 0.001. The mini-batch size was set to
60 and trained for 40 epochs. Decreasing learning rate or increasing the mini-batch size
did not lead to any compelling improvements on the average level. The input data was
resized to 224 x 224 pixels for model training and validation.

5.4.7 Results

The classification performance for the ResNet-18 architecture is reported in Table 5.6.
The perfect average accuracy of 100% over all six classes was achieved with random
data splitting with 80% / 20 % ratio both with and without IQR normalization. However,
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Table 5.6: Average classification performance for driving activity recognition on the
RaDA dataset using ResNet-18, LSTM & PVT-Tiny. Due to possible class
imbalances, a weighted F1-Score is reported. The highest classification
accuracy was achieved by PVT-Tiny without IQR normalization.

Architecture Validation Type IQR Norm. Accuracy F1-Score

ResNet-18 Random splitting – 1.0 1.0
ResNet-18 Random splitting ✓ 1.0 1.0
ResNet-18 LOO CV – 0.654 0.621
ResNet-18 LOO CV ✓ 0.714 0.687

LSTM LOO CV – 0.439 0.351
LSTM LOO CV ✓ 0.672 0.590

PVT-Tiny LOO CV ✓ 0.723 0.705
PVT-Tiny LOO CV – 0.749 0.729

a drop in accuracy of 28.6 percentage points was observed for the same architecture
when using leave-one-out cross-validation. Without IQR normalization, this decrease
was almost 34.6 percentage points. Clearly, the random splitting leads the model to
overfit strongly, which is possibly due to the prevalence of features specific to individual
persons. In contrast, the models show relatively moderate results when being evaluated
using cross-validation. This demonstrates the challenge of inter-person generalization
of systems trained with radar data and also the challenge level of the driving monitoring
application. Therefore, the models with random splitting are not further considered.

The highest classification accuracy of 71.4% was obtained for the ResNet-18 model
using IQR normalization (see Figure 5.8 (a)). The class autopilot belongs to the most
well-predicted classes with 89.32% accuracy, followed by smartphone utilization with
88.34% and talking to passenger with 77.41%, respectively. The lowest accuracy
values were observed for the classes driving and sleeping with 56.21% and 57.30%,
respectively. Class driving had a high confusion with the class driving & smartphone

utilization, whereas the latter had a high confusion with the classes driving and talking

to passenger. Importantly, all of these three classes shared the same basic driving
activity. The position of the right hand and the smartphone utilization’s intensity were
moderated by the need to maintain the proper lane and avoid any collision, which could
impede the class prediction. Similarly, the confusion between the classes sleeping and
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autopilot can be explained. In the experimental condition, sleeping was defined as a
specific head flexion, which depth varied among participants. Considering that in both
classes the subject remained still in the driving chair, this confusion rate could be due to
the definition of the experimental class. The absence of IQR normalization decreased
the average classification accuracy to 65.4%.

For the training and evaluation of the LSTM model, only the leave-one-out cross-
validation method was used. The highest average classification accuracy of 67.2%
was observed using IQR normalization. The classes talking to passenger, followed by
smartphone utilization achieved the highest classification accuracy (see Figure 5.8) with
96.50% and 94.97% respectively, followed by the class driving with 69.54% accuracy.
The lowest classification accuracy was observed for the class driving & smartphone

utilization with 35.98%. The confusion pattern between the classes sleeping and
autopilot; and driving & smartphone utilization, talking to passenger and driving

resembled those in the ResNet-18 model. The high confusion between the classes
driving & smartphone utilization with the classes driving and driving and talking to

passenger can be explained analogously as for ResNet-18. Importantly, the LSTM
model received the whole one-minute sequence to estimate a single class. Therefore, the
proposed results are for a general model evaluation, not a real-time driver monitoring
scenario. The absence of the IQR normalization led to a drop in the classification
accuracy to 43.9%. Interestingly, while in the case of ResNet-18, IQR normalization led
to an increase of 3.9 percentage points in classification accuracy, for the LSTM model,
the difference amounted to 23.3 percentage points.

