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Abstract

In cyber-physical systems research an important challenge is the synthesis of reliable con-
trollers with respect to a general temporal specification. The synthesized controller must
provide formal guarantees against different sources of disturbance, such as measurement
noise and mismatch between the dynamics of the physical system and its model. By
synthesizing correct-by-construction controllers for complex dynamical systems, we can
enable a large number of exciting applications in various domains, including autonomous
vehicle industry, energy systems and healthcare.

In this thesis, we plan to study controller synthesis for several different classes of
dynamical systems. For some specific classes of systems, we provide sound and complete
decision procedures. For general nonlinear dynamical systems for which undecidability of
basic synthesis problems is proven, we propose sound but scalable technique that can be
applied to the real-world dynamical systems.
First, we consider continuous dynamical systems with bounded disturbances. The

underlying dynamics for every continuous dynamical system can—in the bounded ad-
versarial setting—be modeled by a (non-linear) differential inclusion system, provided
that a bound over the range of disturbances is known. A promising approach to tackle
the continuous nature of the state space is to use abstraction-based controller design
(ABCD) schemes. The controller designed by the ABCD scheme is described as being
formal due to the guarantees on satisfaction of the specification by the original system
in closed loop with the designed controller. In the first part of the thesis, we present
methods to improve applicability of ABCD by proposing (1) a data-driven scheme for
relaxing the requirement of having analytical model, (2) a neural abstraction method
to reduce memory requirements of both synthesis and deployment, and (3) a scalable
method for solving reach-avoid problems for multi-agent systems.

Second, we study continuous-time Markov decision processes (CTMDPs), which are a
widely used model for continuous-time stochastic systems. A fundamental problem in the
analysis of CTMDPs is time-bounded reachability, which asks whether we can synthesize
a control policy with which the probability of reaching a target set of states within a finite
horizon is greater than a given threshold. Time-bounded reachability is the core technical
problem for model checking stochastic temporal logics such as Continuous Stochastic
Logic, and having efficient implementations of time-bounded reachability is crucial for
scaling up formal analysis of CTMDPs. Existing work either considers time-abstract
policies or focuses on numerical approximation. Despite the importance of this problem,
its decidability is yet open. Moreover, the existing discretization-based approximation
methods are not scalable for CTMDPs with a large number of states. In the second part
of the thesis, we study the time-bounded reachability problem for CTMDPs, and propose
(1) a conditional decidability result, and (2) a systematic method for improving scalability
of numerical approximation methods.

Finally, we study the class of linear dynamical systems, which are fundamental models
in many different domains of science and engineering. In the third part of this thesis, we
consider several reachability-related problems for linear dynamical systems, and propose
(1) a hardness result for point-to-point reachability of linear dynamical systems with
hyper-rectangular control sets, and (2) decidability of pseudo-reachability for hyperplane
target sets.
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1
Introduction

Recent technological advancements in the field of cyber-physical systems have been nothing
short of revolutionary. Autonomous vehicles are becoming increasingly sophisticated, with
self-driving cars and trucks undergoing extensive testing and deployment in some regions.
Smart cities are utilizing cyber-physical systems to optimize traffic management, reduce
energy consumption, and enhance overall urban living. In healthcare, wearable devices and
remote monitoring systems are revolutionizing patient care, allowing for more personalized
and timely interventions. Additionally, advancements in robotics and automation are
transforming industries, from manufacturing and logistics to agriculture and healthcare,
with robots working alongside humans in collaborative environments. These innovations
are not only improving efficiency and productivity but also raising important questions
about safety, ethics, and cybersecurity in the rapidly evolving landscape of cyber-physical
systems. As technology continues to advance, the potential for further breakthroughs and
their profound impact on our daily lives remains both exciting and challenging.

The importance of safety design in cyber-physical systems in the industry is underscored
by a series of catastrophic incidents, including Tesla Autopilot crashes, the Uber self-
driving car accident, the Volkswagen factory incident where a robot killed a worker,
and the Boeing 737 Max crashes, each serving as stark reminders of the catastrophic
consequences when safety specifications are not rigorously met in the design of controllers
for cyber-physical systems. These events have prompted a reevaluation of how cyber-
physical systems are developed and deployed, underlining the need for rigorous formal
design, robust control systems, and comprehensive safety specifications. Therefore, in
the age of automation and interconnected systems, safety must be a foundational pillar,
safeguarding both lives and the integrity of our industries.
Design of reliable controllers for cyber-physical systems is a very challenging due to

their complex dynamics—defined over a continuous state space—and also specifications
that can only be expressed using natural-like specifications—which are beyond the scope
of classical control. As a result of these challenges, majority of the existing controller
design methods for cyber-physical systems are non-systematic and hence do not provide
any useful formal guarantees.

The main objective of this thesis is to propose new methods that broaden the scope of
formal controller design. To that end, we consider different classes of dynamics. For the
more general classes of dynamical systems, we propose sound methods to enhance the
scalability of the controller design. We notice that a sound controller design method may
miss some solutions; therefore, we also consider less general classes of dynamical systems

1



1. Introduction

for which we provide sound and complete design methods.
In the sequel, we provide a brief description for the list of main challenges we addressed

for each of the considered classes of control system in this thesis.

1.1. Continuous-Space Systems with Adversarial
Disturbances

Majority of cyber-physical systems can be modeled as continuous control systems, whose
state can evolve continuously in a compact Cartesian space over continuous time horizons.
To design controllers for safety critical systems, we always need to take the effect of model
uncertainties into account. In many circumstances, we have no information about the exact
probability distribution over the range of model uncertainties ,but a worst-case estimation
of the compact domain of uncertainties is known. This setting, which shall be referred to
as adversarial disturbances setting, is largely studied. Continuous control systems with
adversarial disturbances are the first class of control systems which will be studied in this
thesis. To synthesize correct-by-construction controllers for continuous control systems
with bounded adversarial disturbances, one popular technique is to use methods from
the field of reactive synthesis. To that end, one needs to first discretize time, using an
appropriate sampling time, and state and input spaces, using uniformly-sized rectangular
partition elements, to compute a finite transition system whose behavior is connected to
the original system via some appropriate behavioral relation. The derived system with
the finite set of states and inputs is referred to as abstraction and the corresponding
method to synthesize correct-by-construction controllers using the system’s abstraction
is called abstraction-based controller design (ABCD) [172, 22, 118, 161]. ABCD works
very well for low-dimensional systems. However, increasing the dimension of state space
results in an exponential increase in the size of the abstraction and leads into very long
run-times and memory blow-ups. In the first part of this proposed thesis, we consider
the general class of continuous control systems, in the adversarial disturbance setting
and propose methods to improve the scalability of ABCD from both memory and time
complexity perspectives, as this is the main challenge for the application of ABCD. Below,
we mention a list of the challenges we addressed for this class of systems.

Extending ABCD to systems with unknown model. ABCD schemes generally
rely on a precise mathematical model of the system. Such exact mathematical description
is not available for most of real-world control systems. A promising approach to tackle
this issue is to develop data-driven controller synthesis schemes with appropriate formal
(probabilistic) guarantees. We provide a data-driven method to synthesize controllers
formally, for general temporal specifications over unknown control systems. We compute
the growth bound of the system by using a finite number of sample trajectories, and
construct the abstraction based on the computed growth bound. We also provide a
lower-bound over the sample complexity of our method. By several experiments, we show
that our method can be used to synthesize formally guaranteed controllers for unknown
control systems.

2



1.2. Continuous-Time Markov Decision Processes

Reducing memory requirements for ABCD. The computed abstractions of high-
dimensional dynamical systems are frequently characterized by a substantial size, posing
a significant bottleneck when it comes to storage in memory through conventional
abstraction-based synthesis methods. We propose an on-the-fly memory-efficient synthesis
method, which relies on expressive power of neural networks for representing the system’s
abstraction and also the synthesized controller. We train neural networks, which take
a state-input pair and generate the characterization of tight over-approximations for
the corresponding sets of successors and predecessors. Once these neural networks are
trained, we plug them into our on-the-fly synthesis algorithm to solve the given instance
of reachability problem. Therefore, we can significantly lower the space complexity by
avoiding the need for storage of the full transition system into RAM. Further, we propose
a similar method that computes compressed neural representations for the controller and
hence reduces the memory requirements of the deployment phase significantly.
Extending ABCD to multi-agent systems. We consider the decentralized controller
synthesis problem for multi-agent systems with global reach-avoid specifications. Each
agent is modeled as a nonlinear dynamical system with disturbance. The objective is to
synthesize local feedback controllers that guarantee that the overall multi-agent system
meets the global specification under the influence of disturbances. Existing techniques
based on planning or trajectory optimization usually ignore the effects of disturbance
and produce open-loop nominal trajectories which may not suffice in the presence of
disturbances. Techniques based on formal synthesis that guarantee satisfaction of temporal
specifications do not scale as the number of agents increase. We address these limitations
by proposing a two-level solution approach that combines fast global nominal trajectory
generation and local application of formal synthesis. At the top level, we ignore the effect
of disturbances and obtain a joint open-loop plan for the system using a fast trajectory
optimizer. At the lower level, we use abstraction-based controller design to synthesize a
set of decentralized feedback controllers that track the high level plan against worst-case
disturbances, thus ensuring satisfaction of the global specification.

1.2. Continuous-Time Markov Decision Processes

In cases wherein a distribution over the model uncertainty is attainable, one can use
the existing stochastic models for describing the underlying dynamics. Markov decision
processes (MDPs) are a very well-known framework for modeling discrete-time stochastic
control systems. Despite their popularity, there are continuous-time systems, whose
behavior cannot be captured by discrete-time MDPs and we need to use continuous-time
Markov decision processes (CTMDPs) instead. In case that there is no control, CTMDPs
reduce to continuous-time Markov chains (CTMCs). Examples of such systems include
queuing systems and virus spread networks among others. In general, CTMDPs can be
derived from a continuous control stochastic system through appropriate abstraction of
the state space into finite number of cells and computing the probabilities for jumping
from one cell into the others as a continuous function of time. In this way, we can connect
the first two classes of systems studied in this thesis, i.e., continuous control systems

3



1. Introduction

with adversarial disturbances and CTMDPs. For both CTMCs and CTMDPs, the core
problem for model checking stochastic temporal logics such as Continuous Stochastic
Logic [9, 14] is time-bounded reachability. In fact, even decidability of this problem is
unknown for CTMDPs. Furthermore, most of the existing methods, which are aimed at
approximating the value of time-bounded reachability for CTMDPs, do not scale well for
reasonably large CTMDPs. In the second part of the thesis, we consider the time-bounded
reachability problem in CTMCs and CTMDPs and address it from both decidability and
scalability perspectives. Below, we list a number of challenges, that we have addressed in
the thesis, concerning time-bounded reachability of CTMDPs.

Decidability. We consider the time-bounded reachability problem for continuous-time
Markov decision processes and show that this problem is decidable subject to Schanuel’s
conjecture. Our decision procedure relies on the structure of optimal policies and the
conditional decidability (under Schanuel’s conjecture) of the theory of reals extended with
exponential and trigonometric functions over bounded domains. We further show that any
unconditional decidability result would imply unconditional decidability of the bounded
continuous Skolem problem, or equivalently, the problem of checking if an exponential
polynomial has a non-tangential zero in a bounded interval. We note that the latter
problems are also decidable subject to Schanuel’s conjecture but finding unconditional
decision procedures remain longstanding open problems.

Scalability. As already mentioned, time-bounded reachability is a fundamental problem
in model checking continuous-time Markov chains (CTMCs) and Markov decision pro-
cesses (CTMDPs) for specifications in continuous stochastic logics. It can be computed
by numerically solving a characteristic linear dynamical system but the procedure is
computationally expensive. We take a control-theoretic approach and propose a reduction
technique that finds another dynamical system of lower dimension, such that numerically
solving the reduced dynamical system provides an approximation to the solution of the
original system with guaranteed error bounds. Our technique generalizes lumpability
(or probabilistic bisimulation) to a quantitative setting. Our main result is a Lyapunov
function characterization of the difference in the trajectories of the two dynamics that
depends on the initial mismatch and exponentially decreases over time. In particular, the
Lyapunov function enables us to compute an error bound between the two dynamics as
well as a convergence rate. Finally, we show that the search for the reduced dynamics can
be computed in polynomial time using a Schur decomposition of the transition matrix.
This enables us to efficiently solve the reduced dynamical system by computing the
exponential of an upper-triangular matrix characterizing the reduced dynamics. For
CTMDPs, we generalize our approach using piecewise quadratic Lyapunov functions
for switched affine dynamical systems. We synthesize a policy for the CTMDP via its
reduced-order switched system that guarantees the time-bounded reachability probability
lies above a threshold. We provide error bounds that depend on the minimum dwell
time of the policy. We demonstrate the technique on examples from queuing networks,
for which lumpability does not produce any state space reduction but our technique
synthesizes policies using reduced version of the model.

4



1.3. Linear Dynamical Systems

1.3. Linear Dynamical Systems

Linear dynamical systems are fundamental models in many different domains of science
and engineering, and the computability and complexity of decision problems for linear
dynamical systems are of both theoretical and practical interest. Therefore, we take a
closer look into the class of linear dynamical systems for which certain problems, including
point-to-point reachability, are known to be decidable in the absence of control. Also,
there are many seemingly simple problems for linear dynamical systems whose decidability
are yet open after decades of continuous effort. Skolem (point-to-hyperplane reachability)
and Positivity (point-to half-space-reachability) are two such well-known problems.

In the fourth part of this thesis, we first show that point-to-point reachability problem
for linear dynamical system with hyper-rectangular control set is at least as hard as the
positivity problem for linear dynamical systems. Therefore, we consider an important
related problem, known as pseudo-reachability for linear dynamical systems. Intuitively,
pseudo-reachability problem asks whether a target is reachable under every hyper-cubic
control set with non-zero volume. We show that for both point-to-point and point-
to-hyperplane cases, the pseudo-reachability problem is decidable for linear dynamical
systems.
Hardness of the reachability problem for linear control systems. A very natural
question would be to ask about the hardness of (point-to-point) reachability problem for
a linear dynamical system with hyper-cubic control set. We show that this (restricted)
version of reachability problem is indeed hard. Motivated by this hardness result, we turn
our focus into investigation of other reachability-related problems for linear dynamical
systems.
Decidability of pseudo-reachability for hyperplane target sets. Pseudo-orbits
are generalizations of orbits in the topological theory of dynamical systems. We study the
pseudo-orbit problem, whether a state belongs to the pseudo-orbit of another state, and the
pseudo-Skolem problem, whether a hyperplane is reachable by an ε-pseudo-orbit for every
ε. These problems are analogous to the well-studied orbit problem and Skolem problem
on unperturbed dynamical systems. Our main results show that the pseudo-orbit problem
is decidable in polynomial time and, surprisingly, the Skolem problem on pseudo-orbits is
also decidable. The former extends the seminal result of Kannan and Lipton from orbits
to pseudo-orbits. The latter is in contrast to the Skolem problem for linear dynamical
systems, which remains open for proper orbits.

1.4. Outline of the Thesis

This document is organized as follows. In the subsequent chapters, we describe our
contributions over the three classes of control systems considered in this dissertation.
Chapter 2 is dedicated to overcoming three main bottlenecks of ABCD, with the goal
of enhancing the scalability of controller synthesis for continuous control systems with
adversarial disturbances and infinite-horizon temporal specifications. First, in Section 2.2
we propose a method that extends applicability of ABCD to systems with unknown
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1. Introduction

dynamics. Section 2.3 discusses a technique that significantly lowers the memory require-
ments of ABCD. In Section 2.4, we explore the extension of ABCD into multi-agent
settings. Chapter 3 focuses on the time-bounded reachability problem for CTMDPs. In
Section 3.2, we show a conditional decidability result, and in Section 3.3, we propose a
method for enhancing scalability of discretization-based approximation methods. Finally,
In Chapter 4, we consider the class of linear dynamical systems and study the decidability
of reachability-related specifications for them from a decidability perspective.

1.5. List of Publications

The material in the thesis has been published in the following papers:

1. “Approximate Time Bounded Reachability for CTMCs and CTMDPs: A Lya-
punov Approach” with Sadegh Soudjani and Rupak Majumdar, 15th International
Conference on Quantitative Evaluation of SysTems (QEST’2018).

2. “A Lyapunov Approach for Time-Bounded Reachability of CTMCs and CTMDPs”
with Sadegh Soudjani and Rupak Majumdar, ACM Transactions on Modeling and
Performance Evaluation of Computing Systems (TOMPECS).

3. “On Decidability of Time-Bounded Reachability in CTMDPs” with Rupak Majumdar
and Sadegh Soudjani, 47th International Colloquium on Automata, Languages, and
Programming (ICALP’2020).

4. “Symbolic reach-avoid control of multi-agent systems” with Rupak Majumdar,
Kaushik Mallik, Sadegh Soudjani and Mehrdad Zareian, ACM/IEEE 12th Interna-
tional Conference on Cyber-Physical Systems (ICCPS’2021).

5. “The Pseudo-Skolem Problem is Decidable” with Julian D’Costa, Toghrul Ka-
rimov, Rupak Majumdar, Joël Ouaknine, Sadegh Soudjani and James Worrell,
46th International Symposium on Mathematical Foundations of Computer Science
(MFCS’2022).

6. “The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems”
with Julian D’Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine and James
Worrell, 47th International Symposium on Mathematical Foundations of Computer
Science (MFCS’2023).

7. “Neural Abstraction-Based Controller Synthesis and Deployment” with Rupak
Majumdar and Sadegh Soudjani, ACM Transactions on Embedded Computing
Systems (TECS).

8. “Data-Driven Abstraction-Based Control Synthesis” with Milad Kazemi, Rupak
Majumdar, Sadegh Soudjani and Ben Wooding, submitted to the Elsevier Journal
on Nonlinear Analysis: Hybrid Systems (NAHS).
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2
Abstraction-Based Controller

Design

One of the major objectives in the design of safety-critical systems is to ensure their
safe operation while satisfying high-level requirements. Examples of safety-critical cyber-
physical systems include power grids, autonomous vehicles, traffic control, and battery-
powered medical devices. Automatic design of controllers for such systems that can fulfill
the given requirements has received significant attention recently. These systems can
be represented as control systems with continuous state spaces and may be affected by
adversarial bounded disturbances. Within these continuous spaces, it is challenging to
leverage automated control synthesis methods that provide satisfaction guarantees for
high-level specifications, such as those expressed in Linear Temporal Logic [13, 22, 172, 67].

A common approach to tackle the continuous nature of the state space is to use
abstraction-based controller design (ABCD) schemes [172, 22, 118, 161]. The first step
in the ABCD scheme is to compute a finite abstraction by discretizing the state and
action spaces. Finite abstractions are connected to the original system via an appropriate
behavioral relation such as feedback refinement relations or alternating bisimulation
relations [146, 172]. Under such behavioral relations, trajectories of the abstraction are
related to the ones of the original system. Therefore, a controller designed for the simpler
finite abstract system can be refined to a controller for the original system. The controller
designed by the ABCD scheme is described as being formal due to the guarantees on
satisfaction of the specification by the original system in closed loop with the designed
controller.

In the rest of this chapter, we take ABCD as a sound, but not complete method for
synthesizing formally guaranteed controllers for continuous control systems with bounded
adversarial disturbance, and address its intrinsic shortcomings. First, in Section 2.1, we
describe the notations used in this chapter. In Section 2.2, our proposed data-driven
method for learning abstractions is depicted. In Section 2.3, we describe how neural
networks can be used in order to mitigate huge memory requirements of data-driven
ABCD. Finally, in Section 2.4, we describe a method to extend ABCD to multi-agent
systems with joint reach-avoid specifications.
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2. Abstraction-Based Controller Design

2.1. Preliminaries

We denote the set of natural, integer, real, positive real, and non-negative real numbers by
N, Z, R, R>0, and R≥0, respectively. The set of natural numbers including zero is denoted
by N≥0. We use superscript n > 0 with these sets to denote the Cartesian product of
n copies of these sets. The power set of a set A is denoted by 2A and includes all the
subsets of A. For any x, y ∈ Rn with x = (x(1), . . . , x(n)) and y = (y(1), . . . , y(n)), and a
relational symbol . ∈ {≤, <,=, >,≥}, we write x.y if x(i).y(i) for every i ∈ {1, 2, . . . , n}.
A matrix M ∈ Rn×n is said to be non-negative if all of its entries are non-negative. The
operator | · | is used to denote both the absolute value of a vector and cardinality of
a set, depending on the type of the operand. We use the operators ‖ · ‖2 and ‖ · ‖∞
to denote the two norm, and the infinity norm, respectively. We use the notations
Ω

(2)
ε (c) := {x ∈ Rn | ‖x− c‖2 ≤ ε} and Ω

(∞)
ε (c) := {x ∈ Rn | ‖x− c‖∞ ≤ ε} to denote

the ball with respect to, respectively, the two norm and the infinity norm centered at
c ∈ Rn with radius ε ∈ Rn>0. We consider a probability space (Ω,FΩ,PΩ), where Ω is the
sample space, FΩ is a sigma-algebra on Ω comprising its subsets as events, and PΩ is a
probability measure that assigns probabilities to events.

For a vector a ∈ Rn, we denote its ith component, element-wise absolute value, `2 norm
and `∞ norm by a(i), |a|, ‖a‖2 and ‖a‖∞, respectively. For a pair of vectors a, b ∈ Rn,
Ja, bK denotes the hyper-rectangular set [a(1), b(1)] × · · · × [a(n), b(n)]. Further, given
c ∈ Rn, c + Ja, bK is another hyper-rectangular set which is shifted compared to Ja, bK
to the extent determined by c. Similarly, for a vector η ∈ Rn and a pair of vectors
a, b ∈ Rn, for which a = αη, α ∈ Z and b = βη, β ∈ Z, we define Ja, bKη =

∏n
i=1Ai,

where Ai = {γη(i) | γ ∈ Z, α ≤ γ ≤ β}. For two integers a, b ∈ Z, we define [a; b] =
{c ∈ Z | a ≤ c ≤ b}.
Let A be a finite set of size |A|. The empty set is denoted by ∅. When A inherits a

coordinate structure, i.e., when its members are vectors on the Euclidean space, A(i)
denotes the projection of set A onto its ith dimension.

2.1.1. Control Systems

A continuous-time control system is a tuple Σ = (X,xin, U,W, f), where X ⊂ Rn is the
state space, xin ∈ X is the initial state, U ⊂ Rm is the input space, and W ⊂ Rn is the
disturbance space which is assumed to be a compact set containing the origin. The vector
field f : X × U → X is such that f(·, u) is locally Lipschitz for all u ∈ U . The evolution
of the state of Σ is characterized by the differential equation

ẋt = f(xt, ut) + wt, (2.1)

where wt ∈W represents the additive disturbance.

Trajectories of Control Systems

We first define continuous-time trajectories of control systems. Given a sampling time
τ > 0, an initial state x0 ∈ X, a constant input u ∈ U , and a constant disturbance
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w ∈W , define the continuous-time trajectory ζx0,u,w of the system on the time interval
[0, τ ] as an absolutely continuous function ζx0,u,w : [0, τ ]→ X such that ζx0,u,w(0) = x0,
and ζx0,u,w satisfies the differential equation ζ̇t(x0, u, w) = f(ζt(x0, u, w), u)+w for almost
all t ∈ [0, τ ]. The solution of (2.1) from x0 for the constant control input u with wt = 0
for all t ≥ 0 is called the nominal trajectory of the system. For a fixed τ , we define the
operators

ϕ(x, u, w) := ζx,u,w(τ) and
Φ(x, u) := {ϕ(x, u, w) | w ∈W}

respectively for the trajectory at time τ and the set of such trajectories starting from
x. A sequence x0, x1, x2, . . . is a time-sampled trajectory of Σ if for each i ≥ 0, we have
xi+1 ∈ Φ(xi, ui) for some ui ∈ U .

2.1.2. Linear Temporal Logic

Our control tasks are defined using Linear Temporal Logic (LTL). Here, we give a brief
introduction to LTL. For detailed syntax and semantics of LTL, we refer to the book
by Baier et al. [13] and references therein. We consider linear temporal logic (LTL)
specifications with syntax [13]

ψ := true | p | ¬ψ |ψ1 ∧ ψ2 |©ψ |ψ1 U ψ2,

where p ⊂ Rn is an element of the set of atomic propositions AP . Let ρ = x0, x1, . . .
be an infinite sequence of elements from Rn, and ρi = xi, xi+1, . . . denote a prefix of
ρ for i ∈ N. Then the satisfaction relation between ρ and a property ψ, expressed
in LTL, is denoted by ρ |= ψ. Furthermore, ρ |= ¬ψ if ρ 6|= ψ and we say that
ρ |= ψ1 ∧ ψ2 if ρ |= ψ1 and ρ |= ψ2. The next operator ρ |= ©ψ holds if the property
holds at the next time instance. The temporal until operator ρ |= ψ1 U ψ2 holds if
∃i ∈ N : ρi |= ψ2, and ∀j ∈ N :0 ≤ j < i, ρj |= ψ1. Disjunction (∨) can be defined by
ρ |= ψ1 ∨ ψ2 ⇔ ρ |= ¬(¬ψ1 ∧ ¬ψ2). The operator ρ |= ♦ψ is used to denote that the
property will eventually happen at some point in the future. The operator ρ |= �ψ
signifies that ψ must always be true at all times in the future.

2.1.3. Finite Abstractions

In order to satisfy a temporal specification on the trajectories of the system, it is generally
needed to over-approximate the dynamics of the system with a finite discrete-time
model. Let X̄ ⊂ X and Ū ⊂ U be the finite sets of states and inputs, computed by
(uniformly) quantizing the compact state and input spaces X and U using the rectangular
discretization partitions of size ηx ∈ Rn>0 and ηu ∈ Rm>0, respectively. A finite abstraction
associated with the dynamics in Eq. (2.1) is characterized by the tuple Σ̄ : (X̄, Ū, TF ),
where TF ⊆ X̄ × Ū × X̄ denotes the system’s forward-in-time transition system. The
transition system TF is defined such that

(x̄, ū, x̄′) ∈ TF ⇔ ∃(x, u, x′) ∈ Ω ηx
2

(x̄)× Ω ηu
2

(ū)× Ω ηx
2

(x̄′) s.t. x′ ∈ ϕ(x, u, τ).

9



2. Abstraction-Based Controller Design

When the dynamics in Eq. (2.1) are known and satisfy the required Lipschitz continuity
condition, the finite abstraction can be constructed using the method proposed in [146].
For systems with unknown dynamics, data-driven schemes for learning finite abstractions
can be employed [93, 52, 123]. By abusing the notation, we denote the reachable set for a
state-input pair (x̄, ū) ∈ X̄ × Ū by TF (x̄, ū) = {x̄′ ∈ X̄ | x̄′ ∈ ϕ(x̄, ū, τ)}. We assume that
the reachable sets take hyper-rectangular form, meaning that for every x̄ ∈ X̄, ū ∈ Ū the
corresponding reachable set H = TF (x̄, ū) can be rewritten as H =

∏n
i=1H(i), where

H(i) corresponds to the projection of the set H onto its ith coordinate. Otherwise, in
case that H is not hyper-rectangular, it is over-approximated by

∏n
i=1H(i). Note that

Σ̄ can in general correspond to a non-deterministic control system, i.e., |TF (x̄, ū))| > 1
for some x̄ ∈ X̄, ū ∈ Ū . Given Σ̄, one can easily compute the characterization of the
backward-in-time dynamics as

Σ̄B = (X̄, Ū, TB), TB = {(x̄, ū, x̄′) ∈ X̄ × Ū × X̄ | (x̄′, ū, x̄) ∈ TF }. (2.2)

A trajectory of Σ̄ is a finite or infinite sequence x0, x1, x2, . . . ∈ X̄∞, such that for each
i ≥ 0, there is a control input ūi ∈ Ū such that (xi, ūi, xi+1) ∈ TF . The operator Pre(·)
acting on sets P ⊆ X̄ is defined as

Pre(P ) = {x̄ ∈ X̄ | ∃ū ∈ Ū s.t. TF (x̄, ū) ⊆ P}.

Finally, to compute an over-approximating set of the discrete states that have overlap
with a hyper rectangular set Jxlb, xubK, we define the (over-approximating) quantization
mapping as

K̄(xlb, xub) = {x̄′ ∈ X̄ | Jx̄′ − ηx/2, x̄′ + ηx/2K ∩ Jxlb, xubK 6= ∅}.

Similarly, the under-approximating quantization mapping is defined as

¯
K(xlb, xub) = {x̄′ ∈ X̄ | Jx̄′ − ηx/2, x̄′ + ηx/2K ⊆ Jxlb, xubK}.

2.1.4. Controllers

A feedback controller for Σ is denoted by C : X 7→ U . We denote the feedback composition
of Σ with C as C ‖ Σ. A feedback controller for Σ over a time interval [0;T ], T ∈ N, is
a function C : X × [0;T ]→ U . The set of trajectories of C ‖ Σ having length T ∈ N is
the set of sequences x0, x1, x2, . . . , xT−1, s.t. x0 = xin, xi+1 ∈ Φ(xi, ui) and ui = C(xi)
for i ∈ [0;T − 2].

An open-loop controller for Σ = (X,xin, U,W, f) over a time interval [0;T ] with T ∈ N
is a function C : [0;T ]→ U . The open loop is obtained when we connect C with Σ serially,
denoted by C .Σ. The set of trajectories of the open-loop system C .Σ consists of all
finite trajectories x0, x1, . . . , xT such that x0 = xin and xi+1 = f(xi, C(i)) + wi for some
wi ∈W for all i ∈ [0;T − 1].

Now let {Σi} be a set of control systems. We can define global open-loop and feedback
controllers by defining the respective controllers on the product system Σ× over a time
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interval [0;T ]. We can also define local open-loop and feedback controllers Ci for each
Σi. In this latter case, the set of trajectories of the system {Ci} . {Σi} (respectively,
{Ci} ‖ {Σi}) are finite sequences x×0 , x

×
1 , . . . , x

×
T such that x×0 = x×in and for each j ∈

[0;T − 1], we have proji(x×j+1) = f i(proji(x×j ), Ci(j)) +wji (respectively, proji(x×j+1) =

f i(proji(x×j ), Ci(proji(x×j ), j)) + wji) for some wji ∈W i, for each i ∈ [1;N ].

2.1.5. Feedback Refinement Relation

Let Σ be a control system and Σ̄ be its finite-state abstraction. A feedback refinement
relation (FRR) from Σ to Σ̄ is a relation Q ⊆ X × X̄ s.t. for all x ∈ X there is some
x̄ ∈ X̄ such that Q(x, x̄) and for all (x, x̄) ∈ Q, we have (i) Ū ⊆ U , and (ii) u ∈ Ū ⇒
Q(f(x, u)) ⊆ f̄(x̄, u). We write Σ �Q Σ̄ if Q is an FRR from Σ to Σ̄.

2.1.6. Abstraction-based Controller Synthesis

Our synthesis objective is expressed as Linear Temporal Logic (LTL) specifications. The
abstraction-based controller design (ABCD) [146] is a 3-step method to find a robust
controller for the control system Σ: First, we compute a finite state abstraction Σ̄ s.t.
Σ �Q Σ̄. Second, we synthesize an abstract controller of the form C̄ : X̄ → Ū for Σ̄
using methods from the reactive synthesis literature. Finally, we obtain the desired
controller C as C := C̄ ◦Q. It is known that this three step process produces a controller
C such that C ‖ Σ satisfies the specification [146]. If a controller cannot be found, we
reduce the discretization parameters ηx and ηu and try again. For the details of the tool
implementation using abstract models we refer to [152].

2.1.7. Neural Networks

A neural network N (θ, ·) : Rd → Rq of depth v ∈ N is a parameterized function which
transforms an input vector a ∈ Rd into an output vector b ∈ Rq, and is constructed by
the forward combination of v functions as follows:

N (θ, a) = Gv(θv, Gv−1(θv−1, . . . , G2(θ2, G1(θ1, a)))),

where θ = (θ1, . . . , θv) and Gi(θi, ·) : Rpi−1 → Rpi denotes the ith layer of N parameterized
by θi with p0 = d, pi ∈ N for i ∈ [1; v] and pv = q. The ith layer of the network, i ∈ [1; v],
takes an input vector in Rpi−1 and transforms it into an output representation in Rpi
depending on the value of parameter vector θi and type of the used activation function in
Gi. During the training phase of the network, the set of parameters θ is learned over the
training set which consists of a number of input-output pairs {(ak, bk) | k = 1, 2, . . . , N},
in order to achieve the highest performance with respect to an appropriate metric such
as mean squared error. For a trained neural network, we drop its dependence on the
parameters θ. In this section, we characterize a neural network of depth v using its
corresponding list of layer sizes, i.e., (p1, p2, . . . , pv), and the type of the activation
function used, e.g., hyperbolic tangent, Rectified Linear Unit (ReLU), etc.
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Neural networks can be used for both regression and classification tasks. In a regression
task, the goal is to predict a numerical value given an input, whereas, a classification
task requires predicting the correct class label for a given input. In order to measure
performance of the trained neural network, we consider prediction error. Note that
prediction error is different from the metrics such as mean squared error (MSE) which
are used during the training phase for defining the objective function for the training.
The prediction error for regression and classification tasks is defined differently. For our
regression tasks, we define the prediction error for a trained neural network N over a
training set {(ak, bk) | k = 1, 2, . . . , N} as

e = max
k∈[1;N ]

|N (ak)− bk|.

We consider the classification tasks wherein there may exist more than one valid class label
for each input. Therefore, the training set would be of the form {(ak, bk) | k = 1, 2, . . . , N},
where bk ∈ {0, 1}q and bk(i) = 1 iff i ∈ [1; q] corresponds to a valid label at ak. Since the
number of valid labels for each input can be different, we define the prediction error of a
trained classifier N in the following way:

err =
|{k ∈ [1;N ] | bk(i) = 0 with i = argmax(N (ak))}|

N
.

For a given neural network N with the training set {(ak, bk) | k = 1, 2, . . . , N}, we define
the continuity index as

αN = max
1≤i,j≤N, i6=j

‖N (ai)−N (aj)‖
‖ai − aj‖

. (2.3)

2.2. Data-Driven Abstraction Based Controller Design

ABCD schemes generally rely on a precise mathematical model of the system. This stems
from the fact that establishing a behavioral relation between the original system and its
finite abstraction uses reachability analysis over the dynamics of the original system that
require knowledge of the dynamical equations. Although such equations can in principle
by derived for instance by using physics laws, the real-world control systems are a mixture
of differential equations, block diagrams, and lookup tables. Therefore, extracting a
clean analytical model for systems of practical interest could be infeasible. A promising
approach to tackle this issue is to develop data-driven control synthesis schemes with
appropriate formal (probabilistic) guarantees.
The main objective of this section is to provide a data-driven approach for formal

synthesis of controllers to satisfy temporal specifications. A brief overview of the approach
can be seen in Figure 2.1. We focus on continuous-time nonlinear dynamical systems
whose dynamics are unknown but sampled trajectories are available. Our approach
constructs a finite abstract model of the system using only a finite number of sampled
trajectories and the growth bound of the system. We formulate the computation of the
growth bound as a robust convex program (RCP) that has infinite uncountable number of
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Figure 2.1.: A flow diagram illustrating the proposed data-driven method for constructing
finite abstractions.

constraints. We then approximate the solution of the RCP with a scenario convex program
(SCP) that has a finite number of constraints and can be solved using only a finite set of
sampled trajectories. We establish a sample complexity result that gives a lower bound for
the required number of trajectories to guarantee the correctness of the growth bound over
the whole state space with a given confidence. We also provide a sample complexity result
for the satisfaction of the specification on the system in closed loop with the designed
controller for a given confidence. Our result requires estimating a bound on the Lipschitz
constant of the system with respect to the initial state, that we obtain using extreme
value theory. As our last contribution, we show that our approach can be extended to a
model-free abstraction refinement scheme by modifying the formulation of the growth
bound and providing similar sample complexity results. We demonstrate the performance
of our approach on three case studies. The content of this section is based on our paper
[93].

Related Work. There is an extensive body of literature on model-based formal synthesis
for both deterministic and probabilistic systems. We refer the reader to the books
[13, 22, 172], seminal papers [67, 1], and the survey paper [106]. Data-driven approaches
for analysis, verification, and synthesis of systems have received significant attention
recently to improve efficiency and scalability of model-based approaches, and to study
problems in which a model of the system is either not available or costly and time-
consuming to construct. Given a prior inaccurate knowledge about the model of the
system, a research line is to use data for refining the model and then synthesize a controller.
Such approaches assume a class of models and improve the estimation of the uncertainty
within the model class. These approaches range from using Gaussian processes [128, 16],
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differential inclusions [53], rapidly-exploring random graphs [70], piecewise affine models
[154], and model-based reinforcement learning algorithms [42]. A data-driven framework is
proposed by Fan et al.[57] for verifying properties of hybrid systems when the continuous
dynamics are unknown but the discrete transitions are known.
Data-driven approaches for solutions of scenario convex programs are developed for

switching systems by Wang and Jungers to establish stability [182] and by Berger et
al. for invariant subspace identification [23]. Ahmad et al. [3] have developed an
adaptive sampling-based approach for motion planning using deterministic nonlinear
control systems and robust control barrier functions. Zhong et al. [194] have studied
linear dynamical systems with bounded disturbances by proposing a data-driven method
to compute state feedback controllers that enforce staying in safety invariant sets by
using finite number of state-input data points. Cohen et al. [43] have developed a
model-based reinforcement learning approach to satisfy linear temporal logic specifications
on continuous-time nonlinear systems.
Data-driven model-free approaches compute the solution of the synthesis problem

directly from data without constructing a model. Hsu et al. [80] provide a reach-avoid
Q-learning algorithm with convergence guarantees for an arbitrarily tight conservative
approximation of the reach-avoid set. Wang et al. [181] propose a falsification-based
adversarial reinforcement learning algorithm for metric temporal logic specifications.
Satisfying signal temporal logic specifications is studied by Verdier et al. [178] using
counterexample-guided inductive synthesis on nonlinear systems, and using model-free
reinforcement learning by Kalagarla et al. [90] to satisfy signal temporal logic specifications.
A learning framework for synthesis of control-affine systems is provided by Sun et al. [169].
Watanabe et al. [183] study learning from demonstration while preventing the violation
of safety under the learned policy. The recent papers [105, 157] propose a data-driven
approach to compute barrier certificates with correctness guarantees on satisfaction of
safety specifications.

The research on data-driven constructions of abstract models is very limited. Legat et
al. [110] provide an abstraction-based controller synthesis approach for hybrid systems by
computing Lyapunov functions and Bellman-like Q-functions, and using a branch and
bound algorithm to solve the optimal control problem. This differs from our approach
where we want to satisfy temporal specifications instead of solving optimal control problems.
Makdesi et al. [122] studied unknown monotone dynamical systems and sampled a set
of trajectories generated by the system to find a minimal map overapproximating the
dynamics of any system that produces these transitions. Consequently, they calculate an
abstraction of the system related to this map and prove that an alternating bisimulation
relation exists between them. In contrast to this work, our approach is not restricted to
monotone systems and is applicable to any nonlinear dynamical system. Abstract models
are also constructed for stochastic systems using sampled data.

Data-driven construction of abstract models for stochastic systems has also been studied
recently. Badings et al. [12, 11] consider constructing abstract models in the form of
interval Markov decision processes (IMDPs) by computing probably approximately correct
(PAC) bounds on the transition probabilities of the system. This makes the approach
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applicable for satisfying infinite-horizon specifications and providing confidence bounds
on the (probabilistic) satisfaction of the specification. The work by Lavaei et al. [107]
constructs finite MDPs using data for general nonlinear stochastic systems utilizing the
concept of stochastic bisimulation functions. The focus of these works is on stochastic
systems, but our work develops the results for non-probabilistic systems.

Since our results rely on knowing a possibly conservative bound on the system’s Lipschitz
constant, we review here the corresponding literature for finding such a bound. Lipschitz
learning algorithms have been proposed to estimate a Lipschitz constant of a function
under the assumption of knowing the function, e.g., for neural networks [180, 60, 87].
When the function is not known, available approaches [188, 162, 168] use and improve a
traditional estimator by Strongin [167]. All these approaches provide proof of convergence
to the true Lipschitz constant when the number of samples goes to infinity and can only
provide an underapproximation of the system’s Lipschitz constant for finite sample sizes.
A recent result by Huang et al. [83] extends the Strongin’s estimation method to handle
bounded observational noise. It assumes having prior knowledge of an upper bound
on the second-order partial derivatives of the function. The authors use least squares
regression and provide a guarantee on the sample complexity of the approach for both
noiseless and noisy samples. Additionally, the authors obtain a theoretical minimum
for the sample complexity, showing that their algorithm performs optimally without
noise and near-optimally with noise. Under the assumption of knowing an upper bound
over the second partial derivatives, the proposed method provides both asymptotic and
finite sample guarantees that give closeness to the true Lipschitz constant with a certain
confidence. In our approach, the underlying analytical model of the system is assumed
to be unknown. The provided sample complexity result is based on the assumption of
knowing the system’s Lipschitz constant, which can be estimated using e.g., the approach
of [188]. Our result still requires assuming that the estimation is gives correct bound.
Alternatively, the recent approach of Huang et al. [83] can be used to estimate the
Lipschitz constant with finite number of samples with a certain confidence under the
assumption of knowing a bound on the second-order partial derivatives of the system
trajectories.

