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Abstract

The increased frequency of floods due to global warming has posed formidable challenges
for rescue operations worldwide. Standard mapping tools, including Google Maps and
OpenStreetMap, are infeasible for post-flood scenarios due to the destruction of known
structures and road networks. While response teams often use satellite and drone imagery to
aid flood relief efforts, they typically lack the ability to detect underwater obstacles, making
it unsafe for rescue boats to navigate. Furthermore, the complex nature of post-flood
environments, such as highly variable depth, random unstructured obstacles, and extremely
turbid water due to sand particles, increases the need for robust environment perception
and mapping systems tailored to the complexities of post-flood environments. Additionally,
a significant challenge in developing such a system arises from the unavailability of
comprehensive datasets about flooded environments, a limitation that has constrained
previous research efforts.
The primary objective of this thesis is to provide a robust surface and underwater per-
ception system that uses rich multi-modal sensory knowledge and provides traversability
information for safe navigation. This perception system involves comprehensive under-
standing of obstacle’s characteristics and categorizing their threat levels by integrating
surface and underwater sensory data. Additionally, this research attempts to devise a
versatile system capable of seamless reconfiguration across various surface water vehicles.
This adaptability benefits rescue teams equipped with boats featuring diverse kinematics
and motion models.
Consequently, this thesis proposed a novel Shallow Water traversabIlity Mapping (SWiM)
architecture, which integrates multiple sensory modalities to create a lightweight 2.5-
dimensional traversability map covering both surface and underwater modalities. Enhance-
ments in obstacle detection within the underwater environment, utilizing low Signal-to-
Noise Ratio (SNR) sonar imagery, are achieved through dedicated image enhancement
and depth estimation modules. Concurrently, accurate object distinction from water is
facilitated by deploying various deep-learning-based object detection and segmentation
techniques on camera images. The fusion of camera and LiDAR data through inverse-
perspective mapping enhances the certainty of obstacle detection. By combining obstacle
maps from both modalities, the system can compute essential features of obstacles, in-
cluding their threat level and whether they are floating or sinking. System validation
encompasses a diverse data bank comprising data from state-of-the-art datasets and
novel multi-modal MASTER dataset, captured on three distinct boats in various water
bodies. Additionally, a comprehensive post-flood simulation is presented using generative
adversarial networks (GANs) to replicate realistic sensory noise models, enabling rigorous
testing in complex scenarios.
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1. Introduction

Global warming significantly contributes to the rise of natural disasters such as floods,
hurricanes, and droughts worldwide. This phenomenon has far-reaching consequences
for the earth’s climate system, including changes in precipitation patterns and increased
frequency of extreme weather events. According to Guha et al. [Guha-Sapir 04], the
number of natural disasters tripled compared to thirty years ago. In addition, the
Intergovernmental Panel on Climate Change (IPCC) report [Masson-Delmotte 18] has
warned that the earth’s temperature has risen by nearly 1.5 degrees compared to pre-
industrialized levels. The rising global temperature increases atmospheric moisture, alters
precipitation patterns, and melts more glaciers, causing increased rainfall. This, in turn,
leads to higher water levels in rivers and oceans, increasing the risk and severity of
floods. For example, in 2017, Hurricane Harvey caused severe flooding in Houston, Texas,
displacing over 30,000 people and causing economic losses of over $125 billion. The storm
was fueled by warmer ocean temperatures due to global warming, which led to increased
rainfall and worsened flooding. Furthermore, in 2021, total losses of 280 billion USD 1

occurred due to natural calamities around the globe. Among those calamities, a significant
portion (90 billion USD 2) occurred due to floods. In addition, several studies by the
Intergovernmental Panel on Climate Change (IPCC) indicate a likely rise in extreme flash
floods and river floods. Consequently, radical measures and funding are required to deal
with the flood estimation systems and post-flood rescue operations.

The impact of flooding is undeniable and leads to significant loss of life and property
damage, leaving many people stranded without access to help or resources. In flood relief
operations, assistance is delivered via helicopters or boats due to the loss of the road
network. Since aerial assistance is often limited in scale, boats are the major contributor
to such operations. These boats rely on accurate and up-to-date maps that provide critical
information on the affected areas, including topography, infrastructure, and evacuation
routes. However, floods often result in the destruction or loss of maps due to water damage

1https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards.
html, last accessed: (09.01.2023)

2https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards/
floods-and-flash-floods-underestimated-natural-hazards.html, last accessed: (09.01.2023)

https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards.html
https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards.html
https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards/floods-and-flash-floods-underestimated-natural-hazards.html
https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards/floods-and-flash-floods-underestimated-natural-hazards.html
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or structural collapse. This poses a significant challenge for rescue boat by hindering
their ability to navigate and plan operations efficiently. Without reliable maps, rescue
operations may be delayed, and the safety of both rescuers and affected populations can
be compromised.
Standard maps, such as Google Maps and OpenStreetMap, while valuable for everyday
navigation, are often inadequate for rescue operations in post-flooded environments. Several
factors contribute to their limited feasibility in such scenarios; primarily, standard maps
rely on pre-existing data and may not account for rapid and dynamic changes caused by the
flood, such as altered topography, floodwater depth, submerged infrastructure, or random
debris. Consequently, these maps may provide inaccurate or outdated information, leading
to potential navigational challenges for rescue boats that impede rescue boats’ ability
to identify safe and accessible routes. Moreover, standard maps heavily rely on satellite
imagery and aerial surveys, which may be limited or inaccessible during and immediately
after a flood due to cloud cover, poor visibility, or disrupted infrastructure. This lack of
updated imagery can hinder the ability to assess the current conditions and plan rescue
operations effectively. Therefore, there is a dire need for a novel post-flood traversability
mapping system that utilizes new sensory modalities rather than satellite imagery to
understand the surface and underwater surroundings; efficiently map the significantly
changed environment.

1.1 Challenges in Post-Flood Environment
A flooded environment faces drastic changes due to fallen trees, opaque water, floating
cattle, and destructed houses, as depicted in Figure 1.1. These changes destroy the
road network to the affected areas and produce several navigational problems for rescue
operations. Additionally, these extreme changes limit the use of standard navigational
maps for such an environment. Consequently, post-flood rescue operations suffer from
several challenges due to a limited understanding of the destruction level. Hence, an
operation with manual boats and aerial assistance is traditionally performed to gather
updated environmental information, which usually takes several days to cover the whole
area and faces several inherent challenges, as discussed below.

• Unstructured Environment: The flood introduces several random objects, such as
fallen trees, debris, or destroyed infrastructure, creating significant problems in rescue
operations. These objects could have been defined structures in the past, such as
bridges or other buildings, but now are demolished by flood and cannot be detected
with state-of-the-art object detection algorithms.

• Water Turbidity: Apart from solid objects, the flood also carries a significant amount
of sand and soil, making the underwater environment entirely opaque for boat
drivers. Moreover, the limited visibility in muddy water is challenging for underwater
cameras to detect objects. Therefore, active sensors are more practical to use in such
a scenario.

• Multi-Modal Environment: Due to the different physical properties of air and water,
similar sensory modalities cannot be used for object detection over and under the
surface of the water environment. For instance, LiDAR is often used to detect surface
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Figure 1.1: The post-flood images from a devastating flood in Pakistan in 2022. This flood
affected more than 70 percent of land and 10 million lives 3. An estimated loss of 1800 casualties
and 15 million USD. The unstructured nature of the destructed environment is a great challenge
for developing a traversability mapping system that can be helpful for flood response forces.

obstacles, but light rays are impenetrable in water; hence LiDAR is not feasible for
underwater obstacle detection. Therefore, other sensors are commonly used, which
lead to a challenge in the fusion of different sensory modalities.

• Shallow Waterbed: The depth of flood water may reach up to 3 meters, and due to
the heavy loads over rescue boats, a few centimeters of the boat’s body may sink
under the water. However, the sudden variations in water depth (less than 30 cm)
pose problems for the safe navigation of boats.

• Slower Response: Typically, multi-sensor systems gather a massive amount of data.
Consequently, such systems suffer slower response times due to high computations.
Therefore, besides safe navigation, the adequate response time of the rescue system
is also highly critical.

• Unavailability of Relevant Dataset: The post-flood environment is usually unique,
and collecting datasets during natural calamities is often prohibited due to safety

3https://www.unicef.org/emergencies/devastating-floods-pakistan-2022

https://www.unicef.org/emergencies/devastating-floods-pakistan-2022
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concerns. Resultantly, the unavailability of data makes it challenging to validate
any proposed system. Hence, it leads to the need for more multi-sensor post-flood
datasets in the relevant community.

The challenges aforementioned immensely affect rescue operations in a flooded environment;
therefore, many human lives and global economies suffer each year. These are inherent
challenges of a destructed environment due to flood; hence, a need arises for a mapping
system that can cater to those challenges robustly and reliably.

1.2 Objective and Contribution
The primary goal of this thesis is to develop a post-flood traversability mapping architecture
that can use rich sensory information about the post-flood destructed environment which is
unavailable in standard maps such as Google Maps and Open Street Maps. Such a system
is essential for safe navigation and planning rescue operations. The proposed system
should be: robust; i.e., it should be adaptive to environmental changes, reconfigurable;
it should be easily re-configurable over several different boats, reliable; it should provide
an accurate understanding of the environment, responsive; it should not only compute
but also respond to the parametric changes in real-time.
The contributions in the presented thesis are as follows:

Arbitrary features modeling The destructed post-flood environment faces challenges in
the semantic understanding of the underwater scenario. Moreover, state-of-the-
art machine-learning based object detection algorithms are not feasible due to the
unavailability of essential training features in an unstructured surrounding. However,
the robust feature modeling of arbitrary objects improves the overall mapping
accuracy.

Object Categorization In a flooded environment, the objects can be categorized as 1)
Floating/sinking (based on underwater footprint) and their 2) Threat Level. This
information helps in defining the reliability factor of the traversability map. For
instance, if an object is classified as floating, it can be concluded that its position
may change in the future due to water flow. Furthermore, the threat level of an
obstacle can be an essential property to consider either an obstacle is traversable or
not. For instance, floating leaves are safer than a standing tree.

Multi-modal fusion Due to significant differences in surface and underwater environments,
different sensors help gather distinct feature sets. For example, sensors such as
cameras and laser scanners are not feasible for underwater object detection; hence,
only sonar is helpful within the water. However, the converse is true for surface
water information. Thus, the multi-sensor fusion technique fuses the surface and
underwater features, consequently increasing the performance of the object classifier.

Multi-level segmentation Understanding the destruction level is fundamental for plan-
ning a post-flood rescue operation. Therefore, the multi-level map segmentation,
i.e., based on water depth, the object category (floating or submerged), or the
vehicle’s kinematics, helps to develop an easily understandable interface for rescue
boat drivers.
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Simulated and realistic multi-boat validation The realistic system validation includes
rigorous testing over multiple boats [Meckel 22], including novel Pontoon Boat 4 ,
Basilisk 5, and Astrider 6 in several water bodies. Each boat has different dimensions
and a kinematic model. Moreover, the simulated validation provides similar multi-
boat testing over a flooded environment and physics-based sensor plugins that present
a time efficient and robust system validation.

1.3 Outline
The dissertation addresses the complexities of post-flood environment and presents a novel
SWiM (Shallow Water traversabIlity Mapping) architecture that segments the unstructured
random objects present in both surface and underwater flooded environments, facilitating
the generation of an up-to-date traversability map. Notably, the architecture is adaptable
to various boats with distinct kinematic models. The thesis is structured as follows,
providing a systematic outline of its components and objectives.
Chapter 2 provides a comprehensive review of the latest advancements in surface water
vehicles specifically designed for marine applications. It evaluates the advantages and
disadvantages inherent in these systems, offering a critical analysis of each. Furthermore,
this chapter delivers a comparative study of the approaches proposed in the existing
literature, highlighting their distinct features and operational capabilities. Moreover, it
concludes by identifying and discussing the research gaps evident in the current state of
technology. Identifying unaddressed areas and limitations within the existing body of work
is the primary motivation driving the research presented in this thesis.
Chapter 3 introduces the novel concept of Shallow Water Traversability Mapping (SWiM)
architecture, a cutting-edge approach designed to navigate through the unique challenges
of post-flood environments. This chapter expands on the complexities of the SWiM archi-
tecture, delving into the challenges such environments present for traversability mapping.
It methodically breaks down and explores the three core modules constituting the SWiM
architecture, providing a detailed examination of their functions and interrelationships.
Through this comprehensive discussion, the chapter lays a foundational understanding of
SWiM’s operational framework and its applicability in post-flood scenarios.
Chapter 4 presents the datasets and test environments integral to developing and evaluating
the architecture outlined in this thesis. It introduces the innovative Multi-Modal Shallow
Water (MASTER) dataset, a comprehensive collection encompassing multi-sensory and
multi-modal data gathered from various water bodies including Hamburg port, Technisches
Hilfswerk (THW) Hoya test site and Gelterswoog Lake. This chapter not only details the
composition and characteristics of the MASTER dataset but also discusses the development
of a novel simulated environment using Unreal Engine. It elaborates on the design process
of sonar plugin within simulation, employing Generative Adversarial Networks (GANs)
to enhance the simulation’s fidelity and effectiveness. This comprehensive discussion
underscores the chapter’s focus on the critical tools and resources used in the architecture’s
validation.

4A big transporter boat specifically build for post-flood environment by consortium of several industrial
partners in a Pontonboot project

5A commercial drone boat
6An in-house built raft
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Chapter 5 provides a detailed exploration of the complexities of underwater sensing,
explicitly focusing on the comparative analysis of various sonars based on their operating
frequencies. This chapter delves into the prevalent issues in sonar imagery, such as
speckle noise and low signal-to-noise ratio (SNR), offering a thorough examination of these
challenges. Additionally, it presents an in-depth look at the Underwater Traversability
Mapping (UTM) framework, elaborating on the outcomes yielded at each stage of this
module’s operation. The chapter concludes with the computation of the underwater
obstacle map, which effectively illustrates the precise location of each obstacle as detected
within the sonar imagery.
Chapter 6 addresses the specific challenges associated with surface water sensing, offering
a refined analysis of two key sensing modalities employed over water surfaces: camera
and LiDAR. It thoroughly examines the advantages and disadvantages of each modality,
providing a balanced perspective. Additionally, this chapter extensively discusses the
Surface Water Traversability Mapping (SWTM) framework, detailing its operational
framework and methodology. It highlights the results achieved at each stage of the SWTM
process, particularly emphasizing the effectiveness of semantic segmentation and object
detection achieved through advanced deep learning techniques. The chapter concludes by
presenting a comprehensive obstacle map, showcasing the module’s capability to map the
surface water environment.
Chapter 7 discusses the complex process of integrating surface and underwater obstacle
maps, a crucial aspect in post-flood scenario analysis. It begins by categorizing the various
obstacles encountered in post-flood conditions, laying a foundational understanding for
the subsequent discussion. The chapter then introduces a novel approach within the
Fused Traversability Mapping (FTM) module, discussing each step of this methodology
in detail. It thoroughly examines the results and accuracy achieved at every stage of the
FTM process. The chapter concludes by presenting fused traversability maps of several
environments to provide a holistic view of post-flood obstacles.
Chapter 8 concludes the thesis by summarizing the contributions, outcomes and their
evaluation regarding the thesis objectives. Moreover, it discusses future research and
development prospects in an unstructured environment due to natural calamity.



2. Surface Water Vehicles in Post-Flood
Scenarios: A Review

In the field of robotics, traversability mapping plays a pivotal role, as it assists robots
navigate complex and dynamic environments safely and effectively. Through the utilization
of advanced sensing modalities, such as LiDAR and cameras [Keen 20] [Zaheer 21], robots
have the capability to generate detailed maps that accurately represent terrain charac-
teristics and identify obstacles. These highly detailed and reliable maps offer essential
information about the navigability of different regions, allowing robots to navigate their
paths with precision and adaptability. Moreover, traversability mapping also helps robots
with the ability to recognize potential threats or challenging terrain segments, enabling
them to quickly modify their routes and prevent potential accidents. This technique
fundamentally enhances the operational efficiency of robots, enabling various applications
across diverse industries, including search and rescue missions, agricultural operations,
warehouse logistics, construction tasks, and even medical procedures. The remarkable
precision with which robots can now navigate complex terrains facilitates tasks such as
crop health monitoring [Shafi 20], indoor mapping [Wang 19b], and complicated medical
surgeries [Lv 22], emphasizing the potential of traversability mapping. Ultimately, this
technique optimizes the performance of autonomous robotic systems and ensures the
safety of humans and machines, making it an indispensable tool for advancing the field of
automation and robotics.

The significance of precise and updated maps becomes particularly crucial in circumstances
where conventional mapping services, such as Google Maps and OpenStreetMap, are unable
to provide accurate and reliable information. This limitation is especially evident in the
aftermath of natural disasters, including but not limited to hurricanes, earthquakes, and
floods, where the environmental landscape suffers from widespread destruction, leading to
the increase of unstructured and unpredictable features or objects that are not accurately
represented in standard maps. In such environments, the ability of autonomous robots
to navigate with adaptability is of utmost importance. Therefore, precise and updated
traversability maps are essential in such calamities to ensure that rescue and relief operations
can be carried out effectively.
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2.1 Traversability Mapping in Aquatic Environment
Studying the aquatic environment is extremely important as water makes up around
71% of the Earth 1. Historically, research on aquatic environments was primarily limited
to military and defense applications, focusing on gaining tactical superiority. However,
with the advancement of robotics and its proven effectiveness in terrestrial and off-
road environments, scientists and researchers working in aquatic domains have become
increasingly interested in exploring this field. This development observed the beginning of
water robotics in the latter half of the 20th century.

Water robotics is significant in addressing aquatic environmental challenges, including
offshore energy systems inspection, underwater mine detection, oil spillage detection,
understanding marine life, and supporting various maritime activities. The significance
of water robotics lies in its ability to operate in complex and unsafe underwater envi-
ronments where human access is limited. While advancing further, in the last decade,
several researches have been done on water robotics for commercial usage. There is
a significant increase in water robotic applications [tor 16] [Galceran 12]; consequently,
several underwater and surface water vehicles have been recently designed, such as Roboat
I/II, Oceanalpha, and Mayflower Autonomous Ship MAS400. These vehicles are designed
to undertake various tasks, including underwater mapping, surveillance, and search and
rescue operations, signifying a remarkable expansion in the role and capabilities of water
robotics in addressing contemporary challenges and advancing scientific and industrial
initiatives in aquatic environments.

In water robotics, traversability mapping plays an essential role similar to its terrestrial
counterpart, facilitating the efficient and secure navigation of robots in complex aquatic
environments, whether on the surface or underwater. It is significant for various aquatic
vehicles, including surface and underwater vehicles (SVs/UVs), remotely operated vehicles
(ROVs), and even human divers, ensuring they can navigate challenging and dynamic
underwater environments. Traversability mapping proves invaluable across various aquatic
applications, from offshore oil exploration and infrastructure inspection to the scientific
endeavors of marine biology research and environmental monitoring. To achieve this
objective, researchers use a range of exploration sensors, such as LiDAR, sonar, cameras,
and other sensors that can capture relevant data. The data collected by these sensors
is subjected to complex algorithms that analyze and process it, ultimately generating
highly accurate maps with detailed information about surface or underwater obstacles
encompassing rocks, coral reefs, and other potential threats. These maps enable safe
and efficient navigation and exploration of aquatic domains. Beyond these benefits, the
information gathered from these sensors can deepen our understanding of aquatic life,
their habitats, and the impact of human activities on underwater ecosystems, enriching
our understanding of the aquatic world’s complexities.

Similarly, accurate and up-to-date maps are crucial for search and rescue teams in a post-
flood environment to navigate shallow and murky waters, where these teams face numerous
challenges operating in the affected areas. It is essential to have reliable traversability
maps even before the rescue operations commence. This is especially critical for rescue
teams that use relatively larger boats, that face significant navigational challenges in

1https://www.usgs.gov/special-topics/water-science-school/science/how-much-water-there-earth
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environments which include shallow water and submerged obstacles. Therefore, having
access to accurate maps can play a vital role in ensuring successful rescue operations.
Unmanned surface water vehicles have the potential to play a pivotal role in addressing
this challenge. These autonomous vehicles can be deployed to the affected areas, serving
as advanced survey units. Equipped with a multi-sensor system, these vehicles are capable
of surveying and comprehensively assessing the environment. By integrating data from
various sensors, including sonar, LiDAR, and cameras, these vehicles can generate precise
and updated traversability maps. These maps not only provide vital information about
submerged and surface obstacles but also highlight safe pathways and potential threats.
Essentially, unmanned surface water vehicles act as a first response team, mapping out the
conditions and challenges in the post-flood environment. This information is invaluable
for the safe and efficient navigation of the larger rescue boats, enabling them to make
informed decisions and avoid potential threats. By providing accurate and updated
maps, these autonomous vehicles enhance the overall effectiveness of search and rescue
operations, ultimately contributing to the safety of both rescue personnel and flood-affected
populations.

2.2 State-of-the-art Surface Water Vehicles
Unmanned surface vehicles (USVs) are integral to aquatic research, environmental moni-
toring, and various aquatic applications. These vehicles are designed to operate on the
surface of water bodies, such as rivers, lakes, and oceans, and perform various tasks.
Furthermore, USVs offer several advantages, including versatility, mobility, and the ability
to navigate through different water conditions. These vehicles are equipped with sensors,
cameras, and other instruments, enabling researchers to collect data on water quality,
temperature, turbidity, and other environmental parameters. They play a vital role in
studying and monitoring aquatic ecosystems, assessing the impact of human activities,
and understanding the effects of climate change on water bodies. USVs can also be used
for search and rescue operations, disaster response, and environmental cleanup efforts.
They can be remotely operated or autonomous, providing flexibility and adaptability in
diverse scenarios. The integration of advanced technologies, such as artificial intelligence,
machine learning, and sensor fusion, enhances the capabilities of these platforms, enabling
real-time data analysis and decision-making. With their ability to access remote or unsafe
areas, these vehicles contribute to scientific research, environmental management, and the
sustainable use of water resources.
In literature, a distinct categorization of unmanned vehicles is notably lacking, and in many
instances, these vehicles are classified based on their specific applications, as highlighted
by Liu et. al. [Liu 16]. The primary applications encompass areas such as 1) Bathymetry,
2) Scientific Research, 3) Urban Waterways, 4) Marine Exploration, 5) Military, and 6)
Other Applications. Primarily, this thesis focuses the post-flood environment which is
categorized under shallow water environment, thereby specifically targeting ports, lakes,
and shallow rivers. Consequently, unmanned vehicles designed for operating in shallow
water environments predominantly fall within the domains of scientific research or urban
waterways. Within these specified domains, individual vehicles can be further categorized
based on their sensory modalities, distinguishing between surface water and underwater
capabilities.
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The subsequent subsections of this thesis explores existing surface water vehicles, providing
an in-depth examination of their mechanical designs, sensor systems, and the diverse range
of applications they serve. A comprehensive comparative analysis of these vehicles is
conducted, shedding light on their respective strengths and limitations. Furthermore, the
analysis identifies existing gaps in the state-of-the-art surface water vehicles, pinpointing
areas where advancements or innovations are required to enhance their overall efficacy and
performance.

2.2.1 Vehicles for Bathymetry
Bathymetry is the study of waterbed of waterbodies including the ocean, rivers, streams,
and lakes. This study includes the depth and shape of waterbed. It is an important aspect
of marine science and engineering, as accurate bathymetric data is essential for a wide
range of applications, including navigation, oil and gas exploration, and environmental
monitoring.
In recent years, there has been increasing interest in using bathymetry in surface water
vehicles, such as boats and autonomous underwater vehicles (AUVs). These vehicles are
equipped with various sensors and instruments that can be used to collect bathymetric data,
including sonar systems, echo sounders, and laser scanners. One of the main advantages
of using surface water vehicles for bathymetry is their ability to collect data over large
areas in a relatively short amount of time. This is particularly useful in cases where the
bathymetric data needs to be updated frequently, such as in areas where tides, currents,
and sedimentation rates are constantly changing. Additionally, surface water vehicles are
helpful to collect data in shallow waters and near shore areas, where traditional methods
such as ship-based surveys may not be practical. These areas can be difficult to access
due to their proximity to the shore or the presence of obstacles such as rocks and reefs.

ASV by KRISO

The Korean Research Institute of Ships and Ocean (KRISO) has developed an ASV,
shown in Figure 2.1. The primary goal of this ASV is to serve as a versatile platform for
testing and validating advanced navigation and control algorithms in complex surface water
environments. The ASV’s unique catamaran (length: 4.1 m; width: 2.4 m) configuration
provides flexibility in accommodating a wide range of variable payloads.
To enhance the ASV’s navigational capabilities, a multi-sensor system have been integrated
to measure its motion parameters in real-time. The sensor system includes a GPS compass,
an Attitude Heading Reference System (AHRS), and a Fiber Optic Gyro (FOG). These
sensors provide precise and accurate information about the ASV’s position, orientation,
and heading. In addition to the sensor array for motion data, the ASV presents a robust
situational awareness system. Optical sensors, such as a stereo camera and LiDAR, have
been integrated to detect and identify objects floating on the water surface. These sensors
help the ASV to perceive and respond to its environment effectively.
Furthermore, the ASV is equipped with three distinct acoustic sensors: Multibeam Echo
Sounder (MBES), Doppler Velocity Log (DVL), and an acoustic modem. These acoustic
devices operate at different frequencies that do not overlap, enabling concurrent usage
without interference. The MBES provides detailed bathymetric information about the
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Figure 2.1: Surface water vehicle developed by KRISO. The vehicle is equipped with GPS
Compass, Attitude Heading Reference System (AHRS), Multibeam echosounder (MBES) and
Doppler Velocity Log (DVL). [Jung 22]

water column and seafloor, the DVL aids in velocity measurements and underwater
navigation, and the acoustic modem facilitates communication and data exchange in
underwater scenarios.
The navigation system of ASV comprises two distinct methodologies: acoustic-based and
terrain-based. In acoustic-based navigation, the ASV uses acoustic sources as underwater
reference points. These stationary sources emit specific acoustic signals periodically,
which are received and interpreted by a pair of hydrophones installed on the ASV. The
received acoustic data is then employed to refine the ASV’s position and orientation
information using the Extended Kalman Filter (EKF) Simultaneous Localization and
Mapping (SLAM) algorithm. This acoustic-based navigation strategy enhances the ASV’s
underwater positioning accuracy.
In the terrain-based navigation approach, the ASV uses a pre-surveyed underwater terrain
map generated using a multibeam sonar. This map is a prior reference for the ASV’s
navigation and is integrated into a particle filter system, which allows the ASV to con-
tinuously update its position and motion based on real-time terrain data. Fusing this
terrain-based information with acoustic-based navigation enhances the ASV’s ability to
navigate effectively in diverse underwater environments.
Moreover, the ASV is equipped with an autonomous navigation system that has waypoint
guidance and collision avoidance mechanisms. The guidance approach simplifies the ASV’s
behavior into a three-degree-of-freedom (3-DOF) kinematic model. The motion model
employed in guidance and control strategies emphasizes minimizing line-of-sight (LOS) and
cross-track errors, enhancing the ASV’s ability to follow its intended path precisely. This is
achieved by implementing a conventional Proportional-Derivative (PD) controller designed
to regulate the ASV’s course, ensuring it progresses toward its goal waypoints accurately.
On the other hand, the collision avoidance framework (shown in figure 2.2) within the
ASV’s navigation system comprises three core modules: an evaluation of collision risk
module, a collision-free path planning module, and a guidance and control module. This
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Figure 2.2: Collision Avoidance Framework [Choi 20b]

system works collectively to assess potential collision risks, compute safe and obstacle-free
paths, and guide the ASV along these paths, minimizing the possibility of collisions with
underwater obstacles.

2.2.2 Research Vehicles
Scientific research-oriented vehicles designed for shallow water environments often em-
phasize precision and data collection. These vehicles leverage advanced sensor systems,
including high-resolution cameras, LiDAR, and sonar, to capture detailed information
about the water surface and its underlying topography. The mechanical design of such
vehicles incorporates features that enhance stability and maneuverability, allowing them to
navigate challenging environments with agility. Applications of these vehicles range from
ecological studies to environmental monitoring, showcasing their versatility in contributing
valuable data for scientific endeavors.

Water Strider

The Water Strider is an autonomous surface vehicle developed by Fraunhofer IOSB with a
specific mission: to create accurate and up-to-date maps of shallow water environments
above and below the water’s surface. These maps ensure safe and efficient navigation of
waterways and surrounding infrastructure.
The Water Strider, shown in Figure 2.3, is a significantly large vehicle. It measures 6000
mm in length, 6000 mm in width, and 4000 mm in height and weighs around 500 kilograms.
It is highly agile and versatile, with a top speed of 3.3 meters per second. The vehicle is
built on the Ducky 19 catamaran platform, which provides stability and maneuverability
for operations in aquatic environments. Furthermore, the ASV has a comprehensive array
of sensors, such as multibeam sonar, LiDAR, cameras, Inertial Measurement Unit (IMU),
and Global Navigation Satellite System (GNSS). This sensor system is vital in facilitating
navigation, obstacle detection and avoidance, and mapping tasks above and under the
water’s surface.
The vehicle uses a 3D LiDAR sensor and two mast-mounted cameras. The LiDAR
sensor, combined with the vehicle’s motion data (ego-motion), is employed to dynamically
construct a map of the surrounding environment, including identifying obstacles within the
vehicle’s operational space. The dynamic map has short-term memory, allowing the vehicle
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Figure 2.3: Water Strider during the competition final in Kalamata, Greece

to handle static and dynamic obstacles in real-time. Simultaneously, the cameras capture
images processed through photogrammetric 3D reconstruction techniques. These images
are transformed into high-resolution 3D reconstructions of the above-water surroundings,
providing valuable visual data. For underwater mapping, the Water Strider relies on
sonar technology. Specifically, it utilizes a Bathyswath sonar transducer coupled with
the Sonardyne Inertial Navigation System (INS) for georeferencing bathymetric data.
The sonar data is then processed using the Bathyswath Swath Processor and CARIS
HIPS&SIPS software. This approach involves the combination of overlapping scans of
the seafloor or riverbed, culminating in the creating of a comprehensive depth map. This
underwater mapping capability results in a holistic view of the submerged environment.
The Water Strider employs a control strategy that combines autonomous control for path
following and obstacle avoidance with the ability for operator intervention, ensuring safe
and effective operations during shallow water mapping missions (shown in figure 2.4).
The control system’s multi-layered approach includes velocity profile computation, path
control, and the Line-of-Sight (LOS) algorithm, which determines the necessary vehicle
speed and heading. The system relies on a PI controller for speed control, managing the
rotation of electric motors, while a P controller is used for heading control, computing
the required rudder angle. Notably, these control methods do not rely on a kinematic or
dynamic model of the ASV.
The vehicle can operate autonomously within a predefined area of interest. Users define a
polygon representing the desired operational area, and the ASV can then autonomously
navigate within that defined polygon. A path planning algorithm generates an optimized
path for covering the polygon, factoring in the vehicle’s starting position. The ASV follows
the designated path at a user-specified speed. It also can halt or adjust its path in response
to failures or obstacles.
Furthermore, the Water Strider offers an operator intervention mode. It features an
interactive digital map table that serves as the interface between the operator and the
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Figure 2.4: Dataflow and Software Architecture of Water Strider. [Zube 22]

vehicle. Operators can specify missions, evaluate system performance in real-time, and
oversee the ASV’s operations. The digital map table streamlines mission definition and
assessment, offering an intuitive means of interacting with the vehicle.

2.2.3 Urban Waterways Vehicles
Surface water vehicles, such as boats and autonomous underwater vehicles (AUVs), can be
used in urban waterways for a variety of purposes, including transportation for many coastal
and riverside cities, water quality monitoring, and trash collection. Urban waterways,
such as rivers and canals, are often subject to high levels of pollution and environmental
degradation, making them an important area of focus for environmental monitoring and
management.

ROBOAT

ROBOAT is an advanced project in the field of autonomous surface vehicles aimed at
reducing urban traffic congestion by utilizing water-based transport networks. This innova-
tive initiative is a collaboration between prestigious institutions such as the Massachusetts
Institute of Technology (MIT), Delft University of Technology, and Wageningen University

Figure 2.5: Roboat : Quarter Scale Prototype. (Left) Figure shows the sensor system. (Right)
Shows the position and orientation of four thrusters.
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& Research, with the first deployment in Amsterdam, Netherlands. These self-navigating
watercraft perform various tasks, including passenger transportation, logistics such as
garbage collection and package delivery, water infrastructure surveying, and monitoring
water quality.

(a) (b)

Figure 2.6: Roboat : Half Scale Prototype. (a) Simulation model shows the position of
sensor system and thrusters (b) Completed prototype floating in Amsterdam’s urban waterways.
[Wang 20b]

The Roboat has undergone significant advancements since its inception in 2017. The
inaugural prototype, Roboat I (in figure 2.5), was comparatively smaller, weighing a mere
15kg and measuring 900 x 450mm. It was powered by an 11.1V battery with an operational
time of 3 hours and featured four T100 thrusters, in addition to a suite of sensors such as
16-line 3D lidar, a depth camera, GPS, and IMU. The second prototype, Roboat II shown
in figure 2.6, was introduced the following year. It had a larger hull measuring 2000 x 1000
mm, was made of wood and fiberglass, and weighed around 80 kg. It offered an operational
window of 2 hours and retained the sensor configuration of its predecessor. The design
centered around simplicity of construction and interconnectivity among vessels, allowing
for multiple units to be assembled in parallel or perpendicular orientations to create
larger configurations. The thruster configurations of both boats (Roboat I/II [Wang 19a]
[Wang 20b]) allow holonomic movements. This is especially valuable for autonomous
docking and latching for platform building.
In 2019, the Roboat project achieved a significant milestone by creating the most advanced
version of the technology. This full-scale version (figure 2.7) had dimensions of 4000 x 2000
mm and a symmetrical design that enabled it to maneuver in tight spaces, regardless of the
bow’s orientation. Each boat had a replaceable top deck, making it more adaptable and
versatile. The navigational capabilities of the boats were highly precise and accurate to
within decimeters. This makes them proficient in operating on water surfaces, navigating
complex urban waterways, and carrying out various tasks with minimal human intervention.
Accurate navigation and successful docking within urban waterways hinge on precise
localization. To achieve this, the authors have implemented a novel system that fuses
data from LiDAR, cameras, and GPS sensors, providing the system with a decimeter-
level localization precision. These sensors are adept at detecting and avoiding static and
dynamic obstacles positioned above the water surface, significantly enhancing the system’s
safety and navigation capabilities. Roboat employs a factor graph to facilitate the fusion
of data from multiple sensors and to formulate a solution for the simultaneous localization
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(a) (b)

Figure 2.7: Roboat : Full Scale Prototype. (a) Final Roboat version as urban transportation
in Amsterdam. (b) The top module of Roboat can be replaced for other applications including
load transportation and garbage collector. [Wang 20b]

and mapping (SLAM) problem. This integrated system introduces three crucial factors
into the factor graph framework: lidar odometry factors, GPS factors, and loop-closure
factors, each contributing to the robustness of the localization and mapping processes.
The system further enhances its capabilities by computing two distinct sets of features:
edge features and planar features. Feature extraction is conducted by transforming the
lidar point cloud into a range imagery, where each pixel corresponds to a specific point
within the point cloud dataset. This transformation is essential in managing the massive
data generated by the lidar scans. To streamline data processing, the proposed technique
selects new keyframes based on predefined thresholds related to the vehicle’s pose changes.
For example, in the case of Roboat II, the chosen thresholds encompass a 1-meter threshold
in position change and a 10o threshold in rotation. The scans that lie between these
keyframes are ignored, and the transformation between the two keyframes is subsequently
computed. The transformed keyframes are combined into a voxel map, contributing to
the system’s mapping and localization strategies.

Figure 2.8: Autonomy framework of Roboat II. It includes a planner,a SLAM module, a
Nonlinear Model Pridictive Control (NMPC) tracking module, an Nonlinear Moving Horizon
Estimation (NMHE) state estimator, and an object detector. [Wang 20b]

Both vehicles within the Roboat project are equipped with Intel NUCs, and their control
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software is founded upon the Robot Operating System (ROS), a widely recognized platform
for the development of robotic applications. The complex dynamics of aquatic environments
necessitate the utilization of an online nonlinear model predictive controller (NMPC), with
the dynamical model being experimentally estimated to achieve satisfactory results in
tracking control. Simultaneously, state estimation is conducted via a nonlinear moving
horizon estimation (NMHE) algorithm. The combination of these strategies helps in
real-time mapping and localization, execute path planning, and accurately track the
computed trajectory, making it a complex and adaptable aquatic robotic platform. Figure
2.8 illustrates the overall autonomy framework of Roboat I/II. It is noteworthy that the
system does not incorporate sonar sensors for detecting obstacles under the water’s surface.

2.2.4 Environmental Missions
JingHai-I

The JingHai-I is an autonomous surface water vehicle developed by Shanghai University,
explicitly designed to provide a versatile platform for testing and validating a wide range
of algorithms. Primarily intended for hydrographic surveying and charting in nearshore
shallow waters, this USV (Unmanned Surface Vehicle) offers robust capabilities, including
long-range missions, collision avoidance, and the ability to navigate shallow waters with a
minimal draft. Figure [Li 22] shows the USV a during a test survey.

Figure 2.9: JingHai-I surface water vehicle. The vehicle is equipped with multi-sonar system,
including echosounder, bathymetry, side-scanner, and forward-looking sonar. [Li 22]

In terms of physical dimensions, the JingHai-I measures 6.28 meters in length and 2.86
meters in width, with a total system weight of approximately 2300 kilograms, taking into
account the installed equipment. The vehicle is equipped with a Global Positioning System
(GPS) and an attitude heading reference system (OCTANS) to precisely determine its
location and orientation, encompassing heading, roll, and pitch. To enhance its navigation
and obstacle avoidance capabilities in real-time, the USV features a laser range finder
and a forward-looking sonar. In addition to these features, the JingHai-I has a suite of
sensors, including single-beam bathymetry, multibeam sonar, side-scan sonar, forward-
looking sonar, and an acoustic Doppler current profiler (ADCP) to collect important
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Figure 2.10: System Architecture of JingHai-I [Peng 17]

environmental data. These sensors provide critical information for monitoring the marine
environment during surveying and mapping operations. The complete architeture of
JingHai-I is shown in figure 2.10.

The control system of the JingHai-I comprises two main components: the mother ship
and the USV itself. The USV’s communication system enables it to establish real-time
connections with the mother ship or land station using a radio frequency modem or
maritime satellite communication. This facilitates the exchange of data and control
commands. The communication capability ensures seamless coordination between the
USV and its operators or base stations. It utilizes Inmarsat (Fleet Broadband) for
communication, primarily when the vehicle operates at a distance. Furthermore, an R/F
modem is employed for remote control when the USV is beyond 2 kilometers from the
base station.

The mother ship can remotely operate or plan the USV’s path, offering control via a
remote handle or portable control box. It can also receive data from the USV. On the
other hand, the USV carries a camera, sonars, and a hydrological measurement interface.
A dedicated port supports image transmission, allowing large video data streams to be
transmitted. Microwave communication technology is applied for digital control signals
and data acquisition transmission.

The USV’s control system further comprises an embedded industrial control computer, a
serial extension board (DSP), and a network switch. The industrial control computer is
responsible for collecting, processing, and storing data from the measurement devices. It
possesses the capability to safeguard data in the event of communication issues, reducing
the risk of data loss.
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CHARLIE

The Charlie Unmanned Surface Vehicle (USV) is a versatile testbed that promotes col-
laboration among diverse research groups dedicated to advancing the field of unmanned
marine vehicles. Its primary purpose is to experimentally validate the algorithms and
methodologies proposed by these research groups. As a result, it provides a valuable
platform for investigating various aspects of unmanned marine technology; for instance,
figure 2.11 shows Charlie gathering data at Genova harbor. The research it supports
covers topics such as embedded real-time platforms for robotics and industrial automation,
modeling and identification, fundamental navigation techniques, guidance, and control,
path following in straight-line and generic trajectories, cooperative mission control, and
path tracking.

Figure 2.11: Charlie testing in Genova harbor. [Caccia 07]

In terms of its physical attributes, the Charlie USV integrates on-board computing capa-
bilities tailored for navigation, guidance, and control. Its catamaran-like design imparts
stability, redundancy in hull buoyancy, and the capacity for transporting payloads. It
presents a propulsion system driven by DC motors with two propellers, a steering mech-
anism featuring dual rudders, and a power supply structure comprising lead batteries
supplemented by solar panels. To ensure precise positioning and accurate heading infor-
mation, it is equipped with a GPS and an azimuth gyro. Communication with remote
control and supervision stations is achieved seamlessly through either a wireless LAN or a
radio modem.
The control system architecture of the Charlie USV is designed in a hierarchical structure
as shown in figure 2.12, which consists of different levels. At the lowest level, there
are software modules termed "Drivers" that handle input/output operations, managing
actuation devices (like thrusters and rudders) and sensing instruments (such as GPS,
compass, and echosounder). Above this is the "Execution Level", responsible for executing
fundamental Navigation, Guidance, and Control (NGC) tasks. These tasks interact through
shared variables, enabling coordinated and cohesive performance. This level communicates
with the Drivers, providing reference values to actuation devices and receiving instrumental
measurements from sensors.
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Figure 2.12: Hierarchical control architecture of Charlie [Caccia 09]

The "Execution Controller" is responsible for the activation, deactivation, and initializa-
tion of guidance, control, and estimation tasks. It manages conflicts and dependencies
concerning task resources, notably variables, to ensure system consistency. This level
is event-driven and uses Petri nets to describe the connections among estimation and
control tasks. Unlike the Execution Level, which primarily operates at the continuous-time
layer, the Execution Controller transitions states in response to commands from other
architectural components or human operators. These commands may encompass explicit
requests for task activation, notifications from the Execution Level, or signals from a higher-
level planner layer. The integration of a "Mission Control" module improves the control
architecture, entailing the development of modules with the capacity for online re-planning
of the vehicle’s motion, known as the "Path Planner." Additionally, it involves signaling
specific events linked to the evolution of continuous-time variables, a function expertly
managed by the "NGC Monitor." The Path Planner calculates and manages a collision-free
path to a predetermined destination, taking into account constraints related to waypoints,
local tangent, and curvature. The NGC Monitor cooperates closely with the Mission
Controller, essentially serving as the interface layer that bridges continuous-time-driven
modules with their event-driven counterparts.
In essence, the Charlie USV serves as a robust framework for integrating a spectrum of
algorithms and methodologies, streamlining the testing and evaluation of different guidance
and control architectures. This innovative architecture enhances the adaptability and ease
of experimentation in the field of unmanned marine vehicle technology.

