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Abstract

Incentives are an indispensable tool in economics, as they allow for aligning in-
terests and improving organizational performance. By exploring numerous novel
aspects of incentives in different economic subfields, this cumulative dissertation
expands our theoretical understanding of incentives.
First, dynamic interaction is shown to undermine the effectiveness of incentives,
even to the extent that their effect is completely reversed. Higher-powered incen-
tives then leave all interacting parties worse off, while at the same time reducing
the likelihood that the interaction will be brought to a successful conclusion. This
finding arises not only with exogenously given but also endogenously designed
incentives. Second, a simple mechanism is proposed to circumvent adverse free-
riding incentives that inevitably result from the public good nature of abatement
in the context of global greenhouse gas emissions. Enabling countries to establish
a joint cap-and-trade system and allowing them to determine its design endoge-
nously through negotiations may overcome free-riding incentives and implement
efficient emissions levels since countries can implicitly share efficiency gains under
this regime. Third, linking the importance of saving incentives to the capital de-
pendence of the production sector reveals a simple condition determining whether
a monopolistic or competitive banking sector induces the greatest level of long-run
growth and welfare in an economy. For labor-intensive production, higher-powered
saving incentives provided by competitive banks drive capital accumulation and
enhance welfare, while, for capital-intensive production, it is the institutional in-
vestments by a monopolistic bank that yield a more favorable outcome.
Overall, as its inherent incentive perspective extends contract theory, environmen-
tal economics, and macroeconomics, this dissertation emphasizes the pivotal role
that incentives play in various forms of economic interaction.
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Introduction

Background. Human interaction constitutes the central building block in any
society. Individuals constantly interact not only with their families, friends, col-
leagues, superiors, and subordinates but also with various institutions and organi-
zations. While its outcome may be crucial from an individual or societal perspec-
tive, interaction is often strategic in nature, i.e., its actual outcome for one agent
depends on the decisions made by others. Examples range from arms races (see,
e.g., Baliga and Sjöström, 2004; Jackson and Morelli, 2009; Powell, 1993) and
voting (see, e.g., Arrow, 1950; Gibbard, 1973; Satterthwaite, 1975) in political
science over economic interaction in the form of bidding in auctions (see, e.g., Mil-
grom and Weber, 1982; Myerson, 1981; Vickrey, 1961) and negotiations (see, e.g.,
Binmore et al., 1986; Muthoo, 1999; Rubinstein, 1982) to the formation of social
networks (see, e.g., Jackson, 2005; Jackson and Wolinsky, 1996; Myerson, 1991).

Recognizing its importance and omnipresence, the formalization and analysis of
strategic interaction became an integral part of modern economic theory. In par-
ticular, after pioneering contributions on oligopoly pricing by Cournot (1838),
Bertrand (1883), and Edgeworth (1925), the conceptual work by Neumann and
Morgenstern (1944) as well as Nash (1950), extended and refined by Selten (1965,
1975) and Harsanyi (1967–1968), built the foundation of game theory as a pivotal
subfield in economics. Since the 1980s, game theory has shaped a new era in eco-
nomic research, as its methodology enables precise predictions regarding the out-
come of strategic interaction between a small number of agents (Rubinstein, 1990).
Accordingly, a flourishing field of research has emerged, which provides the tools
required to analyze a wide variety of different situations of strategic interaction
(Samuelson, 2016).

Rigorously applying this tool kit gave rise to the theory of incentives as a sub-
field in microeconomics, which greatly revolutionized economic thinking (Dixit &
Besley, 1997).1 According to Cambridge Dictionary’s definition, which has also
been adopted in academia, incentives are broadly defined as “something, often

1. Some economists even compare the methodological effects of incentive theory on microe-
conomics with those that Einstein’s theory of relativity had on physics (Dixit & Besley, 1997).
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money or a prize, offered to make someone behave in a particular way” (Cambridge
Business English Dictionary, 2023, para. 1). Setting up such incentives becomes rel-
evant whenever strategic interaction between the parties is overshadowed by both
(i) conflicting objectives and (ii) asymmetric information (Laffont & Martimort,
2002). Since many forms of economic interaction indeed reflect these character-
istics, a sound understanding of the effect and design of incentives is crucial for
numerous applications (cf. literature syntheses by Bolton and Dewatripont, 2005;
Laffont and Martimort, 2002; Salanié, 2005). Prendergast (1999, p. 7) therefore
emphasizes the central role that incentives play by describing them as “the essence
of economics.”

Consequently, much research has been devoted ever since to exploring how in-
centives shape agents’ behavior and determine organizational performance. The
principal-agent framework introduced by Ross (1973) and Jensen and Meckling
(1976) became the workhorse model in this endeavor since it allows for study-
ing various incentive problems. The literature on the theory of incentives resulting
from this canonical model is vast and multifaceted: it explores incentives that are
performance-based (see, e.g., Fudenberg et al., 1990; Herweg et al., 2010; Holm-
ström, 1979), team-based (see, e.g., Che and Yoo, 2001; Holmström, 1982; Kandel
and Lazear, 1992), tournament-based (see, e.g., Casas-Arce and Martinez-Jerez,
2009; Lazear and Rosen, 1981; Nalebuff and Stiglitz, 1983), and career-based (see,
e.g., Dewatripont et al., 1999; Lazear, 1979, 1981).2 Insights from these and many
other contributions to the highly active research on incentives have influenced mod-
ern microeconomics like no others and have awarded the theory of incentives two
Nobel Memorial Prizes in Economic Sciences (Smirnov & Wait, 2017). As found-
ing fathers of the theory, James Mirrlees and William Vickrey received their Nobel
Prize in 1996 “for their fundamental contributions to the economic theory of incen-
tives under asymmetric information” (Royal Swedish Academy of Sciences, 1996,
para. 1), while it was awarded to Oliver Hart and Bengt Holmström in 2016 for
their seminal work on contracts as incentive mechanisms.

However, research on incentives is far from exhausted, not to mention completed,
with many applications left to discover (Bonner & Sprinkle, 2002; Martin et al.,
2019; Mirrlees, 1997). Gibbons (1998, p. 130) underlines the field’s enormous po-
tential by even suspecting that “much of the best economics on this subject is still
to come.” In light of this substantial need for further research, the cumulative dis-
sertation at hand is dedicated to researching incentives in order to expand our
economic understanding of their effectiveness and design. Despite considering dif-
ferent economic contexts, all four articles in this thesis address incentives, making
contributions to our comprehension of this essential topic. Before the synopsis be-

2. For excellent overviews and discussions of the literature on incentives, see Gibbons (2005),
Lazear (2018), and Prendergast (1999).
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low provides a more detailed summary of all four articles, their individual contri-
butions to the theory of incentives are highlighted on a more general level.

Article 1 studies an incentive problem in an organizational context. It considers in-
teraction between members of a team of agents to identify two manifestations of
counterproductive incentives resulting from dynamic interaction: higher-powered
financial incentives may harm the agents and reduce the probability that they suc-
ceed with their assigned task. The follow-up Article 2 adopts a design perspective
by including a principal in the model who dynamically interacts with the agents. It
examines so far unexplored detrimental effects of incentive mechanisms: a more
favorable economic environment may induce incentives that leave all interacting
parties worse off, while also deteriorating the probability that the agents succeed
with their joint task. Article 3 focuses on incentives in an environmental context. It
analyzes the interaction between two countries, proposing a simple mechanism to
overcome free-riding incentives that otherwise prevent countries’ greenhouse gas
emissions from being reduced to the globally efficient level. Article 4 addresses sav-
ing incentives in a banking context by investigating strategic interaction between
consumers and profit-maximizing banks. It contributes to the ongoing debate on
the optimal degree of competition among banks (cf. Coccorese, 2017) and solves
an empirical puzzle by tying the importance of saving incentives to the capital de-
pendence of the production sector.

Synopsis. The articles in Chapter 1 and Chapter 2 of this dissertation belong to
the field of contract theory and thus cover the very heart of the theory of incen-
tives. Loosely speaking, both investigate perverse effects of incentives that result
from dynamic interaction. Chapter 1 presents the article “Dynamic Interaction
and (In)effectiveness of Financial Incentives”, which is joint work with Philipp
Weinschenk. It is currently under review at the RAND Journal of Economics and a
working paper version circulates as Rauber and Weinschenk (2024). The article
considers a dynamic incentive problem with an exogenous incentive scheme: ra-
tional agents work on a joint project for a finite number of periods. If the agents
succeed with the project, each of them receives a time-dependent reward, and the
game ends; otherwise, the game moves on to the next period until the project dead-
line is reached. Project success in a certain period materializes with a probability
determined by the efforts that the agents exert in the respective period.

In this setting, we explore a novel mechanism undermining the effectiveness of fi-
nancial incentives, which originates naturally from dynamic interaction. Although
higher rewards in the current period unambiguously motivate the agents to ex-
ert more effort in that period, they may also discourage agents’ effort provision in
previous periods. This dynamic discouragement effect is the driving force that can
engender interesting and intriguing consequences for (i) the total probability of
project success (“success rate”) and (ii) the agents’ expected payoffs. First, the ef-
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fort reduction in prior periods may counteract the positive effect of current efforts
insofar as the overall success rate reduces. We refer to this situation as a success re-
versal since the effect of incentives on success is reversed, i.e., higher incentives for
success render success less likely. A success reversal arises due to two mechanisms:
either effort is shifted into an “unproductive period” – one that is unlikely to be
reached –, or a weak increase in current efforts triggers a strong discouragement
effect in previous periods. Second, if there are multiple agents, a payoff reversal
can occur, i.e., higher rewards may harm the agents by reducing their expected
payoffs. The intuition is as follows. Due to the team externality – each agent bene-
fits from the efforts exerted by teammates – the discouragement effect may harm
the agents’ expected payoff to the extent that the direct positive effect of higher re-
wards is overcompensated. We also show that although both reversals result from
the discouragement effect, neither one is necessary or sufficient for the existence
of the other.

Chapter 2 is entitled “Detrimental Incentive Mechanisms in Dynamic Principal-
Agent Relationships”. An extended version of this article, which has greatly ben-
efited from the cooperation with my supervisor, Philipp Weinschenk, is currently
being reviewed by the Journal of the European Economic Association and available
as Rauber and Weinschenk (2023). The paper argues that the above discussed ad-
verse effects of incentives may also arise as equilibrium phenomena. To do so, a
principal who designs the agents’ incentives is added to the model of Chapter 1.
The principal acts as a project owner, obtaining a time-dependent revenue upon
successful project completion. Since agents’ efforts are non-contractible, strategic
interaction between the principal and the agents is subject to moral-hazard. Ac-
cordingly, the principal endogenously designs incentives for the team of agents by
promising them part of the revenue if they succeed with the project. The following
question then arises naturally in this setting: what is the impact of a more favor-
able economic environment in the sense of higher project revenues? One would
expect that higher revenues clearly benefit the principal. Since the principal would
use part of the increased revenues to provide stronger incentives, one is further
tempted to assume that higher revenues are inevitably beneficial for the agents
and improve the likelihood of project completion.

However, if the principal deploys incentive mechanisms in the form of spot con-
tracts or long-term contracts under limited commitment – both are shown to re-
sult in an identical incentive design –, none of these conjectures is necessarily
true. The driving force behind these counterintuitive findings is again a negative
intertemporal effect on the effort provision in previous periods. Higher revenues
in the current period induce an incentive design that leads to lower efforts in the
prior period. Consequently, a success reversal, interpreted here in the sense that a
more lucrative economic environment worsens the total probability for project suc-
cess, can emerge through precisely the two mechanisms described above: higher
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revenues result in a contract design that either (i) substitutes efforts to an “unpro-
ductive” period or (ii) induces slightly higher efforts in the current period at the
expense of drastically decreased efforts in previous periods. For a payoff reversal,
here in the sense that agents suffer from the contract design induced by a more
profitable project, an additional mechanism that originates from the principal’s op-
timizing behavior arises. As a higher current revenue makes project success in that
period more attractive relative to success in the previous period, it can be optimal
for the principal to reduce incentives in the prior period in order to increase the
probability of reaching the relatively more lucrative period. The reduction in the
agents’ incentives can be strong enough to decrease their overall expected payoff.
Due to this additional mechanism resulting from endogenous rewards, payoff re-
versal may occur not only in teams but also in single-agent settings. Even more
surprisingly, the principal may also experience lower expected profits if the project
becomes more lucrative, a situation referred to as profit reversal. The intuition is as
follows. Higher incentives also have a negative intertemporal effect since they ren-
der setting incentives in earlier periods more costly. The principal however cannot
credibly account for the negative intertemporal effect of higher incentives when
designing the incentive mechanisms either because of their sequential structure
or lacking commitment. Although profit reversals vanish if the principal can fully
commit to long-term contracts, success and payoff reversals are shown to persist
under full commitment since the contract design solely focuses on maximizing the
principal’s expected profit.

Chapter 3, “Designing Emissions Trading Schemes: Negotiations on the Amount
& Allocation of Permits”, is joint work with Fabian Naumann. It belongs to the
subfield of environmental economics and represents the most applied article in this
dissertation. The article is currently being peer-reviewed by the Journal of Public
Economics, while a working paper version is already accessible online as Rauber
and Naumann (2023). We explore and verify Weitzman’s (2014, p. 34) conjecture
that a “system based on negotiating aggregate emissions [...] could, in principle, em-
body [a] countervailing force against the global warming externality.” To do so, our
paper sets up a simple two-country model of greenhouse gas emissions. Both coun-
tries benefit from lower emissions, regardless of where the reduction has taken
place, i.e., there is a positive externality, whereas reduction costs are only incurred
by the country that has implemented the abatement measures. This setup gives rise
to a substantial free-riding incentive: each country is anxious to leave costly abate-
ment activities to the other. As a result, global greenhouse gas emissions exceed
the efficient level that is optimal from a societal perspective.

We then explore whether a simple mechanism can overcome free-riding incentives:
enabling the countries to establish a joint cap-and-trade system and allowing them
to design this scheme endogenously through negotiations. Indeed, this procedure
is shown to implement the efficient level of emissions and to maximize overall wel-
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fare if the countries are sufficiently symmetric. This holds true even if the countries
can strategically opt out of the negotiations. The intuition is as follows. By equat-
ing marginal costs, the cap-and-trade system itself ensures that any reduction in
emissions is achieved in the most cost-efficient way. The countries then negotiate
an emissions cap for the cap-and-trade system that implements the efficient level of
emissions and thus maximizes welfare. As the countries also determine the initial
allocation of certificates, they agree on an allocation of permits in which the high-
est welfare level is shared equally among them. Hence, countries use the allocation
of certificates as a means for implicit side payments, which in turn induces coop-
erative behavior. Since a country cannot be awarded more than the entire share of
certificates, the means for providing side payments in the cap-and-trade system is
limited. In particular, we find that if the countries are too heterogeneous, then side
payments may be insufficient to make both countries agree on the efficient cap.

The article in Chapter 4, “Banking Competition and Capital Dependence of the
Production Sector: Growth and Welfare Implications”, is a result of joint re-
search with Paul Ritschel. A slightly shorter version of this article, which omits
all considerations regarding financial stability, is published as Rauber and Ritschel
(2024) in the International Review of Economics & Finance. As the most technical
article in this dissertation, it belongs to the subfield of microfounded macroeco-
nomics and addresses Goldsmith’s (1969, p. 408) famous question “Does finance
make a difference...?” in a banking context. More precisely, we embed a banking
sector in a standard overlapping generations growth model a la Diamond (1965)
in order to study the role of banking competition for economic growth and welfare.
Our paper then compares three versions of the model: (i) absence of financial inter-
mediation, i.e., households invest directly in the production sector, (ii) a perfectly
competitive banking sector that intermediates households’ investments in the pro-
duction sector, and (iii) a monopolistic bank that acts as financial intermediary.

This comparison yields our most striking theoretical contribution, namely a simple
condition determining whether monopolistic or competitive banking is favorable in
the long run, both from a growth and welfare perspective. Having a monopoly bank
is beneficial if the economy’s production sector is heavily dependent on capital
and the bank’s dividend payments are sufficiently restricted. By contrast, if produc-
tion is labor-intensive, then competition in the banking sector maximizes growth
and welfare. Our finding can explain seemingly contradictory empirical findings re-
garding the correlation between banking competition and economic growth (see,
Beck et al., 2004; Cetorelli and Gambera, 2001; Deidda and Fattouh, 2005; Hoxha,
2013; Maudos and Fernandez de Guevara, 2006).

Intuitively, capital accumulation in our model is fed from two channels: private sav-
ings and institutional investments in the form of bank equity. More interbank com-
petition affects both channels. While it increases saving incentives – households are
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granted higher deposit rates for their savings –, it also reduces the intermediation
margins claimed by banks and thus their equity. Saving incentives are decisive for
capital accumulation in a labor-intensive production environment since households
receive a relatively large share of the economy’s total income as wage income. A
competitive banking sector thus induces greater economic growth than its monopo-
listic counterpart due to its higher-powered saving incentives. In a capital-intensive
production environment, on the contrary, relatively low wage incomes render sav-
ing incentives less important. Instead, abundant institutional investments provided
by a monopolistic bank supply the production with the required capital and thus
yield the greatest level of economic growth. Our result that a banking monopoly
can also be welfare-improving is explained in terms of the theory of the second
best by Lipsey and Lancaster (1956). Capital accumulation is generally inefficient,
as each generation only focuses on maximizing its own (short-run) utility. Introduc-
ing a banking monopoly as an additional market imperfection may then improve
overall welfare. In particular, for capital-intensive production, private savings are
insufficient to implement efficient capital accumulation. Institutional investments
from a monopolistic bank then improve welfare by shifting the accumulation path
towards a higher level of long-run output.

Our analysis reveals three further insights. First, the presence of banks propels
long-run economic growth independently of the degree of interbank competition.
Since deposit contracts offered by banks constitute a vehicle for risk-sharing, they
incentivize households to release additional funds into the production sector. Sec-
ond, banks cannot induce persistent business cycles and complex dynamics in an
otherwise calm economy. That is, the introduction of a banking sector does not ad-
versely affect qualitative growth patterns in the long run. Third, our model lends
support to the competition-fragility hypothesis, stating that a competitive banking
system is more vulnerable to banking crises. Not only are competitive banks less
able to absorb losses due to their lower stock of equity, but erroneous expectations
may also entail more severe adverse consequences under this banking regime due
to lower intermediation margins.
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1.1 Introduction

Incentives play a pivotal role in economics.1 It is crucial to understand how they
shape agents’ behavior and determine organizational performance. We argue that
our current understanding of financial incentives is incomplete. In particular, we
show that dynamic interaction – a situation frequently encountered in practice –
undermines the effectiveness of financial incentives, even to the extent that their
effect is completely reversed. Financial incentives then become counterproductive
in two ways, namely in terms of (i) incentivizing agents to succeed in their project
and (ii) improving agents’ well-being. These phenomena are illustrated in the fol-
lowing simple example.

Example 1 (Introductory Example).
Consider two agents i= 1, 2 who can work on a project for two periods t= 1, 2. In
every period, their efforts are perfect substitutes and the project’s success probability is
p(et,1, et,2)= et,1 + et,2, while individual effort costs are c(et,i)= e2

t,i. Given the reward
profile z1 = (z1, z2), where zt is the reward that both agents receive for success in t,
Table 1.1 shows that although financial incentives are unambiguously stronger with
the reward profile zB

1 than with zA
1 , these rewards (i) make project success less likely

and (ii) leave agents worse off.

Table 1.1. Equilibrium success rate and expected payoffs.

reward profile (overall) success rate (overall) expected payoffs

zA
1 = (0.95, 0.1) 95% 0.67

zB
1 = (0.98, 0.7) 88% 0.65

To explore the mechanism which renders financial incentives counterproductive,
we build a simple yet flexible model that captures static and dynamic interaction,
as well as single-agent and team problems. We suppose that a set of rational agents
(male) work on a joint project. Each agent individually decides how much effort
to invest. Agents are incentivized to provide efforts by time-dependent rewards
that they obtain for successful project completion. Rewards are exogenous from
the agents’ perspective, i.e., they are either directly determined by the economic
environment or designed by an optimizing party. Settings in which rewards are
determined by the economic environment range from the exploration of natural

1. Nobel laureate Aumann (2006, p. 17075) even states: “Economics is all about incentives”.
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resources over the introduction of new technologies to R&D activities (Bolton &
Harris, 1999). For rewards designed by a principal (female), we can infer from
Rauber and Weinschenk (2023) that any reward profile in our setup can be ratio-
nalized as an outcome of an optimization process if the designing party has limited
commitment power or determines the rewards sequentially. Hence, both forms of
counterproductive incentives that we discover are equilibrium phenomena.

Our analysis starts by considering the static version of the model. When agents
work on the project only for a single period, financial incentives work as one would
expect: stronger incentives motivate agents to invest more effort, which increases
the project’s success rate, i.e., the overall probability that it is completed, and
agents’ expected payoffs. While this motivation effect – the positive relationship
between rewards and effort provision within a period – persists in the dynamic
version of the model, another intertemporal mechanism arises that erodes the ef-
fectiveness of incentives: higher rewards render success in the preceding period
relatively less attractive and thus discourage agents from investing effort in that pe-
riod. Since this adverse discouragement effect2 can outweigh the motivation effect,
the impact of financial incentives may completely reverse. In this case, dynamic
interaction gives rise to two intriguing phenomena.

First, we refer to a success reversal as a situation in which stronger incentives for
project success make success less likely. That is, higher rewards lower the success
rate. We distinguish two mechanisms causing success reversals: either a weak moti-
vating effect is opposed by a strong discouragement effect, or the interplay of both
effects shifts efforts from a “productive” to an “unproductive” period for project
success. Second, although higher incentives increase state-dependent payoffs, they
may lower agents’ expected payoffs from working on the project. Stronger finan-
cial incentives are then detrimental to the agents’ well-being, a phenomenon we
call payoff reversal. Intuitively, as agents also benefit from efforts exerted by their
teammates, stronger incentives may lower teammates’ efforts due to the discour-
agement effect to such an extent that the positive effect of higher incentives is
overcompensated. Although both phenomena originate from the discouragement
effect, we further demonstrate that success and payoff reversals can but do not
necessarily need to occur together.

It is noteworthy that dynamic interaction is the only prerequisite necessary to jeop-
ardize the effectiveness of incentives. Since dynamic interaction is common in prac-
tice, our paper identifies a highly plausible – yet so far unnoticed – reason why

2. Although the discouragement effect is simple and, in this sense, fundamental, it has not
yet been formally investigated in the literature.
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incentives may be ineffective. We thereby provide a theoretical explanation for
project failures and delays that are regularly reported in the literature and popular
press (see, for example, Eizakshiri et al., 2015; Jenkins et al., 1984; Park, 2021).
Even if high-powered incentives are provided, agents may strategically withhold
efforts, which delays or completely prevents project completion. This finding also
helps to understand why performance-based compensation schemes are not exten-
sively used in practice.

Related Literature. By considering rational agents, we pursue a non-
behavioral approach to reveal a novel dynamic mechanism as a root cause for coun-
terproductive incentives.3 In a model of team production, where players choose
their efforts sequentially but only once, Winter (2009) also finds a manifestation
of success reversals.⁴ Intuitively, with sufficiently high rewards, exerting effort be-
comes a dominant strategy for late movers, allowing early movers to free-ride. Klor
et al. (2014) verify the predictions of Winter’s model in two lab experiments. Our
analysis, however, identifies an utterly different mechanism for success reversals
based on dynamic interaction. Moreover, we obtain the result that agents them-
selves can suffer from stronger financial incentives. We are not aware of any other
paper that discovers this surprising insight.

Other related publications are in the literature on dynamic moral hazard in teams.
While their models share some features with ours, they focus either on the principal
and her optimal incentive design or on other aspects, such as deadlines and team
size, rather than on how financial incentives impact project success and agents’
well-being. According to their treatment of efforts over time, we can divide these
related papers into two groups.

As in our paper, other models consider agents’ efforts as strategic substitutes over
time, leading to a reciprocal relation between current and future efforts. Bonatti
and Hörner (2011) show how agents tend to procrastinate, that is, they spend
inefficiently little effort too late, and how deadlines can be used to mitigate this
problem. In a related setup from the literature on experimentation with a two-
staged project, Moroni (2022) demonstrates that the principal can prevent agents
from procrastinating by designing contracts that include asymmetries in terms of

3. The literature emphasizes several behavioral economic explanations for the ineffectiveness
of incentives, such as the fact that higher incentives erode the norm of reciprocity (Fehr et al., 1997),
crowd out people’s intrinsic motivation (Frey & Oberholzer-Gee, 1997), and change the perception
of contracts (Gneezy & Rustichini, 2000a, 2000b).

4. Winter (2009) coined the term “incentive reversal” to refer to a situation where higher
rewards incentivize agents to exert less effort. This immediately implies a success reversal in his
model since the probability of success increases in agents’ efforts.
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compensation and assignment of agents.⁵ Weinschenk (2016) also analyzes pro-
crastination in teams, identifying discriminatory contracts as a remedy for pro-
crastination, while deadlines are shown to be never beneficial. Weinschenk (2021)
compares time-consistent and time-inconsistent agents with the result that (naive)
time-inconsistent agents are better off when it comes to project completion. Mason
and Välimäki (2015) extended by Altan (2019) derive the optimal wage profile in
a dynamic moral-hazard model of project completion with a single agent. While
the principal optimally implements a wage scheme that declines over time under
full commitment, the highest expected payoff in a weakly renegotiation-proof equi-
librium is given by a constant wage over time.

Other dynamic models of a team working together to complete a project consider
efforts as strategic complements over time by adding up efforts of all agents over all
periods, which is interpreted as project progress. Georgiadis (2015) shows that, in
this setting, the optimal team size is increasing in the length of the project, whereas
the principal gradually reduces the team size when progress is made. In a similar
(but deterministic) model, Georgiadis et al. (2014) derive the project size defined
by a principal with limited commitment power: the principal extends the project
size as it progresses and delegates decision rights to the agents if her commitment
power is rather low.

Outline. The remainder of this paper is organized as follows. The next section
introduces our model. Subsequently, we examine agents’ equilibrium efforts be-
fore analyzing the effect of higher incentives in the static version of our model in
Section 1.4. Our main analysis regarding the dynamic version of the model is con-
ducted in Section 1.5. The final section concludes by discussing the implications of
our findings. All proofs are provided in Appendix 1.A.1.

5. Bergemann and Hege (2005), Green and Taylor (2016), Halac et al. (2016), and Hörner
and Samuelson (2013) are some examples of other articles from the literature on experimentation
that share some features with our model.
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1.2 Model

Consider a set of risk-neutral rational agents N := {1, . . . , n} working on a joint
project. Agents choose their individual efforts simultaneously in every period t=
1, . . . , T. The probability that agents succeed in period t is p(et,1 , . . . , et,n), where
et,i ∈ R+ denotes the effort exerted by agent i ∈ N in period t.

Assumption 1 (Success Function).
The success function p : Rn

+→ [0,1) is thrice continuously differentiable, symmetric,
strictly increasing, weakly concave, and satisfies p(0, . . . , 0)= 0.⁶

Investing effort is costly for agent i. These effort costs are captured by a cost func-
tion c(et,i).

Assumption 2 (Cost Function).
The cost function c : R+→ R+ is thrice continuously differentiable, strictly increasing,
strictly convex, and satisfies c(0)= c′(0)= 0.

If the agents succeed in t, each agent receives a reward zt ∈ R++ and the game
ends. The rewards from period t onwards define a reward profile zt =

�

zt, . . . , zT

�

.
The game also ends if agents do not succeed until period T, where 0< T <∞. We
use the subgame perfect Nash equilibrium as a solution concept.

Some observations are immediate from the above model description. First, we can
interpret the reward zt as financial incentive in t since it incentivizes agents to
invest effort in that period. Second, the model contains two implicit symmetry as-
sumptions: agents are symmetric, and the success function is the same in every
period.⁷ Third, the model captures static (T = 1) and dynamic (T > 1) interaction,
as well as single-agent (n= 1) and team (n> 1) problems.

6. Note that these assumptions allow agents’ efforts to be either substitutes or complements.
While our analysis does not hinge on the assumption that p(0, . . . , 0)= 0, it allows us to avoid
tedious case distinctions.

7. In particular, to make the static and dynamic version of the model comparable, we do not
examine spillover effects between different periods. While spillover effects are logically absent in
the static model, they could be included in the dynamic model, which would, however, not provide
any additional insights.
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1.3 Equilibrium Efforts

Given the reward profile zt and the efforts exerted by the other agents j ∈ N \ i,
the problem of agent i in period t is to maximize his expected payoff in that period
over his effort choice et,i. Using Bellman’s (1957) Principle of Optimality, agent i’s
decision problem reads:

max
et,i∈R+

vt,i(et,1 , . . . , et,n) = p(et,1 , . . . , et,n) zt

+
�

1 − p(et,1 , . . . , et,n)
�

δv∗t+1,i − c(et,i),
(1.1)

where δ ∈ (0,1] denotes the discount factor and v∗t+1,i the optimal value of agent i’s
expected payoff in period t+ 1, i.e., his continuation payoff. Lemma 1 now exam-
ines equilibrium efforts, i.e., the efforts that arise if all agents choose their effort
provision as a solution to Problem (1.1).

Lemma 1 (Equilibrium Efforts).

(i) There exists a unique subgame perfect Nash equilibrium, which is symmetric in
the sense that e∗t,i = e∗t,j = e∗t and v∗t,i = v∗t,j = v∗t for all i, j ∈ N and t ∈ {1, . . . , T}.

(ii) Agent i’s equilibrium effort in period t is

e∗t = e(zt, v∗t+1) :=

¨

0 if zt ≤ δv∗t+1

eFOC(zt, v∗t+1) if zt > δv∗t+1,

where the map eFOC(zt, v∗t+1) is uniquely determined by

∂ p(et , . . . , et)
∂ et,i

�

zt − δv∗t+1

�

− c′(et) = 0. (FOCt)

Lemma 1 (i) states that the game has a unique subgame perfect Nash equilibrium,
in which all agents choose the same effort level within a period and thus expect
identical payoffs. Part (ii) is straightforward. If the net reward zt −δv∗t+1 (i.e., the
difference between the reward for project success and the discounted continuation
payoff) is non-positive, then agents are at least weakly better off when having no
success in period t. They thus minimize the probability of succeeding by investing
zero effort. For positive net rewards, however, each agent chooses an effort level
that balances the marginal benefit of effort (i.e., a higher probability of receiving
the reward zt instead of δv∗t+1) with the marginal effort costs.
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To facilitate the exposition, we exploit the symmetry of equilibrium efforts and de-
fine P(et) := p
�

et , . . . , et

�

.⁸ The following lemma establishes all relevant properties
of the equilibrium efforts that will be used throughout the paper.

Lemma 2 (Properties of Equilibrium Efforts).

For each period t ∈ {1, . . . , T} and agent i ∈ N , the equilibrium effort satisfies ⁹

(i) e(zt, v∗t+1)

¨

= 0 if zt ≤ δv∗t+1

> 0 if zt > δv∗t+1,
and lim

zt→∞
e(zt, v∗t+1)=∞,

(ii)
∂ e(zt, v∗t+1)

∂ zt
= −

1
δ

∂ e(zt, v∗t+1)

∂ v∗t+1

¨

= 0 if zt ≤ δv∗t+1

> 0 if zt > δv∗t+1.

Lemma 2 adopts an intraperiod perspective, i.e., it explores how equilibrium ef-
forts in period t are affected by rewards and continuation payoffs in that period.
Part (i) states that equilibrium efforts are positive if and only if net rewards are pos-
itive. In this case only, there is a positive probability that the agents succeed with
the project in period t. Equilibrium efforts converge to infinity and thus induce suc-
cess for sure if rewards converge to infinity. Part (ii) establishes that higher rewards
have no effect for non-positive net rewards, while they strictly increase equilibrium
efforts for positive net rewards. Intuitively, stronger incentives motivate agents to
invest more effort in order to raise the probability of success. We call this the mo-
tivation effect of incentives. A higher continuation payoff has the opposite effect.
Since reaching the subsequent period becomes more attractive, agents reduce their
efforts in period t in order to increase the probability that the game continues. As
we will discover in the dynamic version of the model, this is part of the mechanism
that undermines the effectiveness of incentives.

Figure 1.1 portrays equilibrium efforts in period t as a map zt 7→ e(zt, v∗t+1). In Ap-
pendix 1.A.2, we show that the curvature of this map is determined by the interplay
of the derivatives of the success and cost function. In particular, this curvature will
be relevant for the effect of higher rewards on the success rate. P′′′ ≤ 0 together
with c′′′ ≥ 0 ensure a concave shape as depicted in Figure 1.1. The figure also shows
the motivation effect resulting from an increase in rewards from zA

t to zB
t .

8. Observe that this definition immediately implies that ∂ p(et , . . . , et)/∂ et,i = P′(et)/n.
9. Note that for zt −δv∗t+1→ 0 the equilibrium effort has a kink, where the derivative for

zt −δv∗t+1→ 0− is zero, but the derivative for zt −δv∗t+1→ 0+ is positive. For technical reasons, we
concentrate on derivative for zt −δv∗t+1→ 0− throughout the paper.
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zt

e∗t FOCt

increased reward

motivation
effect

e∗At

zAt

e∗Bt

zBtδv∗t+1

e∗1t−1,i

Figure 1.1. Equilibrium efforts and motivation effect in period t.

In light of Lemma 1 and 2, the following remark introduces notational simplifica-
tions that facilitate the exposition throughout the remainder of the paper.

Remark 1 (Notation).
(i) We henceforth write e(zt) instead of e(zt, v∗t+1) because, formally, v∗t+1 depends

on zt+1 only.
(ii) Using the Bellman Equation (1.1) allows us to define agent i’s equilibrium ex-

pected payoff in period t as v∗t = vt(zt) := vt,i(e(zt), . . . , e(zt)).

This puts us in the position to define the success rate, i.e., the equilibrium probabil-
ity that the agents succeed with the project throughout the game:

S∗ = S(z1) := 1 −
T
∏

t=1

�

1 − P(e(zt))
�

.

1.4 Analysis of the Static Model

As a benchmark, we first study the static version of the model where T = 1.

Success Rate. The success rate in the static model is S(z1)= P(e(z1)). Its deriva-
tive reads

∂ S(z1)
∂ z1

= P′(e1(z1))
∂ e1(z1)
∂ z1

. (1.2)

As agents only work on the project for one period, their continuation payoff is zero,
v∗2 = 0. Hence, Lemma 2 together with (1.2) implies that ∂ S(z1)/∂ z1 > 0. Financial
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incentives thus work in terms of project success: higher rewards motivate agents
to invest more effort, which makes success more likely.

Expected Payoffs. From (1.1) and the Envelope Theorem, it follows that

∂ v1(z1)
∂ z1

= P(e(z1)) + z1
n − 1

n
P′(e(z1))

∂ e(z1)
∂ z1

. (1.3)

In view of Lemma 2, expected payoffs thus satisfy ∂ v1(z1)/∂ z1 > 0. The intuition
is as follows. Consider the case with a single agent first. Since the agent may keep
his effort and thereby his effort costs constant, a higher reward is necessarily ben-
eficial (cf. first term on the r.h.s. of (1.3)). If there is a team of agents, each agent
additionally benefits from higher efforts exerted by his teammates (cf. second term
on the r.h.s. of (1.3)). In the static model, financial incentives are therefore effec-
tive also in terms of improving agents’ well-being since agents are better off with
higher-powered incentives.

1.5 Analysis of the Dynamic Model

The dynamic model where T > 1 is considered next. We first examine the mecha-
nism that undermines the effectiveness of incentives and explore how it reverses
the impact of incentives on the success rate and the expected payoffs. Subsequently,
we provide numerical examples illustrating these reversals.

1.5.1 General Insights

Our analysis proceeds by investigating how higher rewards affect expected payoffs
in the respective period and how these expected payoffs, in turn, affect equilibrium
efforts in other periods.

Expected Payoffs in the Current Period. From (1.1) and the Envelope
Theorem, it follows that

∂ vt(zt)
∂ zt

= P(e(zt)) +
�

zt − δv∗t+1

� n − 1
n

P′(e(zt))
∂ e(zt)
∂ zt

. (1.4)

In light of Lemma 2, (1.4) reveals that higher rewards have the following effect:

∂ vt(zt)
∂ zt

¨

= 0 if zt ≤ δv∗t+1

> 0 if zt > δv∗t+1.
(1.5)
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Hence, higher rewards in period t raise the expected payoff in that period, except
for the case where net rewards are non-positive. In this case, agents invest zero
effort and thus succeed with probability zero, such that marginally increasing their
rewards has no effect on expected payoffs.

Effort Provision in Other Periods. While an increase in the reward zt does
not affect the effort provision in periods later than t, there can be an effect on
earlier periods. Intuitively, once a period τ > t is reached, the reward in t can no
longer be obtained and is thus irrelevant for the agents’ effort choice. For a period
τ < t, on the contrary, the reward in t is still obtainable and might consequently
affect equilibrium efforts in τ via the continuation payoff. Indeed, as Proposition 1
states, higher rewards cause an interesting intertemporal effect.

Proposition 1 (Discouragement Effect).
Consider the dynamic model where T ≥ t> 1. If zt−1 > δv∗t and zt > δv∗t+1, then a
higher reward zt reduces equilibrium efforts in period t− 1,

∂ e(zt−1)
∂ zt

¨

= 0 if zt−1 ≤ δv∗t or zt ≤ δv∗t+1

< 0 if zt−1 > δv∗t and zt > δv∗t+1.
(1.6)

It is not surprising that higher rewards may leave equilibrium efforts in the pre-
ceding period unaffected. We can read off the first line in (1.6) that this may hap-
pen for two reasons. First, as net rewards in the preceding period are non-positive
for zt−1 ≤ δv∗t , agents already invest zero effort in that period, rendering a further
reduction in efforts impossible. Second, for zt ≤ δv∗t+1, agents exert zero effort in
period t and fail for sure in that period, such that higher rewards have no effect on
the continuation payoffs.

More interestingly, as the second line in (1.6) reveals, higher rewards can also re-
duce equilibrium efforts in the preceding period. This discouragement effect coun-
teracts the beneficial impact of higher incentives in period t. It occurs since higher
rewards in period t increase agents’ continuation payoffs if zt > δv∗t+1, which, in
turn, reduces net rewards in the preceding period. Accordingly, investing effort in
the preceding period becomes less attractive and agents reduce their effort pro-
vision whenever this is possible, i.e., whenever equilibrium efforts are positive.
Figure 1.2 illustrates the discouragement effect generated by an inframarginal in-
crease in rewards from zA

t to zB
t .
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zt−1

e∗t−1

discouragement
effect

increased
continuation
payoff

FOCA
t−1

FOCB
t−1

z2t

e∗At−1

e∗Bt−1

zt−1δv∗At δv∗Bt

Figure 1.2. Equilibrium efforts and discouragement effect in period t−1.

Examining (1.6) allows us to state the following corollary.

Corollary 1 (Relevance of the Discouragement Effect).
Consider the dynamic model where T > τ≥ 1. If the reward profile zτ is either non-
increasing over time or the increase is sufficiently small, then higher rewards in any
period t ∈ {τ+ 1, . . . , T} cause a discouragement effect.

Many economic scenarios are indeed characterized by non-increasing rewards.
While the economic environment naturally defines such reward structures in situa-
tions ranging from infrastructure projects (cf. Ekici and Retharekar, 2013) to cryp-
tocurrency mining (cf. Arenas et al., 2020), it can also be optimal for a principal
to design non-increasing rewards in various forms of principal-agent relationships
(see, e.g., Altan, 2019; Mason and Välimäki, 2015; Mayer, 2022). The discourage-
ment effect is thus a relevant force in many economic settings.

Comparing Proposition 1 and Lemma 2 reveals that the discouragement effect only
emerges in conjunction with the motivation effect. Both effects combined can be
interpreted as an intertemporal substitution effect of efforts since higher rewards
in period t increase equilibrium efforts in that period but decrease equilibrium ef-
forts in the preceding period. Thus, there is a shift of efforts from period t− 1 to
period t. As we will explore next, this interplay between the motivation and dis-
couragement effect has surprising implications for the project’s success rate and
the agents’ expected payoffs.

Success Rate. For simplicity, the effect of higher rewards on the success rate is
demonstrated for two periods in the main text.1⁰ If T = 2, then the success rate

10. For the analysis of multiple periods, i.e., the case where T > 2, we refer to Appendix 1.A.3.
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can be rewritten to

S(z1) = P(e(z1)) +
�

1 − P(e(z1))
�

P(e(z2)). (1.7)

Observe that the success rate is increasing in the agents’ efforts. The question is
thus how higher rewards change equilibrium efforts and how these, in turn, affect
the success rate. We first examine the effect of higher rewards in period 1. Formally,
differentiating (1.7) and using Lemma 2 leads to

∂ S(z1)
∂ z1

=
�

1 − P(e(z2))
�

P′(e1(z1))
∂ e1(z1)
∂ z1

¨

= 0 if z1 ≤ δv∗2
> 0 if z1 > δv∗2.

Due to the motivation effect, higher rewards in the first period at least weakly
raise equilibrium efforts in that period, while they leave second-period efforts un-
affected. Therefore, higher first-period rewards at least weakly increase the success
rate. By contrast, an increase in the second-period rewards causes two countervail-
ing effects:

∂ S(z1)
∂ z2

=

≥0
︷ ︸︸ ︷

�

1 − P(e(z1))
�

P′(e(z2))
∂ e(z2)
∂ z2

+
�

1 − P(e(z2))
�

P′(e(z1)))
∂ e(z1)
∂ z2

︸ ︷︷ ︸

≤0

.
(1.8)

On the one hand, it motivates agents to increase their equilibrium efforts in the
second period, which increases the success rate (cf. first term on the r.h.s. of (1.8)).
On the other, it discourages agents’ equilibrium efforts in the first period, which
decreases the success rate (cf. second term on the r.h.s. of (1.8)). Both effects are
strict for positive net rewards. If the discouragement effect dominates the motiva-
tion effect, then the success rate is decreasing in the second-period reward. That is,
higher rewards for project success make success less likely. We refer to this scenario
as a success reversal.

Definition 1 (Success Reversal).
Let the reward profile z1 ∈ RT

++ be given and T > 1. A success reversal occurs if
∂ S(z1)/∂ zt < 0 holds for some t ∈ {2, . . . , T}.
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To explore why success reversals occur, we rearrange (1.8) to

∂ S(z1)
∂ z2

< 0 ⇐⇒

�

1 − P(e(z2))
�

P′(e(z1))
�

1 − P(e(z1))
�

P′(e(z2))

︸ ︷︷ ︸

MRS

·
−
∂ e(z1)
∂ z2

∂ e(z2)
∂ z2
︸ ︷︷ ︸

MRE

> 1. (1.9)

The first fraction in (1.9) is the marginal rate of intertemporal substitution (MRS)
of first-period efforts for second-period efforts. It measures how efforts in period
one can be substituted with efforts in period two to keep the success rate constant.
The second fraction in (1.9) is referred to as themarginal rate of incentivized efforts
(MRE), which captures the ratio of changes in equilibrium efforts in the first and
second period caused by a marginal increase in the second-period reward. Theo-
rem 1 states sufficient conditions for a success reversal to arise.

Theorem 1 (Success Reversal).
Consider the dynamic model where T = 2 and let z2 be given.

(i) If P′′ is sufficiently close to zero on a sufficiently large interval [e, e] and c′′( e )
is sufficiently small, then a success reversal occurs for z1 in the left local neigh-
borhood of the reward that implements e.

(ii) If P′′ is strictly negative but finite and P′(0)/c′′(0) is sufficiently large, then a
success reversal occurs for z1 in the right local neighborhood of δv∗2.

As Condition (1.9) can be fulfilled due to large values of the MRS or the MRE, two
different mechanisms for success reversals need to be distinguished. First, Theo-
rem 1 (i) demonstrates that if the curvature of P is rather low, then a success rever-
sal arises since the MRS obtains large values. This is the case for reward profiles
that implement rather high success probabilities in the first period. Intuitively, a
success reversal occurs because the intertemporal substitution of efforts shifts ef-
forts from a “productive” period for project success to an “unproductive” one, i.e.,
from a period that is reached with certainty to one that is unlikely to be reached.
We therefore refer to this situation as a success reversal due to substitution of ef-
forts. Second, Theorem 1 (ii) reveals that a success reversal also arises due to large
values of the MRE. Since the properties specified for the success and cost function
ensure that marginal efforts are high when net rewards are low, this form of suc-
cess reversal occurs for reward profiles that yield sufficiently low net rewards in
the first period. Equilibrium efforts then react rather sensitively in the first period
but comparably insensitively in the second period towards changes in the second-
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period reward. A strong discouragement effect then outweighs a weak motivation
effect. Accordingly, we call this a success reversal due to sensitivity of efforts.

Corollary 2 demonstrates that a success reversal due to substitution of efforts can
occur even with a standard CES function success function and any cost function
whose second derivative is bounded.

Corollary 2 (CES Success Function).
Consider the dynamic model where T = 2. Suppose that the success probability is cap-
tured by a CES function

p
�

et,1, . . . , et,n

�

= β

�

n
∑

i=1

eρt,i

�α/ρ

,

with 0< α≤ 1, β > 0, ρ ≤ 1, and domain et,i ∈ [0, e), where e := n−1/ρ/β1/α. Let
z2 be given such that equilibrium efforts in period 2 are interior, i.e., e∗2 ∈ (0, e). If
limet,i→e c′′(et,i) is finite, then a success reversal occurs for z1 in the left local neighbor-
hood of the reward that implements e.

It is noteworthy that the afore-described mechanisms do not hinge on the number
of agents, i.e., success reversals can arise in single-agent and team problems. Re-
garding the number of periods, we show in Appendix 1.A.3 that whenever there
are success reversals in the two-period model, we can construct reward profiles in
the model with T > 2 that also cause success reversals.

Expected Payoffs in Other Periods. While higher rewards in period t do not
affect expected payoffs in later periods τ > t (by the same arguments stated for
the effort provision), they may impact expected payoffs in earlier periods τ < t.

The case of a single agent is analyzed first. In this case, higher expected payoffs in
period t cause higher expected payoffs in all previous periods. To see this, consider
period t− 1 first. Since there is always (i) a strictly positive probability that the
game continues and (ii) the possibility for the agent to maintain his effort choice
and thus his effort costs, a higher continuation payoff necessarily increases the
equilibrium expected payoff in t− 1. Repeating this argument shows that higher
expected payoffs in period t cause higher expected payoffs in all preceding periods
τ ∈ {1, . . . , t− 1}. Together with Equation (1.5), this implies that

∂ vτ(zτ)
∂ zt

¨

= 0 if zt ≤ δv∗t+1

> 0 if zt > δv∗t+1,
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for all τ ∈ {1, . . . , t}. The positive impact of higher rewards holds, in particular, for
the expected payoff in the first period, which represents the agent’s expected payoff
from the entire game (i.e., from working on the project). Thus, in the case of a sin-
gle agent, higher rewards are at least weakly beneficial for the agent. Interestingly,
as we will see next, this is not necessarily true with multiple agents.

Proposition 2 (Expected Payoff in the Preceding Period).
Consider the dynamic model where T ≥ t> 1 and n> 1. If zt−1 > δv∗t and zt > δv∗t+1,
then a higher reward zt has an ambiguous effect on the equilibrium expected payoff
in t− 1,

∂ vt−1(zt−1)
∂ zt

∝

>0
︷ ︸︸ ︷

1 − P(e(zt−1))

+
�

zt−1 − δv∗t
� n − 1

n
P′(e(zt−1))

∂ e(zt−1, v(zt))
∂ v∗t

︸ ︷︷ ︸

<0

.
(1.10)

The intuition behind Proposition 2 is as follows. Whenever equilibrium efforts are
positive in periods t− 1 and t, higher rewards in t engender two countervailing
effects. On the one hand, if the team fails in period t− 1, it benefits from increased
rewards in the next period, i.e., higher rewards have a beneficial direct effect on ex-
pected payoffs. This effect is captured by the first line on the r.h.s. of (1.10). On the
other hand, agents benefit from efforts invested by their teammates, i.e., there is a
positive team externality. All teammates, however, lower their equilibrium efforts
due to the discouragement effect if the reward in the subsequent period increases.
Hence, higher rewards also cause a detrimental indirect effect. This is captured by
the second line on the r.h.s. of (1.10). We next define a payoff reversal.

Definition 2 (Payoff Reversal).
Let the reward profile z1 ∈ RT

++ be given and T > 1. A payoff reversal occurs if
∂ vt−1(zt−1)/∂ zt < 0 holds for some t ∈ {2, . . . , T}.

Theorem 2 now states sufficient conditions for payoff reversals to arise.

Theorem 2 (Payoff Reversal).
Consider the dynamic model where T ≥ t> 1 and n> 1. Let zt be given such that zt >

δv∗t+1. If P′′ is sufficiently close to zero on a sufficiently large interval [e, e] and c′′( e )
is sufficiently small, then a payoff reversal occurs for zt−1 in the left local neighborhood
of the reward that implements e.
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Theorem 2 reveals that if the curvature of P is rather low, then a payoff reversal
arises for those reward profiles that implement relatively high success probabili-
ties in period t− 1. Intuitively, since the likelihood of failure is rather low in the
preceding period, it is unlikely that agents actually reach period t and benefit from
higher rewards. In this case, the adverse impact of lower equilibrium efforts domi-
nates such that agents suffer from higher rewards.

An analog version of Corollary 2 applies to payoff reversals: with a CES success
function and any cost function whose second derivative is bounded, payoff rever-
sals arise for reward profiles that implement equilibrium efforts in period t− 1
sufficiently close to e.

Comparison of Reward Profiles. Relating to the terminology of decision the-
ory, we introduce the following definition.

Definition 3 (Dominant Reward Profile).
Compare two reward profiles, zA

1 ∈ R
T
++ and zB

1 ∈ R
T
++. If zA

t < zB
t holds in all periods

t ∈ {1, . . . , T}, then zB
1 dominates zA

1 .

When comparing two reward profiles in the static model, it is straightforward that
the dominant reward profile induces a higher success rate and generates higher
expected payoffs. In the dynamic model, however, results are more surprising. The
existence of success and payoff reversals (cf. Theorem 1 and 2) implies the follow-
ing corollary.