The closest works to our problem formulation is the work by Devonport et al. [52]
and the work of Xue et al. [191], where data-driven abstraction techniques are provided
for satisfying finite-horizon specifications. Our results are more general and provide
stronger guarantees in two main aspects. First, our constructed abstraction can be used
for synthesizing a controller against any linear temporal logic (LTL) specification and
is not restricted to a fragment of LTL specifications. Our sample complexity result is
independent of the horizon of the specification and does not limit using the approach on
finite-horizon specifications. Second, the guarantee provided by Devonport et al. and
by Xue et al. are based on PAC bounds, which means the constructed abstraction is
always wrong on a small subset of the state space whose size can be made smaller at
the cost of high computational efforts, and the approach will require infinite number of
samples if the size of this subset is set to zero. Our formulated guarantee ensures that
the abstraction is valid on the entire state space with high confidence (i.e., confidence
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close to 1). The confidence is specified by (1− β) in this our work and is interpreted from
the frequentist view of probability: if we run our algorithm multiple times, we always
get a correct abstraction except for a small number of times reflected in the confidence
value. Having such a confidence value is essential in our approach since it relies on data
gathered from the system. Smaller values of β gives higher confidence on getting a correct
abstraction. This in turn increases the computational complexity of our approach since β
appears directly in our sample complexity results.
In our approach, we formulate the synthesis problem as a robust convex program

and approximate it with a scenario program. Calafiore and Campi [36] provide an
approximately feasible solution for the associated chance-constrained program by solving a
scenario program, and give a sample complexity result. Relaxing the convexity assumption
is studied by Soudjani and Majumdar [165] by assuming additional properties of the
underlying probability distributions. We will use the results by Esfahani et al. [56], where
the optimality of the robust program is connected directly to the scenario program for
performing data-driven verification and synthesis. Inspired by the works of Wood and
Zhang [188], and Weng et al. [184], we will use extreme value theory to estimate the
Lipschitz constant needed for the sample complexity results. Our results still require
assuming that the estimation gives a correct bound.

2.2.1. Problem Statement

We study abstraction-based control design (ABCD) for systems with unknown dynamics
using available data from the system such that a given specification is satisfied with high
confidence on the closed-loop system.

Assumption 1 The vector field f of the control system Σ = (X,xin, U,W, f) in un-
known, but sampled trajectories of the system can be obtained in the form of SN :=
{(xk, uk, x′k) |x′k ∈ Φ(xk, uk), k = 1, 2, . . . , N}.

Problem 2.1 (Data-driven ABCD) Inputs: Control system Σ = (X,xin, U,W, f)
with unknown vector field f , specification Ψ, sampled trajectories SN , and confidence
parameter β ∈ (0, 1).
Outputs: Abstract model Σ̄, abstract controller C̄, and refined controller C for Σ, such
that C ‖ Σ satisfies Ψ with confidence (1− β).

The first step of the ABCD is to compute a finite abstraction Σ̄ for Σ. Once such an
abstraction is computed, synthesis of the controller C̄ and refining it to C follow the
model-based ABCD scheme. Therefore, the main challenge is to provide a data-driven
computation of the abstraction Σ̄ that is a true overapproximation of Σ with confidence
(1− β).

Problem 2.2 (Data-driven Abstraction) Inputs: Control system Σ =
(X,xin, U,W, f) with unknown vector field f , sampled trajectories SN , discretization
parameters ηx and ηu, and confidence parameter β ∈ (0, 1).
Outputs: Finite model Σ̄ that is an abstraction of Σ with confidence (1− β).
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In this section, we tackle Problem 2.2 by showing how to construct Σ̄ from sampled
trajectories SN , and provide a lower bound on the data size N in order to ensure
correctness of the abstraction with confidence (1− β). The required theoretical tools are
presented in the following.

2.2.2. Robust Convex Programs

In this subsection, we describe robust convex programs (RCPs) and data-driven ap-
proximation of their solution. In Subsections 2.2.3 and 2.2.4, we show how such an
approximation can be used for solving the data-driven abstraction in Problem 2.2.
Let T ⊂ Rq be a compact convex set for some q ∈ N and c ∈ Rq be a constant

vector. Let (D,B,P) be the probability space of the uncertainty and g : T ×D → R be a
measurable function, which is convex in the first argument for each d ∈ D, and bounded
in the second argument for each θ ∈ T . The robust convex program (RCP) is defined as

RCP:

{
minθ c

>θ

s.t. θ ∈ T and g(θ, d) ≤ 0 ∀d ∈ D.
(2.4)

Computationally tractable approximations of the optimal solution of the RCP (2.4) can be
obtained using scenario convex programs (SCPs) that only require gathering finitely many
samples from the uncertainty space [129]. Let (di)

N
i=1 be N independent and identically

distributed (i.i.d.) samples drawn according to the probability measure P. The SCP
corresponding to the RCP (2.4) strengthened with γ ≥ 0 is defined as

SCPγ :

{
minθ c

>θ

s.t. θ ∈ T, and g(θ, di) + γ ≤ 0 ∀i ∈ {1, 2, . . . , N}.
(2.5)

We denote the optimal solution of RCP (2.4) as θ∗RCP and the optimal solution of
SCPγ (2.5) as θ∗SCP . Note that θ∗RCP is a single deterministic quantity but θ∗SCP is a
random quantity that depends on the i.i.d. samples (di)

N
i=1 drawn according to P. The

RCP (2.4) is a challenging optimization problem since the cardinality of D is infinite
and the optimisation has infinite number of constraints. In contrast, the SCP (2.5) is a
convex optimization with finite number of constraints for which efficient optimization
techniques are available [27]. The following theorem provides a sample complexity result
for connecting the optimal solution of the SCPγ to that of the RCP.

Theorem 2.2.1 ([129]) Assume that the mapping d 7→ g(θ, d) in (2.4) is Lipschitz
continuous uniformly in θ ∈ T with Lipschitz constant Ld and let h : [0, 1] → R≥0 be a
strictly increasing function such that

P(Ωε(d)) ≥ h(ε), (2.6)

for every d ∈ D and ε ∈ [0, 1]. Let θ∗RCP be the optimal solution of the RCP (2.4) and
θ∗SCP the optimal solution of SCPγ (2.5) with

γ = Ldh
−1(ε) (2.7)
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computed by taking N i.i.d. samples (di)
N
i=1 from P. Then θ∗SCP is a feasible solution for

the RCP with confidence (1− β) if the number of samples N ≥ N(ε, β), where

N(ε, β) := min

{
N ∈ N

∣∣∣ q−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β

}
, (2.8)

with q being the dimension of the decision vector θ ∈ T .

2.2.3. Data-Driven Abstraction

In this section, we first discuss the steps required for model-based abstraction of control
systems. We then show how this can be formulated as an RCP and present its associated
SCP. Finally, we use the connection between the RCPs and SCPs in Theorem 2.2.1 to
provide a lower bound for number of required samples to certify a desired confidence. The
simplifying assumption used in this subsection is that samples from the nominal trajectories
of the system Σ in also available in the form of {(xk, uk, x′k) |x′k = ϕ(xk, uk, 0), k =
1, 2, . . . , N}. We discuss in the next subsection how this assumption can be relaxed by
modifying the inequality of the growth bound.

Growth Bound for Reachable Sets

Consider a control system Σ = (X,xin, U,W, f) with the disturbance set W = [−w̄, w̄] for
some vector w̄ ∈ Rn≥0. Let ηx and ηu be discretization parameters for the state and input
spaces X and U used to construct X̄ and Ū of sizes nx and nu, respectively. The first
step of ABCD is to compute a finite abstraction Σ̂ = (X̄, Ū, f̄) using overapproximations
of the reachable sets for every pair of abstract state and input. The reachable set for
every pair (x̄, ū) ∈ X̄ × Ū is defined as

Reach(x̄, ū) := {x′ ∈ Φ(x, ū) | x ∈ Ωηx(x̄)}.

The set Reach(x̄, ū) is usually overapproximated using the growth bound of the system
dynamics [146].

Definition 2.2.1 For a control system Σ with abstract state and input spaces X̄, Ū , a
function κ : Rn≥0 × X̄ × Ū → Rn≥0 is called a growth bound function for Σ if it satisfies

|ϕ(x, ū, w)− ϕ(x̄, ū, 0)| ≤ κ(|x− x̄|, x̄, ū) (2.9)
∀x̄ ∈ X̄, ∀ū ∈ Ū, ∀x ∈ Ωηx(x̄), ∀w ∈W.

Note that ϕ(x̄, ū, 0) is the nominal (disturbance-free) trajectory of the system. Using
this definition, for every abstract state-input pair (x̄, ū) ∈ X̄ × Ū , the reachable set
Reach(x̄, ū) is overapproximated with a ball centered at z(x̄, ū) := ϕ(x̄, ū, 0) with radius
λ(x̄, ū) := κ(ηx, x̄, ū).
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When the system dynamics are known, it is shown in [146] that a growth bound for
the system can be computed as

κ(r, x̄, ū) = eL(ū)τr +

∫ τ

0
eL(ū)sw̄ds, (2.10)

for all r ∈ Rn≥0, x̄ ∈ X̄, and ū ∈ Ū , where w̄ is the upper bound of the disturbance and
L : Ū → Rn×n is a matrix such that the entries of L(ū) satisfy the following inequality
for all x ∈ X:

Li,j(ū) ≥
{
Djfi(x, ū) i = j
|Djfi(x, ū)| i 6= j,

(2.11)

for all i, j ∈ {1, 2, . . . , n}, where fi(x, u) is the ith element of the vector field f(x, u) and
Djfi is its partial derivative with respect to the jth element of x.

SCP for the Computation of Growth Bound

When the model of the system is unknown, the growth bound in (2.10) is not available
since the matrix L(ū) defined using (2.11) is not computable. To tackle this bottleneck,
we aim at computing a growth bound for the system that has the following parameterized
form

κθ(r, x̄, ū) := θ1(x̄, ū)r + θ2(x̄, ū),∀r ∈ Rn≥0, x̄ ∈ X̄, ū ∈ Ū, (2.12)

where θ1 ∈ Rn×n and θ2 ∈ Rn. We denote by θ ∈ Rn2+n the concatenation of columns of
θ1 and θ2.

Remark 1 The parameterized growth bound in (2.12) is linear with respect to r similar
to (2.10), but is more general and less conservative by allowing θ1, θ2 to depend on x̄ (i.e.,
they are defined locally for each abstract state).

Theorem 2.2.2 The parameterised growth bound in Eq. (2.12) can be computed by solving
the following robust convex program

minθ c
>θ

s.t. 0 ≤ θ ≤ θ̄, and ∀x ∈ Ωηx(x̄), ∀w ∈W,
|ϕ(x, ū, w)− ϕ(x̄, ū, 0)| − κθ(|x− x̄|, x̄, ū) ≤ 0,

(2.13)

where c = [1, 1, . . . , 1] ∈ Rn2+n and θ̄ is a sufficiently large positive vector.

Proof We first show that the optimization (2.13) is in fact a robust convex program. Let
D = Ωηx(x̄)×W be the uncertainty space and

g(θ, x, w) := |ϕ(x, ū, w)− ϕ(x̄, ū, 0)| − κθ(|x− x̄|, x̄, ū)

for all x ∈ Ωηx(x̄) and w ∈W and fixed (x̄, ū) ∈ X̄× Ū . We need to show that g is convex
in θ for each (x,w) ∈ D and bounded in (x,w) for every θ ∈ [0, θ̄]. The convexity holds
due to the parameterization of κθ in (2.12) being linear with respect to the optimization
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variables in θ. The boundedness holds due to the set D being compact and trajectories of
the system being continuous. We note that the goal of solving the optimization problem in
(2.13) is to find a parametrization which corresponds to the tightest possible growth bound.
Therefore, with the current valuation of vector c and formulation of κθ in (10), we need
to restrict entries of θ to only take non-negative values (0 ≤ θ).

To construct the SCPγ associated with the RCP (2.13), we fix x̄ ∈ X̄ and ū ∈ Ū ,
consider a uniform distribution on the space D = Ωηx(x̄) × W and obtain N i.i.d.
sample trajectories SN = {(xi, ū, x′i) |x′i ∈ Φ(xi, ū), i = 1, 2, . . . , N}. Note that every x′i
corresponds to a random disturbance wi ∈W . The SCPγ is

minθ c
>θ

s.t. 0 ≤ θ ≤ θ̄ and ∀i ∈ {1, . . . , N},
|x′i − x′nom| − θ1(x̄, ū)|xi − x̄|+ θ2(x̄, ū) + γ ≤ 0,

(2.14)

where x′nom := ϕ(x̄, ū, 0) and γ ∈ R≥0.

Theorem 2.2.3 Let |X̄| = nx and |Ū | = nu. For any x̄ ∈ X̄ constructed with discretiza-
tion size ηx, any ū ∈ Ū , and the disturbance set W = [−w̄, w̄], the optimal solution
of (2.14) gives a growth bound for the system Σ corresponding to (x̄, ū) with confidence
(1− β/(nxnu)), when the number of samples N ≥ N(ε, β/(nxnu)) and

γ = 4Lϕ(ū) 2n

√√√√ε
n∏
i=1

ηx(i)
n∏
i=1

w̄(i), (2.15)

where ε ∈ [0, 1], n is the dimension of the state space and Lϕ(ū) is an upper bound for
the Lipschitz constant of the system trajectories ϕ(x, ū, w) with respect to (x,w).

Proof We apply Theorem 2.2.2 to the RCP (2.13) for fixed x̄ ∈ X̄ and ū ∈ Ū . Define

g(θ, x, w) := max{|ϕ(x, ū, w)− ϕ(x̄, ū, 0)| (2.16)
− θ1(x̄, ū)|x− x̄| − θ2(x̄, ū)},

where the max{·} is applied to the elements of its argument that belongs to Rn. Since the
distribution on D = Ωηx(x̄)×W is uniform, we choose

h(ε) = P(Ωε(d)) =
(ε/2)2n∏n

i=1 ηx(i)
∏n
i=1 w̄(i)

to satisfy the inequality (2.6). Note that h(ε) gives the probability of choosing a point
within the 2n−ball Ωε(d) uniformly at random. We use Equation (2.7) as γ = Ldh

−1(ε) to
get the value of γ in (2.15). It only remains to show that g(θ, x, w) is Lipschitz continuous
with constant Ld = 2Lϕ(ū). Note that Lϕ(ū) is the Lipschitz constant of ϕ(x, ū, w) with
respect to (x,w), and satisfies

‖ϕ(x, ū, w)− ϕ(x′, ū, w′)‖ ≤ Lϕ(ū)‖(x,w)− (x′, w′)‖ (2.17)

20



2.2. Data-Driven Abstraction Based Controller Design

for all x, x′ ∈ Ωηx(x̄) and w,w′ ∈W . Since ‖θ1(x̄, ū)‖ can be bounded by Lϕ(ū), we get
that

‖g(θ, x, w)− g(θ, x′, w′)‖
≤ ‖ϕ(x, ū, w)− ϕ(x′, ū, w′)‖+ ‖θ1(x̄, ū)‖‖x− x′‖
≤ Lϕ(ū)‖(x,w)− (x′, w′)‖+ Lϕ(ū)‖x− x′‖
≤ 2Lϕ(ū)‖(x,w)− (x′, w′)‖,

Therefore, g(θ, x, w) is Lipschitz continuous with constant 2Lϕ(ū). This completes the
proof.

Remark 2 Note that the statement of Theorem 2.2.3 holds for any Lϕ(ū) that is a
(possibly conservative) upper bound on the Lipschitz constant of the system trajectories
with respect to (x,w). To compensate for conservative values of Lϕ(ū), smaller values of
ε is chosen, which will require taking higher number of samples N .

Remark 3 We provide an algorithm in the next subsection for estimating Lϕ using sam-
pled trajectories of the system. Note that as the above proof shows, the estimated quantity
θ1 = Lϕ1n×n can be used to construct the abstraction, but this would give conservative
results. We will demonstrate this observation on a case study in Subsection 2.2.5.

corollary 2.2.1 The abstract model constructed using the growth bounds as solutions
of SCPγ with confidence (1− β/(nxnu)) for state-input pairs (x̄, ū) ∈ X̄ × Ū is a valid
abstract model for Σ with confidence at least (1− β).

Proof Denote the optimal solution of SCPγ in (2.14) by θ∗. The ball centered at z(x̄, ū) :=
x′nom with radius λ(x̄, ū) = κθ∗(ηx, x̄, ū) + γ is a valid overapproximation of the reachable
set from the state-input pair (x̄, ū) with confidence at least 1 − β/(nxnu). Since the
number of pairs (x̄, ū) is nxnu, the chance of getting an invalid growth bound in at least
one instance of SCPγ is bounded by β. Therefore, we get a sound abstraction that truly
overapproximates the behaviour of the system with confidence (1− β).

Remark 4 The parameter ε ∈ [0, 1] gives a tradeoff between the required number of
samples and the level of conservativeness applied to the SCP. Smaller ε results in a larger
number of sample trajectories, but reduces the value of γ in (2.15) (less conservative
constraints in the SCP and higher chance of finding a feasible solution). In contrast, larger
ε results in a smaller number of sample trajectories but increases the value of γ.

Remark 5 The quantity 2n used in (2.15) is in fact the dimension of the sample space
D = Ωηx(x̄) ×W . If the system does not have any disturbance (i.e., the system can
be modeled as an ODE having deterministic trajectories), the sample space will be D =
Ωηx(x̄) and its dimension n can be used in (2.15): γ = 4Lϕ(ū) n

√
ε
∏n
i=1 ηx(i). This will

substantially reduce the number of required sample trajectories. Similarly, if the disturbance
does not affect some of the state equations, 2n can be replaced by (n+ q) where q is the
dimension of the disturbance set considered as a non-zero measure set.
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Algorithm 1 uses the result of Corollary 2.2.1 to provide an algorithmic solution
for Problem 2.2. This algorithm receives a confidence parameters β, divides it by the
cardinality of X̄×Ū (i.e., nxnu), computes the growth bounds for each pair (x̄, ū) ∈ X̄×Ū
using the SCPγ in (2.14) with confidence 1− β/(nxnu), and constructs the abstraction
using these growth bounds.

Algorithm 1: Data-Driven Abstraction
Data: (X,U,W ) of a control system Σ, confidence β, discretisation parameters ηx,

ηu
1 Compute the finite state and input sets X̄ and Ū using ηx, ηu;
2 Define nx and nu as cardinalities of X̄ and Ū ;
3 Choose ε ∈ [0, 1];
4 Set N = N(ε, β

nxnu
) using Eq. (2.8);

5 Compute γ using Eq. (2.15);
6 for x̄ ∈ X̄ do
7 for ū ∈ Ū do
8 TF (x̄, ū) = ∅;
9 Consider the uncertainty space D = Ωηx(x̄)×W ;

10 Select N i.i.d sample trajectories using uniform distribution over D;
11 Simulate the nominal trajectory (x̄, ū, x′nom);
12 Solve the SCPγ (2.14) to get the optimiser θ∗(x̄, ū);
13 z ← x′nom;
14 λ← κθ∗(ηx, x̄, ū) + γ;
15 Find all states x̄′ ∈ X̄ for which Ωηx(x̄′) ∩ Ωλ(z) 6= ∅ and add them to

TF (x̄, ū);
16 end
17 end

Result: Σ̄ = (X̄, Ū, TF ) as a finite abstraction of Σ with confidence (1− β),
θ∗(x̄, ū) as a growth bound for x̄ ∈ X̄, ū ∈ Ū

The finite abstraction Σ̄ constructed by Algorithm 1 is a valid abstraction for Σ with
confidence (1−β). This means any controller C̄ synthesized on Σ̄ and refined to a controller
C for Σ will satisfy the desired specification with confidence (1− β) on the closed loop
system Σ ‖ C. In the next subsection, we extend our approach to make it suitable for
abstraction refinement in case there is no controller C̄ satisfying the specification due to
the conservatism of the approach.

Lipschitz Constant Estimation

For estimating the Lipschitz constant Lϕ in (2.17), we estimate an upper bound for the
fraction

∆(ū) :=
‖ϕ(x, ū, w)− ϕ(x′, ū, w′)‖
‖(x,w)− (x′, w′)‖
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that holds for all x, x′ ∈ X and w,w′ ∈W . We follow the line of reasoning in [188, 184]
and use the extreme value theory for the estimation.

Let us fix a δ > 0 and assign uniform distribution to the pairs (x,w) and (x′, w′) over
the domain

{x, x′ ∈ X, w,w′ ∈W with ‖(x,w)− (x′, w′)‖∞ ≤ δ}. (2.18)

Then ∆(ū) is a random variable with an unknown cumulative distribution function
(CDF). Based on the assumption of Lipschitz continuity of the system, the support of
the distribution of ∆(ū) is bounded from above, and we want to estimate an upper
bound for its support. We take n sample pairs (x,w) and (x′, w′), and compute n samples
∆1,∆2, . . . ,∆n for ∆(ū). The CDF of max{∆1,∆2, . . . ,∆n} is called the limit distribution
of ∆(ū). Fisher-Tippett-Gnedenko theorem [71, 130] says that if the limit distribution
exists, it can only be one of the three family of extreme value distributions – the Gumbel
class, the Fréchet class, and the reverse Weibull class. These CDF’s have the following
forms:

Gumbel class: G(s) = exp

[
− exp

[
s− a
b

]]
, s ∈ R

Fréchet class: G(s) =

{
0 if s < a

exp
[
−[ s−ab ]−c

]
if s ≤ a

Reverse Weibull class: G(s) =

{
exp

[
−[a−sb ]c

]
if s < a

1 if s ≤ a

where a ∈ R, b > 0, c > 0 are respectively the location, scale and shape parameters of the
distributions.
Among the above three distributions, only the reverse Weibull class has a support

bounded from above. Therefore, the limit distribution of ∆(ū) will be from this class
and the location parameter a is such an upper bound. As a result, we can estimate the
location parameter of the limit distribution of ∆(ū) to get an estimation of the Lipschitz
constant.

The approach is summarized in Algorithm 2. The most inner loop computes samples of
∆(ū). The middle loop computes samples of max{∆1, . . . ,∆n}. The outer loop estimates
the Lipschitz constant for each ū by fitting a reverse Weibull distribution.

Remark 6 The approach presented above can only be used for estimating the Lipschitz
constant, which can then be enlarged by a factor greater than one to account for the
effect of estimation using finite number of samples. Note that this factor can be selected
depending on the system under study by fitting the Reverse Weibull distribution to datasets
of varying size and observing its convergence behavior.

2.2.4. Synthesis via Abstraction Refinement

The data-driven synthesis discussed in Subsection 2.2.3 inherits the soundness property
from the ABCD approach: they both work with overapproximations of the dynamics and
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Algorithm 2: Lipschitz Constant Estimation
Data: (X,U,W ) of a control system Σ, abstract input space Ū

1 Select number of samples n and m for the estimation
2 Select δ > 0
3 for ū ∈ Ū do
4 for j = 1 : m do
5 for i = 1 : n do
6 Sample pairs (x,w), (x′, w′) uniformly from the domain in (2.18)
7 Run Σ to get trajectories ϕ(x, ū, w) and ϕ(x′, ū, w′)

8 Compute ∆i := ‖ϕ(x,ū,w)−ϕ(x′,ū,w′)‖
‖(x,w)−(x′,w′)‖

9 end
10 Γj := max{∆1, . . . ,∆n}
11 end
12 Fit a reverse Weibull distribution to the sample set {Γ1,Γ2, . . . ,Γm}
13 Lϕ(ū) is the location parameter of the fitted distribution
14 end

Result: Estimated value of Lϕ(ū) for all ū ∈ Ū

may not return a controller despite one may exists. Therefore, there is a need for refining
the abstraction in order to check for controllers using less conservative abstractions. While
the method of Subsection 2.2.3 is good for a given fixed discretization parameter ηx, it
is not suitable for reducing ηx, which requires re-computing all local parameters of the
growth bounds θ1(x̄, ū), θ2(x̄, ū). Another shortcoming of the method is related to the
data collection: the nominal trajectories of the system should be available and are used
in the constraints of the SCP. In this subsection, we discuss an extension of the approach
of Subsection 2.2.3, in order to

• enable reducing ηx without the need for re-computing the growth bound, and

• relax the assumption of having access to the nominal trajectories of the system.

Let us define a modified growth bound as a function κe : Rn≥0 × X̄ × Ū → Rn≥0 that is
strictly increasing in its first argument and satisfies

|ϕ(x1, ū, w1)− ϕ(x2, ū, w2)| ≤ κe(|x1 − x2|, x̄, ū)

∀x̄ ∈ X̄, ∀ū ∈ Ū, ∀x1, x2 ∈ Ωηx(x̄), ∀w1, w2 ∈W. (2.19)

This definition is more conservative than (2.9) in comparing trajectories under two
arbitrary disturbances, and we always have that κe satisfies (2.9). Using this new definition,
for every pair of abstract state and input (x̄, ū), the corresponding overapproximation of
the reach set can be computed as a ball centered at any z(x̄, ū) ∈ Φ(x̄, ū) with radius
λ(x̄, ū) = κe(ηx, x̄, ū).
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we choose a parametrization for κe similar to (2.12), i.e.,

κeθ(r, x̄, ū) = θ1(x̄, ū)r + θ2(x̄, ū), (2.20)

where r ∈ R≥0, θ1 ∈ Rn×n, θ2 ∈ Rn, and θ ∈ Rn2+n is constructed by concatenating
columns of θ1 and θ2. The SCP associated with this growth bound is constructed by
considering a uniform distribution over Ωηx(x̄)×W and obtain 2N i.i.d. sample trajectories
S2N = {(xi, ūi, x′i) |x′i ∈ Φ(xi, ū), i = 1, 2, . . . , 2N} so that every x′i corresponds to a
random disturbance wi ∈W . The modified SCPγ is defined as

min c>θ

s.t. 0 ≤ θ ≤ θ̄ and ∀i ∈ {1, . . . , N}
|x′2i−1 − x′2i| − θ1(x̄, ū)|x2i−1 − x2i| − θ2(x̄, ū) + γ ≤ 0

where c = [1, 1, . . . , 1] ∈ Rn2+n is a constant vector, θ̄ ∈ Rn
2+n
>0 is sufficiently large, and

γ ≥ 0.

Theorem 2.2.4 For any x̄ ∈ X̄ constructed with the discretization size ηx, any ū ∈ Ū ,
and the disturbance set W = [−w̄, w̄], the optimal solution of (2.21) gives a growth bound
for the system Σ corresponding to (x̄, ū) that satisfies (2.19) with confidence (1−β), when
the number of samples 2N ≥ N(ε, β) and

γ = 8Lϕ
4n

√√√√ε

[
n∏
i=1

ηx(i)
n∏
i=1

w̄(i)

]2

, (2.21)

where ε ∈ [0, 1], ,n is the dimension of the state space, and Lϕ(ū) is the Lipschitz constant
of the system trajectories ϕ(x, ū, w) with respect to (x,w).

Proof The proof of this theorem is similar to that of Theorem 2.2.3. Define

g(θ, x1, w1, x2, w2) :=max{|ϕ(x1, ū, w1)− ϕ(x2, ū, w2)|
− θ1(x̄, ū)|x1 − x2| − θ2(x̄, ū)}.

To satisfy the inequality (2.6), we can choose

h(ε) = P(Ωε(d)) =
(ε/2)4n

[
∏n
i=1 ηx(i)

∏n
i=1 w̄(i)]2

,

since the distribution on (Ωηx(x̄) × W )2 is uniform. Using Equation (2.7), we have
γ = Ldh

−1(ε). In order to prove that γ takes the value in (2.21), we must show that g
is Lipschitz continuous with constant Ld = 4Lϕ(ū). Bounding ‖θ1(x̄, ū)‖ by Lϕ, for all
(x1, w1, x2, w2) and (x′1, w

′
1, x
′
2, w

′
2) we have

‖g(θ, x1, w1, x2, w2)− g(θ, x′1, w
′
1, x
′
2, w

′
2)‖∞

≤ ‖ϕ(x1, ū, w1)− ϕ(x′1, ū, w
′
1)‖∞

+ ‖ϕ(x2, ū, w2)− ϕ(x′2, ū, w
′
2)‖∞

+ ‖θ1(x̄, ū)‖∞(‖x1 − x′1‖∞ + ‖x2 − x′2‖∞)

≤ 4Lϕ(ū)‖(x1, w1, x2, w2)− (x′1, w
′
1, x
′
2, w

′
2)‖∞.
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Table 2.1.: Results for the DC-DC boost converter.

Case-study Dimension Disturbance Fixed Discretisation
X U W N time (min) |V|

DC-DC boost converter 2 1
{0} 1, 807 22.2 37, 783

[−0.01, 0.01] 2, 285 30.6 37, 414

Therefore, g is Lipschitz continuous with constant 4Lϕ(ū). This completes the proof.

A statement similar to Corollary 2.2.1 holds for the growth bound computed using (2.21).

2.2.5. Experimental Evaluation

To demonstrate our approach, we apply it to a DC-DC boost converter and a path
planning problem. These case studies are taken from [152, 68] and will be used as
black-box models to generate sample trajectories. We also introduce a case study from
power systems based on [112], that is implemented in the Power System Toolbox (PST)
[40]. We will use trajectories from the black-box reduced model of the 30 state power
system model. We apply our approach to construct finite abstractions of these systems
and employ SCOTS [152] to design controllers. Our algorithms are implemented in C++
on a 64-bit Linux cluster machine with two Intel Xeon E5 v2 CPUs, 1866 MHz, and 50GB
RAM.

DC-DC Boost Converter

The objective in the DC-DC boost converter problem is to design a controller to enforce
a reach and stay specification. The DC-DC boost converter can be modeled as a two
dimensional linear switching system with two functional modes. The state vector of the
system at time t ∈ R≥0 is xt = (ilt , vct(t)), where il is the inductor current and vc is the
capacitor voltage. The system’s evolution can be controlled by selecting the appropriate
mode ut ∈ {1, 2} at every time t ∈ R≥0. The system’s dynamics under the two modes can
be represented as ẋ = Autxt + b+ cwt, u ∈ {1, 2}, with matrices A1, A2, b, c as reported
in [68]. The state and input spaces are X = [0.65, 1.65]× [4.95, 5.95] and U = [1, 2]. The
initial state is (il0 , vc0) = (0.7, 5.4) and the target set is [1.1, 1.6]× [5.4, 5.9]. The target
set is shown in red color in Figure 2.2.

Our implementation results are reported in Table 2.1 for the system without disturbance
(w̄ = (0, 0)) and with disturbance bound w̄ = (0.01, 0). These results are obtained with
discretization parameters ηx = (0.005, 0.005) and ηu = 1, confidence parameter β = 0.01,
ε = 0.01 and estimation for Lϕ = 0.9935. The resulted finite abstraction has cadinalities
nx = 40, 000 and nu = 2. The required number of sample trajectories, N , for each
(x̄, ū) ∈ X̄ × Ū is computed using equation (2.8). Runtimes and the resulting winning
region sizes, |V|, for the DC-DC boost converter are given in Table 2.1.
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Figure 2.2.: The closed-loop trajectory of the DC-DC boost converter with w̄ = (0, 0)
under the controller designed by our data-driven abstraction approach. The
rectangle in red color represents the target region and the area in gray shows
the winning region of the controller.

We have used Algorithm 1 to compute the finite-state abstraction by collecting sample
trajectories of the system. Subsequently, SCOTS is used for designing the controller. The
performance of the controller is shown in Figures 2.2 and 2.3 for the system without and
with the disturbance. These figures show one sample closed-loop trajectory of the system
under the controllers designed by our data-driven ABCD approach. In both cases, without
and with disturbance, it can be noticed from Figures 2.2 and 2.3 that our approach has
been successful in finding controllers satisfying the given reach and stay specification,
despite the the dynamics being unknown.

Path Planning Problem with Partition Refinement

We consider a path planning problem for a vehicle that is modeled as

ẋ = v cos(α+ θ)/ cos(α) + w
ẏ = v sin(α+ θ)/ cos(α)

θ̇ = v tan(ω),

(2.22)

where the state variables x, y, θ represent the position of the vehicle in the 2-dimensional
space and the orientation of the vehicle, respectively. Inputs are (v, ω), the disturbance
is w, and α := arctan(tan(ω)/2). The state and input spaces are X = [0, 10]× [0, 10]×
[−π − 0.4, π + 0.4] and U = [−1, 1]2, respectively. The goal is to find a controller to
steer the vehicle from the initial state (x0, y0, θ0) = (0, 1.2, 0) to the target set (x, y) ∈
[9, 9.51]× [0, 0.51] while avoiding the obstacles. These obstacles are shown in blue color
in Figures 2.4 and 2.5.
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Figure 2.3.: The closed-loop trajectory of the DC-DC boost converter with w̄ = (0.01, 0)
under the controller designed by our data-driven abstraction approach. The
rectangle in red color represents the target region and the area in gray shows
the winning region of the controller.

Table 2.2.: Results for the path planning case study.

Case-study Dimension Disturbance Abstraction Refinement
X U w̄ N time (min) |V|

Path planning 3 2
(0, 0, 0) 3, 127 225 405, 493

(0.01, 0, 0) 4, 277 513 447, 212

We computed the growth bounds with a coarse discretization ηx = (1.6, 1.6, 1.6) and
reduced it iteratively with the factor of two. The algorithm successfully finds a controller
for the system after five iterations. The implementation results are reported in Table 2.2.
These results are obtained with ηu = (0.3, 0.3), the confidence parameter β = 0.01,
ε = 0.01 and estimated constant Lϕ = 1.46. The resulted abstraction has cardinalities
nx = 88, 500 and nu = 24. For the case of disturbance-free model we set w̄ = (0, 0, 0), and
for the case of dynamics with disturbance, we set w̄ = (0.01, 0, 0). The required number
of sample trajectories for each (x̄, ū) is computed using Equation (2.8) and marked with
N in the table. Finally, runtimes and size of the winning regions |V| are reported.
We have used the synthesis method based on abstraction refinement presented in

Subsection 2.2.4, to construct the finite-state abstraction by collecting sample trajectories
of the system. We used SCOTS to design the controller fulfilling the given specification.
The performance of the controller is shown in Figures 2.4 and 2.5 for the system without
and with the disturbance, respectively. These figures compare the closed-loop trajectories
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Figure 2.4.: Comparison between the closed-loop trajectories of the system (2.22)without
disturbance under the controllers designed by our data-driven abstraction
refinement approach (black) and by the model-based approach of SCOTS
(red). Blue blocks represent the obstacles, the green dot represents the initial
state, and the orange rectangle shows the target region.

of the system under the controllers designed by our data-driven abstraction refinement
algorithm approach (black) and by the model-based approach of SCOTS (red). Our
data-driven approach successfully finds a controller for the system that satisfies the
specification without the need for knowing the dynamics of the system.

Three Area Three Machine Power System

We consider a three area three machine (3A3M) power system adapted from [112] and is
shown in Figure 2.6. The system consists of three buses, which are each connected to a
power source (generator) and a load. At bus 1 we consider a load which is bidirectional,
meaning it can both draw power and inject power into the system. The loads at buses 2
and 3 can only draw power from the system; when these loads increase, more power will
be drawn from the system, causing an imbalance between generation and consumption
which may result in a reduction of the network frequency. The nominal frequency of the
network is set to 60 Hz.

We consider a worst-case scenario when a sudden increase occurs in the loads at buses
2 and 3 by 0.2 and 0.3 per unit (pu), respectively. The control task is for the load at bus
1 to balance the load increase at buses 2 and 3 by either reducing its load or injecting
power into the network. The simulation is run using PST on a 30 state model of this
power system. Balanced realization of the system reduces its dynamics to three states.
To compute the data-driven finite abstraction, sample trajectories are gathered using a
black-box approach of the reduced system representation for the original model. The
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Figure 2.5.: Comparison between the closed-loop trajectories of the system (2.22) with
disturbance bound w̄ = (0.01, 0, 0) under the controllers designed by our
data-driven abstraction refinement approach (black) and by the model-based
approach of SCOTS (red).

Figure 2.6.: 3A3M power system with generators (G) and loads (L). L1 represents a
bidirectional load such as Electric Vehicles or Energy Storage Systems.
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dynamics of the reduced system are given by

ẋ = Ax+Bu+ Ew
y = Cx,

(2.23)

where

A =

0.00027563 0 0
0 −0.3951 0.687
0 −0.6869 −0.016


B =

0.00031166
0.1359
0.0230


E =

0.00033103 0.00031244
0.1309 0.1308
0.0250 0.0233


C =

[
−0.0115 −0.2296 0.0412

]
. (2.24)

The state and input spaces are X = [−0.02, 0.02] × [−0.05, 0.05] × [−0.12, 0.12] and
U = [0, 0.5]. Further, we set W = [−0.2, 0.2] × [−0.3, 0.3], ηu = 0.025, τ = 0.4,
ηx = (0.0015, 0.0015, 0.0015), β = 0.01 and ε = 0.01. The resulted abstraction has
nx = 228, 480 and nu = 20. The estimated Lipschitz constant is Lϕ = 1.5715. The
target set is given by −0.008 < y < 0.008 and the avoid set is given by y < −0.015.
Multiplying by the nominal frequency to get the specification in Hertz, the target region is
[59.52, 60.48] and the avoid region is (−∞, 59.1). Figure 2.7 shows that the specification
is violated when no control is applied.

We apply the data-driven approaches of Subsection 2.2.3 (fixed discretization) and Sub-
section 2.2.4 (abstraction refinement). Both controllers are synthesised with disturbance
W = [−0.2, 0.2]× [−0.3, 0.3]. A comparison of the two control approaches is shown in
Table 2.3. The required number of sample trajectories for each (x̄, ū) is computed using
equation (2.8) and marked with N in the table. The abstraction refinement starts with
ηx = 0.012 and refines the discretization iteratively with a factor of two. The algorithm
successfully finds a controller after five iterations. The runtimes and the resulting winning
region sizes |V| are also given in Table 2.3. The abstraction refinement synthesises the
controller a factor of 100 times faster than the fixed discretization by iteratively decreasing
the value of ηx.

The data-driven control approach with fixed discretization is simulated in PST and is
reported in Figures 2.8 and 2.9. The controlled system successfully keeps the frequencies
of the three areas outside of the avoid set (i.e., always above 59.1 Hz) and bring them back
to the target set (i.e., above 59.52 Hz). Figure 2.9 shows the load changes in the system.
Load at bus 1 is able to maintain the frequencies of the three areas above the avoid
region and facilitate the system returning to the target set for the maximum disturbances
applied at buses 2, 3. Figures 2.10 and 2.11 show the results of simulating the system in
PST with the control obtained from the abstraction refinement approach. The controlled
system has the same performance in satisfying the specification.
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Figure 2.7.: 3A3M power system frequency without applying any control input. The
frequency falls below 59.1 Hz thus violates the specification.

Figure 2.8.: 3A3M power system frequencies for the three areas, with the frequency of an
area is measured at the corresponding bus in that area. The control synthe-
sized by the fixed discretization approach successfully keeps the frequencies
of the three areas outside of the avoid set. The frequencies leave the target
set for around 4.4 seconds before staying in the target set.
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Figure 2.9.: 3A3M power system load changes for the three areas. Loads at buses 2 and 3
increase by 0.3 and 0.2 pu, respectively. Load at bus 1 is used to control the
frequency using our data-driven approach with fixed discretization.

Figure 2.10.: 3A3M power system frequencies for the three areas, with the frequency of
an area is measured at the corresponding bus in that area. The control
synthesized by the abstraction refinement approach successfully satisfies the
specification. The frequencies leave the target set for around 4.2 seconds
before staying in the target set.
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Table 2.3.: Results for the 3A3M power system.

Control Approach Dimension Disturbance
X U w̄ N time (min) |V|

Fixed Discretisation
3 1

(0.2, 0.3) 3, 290 5, 253 230, 760

Adaptive Refinement (0.2, 0.3) 4, 460 50.25 314, 802
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Figure 2.11.: 3A3M power system load changes for the three areas. Loads at buses 2 and
3 increase by 0.3 and 0.2 pu, respectively. Load at bus 1 is used to control
the frequency using our data-driven approach with abstraction refinement.