2.3 Comparative Analysis
To keep the discussion brief, the preceding section only focuses on a few well-known surface
water vehicles (Table 2.1). However, it is acknowledged that many other water vehicles
exist in the literature. The rationale behind this choice is that the discussed vehicles are
recently published and provide detailed architectural information relevant to the presented
thesis. Nevertheless, other research efforts are included in this comparative analysis that
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are relevant to surface and underwater sensor approaches and strategies, even if they
do not comprise complete vehicle architectures. This approach has allowed for a more
comprehensive examination of relevant research and has highlighted the diversity and
extent of contributions in the field. The analysis is categorised based on the comparison
of environment and system of available architectures.

Environment-wise The previously mentioned autonomous vehicles have become increas-
ingly popular in aquatic environments. However, most systems are designed for open
water bodies or structured surroundings. For instance, the Roboat (as discussed
in Section 2.2.3) is purposefully designed to navigate through structured urban
environments. Similarly, other vehicles in this domain are primarily intended for
marine research where there are very few random obstacles in the water. Moreover,
the reduced complexity of the aquatic environment in terms of surface or underwater
obstacles simplifies the task of object detection and path planning, making it possible
for applying various algorithms and strategies from the field of deep learning.
Moreover, the existing literature focuses on natural water bodies characterized by
clear and relatively unpolluted water conditions [Mogstad 19]. This is an essential
aspect as turbid water in a flooded environment introduces substantial variations in
the raw data obtained from sensory modalities, particularly an issue for underwater
object detection and the generation of traversability maps. In this context, many
autonomous systems have been developed to employ vision sensors in underwater
applications. Notably, works by [Zhang 22] and [din 17] have put forth innovative
techniques in image enhancement specifically tailored for underwater environments,
leveraging camera-based imagery. Similarly, research contributions by [pen 21] and
[Trucco 06] have offered novel methods for image restoration, primarily aimed at
underwater object detection. However, it is noteworthy that these methods operate
under the fundamental assumption of clear water conditions.
One significant factor that affects the choice of sensor system in the aquatic environ-
ment is the depth of the water. The water’s depth is critical in the selection criteria
for underwater sensor systems. For instance, in the context of sonar-based systems, it
is essential to note that sonar data can be affected by multiple echoes originating from
the waterbed, which lower the object-to-background ratio, consequently leading to a
reduced object detection rate. Consequently, in such scenarios, it becomes important
that the choice of sensor, along with its specific attributes and characteristics, should
be dependent on the available water conditions, depth, and illumination levels to
ensure optimal performance in underwater sensing and perception tasks.

System-wise – The architectural designs discussed in the earlier sections are specifically
tailored to typical types of watercraft. This means these systems lack the flexibility
to adapt to different vehicle dimensions and kinematic characteristics. Moreover, it is
noteworthy that most of these systems exhibit a mono-modal nature, implying that
they are primarily designed for either surface water or underwater operations, with
limited cross-functionality. For instance, [Han 19] implements the SLAM using radar
data of coastal surface in gps restricted areas and [Sinisterra 17] presents the USV for
ship detection over the surface with camera imagery. Contrarily, [Raber 19] designed
low-cost USV to map coral reefs using underwater sonar. Similarly, a complex
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system is presented in [Karoui 15] to generate mosaics of underwater scenes using
similar forward-looking multibeam sonar, but it does not consider the surface water
environment. In instances where they do incorporate multi-modal capabilities (in
case of water strider in section 2.2.2), the data processing and mapping procedures
are distinctly segregated between the different sensor modalities. This lack of
reconfigurability and integration between surface and underwater domains represents
a noteworthy constraint in scenarios that demand versatile and adaptive aquatic
platforms. In order to achieve interoperability among various types of boats and
comprehensive mapping and situational awareness, more versatile and adaptable
architectures in aquatic autonomous systems are needed. Future advancements may
address these limitations to enable more agile, cross-domain operations and efficient
data fusion techniques.

2.4 Research Gap
The increasing impact of global warming has resulted in a significant increase in the
occurrence and strength of natural disasters across the globe. Among these calamities,
floods have become one of the most common and environmentally damaging disasters.
When a flood occurs, it causes significant changes to the environment, leading to complex
challenges in rescue and relief operations such as unknown underwater environment,
random obstacles and insufficient maps. These challenges highlight the need for innovative
technological solutions to improve the speed and accuracy of these operations. Specifically,
surface water vehicles equipped with multi-sensor system can play a pivotal role in this
context. These vehicles are well-suited to perform essential functions, primarily focused
on surveillance and mapping of the flooded areas.
The previous section presents a detailed comparison of existing surface water vehicles in
the commercial and research domains and highlights their operating environments and
system characteristics. However, it is worth noting that, to date, there is a significant
gap in the literature related to the development of similar systems designed explicitly
for disastrous areas, particularly in post-flood environments. This absence of relevant
research or commercial solutions for post-flood environment highlights a critical research
and development opportunity.
In such disaster-prone scenarios, where traditional means of transportation and data
collection are often compromised or rendered ineffective, the demand for specialized surface
water vehicles that can operate in the aftermath of floods is particularly demanding. These
specialized systems must be equipped to navigate and collect data in complex and dynamic
aquatic environments, facilitating rapid response, disaster assessment, and recovery efforts.
The existing systems encounter notable challenges when applied within post-flood environ-
ments. These challenges are discussed in detail below:

Presence of Unstructured and Random Obstacles – Floods result in widespread
destruction, introducing various unstructured and scattered objects such as fallen
trees, submerged vehicles, and damaged bridges, which hinder effective navigation.
The current systems are ill-equipped to detect and respond to these obstacles, making
them unsuitable for post-flood operations.
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Opacity of Floodwater – Floodwater is often filled with high concentrations of sand
and mud, making it opaque and reducing water clarity. This turbidity complicates
the effectiveness of vision-based cameras as they struggle to capture meaningful
imagery, making it difficult to assess the environment.

Variable Water Depth – The depth of water in a flooded area can vary significantly,
making it challenging for sonar-based imaging systems. The varying depths affect
the behavior of sonar signals, making it difficult to generate accurate imagery. As
a result, currently available systems may not provide precise depth information in
such dynamic environments.

Comprehensive Traversability Mapping – Effective navigation in post-flood scenar-
ios requires a comprehensive understanding of both the surface and underwater
terrain. However, existing systems often lack the capability to create detailed
traversability maps that encompass both surface and underwater features. Such
integrated mapping is essential for optimizing the navigation of rescue boats and
vehicles in the intricate and obstacle-laden post-flood landscape.

Given these challenges, it is evident that dedicated and novel strategies are required to
develop surface water systems specifically designed for post-flood environments. The
systems should have enhanced adaptability and versatility to effectively address the
complexities and uncertainties inherent in such disastrous scenarios. By tackling these
challenges, future systems can play an essential role in augmenting the efficiency and safety
of rescue and relief efforts following floods and similar natural disasters.



3. Conceptual Overview of the Surface
Water Traversability Mapping
(SWiM) Architecture

Traversability mapping is a vital component for autonomous and remotely operated vehicles
to navigate safely and efficiently through unknown environments. Evaluating traversability
involves determining whether a path is safe and feasible for a vehicle to travel through while
accomplishing its mission objectives. The traversabilty assessment considers various factors,
such as terrain topography [Seraji 03], potential obstacles [Zhenpeng 09] [Ye 07] (such as
rocks, wrecks, or dynamic obstacles), and environmental conditions [Yang 18] (such as
currents and turbulence in water). Researchers and engineers can create traversability maps
by analyzing these factors, which provide valuable insights into safe navigation areas and
those that may pose risks or complications. These maps are essential in guiding vehicles,
helping them plan optimal paths, avoid collisions, and make real-time decisions to adapt
to changing conditions. Understanding traversability is essential for successful missions
with various applications, including search and rescue [Dube 16], marine exploration
[Jain 15], environmental monitoring [Ruetz 22], and underwater infrastructure inspection
[Teixeira 16].

Traversability mapping is significant not only in terrestrial or aerial but also in aquatic
environments [Oskard 89]. It enhances navigational safety, facilitates the exploration
of underwater natural resources, and assists in disaster preparedness and response. In
particular, the aquatic environment is categorized as shallow or deep, based on the water
depth. Shallow water, typically less than 30 meters deep and located near coasts and
riverbeds, is affected by weather and tides and has muddy waterbeds, which can impact
underwater sensing such as sonar imagery due to the variable speed of sound and reflections.
In contrast, deep water, usually greater than 200 meters deep and found in the middle of
oceans, is cooler and less temperature variable, leading to less change in the speed of sound.
These differences significantly influence the physical characteristics of an environment and
sensory modalities including sonar.
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This thesis proposes a novel architecture – SWiM (Shallow Water traversabIlity Mapping)
for surface water platforms to navigate safely in shallow flooded environments that are less
than 2 meters deep. Currently available architectures are suitable for freshwater or marine
environments, which are much easier to navigate compared to post-flood environments.
For instance, Roboat I/II [Wang 20a] is specifically intended for use in urban waterways,
where the environment is well-structured and open, and depth changes are gradual. In
contrast, post-flood environments are typically congested, highly unstructured, and have
abrupt depth changes. Furthermore, urban waterways usually have maps that provide
information about the structure of lakes and upcoming bridges. However, these maps are
no longer relevant in post-flood environments due to the destruction, hence necessitate new
techniques to create reliable and usable traversability maps. These maps are particularly
difficult to generate because flooded water has limited visibility, and the water depth can
be highly variable, often reaching as low as 50cm in extreme scenarios. Moreover, the very
shallow water environment may create extreme problems in underwater sensing. Hence, in
post-flood situations, producing accurate traversability maps is crucial for rescue teams to
respond efficiently.
The proposed SWiM architecture is designed to meet environment and application-specific
requirements as presented below:

• It detects potential obstacles with more than 80% accuracy in the unstructured
environment.

• It analyzes the underwater and surface water footprints to classify obstacles as
floating or sinking.

• It combines multi-domain and multi-modal information into one map (within ±25cm
accuracy).

• It undergoes rigorous testing on multiple vehicles with varying dimensions and
motion principles to ensure reconfigurability.

3.1 SWiM Architecture
The SWiM (Shallow Water traversabIlity Mapping) architecture is specifically designed for
generating traversability maps in very shallow water, more specifically a post-flood envi-
ronment. This architecture recognizes the unique characteristics of flooded environments,
which comprise two primary mediums: underwater and surface water. Due to the distinct
physical properties of air and water, different sensory modalities are required for effective
mapping in these two mediums. For instance, in underwater environments, sound waves
are found to be more efficient than light waves due to water’s high acoustic impedance,
which hinders the propagation of light. Consequently, sonar emerges as the preferred
sensor in an underwater environment, outperforming cameras or LiDAR scanners. On the
other hand, in surface water environments, cameras and LiDAR sensors are more practical
because light can travel through air with minimal energy loss compared to sound.
The SWiM architecture addresses the challenges posed by these distinct physical media
by dividing the traversability mapping process into two primary modules: underwater
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Figure 3.1: Block Diagram of the Shallow Water Traversability Mapping (SWiM) Architecture
for Traversability Analysis. The figure shows how the system processes underwater and surface
water sensory inputs to detect obstacles and generate maps that identify safe and unsafe areas
for navigation, integrating these into a final map that offers a detailed view of the environment’s
traversability.

traversability and surface water traversability. Each module focuses on the unique charac-
teristics and requirements of its respective medium. Within each primary module, the
architecture generates detailed obstacle maps tailored to the specific medium. These maps
capture information about obstacles and their locations. To provide a comprehensive view
of the environment, a fusion strategy is employed to merge the information from both
modules. This fusion strategy takes into account whether obstacles are floating or sinking,
a critical distinction in water environments.
The resulting fused map is then transformed into a global coordinate system using
GPS/GNSS data, allowing precise georeferencing of the map. Safety criteria are applied
based on the surface and underwater footprint of each obstacle, contributing to a more
accurate assessment of navigational safety. Additionally, the underwater traversability
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module generates a depth map that enhances the understanding of underwater terrain.
This depth map is integrated with the fused obstacle map in the 2D traversability map
module, further enriching the map.

The architecture’s methodology and workflow are visually represented in Figure 3.1.
Subsequent sections of the thesis deals with the specific challenges, requirements, and
abstract methodologies of each module, providing a comprehensive understanding of the
SWiM architecture’s design and functionality.

3.1.1 Underwater Traversability

Challenges

The underwater traversability brings several inherent challenges that must be addressed
individually for safe navigation. The underwater module specifically addresses those
challenges for the optimal performance of the overall architecture. These challenges can
be broadly categoried into two groups: domain-specific and application-specific. Each of
these categories is briefly discussed below.

I. Domain-Specific Traditional sensors such as LiDAR, cameras, and radars are ineffective
underwater; hence, limited sensor options exist compared to those available for
terrestrial or aerial use. This limitation is primarily due to the challenges posed
by water’s properties, such as its opacity and acoustic characteristics. Among the
available sensor options, certain sensors like sonar prove to be more effective in
underwater navigation, especially in opaque water environments. Sonar systems use
sound waves to detect underwater features and hazards, making them a preferred
choice in such scenarios. However, even advanced sensors including sonar have their
own limitations. Sonar data can be affected by issues like high speckle noise, low
signal-to-noise ratio, and low contrast between obstacles and the underwater terrain.
These limitations must be addressed to ensure accurate and reliable navigation.
Furthermore, evaluating the accuracy and performance of new underwater navigation
techniques can be challenging due to the absence of standardized benchmarks and
datasets. Creating benchmark datasets for underwater environments is crucial for
testing and validating navigation systems.

II. Application-Specific In addition to the domain-specific challenges, the post-flood
environment introduces a set of application-specific challenges that further complicate
safe navigation, particularly in rescue operations. These challenges are due to the
complicated and continually changing conditions of such environments. A large
amount of sand particles lead to poor underwater visibility, making it difficult to
navigate and identify objects. These sand particles also contribute to interference
and noise in sonar data. Additionally, strong currents and fluctuating water levels
can make it challenging for water vehicles to maintain their position and avoid
collisions with debris or submerged obstacles. Moreover, the post-flood environment
is often highly cluttered and unstructured due to random obstacles like submerged
vehicles, fallen trees, and other debris that pose a safety hazard for water vehicles.
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Proposed Concept

The presence of significant noise within sonar imagery negatively impacts the detection
precision and overall robustness of the underwater traversability module. As a result,
it becomes imperative to incorporate noise removal and image enhancement techniques
[Keen 23] to improve mapping accuracy downstream in the process significantly. Numerous
denoising approaches have been documented in the literature, with many of them relying
on a fusion of conventional image filtration methods, including Gaussian blur, image
averaging, and adaptive thresholding. It is noteworthy that there is no universally superior
technique, as most of these methods are tailored to specific applications and require
parametric tuning.
Furthermore, sonar imagery typically provides a flat, two-dimensional view of the un-
derwater environment, with each pixel representing the intensity of the reflected sound
signal. However, this representation lacks depth information about obstacles and waterbed,
essential for determining whether an obstacle is a safety concern and also for helping
vehicles to navigate effectively. To overcome the limitation in an underwater environment,
the depth of the waterbed can be used to estimate the depth of obstacles, allowing for
safer and more precise navigation.
Moreover, as the distance from the sonar sensor increases, the resolution of the forward-
looking sonar imagery decreases. This degradation in resolution occurs because of the
forward-looking sonar’s physical principle, in which sound waves spread out as they
travel longer distances, resulting in less detailed images. To enhance the precision and
effectiveness of detection and tracking algorithms, it is possible to employ a data quality
assessment method similar to the one detailed in [Ropertz 17]. This technique allows for
the identification and removal of pixels with low probability, ensuring that the data used
for analysis is of higher quality and is more reliable. By implementing this approach, the
system can focus on the most relevant and trustworthy information, ultimately improving
the accuracy of its algorithms.
The limited underwater datasets poses a challenge to the implementation of deep learning-
based object detection and segmentation techniques in underwater environments. Conse-
quently, traditional image processing methodologies become essential in detecting under-
water obstacles within sonar imagery. Techniques such as Canny edge detection, contour
identification, and filtering are pivotal for detecting these obstacles. Further refinement
of detection results is achieved through non-maximum suppression, which significantly
enhances the accuracy of the identified obstacles. Object tracking plays an integral role in
this process by assigning a probability of detection to each object, based on its relative
movement to the vehicle. This probabilistic measure is critical for the subsequent integra-
tion of detected obstacles into traversability maps, where it significantly contributes to the
evaluation and depiction of the certainty levels associated with each obstacle. Additionally,
the development of a detailed simulated environment using Unreal Engine 4 offers a novel
approach to augment the accuracy of obstacle detection. This simulated environment en-
ables the testing and fine-tuning of the object detection algorithms, providing a controlled
setting that mimics real-world post-flood conditions. This combination of conventional
image processing and advanced simulation not only enhances detection accuracy but
also bolsters the reliability of the traversability maps used in underwater navigation and
exploration.
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3.1.2 Surface Water Traversability
Challenges

In surface water vehicles, such as boats and autonomous marine platforms, the selection
of sensors plays a pivotal role in achieving a comprehensive understanding of the surface
water environment. In this context, two widely used sensor types are cameras and
LiDAR scanners, each offering unique strengths and encountering distinct limitations when
applied to water surfaces. Cameras are renowned for providing a visual perspective of the
environment. They excel in capturing high-resolution images, encompassing color and
texture details that are valuable for visual recognition and analysis. Furthermore, camera
images are well-suited for applying deep learning techniques, enabling sophisticated object
detection and classification. However, when operating in water environments, cameras
face several formidable challenges. The reflective properties of water surfaces can give
rise to glare and reflections within the captured images, effectively obscuring objects.
This phenomenon poses a significant limitation to detecting objects in such conditions
accurately. In contrast, LiDAR scanners are unaffected by reflections from water surfaces.
Additionally, LiDAR exhibits superior performance in low-light or night-time conditions,
making it a valuable choice for 24/7 operation. However, LiDAR data inherently lacks
color information, limiting its ability to provide visual context. Furthermore, while cameras
excel in detecting vegetation or surface features over water, they struggle to provide precise
information about the distance and height of objects from the watercraft. This limitation
can be particularly problematic when accurate measurements of objects’ positions and
dimensions are essential. In practice, relying solely on one of these sensors may be beneficial
in specific scenarios but is often insufficient, especially in challenging environments like
post-flood scenarios.

Proposed Concept

In scenarios where precision in distance and height measurements, as well as detailed
information about object characteristics like color and texture, is of paramount importance,
employing a combination of sensors becomes essential. The integration of both cameras
and LiDAR sensors facilitates a holistic understanding of the surrounding environment,
enabling surface water vehicles to navigate effectively and make well-informed decisions
even in the face of complex and ever-changing water conditions. This approach, known as
sensor fusion, harnesses the unique strengths of each sensor type while mitigating their
individual limitations. By doing so, it ensures a higher degree of reliability and robust
performance in diverse surface water conditions. However, implementing sensor fusion
has its complexities. Challenges arise due to differences in data formats, the need for
calibration, and synchronization requirements between LiDAR and camera systems. These
issues demand advanced data processing techniques and precise alignment of sensor outputs
to achieve successful fusion. In the proposed architecture, a 3D LiDAR sensor is integrated
with a stereo camera system for surface water traversability mapping.To guarantee the
integrity of data, techniques similar to those presented in [Ropertz 17] are incorporated.
The initial stage involves data filtering, building on the foundations laid by previous research
[Keen 20]. This is followed by the deployment of various deep learning architectures to
execute object detection and segmentation from camera imagery. The fusion of both
object detection and segmentation significantly enhances the reliability and accuracy
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of obstacle detection. These detected obstacles are then precisely superimposed onto a
LiDAR-generated point cloud, facilitating the determination of their three-dimensional
coordinates. Subsequently, this comprehensive 3D obstacle map, rendered as a point cloud,
is conveyed to the next module for advanced processing and informed decision-making.

3.1.3 Fused Mapping
Challenges

The post-flood environment often presents many challenges characterized by random and
unstructured obstacles. These obstacles encompass a wide range of objects, including
submerged cars, fallen trees, and assorted debris. This scenario is particularly complex
because these obstacles can exhibit static and dynamic behaviors. Static obstacles remain
fixed, while dynamic obstacles may move due to water flow. The presence of dynamic
obstacles introduces a dynamic element into the environment. Consequently, the fused
map representing the post-flood landscape must evolve with time as these obstacles
shift and relocate in response to the water’s movement. This dynamic aspect must be
considered when assessing the navigability and safety of the environment. Additionally,
there are several situations encountered where relying solely on surface water traversability
information proves insufficient for understanding the obstacles in the area. For instance,
small floating obstacles or thin vegetation may not pose significant challenges to a surface
water vehicle regarding navigation. However, relying solely on surface water information
may not provide an accurate picture of the surroundings.

Proposed Concept

To address the complexities associated with navigating and operating effectively in post-
flood environments, a fusion strategy is proposed in this technical thesis. This strategy
involves the integration of information from two critical data sources: surface water
obstacle maps and underwater obstacle maps. By combining these maps, the goal is to
achieve a more precise, comprehensive, and robust understanding of the environmental
obstacles that can impact the safety and functionality of surface water vehicles.
The fusion strategy begins by categorizing the obstacles into two main factors:

Floating or Sinking This categorization helps differentiate between objects that remain
on the water’s surface and those that have submerged underwater.

Threat Level This factor differentiates between obstacles based on the level of threat
each obstacle presents on the safe navigation of boat. For instance, floating leaves
are safer for navigation as compared to a standing tree.

To ensure a comprehensive understanding of the environment, the fused map is transformed
into global coordinates using GPS/GNSS (Global Positioning System/Global Navigation
Satellite System) data. This transformation provides georeferenced information, enabling
precise navigation and location-based decision-making.
The primary output of this architecture is a safe traversability map, which serves as a
valuable resource for surface water vehicles. This map not only identifies the presence of
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obstacles but also assesses the threat level they pose based on their surface and underwater
footprints. This threat level information is crucial for determining the navigability and
safety of specific routes and areas.
To enhance the reusability and facilitate fast transmission of the output map, it is computed
as a multi-class color coded map. In this representation, each 2D location within the
map corresponds to an object, and the color code value at that location indicates the
threat level posed by the object. This traversability map format optimizes data storage,
transmission, and processing while retaining essential information about the environment’s
safety and obstacles.



4. Datasets and Test Environments

The importance of datasets and test environments in robotics cannot be overstated.
In order to develop and evaluate robotic systems, it is crucial to have access to such
datasets and test environments that accurately reflect the real-world scenarios in which
the robots operates. Test environments provide a controlled setting in which researchers
can systematically evaluate the performance of their robotic systems. Standard datasets,
on the other hand, enable researchers to train and test machine learning algorithms that
are used in robotic systems.
Developing robust robotic systems required rigorous testing across both realistic and
simulated environments. In the specific domain of post-flood environments, conducting
extensive real-world testing is inherently challenging. This difficulty arises from various
factors, including restricted access to destructed areas, potential interference with ongoing
rescue operations, and the substantial financial risks associated with unpredictable condi-
tions in flood-affected regions. Consequently, the shortage of available datasets directly
linked to post-flood scenarios increases the challenge. While datasets related to shallow
water bodies like rivers or ports may facilitate testing in simpler scenarios, they often lack
the complexity inherent in post-flood environments. This creates a paradoxical situation
wherein systems must be designed to operate effectively in post-flood conditions despite
the impracticality of evaluating them in these real-world scenarios.
Simulated environments emerge as a pivotal solution to address the limitations of real-world
testing in post-flood scenarios. Simulations provide a controlled and reproducible setting
for testing robotic systems under a spectrum of conditions that imitate the challenges
posed by post-flood environments. However, for simulations to be effective, they must
strike a delicate balance between reality and controllability. The simulated environment
should be sufficiently realistic to capture the complexities of post-flood scenarios while
remaining manageable for testing various system functionalities.
Within the framework of Shallow Water Traversability Mapping (SWiM) architecture,
this chapter emphasize the significance of test environments, particularly those that are
simulated, and the critical role played by datasets in advancing the field of robotics. The
objective is to examine the complexities associated with the development and utilization of
these environments, with a particular focus on the challenges posed by post-flood scenarios.
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4.1 Natural Waterbodies
The absence of datasets directly associated with post-flood environments introduces a
significant challenge in the comprehensive evaluation of robotic systems tailored for such
scenarios. The lack of relevant datasets restricts the ability to thoroughly test and refine
these systems under conditions that mirror the complexities of post-flood environments.
Consequently, there is an urgent and compelling need for datasets that can serve as
valuable resources in enhancing the accuracy, adaptability, and robustness of robotic
systems designed for post-flood scenarios.
Existing datasets, although not explicitly focused on post-flood environments, provide a
foundation for evaluating certain aspects of robotic functionalities. Datasets captured in
natural water bodies such as rivers, ports, or urban waterways, offer valuable insights,
particularly in assessing simpler scenarios. These scenarios may include the detection
of structured surface water objects, semantic segmentation of a scene, or the detection
of controlled underwater objects. While these datasets contribute to the evaluation of
specific functionalities, their applicability to the complexities of post-flood environments is
limited.
In the subsequent section, a comprehensive overview of state-of-the-art datasets is presented.
These datasets, although not originally designed for post-flood scenarios, have been
extensively utilized in this work to evaluate and refine various aspects of the robotic
system. Their utility lies in their capacity to facilitate the assessment of fundamental
functionalities such as object detection, segmentation, and scene understanding. However,
the limitations of these datasets become apparent when attempting to replicate the dynamic
and unstructured nature of post-flood environments.
To address the gaps in existing datasets and accommodate the specific requirements of
post-flood scenarios, a novel dataset is introduced. This dataset is thoroughly annotated
to capture the complexities of post-flood environments, offering a unique and tailored
resource for evaluating robotic systems in these challenging conditions. The development
of this dataset is based on a critical analysis of existing datasets, identifying the limitations
and areas where improvements are necessary to align with the complexities of post-flood
scenarios.

4.1.1 State-of-the-art Datasets
In this section, state-of-the-art surface and underwater datasets are presented that have
been comprehensively used to train and test SWiM architecture. These datasets are
discussed below:

MODD / MODD2 Dataset: Kristan et al. [Kristan 15] present a Marine Obstacle De-
tection Dataset (MODD) that comprises a collection of 12 video sequences represented
as frames. The dataset stands out for its annotations, providing a total of 4454 fully
annotated frames, each with a resolution of 640×480 pixels. Similarly, Bovcon et. al.
[Bovcon 18] have presented an extension of MODD dataset named as MODD2 that
has 28 time-synchronized sequences (11675 frames at resolution of 1278× 958 pixels)
gathered using on board stereo camera, IMU and GPS. This dataset is considered
as the largest benchmark for evaluating obstacle detection algorithms in aquatic
environments.
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The data collection process involved the utilization of a small unmanned surface
vehicle (USV) with a length of approximately 2.2 meters. The USV was equipped
with an Axis-207W1 camera positioned at a height of approximately 0.7 meters above
the water surface. The camera had a field of view of 55o, capturing a comprehensive
view of the surrounding aquatic environment. The USV traversed the test site,
situated at the port of Koper, Slovenia, at a maximum speed of 2.5 m/s. The
datasets were carefully gathered across different periods of the day and diverse
weather conditions, reflecting the variability inherent in real-world scenarios.

The sequences within these datasets include a variety of environmental challenges.
For instance, in MODD dataset, the first ten sequences depict images captured
under normal weather conditions, providing a foundational benchmark for obstacle
detection algorithms. In contrast, the last two sequences deliberately introduce
extreme environmental challenges, with the sun positioned directly facing the vehicle,
as illustrated in Figure 4.1. This deliberate variation in environmental conditions
ensures that the dataset covers a broad spectrum of challenges, allowing researchers
to evaluate the robustness and generalization capabilities of obstacle detection
algorithms under diverse scenarios.

(a) (b) (c) (d)

Figure 4.1: Example Data from MODD Dataset. (a-b) Diverse dataset captured at different
light conditioning in the coastal waters of Koper, Slovenia for MODD dataset (c-d) Annotations
include large object, small object, and sea edge (boundary between the sea and the horizon)
[Kristan 15].

An invaluable addition to these datasets is the inclusion of sea edge annotations,
denoting the boundary between the sea and the horizon. This supplementary an-
notation enriches the datasets’ utility by providing a reference point for detecting
obstacles floating specifically over the water surface. By including the sea edge an-
notations, MODD/MODD2 offer more distinct and context-aware datasets, allowing
researchers to focus specifically on obstacles within the aquatic domain.

MaSTr1325: MaSTr1325 [Bovcon 19] represents a large-scale marine semantic segmen-
tation dataset, specifically designed to facilitate the advancement of segmentation
methods tailored for deployment on small-sized coastal Unmanned Surface Vehicles
(USVs). This dataset consist of three core components: Images, Ground Truth Masks,
and Inertial Measurement Unit (IMU) data, collectively presenting a comprehensive
environment for algorithmic development and evaluation. Comprising a total of 1325
diverse images, MaSTr1325 is a product of complex data collection efforts spanning

1https://www.axis.com/products/axis-207w/support
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a two-year duration, during which a USV was manually navigated in the Gulf of
Koper, Slovenia.

Each image within the MaSTr1325 dataset has undergone manual annotation by
human annotators. Figure 4.2 shows the annotated masks that enrich the dataset
with semantic segmentation information. The annotations contain three distinct
classes: sea, sky, and environment. This hierarchical segmentation provides a granular
understanding of the visual scene, allowing algorithms to perceive between critical
elements such as water surfaces, the sky, and the broader environment. The manual
annotation process ensures high-quality ground truth data, serving as a reliable
benchmark for evaluating the performance of segmentation algorithms.

(a) (b) (c) (d)

Figure 4.2: Example Data from Mastr1325 Dataset. (a, c) Diverse image dataset captured in
the coastal waters of Koper, Slovenia for Mastr1325 Dataset (b, d) Mask classes include obstacle,
water, sky, and unknown [Bovcon 19].

ROSEBUD: The dataset presented by Lambert et al. [Lambert 22] contains an imagery
captured along Sugar Creek and the Wabash River in the state of Indiana, USA. The
dataset is derived from video recordings, with 249 distinct image frames extracted
from over 2 hours of footage recorded on the Wabash River on July 15, 2021, and 300
images obtained from over 3 hours of video recorded on Sugar Creek on September
30, 2021. The collective dataset, denoted as ROSEBUD, provides a total of 4392
images, each available in high resolutions of 1920 x 1440 and 512 x 384 pixels. The
set includes 549 original images, along with binary classification masks, seven-classes
segmentation masks, and ground-truth image labels for each image.

The video recordings were conducted at a consistent rate of 30 frames per second
(FPS) using a GoPro Hero4 camera mounted approximately half a meter above the
waterline. The Wabash River images were captured using an Unmanned Surface
Vehicle (USV) developed at the Mahmoudian lab’s BREAM, while Sugar Creek
images were acquired from a Canoe operated by a human pilot. The incorporation
of both USV and human-operated boat data adds an extra layer of diversity to the
dataset, considering the potential variations in data acquisition approaches.

For thorough annotation, 549 images were manual labeled by human annotators. The
annotation process accounts for seven distinct fluvial classes: (1) water, (2) exposed
river shore/bank, (3) bridge, (4) boat, (5) flora, (6) debris (encompassing logs, trash,
rocks), and (7) sky. This annotation process provides a detailed understanding
of the environmental context, catering to diverse applications in remote sensing,
environmental monitoring, and machine learning algorithm development.
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(a) (b)

Figure 4.3: Example Data from Rosebud Dataset. (a) Images captured in a shallow lake (b)
Segmentation Mask [Lambert 22].

The distinct origin of images from both a USV and a manually operated canoe intro-
duces variability in navigational perspectives, water conditions, and environmental
contexts, enhancing the dataset’s generality. Such diversity is critical for training and
evaluating algorithms that can generalize across different water bodies, boat types,
and operational scenarios. Furthermore, the provision of images at two resolutions
(1920 x 1440 and 512 x 384 pixels) caters to the diverse computational requirements
of researchers and practitioners, allowing for flexibility in dataset utilization based
on specific application needs and resource constraints.

USVInland Dataset: The dataset presented by Cheng et al. [Cheng 21] contains a di-
verse range of sensor data, incorporating simultaneous localization and mapping
(SLAM)/odometry, stereo matching, groundtruth data derived from LiDAR, and
water segmentation data from camera. This comprehensive collection is derived
from real-world scenes of urban waterways, capturing various waterway landscapes
and weather conditions at different times. The SLAM/odometry sub-dataset offers
enriched information, including the time of data collection, the duration of data
acquisition, trajectory length, and prevailing weather conditions for each sequence.

The dataset integrates an array of sensors, contributing to its richness and versatility.
A LiDAR sensor with a wavelength of 905 nm, 16 beams, a horizontal field of
view (HFoV) of 360°, and a vertical field of view (VFoV) of 32° operates at 10
Hz, with a maximum range of 100 m, a range resolution of 2 cm, and a horizontal
angular resolution of 0.18o. A stereo camera, synchronized with a built-in Inertial
Measurement Unit (IMU), captures RGB images at resolutions of 640 × 400 or 1280
× 800 at a rate of 20 Hz. The camera has a horizontal fov of 95o, a vertical fov of
50o, and a diagonal fov of 112o. The IMU, operating at 200 Hz, is 6-axis. Three
radar sensors, each operating at 10 Hz, provide a horizontal fov of 94o, a vertical
fov of 50o (-6 dB), a range resolution of 0.045 m, a maximum unambiguous range of
18.08 m, a maximum radial velocity of 3.96 m/s, and a radial velocity resolution of
0.25 m/s. An Inertial Navigation System (IMU) with a 50 Hz sampling rate and
two GPS receivers (U-Blox ZED-F9, 5 Hz) with RTK signal reception capabilities
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(a) (b)

(c) (d)

Figure 4.4: Example Data from USVInland Dataset. (a, c) Images captured in an urban
waterway (b, d) Mask class include water [Cheng 21].

enhance the dataset’s geospatial accuracy.
The stereo matching sub-dataset comprises 324 image pairs, providing valuable
data for evaluating stereo vision algorithms. The groundtruth data, generated from
LiDAR point clouds, enhances the dataset’s utility for precision applications, enabling
validation against ground truth for sensor calibration and algorithmic refinement.
In the water segmentation sub-dataset, 518 relatively low-resolution images (640 ×
320) and 182 relatively high-resolution images (1280 × 640) are accompanied by
annotation data. Annotated images in the water segmentation sub-dataset enable
the discrimination between water reflections and physical objects. This annotation
data serves as a valuable resource for training and evaluating algorithms aimed at
enhancing the accuracy of water segmentation, a prerequisite for reliable aquatic
sensing and navigation.

Marine Debris Dataset: The Marine Debris Dataset introduced by Singh and Valdenegro-
Toro [Singh 21] addresses a critical gap in underwater analysis by focusing on semantic
segmentation using forward-looking sonar (FLS) data. This dataset is a valuable
contribution to the field as it establishes a baseline for creating and testing algorithms
designed to detect and classify objects in sonar images.
The dataset is generated through the deployment of an ARIS Explorer 3000 forward-
looking sonar attached to an autonomous underwater vehicle (AUV) within an
artificial water tank with dimensions (W, H, D) = (3 × 2 × 4) m3. The ARIS
Explorer 3000 sonar operates at a high frequency of 3 MHz, featuring a set distance
range of 0.7-5 meters. It incorporates 128 acoustic beams, offering a field of view of
30o × 15o and a spatial resolution that varies from 2.3 mm per pixel in proximity
to 10 mm per pixel in the distant range, thereby enabling a diligent representation



4.1. Natural Waterbodies 39

(a) (b) (c) (d)

Figure 4.5: Example Data from Marine Debris Dataset. (a, c) Sonar imagery captured in
a water tank (b, d) Mask class include Background, Bottle, Can, Chain, Drink-carton, Hook,
Propeller, Shampoo-bottle, Standing-bottle, Tire, Valve, and Wall [Singh 21].

of the underwater environment. To avoid temporal correlation between frames, a
strategic approach involves ignoring five frames between any two consecutive frames.
This methodology ensures the dataset’s integrity, providing a robust foundation for
further research and algorithmic development in the domain of underwater robotics
and sonar-based image analysis.
The dataset includes a variety of objects, both typical maritime and domestic items,
creating a realistic scenario for data collection within the artificial tank. Comprising
annotated forward-looking sonar imagery (1868 images in total) acquired in diverse
underwater conditions, this dataset encompasses eleven object types, including plastic
bags, bottles, and submerged items, making it a comprehensive resource for semantic
segmentation tasks. The dataset is divided into training and testing sets, with each
image featuring detailed annotations. Environmental factors such as varying water
depths, turbidity levels, and lighting conditions are considered, providing a diverse
and realistic dataset for algorithm evaluation.

UATD Dataset: Xie et al. [Xie 22] introduced a novel dataset focused on advancing un-
derwater object detection, featuring multibeam forward-looking sonar (FLS) imagery.
The dataset, encompassing 10,000 sonar images, was collected from diverse locations
and depths, each image precisely annotated with bounding boxes and correspond-
ing labels. The annotated dataset, comprising 9200 images, was categorized into
training (7600 images), test1 (800 images), and test2 (800 images). A noteworthy
distinction is made between the marine debris dataset, portraying FLS images in
a sector representation, and the UATD dataset, which was processed to eliminate
exterior black regions around the sonar part, enhancing uniformity but potentially
compromising human readability. The data collection, initiated in 2020 at Maoming
and Dalian in China, occurred in a natural setting, particularly in a shallow water
lake.
The data acquisition utilized a Tritech Gemini 1200ik sonar, a multibeam forward-
looking sonar with dual frequencies of 720 Hz and 1200 Hz for long and short ranges,
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(a) (b) (c) (d)

Figure 4.6: Example Data from UATD. (a, c) Sonar imagery captured in a shallow water lake
(b, d) Annotated obstacles. [Xie 22].

respectively. A specialized mechanical structure was devised to affix the sonar to
the boat, enabling image capture at varying depths and tilt angles. This depth
and tilt variation strategy significantly expanded the dataset size by accounting for
the impact of slight changes in sonar or object positions. The dataset features ten
distinct object types, including cylinders, tires, cages, human body models, and
others.

4.1.2 MASTER Dataset:
The standard datasets discussed above do not fulfill the multi-modal requirement of SWiM
architecture due to their narrow focus on either surface or underwater environments.
To ensure a comprehensive evaluation of the multi-modal SWiM architecture, a novel
dataset termed as Multi-modAl Shallow waTER (MASTER) has been compiled from
a variety of aquatic environments, containing ports, lakes, and shallow areas of urban
rivers. This extensive dataset represents temporal data sequences, spanning between 2019
to 2021. Its uniqueness lies in the incorporation of multi-sensor and multi-modal data,
offering a comprehensive understanding of the water environment. The array of sensors
integrated into the dataset comprises stereo cameras, LiDAR, GPS/GNSS, and SONAR,
collectively providing a rich and dynamic dataset capturing various aspects of the surface
and underwater environment.
Recorded across multiple surface water vehicles, each characterized by distinct dimensions
and motion models, the MASTER dataset stands out for its versatility. These boats, fea-
tured in the dataset, demonstrate diverse geometries and navigational behaviors, ensuring
the dataset’s applicability across a range of scenarios. For detailed information regarding
the individual surface water vehicles used in data acquisition, the reader is directed to the
corresponding content in the appendix B.

Gelterswoog Lake: The dataset was collected using basilisk and astrider from the
beginning of 2021 to mid-2023 in a shallow water lake near RPTU Kaiserslautern
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Campus. The data was recorded in various weather conditions, and the depth of
the lake varied depending on the temperature. During the cold or rainy seasons, the
depth of the lake ranged from 30 cm at the corners to 4 meters, while in the hot
season, it was between 10cm to 2.5 meters. The lake has a few obstacles, such as
water volleyball goal posts, concrete structures, floating balls, and a docking area.
Additionally, to analyze underwater sonar functioning and the noise in its data,
several known obstacles were thrown into the water. The lake is situated at global
coordinates of 49.394278, 7.694304.

THW test site: Technisches Hilfswerk (THW) is Germany’s federal civil and disaster
protection organization. The dataset was recorded in the first two weeks of November
2021 at the test site (urban river) of THW near Hoya. This is a river with very low
water current and average depth approximately 5 meters. The dataset was recorded
on basilisk and pontonboot. The test site is situated at global coordinates of
52.8268684, and 9.1992187.

Hamburg Port: As a collaborative partner of the project, the port authority has provided
a test site at Hamburg Port. The dataset was recorded in the last two weeks of
November 2021 using basilisk, during an exhibition of the presented system. It
was approximately 10 meters deep waterbody with very high water current. The
port’s test site is situated at global coordinates of 53.506565, 9.968251.

This thesis contributes in the field of benchmarks by introducing a novel and comprehensive
multi-modal shallow water dataset recorded across distinct surface vehicles, varying in
size and motion model. Here, the shallow water means the water depth less than 10
meters and more importantly less than 2 meters. Figure 4.7 provides the sensor data,
explaining the complex details of the dataset’s composition. The dataset encompasses a
total of 1200 images and point cloud frames, each annotated with bounding boxes and
segmentation masks. The inclusion of bounding boxes is particularly noteworthy, providing
a labeled representation of obstacles within the dataset. It’s essential to highlight that
the bounding boxes exclusively refer to a single class of obstacles, a strategic choice that
streamlines the dataset’s focus for specific applications, such as traversability mapping
and obstacle detection. The segmentation masks further enhance the dataset’s utility
by offering semantic annotations, providing a more granular understanding of object
boundaries and shapes. Figure 4.8 shows the annotated mask from MASTER dataset.
Following are the salient features of the dataset:

1. Temporal Diversity: Recorded at different times of the day and across various weather
conditions throughout the entire years of 2019-2021, the dataset encapsulates the
dynamic nature of real-world scenarios.

2. Multi-Modal: The dataset comprises rich data modalities of both surface and under-
water environments. The dataset presents surface water information from stereo cam-
era, 3D LiDAR, and GPS/GNSS, whereas underwater information from multibeam
forward-looking sonar, ensuring a multi-modal representation of the environment.