Unlike LSTM and ResNet-18, PVT-Tiny’s highest classification accuracy of 74.9%
was observed without IQR normalization. Similarly to the ResNet-18, to the best-
predicted classes belong autopilot, smartphone utilization and talking to passenger

with 92.24%, 86.38% and 85.06% accuracy, respectively. As in the case of LSTM,
for the class driving and smartphone utilization, the lowest accuracy of 52.93% was
observed. The high confusion between the classes sleeping and autopilot, as well as
driving and smartphone utilization and driving can be explained in the same manner as
for ResNet-18 and LSTM. IQR normalization led to a drop of 2.6 percentage points in
classification accuracy (see Table 5.6). This is the most negligible observed difference
in the classification accuracy between the presence and absence of IQR normalization
compared to ResNet and LSTM.
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5.5 Data Augmentation

Figure 5.9: Data Augmentation and model training flow diagram. After splitting the data
following the leave-one-participant-out policy, a new transformed training
data set is generated using flipping masking or frequency/bin range masking
strategy. The training is then performed using original data combined with
the new, transformed dataset. The model validation is performed on the data
of a single, withheld participant.
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Section 5.4.7 demonstrated the general feasibility of deep learning algorithms for
recognising driving activity associated with engaged, autonomous and distracted driving
using the Doppler radar data. The classification performance of the three Deep Learning
models significantly outperformed the proposed Machine Learning approach proposed
by Ding et al. [66] (see Section 5.4.2). However, in all three deployed Deep Learning
models, especially the performance within the classes driving, sleeping and driving

& smartphone utilization, requires further improvement. For this purpose, repeated

augmentation method was employed to extend the number of training samples and thus
leverage the models’ classification performance. Only the models ResNet and PVT-Tiny
are further considered since they demonstrated the highest classification performance.

Regarding the transformation of Doppler spectrograms, two state-of-the-art filters
can be deployed: 1) flipping filter and 2) frequency and bin range masking using
SpecAugment. Taylor et al. used horizontal flip and blur filters to generate an augmented
radar dataset for activity classification [205]. The deployment of the data augmentation
considerably improved the performance of their CNN compared to the model training
without any data augmentation. SpecAugment is an augmentation scheme coming from
the field of speech recognition [159]. The policy of SpecAugment consists of time
masking, frequency masking, and time warping. The authors of this method pointed out
a considerable increase in word error rate (WER) when deploying SpecAugment on var-
ious speech datasets. Applying a mask for frequency and time domain should increase
the variance in training data and contribute to the model’s classification performance.
Given that those spectrograms in the RaDA data have a bin range instead of the time
domain, only frequency and bin masking are deployed, where the latter was performed
mimicking the policy of time domain from SpecAugment. The dataset with horizontally
and vertically flipped spectrograms was generated by mirroring the entire spectrogram
plane along the related axis. Frequency and bin range masking were generated in line
with the SpecAugment scheme [159]:

1. Frequency masking: The size m for the mask size was chosen from a uniform
distribution from 0 to M , where the maximum value of M was set to 40% of the
total frequency range size. The Doppler-frequency values [m0, m0 +m) were
then masked, where m0 is selected from [0, f − m], f denotes the frequency
dimension of the spectrogram.
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2. Bin range masking: The size b for the mask size was chosen from a uniform
distribution from 0 to B, where the maximum value of B was set to 40% of
the total frequency range size. The bins within the range [b0, b0 + b) were then
masked, where b0 is selected from [0, r −m], r denotes the bin dimension of the
spectrogram.

The resulting mask could cover the frequency and bin range axes (see Figure 5.9)
or one specific axis. Subsequently, the obtained mask was employed across all three
spectrograms representing one second (see Figure 5.3).

Figure 5.9 shows the flow diagram with procedural steps for building augmented
datasets, subsequent model training and evaluation. Two novel datasets Horizon-

tal/Vertical flipping and Frequency/Bin range masking were built upon the training
dataset after separating it from the testing dataset following the leave-one participant out
schema. Next, the novel dataset was concatenated with the original dataset, and the re-
sulting augmented dataset was used for the model training. The data augmentation was
performed depending on the impact of the IQR-normalization method on a particular
model from Section 5.4.7. Thus, the data augmentation for the ResNet was performed
using IQR-normalization, whereas the data augmentation for the PVT-Tiny was built
upon the raw data. The final model validation and performance score estimations were
performed on a withheld participant’s testing dataset using a leave-one-out scheme.