Comparison with PAC Learning

We want to compare our approach with the results provided by Xue et al. [191] that is
based on probably approximately correct (PAC) learning on the 3A3M power system case
study. The PAC approach is designed for finite-horizon problems, and cannot deal with
infinite-horizon problems. At each step of the PAC approach the error increases by a
non-zero factor tending towards 1. Over an infinite horizon, the error associated with the
PAC approach becomes too large. Additionally the formulation of the samples required in
the PAC method is inversely proportional to its error level. If we translate their problem
formulation to our problem formulation, the error level would need to be zero meaning
the samples required would be infinity. Therefore the tradeoff in our approach is we
require more samples than PAC, but can provide stronger guarantees. The abstraction
approach of [191] has no bias term γ, but uses confidence parameter β ∈ (0, 1), error level
ν ∈ (0, 1), and cardinality of the parameter vector θ denoted by q ∈ N. The required
number of samples is

N ≥ 2

ν
(ln

1

β
+ q), (2.25)
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Table 2.4.: Comparing the winning domain of controllers obtained from our RSA method,
PAC method of [191], and the model-based approach of [146]. The pairwise
comparison is made by computing the intersections (∩) and set differences
(row \ column). The results are reported both in cardinalities and percentages.

Winning Domain RSA PAC Model-based
∩ \ ∩ \ ∩ \

RSA 230, 760 0 230, 760 0 230, 760 0

% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

PAC 230, 760 15, 664 246, 424 0 245, 345 1, 079

% 93.64% 6.36% 100.00% 0.00% 99.56% 0.44%

Model-based 230, 760 22, 216 245, 345 7, 631 252, 976 0

% 91.22% 8.78% 96.98% 3.02% 100.00% 0.00%

which allows the constructed abstraction to hold for the entire state space except a subset
measured by parameter ν. If we attempt to translate the PAC approach into our approach,
the value ν would need to be set to zero. Note that as ν tends towards zero, the sample
number required will reach infinity. Meaning it is impossible to completely remove the
error with finite sampling. Therefore, the PAC approach is not usable for the situations
we consider, and although it requires less sampling, it provides weaker guarantees.

We implement our data-driven robust scenario approach (RSA), the PAC approach
in [191] with parameters β = 0.01 and ν = 0.01, and the model-based approach of [146].
Table 2.4 compares the winning domain of the controllers by reporting the intersections (∩)
and set differences (row\column). It can be seen that the winning domain obtained by our
RSA method is a subset of the ones computed by PAC and the model-based approaches.
This shows that our approach is more conservative than the model-based approach but
correctly finds a subset of the winning domain. In contrast, the PAC approach gives
a winning domain that includes states not identified as winning by the model-based
approach. It includes 1079 states outside of the winning domain obtained by the model-
based approach. Due to the nature of the PAC learning, some of these states are incorrectly
identified as winning. The main reason is that the PAC method may miss capturing
some of the transitions and does not always generate an overapproximation of the system
behaviors. Among these 1079 states, a counter-example can be found, demonstrating a
lack of guarantee provided by the PAC method. At state (0.0187, 0.0262,−0.1163) the
PAC controller calculates u = −0.075 to be an input which will transition to a safe state
under any disturbances. However, the system under disturbances W1 = 0.2 and W2 = 0.3
will lead to the state (0.0188, 0.0131,−0.1167) that is outside of the winning domain of the
controller. In comparison, the winning domain provided by our RSA method is a subset
of the one from the model-based method and provides full guarantees of the satisfaction
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Figure 2.12.: Required number of samples for our approach as a function of β for a fixed
ε = 0.01.
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Figure 2.13.: Required number of samples for our approach as a function of ε for a fixed
β = 0.01.
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Figure 2.14.: The bias term γ as a function of ε.

of the specification and correctness of the controller. This guarantee is obtained at the
cost of an increased number of samples and a bias term included in the growth bound
calculations, which makes the controller more conservative.

As a final point on this case study, note that our sampling approach uses the Lipschitz
constant estimated using sample trajectories. This Lipschitz constant can in turn be used
to construct the abstraction. The direct use of the estimated Lipschitz constant does not
provide a formal guarantee as it is an estimated value that converges to the true value
only in the limit (i.e., the number of samples goes to infinity), and is likely to provide an
overly conservative controller. To account for a finite sample size, the Lipschitz constant
needs to be corrected by multiplying it with a factor greater than one after observing the
convergence behavior of the distribution fitting for different sizes of the dataset. In this
particular case study, the direct use of the Lipschitz constant (without correction) gives a
controller that covers only 78.8% of the winning domain of the model-based approach.

Parameter Optimization

We now discuss how a selection of different parameters can affect the sample complexity
and conservativeness of our method. We fix the path planning case study with the
estimated Lipschitz constant of 1.46. Figures 2.12 and 2.13 illustrate the effect of
changing parameters ε, β on the number of samples N required for each pair (x̄, ū) in
order to compute the growth bound with confidence (1− β). Figure 2.12 illustrates the
effect of increasing the confidence parameter β on reducing the sample complexity, for
a fixed ε = 0.01. Figure 2.13 shows that for a fixed β = 0.01, increasing ε leads to a
rapid drop in N . In both Figures 2.12 and 2.13, the sample complexity increases in the
presence of disturbance as the dimension of the sample space becomes larger.
Figure 2.14 demonstrate the effect of changing ε on the value of the bias term γ that

makes the inequalities of the SCP more conservative. The bias term γ increases for larger

37



2. Abstraction-Based Controller Design

values of ε. Therefore, increasing ε can decrease the sample complexity while increasing
γ. Finally, it can be observed that the value of γ is larger in the presence of disturbance.

2.3. Neural Abstraction-Based Controller Synthesis and
Deployment

A main bottleneck of ABCD is the memory requirement, both in representing the finite
abstract transition relation and in representing the controller. First, the state and input
spaces of the abstraction grow exponentially with the system and input dimensions,
respectively, and the size of the abstract transition relation grows quadratically with
the abstract states and linearly with the input states. While symbolic encodings using
BDDs can be used, in practice, the transition relation very quickly exceeds the available
RAM. Memory-efficient methods sometimes exploit the analytic description of the system
dynamics or growth bounds [116, 85, 151], but these techniques are not applicable when
the finite abstractions are learned directly from sampled system trajectories, or when a
compact analytical expression of the growth bound is not available. Second, the winning
strategy in the graph game is extracted as a look-up table mapping winning states to one
or more available inputs. Thus, the controller representation is also exponential in the
system dynamics. Such controllers cannot be deployed on memory-constrained embedded
systems.
In this section, we address the memory bottleneck using approximate, compressed,

representations of the transition relation and the controller map using neural networks.
We learn an approximate representation of the abstract transition relation as a neural
network with a fixed architecture. In contrast to the predominant use of neural networks
to learn a generalization of an unknown function through sampling, we train the network
on the entire data set (the transition relation or the controller map) offline. We store
the transitions on disk, and train our networks in batch mode by bringing blocks of data
into the RAM as needed. The trained network is small and fits into RAM. Since the
training of the network minimizes error but does not eliminate it, we apply a correction
to the output to ensure that the representation is sound with respect to the original
finite abstraction, i.e., every trajectory in the finite abstraction is preserved in the
compressed representation. We propose an on-the-fly synthesis approach that works
directly on the corrected representation of the forward and backward dynamics of the
system. Although we present our results with respect to reach-avoid specifications, our
approach can be generalized to other classes of properties and problems (e.g., linear
temporal logic specifications [13]) in which the solution requires the computation of the
set of predecessors and successors in the underlying transition system.
Similarly, we store the winning strategy as a look-up table mapping states to sets of

valid inputs on disk and propose a novel training algorithm to find a neural network
representation of the synthesized controller. The network is complemented with a look-
up table that provides “exceptions” in which the network deviates from the winning
strategy. We experimentally demonstrate that a controller can be correctly represented
as a combination of a neural network and a look-up table that requires a substantially
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smaller memory than the original representation.
An important aspect of our approach is that, instead of using neural networks for

learning an unknown data distribution, we train them over the entire data domain.
Therefore, in contrast to many other applications wherein neural networks provide
function representation and generalization over the unseen data, we are able to provide
formal soundness guarantees for the performance of the trained neural representations
over the whole dataset.
Our compression scheme uses additional computation to learn a compressed represen-

tation and avoid the memory bottleneck. In our implementation, the original relations
are stored on the hard drive and data batches are loaded sequentially into the RAM to
perform the training. Hard drives generally have much higher memory sizes compared
to the RAM, but reading data from the hard drive takes much longer. However, data
access during training is predictable and we can perform prefetching to hide the latency.
During the synthesis, the trained corrected neural representations fit into the RAM. In
contrast, a disk-based synthesis algorithm does not have predictable disk access patterns
and is unworkable. Similarly, the deployed controller only consists of the trained compact
representation and (empirically) a small look-up table, which can be loaded into the RAM
of the controlling chip for the real-time operation of the system.

We evaluate the performance of our approach on several examples of different difficulties
and show that it is effective in reducing the memory requirements at both synthesis
and deployment phases. For the selected benchmarks, our method reduces the space
requirements of synthesis and deployment respectively by factors of 1.31 × 105 and
7.13× 103 in average, and up to 7.54× 105 and 3.18× 104, compared to the abstraction-
based method that requires storing the full transition system. Moreover, we empirically
show that, unlike other encodings, the memory requirement of our method is not affected
by the system dimension on the considered benchmarks. The content of this section is
based on our paper [121].
In summary, our main contributions are:

• Proposing a novel and sound representation scheme for compressing finite transition
systems using the expressive power of neural networks;

• Proposing a novel on-the-fly controller synthesis method using the corrected neural
network representations of forward and backward dynamics;

• Proposing an efficient scheme for compressing the controller computed by abstraction-
based synthesis methods;

• Demonstrating significant reduction in the memory requirements by orders of
magnitude through a set of standard benchmarks. 1

Related Work. Below, we give an overview of the existing literature in areas that are
relevant to the subject of study in this section.
1Our implementations are available online at https://github.com/msalamati/
Neural-Representation.
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Synthesis via reinforcement learning. The idea of using neural networks as function
approximators to represent tabular data for synthesis purposes has been used in different
fields such as reinforcement learning (RL) literature and aircraft collision avoidance system
design. RL algorithms try to find an optimal control policy by iteratively guiding the
interaction between the agent and the environment modeled as a Markov decision process
[171]. When the space of the underlying model is finite and small, q-tables are used
to represent the required value functions and the policy. When the space is large and
possibly uncountable, such finite q-tables are replaced with neural networks as function
approximators. Convergence guarantees that hold with the q-table representation [24]
are not valid for non-tabular setting [26, 29, 177]. A similar behavior is observed in our
setting: we lose the correctness guarantees in our approach without correcting the output
of the neural network representations of the transition systems and the tabular controller.

Neural-aided controller synthesis. Constructing neural network representations of
the dynamics of the control system and using them for synthesis is studied in specific
application domains including the design of unmanned airborne collision avoidance
systems [81]. The central idea of [81] is to start from a large look-up table representing
the dynamics, train a neural network on the look-up table, and use it in the dynamic
programming for issuing horizontal and vertical advisories. Several techniques are used to
reduce the storage requirement since the obtained score table—that is the table mapping
every discrete state-input pair into the associated score—becomes huge in size (hundreds
of gigabytes of floating numbers). Since simple techniques such as down sampling,
block compression [99], and exploiting the natural symmetry of the score table [88] are
unable to achieve the required storage reduction, Julian et al. have shown that deep
neural networks can successfully approximate the score table [89]. However, as in the
RL controller synthesis, there is no guarantee that the control input computed using
the neural representation matches the one computed using the original score table. In
contrast, our corrected neural representations are guaranteed to produce formally correct
controllers.

Reactive synthesis. Binary decision diagrams (BDDs) are used extensively in the reactive
synthesis literature to represent the underlying transition systems [149, 79]. While BDDs
are compact enough for low-order dynamical systems, recent synthesis tools such as
SCOTS v2.0 [152] have already migrated into the non-BDD setting in order to avoid the
large runtime overheads. In fact, motivated by reducing the required memory foot print,
the current trend is to synthesize controllers in a non-BDD on the fly to eliminate the
need for storing the transition system [96, 97, 104, 116, 85, 151]. These memory-efficient
methods exploit the analytic description of the system dynamics or growth bounds. In
contrast, our technique is applicable also to the case where the finite abstractions are
learned directly from the sampled system trajectories, i.e., when no compact analytical
expression of the dynamics and growth bounds are available.

Verifying systems with neural controllers. An alternative approach developed for safety-
critical systems is to use neural networks as a representation of the controller and learn
the controller using techniques such as reinforcement learning and data-driven predictive
control [55, 175]. In this approach, the controller synthesis stage does not provide any
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safety guarantee on the closed loop system, i.e., on the feedback connection of the neural
controller and the physical system. Instead, the safety of the closed-loop system is verified
a posteriori for the designed controller. Ivanov et al. have considered dynamical systems
with sigmoid-based neural network controllers, used the fact that sigmoid is the solution to
a quadratic differential equation to transform the composition of the system and the neural
controller into an equivalent hybrid system, and studied reachability properties of the
closed-loop system by utilizing existing reachability computation tools for hybrid systems
[84]. Huang et al. have considered dynamical systems with Lipschitz continuous neural
controllers and used Bernstein polynomials for approximating the input-output model of
the neural network [81]. Development of formal verification ideas for closed-loop systems
with neural controllers has led into emergence of dedicated tools such as NNV [176] and
POLAR [82]. While these methods provide guarantees on closed-loop control system with
neural controllers, they can only consider finite horizon specifications for a given set of
initial states. In contrast, we consider controllers that are synthesized for infinite horizon
specifications.

Minimizing the memory foot print for symbolic controllers. Girard et al. have proposed
a method to reduce the memory needed to store safety controllers by determinizing them,
i.e., choosing one control input per state such that an algebraic decision diagram (ADD)
representing the control law is minimized [66, 85]. Zapreev et al. have provided two
methods based on greedy algorithms and symbolic regression to reduce the redundancy
existing in the controllers computed by the abstraction-based methods [193]. Both of
the ADD scheme in [66, 85] and the BDD-based scheme in [193] have the capability to
determinize the symbolic controller and reduce its memory foot print. However, the
computed controller still suffers from the additional runtime overhead of the ADD/BDD
encoding. Further, as mentioned by the authors of [193], their regression-based method
is not able to represent the original controller with high accuracy. In contrast, our tool
produces real-valued representations for symbolic controllers and can (additionally) be
computed on top of the simplified version found by either of the methods proposed in
[85, 193].

Compressed representations for model predictive controllers (MPCs). Hertneck et al.
have proposed a method to train an approximate neural controller representing the original
robust (implicit) MPC satisfying the given specification [76]. While reducing the online
computation time is the main motivation in implicit MPCs, minimizing the memory foot
print is the main objective in explicit MPCs. Salamati et al. have proposed a method
which is based on solving an optimization to compute a memory-optimized controller
with mixed-precision coefficients used for specifying the required coefficients [159]. Our
method considers a different class of controllers that can fulfill infinite horizon temporal
specifications.

Overview of the Proposed Approach

We provide a high-level description of our approach for both synthesis and deployment.

Corrected neural representations. Figure 2.15 gives a pictorial description of the
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Figure 2.15.: Graphical description of the proposed scheme for compressing finite abstrac-
tions

Figure 2.16.: Graphical description of the proposed synthesis scheme

steps for computing a corrected neural network representation. Given a finite abstraction
Σ̄ that corresponds to the forward dynamics of the system and stored on the hard drive,
we first compute the transition system Σ̄B corresponding to the backward dynamics. Next,
we extract the input-output training datasets DF and DB respectively from the forward
and backward systems, and store them on the hard drive. Each data point contains
one state-input pair and the characterization of `∞ ball for the corresponding reachable
set. We train two neural networks NF and NB such that they represent compressed
input-output surrogates for the datasets DF and DB, respectively. Finally, we compute
the soundness errors eF and eB which correspond to the difference between the output of
NF and NB and the respective values in DF and DB , calculated over all of the state-input
pairs. We use the computed errors eF and eB in order to construct the corrected neural
representations RF and RB . We will get memory savings by using RF and RB instead of
Σ̄ and Σ̄B, respectively.
Synthesis. Figure 2.16 gives a pictorial description of our proposed synthesis algorithm
for a reach-avoid specification with the target set Goal and obstacle set Avoid as subsets
of the state space. Let W0 ⊆ X̄ represents a discrete under-approximation of the target
set Goal . We initialize the winning set as L = W0, the controller as C = ∅, and the set of
state-input pairs that must be added to the controller as Γ0 = ∅. In each iteration, we
compute the set of new states that belong to the winning set and update the controller
accordingly, until no new state is added to L. To this end, we first use RB and its
corresponding soundness error eB to compute a set of candidates Si out of which some
belong to L and it is guaranteed that there will be no winning state outside of Si in the
ith iteration. We use RF and its corresponding soundness error eF to compute the set
of new winning states Wi+1 ⊆ Si. We also compute the set of control inputs for every
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Figure 2.17.: Graphical description of the proposed scheme for compressing controllers

new winning state and compute the corresponding set of state-input pairs Γi+1 that must
be added to the controller. Finally, if Wi = ∅, we terminate the computations as we
already have computed the winning set L and the controller C. Otherwise, we add the
new winning set of states and state-input pairs, respectively, into the overall winning set
(L ← L ∪Wi+1) and the controller (C ← C ∪ Γi+1), and repeat the steps in the next
iteration.
Deployment. Figure 2.17 shows our method for compressing controllers that are obtained
from abstraction-based approaches. In the first step, we collect the training dataset DC
and reformat it to become appropriate for our specific formulation of a classification
problem. Each data point contains one state and an encoding of the corresponding set of
control inputs. We then train a neural network NC on the data with the loss function
designed for this specific classification problem. Finally, we find all the states at which
the output label generated by NC is invalid, and store the corresponding state-input pair
in a look-up table, denoted by Ĉ. We experimentally show that Ĉ only contains a very
small portion of state-input pairs.

2.3.1. Problem Statement

We now consider the controller synthesis problem for finite abstractions w.r.t. a reach-avoid
specification. Let Goal ,Avoid ⊆ X,Goal ∩ Avoid = ∅ be the set of states representing
the target and unsafe spaces, respectively. The winning domain for the finite abstraction
Σ̄ = (X̄, Ū, TF ) is the set of states x̄∗ ∈ X̄ such that there exists a feedback controller C
such that all trajectories of C ‖ Σ̄, which are started at x̄∗, satisfy the given specification
Φ. x̄0 = x̄∗, x̄1, x̄2, . . . |= Φ. The aim is to find the set of the winning states L together
with a feedback controller C such that C ‖ Σ̄ satisfies the reach-avoid specification
Φ. To compute the winning domain and the controller, one can use the methods from
reactive synthesis. For many of interesting control systems, size of TF in the finite
abstraction becomes huge. This restricts the application of reactive-synthesis-based
methods for computing the controller. Therefore, we are looking for a method which
uses compressed surrogates of TF to save memory. In particular, we want to train two
corrected neural surrogates, i.e., neural network representations whose output is corrected
to maintain the soundness property: RF for the forward-in-time dynamics and RB for
the backward-in-time dynamics.

Problem 2.3 Inputs: Finite abstraction Σ̄ = (X̄, Ū, TF ), and specification Φ =
¬Avoid U Goal .
Outputs: Corrected neural representations RF and RB, winning domain L and a
feedback controller C for Σ̄ such that C ‖ Σ̄ realizes Φ.
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It is important to notice that any solution for this problem is required to provide a
formal guarantee on the satisfaction of Φ, i.e., the reach-avoid specification Φ must be
satisfied under any disturbance affecting the control systems.
Let C ∈ X̄ × Ū be the computed controller for the abstraction Σ̄ such that C ‖ Σ̄

realizes a given specification Φ. The size of this controller can be large due to the large
number of discrete state and inputs. For deployment purposes, we would like to compute
a corrected neural controller Ĉ := X̄ → Ū s.t. Ĉ ‖ Σ̄ realizes Φ.

Problem 2.4 Inputs: Controller C computed for the discrete control system Σ̄, and
specification Φ s.t. C ‖ Σ̄ realizes Φ.
Outputs: A corrected neural controller Ĉ such that Ĉ ‖ Σ̄ realizes Φ.

2.3.2. Synthesis

One approach to formally synthesize controllers for a given specification is to store the
transition system corresponding to quantization of the state and input spaces, and to
use the methods from reactive synthesis to design a controller. However, the memory
required to store these transition systems increases exponentially with the number of
state variables, which causes a memory blow-up for many real-world systems. In this
subsection, we propose our memory-efficient algorithm for synthesizing controllers to
satisfy reach-avoid specifications for finite abstractions and reach-avoid specifications. Our
method requires computation of corrected neural representations for the finite abstraction.
First, we provide two method for computing these representations. Later, we show how
our synthesis method makes use of the computed representations.

Corrected Neural Representations for Finite Abstractions

Let Σ̄ = (X̄, Ū, TF ) be a finite abstraction. Finite abstractions can be computed analyti-
cally when the system dynamics are known and certain Lipschitz continuity properties
hold. Even when the system dynamics are unknown, one can use data-driven methods to
learn finite abstractions that are correct with respect to a given confidence [93, 52, 123].
We show that TF can be approximated by some generator functions. In particular, we show
how to compute generator functions RF : X̄×Ū → Rn×Rn≥0 and RB : X̄×Ū → Rn×Rn≥0

which can produce characterization of an `∞ ball corresponding to the over-approximation
of forward- and backward-in-time reachable sets, respectively, for every state-input pair
picked from X̄× Ū . Our aim is to use the expressive power of neural networks to represent
the behavior of Σ̄ such that the memory requirements significantly decrease.

Our compression scheme is summarized in Algorithm 3. We first compute the backward-
in-time system Σ̄B using Eq. (2.2). We then calculate the over-approximating `∞ ball for
every state-input pair. Let cF (x̄, ū) ∈ X and rF (x̄, ū) ∈ Rn≥0 characterize the tightest `∞
ball such that

(x̄, ū, x̄′) ∈ TF ⇔ ‖x̄′ − cF (x̄, ū)‖∞ ≤ rF (x̄, ū)− ηx/2.

This is illustrated in Figure 2.18 in two-dimensional space for a given state-input pair
(x̄, ū). The dotted red rectangle corresponds to the hyper-rectangular reachable set. The
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Algorithm 3: Regression-based compression algorithm for finite abstractions
Data: Forward dynamics Σ̄ and learning rate λ

1 Compute backward dynamics Σ̄B and the datasets DF and DB using Eqs. (2.2),
(2.26), and (2.27)

2 Train neural networks NF on the dataset DF and train NB on DB using the
learning rate λ

3 Compute the soundness errors eF and eB using Eq. (2.28)
4 Compute the final corrected representations RF and RB using Eqs. (2.29) and

(2.30)
Result: corrected neural representations RF and RB

Figure 2.18.: Comparing the set of successor states in the transition system TF and its
representation TNF . We have c = cF (x̄, ū), rF (x̄, ū) = (r(1), r(2)), c′ =
N c
F (x̄, ū) and N r

F (x̄, ū) = (r′(1), r′(2)).

center cF (x̄, ū) and radius rF (x̄, ū) are computed using the lower-left and upper-right
corners of the reachable set denoted, respectively, by gFL(x̄, ū) and gFU (x̄, ū). Then, we
have cF (x̄, ū) = (gFU (x̄, ū)+gFL(x̄, ū))/2 and rF (x̄, ū) = (gFU (x̄, ū)−gFL(x̄, ū))/2+ηx/2.
At the end of the first step we have computed and stored the dataset

DF = {((x̄, ū), (cF (x̄, ū), rF (x̄, ū))) | x̄ ∈ X̄, ū ∈ Ū}. (2.26)

Note that every data-point in DF consists of two pairs: one specifies a state-input
pair (x̄, ū) and the other one characterizes the center and radius corresponding to the
over-approximating `∞ disc (cF (x̄, ū), rF (x̄, ū)). Similarly, we need to store another
dataset corresponding to the backward dynamics. First, we define cB(x̄, ū) ∈ X and
rB(x̄, ū) ∈ Rn≥0 characterizing the tightest `∞ ball such that

(x̄, ū, x̄′) ∈ TB ⇔ ‖x̄′ − cB(x̄, ū)‖∞ ≤ rB(x̄, ū)− ηx/2.

The dataset corresponding to the backward dynamics is of the following form

DB = {((x̄, ū), (cB(x̄, ū), rB(x̄, ū))) | x̄ ∈ X̄, ū ∈ Ū}. (2.27)
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Figure 2.19.: The regression-based configuration used in compression of abstractions.
The input to the neural network includes state-input pair (x̄, ū), and the
output includes the pair (c, r) corresponding to the center and radius of
the rectangular reachable set, respectively. Right: The classification-based
representation of finite abstractions. The representation receives a state-
input pair (x̄, ū). In the output, ylb and yub correspond to the lower-left and
upper-right corners for the rectangular reachable set.

The size of DF and DB grows exponentially with the dimension of state space. Hence,
we store both the datasets DF and DB (potentially) into the hard drive. Next, we take
the datasets DF and DB, for which we train neural networks NF and NB, taking the
state-input pairs (x̄, ū) as input and (cF (x̄, ū), rF (x̄, ū)) as output, and try to find an
input-output mapping minimizing mean squared error (MSE). For systems with state and
input spaces of dimensions n and m, the input and output layers of both neural networks
are of sizes n+m and 2n, respectively. The configuration of the neural networks which
we used is illustrated in Figure 2.19. During training, we load batches of data from DF
and DB, which are stored on the the hard drive, into the RAM. We use the stochastic
gradient descent (SGD) method to minimize MSE.

As mentioned earlier, in contrast to the usual applications wherein neural networks are
used to represent an unknown distribution, we have the full dataset and require computing
representations which are sound with respect to the input dataset. A sound representation
for the given finite abstractions produces reachable sets that include TF (x̄, ū) for every
state-input pair (x̄, ū). For instance, the solid green rectangle in Figure 2.18 contains the
set of reachable states corresponding to NF (x̄, ū) and contains the set of states included
in the dotted red rectangle, i.e., TF (x̄, ū). Therefore, we can say that the representation
NF is sound for the pair (x̄, ū). In order to guarantee soundness, we need to compute the
maximum error induced during the training process among all the training data points.
To that end, we go over all the state-input pairs (which are stored on the hard drive) and
compute the maximum error in approximating the centers of the `∞ balls, denoted by
ecF , e

c
B and radius erF , e

r
B corresponding to the forward and backward representations:

ecF = max
x̄∈X̄,ū∈Ū

|cF (x̄, ū)−N c
F (x̄, ū)|, erF = max

x̄∈X̄,ū∈Ū
|rF (x̄, ū)−N r

F (x̄, ū)|.
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Similarly, for the backward dynamics,

ecB = max
x̄∈X̄,ū∈Ū

|cB(x̄, ū)−N c
B(x̄, ū)|, erB = max

x̄∈X̄,ū∈Ū
|rB(x̄, ū)−N r

B(x̄, ū)|.

We define
eF = ecF + erF , eB = ecB + erB, (2.28)

and use the errors eF and eB to compute the corrected representations RF and RB,
corresponding to NF and NB, as described next. Let RcF and RrF correspond to the
center and radius components of RF . Similarly, RcB and RrB correspond to the center and
radius components of RB. For state-input pair (x̄, ū) ∈ X̄ × Ū , we define

RcF (x̄, ū) = N c
F (x̄, ū), RrF (x̄, ū) = N r

F (x̄, ū) + eF , (2.29)

for the forward dynamics, and

RcB(x̄, ū) = N c
B(x̄, ū), RrB(x̄, ū) = N r

B(x̄, ū) + eB, (2.30)

for the backward dynamics.
Let us define the forward transition system computed using the trained neural network

as follows

TNF ={(x̄, ū, x̄′)∈X̄×Ū×X̄ | x̄′∈K̄(N c
F (x̄, ū)−N r

F (x, ū)−eF ,N c
F (x̄, ū)+N r

F (x̄, ū)+eF )},
(2.31)

where N c
F (·, ·), N r

F (·, ·) denote the components of the output of NF (·, ·) corresponding to
the center and radius of disc, respectively. Similarly, we can define the transition system
TNB corresponding to the backward dynamics as follows

TNB ={(x̄, ū, x̄′)∈X̄×Ū×X̄ | x̄′∈K̄(N c
B(x̄, ū)−N r

B(x̄, ū)−eB,N c
B(x̄, ū)+N r

B(x̄, ū)+eB)}.
(2.32)

The following lemma states that we can use the trained neural networks to compute sound
transition systems for both forward and backward dynamics. However, our synthesis
approach does not require the computation of TNF and TNB and only uses the compressed
representations NF and NB.

Lemma 2.3.1 Transition systems TNF and TNB computed by (2.31) and (2.32) are sound
for TF and TB, i.e., we have TF ⊆ TNF and TB ⊆ TNB .

To reduce the level of conservativeness, we require that TNF and TNB do not contain too
many additional edges compared to TF and TB. The mismatch rate of the forward and
backward dynamics are defined as

dF :=
|TNF \ TF |
|TF |

, dB :=
|TNB \ TB|
|TB|

.

If the trained representations are accurate, the mismatch rate is low, which results in a
less restrictive representation.
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Figure 2.20.: The classification-based representation of finite abstractions. The representa-
tion receives a state-input pair (x̄, ū). In the output, ylb and yub correspond
to the lower-left and upper-right corners for the rectangular reachable set.

Remark 7 The method outlined in Algorithm 3 formulates the computation of the repre-
sentations as a regression problem, wherein the representative neural networks are supposed
to predict the center and radius corresponding to `∞ reachable sets. In the rest of this
subsection, we describe a classification-based formulation for compressing finite abstrac-
tions, wherein the representative neural networks are supposed to predict the vectorized
indices corresponding to the lower-left and upper-right corners of the reachable set. We
experimentally show that this second formulation, while being more memory demanding,
provides a less conservative representation compared to our regression-based formulation.

Classification-Based Computation of Representations for Finite Abstractions

So far we have presented a formulation for training neural networks that can guess at any
given state-input pair the center and radius of a hyper-rectangular over-approximation of
the reachable states. This guess is then corrected using the computed soundness errors. A
nice aspect of this formulation is that we only need to store the trained representations and
their corresponding soundness errors. However, the result of using the soundness errors to
correct the output values produced by the neural networks may give a very conservative
over-approximation of the reachable sets, even when the trained representations have a
very good performance on a large subset of the state-input pairs, since the soundness
errors must be computed over all state-input pairs.
We provide an alternative formulation for computing a compressed representation

of a given abstraction. Intuitively, our idea is to train neural network representations
which can guess for any given state-input pair the vectorized indices corresponding to
the lower-left and upper-right corner points of the hyper-rectangular reachable set. The
architecture of the representation is shown in Figure 2.20. As illustrated, for every
state-input pair (x̄, ū) ∈ X̄ × Ū , the output of the representation gives the lower-left
and upper-right corners of the rectangular set that is reachable by taking the control
input ū at the state x̄. Algorithm 4 describes our classifier-based compression scheme for
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Algorithm 4: Computing Classification-based representations of finite abstrac-
tions
Data: Forward dynamics Σ̄ and learning rate λ

1 Compute backward dynamics Σ̄B and the datasets DF and DB using Eqs. (2.2),
(2.33), and (2.34)

2 Train neural networks NF and NB on the datasets DF and DB using the learning
rate λ

3 Compute the set of misclassified state-input pairs EF and EB as in Eq. (2.35)
4 Compute the set of transitions ÑF and ÑB associated with EF and EB as in

Eq. (2.37)
5 Compute the corrected neural representations RF , RB using Eqs. (2.38), (2.39)
Result: RF , RB

finite abstractions. We first compute the backward system Σ̄B using Eq. (2.2). We then
compute the training datasets for both the forward and backward systems Σ̄ and Σ̄B . For
Σ̄, let gFU : X̄ × Ū → X̄ and gFL : X̄ × Ū → X̄ denote the mappings from the state-input
pair (x̄, ū) ∈ X̄ × Ū into the corresponding upper-right and lower-left corners of the
rectangular reachable set from (x̄, ū). We define zF : X̄ × Ū → {0, 1}2

∑n
i=1 |X̄(i)| with

|X̄(i)| being the cardinality of the projection of X̄ along the ith axis and zF (x̄, ū)(l) = 1
if and only if

l = 2
i−1∑
k=1

|X̄(k)|+ Ix,i(gFL(x̄, ū)(i)) or l = 2
i−1∑
k=1

|X̄(k)|+ |X̄(i)|+ Ix,i(gFU (x̄, ū)(i)),

for some i ∈ {1, 2, . . . , n}. The indexing function Ix,i : X̄(i) → [1; |X̄(i)|] maps every
element of X̄(i) into a unique integer index in the interval [1; |X̄(i)|]. The training dataset
for Σ̄ is defined as

DF := {(x̄, ū, zF (x̄, ū)) | x̄ ∈ X̄ and ū ∈ Ū}. (2.33)

Intuitively, each element of the dataset DF contains a state-input pair (x̄, ū) and a vector
h ∈ {0, 1}2

∑n
i=1 |X̄(i)| that has 1 only at the entries corresponding to Ix,i(gFL(x̄, ū)(i)) and

Ix,i(gFU (x̄, ū)(i)) for i ∈ {1, 2, . . . , n}. Similarly, we define zB : X̄×Ū → {0, 1}2
∑n
i=1 |X̄(i)|

for Σ̄B such that zB(x̄, ū)(l) = 1 if and only if

l = 2

i−1∑
k=1

|X̄(k)|+ Ix,i(gBL(x̄, ū)(i)) or l = 2

i−1∑
k=1

|X̄(k)|+ |X̄(i)|+ Ix,i(gBU (x̄, ū)(i)),

for some i ∈ {1, 2, . . . , n}. The training dataset for the backward dynamics is also defined
similarly as

DB := {(x̄, ū, zB(x̄, ū)) | x̄ ∈ X̄ and ū ∈ Ū}. (2.34)

Once the training datasets are ready, we train the neural networks NF and NB
respectively on the datasets DF and DB. Note that the output layer of NF and NB will
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be a vector of size 2
∑n

i=1 |X̄(i)|, while the final output of the representations are of size
2n (cf. Figure 2.20). These final outputs give an approximation of the coordinates of the
lower-left and upper-right corners of the reachable set corresponding to the pair (x̄, ū).
Note that, because X̄ was computed by equally partitioning over X, both the indexing
function Ix,i and its inverse can be implemented in a memory-efficient way using floor
and ceil operators. We then evaluate the performance of the trained neural networks NF
and NB. Let ρFL(x̄, ū) and ρFU (x̄, ū) denote respectively the estimated lower-left and
upper-right corners of the reachable set estimated by NF . Define ρBL(x̄, ū) and ρBU (x̄, ū)
similarly for NB, and let the set of misclassified state-input pairs be

EF := {(x̄, ū) ∈ X̄ × Ū | TF (x̄, ū) \ JρFL(x̄, ū), ρFU (x̄, ū)Kηx 6= ∅}
EB := {(x̄, ū) ∈ X̄ × Ū | TB(x̄, ū) \ JρBL(x̄, ū), ρBU (x̄, ū)Kηx 6= ∅}. (2.35)

The soundness error of NF and NB can be considered as their misclassification rate:

errF :=
|EF |
|X̄ × Ū |

and errB :=
|EB|
|X̄ × Ū |

. (2.36)

For the misclassified pairs in EF and EB, we extract the related transitions in the
abstraction:

ÑF :={(x̄, ū, x̄′) |(x̄, ū)∈EF , x̄′∈TF (x̄, ū)}, ÑB :={(x̄, ū, x̄′) |(x̄, ū) ∈ EB, x̄′∈TB(x̄, ū)}.
(2.37)

Finally, we correct the output of neural network representations to maintain soundness

RF (x̄, ū) :=

{
JρFL(x̄, ū), ρFU (x̄, ū)Kηx if (x̄, ū) /∈EF
ÑF (x̄, ū) if (x̄, ū)∈EF ,

(2.38)

RB(x̄, ū) :=

{
JρBL(x̄, ū), ρBU (x̄, ū)Kηx if (x̄, ū) /∈EB
ÑB(x̄, ū) if (x̄, ū)∈EB.

(2.39)

Note that these corrected neural representations are memory efficient only if the misclas-
sification rates are small, i.e., the size of EF and EB are small compared with X̄ × Ū .

On-the-Fly Synthesis

So far, we described the computation of the compressed representations corresponding to
the forward and backward dynamics for finite abstractions. We use these representations
in order to synthesize formally correct controllers.
Our synthesis procedure is provided in Algorithm 5. It takes the representations RF

and RB to synthesize a controller which fulfills the given reach-avoid specification. Let

W0 = {x̄ ∈ X̄ | Jx̄− ηx/2, x̄+ ηx/2K ⊆ Goal}

be a discrete under-approximation of the target set Goal . We take W0 as the input and
perform a fixed-point computation to solve the given reach-avoid game. We initialize the
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Algorithm 5: Controller synthesis algorithm
Data: Set W0 ⊆ X̄ and the corrected neural representations RF and RB

1 Initialize C ← ∅, P0 ←W0, Γ0 ← ∅ and i← 0
2 while Wi 6= ∅ do
3 Compute the candidate pool Si using Eq. (2.40)
4 Compute the set of new winning states Wi+1 using Eq. (2.41) and add them to

the winning set (Pi+1 ← Pi ∪Wi+1)
5 Compute the set of new state-input pairs Γi+1 using Eq. (2.42) and add them

to the controller (C ← C ∪ Γi+1)
6 i← i+ 1

7 end
8 L← Pi
Result: Controller C and its winning set L

winning set and controller with P0 = W0 and C = ∅, and in each iteration, we add the
new winning set of states and state-input pairs, respectively, into the overall winning set
and the controller, until no new state is found (Wi+1 = ∅).

LetWi be the set of new winning states in the beginning of the ith iteration. Further, we
denote the set of winning states in the beginning of the ith iteration by Pi =

⋃i
k=0Wk. In

every iteration, for every x̄ ∈Wi and ū ∈ Ū , we compute the backward over-approximating
`∞ ball and discretize it to get the candidate pool Si defined as

Si :=
⋃
ū∈Ū

Yi(ū), (2.40)

with

Yi(ū) :=
⋃
x̄∈Wi

(X̄ ∩ K̄(RcB(x̄, ū)−RrB(x̄, ū), RcB(x̄, ū) +RrB(x̄, ū))),

where RcB(·, ·), RrB(·, ·) denote the components of the output of RB(·, ·) corresponding to
the center and radius of the `∞ ball, respectively. Note that we compute the candidate
pool by running RB over Wi instead of Pi. This is computationally beneficial, because
|Wi| ≤ |Pi|. Next lemma shows that Si includes the whole set of new winning states
Wi+1.

Lemma 2.3.2 Let the set of candidates Si be as defined in Eq. (2.40). Then, we have
Wi+1 ⊆ Si for all i ≥ 0.

Proof We prove this lemma by contradiction. Suppose that Wi+1 6⊆ Si. Then there exists
at least one x̄∗ ∈ Wi+1 \ Si. Since x̄∗ ∈ Wi+1, we know that there exists at least one
ū∗ ∈ Ū such that Tf (x̄∗, ū∗) ⊆ Pi and x̄∗ /∈ Pi. Moreover, since x̄∗ /∈ Si, by Eq. (2.40) we
get Tf (x̄∗, ū∗) ∩Wi = ∅. So, Tf (x̄∗, ū∗) ⊆ Pi \Wi = Pi−1. This gives x̄∗ ∈ Pi, which is a
contradiction. This completes the proof.

51



2. Abstraction-Based Controller Design

Now, we can use RF , which represents the forward transition system, in order to choose
the legitimate candidates out of Si and add the new ones to Wi+1. Let

A = {x̄ ∈ X̄ | Jx̄− ηx/2, x̄+ ηx/2K ∩Avoid 6= ∅}

be a discrete over-approximation over the set of obstacles. The next lemma states that
we can use the representation RF to compute Wi+1.

Lemma 2.3.3 The set of states added to the winning set in the ith step can be computed
as

Wi+1 = {x̄ ∈ Si | ∃ū ∈ Ū s.t.K̄(RcF (x̄, ū)−RrF (x̄, ū), RcF (x̄, ū) +RrF (x̄, ū)) ⊆ Pi} \ (Pi ∪A).
(2.41)

Proof To prove this lemma, we denote G = {x̄ ∈ Si | ∃ū ∈ Ū s.t. K̄(RcF (x̄, ū) −
RrF (x̄, ū), RcF (x̄, ū)+RrF (x̄, ū)) ⊆ Pi}\ (Pi∪A), and show Wi+1 ⊆ G and G ⊆Wi+1. The
second direction (G ⊆Wi+1) holds by definition. To prove the first direction (Wi+1 ⊆ G),
we note that G ⊆ Si and further, by the result of Lemma. 2.3.2, we have Wi+1 ⊆ Si.
Assume Wi+1 6⊆ G. Then there should exist at least one x̄∗ ∈ Wi+1 \ G. Note that
x̄∗ ∈ Si \ G. Since x̄∗ ∈ Si, we get that there exists at least one ū∗ ∈ Ū for which
TF (x̄∗, ū∗) ⊆Wi. Also, because x̄∗ /∈ G, we have TF (x̄∗, ū∗) 6⊆Wi, which is a contradiction.
Therefore, Wi+1 ⊆ G. Hence the proof ends.