3. Multi Waterbodies: The dataset’s environmental diversity is emphasized by recordings
in a variety of waterbodies, including lakes, ports, and rivers. To further enhance its
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(e)

Figure 4.7: Example data from MASTER Dataset. (a) Camera Image, (b) Pointcloud, (c)
Sonar Imagery (d) Reflectivity image, and (e) Noise image from LiDAR.

diversity, the dataset captures varying water depths ranging from 50 centimeters to
10 meters, presenting an understanding of different aquatic environments.

4. Multi Boat: The dataset was recorded on three different boats having distinct motion
model and kinematics.

This contribution significantly addresses the gap in benchmark datasets specifically tailored
for shallow waterbodies, offering a resource that aligns with real-world challenges encoun-
tered in aquatic environments. The recording across various parameters enhances the
dataset’s relevance for a wide range of applications. Researchers can leverage this dataset
to advance algorithms and models in areas such as perception, navigation, and object
recognition within the context of surface water vehicles. The dataset’s open availability and
comprehensive documentation further enhances collaborative research efforts, empowering
the scientific community to collectively push the boundaries of knowledge in the domain
of shallow waterbodies exploration.
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(a) (b)

Figure 4.8: Example data from MASTER Dataset. (a) Camera Image, (b) Segmentation Mask.

4.2 Simulation
The natural environment proves valuable for validating the proof of concept, allowing
the testing of simple scenarios related to the detection and mapping of random objects.
However, these environments fall short when it comes to assessing the complexities of
post-flood scenarios. To overcome this limitation, a comprehensive simulation has been
developed to facilitate extensive testing of post-flood scenarios. This simulation is designed
within Unreal Engine, a sophisticated physics-based simulator renowned for its application
in developing highly graphical games and simulated environments.
The simulation in Unreal Engine features the replication of few realistic environments and
three distinct surface vehicles (SVs), namely astrider, basilisk, and pontonboot.
Each of these vehicles is equipped with a multi-sensor system, mirroring the configurations
of their real counterparts (provided in Appendix B) used in practical testing. Unreal
Engine, being a sophisticated and physics-based simulator, provides an ideal platform for
creating a realistic virtual environment that closely mimics the challenges and complexities
encountered in post-flood scenarios.
The integration of Unreal Engine with the SWiM architecture is an essential aspect of this
simulation. To establish this connection, custom APIs within the FINROC framework have
been developed in-house. These APIs serve as a bridge, facilitating seamless communication
between the SWiM architecture and Unreal Engine. This integration allows for real-time
data exchange, enabling the SWiM architecture to control and receive feedback from the
simulated SVs within Unreal Engine. Such a connection ensures that the behavior of the
SVs and the performance of the SWiM architecture are rigorously evaluated in a controlled
yet realistic setting.

4.2.1 Post-flood Water
The simulation of post-flood environments in this research is designed and implemented
using the Unreal Engine’s water plugin as shown in Figure 4.9. Using this powerful plugin,
the environment’s water parameters can be tuned to meet the specific requirements of the
study. While the default water provided by the Unreal plugin is clear and moving, the
focus of this work lies in replicating the conditions of still post-flood water. In post-flood
scenarios, water movement is often minimal, and the environment is suffered by the
destruction due flood. Therefore, adjustments are performed to the water parameters,
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particularly in terms of turbidity and color, to accurately simulate the conditions of a
post-flood environment.

Figure 4.9: Water Plugin - Unreal Engine. The image shows water placed within the simulation
using oceanwaterbody blueprint.

One critical aspect of post-flood waters is the presence of high turbidity, caused by the
influx of sediment and debris. In the Unreal Engine simulation, this turbidity level was
intentionally increased to mirror the challenging conditions of navigating through turbid
post-flood waters. The introduction of increased turbidity as shown in Figure 4.10 serves
the purpose of simulating the real-world scenario where the water’s clarity is compromised,
posing challenges to sensors such as cameras, LiDAR and sonar mounted on surface vehicles
(SVs). By replicating this environmental characteristic, the simulation provides a realistic
testing ground for SVs, allowing for the evaluation of their ability to navigate effectively
in challenging post-flood conditions.
The generation of the dataset within the Unreal Engine simulation is a complex process
aimed at capturing the diversity of post-flood conditions. Different water depth levels are
incorporated into the simulation to emulate the varying depths commonly encountered
in post-flood environments. This deliberate variation in water depth adds a layer of
complexity to the dataset, allowing for a comprehensive evaluation of the SV’s performance
across different depths. The scenarios generated at different water depths contribute to a
more diverse dataset, enhancing the adaptability and versatility of the SV’s navigation
capabilities.
In essence, the Unreal Engine simulation, augmented by the water plugin, serves as a
sophisticated platform for replicating the complex characteristics of post-flood environments.
The intentional adjustment of turbidity and water color, coupled with the incorporation of
diverse water depths, ensures that the simulation captures the complexities of navigating
through post-flood waters. The generated dataset becomes a valuable resource for training
and evaluating SVs, offering a realistic and controlled environment for systematically
testing their capabilities. Through this simulation-based approach, the study achieves
a high level of fidelity in replicating post-flood conditions, contributing to the robust
development and assessment of SVs for effective post-flood rescue operations.
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(a) (b)

Figure 4.10: Representation of Visibility in a Simulated Underwater Environment. This figure
contrasts two conditions in a simulated underwater setting: (a) depicts the environment without
any sediment, offering clear visibility of an obstruction, and (b) shows the same scene with sand
sediments, demonstrating the reduced visibility and the challenge it poses for object detection.

4.2.2 Flooded Environments
Flooding is a natural disaster that impacts diverse environments, ranging from remote and
rural areas to densely populated urban cities. However, each environment presents distinct
challenges, and the nature of these challenges significantly varies between remote and
urban settings. In remote areas, the effects of flooding manifest in vast fields, potentially
impacting animals, and the landscape is generally less congested. Conversely, urban city
environments pose a unique set of challenges, characterized by high population density,
congested buildings, and a multitude of random objects such as vehicles, poles, and garbage
cans strewn across the landscape. Traversability is notably equally challenging in any
flooded environment as each environment poses different nature of challenges.
Therefore, in the context of this research, several unreal environments are used ranging
from barnyard to city areas (shown in Figure 4.11). The objective is to develop and
test surface vehicles (SVs) capabilities in scenarios that closely resemble the challenges
encountered in real post-flood environments. Hence, various scenarios have been precisely
crafted, aiming to replicate issues commonly observed in actual post-flood situations.
These scenarios include submerged cars, floating wooden planks, fallen trees, and scattered
debris, among others. Each scenario is designed to capture the diversity of challenges
faced by SVs when navigating through flooded landscapes. The choice to simulate sinking
cars, fallen trees, and other obstacles is informed by their frequent occurrence in post-flood
scenarios and their significant impact on traversal and rescue operations.
Numerous simulation runs have been executed within the simulated environment, generat-
ing a comprehensive and highly realistic dataset representative of post-flood conditions.
The simulation dataset serves as a valuable resource for evaluating and refining the capabil-
ities of SVs in response to the challenges posed by flooded environments. The simulations
provide a dynamic and controlled platform for systematically testing the SV’s ability to
detect, navigate around, and respond to various obstacles encountered in the aftermath of
a flood.
The simulated scenarios not only replicate physical obstacles but also account for envi-
ronmental factors such as varying water depths, turbidity levels, and lighting conditions.
These factors introduce additional layers of complexity, mirroring the unpredictable and
dynamic nature of real post-flood environments. By incorporating these elements into the



46 4. Datasets and Test Environments

Without Flood With Flood

(a) Urban City Environment

(b) Barnyard Environment

(c) Neighborhood Environment

Figure 4.11: Flooded environments simulated in Unreal Engine. The figure shows the environ-
ments of Unreal Engine that are flooded with turbid water. Each environment poses distinct
challenges. Buoyancy component is added in several objects within this environment to show a
realistic behavior due to water. In (c) a white car with buoyancy is visible.

simulation, the dataset becomes a rich and diverse repository that enhances the fidelity of
the testing environment.
The dataset derived from these simulations serves a dual purpose. Firstly, it facilitates
the training and validation of algorithms within the SV’s perception and decision-making
systems. The SV’s sensors, including cameras, LiDAR, and sonar, are exposed to scenarios
mimicking real-world post-flood challenges. This exposure enhances the adaptability and
robustness of the SV’s sensing mechanisms, enabling it to effectively navigate through
complex and unpredictable urban flood scenarios.
Secondly, the dataset becomes an invaluable resource for benchmarking and evaluating
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the SV’s performance. The dataset provides a baseline against which the SV’s capabilities
can be measured, ensuring that it meets the demanding requirements of post-flood rescue
operations. The dataset’s diversity contribute to a thorough evaluation, offering insights
into the SV’s strengths, limitations, and areas for improvement.

4.2.3 Surface Vehicles Models
In simulating the post-flood scenarios, the Unreal Engine proves to be a robust environment
for designing and implementing highly detailed models of surface vehicles. Specifically,
three distinct surface vehicles crucial to this study — the astrider, basilisk, and
pontonboot — have been accurately modeled within the Unreal Engine framework.
This modeling is an integral component of the research, contributing to the creation of a
realistic and immersive simulated environment for testing and evaluating the performance
of these surface vehicles in post-flood conditions.

(a) (b)

(c) (d)

Figure 4.12: Surface vehicle models designed in UNREAL Engine (a) astrider (b) basilisk
(c) pontonboot Einzelboot Configuration. (b) pontonboot Transporter Configuration.

The modeling process within Unreal Engine involves a comprehensive recreation of each
surface vehicle’s physical characteristics and structural components. For the astrider,
basilisk, and pontonboot, the modeling includes the comprehensive details of their
hulls, propulsion systems, sensor mounts, and any other components relevant to their
functionality in post-flood environments.
One of the primary objectives in the design process is to capture the unique kinematics
and features of each surface vehicle. The astrider, characterized by its agility and
compact design, is represented in the Unreal Engine model. Similarly, the basilisk, being
a remote-controllable catamaran with distinct maneuverability, is intricately modeled to
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replicate its real-world attributes. The pontonboot, a modular and reconfigurable vessel,
is digitally recreated to showcase its adaptability in post-flood scenarios. These models
are not only visually accurate but are also embedded with the dynamic attributes that
define the behavior of each surface vehicle in a simulated environment.
In Figure 4.12, the detailed models of the astrider, basilisk, and pontonboot are
presented, offering a glimpse into the complexities of the design process. These visual
representations serve as a reference for the integrity achieved in the digital recreation of the
surface vehicles. The accuracy of the models is not limited to their external appearance; it
extends to the inclusion of sensor systems, propulsion units, and any other components
crucial to their functionality.

4.2.4 Sensor System
The sensor system integral to the simulation environment encompasses a comprehensive
suite, featuring LiDAR, stereo camera, GPS/GNSS, and a forward-looking sonar. Within
the Unreal Engine framework, the LiDAR, camera, and GPS plugins have been developed in-
house by FINROC developers, showcasing a tailored integration for this specific simulation.
The upcoming sections will delve into the complexities sensor plugins, illustrating their
functionalities and contributions to the simulated environment.
Of particular significance in this work is the introduction of a novel sonar plugin designed
explicitly to simulate the forward-looking sonar utilized across all three surface vehicles.
This sonar plugin represents an addition to the simulation toolkit, allowing for a detailed
and realistic emulation of the sonar system’s behavior. In subsequent sections, the
discussion will delve deeply into the development and functionality of this sonar plugin,
shedding light on its role in enhancing the reliably of the simulated post-flood environment.
The existing sensor plugins including LiDAR, camera and localization sensors are discussed
in appendix D. Sonar plugin, a novel contribution by this thesis, is explained in the
upcoming section.

Sonar Plugin
The development of a sonar plugin within the Unreal Engine posed a substantial challenge
due to the complex nature of modeling sound wave interactions with the environment.
Despite the availability of pre-existing simulation models of forward-looking sonar, they
exhibited unrealistic features, failing to accurately represent the complex noise within
sonar imagery.
In a foundational work by DeMarco et al. [DeMarco 15], a basic sonar model for forward-
looking sonar was simulated, employing Gazebo and ray tracing. While this model
successfully simulated the shadow and speckle noise of sonar, the resulting object was
unrealistically clear, lacking the complex noise patterns observed in real sonar imagery.
It is revealed that the acoustic properties in this model were either hard-coded or omit-
ted, lacking detailed speckle noise simulation. A subsequent effort by Cerqueira et al.
[Cerqueira 17] introduced a GPU-based sonar simulation, encompassing mechanically
scanned imaging sonar (MSIS) and forward-looking sonar (FLS). This model accurately
represented the acoustic features and sound propagation characteristics, utilizing param-
eters such as pulse distance, echo intensity, and field-of-view to render the camera as a
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(a) (b)

Figure 4.13: Comparative Visualization of Sonar Data: (a) depicts a real sonar image acquired
from underwater environment, characterized by a significant level of ambient noise, which is
inherent to real-world underwater acoustic imaging. (b) presents a simulated sonar image,
generated through computational modeling techniques as referenced in [Choi 21].

sonar device. The authors conducted physical tests to compare the simulation results with
those obtained from a physical imaging sonar. The simulation achieved a high level of
realism but fell short in addressing challenges arising from rather lower sonar frequencies
(in kHz frequency). The authors primarily focused on very high frequencies (in the MHz
range), resulting in simulated imagery that was sharp and high resolution.

Choi et al. [Choi 21] contributed a ray-based multibeam sonar plugin, designed to consider
the phase and reverberation physics of acoustic signals. This plugin provided raw sonar
intensity-range data (A-plot) using the point scattering model, incorporating considerations
for time and angle ambiguities, as well as speckle noise. The time and angle ambiguity
in this context referred to the point spread function of the coherent imaging system,
involving side lobes due to matched filtering and beamforming. While Choi’s work
demonstrated good results, it still showcased less reverberation noise compared to real
underwater environments (Figure 4.13), highlighting the challenges in achieving a fully
realistic simulation.

The complexity of underwater acoustics, including reverberation noise, remains a significant
challenge. As the Figure 4.13 shows, existing models often fall short of reproducing the rich
and precise noise patterns observed in real-world underwater scenarios. These limitations
prompted a novel approach in the present study, focusing on the application of Generative
Adversarial Networks (GANs) to generate realistic sonar imagery, a process that will
be explained in subsequent sections. This shift in methodology aims to overcome the
shortcomings of existing models and contribute to the creation of a more authentic and
accurate sonar plugin within the Unreal Engine.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) represent a class of artificial intelligence algo-
rithms used in unsupervised machine learning, implemented by a system of two neural
networks contesting with each other in a zero-sum game framework. This technique was
introduced by Ian Goodfellow et. al. [Goodfellow 20] in 2014 and has since revolutionized
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the field of generative modeling. GANs consist of two parts: the generator and the dis-
criminator. The generator creates data that is similar to the input data but not identical,
attempting to generate passable synthetic images, while the discriminator evaluates the
authenticity of the generated data against the real data as shown in Figure 4.14. Through
iterative training, where the generator continuously learns to produce more accurate
synthetic images and the discriminator becomes better at identifying them, the system
progressively improves until the discriminator cannot easily differentiate real data from
synthetic. This adversarial process results in the generator producing high-quality, realistic
synthetic data, which can be used in various applications, such as image generation, video
creation, and voice synthesis. GANs have significant implications in the field of computer
vision, natural language processing, and beyond. They have been used to create photoreal-
istic images, simulate artistic styles for art generation, generate realistic human voices,
and even create virtual environments for training autonomous systems. The technology’s
ability to understand and replicate complex data distributions makes GANs a powerful
tool for researchers and developers, pushing the boundaries of artificial creativity and data
synthesis.

Figure 4.14: Architecture of a Generative Adversarial Network (GAN) - This figure depicts
the structure of a GAN, where the Generator (G) creates images from random noise, and
the Discriminator (D) assesses them against real images to determine their authenticity. The
training process is governed by a loss function that guides the improvement of both networks,
with the ultimate goal of the generator producing images indistinguishable from actual ones to the
discriminator.

It is interesting to note that while standard GAN architecture can generate realistic
imagery, they are not context-specific and often lack relevance in a specific domain, such
as sonar imagery. In contrast, conditional GANs (cGANs) have the ability to produce
better results in context-specific tasks by incorporating conditional variables into the
generative process. By including conditional inputs such as labels or images, cGANs can
generate images that conform to specified conditions, making them more applicable in
tasks like style transfer, photo enhancement, and even the transformation of sketches
into photorealistic images. The architecture of cGANs involves two key components: a
generator and a discriminator. The generator, which is trained to produce images, receives
both a random noise vector and a conditional input (Label) and generates an output image
that corresponds to this condition. Meanwhile, the discriminator evaluates the authenticity
of the generated images against real images, taking the conditional input into account
(shown in Figure 4.15). This modification allows cGANs to be more context-specific and
produce better results in specific domains.
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Figure 4.15: Architecture of a Conditional Generative Adversarial Network (cGAN) - This
figure showcases the structure of a cGAN, where the Generator (G) creates images based on input
noise and labels, and the Discriminator (D) assesses their authenticity using the same labels.
The process aims to refine the generator’s output to closely mimic real images, as determined by
the discriminator, with the goal of minimizing loss and enhancing the realism of the generated
images.

To train a cGANs for generating sonar imagery, the approach used in this thesis involves
utilizing obstacle masks from state-of-the-art datasets as an input to Generator (G) and
Descriminator (D). This variant of cGAN is known as Pix2pix GAN that uses image
pair and implements image-to-image translation as shown in Figure 4.16. This strategy

Figure 4.16: Architecture of a Pix2Pix Conditional Generative Adversarial Network (cGAN) -
This diagram illustrates the Pix2Pix GAN model, which is designed for image-to-image translation
tasks. The network comprises a Generator (G) that takes an image mask as input and generates
a synthetic image aiming to resemble a corresponding real image. The Discriminator (D) receives
both the generated image and the real image, concatenated with their respective image masks, to
judge the authenticity of the synthesized image. The adversarial training process is governed by a
loss function, which evaluates the discriminator’s accuracy, providing the necessary feedback for
iterative improvement of the generator’s performance.
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is tested using two distinct datasets, namely the Marine Debris dataset (Section 4.1.1)
and the UATD dataset (Section 4.1.1). The Marine Debris dataset is equipped with
segmentation masks and object detection annotations, serving as valuable resources for
the GANs training. In contrast, the UATD dataset exclusively provides bounding box
annotations. Generating segmentation masks manually can be a laborious task; hence,
a method is devised to automatically generate binary masks using the bounding boxes.
Pixels within these bounding boxes are considered as objects, marked in white within the
mask, while the rest of the imagery remained black. This approach facilitated the creation
of masks similar to those found in the Marine Debris dataset.
Both datasets capture sonar images through video sequences, leading to inherent similarities
among the images. To introduce diversity into the training data, we selectively curated
dissimilar images from each dataset by leveraging metrics such as structural similarity
index (SSI), peak signal-to-noise ratio (PSNR), and mean square error (MSE). The values
of metrics selected as threshold to filter the similar images are presented in Tables 4.1.

Table 4.1: Threshold Metrics for Image Selection in Video Sequences. This table presents
threshold values for SSI, PSNR, and MSE to filter out similar images, ensuring that only dissimilar
images are used for efficient GAN network training..

SSI PSNR MSE
0.63 25.4 178

Recognizing the essential role of image augmentation in enhancing the robustness of deep
learning architectures, various augmentation techniques have been implemented including
mirror, zoom, rotate, random brightness, random jitter, and random contrast adjustments.
However, the experimentation suggested that only random jitter, and mirror techniques are
succeeded in generating a realistic sonar imagery. Other techniques introduced undesirable
artifacts, as illustrated in Figure 4.17. The applied augmentations, illustrated in Figure
4.18, showcase the impact of these techniques on the sonar images and underscore the
significance of careful augmentation strategies in achieving high-quality results.
This data preprocessing, encompassing dataset selection, dissimilarity curation, and
effective image augmentation, lays the groundwork for training GANs to generate realistic
synthetic sonar images. The success of GANs depends on the richness and diversity of the
training data, and the approach ensures a carefully curated dataset that encapsulates the
complexity and variability inherent in real-world underwater environments.
The Generator, utilizes architecture of the U-Net model due to its unique configuration,
featuring a contracting path to capture context and an expansive path to enable precise
localization, that makes it exceptionally suited for detailed image synthesis tasks. It’s this
symmetry and the use of skip connections that allow the network to preserve important
spatial information throughout the network, resulting in highly accurate synthetic image
outputs that retain the complexity of the original input features. Besides, the Discriminator
is tailored to evaluate the integrity of the generated images, operating with varying levels of
granularity by altering its receptive field size. The discriminative process ranges from the
granular PixelGAN, which analyzes the image at the pixel level, to the broader Image GAN
with a receptive field of 286x286 pixels. This spectrum includes Patch GANs with receptive
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(a) Real Image (b) Synthetic Image

Figure 4.17: Effect of Augmentation Techniques over Synthetic Images generated using Pix2Pix
cGAN. (a) displays a real sonar image captured from an underwater environment, showcasing
natural acoustic reflections. (b) presents a synthetic counterpart produced through various image
augmentation techniques such as mirroring, zooming, rotation, random brightness adjustment,
jitter, and random contrast modulation. Despite the synthetic image in (b) being the result of
a substantial training, encompassing 500 epochs, it is critical to observe that it still contains
several undesired artifacts that are not present in the original real image in (a).

fields of 16 and 70 pixels, respectively, providing an approach to assessing the quality of
the generated images. The choice of receptive field directly impacts the Discriminator’s
ability to discern local image features versus larger patterns and textures, thus influencing
the training dynamics and the quality of the generated images.

To compute the performance of these varying Discriminator configurations, the L1 loss
combined with the conditional GAN (cGAN) loss is utilized. The L1 loss ensures the
generated images are close to the ground truth in pixel space, promoting structural
similarity in the output, while the cGAN loss encourages the generated images to be
indistinguishable from real images in the eyes of the Discriminator. This hybrid loss
function is pivotal in steering the Generator towards producing images that are not only
accurate in a pixel-wise sense but also convincing in terms of their overall composition and
realism. In the subsequent sections, the architectural complexities of the GANs networks,
their performance, and the comparative analysis against sonar images are comprehensively
explored.

Comparative Analysis - Standard Image Quality Metrics

Evaluating the performance of image synthesis algorithms such as Generative Adversarial
Networks (GANs) is complex and multifaceted, relying on several key metrics that provide
the quality of generated images. These metrics, which include the Structural Similarity
Index (SSI), Peak Signal-to-Noise Ratio (PSNR), and Mean Squared Error (MSE), offer
unique insights into different aspects of image quality. SSI evaluates the perceived changes
in structural information, texture, and contrast of images, while PSNR measures the
fidelity of a synthetic image to an original, and MSE calculates the pixel-wise variance
between them. These metrics are indispensable for a comprehensive analysis of the image
generation models, allowing for a holistic assessment of their performance.
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(a) Raw Sonar Image (b) Mirror Image (c) Random Jitter

Figure 4.18: Implementation of Selective Augmentation Techniques for Enhanced Pix2Pix
cGAN Performance. This figure displays two effective augmentation techniques used for Pix2Pix
cGAN to generate synthetic sonar images: mirroring and random jitter. These methods are
chosen to enhance the quality of generated images while maintaining feature integrity, successfully
addressing the problem of artifacts seen in Figure 4.17.

Structural Similarity Index (SSI) - The Structural Similarity Index (SSI), also known
as the Structural Similarity Index Measure (SSIM), is a metric used to quantify
the visual similarity between two images. It evaluates the visual impact of three
characteristics of an image: luminance, contrast, and structure. SSI compares local
patterns of pixel intensities normalized for luminance and contrast, thus focusing
on changes in structural information, texture, and contrast. The SSI value ranges
between -1 and 1, with 1 indicating perfect similarity. This metric is particularly
useful for assessing the perceptual quality of images because it aligns closely with
human visual perception. Higher SSI values indicate greater similarity between the
generated image and the reference, which is typically the desired outcome in image
generation tasks.

Peak Signal-to-Noise Ratio (PSNR) - Peak Signal-to-Noise Ratio (PSNR) is a com-
monly used metric that measures the quality of an image by comparing it to a
reference image. PSNR is expressed in decibels (dB) and provides a numerical
value representing the ratio of the peak signal strength to the noise introduced by
compression or other factors. Higher PSNR values indicate a lower level of distortion,
and thus, better image quality. It is widely employed in image processing to assess
the fidelity of generated images.

Mean Square Error (MSE) - Mean Square Error (MSE) is a metric that calculates the
average squared difference between the pixel values of the generated and reference
images. MSE provides a quantitative measure of the overall pixel-wise difference
between the two images. A lower MSE indicates less discrepancy and, theoretically,
better image quality. However, MSE is sensitive to outliers and may not always align
with human perception, making it important to interpret results in conjunction with
other metrics.
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Variation in Network Performance and Dataset Complexity

To determine the performance of various Pix2Pix architectures, a comparative analysis is
conducted on two sonar imagery datasets: the Marine Debris Dataset and the Underwater
Acoustic Target Detection (UATD) Dataset (already explained in Section 4.1.1). The
Marine Debris Dataset, gathered in a controlled pool environment, allows for examination
under stable conditions, whereas the UATD Dataset, compiled from a dynamic river
environment, presents a more challenging scenario with varying acoustic properties. The
evaluative focus on SSIM, PSNR, and MSE metrics shed light on how different GAN
models perform under varied conditions (Table 4.2). For instance, PixelGAN demonstrates
proficiency with the Marine Debris Dataset, suggesting its effectiveness in less complex
scenarios. Conversely, ImageGAN shows a higher SSIM value for the UATD Dataset,
indicating its robustness in maintaining structural details within a more complex setting.
The PSNR results across all networks for the UATD Dataset suggest that the models are
well-tuned to reconstruct sonar images with high fidelity, while the MSE scores point to a
precise pixel-level reconstruction in these diverse conditions.

Table 4.2: Evaluation Metrics for Generated Images Across Different Networks and Datasets.
This table presents a comparison of the Structural Similarity Index (SSIM), Peak Signal-to-Noise
Ratio (PSNR), and Mean Squared Error (MSE) for images generated by various GAN networks,
namely PixelGAN, PatchGAN with patch sizes (PS) of 16 and 70, and ImageGAN. The metrics
are calculated for two distinct datasets: the Marine Debris Dataset and the UATD Dataset.

Networks Marine Debris Dataset UATD Dataset
SSIM PSNR MSE SSIM PSNR MSE

PixelGAN 0.586 24.265 49.532 0.755 31.845 21.078
PatchGan (PS:16) 0.546 23.090 52.079 0.729 30.995 23.759
PatchGan (PS:70) 0.561 23.558 51.209 0.749 31.331 23.014

ImageGan 0.548 23.192 52.174 0.760 32.034 20.800

The performance variations among the networks within each dataset indicate the adaptabil-
ity of GAN architectures to specific environmental factors. PixelGAN’s higher performance
in the Marine Debris Dataset could be due to its efficiency in handling less complex sonar
imagery, while ImageGAN’s success in the UATD Dataset may stem from its advanced
ability to interpret the more complex river environment.

Qualitative Results and Indirect Evaluation

However, when inspecting the generated images visually, a discrepancy between the
quantitative metrics and qualitative assessment becomes apparent. Figures 4.19 and
4.20, showcasing images from the Marine Debris and UATD datasets, reveal that despite
PixelGAN and ImageGAN’s numerical superiority, the images they generate appear blurrier
than those from PatchGAN. This blurriness could obscure vital details crucial for accurate
underwater object detection and classification. This observation suggests that standard
metrics like MSE, PSNR, and SSIM may not wholly capture the necessary perceptual and
contextual quality for sonar imagery analysis. As a result, indirect evaluation methods,
such as the performance of object detection algorithms on generated images, might offer a
more significant measure of a GAN model’s practical utility.
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(a) Raw Sonar Imagery (b) Mask

(c) PixelGAN (d) Patch Size 16 (e) Patch Size 70 (f) ImageGAN

Figure 4.19: Generated Imagery from Marine Debris Dataset at different field sizes. This figure
illustrates the images generated at different receptive field sizes from the image mask of the
Marine Debris Dataset. According to Table 4.2, PixelGAN has better SSI, PSNR, and MSE
values, but PixelGAN has generated visually blurred images.

Such indirect evaluations could include the ability of object detection algorithms to
identify and localize objects within images accurately, relying on the preservation of
edge information and textural details. Therefore, while PixelGAN and ImageGAN may
statistically outperform other models, the practical needs of downstream tasks, such as
object detection, highlight the need for reevaluating the metrics used to measure GAN
success in sonar image generation. This insight emphasizes the importance of aligning
evaluation processes with the end-use of generated images and indicates that including
indirect evaluation methods could yield a more thorough understanding of a GAN’s
performance and relevance.

Comparative Analysis - Object Detection Metrics
The evaluation of Generative Adversarial Networks (GANs) in the context of image quality
assessment often relies on metrics such as Structural Similarity Index (SSI), Peak Signal-
to-Noise Ratio (PSNR), and Mean Squared Error (MSE). While these metrics provide
valuable insights into image fidelity, they have limitations that necessitate consideration.



4.2. Simulation 57

(a) Raw Sonar Imagery (b) Mask

(c) PixelGAN (d) Patch Size 16 (e) Patch Size 70 (f) ImageGAN

Figure 4.20: Generated Imagery from Marine Debris Dataset at different field sizes. This figure
illustrates the images generated at different receptive field sizes from the image mask of the
UATD Dataset. According to Table 4.2, ImageGAN has better SSI, PSNR, and MSE values, but
ImageGAN has generated visually blurred images.

SSI primarily focuses on structural information but may not fully account for complex
perceptual aspects of human vision, including higher-level semantics and subtle differences
critical for image understanding. Moreover, it can be sensitive to specific image transfor-
mations and may vary in effectiveness depending on the nature of the generated images.
Similarly, both PSNR and MSE are pixel-wise metrics, lacking consideration for structural
or semantic content in images and potentially prioritizing insignificant pixel differences.
These metrics are sensitive to small pixel value changes, making them less robust to certain
image transformations, such as translations or rotations, which might not significantly
impact perceptual quality. To address these limitations, an indirect evaluation method
involving object detection metrics is introduced.

Object Detection Model Configuration

The indirect evaluation has utilized three object detection models: YoloX S, YoloX L, and
Faster R-CNN. Each model is carefully configured to suit the nature of the sonar images.
YoloX models, known for their speed and efficiency in real-time detection scenarios, are



58 4. Datasets and Test Environments

adjusted in their small (S) and large (L) variants to balance between speed and accuracy.
Faster R-CNN, renowned for its precision in object detection tasks, is calibrated to identify
subtle features within the marine debris context. The Detr model, included in the study,
showed minimal performance and thus, its results are not discussed. The detail of each
model is presented in Appendix E
Each object detection model is independently trained on the GAN-generated images with
corresponding annotations of obstacle locations. This training aimed to equip the models
to recognize and localize obstacles within the synthetic imagery. The evaluation of the
models’ performance is conducted using two primary metrics: mean Average Precision
(mAP) and Recall. The mAP metric assessed the precision of the models across various
threshold levels, while Recall measured the models’ ability to detect all relevant instances
of debris. For readers understanding the mAP and Recall are elaborated below.

Recall: Recall, also known as sensitivity or true positive rate, measures the ability of an
object detection algorithm to find all relevant instances of objects in an image. It is
calculated as the ratio of true positive detections to the sum of true positives and
false negatives. It ranges from 0 to 1, where 1 indicates that the algorithm has found
all instances of objects in the dataset. Recall is particularly crucial in scenarios
where missing an object is more critical than having false positives. For instance, in
applications like surveillance or medical imaging, high recall is often prioritized.

Mean Average Precision (mAP): Mean Average Precision is a widely used metric in
object detection tasks. It combines precision and recall across multiple levels of
confidence thresholds to provide a comprehensive evaluation of an algorithm’s
performance. The mAP is calculated by averaging the precision values at different
recall levels. This means that an algorithm achieving high precision at various recall
levels will receive a higher mAP score. Higher mAP values indicate better object
detection performance, reflecting both high precision and recall across different
confidence thresholds.

Training and Evaluating Object Detection Models on Marine Debris Dataset

To determine the quality of the images generated using the marine debris dataset, three
object detection models are trained and evaluated. This includes examining each model’s
performance using both quantitative metrics and qualitative assessments. The findings
are documented in detail in the subsequent section, which provides insights into the
strengths and limitations of each model. After the evaluation, the generated images
are tested using the trained models to demonstrate the performance and accuracy of
the methodology in generating sonar imagery that closely mirrors real-world conditions.
This comprehensive evaluation process aims to validate the effectiveness of the presented
approach in producing highly realistic sonar imagery and enhancing the understanding
and capabilities in underwater evaluation and testing.

Object Detection Analysis of Generated Images on Marine Debris Dataset

In this section, the quality and realism of the generated images using an indirect approach
will thoroughly evaluated. This analysis uses object detection models that are trained on
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real data to test the generated imagery through evaluation metrics. The evaluation will
cover both quantitative (Table 4.3) and qualitative (Figure 4.21) analyses, which will offer
a comprehensive assessment of the performance and integrity of the generated images.

Detailed Analysis of Table 4.3 Results - The analytical cornerstone of this study re-
sides in the results presented in Table 4.3, which encapsulates the performance
of various GANs when interfaced with different object detection models on a ma-
rine debris dataset. The table outlines the mean Average Precision (mAP) and
Recall metrics, serving as quantitative indicators of each model’s detection accuracy
and comprehensiveness, respectively. These metrics are essential for understanding
the practical viability of employing synthetic imagery in real-world marine debris
detection applications.

Table 4.3: Indirect Evaluation of Generated Images in Marine Debris Dataset. This table
summarizes the performance of various generative adversarial networks (GANs) when applied to
marine debris image datasets and evaluated using different object detection frameworks.

Networks YoloX S YoloX L Faster RCNN
mAP Recall mAP Recall mAP Recall

PixelGAN 0.76 0.54 0.67 0.46 0.66 0.43
PatchGAN (PS:16) 0.81 0.56 0.76 0.51 0.66 0.43

PatchGAN (PS:70) 0.81 0.55 0.72 0.48 0.67 0.42
ImageGAN 0.79 0.56 0.71 0.49 0.61 0.45

PixelGAN - The results for PixelGAN reveal a performance characterized by mod-
erate mAP and Recall across YoloX-s and YoloX-l, with a noticeable decrease in
performance when interfaced with YoloX-l. PixelGAN’s approach to pixel-level
image generation seems to be more compatible with the YoloX-s model, which could
be attributed to the model’s focus on agility and speed, possibly favoring the detailed
textures that PixelGAN generates. However, the performance dip in YoloX-l suggests
that the larger model, which potentially focuses on broader image features, does not
leverage PixelGAN’s strengths as effectively. When observed in conjunction with
Faster R-CNN, PixelGAN’s mAP and Recall metrics indicate an average performance,
suggesting a moderate level of compatibility between PixelGAN’s synthetic imagery
and the high precision demands of Faster R-CNN.
PatchGAN (PS:16) - PatchGAN, with a patch size of 16, demonstrates a remarkable
synergy with the YoloX-s model, achieving the highest mAP score of 0.81 within
this configuration. This suggests that the fine-grained detail captured by the small
patch size translates well into detectable features for YoloX-s. The Recall metric,
while not the highest, is sufficiently robust, indicating a balanced performance
between detecting most debris instances and maintaining a high precision rate. The
results with YoloX-l also show high mAP values, indicating that the detailed texture
information provided by PatchGAN remains valuable across different scales of the
YoloX architecture.
PatchGAN (PS:70) - Expanding the patch size to 70 with PatchGAN presents an
intriguing outcome. The mAP score slightly decreases when compared to the PS:16
variant, suggesting that larger patch sizes may not capture the granularity required
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by YoloX-s as effectively. However, the Recall metric is consistent with its PS:16
counterpart. This might indicate that while the precision of detection might decrease
slightly with increased patch size, the ability to detect all relevant objects remains
stable. This trend is slightly more pronounced with YoloX-l, where the larger patch
size seems to have a more substantial impact on precision, highlighting the delicate
balance between patch size and the object detection model’s ability to utilize the
generated features.
ImageGAN - ImageGAN, with its broader focus on image-to-image translation,
presents results that are slightly lower in mAP across the board when compared to
PatchGAN (PS:16), yet still competitive. This might indicate that while ImageGAN
can generate contextually rich images, the finer details crucial for high precision in
object detection may be lacking. Nonetheless, the Recall metrics for ImageGAN
across YoloX s and l, and Faster R-CNN, are indicative of a GAN that still performs
well in detecting the presence of objects across varying scales and complexities of
models.

Visual Analysis of Figure 4.22 Results The quantitative data presented in Table 4.3 is
compelling, but it is the visual evidence from Figure 4.21 that truly contextualizes
the performance of the GANs in conjunction with object detection models. This
figure provides a comparative display of the detection results from four distinct
GANs when analyzed using the YoloX-s, YoloX-l, and Faster R-CNN models. The
red bounding boxes overlaid on the sonar images symbolize the detected marine
debris, giving a qualitative assessment of each model’s detection proficiency.
YoloX-s Model (Figure 4.21a) - The YoloX-s model’s detection results demonstrate
varying degrees of accuracy and completeness. With PixelGAN, the bounding boxes
are fewer and less concentrated, suggesting that while some debris is detected, there
may be a notable amount of debris that is not being captured by the model. This
correlates with the moderate mAP and Recall values reported in Table 4.3. In
contrast, the PatchGAN with a patch size of 16 exhibits a denser cluster of bounding
boxes around the debris. This visual clustering corroborates the high mAP score from
Table 4.3 and suggests that the model is not only detecting a greater number of debris
items but is also doing so with a higher degree of precision. The similar performance
is noted with PatchGAN (PS:70), where the bounding boxes are still abundant,
although slightly more dispersed, which might be indicative of the slight drop in
mAP observed in the table. ImageGAN shows a moderate density of bounding
boxes, aligning with the slightly lower mAP and consistent Recall scores. It appears
that ImageGAN’s synthetic images provide enough context for the YoloX-S model
to identify debris effectively, though perhaps with less precision than PatchGAN
(PS:16).
YoloX-l Model (Figure 4.21b) - The detection outcomes using the YoloX-l model
elucidate a different aspect of the GANs’ performance. The YoloX-l model, being a
larger variant, is expected to integrate more contextual information for detection.
The visual results from PixelGAN show sparser detection, which is consistent with
the lower mAP score seen in the table. This could suggest that the images generated
by PixelGAN may not scale as well with the increased complexity of the YoloX-l
model. The PatchGAN results, both for PS:16 and PS:70, show a good number
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(a1) PixelGAN (a2) Patch Size 16 (a3) Patch Size 70 (a4) ImageGAN

(a) YoloX-s Model

(b1) PixelGAN (b2) Patch Size 16 (b3) Patch Size 70 (b4) ImageGAN

(b) YoloX-l Model.

(c1) PixelGAN (c2) Patch Size 16 (c3) Patch Size 70 (c4) ImageGAN

(c) Faster RCNN Model.

Figure 4.21: Comparison of Different GANs using YoloX-s, YoloX-l, and Faster RCNN Detection
Model on Marine Debris Dataset. This Figure illustrates the object detection results on a marine
debris dataset using the YoloX-s, YoloX-l, and Faster RCNN models in conjunction with four
different generative adversarial networks (GANs): PixelGAN, PatchGAN with a patch size of 16,
PatchGAN with a patch size of 70, and ImageGAN.
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of accurately placed bounding boxes, though the former appears to have a slight
edge in detection density and precision, visually affirming the quantitative findings.
The ImageGAN detection results are also robust, though they seem to lack the
granularity of the PatchGAN (PS:16), which is expected given the differences in
their image generation approaches.
Faster R-CNN Model (4.21c) - For the Faster R-CNN model, the detections exhibit a
trend that aligns with the quantitative results, but with additional insights. The
visual analysis allows us to discern not just the presence of bounding boxes but also
their appropriateness in terms of size and placement relative to the debris items.
PixelGAN and ImageGAN show a spread of bounding boxes that, while indicative
of debris detection, also suggest potential false positives, which would not have been
as evident from the numerical data alone. PatchGAN (PS:16) continues to show
strong visual alignment with the debris, with bounding boxes that are well-placed
and tightly fit around the items, minimizing false detections. The PatchGAN (PS:70)
results are similar, though the larger patch size seems to result in slightly less precise
bounding box placement, which is an interesting observation that complements the
mAP and Recall figures reported.

Training and Evaluating Object Detection Models on UATD Dataset

As discussed in preceding sections, MASTER dataset (Section 4.1.2) uses the similar
forward-looking sonar as that of UATD dataset (4.1.1). Due to less number of images
To expand the dataset, we integrated the underwater acoustic target detection (UATD)
dataset (refer to Section 4.1.1), which has been acquired through the utilization of the
Tritech Gemini 1200i sonar system, capable of dual-frequency operation at 720 kHz and
1200 kHz. While the UATD dataset shares similarities with MASTER dataset, the UATD
dataset is noteworthy for featuring multiple classes, suited for the recognition of different
underwater entities. Given the primary objective of object detection, and the inherent
challenges posed by the random objects found in flooded environments, the several distinct
classes within the UATD dataset are transformed into a single unified object class.
In total, the deep networks are trained using over 2000 images, drawn from both the
MASTER and UATD datasets. This extensive dataset facilitated a rigorous evaluation
of different network architectures, and the ensuing detection results are comprehensively
presented in the sections below. The utilization of these datasets, tailored to the specific
demands of object detection in underwater sonar imagery, has enabled us to enhance the
robustness and performance of our algorithms, ultimately contributing to the advancement
of this vital field of research.

Detailed Analysis of Table 4.4 Results - The data presented in Table 4.4 provides a
comprehensive view of the performance metrics for various object detection algorithms
across two distinct datasets: UATD and a combined dataset of MASTER and
UATD. Here the mean Average Precision (mAP) and Recall metrics are presented to
understand the strengths and potential limitations of each object detection network
when applied to the task of underwater acoustic target detection, as well as their
performance in a multimodal shallow water environment when combined with UATD.
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Table 4.4: Performance Metrics of Object Detection Algorithms on Different Datasets. This
table compares the average precision (mAP) and recall of various object detection networks
trained and tested on two distinct datasets: UATD (Underwater Acoustic Target Detection) and
a combined set of MASTER (Multi-modAl Shallow waTER) and UATD.