Corollary 3 (Dominant Versus Dominated Reward Profiles).
Consider the dynamic model T > 1 and compare two reward profiles, zA

1 and zB
1, where

zB
1 dominates zA

1 . Then the success rate need not be higher with zB
1. Moreover, if n> 1,

then the equilibrium expected payoffs resulting from zB
1 need not be higher in any

period t ∈ {1, . . . , T − 1}.

Corollary 3 states that even though a reward profile provides higher rewards in ev-
ery single period, it may cause a lower success rate and/or generate lower expected
payoffs. Financial incentives may thus be counterproductive, i.e., unambiguously
stronger incentives render success less likely and/or leave agents worse off. Gener-
ally speaking, stronger financial incentives become counterproductive in such situ-
ations since they induce a less favorable intertemporal distribution of equilibrium
efforts, which overcompensates their beneficial impact.
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1.5.2 Numerical Examples

This section shows the extend to which success and payoff reversals arise. Consider
the simplest form of the dynamic model where T = 2. Let n= 4, δ = 0.95, effort
costs be characterized by a power function of degree three11 with scaling factor
κ > 0, and the success function be CES with α= 1, β > 0, and ρ ≤ 1,

c
�

et,i

�

= κ
�

et,i

�3
, and p

�

et,1, . . . , et,n

�

= β

�

n
∑

i=1

eρt,i

�1/ρ

. (1.11)

Define z as the reward that implements e∗2 = n−1/ρ/β , which constitutes the upper
bound for the rewards in both periods.12

Success Reversals. Calculating and inserting equilibrium efforts in the success
function shows that the success rate only depends on relative rewards zt/z. Fig-
ure 1.3 depicts iso success rate lines.

Figure 1.3. Iso success rate lines and success reversals.
(n = 4, α = 1, and δ = 0.95)

11. Payoff reversals and success reversals due to substitution of efforts also arise for quadratic
effort costs. Degree three, however, allows us to study all forms of reversals in a single example.

12. z is the reward that implements success for sure in period 2 and captures the model param-
eters κ, ρ, and β . Note that for all t ∈ {1,2} focusing on rewards zt < z ensures that (i) equilibrium
efforts e∗t are unique and (ii) p

�

e∗t , . . . , e∗t
�

satisfies Assumption 1.
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Success reversals occur for those combinations of rewards for which the iso suc-
cess rate lines have a positive slope (cf. Red Area (i) and (ii) in Figure 1.3). Con-
sidering both areas together demonstrates that success reversals may arise for any
positive reward in the first period, i.e., there are always some second-period re-
wards for which the success rate decreases. Success reversals due to substitution
of efforts arise for reward profiles in Red Area (i), whereas success reversals due
to sensitivity of efforts emerge in Red Area (ii). To illustrate Corollary 3, compare
zA

1 =
�

0.86 z, 0.15 z
�

and zB
1 =
�

0.93 z, 0.6 z
�

. While zB
1 clearly dominates zA

1 , Fig-
ure 1.3 shows that zA

1 incentivizes a higher success rate. By the same logic, for any
given reward profile in the red and blue areas, there exists a dominated reward
profile that induces a higher success rate. We can thus conclude that red and blue
areas mark those reward profiles that may be counterproductive for success.

Payoff Reversals. Since expected payoffs do not solely depend on relative re-
wards, let κ= ρ = 1 and β = 0.5. Figure 1.4 portrays iso expected payoff lines for
first-period expected payoffs.

Figure 1.4. Iso payoff lines and payoff reversals.
(n = 4, α = 1, β = 0.5, δ = 0.95, and κ = ρ = 1)

The red area marks reward profiles that cause a payoff reversal. Analogously to
before, reward profiles that may be counterproductive, i.e., those for which a dom-
inated reward profile with a higher expected payoff in period 1 exists, are repre-
sented by the red and blue area. For example, although z̃B

1 =
�

0.91 z, 0.7 z
�

specifies
higher rewards in both periods than z̃A

1 =
�

0.89 z, 0.05 z
�

, Figure 1.4 reveals that
agents’ expected payoffs from working on the project are higher with z̃A

1 .
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Comparison of Success and Payoff Reversals. Since both reversals originate
from the discouragement effect, a natural question is whether a success reversal
implies a payoff reversal or vice versa. Comparing the red areas in Figures 1.3 and
1.4 reveals that success and payoff reversals can occur together but also separately.
This finding allows us to state the following proposition.

Proposition 3 (Comparison of Reversals).
Success reversals are neither necessary nor sufficient for payoff reversals and vice versa.

Figure 1.5 illustrates Proposition 3 by exploring which combinations of first-period
reward and discount factor can give rise to reversals, i.e., for which combinations
the success rate and/or first-period expected payoffs are locally decreasing in the
second-period reward.

Figure 1.5. Existence of success and payoff reversals.
(n = 4, α = 1, β = 0.5, and κ = ρ = 1)
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1.6 Conclusion

This paper explores the effectiveness of financial incentives. Table 1.2 summarizes
our results by presenting the impact of an inframarginal increase in rewards on the
project’s success rate and the agents’ expected payoffs in period τ ∈ {1, . . . , t}.

Table 1.2. Effect of an inframarginal increase ∆zt in the reward in period t.

single agent multiple agents

static model ∆S
∗ > 0, ∆v

∗
τ
> 0 ∆S

∗ > 0, ∆v
∗
τ
> 0

dynamic model ∆S
∗ Ò 0, ∆v

∗
τ
≥ 0 ∆S

∗ Ò 0, ∆v
∗
τ
Ò 0

Since dynamic interaction is shown to undermine the effectiveness of incentives,
stronger incentives may be (i) counterproductive for project success and (ii) detri-
mental to agents (i.e., lower their expected payoffs from working on the project).
Although both phenomena result from the intertemporal discouragement effect of
higher incentives, they can occur together but also separately.

Our paper provides a novel, non-behavioral explanation for the ineffectiveness of
incentives. The results can be useful in shedding light on various real-world phe-
nomena. First, in practice, many projects are either delayed or not completed at all
(cf. Fabricius and Büttgen, 2015; Park, 2021; Van Genuchten, 1991). Long delays
are typical in the construction of public infrastructure as well as in defense and
high-tech projects.13 Well-known examples include the Sydney Opera House and
Boston’s Third Harbor Tunnel Project, which were completed ten and eight years
later, respectively, than initially planned. Our paper offers an explanation for such
delays and failures since it shows that agents may strategically invest little effort
during project phases, even if strong incentives are provided. Second, it has been
empirically shown that only a fraction of employees work in jobs with financial
incentives and that these incentives tend to be small relative to total income (see,
e.g., Baktash et al., 2022; Bell and Van Reenen, 2014; Hong et al., 2019; Lemieux
et al., 2009). Our paper helps to understand these findings as it reveals that, with
dynamic interaction, incentives can be counterproductive due to their adverse in-
tertemporal effect.

13. Park (2021), for instance, finds that among 113 major infrastructure projects in the US
and the UK between 1999 and 2018 about 75% were delayed.
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Appendix 1.A

Appendix 1.A.1 provides all proofs of our main results. Appendix 1.A.2 examines
the curvature of equilibrium efforts, while Appendix 1.A.3 explores the effect of
higher incentives on the success rate in the case of multiple periods T > 2.

1.A.1 Proofs of the Main Results

Proof of Lemma 1. The proof works in two steps. We first show existence and
uniqueness êt,i, which denotes agent i’s best response, i.e., his optimal effort choice
in period t given the efforts of the other agents. Subsequently, we argue that ef-
forts and expected payoffs are identical across agents in the subgame perfect Nash
equilibrium and that they are either zero or determined by (FOCt).

Step 1. Taking into account the non-negativity condition et,i ≥ 0, the Lagrangian of
the maximization problem (1.1) writes as

L (et,i) = vt,i(et,1 , . . . , et,n) + λt,iet,i

= p(et,1 , . . . , et,n) zt +
�

1 − p(et,1 , . . . , et,n)
�

δv∗t+1,i − c(et,i) + λt,iet,i.
(1.A.1)

The Karush-Kuhn-Tucker conditions are necessary and, by concavity, also sufficient
for a maximum:

∂L
∂ et,i

=
∂ p(et,1 , . . . , et,n)

∂ et,i

�

zt − δv∗t+1,i

�

− c′(et,i) + λt,i = 0,

et,i ≥ 0, λt,i ≥ 0, and λt,iet,i = 0 for all t, i.
(1.A.2)

We have to distinguish between the case where λ∗t,i > 0 and the case where λ∗t,i = 0.

First, if λ∗t,i > 0, then agent i’s effort choice in period t is uniquely determined by
êt,i = 0 due to the complementary slackness condition. This case is relevant if zt −
δv∗t+1,i < 0, since otherwise (1.A.2) cannot be satisfied.

Second, if λ∗t,i = 0, then the derivative in (1.A.2) simplifies to

∂ p(et,1 , . . . , et,n)

∂ et,i

�

zt − δv∗t+1,i

�

− c′(et,i) = 0, (1.A.3)

such that the effort êt,i is determined by the solution to the first-order condition.
This case is relevant if the net reward is non-negative, zt −δv∗t+1,i ≥ 0. Now, two
subcases need to be distinguished.
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If zt −δv∗t+1,i = 0, then it follows from Assumption 2 that êt,i = 0 is the unique solu-
tion to (1.A.3).

If zt −δv∗t+1,i > 0, then existence and uniqueness of êt,i can be seen as follows. Con-
sidering the limits of the l.h.s. of (1.A.3), we get

lim
et,i→0

∂ p(et,1 , . . . , et,n)

∂ et,i

�

zt − δv∗t+1,i

�

− c′(et,i) > 0,

lim
et,i→∞

∂ p(et,1 , . . . , et,n)

∂ et,i

�

zt − δv∗t+1,i

�

− c′(et,i) < 0,

where the last limit obtains since ∂ p(et,1 , . . . , et,n)/∂ et,i→ 0 because p is strictly
increasing, weakly concave and bounded by Assumption 1. Hence, the Interme-
diate Value Theorem implies the existence of a solution êt,i > 0. Differentiating
the l.h.s. of (1.A.3) yields

∂ 2p(et,1 , . . . , et,n)

∂ e2
t,i

�

zt − δv∗t+1,i

�

− c′′(et,i),

which is strictly negative by Assumption 1 and 2. Hence, êt,i is unique.

Step 2. We derive the subgame perfect Nash equilibrium by backward induction.
Consider period T first. As the game ends after T at the latest, the continuation
payoff in this period is zero for all agents, v∗T+1,i = v∗T+1,j = v∗T+1 = 0 for all i, j ∈ N .
Since it thus holds that zT −δv∗T+1,i > 0 for all i ∈ N , every agent chooses his best
response êT,i according to (1.A.3). Symmetry of p now implies that efforts must be
identical across agents in the Nash equilibrium, e∗T,i = e∗T,j = e∗T for all i, j ∈ N , since
otherwise (1.A.3) cannot be satisfied for all i ∈ N . The equilibrium effort e∗T is thus
determined by the unique solution to

∂ p(eT , . . . , eT)
∂ eT,i

�

zT − δv∗T+1

�

− c′(eT) = 0,

which is exactly (FOCt) in the case where t= T. Identical equilibrium efforts imply
identical effort costs across agents, such that we can read off (1.1) that the equilib-
rium expected payoff v∗T,i is also unique and identical across agents, v∗T,i = v∗T,j = v∗T
for all i, j ∈ N .

Consider period T − 1 next. Now, two cases can occur. If zT−1 −δv∗T < 0, then
zT−1 −δv∗T,i < 0 holds for all i ∈ N , such that choosing zero effort is the best re-
sponse for every agent. Hence, in equilibrium, it holds that e∗T−1,i = e∗T−1,j = e∗T−1 = 0
for all i, j ∈ N . By contrast, if zT−1 −δv∗T ≥ 0, then zT−1 −δv∗T,i ≥ 0 holds for all
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i ∈ N , such that every agent chooses his best response êT−1,i according to (1.A.3).
Symmetry of p again implies that e∗T−1,i = e∗T−1,j = e∗T−1 holds for all i, j ∈ N , where
e∗T−1 is determined by the unique solution to

∂ p(eT−1 , . . . , eT−1)
∂ eT−1,i

�

zT−1 − δv∗T
�

− c′(eT−1) = 0,

which is exactly (FOCt) in the case where t= T − 1. Identical equilibrium efforts
together with (1.1) then imply that the equilibrium expected discounted payoff
v∗T−1,i is also unique and identical across agents, v∗T−1,i = v∗T−1,j = v∗T−1 for all i, j ∈ N .

Repeating the previous arguments until period 1 completes the proof of
Lemma 1.1⁴ □

Proof of Lemma 2.

Part (i). The fact that e(zt, v∗t+1) satisfies

e(zt, v∗t+1)

¨

= 0 if zt ≤ δv∗t+1

> 0 if zt > δv∗t+1,

follows directly from the proof of Lemma 1. To see that equilibrium efforts con-
verge to infinity for zt→∞, note first that zt→∞ implies that zt > δv∗t+1. Hence,
equilibrium efforts are determined by the solution to (FOCt), which can be rewrit-
ten as

�

zt − δv∗t+1

�

=
nc′(et)
P′(et)

. (1.A.4)

For zt→∞, the l.h.s. of (1.A.4) converges to infinity. For (1.A.4) to hold, the
r.h.s. must also converge to infinity. Since r.h.s. is continuous and strictly increas-
ing in et by Assumption 1 and 2, this requires that e∗t →∞. Hence, we have that
e(zt, v∗t+1)→∞ for zt→∞.

Part (ii). If zt ≤ δv∗t+1, then e(zt, v∗t+1)= 0, which directly implies that

∂ e(zt, v∗t+1)

∂ zt
= −

1
δ

∂ e(zt, v∗t+1)

∂ v∗t+1

= 0.

14. Note that we used the fact that e∗t = 0 if zt −δv∗t+1,i = 0 in the definition of e(zt, v∗t+1).
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By contrast, if zt > δv∗t+1, then differentiation of (FOCt) yields

∂ e(zt, v∗t+1)

∂ zt
=

<0
︷ ︸︸ ︷

−P′(e(zt, v∗t+1))

P′′(e(zt, v∗t+1))
�

zt − δv∗t+1

�

︸ ︷︷ ︸

≤0

− nc′′(e(zt, v∗t+1))
︸ ︷︷ ︸

<0

> 0, (1.A.5)

and

∂ e(zt, v∗t+1)

∂ v∗t+1

=

>0
︷ ︸︸ ︷

δP′(e(zt, v∗t+1))

P′′(e(zt, v∗t+1))
�

zt − δv∗t+1

�

︸ ︷︷ ︸

≤0

− nc′′(e(zt, v∗t+1))
︸ ︷︷ ︸

<0

< 0. (1.A.6)

Comparing (1.A.5) and (1.A.6), reveals that

∂ e(zt, v∗t+1)

∂ zt
= −

1
δ

∂ e(zt, v∗t+1)

∂ v∗t+1

> 0,

for zt > δv∗t+1. □

Proof of Proposition 1. By the chain rule, it holds for the derivative of the equilib-
rium efforts in period t− 1 with respect to zt that

∂ e(zt−1)
∂ zt

=
∂ e(zt−1, vt(zt))

∂ v∗t

∂ vt(zt)
∂ zt

. (1.A.7)

Since the first factor in (1.A.7) is strictly negative for zt−1 > δv∗t and zero otherwise
by Lemma 2, while the second factor in (1.A.7) is strictly positive for zt > δv∗t+1 and
zero otherwise by (1.5), it follows that

∂ e(zt−1)
∂ zt

=

¨

= 0 if zt−1 ≤ δv∗t or zt ≤ δv∗t+1

< 0 if zt−1 > δv∗t and zt > δv∗t+1.

□
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Proof of Corollary 1. Consider T > τ≥ 1. From Proposition 1, it follows that
higher rewards in any periods t ∈ {τ+ 1, . . . , T} cause a discouragement effect if
zt > δv∗t+1 holds for all t ∈ {τ, . . . , T}. Hence, it remains to show that this condition
is indeed satisfied if the reward profile zτ is either (i) non-increasing over time or
(ii) the increase is sufficiently small.

To this end, suppose first that zτ is non-increasing over time. Consider period T.
Since zT > 0 and v∗T+1 = 0, it holds that zT > δv∗T+1. By Lemma 2, agents’ equilib-
rium efforts are interior, e∗T > 0. Since e∗T > 0, agents’ effort costs are strictly positive
in period T, c(e∗T)> 0. Hence, (1.1) implies that v∗T <max{zT, v∗T+1}= zT. Consider
period T − 1 next. Since zτ is non-increasing over time, we have that zT−1 ≥ zT > v∗T.
By Lemma 2, agents’ equilibrium efforts are strictly positive again, e∗T−1 > 0, which
then implies v∗T−1 <max{zT−1, v∗T}= zT−1.

Repeating the previous arguments until period τ proves that zt > δv∗t+1 holds for
all t ∈ {τ, . . . , T} if zτ is non-increasing over time. Finally, by continuity, zt > δv∗t+1

also holds for all t ∈ {τ, . . . , T} if zτ is increasing over time, but the increase is
sufficiently small. □

Proof of Theorem 1. Let T = 2 and z2 be given.

Part (i). Denote z the reward that implements e in period 1.1⁵ We first show that
z1→ z− implies MRS→∞ if P′′ is zero on a sufficiently large interval [e, e]. To do
so, note that if P′′ is zero for e ∈ [e, e], then evaluating the MRS at z and using that
P′( e )= P′( e ) yields

�

1 − P(e(z2))
�

P′( e )
�

1 − P( e )
�

P′(e(z2))
. (1.A.8)

If the interval [e, e] is sufficiently large, then P( e )= P( e )+ P′( e )(e− e)→ 1.
Since all other terms in (1.A.8) are strictly positive and finite, this directly implies
MRS→∞. Now, it remains to show that the MRE is sufficiently large for z. To this
end, note that evaluating (1.A.6) at z yields

∂ e(z, v∗2)

∂ v∗2
=
δP′( e )
−nc′′( e )

=
δP′( e )

−nc′′( e )
, (1.A.9)

which converges to −∞ if c′′( e )→ 0. Since z2 is strictly positive, (1.5) shows that
∂ v2(z2)/∂ z2 is strictly positive. This implies together with (1.A.7) and (1.A.9) that

15. Note from Lemma 2 that since e(v∗t+1, v∗t+1)= 0 and limzt→∞ e(zt, v∗t+1)=∞ indeed any
effort level can be implemented.
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∂ e(z1)/∂ z2→−∞ for z and c′′( e )→ 0. Since z2 > 0, we find that ∂ e(z2)/∂ z2

is strictly positive and finite by (1.A.5). It thus holds that MRE→∞ for z and
c′′( e )→ 0. Hence, by continuity, we can infer that if P′′ is sufficiently close to zero
on a sufficiently large interval e ∈ [e, e] and c′′( e ) is sufficiently small, then Condi-
tion (1.9) is satisfied for z1 in the left local neighborhood of z.

Part (ii). We show that (1.9) holds since z1→ δv∗+2 implies MRE→∞ if P′′ is
strictly negative but finite and P′(0)/c′′(0)→∞. To do so, note first that z1→ δv∗+2
implies e(z1, v∗2)→ 0+, by (FOCt) and Assumption 1 and 2. Using (1.A.6), the
marginal equilibrium effort is thus

lim
z1→δv∗+2

∂ e(z1, v∗2)

∂ v∗2
=

δP′(0)
P′′(0)0 − nc′′(0)

= −
δP′(0)
nc′′(0)

. (1.A.10)

Hence, (1.A.10) reveals that if P′′ is finite and P′(0)/c′′(0)→∞, then z1→
δv∗+2 implies ∂ e(z1, v∗2)/∂ v∗2→−∞. Since z2 is strictly positive, (1.5) shows that
∂ v2(z2)/∂ z2 is strictly positive. We can thus conclude from (1.A.7) that z1→ δv∗+2
implies ∂ e(z1)/∂ z2→−∞. Since z2 > 0 and P′′ strictly negative, we find that
∂ e(z2)/∂ z2 is strictly positive and finite by (1.A.5). Accordingly, if z1→ δv∗+2 , then
MRE→∞. To see that the MRS, on the other hand, is strictly positive in the limit
for z1→ δv∗+2 , simply note that

lim
z1→δv∗+2

�

1 − P(e(z2))
�

P′(e(z1))
�

1 − P(e(z1))
�

P′(e(z2))
=

�

1 − P(e(z2))
�

P′(0)

P′(e(z2))
> 0,

because z2 is finite. Hence, by continuity, we can infer that if P′′ is finite and strictly
negative while P′(0)/c′′(0) is sufficiently large, then Condition (1.9) is satisfied for
z1 in the right local neighborhood of δv∗2. □

Proof of Corollary 2. Let T = 2 and z2 be given such that e∗2 ∈ (0, e). Denote z the
(finite) reward that implements e in period 1. The proof then directly follows from
(1.9). If z1→ z− , then

�

1− P(e(z1))
�

→ 0, which implies that MRS→∞ since all
other terms are either independent of z1 or strictly positive and finite. Moreover,
from (1.A.7) together with (1.A.6) and (1.5), it follows that MRE is strictly positive
and finite for z1→ z− if limet,i→e c′′(et,i) is finite. Hence, Condition (1.9) is satisfied
for z1→ z− since the l.h.s. converges to infinity. We can thus conclude that (1.9)
holds for z1 in the left local neighborhood of z. □
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Proof of Proposition 2. Using Equation (1.1), Lemma 1, and the Envelope The-
orem, we obtain

∂ vt−1(zt−1)
∂ zt

=
�

1 − P(e(zt−1))
�∂ vt(zt)
∂ zt

+
�

zt−1 − δv∗t
�

n−1
n P′(e(zt−1))

∂ e(zt−1)
∂ zt

.
(1.A.11)

If zt ≤ δv∗t+1, then ∂ vt−1(zt−1)/∂ zt = 0 by (1.A.11) together with (1.5) and (1.6).
By contrast, if zt > δv∗t+1, then (1.5) implies that ∂ vt(zt)/∂ zt > 0. Using (1.A.7),
we can then rewrite (1.A.11) as

∂ vt−1(zt−1)
∂ zt

∝ 1 − P(e(zt−1))
︸ ︷︷ ︸

>0

+
�

zt−1 − δv∗t
�

n−1
n P′(e(zt−1))

∂ e(zt−1, v(zt))
∂ v∗t

︸ ︷︷ ︸

≤0

. (1.A.12)

The first term on the r.h.s. of (1.A.12) is always positive by Assumption 1, while the
second term is strictly negative for zt−1 > δv∗t and zero otherwise by Assumption 1
and Lemma 2. Hence, two countervailing effects arise if zt−1 > δv∗t and zt > δv∗t+1

holds. □

Proof of Theorem 2. Let T ≥ t> 1, n> 1 and zt be given such that zt > δv∗t+1.
Denote z the reward that implements e in period t− 1.1⁶ From Proposition 2, we
can infer that ∂ vt−1(zt−1)/∂ zt < 0 if and only if

1 − P(e(zt−1)) < −
�

zt−1 − δv∗t
�

n−1
n P′(e(zt−1))

∂ e(zt−1, v(zt))
∂ v∗t

.

Inserting (FOCt) and (1.A.6) yields

1 − P(e(zt−1)) <
−δ(n − 1)c′(e(zt−1))P′(e(zt−1))

P′′(e(zt−1))
�

zt−1 − δv∗t
�

− nc′′(e(zt−1))
. (1.A.13)

If P′′ is zero for e ∈ [e, e], then evaluating (1.A.13) for z and using that P′( e )=
P′( e ) yields

1 − P( e ) <
δ(n − 1)

n

c′( e ))P′( e )

c′′( e )
. (1.A.14)

If the interval [e, e] is sufficiently large, then P( e )= P( e )+ P′( e )(e− e)→ 1 such
that the l.h.s. of (1.A.14) converges to zero. If, in addition, c′′( e )→ 0, then the

16. Note from Lemma 2 that since e(v∗t+1, v∗t+1)= 0 and limzt→∞ e(zt, v∗t+1)=∞ indeed any
effort level can be implemented.
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r.h.s. of (1.A.14) converges to infinity. Hence, by continuity, we can infer that if P′′

is sufficiently close to zero on a sufficiently large interval [e, e] and c′′( e ) is suffi-
ciently small, then Condition (1.9) is satisfied for z1 in the left local neighborhood
of z. □

Proof of Corollary 3. The corollary follows directly from the existence of success
and payoff reversals in combination with continuity of equilibrium efforts and ex-
pected payoffs: if increases in rewards are sufficiently small in periods that have a
positive impact on the success rate/expected payoff, then they can be overcompen-
sated by sufficiently large increases in periods with a negative impact. □

Proof of Proposition 3. The proposition follows directly from comparing Figures
1.3 and 1.4. □

1.A.2 Curvature of Equilibrium Efforts

For zt > δv∗t+1, the equilibrium efforts are determined by (FOCt), and their deriva-
tive with respect to zt is (1.A.5). Computing the derivative of (1.A.5), we get that

∂ 2e(zt, v∗t+1)

∂ z2
t

= −
P′′(·) ∂ e(zt,v

∗
t+1)

∂ zt

�

P′′(·)
�

zt − δv∗t+1

�

− nc′′(e(zt, v∗t+1))
�

�

P′′(·)
�

zt − δv∗t+1

�

− nc′′(e(zt, v∗t+1))
�2

+
P′(·)
�

P′′(·) + ∂ e(zt,v
∗
t+1)

∂ zt

�

P′′′(·)
�

zt − δv∗t+1

�

− nc′′′(e(zt, v∗t+1))
��

�

P′′(·)
�

zt − δv∗t+1

�

− nc′′(e(zt, v∗t+1))
�2 .

(1.A.15)

Inserting Equation (1.A.5) in (1.A.15) and further simplifying yields

∂ 2e(zt, v∗t+1)

∂ z2
t

=

>0
︷ ︸︸ ︷

2P′(·)

≤0
︷︸︸︷

P′′(·)
�

P′′(·)
�

zt − δv∗t+1

�

− nc′′(e(zt, v∗t+1))
�2

︸ ︷︷ ︸

>0

+

>0
︷︸︸︷

P′(·)

>0
︷ ︸︸ ︷

∂ e(zt, v∗t+1)

∂ zt

�

=:Factor 1
︷ ︸︸ ︷

P′′′(·)
�

zt − δv∗t+1

�

− nc′′′(e(zt, v∗t+1))
��

�

P′′(·)
�

zt − δv∗t+1

�

− nc′′(e(zt, v∗t+1))
�2

︸ ︷︷ ︸

>0

.

(1.A.16)

Consider the case where P′′ = 0 first. In this case, the second derivative is negative
if c′′′ > 0, zero if c′′′ = 0, and positive if c′′′ < 0.
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Now, consider the case where P′′ < 0. In this case, the sign of the second derivative
is determined by the interplay of the derivatives of p and c. If Factor 1 is negative, or
positive but sufficiently small, the second derivative is negative such that e(zt, v∗t+1)
is concave in zt for zt > δv∗t+1. Note that this is always satisfied for c′′′ ≥ 0 and P′′′ ≤
0. If Factor 1 is positive and sufficiently large, the second derivative is positive,
implying the convexity of e(zt, v∗t+1). This is the case whenever P′′ and P′′′ are close
to zero, and c′′′ < 0 is sufficiently small.

1.A.3 Success Rates with Multiple Periods

We briefly discuss the case of more than two periods. With T > 2, define the condi-
tional probability

PAfter := prob (success in t > 2 | no success in t = 1,2)

and rewrite the success rate as

S(z1) =
�

P(e(z1)) +
�

1 − P(e(z1))
�

P(e(z2))
�

�

1 − PAfter
�

+ PAfter.

Since z2 only affects equilibrium efforts in the first two periods, PAfter is indepen-
dent of z2. Therefore, it holds that

∂ S(z1)
∂ z2

∝
�

1 − P(e(z1))
�

P′(e(z2))
∂ e(z2)
∂ z2

+
�

1 − P(e(z2))
�

P′(e(z2)))
∂ e(z1)
∂ z2

.
(1.A.17)

Thus, whether ∂ S(z1)/∂ z2 Ò 0 in the case of three or more periods is determined
by the same condition as in the case of two periods, cf. (1.8) and (1.A.17).

This observation has a striking implication: From any two-period reward profile
that causes a success reversal, we can construct reward profiles in the model
with T > 2 that also induce success reversals. The idea is as follows. Suppose
the reward profile z̃1 =

�

z̃1, z̃2

�

generates a success reversal, then the resulting
equilibrium efforts satisfy Condition (1.A.17). We construct a new reward profile
ẑ1 =
�

ẑ1, ẑ2, . . . , ẑT

�

, where we can select arbitrary rewards ẑ3. The equilibrium ef-
forts in the first two periods remain unchanged if we choose ẑ1 and ẑ2, such that
the new reward profile provides the same net rewards in these periods as the initial
profile. This requires setting ẑ2 = z̃2 +δv̂∗3 and ẑ1 = z̃1 +δv̂∗2 −δṽ∗2. Since the con-
ditions for a success reversal are otherwise identical (see arguments above), there
must also be a success reversal for the new reward profile ẑ1.



Appendix Chapter 1 | 42

It is straightforward that the success rate can also decrease in the rewards of later
periods. The simplest example is the one where there are negative net rewards in
the first T − 2 periods and positive net rewards in the last two periods. The agents
then fail for sure in the first T − 2, such that the success rate reads

S(z1) = P(e(zT−1)) +
�

1 − P(e(zT−1))
�

P(e(zT)).

Since efforts are zero in the first T − 2 periods, it holds that

∂ S(z1)
∂ zT

=
�

1 − P(e(zT−1))
�

P′(e(zT))
∂ e(zT)
∂ zT

+
�

1 − P(e(zT))
�

P′(e(zT)))
∂ e(zT−1)
∂ zT

.
(1.A.18)

Thus, except for the time indices, the conditions for a success reversal are identical
to the case of two periods, cf. (1.8) and (1.A.18). Again, this allows us to construct
reward profiles in the model with T > 2 that also induce success reversals. Suppose
the reward profile z̃1 =

�

z̃1, z̃2

�

generates a success reversal. The reward profile
ẑ1 =
�

ẑ1, . . . , ẑT−2, z̃1, z̃2

�

then also causes a success reversal, if ẑt < δv̂∗t+1 holds for
all t ∈ {1, . . . , T − 2}.1⁷

17. The reward profile ẑ1 =
�

ϵ, . . . , ϵ, z̃1, z̃2

�

where ϵ is sufficiently small would be an ex-
ample of a reward profile that gives rise to a success reversal since ẑt < δv̂∗t+1 is satisfied for all
t ∈ {1, . . . , T − 2}.
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Chapter 2

Detrimental Incentive Mechanisms
in Dynamic Principal-Agent Relationships⋆

Abstract

This article explores a dynamic moral-hazard setting in which a principal hires a team of agents
for a project. As the project generates revenue upon completion, the principal incentivizes agents’
efforts by designing bonuses for success. If bonuses are provided through spot or renegotiation-
proof long-term contracts, an increase in project revenue may adversely affect (i) agents’ expected
payoffs, (ii) the principal’s expected profit, and (iii) the likelihood of project success. Even for long-
term contracts under full commitment, the detrimental effects on agents and project success can
persist, while, for the principal, these incentive mechanisms render higher revenues necessarily
beneficial.
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2.1 Introduction

Since its introduction by Ross (1973) and Jensen and Meckling (1976), the princi-
pal-agent paradigm has been widely used as a tool to analyze the effectiveness
and design of incentives. Much work has been devoted ever since to exploring how
a principal optimally sets incentives for an agent under asymmetric information
(cf. literature syntheses by Bolton and Dewatripont, 2005; Laffont and Martimort,
2002; Salanié, 2005). The resulting literature characterizes incentive mechanisms
in the form of optimal contracts for many conceivable situations of interaction be-
tween a principal and an agent. In particular, starting with seminal contributions
by Mirrlees (1976) and Holmström (1979), the principal-agent relationship over-
shadowed by moral hazard has received special attention in economic research.1
Optimal contracts were, for instance, derived for moral hazard in conjunction with
multiple tasks (e.g., Holmström and Milgrom, 1991; Laux, 2001; Mylovanov and
Schmitz, 2008), multiple agents (e.g., Halac et al., 2021; Holmström, 1982; Winter,
2004), and dynamic interaction (e.g., Piskorski and Westerfield, 2016; Rogerson,
1985; Sannikov, 2008).

Our paper contributes to this literature by considering a fairly general model of dy-
namic moral hazard that allows for multiple agents to investigate (i) how the eco-
nomic environment affects equilibrium incentive mechanisms under different con-
tract classes (spot contracting or long-term contracting with limited or full commit-
ment) and (ii) how these, in turn, affect the contracting parties and project success.
We reveal several novel and surprising effects: inter alia, it is shown that higher rev-
enues upon project completion may generate an incentive mechanism that leaves
the agents and the principal worse off, while at the same time reducing the like-
lihood of success. We gain these insights in a parsimonious moral-hazard model,
where a principal (female) hires a team of agents (male) to work on a project. The
agents have a finite number of periods to succeed with the project, and the success
probability in a period is determined by agents’ efforts in the respective period.
Since the completed project generates a time-dependent revenue for the principal,
she incentivizes her agents to provide efforts by offering time-dependent bonuses
upon project success.

In studying incentive mechanisms in this model, we first explore how the prin-
cipal designs spot contracts in equilibrium. Future spot contracts can be correctly
foreseen by all parties due to rational expectations. Accordingly, the principal antic-

1. See Georgiadis (2022) for an excellent overview of the theoretical and empirical literature
on moral hazard.
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ipates the profit she can expect from the rest of the game when designing bonuses,
just as agents anticipate their future payoffs when they decide on their effort pro-
vision. We later show that the equilibrium sequence of spot contracts obtained in
this setting coincides with the equilibrium renegotiation-proof long-term contract.
Therefore, our results gained for spot contracts carry over entirely to a second
highly relevant class of incentive mechanisms.

Analyzing how more favorable economic environments, i.e., higher revenues upon
project success, change the design of spot contracts reveals several interesting ef-
fects. From an intraperiod perspective, higher revenues cause the principal to in-
crease agents’ bonuses in order to incentivize higher efforts. However, from an in-
terperiod perspective, higher bonuses discourage agents’ effort provision in the pre-
vious period. The principal correctly foresees this discouragement effect and may
react in two possible ways. First, the principal may increase the bonus payment
in the preceding period in order to counteract the discouragement effect. We es-
tablish conditions when this reincentive effect arises and show that it is never opti-
mal for the principal to offset or even overcompensate the discouragement effect
completely. Instead, the principal only increases earlier bonuses up to a level that
equilibrium efforts in the previous period remain lower than initially. Second, the
principal may decrease the bonuses in the preceding period and thereby amplify
the discouragement effect. We specify intuitive conditions for this disincentive effect
to occur. These mechanisms, originating from agents’ optimizing behavior and the
principal’s equilibrium contract design, can then engender three surprising conse-
quences for the contracting parties and the project itself.

(i) From an agent’s perspective, a higher revenue may entail an equilibrium con-
tract that harms his payoff that he can expect from working on the project.
There are two root causes for this payoff reversal. First, although higher rev-
enues lead to higher bonuses in the same period – a positive effect for the
expected payoff –, the negative effect of lower equilibrium bonuses in the
previous period due to the disincentive effect can outweigh. Second, an addi-
tional negative effect arises from the team externality in the case of multiple
agents. Since teammates reduce their equilibrium efforts in the previous pe-
riod, succeeding in that period becomes less likely, which can ultimately harm
the agent’s expected payoff. With multiple agents, expected payoffs may thus
decline even if higher revenues cause the principal to pay higher bonuses in
all periods.
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(ii) Even more surprisingly, the incentive mechanisms that the principal designs
with higher revenues can reduce her own expected profit. The intuition be-
hind this profit reversal is as follows. Higher revenues are per se – i.e., for a
given contract – beneficial for the principal’s expected profit. However, with
higher revenues, the equilibrium contract may change and incentivize higher
efforts in less lucrative periods, while implementing lower efforts in more
profitable periods.

(iii) Focusing on the project itself, the incentive mechanism associated with
higher revenues may induce an intertemporal distribution of efforts that dete-
riorates the chances for successful project completion. This is a phenomenon
we call success reversal.

The second result is probably the most remarkable one. From an abstract perspec-
tive, it shows that a player can actually suffer from higher payments if she has
to interact with her own future self. This holds even though her expectations are
perfectly rational and her preferences are time-consistent.2

Moreover, we investigate whether these reversals also arise in the scenario with
full commitment (where the principal can commit to any long-term contract). It
is straightforward that profit reversals cannot occur with full commitment. The
reason is that the principal is then able to maintain a contract if revenues increase,
such that she necessarily benefits from higher revenues. By contrast, we show that
payoff and success reversal can still emerge with full commitment.

These insights gained in our simple and intuitive model therefore serve as a the-
oretical foundation that might help to explain why lucrative projects tend to be
delayed or fail completely. Agents may strategically withhold efforts in lucrative en-
vironments harming the project and its stakeholders when their incentives are de-
signed endogenously and they engage in dynamic interaction. Since such settings
are frequently encountered in practice, our results offer an explanation of why
project delays and failures are such a prevalent phenomenon even in highly prof-
itable projects. Indeed, there is ample empirical and anecdotal evidence in both
academic research and the popular press reporting this phenomenon; see the con-
clusion for a detailed discussion. Our analysis hints towards the crucial importance
of the intertemporal distribution of a project’s revenues for its performance, which
has been widely overlooked so far.

2. It is well-known that, with erroneous beliefs or time-inconsistent preferences, a player
might act against her own long-run interest if she is offered options that are tempting in some
aspects, but detrimental to her long-run interests. For instance, longer deadlines can cause time-
inconsistent players to procrastinate, which might ultimately be harmful.
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Related Literature. Incentive mechanisms in the form of spot contracts and
long-term contracts are frequently encountered in the literature (e.g., Chiappori et
al., 1994; Fudenberg et al., 1990; Holmström, 1983). The latter form is subdivided
in (i) long-term contracts with full commitment and (ii) renegotiation-proof long-
term contracts where the principal cannot exclude future renegotiations due to her
limited commitment power.

Pioneering contributions in the dynamic principal-agent literature examine the re-
lationship between those three contract classes. When comparing the outcomes of
long-term contracts under full and limited commitment, early papers by Chiappori
et al. (1994), Dewatripont (1989), and Laffont and Tirole (1990) reveal that the
lack of commitment constitutes a severe source of friction in dynamic principal-
agent relationships. That is, limited commitment leads to incentive mechanisms
that are less favorable for the principal since, in the words of Rey and Salanie
(1990, p. 516), “the incentive problems created by private information are generally
best overcome through ex ante commitment to ex post inefficiencies.” For the principal
in our model, it is beneficial to commit to potentially insufficient bonuses in late pe-
riods to obtain “cheap incentives” early in the game, i.e., to incentivize substantial
efforts in early periods with relatively low bonus payments. Concerning spot and
renegotiation-proof long-term contracts, Hart and Tirole (1988) were among the
first to find that both contracts can, but do not necessarily have to, result in the
same outcome. Intuitively, as emphasized by Bolton (1990), renegotiation-proof
long-term contracts deviate from the sequence of spot contracts whenever they al-
low parties to improve efficiency through intertemporal transfers. In our model,
such transfers would take the form of “cheap incentives” in early periods. Since
renegotiation-proof long-term contracts are shown to be unable to implement these
“cheap incentives”, they do not enable efficiency-enhancing transfers, which is why
they coincide with the sequence of spot contracts in equilibrium.

Among the related articles in the dynamic moral-hazard literature, many investi-
gate the design of incentive mechanisms for project completion in single-agent set-
tings. With one agent and multi-staged projects, Toxvaerd (2006) shows that the
renegotiation-proof long-term contract performs better in terms of the expected
project completion time than spot contracts. In addition, he finds that increas-
ingly high-powered incentives should be provided as progress is made. Mason and
Välimäki (2015), extended by Altan (2019), on the contrary, find optimal incen-
tives for project completion to be decreasing over time if they are provided via spot
contracts or long-term contracts with full commitment. More recent single-agent
contributions by Green and Taylor (2016), Halac et al. (2016), Mayer (2022), and
Varas (2018) investigate the design of long-term contracts under full commitment



2.1 Introduction | 50

in moral-hazard models with additional manifestations of asymmetric information.
For a principal, who can neither observe the agent’s effort nor his project-specific
skills, Halac et al. (2016) characterize the optimal bonus and penalty contracts.
Varas (2018) investigates a setting with hidden effort and imperfect observability
of the project’s quality. He finds the optimal long-term contract to be two-staged,
with a first phase of dynamic incentives followed by a second phase where incen-
tives are stationary. Similarly, the optimal incentive mechanism is shown to consist
of two stages in Mayer (2022) if the agent is able to hide project failure. Solely
in the second stage does the principal provide high-powered incentives for success
and disclosure of failure. An optimal long-term contract that is two-staged is also
specified by Green and Taylor (2016) for the case where the agent can, in addition
to his effort, privately observe project progress.

In contrast to the above papers, our model additionally accommodates team prob-
lems by allowing multiple agents. The literature on the design of incentive mech-
anisms for a project under dynamic moral hazard is rather sparse in this context
(Chandrasekher, 2015). Che and Yoo (2001) find that the optimal incentive mech-
anism for limited commitment is either characterized by high-powered individual
incentives or by low-powered team-based incentives. Chandrasekher (2015) shows
for multiple outputs (a series of projects) how the first-best outcomes for all con-
tracting parties are approximated by spot contracts in conjunction with an auditing
mechanism. In a model where efforts accumulate over time, Georgiadis (2015) re-
veals that the optimal symmetric contract rewards agents only for completing the
project, not for reaching intermediate milestones. He further demonstrates that
such contracts specify higher rewards the longer the project’s length is. A related
contribution from the literature on strategic experimentation is Moroni (2022).3
She finds the optimal long-term contract under full commitment for a two-stage
project with unknown feasibility to be asymmetric regarding agents’ remuneration
and task allocation.

Our basic setup also shares some features with those in Weinschenk (2016, 2021),
while our main findings are closest to those reported in dynamic moral-hazard
models by Ohlendorf and Schmitz (2012), as well as Rauber and Weinschenk
(2024). Although the latter describe some mechanisms that parallel those leading
to success and payoff reversals in our model, they focus on exogenous incentives.
We, however, take a design perspective and examine how contracts are endoge-
nously designed by a principal. Thereby, we also identify adverse effects for the

3. Other, to some extent, related papers from this strand of literature are, for instance, Berge-
mann and Hege (2005), Bonatti and Hörner (2011), and Hörner and Samuelson (2013).
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designing party in the form of profit reversals, which are logically absent in their
model. Ohlendorf and Schmitz (2012), on the other hand, discover that a princi-
pal with limited commitment may prefer a project with lower returns. Nonetheless,
their mechanism is utterly different from ours and somewhat limited to the two-
period structure of their model: if the returns of the project are too high, then,
due to her limited commitment power, the principal loses her credibility to use the
threat of project termination in the second period to incentivize the agent in the
first period.

Outline. The remainder of this article is organized as follows. The next section
lays out the basic principal-agent framework, including all relevant assumptions.
In Section 2.3, we examine the moral-hazard component of the model to derive
agents’ equilibrium effort provision and establish the equilibrium bonus scheme
for spot contracts. Afterwards, we conduct the core analysis and present our cen-
tral results concerning payoff, profit, and success reversals. Section 2.5 then di-
rects attention to long-term contracts by analyzing the extent to which our results
carry over to these incentive mechanisms. We show, inter alia, that the equilibrium
renegotiation-proof long-term contract is identical to the sequence of equilibrium
spot contracts. The final section concludes our analysis and highlights essential
implications. All proofs are provided in Appendix 2.A.

2.2 Model

A risk-neutral principal hires a set of risk-neutral agents N := {1, . . . , n} to work
on her project. The agents have T ∈ N+ time periods to complete the project. The
probability that the project succeeds in period t ∈ {1, . . . , T} is determined by a
success function p(et,1 , . . . , et,n), where et,i ∈ R+ denotes the effort exerted in period
t by agent i.

Assumption 3 (Success Function).
The success function p : Rn

+→ [0,1) is thrice continuously differentiable, symmetric,
strictly increasing, weakly concave, and satisfies⁴

p(0 , . . . , 0) = 0, and
∂ 3p(et,1 , . . . , et,n)

∂ e3
t,i

≤ 0.

4. Note that these assumptions allow agents’ efforts to be either substitutes or complements.
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Agents’ efforts are non-contractible and chosen simultaneously in every period. In-
vesting effort causes costs for agent i in period t that are captured by a cost function
c(et,i), which satisfies the following assumption.

Assumption 4 (Cost Function).
The cost function c : R+→ R+ is thrice continuously differentiable, strictly increasing,
strictly convex, and satisfies c(0)= c′(0)= 0, and c′′′ ≥ 0.

As will become clear later, the properties imposed on the third derivatives in As-
sumptions 3 and 4 guarantee that agents’ equilibrium efforts are concave and equi-
librium bonus payments are unique.

If the project succeeds in period t, the principal earns a revenue rt ∈ R++, pays each
agent a bonus bt, and the game terminates. Agents are protected by limited liability
such that bt ∈ R+. The bonus payment bt can be interpreted as agents’ incentive in t,
since it motivates them to invest effort in this period.⁵ Agents’ reservation utilities
are set to zero such that the limited-liability constraint implies their participation.
Revenues from period t onwards define a revenue profile rt := (rt, . . . , rT). Similarly,
agents’ bonuses define a bonus scheme bt := (bt, . . . , bT). If agents do not succeed
until the end of period T, the game also terminates. The principal then receives no
revenue and pays no bonus. We assume that all parties are rational (in particular,
have correct expectations) and deploy the subgame-perfect Nash equilibrium as a
solution concept.

It should be stressed that our model contains some implicit symmetry assumptions:
all agents are homogeneous, and both functions p and c are time-invariant.⁶ The
model captures static (T = 1) and dynamic (T > 1) moral-hazard settings, as well
as single-agent (n= 1) and team (n> 1) problems.

5. Additionally to the bonus payment, agents might also receive a base wage that is indepen-
dent of success. Since agents’ effort provision is independent of such a base wage, the principal
would implement this base wage as low as possible, i.e., a base wage of zero. We can thus omit base
wages in our analysis.

6. In our analysis, we concentrate on the effect of a more favorable economic environment in
the sense of higher project revenues. We could also allow for time-dependent cost or success func-
tions, since lower costs or higher success probabilities constitute a more favorable environment as
well. Technically, this affects the parties’ continuation payoffs and thus their incentives in a similar
manner to higher revenues.
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2.3 Effort Provision and Bonus Design

Before we can turn our attention to the principal’s equilibrium design of bonus
schemes, it is first necessary to analyze the efforts that agents choose in equilib-
rium if they face given bonuses.

2.3.1 Equilibrium Effort Choice

Given the bonus scheme b1, the decision problem of the representative agent i in pe-
riod t manifests in maximizing his expected payoff over his effort choice et,i. Using
the Principle of Optimality by Bellman (1957), the agent’s maximization problem
in t reads

max
et,i∈R+

vt,i(et,1 , . . . , et,n) = p(et,1 , . . . , et,n) bt

+
�

1 − p(et,1 , . . . , et,n)
�

δv∗t+1,i − c(et,i),
(2.1)

where δ ∈ (0, 1] is the time discount factor and v∗t+1,i denotes the expected payoff
in the subsequent period t+ 1, given equilibrium effort choices from t+ 1 onward,
that is, the agent’s continuation payoff.⁷ Lemma 3 characterizes the central proper-
ties of the equilibrium efforts, i.e., the efforts that arise if all agents choose their
effort provision as a solution to Problem (2.1).

Lemma 3. Let the bonus scheme b1 be given. Then the following holds.

(i) There exists a unique subgame perfect Nash equilibrium, which is symmetric in
the sense that e∗t,i = e∗t,j = e∗t and v∗t,i = v∗t,j = v∗t for all i, j ∈ N and t ∈ {1, . . . , T}.

(ii) Agent i’s equilibrium effort in period t is

e∗t = e(bt, v∗t+1) :=

¨

0 if bt ≤ δv∗t+1

eFOC(bt, v∗t+1) if bt > δv∗t+1,

where the map eFOC(bt, v∗t+1) is uniquely determined by

∂ p(et , . . . , et)
∂ et,i

�

bt − δv∗t+1

�

− c′(et) = 0. (FOCt)

(iii) If bt > δv∗t+1, then e(bt, v∗t+1) is strictly increasing and weakly concave in bt.

7. Note that, since no payments are made after period T, the continuation payoff satisfies
v∗t+1,i = 0 for all t≥ T.
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Lemma 3 (i) reveals that, for a given bonus scheme, the game possesses a unique
subgame perfect Nash equilibrium in which all agents exert equal effort levels
within a period and thus expect identical payoffs. Part (ii) is also intuitive. If the
net bonus bt −δv∗t+1 (i.e., the difference between the bonus for project success and
the discounted continuation payoff) is non-positive, then agents are at least weakly
better off when the game continues. They thus ensure the game’s continuation by
investing zero effort. For positive net bonuses, by contrast, each agent chooses an
effort level that balances the marginal benefit of effort (i.e., a higher probability
of receiving the bonus bt instead of δv∗t+1) with the marginal effort costs. Higher
bonuses then increase equilibrium efforts, as shown in Part (iii). However, there is
diminishing sensitivity of efforts towards higher bonuses, i.e., equilibrium efforts
are concave in the bonus of the respective period.

Considering Lemma 3, the following remark introduces some notational simplifi-
cations that facilitate the exposition throughout the remainder of the paper.

Remark 2 (Notation).
(i) Exploiting the symmetry of efforts, we define P(et) := p

�

et , . . . , et

�

.⁸
(ii) We henceforth write e(bt) instead of e(bt, v∗t+1) because, formally, v∗t+1 depends

on bt+1 only.
(iii) Inserting in Bellman Equation (2.1) allows us to define agent i’s equilibrium

expected payoff in period t as v∗t = vt(bt) := vt,i(e(bt), . . . , e(bt)).