Table 5.7: Average classification performance of ResNet-18 and PVT-Tiny for driving
activity recognition on the RaDA dataset using Flipping and Frequency/Bin
range masking techniques compared to raw input and IQR transformed data.
Results in bold represent improvemements against the baseline.

Class ResNet-18 PVT-Tiny

RAW IQR* Flip Mask RAW* IQR Flip Mask

Autopilot 0.651 0.800 0.818 0.820 0.838 0.866 0.810 0.802
Driving 0.537 0.555 0.523 0.531 0.614 0.525 0.641 0.656
Sleeping 0.549 0.558 0.600 0.559 0.681 0.677 0.656 0.654
Smartphone utilization 0.802 0.893 0.895 0.860 0.865 0.883 0.865 0.867
Driving &
Smartphone utilization 0.534 0.543 0.555 0.525 0.573 0.571 0.606 0.610
Talking to passenger 0.632 0.752 0.774 0.754 0.785 0.687 0.775 0.763

Raw: Absence of IQR transformation. *: Model-specific baseline.
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5.5.1 Results

The classification performance of ResNet-18 and PVT-Tiny using an augmented dataset
are summarized in Figure 5.10 and Table 5.7. The results are further discussed, focusing
on weighted F1-score since it can better account for multiclass and class imbalance (see
Section 2.4).

The highest average classification performance for ResNet-18 was obtained when
applying IQR transformation, and this result is further considered in this section as a
baseline. Training the ResNet-18 model with the second dataset containing horizontal
and vertical flip filters led to the model improvement at 0.6 percentage points compared
to the baseline (see Figure 5.10). By detailed examination of the class-specific F1-score
(see Table 5.7), it can be seen that for the class sleeping, the classification performance
increased at 4.2 percentage points, achieving an average F1-score of 60 %. For the class
autopilot, an average improvement of 1.8 percentage points was observed. Finally, there
was an increase in the average F1-score for the class Driving & Smartphone utilization.
This comparably low average improvement (see [205]) suggests that individual variance
among subjects can not be accounted for simply by augmenting data with image-flipping
techniques. This is is partly proved by the individual classification results as shown in
Figure A1.

In contrast, adding the second dataset with masked frequency/bin range axes to
model training led to a drop in classification performance at 1.1% point. Apart from
the classes sleeping with an average improvement of 2% point, the performance was
either neglectable better or below the baseline (see Table 5.7). One possible explanation
for this decrease in classification performance can be too high information loss in
the spectrogram through the frequency or time masking. Thus, decreasing the mask
range on x and y axes or adapting the mask to the network architecture can enhance
classification performance. Next, ResNet might encounter difficulties handling masked
spectrograms due to its reliance on spatial information. Frequency/bin range masking
might introduce potential disruption in spatial relationships between neighbour regions
in a spectrogram and the spatial locality of the features. Tuning the hyperparameters
related to the filter and stride size might enhance the classification performance when
training the model using masked data. Finally, the max pooling operation used in the
default ResNet-18 architecture can contribute to difficulty handling masked data. The
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network may lose crucial information required to understand the input data by omitting
masked regions through the max pooling operation. To mitigate this information loss,
alternative pooling strategies should be evaluated.