Networks YoloX S YoloX L Faster RCNN
mAP Recall mAP Recall mAP Recall

UATD 0.91 0.50 0.87 0.48 0.86 0.42
MASTER + UATD 0.66 0.33 0.74 0.42 0.78 0.47

YoloX-s - The YoloX-s model showcases a notably high mAP of 0.91 on the UATD
dataset, indicating a superior precision in identifying targets within this specific set.
This performance, however, is not mirrored on the combined MASTER + UATD
dataset, where the mAP drops to 0.66. The significant reduction in precision could
be indicative of the increased complexity or variability within the combined dataset,
which may introduce challenges that the YoloX-s model is less equipped to handle.
The Recall metric sees a decrease from 0.50 in the UATD dataset to 0.33 in the
combined dataset, suggesting that the model’s ability to detect all relevant instances
is compromised when faced with the diversity of the combined dataset.

YoloX-l - The larger YoloX-l variant follows a similar trend to its smaller counterpart,
with a decrease in mAP when transitioning from the UATD dataset (0.87) to the
combined dataset (0.74). While the drop in precision is less pronounced than in the
YoloX-s model, it nonetheless signifies that the YoloX-l model also struggles with
the increased complexity of the combined dataset. The Recall metrics indicate a
comparable decrease, reinforcing the notion that the combined dataset presents a
more challenging detection environment for the YoloX-l model.

Faster R-CNN - The Faster R-CNN model, which is generally known for its high
precision and slower detection speeds, shows less variation in performance between
the two datasets compared to the YoloX models. The mAP on the UATD dataset is
robust at 0.86, slightly decreasing to 0.78 on the combined dataset. This indicates
that the Faster R-CNN model maintains a relatively stable precision across both
datasets. The Recall metric also decreases slightly from 0.42 to 0.47, which suggests
that while the model’s overall detection rate is lower, it remains somewhat consistent
across the two datasets.

Comparative Analysis - The comparative analysis of the object detection algorithms
on the UATD and combined datasets provides valuable insights. The performance on
the UATD dataset across all models is generally higher, indicating that the models
are better suited or have been better optimized for this dataset. The combined
MASTER + UATD dataset appears to introduce factors that reduce both precision
and recall, which could be due to a variety of reasons including but not limited to
increased noise, different types of targets, and a broader range of environmental
conditions. Moreover, one notable observation is the relative stability of the Faster
R-CNN model’s performance across both datasets, which may point to its robustness
as an object detection framework in varying conditions. Conversely, the larger
fluctuations seen in the YoloX models’ performance suggest that these models may
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require further tuning to maintain high precision and recall in more complex or
diverse datasets.

Visual Analysis of Figure 4.22 Results Figure 4.22 offers a side-by-side visual compari-
son of the performance of various object detection models on two distinct datasets:
UATD (Underwater Acoustic Target Detection) and a combined dataset of UATD
and MASTER (Multi-modal Shallow waTER). This visual assessment complements
the numerical data from Table 4.4 by illustrating the actual detection outputs of the
YoloX-S, YoloX-L, and Faster R-CNN models.

(a1) YoloX-s (a2) YoloX-l (a3) Faster RCNN

(a) UATD Dataset

(b1) YoloX-s (b2) YoloX-l (b3) Faster RCNN

(b) UATD+MASTER Dataset

Figure 4.22: Comparative Object Detection on UATD and UATD+MASTER Datasets. This
set of images displays the detection results of different object detection models including YoloX-s,
YoloX-l, and Faster RCNN.

UATD Dataset (Figure 4.22a)
YoloX-S - On the UATD dataset, the YoloX-S model appears to localize the target
accurately, as evidenced by the tight and well-placed bounding box. This visual
confirmation aligns with the high mAP score of 0.91 noted in Table 5.3, indicating
that YoloX-S is highly precise in this controlled environment. The solitary bounding
box also reflects the Recall score, suggesting that while precise, the model may not
be capturing all present targets.
YoloX-L - The YoloX-L model also displays a single, well-defined bounding box,
supporting the high mAP of 0.87. The larger model seems to retain most of the
precision advantages of the smaller variant, yet the visual output suggests a similar
trend in potentially missed detections, as indicated by the Recall metric.
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Faster R-CNN - Faster R-CNN’s visual result is consistent with the other two
models, showcasing one bounding box indicative of a high-confidence detection. This
corresponds with the robust mAP of 0.86, but the image also visually substantiates
the model’s lower Recall score, echoing the possibility of undetected targets.
UATD+MASTER Dataset (Figure 4.22)
YoloX-S - In the combined dataset, the YoloX-S model’s detection is represented by
a less confidently placed bounding box, which is smaller and less centered compared
to its UATD-only counterpart. This visual observation supports the lower mAP
score of 0.66 and suggests a decline in the model’s ability to generalize to the more
complex combined dataset.
YoloX-L - The YoloX-L model exhibits a similar detection pattern on the combined
dataset, with a bounding box that appears less precise than on the UATD dataset.
This detection aligns with the reduced mAP of 0.74 and provides a visual testament
to the model’s decreased precision when faced with the added complexity of the
combined dataset.
Faster R-CNN - Faster R-CNN shows a relatively small and imprecisely placed
bounding box on the combined dataset. While the visual detection is present, it
seems to confirm the numerical drop in mAP to 0.78, suggesting that while Faster
R-CNN is still relatively stable in precision, its performance is somewhat affected by
the dataset complexity.
Comparative Visual Analysis - The visual comparison across both datasets eluci-
dates a clear trend: all models perform with higher precision on the UATD dataset
compared to the combined UATD+MASTER dataset. The visual evidence suggests
that the additional data complexity in the combined dataset impacts the models’
ability to detect with the same level of confidence and precision. Furthermore, the
visual analysis also highlights the absence of multiple detections in both datasets,
which is particularly telling in the context of the Recall scores. While the models
demonstrate high precision in their detections, as seen by the presence of bounding
boxes, their ability to detect all relevant targets is not visually represented, indicating
an area for improvement in target detection comprehensiveness.

Object Detection Analysis of Generated Images on UATD Dataset

Similar to Section 4.2.4, this section thoroughly evaluates the quality of generated images
using UATD dataset. The evaluation covers both quantitative (Table 4.5) and qualitative
(Figure 4.23) analyses to provide a comprehensive assessment of the performance of the
generated images.

Detailed Analysis of Table 4.4 Results - Building upon the analytical framework used
to dissect Table 4.3, the performance data presented in Table 4.5 is discussed, which
involves an indirect evaluation of various GANs within the UATD (Underwater
Acoustic Target Detection) dataset. The table systematically records the mean
Average Precision (mAP) and Recall metrics across different object detection models,
providing a quantitative measure of each combination’s performance in detecting
marine debris.
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Table 4.5: Indirect Evaluation of Generated Images in UATD Dataset. This table summarizes
the performance of various generative adversarial networks (GANs) when applied to marine
debris image datasets and evaluated using different object detection frameworks.

Networks YoloX S YoloX L Faster RCNN
mAP Recall mAP Recall mAP Recall

PixelGAN 0.62 0.29 0.61 0.30 0.55 0.25
PatchGAN (PS:16) 0.67 0.33 0.71 0.36 0.54 0.26

PatchGAN (PS:70) 0.72 0.34 0.74 0.36 0.58 0.29
ImageGAN 0.68 0.34 0.69 0.33 0.64 0.32

PixelGAN - PixelGAN, a model known for its pixel-level image translation capabilities,
shows moderate performance with YoloX s and l, and Faster R-CNN in the UATD
dataset. The mAP scores hover around the lower sixties for both YoloX variants,
with slightly better performance with YoloX l. This could suggest that PixelGAN’s
generated images contain features that are marginally better captured by the larger
YoloX variant. However, the Recall rates are comparatively low, indicating that
while the model can detect debris with a reasonable degree of precision, it may miss
a significant number of relevant instances.
PatchGAN (PS:16) - PatchGAN with a patch size of 16 exhibits improved performance
over PixelGAN, particularly with the YoloX L model where it achieves an mAP of
0.71. This increment in mAP may be indicative of PatchGAN’s ability to generate
synthetic images with details that are more attuned to the features YoloX L is
designed to capture. The Recall metric also sees an increase, but it remains modest,
suggesting that while precision is enhanced, the model’s comprehensive detection
capability does not scale equally.
PatchGAN (PS:70) - When the patch size is increased to 70, PatchGAN’s performance
shows a discernible improvement in mAP for both YoloX S and L, peaking at 0.74
with YoloX L. This increase might be attributed to the larger patches capturing
more contextual details of the debris, which aligns well with the object detection
algorithms. Interestingly, the Recall metric remains relatively steady as compared to
the PS:16 variant, potentially highlighting a threshold in the trade-off between patch
size and the model’s ability to detect all instances of debris without a significant
gain in comprehensive detection.
ImageGAN - ImageGAN’s performance in the UATD dataset is quite notable, with
mAP scores closely trailing those of PatchGAN (PS:70) and surpassing PixelGAN
across all object detection models. Its Recall metrics are consistent with the highest
scores observed for other GANs, suggesting that ImageGAN’s approach to image-to-
image translation yields a balance between precision and recall. The consistently
strong performance across different object detection frameworks may point to the
robustness of ImageGAN’s generated images in terms of feature representation and
variability.

Visual Analysis of Figure 4.23 Results The Figure 4.23 offers a qualitative examination
of the detection capabilities of various GANs using the YoloX-S, YoloX-L, and Faster
R-CNN models on the UATD dataset. Each subfigure presents detection instances
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within the underwater acoustic imagery, highlighted by red bounding boxes that
signify the identified targets.

YoloX-s Model (Figure4.23a) - The YoloX-s model, designed for speed and agility,
reveals intriguing detection patterns across the different GANs. With PixelGAN,
the detections are sparse and somewhat isolated, which may align with the lower
mAP and Recall scores presented in Table 4.5. It suggests that while PixelGAN is
capable of generating detectable features, it may not encompass the full scope of
debris types present in the dataset. PatchGAN with a patch size of 16 displays a
more concentrated grouping of bounding boxes around certain areas, indicating a
higher detection rate which is in line with its higher mAP score. The visual output
suggests an effective synthesis of detail that resonates with the YoloX-S model’s
detection algorithm. Meanwhile, PatchGAN (PS:70) shows even broader detection
coverage, which visually supports the highest mAP score reported for this GAN
and model combination in Table 4.5. ImageGAN presents a balanced spread of
detections, neither as sparse as PixelGAN nor as densely clustered as PatchGAN
(PS:16). This intermediate performance visually validates the quantitative data,
suggesting that ImageGAN is capable of a consistent detection rate across varied
debris representations.

YoloX-l Model (Figure 4.23b) - For the YoloX-L model, which is expected to capture
more contextual information, the visual results are somewhat consistent with the
YoloX-s detections but suggest differences in how each GAN interacts with the larger
model’s capabilities. PixelGAN again shows fewer detections, possibly reflecting
its limited ability to provide the YoloX-l with the necessary contextual cues for
detection in this dataset. PatchGAN (PS:16) and (PS:70) both show an increased
number of detections with the latter indicating a higher rate of detection across
the imagery. This visual evidence is congruent with the quantitative findings where
PatchGAN (PS:70) garners the highest mAP with YoloX-l, suggesting that the larger
patch size might be more aligned with the broader feature recognition capabilities
of YoloX-l. ImageGAN, similar to its performance with YoloX-s, shows a moderate
detection pattern, again supporting the mAP and Recall scores that indicate its
balanced performance between precision and coverage.

Faster R-CNN Model (Figure 4.23c) - The visual results for the Faster R-CNN model
add a different dimension to the analysis. Known for its precise detection capabilities,
the Faster R-CNN model presents an interesting distribution of detections with each
GAN. PixelGAN appears to underperform visually, with very few detections that
may represent either a lack of comprehensive feature generation by PixelGAN or a
mismatch with the detection algorithm of Faster R-CNN. PatchGAN (PS:16) and
(PS:70) both yield a higher number of detections, with PS:70 seemingly providing a
greater detection breadth, which could be attributed to the model’s ability to utilize
the larger contextual cues provided by the bigger patches. This visual observation is
in line with the quantitative data, suggesting a stronger performance of PatchGAN
(PS:70) in terms of mAP. ImageGAN continues to show a consistent pattern of
detections across the board, with a balanced number of bounding boxes that seem
to accurately encapsulate target areas, reinforcing its stable performance as reflected
in the numerical analysis.
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(a1) PixelGAN (a2) Patch Size 16 (a3) Patch Size 70 (a4) ImageGAN

(a) YoloX-s Model

(b1) PixelGAN (b2) Patch Size 16 (b3) Patch Size 70 (b4) ImageGAN

(b) YoloX-l Model

(c1) PixelGAN (c2) Patch Size 16 (c3) Patch Size 70 (c4) ImageGAN

(c) Faster RCNN Model

Figure 4.23: Comparison of Different GANs using YoloX-s, YoloX-l, and Faster RCNN Detection
Model on UATD Dataset. This Figure illustrates the object detection results on a UATD dataset
using the YoloX-s, YoloX-l, and Faster RCNN models in conjunction with four different generative
adversarial networks (GANs): PixelGAN, PatchGAN with a patch size of 16, PatchGAN with a
patch size of 70, and ImageGAN.
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Discussion on the Implications of the Results

Implications for Marine Debris Detection
The performance metrics and visual results indicate that the choice of GAN significantly
affects the object detection model’s ability to identify marine debris. PatchGAN, particu-
larly with a patch size of 70, consistently achieved high mAP scores across both datasets,
suggesting its potential as a robust tool for generating synthetic training images. This
finding is significant for marine debris detection as it implies that employing PatchGAN
(PS:70) could enhance the precision of automated detection systems, leading to more
effective identification and potential retrieval of debris from marine environments. More-
over, the consistently high Recall scores of ImageGAN across different models hint at its
ability to produce diverse and contextually rich synthetic images that aid in comprehensive
debris detection. For marine conservation efforts, this suggests that ImageGAN could be
particularly useful in scenarios where the detection of all debris, irrespective of size and
type, is critical.
Implications for UATD Datasets
The UATD datasets pose unique challenges due to the acoustic nature of the imagery,
which often lacks the visual clarity of optical images. The results demonstrate that
GANs capable of capturing finer details and contextual information, such as PatchGAN
(PS:70), can significantly improve object detection performance in UATD scenarios. The
higher mAP scores suggest that PatchGAN (PS:70) can enhance the model’s ability to
discern targets amidst the noisy background inherent to acoustic imaging. Furthermore,
the consistent performance of ImageGAN in both marine debris and UATD datasets
reinforces its utility across different environmental conditions and detection frameworks.
This consistency is crucial for developing versatile detection systems capable of operating
in diverse underwater conditions.
Cross-Contextual Implications
The cross-analysis of the results from both marine debris and UATD datasets reveals a
compelling trend: while certain GANs are universally effective, the specific characteristics
of the dataset significantly influence the performance of different GANs and object detection
model combinations. This insight is vital for the development of tailored detection systems
that can adapt to the characteristics of the target dataset. For instance, the higher
precision of PatchGAN (PS:70) in UATD scenarios suggests that models requiring high
precision in noisy conditions might benefit from training on images with larger patches.
Conversely, the balanced Recall of ImageGAN in marine debris detection implies that
scenarios requiring a broader detection scope might favor the use of ImageGAN-generated
images.

4.2.5 Simulated Sensory Data
In the domains of autonomous navigation and environmental mapping, particularly within
the context of flooded environments, the synthesis of multi-sensor data is essential for
creating accurate representations of scenario. To that end, the exploration of varied
scenarios within such environments provides invaluable insights into the challenges and
potential applications for this technology. By employing a comprehensive simulation that
mimics a flood-affected barnyard scenario, the adaptability and robustness of multi-sensor
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(a) Scene

(b) LiDAR Scan

(c) Camera Image

(d) Underwater Scene (e) Sonar Image

Figure 4.24: Simulation Data - Scenario 1. The figure illustrates a stack of hay bayles. LiDAR
data shows two of them (1 and 2) in point cloud and sonar data shows all five because some part
of top two hay bayles is within the water.
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(a) Scene

(b) LiDAR Scan

(c) Camera Image

(d) Underwater Scene (e) Sonar Image

Figure 4.25: Simulation Data - Scenario 2. The figure illustrates two floating wooden fences.
Fence (1) is half submerged and therefore partly visible in LiDAR and sonar data. Fence (2) has
more weigh therefore, is more underwater the water. Hence. the liDAR data shows only few
points.
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(a) Scene

(b) LiDAR Scan

(c) Camera Image

(d) Underwater Scene (e) Sonar Image

Figure 4.26: Simulation Data - Scenario 3. The figure illustrates the submerged car over the
fenced road. Sonar data shows high reflections from car and road boundaries due to similar
reflection from both surfaces.
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data fusion in mapping complex environments can be understandable. For example, in
the first scenario depicted in Figure 4.24, a simulation of a stack of hay bale, arranged in
two-on-three fashion, provides an interesting LiDAR and sonar data captured above-water
and submerged objects respectively. LiDAR data renders the hay bales that are partially
above water, whereas the sonar image extends this representation to include the submerged
portions, showcasing the complementary nature of these sensor technologies.
Moreover, the second scenario (shown in Figure 4.25) introduces dynamic floating objects,
in this case, wooden fences, to illustrate how sensors respond to objects that exhibit
vertical movement due to water currents. Here, the distinction between data captured by
LiDAR and sonar becomes particularly important; the former delineates the portion of
the fence above water, while the latter offers a complete image, capturing the submerged
segments. This duality of perception underscores the value of integrated sensor systems
for comprehensive environmental mapping.
The third scenario (shown in Figure 4.26) increases in complexity, featuring a partially
submerged vehicle on a flooded roadway. The sonar data in this scenario reveals high
reflectivity from both the road’s surface and the lateral fences, demonstrating the sensor’s
sensitivity to different materials and angles of reflection. It highlights a common issue in
underwater detection: the challenge of distinguishing objects among reflective interference
from the environment. Such scenarios serve not only to test and validate the performance
of the sensors but also to advance our understanding of their limitations and the need for
sophisticated algorithms capable of processing complex sonar signatures.
Across these scenarios, the fusion of multi-sensor data is evident, as each sensory modality
brings its strengths to bear on the task of mapping. The simulated environment acts
as a testbed for methodologies that will later be applied to real-world settings, where
the accuracy and reliability of these systems are of foremost importance. The data
produced by this simulated environment will be instrumental in the forthcoming chapter,
which delves into mapping methodologies for flood-impacted environments. Through such
simulations, the approaches defined in upcoming chapters can be further refined, ensuring
that when deployed in actual flooded environments, the resultant maps are both accurate
and actionable, thereby enhancing safety and operational efficiency in aquatic navigation
and disaster response efforts.

4.3 Discussion
The rigorous evaluation of any framework requires an extensive testing environment and
diverse scenarios. Therefore, this chapter discusses several datasets and simulated environ-
ments ranging between both surface water and underwater domains. An important and
relevant contribution, in this chapter, is the novel Multi-modal Shallow Water (MASTER)
dataset. The dataset is rich with diverse surface and underwater modalities, encompassing
LiDAR point clouds, stereo camera, and sonar imagery. This dataset is further enhanced
by the inclusion of bounding box labels and segmented masks, making it an invaluable
contribution for the fine-tuning and validation of detection and segmentation algorithms.
The MASTER dataset contributes significantly to aquatic and post-flood application
research. Although providing abundant data for analysis over simpler post-flood environ-
ment, it does not include complex scenarios. To bridge this gap, this chapter introduces an



74 4. Datasets and Test Environments

extensive simulation developed within the Unreal Engine framework. The simulation repli-
cates the complex dynamics of post-flood scenarios span from barnyard settings to complex
urban environment, with remarkable detail, offering a test bench for the methodologies
discussed herein.
Moreover, this chapter presents another breakthrough achievement: simulating underwater
sonar data. It addresses the acoustic challenges presented while emulating sonar imagery
in the Unreal Engine by a plugin based on the Generative Adversarial Networks (GANs)
principles and demonstrating more than 80% detection accuracy. The training of the
network is performed by using both the Marine Debris and UATD datasets to train the
Pix2pix GAN at different patch sizes, of which PatchGAN 16 and PatchGAN 70 performed
excellently, respectively, hence validating the plugin.
The sonar plugin, while ample for a specific sonar device used in this study, requires very
large scale datasets for learning features. This has always been one of the problems in the
underwater acoustic domain. Therefore, alternative approaches that rely less on extensive
data are essentially required, such as a more complex simulation of acoustic wave physics.
Additionally, the scope of this thesis is defined by a selection of critical scenarios designed
to emulate the conditions of a flooded environment. These scenarios serve useful for
preliminary exploration, indicating the need for a broader spectrum of complex scenarios
to ensure a robust evaluation of any proposed system within the challenging and variable
conditions of post-flood environments.
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Flooding often results in the damage or destruction of critical infrastructure including
bridges and roads. Such infrastructure are essential for transportation and connectivity in
any area. Moreover, the floodwaters carry and deposit random objects into the affected
environment. These objects include debris, fallen trees, and various items swept away
by the floodwaters. The combined impact of these factors is transforming the affected
area into a highly unstructured and unpredictable environment. In such conditions,
traditional mapping solutions, including well-known platforms like Google Maps and
OpenStreetMap, prove ineffective. These conventional maps are designed for structured
and stable environments and rely on pre-existing data and infrastructure. In post-flood
environment, this data becomes obsolete due to the destruction and environmental changes.
As a result, rescue teams and disaster responders operating in post-flood scenarios face a
significant and pressing challenge: they need access to accurate and up-to-date maps of
the affected areas. Without reliable mapping data, planning and executing safe navigation
and effective disaster response becomes extremely difficult. This highlights the importance
of developing alternative mapping strategies that can adapt to the unpredictability and
lack of structure inherent to such situations, ultimately aiding rescue and recovery efforts.

Modern sensory modalities come to the forefront to overcome the mapping challenges posed
by flooding events. Satellite imagery, aerial drones, and remote sensing modalities are
highlighted as pivotal tools for rapidly generating updated maps of post-flood environments.
These modalities can produce high-resolution maps that provide critical information about
the extent of flooding, infrastructure conditions, and the locations of crucial facilities like
hospitals and shelters. However, these sensory modalities have limitations, particularly
when understanding the underwater aspects of post-flood environments. Factors such as
variable water levels and high turbidity due to sand particles can limit the effectiveness of
satellite and drone imagery in accurately mapping the underwater environment.

Given these limitations, there is a pressing need to address the challenges associated with
underwater mapping in post-flood scenarios. Improving our ability to map the underwater
environment is a crucial area of focus for enhancing disaster response and rescue efforts in
the aftermath of flooding events.
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5.1 Challenges in Underwater Sensing
Underwater sensing poses unique challenges due to water’s opaque nature. Unlike air or
land, water does not readily transmit light, making it difficult for optical sensors such
as cameras or LiDARs to operate efficiently in aquatic environments. The interaction
between water molecules and suspended particles leads to optical phenomena such as
scattering, absorption, and visibility loss. Therefore, traditional cameras are ill-equipped
to capture clear underwater images, limiting visual clarity. This makes it challenging to
gather accurate and detailed visual data, particularly in deep water or areas with high
levels of turbidity or sediment. Hence, in contrast to terrestrial or aerial sensing, only a
limited number of feasible options are available for underwater sensing.
Acoustic sensors are optimal for detecting objects submerged in water due to the better
transmission of sound waves through liquids compared to air or solids. Amongst such
sensors, the Sonar (Sound Navigation and Ranging) stands out for its ability to emit and
receive sound waves, enabling precise detection and identification of objects, underwater
topography mapping, and distance calculation. Such features make Sonar highly effective
in underwater environments.

5.1.1 Comparative Analysis of Commercial Sonars
There are several types of sonars commercially available as per requirement. The selection
is purely based on several specifications such as resolution, field of view (FOV), range, and
application. All of these specifications are based on one core factor which is the operating
frequency of the sonar. Sonars are typically categorize into three types based on their
operating frequency.

Low-frequency Sonar: Low-frequency sonars, typically working within the frequency
range of 1 kHz (kilohertz) to 100 kHz, offer specific advantages and limitations.
The lower operating frequency allows these sonars to achieve extended detection
ranges, making them particularly well-suited for deep-water applications. This
is because lower frequencies can propagate through water more effectively and
are less prone to rapid attenuation at depth. Consequently, low-frequency sonars
are commonly employed in deep-water exploration scenarios. However, there are
trade-offs associated with low-frequency sonars as low frequency results in wider
beam width. While this is advantageous for long-range detection, it diminishes the
resolution of the resulting sonar imagery. In other words, the imagery produced
by low-frequency sonars tends to be less detailed and may not provide fine-grained
information about underwater objects. Due to their characteristics, low-frequency
sonars find their primary utility in detecting large objects from considerable distances.
These applications include the detection of substantial objects such as ultra-quiet
diesel submarines, shipwrecks, and exploration of deep-water environments. The
ability to cover a wide area and detect large objects at extended ranges makes them
a valuable tool in scenarios where high resolution is not a critical factor, and the
focus is on the detection of significant underwater features or structures.
One typical example of commercially available low frequency sonar is Simrad SX90
which has 20 to 30 kHz of operating frequency with 50-4500 meters range. Figure
5.1b shows the detection of a cargo vessel at depth of about 100 meters.
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(a) (b)

Figure 5.1: Detection of cargo vessel using Simrad SX90. (a) The part of sunken 35k ton cargo
vessel. The wreck lays at about 100 meters depth. (b)The sonar data of the wreck. The sonar is
operated at 23 kHz using "FM Auto" and "Narrow Beam".

Mid-frequency Sonar: Medium-frequency sonars are powerful and versatile sensors that
operate within the frequency range of 100 kHz to 500 kHz. With extended operational
range and enhanced image resolution, they prove to be incredibly valuable in various
fields. One such application is in fisheries, where they offer great assistance in
locating and tracking schools of fish. The balance between range and resolution
makes medium-frequency sonar highly effective in discerning fish populations beneath
the water’s surface. Additionally, these sonars play a critical role in underwater
exploration and seafloor mapping. The SeaKing sub-bottom profiler by Tritech is a
sonar that uses two different frequencies, 20kHz (shown in figure 5.2a) and 200kHz
(shown in figure 5.2b), to map the sea floor. With its 20kHz pulse, the system can
even penetrate the seabed and detect structural differences that cannot be seen by
conventional echosounders.

(a) (b)

Figure 5.2: Dual Frequency SeaKing-Bottom profiler. SeaKing Sub-Bottom profiler provides
an accurate measurement of the seabed depth and its underlying structure. The profiler uses
dual-frequency sound waves to create temporal imagery of the seabed. (a) When operating at
a frequency of 20kHz, the imagery reveals the nature of the material beneath the seabed as
low-frequency sound waves easily penetrate into the seabed. (b) On the other hand, at 200kHz,
the imagery shows a clearer picture of the seabed’s surface. This is because most of the sound
waves reflect from the seabed surface due to the high frequency of operation.

High-frequency Sonar: High-frequency sonars typically operate at frequencies above 500
kHz. They are specifically designed to produce high-resolution images and are
commonly used in shallow-water environments. High-frequency sonar is ideal for
tasks that require detailed imaging, such as object recognition, mine detection, and
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marine biology research. The high-frequency sound waves they produce result in
clear and sharp images of underwater objects, making them invaluable for tasks that
require precision. Figure 5.3 presents the qualitative analysis of images captured
by different sonars. It is worth nothing that with the increase in frequency, the
resolution of images significantly enhances.

(a) (b)

(c) (d)

Figure 5.3: Multibeam Imaging sonars with different operating frequencies and beamwidths (a)
Mikron Gemini works over 720kHz with 2.34◦ of beamwidth. The range of the sensor ranges
from 0.2m to 50m. (b) Gemini 720ik works over 720kHz with 1◦ of beamwidth. The range of
the sensor ranges from 0.5m to 120m. (c) Similarly, Gemini 1200ik is a dual-frequency sonar
(720kHz and 1200kHz) with upto 0.6◦ of beamwidth. The range of the sensor ranges from 0.1m
to 120m. (d) ARIS Explorer 3000 works over 3MHz frequency with 0.25◦ of beamwidth.

Selection Criteria: This research has chosen the Tritech Gemini 720ik sonar system for
its high-frequency capabilities. This decision was based on several reasons, one of
which is the specific requirements of the application. The system needs to detect
obstacles in very shallow waterbeds, which low-frequency sonars are not suitable
for due to their inherent characteristics. Low-frequency sound waves generate wider
beamwidths, which makes low-frequency sonars apt for detecting large objects from
substantial distances. However, this characteristic is not ideal for detecting small
and randomly positioned objects in flooded environments.
Conversely, mid-frequency sonars are often deployed for mapping the composition
of the waterbed but lack the capability required for detecting small, unstructured
objects in shallow waters. High-frequency sonars, on the other hand, are preferred
for applications in shallow water environments, primarily due to their superior
resolution and better object detection capabilities. The Tritech Gemini 720ik sonar,
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in particular, has a 1° beamwidth, with horizontal field of view (HFOV) and vertical
field of view (VFOV) spanning 120° and 20°, respectively. Additionally, this particular
sonar is a cost-effective solution in comparison to higher-frequency sonars.
For a better understanding, an example image captured by the chosen sonar is
presented in figure 5.3b. The characteristics and capabilities of the high-frequency
Tritech Gemini 720ik sonar align seamlessly with the objectives of our research,
making it an optimal choice for the detection of objects in the specific environmental
conditions in very shallow waterbeds.

5.1.2 Issues in Sonar Imagery
Standard sonar imagery faces several inherent issues that require careful consideration
prior to its application in underwater mapping. Furthermore, the post-flood environment
introduces additional complexities and challenges specific to sonar imagery, which are
thoroughly discussed in the following sections.

Figure 5.4: Speckle Noise in real sonar imagery. The figure demonstrates speckle noise and
reverberations generated within underwater sonar imagery due to an object and waterbed. The
image shows an aluminium object 110 cm away from sonar housing within 70 cm deep water.

Speckle Noise One of the common challenges associated with sonar images is the presence
of speckle noise [Chaillan 07]. Speckle noise manifests as granular and high-contrast
patterns that can degrade fine details and make accurate interpretation challenging
as shown in Figure 5.4. It is caused by the interference of the coherent acoustic waves
reflected from different underwater objects, resulting in constructive and destructive
interference patterns. This noise phenomenon is particularly pronounced in medical
ultrasound, underwater navigation, and underwater mapping applications where the
coherent nature of sonar signals is common. Speckle noise can significantly inhibit
the ability to detect and identify objects of interest, such as underwater terrain
features or unsafe obstacles. Several methods have been developed to reduce speckle
noise in sonar images, including filtering techniques and statistical models. The
choice of method depends on the specific application and the desired level of noise
reduction. However, effectively reducing speckle noise while preserving essential
image features remains a complex challenge.
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Low Obstacle-to-Background Contrast In a very shallow water environment, when ob-
stacles are in the same range as the waterbed, it becomes challenging to distinguish
between the two. It is because the waterbed of an extremely shallow environment
reflects high-intensity echos [Yuan 21], which decrease the obstacle-to-background
contrast and lead to difficulty for sonar systems in detecting and identifying obstacles.
This, in turn, increases the risk of collisions and navigation errors. In figure 5.5b,
for instance, the waterbed is about 1 meter deep, meaning there is no echo from
the waterbed at ranges shorter than 1 meter. This absence of background noise or
reflection makes detecting obstacles within this range easier. However, in figure 5.5a,
the object is in range with the waterbed, and there is low contrast between the two.

(a) 30 cm deep waterbed (b) 90 cm deep waterbed

Figure 5.5: Comparison of sonar imagery at different waterbed depth level. The figure shows
visual comparison of sonar imagery, showcasing an obstacle situated 50cm from the sonar housing,
illustrates the effect of different waterbed depths. In this comparison, it is evident that reflections
from the waterbed can diminish the obstacle-to-background contrast. This reduction in contrast
adversely impacts the ability to detect obstacles underwater.

Turbidity and Low Signal-to-Noise Ratio The sound waves also suffer high-intensity
echoes from the suspended particles within the water environment. Therefore, in a
flooded environment, high amounts of suspended materials, such as sediment, silt,
debris, and organic matter, affect the visibility and performance of sonar. This results
in difficulty in determining the water depth and location of obstacles, consequently
affecting the safety and efficiency of operations. The high-intensity echos can be
reduced at the sensor level by reducing the sensor gain. However, the low signal-to-
noise ratio of sonar imagery [Caimi 08] also reduces the obstacle intensities. Figure
5.6 shows two sonar images with the same object at the same range (1 meter) from
sonar but at different gains. The low gain reduces waterbed reflections, but also
weakens obstacle intensity. In contrast, high gain makes obstacle detection difficult.

Unstructured Random Obstacles In flooded environments, unstructured random ob-
stacles can significantly challenge navigation and mobility. These obstacles may
include debris, vegetation, rocks, and other objects randomly distributed throughout
the flooded area. These unstructured and random obstacles manifest as irregular
patterns with varying sizes, shapes, and acoustic characteristics. They disrupt the
safe movement of underwater vehicles and introduce considerable uncertainty in
mapping and object recognition tasks. However, the random distribution of obstacles
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(a) Gain level at 60 (b) Gain level at 95

Figure 5.6: Comparison of sonar imagery at different gain level. The figure displays an obstacle
positioned 1 meter from the sonar, demonstrating the impact of varying gain levels. At a lower
gain setting, there is a noticeable reduction in undesirable reflections from the seabed, but
this also leads to a diminished reflection from the obstacle, potentially impairing its detection.
Conversely, a higher gain setting amplifies the reflections from the obstacle, enhancing its visibility.
However, this increased gain also results in a heightened reflection from the seabed. The gain
level ranges between 1-100

can make it difficult to determine the dimension of an object and require frequent
parametric adjustments to avoid collisions.

Limited Depth Information The absence of depth information in forward-looking sonar
images constitutes a significant challenge in underwater imaging and navigation.
Unlike traditional profiler, that provide depth information by sending a focused
sound wave directly toward the waterbed and measuring the depth by calculating
the time it takes for sound waves to bounce off objects and return to the sensor,
forward-looking sonar primarily produces two-dimensional images without depth
information as illustrated in Figure 5.7. This limitation inhibits the viewer’s ability to
measure the depth of objects and accurately perceive the three-dimensional structure
of the underwater environment. Additionally, due to the 20o VFOV, the depth
uncertainty of object increases with range as shown in Table 5.1. The lack of depth
information can lead to difficulties in object localization, obstacle avoidance, and
overall scene understanding, which are crucial for safe and effective underwater
operations. Overcoming the missing depth information remains a critical focus area
in underwater imaging and robotics to ensure safer and more reliable operations in
submerged environments.

Unavailability of Baseline Benchmark Standardized datasets and performance metrics,
known as benchmarks, are crucial in developing and evaluating algorithms and
systems for various applications. However, the lack of standard benchmarks in
sonar imaging for underwater environments, specifically for post-flood scenario, it is
difficult for to assess and compare the algorithms and robotic systems effectively.
Overcoming this challenge requires collaboration among the scientific community
to collect, annotate, and share benchmark datasets that reflect the diversity and
complexity of underwater environments. These benchmarks would not only accelerate
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Figure 5.7: Physical principle of sonar 2D imagery. The figure demonstrates the mapping of
3D underwater environment into 2.5D multibeam imaging sonar image. (a) Each beam of sonar
has 30 deg vfov. The arrows are only for visualization purpose. In reality the wavepattern is
generated which strikes at each point and return its echo. (b) The HFOV of sonar is 120 deg
and the figure elaborates the mechanism of mapping at 0 deg.

innovation but also ensure the robustness and reliability of sonar-based systems in
flooded environments.

Table 5.1: Range vs Height Uncertainty of obstacle. The table illustrates the correlation
between the distance of an obstacle and the uncertainty in its height due to unavailability of
z-axis in sonar imagery.

Obstacle Range Height Uncertainty
(cm) (cm)
50 18.19
80 29.12
120 43.68
200 72.80
400 145.56

5.2 Underwater Traversability Mapping Framework
The Underwater Traversability Mapping (UTM) framework constitutes an essential compo-
nent within the SWiM architecture. It serves multiple functionalities aimed at delivering
a comprehensive underwater obstacle detection system and enhancing the precision of
underwater mapping. Several advanced techniques are available in the literature that are
designed for object detection in underwater environment. These techniques prove to be
invaluable in scenarios characterized by relatively clearer water but serve as a promising
foundation for the development of improved object detection systems designed for the com-
plexities of post-flooded environments. For instance, Mingzhe et al. [Wei 21] introduced a
notable approach that combines the Particle Swarm Optimization (PSO) algorithm with
Mutual Information (MI) for image registration. This methodology is implemented to
identify sensitive regions within underwater images, thereby enhancing the precision of
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object detection. Likewise, Long et al. [Long 23] explore the application of deep learning
architectures, including Yolov3 and Faster R-CNN, to detect underwater objects. These
techniques show promising results, but it is important to note that they were evaluated
using the high-resolution Aris 3000 sonar imagery, which may not be available in all
scenarios. Additionally, Henson et al. [Henson 19] present a similar approach involving
image registration for seabed mapping, primarily relying on the Didson 300 system, a
high-frequency sonar with exceptionally high resolution. Consequently, these techniques
may not be as effective when applied to low-resolution images obtained from other sonar
systems, such as the Tritech Gemini 720ik sonar.

Input Sonar 
Imagery

Obstacle 
Maps

Depth Map

Image Filtration

The low SNR and 
obstacle-to-ground ratio 
affect the detection in 
sonar imagery. Hence, a 
three-step enhancement 
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and obstacle tracking.
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Figure 5.8: Workflow of the Underwater Traversability Mapping (UTM) framework. This
block diagram illustrates the comprehensive process flow of the UTM, designed to enhance sonar
imagery for improved detection and characterization of underwater obstacles.

The Underwater Traversability Mapping (UTM) framework in SWiM (detailed illustration
in Figure 5.8) presents a depth estimation technique which is a significant feature that
accurately measures waterbed depth. This technique ensures a high degree of precision in
depth estimation, which is fundamental for mapping underwater environments. Further-
more, to achieve high precision in underwater mapping, the UTM processes data using
image filtration techniques that rectify common issues encountered in underwater imaging.
These techniques include noise reduction and image enhancement by eliminating unwanted
waterbed reflections, which can significantly improve the quality of sonar images.
Once the sonar imagery is enhanced, the UTM’s object detection algorithms identify and
categorize obstacles in the underwater environment based on multiple criteria, including
reflection coefficients and the presence of shadows. The framework introduces a certainty
map, which calculates detection probabilities depending on the depth and range of the
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object. This strategy enhances the accuracy of obstacle detection within sonar imagery,
leading to more reliable and precise underwater mapping.

5.2.1 Image Filtration
Sound waves are prone to several challenges (presented in section 5.1.2) that can significantly
compromise the quality of sonar imagery, consequently diminishing the likelihood of
successfully detecting objects within the architectural framework. As such, the initial
and fundamental step in any sonar-based architecture revolves around image filtration.
The next section deals into the strategies employed for image enhancement, offering a
comprehensive evaluation of these techniques one-on-one with several state-of-the-art
methodologies. Moreover, the results show that these enhancements present better noise
reduction and object shape, ultimately amplifying the architecture’s object detection
capabilities.
Furthermore, a novel depth estimation algorithm is presented specifically to compute the
depth of the waterbed using the forward-looking sonar system. This algorithm proves
to be particularly advantageous, as it helps the architecture to accurately estimate the
depth of waterbed. The fusion of image enhancement strategies and the depth detection
algorithm lays the foundation for a more robust and effective sonar-based architecture,
enhancing the overall object detection probability within the system. This work represents
a substantial advancement in the field of underwater object detection and contributes to
improving the reliability and precision of object detection within sonar imagery.

5.2.1.1 Image Enhancement

Image enhancement is a fundamental technique in the field of digital image processing that
involves the use of advanced algorithms and techniques over an image to improve its visual
quality for human perception or machine analysis. The motivation for image enhancement
arises from the need to improve the quality of images that are degraded due to factors,
for instance, poor lighting, noise, or other environmental factors. Furthermore, image
enhancement is essential in various applications such as underwater mapping, medical
imaging, remote sensing, and surveillance, where the quality of image data is critical for
decision making. The standard process of image enhancement is comprised of a series
of steps including denoising, contrast adjustment, and sharpening, which aim to correct
image degradation and optimize specific visual features.
Image enhancement is of paramount importance in the context of forward-looking sonar
(FLS) imagery due to the unique challenges presented in section 5.1.2. FLS imagery is
integral to various maritime applications which operate in shallow and murky waters, but
is prone to issues such as signal attenuation, noise, and low visibility, resulting in poor
image quality. Image enhancement techniques, such as filtering, contrast enhancement,
and noise reduction, can improve the visibility of objects and structures in the underwater
environment. For instance, filtering techniques can remove unwanted noise and artifacts
from the image, while contrast enhancement can improve the visibility of objects and
structures in the underwater environment. Furthermore, noise reduction techniques can
help enhance the signal-to-noise ratio, resulting in better image quality. This in turn, can
significantly enhance situational awareness, aiding in navigation, object detection, and
search and rescue operations.
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Numerous denoising techniques for sonar imagery have been documented in the existing
literature. Jia et al. [Jia 19] have introduced a spatial domain image enhancement method
utilizing a 3x3 Gaussian smoothing filter to reduce the speckle noise. Additionally, they have
computed three gray-scale regions based on statistical features. However, this approach
exhibits enhanced segmentation performance when applied to high-resolution Synthetic
Aperture Sonar (SAS) images and its effectiveness diminishes when employed on low-
resolution forward-looking sonar images, which is an inherent limitation of this approach.
Similarly, [Choi 20a] has implemented a wavelet denoising approach for ultrasound images
in the context of medical imaging. While this technique effectively reduces noise, it has an
adverse impact on image contrast, subsequently leading to a decline in obstacle detection
accuracy. Huang et. al. [Yuan 21] devised a methodology that combined dictionary
learning with wavelet transform to filter noise from sonar images, while Oliveira et al.
[Oliveira 21] conducted a comprehensive comparative study evaluating the SURF, ORB,
BRISK, and SURF-Harris algorithms on sonar images. These studies predominantly
focused on static and easily identifiable input images, which might not necessarily reflect
real-world underwater scenarios. The authors in [Choi 20a] demonstrated that noise
reduction achieved considerable results when the sonar was in a static position (lock-on
phase). However, it introduced a blurring effect in the resultant image when the sonar was
in motion (searching phase) due to the successive averaging of input images. Furthermore,
the works in [Chen 19] and [Chen 21] exhibited effective noise reduction in deep-water
environments but was less suitable for shallow-water conditions. The above-mentioned
denoising techniques highlights the diversity of approaches to reduce noise in sonar imagery,
each with its specific strengths and limitations, necessitating careful consideration of the
particular characteristics and requirements of the application at hand.