2.3.2 Equilibrium Bonus Design

Thus far, we have examined agents’ equilibrium effort choices for a given bonus
scheme. The following question arises naturally: how are these bonuses designed
in equilibrium? To answer this question, note first that once the project is success-
ful, the principal must use part of her revenue to pay the contractual bonuses to the
n agents. Consequently, the principal’s profit in case of success in period t amounts
to rt − nbt. When designing the bonus scheme, the principal must also take into
account that, if an agent is confronted with bt in period t, he will implement the ef-
fort level e∗t = e(bt) in order to maximize his expected payoff, cf. Lemma 3. In light
of this incentive constraint, the principal’s expected profit generated from offering
the bonus scheme bt in period t is then recursively defined by⁹

πt(bt) = P(e(bt))(rt − nbt) +
�

1 − P(e(bt))
�

δπt+1(bt+1). (2.2)

8. Note that this definition directly implies that ∂ p(et , . . . , et)/∂ et,i = P′(et)/n.
9. Similarly to the agents’ continuation payoff, recognize that πt+1(bt+1)= 0 for all t≥ T.
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We formalize the principal’s decision problem next. To this end, we first examine
the case where the principal offers spot contracts, that is, each bonus payment bt

is designed in the respective period t. Since all parties have correct expectations,
the equilibrium bonus scheme b∗1 = (b∗1, . . . , b∗T) is then sequentially determined by
backward induction, starting with b∗T in period T. The principal’s problem in pe-
riod t consists in maximizing her expected profit in t over her bonus payment bt,
given the project’s revenue profile rt and the equilibrium bonus payments b∗t+1 in
all subsequent periods,

max
bt∈R+

πt(bt,b
∗
t+1) = P(e(bt,b

∗
t+1))(rt − nbt) +

�

1 − P(e(bt,b
∗
t+1)
�

δπt+1(b∗t+1). (2.3)

The first-order condition for Problem (2.3) is then
dπt(bt,b

∗
t+1)

dbt
= P′(e(bt,b

∗
t+1))

∂ e(bt,b
∗
t+1)

∂ bt

�

rt − nbt − δπt+1(b∗t+1)
�

− nP(e(bt,b
∗
t+1)) = 0.

(2.4)

Before we establish the existence of a solution to Condition (2.4), some consid-
erations are in order. In light of Lemma 3, we can conclude from (2.4) that πt

is weakly decreasing for all bt ≥ 0 if and only if rt − nδv∗t+1 −δπt+1(b∗t+1)≤ 0 or,
equivalently,

rt ≤ rt := δ
�

n vt+1(b∗t+1) + πt+1(b∗t+1)
�

.

The principal then provides no incentives to ensure that the game proceeds to pe-
riod t+ 1, since success in t is not profitable enough.1⁰ Note that the revenue rt can
be interpreted as the aggregate surplus that the principal and her agents divided
among each other in case of success in period t because effort costs are sunk when
the uncertainty in t resolves. By contrast, rt represents the discounted future sur-
plus they can expect in case of failure in t. These considerations then lead to the
following lemma.

Lemma 4. There exists a unique equilibrium bonus b∗t = bt(rt) defined by Condition
(2.4), which exhibits the following properties:

bt(rt)

¨

= 0 if rt ≤ rt

> δvt+1(b∗t+1) if rt > rt.

10. More precisely, the principal is then indifferent between all bt that implement zero effort,
i.e., that satisfy 0≤ bt ≤ δv∗t+1. We assume that, in this special case, she chooses the lowest possible
bonus bt = 0.
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Intuitively, the principal only sets incentives in period t, i.e., implements a posi-
tive bonus, if the revenue rt is high enough to make all parties better off than in
t+ 1. Otherwise, no bonus is offered in order to ensure continuation of the game.
An implication of Lemma 4 is that we can define the equilibrium bonus scheme
contingent on the project’s revenue profile by setting

b∗t = bt(rt) :=
�

bt(rt), . . . , bT(rT)
�

.

This definition, together with Lemma 3, enables us to link the project’s revenue to
the effort provision in period t:

e(bt(rt))

¨

= 0 if rt ≤ rt

> 0 if rt > rt,
and

∂ e(bt(rt))
∂ bt

¨

= 0 if rt ≤ rt

> 0 if rt > rt.
(2.5)

The implemented effort is thus strictly positive and increasing in the bonus if the
revenue exceeds the threshold rt, and zero otherwise.

To complete this section, we introduce the success rate S∗t measuring the equilib-
rium probability that the project will be successful if the game has progressed to
period t. Formally, the success rate is defined in a recursive manner by11

S∗t = St(b
∗
t ) = St(bt(rt)) := P(e(bt(rt))) +

�

1 − P(e(bt(rt)))
�

St+1(bt+1(rt+1)). (2.6)

The probability S∗1 then measures the likelihood of successful project completion
during the entire game.

2.4 Revenue Effects

The previous section has demonstrated that the project’s revenue profile is pivotal
for the design of bonus schemes. These revenues capture the economic environ-
ment and will generally differ over time, r1 ̸= r2, . . . , ̸= rT. Project completion in a
boom phase, for instance, can be substantially more lucrative than completion dur-
ing a recession. More importantly, the profitability of the project can also change
within a certain period. A change in the project’s revenue will then have a three-
fold impact, namely, (i) on agents’ expected payoffs, (ii) on the principal’s expected
profit, as well as (iii) on the project’s success rate. In the dynamic version of our
principal-agent model (T > 1), this impact will manifest in both intraperiod and
interperiod effects. The former are considered first.

11. To be technically precise, note that St+1(bt+1(rt+1))= 0 for all t≥ T.
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2.4.1 Intraperiod Effects

All effects triggered by higher revenues originate in the relationship between
project revenues and implemented bonus payments. For this reason, we investi-
gate how a change in the revenue rt affects the equilibrium bonus b∗t in the lemma
below.

Lemma 5. The equilibrium bonus b∗t in period t satisfies

∂ bt(rt)
∂ rt

¨

= 0 if rt ≤ rt

> 0 if rt > rt.

It now follows from (2.5) and Lemma 5 that agents’ effort provision in period t is
weakly increasing in the revenue of that period,

∂ e(bt(rt))
∂ rt

=
∂ e(bt(rt))
∂ bt

∂ bt(rt)
∂ rt

¨

= 0 if rt ≤ rt

> 0 if rt > rt.
(2.7)

A higher revenue in period t causes an intraperiod motivation effect, i.e., it leads
to weakly higher bonuses that in turn incentivize weakly higher efforts. Taking an
agent’s perspective, we shed light on how his expected payoff is affected by the
project’s revenues. Invoking the Envelope Theorem, we obtain from (2.1) that

dvt(bt(rt))
drt

= P(e(bt(rt)))
∂ bt(rt)
∂ rt

+
�

bt(rt) − δvt+1(bt+1(rt+1))
� n − 1

n
P′(e(bt(rt)))

∂ e(bt(rt))
∂ bt

∂ bt(rt)
∂ rt

.
(2.8)

Considering (2.7) and Lemmas 3-5, we can infer from (2.8) that

dvt(bt(rt))
drt

¨

= 0 if rt ≤ rt

> 0 if rt > rt.
(2.9)

Hence, increased profitability in period t has a weakly positive intraperiod effect
on the agent’s expected payoff. This result is intuitive: with higher revenues, it is
more lucrative for the principal to implement higher efforts. To do so, she sets
higher bonuses, which benefits the agents.
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Considering the other part of the principal-agent relationship, we now explore the
effect of a higher revenue rt on the principal’s expected profit. Applying the Enve-
lope Theorem and using (2.5), it follows that

dπt(bt(rt))
drt

= P(e(bt(rt))

¨

= 0 if rt ≤ rt

> 0 if rt > rt.
(2.10)

From an intraperiod perspective, both contracting parties thus at least weakly ben-
efit if the project becomes more lucrative. Additionally, the intraperiod motivation
effect directly enhances the project’s success rate in period t. Formally, by differen-
tiation of (2.6), we get

dSt(bt(rt))
drt

= P′(e(bt(rt)))
∂ e(bt(rt))
∂ rt

∂ bt(rt)
∂ rt

�

1 − St+1(bt+1(rt+1))
�

¨

= 0 if rt ≤ rt

> 0 if rt > rt.

We summarize these findings in the following proposition.

Proposition 4 (Intraperiod Effects).
If the revenue profile rt satisfies rt > rt, then an increase in the revenue rt strictly in-
creases the (i) bonus b∗t , (ii) effort provision e∗t , (iii) agents’ expected payoffs v∗t , (iv)
principal’s expected profit π∗t , and (v) success rate S∗t . If, on the contrary, rt satisfies
rt ≤ rt, then an increase in rt has no effect in period t at all.

As we will show next, these beneficial intraperiod effects can, however, trigger ad-
verse intertemporal effects in other periods that may prevail.

2.4.2 Interperiod Effects

While a change in revenue leaves future periods unaffected, intertemporal effects
may arise in preceding periods. To grasp the underlying mechanisms, it is suffi-
cient to analyze these effects between an arbitrary period t and its predecessor
t− 1. Since the interperiod effects are mediated by agents’ effort provision and the
principal’s bonus design, we first examine how revenues affect efforts and bonuses.

Effort Provision and Bonuses. The next proposition describes how higher
revenues in period t change equilibrium efforts and bonuses in t− 1.
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Proposition 5 (Interperiod Effort and Bonus Effects).
Let T ≥ t> 1. Then the following holds.

(i) Equilibrium efforts e∗t−1 and bonuses b∗t−1 in period t− 1 satisfy

de(bt−1(rt−1))
drt

¨

= 0 if rt ≤ rt or rt−1 ≤ rt−1

< 0 if rt > rt and rt−1 > rt−1,

dbt−1(rt−1)
drt

¨

= 0 if rt ≤ rt or rt−1 ≤ rt−1

Ò 0 if rt > rt and rt−1 > rt−1,

(ii) In case rt > rt and rt−1 > rt−1, it holds that dbt−1(rt−1)/drt < 0 if rt−1 − rt−1 is
sufficiently small, while the converse holds if rt−1 − rt−1 is sufficiently large.

Proposition 5 (i) states that intertemporal effects on efforts and bonuses only arise
for rt > rt and rt−1 > rt−1, i.e., if efforts are positive in both periods. In that case,
a higher revenue always leads to a lower effort provision in the preceding period.
Intuitively, this holds true since a higher revenue in period t makes success in that
period more attractive relative to success in preceding period. Consequently, the
principal incentivizes lower efforts in t− 1 in order to obtain a higher probability
of reaching the relatively more attractive period t.

This reduction of efforts is the result of two (potentially countervailing) mecha-
nisms. First, there is an intertemporal discouragement effect: a higher revenue in
t increases the bonus the principal sets in t, which in turn increases the agents’
continuation payoffs in the preceding period. Investing effort in period t− 1 thus
becomes less attractive for agents. A second mechanism arises since the princi-
pal anticipates the discouragement effect and, in general, adjusts the bonus b∗t−1.
Proposition 5 (ii) shows that the principal lowers the t− 1 bonus if success in that
period is rather unprofitable, i.e., if the revenue is rather low. We call this the dis-
incentive effect. By contrast, the principal counteracts the discouragement effect by
increasing the t− 1 bonus if success in that period is sufficiently lucrative, i.e., if
the revenue is rather high. We call this the reincentive effect.

Recognize that the discouragement effect and the disincentive effect work in the
same direction, since both reduce agents’ efforts in period t− 1. By contrast, the
reincentive effect counteracts the discouragement effect. Yet, as shown by Propo-
sition 5 (i), the discouragement always dominates the reincentive effect. The rein-
centive effect hence only partly compensates the discouragement effect. Figures
2.1a and 2.1b depict these effects.
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(a) Disincentive effect
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(b) Reincentive effect

Figure 2.1. Interperiod effects on efforts in t − 1 induced by an increased revenue in t.

We illustrate our findings on how higher revenues affect the equilibrium bonus
design in the previous period with numerical examples.

Example 2 (Interperiod Effects on Bonuses).
Consider the two-period model (T = 2) with quadratic costs c(et,i)= (et,i)

2. We
demonstrate our results with two alternative success functions, namely, a non-linear
and a linear one:

PN(et) = 1 −
1

1 + net
, and PL(et) =

¨

net if et ≤ 1/n

1 if et > 1/n.

Figure 2.2a displays the non-linear case and shows that the reincentive effect arises
if the revenue r2 is small (and the difference r1 − r1 > 0 is thus large), while the dis-
incentive effect arises for larger revenues r2. Figure 2.2b displays the linear case. For
the presented parameterization, which will be used in the examples throughout the
paper, the difference r1 − r1 is too low for the reincentive effect to arise such that the
disincentive effect occurs for all revenues r2.

(a) Non-linear success function
(n = 1, r1 = 105, and δ = 0.95)

(b) Linear success function
(n = 4, r1 = 4, and δ = 0.95)

Figure 2.2. Interperiod effects on the bonus in period 1.



2.4 Revenue Effects | 61

Expected Payoff. Against the background of the interperiod effects on equilib-
rium efforts and bonuses revealed above, we now raise the question: do agents
inevitably benefit from an economically more favorable environment? We investi-
gate how an increase in revenue changes agents’ expected payoffs in the previous
period. By the Envelope Theorem, the derivative of the expected payoff in period
t− 1 computes

dvt−1(bt−1(rt−1))
drt

=

Ò0
︷ ︸︸ ︷

P(e(bt−1(rt−1))
dbt−1(rt−1)

drt
+

≥0
︷ ︸︸ ︷

�

1 − P(e(bt−1(rt−1))
�

δ
dvt(bt(rt))

drt

+
�

bt−1(rt−1) − δvt(bt(rt))
� n − 1

n
P′(e(bt−1(rt−1)))

de(bt−1(rt−1))
drt

︸ ︷︷ ︸

≤0

.

(2.11)

The first summand on the r.h.s. of (2.11) results from the optimizing behavior of
the principal. It captures the disincentive (reincentive) effect that harms (benefits)
the agent’s expected payoff, cf. Proposition 5 (ii). The second summand captures
the intraperiod effect in t: for a higher revenue rt, the principal offers higher bonus
payments b∗t , which increase the (discounted) continuation payoff δv∗t . Finally, the
third expression results from the team externality: since it is optimal for the other
team members to reduce their efforts in t− 1, the likelihood of receiving the bonus
payment b∗t−1 decreases.

Henceforth, we say that a payoff reversal occurs in period t− 1 if a higher revenue
in t negatively affects the agents’ expected payoffs in t− 1:

dvt−1(bt−1(rt−1))
drt

< 0.

From (2.11), we can conclude that a payoff reversal can be induced by two mech-
anisms: a strong disincentive effect or a strong team externality. The latter occurs
exclusively in team settings and requires that the reincentive effect is either absent
or sufficiently weak. Payoff reversals due to the disincentive effect, however, may
also arise in a single-agent setting. We provide a brief summary of these insights
in the proposition below.

Proposition 6 (Payoff Reversal).
Let T ≥ t> 1. Then a payoff reversal in t− 1 can occur due to the disincentive effect
or due to the team externality.
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Example 3 (Payoff Reversal).
Revisit the parameterization from Example 2. Figure 2.3a displays how the disincen-
tive effect causes a payoff reversal in a single-agent setting, which arises in the left
local neighborhood of the kink where r1 = r1. Figure 2.3b shows that, in the linear
setting, the expected payoff is locally decreasing in the second-period revenue r2 due to
the team externality.

(a) Non-linear success function
(n = 1, r1 = 105, and δ = 0.95)

(b) Linear success function
(n = 4, r1 = 4, and δ = 0.95)

Figure 2.3. Payoff reversals in period 1.

Expected Profit. Directing our attention to the contract-designing party, we
next examine how the principal herself is affected by an increase in the project’s
revenue. The relationship between the expected profit in period t− 1 and the rev-
enue rt is formally specified in the following lemma.

Lemma 6. Let T ≥ t> 1. Then the principal’s expected profit satisfies

dπt−1(bt−1(rt−1))
drt

=

≥0
︷ ︸︸ ︷

δ
�

1 − P(e(bt−1(rt−1)))
�

P(e(bt(rt)))

−δn P(e(bt−1(rt−1)))
dvt(bt(rt))

drt
︸ ︷︷ ︸

≤0

.
(2.12)

From (2.12), it is evident that the expected profit in t− 1 is subject to two oppos-
ing effects. While higher revenues have a direct positive effect (cf. first line on the
r.h.s. of (2.12)), setting incentives in t− 1 becomes more costly for the principal
owing to the agents’ increased continuation payoff (cf. second line on the r.h.s. of
(2.12)). Put differently, we know from Proposition 5 that, since agents correctly
anticipate increased bonuses in t, they lower their efforts in the previous period,
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which negatively affect the principal’s expected profit. If P(e∗t−1) is sufficiently close
to one, that is, if success is sufficiently likely in period t− 1, then the latter effect
dominates, and a profit reversal occurs. More precisely, we say that a profit reversal
occurs in period t− 1 if a higher revenue in period t negatively affects the princi-
pal’s expected profit in period t− 1:

dπt−1(bt−1(rt−1))
drt

< 0.

Theorem 3, which is a central result of this article, states a sufficient condition for
the occurrence of such a profit reversal.

Theorem 3 (Profit Reversal).
Let T ≥ t> 1 and suppose that rt−1 satisfies rt > rt and rt−1 > rt−1. Then a profit re-
versal occurs in t− 1 if rt−1 − rt−1 is sufficiently large.

The intuition is as follows. If rt−1 − rt−1 is large, success in period t− 1 is rather
attractive for the principal. An increase in the revenue rt causes the principal to
implement a higher bonus in period t, which in turn lowers agents’ efforts in t− 1,
cf. Propositions 4 and 5. Accordingly, success in the highly lucrative period t− 1
becomes less likely, which ultimately harms the principal’s expected profit.

The possibility of profit reversals is a novel and surprising finding. Although the
principal has all the negotiation power and designs the bonuses in order to maxi-
mize her expected profit, she may actually suffer from a more lucrative economic
environment. This intriguing phenomenon results from the sequential structure of
the principal’s decision problem under spot contracts (and, as will be shown later,
persists when long-term contracts need to be renegotiation-proof). Since bonus
payments are designed in the respective period, the principal cannot credibly ac-
count for negative intertemporal effects of higher bonus payments in earlier pe-
riods. Indeed, by the time the principal finds herself in the position to design the
bonus, all previous periods are irrelevant. Agents, however, anticipate possibly high
future bonuses via their continuation payoff and choose their efforts accordingly. A
more profitable revenue profile can hence induce a less desirable intertemporal
allocation of efforts and thereby harm the principal’s expected profit.
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Example 4 (Profit Reversal).
Revisit the parameterizations from Example 2. Figure 2.4 shows that if the revenue r2

is sufficiently small, i.e., if r1 − r1 is sufficiently large, then a profit reversal emerges
in period 1.

(a) Non-linear success function
(n = 1, r1 = 105, and δ = 0.95)

(b) Linear success function
(n = 4, r1 = 4, and δ = 0.95)

Figure 2.4. Profit reversals in period 1.

Success Rate. Finally, we investigate how the project’s revenue profile is linked
to its probability of success. For the intraperiod effects, we have already established
a positive relationship between rt and the success rate S∗t . However, the interperiod
mechanisms explored in Proposition 5 may adversely affect the success rate S∗t−1 in
the previous period. Formally, we say that a success reversal occurs in period t− 1
if a higher revenue in period t negatively affects the project’s success rate in period
t− 1, i.e., if

dSt−1(bt−1(rt−1))
drt

< 0.

To comprehend the mechanisms underlying a success reversal, we state the follow-
ing proposition.

Proposition 7 (Success Reversal).
Let T ≥ t> 1. A success reversal occurs if and only if

�

1 − P(e(bt(rt)))
�

P′(e(bt−1(rt−1)))
�

1 − P(e(bt−1(rt−1)))
�

P′(e(bt(rt)))
·
−

de(bt−1(rt−1))
drt

∂ e(bt(rt))
∂ bt

∂ bt(rt)
∂ rt

> 1. (2.13)
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From Condition (2.13), it becomes apparent that success reversals can be induced
by two mechanisms. First, a success reversal due to the substitution of efforts arises
if the curvature of P is rather low. A success reversal occurs in this case for revenues
that implement relatively high success probability in period t since the first factor
on the l.h.s. of (2.13) becomes large. Intuitively speaking, a higher revenue rt then
causes that effort is substituted away from a period with a high probability of suc-
cess (t− 1) to one that is unlikely to be reached (t). Second, a success reversal due
to the sensitivity of efforts arises when an increase in the revenue rt causes a strong
decline in the implemented effort e∗t−1, but only a slight increase in e∗t such that the
second factor in Condition (2.13) is large.

Example 5 (Success Reversal).
Revisit the parameterizations from Example 2. Figure 2.5a displays a success reversal
due to the sensitivity of efforts, while Figure 2.5b depicts a success reversal due to the
substitution of efforts.

(a) Non-linear success function
(n = 1, r1 = 105, and δ = 0.95)

(b) Linear success function
(n = 4, r1 = 4, and δ = 0.95)

Figure 2.5. Success reversals in period 1.

Occurrence of Reversals. The three reversals that we have discovered are in-
triguing phenomena. But are they rather rare anomalies or phenomena that occur
regularly? In general, it depends on the success and cost function which param-
eter constellations give rise to payoff, profit, and success reversals. The following
example illustrates that all three reversals can be relevant for a wide variety of
parameterizations.
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Example 6 (Occurrence of Reversals).
Revisit the parameterization from Example 2 with a linear success function. Figure
2.6 displays the combinations of first-period revenues and discount factors that lead
to the different forms of reversals for some second-period revenues.

Figure 2.6. Parameterizations leading to reversals in period 1 (n=4).

2.4.3 Static vs. Dynamic Interaction

The decisive measures for the contracting parties are the expected payoff v∗1
(agents) and the expected profit π∗1 (principal), as they capture the entire game due
to their recursive definition. Additionally, from a project-management perspective,
the overall success rate S∗1 is an important indicator. To compare the effect of dif-
ferent revenue profiles on those measures, we introduce the notion of a dominant
revenue profile.

Definition 4 (Dominant Revenue Profile).
The revenue profile rA

1 =
�

rA
1 , . . . , rA

T

�

dominates the revenue profile rB
1 =
�

rB
1, . . . , rB

T

�

if
rA

t ≥ rB
t holds in all periods t ∈ {1, . . . , T} and rA

t > rB
t holds in at least one period t.

For the static model, T = 1, we can immediately conclude that a dominant rev-
enue profile induces a more preferable outcome for the contracting parties and
the project itself. Formally, since r1 = 0, we can deduce from Proposition 4 that a
higher revenue r1 strictly increases v∗1, π

∗
1, as well as S∗1.12 This finding is straight-

forward because the detrimental interperiod effects discussed above are naturally

12. To see this, recognize that, in the static model, rt+1 = 0, v∗t+1 = 0, π∗t+1 = 0, and S∗t+1 = 0
for all t≥ 1.
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absent in the static model. The conventional wisdom thus applies that a more lu-
crative environment is necessarily beneficial for the contracting parties and the
probability of project success.

However, with dynamic interaction, T > 1, the interperiod effects come into play.
The preceding analysis has demonstrated that an increase in revenues ambiguously
affects the three measures under scrutiny. Indeed, a higher revenue in any period
t> 1 may well decrease the principal’s expected profit π∗1, the agents’ expected
payoffs v∗1, and the success rate S∗1.13 When comparing a dominant revenue profile
rA

1 with a dominated revenue profile rB
1, we can thus conclude that rA

1 may induce
a less favorable outcome for all parties, i.e.,

v1(b1(rA
1)) < v1(b1(rB

1)), π1(b1(rA
1)) < π1(b1(rB

1)), S1(b1(rA
1)) < S1(b1(rB

1)).

This observation highlights the detrimental effects that may arise if the principal
relies on spot contracts as an incentive mechanism. Although the principal faces
a more lucrative economic environment, the resulting incentive mechanism may
reduce project performance and leave all stakeholders worse off.

Example 7 (Dominant vs. Dominated Revenue Profiles).
Revisit the parameterization from Example 2 with a linear success function. Table 2.1
shows that the dominant revenue profile rA

1 leads to worse outcomes for both contract-
ing parties and a lower probability of success than the dominated revenue profile rB

1.

Table 2.1. Comparison of revenue profiles (n = 4, δ = 0.95).

r1 b∗1 v
∗
1 π

∗
1 S

∗
1

rA1 = (4, 3) (0.48, 0.38) 0.34 1.57 87%

rB1 = (3.8, 1) (0.47, 0.13) 0.38 1.71 92%

However, apart from spot contracts, there are other contract classes that the prin-
cipal can deploy as an incentive mechanism for her agents. The following section
therefore examines the extent to which our previous results generalize to long-
term contracts.

13. For an increase in r2, this observation directly follows from our analysis above. However,
due to the recursive definition of π∗1, v∗1, and S∗1, payoff, profit, and success reversals from later
periods can also have a detrimental effect up to the first period.
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2.5 Long-Term Contracts

In many principal-agent relationships, long-term contracts constitute an alterna-
tive to short-term contracting via a sequence of spot contracts. A firm might, for
example, conclude strategic long-term contracts with its suppliers. In the context
of our model, we define a long-term contract as follows.

Definition 5 (Long-Term Contract).
A long-term contract b1 ∈ RT

+ is a contract that stipulates all T bonus payments
(b1, . . . , bT) at the beginning of the initial period t= 1.

To investigate whether the detrimental effects of incentive mechanisms also
emerge when the contracting parties deploy such long-term contracts, we must
distinguish two cases according to the principal’s commitment power.

Full Commitment. We first concentrate on settings where the principal has full
commitment power, i.e., she can exclude any form of renegotiation in later periods,
even if she would then benefit from such renegotiations. Given the revenue profile
r1, the principal designs bonuses to maximize her expected profit from hiring the
agents. Formally, her equilibrium long-term contract with full commitment bF∗

1 =
(bF∗

1 , . . . , bF∗
T ) is defined by the solution to the T-dimensional optimization problem

bF
1(r1) := bF∗

1 = argmax
b1∈RT

+

π1(b1).

If the principal can fully commit to a bonus scheme, then a revenue profile rA
1 that

dominates the revenue profile rB
1 generates at least a weakly higher expected profit,

i.e.,π1(bF
1(rA

1))≥ π1(bF
1(rB

1)).1⁴ The reason is straightforward: when faced with the
dominant revenue profile rA

1 , the principal can design the same bonus scheme as
when confronted with the dominated revenue profile rB

1. She can thereby maintain
the same efforts and thus success probabilities, but, at the same time, earn higher
proceeds in the case of success. Hence, a profit reversal in π1(bF

1(r1)), the measure
that captures the entire game, cannot arise with long-term contracts under full
commitment. The principal is thus inevitably better off in an economically more
favorable environment.1⁵

14. The inequality is strict if bF
1(rA

1)) incentivizes a positive probability of success in at least
one period where rA

t > rB
t holds.

15. To be technically precise, the total differential of π1(bF
1(r1)) with respect to rt is at least

weakly positive for any t ∈ {1, . . . , T}.
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However, the same does not necessarily hold true for the agents’ expected payoffs
and the project’s success rate. Since the principal solely focuses on maximizing her
expected profit when determining the bonus payments, higher revenues may en-
gender a design of long-term contracts that makes success less likely and harms
the agents’ expected payoffs. As shown in Example 8, success and payoff rever-
sal also occur if a principal equipped with full commitment power sets incentives
through long-term contracts.

Example 8 (Reversals Under Full Commitment).
Revisit the parameterization from Example 2 with a linear success function. Let the
principal have full commitment power and fix the revenue in period 1 to r1 = 3.5.
Higher revenues in period 2 then lead to a contract design that reduces agents’ ex-
pected payoffs (cf. Figure 2.7a) and the likelihood of project success (cf. Figure 2.7b).

(a) Payoff Reversal (b) Success Reversal

Figure 2.7. Success and payoff reversals with long-term contracts.
(n = 4, r1 = 3.5, and δ = 0.95)

Limited Commitment. We next turn our attention to the second case where,
due to limited commitment power, the principal cannot rule out renegotiating the
long-term contract in later periods. This case is highly relevant, since parties are
usually able to change an existing contract if this benefits all parties involved. Fol-
lowing the renegotiation-proofness principle (Bolton, 1990; Dewatripont, 1989;
Fudenberg & Tirole, 1990), we can, without loss of generality, restrict our atten-
tion to renegotiation-proof long-term contracts in the case of limited commitment.
We use the following well-established definition of renegotiation-proof long-term
contracts in finite-horizon games with discrete time (see, for example, Benoit and
Krishna, 1993; Wang, 2000; Zhao, 2006).
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Definition 6 (Renegotiation-Proofness).
The notion of renegotiation-proofness is defined recursively.

(i) A one-period contract is called renegotiation-proof if it is Pareto-efficient among
all feasible and incentive-compatible one-period contracts.

(ii) A two-period contract is then called renegotiation-proof if it is Pareto-efficient
among all feasible and incentive-compatible two-period contracts whose one-
period continuations are renegotiation-proof, and so on.

One might now think that the principal can design long-term contracts that exploit
payoff reversals or, more generally, specify rather low future bonuses in order to
motivate agents to invest high efforts in early periods. However, the next lemma
shows that the agents’ payoffs as well as the principal’s profits are rather restricted
if they are generated by a renegotiation-proof long-term contract bL

1 = (bL
1, . . . , bL

T).

Lemma 7. Let the sequence of equilibrium spot contracts b∗1 be given.

(i) Any long-term contract bL
1 = (bL

1, . . . , bL
T) that is renegotiation-proof in the sense

of Definition 6 satisfies

vt(b
L
t ) ≥ vt(b

∗
t ), and πt(b

L
t ) ≤ πt(b

∗
t ) for all t ∈ {1, . . . , T}.

(ii) The bonus scheme b∗1 is a renegotiation-proof long-term contract in the sense of
Definition 6.

Part (i) reveals that the payoffs obtained by agents under spot contracts create
a lower bound for the payoffs that can be implemented by any renegotiation-
proof contract. This, in particular, implies that it is not possible to motivate agents
cheaply by specifying future bonuses that yield relatively low continuation payoffs.
The lemma also reveals that the profits that the principal can obtain under spot
contracts form an upper bound for the profits that can be implemented by any
renegotiation-proof contract. Part (ii) now confirms that the principal can write
a renegotiation-proof contract that actually yields those profits from the upper
bound. Indeed, the long-term contract comprising the corresponding spot bonuses
is renegotiation-proof.

Using Lemma 7, we can now state the central result of this section, namely, which
long-term contract a principal with limited commitment offers in equilibrium.1⁶

16. A large debt of gratitude is due to Professor Weinschenk for numerous discussions that led
to Lemma 7 and Theorem 4.
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Theorem 4 (Equilibrium Renegotiation-Proof Long-Term Contract).
The sequence of equilibrium spot contracts constitutes the principal’s unique equilib-
rium renegotiation-proof long-term contract, i.e., bL∗

1 = b∗1 = (b∗1, . . . , b∗T).

Theorem 4 states that, if the principal has limited commitment power, then she
offers the contract b∗1, since, among all renegotiation-proof long-term contracts, b∗1
generates the highest expect profit in period 1. Consequently, the bonus payments
stipulated by a single long-term contract coincide with those implemented by a
sequence of T spot contracts. Our insights derived in the analysis of spot contracts
therefore fully carry over to the class of renegotiation-proof long-term contracts. In
other words, the surprising phenomena of payoff, profit, and success reversals that
can harm all parties involved may occur just as well with such long-term contracts
as with spot contracts.

2.6 Conclusion

This article has examined a fairly general dynamic model of project completion
in the presence of moral hazard. Our analysis demonstrates that a change in the
project’s returns triggers intraperiod as well as interperiod effects. While the in-
traperiod effects are intuitive, in the sense that an increase in the project’s revenue
makes all parties better off, the interperiod effects are surprising. Increased rev-
enues may not only lead to a design of incentives that makes overall success less
likely, and reduce the agents’ expected payoffs, but may, in fact, be detrimental to
the principal herself. These success, payoff, and profit reversals obtain for a wide
variety of conceivable contracting situations, since our results apply to both short-
term spot contracts as well as renegotiation-proof long-term contracts. Their root
cause is that the implemented incentive mechanisms fail to account for the adverse
interperiod effect that higher incentives have on earlier periods. Indeed, agents’ ef-
fort provision is not only determined by their current bonuses for success, but also
by their anticipation of future incentives. Even a principal who can take these in-
terdependencies perfectly into account – by writing long-term contracts under full
commitment – may design incentive mechanisms that negatively impact the agents’
payoffs and the probability of project success. Nonetheless, full commitment power
constitutes a remedy for profit reversals.

Our paper reveals highly relevant, yet undiscovered, deleterious effects of incentive
mechanisms that arise in equilibrium when a principal designs optimal contracts.
These findings imply that the lucrativeness of a project is not necessarily a decisive
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measure. In dynamic contexts, the common wisdom fails that the more lucrative
a project, the better it is for its stakeholders, and the more likely it is to succeed.
This article thus provides a theoretical foundation for the frequently encountered
phenomenon of failures and delays in lucrative large-scale projects reported, for
instance, in public infrastructure (e.g., Flyvbjerg et al., 2003; Mittal et al., 2020;
Steininger et al., 2021), research and development (e.g., Gupta and Wilemon, 1990;
Lhuillery and Pfister, 2009; Radas and Bozic, 2012), as well as IT projects (e.g., Al-
Ahmad et al., 2009; Brown et al., 2007; Whitney and Daniels, 2013).1⁷ To alleviate
such problems, our results imply that more attention should be devoted to the
intertemporal distribution of project revenues instead of their sheer size.

Clearly, the model does not come without limitations. While our assumptions on
the cost function are standard, the symmetry of both agents and the success func-
tion is somewhat limiting. It is, however, necessary to keep the analytical complex-
ity manageable. This case of asymmetric agents (e.g., skilled vs. unskilled workers
or, alternatively, team leaders vs. regular employees) could nonetheless be a fruit-
ful avenue for future research. While the basic mechanisms derived in this paper
will also play a role with asymmetric agents, designing optimal incentives might
become significantly more demanding for the principal.

17. Flyvbjerg et al. (2003, p. 6) even coined the term “megaprojects paradox” for the trend that,
despite their poor performance, more and more megaprojects are carried out.
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Appendix 2.A

Proof of Lemma 3.

Part (i) and (ii). A formal proof is provided in Rauber and Weinschenk (2024).

Part (iii). Set P(et) := p
�

et , . . . , et

�

. If bt > δv∗t+1, then e(bt, v∗t+1) is defined by the so-
lution to (FOCt). By Assumptions 3 and 4, differentiation of (FOCt) directly shows
that

∂ e(bt, v∗t+1)

∂ bt
=

<0
︷ ︸︸ ︷

−P′(e(bt, v∗t+1))

P′′(e(bt, v∗t+1))(bt − δv∗t+1)
︸ ︷︷ ︸

≤0

− nc′′(e(bt, v∗t+1))
︸ ︷︷ ︸

<0

> 0. (2.A.1)

Differentiating (2.A.1), we get

∂ 2e(bt, v∗t+1)

∂ b2
t

=
P′(·)
�

P′′(·) + ∂ e(bt,v
∗
t+1)

∂ bt

�

P′′′(·)(bt − δv∗t+1) − nc′′′(e(bt, v∗t+1))
�

�

�

P′′(·)(bt − δv∗t+1) − nc′′(e(bt, v∗t+1))
�2

−
P′′(·) ∂ e(bt,v

∗
t+1)

∂ bt

�

P′′(·)(bt − δv∗t+1) − nc′′(e(bt, v∗t+1))
�

�

P′′(·)(bt − δv∗t+1) − nc′′(e(bt, v∗t+1))
�2 ,

which, using (2.A.1), may be rewritten as

∂ 2e(bt, v∗t+1)

∂ b2
t

=

>0
︷︸︸︷

P′(·)
�

≤0
︷ ︸︸ ︷

2P′′(·)+

>0
︷ ︸︸ ︷

∂ e(bt,v
∗
t+1)

∂ bt

�

≤0
︷ ︸︸ ︷

P′′′(·)(bt − δv∗t+1) − nc′′′(e(bt, v∗t+1))
� �

�

P′′(·)(bt − δv∗t+1) − nc′′(e(bt, v∗t+1))
�2

︸ ︷︷ ︸

>0

≤ 0.

Hence, if bt > δv∗t+1, then bt 7→ e(bt, v∗t+1) is strictly increasing and weakly concave.

□
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Proof of Lemma 4. First, consider the case rt > rt. Then, to maximize the ex-
pected profit, the optimal bonus must satisfy δv∗t+1 ≤ bt ≤ (rt −δπ∗t+1)/n, where
v∗t+1 = vt+1(b∗t+1) and π∗t+1 = πt+1(b∗t+1). We then obtain the following limits for the
l.h.s. of (2.4):

lim
bt→δv∗t+1

dπt(bt,b
∗
t+1)

dbt
= P′(0)

∂ e(δv∗t+1,b∗t+1)

∂ bt

�

rt − nδv∗t+1 − δπ
∗
t+1

�

> 0

lim
bt→(rt−δπ∗t+1)/n

dπt(bt,b
∗
t+1)

dbt
= −n P
�

e((rt − δπ∗t+1)/n,b∗t+1)
�

< 0.

By the Intermediate Value Theorem, a solution δv∗t+1 < b∗t < (rt −δπ∗t+1)/n to
(2.4) thus exists. We next show that the principal’s objective function in (2.3) is
strictly concave, implying that b∗t is unique. Differentiation yields

d2πt(bt,b
∗
t+1)

db2
t

= (rt − nbt − π∗t+1)
h

P′′(·)
�∂ e(bt,b

∗
t+1)

∂ bt

�2

+ P′(·)
∂ 2e(bt,b

∗
t+1)

∂ b2
t

i

− 2n

�

P′(·)
∂ e(bt,b

∗
t+1)

∂ bt

�

.

By Lemma 3 (iii), bt 7→ e(bt,b
∗
t+1) is strictly increasing and weakly concave on

δvt+1(b∗t+1)≤ bt ≤ (rt −δπt+1(b∗t+1))/n. Consequently, on that particular interval,
it holds that

d2πt(bt,b
∗
t+1)

db2
t

< 0, (2.A.2)

showing that the objective function is indeed strictly concave. Hence, the optimal
bonus b∗t = bt(rt) in period t is uniquely determined.

Next, suppose that rt ≤ rt. Then the principal is better off if the game proceeds to
the next period, implying that she optimally incentivizes zero effort in period t.
Thus, according to our assumption, she offers the lowest possible bonus b∗t = 0,
which then implements zero effort provision.1⁸ Hence, bt(rt)= 0 if rt ≤ rt. □

18. Formally, the first-order condition (2.4) is satisfied for any bt ≤ δv∗t+1 and, in particular, for
the bonus b∗t = 0.
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Proof of Lemma 5. For rt ≤ rt, we have bt(rt)≡ 0, which directly implies that

∂ bt(rt)
∂ rt

= 0.

By contrast, for rt > rt, implicit differentiation of (2.4) and using Lemma 3 as well
as (2.A.2) then yields

∂ bt(rt)
∂ rt

= −
P′(e(bt(rt)))

∂ e(bt(rt))
∂ bt

d2πt(bt(rt))
db2

t

> 0,

which completes the proof. □

Proof of Proposition 5.

Part (i). We distinguish between two cases, depending on the revenue profile rt−1.

Case 1. If rt−1 ≤ rt−1, then bt−1(rt−1)= 0 and e(bt−1(rt−1))= 0 by Lemma 4 and
(2.5), respectively. Since rt−1 is strictly increasing in rt, rt−1 ≤ rt−1 continues
to hold, such that we can then immediately infer that dbt−1(rt−1)/drt = 0 and
de(bt−1(rt−1))/drt = 0 must hold.

Case 2. If rt−1 > rt−1, then e(bt−1(rt−1)) is defined by

P′(e(bt−1(rt−1)))
n

�

bt−1(rt−1) − δvt(bt−1(rt))
�

− c′(e(bt−1(rt−1))) = 0. (2.A.3)

Differentiation of (2.A.3) with respect to rt yields

de(bt−1(rt−1))
drt

=

<0
︷ ︸︸ ︷

−P′(e(bt−1(rt−1)))
�

dbt−1(rt−1)
drt

− δ
dvt(bt(rt))

drt

�

P′′(e(bt−1(rt−1)))
�

bt−1(rt−1) − δvt(bt(rt))
�

− nc′′(e(bt−1(rt−1)))
︸ ︷︷ ︸

<0

. (2.A.4)

Two subcases can occur in (2.A.4), depending on the revenue profile rt.

Case 2.1. If rt ≤ rt, then, by (2.9) and (2.10), we have

dvt(bt(rt))
drt

=
dπt(bt(rt))

drt
= 0. (2.A.5)
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In view of (2.A.5), we can deduce from the first-order condition (2.4) that

dbt−1(rt−1)
drt

= 0. (2.A.6)

Inserting (2.A.5) and (2.A.6) into (2.A.4), it now follows that

de(bt−1(rt−1))
drt

= 0.

Case 2.2. If rt > rt, then the derivative (2.A.4) is strictly negative if and only if

dbt−1(rt−1)
drt

< δ
dvt(bt(rt))

drt
. (2.A.7)

To show that (2.A.7) holds, it is helpful to establish that for rt−1 > rt−1, we have

∂ e(bt−1(rt−1))
∂ v∗t

= −δ
∂ e(bt−1(rt−1))

∂ bt−1
and

∂ 2e(bt−1(rt−1))
∂ v∗t ∂ bt−1

= −δ
∂ 2e(bt−1(rt−1))

∂ b2
t−1

. (2.A.8)

These relationships are seen as follows. Differentiating (2.A.3) and comparing with
(2.A.1) shows that

∂ e(bt−1(rt−1))
∂ v∗t

=
δP′(e(bt−1(rt−1))

P′′(e(bt−1(rt−1)))
�

bt−1 − δvt(bt)
�

− nc′′(e(bt−1(rt−1)))

= −δ
∂ e(bt−1(rt−1))

∂ bt−1
.

(2.A.9)

Moreover, from Schwarz’s Theorem and (2.A.9), we can conclude that

∂ 2e(bt−1(rt−1))
∂ v∗t ∂ bt−1

=
∂ 2e(bt−1(rt−1))
∂ bt−1 ∂ v∗t

=
∂

∂ bt−1

�

−δ
∂ e(bt−1(rt−1))

∂ bt−1

�

= −δ
∂ 2e(bt−1(rt−1))

∂ b2
t−1

.

Hence, (2.A.8) holds. We next prove that (2.A.7) indeed holds, using (2.A.8). Im-
plicit differentiation of (2.4) yields

dbt−1(rt−1)
drt

=
−χ(rt−1)
h

P′′(·) ∂ e∗t−1
∂ bt−1

∂ e∗t−1
∂ v∗t
+ P′(·) ∂ 2e∗t−1

∂ v∗t ∂ bt−1

i

+ nP′(·) ∂ e∗t−1
∂ v∗t

χ(rt−1)
h

P′′(·)
�

∂ e∗t−1
∂ bt−1

�2

+ P′(·) ∂
2e∗t−1

∂ b2
t−1

i

− 2nP′(·) ∂ e∗t−1
∂ bt−1

·
dvt(bt(rt))

drt

+
P′(·) ∂ e∗t−1

∂ bt−1

χ(rt−1)
h

P′′(·)
�

∂ e∗t−1
∂ bt−1

�2

+ P′(·) ∂
2e∗t−1

∂ b2
t−1

i

− 2nP′(·) ∂ e∗t−1
∂ bt−1

· δ
dπt(bt(rt))

drt
,

(2.A.10)
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where, for notational simplicity,

χ(rt−1) := rt−1 − nbt−1(rt−1) − δπt(bt(rt)), and e∗t−1 = e(bt−1(rt−1)).

Using (2.A.8), the derivative (2.A.10) may be rewritten as

dbt−1(rt−1)
drt

=
χ(rt−1)
h

P′′(·)
�

∂ e∗t−1
∂ bt−1

�2
+ P′(·) ∂

2e∗t−1

∂ b2
t−1

i

− nP′(·) ∂ e∗t−1
∂ bt−1

χ(rt−1)
h

P′′(·)
�

∂ e∗t−1
∂ bt−1

�2

+ P′(·) ∂
2e∗t−1

∂ b2
t−1

i

− 2nP′(·) ∂ e∗t−1
∂ bt−1

· δ
dvt(bt(rt))

drt

+
P′(·) ∂ e∗t−1

∂ bt−1

χ(rt−1)
h

P′′(·)
�

∂ e∗t−1
∂ bt−1

�2

+ P′(·) ∂
2e∗t−1

∂ b2
t−1

i

− 2nP′(·) ∂ e∗t−1
∂ bt−1

· δ
dπt(bt(rt))

drt
.

(2.A.11)

Observe that the second summand in (2.A.11) is strictly negative, implying that

dbt−1(rt−1)
drt

<
χ(rt−1)
h

P′′(·)
�

∂ e∗t−1
∂ bt−1

�2
+ P′(·) ∂

2e∗t−1

∂ b2
t−1

i

− nP′(·) ∂ e∗t−1
∂ bt−1

χ(rt−1)
h

P′′(·)
�

∂ e∗t−1
∂ bt−1

�2

+ P′(·) ∂
2e∗t−1

∂ b2
t−1

i

− 2nP′(·) ∂ e∗t−1
∂ bt−1

· δ
dvt(bt(rt))

drt
. (2.A.12)

Since the first factor on the r.h.s. of (2.A.12) is between zero and one, we can now
conclude that (2.A.7) indeed holds,

dbt−1(rt−1)
drt

< δ
dvt(bt(rt))

drt
.

Hence, the derivative (2.A.4) is strictly negative.

Summing up Cases 1 and 2, we have proven that

de(bt−1(rt−1))
drt

¨

= 0 if rt ≤ rt or rt−1 ≤ rt−1

< 0 if rt > rt and rt−1 > rt−1,

dbt−1(rt−1)
drt

¨

= 0 if rt ≤ rt or rt−1 ≤ rt−1

Ò 0 if rt > rt and rt−1 > rt−1,

which completes the proof of Part (i).
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Part (ii). In the following, suppose that rt > rt and rt−1 > rt−1. We first show that if
rt−1 − rt−1 is sufficiently small, then

dbt−1(rt−1)
drt

< 0.

Note that, if rt−1 − rt−1→ 0, then χ(rt−1)→ 0 because

0 ≤ χ(rt−1) ≤ rt−1 − rt−1.

For χ(rt−1)→ 0, in turn, the derivative (2.A.11) becomes

dbt−1(rt−1)
drt

=
δ

2n

�

n
dvt(bt(rt))

drt
−

dπt(bt(rt))
drt

�

. (2.A.13)

From (2.A.13), (2.4), (2.8), (2.10), and the fact that

∂ bt(rt)
∂ rt

<
1
2n

,

we can conclude that (2.A.13) is strictly negative if the following sufficient condi-
tion is satisfied:

(2n − 1)
�

bt(rt) − δvt+1(bt+1(rt+1))
�

≤ rt − rt. (2.A.14)

We next show that (2.A.14) indeed holds. Recognize that (2.A.14) is fulfilled in the
limit rt→ rt, since we then have bt(rt)−δvt+1(bt+1(rt+1))→ 0. In addition, note
that the slope of the r.h.s. in (2.A.14) is strictly greater than the slope of its l.h.s.
because

∂

∂ rt

�

(2n − 1)
�

bt(rt) − δvt+1(bt+1(rt+1))
��

= (2n − 1)
∂ bt(rt)
∂ rt

<
2n − 1

2n
< 1 =

∂

∂ rt

�

rt − rt

�

.

Hence, we can infer that (2.A.14) is satisfied for all rt > rt, implying that

dbt−1(rt−1)
drt

< 0

holds if rt−1 − rt−1 is sufficiently small.
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As a last step, we show that if rt−1 − rt−1 is sufficiently large, then

dbt−1(rt−1)
drt

> 0.

Since χ(rt−1) is strictly increasing and unbounded, we obtain for rt−1 − rt−1→∞
that χ(rt−1)→∞. Consequently, for rt−1 − rt−1→∞, (2.A.11) becomes

dbt−1(rt−1)
drt

= δ
dvt(bt(rt))

drt
> 0.

The proof of Part (ii) is now complete. □

Proof of Lemma 6. The principal’s expected profit in period t− 1 is given by

πt−1(bt−1(rt−1)) =P(e(bt−1(rt−1)))
�

rt−1 − nbt−1(rt−1)
�

+
�

1 − P(e(bt−1(rt−1)))
�

δπt(bt(rt)).
(2.A.15)

By the Envelope Theorem, the derivative of (2.A.15) computes

dπt−1(bt−1(rt−1))
drt

=
�

1 − P(e(bt−1(rt−1)))
�

δ
dπt(bt(rt))

drt

+ P′(e(bt−1(rt−1)))
∂ e(bt−1(rt−1))

∂ v∗t

dvt(bt(rt))
drt

�

rt−1 − nbt−1(rt−1) − δπt(bt(rt))
�

.
(2.A.16)

Using (2.4), (2.10), and (2.A.9), we may then rewrite (2.A.16) as

dπt−1(bt−1(rt−1))
drt

= δ
�

1 − P(e(bt−1(rt−1)))
�

P(e(bt(rt)))

− δnP(e(bt−1(rt−1)))
dvt(bt(rt))

drt
,

which is exactly (2.12). □
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Proof of Theorem 3. From (2.4) it can be deduced that if rt−1 − rt−1→∞,
then the net bonus in t− 1 converges to infinity, bt−1 −δv∗t →∞, implying that
P(e(bt−1(rt−1)))→ 1. As a consequence, the derivative (2.A.16) becomes

dπt−1(bt−1(rt−1))
drt

= −δn
dvt(bt(rt))

drt
. (2.A.17)

From (2.9), we can conclude that (2.A.17) is strictly negative if rt > rt. Hence,

dπt−1(bt−1(rt−1))
drt

< 0,

given that rt > rt and rt−1 − rt−1 sufficiently large. □

Proof of Proposition 7. Using the recursive definition in (2.6), the success rate in
period t− 1 reads

St−1(bt−1(rt−1)) = P(e(bt−1(rt−1))

+
�

1 − P(e(bt−1(rt−1)))
��

P(e(bt(rt)) +
�

1 − P(e(bt(rt)))
�

St+1(bt+1(rt+1))
�

.