None of the two data augmentation techniques yielded any improvements in the
classification performance of the PVT-Tiny model compared to its baseline (see Figure
5.10). Since spectrogram flipping and spectrogram masking provide a very different
representation of the input data, it is logical to assume that the core reason lies in the
feature extraction and feature learning policies of PVT-Tiny. Presumably, PVT-Tiny
may not have been properly fine-tuned for training with the augmented data. Next, the
augmented dataset could expose unrealistic or irrelevant variations or noise in the data,
leading to overfitting. This might result in low generalization power of the model to
unseen data causing degraded performance. Next, In contrast to CNNs which possess the
ability of translational invariance (see Section 2.3.5), PVT-Tiny relies on self-attention
mechanisms which allow it to capture global dependencies among different regions of
an image (or a spectrogram). Flipping the spectrogram along the horizontal and vertical
axes can potentially alter the relationship among different image regions diminishing the
self-attention mechanism’s ability to learn patterns and features relevant to correct class
prediction. Consequently, image flipping on horizontal and vertical axes might harm
the model performance. Finally, SpecAugment might generate image modifications
violating assumptions of ResNet and PVT-Tiny as the masked regions may not conform
to the expected local and global spatial patterns the models are trained to recognize.

Figures A1 and A2 additionally provide individual F1-scores by the model type
and performed transformation. It can be clearly seen that for all participants, at least
one out of six classes was predicted with a F1-score of over 80 %. Frequently, while
improving the prediction of one class through data augmentation, the performance
in other classes drops. This could indicate model overfitting, which occurred due to
additional variance gained through the data augmentation. On the other hand, the
selected data augmentation techniques could introduce new feature distributions which
were not representative for the true data. Thus, the models could struggle to classify the
data correctly.
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5.6 Conclusion

This chapter introduces a novel method for recognizing normal (engaged), autonomous
or distracted driving behavior using a UWB Radar and deep neural networks. The
proposed approach has demonstrated the sufficiency of Doppler-frequency information
combined with deep neural networks for the recognition of six different driving activities.
Moreover, the state-of-the-art machine learning method proposed by Ding et al. [66]
that uses Doppler-trajectory features was outperformed by ResNet-18, LSTM and PVT-
Tiny as Section 5.4.7 demonstrates. Furthermore, different cross-validation techniques
were evaluated. While the frequently used stratified method for data splitting achieved
the highest possible accuracy, a more strict leave-one participant-out cross-validation
demonstrated that radar-based activity recognition could not be easily generalized to a
new, unseen driver. Another novelty of this work is deploying a Transformer network
PVT-Tiny which achieved the highest average classification accuracy. Next, a universal
interquartile range (IQR) normalization method was applied to the Doppler data to
resolve multiple pre-processing steps that might depend on a particular radar system. It
additionally significantly boosted the classification accuracy of ResNet-18 and LSTM
but not those of PVT-Tiny. IQR-normalization could exclude the high-frequency related
values carrying class-discriminating information crucial for PVT-Tiny. The simpler
architectures of ResNet-18 and LSTM probably did not allow the creation of more
complex representations of the classes when IQR-normalization was disabled.

Despite the overall good classification performance, the classification accuracy within
the classes driving, sleeping and driving & smartphone utilization was significantly
below the average accuracy value. To improve the model accuracy, especially for these
classes, in Section 5.5, two additional datasets were generated, where the original data
were either flipped along horizontal and vertical axes or masked along frequency or
bin range axes using the policy of SpecAugment method. For ResNet-18, the model
training with additional vertical and horizontal spectrogram flipping resulted in a minor
improvement, although the F1-score for the class sleeping was drastically increased.
For PVT-Tiny, there was a drop in model classification performance when deploying
augmented data for training. As the results showed, SpecAugment as an augmentation
method for Doppler-range data proved false for both Resnet and PVT-Tiny. It can be
concluded that the deployed data augmentation techniques could not account for the
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high variance in driving activity patterns among participants. The high confusion among
the classes driving & smartphone utilization with the classes driving and driving and

talking to passenger, as well as autopilot and sleeping can be explained through similar
and partly analogue driving behavior pattern presented in these classes.