The image enhancement techniques presented in proposed SWiM architecture serves the
purpose of noise reduction in sonar images, amplifying the contrast between objects and
their backgrounds, and segmenting potential obstacles to facilitate subsequent object
detection processes. This research distinguishes itself from existing literature through the
following noteworthy distinctions:

Detection Challenges in Shallow Water Detection: The detection of obstacles in shal-
low water environments, characterized by depths of less than 2 meters, is particularly
complex due to the several critical issues. These include the substantial reflections
and reverberations of sonar waves from the waterbed, which reduce the object to
background contrast, hence significantly complicate the detection process. The work
at hand acknowledges and addresses these challenges, striving to enhance obstacle
detection under such demanding conditions.

Low-Resolution Sonar Imaging: In contrast to the high-resolution images often consid-
ered in the majority of the literature, the forward-looking imaging sonar typically
used for obstacle detection provide images with lower spatial resolution. This spe-
cific characteristic necessitates the development of specialized image enhancement
techniques according to the unique features and constraints of low-resolution sonar
imagery. As such, this research takes into account the distinct requirements posed by
low-resolution sonar imaging, which is essential in effectively addressing the real-world
conditions and limitations encountered in practical underwater applications.



86 5. Underwater Traversability

Sonar images are subject to abrupt variations in intensity due to reflections from the
waterbed, resulting in the emergence of a granular pattern known as Speckle noise (as
discussed in Section 5.1.2). It is essential to recognize that speckle noise is a multiplicative
form of noise, therefore requiring a logarithmic transformation to convert it into additive
Gaussian noise, as illustrated by the equations below:

ŷ = log(I × n) (5.1)

ŷ = log(I) + log(n) (5.2)

Here, I denotes the image, and n represents the noise. The logarithmic operation effectively
transforms the multiplicative nature of speckle noise into an additive form. Consequently,
all the subsequent analyses presented in this study are conducted on images that have
undergone this pre-transformation.
Typically, the Gaussian filter is a good starting point for analyzing the image denoising.
However, it has the opposite effect on sonar images as it introduces a blurring effect
and expands the spikes to further surrounding pixels. Similarly, several state-of-the-art
kernel-based filters are available, which have proved to be better on sonar images than the
Gaussian filter. For example, the median filter takes the median value within the kernel
and limits the spikes with respect to its surrounding. This technique reduces the spikes
but removes edges due to the blurring effect. Furthermore, all kernel-based filters often
suffer from two significant problems. 1) Square kernel rounds the corner of the feature if
the corner is not perpendicular. 2) They inhibit the smoothing near the edge instead of
enhancing the edges.
Other filters are categorized into two categories. 1) Statistical Filters. 2) Wavelet Denoising
Filters. Statistical filters such as Lee [Lee 81], Kuan [Kuan 85], and Frost [Frost 82], filter
the noise by computing the mean, variance, and weights of pixels within the local window.
These filters, specifically Lee, have shown an enhancement in edges. On the other hand,
wavelet denoising filters remove noise by decomposing an image in different frequency
sub-bands and performing soft or hard threshold operations. The high threshold value
may remove the essential information whereas low threshold value may not remove the
spikes.
The methodology presented in Figure 5.9 aims to overcome the challenges of speckle noise
caused by reflections and improve object detection rates by segmenting images. To achieve
this, the denoising approach used in this methodology takes inspiration from previous
studies such as [Galceran 12] and [Hurtós Vilarnau 14]. These studies have introduced
a novel technique that involves the computation of the sonar insonification pattern by
averaging multiple consecutive sonar images. The derived insonification pattern is then
applied to each new sonar image, resulting in a clearer and distortion-free image with
significantly reduced speckle noise. It can be mathematically formulated as:

Imean =
∑N

1 Iin

N
(5.3)

Iinsonify = Iin − Imean (5.4)
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Figure 5.9: Sequential Procedure for Enhancing Underwater Imagery. This flow diagram
showcases an image enhancement process for underwater sonar imagery, starting with a noisy
original image and filtering in a clearer, noise-reduced output. The process involves background
estimation, wavelet denoising, and Lee filtering to suppress noise and enhance object visibility
within the image.

(a) Raw Sonar Image. (b) Average Image (c) Enhanced Image

Figure 5.10: Background Estimation Technique Applied to Sonar Imagery. The figure demon-
strate the background estimation method. This series of images illustrates the steps of a
background estimation method for sonar imagery enhancement. It averages of multiple frames
(100 in above case) for noise reduction, and provides an enhanced image for clearer visualization
of underwater objects (The contrast is adjusted in the images for better visualization only.)

Figure 5.10 shows the insonification pattern of 100 consecutive sonar frames and result of
estimating the background of the sonar image in a 2-meter deep lake.
Additionally, the presence of additive noise in the sonar images is effectively addressed
through a box (mean) filter. This filtering technique helps to reduce abrupt intensity
changes within the image, resulting in a smoother and less noisy appearance. However,
the box filter may not fully eliminate random noisy points, such as waterbed reflections,
that often appear in sonar images, especially at high frequencies. Hence, a more advanced
approach is used involving the decomposition of the sonar image into sub-band images,
each capturing different frequency components and orientations. This decomposition is
made possible through the application of the Discrete Wavelet Transform (DWT) technique.
DWT is a mathematical method that allows the analysis of a signal at various frequencies
and resolutions. The DWT W (τ, s) can be mathematically written [Choi 20a] as:

W (τ, s) = 1√
s

p−1∑
m=0

f [tm]λ[tm − τ

s
] (5.5)
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Figure 5.11: Discrete wavelength decomposition of sonar imagery. Figure shows the discrete
wavelength decomposition in LL, HL, LH, HH intensity frequency bands. (a) Raw input image,
(b) Different intensity frequency bands and (c) Output image after soft thresholding.

where f is signal evaluated at the discrete time index tm and λ is known as wavelet act as
window function on a mother wavelet. τ is translation parameter, s is scale parameter
which is inverse of frequency and can be written as:

τ = k2−j (5.6)

s = 2−j (5.7)

where j is the scale index, and k is the wavelet transform signal index.
Figure 5.11 shows the single-level DWT on the sonar image with the soft threshold set to
0.6. The image includes an obstacle with its shadow.
The Discrete Wavelet Transform (DWT) has a significant impact on sonar images by
removing high-frequency noise points from the waterbed and obstacle reflections. However,
DWT can also reduce the intensity of important reflections (obstacles), which is a challenge.
To improve the image quality and distinguish between waterbed sediments and obstacles,
a local statistical analysis using the Lee filter is used. The Lee filter is known for its ability
to enhance edges and fine details within the image, which results in improved contrast
and reduced noise. This enhanced image quality ultimately improves the system’s ability
to accurately detect and segment underwater objects.
The presented image enhancement technique is systematically evaluated by comparing
it with ten state-of-the-art methods that are well-documented in the existing literature.
This evaluation is essential for assessing the effectiveness of proposed method in enhancing
sonar images. To provide a comprehensive overview of the technique’s performance,
qualitative comparisons with methods are presented in Figures 5.12 and 5.13. These
visual comparisons demonstrate that the proposed technique excels in producing enhanced
images characterized by high object-to-background contrast.
However, conducting a direct quantitative analysis of this technique is challenging due to
the absence of a ground truth image that could serve as a reference for objective evaluation.
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(a) Sonar Imagery (b) Bilateral [Tomasi 98] (c) Box [Viola 01]

(d) Conv2D [Dudgeon 84] (e) Frost [Frost 82] (f) Gaussian [Haddad 91]

(g) Gradient Inverse [Wang 92] (h) Lee [Lee 81] (i) Median [Huang 79]

(j) NLMD [Buades 05] (k) WD [Choi 20a] (l) Proposed

Figure 5.12: Comparative Analysis of Filtering Techniques on Sonar Imagery for Enhancement
(1). This figure showcases a variety of filtering methods applied to sonar imagery to evaluate
their effectiveness in image enhancement. (l) features the proposed technique which, upon visual
assessment, yields the most distinct contrast between the background and the obstacles and
presents the least amount of blurriness. This clarity and contrast are crucial for the accurate
identification and interpretation of underwater features and objects, demonstrating the proposed
method’s superiority over conventional and advanced filtering techniques in enhancing sonar
imagery. NLMD stands for Non-local Mean Denoising whereas WD stands for Wavelet Denoising.
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(a) Sonar Imagery (b) Bilateral [Tomasi 98] (c) Box [Viola 01]

(d) Conv2D [Dudgeon 84] (e) Frost [Frost 82] (f) Gaussian [Haddad 91]

(g) Gradient Inverse [Wang 92] (h) Lee [Lee 81] (i) Median [Huang 79]

(j) NLMD [Buades 05] (k) WD [Choi 20a] (l) Proposed

Figure 5.13: Comparative Analysis of Filtering Techniques on Sonar Imagery for Enhancement
(2). This figure showcases a variety of filtering methods applied to sonar imagery to evaluate
their effectiveness in image enhancement. (l) features the proposed technique which, upon visual
assessment, yields the most distinct contrast between the background and the obstacles and
presents the least amount of blurriness. This clarity and contrast are crucial for the accurate
identification and interpretation of underwater features and objects, demonstrating the proposed
method’s superiority over conventional and advanced filtering techniques in enhancing sonar
imagery. NLMD stands for Non-local Mean Denoising whereas WD stands for Wavelet Denoising.
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To address this limitation, an indirect quantitative analysis is performed, focusing on the
impact of each technique presented in Figure 5.12 on object detection accuracy.

Table 5.2 offers a detailed comparative analysis, providing the performance of each technique
in terms of true positives and false negatives during the detection phase. Furthermore, each
algorithm is compared with respect to the integrity of object detection i.e. either the object
is detected as a complete object of multiple separate objects. This comparative analysis
reveals that the proposed filtration technique consistently outperforms other standard
filters in object detection. While the absence of a ground truth image necessitates this
indirect assessment, the results clearly indicate the superiority of the proposed method in
enhancing object detection accuracy within sonar imagery.

Table 5.2: Performance metrics of object detection using various filtering techniques on sonar
imagery. This table presents the efficacy of different filtering methods applied to sonar imagery,
evaluated by their impact on object detection results. It enumerates the percentage of True
Positives and False Positives, and the integrity of object detection i.e. detected completely or in
parts, categorized as Mostly, Rarely, or Never intact. The proposed technique has higher true
positive detection and lower false positive detection. The Object Intact is an important criteria
to avoid detecting an object as multiple object.

Filter True Positive False Positive Object Intact
Bilateral 48.33 51.67 Rarely

Box 71.01 29.99 Mostly
Convolution 2D 59.13 40.87 Never

Frost 20.54 79.46 Never
Gaussian 63.11 36.89 Never

Gradient Inverse 80 20 Never
Lee 76.03 23.97 Never

Median 68.3 31.7 Mostly
Non-local Mean 87.55 12.45 Mostly

Wavelet 62.1 37.9 Rarely
Proposed 92.2 7.8 Mostly

5.2.1.2 Depth Estimation

Accurate depth estimation is fundamental for safe and efficient navigation within aquatic
environment. It enables surface and underwater vehicles to determine water depth,
identify potential underwater obstacles, and ensure safe passage in real-time. Moreover,
in scenarios such as search and rescue operations or archaeological surveys, the precise
localization of submerged objects and the seabed is essential. Depth estimation aids
in mapping underwater terrains, identifying shipwrecks, or locating missing persons by
providing critical information about the spatial arrangement of objects in the underwater
environment. Furthermore, depth estimation is closely related with obstacle detection and
avoidance, a critical aspect of aquatic operations. By accurately estimating the depth
of underwater objects, the proximity of obstacles, including rocks, reefs, or submerged
structures can be detected. This information is crucial for collision avoidance and safe
navigation, especially in shallow or complex aquatic terrains.
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As discussed in Section 5.1.2, it is evident that forward-looking sonar imagery introduces
specific constraints that necessitate careful consideration. A salient limitation lies in
the inherent nature of such a sonar, which predominantly provides 2.5-dimensional data.
This characteristic implies that the acquisition of precise depth information regarding
underwater obstacles and the seabed presents a notable challenge. The significance of this
limitation affects various underwater applications, particularly in the context of surface
vehicles and the assessment of potential navigational obstacles.

While there are several 3D sonar systems commercially available, it should be noted
that they are often extremely costly and impractical where the cost effective system is
required. In such environments, the high intensity reverberations due to waterbed further
complicates the acquisition of reliable depth information. Consequently, the accurate
estimation of water depth is essential when utilizing forward-looking sonar. The ability
to navigate safely, assess potential threats, and make informed decisions in underwater
environments depends significantly on the development and application of techniques that
can compensate for the inherent limitations of 2.5D forward-looking sonar data.

(a) (b)

Figure 5.14: Sonar Imaging for Seabed Analysis. (a) illustrates the use of sonar for seabed
mapping, showing the FOV and the calculation of seabed depth using the sonar’s angles. (b)
The red line on the sonar image represents the seabed contour, providing a visual representation
of its shape and depth in relation to the sonar’s position.

The SWiM architecture has introduced a novel depth estimation module that uses a
regression-based approach to accurately measure the depth of a waterbed. To comprehend
this module, it’s crucial to understand the principles of sonar imagery. Sound waves
generate high-intensity patterns in sonar images when they interact with the waterbed.
Any area without an echo will appear as zero pixel intensity. If the initial point of contact
between sonar waves and the waterbed is 15 cm apart, the sonar imagery before this point
will exhibit minimal reflection. As depicted in Figure 5.14a, this leads to a significant
difference in pixel intensity values before and after the interaction point. Furthermore, to
ensure the accurate estimation of waterbed depth within the sonar frame of reference and
to enhance the precision of object detection, a polynomial fit regression line is estimated.
This regression line is computed by examining the pixel values at the intersection of two
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distinct segments, namely the ’no return zone’ and the ’waterbed zone,’ as illustrated in
Figure 5.14b.
However, it is crucial to emphasize that the regression line, when computed in the sonar
frame of reference, primarily provides estimated depth of the waterbed rather than its
absolute depth. To ascertain the waterbed’s depth accurately, an adjustment is required,
involving repositioning the sonar at an angle such that the highest point within its vertical
FOV aligns precisely with the water’s surface, as depicted in Figure 5.14a. This specific
geometric adjustment facilitates the application of appropriate trigonometric principles to
estimate the depth, as represented by the following equation.

d = Rsinϕ (5.8)

where R is the range of each pixel in regression line and ϕ is the vertical opening angle of
the sonar. It is worth nothing that the sonar provides raw data in the form of scan points
where each scan point has its own range and angle. This range data is then transformed
into image. Therefore, the range of each pixel in the image can easily be calculated.

5.2.2 Obstacle Filtration
Underwater obstacle detection through sonar images can be a challenging task, as variations
in water depth and environmental conditions may affect the image quality. Reliable obstacle
detection is crucial for generating accurate and precise maps of the underwater terrain. To
tackle this challenge, the Underwater Traversability Mapping (UTM) framework has been
specifically designed to integrate conventional and novel strategies, combined to enhance
the accuracy and reliability of obstacle detection in the dynamic and often unpredictable
underwater environment. By fusing those strategies, UTM offers a comprehensive solution
to the complex problem of obstacle detection, ultimately elevating the capabilities of
traversability mapping in underwater scenarios. In the following subsections, this thesis
comprehensively discusses the obstacle detection and refinement algorithms available in
UTM, as well as the subsequent results.

5.2.2.1 Obstacle Detection

The image filtration phase discussed in section 5.2.1 plays a key role in reducing a
substantial amount of speckle noise, a common issue in sonar imagery. Nonetheless, sonar
images often contain unwanted reflections from the waterbed, which can complicate the
accurate detection of objects. In applications where the primary objective is to detect
objects with maximum completeness or shape, the elimination of these waterbed reflections
is essential. To tackle this challenge, a series of techniques have been deployed to detect
objects from the waterbed reflections, with the aim of achieving a robust object detection
within each sonar image.
Within this thesis, it has been determined that difference between objects and the waterbed
in sonar imagery can be computed through two fundamental physical principles. First,
objects typically exhibit a higher reflection coefficient compared to the seabed. This
variance in reflection coefficients enables the differentiation of objects from the waterbed
based on their higher intensity levels in contrast to the waterbed. Second, in cases where
the reflection coefficient difference between an object and the seabed is minimal, object
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detection can be helpful by identifying the shadows cast by objects on the seabed, as
shown in figure 5.16a. Detecting such shadows can be accomplished through the utilization
of standard image processing algorithms or more advanced deep learning architectures.
Each of these approaches offers its distinct advantages and limitations. For instance,
standard algorithms do not necessitate extensive datasets for learning but may require
fine-tuning parameters dependent on the specific underwater seabed conditions. Conversely,
deep learning architectures do not necessitate frequent parameter adjustments, but they
do require substantial and diverse datasets to enhance their robustness across varied
environmental contexts.

In our application, we have adopted a strategy by implementing both standard algorithms
and deep learning architectures. By fusing the outcomes of these approaches, we aim
to enhance the detection rate of the architecture, effectively using the strengths of each
methodology while reducing their respective weaknesses. This fusion approach seeks to
optimize object detection in sonar imagery and enhance the overall performance of the
system.

Multilevel 
Threshold Connectivity

Hole Filing

Obstacle Detection
Non-maximum 

Suppression

Contours
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Figure 5.15: Obstacle Detection Flow Diagram. The figure displays a process flow for obstacle
detection in sonar images, starting with multilevel thresholding and followed by connectivity
analysis, hole filling, Canny edge detection, contour extraction, and concluding with non-maximum
suppression for crisp obstacle detection.

Several standard vision algorithms are implemented and tuned in order to detect obstacles
in real-time. The comprehensive sequence of obstacle detection steps is outlined in figure
5.15, detailing the complex process by which the presented architecture independently
detects the intensity and shadows of objects. This is achieved by using the same image to
a shared module, with distinct parameters. Ultimately, the outcomes of both intensity
and shadow detections are fused to filter accurate obstacles, which serve as the foundation
for subsequent processing stages.

In the initial phase of this module, a multilevel thresholding technique is used to differentiate
intensity levels. In the context of obstacle detection (excluding shadows), the low-intensity
pixels are systematically removed. This process results in the image depicted in figure
5.16b and 5.16f, where a specific threshold value, determined as 0.29, has been applied.
Nevertheless, it is essential to acknowledge that the thresholding step may eliminate
important points within the imagery related to obstacle. To rectify this, a hole-filling
procedure is introduced to connect and restore any fragmented components of the obstacles.
In this context, we have assume a minimum obstacle size of 25 cm. The connectivity
analysis is executed by examining groups of points against this criterion, facilitating the
removal of non-obstacle points. The final qualitative results of this phase are presented in
Figure 5.16c and 5.16g.
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Moving forward, the well-known Canny Edge detection [Canny 86] technique is employed
to identify the boundaries of the obstacles. Subsequently, contours are identified around
each obstacle, enabling the computation of bounding boxes that encapsulate the detected
objects as shown in figure 5.17. An additional refinement step involves filtering the
contours using a non-maximum suppression strategy, which serves to merge bounding
boxes belonging to closely situated objects, defining them as a singular obstacle. At this
point, the certainty map assumes a pivotal role in allocating detection probabilities to
each object. This integration significantly contributes to include true obstacles within the
traversability maps, enhancing the precision and reliability of the entire process.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.16: Three-Step Morphological Processing for Obstacle Detection in Sonar Imagery.
This series of images demonstrates a morphological operation sequence designed to enhance
obstacle detection in sonar data. (a, e) present the raw enhanced sonar image. The process
begins with (b, f) applying a two-level threshold to mitigate the presence of high-intensity noise
points which could be mistaken for actual obstacles. Next, (c, g) hole filling is employed to
ensure that real obstacles are perceived as complete shapes without internal gaps. Finally, (d, h)
connectivity analysis is performed to isolate discrete obstacle entities. By systematically reducing
noise and reinforcing the continuity of object structures, this method effectively prepares the
data for more robust obstacle detection in subsequent analysis stages.
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(a) Enhanced Image (b) Canny Edge (c) Bounding Boxes

Figure 5.17: Two-Step Canny Edge and Contour-Based Object Detection in Sonar Imagery.
The figure displays a method for detecting objects in sonar images, using enhancement to clarify
features, Canny edge detection to outline objects, and contour finding to place bounding boxes
around them, streamlining the process from raw data to identifiable objects.

Why not Deep Learning?

Deep-learning approaches, despite their widespread success in various domains of image
processing and object detection, face significant limitations when applied to underwater
object detection using sonar imagery. The unique challenges presented by underwater
environments, such as variable acoustic properties, diverse noise characteristics, and the
scarcity of labeled datasets, impede the effectiveness of deep-learning models. Sonar images
are inherently noisy due to the medium through which sound waves travel, and they suffer
from artifacts like speckle noise, multipath propagation, and varying degrees of signal
attenuation. These issues are added up by the fact that sonar devices themselves can
introduce device-specific noise, further complicating the training process for deep-learning
algorithms. Unlike in standard vision tasks where enough diverse, and high-quality datasets
are available, the underwater domain lacks such extensive datasets, making it difficult to
train deep-learning models that can generalize well across different underwater environments
and sonar systems. Moreover, the dynamic nature of underwater environments, with
constantly changing conditions and the presence of random objects, poses additional
challenges for deep-learning models, which require vast amounts of data to capture such
variability effectively.

In contrast, standard vision algorithms, which often include traditional image processing
techniques such as thresholding, edge detection, and morphological operations, have shown
to be more adept at handling the specific challenges of sonar imagery. These algorithms
can be fine-tuned to understand the effects of noise and improve the signal-to-noise ratio,
enhancing the detectability of underwater objects without the need for extensive datasets.
Moreover, these techniques can be adapted to exploit the inherent characteristics of sonar
signals, such as their reflection patterns and the acoustic shadows cast by objects, to
identify and classify underwater features more reliably. The adaptability, lower dependency
on large datasets, and the ability to incorporate domain-specific knowledge make standard
vision algorithms particularly suitable for the task of underwater object detection using
sonar. This approach aligns with the findings and methodologies explored in the preceding
sections, emphasizing the application of standard vision techniques over deep-learning
models in the context of sonar-based underwater mapping and object detection.
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5.2.2.2 Obstacle Refinement

The information about the obstacle is further refined to increase the certainty of the
detection based on two criteria. First, the sonar’s physical constraints are considered, and
a certainty map is generated, which determines the probabilistic certainty of each pixel in
the image. Secondly, each pixel’s motion with respect to vehicle motion is determined.
Those pixels which depict the realistic motion are considered true obstacles, while the
remaining pixels are neglected. Each criterion is further explained in the following sections.

Certainty Map

The primary challenge in sensor processing strategies revolves around addressing the
inherent disturbances and uncertainties present in raw sensory data. In the context of
multibeam forward-looking sonar systems, these uncertainties frequently present in a
highly random fashion, making them particularly complex to model effectively. However,
integrating models that account for the physical constraints of such sensors can significantly
enhance the accuracy of object detection procedures. Within the domain of forward-looking
sonar, these physical constraints encompass parameters such as angular resolution and
vertical beam width, which play a pivotal role in determining the system’s capabilities.

(a) HFOV (b) VFOV

Figure 5.18: Illustration of field of view (FOV) and Distance Impact on Sonar Resolution. (a)
Horizontal field of view (HFOV) demonstrates how the sonar beams fan out from the origin
point (O), indicating three distinct areas (I, II, III) where the resolution decreases with distance.
The closer beams have a higher resolution, which diminishes as the distance from the origin
increases. (b) Vertical field of view (VFOV) shows the side profile of the sonar beams intersecting
with the waterbed. Similar to the HFOV, the resolution is higher closer to the origin and
deteriorates with distance, as indicated by the varying distances between the dashed lines (I, II,
III). This visualization helps understand the challenges of detecting objects at different depths
and distances, with the decrease in resolution potentially affecting the detection accuracy.

Angular resolution, for instance, denotes the angle between two consecutive sonar beams.
It is important to note that a larger angular separation between beams results in an overall
lower resolution for the sonar system. Furthermore, even when the angular separation
between two adjacent beams remains constant, the arc distance between these beams
increases as the range from the sonar source expands as illustrated in Figure 5.18a. This
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increase in arc distance reduces the resolution, posing a substantial challenge for precise
object detection.
Similarly, vertical beam width signifies the angular extent within which an object can be
effectively detected by the sonar. This angular width expands with increasing distance
from the sonar source. Consequently, a greater distance leads to a larger vertical arc
width (illustrated in Figure 5.18b), increasing the uncertainty associated with estimating
the depth of submerged objects. It is essential to recognize that these factors, including
angular resolution and vertical beam width, are of paramount importance and must
be considered to facilitate more accurate and reliable object detection in the context of
forward-looking sonar systems. By comprehensively addressing these physical limitations, it
becomes feasible to significantly enhance the precision and effectiveness of object detection
processes.

Table 5.3: Range vs Detection Accuracy. The table correlates the detection performance of
the Faster R-CNN model with varying depths and sonar ranges in an underwater environment.
The data illustrates a general decline in both accuracy and recall as the distance and depth of
the objects increase, indicating the challenges faced by object detection models in sonar-based
range assessments. This table is critical for understanding the limitations of current detection
technologies in relation to object proximity and depth in underwater scenarios.

Depth Sonar Range O. Range O. Depth Accuracy Recall
(m) (m) (m) (m)
1.2 3 0.6 0.20 0.82 0.53
1.2 3 1.5 0.42 0.67 0.44
1.2 3 2 0.42 0.69 0.44
2.8 3 1.3 0.68 0.79 0.51
2.8 5 2.2 1 0.81 0.57
2.8 5 4 1.1 0.64 0.41
4.3 5 2.7 2.9 0.73 0.49
4.3 10 5.3 3.2 0.61 0.37

Furthermore, Table 5.3 presents an evaluation of object detection performance as a function
of varying sonar ranges and object depths, utilizing the Faster R-CNN model. The dataset
is segmented based on the range of detected objects, and the table reports on two key
metrics: Accuracy and Recall. Depth categories are provided alongside corresponding
sonar range distances, object range (O. Range), and object depth (O. Depth). Each
row offers a snapshot of how detection accuracy and recall rates fluctuate with changes
in object distance and depth, reflecting the model’s capacity to recognize objects under
different underwater sonar conditions. Results show a trend where detection accuracy and
recall typically decrease as the object range and depth increase, suggesting challenges in
detecting objects at greater distances and deeper in the water column.
The Certainty Map (CMAP) is an invaluable strategy used to calculate the probability
associated with each pixel in the sonar imagery, taking into account a fusion of static and
dynamic factors. When mapping the 3D underwater environment to 2.5D sonar data, a
level of uncertainty arises regarding the precise height or location of an obstacle’s collision
point. This uncertainty primarily comes from the vertical sonar FOV, which undergoes
changes as obstacles approach the sonar device. Consequently, the data tends to be more
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reliable and certain about the exact location of an object’s collision point as it moves nearer
to the sonar source. To address this inherent uncertainty, a fused CMAP is constructed,
taking into consideration the following factors:

Static CMAP The static component is dependent on the VFOV and the range of the
sonar sensor. It assigns variable certainty to pixels based on their proximity to the
sonar. Pixels that are farther from the sonar are considered as less certain due to the
wider VFOV and the inherent limitations in acquiring precise information about the
depth or exact location of an obstacle. For example, an obstacle located 2 meters
away may exist within a 70 cm vertical arc, as given in Table 5.1.

Dynamic CMAP Conversely, the dynamic CMAP relies on depth values provided by the
Depth Estimation phase (section 5.2.1.2). This component calculates the closest point
on the waterbed based on the depth value, effectively identifying the point beyond
which pixels exhibit fewer reflections, appearing primarily darker as illustrated in
Figure 5.14. Consequently, the region before this point, where obstacles possess a
high contrast with the background, is categorized as a high-probability area, while
the region beyond is designated as low-probability.

The fused CMAP is represented mathematically as follows:

P S
ptx =

1− ( 0.4
dwater

× dptx), if dptx ≤ dwater

cos(90o−V F OV )

0.6, otherwise
(5.9)

Here, P S
ptx denotes the probability associated with each sonar point, dwater represents the

water depth obtained from the Depth Estimation phase, and dptx is the distance of each
pixel in the Cartesian coordinate system from the sonar’s origin. The vertical field of view
of the sonar (in our case 20o) is denoted by V FOV . The factor dwater

cos(90o−V F OV ) is the nearest
point of the waterbed at a specific height. The conditions set forth in the equation above
establish that the probability of a pixel closer to the sonar is higher than that of pixels
farther away, reflecting the relationship between depth, distance, and the sonar’s FOV.

Motion-Based Tracking

The previously identified obstacles, as filtered from the certainty map phase, undergo
further refinement through the implementation of a motion-based tracking algorithm.
This particular algorithm uses the predictive capabilities of the Kalman filter [Salhi 12]
to track the motion of each obstacle. The filter computes the trajectory of each obstacle,
represented as a group of pixels within each image frame, and effectively maintains its track.
The refinement process considers an obstacle as a potential threat based on two distinct
criteria: firstly, the number of consecutive frames an object is tracked, and secondly, its
motion in relation to the vehicle’s motion.
Under the first criterion, it is acknowledged that the tracking algorithm may occasionally
lose track of an obstacle’s trajectory. Such a track can be re-established if the tracker
manages to reacquire it within a window of three frames. However, if the object’s trajectory
is reacquired after a gap of three frames, it’s treated as a new track. The number of
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(a) (b)

Figure 5.19: Application of Object Tracking in Sonar Image Processing for Obstacle Detection.
(a) demonstrates the initial identification of potential obstacles in sonar imagery, where various
shapes are detected. (b) applies object tracking algorithm to distinguish between moving obstacles
(red bounding boxes), which are potential threats, and stationary objects (green bounding boxes),
which may be noise. This approach filters out irrelevant static noise, enhancing the accuracy of
obstacle detection in dynamic underwater environments.

consecutive frames during which the object remained trackable serves as one of the
refinement criteria.
The tracked obstacle is then analyzed in associated with the vehicle’s motion. An object is
considered eligible for further consideration if its motion is detected as being in the opposite
direction to that of the vehicle and falls within a specified range. Tracks that do not meet
these criteria are rejected. For illustrative purposes, refer to figure 5.19, where obstacles
highlighted in red signify those eligible for tracking due to their counter-directional motion
to the vehicle, while those marked in green are rejected and not regarded as potential
threats.

5.2.3 Depth and Obstacle Maps
The Underwater Traversability Mapping (UTM) framework constitutes a critical tool for
assessing underwater environments, providing a pair of essential maps: a depth map and
an obstacle map. These maps are derived from depth and obstacle point clouds, which
undergo a series of transformations to enable mapping in global coordinates. Initially,
GPS coordinates are leveraged to establish a global reference frame, ensuring consistent
alignment of the point cloud data with it across various time stamps. Subsequently, these
individual point clouds are organized and stored in grid maps to construct a comprehensive
representation of the underwater terrain.
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(a) Depth Map (b) Obstacle Map

Figure 5.20: Underwater Mapping Results - Scenario 1. The boat is driven in Gelterswoog
Lake. The sonar range is set to 2 meters due to very shallow lake. (a) shows the depth map of
lake, where the low to high depth is demonstrated with blue to pink color, respectively. The
average depth of lake is 1.2 meters with ±23 cm of variance. (b) shows the obstacle map with
waterbed in green color and obstacles in red. No red means there are no substantive obstacles
found.

In the context of real-world testing, the UTM is evaluated across three distinct natural
environments: a lake, a river, and a port. Each environment presents unique characteristics
in terms of depth and obstacles, necessitating tailored assessments. The resulting depth
and obstacle maps (demonstrated in Figures 5.20-5.22) provide valuable insights into
the underwater topography and potential navigational challenges encountered in these
environments. The depth map offers a visualization of the water body’s depth within the
sonar’s range, with a color palette ranging from dark blue (indicating shallow depths)
to dark pink (representing the sonar’s maximum range). Meanwhile, the obstacle map
highlights detected obstacles within the sonar’s vicinity, with green denoting the sonar
data’s proximity and red indicating detected obstacles.

For instance, consider Figure 5.20, which illustrates the maps generated in a shallow public
lake with a known depth of approximately 1.5 meters. The boat is driven at 0.9 m/s
speed with the 2.1 km/h wind on testday. Here, the UTM captures the lake’s shallow
depths, depicted by blue points in the depth map. Notably, the absence of obstacles in
the obstacle map indicates a clean lake devoid of navigational hazards. Conversely, Figure
5.21 showcases maps generated in a river near Hoya (THW test site), where the known
depth is 3.5 meters. Here, the boat is driven at 1.1 m/s speed with 4.3 km/h wind on
testday. In this scenario, the depth map reveals variable depths ranging from 0.9 to 3.2
meters, reflecting the river’s dynamic nature. Additionally, the obstacle map identifies
debris, represented in red, further highlighting potential obstacles to navigation.

Similarly, Figure 5.22 presents maps of the Hamburg port test area, characterized by a
known depth of approximately 9 meters. Due to high wind (approximately 11 km/h) on
test day, the boat is driven with 1.7 m/s speed. Here, the depth map depicts deeper water
bodies in light pink, with areas containing mud debris that significantly alter the water
depth, as indicated by white regions. The obstacle map mirrors these variations, detecting



102 5. Underwater Traversability

(a) Depth Map (b) Obstacle Map

Figure 5.21: Underwater Mapping Results - Scenario 2. The boat is driven within a river near
Hoya (THW Test site). The sonar range is set to 4 meters due to known depth of site. (a) shows
the depth map of river, where the low to high depth is demonstrated with blue to pink color,
respectively. The average depth of the site is 2.9 meters with ±82 cm of variance. (b) shows
the obstacle map with waterbed in green color and obstacles in red. The map has found some
underwater debris.

(a) Depth Map (b) Obstacle Map

Figure 5.22: Underwater Mapping Results - Scenario 3. The boat is driven in Hamburg Port
area. The sonar range is set to 10 meters due to known depth of site. (a) shows the depth map
of river, where the low to high depth is demonstrated with blue to pink color, respectively. The
average depth of the site is 8.1 meters with ±42 cm of variance. The map shows a deep water
site (b) shows the obstacle map with waterbed in green color and obstacles in red. The map has
found some underwater debris.

mud debris as obstacles.

Overall, the UTM’s capability to generate accurate depth and obstacle maps across diverse
underwater environments underscores its utility in facilitating safe and efficient navigation.
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By providing detailed insights into underwater topography and potential hazards, the UTM
enhances decision-making processes and aids in mitigating risks associated with underwater
traversal. Through its comprehensive mapping capabilities, the UTM contributes to
advancing our understanding of underwater terrains and supports various applications,
ranging from scientific exploration to search and rescue operations.

5.3 Discussion
The sound waves have proved to be an important modality for underwater sensing. The
accurate underwater sensing depends on several factors, most importantly frequency of
sonar. This chapter highlights the difference between several sonar categorized based on
their operating frequency.
Moreover, sonar imagery suffer from several challenges including low contrast and low
signal-to-noise ratio. To cater these challenges, this chapter has provided a Underwater
Traversability Mapping (UTM) framework that includes several noise reduction and image
enhancement techniques that have proved to be more robust and less noisy compared
to standard filters. These technique further enhances the accuracy of obstacle detection
in underwater environment. It is crucial to acknowledge, however, that the deployment
of deep-learning architectures in the domain of underwater obstacle detection remains
challenging. The reasons are manifold, including the limited underwater sonar data and
most importantly distinct sonar imagery of every device due to the noise generated by the
sonar device’s internal hardware and the diverse acoustic reflections off varied waterbed
compositions, such as rocky or muddy terrains.
The UTM framework contributes with a novel depth estimation technique that measures
the depth of water bed by comparing darker and brighter regions in the sonar imagery.
This technique accurately estimates the depth within the variance of ±23cm in shallow
waterbodies and ±82cm in deeper waterbodies. This technique helps in detecting the
non-traversable depths essentially required due to abrupt depth variations in post-flood
environment.
The final results of the chapter are the underwater depth and obstacle maps. These
maps, which demonstrates the framework’s success, exhibit a obstacle detection accuracy
surpassing 72%. This accuracy is not merely a statistic but a proof of the potential for
technology to overcome the inherent challenges of underwater navigation and mapping.
Through rigorous research and methodical application of image processing techniques, this
work makes the way for advancements in underwater exploration and monitoring.
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6. Surface Water Traversability

The safe and efficient navigation of ships and boats in various water environments necessi-
tates a comprehensive understanding of the surroundings. The process of safe navigation
involves not only avoiding obstacles but also understanding the dynamic nature of the
water environment, which may include factors such as water currents, variations in depth,
and the presence of submerged or floating objects. Traditional navigation systems often
relied on single sensors, such as radar or sonar, to provide limited insights into the imme-
diate vicinity. However, advancements in sensor technologies have enabled the integration
of diverse sensors, each contributing unique information to create a more precise and
accurate representation of the environment. Huntsberger et al. [Huntsberger 11], present
a mapping technique to integrate multi-sensor data that is imperative for enhancing the
perceptual capabilities of water vehicles and optimizing navigation strategies.
In the context of a post-flooded environment, generating traversability information is a
fundamental aspect of safe navigation. Traversability information refers to the assessment of
whether a particular region of the water surface is navigable without encountering obstacles
or hazards. Traversability information is crucial for rescue teams for planning optimal
paths and avoiding potential dangers. The deployment of multiple sensors facilitates a
comprehensive assessment of traversability by capturing various aspects of the environment
[Meckel 22]. For instance, visual sensors such as cameras can provide high-resolution images,
aiding in the identification of surface-level obstacles, while depth sensors, including sonar,
contribute information about underwater topography and potential submerged hazards.
The effectiveness of multi-sensor fusion extends beyond real-time navigation to mapping the
water environment. Creating detailed maps of the water surface and underwater terrain is
essential for planning routes, identifying potential risks, and facilitating post-flood analysis.
Hence, there is a dire need to develop a surface water traversability mapping architecture
capable of addressing the abovementioned challenges and producing a robust and accurate
map. The deployment of a robust mapping architecture has the potential to empower
rescue teams with the capability to plan and navigate efficiently within the extensively
destructed post-flood environment. In essence, creating accurate traversability maps is a
pivotal solution to facilitate effective rescue operations in complex and dynamic post-flood
scenarios.
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(a) Satellite-view (b) Aerial-view

Figure 6.1: Destruction due to post-flood environment. The illustrations are only for concept
generated by AI model 1.

This chapter undertakes a thorough exploration of these challenges, offering a profound
understanding of the complexities involved. The assessment encompasses factors ranging
from environmental dynamics to the limitations of existing sensor technologies in the
context of surface water navigation. To comprehend the surface water environment
comprehensively, it is imperative to evaluate the advantages and disadvantages of available
sensory modalities. This chapter critically examines these modalities, discusses their
capabilities and shortcomings in capturing the diverse and often unpredictable nature of
surface water obstacles.
A focal point of this chapter is the introduction of the Surface Water Traversability
Mapping (SWTM) framework, an integral component within the broader Shallow Water
Traversability Mapping (SWiM) architecture. The SWTM is designed to address the
complex task of detecting and mapping surface water obstacles, contributing significantly
to the creation of a high-precision traversability map. Section 6.2 provides the details of
the SWTM, mentioning its underlying techniques and methodologies. By doing so, it aims
to provide not only a conceptual understanding but also practical insights into how the
SWTM enhances the accuracy of traversability maps in the challenging domain of surface
water navigation.

6.1 Challenges in Surface Water Sensing
Satellite and Aerial Imagery: The challenges associated with mapping the underwater

environment have been comprehensively addressed in section 5.1, underscoring
the inherent limitations of satellite and aerial imagery. These imaging modalities,
depicted in Figure 6.1, exhibit a notable constraint in their ability to solely capture
surface water information, as they lack to penetrate the water’s surface. For the
specific task of surface water mapping in post-flood environment, the use of satellite or
aerial imagery introduces several significant issues, thereby rendering them inadequate
for capturing essential details concerning submerged or floating objects. A primary
issue in publicly available satellite data lies in its slow update frequency, due to the
continuous orbital movement of satellites around the Earth. This slow update rate,

1https://deepai.org/machine-learning-model/text2img

https://deepai.org/machine-learning-model/text2img
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(a) Urban Environment (b) Remote Environment

(c) Fallen Trees (d) Leaves over the water surface

Figure 6.2: Debris due to post-flood environment. The illustrations are only for concept
generated by AI model 2..

at times extending to several days or even months, poses a substantial limitation in
providing real-time data crucial for dynamic environmental conditions. Conversely,
the utility of aerial drone imagery is constrained by the limited flight time and the
absence of long-distance data transfer capabilities in drones, thereby restricting their
applicability for sustained surveillance or comprehensive data recording. Notably,
commercially available aerial drones typically exhibit an average flight time of 15-20
minutes, a temporal constraint further increased by variable wind conditions.

Satellite and aerial imagery encounter challenges in aligning with underwater sensing
in post-flood environments, primarily due to different perspectives. Achieving
alignment between data captured above and below water surfaces becomes a complex
task, suffered by misalignment issues arising from different observation angles. The
complex process of detecting common features between these different perspectives
to register data introduces significant complications, limiting the seamless integration
of satellite or aerial imagery with underwater sonar data. This misalignment poses
a substantial obstacle in creating a cohesive representation of the surface and
underwater environment during post-flood scenarios. Additionally, satellites and
drone imagery can be used for topological path planning but not for local navigation
and collision avoidance.

2https://deepai.org/machine-learning-model/text2img

https://deepai.org/machine-learning-model/text2img


108 6. Surface Water Traversability

Random Objects: In a post-flood environment, rescue teams face numerous challenges
arising from the presence of unstructured and unknown objects floating over the
surface of water. The complexity is amplified by low visibility and the variable
nature of these objects, impeding smooth navigation and effecting rescue efforts.
An essential factor for navigating these challenging conditions is a comprehensive
understanding of the distinct characteristics presented by these floating objects. This
information is pivotal for devising effective navigation strategies and implementing
obstacle avoidance measures. Notably, submerged fallen trees and fractured bridges
as shown in Figure 6.2 emerge as high-risk elements, necessitating accurate navigation
planning, while comparatively smaller objects like floating leaves and wooden blocks
may present lesser immediate threats.