Differentiating with respect to rt and straightforward rearranging yields

dSt−1(bt−1(rt−1))
drt

=
�

1 − St−1(bt−1(rt−1))
�

·
h
�

1 − P(e(bt−1(rt−1)))
�

P′(e(bt(rt)))
∂ e(bt(rt))
∂ bt

∂ bt(rt)
∂ rt

+
�

1 − P(e(bt(rt)))
�

P′(e(bt−1(rt−1)))
de(bt−1(rt−1))

drt

i

.

(2.A.18)

Since
�

1− St−1(bt−1(rt−1))
�

> 0, we can conclude from (2.A.18) and a few further
straightforward rearrangements that

dSt−1(bt−1(rt−1))
drt

< 0

⇐⇒

�

1 − P(e(bt(rt)))
�

P′(e(bt−1(rt−1)))
�

1 − P(e(bt−1(rt−1)))
�

P′(e(bt(rt)))
·
−

de(bt−1(rt−1))
drt

∂ e(bt(rt))
∂ bt

∂ bt(rt)
∂ rt

> 1.

which is exactly Condition (2.13) stated in the proposition. □
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Proof of Lemma 7. To proof Lemma 7, we show that Part (i) and (ii) hold for every
period t= 1, . . . , T.

Consider the last period T.
Part (i). Assume, for the sake of contradiction, that

vT(bL
T) < vT(b∗T). (2.A.19)

would hold. This requires that bL
T ̸= b∗T. Since, by Lemma 4, b∗T is the unique maxi-

mizer of the principal’s expected profit in T, this implies that

πT(bL
T) < πT(b∗T). (2.A.20)

Conditions (2.A.19) and (2.A.20) now yield a contradiction to renegotiation proof-
ness in the sense of Definition 6: changing the implemented bonus form bL

T to b∗T
would generate a Pareto improvement. Hence, for all renegotiation-proof contracts,
we must have that

vT(bL
T) ≥ vT(b∗T), and thus πT(bL

T) ≤ πT(b∗T), (2.A.21)

with both inequalities being strict if bL
T > b∗T.

Part (ii). Since the bonus payment b∗T is the unique maximizer of the principals
profit, we have for any b̃T ̸= b∗T that

πT(b̃T) < πT(b∗T).

Hence, the contract b∗T is Pareto-efficient and therefore renegotiation-proof, since
any other bonus payment b̃T would leave the principal strictly worse off.

Now, consider the second-last period T − 1.
Part (i). Assume, for the sake of contradiction, that

vT−1(bL
T−1, bL

T) < vT−1(b∗T−1, b∗T), (2.A.22)

which directly implies that (bL
T−1, bL

T) ̸= (b∗T−1, b∗T). From (2.2) we can infer that, ce-
teris paribus, the principal’s expected profit πt−1 is increasing in her expected profit
πt and non-increasing in the agents’ payoff vt of the subsequent period. Hence, with
a slight abuse of notation, we can conclude from (2.2) that

∂ πt−1

∂ πt
> 0, and

∂ πt−1

∂ vt
≤ 0. (2.A.23)
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Combining (2.A.21) and (2.A.23) yields

πT−1(bL
T−1, bL

T) ≤ πT−1(bL
T−1, b∗T) ≤ πT−1(b∗T−1, b∗T), (2.A.24)

where the last inequality follows from the fact that b∗T−1 is the unique maximizer of
the principal’s expected profit provided that bT = b∗T. Since (bL

T−1, bL
T) ̸= (b∗T−1, b∗T),

at least one of the inequalities in (2.A.24) is strict. Hence, (2.A.22) and (2.A.24)
imply a contradiction to renegotiation-proofness: the contract (b∗T−1, b∗T) has a one-
period continuation b∗T that is renegotiation-proof, and offering this contract allows
an Pareto improvement compared to the contract (bL

T−1, bL
T). Hence, renegotiation-

proof contracts (bL
T−1, bL

T) must satisfy vt(b
L
t )≥ vt(b

∗
t ) for all t ∈ {T − 1, T} and thus

πt(b
L
t )≤ πt(b

∗
t ) for all t ∈ {T − 1, T}.

Part (ii). By construction of b∗T−1, it holds for any b̃T−1 ̸= b∗T−1 that

πT−1(b̃T−1, b∗T) < πT−1(b∗T−1, b∗T). (2.A.25)

Moreover, since we have already shown that any renegotiation-proof bonus bL
T sat-

isfies vT(bL
T)≥ vT(b∗T) and πT(bL

T)≤ πT(b∗T), we can infer from (2.A.23) that

πT−1(b̃T−1, bL
T) ≤ πT−1(b̃T−1, b∗T). (2.A.26)

Combining (2.A.25) and (2.A.26), we find that, compared to the contract
(b∗T−1, b∗T), the principal is strictly worse off with any contract (b̃T−1, bL

T), i.e.,
any other contract whose one-period continuation is renegotiation-proof. There-
fore, the contract (b∗T−1, b∗T) is Pareto-efficient among these contracts and thus
renegotiation-proof in the sense of Definition 6.

Repeating the above arguments until period t= 1 completes the proof. □

Proof of Theorem 4. Since the principal chooses a renegotiation-proof contract
that maximizes her expected profit in the first period, it directly follows from
Lemma 7 that b∗1 must be an equilibrium renegotiation-proof contract.

Its uniqueness can be shown by contradiction. Assume, for the sake of contra-
diction, that a second renegotiation-proof contract b̃1 with π1(b∗1)= π1(b̃1) and
b∗t ̸= b̃t for some t ∈ {1, . . . , T} would exist. Let τ be the last period where b∗t ̸= b̃t

holds. Because b∗
τ
is the unique maximizer given bτ+1, we have that

πτ(b̃τ,b
∗
τ+1) < πτ(b

∗
τ
,b∗
τ+1). (2.A.27)
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Moreover, renegotiation-proofness then requires

vτ(b̃τ,b
∗
τ+1) > vτ(b∗

τ
,b∗
τ+1). (2.A.28)

From (2.A.27) and (2.A.28) together with (2.A.23), we obtain for period τ− 1
that

πτ−1(b̃τ−1, b̃τ,b
∗
τ+1) < πτ−1(b̃τ−1, b∗

τ
,b∗
τ+1) ≤ πτ−1(b∗

τ−1, b∗
τ
,b∗
τ+1), (2.A.29)

where the last inequality is strict if b∗
τ−1 ̸= b̃τ−1. Again, due to renegotiation-

proofness, it must then hold that

vτ−1(b̃τ−1, b̃τ,b
∗
τ+1) > vτ−1(b∗

τ−1, b∗
τ
,b∗
τ+1). (2.A.30)

Exploiting (2.A.23), (2.A.29) together with (2.A.30) imply that

πτ−2(b̃τ−2, b̃τ−1, b̃τ,b
∗
τ+1) < πτ−2(b̃τ−2, b∗

τ−1, b∗
τ
,b∗
τ+1) ≤ πτ−2(b∗

τ−2).

By repeating the above arguments until period t= 1, we obtain that

π1(b̃1) < π1(b∗1),

which is a contradiction. Hence, there exists no other renegotiation-proof contract
b̃1 that satisfies π1(b∗1)= π1(b̃1) and b∗t ̸= b̃t for some t, i.e., b∗1 is the principal’s
unique equilibrium renegotiation-proof contract. □
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Abstract

National free-riding incentives prevent necessary reductions in global emissions and thus para-
lyze combating climate change. By considering two countries that engage in bargaining over a
joint emissions cap according to Rubinstein’s (1982) alternating-offers model, we discover a simple
mechanism to overcome free-riding incentives and achieve efficient outcomes. Provided that coun-
tries are sufficiently symmetric, allowing them to endogenously design a joint cap-and-trade system
by negotiating the amount and allocation of permits yields the efficient level of emissions and maxi-
mizes welfare. In contrast, if the negotiating countries are too heterogeneous, the scope for implicit
side payments in this system may not be sufficient to implement an efficient emissions cap.

Keywords: Emissions Trading Schemes, Alternating-Offers Model, Nash Bargaining Solution,
Outside Option, Free-Riding.

JEL Classification: C78, H41, Q53, Q58.

Disclosure: A (very) preliminary version of the project was part of Naumann’s (2022) dissertation
and can be found in Appendix 3.A.2. Comparing that version to the one presented in
this thesis demonstrates that the project has advanced extensively ever since.

⋆Acknowledgments. We thank Joshua Bißbort, Daniel Heyen, Çağıl Koçyiğit, Paul Ritschel,
Robert Schmidt, Philipp Weinschenk, and Jan Wenzelburger, as well as the participants of research
seminars at the Universities of Cambridge and Kaiserslautern-Landau, for helpful comments and
suggestions.



3.1 Introduction | 88

3.1 Introduction

Climate change constitutes one of the most severe challenges currently facing hu-
manity (see, among many others, Nordhaus, 2019; Stern, 2007; Weitzman, 2007).
It is well-known that extensive global emissions of greenhouse gases such as car-
bon dioxide, methane, and nitrous oxide lead to an increase in the temperature at
the Earth’s surface, which in turn promotes weather and climate extremes world-
wide. Some future changes in the climate system are already inescapable, but their
extent can be limited via immediate and effective emissions cuts (IPCC, 2023).
While lower global emissions are thus undoubtedly beneficial from a normative
perspective1, the incentive to free-ride on other countries’ abatement activities has
created a deadlock (Underdal et al., 2012). An emissions trading scheme (“cap-
and-trade system”) is a prominent policy instrument that, if designed appropri-
ately, breaks the deadlock and yields efficient outcomes (Schmalensee & Stavins,
2017). However, determining, implementing, and enforcing an appropriate design
is a major challenge for policy-makers (Egenhofer, 2007; Nordhaus, 2007; Stavins,
2008a; Weitzman, 2014). Our paper explores whether a simple mechanism can
implement efficient outcomes: allowing countries to endogenously design a joint
cap-and-trade system through negotiations. We thus shed light on the question of
whether this simple procedure for designing emissions trading schemes can solve
the problem of excessive greenhouse gas emissions.

We consider a simple two-country model in which each country bears individual
costs for reducing emissions, while, at the same time, benefiting not only from its
own abatement but also from abatement activities carried out in the other coun-
try. The countries are rational and negotiate according to the alternating offers a
la Rubinstein (1982) with complete and perfect information. Due to the negligible
friction in the bargaining process, the subgame perfect equilibrium in this dynamic
game coincides with Nash’s (1950) bargaining solution, i.e., the solution to a sim-
ple optimization problem.

Our analysis starts by exploring the benchmark scenario in which both countries
deploy national caps. Due to the positive externality – countries benefit from each
other’s reduction in emissions – we find a strong free-riding incentive that leads to
an inefficiently high level of emissions. We then direct attention to a setting where
the countries set a joint emissions cap through negotiations. The basic mechanisms
are explored in a stylized setting where the countries have agreed on setting up a

1. Stern (2008, p. 1) even refers to the excessive greenhouse gas emissions as “the biggest
market failure the world has seen.”
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joint cap-and-system and negotiate only on the amount of certificates. To derive
our main results, we then successively add more degrees of freedom by (i) allow-
ing the countries not only to bargain on the amount of certificates but also on
their initial allocation. Afterwards, we (ii) incorporate the possibility of strategic
termination of the negotiations. That is, each country may actively decide to end
the negotiations, resulting in national abatement activities. A comparison with the
benchmark then yields our two main results.

First, enabling the countries to set up a joint emissions trading scheme and to bar-
gain over its design allows them to overcome the free-riding incentive and imple-
ment the efficient emissions cap if the countries are sufficiently symmetric. That
is, if they are sufficiently similar in terms of their cost and benefit structures as
well as their initial emissions. This holds irrespective of the possibility of strategic
opting out of the negotiations. Intuitively, the countries agree on the cap that max-
imizes overall welfare. The initial allocation of certificates is then used as implicit
side payment to distribute the highest level of welfare equally across countries.
Second, negotiations do not necessarily implement the efficient cap if countries’
benefits resulting from this cap are too heterogeneous. The intuition is as follows.
The scope for using the initial allocation as implicit side payment is limited as a
country cannot receive more than the entire share of certificates. If the benefits
from the efficient cap are sufficiently different, then even allocating all certificates
to the low-benefit country is insufficient to generate equal welfare levels in both
countries. The countries will then rather agree on another cap that is less efficient
but yields a more equal distribution of individual welfare levels. As we argue after-
wards, our two insights also carry over to settings in which more than two countries
negotiate on the design of a multilateral cap-and-trade system.

Related Literature. Free-riding incentives have received particular attention
in the literature as a primary force preventing emissions reduction and hindering
strict international agreements to curb climate change (see, e.g., Barrett, 1994,
2003; Carraro and Siniscalco, 1993; Nordhaus, 2015). They result from the public
good nature of abatement. While all countries benefit from lower global emissions,
only those countries that actually reduce their emissions bear the associated costs.
This situation gives rise to Hardin’s (1968) infamous tragedy of commons: each
country will leave costly abatement activities to the others. As a remedy for the
free-riding problem, economic theory proposes price-based and quantity-based in-
struments (see, e.g., Mas-Colell et al., 1995; Nordhaus, 2007; Weitzman, 1974).2

2. See Aldy et al. (2003) for a more nuanced distinction and Goulder and Schein (2013) as
well as Stavins (2022) for a comparison of the different approaches.
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While price-based instruments originate from Pigou’s (1920) taxation of external-
ities, quantity-based instruments build on the concept of tradable permits as pro-
posed by Coase (1960) and Dales (1968). Both approaches are widespread policy
instruments to address either national or international climate targets.

For price-based instruments, Weitzman (2014) explores a simple mechanism to
alleviate the free-riding incentive. Given that the countries can commit to a sin-
gle emissions price, they determine this price by pairwise majority voting, result-
ing in emissions close to the efficient level. Intuitively, due to global commitment
to the emissions price, a country’s additional costs from a higher emissions price
are offset by its additional benefit arising since all other countries reduce their
emissions at the same time in response to the higher price. However, for quantity-
based instruments, Weitzman (2014, p. 31) suspects that “even if there were a col-
lective commitment to negotiate or vote on a second-stage worldwide total emissions
cap, disagreements over the first-stage subdivision formula (...) would paralyze such a
quantity-based approach.” Despite these doubts, our analysis reveals that a similar
mechanism also exists for quantity-based instruments where the total amount of
emissions is capped, and the emissions price is determined via trading, given that
the countries are sufficiently symmetric. We thereby contribute to two strands of
the emissions-trading literature, namely endogenous allowance choices and link-
ing emissions trading schemes.

Previous research by Helm (2003) has shown that endogenous allowance choices
made by countries do not automatically result in lower pollution levels, as envi-
ronmentally more (less) concerned countries choose to pollute less (more) such
that the environmental efforts offset. Using numerical simulations, Smead et al.
(2014) investigate a setup where agents bargain over their share of the fixed total
emissions. They find that negotiations tend to fail if too many agents request over-
proportional emissions shares, making the initial demand for those shares a key
factor for successful negotiations. Our paper complements these results by identi-
fying an insufficient scope for side payments as an additional mechanism that may
prevent efficient endogenous allowance choices.

Considering situations where emissions trading systems have already been imple-
mented, the literature on linking emissions trading schemes raises the question as
to whether combining these systems is beneficial. Flachsland et al. (2009) analyze
the benefits and drawbacks of linking, such as reduced volatility, strengthening the
multilateral commitment versus expanded emission caps, abatement targets that
are not in line with a burden-sharing approach, and declining national regulatory
power. Doda and Taschini (2017) argue that linking becomes more advantageous
the larger the jurisdictions’ size and variances of benefit shocks, while a stronger
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correlation of these shocks and higher sunk costs of linking result in the opposite
effect. Doda et al. (2019) find that multilateral linking can lead to tremendous effi-
ciency gains, which arise equally from effort- and risk-sharing. However, Habla and
Winkler (2018) demonstrate that strategic delegation hinders the linking of emis-
sions trading schemes.3 We contribute to this literature by showing that linking
arises naturally via negotiations if the countries are sufficiently symmetric.

More generally, applying game theory to analyze negotiations on ecological agree-
ments and the provision of environmental public goods has been a vibrant research
area over the past two decades (Caparrós, 2016).⁴ Bargaining models were de-
ployed in the context of global north-south climate change negotiations (cf. Ca-
parrós et al., 2004), air pollution (cf. Harstad, 2007), investment in green tech-
nologies (cf. Urpelainen, 2012), global biodiversity regulation (cf. Swanson and
Groom, 2012), interregional water sharing (cf. Nehra and Caplan, 2022), and cli-
mate policies (cf. Harstad, 2023). The paper closest in spirit to ours is Dijkstra and
Nentjes (2020), who analyze negotiations on tradable production certificates in
a related model. While the structure of their game is different, their results also
differ in so far as they find that bargaining always leads to efficient production lev-
els. In spite of this plentiful literature, this paper is, to the best of our knowledge,
the first to explore how two countries endogenously design a joint cap-and-trade
system by bargaining over the amount and allocation of permits.

Outline. The remainder of this paper is organized as follows. In the next section,
we introduce our two-country model and define a country’s welfare as a function of
the design of the emissions trading scheme. Section 3.3 analyzes two benchmark
scenarios for our welfare analysis by considering a social planner and national caps.
In Section 3.4, we explore the simplest version of cap negotiation, i.e., a setting
where the countries can bargain on the emissions cap only. Section 3.5 then gener-
alizes the preceding analysis by allowing the countries to bargain simultaneously
on the emissions cap and the initial allocations of permits, while also incorporating
the possibility of strategic opting out of the negotiations. A discussion of multilat-
eral negotiations, i.e., the case of more than two countries, is provided in Section
3.6. Finally, Section 3.7 concludes our analysis by highlighting its implications. All
proofs are provided in Appendix 3.A.1.

3. There is a strand in the political economy literature that examines how delegates in the
context of international environmental agreements are chosen. The baseline shared here is that
countries may select delegates that misrepresent their preferences (see, e.g.,Graziosi, 2009; Habla
and Winkler, 2018; Segendorff, 1998). We, however, abstract from such considerations and assume
that the countries’ preferences are correctly represented in the negotiations.

4. For an excellent overview of the literature, see Caparrós (2016).
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3.2 Model and Basic Insights

This section presents the underlying theoretical framework for describing a cap-
and-trade system. Subsequently, we derive individual welfare for a country as a
function of the scheme’s design.

Framework. Consider two countries that emit greenhouse gases. Each coun-
try i ∈ {1, 2} carries out abatement activities ai relative to its emissions level un-
der “business as usual” ei,0 ∈ R++.⁵ Abatement activities affect country i’s welfare
through three channels. First, there are benefits of overall abatement Bi(

∑

i ai). Re-
ducing emissions has thus a positive externality since country i also benefits from
the abatement made by country −i and vice versa. Second, country i bears costs
of its own abatement Ci(ai). Third, as countries participate in a cap-and-trade sys-
tem, emissions trading additionally results in either revenues or costs, depending
on whether i is a seller or buyer of permits. A country acts as a seller [buyer] of
permits if its realized emissions ei are lower [higher] than its initial endowment of
permits ēi ∈ R+. The emissions market price p is endogenously determined. Putting
these components together, country i’s welfare amounts to:

Bi(
∑

i ai) − Ci(ai) + (ēi − ei) · p, i = 1,2. (3.1)

Note that the benefits of lower emissions are expressed in terms of emissions abate-
ment, i.e., the higher the abatement, the lower the emissions and thus the higher
the benefits. For the emissions cap of the entire scheme, Ē, it holds that

Ē =
∑

i
ēi, and ēi = µiĒ i = 1,2, (3.2)

where µ2 = 1 − µ1,

and µ1 ∈ [0, 1] denoting the share of permits allocated to country 1. As realized
emissions are determined by emissions under “business as usual” minus abatement,
we can rewrite the country i’s welfare in (3.1) as

Bi(
∑

i ai) − Ci(ai) + (µiĒ − (ei,0 − ai))p, i = 1,2. (3.3)

Following the literature, in which abatement costs are commonly assumed to be
quadratic (see, for instance, Barrett, 1994; Baudry et al., 2021; Gersbach and Hum-
mel, 2016; McGinty, 2007; Weitzman, 1974, 2014), we impose the following as-
sumptions on the abatement costs:

5. As we will see later, our assumptions ensure that ai ≥ 0, i.e., a country does not increase
its emissions above the initial level generated under “business as usual”.
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Assumption 5 (Cost Function).
Country i’s abatement costs are captured by a cost function Ci : [0, ei,0]→ R+, which
is of the quadratic form

Ci(ai) =
ζi

2
a2

i , where ζi > 0, i = 1,2. (3.4)

Without loss of generality, the indices are such that country 1 has weakly higher
marginal abatement costs, i.e., ζ1 ≥ ζ2. We further normalize that ζ1 + ζ2 = 1 to
simplify the exposition. By defining A :=

∑

i ai and E0 :=
∑

i ei,0, country i’s benefit
writes as Bi(A) and satisfies the following assumptions.

Assumption 6 (Benefit Function).
Country i’s benefit function Bi : [0, E0]→ R+ is twice continuously differentiable,
strictly increasing, strictly concave, and satisfies

Bi(0) = 0, B′i(0) = ∞, B′i(E0) = 0, and B′′i < −ζiζ
2
−i, i = 1,2.

The assumptions on the marginal benefits ensure that reducing emissions relative
to “business as usual” is beneficial for both countries. Moreover, the assumption
on the second derivative is a technical one, guaranteeing that country i’s welfare
function, which will be introduced shortly, is concave and thus well-behaved.

Abatements &Welfare Functions.We start by deriving fundamental insights
about the realized emissions market price and the abatement activities within a
given cap-and-trade system. As we consider a unit-mass continuum of homoge-
neous price-taking firms in each country, a firm’s problem consists of minimizing
its costs under the emissions trading scheme. The optimization problem of a repre-
sentative firm in country i is thus

min
0≤ai≤ei,0

p · (ei,0 − ai) + Ci(ai), i = 1,2.

From the corresponding first-order condition (FOC), we directly obtain the optimal
abatement level:

−p + C′i(ai) = 0 ⇐⇒ ai =
p
ζi

, i = 1,2. (3.5)
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Since overall emissions are restricted by the emissions cap Ē, market clearing in the
emissions permit market requires that

∑

i(ei,0 − ai)= Ē. Inserting the abatements
per country and solving for the emissions market price yields:

p = p(Ē) := ζ1ζ2

�

E0 − Ē
�

. (3.6)

Plugging (3.6) into (3.5), we obtain the abatement activities and calculate their
derivatives with respect to Ē:

ai = ai(Ē) := ζ−i

�

E0 − Ē
�

, and
∂ ai(Ē)

∂ Ē
= −ζ−i, i = 1,2, (3.7)

A = A(Ē) := E0 − Ē, and
∂ A(Ē)
∂ Ē

= −1. (3.8)

Since country 2 represents the country with lower abatement costs (ζ2 ≤ ζ1), it
contributes more to total abatement (a2 ≥ a1). This is intuitive and in accordance
with economic insights on emissions trading. By inserting (3.6)–(3.8) in expression
(3.3), we are now in the position to define country i’s welfare as a function of the
design of the cap-and-trade system, i.e., the amount and allocation of permits:

Wi(Ē,µ1) := Bi(A(Ē)) − Ci(ai(Ē)) + (Ēµi − ei,0 + ai(Ē))p(Ē), i = 1,2, (3.9)
where µ2(µ1) := 1 − µ1.

3.3 Benchmarks

We next examine two benchmark scenarios, against which we evaluate the endoge-
nous design of the cap-and-trade system through negotiations. First, we consider
a social planner who designs a joint emissions cap. Second, we investigate how
each country would set its national cap individually if there was no joint cap-and-
trade system. By comparing both of these scenarios, we then identify the welfare-
reducing effect resulting from free-riding in our model.

Social Planner. Let us first consider a social planner who seeks to maximize
the overall welfare of both countries. It is apparent that, from a social planner’s
perspective, trading activities between the countries offset each other, which ren-
ders the allocation µ1 irrelevant for overall welfare. Hence, the optimization prob-
lem faced by the social planner is solely to choose a cap that maximizes welfare.
Formally, the efficient cap ĒS is defined by the solution to:

max
0≤Ē≤E0

W(Ē) :=
∑

i
Wi(Ē,µ1). (3.10)
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The FOC to the social planner’s problem is

dW(Ē)
dĒ

=
∑

i

dWi(Ē,µ1)

dĒ
= 0. (3.11)

By inserting (3.9) and using the deviates in (3.7)–(3.8), Equation (3.11) can be
simplified to

∑

i
B′i(A(Ē)) = C′i(ai(Ē)), i = 1,2. (3.12)

Indeed, solely balancing marginal cost of abatement with the overall marginal ben-
efit of abatement is what determines the efficient cap. The following lemma estab-
lishes the existence and uniqueness of the efficient cap ĒS.

Lemma 8. There exists a unique efficient cap 0< ĒS < E0 that solves Problem (3.10).
It is determined by the solution to (3.12).

Intuitively, both countries benefit from a marginal increase in the abatement ir-
respective of where the emissions have been reduced (see l.h.s. of (3.12)). Since
permits are traded, marginal abatement costs of the countries equalize (see r.h.s.
of (3.12)) such that any emissions target is met at the lowest cost, making a cap-
and-trade system an efficient policy instrument to regulate pollution.⁶ Welfare is
then maximized at the efficient emissions level ĒS that balances the total marginal
benefits of abatement with its marginal costs. We define the maximum level of
welfare generated by the efficient cap as

WS := W(ĒS).

National Caps. Next, we turn our attention to a scenario in which both coun-
tries do not participate in a joint emissions trading scheme but deploy national
regulations in the form of national emissions caps instead. Since each country im-
plements its own emissions cap, the corresponding abatement for country i and
the corresponding overall abatement are of the form

ai(ēi) := ei,0 − ēi, i = 1, 2, (3.13)

A(ēi, ē−i) :=
∑

i
ai(ēi) = E0 −
∑

i
ēi. (3.14)

6. This holds true in the absence of transaction costs and imperfect competition (see, e.g.,
Hahn, 1984; Stavins, 1995).
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Given the cap of the other country, country i now chooses its own cap to maximize
its welfare, i.e., by solving

max
0≤ēi≤ei,0

Bi(A(ēi, ē−i)) − Ci(ai(ēi)), i = 1,2. (3.15)

Using (3.13) and (3.14), country i’s FOC can be written as

B′i(A(ēi, ē−i)) = C′i(ai(ēi)), i = 1, 2. (3.16)

Lemma 9 now establishes the existence and uniqueness of a Nash equilibrium in
this abatement game.

Lemma 9. For each country i ∈ {1,2}, there exists a unique Nash equilibrium cap
0≤ ēN

i < ei,0 that solves Problem (3.15). The first inequality is strict for at least one
country.

Intuitively, in the Nash equilibrium, the cap ēN
i chosen country i is the best response

– by equating marginal benefits and costs – to the cap ēN
−i implemented by the

other country. Hence, no country has an incentive to deviate. The overall welfare
generated by national caps is defined by

WN :=
∑

i
WN

i , where WN
i := Bi(A(ēN

i , ēN
−i)) − Ci(ai(ēN

i )), i = 1,2.

Comparison. Naturally, the following question arises: how effective are national
caps in reducing emissions and improving welfare in comparison to the efficient
outcome generated by the social planner? The following proposition answers this
question by comparing both benchmark scenarios in terms of implemented overall
cap and welfare.

Proposition 8 (National Caps Versus Social Planner).
Compared to a social planner, national caps implement a strictly higher overall cap,
∑

i ē
N
i > ĒS, that leads to a strictly lower level of welfare, WN<WS.

Proposition 8 is the manifestation of the free-riding problem in our model. Intu-
itively, each country i has an incentive to free-ride on the abatement carried out
by the other country, while, at the same time, implementing insufficient domestic
abatement targets to reduce its own abatement costs. This results in total emissions
that are too high from a societal perspective. Example 9 illustrates this finding.
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Example 9 (Free-Riding).
Consider benefits that are captured by a benefit function of the form

Bi(A) = βi(2
p

A − A), where βi > 2ζiζ
2
−i, and A ∈ [0, 1].

Even for the symmetric case where e1,0 = e2,0 = 0.5, ζ1 = ζ2 = 0.5, and β1 = β2 =
0.3, free-riding leads to emissions that are 35% above the efficient emissions cap.

3.4 Negotiations on the Emissions Cap

Our analysis of the benchmarks raises the question of whether a cap-and-trade sys-
tem can still overcome or at least mitigate the free-riding incentive in the absence
of a social planner. In other words, is it more favorable from a societal perspective if
the countries design the cap-and-trade system themselves rather than implement-
ing national caps?

Probably the most natural way for countries to endogenously design the cap-and-
trade system is through negotiations, which we will analyze next. To understand
the basic mechanisms, it is illustrative to start with the simplest form of negotia-
tions, where the countries only bargain over the emissions cap. That is, we consider
a setting where the countries have already (i) agreed on setting up a joint cap-and-
trade system and (ii) determined an initial allocation of permits µ̂1 ∈ [0,1].

(i) means that neither country can strategically opt out of the negotiation,
which, for our bargaining model, implies that no country has an outside op-
tion. One rationale for this situation could be that governments have already
committed to establishing a joint cap-and-trade system or that public pres-
sure is forcing them to do so.

(ii) entails that the allocation of permits is exogenous from the perspective of
the negations on the emissions cap. This allocation could, for instance, be de-
termined through prior negotiations or grandfathering, i.e., proportional to
the countries’ emissions under “business as usual” going back to the concept
of first possession and appropriation (cf. Epstein, 1979; Lueck, 1995; Rose,
1985).⁷ As grandfathering is frequently practiced in emissions trading sys-
tems such as the US sulphur dioxide emissions trading program and the EU
ETS (Woerdman et al., 2008), the assumption of an exogenous allocation is
plausible from a practical point of view.

7. Analyses of grandfathering from an economic perspective can be found, for example, in
Böhringer and Lange (2005), Damon et al. (2019), as well as Grimm and Ilieva (2013).
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Nonetheless, it should be emphasized that (i) and (ii)will be dropped in the course
of this paper in order to derive more general insights.

3.4.1 Bargaining Outcome

First, we need to specify the set of feasible bargaining solutions. It is straightfor-
ward that any bargaining has to result in a Pareto-efficient outcome. Otherwise,
the parties could simply agree on another cap and thereby achieve a Pareto im-
provement. To construct the set of Pareto-efficient caps, Pµ̂1

, it is necessary to de-
termine which joint cap Ēi country i prefers most as an outcome of the bargaining
procedure. Country i would set a global cap that maximizes its welfare,

max
0≤Ē≤E0

Wi(Ē, µ̂1), i = 1,2. (3.17)

From differentiating (3.9) and simplifying, we obtain country i’s FOC, which reads

− B′i(A(Ē)) + µiC
′
i(ai(Ē)) + xi,−i(Ē) C′′i (ai(Ē))

∂ ai(Ē)

∂ Ē
= 0, i = 1,2, (3.18)

where xi,−i(Ē) :=
�

µiĒ − ei,0 + ai(Ē)
�

.

As (3.18) shows, from an individual perspective, trading activities and the initial
distribution of permits matter for welfare. Indeed, xi,−i is the amount of permits
passed from country i to −i, which can be both positive and negative depending
on whether i sells or purchases permits from country −i. The l.h.s. of Equation
(3.18) reveals three marginal effects that a higher cap has on country i’s welfare.
There are effects on marginal benefits (first summand) and marginal costs (sec-
ond summand), as well as a trading effect (third summand). The following lemma
now establishes the existence and uniqueness of a solution to Problem (3.17) and
compares it to the social planner solution.

Lemma 10. For each country i ∈ {1,2}, there exists a unique individually optimal
cap 0≤ Ēi < E0 that solves Problem (3.17). The first inequality is strict for at least
one country. Moreover, it holds that min {Ē1, Ē2}≤ ĒS ≤max {Ē1, Ē2}.

Lemma 10 reveals that at most one country advocates complete decarbonization,
while the other country prefers a positive level of global emissions. Positive caps
are determined by the FOC (3.18) to balance marginal benefits, costs, and trading
effects. A social planner, in comparison, would cap overall emissions at a level that
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lies between those caps optimal from an individual perspective. Since both coun-
tries’ welfare functions are strictly concave in the implemented cap, we can directly
use Lemma 10 to define the Pareto set Pµ̂1

.⁸

Definition 7 (Pareto-Efficient Caps).
The set of Pareto-efficient caps, Pµ̂1

⊂ R+, is defined by

Pµ̂1
:=
¦

Ē : Ē ∈
�

min{Ē1, Ē2}, max{Ē1, Ē2}
�©

.

Figure 3.1 illustrates the idea of Definition 7 for the case where Ē1 < Ē2. Caps
lower than Ē1 are not Pareto-efficient since a marginal increase in Ē results in a
Pareto improvement, whereas for caps larger than Ē2, a Pareto improvement can
be achieved by reducing Ē. Only in the shaded area in the closed interval [Ē1, Ē2],
we find Pareto-efficient caps. An increase in the emissions cap is detrimental to
country 1 here, whereas it benefits country 2.

Figure 3.1. Individually optimal caps and Pareto set.

As a next step, we formalize the bargaining procedure. One of the most straight-
forward and intuitive ways to model a cap negotiation is according to Rubinstein’s
(1982) alternating-offers model, which applies to our setting as follows.⁹

Country i proposes a cap. Then country −i can either accept this offer and the
game ends or reject the offer and make a counteroffer after ∆> 0 time units. In
case of rejection, it is i’s turn to decide whether to accept the counteroffer or to
make a counter-counteroffer. This process continues until one country accepts the

8. Formally, concavity of Wi is shown as part of the proof of Lemma 10 in the Appendix 3.A.1.
9. See Osborne and Rubinstein (1990) and Muthoo (1999) for textbook as well as Roth

(1985) and Binmore and Dasgupta (1987) for advanced treatments of bargaining theory.
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proposed cap.1⁰ A prominent result in bargaining theory is that the subgame per-
fect equilibrium in the Rubinstein model converges to Nash’s (1950) bargaining
solution if ∆→ 0 (Binmore, 1987; Binmore et al., 1986). Intuitively, in the words
of Muthoo (1999, p. 52), ∆→ 0 corresponds to a situation where “the absolute
magnitudes of the frictions in the bargaining process are small”. Evidently, this is in
accordance with our setup, as the bargaining process is substantially faster than
the underlying process of climate change that requires the reduction of emissions.
Even if the bargaining is extended by ∆ due to the rejection of an offer, approxi-
mately the same benefits and costs can be attained through an agreement in the
next round. For simplicity, we assume that the counties have the same time dis-
count rate such that we can apply the symmetric Nash bargaining solution.11 In
our setting, the Nash bargaining solution ĒB is defined as the solution to the fol-
lowing maximization problem:

max
Ē
Nµ̂1

(Ē) := W1(Ē, µ̂1) ·W2(Ē, µ̂1), s.t. Ē ∈ Pµ̂1
, (3.19)

whereN is referred to as Nash product.12 Figure 3.2 illustrates how the bargaining
solution is determined. The purple line represents the Nash product. The Nash bar-
gaining solution is the maximizer of the Nash product among the Pareto-efficient
caps, which are represented by the solid part of the purple line.

Figure 3.2. Nash bargaining solution.

10. Note that this standard version of the alternating-offers model does not incorporate strate-
gic opting out of the bargaining. In our setup, the interpretation is that, while the counties have
already agreed on creating a cap-and-trade system, they only bargain about the implemented cap.

11. Different discount rates shift bargaining power in favor of country i that possesses a lower
discount rate, i.e., that is more patient. This leads to a bargaining outcome that is close to Ēi.

12. More precisely, Nµ̂1
(Ē)=
�

W1(Ē, µ̂1)− d1

�

·
�

W2(Ē, µ̂1)− d2

�

. As di reflects welfare at-
tained by country i if “business as usual” is maintained, it holds that di = 0 for all i ∈ {1, 2} (cf.
Binmore et al., 1986; Muthoo, 1999).
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From differentiation, we obtain the FOC of the Nash product, which reads:

dNµ̂1
(Ē)

dĒ
=
∑

i

dWi(Ē, µ̂1)

dĒ
·W−i(Ē, µ̂1) = 0. (3.20)

In our analysis, we exploit the following lemma.

Lemma 11. There exists a unique Nash bargaining solution 0≤ ĒB < E0 that solves
Problem (3.19). Any ĒB > 0 is determined by the unique solution to (3.20) in Pµ̂1

.

Although (3.20) has multiple solutions (cf. Figure 3.2), there exists at most one so-
lution that is Pareto-efficient. If that solution indeed exists, then it defines the bar-
gaining outcome ĒB > 0, while otherwise ĒB = 0 holds. Lemma 11 greatly helps us
investigate the question of whether bargaining can implement the efficient cap or,
more generally, whether the bargaining outcome may be welfare-enhancing com-
pared to national caps. Since it was shown in Lemma 8 and 10 that ĒS > 0 and
ĒS ∈ Pµ̂1

, respectively, we can conclude that the bargaining procedure implements
the efficient cap if and only if ĒS solves (3.20).

3.4.2 Comparison to the Benchmarks

It is worth emphasizing that each total abatement in the joint cap-and-trade system
is achieved with the optimal cost structure, namely with equal marginal cost in
each country. Hence, if ĒB = ĒS, then this automatically implies that the bargaining
solution leads to the greatest level of overall welfare. Proposition 9 now explores
conditions under which bargaining indeed implements ĒS.

Proposition 9 (Bargaining over the Emissions Cap).
Consider two countries that agreed upon setting up a joint cap-and-trade system with
an initial allocation µ̂1 and bargain over the amount of permits. Then the following
holds:

(i) If the countries are sufficiently symmetric in terms of benefits, costs, and initial
emissions, then there exists a unique initial allocation µS

1 ∈ [0, 1] which yields
ĒB = ĒS.

(ii) If, by contrast, Bi(A(ĒS))− B−i(A(ĒS)) sufficiently large, then ĒB ̸= ĒS.

The intuition behind Proposition 9 is due to the efficiency-fairness trade-off in bar-
gaining (see, e.g., Bertsimas et al., 2012; Dijkstra and Nentjes, 2020; Freeborn,
2023). The countries generally face a trade-off between “size of the cake” and “al-
location of the cake”. On the one hand, they seek to maximize the overall welfare
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level that they can divide among themselves, i.e., they want to choose a cap close to
ĒS. On the other hand, due to equal bargaining power, the countries want to imple-
ment a cap that leads to an equal split, i.e., that equalizes the counties’ individual
welfare levels.

Proposition 9 (i) reveals that if the countries are sufficiently symmetric in terms
of cost- and benefit structures and initial emissions, then a unique allocation
µS

1 ∈ [0,1] exists that completely resolves this trade-off. Given µS
1, agreeing on the

efficient cap not only maximizes overall welfare but also induces equal welfare lev-
els in both countries. In light of Proposition 8, this implies that if the countries
initially agreed on an allocation of permits µ̂1 sufficiently close to µS

1, then deter-
mining a joint cap via negotiations is indeed welfare-improving, since

WS ≥ W(ĒB) > WN,

holds by continuity for µ̂1 sufficiently close to µS
1. Put differently, if the countries

are sufficiently symmetric and µ̂1 is in the local neighborhood of µS
1, then endoge-

nously designing the cap-and-trade system through cap negotiations alleviates or
completely overcomes the free-ride incentive by implementing a stricter emissions
cap and enhancing overall welfare compared to national caps. The welfare maxi-
mum WS is however only achieved if the initial allocation µ̂1 coincides with µS

1.

Proposition 9 (ii) states that if the countries’ benefits obtained under the efficient
cap are too different, then bargaining does not implement the social optimum. In-
tuitively, as indicated by Buchholz et al. (2005) and Caparrós (2016), the allocation
of permits serves as an implicit side payment in an emissions trading system: with
a higher share µi, country i has to purchase fewer certificates or receives additional
revenue for selling the certificates, depending on whether i acts as buyer or seller
of permits. However, the scope for providing side payments is limited as country
i cannot receive more than the entire share of permits or less than no share. If
the countries’ benefits obtained under the efficient cap are too different, then the
scope for providing implicit side payments is insufficient to fully resolve the trade-
off, i.e., there is no allocation of permits for which the efficient cap also yields equal
individual welfare levels. Hence, due to the prevailing trade-off, countries forego
choosing the efficient cap and instead agree on a cap that leads to a more equal
distribution of individual welfare levels.

Since an efficient emissions cap is implemented through an allocation that resolves
the trade-off rather than allocating permits proportionally to initial emission levels,
we can state the following corollary for grandfathering.
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Corollary 4 (Grandfathering).
Consider two countries that agreed upon setting up a joint cap-and-trade system with
an initial allocation µ̂1 and bargain over the amount of permits.
If µ̂1∝ e1,0/E0, then bargaining will generally lead to an inefficient emissions cap.

Example 10 illustrates our results thus far regarding the bargaining outcome.

Example 10 (Optimal Initial Allocation).
Revisit the symmetric parameterization of Example 9. Figure 3.3 depicts the ini-
tial allocation µS

1 for different β2 and β1 = 0.3. For completely symmetric countries,
(β2/β1 = 1), bargaining implements the social optimum if and only if the coun-
tries initially agreed on an equal distribution of permits, µ̂1 = 0.5. By contrast, for
β2/β1 < 0.8 and β2/β1 > 1.2, the means of implicit side payments are insufficient
to implement the efficient cap. Grandfathering does not implement the efficient cap
except for the special case where β2/β1 = 1.

Figure 3.3. Optimal initial allocation.
(e1,0 = e2,0 = 0.5, ζ1 = ζ2 = 0.5, and β1 = 0.3)

3.5 Negotiations on the Cap and Allocation

Equipped with the inside that bargaining can be welfare-improving, we add a fur-
ther degree of freedom by allowing countries to negotiate simultaneously on the
emissions cap and the initial allocation of permits. We maintain the assumption
that countries cannot strategically end the negotiation for the time being but will
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abandon this assumption in the course of this section. The Pareto set P now con-
sists of tuples (Ē,µ1), i.e., combinations of a joint emissions cap and a correspond-
ing allocation of these certificates among the countries. It can be defined as follows.

Definition 8 (Pareto-Efficient Tuples).
The set of Pareto-efficient tuples, P ⊂ R+×[0,1], is the set of all tuples (Ē,µ1) for
which no other tuple (Ē′,µ′1) exists that satisfies

Wi(Ē
′,µ′1) ≥ Wi(Ē,µ1), and W−i(Ē′,µ′1) > W−i(Ē,µ1)

for at least one i ∈ {1, 2}, where µ1,µ′1 ∈ [0, 1].

For the bargaining procedure, this implies that an offer in the alternating-offers
model now consists of a tuple (Ē,µ1), i.e., a proposal about the amount of permits
and their allocation among the countries. Due to the negligible friction in the bar-
gaining process, we can exploit the relation between the subgame perfect equilib-
rium in this dynamic game and the static Nash bargaining approach again. Indeed,
the bargaining solution (ĒB,µB

1) is defined by a solution to the following maximiza-
tion problem:

max
(Ē,µ1)
N (Ē,µ1) := W1(Ē,µ1) ·W2(Ē,µ1) s.t. (Ē,µ1) ∈ P . (3.21)

Analyzing the Problem (3.21) leads to the following proposition.

Proposition 10 (Bargaining over the Emissions Cap and Initial Allocation).
Consider two countries that agreed upon setting up a joint cap-and-trade system and
bargain over the amount and allocation of permits. Then the following holds:

(i) If the countries are sufficiently symmetric in terms of benefits, costs, and initial
emissions, then ĒB = ĒS and µB

1 = µ
S
1.

(ii) If, by contrast, Bi(A(ĒS))− B−i(A(ĒS)) sufficiently large, then ĒB ̸= ĒS.

Allowing the countries to negotiate simultaneously on the allocation of permits
and the emissions cap yields some interesting results. Proposition 10 (i) shows that
whenever the scope for setting side payments allows the countries to resolve the
trade-off and implement the efficient cap, they will, in fact, design an allocation
of permits to do so.13 Put differently, if the countries are sufficiently symmetric,
then setting up a cap-and-trade system and letting the countries bargain over the
amount and allocation of permits completely removes the distortions created by the

13. Technically, the following relation holds ĒB = ĒS ⇐⇒ µB
1 = µ

S
1 ⇐⇒ µS

1 ∈ [0, 1].
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free-riding incentive. It is worth emphasizing that the countries themselves then
design an emissions cap exactly as it would have been done by a social planner or
regulator with complete information.

Proposition 10 (ii) is due to the mechanism that we have already encountered:
if the countries’ benefits from the efficient cap are too heterogeneous, then the
scope for providing side payments is insufficient to implement the efficient cap.
This holds true irrespective of whether the allocation of permits is exogenously
given or endogenously determined via bargaining.

It is worth discussing our results against the background of the famous Coase The-
orem. As summarized by Harris and Roach (2022, p. 60), the theorem states that
“if property rights are well defined, and no significant transaction costs exist, an ef-
ficient allocation of resources will result even with externalities.” In our model, an
efficient cap obtains, except for the case where the scope for side payments is ex-
hausted, which can be interpreted as infinite transaction costs. While our results
are thus in line with the Coase Theorem, it should be stressed that they are not
a mere consequence of the theorem. First, property rights in our setup are ex ante
not well defined, as the exact purpose of the negotiation is to determine these
rights by specifying the amount of permits and their allocation among the countries.
Second, even if this prerequisite was satisfied, Hahnel and Sheeran (2009) argue
that formal bargaining models will not generally result in the efficient outcome pre-
dicted by the rather informal Coase Theorem: whether negotiations lead to an ef-
ficient outcome crucially depends on the bargaining procedure, countries’ welfare
functions and time preferences, as well as the information structure in the game.

The preceding analysis focused exclusively on situations where the countries were
unable to terminate the negotiation strategically. While plausible for some settings,
others may allow each side to strategically opt out and end the bargaining in dis-
agreement. Metaphorically speaking, if one party decides to leave the negotiation
table, then both parties are left with their outside option. Since the countries must
rely on national caps in case setting up a joint cap-and-trade system fails, they are
left with the Nash equilibrium caps described in Lemma 9. Hence, country i’s out-
side option is simply WN

i , i.e., the welfare level obtained in the national cap bench-
mark. As the friction in the bargaining process is negligibly small, insights from
bargaining theory allow us to link the Nash bargaining solution to subgame perfect
equilibrium in the alternating offers model extended by the possibility of strate-
gic opting out for both parties. Following Binmore (1985), Binmore et al. (1986),
and Muthoo (1999), the subgame perfect equilibrium in the extended alternating-
offers model converges to the solution to the following maximization problem:



3.5 Negotiations on the Cap and Allocation | 106

max
Ē,µ1

N (Ē,µ1) = W1(Ē,µ1) ·W2(Ē,µ1)

s.t. (Ē,µ1) ∈ P , W1(Ē,µ1) ≥ WN
1 , W2(Ē,µ1) ≥ WN

2 .
(3.22)

The only difference to Problem (3.21) is that each country can secure itself a wel-
fare level weakly greater than its outside option. Intuitively, a country would never
accept a “bad” offer in the negotiation but instead strategically opt out and realize
its outside option. Examining Problem (3.22) yields the following proposition.

Proposition 11 (Bargaining with Outside Option).
Consider two countries that bargain on setting up a joint cap-and-trade system. If the
countries are sufficiently symmetric in terms of benefits, costs and initial emissions,
then they agree on setting up a joint cap-and-trade system with ĒB = ĒS and µB

1 = µ
S
1.

Proposition 11 states if two countries are sufficiently symmetric, instead of imple-
menting national caps, they will agree on setting up a joint cap-and-trade system
with an emissions cap that is efficient. This leads to the highest possible level of
welfare, which is equally distributed among the countries via the allocation of per-
mits. Our analysis, therefore, points out a simple way to circumvent the inefficiency
caused by the free-riding incentive: countries should be enabled to set up joint cap-
and-trade systems and allowed to negotiate the cap and allocation of permits. This
procedure then implements the social planner result, provided that the countries
are sufficiently symmetric. Otherwise, the free-riding incentive might be so strong
for a country and its outside option thus so attractive that the negotiated joint
emissions cap is distorted away from the social optimum. This is illustrated in the
following example.

Example 11 (Bargaining with Outside Option).
Revisit the symmetric parameterization of Example 9, where β1 = 0.3.

(i) For β2/β1 ∈ [0.8, 0.97) bargaining implements ĒS, while µ1 is determined by
providing a welfare level to country 1 that equals its outside option.1⁴

(ii) For β2/β1 ∈ [0.97,1.03] bargaining implements ĒS and µ1 is determined by
equalizing the corresponding welfare levels in both countries.

(iii) For β2/β1 ∈ (1.03, 2.05] bargaining implements ĒS, while µ1 is determined by
providing a welfare level to country 2 that equals its outside option.

(iv) By contrast, for β2/β1 > 2.05 bargaining does not implement ĒS.

14. We do not examine ratios β2/β1 < 0.8, as they violate Assumption 6.
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The example shows that the problem of insufficient side payments carries over to
the presence of outside options. Even more surprisingly, comparing Examples 10
and 11 reveals that the presence of an outside option may ensure that the bargain-
ing leads to an efficient cap for more asymmetric countries than it would be the
case without an outside option. This is precisely the case for β2/β1 ratios between
1.2 and 2.05. We summarize this surprising finding in the following proposition.

Proposition 12 (Presence vs. Absence of an Outside Option).
If countries have the possibility of strategic opting out, then bargaining may imple-
ment an efficient cap for more asymmetric countries than it would be the case without
an outside option.

The intuition is as follows. If country i’s outside option is sufficiently attractive, then
this eliminates the efficiency-fairness trade-off since the welfare level granted to
country i equals its outside option. Whenever possible, the parties then agree on the
efficient cap and an allocation of permits that provides county i with the welfare
level of its outside option.1⁵ This bargaining outcome not only ensures county i’s
participation in the scheme but also maximizes the welfare left for country −i.

3.6 Multilateral Negotiations

Although our analysis was conducted in the two-country case for the sake of clarity,
it easily generalizes to the case of n countries, where n> 2. Analogously to the
two-country case without an outside option, bargaining implements the efficient
cap if and only if a feasible allocation of permits exists that equates the welfare
levels in all countries resulting from the efficient cap.1⁶ A feasible allocation is now
characterized by
∑

i
µi = 1, and µi ∈ [0, 1], i = 1, . . . , n.