In future work, a large-scale evaluation of the proposed approach under varying
driving conditions and a larger number of participants could be performed. Next, it is
also important to investigate ways to reduce the ambiguity between the classes with
high confusion levels, as it is vital for the correct system response in safety-critical
driving scenarios. It can be achieved while deploying novel data annotation strategies,
for example, a moment-to-moment annotation combined with a video camera. It is
also essential to evaluate the impact of various window sizes of the Doppler range (for
example, 0.5 seconds or 2 seconds) on the model classification performance. Finally,
additional augmentation techniques, such as noise injection or more advanced signal
processing techniques, can be explored to improve the performance and robustness of
the deep learning models and make them more effective in handling the data of new,
unseen drivers.
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(a) Autopilot

(b) Driving

(c) Sleeping

(d) Smartphone utilization

(e) Driving & Smartphone Uti-
lization

(f) Talking to passenger

Figure 5.3: Range-Doppler spectrograms of six (a–f) in-cabin activities captured by the
radar. Three images within one class represent roughly one second.
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(a) Confusion matrix for Resnet-18 with LOO
cross-validation.

(b) Confusion matrix for LSTM with LOO cross-
validation.

(c) Confusion matrix for PVT-Tiny with LOO
cross-validation.

Figure 5.8: Confusion matrices of the best classification results using ResNet-18, LSTM
and PVT-Tiny.
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(a) ResNet-18

(b) PVT-Tiny

Figure 5.10: Average accuracy and F1-Score by data augmentation and transformation
techniques for ResNet-18 and PVT-Tiny. For ResNet-18, adding the second
one with horizontal/vertical flipping to the training dataset resulted in a
slight model improvement.
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6 Conclusion

This thesis investigated the feasibility of physiological sensors combined with ma-
chine learning algorithms for the potential development of mental imagery-aware
systems. Considering the versatility of forms and functions of mental imagery, its two
most common forms were taken as a core of mental imagery-aware systems, namely
mind-wandering and spatial imagery. The latter was derived from the user’s ongoing
engagement. Thereby, two scenarios for the potential mental-imagery aware systems
were explored: (1) quantification of mind-wandering in a learning scenario using elec-
trodermal and gaze features, and (2) spatial imagery or engagement recognition using
gaze features and radar data in a driving condition. The primary goal was to pave the
way for scalable solutions compatible with applications and systems accompanying
daily activities. The work summary is provided in Section 6.1, and future work is
suggested in Section 6.2.

6.1 Summary

Chapter 1 proposed the central research question of this thesis, namely “Can machine
learning combined with physiological sensors enhance the quantification of mental
imagery in the context-ware systems?”. This research question was motivated by
the fact that despite continuously increasing automation levels of the systems and their
ability to track users’ physical activity, the mental dimension has yet to be considered
in context-aware systems.
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How can the features extracted from the electrodermal activity and eye

movement, along with machine learning, contribute to detecting episodes of

mind wandering in a learning context?

Chapter 3 introduced a novel approach for the recognition of the episodes of mind-
wandering in the learning setting using electrodermal features and gaze data. By
extensive statistical analysis of the experienced thought type and related environmental
conditions, as introduced in Section 3.4, it was shown that mind-wandering should not
necessarily always have a detrimental impact on the learning performance but might
be required for proper information comprehension. In Section 3.5.4, the feasibility of
using an EDA sensor as a single device for mind-wandering detection was demonstrated
for the first time. It was also shown that combining EDA with eye-tracking features
achieves the highest classification accuracy for mind-wandering quantification. The
highest classification accuracy for all the sensor types was observed by using the
Random Forest model. Thus, the combination of EDA features with machine learning
algorithms can serve as a strong base for mind-wandering-aware systems.

How can machine learning contribute to detecting spatial imagery and

engagement with a driving task under various driving conditions?

Chapter 4 elaborates an extensive study to investigate the impact of autonomous versus
manual driving on the driver’s spatial imagery. This work was motivated by the
existing gap in understanding of long-term impacts of autonomous driving on human
spatial imagery. Section 4.5 demonstrated compelling results in structural differences
in cognitive workload, mental maps, and gaze movement patterns depending on the
driving modality. These finds were taken as a core of the study investigating spatial
imagery-aware systems in a driving setting. Thus, it was shown that eye-tracking
technology could classify active navigation or the high engagement of the driver versus
a passive transportation mode, as proposed in Section 4.6. The experimental evaluation
demonstrated the highest classification accuracy using the Gradient Boosting algorithm
that outperformed the state-of-the-art in the comparable driving setting. Considering the
observed results, this chapter offers a prospect for a driver’s engagement-aware system.
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How can the radar system contribute to driver-independent, privacy-driven

monitoring solutions in the context of engagement-aware systems?