Lack of Map: Obtaining accurate and up-to-date traversability information of an affected
area can be a challenging task, primarily due to the unavailability of standard maps,
including widely used platforms such as Google Maps and OpenStreet Maps. These
platforms, while valuable for routine navigation, lack the adaptability required to
capture and represent the complexities of a highly changing environment. In a
post-flood scenario, the absence of predefined routes and the sudden emergence of
new obstacles defy the static nature of conventional maps. The immense scale and
unpredictability of environmental changes demand real-time information, which these
standard maps fail to provide. Consequently, rescue teams find themselves navigating
through destructed scenarios, without reliable mapping resources. In this challenging
context, their reliance shifts to their prior knowledge and experience gathered through
training and past missions. While valuable, this reliance on experiential knowledge
has inherent limitations, as flood-induced alterations often introduce unprecedented
challenges. The inadequacy of standard mapping platforms and high structural
variations to encapsulate the rapidly evolving post-flood environment underscores
the critical need for alternative approaches in acquiring accurate and up-to-date
traversability information.

In the subsequent section, a comprehensive comparative analysis of cameras and LiDAR
(Light Detection and Ranging) sensors unfolds, with a specific focus on their applicability
in the complex context of post-flood environments. This analysis extends beyond technical
specifications to consider the real-world implications of using cameras and LiDAR sensors
in post-flood scenarios. The efficiency of each modality in detecting and accurately
mapping unstructured objects is assessed, considering factors like object size, environmental
conditions, and the overall reliability of the generated data. Furthermore, the upcoming
analysis serves not only to discuss the strengths and limitations of cameras and LiDAR
sensors in post-flood environments but also to guide the selection of the most suitable
sensing mechanisms for specific operational contexts. The findings contribute valuable
insights to the ongoing discourse on optimizing sensing technologies for effective navigation
and mapping in the challenging aftermath of floods. Ultimately, the choice between cameras
and LiDAR sensors lies on understanding of the environmental conditions, operational
requirements, and the desired level of mapping precision in post-flood scenarios.
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(a) Low Light in Camera Image (b) Shadow in Camera Image

(c) Laser Point Cloud (d) Laser Imagery

Figure 6.3: Example data from TUK Campus Dataset. The dataset includes multi-sensor
data captured at the RPTU Kaiserslautern-Landua campus at different times of day for the
autonomous bus project. The sensors include Localization sensors (GNSS, IMU), Stereo cameras,
and LiDAR scanners. [Keen 21]

6.1.1 Comparative Analysis between Cameras and LiDAR

Environmental sensing, obstacle detection, and mapping in surface water environments
necessitate the utilization of diverse sensory modalities. Cameras and LiDAR emerge as
prominent choices for object detection in this context. Cameras, serving as passive sensors,
capture two-dimensional images, making them adept at detecting visual attributes such as
color and texture. The widespread use of cameras in this domain is attributed to their
versatility and the wealth of information conveyed through images, which includes valuable
textural details absent in LiDAR data. In contrast, LiDARs operate as active sensors by
emitting laser beams and measuring the time taken for the light to return, generating two
or three-dimensional point clouds. This methodology enables LiDARs to excel in detecting
object depth, shape, and distance from the sensor. While cameras are more prevalent
in the field due to their extensive exploration in conventional vision and deep-learning
object detection, LiDARs provide crucial advantages in terms of precise distance and size
measurement.

Despite the widespread use of cameras, challenges persist, particularly in variable light
conditions. Low-light situations as shown in Figure 6.3a can compromise object detection
via camera imagery, posing a limitation in certain operational scenarios. Similarly, Figure
6.3b shows the variable light conditioning in a single image effecting the overall camera
vision. Moreover, camera-based detection systems, such as the one introduced by Sinisterra
et al. [Sinisterra 17], may exhibit constraints in identifying randomly positioned destructed
obstacles lacking prior knowledge of their characteristics.
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LiDARs, on the other hand, offer significant benefits in generating detailed three-dimensional
point clouds (shown in Figure 6.3c) that are instrumental in detecting object distance and
size. In post-flood environments, where the identification of destroyed infrastructure is
critical for mapping traversability, LiDARs provide indispensable insights. However, the
maturity of deep learning and object detection algorithms for LiDAR data lags behind that
of camera images, partially due to the absence of texture information in LiDAR datasets.
Recent advancements in LiDAR technology have introduced intensity and reflectance
imagery as shown in figure 6.3d, resembling features found in camera images. While this
facilitates the application of deep learning methodologies to LiDAR data, the inherent
limitation of lacking color information remains. Objects are primarily differentiated based
on distance, highlighting the ongoing challenges and potential avenues for improvement in
LiDAR-based object detection, especially in complex and dynamic environments.
To address these challenges, further research is imperative to develop robust object
detection systems that accurately identify obstacles on water surfaces. While cameras
maintain their primacy in detection systems, integrating LiDAR point clouds with camera
imagery holds promise in enhancing overall effectiveness. This integration can provide a
more comprehensive understanding of the environment, leveraging the strengths of both
modalities to overcome the limitations inherent in each, ultimately advancing the state of
object detection technology in highly dynamic aquatic scenarios.

6.2 Surface Water Traversability Mapping Framework
The SWiM (Shallow Water Traversability Mapping) architecture, as proposed, introduces
an innovative approach to address the challenges of detecting and mapping surface water
objects that pose threats to the safe navigation of surface vehicles. Central to this archi-
tecture is the Surface Water Traversability Mapping (SWTM) framework, a sophisticated
system designed to fuse the camera and LiDAR data. Unlike conventional approaches that
treat data from each sensor in isolation, the SWiM architecture recognizes the need for a
holistic fusion of information from both sensors, a crucial consideration in the context of
post-flood environments.
As illustrated in Figure 6.4, the SWTM leverages the fusion of Camera and LiDAR data
to extract fundamental features of objects present on the water’s surface. While existing
techniques in the literature often treat data from these sensors separately, such an approach
proves inadequate in the face of the unstructured and random objects characteristic of
post-flood environments. These objects lack distinct shapes and exhibit random, nonlinear
features that effect straightforward learning by state-of-the-art deep learning detection
algorithms. Recognizing this challenge, the SWTM adopts a strategy of segmenting image
data into basic classes and subsequently filtering objects using point cloud data.
Standard methodologies including state-of-the-art deep learning object detection algorithms
may not be optimal in flooded environments. The random and unstructured nature of
objects on the water’s surface defies the capabilities of such algorithms, which often rely on
learned patterns and distinct shapes. In this regard, the SWTM proposes a more adaptive
approach, focusing on basic class segmentation and leveraging point cloud data for object
detection. This strategy aligns with the unique demands of post-flood scenarios, where
traditional algorithms may prove infeasible.
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Figure 6.4: Surface Water Traversability Mapping (SWTM) Framework - Block diagram of the
proposed methodology. The methodology uses camera imagery and LiDAR point cloud to detect
obstacles over the water surface. The obstacles detected in camera imagery are mapped in the
LiDAR point cloud.

Building upon prior research, the SWiM architecture draws inspiration from noteworthy
works in the field. Wolf et. al. [Wolf 22], introduce a behavior-based perception system
tailored for off-road vehicles. In this work, the authors employ YOLO (You Only Look
Once) detection on camera images to identify potential obstacles. Subsequently, utilizing
inverse-perspective techniques, they correlate the detected objects in point cloud data.
This approach demonstrates a paradigm for integrating information from multiple sensors
to enhance obstacle detection and environmental perception.

Another relevant work [Wang 20a], contributes to the fusion of modalities in the context of
surface water navigation. Here, the authors similarly employ YOLO detection on camera
images to identify potential obstacles. The essential novality lies in their subsequent efforts
to locate the same objects within point cloud data. This recognition of the importance
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of fusing data from different sources aligns with the principles underlying the SWiM
architecture.
The SWiM architecture represents an innovative effort in optimizing traversability mapping
in post-flood environments. By integrating camera and LiDAR data and adopting a distinct
approach to object detection, the SWTM within the SWiM architecture overcomes the
limitations of existing methodologies. The fusion of modalities, inspired by prior research,
offers a comprehensive solution to the challenges posed by unstructured and random
objects in flooded environments. As the SWiM architecture advances, its impact on the
efficacy of surface water vehicle navigation and disaster response in post-flood scenarios
holds significant promise. Figure 6.5 shows the sensory data required by SWTM.

(a) Camera Imagery (b) LiDAR Point Cloud

(c) LiDAR Reflectivity Image

(d) LiDAR Noise Image

Figure 6.5: Example data from MASTER Dataset. The dataset includes multisensor and
multidomain data captured in different lakes, rivers, and port areas. The sensors include GNSS,
a stereo camera, 128 lines of 3D LiDAR, and an underwater forward-looking imaging sonar.

6.2.1 Image Processing
Camera imagery stands out as the most crucial sensory modality in the domain of robotics,
serving as the primary source of visual information for robots. Despite its paramount
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importance, several challenges, with noise being a predominant concern, confront camera
imagery. This noise can originate from various factors, including suboptimal lighting
conditions, camera quality, and the compression techniques employed during image trans-
mission. While there exist numerous techniques and advanced sensors for mitigating noise
related to camera quality and compression, addressing challenges associated with lighting
conditions remains a persistent issue.
One of the significant challenges arising from variable lighting conditions is the occurrence
of over and underexposure in images. When the camera is directed towards a prominent
light source, such as the sun, the high intensity of light floods the sensor, resulting in
overexposed images. Conversely, if the light source is positioned behind the camera,
images tend to be underexposed due to inadequate light reaching the sensor. Hence,
achieving exposure correctness becomes the foremost step in any image processing module.
This correction is pivotal for maintaining image quality and ensuring that subsequent
analysis and processing are founded on accurately exposed visual data. Notably, exposure
correctness is a multifaceted problem, especially in scenarios where lighting conditions
fluctuate dynamically, as in outdoor environments or during night-time operations.
In the context of night-time image processing, overcoming the challenges posed by low-
light conditions becomes particularly crucial. Night-time operations intensify the inherent
difficulties associated with variable lighting. To address this, sophisticated image processing
techniques tailored for low-light scenarios are imperative. Algorithms designed for night-
time image processing often involve enhancing contrast, reducing noise, and adapting
exposure settings dynamically. These measures collectively contribute to improving the
visibility and interpretability of images captured under challenging lighting conditions,
ensuring that robotic systems can navigate and operate effectively in diverse environments.
Furthermore, the SWTM integrates advanced object detection and segmentation algorithms,
aiming to identify and characterize unstructured objects within the visual field. Object
detection involves detecting and locating specific entities or features in an image, while
segmentation defines the boundaries of these objects, providing a clear information for
subsequent analysis. The robust implementation of these algorithms within the SWTM
enables the system to comprehend and interact with its environment effectively.

Exposure Correction:

Capturing camera images from the water surface introduces several exposure issues,
comprising both overexposure and underexposure scenarios, thereby impeding their ef-
fectiveness in object detection applications. The challenges are notably increased by the
reflective properties of water, as sunlight can produce overexposed images that obscure
details crucial for object detection. Conversely, under low-light conditions, the camera may
capture images with insufficient information, compromising the accuracy of subsequent ob-
ject detection processes. These exposure anomalies necessitate accurate filtering of images
based on their exposure levels to enhance their utility for object detection. Establishing a
defined threshold range for image exposure becomes imperative for facilitating exposure
correction and ensuring optimal conditions for subsequent analytical processes.
Figure 6.6 and 6.7 provides a visual representation of the exposure challenges encountered
in camera images captured at Gelterswoog Lake near RPTU Kaiserslautern Landau. The
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(a) Low light underexposed image (b) Corrected image

(c) Underexposed Histogram (d) Corrected Histogram

Figure 6.6: Exposure Correction in Underexposed Image. (a) shows an original image from
the MASTER dataset characterized by low light and underexposure, resulting in a dim and
detail-obscured scene. (b) displays the same image after applying exposure correction, yielding a
visually clearer and more balanced image with enhanced details. The histograms in (c) and (d)
represent the distribution of pixel intensities before and after correction, respectively. The initial
histogram (c) skews left, indicating underexposure, while the corrected histogram (d) shows a
more even distribution across the range, confirming the successful correction of the image.

images showcase instances of overexposure and low-light conditions, highlighting the real-
world complexities inherent in water environments. Analyzing these images underscores the
importance of implementing exposure-based filtering mechanisms to enhance the quality
and utility of the captured data for subsequent analytical tasks.

To systematically address exposure-related challenges, captured images are selected and
forwarded for further processing based on their exposure level. This entails establishing a
predefined threshold range within which the exposure of images should fall to be considered
suitable for subsequent processing. This threshold range serves as a criterion for exposure
correction, ensuring that the images utilized for object detection are within optimal
exposure conditions.

The assessment of image exposure levels involves a detailed analysis of histograms. Initially,
the RGB image undergoes conversion into the Hue Saturation Value (HSV) domain using
equation 6.1 - 6.3, where the Value (V) component governs color intensity.

H =

cos−1 (R− G
2 − B

2 )√
R2+G2+B2−RG−RB−GB

, ifG ≥ B, or

360− cos−1 (R− G
2 − B

2 )√
R2+G2+B2−RG−RB−GB

, ifB > G
(6.1)
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(a) Overexposed image (b) Corrected image

(c) Overexposed Histogram (d) Corrected Histogram

Figure 6.7: Exposure Correction in Overexposed Image. (a) shows an original image from
the MASTER dataset affected by high intensity from opposing sun, resulting in an overexposed
image. (b) displays the same image after applying exposure correction, yielding a visually clearer
and more balanced image with enhanced details. The histograms in (c) and (d) represent the
distribution of pixel intensities before and after correction, respectively. The initial histogram
(c) skews right, indicating overexposure, while the corrected histogram (d) shows a more even
distribution across the range, confirming the successful correction of the image.

S =

1− max(R,G,B)
min(R,G,B) , ifM > 0

0, ifM = 0
(6.2)

V = max(R, G, B)
255 (6.3)

Subsequently, the histogram of the Value component is computed to evaluate the distribu-
tion of intensities. This computation includes two critical ranges: 1) the Feasible Range
(FR) and 2) the Satisfactory Range (SR). The FR is pivotal in the preliminary filtration of
images, delineating the threshold beyond which inadequate information impedes effective
histogram equalization, thereby obstructing enhanced contrast. Images with a mean and
variance of the histogram beyond the FR are systematically excluded from subsequent
processing due to the inherent challenges associated with object detection in such instances.
SR is the range within which an image is considered in satisfactory contrast for subsequent
processing and do not require the histogram normalization. Therefore, an image is deemed
appropriate for histogram equalization if its histogram mean and variance fall within
the FR and extend beyond the predefined SR. The determination of these ranges is
contingent on the average mean and variances derived from histograms of 100 challenging
images. This dual-range strategy ensures the selection of images with the potential for



116 6. Surface Water Traversability

successful histogram equalization, effectively excluding those with insufficient information
or problematic exposure.
The significance of exposure correction extends beyond immediate improvements in object
detection. Enhanced image quality contributes to the overall robustness of analytical
processes, supporting downstream tasks such as image segmentation, feature extraction,
and classification. Moreover, in applications where real-time decision-making is crucial, the
prompt correction of exposure issues ensures that the data used for analysis is consistently
reliable, reducing the risk of inaccuracies in time-sensitive scenarios.

Object Detection:

Detecting objects in post-flood environments is a challenging task because of the unpre-
dictable nature of these objects. These objects vary in size, shape, and position and can
either float on the water’s surface or be submerged underwater, including fallen trees,
broken bridges, debris, and floating leaves. Some of these objects, such as floating leaves,
may not be critical for the safe navigation of surface water vehicles, while others, like
fallen trees and hard debris, can pose a serious threat. Traditional vision-based detection
methods are not ideal for identifying these objects due to their random nature. Accurately
detecting these floating objects is difficult because of the dynamic and often turbulent
water conditions and the presence of occlusions, such as shadows and reflections, which
further obscure the objects. Therefore, to address these complexities in such challenging
context, this thesis has integrated deep learning models that have demonstrated remark-
able capabilities in detecting complex patterns and features, making them particularly
well-suited for the complex task of object detection over water surfaces.
In this section, three distinct deep learning architectures are employed and rigorously
compared to present their respective strengths and weaknesses, providing a comprehensive
understanding of the detection trade-offs inherent in each technique.
The selected deep learning architectures fall into three categories: single-stage detectors,
two-stage detectors, and transformer-based detectors. Each category represents a distinct
paradigm in object detection, leveraging various architectural principles and methodologies.
The single-stage detectors, such as YOLO (You Only Look Once), aim for efficiency
by performing object localization and classification in a single forward pass. Two-stage
detectors, including Faster R-CNN (Region-based Convolutional Neural Network) and
Mask R-CNN, follow a more elaborate process, first proposing regions of interest and
subsequently refining these proposals for accurate object detection. Transformer-based
detectors, representing a newer paradigm, leverage attention mechanisms to capture
contextual information effectively, as seen in models like DETR (DEtection Transfomer).
Each of these architectures are explained in Appendix E.
The evaluation of these architectures is conducted on two distinct datasets. The first is
the widely used Marine Obstacle Detection Dataset (MODD/MODD2) dataset explained
in section 4.1.1, providing a benchmark for assessing the performance of the detectors in a
standardized setting. Additionally, a novel dataset, denoted as the Multi-modAl Shallow
waTER (MASTER) dataset (discussed in section 4.1.2), is introduced. The MASTER
dataset is precisely captured across various waterbodies, including lakes, riversides, and
ports, ensuring diversity in environmental conditions. This dataset aims to enhance



6.2. Surface Water Traversability Mapping Framework 117

the robustness of the evaluation by encompassing scenarios that may not be adequately
represented in existing datasets.
The training process involves exposing the selected deep learning architectures to both
the MODD/MODD2 and MASTER datasets, facilitating the adaptation of the models
to the specific challenges posed by post-flood environments. The comparative analysis
encompasses standard metrics, including average precision, and recall, to comprehensively
evaluate the performance of each detector. Precision reflects the accuracy of positive
predictions, and recall measures the ability to capture all positive instances. The results
are presented, considering the strengths and weaknesses of each architecture under various
conditions, shedding light on their applicability in post-flood environments.

Data augmentation:

In the context of this study, where multiple frames in the dataset come from the same
video sequences, a process of computing data dissimilarities among images within the
dataset becomes imperative. The objective is to anticipate the intrinsic variations between
images and subsequently define a threshold to identify dissimilar frames. This involves the
computation of structural similarity index (SSI), peak signal to noise ratio (PSNR) and
mean square noise (MSE), with the determined threshold values presented in Table 6.1.
The chosen threshold values are involved in the systematic selection of dissimilar images,
a critical step in enhancing the diversity and robustness of the dataset.

Table 6.1: Threshold Metrics for Image Selection in Video Sequences. This table presents
threshold values for SSI, PSNR, and MSE to filter out similar images, ensuring that only dissimilar
images are used for efficient training.

SSI PSNR MSE
0.63 25.4 178

To further augment the dataset and amplify its variability, ten distinct augmentation
techniques are systematically employed. These augmentation techniques play a pivotal
role in introducing additional diversity to the dataset, thereby enhancing the model’s
capacity to generalize across a multiple real-world scenarios. The augmentation techniques
employed are pivotal not only in increasing dataset variability but also in fortifying the
model’s resilience to noise during the training phase.
Each augmentation technique is characterized by a unique set of transformations applied
to the original images. These transformations include, but are not limited to, rotations,
flips, zooms, and changes in brightness and contrast. By subjecting the images to
these transformations, the dataset is effectively expanded, presenting the model with a
more extensive range of visual variations. These augmentations are especially valuable
in scenarios where the availability of labeled data is limited, as they simulate diverse
conditions that the model might encounter in real-world applications.

Comparative Analysis

Table 6.2 defines the key features and hyperparameter configurations of each object
detection model under consideration. Each model undergoes training across 500 epochs,
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with the image dimensions standardized at 640x640 pixels. Table 6.3 offers a detailed
quantitative comparison of the performance of each algorithm, trained independently. A
notable observation is the superior average precision (AP) of the single-stage YOLOX
model over both Faster R-CNN and DETR. When comparing the YOLOX small and large
models, the small model excels in AP, while the large model demonstrates a higher average
recall.

Table 6.2: Object Detection Model Hyper-parameter Specifications. This table enumerates the
hyper-parameters utilized across all object detection models discussed in the thesis. These hyper-
parameters are optimized to ensure a uniform training, facilitating fair comparisons between the
performance outcomes of the various models.

Image Scale Max Epochs Interval Batch Size
640 500 10 8

Table 6.3: Comparative analysis of object detection techniques across various datasets. This
table indicates the Mean Average Precision (mAP) and Recall at Intersection over Union (IoU)
thresholds of 50% and 50%− 95% respectively.

Datasets YoloX S YoloX L Faster RCNN Detr
mAP Recall mAP Recall mAP Recall mAP Recall

MODD 0.98 0.66 0.98 0.66 0.92 0.60 0.056 0.012
MODD2 0.96 0.6 0.94 0.62 0.40 0.35 0.102 0.033

MASTER 0.88 0.72 0.83 0.68 0.86 0.61 0.11 0.08
MIX 0.72 0.61 0.75 0.62 0.79 0.58 0.19 0.15

The comparative study between the YOLOX small and large models reveals a subtle
distinction: while the small model achieves a higher AP, indicative of its precision in
correctly identifying positive cases, the large model excels in average recall, demonstrating
its proficiency in minimizing missed detections. In the context of ensuring safe navigation
and mapping in post-flood environments, the priority shifts towards minimizing false
negatives rather than false positives. In practical scenarios, detecting an additional, non-
existent obstacle (false positive) is typically less detrimental than the failure to detect an
actual obstacle (false negative). The latter can lead to hazardous situations, particularly
in environments where obstacles can be unpredictable and varied due to the aftermath of
flooding.
Given these considerations, an algorithm that exhibits higher sensitivity to false negatives –
one with a higher recall – is deemed more suitable for the task at hand. Such an algorithm’s
ability to reliably identify potential obstacle is crucial in ensuring safe navigation and
effective mapping in post-flood scenarios. This criterion leads to the selection of the
YOLOX large model as the preferred object detection architecture for this application.
The large model’s robust recall makes it adept at detecting a wide range of obstacles, which
is critical in environments where the terrain and obstacles can be significantly altered by
flooding.
This decision is supported by the understanding that in post-flood scenarios, the envi-
ronment is often drastically changed, with new obstacles emerging that were not present
before. The ability of the YOLOX large model to identify these obstacles accurately,
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(a1) YoloX-s (a2) YoloX-l (a3) Faster RCNN

(a) MODD Dataset

(b1) YoloX-s (b2) YoloX-l (b3) Faster RCNN

(b) MODD2 Dataset

Figure 6.8: Qualitative comparison of object detection algorithms on the MODD and MODD2
dataset. (a1) shows results using YoloX-s, which achieves 80% precision but with a higher number
of true negatives. (a2) depicts the YoloX-l algorithm, which also reaches 80% precision but with
no true negatives. (a3) illustrates the performance of the Faster RCNN algorithm, which has a
lower precision of 70% and no true negatives. (b1) shows results using YoloX-s, which achieves
76.7% precision but with no true negatives. (b2) depicts the YoloX-l algorithm, which also
reaches 75% precision but with no true negatives. (b3) illustrates the performance of the Faster
RCNN algorithm, which has a lower precision of 66.7% and no true negatives. Each algorithm’s
detection capability is visually represented by red bounding boxes around the detected objects.

despite the challenges posed by such environments, is a key factor in its selection. Its
higher recall ensures that fewer obstacles are missed, a factor that could be crucial in
rescue and recovery operations, as well as in ensuring the safety of navigation in these
areas.

Semantic Segmentation:

In the context of a post-flood environment, the inherent unpredictability and randomness
of objects present challenges for their effective detection on the water’s surface. The
concept of semantic segmentation in this domain revolves around distinguishing essential
entities common to both normal and post-flood environments, namely sky, water, and
unknown obstacles. This section delves into the semantic segmentation of the water surface,
focusing on these three entities. Rather than explicitly detecting individual objects, the
objective is to identify the water area and integrate this information with detected objects,
thereby enhancing the understanding of traversable and non-traversable regions.
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Three distinct segmentation architectures have been implemented and evaluated across var-
ious datasets, including MaSTr1325 (Section 4.1.1), ROSEBUD (Section 4.1.1), USVInland
(Section 4.1.1), and MASTER (Section 4.1.2). The subsequent section provides insights
into the applied data augmentation techniques, followed by a comprehensive exploration of
the segmentation architectures and their corresponding results. This multifaceted approach
aims to enhance the robustness of semantic segmentation in water surface environments,
offering valuable insights into the classification of essential entities and the overall delin-
eation of traversable and non-traversable areas within the context of post-flood scenarios.
Table 6.4 provides the salient features and hyper-parameters of each model.

Table 6.4: Semantic Segmentation Detection Model Hyper-parameter Specifications. This table
enumerates the hyper-parameters utilized across all segmentation models discussed in the thesis.
These hyper-parameters are optimized to ensure a uniform training, facilitating fair comparisons
between the performance outcomes of the various models.

Image Scale Backbone Max Epochs Interval Batch Size
640 Resnet 500 10 8

Comparative Analysis

The performance metrics in Tables 6.5, through 6.8 provide a rich dataset for comparing
the efficacy of three semantic segmentation models – DeepLabV3+, UNet, and Segformer
– across different datasets and classes. These tables highlight how each model performs in
terms of Intersection over Union (IoU) and Accuracy (Acc) across various environmental
conditions and classes, which are crucial for applications in environmental monitoring,
autonomous navigation, and land cover classification. Below is a detailed analysis of the
results from each table.
Aerial Fluvial Dataset (Table 6.5) - The DeepLabV3+ model demonstrates strong per-
formance on the Aerial Fluvial Dataset with an IoU of 94.43 for the Environment class
and 91.39 for Water, suggesting it is capable of distinguishing between these two classes
with high precision. The Accuracy metric is also high, but it is notable that there is a
slight decrease in performance for the Water class compared to the Environment, which
might be due to the similar textural features present in both classes that can sometimes be
challenging to differentiate. Besides, UNet shows a competitive performance but slightly
lower than DeepLabV3+ in terms of IoU for both classes. However, it maintains high
Accuracy, particularly for the Water class. This could indicate that while UNet may
misclassify some pixels between the classes, it remains reliable overall. Furthermore,
Segformer exhibits a similar trend with IoU and Accuracy, performing slightly lower than
DeepLabV3+ but still maintaining high metrics. Its relatively balanced performance in
both IoU and Accuracy suggests that it is a robust model for segmenting complex scenes
in aerial imagery where the distinction between land and water can be subtle.
Mastr1325 Dataset (Table 6.6) DeepLabV3+ on the MASTR1325 Dataset shows a consid-
erable variation in IoU across different classes. It performs exceptionally well for Water
and Sky but struggles with the Unknown class, indicating that it may have difficulties
with classes that are not well-represented or defined in the training data. Contrarily,
UNet displays a more balanced IoU across the classes than DeepLabV3+, though it also
shows a significant drop in performance for the Unknown class. Its Accuracy metrics are
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Table 6.5: Performance comparison of Semantic Segmentation models over Aerial Fluvial
Dataset, based on two metrics Intersection over Union (IoU) and Accuracy (Acc) for two classes:
Environment and Water.

Classes DeepLabV3+ Unet Segformer
IoU Acc IoU Acc IoU Acc

Environment 94.43 96.28 93.82 95.21 96.14 97.76
Water 91.39 96.84 90.65 97.63 93.91 97.3

relatively high for Environment, Water, and Sky, confirming its efficacy for common classes
but highlighting potential improvement areas for more ambiguous categories. Noteably,
Segformer’s performance is consistent with UNet’s but tends to have slightly better IoU
and Accuracy in most classes except for the Unknown. This model’s architecture may
provide it with an edge in generalizing across various classes, even those that are less
distinct.

Table 6.6: Performance comparison of Semantic Segmentation models over Mastr1325 Dataset,
based on two metrics Intersection over Union (IoU) and Accuracy (Acc) for four classes: Envi-
ronment, Water, Sky, and Unknown.

Classes DeepLabV3+ Unet Segformer
IoU Acc IoU Acc IoU Acc

Environment 91.45 96.52 90.25 96.62 91.64 96.7
Water 98.84 99.19 98.54 98.97 99.07 99.46
Sky 99.03 99.35 98.98 99.41 99.33 99.59

Unknown 49.59 68.22 46.24 64.81 47.75 64.42

Rosebud Dataset (Table 6.7) DeepLabV3+ achieves impressive IoU and Accuracy scores
on the Rosebud Dataset, with over 99% for the Environment class and nearly as high
for Water. This indicates a strong capability for segmenting well-defined classes with
distinct features. UNet matches DeepLabV3+ in IoU for both classes and surpasses it
in Accuracy for the Water class, indicating its strength in segmenting images with high
textural contrast. Segformer shows a slight decrease in IoU for the Environment class
compared to DeepLabV3+ and UNet but a marginal improvement in the Water class. Its
high Accuracy for both classes suggests it has a strong ability to correctly classify pixels.

Table 6.7: Performance comparison of Semantic Segmentation models over Rosebud Dataset,
based on two metrics Intersection over Union (IoU) and Accuracy (Acc) for two classes: Envi-
ronment and Water.

Classes DeepLabV3+ Unet Segformer
IoU Acc IoU Acc IoU Acc

Environment 99.21 99.53 99.21 99.57 99.33 99.66
Water 98.86 99.53 98.87 99.48 99.04 99.53

UVInland Dataset (Table 6.8) DeepLabV3+ presents an excellent IoU for both Environment
and Water classes, indicating a high degree of overlap between the predicted segmentations
and the ground truth. Its Accuracy is also high, showcasing its strength in segmenting
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images with clarity and distinct features. UNet has a slightly lower IoU compared to
DeepLabV3+ but maintains a high Accuracy score. This could imply that while its
segmentation may not be as precise as DeepLabV3+’s, it is still accurate in its overall
classification. Segformer’s performance is comparable to UNet’s but with a slightly better
IoU for the Water class. Its high Accuracy scores for both classes affirm its capability as a
reliable segmentation model.

Table 6.8: Performance comparison of Semantic Segmentation models over UvInland Dataset,
based on two metrics Intersection over Union (IoU) and Accuracy (Acc) for two classes: Envi-
ronment and Water.

Classes DeepLabV3+ Unet Segformer
IoU Acc IoU Acc IoU Acc

Environment 97.5 98.81 94.62 95.73 98.47 99.19
Water 96.88 98.32 93.52 98.53 98.08 99.08

Figure 6.9 provides a visual representation of the semantic segmentation results from
three different models – DeepLabV3+, UNet, and Segformer – applied to four different
datasets: Aerial Fluvial, MASTR1325, Rosebud, and UvInland. The segmentation quality
is color-coded, with yellow representing the water as segmented by the models and
blue indicating the ground truth for water. In the MASTR1325 dataset, the ground
truth is overlaid with multicolored segmented images. Across all datasets, DeepLabV3+
consistently provides high-fidelity segmentation with minimal misclassification. UNet,
while generally accurate, shows a tendency toward under-segmentation across several
datasets. Segformer demonstrates strong segmentation capabilities, often rivaling or even
surpassing DeepLabV3+ in terms of alignment with the ground truth.
The visual analysis suggests that while all models perform well, the choice between them
may come down to specific application needs. DeepLabV3+ would be suitable for scenarios
where precision is paramount. UNet could be favored in situations where model simplicity
and efficiency are more critical, despite some potential under-segmentation. Segformer’s
strong performance suggests its suitability for tasks requiring a balance between precision
and generalization to various features within an image. Furthermore, this visual analysis
underscores the importance of examining both quantitative metrics and qualitative visual
outputs when evaluating semantic segmentation models, ensuring that the selected model
is well-suited to the specific characteristics and requirements of the task at hand.

6.2.2 Point cloud Processing
The 3D LiDAR system is instrumental in generating a point cloud, a collection of points
that collectively forms a comprehensive 3D representation of the surrounding environment.
The quantity of points generated by a LiDAR system is contingent upon the number
of channels it possesses. In essence, the greater the number of channels, the higher the
resolution of the point cloud, at the cost of increased storage requirements. From a safety
perspective, this work prioritizes the use of a high-resolution 128-channel 3D LiDAR,
affording a more intricate and precise understanding of the environment.
While the richness of information in a 3D point cloud is invaluable, it poses challenges,
primarily due to the massive storage requirements for concatenating individual frames into
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(a1) DeeplabV3Plus (a2) Unet (a3) Segformer

(a) Aerial Fluvial Dataset.

(b1) DeeplabV3Plus (b2) Unet (b3) Segformer

(b) Mastr1325 Dataset.

(c1) DeeplabV3Plus (c2) Unet (c3) Segformer

(c) Rosebud Dataset.

(d1) DeeplabV3Plus (d2) Unet (d3) Segformer

(d) UVInland Dataset.

Figure 6.9: Visual Comparison of Semantic Segmentation Models. The Figure showcases the
semantic segmentation capabilities of three models—DeepLabV3+, UNet, and Segformer—across
four diverse datasets. Segmentation accuracy is visualized with yellow marking the model’s water
detection and blue representing the ground truth.
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a comprehensive map. Additionally, for tasks related to traversability analysis, the full 3D
information may be excessive. Traversability analysis typically requires 2.5D information,
where intensity information in a 2D map suffices to categorize obstacles—distinguishing
whether an obstacle is floating or sinking. To address this, there is a need to compress
the 3D information in each frame systematically, enabling the creation of a lightweight
traversability map.

To tackle the storage and computational challenges associated with processing 3D LiDAR
data, various techniques are employed to compress the massive amount of information
while preserving the accuracy of traversability analysis. These techniques aim to distill the
essential information needed for navigation and obstacle avoidance. Common approaches
include voxelization, where the 3D point cloud is converted into a regular 3D grid of
voxels, and octree-based methods, which hierarchically organize the point cloud into a tree
structure to reduce redundancy and storage requirements. Additionally, techniques like
image-to-pointcloud mapping are utilized to identify key elements within the point cloud,
facilitating efficient representation without compromising critical information.

(a) Camera Image (b) LiDAR Scan

(c) Camera Image (d) LiDAR Scan

Figure 6.10: Effect of Surface water environment on LiDAR pointcloud. (a,b) LiDAR scan
shows negligible amount of reflections from the surface of water. (c,d) LiDAR scan shows many
points against the leaves floating over the surface of water. The bounding boxes and lines are
only for visualization.

It is essential to highlight that a significant impedance mismatch between water and air
impedes the transmission of LiDAR rays from water to air. Consequently, when LiDAR
rays enter the water, they are unable to exit, resulting in the complete absence of water
within the LiDAR point cloud. This phenomenon is accurately illustrated in Figure
6.10, depicting point clouds acquired in two distinct scenarios. This characteristic proves
advantageous for the architecture, as the absence of reflections from water implies the
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exclusion of floating objects from the LiDAR data, thereby enhancing the precision of the
perception system.

Multi-step Filtration

The 3D LiDAR sensor plays a crucial role in providing a comprehensive dataset of the
surrounding environment, capturing a multitude of points as depicted in Figure 6.11a.
However, not all points contribute to the generation of a useful traversability map. These
points may include the points generated by colliding the surface vehicle’s (SV) body,
overhanging non-threat points, and random noisy points in LiDAR scan. A multi-step
(three steps more precisely) filtration technique is implemented to clear out those redundant
or unwanted points from pointcloud.
Initially, those points originating from the surface vehicle (SV) itself, are considered
redundant and are subsequently filtered out from the LiDAR point cloud to enhance map
accuracy. This filtering process ensures that SV’s points do not interfere with the mapping
process. In addition to SV’s points, the LiDAR data may include points corresponding
to overhanging tree branches. To address this, a predefined range is established, set at
1.5 times the height of the boat. Points falling within this overhanging range are deemed
non-threatening and are retained in the dataset. This range is dynamically calculated based
on the specific configuration of the vehicle, ensuring adaptability to different scenarios.
Furthermore, the LiDAR data may contain random points representing noise or extremely
small (with respect to surface area) obstacle over the surface of water, each possessing a
threat level. To simplify the representation of obstacles in the traversability map, a decision
is made to treat obstacles less than 20cm in surface area as not a threat. To perform
this filtration nearest neighbor algorithm is implemented to filter out points exceding the
threshold. This surface area threshold is configurable, allowing for adjustments based
on the characteristics of the environment and the vehicle. Figure 6.11 provides a visual
representation of the each step considered within the presented filtration technique, showing
the dynamic nature of the filtering process.

(a) (b) (c) (d)

Figure 6.11: Results of Three-step Pointcloud Filtering. a) Raw LiDAR scan b) Box filter for
filtering SV points. c) Filtration of LiDAR points exceeding SV kinematics d) Points filtration
using Algorithm 6.1.

Table 6.9 provides a quantitative breakdown of the reduction in the number of LiDAR
points at three distinct scenarios, corresponding to the techniques discussed above shown
in Figure 6.11. The table clarify the progressive decrease in the number of points at each
stage of the filtering process, offering insights into the efficiency and adaptability of the
LiDAR data preprocessing methodology. The ability to configure and fine-tune these
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filtering parameters ensures that the traversability map accurately reflects the relevant
features of the environment while mitigating the influence of extraneous or non-threatening
elements.

Table 6.9: Reduction in Point Cloud Data Across Processing Stages. The table shows the
progressive reduction of data points in point clouds for three scenarios through three stages of
processing, illustrating the filtering and refining effects of these stages.

Scenarios Stage 1 Stage 2 Stage 3
Scenario 1 120k+ 105k 43k
Scenario 2 111k+ 98k 38k
Scenario 3 50k+ 46k 28k

Algorithm 6.1: Point Reduction Process for Generating an Obstacle Map. This
algorithm outlines a method for filtering a point cloud scan by reducing points
based on their probability values to create a more efficient obstacle map.
1 Input: Si => Incoming scan, Pptx => Probability Vector of points in scan.

Require: Sf => Filtered scan with lesser points.
while k ← Si do
end
Pp ← Pk

k ← p else
end
Delete p in Si

Image to point cloud mapping

Object detection within point clouds presents a unique set of challenges compared to
image-based detection due to the absence of color and texture information. Consequently,
the object detection carried out in the preceding sections on images is deemed more robust
and accurate. To leverage the detailed detection information obtained from images, it
is essential to map this information onto the point cloud using a technique known as
inverse-perspective mapping.
The process begins by preserving the objects detected in the image and subsequently
translating this information onto the point cloud. The remaining points in the point cloud
are then filtered out, resulting in an obstacle-specific point cloud. The accuracy of this
obstacle point cloud is intricately tied to the precision of the calibration between the
camera and LiDAR systems. The calibration process necessitates the existence of the same
environment in both modalities, enabling the identification of corresponding features.
In our prior publication [Keen 21], a similar methodology was introduced, emphasizing
the importance of robust calibration for accurate mapping between images and point
clouds. The calibration process is visualized in Figure 6.12, highlighting the mapping of
the point cloud onto the images. To achieve accurate calibration, a checkerboard pattern
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Figure 6.12: Point cloud Mapping over Camera Imagery. The figure illustrates the overlay of a
LiDAR point cloud on an image from the TUK campus dataset, with red points indicating the
precise mapping of the point cloud data onto the corresponding features within the image.

is employed, serving as a reference for identifying common features between the camera
and LiDAR modalities.
The effectiveness of inverse-perspective mapping in translating object detection information
from images to point clouds lies in its ability to maintain the spatial relationships and
positions of objects within the environment. By aligning the detection results from images
with the corresponding points in the LiDAR-generated point cloud, a unified and enriched
representation of the environment is created. This integration of information is vital for
downstream tasks such as navigation, scene understanding, and obstacle avoidance. Figure
6.13 shows the clear object after fusing information received from object detection and
semantic segmentation step discussed in sections 6.2.1 and 6.2.1.

Obstacle Motion Map

The motion mapping module within the context of underwater obstacle detection serves as
a pivotal element for assessing potential threats posed by objects in a marine environment.
This module extrapolates the dynamic characteristics of obstacles, providing an initial
estimation of movement based on physical dimensions such as surface area and volume.
Through empirical analysis, it has been inferred that larger obstacles tend to exhibit less
mobility compared to their smaller counterparts. Such observations stem from the natural
buoyancy and drag forces acting on objects immersed in a fluid medium. The module
operates by meticulously analyzing the volumetric presence of an object on the water’s
surface, utilizing point cloud data to ascertain its three-dimensional structure. The point
cloud, a set of data points in space, is typically generated by sonar or LiDAR systems that
capture the nuances of the underwater landscape. By processing this data, the module can
derive a probabilistic model that predicts the likelihood of an object’s movement, taking
into account factors such as current, wind, and the object’s inherent buoyancy.
Subsequent chapters will delve into the integration of this motion mapping with threat
level assessment algorithms. The threat level of an obstacle is not solely determined by its
potential for movement but also by its underwater footprint — the area it encompasses
on the seabed. By correlating motion map values with the spatial extent of the object’s
contact with the seabed, a more nuanced understanding of the obstacle’s behavior and
potential risk can be achieved. This multidimensional analysis is crucial for autonomous
underwater vehicles (AUVs) and remotely operated vehicles (ROVs) that require real-time
data to navigate safely and effectively in complex marine environments. This threat
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(a) Camera (b) Camera + LiDAR

Figure 6.13: Combining the Visual and Spatial Sensory Modalities. Figure (a) presents camera
images with detected obstacles highlighted within red bounding boxes, while figure (b) displays
the fusion of LiDAR point clouds with the detected obstacles from the camera imagery. The
white points in the point cloud represent the raw spatial data, and the red points specifically
denote the identified obstacles. The boxes in the right images show the position and orientation
of boat.

assessment is not a static computation but a dynamic one that continuously evolves with
the changing conditions and movements of the obstacles. It involves a complex algorithm
that takes into account not only the physical parameters but also the historical data
and predictive models of object behavior. For example, a stationary object that has a
large underwater footprint might be considered a high-threat level due to its potential to
hinder navigation routes or disrupt marine ecosystems. Moreover, the threat assessment is
contextualized within the broader scope of marine operations and objectives. For certain
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applications, such as underwater construction or salvage operations, a large immobile
object may present a significant operational challenge, whereas for ecological surveys, the
same object might be of high interest but low threat.