In the symmetric case, allocating equal shares µi = 1/n to all countries n indeed
constitutes the unique feasible allocation that equates the welfare levels from the

15. However, as can be seen in Part (iv) of Example 11, if the countries are too different, then
there may not be a feasible allocation of the efficient amount of permits that provides country i with
the welfare level of its outside option. In this case, the countries will not agree on the efficient cap
but rather on one closer to country i’s individually optimal cap Ēi.

16. Technically, the FOC of the social planner and the FOC of the Nash product with respect to
the emissions cap coincide in this case for the efficient cap.
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efficient cap such that bargaining leads to a design of the cap-and-trade system that
reduces emissions to the efficient level. Hence, continuity implies that bargaining
also implements the efficient cap if the countries are sufficiently symmetric. If, by
contrast, Bi(A(ĒS))− Bj(A(ĒS)) is sufficiently large for at least two countries i and
j, then equating welfare levels resulting from the efficient cap would either require
µi < 0 or µj > 1 such that no feasible allocation exists to do so. Bargaining will
therefore not implement the efficient cap in this case. In the presence of an outside
option, it additionally holds for symmetric countries that

Wi(ĒS, 1/n) =
WS

n
>

WN

n
= WN

i , i = 1, . . . , n.

We can thus infer that even with an outside option if the n countries are sufficiently
symmetric, they will agree on setting up a cap-and-trade system and cap the emis-
sions at the efficient level. Accordingly, our analysis carries over entirely to the case
with more than two countries, i.e., multilateral negotiations on the design of a joint
cap-and-trade system.

3.7 Conclusion

How can global greenhouse gas emissions be reduced to mitigate climate change?
We have addressed this question by analyzing whether designing an emissions trad-
ing scheme through negotiation has the potential to enforce efficient emissions
levels. Our analysis builds on a simple model with two countries that experience a
positive externality from reducing emissions. Due to this externality, each country
has an incentive to free-ride on the other country’s abatement activities. In the case
of national abatement activities, free-riding leads to an overall emissions level that
exceeds the social optimum.

By applying insights from bargaining theory, we find that the ecological market fail-
ure resulting from the free-riding incentive may be eliminated by a simple mech-
anism derived from quantity-based instruments: enabling the countries to set up
a joint cap-and-trade system and allowing them to bargain over the amount and
allocation of certificates. If the countries are sufficiently symmetric, they agree to
cap emissions at the efficient level. Since this efficient emissions level obtains with
the optimal distribution of abatement activities among the countries, i.e., at the
lowest cost, the endogenous cap maximizes overall welfare. The countries then
use the allocation of certificates as an implicit side payment to distribute welfare
equally among themselves. Surprisingly, an efficient cap may also be achieved for
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even more asymmetric countries if they can strategically terminate the bargaining
and deploy national caps instead. However, if the countries are too different, then
bargaining may not necessarily result in the efficient cap. In this case, the scope
for implicit side payments through the initial allocation of certificates may be in-
sufficient to make both countries agree on the efficient cap.

The implications of our analysis are quite striking. Even in the absence of a social
planner, a joint cap-and-trade system may induce efficient outcomes. The sheer
possibility of negotiating its design then induces cooperative behavior: the coun-
tries overcome the free-riding incentives, implement the efficient emissions cap,
and distribute the resulting overall welfare among themselves in a fair way. Our
results imply that negotiations are pivotal in efficiently designing cap-and-trade
systems and should thus be encouraged. Moreover, they underline the importance
of removing all sorts of barriers, such as transaction costs (cf. Montero, 1998), im-
perfections in the emissions market (cf. Stavins, 2008b), and conflicting national
regulations (cf. Hahn and Stavins, 2011), that either hinder countries from setting
up a joint cap-and-trade system or prevent them from linking existing schemes.
However, designing a mechanism that implements efficient outcomes for strongly
asymmetric countries, especially in the presence of outside options, is significantly
more complex and constitutes a fruitful avenue for further research.
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Appendix 3.A

The proofs for all of our main results are provided in Appendix 3.A.1. The (very)
preliminary version of the project from Naumann’s (2022) dissertation can be
found in Appendix 3.A.2. A comparison to the version in this thesis shows how
much the project has evolved over the last two years.

3.A.1 Proofs of the Main Results

Proof of Lemma 8. First, we establish the existence of a solution to (3.12). Since

lim
Ē→0

∑

i
B′i(A(Ē)) − C′i(ai(Ē)) = −ζ1ζ2E0 < 0,

lim
Ē→E0

∑

i
B′i(A(Ē)) − C′i(ai(Ē)) =

∑

i
B′i(0) = ∞ > 0,

the Intermediate Value Theorem immediately implies the existence of a solu-
tion. Moreover, differentiation with respect to Ē yields

∑

i
B′′i (A(Ē))

∂ A(Ē)
∂ Ē
− C′′i (ai(Ē))

∂ ai(Ē)

∂ Ē
,

which, using (3.7)–(3.8), simplifies to

−
∑

i
B′′i (A(Ē)) + ζ1ζ2 > 0.

Hence, the solution is unique. Note also that our assumptions regarding the func-
tional form of the cost and benefit functions immediately imply that W(Ē) is strictly
concave. Therefore, the solution ĒS to the FOC is indeed a maximizer. □

Proof of Lemma 9. In the Nash equilibrium, both countries choose national caps
that are best responses to each other. To derive the best responses, note that coun-
try i’s objective function in (3.15) is concave in ēi such that if a solution to the FOC
exists, then the solution indeed maximizes country i’s welfare.

We consider the best response of country 1 first by investigating the limits of its
FOC for a given ē2

lim
ē1→e1,0

B′1(A(ē1, ē2)) − C′1(a1(ē1)) = B′1(A(e1,0, ē2)) > 0,

lim
ē1→0

B′1(A(ē1, ē2)) − C′1(a1(ē1)) = B′1(A(0, ē2)) − ζ1e1,0 Ò 0.
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Now, we need to distinguish two cases:

Case 1. If B′1(A(0, ē2))− ζ1e1,0 ≥ 0, then ēN
1 = 0. Since, for country 2, it holds that

lim
ē2→e2,0

B′2(A(ē2, 0)) − C′2(a2(ē2)) = B′2(A(e2,0, 0)) > 0,

lim
ē2→0

B′2(A(ē2, 0)) − C′2(a2(ē2)) = −ζ2e2,0 < 0.

The Intermediate Value Theorem implies the existence of a solution 0< ēN
2 <

e2,0 to country 2’s FOC. Moreover, differentiation with respect to ē2 and simplifying
yields

−B′′2(A(ē2, 0)) + C′′2(a2(ē2)) = −B′′2(A(ē2, 0)) + ζ2 > 0.

Hence, ēN
2 is unique. In this case, the Nash equilibrium caps are thus uniquely de-

termined and satisfy ēN
1 = 0 and 0< ēN

2 < e2,0.

Case 2. If B′1(A(0, ē2))− ζ1e1,0 > 0, then the Intermediate Value Theorem im-
plies the existence of a solution to country 1’s FOC. Again, differentiating with
respect to ē1 and simplifying yields

−B′′1(A(ē1, ē2)) + C′′1(a1(ē1)) = −B′′1(A(ē1, ē2)) + ζ1 > 0.

such that the FOC has a unique solution that defines a best response function of the
form ē1(ē2). Plugging ē1(ē2) into country 2’s FOC and analyzing the limits yields

lim
ē2→e2,0

B′2(A(ē2, ē1(ē2))) − C′2(a2(ē2)) = B′2(A(e2,0, ē1(e2,0))) > 0,

lim
ē2→0

B′2(A(ē2, ē1(ē2))) − C′2(a2(ē2)) = B′2(A(0, ē1(0))) − ζ2e2,0 Ò 0.

Two subcases need to be distinguished now:

Case 2.1. If B′2(A(0, ē1(0)))− ζ2e2,0 ≥ 0, then ēN
2 = 0. Again, the Nash equilibrium

caps are unique and satisfy 0< ēN
1 = ē1(0)< e1,0 and ēN

2 = 0.

Case 2.2. If B′2(A(0, ē1(0)))− ζ2e2,0 < 0, then, by the Intermediate Value Theo-
rem, there exists a solution to country 2’s FOC. Differentiation with respect to ē2

and simplifying yields

−B′′2(A(ē2, ē1(ē2)))
�

1 +
∂ ē1(ē2)
∂ ē2

�

+ ζ2 (3.A.1)

From differentiating country 1’s FOC and simplifying, we get that

∂ ē1(ē2)
∂ ē2

=
B′′1(A(ē1, ē2))

−B′′1(A(ē1, ē2)) + ζ1
∈ (−1,0) for 0 < ē1 < e1,0. (3.A.2)
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In view of (3.A.2), we find that the term in (3.A.1) is strictly positive. Hence, the
solution to country 2’s FOC is unique. Therefore, the unique Nash equilibrium caps
in this case are 0< ēN

1 = ē1(ēN
2 )< e1,0 and 0< ēN

2 < e2,0. □

Proof of Proposition 8.We distinguish two cases depending on whether 0< ēN
1 , ēN

2

or 0< ēN
i and 0= ēN

−i. For both cases, it is shown that ĒS <
∑

i ē
N
i holds.

Case 1. We start by considering the case where 0< ēN
1 , ēN

2 . In this case, both FOCs
in (3.16) hold with equality for the Nash equilibrium caps. Summing up these
equations, we obtain from (3.16) that

∑

i
B′i(A(ēN

i , ēN
−i)) =
∑

i
C′i(ai(ēN

i )) (3.A.3)

must hold. Assume now, for the sake of contradiction, that ĒS ≥
∑

i ē
N
i would hold.

This implies that
∑

i
B′i(A(ēN

i , ēN
−i)) ≤
∑

i
B′i(A(ĒS)) = C′i(ai(ĒS)) <

∑

i
C′i(ai(ēN

i )), (3.A.4)

where the last inequality follows from the fact that ai(ēN
i )≥ ai(ĒS) as well as

a−i(ēN
−i)> 0 must hold for at least one i ∈ {1,2} if ĒS ≥

∑

i ē
N
i . Comparing (3.A.3)

and (3.A.4) yields a contradiction. We must thus have that ĒS <
∑

i ē
N
i .

Case 2. Now, consider the case where 0< ēN
i < ei,0 and 0= ēN

−i. In this case, country
i’s FOCs in (3.16) holds with equality for the Nash equilibrium caps

B′i(A(ēN
i , 0)) = C′i(a1(ēN

i )). (3.A.5)

Assume, for the sake of contradiction, that ĒS ≥
∑

i ē
N
i = ēN

i would hold. This im-
plies that

B′i(A(ēN
i , 0)) ≤ B′i(A(ĒS)) <

∑

i
B′i(A(ĒS)) = C′i(ai(ĒS)) ≤ C′i(ai(ēN

i )), (3.A.6)

where the last inequality follows from the fact that ai(ēN
i )≤ ai(ĒS) must hold if

ĒS ≥ ēN
i . Comparing (3.A.5) and (3.A.6) yields a contradiction. We must thus have

that ĒS <
∑

i ē
N
i .

To see that ĒS indeed induces a higher level of overall welfare, simply note that

WS = W(ĒS) > W(
∑

i ē
N
i ) ≥ WN. (3.A.7)

The first inequality follows from the fact that ĒS <
∑

i ē
N
i where ĒS is the unique

maximizer of W. The second inequality holds since the cap and trade system real-
izes the benefits from capping the overall emission to the level

∑

i ē
N
i at the lowest
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possible cost, i.e., a distribution of abatement activities among the countries that
equates their marginal costs. □

Proof of Lemma 10. First, we show that Problem (3.17) is strictly concave. From
differentiating the l.h.s. of (3.18), we get

d2Wi(Ē, µ̂1)

dĒ2
= − B′′i (A(Ē))

∂ A(Ē)
∂ Ē

+ C′′i (ai(Ē))
∂ ai(Ē)

∂ Ē

�

2µi +
∂ ai(Ē)

∂ Ē

�

where µ1 = µ̂1, and µ2 = 1 − µ̂1,

since C′′′i = ∂
2ai(Ē)/∂ Ē2 = 0. Using (3.7), (3.8), and the fact that any µi ∈ [0,1],

we obtain

d2Wi(Ē, µ̂1)

dĒ2
= B′′i (A(Ē)) + C′′i (ai(Ē))

�

− 2µiζ−i + ζ
2
−i

�

≤ B′′i (A(Ē)) + C′′i (ai(Ē))ζ2
−i

= B′′i (A(Ē)) + ζiζ−i < 0.

(3.A.8)

Next, we investigate whether the FOC has a solution by considering the limits

lim
Ē→E0

−B′i(A(Ē)) + µiC
′
i(ai(Ē)) + xi,−i(Ē) C′′i (ai(Ē))

∂ ai(Ē)

∂ Ē
= −∞ < 0,

lim
Ē→0
−B′i(A(Ē)) + µiC

′
i(ai(Ē)) + xi,−i(Ē) C′′i (ai(Ē))

∂ ai(Ē)

∂ Ē

= ζ1ζ2E0

�

µi − ζ−i +
ei,0

E0

�

Ò 0.

Now, we need to distinguish two cases:

Case 1. If µi − ζ−i +
ei,0

E0
> 0, then the Intermediate Value Theorem implies the

existence of solution 0< Ēi < E0 to the FOC (3.18). Since Problem (3.17) is strictly
concave, this solution must be unique.

Case 2. If µi − ζ−i +
ei,0

E0
≤ 0, then strict concavity of Problem (3.17) immediately im-

plies that Ēi = 0. Using that ζ−i = 1− ζi, ei,0 = E0 − e−i,0 and µ−i = 1−µi, it holds
for country −i that

µi − ζ−i +
ei,0

E0
≤ 0

µi − (1 − ζi) −
e−i,0

E0
≤ −1

µ−i − ζi +
e−i,0

E0
≥ 1 > 0.
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Hence, if Ēi = 0 for country i, then the FOC (3.18) implies the existence of a unique
solution 0< Ē−i < E0 for country −i.

To compare Ēi to ĒS, we need to consider the following three cases.

Case 1. If 0< Ēi < Ē−i, then, by strict concavity of Wi, we obtain the following limits

lim
Ē→Ēi

dW(Ē)
dĒ

=
dW−i(Ēi, µ̂1)

dĒ
> 0,

lim
Ē→Ē−i

dW(Ē)
dĒ

=
dWi(Ē−i, µ̂1)

dĒ
< 0.

(3.A.9)

Hence, the Intermediate Value Theorem implies that Ēi < ĒS < Ē−i.

Case 2. If 0= Ēi < Ē−i, then Lemma 8 immediately implies that Ēi < ĒS, while the
limit Ē→ Ē−i in (3.A.9) together with the concavity of W implies that ĒS < Ē−i.
Thus, we have that Ēi < ĒS < Ē−i again.

Case 3. In the trivial case Ēi = Ē−i, it is obvious that Ēi = ĒS = Ē−i holds.

Since i ∈ {1, 2}, combining Case 1 – 3 yields

min {Ē1, Ē2} ≤ ĒS ≤ max {Ē1, Ē2},

which is the relation stated in Lemma 10. □

Proof of Lemma 11. Again, we need to distinguish three cases.

Case 1. Consider the case where 0< Ēi < Ē−i. Evaluating the derivative of the Nash
product at the lower bound ofPµ̂1

, we obtain, by definition of Ēi and strict concavity
of W−i, that

lim
Ē→Ēi

dNµ̂1
(Ē)

dĒ
=

dW−i(Ēi, µ̂1)

dĒ
·Wi(Ēi, µ̂1) > 0.

By contrast, evaluating the derivative of the Nash product at the upper bound of
Pµ̂1

, we obtain, by definition of Ē−i and strict concavity of Wi, that

lim
Ē→Ē−i

dNµ̂1
(Ē)

dĒ
=

dWi(Ē−i, µ̂1)

dĒ
·W−i(Ē−i, µ̂1) < 0.

The Intermediate Value Theorem implies that a solution ĒB > 0 to (3.20) inPµ̂1

exists. To see that ĒB is unique and indeed maximizes the Nash product, note first
that Wi > 0, dW−i/dĒ > 0 and dWi/dĒ < 0 holds for all Ē ∈ (Ēi, Ē−i). This requires
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that W−i > 0 must hold for any solution ĒB to (3.20). Hence, for the derivative of
the l.h.s. of (3.20) evaluated at ĒB it holds

d2Nµ̂1
(ĒB)

dĒ2
=
∑

i

�

d2Wi(ĒB, µ̂1))

dĒ2
·W−i(ĒB, µ̂1)) +

dWi(ĒB, µ̂1)

dĒ
·

dW−i(ĒB, µ̂1)

dĒ

�

< 0.

Graphically, for any solution ĒB ∈ Pµ̂1
to (3.20), the l.h.s. of (3.20) intersects with

the r.h.s. (zero) with a negative slope such that only one solution exists, i.e., the
solution to (3.20) is unique. Since the second derivative of the Nash product eval-
uated at ĒB is negative, ĒB is indeed a maximizer.

Case 2. Now, consider the case where 0= Ēi < Ē−i. The limit Ē→ Ēi then admits all
signs, i.e., it might be positive or non-positive. In the positive case, ĒB > 0 is deter-
mined by the unique solution to (3.20) in Pµ̂1

following the arguments presented
in case 1. In the non-positive case, no solution to (3.20) exists, and ĒB = 0 holds
since the Nash product is decreasing on Pµ̂1

.

Case 3. In the trivial case Ēi = Ē−i, it is obvious that Ēi = ĒB = Ē−i > 0 is the unique
solution to (3.20) in Pµ̂1

.

Combining Case 1 – 3 and recognizing that ĒB ≤max {Ē1, Ē2}< E0 by Lemma 10
yields Lemma 11. □

Proof of Proposition 9. The proof proceeds in three steps. First, we show that

ĒS = ĒB ⇐⇒ µ̂1 = µ
S
1, (3.A.10)

denoting µS
1 the unique allocation that solves Wi(ĒS, µ̂1)=W−i(ĒS, µ̂1), i.e., that

equally distributes the welfare level obtained under the efficient cap in both coun-
tries. We then establish that µS

1 = 1/2 in the symmetric case. Continuity thus im-
plies that an allocation µS

1 ∈ [0, 1] also exists if the countries are sufficiently sym-
metric, i.e., sufficiently similar in terms of benefits, costs, and initial emissions.
Third, it is shown that µ̂1 ̸= µS

1 if Bi(A(ĒS))− B−i(A(ĒS)) is sufficiently large.

Step 1. We start by establishing that

ĒS = ĒB ⇐⇒ Wi(ĒS, µ̂1) = W−i(ĒS, µ̂1), (3.A.11)

Note that ĒS and ĒB are unique (cf. Lemma 8 and 11). According to Lemma 8, it
holds for the efficient cap that,

∑

i

d Wi(ĒS, µ̂1)

dĒ
= 0. (3.A.12)
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Since ĒS > 0 by Lemma 8, we can infer from Lemma 11 that bargaining can result
in the efficient cap, if and only if the bargaining outcome is determined by the FOC
of the Nash product. In this case, ĒB satisfies

dNµ̂1
(Ē)

dĒ
=
∑

i

dWi(ĒB, µ̂1)

dĒ
·W−i(ĒB, µ̂1) = 0. (3.A.13)

If ĒS = ĒB, then Equation 3.A.13 implies that

∑

i

dWi(ĒS, µ̂1)

dĒ
·W−i(ĒS, µ̂1) = 0

must also hold. Rearranging and inserting (3.A.12) yields that

dWi(ĒS, µ̂1)

dĒ

�

W−i(ĒS, µ̂1) −Wi(ĒS, µ̂1)
�

= 0, i = 1,2,

which implies Wi(ĒS, µ̂1)= W−i(ĒS, µ̂1).

Now, consider the opposite direction. Multiplying both sides of (3.A.12), we obtain

Wi(ĒS, µ̂1)
�dWi(ĒS, µ̂1)

dĒ
+

dW−i(ĒS, µ̂1)

dĒ

�

= 0, i = 1, 2, (3.A.14)

If Wi(ĒS, µ̂1)= W−i(ĒS, µ̂1), then (3.A.14) can be rewritten to

∑

i

dWi(ĒS, µ̂1)

dĒ
·W−i(ĒS, µ̂1) = 0 (3.A.15)

Comparing (3.A.13) to (3.A.15) immediately yields that ĒS = ĒB. We can therefore
conclude that the relation stated in (3.A.11) holds.

To establish the following relation

Wi(ĒS, µ̂1) = W−i(ĒS, µ̂1) ⇐⇒ µ̂1 = µ
S
1, (3.A.16)

we need to show that a unique solution µS
1 to Wi(ĒS, µ̂1)= W−i(ĒS, µ̂1) exists. To

do so, note that the following limits obtain

lim
µ̂1→∞

W1(ĒS, µ̂1) − W2(ĒS, µ̂1) = +∞,

lim
µ̂1→−∞

W1(ĒS, µ̂1) − W2(ĒS, µ̂1) = −∞,
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since ĒS is fixed. Hence, the Intermediate Value Theorem implies the existence
of a solution µS

1. From calculating the derivatives,

dW1(ĒS, µ̂1)
dµ1

= p(ĒS)ĒS > 0,
dW2(ĒS, µ̂1)

dµ1
= −p(ĒS)ĒS < 0, (3.A.17)

we can conclude that the allocation µS
1 is indeed unique. Combining (3.A.11) and

(3.A.16) directly implies the relation in (3.A.10).

Step 2. From (3.9), we obtain that Wi(ĒS, µ̂1)= W−i(ĒS, µ̂1) if and only if µ̂1 solves

Bi(A(ĒS)) − B−i(A(ĒS)) + C−i(a−2(ĒS)) − Ci(ai(ĒS)) = −2xi,−iC
′
i(ai(ĒS))

where xi,−i(Ē) :=
�

µiĒ
S − ei,0 + ai(ĒS)
�

, µ1 = µ̂1, and µ2 = 1 − µ̂1.
(3.A.18)

In the symmetric case, we have have that Bi(A)= B(A), Ci(ai)= C(ai) and ei,0 =
e−i,0 for all i ∈ {1, 2}. This implies that ai(ĒS)= a−i(ĒS). Hence, the l.h.s. of (3.A.18)
is zero. Inserting xi,−i, using that ĒS = 2(ei,0 − ai(ĒS)) and solving for µ̂1 yields µS

1 =
1/2. By continuity, we can now infer that if the countries are sufficiently similar in
terms of benefits, costs, and initial emissions, then µS

1 ∈ [0, 1].

Step 3. If Bi(A(ĒS))− B−i(A(ĒS))→∞, then the l.h.s. of (3.A.18) converges to
infinity since Ci(ai(ĒS))≤ Ci(ai(E0)) and C−i(a−i(ĒS))≤ C−i(a−i(E0)) are finite.
Since all expressions on the r.h.s. of (3.A.18) besides µi are finite, C′i(ai(ĒS))≤
C′i(ai(E0)), ĒS ≤ E0, ai(ĒS)≤ ai(E0), ei,0 ∈ R++, we must have that µi→−∞. This
implies that

µS
1 →

¨

−∞ if i = 1

+∞ if i = 2.

Hence, if Bi(A(ĒS))− B−i(A(ĒS)) sufficiently large, it holds that µS
1 ̸∈ [0,1] and thus

that µS
1 ̸= µ̂1 ∈ [0,1]. By (3.A.10), µS

1 ̸= µ̂1 directly implies ĒS ̸= ĒB. □

Proof of Corollary 4. Corollary 4 follows from the fact that ĒB = ĒS if and only if
µ̂1 = µS

1 by (3.A.10) and that µS
1 is, in turn, determined by the unique solution to

Wi(ĒS, µ̂1)=W−i(ĒS, µ̂1). Since Wi and W−i also depend on benefit- and cost func-
tions, this allocation generally deviates from an allocation that is solely determined
on the basis of initial emissions. □
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Proof of Proposition 10. We first establish that

ĒB = ĒS ⇐⇒ µB
1 = µ

S
1 ⇐⇒ µS

1 ∈ [0,1]. (3.A.19)

To investigate whether a solution to Problem (3.21) implements ĒB = ĒS, we solve
the relaxed problem

max
(Ē,µ1)
N (Ē,µ1) s.t. 0 ≤ µ1 ≤ 1, (3.A.20)

and show that the solution to the relaxed problem is in P , i.e., corresponds to a
solution to the original Problem (3.21). The Lagrangian of Problem (3.A.20) writes

L (Ē,µ1) = W1(Ē,µ1) ·W2(Ē,µ1) − λ1(µ1 − 1) + λ2µ1.

The solution to the relaxed problem is determined by the system of FOCs

dL (Ē,µ1)

dĒ
=

dW1(Ē,µ1)

dĒ
·W2(Ē,µ1) +W1(Ē,µ1) ·

dW2(Ē,µ1)

dĒ
= 0, (3.A.21)

dL (Ē,µ1)
dµ1

=
�

W2(Ē,µ1) −W1(Ē,µ1)
�

p(Ē)Ē − λ1 + λ2 = 0, (3.A.22)

and the complementary slackness conditions

λ1(µ1 − 1) = 0, and λ2µ1 = 0. (3.A.23)

Now, three cases can occur.1⁷

Case 1. If µS
1 ∈ [0, 1], then the tuple (ĒS,µS

1) is the unique solution to (3.A.21) and
(3.A.22) by implementing

W1(ĒS,µS
1) = W2(ĒS,µS

1), and
dW1(ĒS,µS

1)

dĒ
=

dW2(ĒS,µS
1)

dĒ
.

To see that (ĒS,µS
1) ∈ P , note that ĒS leads to the greatest level of overall welfare.

Hence, for any other cap Ē ̸= ĒS, the total level of welfare is lower such that at
least one country is worse off, i.e., setting Ē ̸= ĒS does not constitute a Pareto im-
provement. For Ē = ĒS, on the other hand, any other allocation µ1 ̸= µS

1 leaves one
country worse off (cf. (3.A.17)), i.e., does not constitute a Pareto improvement.

17. Note that in the case in which no strictly positive solution to (3.A.21) exists, we have that
0= ĒB ̸= ĒS by Lemmas 8 and 11.
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Thus, we must have that (ĒS,µS
1) ∈ P such that (ĒS,µS

1) is also the solution to the
original Problem (3.21) in this case.

(ĒS,µS
1) is indeed the global maximizer of the Nash product, which can be seen as

follows. It is well known that the product of two positive real numbers is maximum
when the numbers are equal, given that their sum is constant. In our setting, for
any given Ē, the corresponding level of total welfare is constant, i.e., independent
of the actual allocation µ1. Hence, given Ē, the Nash product is maximum for the
allocation that equates welfare levels in both countries. Moreover, ĒS implements
the highest positive level of total welfare. The tuple (ĒS,µS

1) must thus be a global
maximizer since it equally distributes the highest level of total welfare.

Case 2. If µS
1 > 1, then ĒS does not solve (3.A.21) since it holds for all µ1 ∈ [0,1]

that
dW1(ĒS,µ1)

dĒ
=

dW2(ĒS,µ1)

dĒ
, and W1(ĒS,µ1) ̸= W2(ĒS,µ1).

Instead, we can read off (3.A.21) that the solution to the relaxed problem ĒR must
be in the open interval between Ē1 and ĒS. Moreover, (3.A.21) together with con-
cavity of Wi implies that

W2(ĒR,µR
1) > W1(ĒR,µR

1) (3.A.24)

holds for the solution to the relaxed problem. Hence, from (3.A.22) we obtain that
λ1 > 0. By (3.A.23), we can now infer that µR

1 = 1 and thus λ2 = 0.

To see that the tuple (ĒR, 1) ∈ P , first observe that for µR
1 = 1 any other cap from

the open interval between ĒR and Ē2 leaves country 1 strictly worse off. This is
illustrated in Figure 3.A.1. Moreover, given any cap from the open interval between
ĒR and Ē2, any other allocation µ1 < 1 further reduces country 1’s welfare. Hence,
choosing any cap from the open interval between ĒR and Ē2 and any µ1 ∈ [0,1]
does not constitute a Pareto improvement. Second, since ĒR is in the open interval
between ĒS and Ē1, any cap in the open interval between Ē1 and ĒR leads to a
lower level of overall welfare irrespective of the allocation µ1, see Figure 3.A.1.
Hence, for any allocation µ1 ∈ [0,1], any cap from this interval leaves at least one
country worse off, i.e., does not constitute a Pareto improvement. The tuple (ĒR, 1)
is thus Pareto-efficient, that is (ĒR, 1) ∈ P . The solution to the relaxed Problem
(3.A.20) therefore corresponds to the solution to the original Problem (3.21) such
that ĒB = ĒR ̸= ĒS and µB

1 = µ
R
1 = 1< µS

1.1⁸

18. It can readily be verified that (ĒR, 1) is indeed the maximizer of the relaxed problem.
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Figure 3.A.1. Pareto efficiency of the solution to the relaxed problem.

Case 3. If µS
1 < 0, then ĒB = ĒR ̸= ĒS and µB

1 = µ
R
1 = 0> µS

1 follows by analogous
arguments.

Combining these three cases yields the relation stated in (3.A.19).

Part (i) of Proposition 10 now immediately follows from (3.A.19) and the fact that
µS

1 ∈ [0,1] if the countries are sufficiently symmetric, which we have shown in the
proof of Proposition 9.

Part (ii) of Proposition 10 results from (3.A.19) and the fact that µS
1 ̸∈ [0, 1] if the

countries’ benefits are sufficiently different, which we have already argued in the
proof of Proposition 9. □

Proof of Proposition 11. We know from Proposition 10 that, in the absence of
outside options, bargaining implements (ĒS,µS

1) where µS
1 ∈ [0, 1] if the countries

are sufficiently symmetric. Hence, it remains to show that the tuple (ĒS,µS
1) also

satisfies the additional constraints W1(Ē,µ1)≥WN
1 and W2(Ē,µ1)≥WN

2 for suffi-
ciently symmetric countries. To do so, we show for the (completely) symmetric case
where Bi(A)= B(A), Ci(ai)= C(ai) and ei,0 = e−i,0 that Wi(ĒS,µS

1)>WN
i holds for

all i ∈ {1,2}. Continuity thus implies that, as long as the countries are sufficiently
symmetric, (ĒS,µS

1) satisfies the additional constraints, i.e., (ĒS,µS
1) is indeed the

solution to Problem (3.22).

In the symmetric case without outside options, the bargaining outcome is (ĒS, 1/2),
which leads to the following welfare levels:

Wi(ĒS, 1/2) = W−i(ĒS, 1/2) =
WS

2
. (3.A.25)

For national caps, on the other hand, symmetry leads to ēN
i = ēN

−i and thus

WN
i = WN

−i =
WN

2
. (3.A.26)
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In view of Proposition 8, combining (3.A.25) and (3.A.26) immediately implies
that Wi(ĒS,µS

1)>WN
i holds for all i ∈ {1, 2} in the symmetric case. □

Proof of Proposition 12. Observing that bargaining over the amount and alloca-
tion of permits implements ĒS if and only if µS

1 ∈ [0, 1] by (3.A.19), the proposition
follows immediately from comparing Examples 10 and 11. □
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3.A.2 Preliminary Version from Naumann’s (2022) Dissertation

Emissions Trading Schemes: Negotiations on the

Emissions Cap

Fabian Naumann∗ Tom Rauber †

Abstract: Setting a su�ciently stringent emissions cap is a key factor in ensuring that an emissions

trading system can e↵ectively tackle climate change. The crucial question therefore becomes: what

cap is implemented? In this paper, we consider an alternating-o↵ers model in which two asymmetric

countries have already committed to jointly implement an emissions trading scheme. We investigate

whether bargaining over the emissions cap can result in the social emissions optimum and the

reasons for deviations. We show that an initial endowment of emission rights based on historic

emissions never results in the social optimum. However, other permit allocations exist which lead

to the social optimum. In this case, the initial endowment can, to some extent, function relatively

similar to a side payment, allowing e�ciency and distribution to be separated. If the negotiating

countries are too di↵erent, no allocation of allowances can lead to the socially optimal emissions

level.

Keywords: Nash bargaining solution, Emissions trading schemes, Emissions cap
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1 Introduction

The ongoing climate change and its immense impact, which poses tremendous challenges to hu-

manity, highlights market failure in the provision of global public goods.

Market failure in the presence of externalities is a well-studied problem in the literature. Coase

(1960) shows that, once property rights are clearly defined, bargaining can lead to an e�cient

market outcome. This holds even in the presence of externalities and regardless of the initial

allocation of property rights. First economic approaches to tackle the decline in environmental

quality go back to the 1960s when Dales (1968) proposes a charging scheme in his seminal work.

The suggested scheme limits the number of rights to pollute, issued by the government, thereby

restricting environmental damages, such as to water and the atmosphere. Together with the

theoretical foundation of markets in licenses and its cost e�ciency by Montgomery (1972), this

lays the theoretical basis for emissions trading systems as they are implemented nowadays. In light

of the modern research that was built on that foundation, our paper can be viewed in the larger

context of three strands of literature, namely allowance choices as well as public good provision

from a political perspective and linking emissions trading schemes.

In a more recent paper, Helm (2003) shows that endogenous allowance choices by countries

do not automatically result in lower pollution levels, as environmentally more (less) concerned

countries choose to pollute less (more) and thus environmental e↵orts o↵set. It becomes clear that

a transnational problem requires cooperation between countries. Smead et al. (2014) analyze a

game, where agents bargain over their share of the fixed emission total including learning dynamics.

They find that negotiations tend to fail if too many agents are faced with an under-proportional

emissions share, making the initial demand a key factor for a successful negotiation.

Segendor↵ (1998) is the first to consider delegates in the context of international environmental

agreements and represents the public good provision from a political perspective.1 He finds that

authorities choose delegates who misrepresent their preferences.2. Loeper (2017) analyzes interna-

tional cooperation, where policymakers are elected by a country’s population. Strategic behavior

by voters leads to the election of policymakers who under-represent interests. A key finding is that

the type of public good is relevant and a more convex demand function enhances the provision of

a public good. Arvaniti and Habla (2021) also contribute to the “strategic delegation” literature,

showing that delegates who misrepresent preferences lead to a situation in which it is not clear

if and for whom cooperation is beneficial. Although we also explore how countries cooperate, in

1See also Siqueira (2003).
2For further contributuins on misrepresentation of preferences see also Crawford and Varian (1979), Jones (1989),

and Burtraw (1992, 1993).
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our case to define the emission cap in a cap and trade system, we abstract from situations where

delegates falsely represent their countries preferences.

If national emissions trading systems have already been implemented, the question arises as

to whether linking existing systems is advantageous. It becomes more advantageous the higher

the jurisdictions’ size and shock variances, while a higher correlation of shocks and sunk costs of

linking show the opposite e↵ect (Doda and Taschini, 2017). Flachsland et al. (2009) analyze from

an economic, political, and regulatory perspective the benefits and disadvantages of linking, such

as reduced volatility, strengthening the multilateral commitment versus expanded emission caps

to obtain permit trade benefits and abatement targets that are not in line with a burden-sharing

approach and decline in a country‘s regulatory power. Doda et al. (2019) find that multilateral

linking can lead to tremendous e�ciency gains which arise equally from e↵ort and risk-sharing.

However, Habla and Winkler (2018) demonstrate that strategic delegation hinders the linking of

emissions trading schemes.

The paper closest in spirit to ours is Dijkstra and Nentjes (2020), which compares the Exchange-

Matching-Lindahl (EML) solution (a bottom-up mechanism) and the Nash Bargaining solution (a

top-down mechanism) for the provision of a public good. As the EML is lesser-known, we only

briefly summarize this cooperation mechanism, as used by Dijkstra and Nentjes (2020). Under

EML there is an exchange rate o↵ered to countries, which specifies the ratio of global to national

abatement. Now, given this exchange rate, countries declare their respective supply and demand

for emissions reduction. They find a Pareto-e�cient equilibrium, in which countries’ demands are

identical due to di↵erent exchange rates. Their results indicate that i) in a setting with two agents

both mechanisms are equivalent, ii) in a setting with more than two agents, EML is beneficial for

agents with high benefit and low costs, and iii) lower side payments under the EML mechanism.

In contrast to the existing literature, we analyze a negotiation in which the total cap of the

emissions trading scheme is the outcome of the bargaining while the division of the total cap

among the countries’ is fixed. Our study is based on a two-country model, where we assume that

asymmetric countries have already committed to jointly introduce a cap and trade system.3 Using

a model with alternating o↵ers, we investigate under which conditions this bargaining process leads

to a socially optimal emissions quantity and why it can deviate from it.

Our results show that the bargaining process can bring about a situation in which the negotiated

emissions level equals the social optimum. If allowances are allocated based on historical emissions,

the socially optimal level of emissions can never be achieved in our model environment. However,

3In a larger context, this could also be seen as two countries agreeing to link their emissions trading system and
negotiate the overall cap.
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the outcome of the bargaining may result in the social optimum if the allocation di↵ers. In this

case, the allocation of permits might be used as a compensation mechanism between countries.

Furthermore, we find that if countries are too di↵erent, the redistribution of allowances reaches

its limit and no allocation can lead to the social optimum. Nevertheless, we demonstrate that

bargaining can result in a better solution compared to national emission trading schemes with

national emission caps. Our work, thus, identifies reasons why the socially optimal emissions cap is

not implemented in an emissions trading scheme. Although we made some strong assumptions, the

model helps understand the reasons why emissions trading schemes might not set tight emission

caps. In addition, the model can be extended to represent more realistic scenarios, such as an

outside option or a risk of a breakdown in the bargaining process.

The paper is organized as follows. In the following section, we introduce the simple two-country

model and provide basic insights about abatements as well as the emissions market price. Section

3 defines two benchmark scenarios, namely the social optimal emissions cap and national emission

caps, for the welfare analysis. In Section 4 we analyze the cap negotiation, using an alternating-

o↵ers model, and compare results with the defined benchmarks. Finally, Section 5 concludes.

2 Model and Basic Insights

We briefly introduce the underlying theoretical framework in this section, deployed to describe a

cap and trade system. Later, we endogenize the cap in this model by allowing the countries to

negotiate.

Welfare Function

We define the welfare of a country i 2 [1, 2] as benefits of overall abatement B(
P

i ai), assuming

a positive externality (country i benefits from the abatement made by country �i), minus costs

of abatement in a country C(ai). Because countries are linked through a cap and trade system,

emissions trading results in either additional revenue or costs, depending on whether a country is

a buyer or seller of permits. A country is a buyer (seller) of permits if actual emissions, ei, are

higher (lower) than its initial endowment of permits, ēi, where p is the endogenous permit market

price. For the emissions cap of the scheme Ē it holds that Ē = ē1 + ē2 = µĒ + (1 � µ)Ē, where

µ defines the permit share allocated to country 1.4 Putting the components together the welfare

function reads:

4We take µ as given. It could, for instance, be determined by emissions under business as usual, by a certain
historical tradition, or by previous negotiations.
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Wi(ai, a�i) = Bi(ai, a�i) � Ci(ai) + (ēi � ei) · p, for all i = 1, 2 (1)

As realized emissions ei are emissions under “business as usual” ei,0 minus actual realized abate-

ment ai:
5, we can re-write the welfare function as follows.

Wi(ai, a�i) = Bi(ai, a�i) � Ci(ai) + (ēi � (ei,0 � ai)) · p, for all i = 1, 2 (2)

Benefit and Cost Function

In the literature, linear or quadratic functions are often assumed for abatement benefits and costs,

see, for instance, Weitzman (1974, 2014), Barrett (1994) and McGinty (2007). We assume a

quadratic benefit function (3) and cost function (4) for each country, where the total abatement A

is defined as A :=
P

i ai.

Bi(A) = �iA � �i

2
A2, where �i > 0 and �i > 0, for all i = 1, 2 (3)

Ci(ai) =
⇣i

2
a2

i , where ⇣i > 0, for all i = 1, 2. (4)

In our analysis, we want to focus on the case that provides the most insights, where the two

countries have di↵erent characteristics and, therefore, di↵erent goals in the reduction of emissions.

Let country 1 have i) small emissions under “business as usual”, ii) high benefits, but also iii) high

costs from abatement. Country 1 can be thought of as a country with a relatively small GDP, but

rather higher exposure to the negative consequences of the emissions, e.g. because of geographical

factors like a long coast line. County 2, on the contrary, has i) high emissions under “business as

usual”, ii) low benefits, but also iii) low costs from abatement. This is an adequate representation

of a country with a high GDP that is less a↵ected by the negative consequences of the emissions.

To reflect this in our model, we assume that ⇣1 > ⇣2, �1 > �2 while � := �1 = �2, and e2,0 =  · e1,0

where  > 1.

Furthermore, in the main part of the paper, we focus on the most realistic scenarios where

the countries’ optimal caps are greater than zero, i.e., where complete decarbonization is never

optimal. Formally, this requires Wi(ai, a�i) to be a concave function with its maximum greater

than zero. As we see below, this is ensured for any given allocation µ by the following technical

assumptions that we impose about the relation between the model parameters. These assumptions

5We assume ai � 0. A country cannot increase its emissions above the initial level, the emissions “business as
usual”.
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moreover determine how the allocation µ changes country i’s optimal cap, which allows us to avoid

tedious case distinctions and focus on the cases where compelling results are obtained.

i) ⇣2

✓
⇣1

⇣1 + ⇣2

◆2

< �.

ii)
3⇣1 + ⇣2
⇣1 + 3⇣2

< ,6

iii) �1

e1,0
< 1

2

h
� + ⇣1⇣2(2⇣1+⇣2)

(⇣1+⇣2)2

i
+ 

2


� � ⇣1

⇣
⇣2

⇣1+⇣2

⌘2
�
.

Abatements

We start by deriving some basic insights concerning the realized emission price and the abatement

activities within an existing cap and trade system. As firms under regulation minimize their

abatement costs, the minimization problem of a representative price-taking firm in each country

reads

min
ai

p · (ei,0 � ai) +
⇣i

2
a2

i . (5)

The corresponding FOC for a representative firm in country i reads as

ai =
p

⇣i
, (6)

and determines the optimal abatement activities carried out in that country. Since maximum

emissions in total are limited to the overall emissions cap Ē, market clearing in the emission

permits market requires that
P

i(ei,0 � ai) = Ē, where e2,0 = e1,0. Inserting the abatements per

country leads the emissions market price p:

p =
⇣1⇣2

⇣1 + ⇣2

�
( + 1)e1,0 � Ē

�
. (7)

The resulting abatement activities are:

a1 =
⇣2

⇣1 + ⇣2

⇥
( + 1)e1,0 � Ē

⇤
, (8)

a2 =
⇣1

⇣1 + ⇣2

⇥
( + 1)e1,0 � Ē

⇤
, (9)

A = a1 + a2 = ( + 1)e1,0 � Ē. (10)

Since country 2 represents the country with lower abatement costs (⇣1 > ⇣2), this country also

contributes more to total abatement (a2 > a1). This is in accordance with emissions trading and

6Note that this is a rather weak assumption, for ⇣2 ⇡ ⇣1 we get that 1 < , while we get for ⇣2 ⌧ ⇣1 that 3 < .
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rather intuitive. Because emission permits can be traded, an international emissions trading scheme

leads to emissions abatement in the most cost-e↵ective way by equalizing marginal abatement costs.

3 Benchmarks

We define two benchmark scenarios with the help of which we can then evaluate the bargaining

results of our model. In the first scenario, a centralized cap definition carried out by a social planner

is analyzed, before investigating the decentralized processes in subsequent sections. In particular,

analyzing the benchmarks allows us to compare the social welfare generated through bargaining

to the welfare generated in those scenarios.

3.1 Social Optimum

Let us first assume that there exists a social planner who maximizes the welfare of both countries

involved, which is W (Ē) = W1(Ē) + W2(Ē). It is apparent that, from a centralized perspective,

trading activities between the countries o↵set each other. Hence, the overall welfare optimized by

the social planner only consists of benefits and costs and reads as:

W (Ē) = B1(A(Ē)) � C1(a1(Ē)) + B2(A(Ē)) � C2(a2(Ē)). (11)

The socially optimal cap satisfies the FOC, which is

W 0(Ē) =
⇥
B0

1(A(Ē)) + B0
2(A(Ē))

⇤ @A

@Ē
� C 0

1(a1(Ē))
@a1

@Ē
� C 0

2(a2(Ē))
@a2

@Ē
= 0. (12)

Intuitively, the abatement activities induced by the welfare maximizing cap Ē⇤
S balance the marginal

cost of abatement with the overall marginal benefit of abatement. Using (8)–(10) the FOC can be

rewritten as

C 0
i(ai(Ē)) = B0

1(A(Ē)) + B0
2(A(Ē)) i 2 [1, 2]. (13)

Since both countries benefit from a marginal increase in the abatement irrespectively where the

emissions have been saved, we obtain the sum of the marginal benefits on the right-hand side

of Equation (13). Since emissions rights can be traded, it leads to a situation where marginal

abatement costs of participating countries equalize, i.e., C 0
1(a1(Ē)) = C 0

2(a2(Ē)), and ultimately

determine the resulting price on the certificate market. In general, emission trading schemes

thereby ensure that the emissions target is met at lowest cost, which makes it an e�cient policy
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instrument to regulate pollution.7 Hence, a marginal increase in the abatement induces costs at

the level represented on the left-hand side of Equation (13). The welfare is maximized at the

socially optimal emissions level Ē⇤
S where total marginal benefit is equal to marginal cost. For the

specified benefit and cost functions, cf. (3) and (4), we can explicitly solve for the socially optimal

cap, which is

Ē⇤
S = ( + 1)e1,0 �

�1 + �2

2� + ⇣1⇣2
⇣1+⇣2

. (14)

The second term of Equation (14) can be interpreted as the abatement target implemented via the

cap and trade system, which is subtracted from total emissions under business as usual. In our

notation, we define the socially optimal welfare generated by Ē⇤
S as

W ⇤
S := W

�
Ē⇤

S

�
. (15)

3.2 National Caps

Now, we turn to a decentralized scenario, in which countries do not participate in a joint emissions

trading scheme but instead deploy national regulations, in form of national cap and trade systems.

Because each country implement its own emissions cap, the corresponding abatements for the

countries are

a1 = e1,0 � ē1, (16)

a2 = e1,0 � ē2. (17)

Given the cap of country �i, country i chooses its own cap to maximize its welfare, i.e., as solution

to

max
ēi

Bi(A(ēi, ē�i)) � Ci(ai(ēi)) (18)

Hence, the solution to (18) defines a reaction function of the form ēi(ē�i) for each country. Solving

this system of equations leads to the Nash equilibrium, where

ē⇤1,C = e1,0 �
⇣2�1 + �(�1 � �2)

⇣1⇣2 + �(⇣1 + ⇣2)
, (19)

ē⇤2,C = e1,0 �
⇣1�2 � �(�1 � �2)

⇣1⇣2 + �(⇣1 + ⇣2)
. (20)

7This holds true in absence of transaction costs and imperfect competition (e.g., Hahn, 1984; Stavins, 1995).
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Intuitively, the cap e⇤i,C chosen by county i is the optimal response to the cap e⇤�i,C chosen by

country �i such that no country has an incentive to deviate. To capture the global e↵ect that

those caps have on the overall emissions, we define Ē⇤
C as sum of the individual caps, representing

the resulting overall emissions level in the two country setting. Summing up Equation (19) and

(20) and rearranging leads to

Ē⇤
C = ē⇤1,C + ē⇤1,C = ( + 1)e1,0 �

⇣2�1 + ⇣1�2

⇣1⇣2 + �(⇣1 + ⇣2)
(21)

Again, the second summand of Equation (19) can be interpreted as total abatement that is imple-

mented via the decentralized CAPs. Similarly to the socially optimal welfare, the overall welfare

generated by national caps is defined as

W ⇤
C := W1(ē

⇤
1,C) + W2(ē

⇤
2,C). (22)

4 Cap Negotiations

Now, we turn to the case where the countries have already agreed to commit in a cap and trade

system and explore how they endogenously set the cap via negotiating.

4.1 Basic Insights

To begin with, we specify the set of potential bargaining solutions and the e↵ect of the model

parameters. We, therefore, determine how each country i would optimally set the global cap

Ē⇤
i . Since each country wants to maximize its welfare, the FOC of Equation (2) determines each

country’s desired cap. After simplifying the FOC writes as

B0
i(A(Ē)) = µiC

0
i(ai(Ē)) +

�
µiĒ � ei,0 + ai(Ē)

�
C 00

i (ai(Ē))
@ai

@Ē
, for all i = 1, 2, (23)

where µ1 = µ and µ2 = 1�µ. The right-hand side of Equation (23) captures two marginal e↵ects,

a cost e↵ect (first summand on the right-hand side) and a trading e↵ect (second summand on the

right-hand side). In optimum, these two e↵ects equal marginal benefit (left-hand side of Eq. (23)).

If a country is a seller (buyer) of certificates, the trading e↵ect is positive (negative). Explicitly
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Figure 1: Optimal caps for county 1 and 2.

solving Equation (23) for each country i leads to

Ē⇤
1 = e1,0( + 1) �

e1,0 [( + 1)µ � 1] + ⇣1+⇣2
⇣1⇣2

�1

2µ + ⇣1+⇣2
⇣1⇣2


� � ⇣1

⇣
⇣2

⇣1+⇣2

⌘2
� (24)

Ē⇤
2 = e1,0( + 1) �

e1,0 [1 � ( + 1)µ] + ⇣1+⇣2
⇣1⇣2

�2

2(1 � µ) + ⇣1+⇣2
⇣1⇣2


� � ⇣2

⇣
⇣1

⇣1+⇣2

⌘2
� (25)

We immediately find that Ē⇤
1 < Ē⇤

2 for  su�ciently large or for �1 su�ciently greater than �2.