Chapter 5.1 introduces a quasi-optical solution for drivers’ engagement-aware system.
For this purpose, a UWB pulse-Doppler radar was used to record the driver’s activity
associated with attentive, autonomous and distracted driving behavior. Overall, the
chapter demonstrated the great potential of the radar system to discriminate among
different driving behaviors in a driver-independent fashion.

Section 5.4.3 demonstrated the low performance of the state-of-the-art method consist-
ing of Doppler-trajectory-related features and Ensemble classifier on the obtained radar
data. In contrast, Section 5.4.7 demonstrated that CNN, LSTM and a Pyramid Visual
Transformer trained on Doppler range data can achieve a reasonable user-independent
classification accuracy. Further, it was demonstrated that the IQR normalization method
could enhance the generalization ability of CNN and LSTM, resolving the necessity of
extensive pre-processing steps for radar data.

In Section 5.5 two data augmentation techniques were additionally evaluated to
account for the repeatedly occurring confusion among particular classes in ResNet-
18 and Pvt-Tiny. The results demonstrated that conventional vertical and horizontal
flipping filters and SpecAugment-based frequency and bin range masking did not
make any compelling improvements in the classification performance, showing even
an opposite effect in some experimental outcomes. The work suggests that these two
particular augmentations techniques can not attribute the observed individual variance
in performed activities but instead bear a ground for model overfitting. Taken together,
there is a great potential for the radar combined with deep learning algorithms in the
context of engagement-aware systems.

6.2 Limitations & Future Work

The proposed work reveals the potential of physiological, low-cost sensors and machine
learning algorithms for mental-imagery-aware systems. Thus, many contributions of
this work can be considered as building blocks towards mental imagery-aware systems.
Nevertheless, there is still room for improvement.
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Data-annotation validity. The proposed method for mind-wandering quantification
in a learning scenario requires at least 30 seconds of the input signal to detect an episode
of mind-wandering. Thus, the system is not sensitive to the mind-wandering related
signal changes within shorter time windows. Next, the labelling of the episodes of mind
wandering itself does not provide a sufficient ground truth level since it strongly relates
to the self-awareness ability of the users.

Labels used for radar data also experienced a fluctuating validity. The selected
annotation strategy considered the entire recording per driving activity belonging to
a single class. However, this could be deceptive for some classes with interfering or
similar activities (e.g. driving versus driving and smartphone utilization; driving with
autopilot versus sleeping). Thus, a moment-to-moment data annotation strategy should
be considered in future work.

Data augmentation and Model training. Despite the proposed radar-based en-
gagement recognition demonstrating overall feasibility for future radar-based engagement-
aware systems, further improvements in terms of classification accuracy are of vital
importance. Considering the high variation among drivers, including more drivers in
the RaDa dataset is necessary. It is also reasonable to deploy more sophisticated data
augmentations strategies that can produce more variations in the data representation.
Generative Adversarial Networks could be a first step to improve the classification
performance of the models upon already existing data.

A more dedicated fine-tuning of hyperparameters, for example, changing the filter
and stride size of ResNet-18, can improve the classification performance on the exist-
ing RaDa dataset. Also, the transfer learning approach, where a model pre-training
on a similar radar dataset takes place before starting with RaDa, might enhance the
classification performance on the RaDa dataset.

Driving environment. Considering driver’s engagement-aware systems, the main
limitation for both radar- and eye-tracking-based systems is that the studies were
performed in the driving simulator. A further validation study under real driving
conditions is strongly required to prove the assumptions and classification results
observed under simulated driving conditions.
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Appendix

Figure A1: Individual F1-scores by driving class and augmentation/normalization tech-
nique obtained by ResNet-18.
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Figure A2: Individual F1-scores by driving class and augmentation/normalization tech-
nique obtained by PVT-Tiny.
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