6.2.3 Obstacle Map

For traversability mapping in surface vehicles, a 2.5-dimensional occupancy grid map
stands as a fundamental objective. This map helps identify and categorize obstacles that
could pose a risk to safe navigation. The map’s occupancy values indicate the level of
danger presented by detected objects, making it a critical metric for assessing navigational
risks. However, this mapping technique mainly focuses on surface-level obstacles and
doesn’t account for objects submerged below the water’s surface, which could also pose
significant navigational issues. Assessing the surface water challenges mainly relies on
the vertical elevation of objects, meaning that taller structures present a more significant
hazard. Furthermore, To create a global map from individual LiDAR (Light Detection and
Ranging) scans, the system incorporates GPS/GNSS (Global Positioning System/Global
Navigation Satellite System) data. This integration is essential for accurately aligning
scans to form a universally referenced map. The onboard LiDAR system operates at
dual frequencies of 10Hz and 20Hz, with the 10Hz frequency chosen for system evaluation
purposes. This frequency selection, despite resulting in a large volume of data, is crucial
for maintaining the resolution and effectiveness of the mapping process.
The challenge then becomes managing this extensive information without overwhelming
storage capacities. A novel solution, as detailed in [Keen 20], involves updating the map
only when the vehicle moves beyond the reach of the previously acquired scan. This method
ensures that the map remains updated without becoming extremely dense. To ensure
each new scan is accurately positioned relative to the existing map data, the Iterative
Closest Point algorithm is utilized. This algorithm fine-tunes the alignment of each scan,
ensuring that the global map remains a precise and reliable tool for navigation, providing
a lightweight yet detailed representation of the surrounding environment, optimized for
real-time application in surface vehicle navigation.
The Figure 6.14 illustrates a sophisticated simulation framework designed to enhance
the capabilities of autonomous surface vehicles in terms of traversability and obstacle
detection. It captures a series of frames from an Unreal Engine simulation, where the
vehicle, equipped with both camera and LiDAR sensors, navigates a complex barnyard
environment. The left side of each subfigure displays the simulated scene, depicting the
vehicle’s interaction with various static and dynamic obstacles within the virtual setting.
On the right side, the elevation map can be seen, which is computed using data fusion
of camera imagery and LiDAR point cloud. This elevation map is a key component of
the surface traversability module, offering a visual representation of obstacles on the
water’s surface. Notably, the map’s accuracy is within ±19 cm, a proof to the precision
of the simulation in mimicking real-world conditions. As the boat progresses through
the environment, the frames at intervals of 100 demonstrate the iterative refinement
of the map, showcasing the evolving understanding of the vehicle as it gathers more
data. This level of detailed mapping is crucial for autonomous vehicles tasked with safely
navigating aquatic environments, as it allows for the anticipation of potential hazards and
the planning of efficient routes. The simulation’s ability to provide ground truth eases
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Unreal Scene Elevation Map

(a) Frame 1

(b) Frame 100

(c) Frame 200

Figure 6.14: Simulation Result - Elevation Map at each frame. The image demonstrates the
generation of map after consecutive frames by driving a surface vehicle within the simulated
environment.

the validation process of the mapping accuracy, ensuring that the algorithms performing
these operations are reliable and effective. The final map after traversing the complete
simulated environment is shown in Figure 6.15.

Moreover, Figure 6.16 demonstrate the methodology tested over the natural water bodies.
The images on the left depict views of various natural water bodies as captured by satellite,
providing a top-down perspective similar to what one might find on a platform such
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(a) Unreal Scene (b) 2D Elevation Map

Figure 6.15: Simulation Result - Complete Elevation Map. Figure (a) shows a simulated
barnyard scene with obstacles in the Unreal Engine, while Figure (b) illustrates the corresponding
2D elevation map generated by driving a simulated surface vehicle with multi-sensor system
within the simulation environment. The map outlines the environment and height of those
obstacles.

as Google Maps. These scenes offer a point of reference, showcasing the environment
in its natural state, complete with surface features and surrounding landscapes. The
corresponding images on the right, however, represent the elevation maps that reveal the
potential navigational hazards above the water’s surface.

In the simulated environment, the methodology deployed had previously demonstrated an
accuracy of ±19 cm, a metric that was thoroughly verified via rigorous testing. Drawing
on these validated simulation results, a parallel can be drawn that the deviations in
the natural water body maps would align closely with those observed in the controlled
simulation conditions. While the true accuracy in natural settings cannot be explicitly
quantified due to the absence of a definitive ground truth, the consistency and reliability
of the sensor technologies employed provide a strong inference that the generated maps
are indeed precise. In this regard, one of the prominent sensor would be RTK GPS system
that provides an accuracy of approximately ±2 cm. By leveraging such precise positional
data, the resultant maps reflect a high degree of accuracy, reliably mirroring the actual
layout and distribution of obstacles within the water body.

Moreover, the generated obstacle maps, when seen with their Google Maps counterparts,
exhibit a striking similarity in the layout and presence of features, further underscoring the
accuracy of the mapping process. This visual comparison serves as qualitative validation
of the maps’ precision, complementing the quantitative data provided by the GPS sensors.
The implications of such precise mapping are manifold, extending beyond navigation to
encompass areas like ecological conservation, disaster management, and the development
of autonomous watercraft, where the understanding of surface and subsurface conditions
is paramount.
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Google Maps Elevation Maps

(a) Gelterswoog Lake

(b) Hoya - THW Test Site

(c) Hamburg Port

Figure 6.16: Comparative presentation of natural water bodies with their respective Google
Maps and Elevation Maps. The figure demonstrates satellite imagery from Google Maps with
corresponding elevation maps generated by driving surface vehicle over three different water
bodies, illustrating the results of obstacle mapping in Gelterswoog Lake, the THW test site in
Hoya, and the Hamburg Port.

6.3 Discussion

This chapter provides a comprehensive comparison of various sensory modalities used
in understanding a surface water environment, including cameras, LiDAR, and radars.
Following this examination, a novel framework for Surface Water Traversability Mapping
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(SWTM) is presented, which utilizes both camera and LiDAR sensors to map the surface
water scenario.
In an aquatic environment, the camera images suffer from several challenges, including
high reflections of sunlight from water surface and the low light conditions in cloudy
environment that effect the overall exposure of camera imagery. Therefore, the camera
images are enhanced by normalizing their exposure level using histograms. This exposure
correction technique has contributed in the increase in robustness of obstacle detection
within SWTM framework.
Additionally, several deep learning-based obstacle detection and semantic segmentation
models are implemented in this chapter that has provided a detailed comparison of each
model over surface water environment. Due to the limited relevant dataset, the obstacle
detection suffer from false-positive detections that affect the precision of final traversability
map. Therefore, the obstacles are further filtered based on their presence in critical region
of the surface vehicle using the semantic information.
The 3D aspect of detected obstacle is computed by mapping it over LiDAR-generated point
cloud, which provides detailed range information for each identified object. This fusion
of data from cameras and LiDAR significantly elevates the precision of both detection
and mapping within the SWTM framework. The obstacles identified through this process
are subsequently represented on a 2D grid map, offering a comprehensive overview of
the surface water environment. The accuracy of this map (within ±19 cm variance) is
dependent upon the precision of the GPS and the accuracy of object detection derived
from camera imagery. This generated map lay foundation for the development of a fused
traversability map in subsequent chapter, demonstrating the critical role of accurate surface
water mapping in enhancing our understanding and navigation of complex environments.
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7. Fused Traversability

Many marine applications, such as dock surveillance, marine resource exploration, and
underwater terrain mapping, concentrate on perceiving either the surface or the underwater
domain based on their specific requirements. This singular focus is generally enough for
these domain-specific applications. For instance, dock surveillance primarily involves
monitoring the water’s surface, while underwater terrain mapping involves studying the
ocean floor’s topography. However, to map post-flood environments, it is crucial to
consider both the surface and underwater domains, as floods can displace debris and unsafe
obstacles, posing navigation risks. These obstacles can be found on the surface, partially
submerged, or underwater, requiring a clear view of both domains for safe navigation.
Navigating the post-flood environment presents a formidable challenge due to the presence
of many random and unstructured objects ranging from damaged infrastructure like
broken bridges to natural debris such as floating leaves, submerged trees, or even vehicles,
along with various forms of their underwater footprints. The inherent unpredictability
and variability of these objects create a complex task that is extremely difficult to map
accurately. Detecting and classifying these objects is a complex task because each one is
unique and has its own characteristics like size, shape, material, position, and whether it
is partially or fully submerged or floating on the surface.
Furthermore, integrating data from various domains presents a challenge due to the
differences in sensory modalities. For example, LiDAR provides detailed and accurate
maps for surface water environments using three-dimensional range data. In contrast,
sonar captures 2.5-dimensional sound reflection information to understand underwater
terrains and identify submerged objects. However, the nature of the data obtained from
these sensors is fundamentally different, making their integration a complex process. The
varying types and formats of the data collected by these sensors require a sophisticated
approach to data fusion.
To address these challenges and create an effective mapping system for post-flood environ-
ments, it is essential to transform the data from both domains into a comparable format.
This transformation involves not only the alignment and integration of the data but also
its standardization to a uniform scale and reference. Once this is achieved, the next crucial
step is the categorization of detected obstacles into a limited number of basic classes. This
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classification simplifies the complex array of objects into manageable groups, facilitating
easier identification and analysis. By categorizing obstacles into fundamental classes, such
as floating debris, submerged objects, or structural remnants, the mapping system can
more efficiently process and interpret the data, leading to more accurate and actionable
insights. This approach not only enhances the capability of the mapping system to deal
with the diverse challenges of a post-flood environment but also significantly improves the
reliability and utility of the data for rescue and recovery operations.

7.1 Fused Traversability Mapping Framework

The integration of surface and underwater obstacle maps is a crucial step in gaining
a complete understanding of complex environments created by floods. This process is
necessary to provide essential insights and characteristics of the post-flood situation,
which is vital for creating maps that enable rescue boats to navigate safely. The Fused
Traversability Mapping (FTM) framework is a critical component in integrating surface
and underwater maps to produce a comprehensive and informative map that accurately
represents the traversability of the post-flood scenario. To fully comprehend the workings
of this module, it is necessary to discuss the specific functionalities and methodologies
employed by both the surface and underwater traversability modules.

The obstacle should be 
categorized into floating, 
sinking or submerged.

Global 
Transformation

Buoyancy 
Estimator Map Threat Map

Surface Water 
Obstacle Maps

Underwater 
Obstacle Maps

Map 
Fusion

The obstacle should be 
categorized based on the 
level of threat it poses to 
the vehicle’s navigation

The fusion of both maps 
provide comprehensive 
information of an obstacle 
within local scan 

The fused local scan 
should be transformed 
into global coordinates 
to be easily stitched into 
final map

Traversability
Map

Figure 7.1: Schematic of the Fused Traversability Mapping (FTM) Framework. This figure
illustrates the process of generating a Traversability Map by combining underwater and surface
water obstacle maps with buoyancy data and threat levels, merging them, and then transforming
the fused data into global coordinates for comprehensive navigation guidance.
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The Underwater Traversability Mapping (UTM) framework, as elaborated in Chapter
5, employs a multifaceted approach to address the challenges posed by sonar imagery,
which typically suffers from low signal-to-noise ratio (SNR). The UTM incorporates image
enhancement and depth estimation techniques to refine this imagery, making it more
conducive for analysis. Additionally, object detection techniques are utilized to identify
underwater obstacles and integrate them into a localized map. A significant challenge with
forward-looking sonar imagery is its 2.5-dimensional nature, which does not provide depth
information on the waterbed. To overcome this, the UTM implements a depth estimation
technique that computes the depth of the waterbed by detecting the intensity variation
in pixel values. In its final stage, the UTM generates a local obstacle map that provides
2.5-dimensional information about the underwater footprint of objects and a depth map,
providing a detailed view of the submerged environment.
In parallel, the Surface Water Traversability Mapping (SWTM) framework, presented in
Chapter 6, focuses on detecting surface water obstacles. This is achieved through advanced
deep learning algorithms specializing in semantic segmentation and object detection. Once
these obstacles are detected, they are transformed into the LiDAR frame of reference,
allowing for the creation of a three-dimensional point cloud representation of each obstacle.
This transformation is crucial as it aligns the surface-based obstacle data with the LiDAR’s
spatial framework, thereby enabling a more accurate and comprehensive mapping of the
surface environment. The SWTM’s sophisticated use of LiDAR sensor not only enhances
the detection process but also ensures that the surface map is computed within the LiDAR’s
frame of reference, thereby maintaining consistency and accuracy in the data.
The fusion of the data from these two modules – UTM and SWTM – by the FTM is a
complex process that requires not only the integration of the data but also its alignment.
This alignment ensures that the diverse data types, formats, and frames of reference from
the underwater and surface modules are seamlessly added up to produce a unified, multi-
class traversability map of the post-flood environment. Such a map is an invaluable asset
in post-flood scenarios, providing rescue teams with crucial information that enhances their
navigational capabilities and ensures safer operations. The detailed and dynamic nature of
this map, encompassing both surface and underwater obstacles, reflects the multifaceted
challenges of post-flood environments and represents a significant advancement in the field
of environmental mapping and disaster response.
Categorizing Post-Flood Environment
The diverse nature of obstacles, each varying in nature, size, and location, coupled with the
unpredictability of the scenarios encountered, makes the task of detecting and classifying
every obstacle a formidable challenge. Consequently, a novel approach to managing this
complexity is the categorization of surface and underwater obstacles into simpler, more
manageable groups. This categorization not only simplifies the detection and analysis
process but also ensures a more efficient and targeted response in post-flood situations.

Obstacle Buoyancy - A practical method for categorizing obstacles in a post-flood
environment is to classify them based on their interaction with water: floating,
submerged, or completely sunken objects. Each category represents a distinct type of
hazard and requires a different approach for detection and navigation. For example,
underwater debris, such as sunken vehicles or construction materials, may not be
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visible on the surface but can create a highly unsafe environment for navigation.
This is particularly true in post-flood scenarios where the water is often shallow, and
such submerged objects can pose significant risks to boats and other watercraft. In
contrast, floating obstacles like leaves, branches, or even displaced household items
present a different type of challenge. While these objects do not have an underwater
footprint, they can still impede navigation and require detection and avoidance
strategies that focus on the water’s surface.

Obstacle Threat Level - In a post-flood scenario, not all obstacles present the same
level of risk or impediment to navigation. This variance in the threat posed by
different obstacles necessitates a more subtle approach to categorization, one that
goes beyond mere detection and extends into assessing the degree of navigational
risk each obstacle poses. Thus, it becomes essential to further categorize obstacles
based on their threat level, creating a spectrum that ranges from easily navigable
to completely impassable. For instance, when considering surface water obstacles,
the nature and position of each object can significantly influence its impact on
navigability. A standing tree or a floating boat represents a substantial obstacle,
creating physical barriers that are not traversable and hence pose a high risk to
navigation. In contrast, smaller obstacles like floating leaves, although present on
the water’s surface, generally do not pose a significant threat to navigation. These
can often be traversed with minimal risk, allowing rescue boats to maintain their
route with little to no deviation.

To understand the environment with respect to categories presented above, FTM presents
two important modules i.e. Obstacle Buoyancy Estimator and Fused Local Threat Map.

7.1.1 Buoyancy Estimator
The complex task of categorizing obstacles in post-flood scenarios is a critical component
of navigational safety and efficiency. This categorization, which hinges on the concept of
buoyancy, is essential in differentiating between floating, submerged, and sunken obstacles.
The distinction among these categories is primarily based on the presence or absence of
surface and underwater footprints, characteristics that can be accurately identified through
the data provided by underwater and surface water mapping modules. The integration of
this data is a complex process, requiring a specialized Buoyancy Estimator module that
plays a pivotal role in fusing the footprints from both surface and underwater environments
to categorize the obstacles accurately.
The categorization process begins with an analysis of the footprints. Sunken obstacles are
identified by their exclusive presence in the underwater domain without any corresponding
surface footprint. These typically include objects that have completely settled at the
bottom of the water body and are fully submerged. In contrast, floating objects are those
with visible footprints on the surface water but no underwater presence. These objects,
often lighter and less dense, remain buoyant and pose a different set of challenges for
navigation. The third category encompasses submerged obstacles, which are characterized
by their presence in both domains. These objects, partially submerged, are particularly
challenging as they possess properties of both floating and sunken objects, requiring careful
analysis for accurate categorization. Figure 7.2, it is illustrated that how surface water
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(a) Surface Water (b) Underwater

(c) Fusion

Figure 7.2: Surface and Underwater Detection in Gelterswoog Lake. This image presents the
detection of (a) ladder in sonar due to its high reflective properties. (b) The docking area is not
visible to limited sonar field of view. (c) The red shows its submerged area whereas gradient
from white to gray shows the surface water elevation of docking area.

and underwater detections are integrated. The camera imagery captures a docking point
complete with a steel ladder, while the sonar, leveraging its sensitivity to the reflective
properties of objects, detects the same ladder. This dual detection allows for the ladder to
be categorized as a submerged object, indicated by red points in Figure 7.2c. Conversely,
portions of the dock not detected underwater are classified as floating, with a gradient
from white to gray indicating their elevation above the water’s surface.

7.1.2 Fused Local Threat Map
While categorizing obstacles based on buoyancy – floating, submerged, or sunken – is a
fundamental step in understanding the post-flood environment, this classification alone
is not sufficient to ascertain the navigational safety of these obstacles. It is crucial to
recognize that not all obstacles detected in the maps pose a significant threat to navigation.
For example, leaves floating on the surface of the water, though classified as ’Floating’ by
the buoyancy estimator, are typically safe to traverse and do not constitute significant
navigational hazards. Similarly, sunken obstacles might be deemed safe if they are located
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Figure 7.3: Fused Threat Map of Hamburg Port site. This color-coded traversability map of
the Hamburg Port site illustrates the sonar field of view in green, submerged obstacles in red,
and the elevation of surface water obstacles transitioning from white to gray, offering a detailed
representation of both underwater and surface features.

in regions that do not impede safe traversability. Therefore, a more simpler approach is
required, one that assesses the threat level of each obstacle based on additional criteria,
such as its volume and protrusion above and below the water’s surface.
This approach involves computing a threat level for each obstacle, taking into account
its physical dimensions and location relative to the water’s surface. The concept is
straightforward: the greater the height or volume of a floating obstacle above the water,
the higher its potential threat level. This is because larger obstacles protruding above
the water’s surface can pose significant barriers to navigation, potentially causing damage
to vessels or impeding their passage. Conversely, for sunken obstacles, the focus shifts
to their volume under the water. Large sunken obstacles that occupy significant space
beneath the surface can be hazardous, particularly in shallower waters where they may
not be immediately visible but still pose a risk of collision. Figure 7.3, displays a fused
threat map of the Hamburg Port site. This map highlights the underwater footprint of
the docking point, providing vital information on submerged obstacles that could hinder
navigation. The areas beyond the sonar’s field of view, shown in green, remain uncaptured,
emphasizing the limitations and challenges inherent in creating fully comprehensive maps.
Nonetheless, the ability of these maps to fuse data from different sources into a coherent
visual representation of navigability emphasizes their value.

7.1.3 Traversability Map
Traversability maps have become an essential tool for environmental analysis, particularly
in assessing areas affected by natural disasters such as floods. These maps are designed to
depict not only the physical landscape but also the navigability of an area, taking into
account various obstacles and terrain features that might impede movement. The basis of
traversability maps can be traced back to the fields of robotics and autonomous vehicle
navigation, where understanding the environment is crucial for safe and efficient operation.
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In these contexts, traversability maps are used to represent the environment in a way that
machines can interpret, indicating areas that are safe to traverse versus those that are not.
This concept has been adapted and expanded for disaster response and environmental
management, where the ability to quickly assess and navigate through affected areas can
significantly impact rescue and recovery efforts.

(a) Fused Threat Map (b) Overlayed Traversability Map

Figure 7.4: Traversability map of Hamburg Port. This image displays the traversability map,
where the blue area indicates the traversable region with respect to both the underwater and
surface water maps. The red area depicts the non-traversable region, while the green area shows
the surface traversable region that is unknown underwater. The yellow area represents the
completely unknown region.

In the final experiments of this thesis, the utility of updated traversability maps is
demonstrated that uses fused threat map to provide a comprehensive environmental
analysis. These maps are generated through the fusion of data from multiple sensors,
including cameras and sonar, which capture distinct aspects of the environment. Figure
7.4, shows a fused threat map of Hamburg Port and a generated traversability map that
indicates the regions where navigation is likely to be obstructed. The map in Figure 7.4b
shows a traversability map overlayed upon the fused threat map, where different colors
are used to communicate various levels of navigability. The blue areas signify regions that
are traversable, meaning they are free of obstacles on the surface and underwater, making
them safe for navigation. red areas denote non-traversable regions where obstacles are
present, posing a danger to vehicles or rescue operations. green areas represent regions
where the surface is traversable but the status underwater is unknown; hence, there might
be submerged obstacles that are not accounted for. Lastly, yellow areas indicate completely
unknown regions, where there is no information available regarding potential obstacles.

Similarly, in the Figure 7.5, a similar pair of maps are shown for a simulated barnyard
environment. The traversability map (shown in Figure 7.5b) uses the same color coding as
the previous image. It provides a visual assessment of traversability, with blue indicating
clear paths for navigation, red showing obstructed areas, green suggesting potentially clear
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(a) Fused Threat Map (b) Overlayed Traversability Map

Figure 7.5: Traversability map of Simulated Barnyard Environment. This image displays the
traversability map, where the blue area indicates the traversable region with respect to both the
underwater and surface water maps. The red area depicts the non-traversable region, while the
green area shows the surface traversable region that is unknown underwater. The yellow area
represents the completely unknown region.

surface areas with unknown underwater conditions, and yellow highlighting areas where
no data is available.
These maps are crucial for autonomous vehicle navigation and disaster response. In
robotics and autonomous vehicle systems, traversability maps guide path planning and
decision-making processes by finding safe paths and highlighting areas to avoid. When
adapted for disaster response, such maps are essential for planning rescue and recovery
operations, allowing responders to quickly identify safe routes, understand the extent
of damage, and navigate through affected areas with higher efficiency and safety. The
integration of underwater and surface data provides a more comprehensive environmental
analysis, aiding in the deployment of resources and efforts during critical response activities.

7.2 Discussion
The chapter presents a novel approach to mapping post-flood environments, addressing the
unique challenges posed by the integration of surface and underwater domains. It introduces
the Fused Traversability Mapping (FTM) framework, which combines data from the
Underwater Traversability Mapping (UTM) and the Surface Water Traversability Mapping
(SWTM) frameworks to create comprehensive maps that enhance the safety and efficiency
of rescue operations. By categorizing obstacles based on buoyancy and threat level, the
framework simplifies the complex array of post-flood challenges, facilitating more targeted
and efficient navigational strategies. The Buoyancy Estimator and the Fused Local Threat
Map play crucial roles in this process, enabling the accurate assessment of obstacles’ impact
on navigability. This integrated approach significantly better from traditional mapping
techniques, offering a robust tool for disaster response and environmental monitoring. The
FTM framework not only improves understanding of post-flood environments but also
contributes valuable insights into environmental conservation and disaster management,
showcasing the potential of advanced mapping technologies in enhancing navigational
safety and operational efficiency in disastrous scenarios.
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The thesis presented here provides a comprehensive examination of the challenges involved
in mapping environments that have been affected by floods. Traditional mapping tools,
designed for stable and predictable surroundings, are not adequate for natural disasters
like floods. After a flood, there are many unpredictable factors that make navigation and
mapping difficult, such as the presence of unstructured objects like debris and destroyed
structures that are scattered across the landscape. Additionally, the water in these post-
flood scenarios is often opaque due to a high concentration of suspended particulates like
sand and silt, which can obscure the submerged topography and make mapping underwater
even more difficult. This opacity, coupled with the variable water depth and the presence
of submerged obstacles, create significant navigational hazards. Therefore, it is essential
to create a mapping system specifically designed to address these challenges. This system
should not only navigate the complexities introduced by floods but also generate precise
and comprehensive maps of the affected environment, enabling more effective response
efforts in the aftermath of such events.
This thesis makes several contributions to the field of environment mapping for surface
water vehicles, with the introduction of the novel Shallow Water Traversability Mapping
(SWiM) architecture standing out as a significant achievement. The SWiM architecture
has undergone rigorous testing across various surface water vehicles, each characterized
by distinct kinematic and dynamic properties. This testing is carried out in a range of
water bodies, including lakes, riversides, and ports. However, the challenge of obtaining
sensor data from post-flood environments, which present complex and heavily destructed
scenario, limits the direct evaluation of the architecture in such contexts. To address this,
a highly realistic post-flood simulation is developed using Unreal Engine, featuring diverse
environments from remote barnyards to urban cities. Additionally, a novel simulated sonar
plugin, utilizing Generative Adversarial Networks (GANs), is created to generate artificial
sonar imagery from the simulated environments.
A key element of the SWiM architecture is the Underwater Traversability Mapping (UTM)
framework, designed to detect underwater obstacles potentially unsafe to vehicles. This
framework introduces a novel three-step filtration technique for enhancing the quality
of raw sonar imagery. It also incorporates an innovative depth estimation method that
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estimates the water bed’s depth by analyzing pixel-based intensity variations in sonar
acoustic data between no-return and echo-return zones. As a result, the UTM framework
provides comprehensive underwater obstacle and depth maps in the form of 2.5D occupancy
grid maps.
For mapping the surface water environment, the SWiM architecture presentes the Surface
Water Traversability Mapping (SWTM) framework, which integrates camera and LiDAR
data to identify surface water obstacles. This involves the application of various object
detection and semantic segmentation algorithms to camera images, enabling the robust
identification and mapping of obstacles onto a 3D point cloud. Similar to UTM framework,
the SWTM framework also delivers an obstacle map for surface navigation.
Furthermore, this thesis contributes to the field through the integration of surface and
underwater obstacle maps with the depth map to produce a multi-class traversability map.
This map distinguishes itself by being both lightweight and less complex than traditional
obstacle maps, thereby offering a novel approach to navigating surface water vehicles in
challenging environments.

8.1 Key Findings
This thesis uncovers several key findings relevant to the challenges of mapping post-flood
environments, where traditional mapping solutions like Google Maps or OpenStreetMaps
become impractical due to the extensive destruction of road networks. In this context, the
comprehensive assessment of surface and underwater environments is crucial for executing
effective rescue operations. While aerial or satellite mapping provides some utility in
these scenarios, it fails to map the underwater environment, which is essential for the safe
navigation of rescue boats. Consequently, deploying surface water vehicles has emerged
as an essential component for thoroughly understanding underwater and surface water
conditions.
In underwater sensing, the thesis identifies two principal challenges posed by post-flood
environments: the extreme shallowness and the variability of the waterbed. These factors
contribute to increased levels of random speckle and reverberation noise in sonar imagery.
The image enhancement technique developed in this research significantly improves sonar
image signal-to-noise ratio (SNR) and contrast. Moreover, the depth estimation derived
from sonar imagery exhibits remarkable precision, proving critical for navigation in
exceptionally shallow waters.
The lack of datasets representing post-flood conditions is addressed by creating a realistic
simulation encompassing complex scenarios similar to those encountered in flooded areas.
Given the challenges associated with the physics modeling of sonar acoustics—principally
due to random speckle and reverberation noise—the use of Pix2Pix Conditional Generative
Adversarial Networks (GANs) for generating sonar images has offered a more accurate
and realistic alternative. This approach effectively narrows the gap between simulated
environments and real-world post-flood scenarios.
Moreover, the thesis introduces a traversability map that is both less complex and
lightweight, facilitating rapid and efficient data transmission to other rescue boats. Lastly,
the integration of Real-Time Kinematic (RTK) GPS technology, with its 2cm positional
accuracy, significantly enhances the overall accuracy of the traversability map. These
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findings collectively contribute to advancing navigation and mapping technologies for
rescue operations in post-flood environments, offering new avenues for safe and effective
disaster response strategies.

8.2 Future Work and Outlook
The research presented in this thesis lays a solid foundation for the advancement of
post-flood environment mapping, by the integrating highly accurate GPS/GNSS systems,
the fusion of multiple sensors including cameras and LiDAR, and the rigorous evaluation of
methodologies through both simulated and natural water bodies. These factors collectively
contribute to a better accuracy of up-to-date traversability maps. However, the journey
towards refining and enhancing the utility of these maps does not end here. Future research
initiatives should prioritize the advancement of underwater object recognition techniques.
This should explicitly focus on using material properties, such as acoustic reflectance, to
significantly enhance the capability to classify obstacles based on their safety levels for
navigation. Additionally, the exploration of texture-based classification methods appears
promising for surface water object detection. This is particularly relevant in flooded
environments that often contain a variety of traversable obstacles, including floating leaves
and soft debris, that traditional detection methods may overlook.
Another significant area for future exploration involves addressing the diversity in sonar
imagery resulting from distinct operating frequencies and hardware specifications of various
sonar devices. It is crucial to develop more generalized deep-learning models that can
adapt to this diversity. Achieving this goal necessitates collecting a broader range of
underwater data utilizing various sonar equipment, which could significantly improve
sonar-based mapping and navigation techniques.
Enhancing the robustness of the proposed architecture could also benefit from integration
of additional sensing modalities. For instance, advanced synthetic aperture sonars (SAS)
and multispectral imaging, could unveil new dimensions of environmental insight. These
sensors hold the potential to offer detailed information about underwater terrains and
surface water vegetation, respectively. Moreover, the accuracy of underwater obstacle
detection could be further improved through the fusion of multiple sonars specifically
having different frequencies. Similarly, the precision of the traversability map may be
enhanced by fusing multi-perspective maps generated by various surface water vehicles.
In the long term, conducting data collection and architectural evaluations in actual
flooded environments and their digital twins could substantially increase the efficiency and
applicability of the proposed architecture. Additionally, integrating maps derived from
other sources, including satellite, aerial, and the SWiM architecture, holds the potential to
significantly reduce the time required for comprehensive environmental mapping. Such a
multifaceted approach to data integration and analysis would not only refine the accuracy
of environmental mapping but also contribute to the development of more efficient and
effective navigation and rescue operations in post-flood scenarios.
Looking ahead, the outlook for post-flood environment mapping is promising, with the
potential to significantly impact disaster management and recovery processes. The integra-
tion of real-time data collection and mapping technologies offers the prospect of developing
dynamic maps that can provide immediate guidance to rescue and recovery teams in the
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aftermath of a flood. This real-time capability, combined with the advancements in sensor
technologies and data processing algorithms, could revolutionize the presented approach to
disaster response, making it more agile and effective. Moreover, the ongoing collaboration
between academic researchers, technology developers, and disaster management agencies
will be critical in driving these innovations forward, ensuring that the methodologies de-
veloped are not only technologically advanced but also practically applicable in real-world
scenarios. As we continue to witness the increasing frequency and severity of flooding
events due to climate change, the importance of advancing the mapping capabilities cannot
be overstated. The work carried out in this thesis represents a step towards a future
where communities are better prepared to respond to and recover from flood disasters,
underscoring the critical role of technology and innovation in enhancing our resilience to
environmental challenges.



A. System and Specification

The preceding chapters 5 - 7 present a novel SWiM (Shallow Water Traversability Mapping)
architecture that is specifically designed to map a post-flood environment, where the up-
to-date standard maps are unavailable due to the abrupt changes in the environment,
significantly impeding the safe navigation of rescue teams. This architecture seamlessly
fuses several sensory modalities to compute a robust traversability map encompassing both
surface and underwater domains of a post-flood environment. As the choice of a sensor is
essential for robustness and better accuracy of this architecture, this appendix discusses
the sensory modalities that are used to evaluate the functionality of SWiM architecture.
Furthermore, the detailed specifications of each sensor are provided to offer the in-depth
technical insight.

Camera
A post-flood environment is often highly cluttered with random and unstructured objects
such as fallen trees, broken bridges and floating debris. These objects create several
navigational challenges for rescue teams specifically the detection of critical and damaging
obstacles over and under the water’s surface. To overcome the detection problem over
the surface of water, the SWiM architecture has integrated several deep learning models
(discussed in Sections 6.2.1 and 6.2.1) that solely rely on camera imagery to compute the
visual features. Therefore, the camera imagery stands as an essential sensory modality,
and its significance has increased by the growing field of deep learning. Moreover, stereo
cameras increases this utility by providing not only high-resolution imagery but also
critical depth information about the environment. This depth perception is essential for
creating a three-dimensional representation of the surroundings, typically in the form
of a point cloud. Such 3D environmental data, obtained from stereo camera systems,
is integral in enhancing the perception, navigation, and decision-making capabilities of
autonomous systems, thereby solidifying the role of camera imagery in the domain of
advanced autonomous technologies.
The surface vehicles presented in this thesis utilize Stereolabs’ ZED2i stereo camera, as
depicted in Figure A.1. The ZED2i camera is versatile, offering a range of resolutions from
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Figure A.1: ZED stereo camera attached on aStrider.

VGA to 2K and supporting frame rates varying from 15fps to 100fps, catering to diverse
imaging requirements. A significant enhancement in this model is the integrated Inertial
Measurement Unit (IMU), which significantly improves visual odometry, surpassing the
capabilities of its predecessors. Additionally, the ZED2i is precisely engineered for outdoor
applications, boasting an IP66 rating that signifies its resilience against environmental ele-
ments. Table A.1 provides an extensive overview of the ZED2i’s specifications, highlighting
its adaptability, durability, and advanced imaging features, making it an ideal choice for
robust outdoor autonomous systems. The camera’s combination of high-resolution imaging,
variable frame rates, and enhanced odometry, all within a durable outdoor-friendly design,
underscores its suitability for sophisticated applications in autonomous navigation and
environmental mapping.

Table A.1: Specifications of ZED2i camera (source: https://www.stereolabs.com/zed-2i/).

Property Value
Serial Number

Imaging Sensor
Sensor Type Dual 1/3" 4MP CMOS
Resolution 2688 x 1520 px
Pixel Size 2µm x 2µm
Shutter Electronic synchronized rolling shutter
Output Resolution Side by Side

2x (2208x1242) @15fps - cropping mode
2x(1920x1080) @15/30fps - cropping mode
2x (1280x720) @15/30/60fps - binning 2x2 mode
2x(662x376) @15/30/60/100fps - binning 4x4 mode

Output Format YUV 4:2:2 - UYV(8bits)
Max S/N Ration 38.3 dB
Dynamic Range 64.6 dB
Sensitivity 1900 mV/Lux-sec
Chroma Color
Baseline 12 cm (4.72 in)

Temperature Sensor
Temperature Range -40 to 125 ◦C
Abs. Temperature Accuracy +/-0.5 ◦C
Output Data Rate 25 Hz

Inertial Measurement Unit
Accelerometer Range +/- 8G
Accelerometer Resolution 0.244 mg

https://www.stereolabs.com/zed-2i/
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Accelerometer Noise Density 3.2 mg
Gyroscope Range +/- 1000 dps
Gyroscope Resolution 0.03 dps
Gyroscope Noise Density 0.16 dps
Sensitivity Error +/- 0.4%
Output Data Rate 400 Hz

Magnetometer
Magnetic Field Range +/- 2500 µT (z)

+/- 1300 µT (x,y)
Magnetic Field Resolution 0.3 µT
Output Data Rate 50 Hz

Barometer
Pressure Range 300 to 1100 hPa
Pressure Resolution 0.18 Pa
Relative Pressure Accuracy 0.12 hPa
RMS Noise 0.2 Pa
Output Data Rate 25 Hz

Physical
Interface USB Type C - External cable (up to 10m)
Dimensions (w, h, d) 175.25 x 30.25 x 43.1 mm
Weight 166g
Power Consumption 380mA / 5V USB powered
Operating temperature -10◦ to +45◦C

LiDAR
The mapping of surface water environment in a post-flood scenario suffers from several
perception challenges including variable light conditions and reflections from water surface.
These issues significantly effect the exposure of camera imagery and hence degrade the
object detection. In such scenarios, relying solely over visual data may be problematic and
hence different sensor modality should be integrated including LiDAR. It is a frequently-
used sensor in autonomous systems for environmental sensing. Utilizing light beams,
primarily in the infrared spectrum, LiDAR measures the distance to obstacles based on the
time of flight and the angle at which the beam reflects off an object. This technology can be
categorized into two-dimensional or three-dimensional variants, with 3D LiDAR offering a
detailed point cloud that represents the surrounding environment comprehensively. As an
active sensor, LiDAR’s effectiveness is independent of ambient light conditions, making it
exceptionally reliable in low-light or even no-light scenarios. Additionally, LiDAR systems
often provide intensity images, which capture the reflective properties of surfaces, adding
another layer of environmental data. This feature enhances object detection and terrain
analysis, further supporting LiDAR’s integral role in the sensory array of autonomous
systems.
The Shallow Water Traversability Mapping (SWiM) architecture uses 3D LiDAR, specifi-
cally the Ouster OS0 model with 128 lines, for mapping obstacles as detected by cameras.
This particular LiDAR model, illustrated in Figure A.2, has a 90-degree vertical field of
view, enabling it to capture high-resolution environmental data. Suited for close-range
applications, the Ouster OS0 provides enhanced detail in mapping immediate surround-
ings. Table A.2 details the comprehensive specifications of the Ouster OS0. Additionally,
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Figure A.2: Ouster OS0-128 3D LiDAR attached on aStrider.

this LiDAR is equipped with a user-friendly web interface, facilitating data logging and
basic parameter configurations, such as setting IP addresses and firmware updates. This
interface significantly streamlines the process of data acquisition and system maintenance,
making the Ouster OS0 a valuable asset in the SWiM architecture for precise and efficient
environmental mapping.

Table A.2: Specifications of Ouster OS0 (source: https://ouster.com/downloads/).

Property Value
Serial Number
Inventory Number

Optical Performance
Range 45 m @ 100 klx sunlight, >90% detection probability
(80% Lambertian reflect., 50 m @ 100 klx sunlight, >50% detection probability
1024 @ 10 Hz mode)
Range 15 m @ 100 klx sunlight, >90% detection probability
(10% Lambertian reflect., 20 m @ 100 klx sunlight, >50% detection probability
1024 @ 10 Hz mode)
Minimum Range 0.3 m (10% reflective target)
Range Accuracy ±3cm for lambertian targets, ±10cm for retroreflectors
Precision 0.3 - 1 m: ±2cm
(10% Lambertian reflect., 1 - 10 m: ±1cm
1024 @ 10 Hz mode, 1 std) 10 - 15 m: ±1.5cm

>15 m: ±5cm
Range Resolution 0.1 cm

: For the Range Resolution = 0.8cm
Vertical Resolution 32, 64, or 128 channels
Horizontal Resolution 512, 1024, or 2048 (configurable)
Field of View Vertical 90◦ (+45◦ to -45◦)
Horizontal 360◦

Ang. Sampling Accuracy Vertical: ±0.01◦ / Horizontal: ±0.01◦

False Positive Rate 1/10,000
Rotation Rate 10 or 20 Hz (configurable)

Laser
Laser Product Class Class 1 eye-safe per IEC/EN 60825-1: 2014
Laser Wavelength 865 nm

https://ouster.com/downloads/
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Beam Diameter Exiting 5 mm
Beam Divergence 0.35º (FWHM)

Lidar Output
Connection UDP over gigabit Ethernet
Points Per Second up to 655,360 (32 channel)

up to 1,310,720 (64 channel)
up to 2,621,440 (128 channel)

Data Rate (Mbps) up to 66.2 Mbps (32 channel)
(Legacy Mode) up to 129.1 Mbps (64 channel)

up to 255 Mbps (128 channel)
Data Rate (Mbps) up to 43.6 Mbps (32 channel)
(Dual Return Profile) up to 85.6 Mbps (64 channel)
Not applicable for 1024x20 up to 169.4 Mbps (128 channel)
2048x10 Modes
Data Rate (Mbps) up to 23.6 Mbps (32 channel)
(Low Data Rate Profile) up to 44.6 Mbps (64 channel)

up to 86.6 Mbps (128 channel)
Data Rate (Mbps) up to 65.6 Mbps (32 channel)
(Single Return Profile) up to 128.5 Mbps (64 channel)

up to 254.3 Mbps (128 channel)
Data Per Point Range, signal, reflectivity, near-infrared, channel, azimuth angle, times-

tamp
Timestamp Resolution < 1 µs
Data Latency < 10 ms

IMU Output
Connection UDP over gigabit Ethernet
Samples Per Second 100
Data Per Sample 3 axis gyro, 3 axis accelerometer
Timestamp Resolution < 1 µs
Data Latency < 10 ms
Additional Details InvenSense ICM-20948; datasheet for more details:

https://www.invensense.com/products/motion-tracking/9-axis/
icm-20948/

Forward-Looking Imaging Sonar
The standard perception sensors including cameras and LiDAR are generally useful in
surface water obstacle detection but are not workable solution in underwater obstacle
detection systems. This is due to the higher attenuation of light waves within the water
compared to air. Contrarily, the acoustic impedance of water is significantly higher as
compared to air, therefore, sound is lesser attenuated in water. Sonar technology, which
operates by emitting sound waves and measuring their reflection time to detect obstacles,
is a pivotal sensor in underwater environments.
Forward-looking sonar is specifically utilized for identifying obstacles to ensure safe
navigation in aquatic settings. The resolution of sonar imagery is closely linked to
the frequency of the emitted sound waves; higher frequencies are crucial for detecting
smaller objects, as lower frequencies typically yield lower resolution and may miss finer
details. In post-flood environments, where detecting submerged obstacles is essential for
safe navigation, high-frequency sonar is preferred due to its ability to discern smaller

https://www.invensense.com/products/motion-tracking/9-axis/icm-20948/
https://www.invensense.com/products/motion-tracking/9-axis/icm-20948/
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objects in shallow waters. Additionally, imaging sonar systems can convert sound wave
data into visual images, providing a more intuitive and detailed representation of the
underwater environment. This capability is particularly beneficial in complex post-flood
scenarios, where visualizing the nature and distribution of obstacles can significantly
enhance navigational safety and efficiency. Thus, in the context of post-flood traversability,
the deployment of high-frequency imaging sonar is instrumental in creating accurate and
detailed maps of submerged landscapes.

Figure A.3: Tritech’s Gemini 720ik attached on aStrider.