Intuitively, if country 1 has rather low emissions under “business as usual” or if its benefits from

abatement are rather high compared to country 2, then country 1 advocates a lower cap, i.e.,

stronger abatement activities. Figure 1 illustrates each country’s welfare dependent on the cap

Ē in the case where Ē⇤
1 < Ē⇤

2 . As it can be seen, the set of Pareto e�cient caps is given by the

interval [Ē⇤
1 , Ē⇤

2 ]. Since bargaining results in a Pareto e�cient outcome, the bargaining solution is

located in this closed interval. Moreover, if the countries agree to keep the current level of emission,

i.e., a cap of ( + 1)e1,0, both countries obtain a welfare of zero by the construction of the cost

and benefit function. In general, the set of Pareto e�cient caps, P, from which we determine the

Pareto e�cient bargaining outcome, is given by the interval [min{Ē⇤
1 , Ē⇤

2}, max{Ē⇤
1 , Ē⇤

2}].8 The

e↵ect that the allocation of the certificates among the countries has on the optimal caps is specified

in Lemma 1. For the proof see Appendix A.

Lemma 1 If the share of country 1’s certificates, µ, increases, then country 1’s optimal cap de-

creases,
@Ē⇤

1

@µ < 0, while country 2’s optimal cap increases,
@Ē⇤

1

@µ > 0.

8Note that in the trivial case where min{Ē⇤
1 , Ē⇤

2} = max{Ē⇤
1 , Ē⇤

2} no conflict of interests arises, and the
countries agree upon a cap which is socially optimal.
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Intuitively, since its emissions are significantly lower, country 1 wants to reduce the total amount

of certificates to reduce the total emissions and to be able to sell its excess of certificates at a higher

price if its share of certificates increases. By contrast, country 2 wants to compensate a lower share

of certificates allocated to it by increasing the total amount of certificates and thereby reducing

the market price.

4.2 Nash Bargaining Solution

One of the simplest ways to model a cap negotiation9 is according to Rubinstein’s (1982) alternating-

o↵ers model. Country i proposes a cap. Then country �i can either accept this o↵er and the game

ends or reject the o↵er and make a counter o↵er after � > 0 time units. In case of rejection, it

is i’s turn to decide whether to accept the countero↵er or to make a counter-countero↵er. This

process continues until one country accepts the proposed cap.10 A prominent result in bargaining

theory is that the subgame perfect equilibrium in the Rubinstein model converges to Nash’s (1950)

bargaining solution if the absolute magnitudes of the frictions in the bargaining process are small

(Binmore et al., 1986; Binmore, 1987). Evidently, this is in accordance with our set-up as the

bargaining process is substantially faster than climate change. Hence, even if the bargaining is

extended by � due to the rejection of an o↵er almost the same benefits and costs can be reached

through an agreement in the next round. For simplicity, we assume that the counties have the

same discount rate such that we can apply the (symmetric) Nash bargaining solution.11

4.2.1 Definition

In our setting the Nash bargaining solution is defined as the solution of the following maximization

problem:

max
Ē2P

W1

�
Ē
�

· W2

�
Ē
�
, (26)

where W1 · W2 is referred to as Nash product. To facilitate exposition, we exploit the relation to

the first-order condition specified in Lemma 2. For the proof see Appendix B.

Lemma 2 The Nash bargaining solution Ē⇤
N is unique and satisfies the first-order condition of

the Nash product.

9See Osborne and Rubinstein (1990) and Muthoo (1999) for textbook treatments of bargaining theory.
10Note that this standard version of the alternating-o↵ers model does not incorporate the possibility of opting

out of the bargaining. In our set-up, the interpretation is that while the counties have already agreed on creating a
cap and trade system, they only bargain about the implemented cap.

11Di↵erent discount rates would shift bargaining power in favour of country i that possess a lower discount rate
which in turn leads to a bargaining outcome that is close to Ē⇤

i .
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Using Lemma 2, we obtain that Ē⇤
N satisfies

W 0
1

�
Ē
�

+
W1

�
Ē
�

W2

�
Ē
� · W 0

2

�
Ē
�

= 0. (27)

After inserting, rearranging and simplifying the FOC reads as follows:

C0
1(a1(Ē))

⇥
µ + (1 � µ)✓(Ē)

⇤
= B0

1(A(Ē)) + ✓(Ē)B0
2(A(Ē)) + x12

⇣1⇣2
⇣1 + ⇣2

�
1 � ✓(Ē)

�
, (28)

where x12 = µĒ � (e1,0 � a1(Ē)) and ✓(Ē) =
B1(A(Ē)) � C1(a1(Ē)) + x12C

0
1(a1(Ē))

B2(A(Ē)) � C2(a2(Ē)) � x12C0
1(a1(Ē))

.

x12 denotes the amount of certificates country 1 sells to country 2. In fact, x12 can also be negative

implying that country 1 buys the corresponding amount of certificates from country 2. Hence, ✓

represents the ratio of country 1’s welfare to country 2’s welfare.

4.2.2 Comparison to the Social Optimum

Now we seek to explore the question whether the bargaining solution is socially optimal. It is

worth emphasizing that each total abatement in the cap and trade system is achieved with the

optimal cost structure, namely with equal marginal cost in each country. Hence, if Ē⇤
N = Ē⇤

S then

this automatically implies that the bargaining solution is socially optimal. Comparing the FOCs,

leads to Lemma 3 for the proof see Appendix C.

Lemma 3 Bargaining implements the e�cient cap if and only if ✓(Ē⇤
N ) = 1.

Intuitively, if Ē⇤
N satisfies that W1

�
Ē⇤

N

�
= W2

�
Ē⇤

N

�
, then Equation (27) coincides with the the

FOC for the socially optimal cap. Although the countries are di↵erent in terms of cost- and benefit

structures, bargaining can only lead to a socially optimal outcome, if the bargaining solution

generates the same welfare for both countries. As we investigate next, this is only satisfied for

particular combinations of costs, benefits, emissions, and distribution of the certificates.

In our model it is reasonable to assume that the countries’ cost and benefit structures as well as

the emissions under “business as usual” are exogenously given and cannot be changed. The allo-

cation of the certificates, however, is determined among the countries before the negotiation takes

place. Therefore, the interesting question is, whether a allocation µ⇤
S exists such that the consec-

utive bargaining results in the socially e�cient outcome given the other parameters. Proposition

1 establishes the definition of the allocation µ⇤
S . For the proof see Appendix D.

Proposition 1 Bargaining implements the socially optimal cap, Ē⇤
N = Ē⇤

S, if and only if the al-

location of shares is µ⇤
S, where
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Figure 2: Distribution of Welfare for �1>�1.

µ⇤
S =

e1,0 [2�(⇣1 + ⇣2) + ⇣1⇣2] � � (⇣1+⇣2)2

⇣1⇣2
(�1 � �2) � 1

4


(3⇣1 + 5⇣2)�1 � (⇣1 � ⇣2)�2

�

( + 1)e1,0 [2�(⇣1 + ⇣2) + ⇣1⇣2] � (⇣1 + ⇣2)(�1 + �2)
. (29)

Hence, if the ex-ante determined allocation of the certificates is µ⇤
S , the bargaining then results

in the socially optimal cap. For any other distribution of the certificates, the countries agree on a

cap that is not optimal for the overall welfare. Furthermore, note that the numerator of Equation

(29) is decreasing in �1, this leads us to Corollary 1.

Corollary 1 There exists a �1 such that µ⇤
S = 0, and µ⇤

S is strictly decreasing for �1 2 [�2, �1].

For �1 > �1 bargaining cannot implement Ē⇤
S.

For the proof see Appendix E. Graphically, the mechanism is as follows, Equation (27) implies

that bargaining leads to a socially optimal solution whenever ĒI , the cap for which W1 and W2

intersect, equals the socially optimal cap Ē⇤
S . As illustrated in Figure 2, if �1 > �1, then we have

that ĒI > Ē⇤
S for µ = 0. According to Lemma 1 an increase in µ shifts the maximum of W1 up

and to the left while the opposite e↵ect occurs for W2. Hence, increasing µ increases ĒI while

it has no e↵ect on Ē⇤
S . �1 > �1 therefore implies that ĒI > Ē⇤

S for all possible distributions of

certificates µ 2 [0, 1].

Intuitively, if �1 is increased then country 1 benefits more from abatement. Hence, a lower cap

is optimal for both, country 1 as well as for the total welfare. Country 2 needs to be compensated

to agree on that lower cap in a bargaining. This compensation works via an increased share

of certificates for country 2 (and therefore a lower share for country 1). Hence, as indicated

by (Buchholz et al., 2005), the allocation of permits is used for implicit side payments in an

emissions trading system. As a result, a country has to purchase fewer certificates or receive
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additional revenue for selling the certificates, depending on whether the country is a buyer or seller

of allowances. If country 2 receives all the certificates, i.e., µ⇤
S = 0, then the entire scope for

compensating country 2 is used. A further increase in �1 would decrease the socially optimal cap,

but this cap could not be implemented by the bargaining because there is no means for further

compensating country 2. In particular, if the benefits for country 1 are too high, then there is

no distribution of certificates among the countries that provides both countries with the same

welfare. Consequently, bargaining does not lead to a socially optimal outcome in the case where

the countries are strongly dissimilar, i.e., where the countries substantially di↵er in emission (

su�ciently high) and benefits (�1 � �2 is su�ciently large).

Proposition1 together with Corollary 1 implies the following for the optimal allocation of cer-

tificates among the countries which is proved in Appendix F:

Corollary 2 For the optimal allocation of certificates, it holds that µ⇤
S < 1/( + 1) for all �1 2

[�2, �1] .

Hence, allocating the certificates based on historical emissions, i.e., according to the proportion of

the emissions under business as usual, does never lead to a socially optimal bargaining solution, see

Figure 3. To ensure a welfare maximizing bargaining outcome the allocation of certificates needs

to take not only the distribution of the emissions but also cost and benefit structures into account.

Figure 3: Optimal µ for  = 3.

Parameter setting: ⇣1 = 0.9, ⇣2 = 0.1, e1,0 = 100, � = 0.1, �1 = 30.

4.2.3 Comparison to the National Caps

Next, we compare the bargaining solution to the decentralized outcome where both countries

deploy national caps. The welfare induced by the bargaining solution relies crucially on µ, i.e.,

the allocation of the certificates among the countries. As we have seen above, for �1 2 [�2, �1]
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Figure 4: Optimal caps for county 1 and 2.

bargaining can result in the socially optimal solution, if µ = µ⇤
S . In that case, we obtain that

W ⇤
N = W ⇤

S . However, there also exists a µ0
i such that country i’s optimal cap equals the total

emissions under “business as usual”. Interestingly, country i can enforce that cap in bargaining,

i.e., the bargaining leads to Ē⇤
N = ( + 1)e1,0. According to Equations (8) and (9) this leads to

zero abatement activities, which, in turn, induces a welfare of zero, W ⇤
N = 0. See Figure 4 for a

graphical representation of the case where country 2 enforces the total emissions under “business

as usual” as bargaining outcome. The intuition is as follows: since the distribution of certificates is

in favour of �i, country i has nothing to gain in the bargaining. In fact, perpetually rejecting every

o↵er made by �i leaves country i better o↵, except for the o↵er of a cap that equals the emissions

under “business as usual”, which makes country i indi↵erent between accepting and rejecting the

o↵er.12

Using Equations (24) and (25), we can explicitly solve E⇤
i = ( + 1)e1,0 for µ0

i , which yields

µ0
1 =

1 �
⇣

⇣1+⇣2
⇣1⇣2

�1

e1,0

⌘

 + 1
, (30)

µ0
2 =

1 +
⇣

⇣1+⇣2
⇣1⇣2

�2

e1,0

⌘

 + 1
. (31)

The finding that the bargaining results in emissions under “business as usual” and a welfare of

zero, both individually and socially, immediately carries over to the case where a country demands

a cap higher than “business as usual”, Ē⇤
i > ( + 1)e1,0. Lemma 4 summarizes these results:

Lemma 4 For µ 2 [0, 1] the welfare generated by the bargaining solution is W ⇤
S � W ⇤

N � 0. If

12In fact, the subgame perfect equilibrium in the Rubinstein alternating-o↵ers is not unique in this case. There-
fore, it is neither guaranteed that an agreement is struck in round 1 nor that it is reached at all. In terms of welfare,
however, it is irrelevant whether countries remain in the status quo because they have agreed on it or because they
permanently disagree on how to change the status quo.
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µ  µ0
1 or µ � µ0

2 bargaining results in Ē⇤
N = ( + 1)e1,0 and W ⇤

N = 0.

For national CAPs, however, each country obtains a welfare greater than zero. By definition of

a Nash equilibrium country i’s cap is the optimal response to the cap chosen by the other country

�i. If country i deviates and chooses ēi = ei,0, i.e., zero abatement ai = 0, instead of ēi = ē⇤i,C

then this leads to a strictly reduced welfare for country i. But even this deviation generates welfare

Wi � 0 since ē⇤�i,C  e�i,0 because country i still benefits from the abatement of county �i but

does not experience any costs. Therefore, we obtain that W ⇤
i,C > 0 and W ⇤

C = W ⇤
1,C + W ⇤

2,C > 0.

As might be reasonably expected, the counter factual leads to a lower welfare compared to the

social optimum, since the social planner takes the costs and benefits of both countries into account,

whereas in the counterfactual scenario each country optimizes separately without considering cross-

border benefits and cheap abatement options. This leads to two di↵erent e↵ects.

First, the overall cap is higher in the counter factual scenario, i.e., the total abatement activities

are lower. More precisely, using Equations (14) and (21), we can calculate the di↵erence to the

optimal cap as

Ē⇤
C � Ē⇤

S =
�1 + �2

2� + ⇣1⇣2
⇣1+⇣2

2
41 �

1 + �

�+
⇣1⇣2

⇣1+⇣2

2 + (⇣1�⇣2)(�1��2)
⇣2�1+⇣1�2

3
5 > 0. (32)

For �1 > �2, the di↵erence is positive and increasing in �1, which implies that the higher the

di↵erence �1 � �2, the higher the di↵erence from the overall abatement activities in the counter

factual scenario to the socially optimal abatement. Intuitively, since its benefits are increased

country 1 sets a lower national cap ē⇤1,C to implement higher national abatement. Country 2,

on the contrary, can free ride on this abatement activities by setting a higher nationally cap ē⇤2,C

thereby reducing its cost. As a result, the total cap increases less than it would be socially optimal.

Second, the abatement activities induced by the Ē⇤
C are ine�cient, i.e., the same total abate-

ment could be implemented with lower costs. A certain overall abatement is implemented e�ciently

if the abatement activities are distributed among the countries such that their marginal costs are

equal. The cap and trade system provides the e�cient distribution, where we have that

a1

a2
=

⇣2
⇣1

. (33)

For national CAPs, however, we obtain the following distribution among the countries:

a1

a2
=

⇣2�1 + �(�1 � �2)

⇣1�2 � �(�1 � �2)
(34)

For �1 > �2, country 1 abates too much, while country 2 abates too little. Moreover, this ratio is
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increasing in �1, i.e., the higher di↵erence �1��2 the higher the ine�ciency. Lemma 5 summarizes

the results for national CAPs.

Lemma 5 The overall welfare of national CAPs, W ⇤
C , is greater than zero but smaller than the

socially optimal, i.e., 0 < W ⇤
C < W ⇤

S . The di↵erence to the social optimum, W ⇤
S � W ⇤

C , increases

in �1.

Combining Lemma 4 and Lemma 5 yields the following proposition.

Proposition 2 For µ 2 [0, 1] and �1 2 [�2, �1], we have that W ⇤
N > W ⇤

C if µ is su�ciently close

to µ⇤
S and W ⇤

N < W ⇤
C if µ is su�ciently close to either µ0

1 or µ0
2.

This is particularly the case, when the countries’ benefit structures di↵er substantially, i.e., �1 close

to �1. National CAPs then lead to a significantly lower welfare compared to the social optimum

due to i) substantial deviations from the optimal abatement ii) highly ine�cient distribution of the

abatement activities among the countries. Therefore, bargaining also leads to a significantly better

outcome than national caps, if the ex-ante determined allocation of certificates is significantly close

to zero.

5 Conclusion

In our two-country model, countries have already committed to jointly implement an emissions

trading scheme and bargain over the total emissions cap. We model the cap negotiation as an

alternating-o↵ers model, following Rubinstein (1982), and show that even for moderate di↵erences

in baseline emissions the initial endowment of permit rights based on historical emissions never leads

to the social optimum. However, we can determine allocations that lead to the optimum, where

the allocation of allowances can be seen as a form of compensation payment between countries. In

this case, the country with high emissions but low benefits and costs of abatement receives a higher

share of allowances, resulting in a more stringent emissions cap. This compensation mechanism is

only possible to a certain extent and depends on the countries’ benefit functions.

If the countries’ benefit structures of abatement are too di↵erent (�1 > �̄1) we cannot find an

allocation of allowances between countries that implements the social optimum. This results from

the fact that the redistribution of the initial endowment is limited, as a country cannot receive

more than the total quantity of allowances.

Although it is not always possible to achieve the socially optimal level of emissions, from a

global perspective, bargaining can lead to a better solution than having national emission trading

schemes with a national emissions cap instead.
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We are aware that we have made a strong modeling assumptions, namely the countries have

already agreed to implement a joint emissions trading system in a sense that they cannot opt

out of the bargaining. Further research is necessary to verify our results in extensions of the

alternating-o↵ers model that allow the bargaining to end without an agreement. The most plausible

approach is by allowing the parties to strategically opt out of the bargaining such that national

caps are implemented. Integrating this outside option still allows to exploit the relation between

the subgame perfect equilibrium in the alternating-o↵ers model and the Nash bargaining solution.

Merely the set of feasible caps for an agreement is weakly smaller, since these caps must not only

be element of P but also ensure that each country gets a weakly higher welfare than in the case

of national caps (Binmore, 1985; Muthoo, 1999).

Another alternative approach for allowing for the collapse of the bargaining is the integration

of the risk of a random breakdown in the sense that one party gets suddenly fed up and leaves the

negotiating table such that national caps are implemented 13. Again, it is possible to exploit the

relation to the Nash bargaining solution, where the Nash product now takes the form (W1 � d1) ·

(W2�d2). In this setting, the disagreement point (d1, d2) is calculate from the countries welfare in

case of national caps and the arrival rates of the breakdown (Binmore et al., 1986; Muthoo, 1999).

13Essentially this can be seen as an ”agreement to disagree”, which is plausible in behavioural settings (Binmore
et al., 1986), while it is inconsistent for rational agents with common knowledge (Aumann, 1976).
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Appendix

A Proof of Lemma 1

Di↵erentiating (24) and (25) with respect to µ yields

@Ē⇤
1

@µ
> [<]0 () �1

e1,0
> [<]

g1():=z }| {
1

2


� +

⇣1⇣2(2⇣1 + ⇣2)

(⇣1 + ⇣2)2

�
+



2

"
� � ⇣1

✓
⇣2

⇣1 + ⇣2

◆2
#

(35)

@Ē⇤
2

@µ
> [<]0 () �2

e1,0
< [>]

g2():=z }| {
1

2

"
� � ⇣2

✓
⇣1

⇣1 + ⇣2

◆2
#

+


2


� +

⇣1⇣2(⇣1 + 2⇣2)

(⇣1 + ⇣2)2

�
. (36)

The light blue area in Figure 5 shows the set of feasible �1/e1,0 given Assumptions (ii) and (iii).
Hence, we have that @Ē⇤

1/@µ < 0. Since we additional get for  > (3⇣1 + ⇣2)/(⇣1 + 3⇣2) that
g2() > g1() > �1/e1,0 > �2/e1,0, we can immediately conclude that @Ē⇤

2/@µ > 0.

Figure 5: Feasible parameter sets of �1/e1,0.

⇤

B Proof of Lemma 2

Let us first consider the case where Ē⇤
1 < Ē⇤

2 < (+1)e1,0, see Figure 1. Evaluating the derivative
of the Nash product at the lower bound of P, we obtain, by definition of Ē⇤

1 , that

W 0
1

�
Ē⇤

1

�
· W2

�
Ē⇤

1

�
+ W1

�
Ē⇤

1

�
· W 0

2

�
Ē⇤

1

�
= W1

�
Ē⇤

1

�
· W 0

2

�
Ē⇤

1

�
> 0. (37)

By contrast, evaluating the derivative of the Nash product at the upper bound of P, we obtain,
by definition of Ē⇤

2 , that

W 0
1

�
Ē⇤

2

�
· W2

�
Ē⇤

2

�
+ W1

�
Ē⇤

2

�
· W 0

2

�
Ē⇤

2

�
= W 0

1

�
Ē⇤

2

�
· W2

�
Ē⇤

2

�
< 0. (38)

The Intermediate Value Theorem implies that a solution to the FOC exists. Moreover, we
have that W 0

1

�
Ē
�

· W2

�
Ē
�

as well as W1

�
Ē
�

· W 0
2

�
Ē
�

are decreasing for Ē 2 P, such that the

Nash product is strictly concave on that interval. Thus, the FOC has a unique solution for Ē 2 P
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which constitutes a global maximum.
Next consider the case where Ē⇤

1 < ( + 1)e1,0  Ē⇤
2 , see Figure 4. In that case, we have that

W 0
1

⇣
( + 1)e1,0

⌘
· W2

⇣
( + 1)e1,0

⌘
+ W1

⇣
( + 1)e1,0

⌘
· W 0

2

⇣
( + 1)e1,0

⌘
= 0. (39)

Furthermore, by construction, the Nash product is zero for ( + 1)e1,0 and strictly negative for
all other Ē 2 P. Hence, ( + 1)e1,0 constitutes the unique global maximum for Ē 2 P and it
satisfies the FOC.
For the cases where Ē⇤

2 < Ē⇤
1 < (+ 1)e1,0 and Ē⇤

2 < (+ 1)e1,0  Ē⇤
1 , the same arguments apply

only the indices are reversed.14 ⇤

C Proof of Lemma 3

First, note that Ē⇤
S and Ē⇤

N are unique by Equation 14 and Lemma 2, respectively. According to
Lemma 2, the Nash bargaining solution satisfies

C 0
1(a1(Ē

⇤
N ))

⇥
µ + (1 � µ)✓(Ē⇤

N )
⇤

(40)

= B0
1(A(Ē⇤

N )) + ✓(Ē⇤
N )B0

2(A(Ē⇤
N )) + x12

⇣1⇣2
⇣1 + ⇣2

�
1 � ✓(Ē⇤

N )
�
,

while it holds for the e�cient cap that

C 0
1(a1(Ē

⇤
S)) = B0

1(A(Ē⇤
S)) + B0

2(A(Ē⇤
S)). (41)

If we have that ✓(Ē⇤
N ) = 1, then Equation (40) simplifies to

C 0
1(a1(Ē

⇤
N )) = B0

1(A(Ē⇤
N )) + B0

2(A(Ē⇤
N )). (42)

Comparing to Equation 41 immediately yields that Ē⇤
S = Ē⇤

N . Now, consider the opposite direction.
If we have that Ē⇤

S = Ē⇤
N , then Equation 41 implies that

C 0
1(A(Ē⇤

N )) = B0
1(A(Ē⇤

N )) + B0
2(A(Ē⇤

N )).

A comparison to Equation 40 directly reveals that we must have ✓(Ē⇤
N ) = 1. ⇤

D Proof of Proposition 1

First, we establish a relation that we will use throughout the proof:

x12 = µĒ � (e1,0 � a1(Ē)) = �(1 � µ)Ē + (e1,0 � a2(Ē)). (43)

Now we start the proof by using the definition of ✓(Ē) = 1 if and only if Ē⇤
S = Ē⇤

N . Inserting the
definition of ✓(Ē) yields

B1(A(Ē⇤
N )) � C1(a1(Ē

⇤
N )) + x12C

0
1(a1(Ē

⇤
N ))

B2(A(Ē⇤
N )) � C2(a2(Ē⇤

N )) � x12C 0
1(a1(Ē⇤

N ))
= 1. (44)

Rearranging this expression and using the functional forms of Bi(A(Ē)) and Ci(ai(Ē)) leads to

� (⇣1 + ⇣2)(�1 � �2)

2⇣1⇣2
�

⇥
( + 1)e1,0 � Ē⇤

N

⇤
(⇣1 � ⇣2)

4(⇣1 + ⇣2)
= x12. (45)

Inserting Equation (43) and rearranging for µ yields

1 +
a(Ē⇤

N ) � e1,0

Ē
� (⇣1 + ⇣2)(�1 � �2)

2⇣1⇣2Ē⇤
N

�
⇥
( + 1)e1,0 � Ē⇤

N

⇤
(⇣1 � ⇣2)

4(⇣1 + ⇣2)Ē⇤
N

= µ. (46)

14Note that the cases where ( + 1)e1,0  Ē⇤
1  Ē⇤

2 and ( + 1)e1,0  Ē⇤
2  Ē⇤

1 cannot occur in our model due
to the quadric structure of benefits and costs.
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Since we have that Ē⇤
N = Ē⇤

S , we can insert Equation (14). Simplifying finally leads to the desired
result:

µ⇤
S =

e1,0 [2�(⇣1 + ⇣2) + ⇣1⇣2] � � (⇣1+⇣2)
2

⇣1⇣2
(�1 � �2) � 1

4


(3⇣1 + 5⇣2)�1 � (⇣1 � ⇣2)�2

�

( + 1)e1,0 [2�(⇣1 + ⇣2) + ⇣1⇣2] � (⇣1 + ⇣2)(�1 + �2)
. (47)

⇤

E Proof of Corollary 1

First, we turn to �. Note that the numerator of (29) is decreasing in �1. Hence, µ⇤
S = 0 if and

only if

e1,0 [2�(⇣1 + ⇣2) + ⇣1⇣2] � �
(⇣1 + ⇣2)

2

⇣1⇣2
(�1 � �2) �

1

4


(3⇣1 + 5⇣2)�1 � (⇣1 � ⇣2)�2

�
= 0 (48)

Solving Equation (48) for �1 leads us to

�1 =
4⇣1⇣2e1,0 [2�(⇣1 + ⇣2) + ⇣1⇣2] + �2

⇥
4�(⇣1 + ⇣2)

2 + ⇣1⇣2(⇣1 � ⇣2)
⇤

⇣1⇣2(3⇣1 + 5⇣2) + 4�(⇣1 + ⇣2)2
(49)

Second, note that the denominator of (29) is positive if only if:

�1 + �2

e1,0
< ( + 1)

✓
2� +

⇣1⇣2
⇣1 + ⇣2

◆
(50)

Since we have that

�1 + �2

e1,0
< 2

�1

e1,0

<


� +

⇣1⇣2(2⇣1 + ⇣2)

(⇣1 + ⇣2)2

�
+ 

"
� � ⇣1

✓
⇣2

⇣1 + ⇣2

◆2
#

=

"
� + ⇣2

✓
⇣1

(⇣1 + ⇣2)

◆2

+
⇣1⇣2

(⇣1 + ⇣2)

#
+ 

"
� � ⇣1

✓
⇣2

⇣1 + ⇣2

◆2
#

<


2� +

⇣1⇣2
(⇣1 + ⇣2)

�
+ 

"
� � ⇣1

✓
⇣2

⇣1 + ⇣2

◆2
#

< ( + 1)

✓
2� +

⇣1⇣2
⇣1 + ⇣2

◆
,

Inequality (50) holds and we must have that the denominator of (29) is always positive. Because
g1() is increasing in , cf. Appendix A while �1/e1,0 is independent of  we must necessarily

have that �1/e1,0 < g1() for  su�ciently large. In other words, for  su�ciently large, we obtain
feasible ratios �1/e1,0 where µ⇤

S < 0.
To determine @µ⇤

S/@�1 we need to apply the quotient rule. The sign of the derivative, however,
is determined by sign of the numerator of the resulting quotient. Hence, we get that

@µ⇤
S

@�1

sign
= �


�(⇣1 + ⇣2)

2

⇣1⇣1
+

1

4
(3⇣1 + 5⇣2)

�
( + 1)⌘ � (⇣1 + ⇣2)(�1 + �2)

�
(51)

+


(⇣1 + ⇣2)

�
⌘ � �(⇣1 + ⇣2)

2

⇣1⇣2
� 1

4
[(3⇣1 + 5⇣2)�1 � (⇣1 � ⇣2)�2]

�

where we defined ⌘ = e1,0[2�(⇣1 + ⇣2) + ⇣1⇣2]. Now, note that the r.h.s. of 51 is linear in �1, i.e. it

has a single root. Hence, we can conclude that µ⇤
S is decreasing in �1 on the entire interval [�2,�1],
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if we have that @µ⇤
S/@�1 < 0 for �1 ! �2 and for �1 ! �1.

15 First, we turn to �1 ! �1. By

definition of �1, we get that

lim
�1!�1

@µ⇤
S

@�1

sign
= �


�(⇣1 + ⇣2)

2

⇣1⇣1
+

1

4
(3⇣1 + 5⇣2)

�
( + 1)⌘ � (⇣1 + ⇣2)(�1 + �2)

�
< 0. (52)

Second, let us analyze �1 ! �2, where we obtain that

lim
�1!�2

@µ⇤
S

@�1

sign
= �


�(⇣1 + ⇣2)

2

⇣1⇣1
+

1

4
(3⇣1 + 5⇣2)

�
( + 1)⌘ � (⇣1 + ⇣2)2�2

�
(53)

+


(⇣1 + ⇣2)

�
⌘ � �(⇣1 + ⇣2)

2

⇣1⇣2
� 7

4
⇣1�2 �

1

4
⇣2�2

�
.

To establish the negative sign, it is su�cient to show that the factors in the first line in 53 are
greater than the factors in the second line. For the first factor, we obtain that

�(⇣1 + ⇣2)
2

⇣1⇣1
+

1

4
(3⇣1 + 5⇣2) > ⇣1 +

1

4
(3⇣1 + 5⇣2) (54)

=
7

4
⇣1 +

5

4
⇣2

> ⇣1 + ⇣2.

Comparing the second factors leads to

( + 1)⌘ � (⇣1 + ⇣2)2�2 > ⌘ � �(⇣1 + ⇣2)
2

⇣1⇣2
� 7

4
⇣1�2 �

1

4
⇣2�2, (55)

which can be rearranged to
4 ⌘

⇣1 + 7⇣2
+

�(⇣1 + ⇣2)
2

⇣1⇣2(⇣1 + 7⇣2)
> �2. (56)

To see that Inequality 56 is indeed always satisfied, note that

4 ⌘

⇣1 + 7⇣2
+

�(⇣1 + ⇣2)
2

⇣1⇣2(⇣1 + 7⇣2)
>

4 ⌘

⇣1 + 7⇣2
, (57)

= 4 e1,0


2�

> 1
4z }| {

(⇣1 + ⇣2)

⇣1 + 7⇣2
+

⇣1⇣2
⇣1 + 7⇣2

�
,

>
e1,0

2


4�  + 8

⇣1⇣2
⇣1 + 7⇣2

�
,

which we can further estimate downwards, since  > 1, to

>
e1,0

2


2�  + � + ⇣2

✓
⇣1

⇣1 + ⇣2

◆2

+
⇣1⇣2

1
8⇣1 + 7

8⇣2

�
,

>
e1,0

2





� � ⇣1

✓
⇣2

⇣1 + ⇣2

◆2�
+ � + ⇣2

✓
⇣1

⇣1 + ⇣2

◆2

+
⇣1⇣2

⇣1 + ⇣2

�
,

=
e1,0

2


� +

⇣1⇣2(2⇣1 + ⇣2)

(⇣1 + ⇣2)2
+ 


� � ⇣1

✓
⇣2

⇣1 + ⇣2

◆2��
,

> �1 = �2.

Hence, we have that

lim
�1!�2

@µ⇤
S

@�1
< 0,

which implies that µ⇤
S is decreasing in �1 on the entire interval [�2,�1]. ⇤

15We focus on the interesting case where �1 is feasible, i.e. where �1/e1,0 < g1().
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F Proof of Corollary 2

Since we have already established that
@µ⇤

S

@�1
< 0 for �1 2 [�2, �1], we need to show now that

lim
�1!�2

µ⇤
S <

1

 + 1
. (58)

Taking the limits and rearranging leads us to

3⇣1 + ⇣2
⇣1 + 3⇣2

<  (59)

Which is satisfied according to our assumptions. ⇤

G Proof of Lemma 5

Using the Envelope Theorem, we get for W ⇤
S that

@W ⇤
S

@�1
= ( + 1) e1,0 � Ē⇤

S . (60)

By contrast, di↵erentiating and simplifying yields for W ⇤
C that

@W ⇤
C

@�1
= ( + 1) e1,0 � Ē⇤

C � ⇣2�1[⇣1⇣2 + 2�(⇣1 + ⇣2)] + �2(�1 � �2)(⇣1 + ⇣2)

[⇣1⇣2 + �(⇣1 + ⇣2)]2
. (61)

Subtracting (61) from (60) then leads to

@W ⇤
S

@�1
� @W ⇤

C

@�1
= Ē⇤

C � Ē⇤
S +

⇣2�1[⇣1⇣2 + 2�(⇣1 + ⇣2)] + �2(�1 � �2)(⇣1 + ⇣2)

[⇣1⇣2 + �(⇣1 + ⇣2)]2
. (62)

Since we have already established in (32) that Ē⇤
C � Ē⇤

S > 0, we can immediately conclude that

@W ⇤
S

@�1
� @W ⇤

C

@�1
> 0, (63)

or, in other words, that the di↵erence W ⇤
S � W ⇤

C is increasing in �1. ⇤
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4.1 Introduction

Economic growth is of central interest to economists. Although discussed contro-
versially in the past, it is now virtually undisputed in modern macroeconomics that
the financial sector of an economy also influences the development of the real sec-
tor (Levine, 1997). As banks continue to play a pivotal role in the global financial
system, a sound understanding of the impact of banking on economic growth is
essential. In this context, the optimal degree of competition among banks has been
subject to a contentious debate over the past three decades, both in theoretical and
empirical literature (Coccorese, 2017). While some contributions in economic the-
ory advocate competition (see, e.g., Guzman, 2000; Hamada et al., 2018; Smith,
1998), others applaud the monopolistic pole of the competitive continuum for pro-
moting growth (for example, Cetorelli, 1997; Cetorelli and Peretto, 2000, 2012).

This article contributes to the literature by explaining the ambiguous relationship
between interbank competition and economic growth. We specify a simple condi-
tion under which a banking monopoly induces greater growth and higher levels
of welfare than a perfectly competitive banking system and vice versa. Monop-
olization can be beneficial if the economy’s production sector is highly capital-
dependent and the dividend payments of banks sufficiently constrained. However,
if production is labor-intensive, then perfect competition maximizes growth and
welfare. The underlying mechanism works as follows. In our overlapping genera-
tions model, capital accumulation is endogenous and banks contribute directly to
capital accumulation via their equity, a channel that complements their intermedi-
ation of agents’ deposits. Competition among banks has a twofold impact on cap-
ital accumulation, as it determines agents’ saving incentives on the one hand and
banks’ investments through their intermediation margins on the other. For labor-
intensive production technologies, household wage income accounts for a large
share of total income in the economy, so that capital accumulation is primarily de-
termined by the incentives to save. Since competitive banking sets high-powered
incentives, it generates greater economic growth than its monopolistic counterpart.
For capital-intensive technologies, on the contrary, wage income is relatively low
such that the provision of saving incentives is of minor importance. Instead, it is the
opulent capital investments of a monopolistic bank that drive economic growth.

The welfare-enhancing effect of a monopoly can be explained by the theory of the
second best due to Lipsey and Lancaster (1956). Since savings depend on prefer-
ences, agents will generally fail to implement efficient capital accumulation. Intro-
ducing an additional source of market failure, namely a banking monopoly, may
then lead to a more desirable overall outcome since the monopolist’s investments
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contribute to capital accumulation and improve its efficiency. By taking a dynamic
perspective on banking competition, this paper is, to the best of our knowledge,
the first to discover that imperfect competition can engender positive implications
for economic growth and welfare that result from allocative effects only.

Our results constitute a novel theoretical foundation for an empirical puzzle con-
cerning the interplay of banking competition and economic growth. Both Cetorelli
and Gambera (2001) and Hoxha (2013) find that banking concentration promotes
growth in financially dependent industries. By contrast, it has a growth-depressing
effect in industries with low financial dependence. Maudos and Fernandez de Gue-
vara (2006) show that banks’ exercise of market power is positively correlated with
economic growth in industrialized economies. On the other hand, Deidda and Fat-
touh (2005) find that the correlation between banking concentration and growth
is negative solely in low-income countries. This result is complemented by those
of Beck et al. (2004), who discover that banking concentration implies financing
obstacles for firms in developing countries only. Clearly, these empirical insights
are consistent with our theoretical results because industrialized countries tend to
have capital-intensive branches of industry while low-income countries are typi-
cally dominated by labor-intensive manufacturing.

Three further valuable insights can be derived from our model. First, we show that
the provision of risk sharing by financial intermediation boosts the long-run growth
of an economy, independently of the degree of competition between banks. In par-
ticular, an economy with banks, even if it is endowed with significantly less initial
capital, will eventually outgrow an economy without banks. This result helps ex-
plain why under-developed countries that do not have a well-functioning banking
systemmight experience development traps. The second insight is that risk sharing,
regardless of the competition among banks, has no impact on the qualitative pat-
terns of economic growth. In particular, it cannot adversely affect the dynamics of
an economy that otherwise exhibits monotonic growth only. Finally, comparing mo-
nopolistic and competitive banking, the competitive banking system turns out to be
more prone to banking crises due to lower equity reserves and higher susceptibil-
ity to forecast errors. Our model thus provides support for the competition-fragility
hypothesis debated in the finance literature, cf. Freixas and Rochet (2008).

Methodology. Our analysis builds on a simple overlapping-generations (OLG)
model with two-period lived agents and financial intermediation as a vehicle to
share risk.1 Profit-maximizing banks offer risk-averse agents deposit contracts that

1. Our overlapping-generations framework is related to the one used in Allen and Gale (1997)
and Banerji et al. (2004).
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insure against idiosyncratic risk in the production sector. Following Böhm and Wen-
zelburger (1999), we analyze the economic dynamics using a sequential modeling
approach that allows to invoke well-known results from dynamical systems theory.
The basic mechanism of capital accumulation is described by an economic law and
the formation of expectations is stipulated by a forecasting rule. A time-discrete dy-
namical system then obtains by combing the economic law with a forecasting rule.
In the bulk of this article, we focus on rational expectations, although the modeling
approach is more generic as it also allows for subjective (erroneous) beliefs.

Related Literature. The literature on the finance-growth nexus dates back to
Schumpeter (1911), who held the view that financial services facilitate the initia-
tion of entrepreneurial activity (King & Levine, 1993b, 1993c). However, it was not
until the 1950s that the importance of finance for economic growth was explicitly
noted by Gurley and Shaw (1955, p. 516), who suspected “an inadvertent under-
valuation by economists of the role that finance plays in determining the pace and pat-
tern of growth.” The presumed correlation between finance and economic growth
was then indeed confirmed in the pioneering empirical contributions by Goldsmith
(1969), McKinnon (1973), and Shaw (1973).2 Economic theory, on the other hand,
attributes the promotion of growth to the fundamental functions that banks fulfill
in an economy (see, for example, Bencivenga and Smith, 1991; Greenwood and
Jovanovic, 1990; Greenwood and Smith, 1997; Obstfeld, 1994; Pagano, 1993).
Particularly important functions are the provision of liquidity (cf. Bencivenga and
Smith, 1991; Diamond and Dybvig, 1983), the informational advantage of finan-
cial intermediaries (cf. Hellwig, 1991), and risk sharing (cf. Bencivenga and Smith,
1991). Risk sharing is the pivotal function in our model.

In both empirical and theoretical economic research, it is therefore generally
accepted that financial intermediation and especially banking spurs economic
growth. However, there is no clear-cut consensus on the optimal degree of competi-
tion between banks. Early contributions, as for example Greenwood and Jovanovic
(1990) and Bencivenga and Smith (1991), share the bottom line that market im-
perfections in the banking sector tend to inhibit economic growth, or, in the words
of King and Levine (1993b, p. 515), “financial sector distortions can reduce the rate
of economic growth.” Market power, above all, has attracted special attention ever
since. Smith (1998) attributes imperfect interbank competition a negative impact
on economic growth due to increased financing costs for firms. Apart from that,

2. More recent studies that find a positive correlation between financial intermediation and
economic growth are King and Levine (1993a), Levine and Zervos (1998), and Beck et al. (2000).
For excellent overviews of the empirical literature, see Levine (2005) and Aziakpono (2011).
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he demonstrates that monopolistic banking can increase the severity of business
cycles. As pointed out above, a banking monopoly can neither amplify nor gener-
ate business cycles in our model. Complementing Smith’s results, Guzman (2000)
finds that monopolistic banking reduces economic growth by tightening credit ra-
tioning. Finally, Hamada et al. (2018) show that less competition adversely affects
economic growth through lower deposit rates.

Contrary findings were first brought forward by Cetorelli (1997) and Cetorelli and
Peretto (2000, 2012). The authors argue that reduced competition between banks
can be beneficial for economic growth in environments with substantial idiosyn-
cratic risk. The mechanism is that competition reduces the banks’ incentives to en-
gage in relationship lending, which is detrimental to economic growth. However,
this mechanism relies on informational asymmetries between banks and borrowers
as well as spill-over effects of financial intermediation on the performance of the
productive sector. Both of these features are absent in our model because there is
symmetric information and the economy’s productivity is unaffected by financial
intermediation.

Besides the effect on economic growth, there is a small canvas of literature that
attributes monopolistic banking a positive impact on financial stability. Hellmann
et al. (2000), Keeley (1990), and Allen and Gale (2000) show that fierce compe-
tition induces banks to take more risk, thereby reducing the stability of the finan-
cial system. This result is consistent with the findings in our paper, as the model
shows that competitive banks are more susceptible to forecast errors than a mo-
nopolist, see Section 4.6. Nonetheless, the competition-fragility hypothesis is not
undisputed among economists. Boyd and De Nicolo (2005), for instance, argue
that market power leads to higher loan rates, which imply higher bankruptcy risks
for borrowers.

Outline. The remainder of this paper is organized as follows. The next section
lays out the basic OLG framework, describes the financial intermediation com-
ponents of the model, and introduces all necessary assumptions. In Section 4.3,
we analyze capital accumulation and define dynamical systems. Subsequently, we
present our main findings concerning economic growth and welfare in Section 4.4.
Section 4.5 examines the qualitative dynamics of the model and whether finan-
cial intermediation may generate endogenous fluctuations. Section 4.6 is a brief
digression discussing the implications for financial stability. We extend the model
by incorporating dividend payments in Section 4.7 before we conclude. All proofs
are provided in Appendix 4.A. Throughout this article, we will compare three
economies in a ceteris-paribus manner: an economy without financial intermedia-
tion, one with perfect competition among banks, and one reigned by a monopolist.
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4.2 Basic Model

4.2.1 Prerequisites

Consider an overlapping-generations model with one sector and markets for capi-
tal, labor, and a perishable good that can be consumed and invested. Time is dis-
crete and indexed by t= 0,1, . . . ,∞. At the beginning of each period t, a new gen-
eration comprising a unit-mass continuum of homogeneous agents is born. Agents
live for two periods, referred to as young and old. In period t= 0, there exists an
initial old generation endowed with capital K0 > 0. The economy accommodates
financial intermediaries in the form of risk-neutral commercial banks, described in
more detail below.

Preferences. Agents are risk-averse and value both youthful consumption c1 ≥ 0
and old-age consumption c2 ≥ 0. Their intertemporal preferences are represented
by a life-cycle utility function U : R2

+→ R, defined by

U(c1, c2) := u(c1) + v(c2)

that satisfies the following standard assumptions.

Assumption 7 (Preferences).
(i) The utility functions u, v are twice continuously differentiable, strictly increasing,

strictly concave, and satisfy the Inada conditions. We normalize v(0)= 0.
(ii) The Arrow-Pratt coefficients of relative risk aversion

αu := −
u′′(c1)c1

u′(c1)
, and αv := −

v′′(c2)c2

v′(c2)

are constants that satisfy 0< αu ≤ αv < 1.

Constant relative risk aversion is a widespread assumption in the finance literature
as it helps to keep the analytical complexity manageable. Assumption 7 (ii) implies
that agents’ optimal investments are non-decreasing in the return on investment,
thus ensuring that youthful and old-age consumption are gross substitutes.3

3. Note that a time discount factor can be incorporated in the utility function v. The CES
utility function is a simple example that satisfies Assumption 7, cf. Example 13 below.
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Production. The production sector of the economy is perfectly competitive. The
technology of the representative firm is neoclassical and uses capital K ≥ 0 and la-
bor N ≥ 0 with constant returns to scale. Capital is provided to firms by both agents
and banks, paid its marginal product, and depreciates fully during production. We
denote by k := K/N the capital-labor ratio and by f : R+→ R+ the production func-
tion, so that y = f(k) is the economy’s GDP per capita. For notational convenience,
we define the two elasticities

ε1(k) :=
f ′(k)k
f(k)

, and ε2(k) :=
f ′′(k)k
f ′(k)

and denote the marginal product of labor by

w(k) := f(k) − f ′(k)k.

The production technology satisfies the following assumptions.

Assumption 8 (Technology).
(i) The production function f is twice continuously differentiable, strictly increasing,

strictly concave, and satisfies the Inada conditions.
(ii) The marginal product of labor w is strictly concave and the elasticity ε2 satisfies

−1 < ε2(k) < 0 for all k ≥ 0.

The elasticity ε1 is of central importance for our analysis as it captures the capital-
dependence of the production sector. An increase in ε1 implies that capital becomes
more important relative to labor as a production factor. From an output perspective,
ε1 is the share of capital income to total income in the economy. Thus, for a larger
ε1, the production sector becomes more capital-intensive and less labor-intensive.⁴
Moreover, it should be stressed that while Assumption 8 (i) is standard in the lit-
erature on OLG models, Assumption 8 (ii) is also satisfied by standard production
functions, e.g., the Cobb-Douglas and the CES production function. It implies that
capital and labor income are well behaved.

The young generation constitutes the workforce of the economy, whereas the old
generation is retired. We normalize that each young agent supplies one unit of la-
bor inelastically to a perfectly competitive labor market, implying that the market-
clearing wage rate wt in period t is determined by the marginal product of labor,
wt = w(kt).

4. Note that 0< ε1 < 1 by the strict concavity of the production function f .
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Example 12 (Cobb-Douglas Technology).
For the Cobb-Douglas production function f(k)= Akα, where A> 0 and 0< α < 1,
the elasticities ε1 = α and ε2 = α− 1 are constants.

Projects & Expectations. Agents and banks can invest in projects (firms) in the
production sector. Projects have a stochastic binary outcome, i.e., they can either
be successful or fail. The likelihood of a successful project is exogenously given
by a success rate p ∈ (0, 1), which is common knowledge . The uncertainty about
the outcome of a project resolves one period after capital has been invested. If a
project turns out to be successful, then a gross rate of return ρ > 0 realizes. The
gross return on a failed project is zero. In each period t, agents form an expecta-
tion ρe

t > 0 with respect to the return on a successful project ρt+1 realized in t+ 1.
Expectations are assumed to be homogeneous and, unless stated otherwise, ratio-
nal. Nonetheless, the modeling approach is more generic as it allows for subjective
(erroneous) beliefs of agents, cf. Section 4.6.

4.2.2 Idiosyncratic Investments

In the absence of banks, a young agent may transfer resources to the second period
of his life solely by investing part of his wage income in a risky production project,
which exposes him to the idiosyncratic risk of an old-age income shock.⁵ The deci-
sion problem of a young agent in this case is as follows. The agent’s objective is to
maximize his expected utility of lifetime consumption. Given the wage income wt

and the anticipated return ρe
t , the optimal idiosyncratic investment It solves

It = I(wt,ρ
e
t ) := argmax

0≤I≤wt

u(wt − I) + pv(ρe
t I) + (1 − p) v(0). (4.1)

By Assumption 7 (i), the optimal solution satisfies 0< It < wt and it is uniquely
determined by the first-order condition

u′(wt − It)
v′(ρe

t It)
= pρe

t , (4.2)

which states that the marginal rate of intertemporal substitution equals the ex-
pected return on investment. The expected utility of investing with idiosyncratic
risk is denoted by

Ures(wt,ρ
e
t ) := u(wt − I(wt,ρ

e
t )) + p v(ρe

t I(wt,ρ
e
t )) (4.3)

5. Recall that there is no pure storage technology in this model, as is the case, for example,
in Diamond and Dybvig (1983).
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and, as will become clear shortly, constitutes the agent’s reservation utility in the
presence of banks. Figure 4.1 illustrates the timing associated with an idiosyncratic
investment.

Period t Period t+1

Youthful Consumption Old-Age Consumption

Young Agent 

Projects 

Old Agent 
wt – It

wt

It
𝜌t+1It0

Figure 4.1. Idiosyncratic investment in a production project.

The case of agents endowed with CES preferences is our primary example through-
out the article.

Example 13 (CES Preferences).
For the CES utility functions u(c1)= 1

σ(c1)σ and v(c2)= β

σ(c2)σ, where β > 0 and
0< σ < 1, the optimal idiosyncratic investment (4.1) is

It = I(wt,ρ
e
t ) =
�

1 +
�

β p (ρe
t )
σ
�

1
σ−1
�−1

wt

such that the agent’s reservation utility (4.3) becomes

Ures(wt,ρ
e
t ) = I(wt,ρ

e
t )
σ−1β p (ρe

t )
σσ−1 wt.