In each iteration, we calculate Γi, which is the set of new state-input pairs that must be
added into the controller, and is defined as

Γi+1 ={(x̄, ū) | x̄ ∈Wi+1, K̄(RcF (x̄, ū)−RrF (x̄, ū), RcF (x̄, ū) +RrF (x̄, ū)) ⊆ Pi}. (2.42)

Finally, If Wi+1 = ∅, we can terminate the computations as we already have computed
the winning set and the controller. Otherwise, we add Wi and Γi into the overall winning
set (Pi+1 ← Pi ∪Wi+1) and controller (C ← C ∪ Γi+1) and restart the depicted process.

2.3.3. Deployment

Once the controller C is computed such that C ‖ Σ̄ realizes the given specification Φ, we
need to deploy C onto an embedded controller platform, e.g., a microcontroller. Since
such embedded controller platforms generally have a small on-board memory, we would
like to minimize the size of the stored controller.

We define the set of valid control inputs corresponding to x̄ as C(x̄) = {ū | (x̄, ū) ∈ C}.
The approach we proposed for finding representations for the finite abstractions may not
work, since we are not allowed to over-approximate C(x̄), and thus the set of valid control
inputs is not representable as a compact `∞ ball described by its center and radius. The
following example illustrates a disconnected C(x̄), which cannot be represented by an `∞
ball.
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Figure 2.21.: Illustration of a disconnected set of valid control inputs.

Figure 2.22.: The configuration used in compression of controllers. Given a state x̄, the
representation produces a corresponding control input ū.

Example 1 Consider a system with one-dimensional state and input spaces (n = m = 1).
Figure 2.21 illustrates the set of transitions starting from the white middle box (x̄ = 0).
Let the boxes with green check mark and red cross mark correspond to the target and
obstacle states and C be the controller for the corresponding reach-avoid specification.
Then, we have {(0, 2), (0, 3), (0,−2), (0,−3)} ⊆ C and C(0) = {−2,−3, 2, 3}. It is clear
that C(0) is a disconnected set, which is not characterizable by an `∞ ball.

In contrast to the symbolic regression method proposed in [193], we formulate the controller
compression problem as a classification task, that is, we train a neural network which
assigns every state to a list of scores over the set of control inputs, and picks the control
input with the highest score. The configuration of the neural network is illustrated in
Figure 2.22. The justification for our formulation is that any representation for the
controller can only perform well if it is trained over a dataset which respects the continuity
property, i.e., neighboring states are not mapped into control input values which are
very different from each other. A representation that respects the continuity property
corresponds to a low continuity index (see Eq. (2.3)). During the training phase, we keep
all the valid control inputs and let the training process to choose which value respects the
continuity property more, by minimization of the cost function. Therefore, our formulation
automatically takes care of the redundancy problem by mapping a neighborhood in the
state space into close-in-value control inputs to respect the continuity requirement of
the trained representation. The reason that our formulation does not correspond to a
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Algorithm 6: Compression algorithm for the controller
Data: Controller C, learning rate λ

1 Compute the dataset DC using Eq. (2.43)
2 Train the neural network NC on the dataset DC using the learning rate λ
3 Compute the set of state-input pairs C̃ using Eq. (2.45)
4 Compute Ĉ using Eq. (2.46)
Result: Corrected neural representation Ĉ

standard classification setting is that during the training phase a non-uniform number
of labels (corresponding to the control input values in the output stage of the neural
network) per input (corresponding to the state values at the input layer of the neural
network) are considered as valid, while we only will consider one label—corresponding to
the highest score—as the trained representation’s choice during the runtime.

Remark 8 In order to formulate the problem of finding a neural-network-based representa-
tion for the controller as a regression problem, first the training data must be pre-processed
such that the continuity property is respected, i.e., the set of valid control-inputs per each
state is pruned so that neighboring states are mapped to close-in-value control inputs.
However, this pre-processing is time consuming and does not work efficiently in practice
(see, e.g., [193, 66]).

Algorithm 6 summarizes the proposed procedure for computing a compressed rep-
resentation for the original controller. In the first step, we need to store the training
set

DC = {(x̄,h(x̄)) |(x̄, ū) ∈ C ⇔ h(x̄)(Iu(ū)) = 1, (x̄, ū) /∈ C ⇔ h(x̄)(Iu(ū)) = 0},
(2.43)

where Iu : U → [1; |Ū |] is an indexing function for the control set Ū , which assigns every
value in Ū into a unique integer in the interval [1; |Ū |]. Intuitively, each point in the
dataset DC contains a state x̄ ∈ L and a vector h(x̄) which is of length |Ū | and has ones
at the entries corresponding to the valid control inputs and zeros elsewhere.
Once the training dataset is ready, we can train a neural network NC which takes

x̄ ∈ X̄ as input and approximates Iu−1(argmax(h(x̄))) in the output, where Iu−1(·)
denotes the inverse of the indexing function used in Eq. (2.43).

Remark 9 Note that the output layer of NC has to be of size |Ū | and for every x̄ ∈ L,
we consider the value Iu−1(argmax(NC(x))) as the final control input assigned by NC to
the state x̄. Moreover, because Ū was computed by equally partitioning over U , both the
indexing function Iu and its inverse can be implemented in a memory-efficient way using
floor and ceil functions.

Once the neural network NC is trained, we evaluate its performance by finding all the
states x̄ at which using NC produces an invalid control input, i.e.,

E = {x̄ ∈ L | Iu−1(argmax(NC(x̄))) /∈ C(x̄)}.
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Table 2.5.: Catalog of models used to generate the finite abstractions in Subsection 2.3.4.

Case-study Dynamical model
Configuration (1) Configuration (2)

X U ηx ηu X U ηx ηu

2D car
[
ẋ(1)

ẋ(2)

]
∈

[
u(1)

u(2)

]
+W

[0, 5]2 [−1, 1]2
[
0.05

0.05

] [
0.23

0.23

]
[0, 10]2 [−2, 2]2

[
0.025

0.025

] [
0.23

0.23

]
(x(1), x(2))- position
(u(1), u(2))- speed τ = 0.4, W = [−0.025, 0.025]2

3D car
ẋ(1)

ẋ(2)

ẋ(3)

 ∈
u(1) cos(x(3))

u(1) sin(x(3))

u(2)

 +W

[0, 5]2× [−1, 1]2
0.2

0.2

0.2


[
0.3

0.3

]
[0, 10]2× [−1.5, 1.5]×

0.1

0.1

0.1


[
0.2

0.2

]
(x(1), x(2))- position [−1.6, 1.6] [−π, π] [−1, 1]

x(3)- angle
u(1)- speed
u(2)- turn rate τ = 0.3, W = {0}

4D car

ẋ(1)

ẋ(2)

ẋ(3)

ẋ(4)

 ∈

x(4) cos(x(3))

x(4) sin(x(3))

u(1)

u(2)

 +W

[0, 5]2× [−1, 1]2


0.2

0.2

0.2

0.2


[
0.3

0.3

]
[0, 10]2× [−2, 2]2


0.05

0.05

0.1

0.1


[
0.2

0.2

]
(x(1), x(2))- position [−1.6, 1.6]× [−π, π]×
x(3)- angle [−1, 1] [−1, 1]

x(4)- speed
u(1)- turn rate
u(2)- acceleration control τ = 0.5, W = {0}

5D car

ẋ(1)

ẋ(2)

ẋ(3)

ẋ(4)

ẋ(5)

 ∈

x(4) cos(x(3))

x(4) sin(x(3))

x(5)

u(1)

u(2)

 +W

[0, 5]2× [−1, 1]2


0.2

0.2

0.2

0.2

0.2



[
0.3

0.3

]
[0, 10]2× [−2, 2]2


0.05

0.05

0.1

0.1

0.1



[
0.2

0.2

]
(x(1), x(2))- position [−1.6, 1.6]× [−π, π]×
x(3)- angle [−1, 1]× [−1, 1]×
x(4)- speed speed [−1, 1] [−1, 1]

x(4)- turn rate
u(1)- acceleration
u(2)- angular acceleration τ = 0.5, W = {0}

The misclassification rate of the trained classifier NC is defined as:

errC =
|E|
|L|

. (2.44)

In order to maintain the guarantee provided by the original controller C, it is very
important to correct the output of the trained representation, so that it outputs a valid
control input at every state. In case the misclassification rate is small, we can store NC
together with C̃, where

C̃ = {(x̄, ū) | x̄ ∈ E, ū ∈ C(x̄)}. (2.45)

The final deployable controller Ĉ consists of both NC and C̃, and is defined as

Ĉ(x̄) :−
{
Iu−1(argmax(NC(x̄))) if x̄ /∈ E
C̃(x̄) if x̄ ∈ E. (2.46)

Lemma 2.3.4 Let Ĉ be as defined in Eq. (2.46). The winning domain of both Ĉ ‖ Σ̄ and
C ‖ Σ̄ for satisfying a specification Φ is the same.

2.3.4. Experimental Evaluation

We evaluate the performance of our proposed algorithms on several control systems.
Dynamics of our control systems are listed in Table 2.5. We used configurations (1) and
(2) in Table 2.5, respectively, for evaluating our methods for synthesis and deployment.
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Table 2.6.: The results of regression-based controller synthesis for finite abstractions.
X̄ × Ū indicates the number of discrete state-input pairs, eF , eB denote the
soundness errors, respectively, for the forward and backward representations,
computed using Eq. (2.28), dF and dB give the graph mismatch rates for the
forward and backward dynamics using using Eq. (4),MT gives the memory
needed to store the original transition system in kB, MF +MB denotes
the memory taken by the representing neural networks for the forward and
backward dynamics in kB, Tc denotes the total execution time for computing
the compressed representations in minutes. and Ts denotes the total execution
time for synthesizing the controller in minutes.

Case study |X̄| × |Ū| eF eB dF dB MT (kB) MF +MB (kB) Tc (min) Ts (min)

2D car 810000

[
1.02× 10−2

1.58× 10−2

] [
2.81× 10−2

1.17× 10−2

]
6.81× 10−1 9.64× 10−1 7.76× 104 488 68.58 8.55

3D car 451584

2.05× 10−2

2.19× 10−2

2.26× 10−2


2.48× 10−2

1.76× 10−2

2.32× 10−2

 7.11× 10−1 7.85× 10−1 1.35× 105 488 65.46 14.50

4D car 4967424


1.71× 10−2

2.40× 10−2

1.62× 10−2

1.96× 10−2




2.05× 10−2

1.54× 10−2

1.35× 10−2

1.25× 10−2

 4.24× 10−1 2.87× 10−1 5.58× 106 488 446.23 20.55

5D car 30735936


1.41× 10−2

1.18× 10−2

1.97× 10−2

2.22× 10−2

1.93× 10−2




2.11× 10−2

1.79× 10−2

1.13× 10−2

1.65× 10−2

2.45× 10−2

 5.34× 10−1 4.25× 10−1 3.64× 108(OOM) 488 3025.14 312.15

Inverted pendulum 17360

[
2.53× 10−2

3.44× 10−2

] [
2.31× 10−2

2.97× 10−2

]
6.50× 10−1 5.61× 10−1 2.27× 104 488 68.58 4.18

TORA 1433531


2.53× 10−2

2.67× 10−2

2.39× 10−2

2.24× 10−2




2.21× 10−2

2.57× 10−2

1.88× 10−2

3.03× 10−2

 4.34× 10−1 4.15× 10−1 1.57× 107 488 241.48 166.16

Table 2.7.: The results of classifier-based controller synthesis for finite abstractions. X̄×Ū
indicates the number of discrete state-input pairs, errF , errB denote the
soundness errors, respectively, for the forward and backward representations,
computed using Eq. (2.36), dF and dB give the graph mismatch rates for the
forward and backward dynamics,MT gives the memory needed to store the
original transition system in kB,MF +MB denotes the memory taken by the
representing neural networks for the forward and backward dynamics in kB, Tc
denotes the total execution time for computing the compressed representations
in minutes. and Ts denotes the total execution time for synthesizing the
controller in minutes.

Case study |X̄| × |Ū| errF errB dF dB MT (kB) MF +MB (kB) Tc (min) Ts (min)

2D car 810000 2.75× 10−2 3.27× 10−2 2.65× 10−2 2.93× 10−2 7.76× 104 1.33× 104 68.58 10.71

3D car 451584 2.71× 10−4 2.21× 10−6 3.71× 10−5 9.47× 10−7 1.35× 105 1.91× 104 50.74 12.11

4D car 4967424 6.24× 10−4 0 2.84× 10−4 0 5.58× 106 2.37× 104 565.13 24.58

5D car 30735936 3.41× 10−5 5.33× 10−8 3.21× 10−5 2.19× 10−8 3.64× 108(OOM) 3.27× 104 3421.21 215.88

Inverted pendulum 17360 6.03× 10−2 5.85× 10−2 0 0 2.27× 104 2.08× 104 8.21 8.33

TORA 1433531 1.27× 10−1 1.26× 10−1 1.55× 10−1 1.48× 10−1 1.57× 107 2.38× 104 234.87 159.75
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We construct the transition system in all the case studies using the sampling approach in
[93]. This approach generates TF using sampled trajectories while providing confidence
on the correctness of TF . Our experiments were performed on a cluster with Intel Xeon
E7-8857 v2 CPUs (32 cores in total) at 3GHz, with 100GB of RAM. For training neural
networks, we did not use a distributed implementation as we found that distributing
the process across GPUs actually decelerates the process. However, for the rest of our
compression and synthesis algorithms, we used a distributed implementation.

Synthesis. We considered the `∞ ball centered at (4, 4) with the radius 0.8 over the Eu-
clidean plane as the target set for the multi-dimensional car examples, [−0.5, 0.5]× [−1, 1]
for the inverted pendulum example, and [−1, 1]4 for the TORA example. To evaluate our
regression-based corrected neural method, we set the list of neuron numbers in different lay-
ers as (n+m, 20, 40, 30, 2n), select the activation functions to be hyperbolic tangent, and set
the learning rate to be λ = 0.001. As discussed in Subsection 2.3.2, the corrected neural rep-
resentations for finite abstractions can also be constructed by solving a classification prob-
lem. To evaluate this method, we set the list of neuron numbers in different layers for both
NF and NB as (n + m, 40, 160, 160, 160, 160, 160, 160, 160, 160, 500, 800, 2

∑n
i=1 |X̄(i)|),

select the activation functions to be ReLU, and set the learning rate to be λ = 0.0001. We
used stochastic gradient descent method with the corresponding learning rate for training
the neural networks [150]. Tables 2.6 and 2.7 illustrate the synthesis results related
to our experiments for finite abstractions, using the regression-based and classification-
based methods, respectively. Although we used the same neural network structure for
all the examples, soundness errors take small values that are bounded by 3.44 × 10−2

as the maximum of eF and eB in the regression-based method, and by 1.27 × 10−1 as
the maximum of errF and errB in the classification-based method. Moreover, memory
requirement of our proposed regression-based and classification-based methods at higher
dimensions remains almost constant while the size of the transition system increases
exponentially (see the illustration shown in Figure 2.23 (Left) for the multi-dimensional
car case studies). Further, we notice that the regression-based method results in higher
mismatch rates dF and dB compared to the classification-based method: on average,
5.87 × 10−1 versus 3.03 × 10−2 for dF , and 6.15 × 10−1 versus 2.96 × 10−2 for dB (see
the illustration shown in Figure 2.23 (Right) for the multi-dimensional car case studies).
Therefore, using the classification-based method, while being sound, produces a smaller
graph, which is less restrictive for the synthesis purpose. Most importantly, memory
requirement using both our approaches is way less than the memory needed to store the
original (forward) transition system (MF +MB <<MT ). Regression-based method
reduces the memory requirements by a factor of 1.31× 105 and up to 7.54× 105. However,
the classification-based method reduces the memory requirements by a factor of 2.01×103

and up to 1.12× 104. This shows that the regression-based method requires less memory
compared to the classification-based method.

Deployment. Table 2.8 lists our experimental results for compressing the symbolic
controllers. For NC , we set the list of neuron numbers in different layers for both NF
and NB as (n, 20, 80, 80, 80, 80, 80, 160, |Ū |), select the activation functions to be rectified
linear unit (ReLU), and set the learning rate to be λ = 0.0001. It can be noticed that

57



2. Abstraction-Based Controller Design

2D car 3D car 4D car 5D car

Case study

10
5

10
10

M
e
m

o
ry

 [
k
B

]

Regression-based Classification-based

10
-4

10
-2

10
0

G
ra

p
h
 m

is
m

a
tc

h
 r

a
te

Figure 2.23.: Left: Memory requirement of different methods for storing transition systems
of multi-dimensional cars (cf. Table 2.5) in logarithmic scale. Right: Distri-
bution of total graph mismatch rate (dF + dB) for our proposed methods in
logarithmic scale.

Table 2.8.: The results of controller compression. |C| gives the number of state-input
pairs in the original controller, errC denotes the portion of the states at which
the representing neural network produces non-valid control inputs computed
using Eq. (2.44),MC gives the memory needed to store the original controller
in kB,MĈ denotes the memory taken by the representing neural network in
kB, and T denotes the total execution time for our implementation in minutes.

Case study |C| errC MC (kB) M
Ĉ

(kB) T (min)

2D car 2.15× 106 1.85× 10−5 2.75× 105 1.21× 103 6.31

3D car 2.87× 106 2.16× 10−3 4.65× 105 1.05× 103 19.14

4D car 9.35× 107 3.63× 10−2 2.24× 106 1.35× 103 39.48

5D car 1.69× 109 4.51× 10−3 4.71× 107 1.48× 103 201.86

Inverted pendulum 8.16× 105 1.08× 10−3 7.83× 104 8.92× 102 7.51

TORA 4.78× 107 3.78× 10−4 7.65× 106 8.92× 102 113.97

errC is very small for all the examples. Therefore, we only need to store a very small
portion of C in addition to NC . As it can be observed in Table 2.8, our method has
been successful in computing representations which are very accurate and compact-in-size
(MĈ <<MC).
Parametrization. Our approach requires selecting the hyperparameters of the training
process and choosing the structure of the neural networks. We have performed several
experiments to select the hyperparameters of the training (e.g., the learning rate, epoch
number, and batch size). Regarding the structure of the neural networks, we have
explored different choices such as the type of the activation functions (hyperbolic tangent,
ReLU, etc.), number of neurons per layer, and the depth. Increasing the complexity of
the neural network, by increasing the number of neurons per layer or depth, leads to
a better performance. Note that the neural networks employed in our setting are not
supposed to make any generalization over unseen data. Therefore, our approach does not
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Figure 2.24.: Demonstrating the effect of increasing the depth of the neural representation
on the norm of the soundness error eF (cf. Eq. (2.28)) for regression-based
controller synthesis (Left), the soundness error errF (cf. Eq. (2.36)) for
classification-based controller synthesis (Middle), and the misclassification
rate (cf. Eq. (2.44)) for deployment (Right). The experiments are performed
on the 3D car example.

suffer from over-parametrization of the neural networks. We have demonstrated this in
Figure 2.24 by providing the error as a function of the depth of the neural representation
for the 3D car example. The error always decreases by increasing the depth of the neural
representation. Therefore, the structure of the neural representations can be selected for
having an acceptable accuracy within a given time bound for the training process.

2.4. ABCD for Multi-Agent Systems with Reach-Avoid
Specifications

We consider the decentralized feedback controller synthesis problem for multi-agent,
nonlinear systems against temporal reach-avoid specifications. By multi-agent, we mean
that the systems under study are composed of a number of concurrently executing
components. Each component is modeled as a possibly nonlinear dynamical system that
evolves under the influence of a control as well as an environmental disturbance. Our
specifications require that the global state of the system eventually reaches a target while
avoiding certain bad states along the way. While the dynamics of each component is
independent of the others, the overall trajectories are coupled by the global specification.
Decentralized means that we require a solution in which each component has a local
feedback controller that sees only the local state, but the combination of all the closed
loops satisfy the global specification. Above all, our goal is to ensure the resulting
controllers are provably correct against the worst-case model of disturbances.
Such multi-agent control problems are ubiquitous in the domain of robotics, where

a number of (possibly heterogeneous) mobile robots move concurrently in a shared
workspace. A global specification can ask, for example, that a set of robots be able
to reach certain locations while avoiding collisions among themselves or with obstacles
in the environment, or that a set of drones fly in formation while reaching a target.
Indeed, automatic generation of decentralized controllers is a classical problem in robotics,
artificial intelligence, and control theory, and there is an enormous literature on the
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Figure 2.25.: Overall algorithm: The blue block on the left (centrally) computes a joint
open-loop nominal trajectory for the overall system. The green block on the
right computes decentralized controllers for tracking the nominal trajectory
using Abstraction Based Controller Design (ABCD).

{
Σi
}
i∈[1;N ]

is a set of
N agents, Φ is a global reach-avoid specification, ε is a robustness margin,
ρ1, . . . , ρN are the local projections of the nominal trajectory, ηx, ηu are
parameters used in ABCD, and C1, . . . , CN are the sought local feedback
controllers for the individual agents.

subject—too many to enumerate—across these disciplines.
Despite the large body of research, few techniques today can handle all our desiderata.

Multi-agent planning algorithms, such as (hybrid variants of) A* search, scale to large
systems but typically either disregard or simplify the underlying dynamics and work with
geometric or discrete models, or disregard the effect of disturbances or nonlinear dynamics.
Most planning and trajectory optimization techniques handle the nominal dynamics, i.e.,
the dynamics free of disturbances, and construct open-loop controllers. However, the
open-loop behaviors do not guarantee satisfaction of the specifications in the presence of
disturbances. On the other hand, correct-by-construction controller synthesis techniques
from control theory, such as abstraction-based control design (ABCD) or Hamilton-Jacobi
techniques, handle precise models of nonlinear dynamics and the effects of disturbance,
but are difficult to scale beyond about 10 dimensions.
We provide a simple but effective combined approach. We use a global planning

approach for nominal trajectory generation and a local correct-by-construction feedback
controller synthesis approach for guaranteed adherence to specification for each component
in the presence of disturbances. Figure 2.25 shows the overall algorithm. In the first step,
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Figure 2.26.: Illustration of the trajectories generated by the open-loop controller for
the crane and vehicle example under disturbance-free (left) and perturbed
(right) situations.

given a set of control systems, one for each component, and a reach-avoid specification on
the global state space, we use a trajectory planner to find a nominal open-loop controller
for the global system. The trajectory planner ignores the effect of disturbances, but takes
a robustness parameter ε. The role of the robustness parameter is to ensure that the
specification is robustly satisfied: Every trajectory within an ε-tube of the open-loop
trajectory also satisfies the specification.

Next, we project the unique open-loop trajectory produced by the open-loop controller
on to a nominal trajectory for each individual component. The robustness of the trajectory
means that there is a tube around each nominal trajectory. In a second step, we solve a
number of local guaranteed tracking control problems, where we synthesize correct-by-
construction controllers whose objective is to track the nominal trajectory while staying
within the tube. The overall algorithm is more scalable and guarantees satisfaction of the
global specification.
We show empirically that our algorithm is able to generate provably correct feedback

controllers for many systems for which neither technique is individually effective. Of
course, since we decompose the problem, it is possible that there is no controller for a
particular choice of the robustness parameter, or indeed, for other parameters used by the
individual tools. In that case, there is an outer loop that searches through the parameter
space.
We have implemented our approach in an open-source tool called GAMARA (stands

for GuAranteed Multi-Agent Reach-Avoid control) by combining the following two tools:
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the ALTRO open-loop trajectory planner [78] and the SCOTS correct-by-construction
controller synthesis tool [152]. ALTRO is a state-of-the-art trajectory planning tool based
on optimal control. It handles nonlinear dynamics and scales to large dimensions, but
ignores disturbances or modeling uncertainties. SCOTS implements a highly parallelizable
ABCD algorithm that generates a feedback controller for satisfying temporal specification.

We empirically evaluate GAMARA on a number of multi-robot benchmarks, including a
coordinated reach-avoid problem for ground robots, a formation control problem for drones,
and a lane merging schenario for autonomous vehicles. In each case, we demonstrate
that GAMARA can find decentralized and correct controllers within reasonable time and
memory bounds.

Figure 2.26 shows a concrete multi-robot reach-avoid scenario with an overhead crane
hanging from a trolley along a horizontal rail and a cart that drives underneath the
crane in the same horizontal axis. The goal is to move the crane and the vehicle such
that they do not collide. Figure 2.26 (left) shows an animation of a possible open-loop
behavior from an initial configuration (Frame 1) to a final one (Frame 4), where the crane
and the vehicle have crossed each other. The trajectory is generated by accelerating the
trolley, causing the crane to swing up and thus creating enough space for the vehicle to
pass. Unfortunately, in the presence of disturbances, such as wind or a slippery floor, a
trajectory may not be free of collisions: the same open-loop behavior can cause a collision
(Figure 2.26 right). Instead, GAMARA computes a global robust trajectory for the system;
the robustness parameter ensures a “wider berth.” The global trajectory is projected to
the crane and the vehicle, and we compute guaranteed tracking controllers that ensure
there is no collision despite the disturbances. In our experiments, planning with ALTRO
took less than a second and feedback controller synthesis with SCOTS about 10 minutes.
At the same time, a global approach to find a correct solution does not scale. The global
state space is 1010 times larger and SCOTS timed out with 1.5 TB of memory. The
content of this section is based on our paper [120].
Related Work. The field of multi-agent planning is too large for a comprehensive survey;
we point to the text books [108, 109, 39, 153] for an introduction. We categorize closely
related work into (1) those combining planning and tracking controller synthesis, (2) those
addressing formal multi-agent controller synthesis, and (3) those combining (1) and (2).
We provide a survey of these categories.

Combining planning and tracking. Techniques combining high-level planning and low-level
tracking are a staple of classical planning and control. More recently, several techniques
consider the problem of formal guarantees for such planners. Existing works differ in the
dynamics that they can handle (e.g., linear or nonlinear), considered class of specifications,
including disturbances, and scalability. A common approach is to perform the high-level
planning over a lower dimensional model and then use Sum-of-Squares programming (SOS),
Hamilton Jacobi (HJ), or satisfiability modulo convex programming (SMC) to obtain a
low-level controller ensuring a bounded error between the two models [74, 125, 163, 137].

In contrast to [74, 163], our method does not require finding a linear mapping between
the low and high dimensional models. Meyer et al. [125] considered reach-avoid problems
for perturbed non-linear control affine systems. They create a lower dimensional model
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and use SOS programming to compute a controller ensuring a bounded error between
the two models. Then, they use ABCD to compute a controller for the low-order model
while taking the error into account. While their method can provide guarantee against
worst-case disturbances, it is not clear if SOS always scales to the higher dimensions.

Nilsson et al. [137] provide a method that decomposes the state space into a lower-order
planning space, and a higher-order internal dynamics space, so that fast planning and
accurate tracking can be achieved using a set of control barrier functions computed based
on SOS. Despite providing guarantees for the worst-case bounded disturbances, their
method is not capable of solving reach-avoid tasks which involve dynamic obstacles as in
the multi-agent case. While we have chosen SCOTS since the underlying algorithm can be
effectively parallelized [95], in principle, we could also use SOS, HJ, or SMC approaches.
Other works only consider special classes of models such as linear [58, 187, 148],

disturbance-free [174, 59, 166], or finite transition systems [192]. In contrast, our method
supports arbitrary nonlinear dynamics and provides a guarantee against worst-case
bounded disturbances.

Formal multi-agent synthesis. Chen et al. [37] provide a method, using control barrier
functions, that requires some form of inter-robot communication and does not consider
external disturbances. Sahin et al. [156] propose a method that requires the group of
robots to be homogeneous. There are methods which do not consider external disturbances
and do not provide formal guarantees [86].

Combinations. Alonso-Mora et al. [5] provide a method for formation control of a group
of communicating homogeneous robots. They first synthesize a nominal controller using a
fast randomized geometric planning method, namely RRT, and then use optimal control to
track the obtained nominal solution. Unlike us, they neither consider external disturbances
nor provide formal guarantees. Pant et al. [141] have studied multi-quadrotor missions
with signal temporal logic (STL) specifications. They find the reference trajectory by
maximizing robustness of the STL specification, and then synthesize tracking controllers.
Their method can only handle specifications with bounded horizon and does not provide
any guarantee against disturbances.
Xiao et al. [190] propose a method for synthesis of distributed controllers for a set of

autonomous vehicles in a lane merging situation. They consider only linear systems as
vehicle models, use global optimal control to find a nominal controller, and employ local
control barrier functions with safety constraints. Their designed controllers is not provably
safe in the presence of disturbance and can occasionally violate the safety constraints.
Nikou et al. [136] have studied the problem of robust navigation for multi-agent systems
based on nominal reference trajectory and pre-computed feedback controllers. Their
approach requires sensing capabilities of the agents to avoid collision. In contrast, our
method does not requires any sensing capabilities of the agents. Sun et al. [170] have
studied motion planning of multi-agent systems with linear temporal logic (LTL) specifi-
cations, under the presence of disturbances and denial of service attacks. Their approach
uses SMC programming to compute a feasible nominal trajectory and employs feedback
controllers to gain robustness. Despite being able to provide guarantees against distur-
bances, their implementation is centralized, thus the required time increases significantly
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Table 2.9.: Features of the publicly available tools compared to GAMARA. Note that
some of these tools can handle richer classes of specifications, compared to
the reach-avoid problem handled by GAMARA.
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GAMARA 3 3 3 3

SCOTS [152] 3 3

ALTRO [78] 3

FastTrack [74] 3 3

RealSyn [58] 3

Factest [59] 3

Model mismatch (SOS) [163] 3

RTD [100] 3 3

Fly-by-Logic [141] 3 3 3

Distributed team lift [86] 3 3

for high-dimensional reach-avoid specifications.
There are other works that use a pre-defined motion primitive library to perform

planning for multi-robot systems [155, 18, 64, 50]. In contrast, our method deals with
the dynamical model directly.

Our construction can also be seen as an assume-guarantee technique that decomposes
the global problem based on nominal trajectory tubes. Similar decompositions have been
studied in the discrete case [6, 117]. The closest related work that matches our level of
generality is the work by Bansal et al. [17]. However, they assume that each robot has its
own reach-avoid specification while avoiding collision with the other robots. In contrast,
we allow global reach-avoid specifications, which subsume their class of specifications. In
fact, there are control problems that can be easily handled by our approach and cannot
be encoded in their setting. An example is robots maintaining a formation while fulfilling
their tasks [5].
A subset of approaches listed above have available implementations. In Table 2.9, we

summarize the main features of the publicly available tools. We highlight that our tool
GAMARA is the only one that fulfills all the criteria.
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2.4.1. Problem Statement

We now consider the decentralized controller synthesis problem for a set of control systems
{Σi} w.r.t. a global reach-avoid specification Φ = ¬Avoid U Goal , where Avoid ,Goal ⊆
X× are subsets of the product state space.

First, we define a robust version of the control specification. Let ε ∈ Rn>0 be a robustness
margin. We define the ε-robust version of Φ, denoted by Φε := (¬Avoid ′ U Goal ′), where
Avoid ′ = Avoid ⊕ Ωε(0) and Goal ′ = Goal 	 Ωε(0), and ⊕ and 	 are set operators
denoting the Minkowski addition and difference, respectively. Intuitively, if a trajectory
x0, x1, . . . satisfies Φε, then any trajectory y0, y1, . . . such that ‖xi − yi‖ ≤ ε satisfies Φ.

Problem 2.5 (Decentralized Controller Synthesis) Inputs: Control systems
Σi = (Xi, xiin, U

i,W i, f i), i ∈ [1;N ], global specification Φ = ¬Avoid U Goal , and
A robustness margin ε ∈ Rn>0.
Outputs: Local feedback controllers {Ci} for {Σi}, i ∈ [1;N ], such that {Ci} ‖ {Σi}
realizes Φ.

It is important to notice that any solution for this problem is required to provide a
formal guarantee on the satisfaction of Φ, i.e., the reach-avoid specification Φ must be
satisfied under every value of the disturbances affecting the control systems. Further,
the solution must not require any information exchange between the different agents.
Embedding this feature simplifies implementation by eliminating the need for regular
synchronization between agents at run time.

2.4.2. Solution Outline

To solve the decentralized control problem, we first plan a high-level nominal trajectory
for the product system by ignoring the disturbances, and then synthesize low-level
formally verified controllers for robustly tracking the nominal trajectory under worst-case
disturbances. We summarize our approach for solving Problem 2.5 in Algorithm 7. The
approach is composed of three main steps: (1) Synthesize a global open-loop controller
for the nominal system as a single planner task on the product system to satisfy Φε;
(2) Project the controller into local controllers and obtain a nominal trajectory for each
system; and (3) Design local closed-loop controllers to track the nominal trajectory
while always staying within the robustness margin. The soundness of the technique is
summarized below.

Theorem 2.4.1 Local feedback controllers {Ci} synthesized by Algorithm 7 guarantee
that the the product system {Ci} ‖ {Σi} realizes the global specification Φ.

Proof Note that Φε is a stronger version of Φ and is intentionally made conservative
to allow for ε-deviation in the trajectory of the product system. Since {ρi} is the unique
solution of the nominal product system and satisfies Φε, it is guaranteed that ε-perturbation
of this nominal trajectory satisfies Φ. It can be observed that all solutions of Σi stay within
distance εi of the nominal trajectory ρi regardless of the disturbance. This completes the
proof.
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Algorithm 7: Multi-agent controller synthesis

1. For every i, let Σi
nom = (Xi, xiin, U

i, {0}, f i) be the nominal control system of Σi

that ignores the disturbance. Compute the product control system Σ×nom of
{Σi

nom}. Use a scalable planner to compute a nominal open-loop controller
C×nom : [0;T ]→ U× such that the specification Φε is satisfied by C×nom . Σ×nom .
Note that T is the first time the set Goal ′ is visited.

2. Decompose C×nom into local open-loop controllers {Cinom} for the set of {Σi
nom} by

projecting the output of C×nom into local input spaces U i. Further, for every i, find
the unique nominal open-loop trajectory ρi = (xi0,nom , . . . , x

i
T,nom) of Cinom . Σi

nom .
These trajectories are unique since there is no disturbance.

3. Let εi ∈ Rni>0, i ∈ [1;N ], be the projections of ε compatible with the state
dimensions of Σi. Each control system Σi uses a guaranteed tracking method to
compute a closed-loop controller Ci such that Ci ‖ Σi tracks the nominal trajectory
ρi and stays within its εi-neighborhood, i.e., Ci ‖ Σi satisfies the specification

Φi
track :=

∧
k∈[0;T ]

©kΩεi(x
i
k,nom). (2.47)

Next, we discuss some implementation details of Algorithm 7 for the global open-loop
planner (Step 1) and the local guaranteed trajectory tracking (Step 3) in our tool GAMARA.
Note that Step 2 is a simple projection from the product space into local spaces. While
we instantiate particular techniques, our method can be used with other implementations
as well.

2.4.3. Open-loop Planning

The planner used for generating nominal trajectories in Step 1 of our algorithm should be
fast and scalable. In addition, it should be capable of handling non-linear dynamics and
constraints. Our choice for the planner is ALTRO [78]. ALTRO is a fast and numerically
robust solver for constrained trajectory optimization problems and and is capable of
handling nonlinear state and input constraints. Given a product system Σ×nom , reach-
avoid specification Φε and time horizon T , ALTRO computes an open-loop controller
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C×nom : [0;T ]→ U× by solving the optimization

minimize
u×0 ,u

×
1 ,...,u

×
T

`T (x×T ) +
T−1∑
k=0

`k(x
×
k , u

×
k )

subject to x×k+1 = f×(x×k , u
×
k ), ∀k ∈ [0;T − 1]

g(x×k , u
×
k ) ≤ 0, ∀k ∈ [0;T ]

h(x×k , u
×
k ) = 0, ∀k ∈ [0;T ],

where `k(·, ·) denotes a quadratic objective function assigning cost to each pair of state and
input before the end of horizon, `T (·) represents a quadratic objective function assigning
penalty to the final state x×T being away from the goal set Goal ′. The constraints
g(x×k , u

×
k ) ≤ 0 and h(x×k , u

×
k ) = 0 capture the requirement that at each time k the state

should not be in Avoid ′, the state x×T should be in Goal ′, and the input u×k should always
be in U×. In multi-robot scenarios, the inequality constraints can be used to define
collision and obstacle avoidance specifications and the equality constraints can define
fixed formation specification. Note that the reach-avoid specification is fulfilled if the
corresponding equality and inequality constraints (i.e., g(·) ≤ 0, h(·) = 0) are satisfied at
every time-step and thus choice of the quadratic objective function (`k for k ∈ [0;T ]) is
not crucial.

Remark 10 ALTRO only supports bounded horizon control problems. For this reason,
we model the states in Goal ′ as a sink state and select a time horizon T for solving the
planning task on the nominal product system. We increase the horizon T if ALTRO is
not able to find a controller. We remark that this is an ALTRO-specific implementation
detail, and our overall method does not rely on a fixed time horizon.

2.4.4. Guaranteed Trajectory Tracking

Trajectories computed in the planning stage might not be followed in the presence of
disturbance and therefore we need to use a formally guaranteed tracking controller to
satisfy the given reach-avoid specification. We use abstraction-based controller design
(ABCD) for Step 3. ABCD can handle nonlinear dynamics, (bounded) uncertainties, and
ω-regular specifications. In particular, we use the implementation of ABCD in the tool
called SCOTS [152].

Optmization: Local ABCD around the nominal trajectory. The abstraction pro-
cess of ABCD usually requires computation of abstract transitions over the whole compact
set X, which is computationally expensive. Luckily, for Step 3 of Algorithm 7, we only
need to compute transitions in the ε-neighborhood of the given nominal trajectory. Given a
control system Σ, together with a reference open-loop trajectory ρ = (x0,nom , . . . , xT,nom)
and a tube size ε ∈ Rn>0, we iteratively construct a tube as union of ε-balls around the
reference trajectory (note that we have omitted the system index i for simpler notation).
Next, we compute finite state abstraction for Σ for the chosen parameters ηx, ηu by
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setting

X :=
T⋃
k=0

Ωε(xk,nom).

In practice, this local computation of the abstraction is the key to scalability.

Remark 11 Our decentralized controller synthesis approach features an interplay between
the global open-loop planning and local formal synthesis via the robustness parameter ε
and the discretization parameters ηx, ηu. The parameter ε should be large enough to allow
deviation from the nominal trajectory caused by the disturbance. A small ε makes the
local specification Φi

track difficult for ABCD synthesis thus requiring large computational
complexity with smaller discretization parameters ηx, ηu. On the other hand, large ε
makes the specification Φε very conservative or infeasible for the global open-loop planning.
Therefore, appropriate parameters should be selected iteratively for a successful controller
synthesis.

2.4.5. Hybrid vs Geometric Planning

Note that Step 3 of Algorithm 7 does not use the nominal controller obtained in Step 1
and requires only the nominal trajectories. Then one could argue that, instead of using
ALTRO to generate nominal trajectories, a fast geometric planner [92] can be employed
to generate geometric plans. However, fast geometric planners do not usually take into
consideration the dynamics and control constraints. In our experience, the plans for
nominal trajectories generated while ignoring the system dynamics are often untrackable
unless the underlying system has special properties (e.g., differential flatness [131]). This
is especially true for systems with restricted control capabilities or under-actuated systems.
We demonstrate this phenomenon on a control system Σ that is a simple 2-dimensional
pendulum with the following nominal dynamics:

ẋ(1) = x(2) ẋ(2) = − sin(x(1)) + u/5,

where x1 represents the angle (in Radian) of the pendulum rod measured counter-
clockwise from the vertical downward position, and x2 represents the rate of change of x1

or the angular velocity. Suppose the initial state of the pendulum is (0, 0), i.e., when the
pendulum is in the vertical downward position and is stationary. Suppose we want to
find a controller for the goal Goal = {(π, 0)}, i.e., when the pendulum is in the vertical
upward position and is stationary. The set of unsafe states Avoid is empty, i.e., no safety
constraint is imposed. When we use ALTRO to compute an open-loop controller C,
unsurprisingly, the controlled trajectory of C . Σ looks like a spiral, as shown in blue
Figure 2.27.
The synthesis of tracking controller using ABCD is indeed successful when we feed

this nominal trajectory to our ABCD solver. However, if we use a geometric planner
for this example that ignores the dynamics, the nominal trajectory would be a straight
line path from (0, 0) to (π, 0) (shown using a dashed line in Figure 2.27), which gives an
infeasible tracking problem for ABCD, due to the restrictions on possible trajectories of
the pendulum coming from the its dynamics.
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Figure 2.27.: The state trajectory of the inverted pendulum: the red point is the initial
state, the green point is the final state, the blue spiral is the nominal
trajectory obtained from ALTRO, and the dashed straight line is a geometric
plan.