Within the Shallow Water Traversability Mapping (SWiM) architecture, the Underwater
Traversability Module (UTM) employs the advanced Tritech Gemini 720ik multibeam
imaging sonar, a forward-looking sonar system shown in Figure A.3, for effective underwater
navigation and mapping. This high-resolution sonar is adept at producing detailed acoustic
images, an essential feature in turbid and low-visibility water conditions typical of post-flood
environments. The optical systems’ limitations in such settings are effectively counteracted
by the Gemini 720ik’s proficiency in penetrating murky waters. Its capability to function
reliably under these adverse conditions is critical for the precise mapping of submerged
terrains and the identification of navigational hazards. The sonar’s detailed acoustic
imaging facilitates the detection of obstacles that could potentially hinder navigation and
impede rescue operations. Consequently, the Gemini 720ik sonar stands as a key component
in the UTM of the SWiM architecture, enhancing the safety and efficacy of operations in
challenging post-flood scenarios by ensuring thorough and accurate underwater terrain
analysis. Table A.3 presents the deteailed specification of Gemini sonar.

Table A.3: Specifications of Tritech’s Gemini 720ik sonar (source: https://www.tritech.co.
uk/products/gemini-720ik).

Property Value
Serial Number

https://www.tritech.co.uk/products/gemini-720ik)
https://www.tritech.co.uk/products/gemini-720ik)
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Imaging Sensor
Operating Frequency 720kHz
Angular resolution 1.0° acoustic, 0.25° effective
Supply voltage 19V to 74V DC
Power requirement 16W - 27W (range dependent)
Main port protocol Ethernet
Depth rating 350m / 1148ft
Weight in air 1.40kg / 3.08lbs
Weight in water 0.43kg / 0.96lbs
Range 0.1m - 120m / 4in - 394ft
Number of beams 512
Horizontal beam width 120°
Vertical beam width 20°
Range resolution 4mm / 0.2in
Update rate 5 - 97Hz (range dependent)
Mode of operation CHIRP or CW
Speed of Sound Integrated VoS sensor

Interface
Supply voltage 19V to 74V DC
Power requirement 16W - 27W (range dependent)
Main port protocol Ethernet
Auxiliary port protocol RS232, TTL in, pass-through power (2.5A max)
Connector type MAIN port: Impulse MKS(W)-307-FCR

AUX port: Impulse MKS(W)-307-FCR
Physical specification

Depth rating 350m / 1148ft
Weight in air 1.40kg / 3.08lbs
Weight in water 0.43kg / 0.96lbs
Temperature rating (operating) -10°C to 35°C / 14°F to 95°F
Temperature rating (storage) -20°C to 50°C / 4°F to 122°F

Global Navigation Satellite System
In a post-flood rescue operations, the rescue teams often require the up-to-date environment
map to navigate and plan accordingly. This map needs to be globally referenced with
gps position for easy understanding and usage of the map. The incorporation of Global
Navigation Satellite System (GNSS) technology in outdoor robotic mapping represents a
significant enhancement in the field, providing critical geospatial data essential for various
applications. GNSS, encompassing systems like GPS, GLONASS, Galileo, and BeiDou,
offers comprehensive global coverage and enhanced accuracy in positional data, crucial
for the effective functioning of outdoor robots in diverse environments. Moreover, GNSS
technology enhances the autonomy of outdoor robots, enabling real-time decision-making
and adaptive path planning in dynamic and unpredictable settings. This autonomy is
crucial for tasks that require navigation over large areas or in conditions where human
intervention is limited. Additionally, GNSS facilitates coordinated operations in multi-
robot systems, allowing for synchronized task execution and collaborative mapping efforts,
further enhancing efficiency and data quality.
The integration of GNSS with other sensory technologies, such as LiDAR, cameras, and
inertial measurement units, enriches the spatial data acquired, enabling the creation of
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(a) Trimble BX992 GNSS receiver enclosure (b) Right side antenna from dual-antenna sys-
tem.

Figure A.4: A dual-antenna Trimble GNSS system with integrated inertial navigation system
powered by the BD992-INS.

comprehensive, multi-dimensional maps. This integration not only improves the accuracy
of the mapping process but also contributes to the development of sophisticated algorithms
for spatial analysis, obstacle detection, and environmental interaction.
The Trimble Dual Antenna BX992 GNSS (shown in Figure A.4a) is a high-end, state-of-
the-art receiver integrates dual-antenna inputs with a GNSS engine, facilitating superior
heading and position data crucial for applications requiring the utmost spatial accuracy
and reliability. The BX992’s dual-antenna (Figure A.4b) configuration is particularly
advantageous in scenarios where the orientation of the device is as critical as its geographic
location, such as in autonomous vehicle navigation, marine surveying, and aerial mapping.
One of the key features of the BX992 is its ability to deliver Real-Time Kinematic (RTK)
positioning, providing centimeter-level accuracy essential for precision-dependent tasks
like land surveying, agricultural automation, and construction. This high level of accuracy
is achieved through advanced signal processing algorithms and error correction techniques,
which mitigate issues such as ionospheric and tropospheric interferences. Additionally, the
robust build and design of the BX992 make it suitable for harsh and demanding outdoor
environments, ensuring consistent performance even in challenging conditions.

Table A.4: Specifications of Trimbles BX992 Receiver (source: https://info.intech.trimble.
com/bx992-datasheet).

Property Value
Serial Number

Performance Specification
Time to First Fix
Cold Start <45 seconds
Warm Start <30 seconds
Signal Re-acquisition <2 seconds
Velocity Accuracy
Horizontal 0.007 m/sec
Vertical 0.020 m/sec

https://info.intech.trimble.com/bx992-datasheet)
https://info.intech.trimble.com/bx992-datasheet)


155

Maximum acceleration GNSS
Tracking

±11g

Inertial Sensors
Maximum acceleration ±6 g
Maximum angular rate ±350 deg/sec
Maximum Operating Limits
Velocity 515 m/sec
Altitude 18,000 m

Interface
Supply voltage 9V to 30V DC
Power requirement Typically 3W
IO Connector D-sub DE9 and DA26
Antenna Connector 2× TNC (Female)
Minimum required LNA Gain 32.0 dB

Environmental Characteristics
Operating Temperature −40to + 75oC
Storage Temperature −55to + 85oC
Weight in water 0.43kg / 0.96lbs
IP Rating IP67
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B. Surface Water Vehicles

Disaster management teams globally heavily depend on surface vehicles (SVs) for executing
efficient post-flood rescue operations. However, SVs exhibit diverse sizes and distinctive
kinematics when navigating through water. In certain scenarios, the deployment of a larger
SV might prove impractical due to limited mobility. Therefore, an adaptable robotic system
that can operate efficiently on any vehicle type is crucial in disaster management. To
address this challenge, it is necessary to test and evaluate the robotic system’s performance
on different SVs with varying sizes, kinematics, and sensor system positions. Chapter 4
presents a dataset gathered on three distinct SVs to assess the robotic system’s capability.
The dataset provides a comprehensive evaluation of the robotic system’s performance
under different conditions.

The pontonboot project, as referenced in [BMW 21], provides the framework for an-
alyzing specialized surface vehicles designed for post-flood relief and rescue operations.
This project, initiated in December 2018 under the DIVERS1 program and funded by the
BMWI2, had the objective of developing a highly versatile and modular surface water
robotic platform. The pontonboot project was conceived with the intention of fostering
diversification in defense companies, steering them towards the creation of technologies for
civilian security purposes. The project’s focus was to innovate platforms that could adapt
to the dynamic and challenging environments typically encountered in post-flood scenarios,
thereby enhancing the efficacy and scope of relief efforts. This initiative represents a
significant step in the integration of advanced robotic technology in disaster management,
particularly in the development of specialized equipment capable of operating effectively
in the aftermath of floods, where conventional rescue methods may be inadequate or
infeasible.

In this research thesis, an in-house built novel prototypical raft called astrider is
presented that is designed specifically for this study. In addition, a novel dataset called
MASTER is introduced in Section 4.1.2. This dataset is mostly collected using astrider,

1Innovationsprogramm zur Unterstützung von Diversifizierungsstrategien von Verteidigungsun-
ternehmen in zivile Sicherheitstechnologien

2Bundesministerium für Wirtschaft und Energie
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but some parts of the dataset and results are also obtained using other commercial drone
boats such as basilisk and einzelboot, which are also described below.

Astrider
The development of astrider (Autonomous Shallow waTeR Inspection and Depth Explo-
ration Robot) is a crucial phase in this research. It serves as a lightweight experimentation
platform and a carrier for sensors. This raft is designed to be easily transported and
flexible for experimentation, embodying the principles of adaptability and practicality.
It can be easily disassembled into several main components for convenient transport in
a commercial vehicle. These components include a body made from versatile Minitec
profiles, a sensor array, a reconfigurable autonomy box, custom-made holders for buoyancy
units, and a propulsion unit. The design’s modularity allows for efficient transport and
assembly on-site, enabling swift deployment by a team of two individuals.

Figure B.1: The prototypical astrider equipped with the autonomy box.

The RRLAB astrider, as shown in Figure B.1, is equipped with advanced technical specifi-
cations and features that enable it to navigate autonomously and map its surroundings. It
is designed to be reconfigurable and waterproof, which makes it suitable for challenging
aquatic environments with not too strong water stream. One of its unique features is the
adjustable sonar tilt and depth capabilities, which allows the vehicle to adapt to changing
underwater conditions and improve its obstacle detection and avoidance abilities. The
vehicle is powered by an industrial-grade processor and 16GB graphical processing unit,
which enhances its computational power and allows for real-time data processing and
decision-making.
The astrider has undergone rigorous testing in various water bodies, proving its op-
erational excellence in different aquatic scenarios. The vehicle has a compact design,
measuring 1.4 meters in length, 1.1 meters in width, and 0.75 meters in height, without
compromising on versatility. Despite its small size, it is strong enough to carry a maximum
payload of 32 kilograms, weighing up to 25 kilograms. Furthermore, the kinematics of the
astrider are powered by a single motor drive, which enables efficient and streamlined
movement through water. This propulsion system allows the vehicle to reach a maximum
speed of 1.5 meters per second, ensuring swift and agile navigation. The power source of
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the vehicle comprises of a 15.75 ampere-hour battery with a voltage of 25.9 volts, providing
sustained operational capabilities for up to 2 hours.
The technical specifications of astrider make it an ideal solution for underwater explo-
ration and surveillance, equipped with cutting-edge technology. The platform’s autonomous
navigation capabilities, combined with a customizable chassis and a robust waterproof
design, make it an adaptable tool for a wide range of applications. Whether it’s navigating
through complex surface and underwater environments or conducting surveys in challenging
water bodies, the astrider is a fusion of advanced technology and practical engineering.

Basilisk
The basilisk is a remote-controlled Unmanned Surface Vehicle (USV) (Figure B.2) used
in the pontonboot project. It has several technical features, including autonomous
navigation and a waterproof system, which make it reliable and efficient for use in different
water bodies. Furthermore, basilisk is a compact and maneuverable surface vehicle,
measuring 1.4m x 1.1m x 0.75m, with a weight of up to 270 kg. Its twin-hull kinematics
design, with an individual motor in each hull, allows for precise maneuvers, including
rotation on the spot, making it easy to navigate through various water conditions. The
vehicle can carry a maximum load of up to 32 kg, making it suitable for a variety of
applications. It can also move quickly and efficiently through the water, with a maximum
speed of 1.5m/s.

Figure B.2: The basilisk equipped with autonomy kit and the sensor array of astrider.
[Meckel 22]

The vehicle has a battery capacity of 15.75 Ah and a voltage of 25.9V. It is equipped with
an autonomy kit that includes sensors and hardware (detailed in Appendix A), which
draw power efficiently from the host vehicle, optimizing the overall energy management
system. The autonomy kit has a working time of 5 hours and seamlessly integrates with
the SWiM architecture based on Finroc, through an embedded ROS node that acts as
a mediator. This hardware abstraction (discussed in Appendix C) ensures a seamless
connection between the basilisk and SWiM architecture, allowing for harmonization of
the diverse components within our robotic system.
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Pontonboot
The pontonboot project has developed novel pontoon boats with modular designs and
configurable building blocks. This design emphasizes standardization and modularization,
allowing for quick and easy on-site reconfiguration of boat shapes directly in water. This
adaptability contrasts with the compact vessels explored in [Kelly 19], where reconfiguration
is achieved through automated means. In the case of the pontoon boats, the reconfiguration
process is manual, making it faster to adjust to the operation’s requirements.

(a) A pontonboot core module with auton-
omy kit and coupled stern module.

(b) One of the pontonboot work platform
configurations with payload.

Figure B.3: The pontonboot hardware kit is equipped with an additional touchscreen.
[Meckel 22]

The primary focus of the project is on the single boat configuration, known as einzelboot
(shown in Figure B.3a), with dimensions of 12.0, m× 2.5, m× 2.0, m. This configuration
represents a robust and versatile platform that accommodates the autonomy kit seamlessly.
However, it is essential to note that the autonomy kit’s applicability extends beyond the
single-boat setup. It has been successfully deployed on working platforms and floating
bridge configurations (shown in Figure B.3b), highlighting its adaptability and universality
across various configurations.
It is worth mentioning that General Dynamics European Land Systems (GDELS) crafted
the prototypes, which underwent public demonstrations in November 2021 at the Elbphil-
harmonie in Hamburg, Germany. The successful showcase demonstrated the boats’ techni-
cal capabilities and their applicability in disaster response and control operations, achieving
the project’s objectives.



C. Framework for Intelligent Robot
Control

The methodology of SWiM architecture provided in this thesis is implemented and evaluated
over several surface water vehicles including astrider, basilisk, and einzelboot
(discussed in Appendix B) using Framework for Intelligent Robot Control, commonly
known as FINROC [Reichardt 12], [Reichardt 13]. This framework is a middleware capable
of handling various robotic platforms, sensors, and tasks.The core architecture of FINROC
is a sophisticated framework designed to facilitate real-time computation and seamless
data transfer. Key components within this architecture include serialization, threading,
runtime construction, and the utilization of distinct plugins for loading dataports. At
its essence, FINROC is structured around the concepts of modules, groups, and parts,
offering a hierarchical approach to development 1. The framework operates with a high
level of abstraction to simplify the development process, providing a more intuitive way
for developers to interact with the system. This abstraction is particularly beneficial for
users who want to focus on task-specific functionalities without delving into the intricacies
of low-level control.

The hierarchical structure of FINROC is organized into two pivotal components: RRLIBS
and LIBRARIES. These components are pre-existing modules and groups, strategically
crafted to be directly integrated into any project. Leveraging RRLIBS and LIBRARIES
significantly expedites the development process, allowing developers to build upon existing
functionalities rather than starting from scratch. This modularity and reusability are crucial
aspects of FINROC’s design philosophy, promoting efficiency and reducing development
time. Additionally, serialization and threading are integral aspects of FINROC’s real-time
computation capabilities. Serialization facilitates the conversion of complex data structures
into a format that can be easily transmitted and reconstructed. Threading, on the other
hand, enables parallel execution of tasks, enhancing the framework’s performance and
responsiveness. These features are essential for applications where timely and synchronized
data processing is critical, such as robotics and automation.

1https://www.finroc.org/
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Furthermore, the runtime construction of modules and the loading of dataports through
plugins contribute to the adaptability of FINROC. The framework can dynamically
incorporate new functionalities and interface with various sensors and actuators, making it
well-suited for applications with evolving requirements or diverse hardware configurations.

Key Features
Modularity and Extensibility: A key strength of FINROC lies in its modular architecture.

It is designed to accommodate various modules that encapsulate specific functionali-
ties. This modularity enhances extensibility, allowing developers to integrate new
sensors, actuators, or algorithms seamlessly. This adaptability is crucial for deploying
robots in different scenarios with distinct requirements.

Sensor Integration: FINROC places a strong emphasis on sensor integration, acknowl-
edging the significance of perception in robotic systems. The framework supports a
wide array of sensors, including cameras, LiDAR, IMUs, and more. This diversity
enables robots equipped with FINROC to perceive and interpret their surroundings
effectively.

Task Abstraction and Planning: Task abstraction is a critical aspect of intelligent robot
control. FINROC provides a high-level abstraction layer for defining tasks, allow-
ing developers to focus on task planning rather than low-level control intricacies.
This feature streamlines the development of complex robotic applications, from
autonomous navigation to manipulation tasks.

Real-time Control The framework is optimized for real-time control, a prerequisite for
many robotic applications. Whether it’s navigating through dynamic environments
or executing precise manipulation tasks, FINROC’s real-time capabilities ensure the
responsiveness and agility of robotic systems.

Tools
The FINROC framework stands as a comprehensive suite offering indispensable tools to
strengthen the development of robots. This support extends across critical functionalities
such as data recording, playback, real-time visualization of data and software states, and
the provision of a user interface for seamless interaction with robotic systems. At the core
of these capabilities is the FINGUI (FINROC GUI), a powerful component that enables
users to assess visualization outputs and craft tailored interfaces to meet specific robotic
requirements. This tool serves as a pivotal component facilitating user interaction and
visualization. One of its distinctive features is the ability to offer a highly customizable
interface, allowing users to shape the visual representation and interaction paradigms
according to the unique needs of the robotic system or specific control aspects. This level
of customization ensures that the interface aligns precisely with the intricacies of the
robotic application, enhancing user experience and system usability.
Furthermore, FINGUI is equipped with an array of widgets (shown in Figure C.1), each
serving a specific purpose in the visualization and control processes. These widgets
encompass a diverse set of tools, including joysticks, labels, LED fields, 2D and 3D
rendering canvases, camera systems, maps, oscilloscopes, and an extensive collection of
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Figure C.1: FINGUI data processing visualization of pontonboot Project

additional elements. The provision of such a rich variety of widgets empowers users to
construct highly specialized and context-aware interfaces. Whether it involves real-time
monitoring of sensor data, controlling actuators, or orchestrating complex robot behaviors,
this gui offers the flexibility needed to adapt to diverse robotic applications.
Additionally, FINROC introduces a complementary tool known as FINSTRUCT, designed
to provide insight into the intricate structural elements of the control software. This tool
serves a crucial role in visualizing the component graph structure and port connections
within the control software, offering a profound understanding of the system’s architecture.
Given the inherent complexity of control software in robotic applications, FINSTRUCT
becomes an invaluable asset, allowing developers to navigate and comprehend the complex
relationships between different components.
A key functionality of FINSTRUCT is its ability to create custom views as shown in figure
C.2, offering users the flexibility to focus on specific program regions. These program
regions typically comprise groups and modules, which are fundamental units in the Finroc
framework. This feature is particularly beneficial in managing the complexities of control
software, providing developers with the means to tailor their views and concentrate on
relevant portions of the system. As a result, developers can streamline their workflow and
efficiently navigate through the complexities of the control software.
Within FINSTRUCT, the visualization of port connections is a key aspect that facilitates
the comprehension of data flow and interaction between different components in the
control software. The accessibility of port data and timestamps further enriches the
visualization, offering a comprehensive understanding of the temporal aspects of data
exchange. Furthermore, FINSTRUCT provides the feature of the iB2C view, which offers a
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Figure C.2: FINSTRUCT component graph visualization of pontonboot Project

dynamic representation of the network’s interface status. This visualization employs color-
coded indicators to depict different aspects of activity. Green indicates active elements,
red signifies elements with target ratings, and yellow represents elements with potential.
Moreover, the colors of connections convey crucial information about the nature of the
connection, distinguishing between stimulation and inhibition. This feature enhances the
situational awareness of developers, providing real-time feedback on the status and activity
levels of different components in the network.

Hardware Interface
The Hardware Interface in the REACTiON framework [Wolf 22] is implemented in this
thesis through a variety of backend types, encompassing an array of hardware, simulations,
and playback systems, as depicted in Figure C.3. This interface serves as a gateway to
both actuators and sensors, facilitating interaction with the Unmanned Surface Vehicle’s
(USV’s) physical components. It additionally provides essential details regarding the
USV, such as its dimensional specifications and information about the integrated sensors.
Leveraging the versatility of the behavior-based paradigm and the iB2C framework’s
fusion capabilities, the control architecture dynamically configures its perception structure
based on the information received from the hardware description.
The REACTiON system is designed to support various Hardware Interface implemen-
tations and the corresponding hardware descriptions, ensuring broad applicability and
adaptability. In an enhancement from the original interface, this implementation includes
added support for sonar sensors, recognizing their importance in marine environments.
Conversely, support for wheel-based odometry, more relevant to terrestrial vehicles, has
been omitted. Moreover, modifications have been made to the descriptions of vehicle
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Figure C.3: Common hardware interface developed to communicate with control architecture.
The figure shows that the control architecture which is implemented in Finroc can connect to
different backends through a common hardware interface. [Meckel 22]

properties to better suit the specific requirements and characteristics of USVs. These
adaptations underscore the framework’s commitment to providing a comprehensive and
flexible interface that caters to the needs of different vehicle types, particularly in marine
applications.
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D. Unreal Engine and Flood Simulation

Due to the unavailability of standard post-flood datasets, the rigorous evaluation of SWiM
architecture is not possible. The simpler scenarios for detecting surface and underwater
obstacles can be performed on shallow water lakes, and rivers but the complex scenarios
cannot be performed and tested. In such cases, a realistic simulation may help in evaluating
the complex scenarios. Consequently, this thesis presents a novel flood simulation that
includes the design of a complex post-flood environment and generation of raw sensory data.
This simulation is developed within Unreal Engine, a state-of-the-art real-time 3D creation
tool, originally designed for the gaming industry, has found significant applications in the
field of robotics, offering a robust platform for simulation and visualization. The use of
Unreal Engine in robotics extends beyond mere visual fidelity, providing a comprehensive
suite for the development, testing, and deployment of robotic systems.

The ability of Unreal Engine to render complex scenarios in real-time is a vital asset in
robotics. It allows for dynamic simulation environments where parameters can change in-
stantaneously, closely mimicking the unpredictability of real-world conditions. For instance,
in autonomous vehicle development, the engine can simulate diverse weather conditions,
varying traffic scenarios, and different times of the day, providing a comprehensive test
bed for algorithms before actual field deployment. This reduces the need for extensive
physical prototyping, thereby saving time and resources while enhancing safety. The
Unreal Engine’s advanced physics engine offers accurate modeling of physical interactions,
which is crucial in robotics. This includes the simulation of various materials, collision
detection, and the response of robots to different forces and terrains. This realistic physical
simulation (shown in Figure D.1) helps in the fine-tuning of robotic control systems,
ensuring that they are robust and reliable in real-world operations. Moreover, the engine’s
support for high-quality lighting and shadow effects adds to the realism, which is critical
for vision-based robotic systems that rely on visual data for navigation and task execution.

The upcoming sections explains the developed protocols of Unreal Engine to communicate
with Finroc, and the sensor plugins that provide realistic sensory data. The novel surface
water vehicles models and sonar plugin are already discussed in Sections 4.2.3 and 4.2.4.
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(a) Scene (b) Underwater Scene

Figure D.1: Simulation Scene with Underwater Scenario. The figure shows a submerged tree
trunck in a simulated barnyard environment with underwater post-processed environment.

Communication with Finroc
The integration of Unreal Engine with Finroc, a robust software framework for robotics
and automation, through a dedicated plugin, represents a significant advancement in the
field of robotics simulation and development. Unreal Engine, renowned for its high-fidelity
real-time 3D rendering capabilities, provides an ideal platform for creating immersive and
realistic simulation environments. When combined with Finroc’s modular and flexible
architecture, it enables developers to design, test, and refine complex robotic systems with
unprecedented efficiency and accuracy.

Module

Sensor
Input

Sensor
Output

Controller
Input

Controller
Output

Sensor
Data

Control
Data

Finroc Port

Figure D.2: Unreal Engine to Finroc Interface.

The Unreal Engine plugin for Finroc leverages the engine’s powerful graphics and physics
simulation capabilities to bring realistic environmental dynamics into robotic simulations.
This integration is especially crucial for applications requiring high levels of environmental
interaction, such as autonomous vehicles, unmanned aerial vehicles (UAVs), and service
robots. The plugin allows for the creation of detailed virtual worlds where robots can
navigate and interact, providing valuable data for system development and testing. These
environments can range from urban landscapes for testing autonomous cars to indoor
settings for domestic robots, offering a versatile platform for a wide array of robotic
applications.
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A significant advantage of the Unreal Engine plugin for Finroc is its support for real-time
data exchange between the simulated environment and the Finroc framework. This feature
allows for seamless integration of control algorithms developed within Finroc with the
simulated robotic platforms in Unreal Engine. Developers can test their control strategies,
monitor their performance, and make iterative improvements in a highly realistic virtual
setting, thereby reducing development cycles and improving the robustness of the robotic
systems.
Furthermore, the plugin facilitates advanced scenario testing, including dynamic interac-
tions with the environment and other agents. This is essential for developing adaptive
and intelligent robotic systems capable of operating in unpredictable real-world situations.
Scenarios such as urban streets flooded with sandy water or complex floating debris can
be accurately modeled, providing valuable insights into the behavior and performance of
robotic systems in challenging conditions.

Sensors
One of the key features of the plugin is its ability to simulate a variety of sensory inputs
that are critical in robotics, such as LIDAR, cameras, and localization sensors. This is
particularly important for developing perception algorithms essential for tasks like obstacle
avoidance, path planning, and environmental mapping. By accurately simulating these
sensors within the Unreal Engine environment, the plugin enables the validation and
fine-tuning of sensor fusion algorithms and perception systems under diverse and controlled
conditions, which would be difficult or impractical to replicate in the real world.

Localization Sensor
Inertial Measurement Unit

IMUs offer acceleration readings for each axis of a robot, along with 3D orientation
information. Nevertheless, IMU data is susceptible to errors that accumulate over time
and may be influenced by magnetic objects in close proximity. Within UE4, the simulated
IMU records the linear velocity vector v⃗ and angular accelerations, calculated using tick
duration ∆t. Standard gravity is applied to replicate earth gravity, and the robot’s rotation
can be accessed directly. Preprocessing can introduce drifts or slips over time to mimic
the physical sensor’s quality.

Global Navigation Satellite Systems

The Global Navigation Satellite System (GNSS) is crucial for global localization in robotics
but is sensitive to environmental factors like shadowing, affecting its accuracy. This impact
is quantified using dilution of precision metrics (HDOP, VDOP, PDOP), based on satellite
constellations’ geometry. In simulations, these metrics are approximated using satellite
count to save computational resources, based on real-world data from a robot equipped
with GNSS receivers. GNSS error in latitude, longitude, and altitude is determined
by visible satellite configuration and random noise. The number of visible satellites is
categorized directionally, influencing the GNSS fix category, which ranges from ’No Fix’ to
’3D Fix’. Unreal Engine 4 (UE 4) simulates GNSS using ray tracing and a satellite manager
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to realistically model satellite visibility and environmental effects on GNSS performance.
This approach offers a sophisticated and realistic method for understanding GNSS behavior
in various conditions. The Figure D.3 shows the simulated mesh of satellite in unreal
simulation.

Figure D.3: Simulated Satellite Mesh in Unreal Engine.

Vision and Range Sensors
Vision sensors are categorized into several types, including standard cameras, depth
cameras, and laser scanners, each with distinct capabilities and applications. The simulation
of these sensors in a virtual environment, such as that provided by Unreal Engine 4 (UE4),
involves the emulation of real-world effects such as exposure variations and the presence
of particulates like dust. These effects are replicated through the application of post-
processing techniques and particle systems within the engine.

Cameras

Standard cameras within UE4 operate using the engine’s rendering pipeline, with camera
parameters such as field of view and resolution configured to match the specifications
of real sensor data sheets. Simulated cameras (an image shown in Figure D.4) issue
render commands that are processed asynchronously, allowing the output to be published
once rendering is complete. This non-blocking approach enables the simultaneous use
of multiple cameras within complex scenes without impeding the system’s update rate.

Figure D.4: Simulated Camera Image from Flooded Barnyard Environment. The figure
demonstrates the simulated camera imagery captured in a realistic barnyard environment by
surface water vehicle modeled within Unreal Engine.
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Additionally, specialized camera types can be developed by extending a base camera class
and customizing properties and post-processing effects. These customizations can be
dynamically adjusted via control software, allowing for updates triggered by the robot’s
perception algorithms.
For the simulation of stereo and depth cameras, which provide additional distance infor-
mation alongside visual data, UE4 employs techniques such as reading from the depth
buffer of the rendering engine. Nonetheless, simulating stereo cameras is more complex
due to the requirement of matching a calibrated pair of images. This matching process can
create distortions in the resulting point cloud, a byproduct of image disparity. Issues such
as reflections, insufficient texture details, and lens anomalies in the simulated device often
lead to inaccuracies in the point data, such as spurious obstacles or missing information.
To achieve a more realistic sensor simulation, computationally intensive methods like
semi-global matching are used to process two simultaneously rendered images, as proposed
in [Hirschmuller 08]. This process involves the use of two virtual camera actors with
parallel lenses to capture the scene, after which the acquired image pair is rectified and
matched to simulate depth perception accurately.

LiDAR

In parallel, the simulation of Light Detection and Ranging (LiDAR) sensors diverges
from that of stereo cameras by utilizing depth rendering techniques rather than image
matching. LiDAR sensors, known for their superior precision and range, do not require the
simulation of distortions that are commonly associated with stereo vision. The accuracy
of LiDAR simulation (shown in Figure D.5) is further enhanced by introducing particle
effects like dust into UE4’s depth buffer, mimicking the behavior of real-world sensors that
are susceptible to environmental particulates, resulting in potentially spurious readings.

Figure D.5: Simulated LiDAR Point Cloud from Flooded Barnyard Environment. The figure
demonstrates the simulated LiDAR point cloud captured in a realistic barnyard environment by
surface water vehicle modeled within Unreal Engine. The cube in the image is surface vehicle
only for visualization.

The vertical resolution of a simulated LiDAR sensor is often less than its horizontal
resolution due to the common use of a limited number of laser lines (e.g., 16 to 128 lines).
This discrepancy in resolution is accounted for by omitting certain lines in the depth image,
which inherently has a higher resolution due to the square pixel arrangement. The process
of line skipping, taking into account the horizontal offset, results in a linearly rendered
image. This approach is suitable for simulating single-line laser scanners. However, when
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simulating rotating laser scanners, a hyperbolic distortion in the point cloud is often
observed due to the polar coordinate mapping inherent to the rotation of the laser beam.
To counter this, a hyperbolic mapping equation D.1 is applied to the depth image to
approximate the distortion, resulting in a pixel mapping that closely resembles real LiDAR
data.

h =
√

a2 + x2.a2

b2 [Wolf 20] (D.1)

An example of such a simulation can be compared with the Ouster OS0-128 laser scanner,
which uses 128 laser lines. The simulated point cloud demonstrates a high degree of
similarity to actual point cloud data. Nevertheless, it is noted that data points proximal to
the scanner exhibit a triangular pattern, an artifact of rendering through multiple camera
frustums. This pattern can be mitigated, if necessary, by employing ray-tracing techniques
or by vertically oversampling the depth images to produce a more uniformly distributed
point cloud.



E. Deep Learning Architectures

Throughout this thesis, the SWiM architecture has thoroughly examined and integrated
several deep-learning based networks for object detection (Section 6.2.1), and semantic
segmentation (Section 6.2.1). This appendix explains each in detail to help readers
understand these architectures, drawing on relevant literature to clarify their theoretical
foundations and practical applications. The discussion covers the subtle architectural
differences, intricate algorithms, and contextual use of these deep learning paradigms. These
algorithms have been implemented and rigorously tested using surface and underwater
sensory datasets (explained in Section 4.1.1). The thesis aims to bridge the gap between
complex computational models and their real-world applications by providing in-depth
explanations and contextual evaluations. It allows readers to comprehend technological
advancements and their implications within the broader context of computer vision and
marine exploration.

Object Detection

To detect the surface and underwater obstacles, deep learning based object detection
networks may prove helpful. It is worth noting that multi-class object recognition and
classification is not possible in post-flood environment due to random and unstructured
obstacles. Therefore, SWiM architecture assumes only one class i.e. obstacle. Furthermore,
the deep-learning based object detection algorithms can be categorized into three types:
single-stage detectors, two-stage detectors, and transformer-based detectors. Single-
stage detectors are optimized for speed and efficiency and perform object detection and
classification in a single pass through the network. Two-stage detectors generate region
proposals first and then classify those regions, resulting in higher accuracy but slower
computational speed. Transformer-based detectors can handle varying object sizes and
relationships without requiring region proposal mechanisms. Each category has its strengths
and trade-offs. Following are the three algorithms (one from each type) implemented in
this thesis for object detection in SWiM architecture.
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YOLOX

Zheng Ge et al. [Ge 21] introduced YOLOX, an improved version of the YOLO series,
offering advancements in speed and accuracy. YOLOX adopts an anchor-free framework,
eliminating the need for preset anchor boxes for object localization. It employs a center-
based detection mechanism, predicting the central point, width, and height of objects
directly as shown in Figure E.1. This simplifies detection and reduces hyperparameters,
streamlining training. YOLOX features a CSPDarknet backbone with cross-stage partial
connections for effective feature propagation and a spatial pyramid pooling module for
feature capture across scales. It includes practical enhancements like dynamic anchor
assignment, adapting to object scales and aspect ratios, and supports multi-scale and
multi-input testing for robust detection in varied environments. Moreover, the YOLOX
offers a variety of models, such as tiny, small, large, and X. These models differ in their
image scale and architecture size. This thesis uses the small and large models to compare
and analyze the trade-offs presented by each model. Table E.1 provides essential analytics
of both models1.

Figure E.1: Architectural Comparison between YOLOX and YOLO Versions 3 to 5 [Ge 21].
This figure contrasts the YOLOX architecture with earlier YOLO versions, highlighting YOLOX’s
decoupled head design which separates classification and regression tasks for improved learning.
Unlike YOLOv3-v5’s coupled head that integrates all outputs, YOLOX refines predictions with
distinct pathways and an added IoU branch, enhancing detection across different scales without
relying on predefined anchors.

Table E.1: Essential analytics of implemented YOLOX architecture.

Models Size Mem (Gb) box AP
YOLOX-s 640 7.6 40.5
YOLOX-l 640 19.9 49.4

1https://github.com/open-mmlab/mmdetection/tree/main/configs/yolox



175

Faster RCNN
Faster R-CNN, introduced by Ren et al. [Ren 15], enhances its predecessor, R-CNN, by
integrating a Region Proposal Network (RPN). This network shares convolutional features
with the detection network, streamlining proposal generation. The RPN identifies potential
object locations within images, refining them into proposals passed to the detection network,
typically Fast R-CNN. Fast R-CNN refines bounding boxes and classifies objects using a
Region of Interest (ROI) pooling layer. Faster R-CNN optimizes computational resources
by generating proposals directly from CNN features as shown in Figure E.2, reducing time
and memory requirements. Although complex, it offers highly accurate object detection,
minimizing false positives. However, effective training and extensive datasets are needed.
Table E.2 provides key analytics of the architecture2.

Figure E.2: Architectural Overview of the Faster R-CNN Framework [Ren 15]. The Faster
R-CNN model processes images through convolutional layers to create feature maps, uses a
Region Proposal Network to identify potential object regions, and then applies RoI pooling
and classification to detect and categorize objects within the image. This hierarchical process
facilitates a streamlined flow from raw image data to precise object localization and classification.

Table E.2: Essential analytics of implemented Faster RCNN architecture.

Backbone Lr schd Mem (Gb) Int time (fps) box AP
R-50-FPN 1x 4 21.4 37.4

Detr
The DETR (DEtection TRansformer) algorithm, introduced by Carion et al. [Carion 20],
revolutionizes object detection by leveraging the transformer architecture, renowned for its
success in natural language processing (NLP). Unlike traditional methods, DETR processes

2https://github.com/open-mmlab/mmdetection/tree/main/configs/fasterrcnn
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entire images using self-attention mechanisms, enabling it to capture dependencies and
interactions across the image. By predicting object locations and categories simultaneously
in a single forward pass, DETR eliminates the need for region proposal networks (RPNs),
streamlining the detection process. Figure E.3 shows the detailed illustration of DETR
algorithm. Its innovative use of positional encodings and transformer-based backbone
provides spatial awareness and enables direct modeling of object interactions, making it
proficient in complex scenarios like occlusion. However, DETR’s richness requires substan-
tial training data and entails complexities in implementation and training. Nonetheless,
it represents a significant advancement in object detection, offering an efficient alterna-
tive to traditional methods. Table E.3 provides essential analytics3 for the implemented
architecture.

Figure E.3: DETR Architecture for Object Detection [Carion 20]. The DETR algorithm
employs a CNN to extract image features and positional encodings, which are then processed by
a transformer encoder and decoder, with object queries to directly predict object classifications
and bounding boxes. This end-to-end architecture simplifies the object detection workflow, as
demonstrated by the example output where objects are accurately identified and localized.

Table E.3: Essential analytics of implemented DETR architecture.

Backbone Lr schd Mem (Gb) box AP
R-50 150e 7.9 39.9

Semantic Segmentation
For accurate traversability mapping, the SWiM architecture implements semantic segmen-
tation for surface water environment to segment water from remaining environment. The
architecture assumes that the obstacle floating over the water is more critical as compared
to the boundaries of water body. The semantic segmentation aims to assign a categorical
label to every pixel in an image, effectively enabling a comprehensive understanding of
the scene at a granular level. This complex task not only detect the presence of objects
within an image but also defines their precise boundaries, offering a pixel-wise classifica-
tion. This thesis implements three leading networks including DeepLabv3+, UNet, and
SegFormer, each representing a unique approach to tackling the challenges inherent in
semantic segmentation.

3https://github.com/open-mmlab/mmdetection/tree/main/configs/detr
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DeepLabv3+

The DeepLabv3+ architecture [Chen 18] represents a significant advancement in semantic
segmentation, leveraging atrous convolutions to enhance context and scale awareness. By
systematically controlling the resolution of feature responses, DeepLabv3+ (shown in
Figure E.4) effectively enlarges the field of view of filters without increasing computational
burden. This allows for precise segmentation of objects within an image, particularly at
boundaries where spatial accuracy is critical. The atrous spatial pyramid pooling (ASPP)
module further enhances multi-scale information capture, enabling robust segmentation
across diverse object sizes and resolutions. Additionally, the encoder-decoder structure
refines segmentation results by leveraging deep semantic features from the encoder and
low-level features from earlier layers. The depthwise separable convolution operations
within the encoder module contribute to a rich representation of the input image, while
the decoder module utilizes this representation to predict pixel-level segmentation. This
combination ensures sharp object delineation and high performance across varied image
contexts. Table E.4 provides essential analytics regarding the DeepLabv3+ architecture’s
implementation4 in this thesis.

Figure E.4: DeepLabv3+ Architecture for Semantic Segmentation [Chen 18]. The framework
processes an input image through an encoder with atrous convolutions and an image pooling
layer to extract multi-scale features, which are then refined and combined with low-level features
in the decoder. The result is an upsampled prediction with precise object segmentation, as seen
with the example of a segmented cat.

4https://github.com/open-mmlab/mmsegmentation/tree/main/configs/deeplabv3plus
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Table E.4: Essential analytics of implemented DeepLabv3+ architecture.

Backbone Crop Size Lr schd
R-50-D8 512× 512 160k

U-Net

U-Net [Ronneberger 15], named for its U-shaped architecture, is a powerful tool in medical
imaging, providing pixel-wise classification for precise localization. Its design incorporates
two main paths: a contracting path for capturing contextual information and an expanding
path for mapping high-level features back onto the pixel space. The contracting path
employs convolutional layers and max pooling for down-sampling, while the expanding
path uses up-convolutions and concatenates features from the contracting path to preserve
spatial information. Crucially, U-Net includes skip connections between these paths
shown in Figure E.5, ensuring that high-resolution features are passed to the up-sampling
path. This design choice allows U-Net to retain important spatial details lost during
pooling operations. Moreover, U-Net’s ability to generalize well with minimal training
samples makes it particularly suited for medical imaging tasks where annotated data is
scarce. Beyond medical imaging, U-Net’s adaptable architecture has found applications in
diverse fields such as satellite image analysis and autonomous vehicle navigation, where
precise segmentation is crucial. Its efficient use of computational resources and robust
performance in data-limited scenarios have contributed to its widespread adoption across
various domains. Table E.5 provides essential analytics5 for U-Net’s implementation in
this thesis.

Figure E.5: U-Net Architecture for Semantic Segmentation [Ronneberger 15]. The U-Net
architecture depicted processes an input image through a series of convolutional and pooling
layers, followed by up-convolutions and concatenations that integrate fine-grained and abstract
features for precise pixel-wise image segmentation.

5https://github.com/open-mmlab/mmsegmentation/tree/main/configs/unet
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Table E.5: Essential analytics of implemented Unet architecture.

Method Backbone Loss Crop Size Lr schd
U-Net + FCN UNet-S5-D16 Cross Entropy 256× 256 160k

Segformer
SegFormer is a technique for semantic segmentation that leverages transformers to tackle
complex image segmentation tasks. Unlike traditional convolutional neural networks
(CNNs), SegFormer excels at capturing fine details and global context crucial for accurate
pixel-level image understanding. At its core lies a transformer encoder employing self-
attention mechanisms to model long-range dependencies across the entire image, allowing
for a holistic scene understanding as illustrated in Figure E.6. The hierarchical architecture
efficiently integrates features across different scales, generating a multi-scale feature
representation progressively refined by the decoder through upsampling and merging. This
approach preserves high-resolution details while effectively combining them with broader
context, making it particularly effective in scenarios with varying object sizes and fine-
grained segmentation tasks. SegFormer also introduces a novel positional encoding scheme
and a lightweight all-MLP decoder, providing crucial spatial information and precise
object boundaries. Its design facilitates end-to-end training, simplifying the training and
deployment process compared to other semantic segmentation frameworks. SegFormer’s
scalability and adaptability enable seamless integration into various image resolutions
and segmentation challenges. Table E.6 offers essential analytics6 for implementing this
architecture in this thesis.

Figure E.6: Segformer Architecture for Semantic Segmentation [Xie 21]. The architecture
integrates transformer blocks with overlap patch embeddings in the encoder, and a decoder
that merges multi-scale features for detailed semantic segmentation, computes in class-specific
high-resolution prediction maps.

Table E.6: Essential analytics of implemented Segformer architecture.

Backbone Crop Size Lr schd
MIT-B0 512 160k

6https://github.com/open-mmlab/mmsegmentation/tree/main/configs/segformer
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