4.2.3 Financial Intermediation

From an institutional perspective, a bank can be seen as a coalition of (old) agents
that arises endogenously as a vehicle for risk sharing and rent extraction (see, e.g.,
Freixas and Rochet, 2008). A bank’s objective is to maximize the expected profit
generated by taking deposits from the public and investing them into the produc-
tion projects.⁶ To finance its investments, the bank offers young agents a gross rate

6. Investing in production projects may be considered the lending business of the banks. By
the law of large numbers, the loan default rate is then 1− p.
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rt > 0 on deposits Dt ≥ 0, which are at the agents’ discretion.⁷ Given that the bank
has offered a deposit rate rt on savings in period t, a young agent’s optimal supply
of deposits solves

Dt = D(wt, rt) := argmax
0≤D≤wt

u(wt − D) + v(rtD). (4.4)

It follows from Assumption 7 (i) that the solution 0< Dt < wt is uniquely deter-
mined by the first-order condition⁸

u′(wt − Dt)
v′(rtDt)

= rt. (4.5)

However, since investing with idiosyncratic risk constitutes the agent’s outside op-
tion, the utility of saving must be weakly larger than the reservation utility (4.3).
Formally, an agent accepts the deposit contract if and only if rt satisfies the partici-
pation constraint

u(wt − D(wt, rt)) + v(rtD(wt, rt)) ≥ Ures(wt,ρ
e
t ). (PC)

It remains to formalize the objective function of a bank. Exploiting the law of
large numbers, the bank correctly anticipates that, on aggregate, the share p of
all projects will be successful. Therefore, the anticipated intermediation margin
per unit of deposits amounts to pρe

t − rt. With rational expectations, the intermedi-
ation margin pρt+1 − rt realized in t+ 1 is non-negative at all times, implying that
banks realize non-negative profits. These profits are either retained and add to
a bank’s equity or released as dividend payments to agents instead. Note that if
profits are retained, then the bank optimally reinvests them into the production
projects since there is no storage technology (which is a standard assumption in
the OLG literature). We denote a bank’s equity in period t by et ∈ R and normalize

7. A short remark the design of our deposit contracts is in order. First, note that since the de-
posit contract is of the simple structure rt, the contractual repayment Dt 7→ rtDt is linear. We thereby
abstract from stochastic contracts, contracts specifying fixed fees, and from those stipulating both
the deposit rate and the deposits. Second, note that young agents either save in the form of deposits
at the bank or invest with idiosyncratic risk. Simultaneous saving and investing will neither occur
in the case of perfect interbank competition nor in the monopoly case. With perfect competition,
agents have no incentive to invest at all because the contract gives agents the entire available sur-
plus. A monopolistic bank, on the other hand, will naturally exploit her market power and prohibit
idiosyncratic investments in order to maximize the rent extracted.

8. The second-order condition is satisfied by the strict concavity of u and v.
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e0 = 0.⁹ It should be noted that since the old agents own the bank, they would,
in theory, release and consume the entire banking surplus. However, in a banking
context, equity is subject to strict regulatory requirements (e.g., capital-adequacy
ratios) that cap the amount of dividends that can be paid out.1⁰ To simplify the
exposition and keep the complexity manageable, we will first consider a stylized
environment in which the surplus is fully retained. Subsequently, in Section 4.7, we
argue that our central findings are robust even if banks, subject to regulation, dis-
tribute part of the surplus to the owners. Finally, since deposit management costs
are irrelevant to the point of this paper, we assume them to be negligible. Summa-
rizing these considerations, the profit expected by a bank in period t, given wt, ρe

t ,
and et, is then formally defined by

πe
t(rt) := D(wt, rt)(pρe

t − rt) + pρe
t et.

Figure 4.2 illustrates the timing in the case of financial intermediation.

Period t Period t+1

Youthful Consumption Old-Age Consumption

Bank 
Young Agent 

Old Agent 
Dtwt – Dt

wt

Dt

rtDt

p𝜌t+1Dtp𝜌t+1etet

Projects 

Figure 4.2. Investment in a project through financial intermediation.

Remark 3 (Notation).
Henceforth, the superscript i= C will indicate the case of perfect competition between
banks, i=M the case of a banking monopoly, and i= N the case without financial
intermediation.

9. Observe that the model allows for indebtedness of banks since et can take negative values.
This case may obtain if the realized intermediation margins are negative owing to erroneous beliefs.

10. See, for instance, Gersbach and Wenzelburger (2003, 2008, 2012), who investigate the
need for and the effectiveness of banking regulation in two-period lived OLG models.
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4.2.4 Deposit Contracts

If there is perfect competition between banks, the anticipated intermediation mar-
gin is zero and agents are awarded the entire expected surplus. In this case, deposit
contracts are actuarially fair and provide complete insurance without a premium
for the bank. The deposit contract thereby offers a better risk-return characteristic
than an idiosyncratic investment. We summarize these results in Proposition 13.

Proposition 13 (Perfect Competition).
The deposit rate in case of perfect competition between banks is

rC
t = rC(wt,ρ

e
t ) := pρe

t .

The opposite pole of the competitive continuum is considered next. Given wt, ρe
t ,

and et, the problem of a monopolistic bank consists in offering a deposit rate
that solves

max
0≤r≤pρe

t

πe
t(r) s.t. u(wt − D(wt, r)) + v(rD(wt, r)) ≥ Ures(wt,ρ

e
t ). (4.6)

The solution rM
t to Problem (4.6) is either determined by the first-order condition

pρe
t − rM

t

rM
t

=
1

η
�

wt, rM
t

� (4.7)

corresponding to the relaxed problem without the participation constraint, where

η(w, r) :=
∂D
∂ r (w, r) r

D(w, r)
> 0, (4.8)

or it is determined by the binding participation constraint

u(wt − D(wt, rM
t )) + v(rM

t D(wt, rM
t )) = Ures(wt,ρ

e
t ). (4.9)

Recognize that (4.7) is the standard optimality condition for a monopoly, stating
that the Lerner-index equals the inverse elasticity.11 Intuitively, if (4.7) specifies

11. Since 1/η is a measure of the monopolist’s market power, the competitive limit rM
t = pρe

t
obtains if η→∞, cf. Proposition 13. Moreover, it can readily be shown that our model also covers
oligopolistic banking. The sole difference is that η in (4.7) is multiplied by the number of competing
banks. For a formal treatment of a related problem, we refer to Freixas and Rochet (2008).
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a sufficiently high deposit rate that is accepted by agents, then it is optimal for
the monopolist to implement this contract. Otherwise, the participation constraint
(PC) is binding and the optimal contract is determined by (4.9). In the latter case,
the solution to (4.7) is not implementable because agents would reject the bank’s
offer and invest with idiosyncratic risk instead. Indeed, the solution to (4.9) is the
lowest deposit rate that still ensures an agent’s participation. These considerations
lead to the following proposition.

Proposition 14 (Banking Monopoly).
For any given wt > 0 and ρe

t > 0, there exists a unique deposit rate 0< rM
t < pρe

t that
solves the monopolist’s decision problem (4.6). It is given by

rM
t = rM(wt,ρ

e
t ) := max
¦

s(wt,ρ
e
t ), b(wt,ρ

e
t )
©

,

where s(wt,ρ
e
t ) and b(wt,ρ

e
t ) are defined by (4.7) and (4.9), respectively.12

Proposition 14 shows that market power reduces the deposit rates offered, rM
t <

rC
t . It is noteworthy, however, that if rM

t is determined by (4.7), then the utility
attained by the deposit contract exceeds the agent’s reservation utility. In this case,
the monopolist has to pay the depositors a rent to receive the desired amount of
funds. Lemma 12 demonstrates that this case occurs if the production projects are
sufficiently risky.

Lemma 12. For any given wt > 0 and ρe
t > 0, there exist thresholds 0< p≤ p< 1

for the success rate p such that rM
t = s(wt,ρ

e
t ) if p< p, whereas rM

t = b(wt,ρ
e
t ) if p≥ p.

The intuition of Lemma 12 is straightforward. If an idiosyncratic investment is
highly risky, then the monopolist can exploit agents’ risk aversion and implement
the profit-maximizing deposit rate rM

t = s(wt,ρ
e
t ) determined by the relaxed prob-

lem. However, if the projects are rather safe, then this contract is not accepted
by agents.13

12. For technical reasons, we claim that rM(wt,ρ
e
t )= b(wt,ρ

e
t ) whenever b(wt,ρ

e
t )= s(wt,ρ

e
t ).

13. Technically, it can be shown that the reservation utility Ures increases with p, so that the
participation constraint becomes more demanding.
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Example 14 (CES Preferences).
For the CES utility functions presented in Example 13, the deposit supply (4.4) is

Dt = D(wt, rt) =
�

1 +
�

β (rt)
σ
�

1
σ−1
�−1

wt.

For instance, let σ = 0.5 and β = 1, then

rM
t = rM(wt,ρ

e
t ) = max
¦

p2ρe
t ,
Æ

pρe
t + 1 − 1
©

.

4.3 Capital Accumulation

The aggregate capital stock of the economy is determined by the total capital en-
dowment of successful projects. Without banks, the projects are financed by id-
iosyncratic investments of agents only. In the presence of banks, however, such in-
vestments do not occur since, in equilibrium, agents will always accept the deposit
contract. Instead, capital accumulation is fed from deposits of private households
(which are channeled into the production sector by the financial intermediaries)
and investments from banks. The degree of competition among banks has a twofold
impact on these two funding sources. While, on the one hand, a higher deposit rate
implies higher-powered savings incentives for agents, fierce competition reduces
the intermediation margins of banks on the other hand. The former mechanism is
derived in the following corollary.

Corollary 5 (Capital Supply).
For any given wt > 0 and ρe

t > 0, it holds that

I(wt,ρ
e
t ) ≤ D(wt, rM(wt,ρ

e
t )) < D(wt, rC(wt,ρ

e
t )),

where the first inequality holds strict if and only if rM(wt,ρ
e
t )= s(wt,ρ

e
t ).

The intuition of Corollary 5 is that the provision of risk sharing incentivizes agents
to release additional funds into the production sector. As we will see later, it is
exactly this feature of banks that is responsible for promoting long-run economic
growth in our model.

Remark 4 (Expectations).
In the following, it is convenient to express the expectations in terms of the capital-
labor ratio by letting ke

t = f ′−1(ρe
t ) denote the expectation formed in period t with

respect to the kt+1 realized in t+ 1.
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In order to obtain a dynamical system that describes the evolution of the econ-
omy over time, we next define an economic law of capital accumulation and then
add a forecasting rule that stipulates how expectations are formed. By the law of
large numbers, the share p of the projects is successful, while the rest of them fails.
Therefore, in the case without financial intermediation, the economic law of capital
accumulation is given by the map

kt+1 = GN(kt, ke
t) := pI(w(kt), f ′(ke

t)). (4.10)

In the presence of banks, capital accumulation is driven by

kt+1 = p
�

Dt + et

�

. (4.11)

The bank’s proceeds from the successful projects (the capital income) in period t
are f ′(kt)kt, while it has to pay depositors the contractual amount ri

t−1Dt−1. Hence,
a bank’s equity et in period t is determined by the map1⁴

ei(kt, kt−1, ke
t−1) := f ′(kt)kt − ri(w(kt−1), f ′(ke

t−1)) D(w(kt−1), ri(w(kt−1), f ′(ke
t−1))), (4.12)

where i ∈ {C, M} depending on the degree of competition. From (4.11) and (4.12),
we can infer the economic law of capital accumulation

kt+1 = Gi(kt, kt−1, ke
t , ke

t−1) := p
�

D(w(kt), ri(w(kt), f ′(ke
t))) + ei(kt, kt−1, ke

t−1)
�

.

Following Grandmont (1985), expectations are formed on the basis of a forecast-
ing rule ψi. Agents have perfect foresight if expectations are rational at all times,
i.e., if ke

t = kt+1 for all t≥ 0. Perfect forecasting rules in the sense of Böhm and
Wenzelburger (1999) are forecasting rules that generate perfect foresight along all
possible growth paths of the economy. Formally, these are defined as follows.1⁵

14. To be precise, we define ei(k0, k−1, ke
−1) := e0 = 0. Also, note that for any given

(kt, kt−1, ke
t−1), a bank’s balance sheet satisfies

f(kt) = w(kt) + ei(kt, kt−1, ke
t−1) + ri(w(kt−1), f ′(ke

t−1)) D(w(kt−1), ri(w(kt−1), f ′(ke
t−1))),

such that output is split into wage payments to the young generation, contractual payments to the
old generation, and bank equity.

15. Observe from Definition 9 that the functional form of a perfect forecasting rule is deter-
mined by the economic law and thus depends on whether financial intermediation takes place.
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Definition 9 (Perfect Forecasting Rules).
(i) A forecasting ruleψN : R+→ R+, defined by ke

t =ψ
N(kt), is called a perfect fore-

casting rule for the economic law GN if it obeys

ψN(x) = GN(x,ψN(x)) for all x ∈ R+.

(ii) Let i ∈ {C,M}. A forecasting rule ψi : D i→ R+, defined by ke
t =ψ

i(kt, kt−1), is
called a perfect forecasting rule for the economic law Gi if it satisfies

ψi(x, y) = Gi(x, y,ψi(x, y), x)

for all (x, y) ∈ D i :=
¦

(x, y) ∈ R2
+ | e

i(x, y, x) ≥ 0
©

.

Existence and uniqueness of a perfect forecasting rule is established in Lemma 13.

Lemma 13. There exist uniquely determined perfect forecasting rules ψi, i ∈
{N,C, M}, in the sense of Definition 9. In particular, D i is forward-invariant:
for all (kt, kt−1) ∈ D i, it holds that

�

ψi(kt, kt−1), kt

�

∈ D i.

The lemma implies that the possibility of perfect foresight is not lost over time and,
in particular, that banks never go bankrupt. Technically, the lemma shows that the
perfect-foresight dynamics obtained by substituting expectations with realizations
is well defined.

The perfect-foresight dynamics without banks is governed by the implicit differ-
ence equation

kt+1 = GN(kt, kt+1) = pI(w(kt), f ′(kt+1)), t ≥ 0, (PFDN)

while the dynamics in the presence of banks is driven by

kt+1 = Gi(kt, kt−1, kt+1, kt), i ∈ {C, M}, t ≥ 1. (4.13)

The dynamical system (4.13) deserves further attention. In a perfectly competi-
tive environment, the realized intermediation margin is zero at all times. Accord-
ingly, banks’ equity along any growth path {kt}∞t=0 with perfect foresight is zero
and (4.13) simplifies to

kt+1 = GC(kt, kt+1) = pD(w(kt), pf ′(kt+1)). (PFDC)
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In the monopolistic case, on the contrary, the realized intermediation margins are
positive, implying that the perfect-foresight dynamics is governed by the second-
order difference equation

GM(kt, kt−1, kt+1, kt) = p
�

D(w(kt), rM(w(kt), f ′(kt+1))) + eM(kt, kt−1, kt)
�

. (PFDM)

In view of the lagged variable in (PFDM), we will next set up a linearization and
evoke the Hartman–Grobman Theorem for further analyses, cf. Grobman (1959)
and Hartman (1960). To do so, we define

Ψ : DM → DM, Ψ :

�

kt

kt−1

�

7→
�

ψM(kt, kt−1)
kt

�

,

as well as the vector

kt :=

�

kt

kt−1

�

.

This technique enables us to transform the second-order difference equation
(PFDM) into the dynamical system

kt+1 = Ψ(kt), kt ∈ DM, t ≥ 1.

Steady states kM = (kM, kM) of Ψ are defined by kM = Ψ(kM).1⁶ Linearizing the map
Ψ at kM yields

kt+1 = DΨ(kM)kt, t ≥ 1, (4.14)

where

DΨ(kM) =

�

∂ψM

∂ kt
(kM) ∂ψM

∂ kt−1
(kM)

1 0

�

(4.15)

is the Jacobian of Ψ . The stability properties of kM determine the qualitative dy-
namics of the economy. The stability properties can be deduced from the Eigenval-
ues of the Jacobian (4.15), which compute

λ1,2(kM) = 1
2

∂ψM

∂ kt
(kM) ±
s

1
4

�

∂ψM

∂ kt
(kM)
�2
+ ∂ψM

∂ kt−1
(kM). (4.16)

We complete this section with a technical lemma that will facilitate establishing
our central results.

Lemma 14. For any given steady state kM ∈ DM, the Eigenvalues λ1,2 in (4.16) sat-
isfy 0<
�

�λ2(kM)
�

�≤
�

�λ1(kM)
�

�.

16. The existence of a hyperbolic steady state kM is established in Section 4.4.
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4.4 Economic Growth and Welfare

Equipped with dynamical systems, we can now investigate how financial intermedi-
ation and in particular the degree of interbank competition affect economic growth
and welfare. The long-run development of the economy is determined by (perfect-
foresight) steady states ki ≥ 0 of the dynamical systems (PFDi) and their stability
properties. Steady states are defined by solutions to the fixed-point condition

k
p
=











I(w(k), f ′(k)) for i = N

D(w(k), pf ′(k)) for i = C

D(w(k), rM(w(k), f ′(k))) + eM(k, k, k) for i = M.

(4.17)

As a first step, we analyze whether poverty traps may occur.1⁷

Proposition 15 (Poverty Traps).
Let i ∈ {N, C,M}. The origin ki = 0 is a steady state if and only if f(0)= 0. If ki = 0
is a steady state, then it is unstable.

Proposition 15 rules out poverty traps, regardless of the banking industry. Under
perfect foresight, the economy never goes bankrupt since no growth path {kt}∞t=0

with initial capital k0 > 0 converges to zero. Against this background, the question
regarding positive steady states arises naturally. Theorem 5 states the first central
result of this paper, namely the effects of financial intermediation on long-run eco-
nomic growth.

Theorem 5 (Economic Growth).
Let k0 > 0 and consider economies that are identical in all aspects except their banking
industry. Then the following holds.

(i) Each dynamical system (PFD i), i ∈ {N,C, M}, attains a uniquely determined pos-
itive steady state ki > 0, which is asymptotically stable globally on R++. These
steady states satisfy 0< kN < kC, kM.

(ii) If the elasticity ε1 of the production function is sufficiently large, then kN < kC <

kM. Conversely, if ε1 is sufficiently small, then kN < kM < kC.

From an economic perspective, Theorem 5 (i) implies that economies featuring
banks will experience a greater level of long-run growth than economies without.

17. The term “poverty trap” is used ambiguously in the literature. We define a poverty trap as
the origin ki = 0 being an asymptotically stable steady state.
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This result holds irrespective of the degree of interbank competition and indepen-
dently of the initial capital stock k0. An economy with banks that is initially poor
will in the long run outgrow any prosperous economy without financial intermedi-
ation. The underlying mechanism is that the provision of risk sharing incentivizes
agents to allocate additional funds to the production sector, which fosters capital
accumulation and economic growth, cf. Corollary 5. This insight contributes to
explaining why low-income countries lacking a well-functioning banking system
might face developmental obstacles.

The second part of Theorem 5 concerns the interplay between the competition
among banks and the capital dependency of the production sector. Theorem 5
(ii) demonstrates that for a capital-intensive production technology, a banking
monopoly induces the greatest level of long-run growth. By contrast, competition
is favorable if the technology is labor-intensive. The mechanism works as follows.
As noted at the outset of Section 4.3, competition between banks has a twofold
impact on capital accumulation. While an increase in competition encourages pri-
vate savings, it also reduces banks’ equity owing to smaller intermediation mar-
gins. Which effect is decisive depends on the production technology: for a labor-
intensive manufacturing sector, households receive opulent wage income, whereas
the capital income of banks is relatively low. In such environments, the provision
of strong saving incentives for households is crucial, which is why perfect competi-
tion among banks leads to the highest level of economic growth. If the production
sector is capital-intensive, however, then saving incentives are of minor importance
as agents’ wage income is comparatively low. Due to the plentiful capital income,
a monopolistic bank is then best capable of providing the production sector with
sufficient capital and, consequently, is favorable for economic growth.

However, the pure growth perspective pursued so far abstracts from all normative
considerations. Indeed, it is natural to question whether a monopoly can also im-
prove welfare. Taking a utilitarian perspective, we measure agents’ welfare using
the expected lifetime utility.1⁸ Formally, given kt and ke

t , welfare in period t is cap-
tured by

W i(kt, ke
t) :=

¨

Ures(w(kt), f ′(ke
t)) for i = N

u
�

w(kt) − D(w(kt), ri
t)
�

+ v
�

ri
tD(w(kt), ri

t)
�

for i = C, M,

18. Note that the agent’s expected utility is equivalent to the level of utility attained by his
generation on average. Moreover, for a discussion of our welfare measure against the background
of the literature on OLG models, we refer to Appendix 4.A.3.
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where ri
t = ri(w(kt), f ′(ke

t)). From this definition, we can directly infer the following
corollary. It states the welfare effects of financial intermediation in a comparative
statics manner.

Corollary 6 (Welfare Effects).
For any given kt > 0 and ke

t > 0, it holds that

W N(kt, ke
t) ≤ W

M(kt, ke
t) < W

C(kt, ke
t),

where the first inequality holds strict if and only if rM(w(kt), f ′(ke
t))= s(w(kt), f ′(ke

t)).

Corollary 6 is a risk sharing result. Banks increase agents’ welfare by insuring them
against the idiosyncratic risk in the production sector.

In order to take a dynamic perspective on welfare, however, it is necessary to es-
tablish a benchmark first. Independently of financial intermediation, the realized
consumption levels in period t satisfy

c1
t + c2

t = f(kt) −
kt+1

p
. (4.18)

From Equation (4.18), it follows that stationary feasible allocations (k̄, c̄1, c̄2) of this
OLG economy must fulfill

c̄1 ≥ 0, c̄2 ≥ 0, k̄ ≥ 0, and c̄1 + c̄2 = f(k̄) −
k̄
p
=: φ(k̄). (4.19)

The notion of a stationary feasible allocation now enables us to derive the following
social-planner result, which is due to Diamond (1965).

Lemma 15. The stationary feasible allocation (k̄, c̄1, c̄2) with the highest possible level
of welfare is the golden-rule allocation (kG, c1

G, c2
G), where kG = f ′−1(1/p) and the con-

sumption plan (c1
G, c2

G) is uniquely determined by

u′(c1
G)

v′(c2
G)
= 1, and c1

G + c2
G = φ(kG).

Since steady states of an OLG economy define stationary feasible allocations, we
may evaluate them using (kG, c1

G, c2
G) as an efficient benchmark. It is important to

note that the golden-rule capital-labor ratio kG is solely determined by the produc-
tion technology and the success rate. In particular, it is not affected by financial
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intermediation or agents’ preferences. The steady states ki, however, depend on
preferences. For this reason, kG will generally not be attained as a steady state of
the economy and the stationary feasible allocations corresponding to the steady
states will deviate from the golden-rule allocation. Indeed, kG is a steady state if
and only if it solves (4.17). For this reason, capital accumulation will generally be
inefficient and the steady states will not be welfare-maximizing.

The preceding considerations reveal that from a societal perspective, agents will
generally fail to achieve investment efficiency. However, since the economy’s steady
state is also affected by financial intermediation, the question arises whether bank-
ing can enhance the efficiency of the long-run outcome. To this end, note that the
level of welfare which will be attained in the long run is W i(ki, ki), where ki > 0
is the asymptotically stable steady state identified in Theorem 5. We are now in a
position to state our second key result, namely how the interplay between banking
competition and the production sector affects welfare.

Theorem 6 (Welfare).
Let the unique positive steady states ki > 0 of the dynamical systems (PFD i) be given.
Then the following holds.

(i) If 0< kC ≤ kG, then the economy with a competitive banking industry experi-
ences a higher level of steady-state welfare than the economy without banks,

W N(kN, kN) < W C(kC, kC).

(ii) If the elasticity ε1 is sufficiently large, then the economy with a monopolistic
banking industry experiences the highest level of steady-state welfare,

W N(kN, kN) < W C(kC, kC) < WM(kM, kM).

Conversely, if ε1 is sufficiently small, then

WM(kM, kM) < W C(kC, kC).

Economically, Theorem 6 (i) implies that introducing financial intermediation to
an economy will enhance steady-state welfare if it alleviates under-accumulation
of capital. Technically speaking, by providing investment incentives for agents
and propelling capital accumulation, financial intermediation moves the steady-
state allocation of the economy closer towards the golden-rule allocation. For over-
accumulation, the welfare effects of financial intermediation become generally am-
biguous. While the provision of risk sharing is always beneficial for welfare, the
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resulting investment incentives exacerbate over-accumulation. Thus, if financial in-
termediation induces over-accumulation, then a trade-off between insurance and
reduced consumption arises.1⁹ The resolution of this trade-off and whether finan-
cial intermediation improves steady-state welfare depends on the production tech-
nology and agents’ risk preferences.

The second part of Theorem 6 reveals that the capital dependence of the produc-
tion sector determines how competition among banks impacts the economy’s in-
vestment efficiency. If the manufacturing sector is capital-intensive, then savings
of private households are insufficient to implement efficient capital accumulation.
A monopolistic bank’s capital investments then improve efficiency by shifting the
accumulation path towards a higher level of long-run output, consumption, and
welfare. This effect can be explained by the theory of the second best, cf. Lipsey and
Lancaster (1956). Since each cohort of agents is only concerned with maximiz-
ing their own (short-run) utility, capital accumulation is generally inefficient. An
additional source of market failure, namely a banking monopoly, can then actually
improve overall efficiency, provided that the production sector is sufficiently capital-
intensive. In a labor-intensive production environment, however, private savings
of agents are sufficient and the adverse effect of monopolistic rent extraction on
agents’ welfare outweighs. Overall, competition is then favorable for welfare.

At this point, it is worthwhile considering a standard parameterization from the
literature in order to illustrate our central findings thus far.

Example 15 (CES Preferences and Cobb-Douglas Technology).
Consider the CES preferences and the Cobb-Douglas production function presented in
Examples 12 – 14. Let σ = 0.5 and β = 1. Figure 4.3 portrays the perfect-foresight
growth paths {kt}∞t=0 of the different economies and the corresponding welfare level,
given a capital-intensive production technology. The dashed line represents the golden-
rule value kG. The following observations are immediate from Figure 4.3:

(i) The economies with financial intermediation display greater long-run growth
than the economy without, cf. Theorem 5 (i).

(ii) Since the economy without banks experiences under-accumulation, a competitive
banking system has a positive impact on long-run welfare, cf. Theorem 6 (i).

(iii) Since the technology is capital-intensive, the monopolistic economy displays the
greatest level of long-run growth and welfare, cf. Theorems 5 (ii) and 6 (ii).

19. The observation that aggravated over-accumulation reduces consumption follows from the
unimodal functional form of φ, cf. (4.19).
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(a) Capital {kt}∞t=0 (b) Welfare

Figure 4.3. Monopolistic banking maximizes long-run growth and welfare.
Color code: – (PFDN), – (PFDC), – (PFDM).
Parameters: A = 10, ε1 = α = 0.5, p = 0.6.

By contrast, Figure 4.4 depicts the growth paths for a labor-intensive technology. In
this case, competition maximizes long-run growth and welfare. While, in the compet-
itive economy, the insurance-consumption trade-off is resolved in favor of insurance,
reduced consumption outweighs in the monopolistic economy, implying a reduction in
steady-state welfare.

(a) Capital {kt}∞t=0 (b) Welfare

Figure 4.4. Perfect competition among banks maximizes long-run growth and welfare.
Color code: – (PFDN), – (PFDC), – (PFDM).
Parameters: A = 10, ε1 = α = 0.1, p = 0.6.
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4.5 Endogenous Fluctuations

The question of how financial intermediation affects the qualitative patterns of
economic growth is addressed next. We investigate whether banking may cause
endogenous output fluctuations, for example, in the form of oscillations, cycles, or
chaos. Differentiating (PFDN) directly shows that the dynamics without banks is
monotonic. Indeed, in view of Assumption 7, we get

∂ kt+1

∂ kt
=

∂ I
∂w(w(kt), f ′(kt+1)) w′(kt)

1
p −

∂ I
∂ ρe (w(kt), f ′(kt+1)) f ′′(kt+1)

> 0

because investments I(w,ρe) are strictly increasing in both w and ρe.2⁰ Hence, en-
dogenous fluctuations are ruled out and, depending on k0, the growth paths gener-
ated by (PFDN) are either monotonically increasing or decreasing, cf. Figure 4.4a.
Differentiating (PFDC), we find that the exact same applies to the economy with a
competitive banking industry,

∂ kt+1

∂ kt
=

∂D
∂w(w(kt), pf ′(kt+1)) w′(kt)

1
p −

∂D
∂ r (w(kt), pf ′(kt+1)) pf ′′(kt+1)

> 0.

Hence, in the competitive model, financial intermediation cannot generate output
fluctuations since the dynamics is always monotonic. This result stands in contrast
with the findings of Banerji et al. (2004), who argue that risk sharing may expose
an economy to the full variety of complex dynamics. Finally, the case of a monopo-
listic banking is treated in the following proposition.

Proposition 16 (Monotonic Dynamics).
The perfect-foresight dynamics (PFDM) is monotonic in the local neighborhood of the
positive steady state kM > 0.

Recall that by Theorem 5, all growth paths {kt}∞t=0 generated by (PFDM) converge
to kM > 0. Proposition 16 thus rules out periodic cycles and chaotic dynamics as
it implies that initial fluctuations will, sooner or later, vanish. The bottom line of
the preceding analysis is that the perfect-foresight dynamics of this model is qual-
itatively equivalent to the dynamics of the standard OLG model without financial
intermediation by Diamond (1965). In the monopolistic case, this insight applies
to the local neighborhood of the steady state only because otherwise the Hartman-
Grobman Theorem fails.

20. The comparative statics of I(w,ρe) and D(w, r) are established in technical Lemma 19 in
Appendix 4.A.1.
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4.6 Financial Stability

In real-world economies, banking crises severely affect economic growth and wel-
fare. This section briefly discusses implications for the stability of the financial sys-
tem. For this purpose, we consider price shocks caused by erroneous forecasts, i.e.,
we abstract from perfect foresight for a moment.

Overly optimistic expectations, ρe
t > ρt+1, can entail that banks accidentally go

bankrupt. In a perfectly competitive banking industry, the law of large numbers im-
plies that rC

t = pρe
t is the maximal deposit rate a bank can offer in view of a given

expectation ρe
t . Any inframarginal forecast error ρe

t −ρt+1 > 0 will then result in
a negative intermediation margin and negative profits. Once a bank has insuffi-
cient equity to fulfill its deposit contracts, it defaults. Monopolistic intermediation
margins, however, are positive as long as the forecast error is sufficiently small. In
addition, the monopolist holds a comparatively larger stock of equity, which can
buffer losses caused by erroneous expectations. In fact, for any given (kt, kt−1, ke

t−1),
it holds that eM(kt, kt−1, ke

t−1)> eC(kt, kt−1, ke
t−1).

It becomes evident that fierce competition reduces the stability of the financial
system by inducing banks to take more risk. The destabilization results from less
conservative contracts on the one hand, and from less equity reserves on the other
hand. Our model thus supports the competition-fragility hypothesis prevalent in the
finance literature.21

Example 16 (Financial Stability).
We revisit the parameterization from Example 15. Figure 4.5 depicts the naive-
expectations dynamics, that is, ke

t = kt for all t≥ 0. The growth path of the the mo-
nopolistic economy experiences significantly less volatility than that of the competitive
economy. While the monopolistic economy attains a positive steady state, the destabi-
lizing effect of competition becomes critical such that the financial system collapses.

21. However, the competition-fragility hypothesis is not undisputed among economists (see,
for instance, Boyd and De Nicolo, 2005).
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(a) Damped oscillations (α = 0.2) (b) Financial collapse (α = 0.169)

Figure 4.5. Dynamic perspective on the competition-fragility hypothesis.
Color code: – no banks, – competition, – monopoly.
Parameters: A = 10, p = 0.4.

The result that erroneous beliefs may trigger endogenous fluctuations in an econ-
omy that otherwise displays monotonic perfect-foresight dynamics is consistent
with previous research in the literature on OLG models (see, for example, De La
Croix and Michel, 2002).

4.7 Dividend Payments

Thus far, we analyzed a rather restrictive setting without dividend payments of
banks. We next conduct a robustness check for our previous results by analyzing a
less restrictive regulatory environment and incorporating dividend payments into
the model. It should be noted that the case of perfect competition is unaffected by
dividend payments since, under perfect foresight, banks do not realize profits.

Consider a risk-neutral monopolistic bank that is collectively owned by agents.
The bank maximizes its expected profit by raising deposits from the public. Young
agents become shareholders of the bank by accepting a deposit contract. Dividends
are distributed to old agents. Let ϑe

t ≥ 0 denote a young agent’s expectation formed
in period t with respect to the dividend payment ϑt+1 ≥ 0 realized in t+ 1. The
bank’s dividend policy is given by the parameter 0≤ µ < 1. It specifies the share
of the bank’s equity that is paid out to the shareholders. For simplicity, we assume
that µ is exogenous and time-invariant.

Given the wage rate wt, the deposit rate rt, and the anticipated dividend payment
ϑe

t , a young agent’s supply of deposits solves
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Dt = D(wt, rt,ϑ
e
t ) := argmax

0≤D≤wt

u(wt − D) + v(rtD + ϑ
e
t ). (4.20)

Accordingly, the participation constraint takes the form

u(wt − D(wt, rt,ϑ
e
t )) + v(rtD(wt, rt,ϑ

e
t ) + ϑ

e
t ) ≥ Ures(wt,ρ

e
t ),

with the reservation utility Ures as defined in (4.3). Observe that dividend payments
relax the participation constraint compared to the basic model. Since part of the
banking surplus is distributed to the shareholders, agents are now willing to accept
contracts which they would otherwise reject. Given wt, et, and the expectations ρe

t

and ϑe
t , the bank’s decision problem reads

max
0≤r≤pρe

t

D(wt, r,ϑe
t ) (pρe

t − r) + pρe
t (1 − µ)et

s.t. u(wt − D(wt, r,ϑe
t )) + v(rD(wt, r,ϑe

t ) + ϑ
e
t ) ≥ Ures(wt,ρ

e
t ).

(4.21)

Existence and uniqueness of a solution to Problem (4.21) is established in the fol-
lowing lemma.

Lemma 16. For any given wt > 0, ρe
t > 0, and ϑe

t ≥ 0, there exists a unique deposit
rate 0< rM

t = rM(wt,ρ
e
t ,ϑ

e
t )< pρe

t that solves Problem (4.21).22

As before, equity et in period t is determined by a map of the form

eM(kt, kt−1, ke
t−1,ϑe

t−1) := f ′(kt)kt − rM(w(kt−1), f ′(ke
t−1),ϑe

t−1) D(w(kt−1), rM(·),ϑe
t−1)

and the realized dividend payment ϑt to an old agent amounts to

ϑt = ϑ
M
�

kt, kt−1, ke
t−1,ϑe

t−1

�

:= µ eM(kt, kt−1, ke
t−1,ϑe

t−1).

The economic law of capital accumulation becomes

kt+1 = G(kt, kt−1, ke
t , ke

t−1,ϑe
t ,ϑ

e
t−1) := pD(w(kt), rM(w(kt), f ′(ke

t),ϑe
t ),ϑe

t )

+ p(1−µ)eM(kt, kt−1, ke
t−1,ϑe

t−1).

We maintain the assumption that expectations are homogeneous and rational.
However, agents must now form expectations regarding both, future capital and

22. A formal definition of the map rM(wt,ρ
e
t ,ϑ

e
t ) is provided as part of the proof of Lemma 16

in Appendix 4.A.2.
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dividend payments. Consequently, the expectations-feedback effect becomes more
involved because the forecasts ke

t and ϑ
e
t must be mutually consistent: if ke

t is a cor-
rect forecast for kt+1, then ϑe

t = ψ̃(ke
t , kt) must be a correct forecast for ϑt+1 and

vice versa.23

Lemma 17. For any given (kt, kt−1) ∈ C , where

C :=
¦

(x, y) ∈ R2
+ | e

M(x, y, x, ψ̃(x, y)) ≥ 0
©

,

there exists a unique pair of perfect forecasts (ke
t ,ϑ

e
t ) in period t.

As in the basic model, the set C is forward-invariant, implying that the perfect-
foresight dynamics is well defined by the difference equation

kt+1 = G
�

kt, kt−1, kt+1, kt, ψ̃(kt+1, kt), ψ̃(kt, kt−1)
�

, t ≥ 1. (PFDϑ)

An analytical investigation of the dynamics generated by (PFDϑ) is beyond the
scope of this article. The important point is that the model without dividend pay-
ments reobtains if the parameter µ approaches zero. This is because agents with
perfect foresight anticipate that no dividends will be paid out to them if µ→ 0.
Technically, µ→ 0 causes that ϑe

t = ψ̃(ke
t , kt)→ 0 for all t≥ 0 such that the growth

path of the dynamical system (PFDϑ) coincides with that of (PFDM). Figure 4.6 pro-
vides an illustration using a numerical example with CES preferences and a Cobb-
Douglas production technology. We can thus conclude that the results in Theorem
5 and 6 also apply if the monopolistic bank distributes part of the surplus to agents,
provided that the parameter µ is not too large. These considerations demonstrate
that if a banking monopoly occurs in conjunction with a capital-intensive produc-
tion sector and the dividend payments are constrained by regulation, then it may
outperform its perfectly competitive counterpart. The model shows that from a dy-
namic viewpoint, more competition is not necessarily beneficial.

23. A formal definition of the forecasting rule ψ̃ and a proof of its existence and uniqueness is
given in the proof of Lemma 17 in Appendix 4.A.2.
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(a) Capital (b) Welfare

Figure 4.6. Effect of the dividend parameter µ on economic growth and welfare.
Color code: – (PFDN), – (PFDC), – (PFDM), – (PFDθ).
Parameters: A = 10, α = 0.5, p = 0.6, µ = 0.07 (solid), 0.14 (dashed), 0.21 (dotted).

4.8 Conclusion

This article adopted a novel, micro-founded dynamical-systems approach to ex-
plore how competition among banks affects real economic growth, the occurrence
of endogenous fluctuations, and agents’ welfare. We have shown that the provision
of risk sharing by banks mobilizes additional funds for productive activities, which
fosters capital accumulation and leads to a higher level of long-term economic
growth. In economies that experience under-accumulation of capital, financial in-
termediation improves welfare by providing insurance and enhancing the invest-
ment efficiency. This result implies that implementing a well-functioning banking
system is of utmost importance in under-developed countries facing severe devel-
opmental obstacles.

The central finding of this paper is that a banking monopoly can induce greater
long-run growth and welfare compared to its competitive analog. The prerequi-
site is that the production sector is highly financially dependent and that the
bank’s dividend payments are sufficiently restricted. Otherwise, competition be-
tween banks is favorable. For this reason, a growth and welfare-improving effect
of reduced competition is solely conceivable in industrialized economies featur-
ing capital-intensive branches such as the automotive industry, pharmaceuticals, or
telecommunication. Our theoretical results are consistent with the empirical find-
ings of Cetorelli and Gambera (2001) and Hoxha (2013), who demonstrate that
banking concentration has a growth-promoting effect in financially-dependent in-
dustries. Moreover, Maudos and Fernandez de Guevara (2006) find that banks’
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exercise of market power promotes economic growth in a sample of particularly in-
dustrialized countries. On the other hand, our model revealed that imperfect com-
petition among banks harms the growth of labor-intensive economies. Again, there
exists empirical evidence. Beck et al. (2004) demonstrate that banking concentra-
tion implies financing obstacles for firms in developing countries only, i.e., those
typically characterized by labor-intensive industries such as textiles, hospitality, or
agriculture. For such countries, a negative impact of banking concentration on eco-
nomic growth was also identified by Deidda and Fattouh (2005). Finally, Cetorelli
and Gambera (2001) and Hoxha (2013) show that banking concentration curbs
the growth of industries that have low levels of financial dependence.

Apart from that, our analysis discovered two other interesting results. First, that
financial intermediation cannot adversely affect the qualitative economic dynam-
ics in two-period lived OLG models with rational expectations. In particular, the
perfect-foresight dynamics with perfect competition is always monotonic. Second,
once one allows for erroneous beliefs, however, evidence for the competition-
fragility hypothesis obtains and the competitive banking system proves itself to
be more susceptible to volatility and financial crises.

Like any other model, the one at hand does not come without limitations. While
most of our assumptions on preferences and the production technology are stan-
dard in this strand of literature, a world with homogeneous two-period lived agents
is, of course, stylized. The approach of initially disregarding dividend payments
and incorporating them afterwards is limiting, but necessary to make the analyt-
ical complexity somewhat manageable. Nevertheless, the extension of the model
has proven that our main findings are robust even if part of the banking surplus
is redistributed to agents. Considering the provoking result that a monopoly may
outperform its competitive counterpart, we think that a fruitful avenue for future
research is to investigate the optimal regulation of endogenously determined divi-
dend payments and how these may affect economic growth and welfare.
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Appendix 4.A

Appendix 4.A.1 introduces three technical lemmas that facilitate the proofs of the
main results, which are provided in Appendix 4.A.2. In Appendix 4.A.3, we discuss
our welfare measure in light of the literature on OLG models.

4.A.1 Technical Lemmas

Lemma 18. The elasticities of f and w satisfy

0 <
f ′(k)k
f(k)

< 1, and 0 <
w′(k)k
w(k)

< 1 for all k ≥ 0.

Moreover, it holds that limk→0 w′(k)=∞.

Proof of Lemma 18. By Assumption 8 (i) and (ii), the functions f and w are strictly
concave, implying that their elasticities lie strictly between zero and one. The Inada
condition limk→0 f ′(k)=∞ stated in Assumption 8 (i) together the property −1<
ε2(k)< 0 stated in Assumption 8 (ii) implies that limk→0 w′(k)=∞. □

Lemma 19. The following comparative statics hold.

(i) I(w,ρe) defined in (4.1) is strictly increasing in both w and ρe.
(ii) D(w, r) defined in (4.4) is strictly increasing in both w and r.
(iii) η(w, r) defined in (4.8) is non-decreasing in w and strictly decreasing in r.
(iv) rM(w,ρe) in Proposition 14 is strictly increasing in ρe and non-decreasing in w.
(v) η(w, r,ϑe)= ∂D

∂ r (w, r,ϑe)r/D(w, r,ϑe), with D(w, r,ϑe) as defined in (4.20), is
strictly decreasing in r.

Proof of Lemma 19.

Part (i). Since 0< αu ≤ αv < 1 by Assumption 7 (ii), differentiation of (4.2) yields

∂ I
∂w

(w,ρe) =
αu

αu + αv
w−I(w,ρe)

I(w,ρe)

> 0

and

∂ I
∂ ρe

(w,ρe) =
(1 − αv) I(w,ρe)

ρe
�

αu
I(w,ρe)

w−I(w,ρe) + αv

� > 0.
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Part (ii). Since 0< αu ≤ αv < 1 by Assumption 7 (ii), differentiation of (4.5) yields

∂D
∂w

(w, r) =
αu

αu + αv
w−D(w,r)

D(w,r)

> 0 (4.A.1)

and

∂D
∂ r

(w, r) =
(1 − αv) D(w, r)

r
�

αu
D(w,r)

w−D(w,r) + αv

� > 0. (4.A.2)

Part (iii). Using (4.A.2), the elasticity η(w, r) may be written as

η(w, r) =
1 − αv

αu
D(w,r)

w−D(w,r) + αv

> 0. (4.A.3)

Differentiating (4.A.3) yields

∂ η

∂ r
(w, r) = αu

αv−1

wη(w, r)2 ∂D
∂ r (w, r)

(w − D(w, r))2
< 0,

which is strictly negative in view of (4.A.2) and Assumption 7 (ii). Finally, set

ξ(w, r) :=
∂D
∂w(w, r) w

D(w, r)

and obtain that

∂ η

∂w
(w, r) =

D(w, r)(1 − ξ(w, r))(1 − αv)αu
�

(αu
D(w,r)

w−D(w,r) + αv)(w − D(w, r))
�2 ≥ 0

since Assumption 7 (ii) implies 0< ξ≤ 1.

Part (iv). Since v′ > 0 by Assumption 7 (i), differentiation of (4.9) yields

∂ b
∂ ρe

(w,ρe) =
v′(ρeI(w,ρe)) p I(w,ρe)

v′(b(w,ρe)D(w, b(w,ρe))) D(w, b(w,ρe))
> 0.

Differentiating (4.7) and using Part (iii) shows that

∂ s
∂ ρe

(w,ρe) = p
�

pρe

s(w,ρe)
−

s(w,ρe)
η(w, s(w,ρe))

∂ η

∂ r
(w, s(w,ρe))
�−1

> 0.
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Hence, we have that ∂ rM(w,ρe)/∂ ρe > 0. Furthermore, differentiation of (4.9)
yields

∂ b
∂w

(w,ρe) =
u′(w − I(w,ρe)) − u′(w − D(w, b(w,ρe)))
v′(b(w,ρe)D(w, b(w,ρe))) D(w, b(w,ρe))

= 0

because I(w,ρe)= D(w, b(w,ρe))= 0 by Corollary 5. Since, by Part (iii),

∂ η(w, r)
∂w

≥ 0, and
∂ η(w, r)
∂ r

< 0,

differentiation of (4.7) yields

∂ s
∂w

(w,ρe) =
∂ η

∂w
(w, s(w,ρe))

�

pρeη(w, s(w,ρe))2

s(w,ρe)2
−
∂ η

∂ r
(w, s(w,ρe))

�−1

≥ 0.

Hence, it holds that ∂ rM(w,ρe)/∂w≥ 0.

Part (v). The elasticity η(w, r,ϑe) may be written as

η(w, r,ϑe) =
1 − αv +

ϑe

rD(w,r,ϑe)

αu
D(w,r,ϑe)+ ϑ

e
r

w−D(w,r,ϑe) + αv

> 0.

Differentiation yields

∂ η

∂ r
(w, r,ϑe) = −

(1 + η(w, r,ϑe))ϑe

r2 D(w, r,ϑe) T(w, r,ϑe)
−
η(w, r,ϑe) ∂ T

∂ r (w, r,ϑe)

T(w, r,ϑe)
,

where, for notational convenience, we set

T(w, r,ϑe) := αu

D(w, r,ϑe) + ϑe

r

w − D(w, r,ϑe)
+ αv > 0.

Observe that ∂ η(w, r,ϑe)/∂ r< 0 if ∂ T(w, r,ϑe)/∂ r> 0, or equivalently, if

η(w, r,ϑe) >
w − D(w, r,ϑe)

D(w, r,ϑe)
�

ϑe+wr
ϑe

� . (4.A.4)

By inserting η(w, r,ϑe) into (4.A.4) and rearranging, we get

1 >
rwαv + ϑeαu

rw + ϑe
. (4.A.5)

Observe that (4.A.5) is always satisfied since 0< αu,αv < 1 by Assumption 7 (ii).
Consequently, ∂ η(w, r,ϑe)/∂ r< 0. □
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Lemma 20. The positive steady state kM > 0 of (PFDM) satisfies kM > f ′−1(1/p).

Proof of Lemma 20. Under perfect foresight, monopolistic equity eM(kM, kM, kM)
in a steady state kM > 0 must be strictly positive because strictly positive intermedi-
ation margins realize at all times. From the strictly positive intermediation margin
pf ′(kM)− rM(w(kM), f ′(kM))> 0 and the condition that

eM(kM, kM, kM) = pf ′(kM)−rM(w(kM),f ′(kM))
1−pf ′(kM) D(w(kM), rM(w(kM), f ′(kM))) > 0,

we can then infer that any positive steady state kM > 0 must satisfy 1− pf ′(kM)> 0.
Since f ′′ < 0, it thus follows that kM > f ′−1(1/p). □
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4.A.2 Proofs of the Main Results

Proof of Proposition 13. Applying standard arguments from microeconomic the-
ory, the expected intermediation margin in a perfectly competitive banking indus-
try must be zero since the full expected surplus is with the consumers. Hence,
rC

t = pρe
t must hold. By the strict concavity of v, rC

t = pρe
t satisfies the participation

constraint (PC) because

Ures(wt,ρ
e
t ) < u(wt − I(wt,ρ

e
t )) + v(pρe

t I(wt,ρ
e
t ))

= u(wt − I(wt,ρ
e
t )) + v(rC

t I(wt,ρ
e
t ))

≤ u(wt − D(wt, rC
t )) + v(rC

t D(wt, rC
t )),

where the last inequality is implied by the definition of D(w, r) in (4.4). □

Proof of Proposition 14. The proof works in three steps. First, we prove existence
and uniqueness of s(w,ρe) and b(w,ρe), using the Intermediate Value Theo-
rem. In Step 2, we prove the proposed functional form of rM(w,ρe). Finally, in
Step 3, we show that the sufficient conditions for a maximum are satisfied.

Step 1. Let wt > 0 and ρe
t > 0 be arbitrary but fixed. The map s(wt,ρ

e
t ) is defined

by (4.7), which may be written as

pρe
t

r
− 1 −

1
η(wt, r)

= 0. (4.A.6)

Denote by J(r) the l.h.s. of (4.A.6). The limits of J(r) are

lim
r→0

J(r) = ∞−
1

η(wt, 0)
= ∞

because η(wt, 0)= (1−αv)/αv > 0 and

lim
r→pρe

t

J(r) =
−1

η(wt, pρe
t )
< 0.

Since J(r) is strictly decreasing by Lemma 19 (iii),

J′(r) = −
pρe

t

r2
+

1
η(wt, r)2

∂ η

∂ r
(wt, r) < 0,
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a uniquely determined solution 0< s(wt,ρ
e
t )< pρe

t to (4.A.6) exists. The map
b(wt,ρ

e
t ) is defined by a solution to

B(r) = Ures(wt,ρ
e
t ), (4.A.7)

where B(r) denotes the l.h.s. of (4.9). For r→ 0, we obtain the limit

lim
r→0

B(r) = u(wt − D(wt, 0)) = u(wt) < Ures(wt,ρ
e
t ).

On the other hand, it follows from the definition of D(w, r) in (4.4) and the strict
concavity of v that

lim
r→pρe

t

B(r) = u(wt − D(wt, pρe
t )) + v(pρe

t D(wt, pρe
t ))

≥ u(wt − I(wt,ρ
e
t )) + v(pρe

t I(wt,ρ
e
t ))

> u(wt − I(wt,ρ
e
t )) + p v(ρe

t I(wt,ρ
e
t ))

= Ures(wt,ρ
e
t ).

Since, by the Envelope Theorem, B(r) is strictly increasing,

B′(r) = v′(rD(wt, r))D(wt, r) > 0,

a uniquely determined solution 0< b(wt,ρ
e
t )< pρe

t to (4.A.7) exists.