Table 2.10.: Runtimes for four case studies. Run times (in seconds) for computing open-
loop controllers over the corresponding product spaces using ALTRO (T plan

g ),
number of state-input pairs of the finite abstraction for the largest ABCD task
(Nl), abstraction and synthesis times in SCOTS for that task (respectively
T abs
l and T syn

l ), number of state-input pairs of the finite state abstraction for
global ABCD (Ng), abstraction and synthesis times for computing a global
controller for the product system using SCOTS (respectively T abs

g and T syn
g ).

“OOM” denotes “out of memory” on a 1.5TB RAM machine.
Case-study Global planning Local ABCD Global ABCD

T plan
g Nl T abs

l T syn
l Ng T abs

g T syn
g

Multi-drone path planning 77.85 1.13× 108 30.75 6.66 2.70× 10110 OOM OOM
Crane and vehicle 0.65 8.56× 108 511.24 91.43 2.16× 1018 OOM OOM
Lane merging 89.02 1.07× 108 22.79 5.29 1.69× 1059 OOM OOM
Multi-drone formation control 114.34 1.55× 108 39.46 7.83 3.65× 1050 OOM OOM

2.4.6. Experimental Evaluation

We have implemented our approach in the open source tool GAMARA.1 We evaluate
the effectiveness of GAMARA on two distinct categories of problems: local reach-avoid
problems with collision avoidance and global formation control problems. We consider four
case studies: multi-drone path planning, crane and vehicle, lane merging, and multi-drone
formation control. The design of nominal controller using ALTRO for all experiments
was performed on a machine with core i5-4590 CPU at 3.30 GHz, with 16 GB of RAM.
The formal controller synthesis using SCOTS for all systems except crane system was
performed on the same machine. Controller synthesis for crane system is done on a cluster
with 4 Intel Xeon E7-8857 v2 CPUs (48 cores in total) at 3 GHz, with 1.5 TB of RAM.

In all of our case studies, the robots are moving in a two-dimensional shared workspace
(related but not exactly the same as the robots’ state spaces) that possibly has obstacles.
1GAMARA is available online: https://github.com/MehrdadZareian/GAMARA.
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Figure 2.28.: Variations of run times of local ABCD among different agents for three case
studies.

Table 2.10 shows run times for different stages of each experiment. For local ABCD, the
reported numbers correspond to the maximum value among all of the agents. This choice is
due to the fact that feedback controllers for different agents can be computed independently
in parallel over different machines. To provide a more fine-grained comparison, Figure 2.28
shows the variations of run times of the different local ABCD tasks for every experiment.
We have excluded the crane and vehicle case study in the figure due to an expected large
variance originating from different dynamics. Notice that a higher number of state-input
pairs does not necessarily result in a higher run time for local ABCD as the number
of transitions and features of the parallel implementation can play a role. We compare
GAMARA with ABCD applied to the product system to satisfy the global specification.
As reflected in Table 2.10, memory requirement for global ABCD exceeds both system’s
(laptop and cluster) limit (1.5TB of RAM) in all of the experiments.

Local Reach-Avoid with Collision Avoidance

We first consider situations when each robot has an individual reachability specification,
and they need to ensure a minimum safe distance from each other and the obstacles.
Suppose {Σi} models a set of robots, Goal i ⊆ Xi are the individual goal sets, and

δ ∈ R>0 is a safety margin for collisions. We consider each robot as a point object with a
bounding box for its physical dimensions. The parameter δ is chosen to be a constant
greater than twice the radius of the bounding box around each robot. By keeping a
distance at least δ from the other robots and the obstacles, the robots can avoid collision
in their physical domain. The parameter δ can additionally take into account statutory
minimum safe distances among the robots, such as in autonomous driving-like scenarios.
The choice of δ is completely independent of the choice of ε. The latter is a robustness
margin introduced to take into account the deviation of the system trajectories under
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Figure 2.29.: Time-state space illustration of tubes enclosing nominal trajectories for the
multi-drone path planning

external disturbances. Suppose the specification requires that each robot Σi eventually
reaches Goal i while avoiding the obstacle Obs ⊆ R2 and collision with robots by the
margin δ. The global specification on the product system Σ× is as follows:

• The goal set Goal ⊆ X× is defined as Goal := Goal1 × . . .×GoalN ⊆ X×, and

• The avoid set Avoid ⊆ X× is defined as

{x× ∈ X×|
∃i ∈ [1;N ] . dObs(x

i,Obs) ≤ δ
∨

∃i, j ∈ [1;N ] . i 6= j . dCol

(
xi, xj

)
≤ δ
}, (2.48)

where xi denotes the component of x× corresponding to Σi, dCol(·, ·) denotes a
distance metric for measuring the geometric distance between positions of two
systems located in two-dimensional space, and dObs(·, ·) denotes a distance metric
for measuring the geometric distance between the position of one system and the
obstacle Obs ⊆ R2.

In this category of problems, we apply our approach to three case studies as briefly
discussed next. The detailed models for the systems and their different parameters have
been presented in Appendix A.1, and the performance of GAMARA for these experiments
have been summarized in the first three rows on Table 2.10.
Multi-drone path planning. We consider a planning scenario for ten identical drones
(N = 10). The control objective is to synthesize a feedback controller for each drone
so that in the presence of (bounded) disturbance, beginning from the specified initial
state, the corresponding target state is reached within a finite horizon, while avoiding
collision with other drones and the physical obstacle at every time point. Figure 2.29
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gives a time-space illustration for the safe tubes around the nominal trajectories. The
tracking feedback controllers are synthesized such that every drone remains within its
safe tube until reaching its destination, even with worst-case disturbance. Additional
analysis and detailed models for the systems and their different parameters are presented
in Section A.1 in the appendix.
Crane and vehicle. The goal of this example is to study the performance of our method
for controlling a number of robots with different dynamics. The goal is to move the
overhead crane and the vehicle such that they do not collide. Formally guaranteed
controllers are computed such that the generated open loop trajectory (see Figure 2.26
(left)) is tracked even under disturbance. More detailed discussion on dynamics of systems
and further analysis are presented in Section A.1 in the appendix.
Lane merging. We study a lane merging problem wherein multiple controlled vehicles
(N = 6) are driving over two merging lanes (Figure 2.30, top frame). A dangerous
situation may occur at the merging point of the two lanes if vehicles are not controlled
properly. Different variants of this problem have been studied in the literature (see, e.g.,
[190, 189]). Without seeking to optimize fuel consumption or travel time, we set the goal
to control the vehicles to pass the merging zone safely. In particular, consider a situation
where initially three cars are driving on each of the two lanes (Figure 2.30, (top)). The
control objective for each vehicle is to pass the red dashed line within a finite horizon
without hitting the road’s sides or colliding with other vehicles. Figure 2.30 demonstrates
snapshots of one sample trajectory when feedback controllers are employed under the
presence of bounded disturbance. Additional analysis, systems’ dynamics and parameters
are reported in Section A.1 in the appendix.

Global Formation Control Problem

The second category of examples are about maintaining a global formation while satisfying
a set of reach-avoid specifications. We show how the formation control problem can be
expressed using a static obstacle Avoid on the product state space X×.
Let us first formalize the notion of formation. Let

{
Σi = (Xi, xiin, U

i,W i, f i)
}
be a

set of robots. A formation constraint is a set
{
λi,j ∈ R

}
i,j∈[1;N ]

where every λi,j specifies
the relative Euclidean distance between the projections of state of robot Σi and robot Σj .

Now suppose Goal i ⊆ Xi are the individual goal states, Obs ⊂ R2 is a common obstacle
δ ∈ R>0 is a safety margin, and µ ∈ R>0 is a tolerance margin for the formation constraint.
The formation control problem then asks to generate controllers {Ci} such that every
robot Σi eventually reaches Goal i while avoiding Obs by the margin δ, as well as while
making sure that the Euclidean distance between robots Σi and Σj is in the range λi,j±µ.
Essentially the tolerance margin µ is to account for the possible slight deviations due
to disturbances experienced by the robots. Notice that since the robots have their own
goals but at the same time they need to “stay close” to their neighboring robots in the
formation for the entire period, they might first need to accompany the other robots to
their goals, before being accompanied by them to reach their own goal. We can express
the formation control problem in the product state space as follows:
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Figure 2.30.: Illustration of a sample trajectory generated by formally guaranteed con-
trollers for the lane merging example
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Figure 2.31.: Illustration of a sample trajectory generated by the feedback controllers for
the formation control example

• The goal set Goal⊆X× is defined as Goal :=Goal1× . . .×GoalN , and

• The avoid set Avoid ⊆ X× is x× ∈ X×
∣∣∣∣∣∣

∃i ∈ [1;N ] . D(xi,Obs) ≤ δ
∨

∃i, j ∈ [1;N ] . i 6= j . d
(
xi, xj

)
/∈ λi,j ± µ

 , (2.49)

where the last disjunction in the definition of Avoid is the restriction required for main-
taining the formation, and the rest are required in order to avoid hitting the obstacle.
Multi-drone formation control. Consider a formation control scenario where a set
of five drones (identically modeled) need to go from a specified start point to a certain
destination (both defined over the corresponding state spaces) within a finite horizon, while
four of them forming a diamond around a fifth drone (positioned at the diamond’s center)
at every time point. There are two square obstacles from which the group needs to keep a
certain minimum distance at all of the time points. Figure 2.31 illustrates four sequential
frames of a sample perturbed trajectory generated by employing formally guaranteed
feedback controllers. Notice that both relative position and orientation between drones
are kept (almost) constant throughout the journey. Further analysis can be found in
Section A.1 in the appendix.

2.5. Conclusion

In this chapter, we have explored the realm of non-linear dynamical systems with bounded
disturbances, aiming to extend the scope of abstraction-based controller design for
infinite-horizon temporal specifications. Within this context, we identified three primary
limitations of the ABCD method: (1) its dependence on knowing the analytical dynamics,
(2) its substantial memory requirements, and (3) its limited applicability in multi-agent
scenarios.
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In Section 2.2, we introduced a data-driven approach that learns an abstraction
conforming to specified confidence levels, enabling the synthesis of controllers for infinite-
horizon temporal specifications.
In Section 2.3, we proposed a memory-efficient method that employs neural repre-

sentations for both the finite abstraction and the computed controller. Our extensive
experiments demonstrated the successful reduction of memory requirements in comparison
to the basic implementations of ABCD method.
Finally, in Section 2.4, we addressed scenarios involving a heterogeneous population

of agents tasked with joint reach-avoid objectives, all while operating without inter-
agent communication. Our method comprises a centralized planning phase for computing
nominal temporal-spatial (open-loop) trajectories for all agents, followed by a decentralized
tracking phase that employs the ABCD approach to synthesize feedback controllers
ensuring the guaranteed tracking of the open-loop trajectories computed in the initial step.
Empirical results underscored the effectiveness of our method in resolving diverse multi-
agent challenges, including formation control, lane merging, and multi-agent reach-avoid
tasks.
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3
Continuous-Time MDPs with

Reachability Specifications

Continuous-time Markov chains (CTMCs) and Markov decision processes (CTMDPs) play
a central role in the modeling and analysis of performance and dependability properties of
probabilistic systems evolving in real time. A CTMC combines probabilistic behavior with
real time: it defines a transition system on a set of states, where the transition between two
states is delayed according to an exponential distribution. Any state of the system may
have multiple possible next states, each with an associated exponentially-distributed delay.
The next state is chosen according to a race condition among these delays. A CTMDP
extends a CTMC by introducing non-deterministic choice among a set of possible actions.
It consists of a finite set of states, a finite set of actions, and for each action, a transition
rate matrix that determines the rate (in an exponential distribution in continuous time)
to go from one state to the next when the action is chosen. A policy for a CTMDP
maps a timed execution path to state-dependent actions. Given a fixed policy, a CTMDP
determines a stochastic process in continuous time, where the rate matrix determines the
distribution of switches. Both CTMCs and CTMDPs have been used in a large variety of
applications —from biology to finance.

The time-bounded reachability problem is at the core of model checking of CTMCs and
CTMDPs with respect to stochastic temporal logics [15] and has been extensively studied
[31, 133, 186, 134, 32]. The time-bounded reachability problem asks, given a CTMDP
M with a designated “good” state, a time bound B, and a rational vector r, whether
there exists a policy that controls the Markov decision process such that the probability
of reaching the good state from state s within time bound B is at least r(s). While
the decidability of the time-bounded reachability problem remains an open question for
CTMDPs, [9] demonstrated its decidability for CTMCs using tools from number theory.
Furthermore, approximating the time-bounded reachability probability for both CTMCs
and CTMDPs with large state spaces is computationally expensive. In this chapter, we
focus on the time-bounded reachability of CTMCs and CTMDPs from both decidability
and scalability perspectives.
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3.1. Preliminaries

Definition 3.1.1 A continuous-time Markov decision process (CTMDP) is a tupleM =
(S,D,Q) where

• S = {1, 2, . . . , n} is a finite set of states for some n > 0;

• a set D =
∏n
s=1Ds of decision vectors, where Ds is a finite set of actions that can

be taken in state s ∈ S;

• Q is a D-indexed family of n× n generator matrices; we write Qd for the generator
matrix corresponding to the decision vector d ∈ D. The entry Qd(s, s′) ≥ 0 for s′ 6= s
gives the rate of transition from state s to state s′ under action d(s), and Qd(s, s′) is
independent of elements of d except d(s). The entry Qd(s, s) = −

∑
s′ 6=sQ

d(s, s′).

A CTMDPM = (S,D,Q) with |D| = 1, i.e., when only a unique action can be taken
in each state, is called a continuous-time Markov chain (CTMC) and is simply denoted
by the tuple (S,Q), and with abuse of notation, we also write Q for the unique generator
matrix. The CTMDPM reduces to a CTMC whenever a decision vector d is fixed for
all time on the CTMDP.

Intuitively, Qd(s, s′) > 0 indicates that by fixing a decision vector d, a transition from s
to s′ is possible and that the timing of the transition is exponentially distributed with rate
Qd(s, s′). If there are several states s′ such that Qd(s, s′) > 0, more than one transition
will be possible, and there will be a race condition among the exponentially distributed
transition times associated with the potential successor states.
For each decision vector d ∈ D and any s ∈ S, the total rate of taking an outgoing

transition from state s when d is fixed is given by Ed(s) =
∑

s′ 6=sQ
d(s, s′), By fixing this

decision vector d, a transition from a state s into s′ occurs within time t with probability

P(s, s′, t) =
Qd(s, s′)

Ed(s)
.(1− e−Ed(s)t), t ≥ 0.

Intuitively, 1−e−Ed(s)t is the probability of taking an outgoing transition at s within time t
(exponentially distributed with rate Ed(s)) andQd(s, s′)/Ed(s) is the probability of taking
transition to s′ among possible next states at s. Thus, the total probability of moving
from s to s′ under the decision d in one transition, written Pd(s, s′) is Qd(s, s′)/Ed(s).
A state s ∈ S is called absorbing if and only if Qd(s, s′) = 0 for all s′ ∈ S and all decision
vectors d ∈ D. For an absorbing state, we have Ed(s) = 0 for any decision vector d and
no transitions are enabled. The initial state of a CTMDP is either fixed deterministically
or selected randomly according to a probability distribution α over the set of states S.

Consider a time interval [0, B] with time bound B > 0. Let Ω denote the set of all right-
continuous step functions f : [0, B] → S, i.e., there are time points t0 = 0 < t1 < t2 <
. . . < tm = B such that f(t′) = f(t′′) for all t′, t′′ ∈ [ti, ti+1) for all i ∈ {0, 1, . . . ,m− 1}.
Let F denote the sigma-algebra of the cylinder sets

Cyl(s0, I0, . . . , Im−1, sm) := {f ∈ Ω | ∀0 ≤ i ≤ m · f(ti) = si ∧ i < m⇒ (ti+1− ti) ∈ Ii}.
(3.1)
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for all m, si ∈ S and non-empty time intervals I0, I1, . . . , Im−1 ⊂ [0, B].

Definition 3.1.2 A policy π is a function from [0, B] into D, which is assumed to be
Lebesgue measurable. Any policy gives a decision vector πt ∈ D at time t such that the
action πt(s) is taken when the CTMDP is at state s at time t. The set of all such polices
is denoted by ΠB.

Any policy π together with an initial distribution α induces the probability space
(Ω,F ,Pπ

α). If the initial distribution is chosen deterministically as s ∈ S, we denote the
probability measure by Pπ

s instead of Pπ
α.

A policy π : [0, B]→ D is piecewise constant if there exist a number m ∈ N and time
points t0 = 0 < t1 < t2 < . . . < tm = B such that πt′ = πt′′ for all t′, t′′ ∈ (ti, ti+1] and all
i ∈ {0, 1, . . . ,m− 1}. The policy is stationary if m = 1. We denote the class of stationary
policies by Πst; observe that a stationary policy is given by a fixed decision vector, so Πst

is isomorphic with the set of decision vectors D. In particular, it is a finite set.

Remark 12 The policies in Def. 3.1.2 are called timed positional policies since the
action is selected deterministically as a function of time and the state of the CTMDP at
that time. A stationary policy is only positional since the selected action is independent
of time.

3.2. Decidability of Time-Bounded Reachability for
CTMDPs

As mentioned earlier, the decidability of the time-bounded reachability problem for
CTMDPs is open. Existing papers either consider time-abstract policies [15, 145, 28, 186,
134] or focus on numerical approximation schemes [31, 133, 8, 61, 32, 158, 160]. However,
policies that depend on time are strictly more powerful and the decision problem has
remained open. For the special case of continuous-time Markov chains (CTMCs), where
each state has a unique action, the time-bounded reachability problem is decidable [9].
The proof uses tools from transcendental number theory, specifically, the Lindemann-
Weierstrass theorem. One might expect that a similar argument might be used to show
decidability for CTMDPs as well.
In this section, we show conditional decidability. Our result uses, like several other

conditional results on dynamical systems, Schanuel’s conjecture from transcendental
number theory (see, e.g., [101]). Our proof has the following ingredients. First, we
use the fact that the optimal policy for the time-bounded reachability problem is a
timed, piecewise constant function with a finite number of switches [127, 135, 144]. We
show that each switch point of an optimal policy corresponds to a non-tangential zero
of an associated linear dynamical system. Second, we use the result of Macintyre and
Wilkie [113, 114] that Schanuel’s conjecture implies the decidability of the real-closed
field together with the exponential, sine, and cosine functions over a bounded domain.
The existence of non-tangential zeros of linear dynamical systems can be encoded in this
theory. Third, for each natural number k ∈ N, we write a sentence in this theory whose
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validity implies there is an optimal strategy with exactly k switch points. By enumerating
over k, we find the exact number of switches in an optimal strategy. Finally, we write
another sentence in the theory that checks if the reachability probability attained by (an
encoding of) the optimal policy is greater than the given bound.
We also study the related decision problem whether there is a stationary (i.e., time

independent) optimal policy. We show that there is a “direct” conditional decision
procedure for this problem based on Schanuel’s conjecture and recent results on zeros of
exponential polynomials [38], which avoids the result of Macintyre and Wilkie.

At the same time, we show that an unconditional decidability result is likely to be very
difficult. We show that the bounded continuous-time Skolem problem [21, 38] reduces to
checking if there is an optimal stationary policy in the time-bounded CTMDP problem.
The bounded continuous Skolem problem is a long-standing open problem about linear
dynamical systems [38, 21]; it asks if a linear dynamical system in continuous time has
a non-tangential zero in a bounded interval. Our reduction, in essence, demonstrates
that CTMDPs can “simulate” any linear dynamical system: a non-tangential zero in the
dynamics corresponds to a policy switch point in the simulating CTMDP.

Our result is in the same spirit as several recent results providing conditional decision
procedures, based on Schanuel’s conjecture, or hardness results, based on variants of the
Skolem problem, for problems on probabilistic systems. For example, Daviaud et al. [46]
showed conditional decidability of subcases of the containment problem for probabilistic
automata subject to the conditional decidability of the theory of real closed fields with the
exponential function [115, 185]. For lower bounds, Akshay et al. [4] showed a reduction
from the (unbounded, discrete) Skolem problem to reachability on discrete time Markov
chains and Piribauer and Baier [143] show that the positivity problem in discrete time
can be reduced into several decision problems corresponding to optimization tasks over
discrete time MDPs.

The content of this section is based on our paper [119]. In summary, we summarize the
main result of this section as the following theorem.

Theorem 3.2.1 (1) The time-bounded reachability problem for CTMDPs is decidable
assuming Schanuel’s conjecture. (2) Whether the time-bounded reachability problem has a
stationary optimal policy is decidable assuming Schanuel’s conjecture. (3) The bounded
continuous Skolem problem reduces to checking if the time-bounded reachability problem
has a stationary optimal policy.

3.2.1. Problem Statement

Let us define the event

Reach := ∪{f ∈ Ω | f(t) = good for some t ∈ [0, B]}. (3.2)

The event Reach defined in (3.2) is written as a union of an uncountable number of
functions but it is measurable in the probability space (Ω,F ,Pπ

α) for any α. Since the
state space is finite, Reach can be written as a countable union of cylinder sets in the
form of (3.1) by taking all the time intervals to be [0, B] and enumerating over all possible
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sequence of states (which is countable) [13]. Now, we are able to define the time-bounded
reachability problem.

Problem 3.1 (Time-bounded reachability for CTMDPs) Inputs: a CTMDP
M = ({1, . . . , n} ] {good},D,Q) with a distinguished absorbing state named good, a
time bound B > 0 and a vector r ∈ [0, 1]n

Question: Decide whether we have

sup
π∈ΠB

Pπ
s (Reach) > r(s), for all s ∈ {1, . . . , n}.

A policy π∗ ∈ ΠB is optimal if P π∗s (Reach) = supπ∈ΠB Pπ
s (Reach). Note that there are

more general classes of policies that may depend also on the history of the states in the
previous time points and which map the history to a distribution over D. It is shown
that piecewise constant timed positional policies are sufficient for the optimal reachability
probability [127, 135, 144]. That is, if there is an optimal policy from the larger class
of policies, there is already one from the class of piecewise constant, timed, positional
policies.
A closely related problem is the existence of stationary optimal policies; here, it is

possible that the optimal stationary policy performs strictly worse than an optimal policy.

Problem 3.2 Inputs: A CTMDP M = ({1, . . . , n} ] {good},D,Q) and a time
bound B > 0.
Question: Decide whether there is an optimal policy π∗ that is stationary, namely

∃π∗ ∈ Πst s.t. sup
π∈ΠB

Pπ
s (Reach) = Pπ∗

s (Reach), for all s ∈ {1, . . . , n}.

3.2.2. Characterizing the Optimal Policy

In the following, we shall assume that the CTMDPs and all bounds in the above decision
problems are given using rational numbers. That is, rates of transitions in each generator
matrix is a rational number, and the time bound B is a rational number.

Theorem 3.2.2 ([31, 127]) A policy π ∈ ΠB is optimal if dt, the decision vector taken
by π at time B − t, maximizes for almost all t ∈ [0, B]

max
dt

(QdtW π
t ) with

d

dt
W π
t = QdtW π

t , (3.3)

with the initial condition W π
0 (good) = 1 and W π

0 (s) = 0 for all s ∈ {1, 2, . . . , n}. There
exists a piecewise constant policy π that maximizes the equations.

The maximization in Equation (3.3) above is performed element-wise. Equation (3.3)
should be solved forward in time to construct the policy π backward in time due to the
definition dt = πB−t. One can alternatively write down (3.3) directly backward in time
based on πt.
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The proof of Theorem 3.2.2 is constructive [31, 127] and is based on the following sets
for any vector W :

F1(W ) = {d ∈ D |d maximizes QdW},
F2(W ) = {d ∈ F1(W ) |d maximizes [Qd]2W}, (3.4)
· · ·
Fj(W ) = {d ∈ Fj−1(W ) |d maximizes [Qd]jW}.

The sets Fj(W ) form a sequence of decreasing sets such that F1(W ) ⊇ F2(W ) ⊇ . . . ⊇
Fn+2(W ) = Fn+k(W ) for all k > 2. An optimal piecewise constant policy is the one that
satisfies the condition dt ∈ Fn+2(W π

t ) for all t ∈ [0, B]. Note that if Fj(W π
t ) has only

one element for some j, Fk(W π
t ) = Fj(W π

t ) for all k ≥ j and that element is the optimal
decision vector. The next proposition shows that when Fn+2(W π

t ) has more than one
element, we can pick any one (and in fact, switch between them arbitrarily).

Proposition 3.2.1 Let π be an optimal policy satisfying Equation (3.3). Take any t∗

such that Fn+2(W π
t∗) 6= limt↑t∗ Fn+2(W π

t ). If Fn+2(W π
t∗) = {d1,d2, . . . ,dp} for some

p > 1 and

∆i := sup {δ > 0 |di ∈ Fn+2(W π
t ) for all t ∈ [t∗, t∗ + δ)}, ∀i ∈ {1, 2, . . . , p}

Then, ∆1 = ∆2 = · · · = ∆p.
Suppose there are points δ1, δ2 such that t∗ ≤ δ1 < δ2 < t∗ + ∆1 and for all t ∈ [δ1, δ2),
we have πB−t = d for some d ∈ Fn+1(W π

t∗). If π′ is a policy that agrees with π on [0, δ1)
but for all t ∈ [δ1, δ2), we have π′B−t = d′ for some d′ ∈ Fn+1(W π

t∗) \ {d}, then π′ also
satisfies Equation (3.3) for almost all t ∈ [0, δ2).

Proof Since Fn+2(W π
t∗) = Fn+k(W

π
t∗) for all k > 2, for any di and dj belonging to the

set Fn+2(W π
t∗), we have [Qdi ]lW π

t∗ = [Qdj ]lW π
t∗ for all l ≥ 0. Pick δ > 0 sufficiently small

such that {d1,d2, . . . ,dp} ⊆ Fn+2(W π
t ) for all t ∈ [t∗, t∗ + δ). If the policy π selects di

for all t ∈ [t∗, t∗ + δ), we can write

W π
t = e[Qdi ](t−t∗)W π

t∗ for t ∈ [t∗, t∗ + δ),

where eΓ :=
∑∞

k=0
1
k!Γ

k denotes the exponential of a matrix Γ. Therefore, using the fact
that [Qdi ]lW π

t∗ = [Qdj ]lW π
t∗ for all l ≥ 0 we have

e[Qdi ](t−t∗)W π
t∗ = e[Qdj ](t−t∗)W π

t∗ , ∀ t ≥ t∗. (3.5)

Similarly, we have

[Qdi ]le[Qdi ]∆W π
t∗ = [Qdj ]le[Qdj ]∆W π

t∗ , ∀ l ≥ 0 and ∆ ≥ 0. (3.6)

Now take any i = arg minj ∆j, thus ∆i ≤ ∆j for all j. Also take d′ ∈ Fn+2(W π
t∗+∆i

) and
d′ 6= di (this is possible due to the definition of ∆i). Denote by h the smallest integer for
which 1 ≤ h ≤ n+ 2 and

[Qd′ ]hW π
t∗+∆i

> [Qdi ]hW π
t∗+∆i

⇒ [Qd′ ]he[Qdi ]∆iW π
t∗ > [Qdi ]he[Qdi ]∆iW π

t∗ .
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Combining the above expression with Equation (3.6), we get

[Qd′ ]he[Qdi ]∆iW π
t∗ > [Qdj ]he[Qdj ]∆iW π

t∗ ⇒ [Qd′ ]hW π
t∗+∆i

> [Qdj ]hW π
t∗+∆i

,

which implies that ∆j ≤ ∆i for any j. The particular selection of i results in ∆j = ∆i

for all i, j. The second part of the proposition is obtained by setting ∆ = (δ2 − δ1) in
Equation (3.6) and using the definition of the exponential of a matrix.

The above proposition highlights the fact that whenever Fn+2(W π
t ) contains more than

one decision vector over a time interval, one can construct infinitely many optimal policies
by arbitrarily switching between such decision vectors. In the rest of this section, we
restrict our attention to optimal policies that take only mandatory switches: the optimal
policy will take an element of Fn+2(W π

t ) as long as possible. This does not influence
Problems 3.1 and 3.2.
The major challenge in the computation of the optimal policy, thus answering the

reachability problem, is the computation of the largest time t ∈ [0, B) such that
Fn+2(W π

t ) 6= Fn+2(W π
t−), where W π

t− denotes the value of W π
t−δ with δ converging

to zero from the right. Suppose a decision vector d0 ∈ Fn+2(W π
0 ) is selected. The optimal

policy will change at the following time point:

t′′ := sup {t |d0 ∈ Fn+2(W π
t′ ) for all t′ ∈ [0, t)}.

3.2.3. Conditional Decidability Results

Schanuel’s Conjecture and its Implications

Our decidability results will assume Schanuel’s Conjecture for the complex numbers,
a unifying conjecture in transcendental number theory (see, e.g., [101]). Recall that a
transcendence basis of a field extension L/K is a subset S ⊆ L such that S is algebraically
independent over K and L is algebraic over K(S). The transcendence degree of L/K is
the (unique) cardinality of some basis.

Conjecture 3.2.1 (Schanuel’s Conjecture (SC)) Let a1, . . . , an be complex numbers
that are linearly independent over rational numbers Q. Then the field Q(a1, . . . , an, e

a1 , . . . , ean)
has transcendence degree at least n over Q.

An important consequence of Schanuel’s conjecture is that the theory of reals (R, 0, 1,+, ·,≤
) remains decidable when extended with the exponential and trigonometric functions over
bounded domains.1

Theorem 3.2.3 (Macintyre and Wilkie (see [113, 114])) Assume SC. For any
n ∈ N, the theory RMW := (R, exp � [0, n], sin � [0, n], cos � [0, n]) is decidable.

1We note that while the result is claimed in several papers [113, 114], a complete proof of this result
has never been published. Thus, it would be nice to have a “direct” proof of our main theorem
(Theorem 3.2.1) starting with Schanuel’s conjecture. We do not know such a proof.
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Our main result will show that Problems 3.1 and 3.2 can be decided based on Theo-
rem 3.2.3. In fact, Problem 3.1 can be decided directly from Schanuel’s conjecture and
recent results on exponential polynomials [38].

Theorem 3.2.4 Assume SC. Then Problems 3.1 and 3.2 are decidable.

In contrast, solving the time-bounded reachability problem for stationary policies is
decidable unconditionally. This is because fixing a stationary policy reduces the time-
bounded reachability problem to one on CTMCs, and one can use the decision procedure
from [9].

Non-tangential Zeros

Recall that the solution to a first-order linear ODE of dimension n:
d

dt
Xt = AXt, zt = CXt

with real matrices A and C and real initial condition X0 ∈ Rn, can be written as
zt = CeAtX0 where eΓ denotes the exponential of a square matrix Γ, and defined as
the infinite sum eΓ :=

∑∞
k=0

1
k!Γ

k that is guaranteed to converge for any matrix Γ. The
function can be expressed as an exponential polynomial zt =

∑k
j=1 Pt(j)e

λjt, where
λ1, . . . , λk are the distinct (real or complex) eigenvalues of A. Each function Pt(j) is a
polynomial function of t possibly with complex coefficients and has a degree one less than
the multiplicity of the eigenvalue λj . Since the eigenvalues come in conjugate pairs, we
can write the real-valued function z as

zt =

k∑
j=1

eajt
mj−1∑
l=0

cj,lt
l cos(bjt+ ϕj,l), (3.7)

where the eigenvalues are aj ± ibj with multiplicity mj . If A, X0, and C are over the
rational numbers, then aj , bj , cj,l are real algebraic and ϕj,l is such that eiϕj,l is algebraic
for all j and l. We can symbolically compute derivatives of z which also become functions
with a similar closed-form as in (3.7).

Definition 3.2.1 The function zt has a zero at t = t∗ if zt∗ = 0. The zero is said to be
non-tangential if there is an ε > 0 such that zt1zt2 < 0 for all t1 ∈ (t∗ − ε, t∗) and all
t2 ∈ (t∗, t∗ + ε). The zero is called tangential if there is an ε > 0 such that zt1zt2 > 0 for
all t1 ∈ (t∗ − ε, t∗) and all t2 ∈ (t∗, t∗ + ε).

Note that there are functions with zeros that are neither tangential nor non-tangential.
Consider the function zt = t sin

(
1
t

)
for t 6= 0 and z0 = 0. The function does not satisfy

the conditions of being tangential or non-tangential. For any ε > 0, there are t1 ∈ (−ε, 0)

and t2 ∈ (0, ε), such that zt1zt2 = t1t2 sin
(

1
t1

)
sin
(

1
t2

)
is positive. There are also t1 and

t2 in the respective intervals that make zt1zt2 negative. We only work with functions of
the form (3.7) that are analytic thus infinitely differentiable. Therefore, the first non-zero
derivative of zt at t∗ will decide if t∗ is tangential or not.
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Proposition 3.2.2 For any function zt of the form (3.7) such that zt∗ = 0 and z 6≡ 0,
there is a k0 such that dk

dtk
zt
∣∣
t=t∗

= 0 for all k < k0 and dk0

dtk0
zt
∣∣
t=t∗
6= 0. Moreover, t∗ is

tangential if k0 is an even number and is non-tangential if k0 is an odd number.

Proof The proof is based on the Taylor series of zt at t = t∗. Take k0 the order of the
first non-zero derivative of zt at t = t∗. This k0 always exists since otherwise z ≡ 0. The
Taylor series of zt will be

zt =
∞∑

k=k0

(t− t∗)k

k!

dk

dtk
zt
∣∣
t=t∗

= (t− t∗)k0
dk0

dtk0
zt
∣∣
t=t∗

∞∑
k=0

αk(t− t∗)k, (3.8)

for some {α0, α1, . . .} with α0 = 1
k0! . Define the function g by gt := zt

(t−t∗)k0
for t 6= t∗

and gt∗ := 1
k0!

dk0

dtk0
zt
∣∣
t=t∗

. Using (3.8), we get that g is continuous at t∗ with gt∗ 6= 0.
Therefore, there is an interval (t∗ − ε, t∗ + ε) over which the function has the same sign
as gt∗. For all t1 ∈ (t∗ − ε, t∗) and t2 ∈ (t∗, t∗ + ε)

gt1gt∗ > 0⇒ zt1
(t1 − t∗)k0

gt∗ > 0⇒ (−1)k0zt1gt∗ > 0

gt2gt∗ > 0⇒ zt2
(t2 − t∗)k0

gt∗ > 0⇒ zt2gt∗ > 0

⇒ (−1)k0zt1gt∗zt2gt∗ > 0⇒ (−1)k0zt1zt2 > 0.

This means zt1zt2 > 0 for even k0 and t∗ becomes tangential, and zt1zt2 < 0 for odd k0

and t∗ becomes non-tangential.

For any function zt = CeAtX0, the predicate NonTangentialZero(z, l, u) stating the exis-
tence of a non-tangential zero in an interval (l, u) is expressible in RMW:

∃t∗ . l < t∗ < u ∧ zt∗ = 0 ∧ [∃ε > 0 . ∀t1 ∈ (t∗ − ε, 0), t2 ∈ (0, t∗ + ε) . zt1zt2 < 0]

Switch Points are Non-Tangential Zeroes

Given a CTMDP M and a piecewise constant optimal policy π : [0, B] → D for the
time-bounded reachability problem, a switch point t∗ is a point of discontinuity of π.
Consider a switch point t∗ such that the optimal policy takes the decision vector d in the
time interval (t∗ − ε) and then switches to another decision vector d′ at time t∗ for some
ε > 0:

d ∈ Fn+2(W π
t ) and d′ 6∈ Fn+2(W π

t ) ∀t ∈ (t∗ − ε, t∗),
d 6∈ Fn+2(W π

t ) and d′ ∈ Fn+2(W π
t ) ∀t ∈ (t∗, t∗ + ε).

Consider a (not necessarily unique) state s ∈ S with actions a, b ∈ Ds such that a 6= b
and d(s) = a, d′(s) = b. Define the following set of first-order ODEs

Σ :

{
d
dtW

π
t = QdW π

t

zt = (qa − qb)W π
t

(3.9)
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for t ∈ (t∗ − ε, t∗ + ε), where qa and qb denote the sth row of the matrices Qd and
Qd′ , respectively. The optimal decision vector on an interval before t∗ is d, thus for all
t ∈ (t∗ − ε, t∗),

d ∈ F1(W π
t )⇒ QdW π

t ≥ Qd′W π
t ⇒ (Qd −Qd′)W π

t ≥ 0⇒ (qa − qb)W π
t ≥ 0⇒ zt ≥ 0.

The next lemma states that the switch point t∗ corresponds to a non-tangential zero for
zt.

Lemma 3.2.1 Let π be an optimal piecewise constant policy for the time-bounded reach-
ability problem with bound B. Suppose π(B − t) = dt for all t ∈ [0, B]. Suppose that for a
time point t∗, d ∈ D is an optimal decision before t∗ and d′ 6= d is optimal right after t∗.
There is an ε such that for any s ∈ S with d(s) 6= d′(s), zt < 0 for all t ∈ (t∗, t∗ + ε) with
zt defined in (3.9).

Proof Take k0 to be the smallest index k ≤ n with d 6∈ Fk+1(W π
t∗) and d′ ∈ Fk+1(W π

t∗).
Since d′ is optimal at t∗, we have d,d′ ∈ Fk+1(W π

t∗) for all k < k0. We show inductively
that

[Qd]k+1W π
t∗ = [Qd′ ]k+1W π

t∗ and
dk

dtk
zt∗ = 0 for all 0 ≤ k < k0. (3.10)

The claim is true for k = 0:

d,d′ ∈ F1(W π
t∗)⇒ QdW π

t∗ = Qd′W π
t∗

⇒ (Qd −Qd′)W π
t∗ =

 . . .
qa − qb
. . .

W π
t∗ = 0⇒ (qa − qb)W π

t∗ = 0⇒ zt∗ = 0.

Now suppose (3.10) holds for (k − 1) with k < k0. Then

d,d′ ∈ Fk+1(W π
t∗)⇒ [Qd]k+1W π

t∗ = [Qd′ ]k+1W π
t∗

⇒ Qd[Qd]kW π
t∗ = Qd′ [Qd′ ]kW π

t∗ ⇒(∗) Qd[Qd]kW π
t∗ = Qd′ [Qd]kW π

t∗

⇒ [Qd −Qd′ ][Qd]kW π
t∗ = 0⇒(∗∗) [Qd −Qd′ ]

dk

dtk
Xt∗ = 0

⇒ (qa − qb) d
k

dtk
Xt∗ = 0⇒ dk

dtk
zt∗ = 0,

where (∗) holds due to the induction assumption and (∗∗) is true due to the differential
equation (3.9). Finally, we show that dk0

dtk0
zt∗ < 0.

d 6∈ Fk0+1(W π
t∗) and d′ ∈ Fk0+1(W π

t∗)⇒ [Qd]k0+1W π
t∗ < [Qd′ ]k0+1W π

t∗

⇒ Qd[Qd]k0W π
t∗ < Qd′ [Qd′ ]k0W π

t∗ ⇒(ı) Qd[Qd]k0W π
t∗ < Qd′ [Qd]k0W π

t∗

⇒ [Qd −Qd′ ]
dk0

dtk0
W π
t∗ < 0⇒ (qa − qb) d

k0

dtk0
W π
t∗ < 0⇒ dk0

dtk0
zt∗ < 0,

where (ı) holds due to (3.10) for k0 − 1.
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Since zt∗ = 0, we can select ε such that zt > 0 for all t ∈ (t∗ − ε, t∗). Using Taylor
expansion (3.8) and the facts that dk0

dtk0
zt∗ < 0 and zt > 0 for t ∈ (t∗ − ε, t∗), we have that

k0 must be an odd number, which means t∗ is non-tangential by Prop. 3.2.2. The function
zt changes sign from positive to negative at t∗.

Conditional Decidability

The decision procedure for Problem 3.1 is as follows. Fix a CTMDPM = ({1, . . . , n} ]
{good},D,Q) and a bound B. We inductively construct a piecewise constant optimal
policy, going forward in time. To begin, we set the initial decision vector to d1, where
d1 is selected such that d1 ∈ Fn+2(W π

0 ) (Equation (3.4)) with W π
0 set to the indicator

vector that is 1 at the good state and 0 in other states.
Note that in general Fn+2(W π

t ) in (3.4) may have finitely many elements and the
choice of optimal decision at time t, dt ∈ Fn+2(W π

t ) is not unique. Based on results of
Proposition 3.2.1, any arbitrary element of Fn+2(W π

t ) can be chosen; but, we do not
alter this choice until the picked decision vector does not belong to Fn+2(W π

t ) anymore.
We know that there is a piecewise constant optimal policy π with finitely many switches
obtained from the charactrization in Theorem 3.2.2. Denote the (unknown) number of
switches by k ∈ N.
We find k as follows. We inductively check the existence of a sequence of decision

vectors d1, . . . ,dk and time points t1, . . . , tk−1 such that the optimal policy (given a
lexicographical order on D) switches from di to di+1 at time ti but does not have any
switch between the time points. Then, we check if the optimal policy makes at least
one additional switch point in the interval (tk, B). The check reduces the question to a
number of satisfiability questions in RMW. If we find an additional switch, we know that
the optimal strategy has at least k + 1 switches and continue to check if there are further
switch points. If not, we know that the optimal policy has k switch points.