Step 2. We prove that the deposit rate

rM
t = rM(wt,ρ

e
t ) = max
¦

s(wt,ρ
e
t ), b(wt,ρ

e
t )
©

solves Problem (4.6). By the Envelope Theorem, the l.h.s. of (PC) is strictly in-
creasing in r,

d
dr

�

u(w − D(w, r)) + v(rD(w, r))
�

= v′(rD(w, r)) D(w, r) > 0. (4.A.8)

Since rM(wt,ρ
e
t )≥ b(wt,ρ

e
t ), we can conclude that rM(wt,ρ

e
t ) is always accepted by

agents, i.e., it satisfies (PC). To verify that this contract maximizes the monopo-
list’s expected profit, note that two cases can occur. First, if s(wt,ρ

e
t )> b(wt,ρ

e
t ),

then rM(wt,ρ
e
t )= s(wt,ρ

e
t ) and, by construction of s(wt,ρ

e
t ), the objective function

attains its maximum. Second, if s(wt,ρ
e
t )≤ b(wt,ρ

e
t ), then (PC) is binding and the

optimum is determined by (4.9), implying that rM(wt,ρ
e
t )= b(wt,ρ

e
t ).
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Step 3. We prove that rM(wt,ρ
e
t ) satisfies the sufficient conditions for a maximum

by showing that the participation constraint in Problem (4.6) is convex, while the
objective function is strictly quasi-concave on [0, pρe

t ]. Since, by (4.A.8), the l.h.s.
of (PC) is strictly increasing in r, we can conclude that the participation constraint
indeed defines a convex set of deposit rates. The quasi-concavity of the objective
function is seen as follows. First, note that

lim
r→0

πe
t(r) = pρe

t et, and lim
r→pρe

t

πe
t(r) = pρe

t et,

because either the deposit supply or the intermediation margin converges to zero.
Since the first-order condition (4.7) has a unique solution, the objective function
in (4.6) has a unique stationary point on [0, pρe

t ] at 0< s(wt,ρ
e
t )< pρe

t . Since

πe
t(s(wt,ρ

e
t )) > pρe

t et,

we can conclude that the objective function must indeed be strictly quasi-concave.

□

Proof of Lemma 12. Let wt > 0 and ρe
t > 0 be arbitrary but fixed. With a slight

abuse of notation, let Pt denote the set of solutions 0< p< 1 to

b(wt,ρ
e
t , p) = s(wt,ρ

e
t , p). (4.A.9)

The proof works in two steps and its idea is depicted in Figure 4.A.1. In Step 1, we
exploit the Intermediate Value Theorem to show that at least one solution to
Condition (4.A.9) exists. In the second step, we define the thresholds for p, based
on the set Pt.

Step 1. Since, by Proposition 14, 0< s(wt,ρ
e
t , p), b(wt,ρ

e
t , p)< pρe

t , it follows that

lim
p→0

b(wt,ρ
e
t , p) = 0, and lim

p→0
s(wt,ρ

e
t , p) = 0.

From Condition (4.9), it can be shown that limp→1 b(wt,ρ
e
t , p)= ρe

t . Moreover, it
can be deduced from Condition (4.7) that limp→1 s(wt,ρ

e
t , p)< ρe

t . To apply the
Intermediate Value Theorem, it remains to establish that

lim
p→0

∂ s
∂ p

(wt,ρ
e
t , p) > lim

p→0

∂ b
∂ p

(wt,ρ
e
t , p).
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p p 1

ρet

p

b(wt, ρ
e
t , p)

s(wt, ρ
e
t , p)

Figure 4.A.1. Elements of Pt are determined by solutions to (4.A.9) and define the thresholds
for the success rate p.

Implicit differentiation of Condition (4.7) yields

∂ s
∂ p

(wt,ρ
e
t , p) =

(1 − αv)ρ
e
t

1 + αu
D(wt,s(wt,ρ

e
t ,p)) wt (1+η(wt,s(wt,ρ

e
t ,p))−D(wt,s(wt,ρ

e
t ,p))2

(wt−D(wt,s(wt,ρ
e
t ,p)))2

.

Since limp→0 D(w, s(w,ρe, p))= 0, it follows that

lim
p→0

∂ s
∂ p

(w,ρe, p) = (1 − αv)ρ
e
t > 0.

Consider Condition (4.9) now. The Envelope Theorem implies that the r.h.s. of
(4.9) satisfies

lim
p→0

dUres

dp
(wt,ρ

e
t , p) = v(ρe

t I(wt,ρ
e
t , p)) = v(0) = 0.

By contrast, the l.h.s. of (4.9) is independent of p. Therefore, we can conclude that

lim
p→0

∂ b
∂ p

(w,ρe, p) = 0.

Therefore, we indeed have that

lim
p→0

∂ s
∂ p

(wt,ρ
e
t , p) > lim

p→0

∂ b
∂ p

(wt,ρ
e
t , p).

The Intermediate Value Theorem now implies that for any given wt > 0 and
ρe

t > 0, there exists a solution 0< p< 1 to (4.A.9), implying that Pt is non-empty.
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Step 2. From the limits of s(w,ρe, p) and b(w,ρe, p) in Step 1, it follows that

s(wt,ρ
e
t , p) > b(wt,ρ

e
t , p) for all p < minPt.

Proposition 14 then implies that

rM
t = max
¦

s(wt,ρ
e
t , p), b(wt,ρ

e
t , p)
©

= s(wt,ρ
e
t , p) for all p < minPt.

By contrast, the limits obtained in Step 1 also imply that

s(wt,ρ
e
t , p) < b(wt,ρ

e
t , p) for all p > maxPt.

Therefore, by Proposition 14,

rM
t = max
¦

s(wt,ρ
e
t , p), b(wt,ρ

e
t , p)
©

= b(wt,ρ
e
t , p) for all p > maxPt.

Hence, we define p :=minPt and p :=maxPt and the proof is complete. □

Proof of Corollary 5. First, consider the second inequality. Since, by Lemma 19
(ii), D(w, r) is strictly increasing in r and, by Propositions 13 and 14, rM(wt,ρ

e
t )<

rC(wt,ρ
e
t ), it follows that D(wt, rM(wt,ρ

e
t ))< D(wt, rC(wt,ρ

e
t )). Next, consider the

first inequality. Two cases can occur. First, if rM(wt,ρ
e
t )= b(wt,ρ

e
t )≥ s(wt,ρ

e
t ),

then the monopolist’s rent is determined by the risk premium RP> 0, which solves

Ures(wt,ρ
e
t ) = u(wt − I(wt,ρ

e
t )) + v(pρe

t I(wt,ρ
e
t ) − RP)

= u(wt − I(wt,ρ
e
t ))

+ v(pρe
t [I(wt,ρ

e
t ) − D(wt, b(wt,ρ

e
t ))] + b(wt,ρ

e
t )D(wt, b(wt,ρ

e
t ))).

Substituting Ures(wt,ρ
e
t ) using (4.9) yields

u(wt − D(wt, b(wt,ρ
e
t ))) + v(b(wt,ρ

e
t ))D(wt, b(wt,ρ

e
t )))

= u(wt − I(wt,ρ
e
t ))

+ v(pρe
t [I(wt,ρ

e
t ) − D(wt, b(wt,ρ

e
t ))] + b(wt,ρ

e
t )D(wt, b(wt,ρ

e
t ))).

(4.A.10)

Observe that D(wt, b(wt,ρ
e
t ))= I(wt,ρ

e
t ) solves (4.A.10).2⁴ Hence, if rM(wt,ρ

e
t )=

b(wt,ρ
e
t ), then D(wt, rM(wt,ρ

e
t ))= I(wt,ρ

e
t ).

24. There actually exists a second solution D(wt, b(wt,ρ
e
t )) ̸= I(wt,ρ

e
t ) which, however, is dis-

carded since it violates (4.5).
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The second case is that rM(wt,ρ
e
t )= s(wt,ρ

e
t )> b(wt,ρ

e
t ). In this case, Lemma

19 (ii) implies D(wt, rM(wt,ρ
e
t ))> D(wt, b(wt,ρ

e
t ))= I(wt,ρ

e
t ). Combining both of

cases, we get D(wt, rM(wt,ρ
e
t ))≥ I(wt,ρ

e
t ), where the strict inequality holds if and

only if s(wt,ρ
e
t )> b(wt,ρ

e
t ). □

Proof of Lemma 13. The existence and uniqueness of the perfect forecasting rule
ψN obtains as follows. Let kt > 0 be arbitrary but fixed. A perfect forecast ke

t is
determined by a solution to

ke − p I(w(kt), f ′(ke)) = 0. (4.A.11)

For ke→ 0, the l.h.s. in (4.A.11) is strictly negative, whereas it converges to infinity
for ke→∞ because pI(w(kt), f ′(∞))< w(kt)<∞. Since the l.h.s. in (4.A.11) is
strictly increasing by Lemma 19 (i) and Assumption 8 (i),

1 − p
∂ I
∂ ρe

(w(kt), f ′(ke)) f ′′(ke) > 0,

it follows that there exists a uniquely determined solution 0< ke
t <∞ to (4.A.11).

Hence, the forecasting ruleψN is well defined. Since kt > 0 was arbitrary, it follows
that ψN is perfect in the sense of Definition 9 (i).

Next, we prove existence and uniqueness of the perfect forecasting rules ψi, i ∈
{C,M}, in the sense of Definition 9 (ii). Let (kt, kt−1) ∈ D i be given. A perfect fore-
cast ke

t is determined by a solution to

ke

p
− D(w(kt), ri(w(kt), f ′(ke))) = ei(kt, kt−1, kt). (4.A.12)

For ke→ 0, the l.h.s. in (4.A.12) converges to −D(w(kt), ri(w(kt), f ′(0)))< 0,
whereas it converges to infinity for ke→∞. Since, by construction of D i,

0 ≤ ei(kt, kt−1, kt) < ∞,

a solution 0< ke
t <∞ to (4.A.12) exists. Since the l.h.s. in (4.A.12) is strictly in-

creasing by Assumption 8 (i) and Lemma 19,

1
p
−
∂D
∂ r

(w(kt), ri(w(kt), f ′(ke)))
∂ ri

∂ ρe
(w(kt), f ′(ke)) f ′′(ke) > 0, (4.A.13)

the solution is also unique. Hence, the perfect forecasting rule ψi, i ∈ {C, M}, is
well defined.
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It remains to prove that D i is forward-invariant for ψi, i ∈ {C,M}. The proof works
by induction.

Induction base case. Consider period t= 0, with initial capital k0 > 0 given. Since
ei(k0, k−1, k0)= e0 = 0, we have, by a slight abuse of notation, (k0, k−1) ∈ D i.

Induction step. Consider period t= n. By the induction hypothesis, we claim that
(kn, kn−1) ∈ D i such that ei(kn, kn−1, kn)≥ 0. Since (kn, kn−1) ∈ D i, a unique perfect
forecast ke

n > 0 exists. Since, under perfect foresight, the realized intermediation
margin is non-negative, we have ei(kn+1, kn, kn+1)≥ 0. Hence, (kn+1, kn) ∈ D i. The
proof by induction is now complete. □

Proof of Lemma 14.We establish the partial derivatives ofψM first. Differentiating
(PFDM) and evaluating in a steady state kM yields

∂ψM

∂ kt
(kM) =

w′(kM) dD
dw(w(kM), rM(w(kM), f ′(kM))) + f ′(kM) (1 + ε2(kM))

1
p −

∂D
∂ r (w(kM), rM(w(kM), f ′(kM))) ∂ rM

∂ ρe (w(kM), f ′(kM)) f ′′(kM)

−
f ′′(kM) ∂ rM

∂ ρe (w(kM), f ′(kM)) D(w(kM), rM(w(kM), f ′(kM))) [1 + η(w(kM), rM(w(kM), f ′(kM)))]
1
p −

∂D
∂ r (w(kM), rM(w(kM), f ′(kM))) ∂ rM

∂ ρe (w(kM), f ′(kM)) f ′′(kM)
,

(4.A.14)

and

∂ψM

∂ kt−1
(kM) = −

w′(kM) ∂ rM

∂w (w(kM), f ′(kM)) D(w(kM), rM(w(kM), f ′(kM))) [1 + η(w(kM), rM(w(kM), f ′(kM)))]
1
p −

∂D
∂ r (w(kM), rM(w(kM), f ′(kM))) ∂ rM

∂ ρe (w(kM), f ′(kM)) f ′′(kM)

−
w′(kM) rM(w(kM), f ′(kM)) ∂D

∂w(w(kM), rM(w(kM), f ′(kM)))
1
p −

∂D
∂ r (w(kM), rM(w(kM), f ′(kM))) ∂ rM

∂ ρe (w(kM), f ′(kM)) f ′′(kM)
.

(4.A.15)

By Assumption 8, we have f ′ > 0, f ′′ < 0, w′ > 0, and −1< ε2 < 0. In view of
Lemma 19 (ii) and (iv), we can infer from (4.A.14) and (4.A.15) that

∂ψM

∂ kt
(kM) > 0, and

∂ψM

∂ kt−1
(kM) < 0. (4.A.16)

The functional form of the Eigenvalues in (4.16) together with the properties in
(4.A.16) then imply that

0 <
�

�λ2(kM)
�

� ≤
�

�λ1(kM)
�

� .

□
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Proof of Proposition 15. The proof works in two steps. In Step 1, we show that
the origin is a steady state if and only if f(0)= 0. In Step 2, we prove its instability.

Step 1. The origin is a steady state if and only if zero solves (4.17). For k→ 0, the
l.h.s. in (4.17) converges to zero. Note that the r.h.s. in (4.17) is bounded from
above by the production function, that is, for all k≥ 0, it lies below f(k). Therefore,
if f(0)= 0, then the r.h.s. in (4.17) converges to zero for k→ 0. Hence, ki = 0
solves (4.17) if f(0)= 0. On the other hand, if f(0)> 0, then Assumption 8 (i)
implies w(0)> 0. By the Inada condition imposed on v in Assumption 7, the r.h.s.
in (4.17) then satisfies

lim
k→0

I(w(k), f ′(k)) > 0 for i = N,

lim
k→0

D(w(k), pf ′(k)) > 0 for i = C,

lim
k→0

D(w(k), rM(w(k), f ′(k))) > 0 for i = M,

showing that zero cannot solve (4.17). It follows that the origin is a steady state if
and only if f(0)= 0.

Step 2. For reasons of clarity, we consider each case i ∈ {N, C,M} separately. Con-
sider the case without financial intermediation first, i= N. Then kN = 0 is unsta-
ble if

lim
k→0

dψN

dk
(k) > 1 ⇐⇒ lim

k→0

dI
dk

(w(k), f ′(k)) >
1
p

.

We next show that

lim
k→0

dI
dk

(w(k), f ′(k)) = lim
k→0

w′(k) = ∞ >
1
p

. (4.A.17)

To this end, observe that the first-order condition (4.2) implies

u′(w(k) − I(w(k), f ′(k)))
v′(f ′(k)I(w(k), f ′(k)))

= pf ′(k). (4.A.18)

Considering (4.A.18), the Inada conditions imposed on u, v, and f imply

I(w(k), f ′(k))
k→0
−→ w(k).

Consequently, we can conclude that

lim
k→0

dI
dk

(w(k), f ′(k)) = lim
k→0

w′(k) = ∞,
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where the last equality follows from Lemma 18. Hence, if the origin kN = 0 is a
steady state, then it is unstable.

Consider the case of a competitive banking industry now, i= C. Repeating the
arguments presented above, the first-order condition (4.5) together with the Inada
conditions imposed on u, v, and f implies

lim
k→0

dD
dk

(w(k), pf ′(k)) = lim
k→0

w′(k) = ∞ >
1
p

. (4.A.19)

Hence, kC = 0 is unstable.

Finally, we analyze the monopolistic case, i=M. The origin kM = 0 is unstable if
the Eigenvalue λ1 in (4.16) satisfies

lim
k→0
|λ1(k)| > 1. (4.A.20)

Observe that (4.A.20) is satisfied if limk→0 ∂ψ
M(k)/∂ kt =∞ holds, which is what

we show next. Since the denominator in (4.A.14) is strictly positive, two cases can
occur.

Case 1. Suppose the denominator in (4.A.14) is finite for k→ 0. Since all sum-
mands in the numerator of (4.A.14) are non-negative, it follows that

lim
k→0

∂ψM

∂ kt
(k) ≥ lim

k→0

f ′(k) (1 + ε2(k))
1
p −

∂D
∂ r (w(k), rM(w(k), f ′(k))) ∂ rM

∂ ρe (w(k), f ′(k)) f ′′(k)
. (4.A.21)

By the Inada condition limk→0 f ′(k)=∞ and the fact that −1< ε2 < 0 by Assump-
tion 8 (ii), we can conclude that the limit on the r.h.s. of (4.A.21) is infinity, imply-
ing that limk→0 ∂ψ

M(k)/∂ kt =∞.

Case 2. Suppose that the denominator in (4.A.14) converges to infinity for k→ 0.
Since all summands in the numerator of (4.A.14) are non-negative, the following
sufficient condition obtains:

lim
k→0

∂ψM

∂ kt
(k) ≥ lim

k→0

− ∂D
∂ r (w(k), rM(w(k), f ′(k))) rM(w(k), f ′(k)) ∂ rM

∂ ρe (w(k), f ′(k)) f ′′(k)
1
p −

∂D
∂ r (w(k), rM(w(k), f ′(k))) ∂ rM

∂ ρe (w(k), f ′(k)) f ′′(k)

= lim
k→0

rM(w(k), f ′(k))

1 −
�

p ∂D
∂ r (w(k), rM(w(k), f ′(k))) ∂ rM

∂ ρe (w(k), f ′(k)) f ′′(k)
�−1

= lim
k→0

rM(w(k), f ′(k)).
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By definition, rM(w(k), f ′(k))≥ s(w(k), f ′(k)) for all k≥ 0. In addition, it fol-
lows from (4.7) together with the Inada condition limk→0 f ′(k)=∞ that
limk→0 s(w(k), f ′(k))=∞. Consequently, limk→0 rM(w(k), f ′(k))=∞ and, there-
fore, limk→0 ∂ψ

M(k)/∂ kt =∞.

We can conclude that, regardless of which case occurs, limk→0 ∂ψ
M(k)/∂ kt =∞.

Hence, the origin kM = 0 is indeed unstable. □

Proof of Theorem 5.

Part (i). We analyze each case i ∈ {N,C, M} separately again. Consider the case
without financial intermediation first, i= N. It follows from (4.A.17) that in the
local neighborhood of zero, we have I(w(k), f ′(k))> k/p. Since 0≤ I(w(k), f ′(k))≤
f(k) for all k≥ 0 while f is strictly concave and satisfies the Inada condition
limk→0 f ′(k)= 0, we can conclude that there exists a solution kN > 0 to (4.17).
Uniqueness and asymptotic stability of kN > 0 is established next. To do so, we
show that

dψN

dk
(kN) < 1 ⇐⇒

dI
dk

(w(kN), f ′(kN)) <
1
p

holds for any given kN > 0. This property does not only imply stability, but also
uniqueness since it ensures that I(w(k), f ′(k)) has a unique positive intersection
with k/p. Calculating the total differential of I and exploiting (4.17) yields

dI
dk

(w(kN), f ′(kN)) <
1
p

⇐⇒ αu
f ′(kN)
w′(kN)

�

pw′(kN)kN − kN

pw(kN) − kN

�

+ αv

�

1 −
f ′(kN)
w′(kN)

�

< 1 .
(4.A.22)

Since pw(kN)− kN > 0 and, in addition, 0< w′(kN)kN < w(kN) by Lemma 18, a suf-
ficient condition for (4.A.22) is

f ′(kN)
w′(kN)

(αu − αv) < 1 − αv. (4.A.23)

By Assumption 8 (i), we have f ′ > 0 and w′ > 0. Since, additionally, 0< αu ≤ αv <

1 by Assumption 7 (ii), it follows that (4.A.23) is satisfied for any given kN > 0.
Hence, kN > 0 is uniquely determined and asymptotically stable, globally on R++.

Consider the case of a competitive banking industry now, i= C. Again, it follows
from (4.A.19) that in the local neighborhood of zero, we have D(w(k), pf ′(k))>
k/p. By the strict concavity of f and the Inada condition limk→0 f ′(k)= 0, a solution
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kC > 0 to (4.17) thus exists. We next prove that kC > kN by contradiction. Assume
for a moment that kC ≤ kN. By the uniqueness of kN, we must then have

p I(w(kC), f ′(kC)) ≥ pD(w(kC), pf ′(kC)). (4.A.24)

However, (4.A.24) contradicts Corollary 5. Hence, kC > kN > 0 must hold.

The uniqueness and asymptotic stability of kC > 0 obtains from the same argu-
ments as presented above, namely that 0< αu ≤ αv < 1 implies that

dD
dk

(w(kC), pf ′(kC)) <
1
p

holds for any given kC > 0.

Finally, consider the monopolistic case, i=M. The existence of a positive steady
state kM > 0 is implied by the instability of the origin, cf. Proposition 15. This is
seen as follows. Formally, from (4.A.14), (4.A.15), and (4.16), it can be shown that

d
dk

�

D(w(k), rM(w(k), f ′(k))) + eM(k, k, k)
�

Ò
1
p

⇐⇒
∂ψM

∂ kt
(k) +

∂ψM

∂ kt−1
(k) Ò 1

⇐⇒ |λ1(k)| Ò 1,

(4.A.25)

where the last relation in (4.A.25) is implied by

|λ1(k)| =
�

�

�

�

1
2

∂ψM

∂ kt
(k) +

s

1
4

�

∂ψM

∂ kt
(k)
�2
+ ∂ψM

∂ kt−1
(k)

�

�

�

�

Ò
�

�

�

�

1
2

�

1 −
∂ψM

∂ kt−1
(k)
�

+

√

√

√1
4

�

1 −
∂ψM

∂ kt−1
(k)
�2

+ ∂ψM

∂ kt−1
(k)

�

�

�

�

= |1| = 1.

In the proof of Proposition 15, we have shown that limk→0 |λ1(k)|=∞. Consider-
ing (4.A.25), we can thus infer that

lim
k→0
|λ1(k)| = ∞ =⇒ lim

k→0

d
dk

�

D(w(k), rM(w(k), f ′(k))) + eM(k, k, k)
�

>
1
p

.

This shows that in the local neighborhood of zero, we have

D(w(k), rM(w(k), f ′(k))) + eM(k, k, k) >
k
p

.
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Since, in addition, 0≤ D(w(k), rM(w(k), f ′(k)))+ eM(k, k, k)≤ f(k) for all k≥ 0
while f is strictly concave and satisfies limk→0 f ′(k)= 0, there must exist a solu-
tion kM > 0 to (4.17).

Next, we prove that kM > kN by contradiction. Suppose that kN ≥ kM. However, by
Corollary 5 and the fact that monopolistic steady-state equity must be strictly pos-
itive, this yields a contradiction:

p I(w(kM), f ′(kM)) ≥ p
�

D(w(kM), rM(w(kM), f ′(kM))) + eM(kM, kM, kM)
�

> p D(w(kM), rM(·))

⇐⇒ 0 ≥ I(w(kM), f ′(kM)) − D(w(kM), rM(w(kM), f ′(kM))) ≥ eM(kM, kM, kM) > 0.

Hence, kM > kN > 0 must hold. The uniqueness and asymptotic stability of kM are
shown as follows. Again, the property 0< αu ≤ αv < 1 stated in Assumption 7 (ii)
implies that

d
dk

�

D(w(kM), rM(w(kM), f ′(kM))) + eM(kM, kM, kM)
�

<
1
p

(4.A.26)

holds for any given kM > 0. Hence, kM > 0 is uniquely determined. Moreover,
(4.A.25) together with (4.A.26) implies that

�

�λ1(kM)
�

�< 1. We can then conclude
from Lemma 14 that

0 <
�

�λ2(kM)
�

� ≤
�

�λ1(kM)
�

� < 1,

showing that kM > 0 is also asymptotically stable, globally on R++.

Part (ii). First of all, note that ε1→ 1 implies w(k)→ 0 and f ′(k)k→ f(k). Since
0≤ I(w(k), f ′(k))< D(w(k), pf ′(k))≤ w(k) for all k≥ 0, we can directly deduce
from (4.17) that ε1→ 1 implies kN→ 0 and kC→ 0. However, kN < kC must still
hold by Theorem 5 (i). Since kM > f ′−1(1/p)> 0 by Lemma 20, it follows that
0< kN < kC < kM if ε1 is sufficiently large.

On the other hand, ε1→ 0 implies w(k)→ f(k) and f ′(k)k→ 0, such that kM > 0
is determined by

kM

p
= D(w(kM), rM(w(kM), f ′(kM)))

�

1 − rM(w(kM), f ′(kM))
�

. (4.A.27)

Combining Corollary 5 and (4.A.27) implies the inequality

kM

p
= D(w(kM), rM(w(kM), f ′(kM)))

�

1 − rM(w(kM), f ′(kM))
�

< D(w(kM), pf ′(kM))) < f(kM),
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which demonstrates that kM cannot be a steady state of (PFDC). Instead, the strict
concavity of f together with the Inada condition limk→0 f ′(k)= 0 implies that there
must exist a steady state kC > 0 of (PFDC) that satisfies kC > kM. Hence, 0< kN <

kM < kC if ε1 is sufficiently small. □

Proof of Corollary 6. Concerning the first inequality, two cases can occur.
First, if rM(w(kt), f ′(ke

t))= b(w(kt), f ′(ke
t))≥ s(w(kt), f ′(ke

t)), then (PC) is binding
and the relation holds with equality by (4.9). Second, if rM(w(kt), f ′(ke

t))=
s(w(kt), f ′(ke

t))> b(w(kt), f ′(ke
t)), then (4.A.8) implies that the inequality is strict.

The second inequality is implied by (4.A.8) and the fact that, for any given kt > 0
and ke

t > 0, rC(w(kt), f ′(ke
t))> rM(w(kt), f ′(ke

t)). □

Proof of Lemma 15. In order to determine the stationary feasible allocation
(k̄, c̄1, c̄2) with the highest possible level of welfare, we solve the social-planner
problem

max
c̄1 ,̄c2,k̄≥0

u(c̄1) + v(c̄2) s.t. c̄1 + c̄2 = φ(k̄). (4.A.28)

Inserting the feasibility constraint in (4.A.28) into the objective function yields

max
c̄2,k̄≥0

u(φ(k̄) − c̄2) + v(c̄2). (4.A.29)

The first-order conditions for the unconstrained problem (4.A.29) are

u′(φ(k̄) − c̄2) = v′(c̄2) (4.A.30)
u′(φ(k̄) − c̄2)φ′(k̄) = 0. (4.A.31)

Since u′ > 0, Condition (4.A.31) is satisfied if and only if φ′(k̄)= 0, which, in turn,
is satisfied if and only if k̄= kG, with kG as defined in Lemma 15. Given kG, the op-
timal consumption plan (c1

G, c2
G) is then uniquely determined by (4.A.30) together

with the constraint in (4.A.28). □
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Proof of Theorem 6. Part (i).We first show thatW C(kC, kC) is maximal if and only
if kC = kG, with kG as defined in Lemma 15. This is seen as follows. The level of
welfare corresponding to kC amounts to

W C(kC, kC) = u
�

w(kC) − D(w(kC), pf ′(kC))
�

+ v
�

pf ′(kC) D(w(kC), pf ′(kC))
�

. (4.A.32)

Using the Envelope Theorem, (4.17), and w′(kC)= −f ′′(kC)kC, the first-order
condition for a maximum of (4.A.32) reads

u′
�

w(kC) − D(w(kC), pf ′(kC))
�

v′
�

pf ′(kC) D(w(kC), pf ′(kC))
� = 1. (4.A.33)

By Condition (4.5), we have

u′
�

w(kC) − D(w(kC), pf ′(kC))
�

v′
�

pf ′(kC) D(w(kC), pf ′(kC))
� = pf ′(kC). (4.A.34)

Inserting (4.A.34) into the first-order condition (4.A.33) yields

pf ′(kC) = 1.

Since, by Lemma 15, kG solves pf ′(kG)= 1 and f ′′ < 0, we can infer that the unique
maximizer of W C(kC, kC) is kC = kG.

Next, let an arbitrary steady state 0< kC ≤ kG be given. By Theorem 5, it holds
that 0< kN < kC ≤ kG and, by Corollary 6, that

W N(kN, kN) < W C(kN, kN). (4.A.35)

As elaborated above, W C(kC, kC) attains a unique stationary point at kC = kG, im-
plying that

dW C

dk
(k, k) > 0 for all 0 < k < kG. (4.A.36)

It now follows from (4.A.35) together with (4.A.36) that

W N(kN, kN) < W C(kN, kN) < W C(kC, kC).

Part (ii). In the proof of Theorem 5 (ii), we have shown that ε1→ 1 implies
w(kN), w(kC)→ 0 and, in addition, that kN, kC→ 0. Therefore, we can deduce that
ε1→ 1 implies

W N(kN, kN) → u(0) + pv(0), and W C(kC, kC) → u(0) + v(0).
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Since kM > f ′−1(1/p) by Lemma 20, we have w(kM)> w(kN), w(kC). It then follows
from the monotonicity of u and v that

WM(kM, kM) > u(0) + v(0) > u(0) + pv(0).

Since, for ε→ 1, we have kC < kG, Theorem 5 (i) implies

W N(kN, kN) < W C(kC, kC).

Summing up, we see that ε1→ 1 yields

W N(kN, kN) < W C(kC, kC) < WM(kM, kM).

The converse case is considered next. Let i ∈ {C, M}. If ε1→ 0, then f ′(ki)ki→ 0
and w(ki)→ f(ki). Since ei(ki, ki, ki)≥ 0, we can then deduce from the bank’s bal-
ance sheet equation

f(ki) = w(k) + ei(ki, ki, ki) + ri(w(ki), f ′(ki)) D(w(ki), ri(w(ki), f ′(ki)))

that ε1→ 0 implies ri(w(ki), f ′(ki)) D(w(ki), ri(w(ki), f ′(ki)))→ 0. This observation,
in turn, yields

W C(kC, kC) → u(w(kC)) + v(0), and WM(kM, kM) → u(w(kM)) + v(0). (4.A.37)

By Theorem 5 (ii), ε1→ 0 also causes that kC > kM. Accordingly, the wage in-
comes in (4.A.37) must satisfy w(kC)> w(kM) because w′ > 0 by Assumption 8
(i). Since u is strictly increasing by Assumption 7 (i), we can infer from (4.A.37)
that u(w(kC))+ v(0)> u(w(kM))+ v(0). □

Proof of Proposition 16. Recall that kM > 0 is asymptotically stable by Theorem
5 and, therefore, hyperbolic. The Hartman-Grobman Theorem thus implies that
the linearized dynamics (4.14) is qualitatively equivalent to the non-linear dynam-
ics (PFDM) in the local neighborhood of kM > 0. As is well-known, the dynamics
(4.14) is monotonic if the Eigenvalues (4.16) are positive real numbers. We first
show that the Eigenvalues are real. From the functional form in (4.16), it follows
that the Eigenvalues are real if and only if

1
4

�

∂ψM

∂ kt
(kM)
�2
+ ∂ψM

∂ kt−1
(kM) ≥ 0.
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By the binomial formulas, a sufficient condition is that

∂ψM

∂ kt
(kM) > 1 −

1

pN(kM)
−
∂ψM

∂ kt−1
(kM) =⇒ 1

4

�

∂ψM

∂ kt
(kM)
�2
+ ∂ψM

∂ kt−1
(kM) ≥ 0,

where N(kM) denotes the numerator in (4.A.14). Moreover, it is easy to derive from
(4.A.14) and (4.A.15) that

∂ψM

∂ kt
(kM) > 1 −

1
pN(kM)

−
∂ψM

∂ kt−1
(kM)

⇐⇒
d
dk

�

D(w(kM), rM(w(kM), f ′(kM))) + eM(kM, kM, kM)
�

> 0.

(4.A.38)

Calculating the total differential in (4.A.38) yields

d
dk

�

D(w(kM), rM(w(kM), f ′(kM)))+ eM(kM, kM, kM)
�

= f ′(kM)
�

1+ ε2(kM)
�

+
d
dk

�

D(w(kM), rM(w(kM), f ′(kM)))
�

1− rM(w(kM), f ′(kM))
�

�

.

Since, by Assumption 8, f ′ > 0 and −1< ε2 < 0, the first summand is strictly pos-
itive. We next show that the second summand is also strictly positive. By Lemma
20, the steady state kM > 0 satisfies kM > kG. Since stationary total consumption
per capita φ is a unimodal function which attains its maximum at kG, we must
have φ′(kM)< 0. From the identity

φ(k) = w(k) − D(w(k), rM(w(k), f ′(k)))
�

1 − rM(w(k), f ′(k))
�

and φ′(kM)< 0, we can then infer that

0 < w′(kM) <
d
dk

�

D(w(kM), rM(w(kM), f ′(kM)))
�

1 − rM(w(kM), f ′(kM))
�

�

.

Hence, the second summand is also positive, implying that kM > 0 satisfies (4.A.38)
and that the Eigenvalues in (4.16) are real. The fact that the Eigenvalues are posi-
tive follows directly from (4.A.16) and the functional form in (4.16). □
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Proof of Lemma 16. Let wt > 0, ρe
t > 0, and ϑe

t ≥ 0 be arbitrary but fixed. The
solution to Problem (4.21) is either determined by a solution s(wt,ρ

e
t ,ϑ

e
t ) to the

first-order condition
pρe

t

r
− 1 −

1
η(wt, r,ϑe

t )
= 0 (4.A.39)

corresponding to the relaxed maximization problem without the participation con-
straint or by a solution b(wt,ρ

e
t ,ϑ

e
t ) to the binding participation constraint

u(wt − D(wt, r,ϑe
t )) + v(rD(wt, r,ϑe

t ) + ϑ
e
t ) = Ures(wt,ρ

e
t ). (4.A.40)

Consider Condition (4.A.39) first. For r→ 0, the l.h.s. in (4.A.39) converges to∞
because limr→0 η(wt, r,ϑe

t )=∞. By contrast, for r→ pρe
t , the l.h.s. in (4.A.39) ap-

proaches −1/η(wt, pρe
t ,ϑ

e
t )< 0. Moreover, the l.h.s. in (4.A.39) is strictly decreas-

ing by Part (v) of Lemma 19,

−
pρe

t

r2
+

1
η(wt, r,ϑe

t )2

∂ η

∂ r
(wt, r,ϑe

t ) < 0.

Hence, a uniquely determined solution 0< s(wt,ρ
e
t ,ϑ

e
t )< pρe

t to (4.A.39) exists.

Next, consider Condition (4.A.40). For r→ 0, the l.h.s. in (4.A.40) converges to
u(wt)+ v(ϑe

t ). By contrast, for r→ pρe
t , it approaches

u(wt − D(wt, pρe
t ,ϑ

e
t )) + v(pρe

t D(wt, pρe
t ,ϑ

e
t ) + ϑ

e
t )

≥ u(wt − I(wt,ρ
e
t )) + v(pρe

t I(wt,ρ
e
t ) + ϑ

e
t )

≥ u(wt − I(wt,ρ
e
t )) + v(pρe

t I(wt,ρ
e
t ))

> Ures(wt,ρ
e
t ).

In view of the fact that the l.h.s. in (4.A.40) is strictly increasing in r, two cases
must be distinguished.

Case 1. Suppose that u(wt)+ v(ϑe
t )< Ures(wt,ρ

e
t ). Then the Intermediate Value

Theorem implies a uniquely determined solution 0< b(wt,ρ
e
t ,ϑ

e
t )< pρe

t to
(4.A.40).

Case 2. Suppose that u(wt)+ v(ϑe
t )≥ Ures(wt,ρ

e
t ). In this case, no interior solution

to (4.A.40) exists. Instead, the participation constraint is slack for any positive
deposit rate, and, in particular, for s(wt,ρ

e
t ,ϑ

e
t ). Thus, we can conclude that the

unique solution to Problem (4.21) is given by

rM
t = rM(wt,ρ

e
t ,ϑ

e
t ) =

(

max
¦

b(wt,ρ
e
t ,ϑ

e
t ), s(wt,ρ

e
t ,ϑ

e
t )
©

if u(wt) + v(ϑe
t ) < Ures(wt,ρ

e
t ),

s(wt,ρ
e
t ,ϑ

e
t ) otherwise.
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□

Proof of Lemma 17. We analyze the forecast for the dividend payment first. To
this end, let the correct forecast ke

t for kt+1 be given. Given the correct forecasting
ke

t and the current capital-labor ratio kt, a correct forecast ϑe
t ≥ 0 that is consistent

with ke
t is then determined by a solution to

ϑe = ϑM(ke
t , kt, ke

t ,ϑ
e) = µ eM(ke

t , kt, ke
t ,ϑ

e). (4.A.41)

For ϑe→ 0, the l.h.s. in Condition (4.A.41) converges to zero, whereas its r.h.s. con-
verges to µ eM(ke

t , kt, ke
t , 0). For ϑe→∞, the l.h.s. in (4.A.41) converges to infinity,

whereas the r.h.s. converges to µ eM(ke
t , kt, ke

t ,∞)< f(kt)<∞. Evoking the Inter-
mediate Value Theorem, a solution 0≤ ϑe

t <∞ to (4.A.41) exists if (ke
t , kt) ∈B ,

where
B :=
¦

(x, y) ∈ R2
+ | e

M(x, y, x, 0) ≥ 0
©

.

We next show that at all solutions ϑe
t to (4.A.41), the slope of the r.h.s. in (4.A.41)

is strictly smaller than the slope of the l.h.s., which then implies that the solution
ϑe

t is, in fact, uniquely determined. By straightforward differentiation, we can show
if evaluated at ϑe

t , the slope of the r.h.s. is strictly smaller than the slope of the l.h.s.
if and only if ϑe

t satisfies

1 > −µ
d

dϑe

�

rM(w(kt), f ′(ke
t),ϑe

t ) D(w(kt), rM(w(kt), f ′(ke
t),ϑe

t ),ϑe
t )
�

. (4.A.42)

Since µ ∈ [0,1), Condition (4.A.42) is satisfied if ϑe
t satisfies

d
dϑe

�

rM(w(kt), f ′(ke
t),ϑ

e
t ) D(w(kt), rM(w(kt), f ′(ke

t),ϑe
t ),ϑe

t )
�

> −1. (4.A.43)

We next show that (4.A.43) indeed holds. Given the two correct forecasts (ke
t ,ϑ

e
t ),

the bank’s balance sheet satisfies

rM(w(kt), f ′(ke
t),ϑ

e
t ) D(w(kt), rM(w(kt), f ′(ke

t),ϑe
t ),ϑe

t )

= f ′(kt+1)kt+1 − ϑt+1 − (1 − µ)et+1

= f ′(ke
t)ke

t − ϑ
e
t − (1 − µ)et+1.

Differentiation then yields

d
dϑe

�

rM(w(kt), f ′(ke
t),ϑ

e
t ) D(w(kt), rM(w(kt), f ′(ke

t),ϑe
t ),ϑe

t )
�

=
d

dϑe

�

f ′(ke
t)ke

t − ϑ
e
t − (1 − µ)et+1

�

= −1 − (1 − µ)
det+1

dϑe

�

�

�

ϑe=ϑe
t

> −1.
(4.A.44)
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Hence, (4.A.43) holds, implying that ϑe
t satisfies (4.A.42), i.e., it is uniquely de-

termined. Accordingly, we may define the function ψ̃ :B → R+, such that ϑe
t =

ψ̃(ke
t , kt) is a correct forecast for ϑt+1, given the correct forecast ke

t for kt+1 and the
current capital-labor ratio kt.

As a next step, we show that the correct forecast ke
t for kt+1 exists and is uniquely

determined. Let (kt, kt−1) ∈ C be given and, importantly, observe that C ⊂B . The
correct forecast ke

t is then determined by a solution to

ke

p
− D(w(kt), rM(w(kt), f ′(ke), ψ̃(ke, kt)), ψ̃(ke, kt))

= (1 − µ) eM(kt, kt−1, kt, ψ̃(kt, kt−1)).
(4.A.45)

By construction of C , the Intermediate Value Theorem yields the existence of a
solution 0< ke

t <∞ to (4.A.45). Next, we show that at any solution ke
t to (4.A.45),

the l.h.s. in (4.A.45) is strictly increasing, implying that ke
t is uniquely determined.

Differentiation of the l.h.s. in (4.A.45) with respect to ke yields

1
p
−
∂D
∂ r

(·)
∂ rM

∂ ρe
(·) f ′′(ke)

︸ ︷︷ ︸

>0

− dD
dϑe (·)
︸ ︷︷ ︸

<0

∂ ψ̃

∂ ke
(ke, kt). (4.A.46)

Observe that the derivative (4.A.46) is strictly positive if ke
t satisfies

∂ ψ̃

∂ ke
(ke

t , kt) > 0. (4.A.47)

Implicit differentiation of (4.A.41) with respect to ke and evaluating at ke
t yields

∂ ψ̃

∂ ke
(ke

t , kt) =
f ′(ke

t) (1 + ε2(ke
t)) − f ′′(ke

t) D(·) ∂ rM

∂ ρe (·) [1 + η(·)]

1
µ +

d
dϑe

�

rM(w(kt), f ′(ke
t), ψ̃(ke

t , kt)) D
�

w(kt), rM(w(kt), f ′(ke
t), ψ̃(ke

t , kt)), ψ̃(ke
t , kt)
�
� . (4.A.48)

By Assumption 8, f ′ > 0, f ′′ < 0, and −1< ε2 < 0. Hence, the numerator in
(4.A.48) is strictly positive. It follows from (4.A.44) that the denominator in
(4.A.48) is also strictly positive, implying that (4.A.47) holds. Consequently, the
derivative (4.A.46) is strictly positive and ke

t is uniquely determined.

Summing up, we have proven that for any given (kt, kt−1) ∈ C , there exists a
uniquely determined pair of perfect forecasts (ke

t ,ϑ
e
t ) in period t. □



Appendix Chapter 4 | 204

4.A.3 Remark on the Welfare Measure

In the literature on OLG models, it is common to conduct the welfare analysis along
the entire growth path of an economy (De La Croix & Michel, 2002). The wel-
fare measure is then the sum of the discounted lifetime utilities of all generations,
which, in our notation, reads

∞
∑

t=0

γtW i(kt, kt+1),

where 0< γ < 1 is a time-discount factor. There is a dispute in economic literature
whether the well-being of future generations should be discounted (Mas-Colell et
al., 1995). In this article, we follow the side of the debate that refrains from dis-
counting the welfare of future generations and thus set γ= 1. As we will demon-
strate next, a comparison of the steady-state welfare levels, as done by Theorem 6,
then leads to the same result as when analyzing the welfare along an entire growth
path. This is seen as follows. By Theorem 5, all growth paths {kt}∞t=0 converge to
asymptotically stable steady states ki > 0. As a consequence,

∞
∑

t=0

W i(kt, kt+1) −
∞
∑

t=0

W j(kt, kt+1) > 0, i, j ∈ {N,C, M}, i ̸= j

if and only if the asymptotically stable steady states satisfy

W i(ki, ki) −W j(kj, kj) > 0.

This observation also holds true in the presence of discounting if γ is sufficiently
large. However, it should be noted that this article’s focus is not on constructing an
appropriate welfare measure, but to take a reasonable criterion and investigate the
effect of financial intermediation and banking competition on welfare as defined
by that criterion.
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Conclusion

Presenting four articles, the dissertation at hand contributes to three independent
subfields of economic theory by exploring different facets of incentives. As will be
elaborated below, the incentive perspective adopted in the dissertation thereby not
only expands our current knowledge of economic interaction but also offers valu-
able implications for practice and opens up promising avenues for further research.
This dissertation thus underlines once more Aumann’s (2006, p. 17075) famous
conclusion that “economics is all about incentives”.

Due to their focus on contract theory, Articles 1 and 2 directly address our under-
standing of the effectiveness and design of incentives. They uncover intriguing and
paradoxical phenomena that originate from dynamic interaction: a more lucrative
environment may leave all interacting parties worse off and reduce the likelihood
that the interaction will be concluded successfully. These phenomena may arise
irrespective of whether incentives are exogenously given by the economic environ-
ment (cf. Chapter 1) or endogenously designed by an optimizing party, i.e., the
principal (cf. Chapter 2).

Our insights bear crucial implications for both academic research and practical ap-
plication. First, as it is shown that the effect of incentives and incentive mecha-
nisms is prone to reverse in dynamic settings – i.e., to become counterproductive
– our analysis offers an explanation for the lack of incentives in many real-world
situations. The absence of high-powered incentives in firms has not only been con-
sidered by many theorists (see, e.g., Che and Yoo, 2001; Holmström and Milgrom,
1990, 1991; Williamson, 1985) but it has also been confirmed manifoldly in the
empirical literature, which finds financial incentives for employees to be either
completely absent or low in relation to total income (see, e.g., Baktash et al., 2022;
Bell and Van Reenen, 2014; Hong et al., 2019; Lemieux et al., 2009). Second, since
agents are shown to strategically withhold effort even to the extent that overall
project success becomes less likely, our results help to understand the prevailing
empirical patterns of project delays and failures. These are frequently reported for
public infrastructure (e.g., Flyvbjerg et al., 2003; Mittal et al., 2020; Steininger et
al., 2021), research and development (e.g., Gupta and Wilemon, 1990; Lhuillery
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and Pfister, 2009; Radas and Bozic, 2012), as well as IT projects (e.g., Al-Ahmad
et al., 2009; Brown et al., 2007; Whitney and Daniels, 2013).

Articles 1 and 2 might also serve as the starting point for further research. In gen-
eral, the presented time-discrete model with a finite horizon is highly plausible yet
easily tractable, making it well suited for future research endeavors exploring in-
centives in dynamic interaction under moral hazard. A particularly fruitful avenue
for further research might be unequal remuneration, i.e., allowing the principal to
discriminate between agents. Although a thorough analysis of the equilibrium con-
tracts is left for further research, some results can readily be predicted. While spot
contracts and long-term contracts under limited commitment will induce equal
compensation of all agents in a period, full commitment to long-term contracts
may very well induce unequal bonus payments in certain periods.1 According to
this preliminary result, equal remuneration would constitute an interesting mani-
festation of the friction created by the lack of commitment. Put differently, since
limited commitment is indeed extremely plausible in real-world applications, this
result would provide a theoretical basis for why equal pay is so widespread in prac-
tice. This line of research would thus help to explain Hart and Holmström’s (1987,
p. 90) observation that “in the real world incentive schemes do show variety, but not
to the degree predicted by the basic theory." It would also provide a novel contribu-
tion from a dynamic perspective to the recent debate on (in)equal remuneration
in the principal-agent literature (see, e.g., Halac et al., 2021; Moroni, 2022; Wein-
schenk, 2021; Winter, 2004).

Article 3 contributes to environmental economics by exploring a simple mechanism
to overcome free-riding incentives in greenhouse gas emissions. For sufficiently
symmetric countries, allowing them to endogenously design a joint cap-and-trade
system by negotiating the amount and allocation of permits suffices to implement
efficient emissions levels and maximize welfare. The implications for policy-makers
are evident. First, negotiations constitute, from a theoretical perspective, a valuable
tool for designing cap-and-trade systems. Second, all obstacles – such as transac-

1. The underlying idea is as follows. Relying on spot contracts or long-term contracts under
limited commitment, the principal will offer equal bonus payments in the last period since this is
the cheapest way to induce any success probability in that period due to the concavity of efforts.
Thus, in the second last period, all agents have the same continuation payoff. Given equal contin-
uation payoffs, equal remuneration is again the most cost-efficient way for the principal to induce
any success probability and so on. Technically speaking, equal remuneration is thus induced by
backward induction as the solution concept in conjunction with the concavity of efforts. With full
commitment, however, the principal faces a trade-off when designing optimal contracts. While pro-
viding equal incentives is still the cheapest way to induce a certain success probability within a
certain period, it may render setting incentives in earlier periods more costly. The principal might
thus be better off when incentivizing different agents in different periods by unequal bonuses to
exploit “cheap incentives”.
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tion costs (cf. Montero, 1998), imperfections in the emissions market (cf. Stavins,
2008), and conflicting national regulations (cf. Hahn and Stavins, 2011) – that pre-
vent establishing joint emissions trading systems or hinder linking existing schemes
must be removed. This will then induce cooperative and efficient behavior: coun-
tries will agree to set up joint cap-and-trade systems, cap emissions at the efficient
level, and share the efficiency gains through the allocation of permits.

A further research agenda building on our results could be threefold. First, it would
be worthwhile to investigate whether allowing for explicit side payments would
generalize our mechanism to settings with heterogeneous countries. Afterward,
the question of whether this mechanism also applies to multilateral negotiations,
i.e., for more than two countries, must then be clarified. Lastly, from a political
economy viewpoint, how our theoretical results can be translated into political
action needs to be analyzed, as implemented policies in the context of interna-
tional environmental agreements often diverge from efficiency-oriented policy rec-
ommendations (Wangler et al., 2013).

Article 4 adds to microfounded macroeconomics: it unravels the relationship be-
tween banking competition on the one hand and long-run economic growth and
welfare on the other. By determining the relative importance of savings incen-
tives versus institutional investment, capital dependence of the production sector is
shown to be the key determinant of whether a monopolistic or a competitive bank-
ing sector is more favorable. The former yields higher levels of long-term growth
and welfare in a relatively capital-intensive production environment, whereas the
latter leads to more favorable outcomes in a labor-intensive environment. Although
quite simple, this theoretical condition is supported by ample empirical evidence
(see, Beck et al., 2004; Cetorelli and Gambera, 2001; Deidda and Fattouh, 2005;
Hoxha, 2013; Maudos and Fernandez de Guevara, 2006). Our results therefore
suggest that establishing and maintaining a competitive banking sector is particu-
larly important for developing countries, as they typically rely on labor-intensive
industries such as textiles, hospitality, and agriculture.

We also find that the presence of banks unambiguously promotes economic growth
compared to the absence of financial intermediation, regardless of the form of in-
terbank competition. Accordingly, introducing a banking sector that enables risk-
sharing provides a way to overcome growth obstacles in underdeveloped countries.
Our findings furthermore support the competition-fragility hypothesis discussed in
the finance literature: competition destabilizes the banking system (cf. Freixas and
Rochet, 2008). Article 4 therefore suggests that the more competitive the banking
system is, the more supervisory and regulatory measures are required to prevent
banking crises.
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The presented framework provides a fruitful basis for further empirical and theo-
retical research. Empirically, it would be interesting to directly examine the corre-
lation between the combination of bank competition and capital dependence on
the one hand and growth/welfare on the other for a large sample of economies.
The results could then be contrasted against the predictions of our model. Further
theoretical studies could proceed immediately from the extension of our model.
Analyzing the qualitative dynamics induced by dividend payments could further
shed light on the controversial question of whether or not banks can trigger com-
plex dynamics and persistent business cycles in an otherwise calm economy (see,
e.g., Banerji et al., 2004; Ritschel and Wenzelburger, 2024; Smith, 1998, as well
as Chapter 4).
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