We need some notation. A prefix σk = (d1, t1,d
2, t2, . . . , tk−1,d

k) ∈ (D × (0, B))∗ ×D
is a finite sequence of decision vectors from D and strictly increasing time points 0 <
t1 < t2 < . . . < tk−1 < B such that di 6= di+1 for i ∈ {1, . . . , k − 1}. Intuitively, it
represents the prefix of a piecewise constant policy with the first k − 1 switches. For two
decision vectors d,d′, let ∆(d,d′) := {s | d(s) 6= d′(s)} be the states at which the actions
suggested by the decision vectors differ. For a decision vector d, let d[s 7→ b] denote the
decision vector that maps state s to action b but agrees with d otherwise.
For a prefix σk = (d1, t1,d

2, t2, . . . , tk−1,d
k), a state s ∈ S, and an action b ∈ Ds,

define

ys,bt (σk) = u>(s)([Qdk ]− [Qdk[s 7→b]])e[Qdk ](t−tk−1)e[Qdk−1
](tk−1−tk−2) · · · e[Qd1

]t1u(good),

where u(s) is a vector of dimension n+1 that assigns one to s and zero to every other entry.
Observe that ys,bt (σk) is a solution of a set of linear ODEs similar to zt in Equation (3.9):{

d
dtWt = [Qdk ]Wt

ys,bt (σk) = u>(s)([Qdk ]− [Qdk[s 7→b]])Wt,
(3.11)

87



3. Continuous-Time MDPs with Reachability Specifications

with the condition Wtk−1
= e[Qdk−1

](tk−1−tk−2) · · · e[Qd1
]t1u(good).

We shall use (variants of) the predicate NonTangentialZero(y·,·, t1, t2), but write the
predicates informally for readability. We need two additional predicates Switch(σk, t

∗,d′)
and NoSwitch(σk+1). The predicate Switch states that, given a prefix σk, the first switch
from dk to a new decision vector d′ occurs at time point t∗ > tk−1. This new switch
requires three conditions. First, there is a simultaneous non-tangential zero at t∗ for all
dynamical systems of the form (3.11) associated with ys,d

′(s)
t (σk), s ∈ ∆(dk,d′). Second,

t∗ is the first time after tk−1 that any of the dynamical systems have a non-tangential
zero. Finally, none of the states in S \∆(dk,d′) whose action remains the same before
and after the switch, have a non-tangential zero in (tk−1, t

∗] (up to and including t∗):

Switch((d1, t1, . . . , tk−1,d
k)︸ ︷︷ ︸

σk

, t∗,d′) ≡

0 < t1 < . . . < tk−1 < B ∧ (B > t∗ > tk−1) ∧ (∆(dk,d′) 6= ∅)∧∧
s∈∆(dk,d′)

(
“ys,d

′(s)
t (σk) has a non-tangential zero at t∗”∧

“ys,d
′(s)

t (σk) has no non-tangential zero in (tk−1, t
∗)”

)
∧

∧
s∈S\∆(dk,d′)

“ys,d
′(s)

t (σk) has no non-tangential zero in (tk−1, t
∗]”

The predicate NoSwitch(σk+1) states that, given a prefix σk+1, the last decision vector
dk+1 of (σk+1) stays optimal and does not switch to another decision vector within the
interval (tk, B). This is equivalent to stating that none of the dynamical systems of the
from (3.11) associated with ys,bt (σk+1) for s ∈ S, b ∈ Ds \ dk+1(s) has a non-tangential
zero in (tk, B):

NoSwitch(σk+1) ≡
∧

s,b 6=dk+1(s)

“ys,bt (σk+1) has no non-tangential zero in (tk, B)”

We can now check if the optimal strategy has exactly k switches. The first part of the
predicate written below sets up a proper σ and the last conjunct states that there is no
further switch after the last one.

∃t1, . . . , tk.(0 < t1 < t2 . . . < tk < B) ∧
k∧
i=1

Switch(d1, t1, . . . ,d
i, ti,d

i+1︸ ︷︷ ︸
σi+1

) ∧ NoSwitch(σk+1).

We can enumerate these formulas with increasing k over all choices of decision vectors and
stop when the above formula is valid. At this point, we know that there is a piecewise
constant optimal policy with k switches, which plays the decision vectors d1, . . . ,dk. We
can make one more query to check if the probability of reaching good when playing this
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strategy is at least a given rational vector r ∈ [0, 1]n:

∃t1, . . . , tk.(0 < t1 < . . . , tk < B) ∧
k∧
i=1

Switch(d1, t1, . . . ,d
i, ti,d

i+1) ∧ NoSwitch(σk+1)

∧
n∧
s=1

u>(s)e[Qdk+1
](B−tk)e[Qdk ](tk−tk−1) · · · e[Qd1

]t1u(good) > r(s)

(3.12)

This completes the proof of conditional decidability of Problem 3.1.

Conditional Decidability for Problem 3.2

A stationary policy d is not optimal if there is a switch point. Using the Switch predicate
and conditional decidability of RMW, this shows conditional decidability of Problem 3.2.

In fact, to check the presence of a single non-tangential zero, one can avoid Theorem 3.2.3
and get a direct construction based on Schanuel’s conjecture. This construction is similar
to [38] and is provided in Section A.2. Unfortunately, when there are multiple switch
points, we have to existentially quantify over previous switch points. Thus, the techniques
of [38] cannot be straightforwardly extended to find a direct conditional decision procedure
for Problem 3.1.
We do not know if there is a numerical procedure that only uses an oracle for non-

tangential zeros. The problem is that, while numerical techniques can be used to bound
each non-tangential zero with rational intervals with arbitrary precision as well as compute
the reachability probability to arbitrary precision, we do not know how to numerically
detect whether the reachability probability in (3.12) is exactly equal to a given r. By
the Lindemann-Weierstrass Theorem [102], we already know that for CTMDPs with
stationary optimal strategies, the value of reachability probability for any rational time
bound B > 0 is transcendental and hence supπ∈ΠB Pπ

s (Reach) 6= r(s) for all s ∈ S.
However, we cannot prove that the reachability probability remains irrational in the
general case.

3.2.4. Lower Bound: Continuous Skolem Problem

Problem 3.3 (Bounded Continuous-Time Skolem Problem) Given a linear ordi-
nary differential equation (ODE)

dn

dtn
zt + an−1

dn−1

dtn−1
zt + · · ·+ a1

d

dt
zt + a0zt = 0 (3.13)

with rational initial conditions z0,
dzt
dt |t=0, . . . ,

dn−1zt
dtn−1 |t=0 ∈ Q and rational coefficients

an−1, an−2, . . . , a0 ∈ Q and a time bound B ∈ Q, the bounded continuous Skolem problem
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asks whether there exists 0 < t∗ < B such that it is a non-tangential zero for zt. Further,
we can assume w.l.o.g. that z0 = 0 in the initial condition.1

We note that our definition is slightly different from the usual definition of the problem,
e.g., in [21, 38], which simply asks for any zero (i.e., zt∗ = 0), not necessarily a non-
tangential one. Our version of the bounded continuous Skolem problem is also decidable
assuming SC [38]. However, there is no unconditional decidability result known for this
problem, even though we only look for a non-tangential zero.
We can encode any given linear ODE of order n in the form of (3.13) into a set of n

first-order linear ODE on X : [0, B]→ Rn with d
dtXt = AXt, X0 =

[
z0,

dzt
dt

∣∣∣
t=0

, . . . , d
n−1zt
dtn−1

∣∣∣
t=0

]>
zt = CXt,

(3.14)

with the state matrix A and output matrix C are

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 , C =
[
1 0 · · · 0

]
. (3.15)

Using the representation (3.14), the solution of the linear ODE (3.13) can be written as
zt = CeAtX0. Therefore, the bounded continuous-time Skolem problem can be restated
as whether the expression CeAtX0 has a non-tangential zero in the interval (0, B).

We now reduce the bounded continuous-time Skolem problem to Problem 3.2. Given an
instance (3.14)-(3.15) of the Skolem problem of dimension n, we shall construct a CTMDP
over states {1, . . . , 2n} ∪ {good,bad} and bound B, and just two decision vectors da

and db that only differ in the available actions (a or b) at state 1. Our reduction will
ensure that the answer of the Skolem problem has a non-tangential zero iff there is a
switch in the optimal policy in the time-bounded reachability problem for bound B, and
thus, iff stationary policies are not optimal.

Theorem 3.2.5 For every instance of the bounded continuous-time Skolem problem with
dynamics d

dtXt = AXt, zt = CXt, initial condition X0, and time bound B, there is a
CTMDP M such that the dynamical system has a non-tangential zero in (0, B) iff the
optimal strategy of the CTMDP in the time-bounded reachability problem is not stationary.

We sketch the main ideas of the proof here. Consider the linear differential equation
described by the state space representation in (3.14) with the initial condition X0 that
has its first element equal to zero X0(1) = 0. Given the time bound B > 0, to solve the
1The assumption is w.l.o.g. because given a linear ODE whose solution is zt, one can construct another
linear ODE whose solution is yt = tzt. Clearly, y0 = 0 and there is a non-tangential zero of z in (0, B)
iff there is a non-tangential zero of y in (0, B).
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bounded continuous Skolem problem, we are looking for the existence of a time 0 < t∗ < B
such that zt∗ = 0 is non-tangential. Equivalently, we want to find a non-tangential zero
for the function CeAtX0, where C =

[
1 0 · · · 0

]
.

There are three obstacles to go from (3.14) to generator matrices for a CTMDP. Each
generator matrix must have non-diagonal entries that are non-negative. The sum of
each row of the matrix must be zero. Moreover, the last state of the CTMDP must
be absorbing. None of these properties may hold for a general A. We show a series
of transformations that take the matrix A to a matrix P that is sub-stochastic. Then
we construct the generator matrices of the CTMDP using P that include the required
absorbing state. We denote by 0m and 1m as row vectors of dimension m with all elements
equal to zero and one, respectively.

Theorem 3.2.6 Suppose A ∈ Qn×n, X0 ∈ Qn and C = [1,0n−1] are given with X0(1) =
0. There are positive constants γ, λ and a generator matrix P ∈ Q(2n+1)×(2n+1) such that

CeAtX0 = γeλt
[
C ′ePtY0

]
, C ′ = [1,−1,02n−1], Y0 = [02n, 1]>. (3.16)

Remark 13 The first equality in (3.16) ensures that nature of zeros of the two functions
CeAtX0 and C ′ePtY0 are the same. If one of them has a non-tangential zero at t∗ the
other one will also have a non-tangential zero at t∗. To see this, suppose CeAt∗X0 = 0
and CeAtX0 changes sign at t∗. The same things happen to C ′ePtY0 due to the fact that
the two functions are different with only a positive factor of γeλt.

Without loss of generality, we assume the element A11 is negative. This assumption is
needed when constructing the CTMDP in the sequel. If the assumption does not hold, we
can always replace A with A−λ0In for a sufficiently large λ0 and merge λ0 with λ in (3.16).
Define the map φ1 : ∪nQn×n → ∪nQ2n×2n

≥0 such that φ1(A) is obtained by replacing each

entry Aij with the matrix
[
αij βij
βij αij

]
, where αij = max(Aij , 0) and βij = max(−Aij , 0).

The map φ1 maps any square matrix to another matrix with non-negative entries ([4]).
Also define the map φ2 : ∪nQn → ∪nQ2n such that φ2(X) replaces each entry X(i) with
two entries [X(i), 0]>.

Proposition 3.2.3 We have C ′′eφ1(A)tY2 = CeAtX0 with Y2 := φ2(X0) and C ′′ :=
[1,−1,02n−2].

Proof We can show inductively that for any k ∈ {0, 1, 2, . . .}, {α1, α2, . . . , αn}, and
[β1, β2, . . . , βn] := [α1, α2, . . . , αn]Ak, we have

[α1,−α1, α2,−α2, . . . , αn,−αn]φ1(A)k = [β1,−β1, β2,−β2, . . . , βn,−βn].

Substitute [α1, α2, . . . , αn] by C and [β1, β2, . . . , βn] = CAk to get

C ′′φ1(A)kY2 = C ′′φ1(A)kφ2(X0) = [β1,−β1, β2,−β2, . . . , βn,−βn]φ2(X0)

= [β1, β2, . . . , βn]X0 = CAkX0

⇒ C ′′eφ1(A)tY2 =

∞∑
k=0

tk

k!
C ′′φ1(A)kY2 =

∞∑
k=0

tk

k!
CAkX0 = CeAtX0.
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Next, we define λ := maxi
∑n

j=1 |Aij |+ 1, P2 := φ1(A)− λIn, and the vector β ∈ Q2n

with
β(2i− 1) = β(2i) = max(0,−P2Y2(2i− 1),−P2Y2(2i)) 1 ≤ i ≤ n.

Note that the row sum of P2 is at most −1 and β + P2Y2 is element-wise non-negative
with the maximum element

γ := max
i
P2Y2(i) + β(i).

Proposition 3.2.4 The above choices of λ, γ and the matrix

P :=

P2
... (P2Y2 + β)/γ

. . . . . . . . .

0
... 0


satisfy (3.16) in Theorem 3.2.6. Moreover, P is row sub-stochastic.

Proof We can easily show by induction that

P kY0 =

[
P k−1

2 (P2Y2 + β)/γ
0

]
, ∀k ∈ {1, 2, . . .}.

C ′ePtY0 =
∞∑
k=0

tk

k!
C ′P kY0 = C ′Y0 + C ′′

∞∑
k=1

tk

k!
P k−1

2 (P2Y2 + β)/γ,

where C ′′ := [1,−1,02n−2] is the same vector as C ′ but the last element is eliminated.

C ′ePtY0 = C ′Y0 + C ′′eP2tY2/γ − C ′′Y2/γ +
∞∑
k=1

tk

k!
C ′′P k−1

2 β/γ.

The term C ′Y0 is zero by simple multiplication of the two vectors. C ′′Y2 = C ′′φ2(X0) =
X0(1), which is also assumed to be zero. Finally, we see by induction that for all
k ∈ {1, 2, . . .}, the elements (2i − 1) and 2i of the matrix P k−1

2 β are equal due to the
particular structure of P2 and β. Therefore, the last sum in the above is also zero and we
get

C ′ePtY0 = C ′′eP2tY2/γ = C ′′eφ1(A)t−λItφ2(X0)/γ

= C ′′eφ1(A)tφ2(X0)e−λt/γ = CeAtX0e−λt/γ.

To show that P is a sub-stochastic matrix, we recall that P2Y2 + β ≥ 0 with maximum
element γ. Then

P2 × 12n + (P2Y2 + β)/γ ≤ φ1(A)12n − λ12n + 12n = φ1(A)12n −max
i

∑
j

|Aij | ≤ 0.
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As the last step, we add an additional row and column to P to make it stochastic:

Qa :=

 P2
... Θ

... (P2Y2 + β)/γ
. . . . . . . . .

02×2n
... 02×1

... 02×1

 , C̄ =
[
1 −1 02n

]
, Ȳ0 =

[
02n+1

1

]
,

where Θ has non-negative entries and is such that Qa is stochastic (sum of elements of
each row is zero). The added row and column correspond to an absorbing state for a
CTMDP with no effect on reachability probability: C̄etQa

Ȳ0 = C ′ePtY0.
Next, we obtain a second generator matrix for the CTMDP. Define Qb := Qa +K with

K :=

[
−r r 02n

0(2n+1)×1 0(2n+1)×1 0(2n+1)×2n

]
,

Note that Qb has exactly the same transition rates as in Qa except the transition from
state 1 to state 2, which is changed by r.

Remark 14 We assumed w.l.o.g. that A11 is negative. The construction of P2, P,Q
a

results in a positive value for Qa
12. Therefore, it is possible to select both negative and

positive values for r such that Qb
12 = Qa

12 + r ≥ 0.

Construction of the CTMDP. The CTMDPM has 2n+ 2 states, corresponding to
the rows of Qa and Qb, with the absorbing state 2n+ 2 associated with the good state
and the absorbing state 2n+1 with reachability probability equal to zero. We shall set the
time bound to be B. Ds the set of actions that can be taken in state s ∈ {2, 3, . . . , 2n+ 2}
is singleton and D1 = {a, b}. The set of decision vectors has two elements D = {da,db}
corresponding to the actions a, b taken at state 1. For simplicity, we denote the generator
matrices of these decision vectors by Qa and Qb, respectively. Moreover, the two actions
a, b have the same transition rates for jumping from state 1 to other states, except giving
different rates ra, rb for jumping from 1 to 2 such that rb − ra = r.

The optimal policy π takes decision vector dt ∈ D at timeB−t such that dt ∈ Fn+2(W π
t )

for all t ∈ [0, B] as defined in (3.4).

Proposition 3.2.5 Let r have the same sign of the first non-zero element of the set
{C̄Ȳ0, C̄Q

aȲ0, C̄(Qa)2Ȳ0, . . .} and such that Qa
12 + r ≥ 0. This particular selection of r

results in the optimality of da at t = 0.

Proof We have W π
0 = Ȳ0 and Fk(W π

0 ) = arg maxd[Qd]kȲ0. Then, we need to compare
[Qa]kȲ0 with [Qb]kȲ0 for different values of k and see which one gives the first highest
value. These two are the same for k = 1 and F1(W π

0 ) = arg maxdQ
dȲ0 = {da,db}.

Suppose For k0 > 1 is the smallest index such that C̄[Qa]k0 Ȳ0 6= 0. It can be shown
inductively that [Qb]kȲ0 = [Qa]kȲ0 for all 1 ≤ k ≤ k0:

[Qb]kȲ0 = Qb[Qb]k−1Ȳ0 = (Qa +K)[Qb]k−1Ȳ0 = (Qa +K)[Qa]k−1Ȳ0

= [Qa]kȲ0 +K[Qa]k−1Ȳ0 = [Qa]kȲ0 − r
[
C̄[Qa]k−1Ȳ0

0(2n+1)×2n

]
= [Qa]kȲ0.

93



3. Continuous-Time MDPs with Reachability Specifications

This means Fk(W π
0 ) = arg maxd[Qd]kȲ0 = {da,db} for all 1 ≤ k ≤ k0. We have for

k = k0 + 1

[Qb]k0+1Ȳ0 = [Qa]k0+1Ȳ0 − r
[
C̄[Qa]k0 Ȳ0

0(2n+1)×2n.

]
The first element of [Qb]k0+1Ȳ0 is strictly less than the first element of [Qa]k0+1Ȳ0 since r
has the same sign as C̄[Qa]k0 Ȳ0. Thus Fk0+1(W π

0 ) = arg maxd[Qd]k0+1Ȳ0 = {da}.

Note that the Skolem problem is trivial with the solution zt = 0 for all t ∈ [0, B] if all
the elements of the set {C̄Ȳ0, C̄Q

aȲ0, C̄(Qa)2Ȳ0, . . .} are zero.
Prop. 3.2.5 guarantees existence of an ε ∈ (0, B) such that W π

t satisfies

d

dt
W π
t = QaW π

t ∀t ∈ (0, ε),

with the initial condition W π
0 (2n+ 2) = 1 and W π

0 (s) = 0 for all s ∈ {1, 2, . . . , 2n+ 1}.
To check if the optimal policy switches to db at some time point, we should check

if there is t∗ < B such that db ∈ Fn+2(W π
t∗). This is equivalent to having t∗ being

non-tangential for the maximization in F1(W π
t ), which means t∗ is non-tangential for the

equation
QaW π

t = QbW π
t ⇔ KW π

t = 0⇔ C̄W π
t = 0.

Summarizing the above derivations, we have the following set of ODEs

d

dt
W π
t = QaW π

t ,W π
0 = Ȳ0, zt = C̄W π

t . (3.17)

The optimal policy for CTMDPM switches from da to db at some time point t∗ if and
only if zt in (3.17) has a non-tangential zero in (0, B) if and only if the original dynamics
CeAtX0 has a non-tangential zero in (0, B). This completes the proof of Theorem 3.2.5.

3.3. Enhancing the Scalability of Time-Bounded
Reachability of CTMCs and CTMDPs

Existing approaches for approximating the time-bounded reachability problem are based on
discretization-based, and in practice, are expensive computational procedures, especially
as the time bound increases. The standard state-space reduction technique is probabilistic
bisimulation [94, 103, 30, 14]: a probabilistic bisimulation is an equivalence relation on the
states that allows “lumping” together the equivalence classes without changing the value of
time-bounded reachability properties, or indeed of any CSL property [14]. Unfortunately,
probabilistic bisimulation is a strong notion and small perturbations to the transition
rates can change the relation drastically. Thus, in practice, it is often of limited use.
In this section, we take a control-theoretic view to state space reductions of CTMCs

and CTMDPs. Our starting point is that the forward Chapman-Kolmogorov equations
characterizing time-bounded reachability define a linear dynamical system for CTMCs and
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a switched affine dynamical system for CTMDPs; moreover, one can transform the problem
so that the dynamics is stable. Our first observation is a generalization of probabilistic
bisimulation to a quantitative setting. We show that probabilistic bisimulation can
be viewed as a projection matrix that relates the original dynamical system with its
bisimulation reduction. We then relax bisimulation to a quantitative notion, using a
generalized projection operation between two linear systems. The content of this section
is based on our papers [158, 160].

CTMCs. A generalized projection does not maintain a linear relationship between the
original and the reduced linear systems. However, our second result shows how the
difference between the states of the two linear dynamical systems can be bounded by an
exponentially decreasing function of time. The key to this result is finding an appropriate
Lyapunov function for the difference between the two dynamics, which demonstrates an
exponential convergence over time. We focus the presentation on irreducible CTMCs (i.e.,
those with the property that it is possible with some positive probability to get from any
state to any other state in finite time) and show that the search for a suitable Lyapunov
function can be reduced to a system of matrix inequalities, which have a simple solution.
This leads to an error bound of the form L0e

−κt, where L0 depends on the matrices
defining the dynamics, and κ is related to the eigenvalues of the dynamics. Clearly,
the error goes to zero exponentially as t → ∞. Hence, by solving the reduced linear
system, one can approximate the time-bounded reachability probability in the original
system, with a bound on the error that converges to zero as a function of the reachability
horizon. For reducible CTMCs (i.e., those that are not irreducible), we show that the same
approach is applicable by preprocessing the structure of CTMC and eliminating those
bottom strongly connected components that do not influence the reachability probability.
The Lyapunov approach suggests a systematic procedure to reduce the state space

of a CTMC. If the original dynamical system has dimension m, we show, using Schur
decomposition, that we can compute an r-dimensional linear system for each r ≤ m as well
as a Lyapunov-based bound on the error between the dynamics. Thus, for a given tolerance
ε, one can iterate this procedure to find an appropriate r. This r-dimensional system can
be solved using existing techniques, e.g., computing the exponential of upper-triangular
matrices.

CTMDPs. For CTMDPs, we generalize the approach for CTMCs using Lyapunov
stability theorems for switched systems. Once again, the objective is to use multiple
Lyapunov functions as a way to demonstrate stability, and derive an error bound from
the multiple Lyapunov functions. For this we construct a piecewise quadratic Lyapunov
function for a switched affine dynamical system. Then we synthesize a policy for the
CTMDP via its reduced-order switched system in order to have time-bounded reachability
probability above a threshold. We provide error bounds that depend on the minimum
dwell time of the policy.
The notion of behavioral pseudometrics on stochastic systems has been studied exten-

sively [10, 51] as a quantitative measure of dissimilarity between states, but mainly for
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discrete time Markov models and mostly for providing an upper bound on the difference
between all formulas in a logic; by necessity, this makes the distance too pessimistic for a
single property. In contrast, our approach considers a notion of distance for a specific
time-bounded reachability property, and provides a time-varying error bound.

We have implemented our state space reduction approach and evaluated its performance
on a queuing system benchmark. Fixing time horizon and error bound, our reduction
algorithm computes a reduced order system, the analysis of which requires a significantly
less computational effort. We show that, as the time horizon increases, we get significant
reductions in the dimension of the linear system while providing tight bounds on the
quality of the approximation.

3.3.1. Time-Bounded Reachability on CTMCs

Let C = (S ] {good,bad},Q) be a CTMC, with |S| = n, and two states good and
bad and B > 0 denotes a finite time bound. We are interested in approximating the
probability of reaching the good state while avoiding the bad state before the time B for
a given subset S0 ⊆ S of states. Defining n0 = |S0|, we denote solution to this problem as
an n0× 1 vector ProbC(C, T ), where C is an n0× (n+ 2) matrix with n0 ones on its main
diagonal, corresponding to the states in S0. If S0 = S, then C is the (n+ 2)× (n+ 2)
identity matrix. For s ∈ S0, the value ProbC(C, T )(s) corresponds to the probability with
which the good state is visited while avoiding the bad state before the time bound B,
when the initial distribution is α = 1(s). Note that Q is characterized such that the
two states good and bad are made absorbing by removing all of their outgoing edges.
The solution to the time-bounded reachability problem for a projection matrix C can be
obtained as:

d

dt
Zt = QZt, Z0 = 1(good),

ProbC(C, t) = CZt (3.18)

where Zt ∈ Rn+2 is a column vector with elements Zt(i) = ProbC(1(si), t). Notice that
in this formulation, we have let time “run backward”: we start with a initial vector which
is zero except for corresponding element to the state good and compute “backward” up
to the time B. By reordering states, if necessary, the generator matrix Q in (3.18) can be
written as:

Q =

A
... χ

... B
. . . . . . . . . . . . . . .

0
... 0

... 0

 (3.19)

with A ∈ Rn×n, χ ∈ Rn×1, and β ∈ Rn×1. Vectors χ and β contain the rates corre-
sponding to the incoming transitions to the states bad and good, respectively. With
this reordering of the states, it is obvious that in (3.18), Zt(bad) = 0 and Zt(good) = 1,
thus we assume states good and bad are not included in C. We write ZSt for the vector
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(in Rn) restricting Z to states in S. These variables should satisfy

d

dt
ZSt = AZSt + β, ZS0 = 0,

ProbC(C, t) = CZSt . (3.20)

Equation (3.20) can be seen as model of a linear dynamical system with unit input.
Our aim here is to compute an approximate solution of (3.20) using reduction techniques
from control theory while providing guarantees on the accuracy of the computation and
to interpret the solution as the probability for time-bounded reachability.
Let γ := maxi=1:n|aii|, the maximal diagonal element of A, and define matrix H as:

H =
A

γ
+ In, (3.21)

where In is the n× n identity matrix. In the following, we fix the following assumption.

Assumption 2 H is an irreducible matrix, i.e., its associated directed graph is strongly
connected. Moreover, β + χ 6= 0. That is, either good or bad is reachable in one step
from some state in S.

Remark 15 The above assumption is “WLOG.” First, if there is no edge from S to
good or bad, the problem is trivial. Second, the general case, when H is not irreducible
can be reduced to the assumption in polynomial time (see Appendix A.3.2). Thus, the
assumption restricts attention to the core technical problem. Throughout the rest of this
section, we only consider models for which the above assumption holds.

Recall that a matrix A is stable if every eigenvalue of A has negative real part. The
spectral radius of a matrix is the largest absolute value of its eigenvalues. We also denote
the real part of the eigenvalues of a complex number by Re(·).

Proposition 3.3.1 Assumption 2 implies that matrix A is invertible and stable.

Proof Due to the definition of H in (3.21), we have λ(H) = 1 + λ(A)/γ, where λ(·)
denotes the eigenvalues of a matrix. We use % for the spectral radius of H. For irreducible
matrix H, the Perron-Frobenius theorem implies that % is positive and it is a simple
eigenvalue of H. There are left eigenvectors associated with eigenvalue % such that their
entries are all positive. Without loss of generality, we denote one of these left eigenvectors
by ν that is normalized such that sum of its entries is equal to one. The aim is to show
that % < 1. Since the sum of every row of H is less than or equal to one, % cannot be
greater than one. The following reasoning shows that % = 1 gives a contradiction. Define
a diagonal matrix

∆ := diag(χ+ β)/γ

and let H̃ := H + ∆. This matrix is a row stochastic matrix and is irreducible. Then it
can be considered as an irreducible probability transition matrix of a discrete-time Markov
chain. Note that

νH̃ = ν(H + ∆) = %ν + ν∆ = ν + ν∆.
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We can show by induction that the following inequality

νH̃k ≥ ν + ν∆ + ν∆2 + . . .+ ν∆k (3.22)

holds element-wise for all k ∈ N. This can be seen using the inductive step

νH̃k+1 = (νH̃k)H̃ ≥ (ν + ν∆ + . . .+ ν∆k)(H + ∆) ≥ ν + ν∆ + ν∆2 + . . . ν∆k+1.

The last inequality is true since all the additional terms in its left-hand side have non-
negative entries (all elements of H,∆, ν are non-negative).

Taking the sum of all entries of both sides of (3.22), we get∑
i

νi ≥
∑
i

νi(1 + ∆ii + ∆2
ii + . . .+ ∆k

ii),

which is a contradiction since at least one diagonal element of ∆ is positive. Then we have
% < 1, which results in Re(λ(A)) < 0 due to the relation λ(H) = 1 + λ(A)/γ. Therefore,
A is stable and invertible.

Since the input to (3.20) is fixed, we try to transform it to a set of differential equations
without input but with initial value. Let us take a transformation that translates Zt by
the offset vector A−1β:

Xt := ZSt +A−1β. (3.23)

The evolution of X(·) is:

d

dt
Xt = AXt, X0 = A−1B,

ProbC(C, t) = CXt + d. (3.24)

where d = −CA−1B. The dimension (number of variables) of dynamical system (3.24) is
n, the size of the state space S.

Remark 16 Under Assumption 2, the solution of infinite horizon reachability problem is
−A−1B, which can be computed efficiently as the solution of a system of linear equations.
Elements of Xt defined in (3.23) contain the values of finite-horizon reachability.

In the following, we show how the solution of this dynamical system can be approximated
by a dynamical system of lower dimension. Our approach relies on stability property
of matrix A, and gives an upper bound on the approximation error that converges
exponentially to zero as a function of time. Thus our approach is beneficial for long time
horizons when previous techniques fail to provide tight bounds.
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Bisimulation and Projections

Probabilistic bisimulation or lumpability is a classical technique to reduce the size of
the state space of a CTMC [94, 103, 30, 14]. For CTMC C = (S,Q) with space SC =
S ] {good,bad}, a bisimulation on C is an equivalence relation ∼= on SC such that good
and bad are singleton equivalence classes and for any two states s1, s2 ∈ S, s1

∼=s2 implies
Q(s1,Θ) = Q(s2,Θ) for every equivalence class Θ of ∼=, where Q(s,Θ) :=

∑
s′∈Θ Q(s, s′).

Given a bisimulation relation ∼= on C, we can construct a CTMC C̄ = (S̄, Q̄) of smaller
size such that probabilities are preserved over paths of C and C̄. In particular, s1

∼=s2,
implies that

ProbC(1(s1), t) = ProbM̄(1(s2), t), ∀t ∈ R≥0.

The CTMC C̄ has the quotient state space {[s]∼= | s ∈ S} ] {good,bad}, where [s]∼= is
the equivalence class of s ∈ S, rate function Q̄([s]∼=,Θ) = Q(s,Θ) for any Θ ∈ S̄.

We now show how the differential equation (3.24) for C and C̄ relate. Assume that the
state space of C̄ is S̄ ∪ {good,bad}, where |S̄| = r. We have

d

dt
X̄t = ĀX̄t, X̄0 = Ā−1B̄,

P robC̄(C̄, t) = d+ C̄X̄t, (3.25)

where Ā and B̄ are computed similarly to that of C according to the generator matrix of
C̄. Note that Ā is an r × r matrix. Matrix C̄ is n0 × r constructed according to S0, with
|S0| ones corresponding to the quotient states {[s]∼= | s ∈ S0}. We now define a projection
matrix P∼= ∈ Rn×r as P∼=(i, j) = 1 if si ∈ [j], i.e., si belongs to the equivalence class
[j] ∈ S̄, and zero otherwise. This projection satisfies CP∼= = C̄S , and together with the
definition of ∼= implies the following proposition.

Proposition 3.3.2 For every bisimulation ∼=, the projection matrix P∼= satisfies the
following

AP∼= = P∼=Ā, B = P∼=B̄. (3.26)

Conversely, every projection matrix satisfying (3.26) defines a bisimulation relation. In
particular,

Xt = P∼=X̄t, ∀t ∈ R≥0. (3.27)

Example 2 As an example, consider the CTMC in Figure 3.1 with Λ31 = 0 and Λ42 = 1
without any state bad, and assume first that εij = 0 for all i, j. We are interested in
computing the probability of reaching state good, which is made absorbing by removing
its outgoing links. It is easy to see that the bisimulation classes are {s1, s2}, {s3, s4},
and {good}. The bisimulation reduction and the corresponding projection matrix P∼=
are shown on the right-hand side. The differential equation for the reduced CTMC has
dimension 2.

Unfortunately, as is well known, bisimulation is a strong condition, and small perturba-
tions in the rates can cause two states to not be bisimilar. Consider a perturbed version of
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the CTMC by setting ε23 = −ε13 = 0.05, which will give the following generator matrix:

Q =


−3.95 0 1.95 0 2

0 −4.05 1.05 1 2
0 1 −1 0 0
0 1 0 −1 0
0 0 0 0 0

 .
Here, εij 6= 0 for some transitions, and the CTMC on the right-hand side of Figure 3.1 is
not a bisimulation reduction. Let us also consider a perturbed version of the CTMC on
the right-hand side of Figure 3.1 with the generator matrix

Qr =

−4.05 2.05 2
1 −1 0
0 0 0

 .
Clearly, these two perturbed CTMCs are not bisimilar according to the usual definition
of bisimulation relation, but the following real matrix

P =


390
469

39
469

40
469

1 0 0
0 1 0
0 1 0
0 0 1

 ,
satisfies the equality QP = PQr. Note that P is no longer a projection matrix but has
entries in [0, 1], which sum up to 1 for each row. This particular P satisfies AP = PĀ but
not B = P B̄ (see (3.26)). Thus the original dynamics of Xt and their lower-dimensional
version X̄t, reduced with P , do not satisfy the equality (3.27).

However, since A is a stable matrix, we expect the trajectories of the original and the
reduced dynamics to converge, that is, the error between the trajectories to go to zero as
time goes to infinity. In the following, we generalize projection matrices as above, and
formalize this intuition.

Generalized Projections and Reduction

Suppose we are given CTMCs C and C̄, with corresponding dynamical systems (3.24) and
(3.25), and a matrix P with entries in [0, 1] whose rows add up to 1, such that AP = PĀ.
We call such a P a generalised projection. Define vector C̄ := CP . In general, the equality
B = P B̄ does not hold for generalized projections. In the following we provide a method
based on Lyapunov stability theory to quantify an upper bound εt such that∣∣∣ProbC(C, t)− ProbC̄(C̄, t)∣∣∣ ≤ εt (3.28)

for all t ≥ 0, where εt depends linearly on the mismatch B−P B̄ and decays exponentially
with t.
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S1

S2

S3

S4

good S′1 S′2good
2+ε13

Λ31 + ε31

2+ε15

1+ε23

2+ε25

1+ε32

1 + ε24

Λ42 + ε42

2

2

1

P∼= =


1 0
1 0
0 1
0 1



Figure 3.1.: Full state ε-perturbed CTMC (left), reduced-order CTMC (right), and pro-
jection matrix (right, below) computed for the unperturbed CTMC (εij = 0)
with Λ31 = 0 and Λ42 = 1.

First, we recall some basic results for linear dynamical systems (see, e.g., [54]). The
dynamics of these systems are represented by a set of linear differential equations of the
form

d

dt
Yt = AYt, Yt ∈ Rn, Y0 = Y0. (3.29)

We call the system stable if A is a stable matrix. In this case, it is known that limt→∞ Yt =
0 for any initial state Y0 = Y0 ∈ R0.

Definition 3.3.1 A continuous scalar function V : Rn → R is called a Lyapunov function
for the dynamical system (3.29) if V (y) = 0 for y = 0; V (y) > 0 for all y ∈ Rn\{0}; and
dV (Yt)/dt < 0 along trajectories of the dynamical system with Yt 6= 0.

A matrix M ∈ Rn×n is symmetric if M> = M . A symmetric matrix M satisfying
the condition Y >MY > 0 for all Y ∈ Rn\{0} is called positive definite, and written as
M � 0. Any symmetric matrix M satisfying Y >MY ≥ 0 for all Y ∈ Rn is called positive
semi-definite, written as M � 0. Similarly, we can define negative definite matrices
M ≺ 0 and negative semi-definite matrices M � 0. We write M1 � M2 if and only if
M1 −M2 � 0 and M1 � M2 if and only if M1 −M2 � 0. M1 ≺ M2 and M1 � M2 are
defined similarly. The eigenvalues of a symmetric positive definite matrix M are always
positive. We denote the largest eigenvalue of the positive definite matrix M by λmax(M).
Any positive definite matrix M satisfies Y >MY ≤ λmax(M)‖Y ‖22 for any Y ∈ Rn, where
‖Y ‖2 indicates the two norm of Y . The following is standard.

Theorem 3.3.1 [98] Linear dynamical system (3.29) is stable iff there exists a quadratic
Lyapunov function V (Y ) = Y >MY such that M � 0 and A>M +MA ≺ 0. Moreover,
for any constant κ > 0 such that A>M +MA+ 2κM � 0, we have

‖Yt‖2 ≤ Le−κt‖Y0‖2, ∀Y0 ∈ Rn,∀t ∈ R≥0,
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for some constant L ≥ 0, where ‖ · ‖2 indicates the two norm of a vector.

Note that in our setting, we are not interested in the study of asymptotic stability of
systems, but we are given two dynamical systems (3.24) and (3.25), and we would like to
know how close their trajectories are as a function of time. In this way we can use one
of them as an approximation of the other one with guaranteed error bounds. For this
reason, we define Lyapunov function V : Rn × Rr → R of the form

V (X, X̄) = (X − PX̄)>M(X − PX̄), (3.30)

where M � 0 is a positive definite matrix. The value of V (Xt, X̄t) at t = 0 can be
calculated as

V (X0, X̄0) = (A−1B − PĀ−1B̄)>M(A−1B − PĀ−1B̄)

= (B − P B̄)>A−1>MA−1(B − P B̄), (3.31)

where the second equality is obtained using AP = PĀ which implies PĀ−1
= A−1P . The

next theorem shows that the function (3.30) is indeed a Lyapunov function that satisfies
the conditions of Definition 3.3.1 but for the dynamical equations of (Xt − PX̄t).

Theorem 3.3.2 Consider dynamical systems (3.24) and (3.25) with invertible matrix A,
and let P be a generalized projection satisfying AP = PĀ. If there exist matrix M and
constant κ > 0 satisfying the following set of matrix inequalities:

M � 0
C>C �M
MA+A>M + 2κM � 0,

(3.32)

then we have ‖ProbC(C, t)− ProbC̄(C̄, t)‖2 ≤ εt, for all t ≥ 0, with

εt = ξ‖Γ‖2e−κt, (3.33)

where Γ := B − P B̄ is the mismatch induced by the generalized membership functions and
ξ2 := λmax(A−1>MA−1).

The error in (3.33) is exponentially decaying with decay factor κ and increases linearly
with mismatch Γ . A different version of the result, is proved in Appendix A.3.1.

Proof With the abuse of notation, let us denote V (Xt, X̄t) under the dynamics of Xt

and X̄t in (3.24) and (3.25) also by Vt:

Vt := V (Xt, X̄t), ∀t ≥ 0.
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We assume the argument of V can be inferred from the context, which is either a time
instance t or the pair (X, X̄). We compute derivative of Vt with respect to time:

d

dt
Vt =

d

dt
V (Xt, X̄t) =

dV (X, X̄)

d(X − PX̄)

d(X − PX̄)

dt

d(X − PX̄)>

dt
M(X − PX̄) + (X − PX̄)>M

d(X − PX̄)

dt

= X>MAX +X>A>MX −X>MPĀX̄

−X>A>MPX̄ − X̄>Ā>P>MX − X̄>P>MAX

+ X̄>P>MPĀX̄ + X̄>Ā>P>MPX̄.

Because of equality AP = PĀ, we can factorize d
dtV + 2κV as

d

dt
V + 2κV = [X>X̄>]

[
K11 K12

K21 K22

] [
X
X̄

]
, (3.34)

where

K11 = MA+A>M + 2κM (3.35)

K12 = K>21 = −MPĀ−A>MP − 2κMP (3.36)

K22 = P>MPĀ+ Ā>P>MP + 2κP>MP. (3.37)

We can decompose the weight matrix in (3.34) as

[
K11 K12

K21 K22

]
=

[
K11 −K11P

−P>K>11 P>K11P

]
=

[
I
−P>

]
K11

[
I −P

]
.

Recall from inequalities of (3.32) that K11 satisfies K11 = MA+A>M + 2κM � 0, which
implies d

dtV + 2κV ≤ 0. This inequality guarantees that Vt ≤ V0e
−2κt. Note that since

Vt = V (Xt, X̄t) is a quadratic function of Xt − PX̄t, the inequality Vt ≤ V0e
−2κt means

Xt − PX̄t will go to zero exponentially in time with decaying factor κ. To get a precise
upper bound on error between outputs of the two systems, we first bound V0. Notice that
V0 is obtained in (3.31), which satisfies

V0 = V (X0, X̄0) = Γ>(A−1>MA−1)Γ ≤ λmax(A−1>MA−1)‖Γ‖22.

The inequality holds since M is positive definite which makes A−1>MA−1 also positive
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definite. Now recall C̄ := CP and write

‖ProbC(C, t)− ProbC̄(C̄S , t)‖2 = ‖CXt − C̄Xt‖2
= ‖CS(Xt − PX̄t)‖2 (using C̄ := CP )

=
[
(Xt − PX̄t)

>C>C(Xt − PX̄t)
]1/2

(using equality ‖Y ‖2 = [Y >Y ]1/2)

≤
[
(Xt − PX̄t)

>M(Xt − PX̄t)
]1/2

(using C>C �M)

= V
1/2
t (using definition of Vt

≤ V 1/2
0 e−κt (using the exponential bound on Vt)

≤ λmax(A−1>MA−1)1/2‖Γ‖2e−κt (using the bound on V0)
= ξ‖Γ‖2e−κt = εt (using definitions of ξ and εt).

This completes the proof.

Matrix inequalities (3.32) in Theorem 3.3.2 are bilinear in terms of unknowns (entries
of M and constant κ) due to the multiplication between κ and M , thus are difficult to
solve. Under Assumption 2, there exists M and κ such that (3.32) is satisfied. In the
following we show how to obtain a solution efficiently when A is stable.

Theorem 3.3.3 Assumption 2 implies that matrix A has a simple eigenvalue equal to
ρ̄ := maxi Re(λi(A)) and its left eigenvector ν can be selected such that all its entries are
strictly positive. A feasible solution of (3.32) can be selected by letting κ be any positive
constant

κ ≤ −1

2
ρ̄ = −1

2
max
i

Re(λi(A)), (3.38)

and choosing the diagonal matrix M = diag(ν) with entries of ν normalized to have them
greater or equal to one.

Proof The matrix H = A
γ + Im is sub-stochastic and irreducible. According to Perron-

Frobenius theorem, H has a simple real eigenvalue ρ, which is its largest eigenvalue in
absolute sense, and its associated left eigenvector ν having strictly positive entries. Without
loss of generality, we assume that ν is normalized such that it has all entries greater or
equal to one. We also proved in Proposition 3.3.1 that ρ < 1. The definition of H implies
that λi(H) = λi(A)/γ + 1. Thus we get ρ̄ := maxi Re(λi(A)) = −γ(1 − ρ) is a simple
eigenvalue of A with the same left eigenvector ν.
Matrix (A + κIm) has exactly the same eigenvalues as that of A but increased by κ.
Selecting κ < −ρ̄ implies (A+ κIm) still has all its eigenvalues with negative real parts.
Therefore, (A + κIm) is stable and according to Theorem 3.3.1, there is a matrix M
satisfying (A> + κIm)M +M(A+ κIm) ≺ 0, which means A>M +MA+ 2κM � 0.
We show that M = diag(ν) is a solution for this inequality. Denote by 1m the column
vector of dimension m with all entries equal to one. We have

(A> + 2κIm)M1m = (A> + 2κIm)ν> = (ρ̄+ 2κ)ν>,

MA1m = M(A1m) = (ν>) · (A1m) (entry-wise product of ν> and A1m).
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Since ν> has positive entries, (ρ̄+ 2κ) ≤ 0, and (A1m) has non-positive entries, we have
that both matrices (A>+2κIm)M andMA are right sub-stochastic satisfying Assumption 2.
Therefore, (A> + 2κIm)M +MA is symmetric and stable, its eigenvalues will be negative,
thus it is semi-definite negative. This concludes the proof.

Next, we show that for a given r ≤ m, we can find a suitable Ā and P such that
AP = PĀ .

Theorem 3.3.4 Given the matrix A ∈ Rn×n, for each r ≤ m, there is a m× r matrix
P and an r × r matrix Ā, computable in polynomial time in m, such that AP = PĀ.

Proof Every matrix A can be decomposed as

A = UNU−1, (3.39)

in which N is an upper triangular matrix, called the Schur form of A, and U is a unitary
matrix [77]. Schur decomposition of A can be performed iteratively with O(m3) arithmetic
operations using QR decomposition [49]. We choose Ā as the first r rows and columns of
N and P as first r columns of U . Since N is upper triangular, the equality AP = PĀ
holds for this choice of Ā and P .

Once κ is fixed, constraints (3.32) become matrix inequalities that are linear in terms
of entries of M and can be solved using convex optimization [62] and developed tools
for linear matrix inequalities [69, 111]. In particular, the diagonal matrix M defined in
Theorem 3.3.3 is a feasible solution to the matrix inequalities. However, when C is not
full rank, which is the case when S0 6= S, solving the matrix inequalities for M can result
in better error bounds.
Notice that V0 = (X0 − PX̄0)>M(X0 − PX̄0) and using (3.24), we have X0 = A−1B.

Therefore, it is important to find X̄0 that results in the least V0. We can compute X̄0 by
minimizing V0:

min
X̄0

[
X0 − PX̄0

]>
M
[
X0 − PX̄0

]
, (3.40)

which is a weighted least square optimization and has the closed-form solution

X̄0 = (P>MP )−1P>M(A−1B). (3.41)

Choosing this initial state X̄0 will provide a tighter initial error bound. Knowing Ā and
X̄0, one can find B̄ = ĀX̄0.

Theorems 3.3.3-3.3.4 give an algorithm, shown in Algorithm 8, to find lower dimensional
approximations to the dynamical system (3.24), and Theorem 3.3.2 provides a quantitative
error bound for the approximation. The procedure is summarized in Algorithm 8. Given a
time-bounded reachability problem and an error bound ε, we iteratively compute reduced
order dynamical systems of dimension r = 1, . . . , n− 1 using Theorems 3.3.3-3.3.4. Then,
we check if the error bound in Theorem 3.3.2 is at most ε. If so, we solve the dynamical
system of dimension r (using, e.g., exponential of an upper-triangular matrix) to compute
an ε-approximation to the time-bounded reachability problem. If not, we increase r and
search again.
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Example 3 Consider the CTMC in Figure 3.1 with Λ31 = 1, Λ42 = 2 and εij = 0 for all
i, j (the CTMC is unperturbed). The generator matrix for the CTMC is

Q =


−4 0 2 0 2
0 −4 1 1 2
1 1 −2 0 0
0 2 0 −2 0
0 0 0 0 0

 .
As in Example 3.1, we are interested in computing the probability of reaching the state
good. Using the partition defined in Eq. (3.19), we get

A =


−4 0 2 0
0 −4 1 1
1 1 −2 0
0 2 0 −2

 , β =


2
2
0
0

 .
Note that A is reducible with ρ̄ = −0.7639. All the values are reported by rounding to 4
decimal digits. We select the decay rate κ = 0.3820 using Eq. (3.38). Then we compute U
and N based on the Schur decomposition of A:

N =


−5.2361 0 0.1602 −0.9871

0 −0.7639 −0.9871 −0.1602
0 0 −4.4142 0
0 0 0 −1.5858

 , U =


0.6015 0.3717 0.6533 −0.2706
0.6015 0.3717 −0.6533 0.2706
−0.3717 0.6015 −0.2706 −0.6533
−0.3717 0.6015 0.2706 0.6533

 .
Using Theorem 3.3.3 we find matrix M as

M =


1 0 0 0
0 2 0 0
0 0 3.2361 0
0 0 0 1.6180

 .
Selecting the order r = 2, we find Ā as the first (2 × 2) block of N and P the first 2
columns of U :

Ā =

[
−5.2361 0

0 −0.7639

]
, P =


0.6015 0.3717
0.6015 0.3717
−0.3717 0.6015
−0.3717 0.6015

 .
Using (3.41), we compute the initial state of the reduced-order system as

X̄0 =

[
0.4595
1.9465

]
.

The above selection results in εB = 0 for any arbitrary time bound T . Therefore, the order
of the set of differential equations that we need to solve reduces from four into two without
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incurring any error. In this case, our approach retrieves the reduction originating from
the exact bisimulation.
We now consider a perturbed version of the CTMC with the generator matrix

Q =


−3.95 0 1.95 0 2

0 −4.05 1.05 1 2
1 1 −2 0 0
0 2 0 −2 0
0 0 0 0 0

 . (3.42)

By performing the same computations as above, we find

κ = 0.3730 M =


1 0 0 0
0 1.9047 0 0
0 0 3.1887 0
0 0 0 1.5376

 ,
and

Ā =

[
−5.2580 −0.0770

0 −0.7613

]
, P =


0.5436 0.3753
0.6443 0.3864
−0.3646 0.5922
−0.3955 0.5993

 , X̄0 =

[
0.4165
1.9454

]
.

For example, we have εB = 0.0008e−0.3730T according to Theorem 3.3.2, which is 0.0005
for time bound B = 1.

Symbolic Computation on the Reduced Model

Based on the construction of Ā of the reduced system according to the Schur form (3.39),
matrix Ā is upper-triangular as

Ā =



Ā11 Ā12 Ā13 · · · Ā(1)(r−1) Ā1r

0 Ā22 Ā23 · · · Ā(2)(r−1) Ā2r

0 0 Ā33 · · · Ā(3)(r−1) Ā3r
...

...
...

. . .
...

...
0 0 · · · · · · Ā(r−1)(r−1) Ā(r−1)(r)

0 0 · · · · · · 0 Ārr


.

This property of Ā can be exploited to make the computation of reachability probability
more efficient. In fact, solution of the differential equation ˙̄Xt = ĀX̄t in (3.25) can be
written as X̄t = eĀtX̄0. Let us first assume all diagonal elements of Ā are distinct. Denote
the ith element of X̄t by X̄t(i). The last element of X̄t can be easily computed as

˙̄Xr
t = ĀrrX̄

r
t ⇒ X̄

r
t = eĀrrtX̄

r
0.
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Algorithm 8: Order reduction of CTMCs
Input: CTMC C = (SC ,Q), time bound B, maximum error bound ε

1. Compute A, β and κ, based on (3.19) and (3.38)

2. Compute M using Theorem 3.3.3

3. Compute the Schur decomposition of A and save the matrices U and N using (3.39)

4. r ← 0

5. Do
r ← r + 1
Set Ā as the first r rows and columns of N
Set P as first r columns of U
Compute X̄0 according to (3.41)
Compute error bound εr using (3.33) for time bound B and B̄ = ĀX̄0

While (εr > ε)

Result: Reduced-order system (3.25)

In general, it is possible to perform the computations bottom-up. Once we solve the
equations for X̄r

t , X̄
r−1
t , . . . , X̄

i+1
t , we use their explicit form to solve the differential

equation for X̄i
t . This gives the solution in closed-form as

X̄i
t =

r∑
j=i

αije
Ājjt, (3.43)

where

αij =

{∑j
k=i+1

Āikαkj
−Āii+Ājj

for j > i,

−
∑r

j=i+1 αij + X̄i
0 for j = i.

This closed-form solution can be verified inductively. Note that the computation of αij
is performed sequentially and backward with respect to the index i. To make these
computations clear, let us define the matrix α := [αij ]i,j , which is upper triangular.
The last row of this matrix has one non-zero element, which is simply αrr = X̄r

0 . The
computation of the ith row of α is performed as follows. The non-diagonal elements in the
ith row will need the entries from previously computed rows which are the (i+ 1)st, (i+
2)nd, . . . , rth rows. The diagonal element in the ith row needs its non-diagonal elements.

For the case that Ā has eigenvalues with multiplicities m > 1, the closed-form solution
(3.43) becomes a linear combination of functions tleĀiit for 0 ≤ l ≤ m − 1, and the
coefficients can be computed in a similar way. The details of such computations can be
found in general text books on control theory, e.g., [138].
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Example 4 Let us consider the CTMC with the generator matrix given in (3.42). The
reduced system for this CTMC was computed in Example 3. We use our symbolic compu-
tation method described above to find the solution to the time-bounded reachability problem.
Based on Eq. (3.43), the closed form solution to the time-bounded reachability problem
over the reduced system with time bound B will be

X̄1(B) = −0.0332e−0.7613T + 0.4498e−5.2580T

X̄2(B) = 1.9454e−0.7613T .

3.3.2. Time-Bounded Reachability on CTMDPs

LetM = (S ] {good,bad},D,Q) be a CTMDP with two absorbing states good and
bad, where |S| = n, and let B ∈ R≥0 be a time bound. Define the event

RA := ∪{f ∈ Ω | ∃t ∈ [0, B] s.t. ft = good and ft′ 6= bad for all t′ ∈ [0, t)}. (3.44)

Let S0 ⊆ S with |S0| = n0 be a set of desired initial states. For a fixed timed positional
policy π ∈ ΠB and an initial state s ∈ S0, we define

ProbM(π)(1(s), B) = Pπ
s (RA).

Furthermore, let C be an n0 × (n + 2) matrix with n0 ones on its main diagonal,
corresponding to the states in S0. We denote ProbM(π)(C,B) as the n0-dimensional
vector containing all the values of ProbM(π)(1(s), B) for s ∈ S0. If S0 = S, then C is the
(n+ 2)× (n+ 2) identity matrix. Intuitively, for s ∈ S0, the value ProbM(π)(1(s), B)(s)
corresponds to the probability with which the good state is visited within the time bound
[0, B], while the bad state is avoided, starting from the initial distribution α = 1(s) and
under the policy π.
For an initial set of states S0, a rational vector r ∈ [0, 1]n0 and a time bound B > 0,

we are interested in synthesizing a policy π ∈ ΠB such that:

ProbM(π)(1(s), B) ≥ r(s), (3.45)

for all s ∈ S0. Synthesizing such a policy can be done by maximizing the left-hand side of
(3.45) on the set of policies and then comparing the optimal value with r. Characterization
of the optimal policy is performed as follows [32]. We partition any generator matrix Qd

corresponding to decision vector d ∈ D, as

Qd =

A
d

... χd
... βd

. . . . . . . . . . . . . . .

0
... 0

... 0

 (3.46)

with Ad ∈ Rn×n, χd ∈ Rn×1, and βd ∈ Rn×1. Then for a CTMDP M with matrix
C indicating a subset of initial states S0 ⊆ S for which we would like to satisfy (3.45),
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maxπ ProbM(π)(C,B) can be characterized backward in time as the solution of the
following set of nonlinear differential equations

d

dt
Wt = max

dt∈D
QdtWt, W (0) = 1(good),

max
π

ProbM(π)(C,B) = CWt, (3.47)

whereWt is a column vector containing probabilities maxπ ProbM(π)(1(s), B) as a function
of initial state s.

With respect to the partitioning (3.46), it is obvious that in (3.47), Wt(bad) = 0 and
Wt(good) = 1 for all t ∈ R≥0. The remaining state variables Wt should satisfy

d

dt
Wt = max

dt∈D
(AdtWt + βdt), W (0) = 0,

max
π

ProbM(π)(C, t) = CWt. (3.48)

The optimal policy is the one maximizing the right-hand side of differential equation in
(3.48), and thus it is time-dependent and is only a function of state of the CTMDP at
time t. In [144], it is shown that the policy that maximizes time-bounded reachability
probability of CTMDPs contains only finitely many switches. However, finding the
optimal policy is computationally expensive for CTMDPs with large number of states.
The current state of the art solutions are based on breaking the time interval [0, B] into
smaller intervals of length δ, and then computing (approximate) optimal decisions in each
interval of length T

δ sequentially (see [61, 33]). Thus, a set of linear differential equations
must be solved in each interval, which is computationally expensive.
In the following, we will develop a new way of synthesizing a policy that satisfies

(3.45) by approximating the solution of (3.48) via generalized projections and reductions.
We treat (3.48) as a switched affine system [68]. We are given a collection of |D| affine
dynamical systems, characterized by the pairs (Ad,βd), and the role of any policy
π = {dt ∈ D, t ≥ 0} is to switch from one dynamical system to another by picking a
different pair. The main underlying idea of our approximate computation is to consider
the reduced order version of these dynamical systems and find a switching policy π. We
provide guarantees on the closeness to the exact reachability probability when this policy
is applied to the original CTMDP. For this we require the following assumption.

Assumption 3 Matrices {Ad, d ∈ D} are all stable.

Note that this assumption is satisfied if for each choice of actions, the resulting CTMC
is irreducible (Prop. 3.3.1) and the time-bounded reachability problem does not have a
trivial solution.

Under Assumption 3, we can find matrix Md and constant κd > 0, for any d ∈ D, such
that the following matrix inequalities hold:

Md � 0
C>C �Md

MdAd + [Ad]>Md + 2κdMd � 0,
(3.49)
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We need the following lemma that gives us a bound on the solution of reduced order
systems.

Lemma 3.3.1 Suppose generalized projections Pd and matrices Ād satisfy AdPd =
PdĀd for any d ∈ D. Then V (X̄d) = [X̄d]>M̄dX̄d with M̄d = [Pd]>MdPd and Md

satisfying (3.49), is a Lyapunov function for dX̄t/dt = ĀdX̄d
t for each d ∈ D. Moreover,

‖X̄d
t1‖M̄d ≤ ‖X̄d

t0‖M̄de−κ
d(t1−t0), ∀t1 ≥ t0, (3.50)

where ‖Y ‖G :=
√
Y >GY is the weighted two-norm of a vector Y .

Proof We prove (3.50) via a bound on the Lyapunov function V (X̄d):

d

dt
V (X̄d) = (ĀdX̄d)>M̄dX̄d + [X̄d]>M̄d(ĀdX̄d)

= [X̄d]>([Ād]>M̄d + M̄dĀd)X̄d

= [X̄d]>([Ād]>[Pd]>MdPd + [Pd]>MdPdĀd)X̄d

= [X̄d]>([Pd]>[Ad]>MdPd + [Pd]>MdAdPd)X̄d

= [X̄d]>[Pd]>([Ad]>Md +MdAd)PdX̄d

≤ −2κd[X̄d]>[Pd]>MdPdX̄d = −2κdV (X̄d),

thus V (X̄d
t ) ≤ V (X̄d

t0)e
−2κd

(t−t0) , for all t ≥ t0, which gives (3.50).

Consider an arbitrary time-dependent Markov policy π = {dt ∈ D, t ≥ 0}. Then there
is a sequence of decision vectors (d1,d2,d3, . . .) with switching times (t1, t2, t2, . . .) such
that actions in di are selected over time interval [ti−1, ti) depending on the state ofM,
for any i = 1, 2, . . . with t0 = 0. We first study time-bounded reachability forM under
policy π, which can be characterized as the switched system:

d

dt
Wt = AdiWt + βdi , ∀t ∈ [ti−1, ti), i = 1, 2, . . . (3.51)

Similar to our discussion on CTMC, we prefer to move constant inputs βdi in (3.51) into
initial states. Therefore, we define the following piecewise translation

Xt := Wt + [Adi ]−1βdi , ∀t ∈ [ti−1, ti), i = 1, 2, . . . (3.52)

that depends also on π. Note that [Adi ]−1βdi is exactly the solution of the unbounded
reachability probability (steady state solution of (3.51) when matrix Adi is selected for
all time instances). Thus the evolution of Xt becomes

d

dt
Xt = AdiXt, ∀t ∈ [ti−1, ti), i = 1, 2, . . . , (3.53)

with state Xt having jumps at switching time instances ti that are equal to

∆Xti := Xti −Xt−i
= [Adi+1

]−1βdi+1 − [Adi ]−1βdi , (3.54)
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where Xt−i
denotes the left-sided limit of Xt at ti, i.e., Xt−i

:= limt↑ti Xt. The quantity
∆Xti is exactly the difference between unbounded reachability probability if one of the
decision vectors di and di+1 is taken independent of time. Similarly, we define

∆ij := [Adj ]−1βdj − [Adi ]−1βdi , (3.55)

which will be used later in Theorem 3.3.5. Note that Wt is a continuous function of time
no matter what decision vectors {d1,d2, . . .} are selected, but it converges to different
steady state vectors depending on the chosen decision vectors. On the other hand, when
we change the variables to Xt using the affine transformation (3.52), Xt becomes a
discontinuous function of time, with discontinuity at time instances ti and jumps equal
to ∆Xti defined in (3.54), but it will always converge to zero independent of the chosen
decision vectors {d1,d2, . . .}.
Now we construct the reduced order switched system

d

dt
X̄t = ĀdiX̄t, ∀t ∈ [ti−1, ti), i = 1, 2, . . . , (3.56)

with Ād satisfying AdPd = PdĀd for all d ∈ D. We choose the values of jumps
∆X̄ti := X̄ti − X̄t−i

so that the behavior of (3.56) is as close as possible to (3.53). For
this, we have

X̄ti := arg min
X̄

∥∥∥∆Xti − Pdi+1
X̄ + PdiX̄t−i

∥∥∥
Mdi+1

, (3.57)

which can be computed for any value of X̄t−i
.

Define the dwell time of a policy π by τ = mini(ti − ti−1), i.e., the minimum time
between two consecutive switches of decision vectors in π. The paper [132] shows that
for any epsilon-optimal policy there is a bound on the minimum dwell time. The next
theorem quantifies the error between the two switched systems using the dwell time of
the policy.

Theorem 3.3.5 Given a CTMDP M, a policy π with dwell time τ , switching time
instances t0 = 0 ≤ t1 ≤ t2 ≤ · · · , and bounded-time reachability over [0, B]. Suppose there
exist Mdi , κd

i satisfying (3.49), constant µ satisfying Mdi � µMdj for all di,dj ∈ D,
and matrices Ādi , Pdi such that AdiPdi = PdiĀdi . Then we have

‖XB − Pdn+1
X̄B‖Mdn+1 ≤ εne−κ(B−tn), (3.58)

where tn is the last switching time instance before the time bound B and κ := mind κ
d is

the minimum decay rate. The quantity εn is obtained from the difference equations

ε̄i = µgε̄i−1 + ∆max

εi = µgεi−1 + 2µgε̄i−1 + 2∆max, i ∈ {1, 2, . . .}, (3.59)

where g := e−κτ ∆max := maxi,j ‖∆ij‖Mj with ∆ij defined in (3.55), initial conditions
ε0 := ‖[Ad0

]−1βd0 −Pd0
X̄0‖Md0 , and ε̄0 = ||X̄(0)||

M̄d1 . The states X̄ti at switching time
instances are reset to a value according to the weighted least square method similar to
(3.41).
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Proof We show that the following inequalities hold with ε̄i, εi satisfying (3.59):

||X̄ti ||M̄di+1 ≤ ε̄i and ||Xti − PdiX̄ti ||Mdi+1 ≤ εi.

Note that εi and ε̄i are defined inductively in (3.59) and depend on each other. εi bounds
the norm of Xti − PdiX̄ti weighted by Mdi+1 but ε̄i bounds the norm of X̄ti weighted by
M̄di+1. In order to establish the relation between these two quantities inductively, we
have to use the appropriate weight and change it using the definition M̄d = [Pd]>MdPd

whenever necessary.
At the ith switching time instance, we have Xti = Xt−i

+ ∆i,i+1. By adding and

subtracting the term PdiX̄t−i
and noting that Mdi+1 ≤ µMdi , we can write:

‖Xt−i
+ ∆i,i+1 − Pdi+1

X̄ti‖Mdi+1

= ‖Xt−i
− PdiX̄t−i

+ PdiX̄t−i
+ ∆i,i+1 − Pdi+1

X̄ti‖Mdi+1

≤ ‖Xt−i
− PdiX̄t−i

‖
Mdi+1 + ‖PdiX̄t−i

+ ∆i,i+1 − Pdi+1
X̄ti‖Mdi+1

≤ µ‖Xt−i
− PdiX̄t−i

‖
Mdi + ‖PdiX̄t−i

+ ∆i,i+1 − Pdi+1
X̄ti‖Mdi+1 . (3.60)

For the time interval [ti−1, ti) we already know that

‖Xt−i
− PdiX̄t−i

‖
Mdi ≤ ‖Xti−1 − PdiX̄ti−1‖Mdie

−κdi (ti−ti−1) ≤ gεi−1,

since the policy has dwell time τ . Now we deal with the second term in (3.60). As a
consequence of picking columns of Pdi ∈ Rn × Rr from the corresponding unitary matrix,
one can easily notice that [Pdi ]>Pdi = Ir and Pdi [Pdi ]> ≤ In for every i. Therefore,
using the triangle inequality we get

‖PdiX̄t−i
+ ∆i,i+1 − Pdi+1

X̄ti‖Mdi+1

≤ ‖PdiX̄t−i
‖
Mdi+1 + ‖∆i,i+1‖

Mdi+1 + ‖Pdi+1
X̄ti‖Mdi+1

≤ µ‖X̄t−i
‖
M̄di + ∆max + ‖X̄ti‖M̄di+1 . (3.61)

The last inequality is due to Mdi+1 ≤ µMdi, the definition of ∆max in Theorem 3.3.5,
and the definition M̄d = [Pd]>MdPd in Lemma 3.3.1. X̄ti is selected as the minimizer
of the expression

‖PdiX̄t−i
+ ∆i,i+1 − Pdi+1

X̄ti‖2, (3.62)

which is
X̄ti = [Pdi+1

]>(PdiX̄t−i
+ ∆i,i+1). (3.63)

Therefore,

‖X̄ti‖M̄di+1 ]2 = (PdiXt−i
+ ∆i,i+1)>Pdi+1

[Pdi+1
]>Mdi+1

Pdi+1
[Pdi+1

]>(PdiXt−i
+ ∆i,i+1)

≤ (PdiXt−i
+ ∆i,i+1)>Mdi+1

(PdiXt−i
+ ∆i,i+1).
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Based on (3.50) and taking dwell time τ into account, we know that

‖X̄t−i
‖
M̄di ≤ ‖X̄ti−1‖M̄die

−κτ .

Then,

‖X̄ti‖Mdi+1 ≤ µ‖X̄t−i
‖
M̄di + ∆max ≤ µg‖X̄ti−1‖M̄di + ∆max (3.64)

Putting (3.64) into (3.61) we have:

‖X̄t−i
+ ∆i,i+1 − Pdi+1

X̄ti‖Mdi ≤ 2µg‖X̄ti−1‖Mdi+1 + 2∆max = 2ε̄i + 2∆max. (3.65)

Combining the two computed upper bounds, we get the difference equations (3.59).

Remark 17 (1) The precision of the bound in (3.59) can be increased in two ways. First,
the bound will be lower for policies with larger dwell time τ (smaller g). Second, if we
increase the order of reduced system, ε0 will become smaller. (2) The gain g solely depends
on the CTMDPM and dwell time of policy π. In order to have a meaningful error bound,
dwell time should satisfy τ > logµ

κ . This condition is already true if we find a common
Lyapunov function for the CTMDP M, i.e., if there is one matrix M independent of
the decision vector d satisfying (3.49). In that case, µ = 1 and dwell time can take any
positive value.

corollary 3.3.1 The error εi in (3.59) converges to the constant value γ∆max for µg < 1,
where

γ :=
2− 4µg

(1− µg)2
. (3.66)

Proof We can rewrite (3.59) into a discrete time state space representation as[
εi
ε̄i

]
=

[
µg 2µg
0 µg

] [
εi−1

ε̄i−1

]
+

[
2
1

]
∆max, (3.67)

We consider (3.67) as a dynamical system in discrete time (index i plays the role of time,
which is discrete). Such a discrete-time dynamical system is asymptotically stable if all
eigenvalues of its state matrix are in the unit circle. Since the state matrix of (3.67) is
upper triangular, its eigenvalues are the same as the diagonal elements of the state matrix,
which are both µg. Therefore, the system is asymptotically stable iff µg < 1. Hence, we
can compute the steady state value of ε using the expression below:

lim
i→∞

εi =
[
1 0

] [1− µg 2µg
0 1− µg

]−1 [
2
1

]
∆max =

2− 4µg

(1− µg)2
∆max.

Remark 18 For the case of having no bad states, we get A−1βd = −1 and ∆max = 0.
Corollary 3.3.1 implies that for CTMDP M with no bad states, the error bound will
converge to zero as a function of time.
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So far we discussed reduction and error computation for a given policy π. Our proposed
CTMDP reduction scheme is outlined in Algorithm 9. Notice that the statement of
Theorem 3.3.5 holds for any policy as long as it has a dwell time at least τ . Therefore, we
can find a policy using a reduced system and apply it to the original CTMDPM with
the goal of maximizing reachability probability. For a given CTMDPM, time horizon B,
probability threshold θ, and error bound ε, we select a dwell time τ and order of the reduced
system such that εne−κ(B−tn) ≤ ε according to (3.58) with n = bT/τc. Then we construct
a policy π using the reduced order system (3.56) by setting d0 = arg maxdA

dXd(0)
where Xd(0) = [Ad]−1βd. The next selection of policies are done by respecting dwell
time and di+1 = arg maxd P

dĀdX̄d
t for t ≥ ti + τ with ti being the previous switching

time. Policy synthesis over the reduced order system can be implemented as it is shown
in Algorithm 10. Note that the computed policy may not be optimal because we fix
a dwell time and a discretization time step. If the computed interval for reachability
probability is not above θ, we go back and improve the results by increasing the order of
the reduced system.

Algorithm 9: Order reduction of CTMDPs
Input: CTMDPM, time bound B, maximum error bound ε, policy π with dwell

time τ

1. Compute Ad, βd and κd for all d, based on (3.46) and (3.38)

2. Set κ = mind κ
d and Md = I|S|

3. Compute the maximum number of switches as n = bTτ c

4. Initialise the order r = 0

5. Do
r ← r + 1
Compute Ād and Pd for all d ∈ D using (3.39)
Compute X̄d(0) for all d ∈ D using (3.41)
Compute error bound εr as (3.58) using (3.59)

While (εr ≥ ε)

Result: Reduced order system of (3.56) with matrices (Ād, Pd for d ∈ D)

Example 5 Consider a CTMDP described by the following generator matrices corre-
sponding to two decisions d1 and d2,

Qd1
=


−1 1 0 0 0
0.01 −3.01 0.5 0.5 2

0 0.01 −1.01 0 1
0 0.01 0.05 −1.06 1
0 0 0 0 0

 , Qd2
=


−1.5 0 0.75 0.75 0
0.01 −3.01 0.5 0.5 2

0 0.01 −1.01 0 1
0 0.01 0.05 −1.06 1
0 0 0 0 0

 .
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3. Continuous-Time MDPs with Reachability Specifications

This means there are two actions available in the first state, and each induces outgoing
rates specified by the first rows of Qd1 and Qd2. The other states have only one action
available. The last state is good, which is absorbing. We set the time bound B = 10.
Using the partition defined in Eq. (3.46), we get

Ad1
=


−1 1 0 0
0.01 −3.01 0.5 0.5

0 0.01 −1.01 0
0 0.01 0.05 −1.06

, βd1
=


0
2
1
1

,

Ad2
=


−1.5 0 0.75 0.75
0.01 −3.01 0.5 0.5

0 0.01 −1.01 0
0 0.01 0.05 −1.06

, βd2
=


0
2
1
1

.
Both Ad1 and Ad2 are irreducible. Thus, Assumption 3 holds. We compute the decay
rates κd1 and κd1 using Eq. (3.38) and set κ = min(κd

1
, κd

2
) = 0.4965. Furthermore,

Eq. (3.49) can be satisfied by setting Md1
= Md2

= I4. This allows us to choose µ = 1.
Hence, the dwell time τ can take any positive value since log µ

κ = 0. We set the dwell time
τ = 2.3.
For the reduced order r = 3, we use Theorem 3.3.4 and get

Ād1
=

−3.0199 0.9859 0.6244
0 −0.993 −0.3137
0 0 −1.0071

 , Pd1
=


−0.4437 −0.8962 −0.0059
0.8962 −0.4437 0.0041
−0.0045 −0.0024 0.7071
−0.0045 −0.0024 0.7071


that correspond to the decision vector d1, and

Ād2
=

−3.0149 −0.0174 0.6982
0 −1.5 −1.0571
0 0 −1.0049

 , Pd2
=


0.0049 −1 −0.0001

1 0.0049 0.0071
−0.005 0.0001 0.7071
−0.005 0.0001 0.7071


that correspond to d2. We initialize the set of differential equations with X̄d1

(0) and
X̄d2

(0) computed using Eq. (3.41) as

X̄d1
(0) =

−0.4436
1.3447
−1.4125

 and X̄d2
(0) =

−0.9949
0.9949
−1.4124

 .
Note that g = e−κτ = 0.007, ∆12 = ∆21 = 0, and ∆max = 0. We compute the error of
order reduction using equations (3.58)-(3.59) with n = bTτ c = 4 and tn = nτ = 9.2. This
gives the error bound 0.1396.
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Our formulated error bound depends on the order r of the reduced system and the
dwell time τ . There is a tradeoff between r and τ for having a guaranteed error bound.
The error bound depends on r implicitly and is selected recursively. Computation of the
sub-optimal policy depends also on the discretization step δ. The overall complexity of
such a computation for a CTMDP with m states, l decision vectors, and time bound B is
O(lm3) +O(Blr

2

δ ), where the first and second terms are the computational complexities
for the reduced system and the sub-optimal policy, respectively.

Algorithm 10: Sub-optimal policy synthesis for CTMDPs
Input: Reduced system (Ād, Pd for d ∈ D), time bound B, dwell time τ ,

discretization step δ

1. d0 = arg max
d∈D

(QdXd(0))

2. k = b τδ c+ 1

3. πt = d0 for t ∈ [0, kδ)

4. While k < bTδ c+ 1
Compute a possibly sub-optimal policy using:

dk = argmax
d∈D

(QdPdX̄d(kδ))

If dk 6= dk−1

πt = dk for t ∈ [kδ, (k + b τδ c+ 1)δ)
k ← k + b τδ c+ 1
Compute X̄d(kδ) using (3.56) and (3.63) for all d ∈ D

Else
πt = dk for t ∈ [kδ, (k + 1)δ)
k ← k + 1
Compute X̄d(kδ) using (3.56) for all d ∈ D

End
End

Result: Sub-optimal policy πt for t ∈ [0, B]

3.3.3. Experimental Evaluation

Here, we first use our method for reachability analysis of two queuing systems, namely
M/M/1 and tandem networks. We then evaluate the performance of our proposed
symbolic computation on randomly generated models.

The M/M/1 queue consists of only one queue with a specific capacity denoted by cap.
Jobs arrive with the rate λ̄ and are processed with the rate µ. The M/M/1 queue can
be modeled as a CTMC with a state space of size (cap + 1). We find the probability of
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Figure 3.2.: Error analysis for the state reduction forM/M/1 queuing system. left: decay
rate of the error as a function of processing rate µ. right: error of the state
reduction as a function of time bound B and processing rate µ. The error is
very small for larger time bounds B and smaller µ.

Figure 3.3.: A typical tandem network

reaching the configuration in which the queue is at its full capacity from a configuration
in which the queue is empty. The generator matrix of this CTMC is tridiagonal, with
upper diagonal entries λ̄, lower diagonal entries µ, and main diagonal entries −(λ̄+ µ).
We choose cap = 100 (size of the state space is 101) and fix the size of the reduced

system to r = 10. We also fix the arrival rate λ̄ = 10 and study the behavior of our
formulated error bound for state reduction with respect to the processing rate µ. Figure 3.2
(left) demonstrates the variations of the decay rate κ defined in Eq. (3.38) as a function of
processing rate µ. The decay rate is larger for smaller values of µ and become very close
to zero for larger values of µ, which makes our approach very efficient for smaller values
of µ. This fact is also visible from Figure 3.2 (right), where the error defined formally in
Eq. (3.33) is shown as a function of the time bound B and µ in logarithmic scale. It can
be observed that the error is very small for larger time bounds B and smaller µ.

We now apply our results to the tandem network shown in Figure 3.3. The network is
a queuing system that consists of a M/Cox2/1 queue composed with a M/M/1 queue
[75].
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Figure 3.4.: left: approximate reachability probability for tandem network as a function of
time horizon with guaranteed error bounds. right: error bound as a function
of time horizon and order of the reduced system;

Both queuing stations have a capacity of cap. The first queuing station has two phases
for processing jobs while the second queuing station has only one phase. Processing
phases are indicated by circles in Figure 3.3. Jobs arrive at the first queuing station
with rate λ̄ and are processed in the first phase with rate µ1. After this phase, jobs are
passed through the second phase with probability a, which are then processed with rate
µ2. Alternatively, jobs will be sent directly to the second queuing station with probability
b, a percent of which will have to undergo a repair phase and will go back to the first
station with rate ∆λ to be processed again. This percentage is denoted by p. Processing
in the second station has rate µ3.

The tandem network can be modeled as a CTMC with a state space of size determined
by cap. We find the probability of reaching to the configurations in which both stations
are at their full capacity (blocked state) starting from a configuration in which both
stations are empty (empty state). We consider cap = 5 which results in a CTMC with
65 states. We have chosen values µ1 = µ2 = 2, µ3 = λ = 4, a = 0.1, and b = 0.9. We
also set p = 0 and ∆λ = 0, which means no job is going to the repair phase. Matrix
inequalities (3.32) are satisfied with M being identity and κ = 0.001. Using the reduction
technique of Subsection 3.3.1, we can find approximate solution of reachability with only 3
state variables. Figure 3.4 (left) shows reachability probability computed over the tandem
network and the reduced order system together with the error bound as a function of
time horizon. The error has the initial value 0.02, computed via the choice of initial
reduced state in (3.41), and converges to zero exponentially with rate 0.0013. It can also
be noticed that the outputs of the full and reduced-order systems cannot be distinguished
in the figure. This is due to the fact that their actual difference is very small compared
to the formal error bound characterized by our method.
Figure 3.4 (right) gives the error bound as a function of time horizon of reachability

and order of the reduced system. As discussed, the error goes to zero exponentially as
a function of time horizon. It also converges to zero by increasing the order of reduced
system.
Now consider a scenario that the network can operate in fast or safe modes. In fast mode,
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Figure 3.5.: State diagram of a CTMDP with 16 states and 16 decision vectors corre-
sponding to a tandem network with capacity 2. States S1, S2, S3, S4 have two
modes with rates a ∈ {0.6, 0.7}.

fewer jobs are sent through the second phase (corresponding to a smaller value of a); this,
in turn, increases the probability that jobs which did not pass second phase, need to be
processed again. We model influence of returned jobs as an increase in ∆λ.
We consider the case that there are two possible rates a ∈ {0.6, 0.7} corresponding
respectively to fast and safe modes. If fast mode is chosen, 10% of jobs will be returned
(p = 0.1) with rate ∆λ = 0.05. In the safe mode, only 5% of jobs (p = 0.05) will be
returned with the same rate ∆λ. We set µ1 = µ2 = 2.5 and µ3 = λ = 3.
A tandem network with capacity cap = 2 and these two modes can be modeled as a

CTMDP with 16 states and 16 decision vectors. Figure 3.5 depicts state diagram of this
CTMDP with states S1, S2, S3, S4 having two modes with the corresponding value of rate
a. We assume the tandem network is initially at the state 220 of Figure 3.5, which means
there are two jobs in the first station, both are being served in the second phase, and
there is no job in the second station. We consider synthesizing a strategy with respect to
the probability of having both queuing stations becoming empty by time B. We have
implemented the approach of Subsection 3.3.2 and obtained a reduced system of order 6
with ε0 = 0.14. Figure 3.6 (left) demonstrates reachability probabilities as a function of
time for both the tandem network and its reduced counterpart together with the error
bound. Intuitively, choosing the fast mode in the beginning will result in faster progress of
the tasks, especially when queues are more loaded; however, if this selection is continued,
it will result in a high number of returned jobs, which is not desired. This behavior is
observed depending on the state in the form of three switches in states S2, S3, S4. In
Figure 3.6 (left) the green trajectory corresponds to the reachability probability of the
original CTMDP under the non-restricted optimal piecewise constant policy. Figure 3.6
(right) demonstrates the impact of dwell time on the optimization error (in blue) and
on the guaranteed error bound (in red) for time bound B = 100 seconds. The reduction
error bounds are computed formally using the results of Theorem 3.3.5, by solving (3.59)
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Figure 3.6.: left: approximate reachability probability for tandem network with 16 decision
vectors including and the formal bounds (τ = 55 seconds). right: error in the
optimal reachability probability and the reduction error bound with dwell
time (B = 100 seconds).

and using it in (3.58). The optimization error is computed numerically. For each dwell
time, we compute optimal reachability probability corresponding to the full-order system
running with non-restricted policy as well as the reachability probability corresponding
to the reduced-order system with policy restricted with the chosen dwell time. The
optimization error is defined as the difference between these two values.

Finally, we assess the performance of symbolic computation on randomly generated
models. Table 3.1 compares runtime of the reachability probability computation using
three different methods: adaptive implementation of the uniformization technique pre-
sented in [32] (RTu), symbolic computation presented in our work without state reduction
(RTs) using only Algorithm 10 of Abschnitt 3.3.1, and symbolic computation with state
reduction (RTsr) by running both Algorithms 9 and 10.

Note that the method presented in [32] is developed for sub-optimal policy synthesis
of CTMDPs and tunes the length of the time discretization adaptively. According to
our experiments, the adaptive selection of time discretization makes it more efficient also
for reachability computation of CTMCs in comparison with the uniform discretization
proposed in [14]. Therefore, we compare our results with the approach of [32].

The experiments are done using MATLAB R2017a on a 3.3 GHz Intel Core i5 processor.
For each experiment, 10 stochastic matrices are generated randomly as infinitesimal
generator matrix corresponding to a CTMC without imposing any sparsity assumption.
To implement the uniformization, the step time is tuned adaptively with maximum
truncation error bound 0.01. The maximum number of terms in the Maclaurin expansion
is set to 5 and the time bound is fixed at 5 seconds, while the minimum time step for
uniformization is chosen to be 10−4 seconds. Note that RTsr also includes the time for
running Algorithm 9. As it can be observed from Table 3.1, RTsr is smaller than RTu
and RTs by at least two and one orders of magnitude, respectively.
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Table 3.1.: Comparison of runtime (in seconds) for the reachability probability computa-
tion using the uniformization technique of [32] (RTu), symbolic computation
without state reduction (RTs) by running only Algorithm 10, and symbolic
computation with state reduction (RTsr) by running both Algorithms 9 and 10.

Number of states RTu RTs RTsr
100 3.132 0.0781 0.0112
200 7.295 0.5483 0.0362
500 94.55 8.247 0.2371
800 461.8 35.31 0.9968
1000 831.8 68.61 1.788
1200 1444.2 114.73 2.4911
1500 3384.1 226.21 4.8538

3.4. Conclusion

In this chapter, we studied the time-bounded reachability problem for CTMDPs, examin-
ing it from the angles of scalability and decidability. First, we established a conditional
decidability outcome for the time-bounded reachability problem of CTMDPs, harness-
ing tools from number theory. Following this, we tackled the scalability challenge of
approximating the time-bounded reachability value for both CTMCs and CTMDPs. We
introduced a control-theoretic approach aimed at reducing the state space size while
maintaining formal error bounds.
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4
Reachability and

Pseudo-Reachability in Linear
Dynamical Systems

A (discrete-time) linear dynamical system in m dimensions is defined by a linear map
x 7→ Ax for an n× n rational matrix A. The map specifies how an individual state (a
real-valued vector in m dimensions) evolves over time; a trajectory starting from a state
s is given by the sequence (s,As,A2s, . . .). Linear dynamical systems are fundamental
models in many different domains of science and engineering, and the computability and
complexity of decision problems for linear dynamical systems are of both theoretical and
practical interest.
The orbit of a point s is the smallest transitive set containing s and closed under the

dynamic map. The orbit problem for linear dynamical systems asks, given s and t, if t is
in the orbit of s [73]. In a seminal paper, Kannan and Lipton [91] showed that the orbit
problem can be decided in polynomial time. However, a natural generalization of the
orbit problem, the Skolem problem, in which we ask whether the orbit of a given state s
intersects a given hyperplane, turns out to be notoriously difficult and remains open after
many decades [173, 140]. A breakthrough occurred in the mid-1980s, when Mignotte et
al. [126] and Vereshchagin [179] independently showed decidability in dimension 4 or less.
These deep results make essential use of Baker’s theorem on linear forms in logarithms
(which earned Baker the Fields Medal in 1970), as well as a p-adic analogue of Baker’s
theorem due to van der Poorten. Unfortunately, little progress on that front has since
been recorded.
Orbit and Skolem problems are defined for the exact dynamics, i.e., when there is

no disturbance affecting the system’s evolution. In practice, one is often interested in
answering whether a specific target set is reachable under the influence of disturbances
constrained to values from a bounded set. In this chapter, we study two such problems.
First, we study the point-to-point reachability problem for perturbed linear dynamical
systems with hypercubic disturbance sets. We show that this problem is at least as
hard as the positivity problem—a famous longstanding open problem in the theory of
linear dynamical systems. Next, we shift our focus to reachability under pseudo-orbits
as generalizations of the orbits, and present exciting decidability results for point and
hyperplane target sets.
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4.1. Preliminaries

4.1.1. Notation

The sets of natural numbers (including zero), rational numbers, real numbers, and
algebraic numbers are denoted by N, Q, R, and Q̄, respectively. We assume a standard
representation of algebraic numbers in terms of their defining polynomials, by which
we can perform arithmetic operations and test equality in polynomial time in their
representation (see, e.g., [41]).

For any column vector x = [x1, x2, . . . , xm]> ∈ Rm, we use the notations ‖x‖2 :=
√
x>x

and ‖x‖∞ := maxi |xi| to indicate respectively the two norm and infinity norm of x.
For any matrix A = [aij ]i,j ∈ Rm×m, we define ‖A‖2 and ‖A‖∞ to indicate respectively
the (induced) two norm and infinity norm of A. Note that ‖Ax‖2 ≤ ‖A‖2 ‖x‖2 and
‖Ax‖∞ ≤ ‖A‖∞ ‖x‖∞ for all x ∈ Rm. We write 0 ∈ Rm for the zero vector and 1 ∈ Rm
for the all-ones vector. We denote by ρ(A) the spectral radius of a matrix A, which is
the largest absolute value of the eigenvalues of A. For any A ∈ Rm×m and any γ > ρ(A),
recall that there is a constant c > 0 such that ‖An‖2 ≤ cγn for all n ∈ N.

4.1.2. Discrete-Time Linear Dynamical Systems

An m-dimensional discrete-time linear dynamical system is specified by an m×m matrix
A of rational numbers. The trajectory determined by an initial state x0 ∈ Rm is the
sequence (xn)n≥0 given by

xn+1 = Axn, (n ∈ N).

We call the set O(A, x0) := {xn | n ∈ N} the orbit of x0.
For any ε > 0, an ε-perturbed linear dynamical system has state trajectories (xn)n≥0

such that
xn+1 = Axn + dn, (n ∈ N),

where A is as before and dn ∈ [−ε, ε]m for all n. For an initial state x0 ∈ Rm, we define the
ε-pseudo-orbit Õε(A, x0) of the dynamics as the set of states reachable in the perturbed
dynamics. More formally, define

• for n = 0, Õ(n)
ε (A, x0) := {x0},

• for all n ∈ N, Õ(n+1)
ε (A, x0) := {Ax+ d ∈ Rm | x ∈ Õ(n)

ε (A, x0), d ∈ [−ε, ε]m}, and

• Õε(A, x0) :=
⋃
n≥0 Õ

(n)
ε (A, x0).

Finally, we define the pseudo-orbit Õ(A, x0) :=
⋂
ε>0 Õε(A, x0) as the intersection of

all the ε-pseudo-orbits of x0, for all ε > 0. Clearly, O(A, x) ⊆ Õ(A, x) for any A and
x. We will make use of the following characterization, which follows directly from the
definition: Any t ∈ Õε(A, s) is of the form t = Ans+

∑n−1
i=0 A

idn−i−1 for some n ∈ N and
some sequence of perturbations di with ‖di‖∞ ≤ ε.
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4.1.3. Decision Problems for Linear Dynamical Systems

Here, we present a collection of significant decision problems related to linear dynamical
systems that have received extensive attention. We start with the orbit problem.

Problem 4.1 (Orbit Problem) Given A ∈ Qm×m and s, t ∈ Qm, decide whether
t ∈ O(A, s).

A celebrated result of Kannan and Lipton [91] shows that the orbit problem is decidable
in polynomial time. Orbit problem corresponds to the point-to-point reachability in linear
dynamical systems under the exact dynamics. Below, we describe the positivity problem,
which corresponds to the reachability of half-spaces under the exact dynamics.

Problem 4.2 (Positivity Problem) Given A ∈ Qm×m and s ∈ Qm, decide if there
exists N such that e1A

Ns > 0, where e1 = [1 0 · · · 0].

Below, we define a problem which will be related to the positivity problem later
(Lemma 4.1.1).

Problem 4.3 Given a rational matrix A and a rational vector s, decide if there exists
N ≥ 0 such that −1 < ANs < 1.

Lemma 4.1.1 Problem 4.3 is at least as hard as the positivity problem.

Proof We show how the positivity problem can be decided using a decision procedure for
Problem 4.3. First we show how we can decide, using an oracle for Problem 4.3, the
following problem. Given A ∈ Qm×m and s ∈ Qm, does there exist N such that ANs > 0?
We call this Reachability in the Positive Quadrant Problem.

Given such M and x0, first divide both numbers by a sufficiently large positive numbers
to obtain A′ ∈ Qm×m and s′ ∈ Qd such that -2 < A′Ns′ < 2 for all N . Next, construct
M ∈ Qm+1×m+1 and v ∈ Qm+1 such that

• v = [← s′> → | 0.5]>, that is s′ obtained by adjoining 0.5 to s′;

• M [← x> → | 0.5]> = [← (A′x− 1)> → | 0.5]> for all x ∈ Qm.

This way, ANs > 0 ⇐⇒ 0 < A′Ns′ < 2 ⇐⇒ −1 < MNv < 1.
Next, let us show how we can decide the positivity problem using an oracle for the

Reachability in the Positive Quadrant Problem. Let w ∈ {<,>}m specify the quadrant
Sw = {x : x(i)w(i)0}. Observe that the reachability in a quadrant Sw (given A, s, does
there exist N such that AN ∈ Sw?) can be reduced to the Reachability in the Positive
Quadrant Problem by a change of basis.

Finally, let an instance of positivity problem be given by A ∈ Qm×m and s ∈ Qm,
and let Sw1 , . . . , Sw2m−1

be all the quadrants with wi(1) equal to > (i.e. with positive
first coordinate). Then ∃N.e1A

Ns > 0 ⇐⇒
∨2m−1
i=1 ∃N.ANs ∈ Swi. Now observe that

whether there exists N such that ANs ∈ Swi can be decided by using the reduction to the
Reachability in the Positive Quadrant Problem described above.
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4.1.4. Jordan Normal Form

First we establish that pseudo-orbits can be translated with change of bases.

Proposition 4.1.1 For matrices A,B,Q ∈ Rm×m with A = QBQ−1 and for any x ∈
Rm, we have Q Õγ2(B,Q−1x) ⊆ Õε(A, x) ⊆ Q Õγ1(B,Q−1x), where γ1 = ε

∥∥Q−1
∥∥
∞ and

γ2 = ε/ ‖Q‖∞. Moreover, Õ(A, x) = Q Õ(B,Q−1x).

We will use Proposition 4.1.1 with matrix A represented using the Jordan canonical
form.
Jordan Decomposition. For a given rational square matrix A one can compute
change of basis matrix Q and Jordan normal form J so that A = QJQ−1 and J =
diag(J1, J2, · · · , Jz) with Ji representing the ith Jordan block taking the following form

Ji =


Λi 1 0 . . . 0 0
0 Λi 1 . . . 0 0
...

...
. . . . . .

...
...

0 0 0 . . . Λi 1
0 0 0 . . . 0 Λi

 , (4.1)

where Λi denotes the ith eigenvalue of A. The size of Ji is equal to the multiplicity of the
eigenvalue Λi and is denoted by κ(Λi).

Real Jordan form. For any A ∈ Rm×m having complex eigenvalues, matrices Q and
J in the Jordan normal form could have complex entries. In this case, the complex
eigenvalues form complex conjugate pairs and give a real Jordan form: there are real
matrices Q and J such that A = QJQ−1 and J = diag(J1, J2, · · · , Jz). The matrix Ji
represents the ith real Jordan block corresponding to either a real eigenvalue Λi or a
complex pair Λi = ai ± jbi. It is equal to (4.1) for real Λi and has the following form for
the complex pair Λi = ai ± jbi,

Ji =


Λi I2×2 02×2 . . . 02×2 02×2

02×2 Λi I2×2 . . . 02×2 02×2
...

...
. . . . . .

...
...

02×2 02×2 02×2 . . . Λi I2×2

02×2 02×2 02×2 . . . 02×2 Λi

 , (4.2)

where with abuse of notation, we have indicated Λi =

[
ai −bi
bi ai

]
. I2×2 and 02×2 denote

identity and fully zero matrices of size 2 by 2.
The real Jordan normal form and the change of basis matrices Q and Q−1 can be

computed in polynomial time (see [34] and also Appendix A.4.9).

Computing matrix powers. If A = QJQ−1, then we have An = QJnQ−1 for n ∈ N,
where Jn = diag(Jn1 , J

n
2 , . . . , J

n
z ), and for the ith block Ji corresponding to the eigenvalue
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Λi with multiplicity κ(Λi) we have

Jni =


Λni nΛn−1

i

(
n
2

)
Λn−1
i · · ·

(
n

κ(Λi)−1

)
Λn−k+1
i

0 Λni nΛn−1
i · · ·

(
n

κ(Λi)−2

)
Λn−k+2
i

...
...

...
. . .

...
0 0 0 · · · nΛn−1

i

0 0 0 · · · Λni


4.2. Hardness of the Reachability Problem

Motivated by decidability of the orbit problem, a very natural question would be about
decidability of point-to-point reachability under perturbed dynamics with bounded dis-
turbances. Fijalkow et al. studied this problem for the case that the allowable set of
disturbances is definable by boolean combinations of linear inequalities, and presented
several undecidability and hardness results for different instances of the problem [63]. In
this section, we consider hypercubic sets as the allowable set of disturbances and prove
that the corresponding point-to-point reachability problem is hard by relating it to the
positivity problem—a famous longstanding open problem.

4.2.1. Problem Statement

Let Σ: x 7→ Ax+ d describe a perturbed linear dynamical system with A ∈ Qm×m and
d ∈ D, where D denotes a hypercubic set [b− ε1, b+ ε1] with b ∈ Qm and ε ∈ R>0. In
order to prove our hardness result, we notice that we can substitute the linear dynamical
system Σ with an affine dynamical system Σa : x 7→ Ax + b + d, with d ∈ D′, where
D′ = [−ε, ε]m. Therefore, it is enough to study the hardness of the ε-pseudo-reachability
problem for affine dynamical systems with fixed ε.

Problem 4.4 Inputs: A matrix A ∈ Qm×m, b ∈ Qm, s, t ∈ Qm, a fixed ε > 0.
Question: Decide whether there exists an ε-pseudo-orbit from s to t under the mapping
x 7→ Ax+ b.

In the rest of this subsection, we prove that Problem 4.4 is hard.

4.2.2. Hardness Proof

In order to prove our results, we relate Problem 4.4 to the positivity problem, which has
been open for many years and hence considered as a hard problem.

Theorem 4.2.1 Problem 4.4 is at least as hard as the positivity problem.

Proof Consider an instance of the ε-pseudo-reachability problem characterized by a
(perturbed) linear dynamical system with state matrix

A =

 M 0 0
−M 0 0
I I I

 ,

127
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an affine term b = (ε1, ε1, ε1), starting at s = (εx0,−εx0,0) with additive disturbance
vector taking values from the set D = {d ∈ R3m | |d(i)| < ε for 1 ≤ i ≤ 3m}. For the state
and disturbance vectors, we write x = (x1, x2, x3) and d = (d1, d2, d3), where xk ∈ Rm
and dk ∈ [−ε, ε]m for 1 ≤ k ≤ 3. Given the point t = (ε1, ε1,0), the decision problem is
to check whether t is in the orbit of s under the dynamics xn = Axn−1 + b+ dn. We want
to show a reduction from Problem 4.3 (characterized with the same matrix M as used in
blocks of A) to the described instance of ε-pseudo-reachability. Note that we have already
shown that Problem 4.3 is at least as hard as the positivity problem (Lemma 4.1.1).

First, assume that there exists a positive integer N s.t. −1 < MNx0 < 1. Choosing
d0 = . . . = dN−2 = (−ε1,−ε1,−ε1) and dN−1 = (−εMNx0, εM

Nx0,−ε1), starting from
x0 = s, we have that xN = t. Note that dN−1 ∈ D since −1 < MNx0 < 1 holds.
Conversely, assume that there exists a disturbance sequence so that xN = t. We show

that the only possible sequence is d0 = . . . = dN−2 = (−ε1,−ε1,−ε1) and dN−1 =
(−εMNx0, εM

Nx0,−ε1). To that end, we open up the update rule for x3 and write

x3
n = x1

n−1 + x2
n−1 + x3

n−1 + d3
n−1 + 3ε1

= Mx1
n−2 + d1

n−2 −Mx1
n−2 + d2

n−2 + x3
n−1 + d3

n−1 + 3ε1

= x3
n−1 + d1

n−2 + d2
n−2 + d3

n−1 + 3ε1. (4.3)

Based on Eq. 4.3, for every choice of d ∈ D we have x3
n ≥ x3

n−1 and in particular
x3
n = x3

n−1 only when d1
n−2 = d2

n−2 = d3
n−1 = −ε1. Note that since xN = t, x3

N = 0,
but once x3

n > 0 for 0 < n < N , there is no possibility of bringing x3 back to the origin.
Therefore, the only possible sequence is d0 = . . . = dN−2 = (−ε1,−ε1,−ε1) and dN−1 =
(−εMNx0, εM

Nx0,−ε1). This time we know that dN−1 ∈ D; hence, −1 ≤MNx0 ≤ 1.

4.3. Decidability of Pseudo-Reachability Problems

The orbit and Skolem problems are defined on the exact dynamics of the linear system.
In dynamical systems theory, one is often interested in “rough” dynamics of a system—in
topological terms, we wish to study closed sets containing the orbit. Orbits arising from
linear dynamics are usually not closed sets. Indeed, the orbit of the dynamics x 7→ 1

2x
does not contain the limit point 0. One way to retain closure is through pseudo-orbits [45],
a concept going back several decades. A pseudo-orbit generalizes the orbit by allowing
arbitrarily small imprecisions throughout the dynamics. For a precision ε > 0, we say t
is in the ε-pseudo-orbit of s if there is a sequence of points (s = s0, s1, . . . , sn = t) with
n > 0 such that ‖Asi − si+1‖∞ < ε for each i ∈ {0, . . . , n− 1}. That is, an ε-pseudo-orbit
contains the sequence of points that would be an orbit if each state were known only up
to precision ε. Finally, t is in the pseudo-orbit of s if it is in the ε-pseudo-orbit of s for
all ε > 0.

One can provide a computational analogue of pseudo-orbits (see [142]). Alice is
simulating the trajectory of a dynamical system but in every iteration, her computation
has a rounding error ε. An infinitely powerful adversary, Bob, rounds Alice’s result in an
arbitrary fashion to a new state within a distance of ε of the actual outcome. A state t is
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pseudo-reachable from s iff Bob can fool Alice into believing that t is reachable in the
simulation no matter how accurate her simulation is.

The study of pseudo-orbits go back to Anosov, Bowen, and Conley [7, 25, 45]. Conley
[45] formulated the fundamental theorem of dynamical systems: the iteration of any
continuous, possibly non-linear, map on a compact metric space decomposes the space into
a chain-recurrent part (the pseudo-orbit analogue of a period orbit) and a gradient-like
part.
In linear systems theory, controllability is a fundamental property of linear systems

[164]. Controllability states that the system can be controlled from any point to any
other point. However, this may require unboundedly large control actions. A pseudo-orbit
can be seen as a stronger notion, where we ask if the dynamics can be controlled from
a starting point to an ending point no matter how small the control input is: if a state
belongs to the pseudo-orbit, then for every ε, there is a sequence of control inputs each
bounded in norm by ε that steers the system to that state.

In this section, we consider the pseudo-orbit and pseudo-Skolem problems, corresponding
to pseudo-reachability for point and hyperplane target sets, respectively. In short we
show that the pseudo-orbit problem is decidable in polynomial time and that the Skolem
problem is decidable in full generality on pseudo-orbits. We proceed in two steps. First,
we generalize Kannan and Lipton’s analysis to show that the pseudo-orbit problem can be
decided in polynomial time. Our proof involves a careful examination of the eigenvalues
of the matrix A, similar to Kannan and Lipton’s proof. More generally, we show that
pseudo-reachability to a bounded semi-algebraic set is decidable. Next, we consider
the hyperplane pseudo-reachability (a.k.a. pseudo-Skolem) problem. Our proof again
proceeds by a case analysis on the eigenvalues of A. The most interesting case is when
there is an eigenvalue of modulus greater than 1. We analyze a series whose terms are
polynomial-exponential functions of n ∈ N associated with the dynamics. We show that
the infimum of this sum can be effectively computed. The proof of effective computability
uses tools from Diophantine approximation as well as a reduction to the theory of reals.
We show that the dynamics pseudo-reaches the hyperplane in case the infimum of the
above sum is 0. If the infimum is non-zero, we prove that we can find an effective bound
N such that the dynamics pseudo-reaches the hyperplane iff, for sufficiently small ε, it
pseudo-reaches the hyperplane within N steps. Putting everything together, we conclude
that the pseudo-Skolem problem is decidable.
The content of this section is based on our paper [47]. The following summarizes our

main theorem in this section.

Theorem 4.3.1

1. The pseudo-orbit problem is decidable in polynomial time.

2. The hyperplane pseudo-reachability problem is decidable.

The rest of the section is dedicated to the proof of this theorem.
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4.3.1. Problem Statement

The problems that we consider in this section are extensions of the original orbit problem.

Problem 4.5 (Pseudo-orbit problem) Inputs: A matrix A ∈ Qm×m and s, t ∈
Qm

Question: Decide whether t ∈ Õ(A, s).

Problem 4.6 (Hyperplane pseudo-reachability problem) Inputs: A matrix
A ∈ Qm×m, s ∈ Qm, and a hyperplane c> · x = v for c, v ∈ Qm

Question: Decide whether Õε(A, s) intersects the hyperplane for all ε > 0.

4.3.2. Decidability of the Pseudo-Orbit Problem

Here, we show that Problem 4.5 is decidable in polynomial time. Fix a matrix A and let
J be the real Jordan form for A. Proposition 4.1.1 shows that Õ(A, x) can be obtained
from the pseudo-orbit Õ(J, x). Our decidability proof involves a case analysis on the
modulus of the eigenvalues of J . We first consider the cases where J is a single block, i.e.,

J =


Λ I

Λ
. . .
. . . I

Λ

 with Λ =

[
a −b
b a

]
and I =

[
1 0
0 1

]
, or Λ = [r] and I = [1],

(4.4)
with real matrix entries a, b, r ∈ R.

We shall case split on the spectral radius ρ(J), which is the absolute value of the unique
eigenvalue of the Jordan block J . We consider three cases: ρ(J) < 1, ρ(J) = 1 and
ρ(J) > 1. The following lemma will be useful in relating the first and third cases. Its
proof is simply by reversing time.

Lemma 4.3.1 (Reversibility Lemma) For any invertible matrix A ∈ Rm×m, x ∈
Õε(A, s) implies s ∈ Õγ(A−1, x) with γ = ε

∥∥A−1
∥∥
∞. Moreover,

x ∈ Õ(A, s) ⇐⇒ s ∈ Õ(A−1, x). (4.5)

Lemma 4.3.2 (Eigenvalues inside the unit circle) Let J ∈ Rm×m be a Jordan block
of the form (4.4) with ρ(J) < 1. For every s ∈ Rm,

Õ(J, s) = O(J, s) ∪ {0} = O(J, s),

where O(J, s) denotes the closure of the orbit.

Proof We prove the lemma by showing there is a constant C > 0 satisfying

O(J, s)
∗
= O(J, s) ∪ {0}

∗∗
⊆ Õ(J, s)

†
⊆
⋂
ε>0

⋃
z∈O(J,s)

B(z, Cε)
§
⊆ O(J, s), (4.6)
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where B(z, ε) := {y ∈ Rm | ‖z − y‖2 ≤ ε} is the closed ball with respect to two norm with
center z and radius ε. It is easy to see that equality (*) holds since all the eigenvalues of
J are inside the unit circle, limn→∞ J

n = 0, and 0 is the only limiting point of any state
trajectory.

It is also easy to see that inclusion (**) is correct. Note that for any ε > 0, O(J, s) ⊆
Õε(J, s) and the set Õε(J, s) is closed by definition. Taking intersection over ε > 0, we
get O(J, s) ⊆ Õ(J, s) with Õ(J, s) being a closed set. Therefore, O(J, s) ⊆ Õ(J, s).

We now choose a value of C which allows us to prove inclusion (†). First pick γ
such that ρ(J) < γ < 1. Next choose c1 to be a constant (which is guaranteed to exist)
satisfying ‖Jn‖2 ≤ c1γ

n for all n ∈ N, and finally set C := c1m/(1− γ). We show that
Õε(J, s) ⊆

⋃
z∈O(J,s) B(z, Cε) for any ε > 0. Take any x ∈ Õε(J, s). Then there is a

sequence (d0, d1, . . .) and n ∈ N such that ‖di‖∞ ≤ ε and x = Jns+
∑n−1

i=0 J
idn−i−1. Now

‖x− Jns‖2 =

∥∥∥∥∥
n−1∑
i=0

J idn−i−1

∥∥∥∥∥
2

≤
n−1∑
i=0

∥∥J i∥∥
2
‖dn−i−1‖2 ≤

n−1∑
i=0

c1γ
imε ≤ c1mε

1− γ
= Cε,

We then get x ∈ B(z, Cε) for z := Jns ∈ O(J, s).
The inclusion § can be proven by taking an arbitrary point y 6∈ O(J, s) and showing that

there is an ε > 0 for which y 6∈ B(z, Cε) for all z ∈ O(J, s). Note that the complement
of O(J, s) is an open set, which means there is a θ > 0 such that B(y, θ) ∩ O(J, s) = ∅.
Taking ε such that Cε < θ will give the intended result.

Additionally, we prove the following lemma (that will be useful later) about the
behaviour of pseudo-orbits when all eigenvalues are inside the unit circle.

Lemma 4.3.3 Let A ∈ Rm×m and s ∈ Rm. If ρ(A) < 1, then for every δ > 0 there exists
an effectively computable N ∈ N and ε > 0 such that after time N , all ε-pseudo-orbits are
contained inside the ball B(0, δ).

Proof Let (xn)n∈N denote an ε-pseudo-orbit starting from s with a sequence of disturbances
(dn)n∈N. Suppose ρ(A) < 1 and let γ ∈ (ρ(A), 1). There is a constant c > 0 satisfying
‖An‖2 ≤ cγn for all n. Then we get

‖xn‖2 =

∥∥∥∥∥Ans+
n−1∑
k=0

Akdn−k−1

∥∥∥∥∥
2

≤ ‖An‖2 ‖s‖2 +
n−1∑
k=0

∥∥∥Ak∥∥∥
2
‖dn−k−1‖2

≤ cγn ‖s‖2 +

n−1∑
k=0

mε cγk ≤ cγn ‖s‖2 +
mε c

1− γ
.

Taking ε = δ(1− γ)/(2mc) and N with γN ‖s‖2 ≤ δ/(2c) gives the intended result.

Lemma 4.3.4 (Eigenvalues outside the unit circle) Let J ∈ Rm×m be a Jordan
block of the form (4.4) with ρ(J) > 1. For every s ∈ Rm, we have Õ(J,0) = Rm and
Õ(J, s) = O(J, s) if s 6= 0.
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Proof In this case, J is invertible and all eigenvalues of J−1 are inside the unit circle.
We apply the Reversibility Lemma 4.3.1 and Lemma 4.3.2.

x ∈ Õ(J, s) ⇐⇒ s ∈ Õ(J−1, x) ⇐⇒ s ∈ O(J−1, x)∪{0} ⇐⇒ s = 0 or x ∈ O(J, s).

Therefore, any x is in Õ(J, s) if s = 0, and Õ(J, s) = O(J, s) for s 6= 0.

Lemma 4.3.5 (Eigenvalues on the unit circle) Let J ∈ Rm×m be a Jordan block of
the form (4.4) with ρ(J) = 1. For every s ∈ Rm, we have Õ(J, s) = Rm.

Proof The key part of the proof is to show that 0 ∈ Õ(A, s) for any s and for any A
having the eigenvalues on the unit circle. Once we show this, we know that s ∈ Õ(A−1,0)
is true for any s and any matrix A due to the Reversibility lemma. Stated for the inverse of
A and any x, we get x ∈ Õ(A,0). Since pseudo-orbits are transitive, we have x ∈ Õ(A, s)
for any x and s, which is the intended result.
We show 0 ∈ Õ(A, s) equivalently by replacing A with its Jordan form J and doing

induction on the structure of J . The proof has two stages. The first stage is to show that
0 ∈ Õ(J, s) for all s when J has a single block simple eigenvalues. The second stage is to
show that we can sequentially increase the multiplicity of eigenvalues and multiple blocks.

Base case: Suppose J =

[
a −b
b a

]
with a2 + b2 = 1 or J = r with |r| = 1. Observe that

the multiplication by J does not increase the two norm of a vector. Hence setting

dn =

{
−ε · Jxn

‖Jxn‖2
if ||Jxn||∞ > ε,

−Jxn otherwise,

we obtain the ε-pseudo-orbit (x0 = s, x1, x2, . . . , xm,0,0, . . .) from any s where ‖xk‖2 =

‖xk−1‖2 − ε for k ≤ m, which gives 0 ∈ Õ(J, s).

Inductive case: We show that if 0 ∈ Õ(J1, s1) and 0 ∈ Õ(J2, s2) for all s1 and s2 of

appropriate dimensions, we also have 0 ∈ Õ(J, s) with J =

[
J1 B
0 J2

]
for any B and

any s with appropriate dimensions. Let us partition any state x = (x1, x2) according
to the dimensions of J1 and J2. Let ε > 0 and s = (s1, s2). By the assumption, there
exist ε-perturbations (d2

0, d
2
1, . . . , d

2
N−1) that bring s2 to 0 under J2. Let dn = (0, d2

n) for
0 ≤ n < N be a sequence of ε-perturbations for the linear system with mapping J . We
obtain the sequence (x0 = s, x1, . . . , xN ) with x2

N = 0: the ε-perturbations d0, . . . , dN−1

have brought the second coordinate to 0. By the assumption, we also have 0 ∈ Õε(J1, x
1
N ),

which gives ε-perturbations (d1
0, . . . , d

1
M ) that bring x1

N to 0 under J1. Let us expand the
sequence of perturbations for the linear system J with dn+N = (d1

n,0) for 0 ≤ n ≤M . It
is easy to see that (d0, . . . , dN+M ) bring the system from s to 0 due to the structure of J
that is upper triangular.

We now consider the general case where J has multiple blocks.
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Definition 4.3.1 Let J ∈ Rm×m be a real Jordan block matrix and s ∈ Rm. We define

∆(J, s) :=


Rm if ρ(J) = 1 or, ρ(J) > 1 and s = 0,
{0} if ρ(J) < 1,
∅ otherwise.

The following lemma states that certain points in the pseudo-orbit of real Jordan blocks
are ε-pseudo-reachable exactly at any sufficiently large time step, for every ε > 0. The
lemma provides the flexibility to “synchronize” reaching parts of the state for different
Jordan blocks.

Lemma 4.3.6 (Synchronization Lemma) Let J ∈ Rm×m be a Jordan block with
eigenvalue λ. For s ∈ Rm, t ∈ ∆(J, s) if and only if for every ε > 0 there exists Nε ∈ N
such that for all N > Nε, there exists an ε-pseudo-orbit (xi)i∈N of s under J such that
xN = t.

Proof • |λ| < 1 and ∆(J, s) = {0}. By Lemma 4.3.2, 0 ∈ Õ(J, s) and hence for
every ε > 0, there exists Nε such that t = 0 can be ε-pseudo reached at time Nε. Now
simply observe that once an ε-pseudo-orbit reaches 0, it can remain there forever
by setting all future perturbations to zero. To prove the other direction, suppose
t 6= 0. By Lemma A.4.3, there must exist a time bound T such that for sufficiently
small ε, all ε-pseudo-orbits of s after time T are contained in B(0,

‖t‖2
2 ). Hence for

sufficiently small ε no Nε with the the specified property can exist.

• |λ| = 1 and ∆(J, s) = Rm. In the proof of Lemma 4.3.5, for every t ∈ Rm and
ε > 0 we construct an ε-pseudo-orbit from s that visits 0 followed by t. Let Nε be
the number of steps required to ε-reach t. We can postpone visiting t to any time
step N > Nε by simply waiting at the point 0 for N −Nε steps.

• |λ| > 1, s = 0 and ∆(J, s) = Rm. Similarly to the case above, in Lemma 4.3.4 for
each ε we construct an ε-pseudo-orbit that visits t at time Nε, and reaching t can be
delayed arbitrarily by spending a necessary number of steps at 0 at the beginning.

• |λ| > 1, s 6= 0 and ∆(J, s) = ∅. Let t ∈ Rm. In this case, observe that there must
exist a time bound T such that for sufficiently small ε, all ε-pseudo-orbits of s after
time T are contained outside B(0, 2 ‖t‖2). Hence for sufficiently small ε no Nε with
the the specified property can exist.

There are two modes of pseudo reachability: via orbit, or at larger and larger time
steps for smaller ε.

Lemma 4.3.7 Let A ∈ Rm×m and s, t ∈ Rm. If there exists N such that for every ε, t
is ε-pseudo-reachable from s within the first N steps, then t ∈ O(A, s).

Proof Suppose such N exists. By continuity of the map x 7→ Ax, for every δ > 0 there
exists ε > 0 such that for every ε′ < ε and ε′-pseudo-orbit (xi)i∈N,

∥∥xi −Ais∥∥2
< δ for

0 ≤ i < N . Hence the intersection of the first N elements of all ε-pseudo-orbits is exactly
{s,As, . . . , AN−1s}.
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Lemma 4.3.8 For J = diag(J1, . . . , Jl) in real Jordan normal form and s ∈ Rm,

Õ(J, s) = O(J, s) ∪Πl
i=1∆(Ji, si).

Proof Suppose t = (t1, . . . , tl) ∈ Πl
i=1∆(Ji, si). That is, for every ε and 1 ≤ i ≤ l there

exists an ε-pseudo-orbit (xij)j∈N of si under Ji that reaches ti. By Lemma 4.3.6, for every
ε there exist ε-pseudo-orbits (yij)j∈N of s1, · · · , sl that reach t1, . . . , tl, respectively, at the
same time N . That is, yiN = ti for 1 ≤ i ≤ m. Hence (y1

i , . . . , y
z
i )i∈N is an ε-pseudo-orbit

of s under J that reaches t.
Now suppose t ∈ Õ(J, s)\O(J, s). We prove, by a case analysis on Ji, that ti ∈ ∆(Ji, si)

for 1 ≤ i ≤ l. The main idea is that if t is pseudo-reachable but not reachable, then in
order to reach it via an ε-pseudo-orbit one will need longer and longer time horizons as
ε→ 0 (Lemma 4.3.7).

1. ρ(Ji) < 1. Since t is not in the orbit, we can find a sequence N1 < N2 < · · · of time
steps and ε1 > ε2 > · · · of perturbations such that t is εj-reachable from s earliest
at time Nj. In particular, ti is εj reachable from si at time Nj for every j. But by
Lemma A.4.3 this means that |ti| < δ for every δ > 0. Hence ti = 0 ∈ ∆(Ji, si).

2. ρ(Ji) = 1. Since in this case ∆(Ji, si) = Rκ(i), trivially ti ∈ ∆(Ji, si).

3. ρ(Ji) > 1 and si = 0. Since in this case too ∆(Ji, si) = Rκ(i), trivially ti ∈ ∆(Ji, si).

4. ρ(Ji) > 1 and si 6= 0. This case cannot arise, as similarly to Case 1, one can argue
that if pseudo-reaching ti requires larger and larger time steps as ε→ 0, then |ti| > δ
for every δ. But in this case no such ti can exist.

Proof (of Theorem 4.3.1(1)). We now put everything together to show the pseudo-orbit
problem is decidable in polynomial time. Given A ∈ Qm×m, and s, t ∈ Qm, we compute
(in polynomial time) matrices Q, J,Q−1 ∈ (R ∩ Q̄)m×m such that A = QJQ−1 and J is
in real Jordan normal form [34]. Then, we compute t′ = Q−1t and s′ = Q−1s, and by
Proposition 4.1.1 we have that t ∈ Õ(A, s) if and only if t′ ∈ Õ(J, s′). It remains to decide
whether t′ ∈ Õ(J, s′). For this we use the characterization described in Lemma 4.3.8.
To decide whether t′ ∈ O(J, s′), observe that Q−1t ∈ O(J,Q−1s) ⇐⇒ t ∈ O(A, s), and
whether t ∈ O(A, s) is an instance of the orbit problem and can be decided in polynomial
time.1 Finally, it remains to check whether ti ∈ ∆(Ji, si) for each block Ji, which can be
done easily given the simplicity of ∆(Ji, si).

We end the part with an application of Theorem 4.3.1(1). A set S is pseudo-reachable
from s under A if for every ε > 0, there exists a point xε ∈ S that is ε-pseudo-reachable
from s under A. An algebraic set is the set of zeros of a collection of polynomials. A
semialgebraic set is a union of algebraic sets and projections of algebraic sets. We show
that we can decide if a bounded semialgebraic set is pseudo-reachable, by reducing the
problem to the pseudo-orbit problem.
1Technically, [91] consider the orbit problem for rational inputs and we require the orbit problem where
the input can contain algebraic numbers. However, a polynomial time algorithm is still possible.
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Theorem 4.3.2 Given A ∈ Qm×m, x0 ∈ Qm, and a bounded semialgebraic set S, it is
decidable if S is pseudo-reachable from x0 under A.

4.3.3. Decidability of the Pseudo-Skolem Problem

In this subsection, we prove Theorem 4.3.1(2). First we consider the case where we are
given:

• a hyperplane H = {x ∈ Rm : c>x = v} with (c, v) ∈ (R ∩ Q̄)m × (R ∩ Q̄),

• J = diag(J1, . . . , Jz) ∈ (R ∩ Q̄)m×m in real Jordan normal form, and

• a starting point x0 ∈ (R ∩ Q̄)m.

We show how to decide if for every ε > 0 there exists an ε-pseudo-orbit (xi)i∈N of x0

under J that hits the hyperplane H, i.e. c>xN − v = 0 for some N ∈ N.
A block Ji is relevant with respect to hyperplane H = {x : c>x = v} if the coefficients of

c at the coordinates corresponding to Ji are not all 0. Intuitively, dimensions corresponding
to blocks that are not relevant can simply be omitted from the analysis as they do not
play a role in determining whether a point is in H or not. Relevant eigenvalues of J are
the eigenvalues of relevant blocks. The relevant spectral radius, written ρH(J), is the
largest modulus of all relevant eigenvalues. Our proof is based on a case analysis on the
relevant spectral radius of J . We shall see that the proof is simple when the relevant
spectral radius is ≤ 1 but requires more technical ideas when it is > 1.

Lemma 4.3.9 (Case ρH(J) ≤ 1) Fix a matrix J in real Jordan normal form, a start-
ing state x0, and a hyperplane H = {x : c>x = v}.

1. If ρH(J) = 1, then H is pseudo-reachable.

2. If ρH(J) < 1 and 0 ∈ H then H is pseudo-reachable. If ρH(J) < 1 and 0 /∈ H,
there exists an effectively computable time bound N such that H is pseudo-reachable
if and only if there exists 0 ≤ i ≤ N such that J ix0 ∈ H (that is, H is reachable
from x0 under J after at most N steps).

Proof First suppose ρH(J) = 1. We write J = diag(Jh, Jr), where ρH(Jh) = 1 and
ρH(Jr) < 1 (observe that wlog we can assume the blocks of J have non-decreasing spectral
radius when listed from top to bottom) and correspondingly set s = (sh, sr), c = (ch, cr).
Note that ch 6= 0 by the relevance of at least one of eigenvalues of modulus 1.

By Lemma 4.3.2 we know 0 ∈ Õ(Jr, sr). By Lemma 4.3.5, we can select y such
that c>h y − v = 0 and y ∈ Õ(Jh, sh). Therefore, invoking Lemma 4.3.6, for every
ε > 0 we can find N ∈ N and construct ε-pseudo-orbits (xhn)n∈N and (xrn)n∈N such
that xhN = y and xrN = 0, which implies that for the ε-pseudo-orbit xn = (xhn, x

r
n),

c>xN − v = c>h y + c>r 0− v = 0 as desired.
Now suppose ρH(J) < 1.
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Case 1: v = 0. Since 0 ∈ H and the origin is pseudo-reachable from x0 (Lemma 4.3.2),
H is pseudo-reachable.

Case 2: v 6= 0. Using Lemma A.4.3, and setting δ = |v|/(2 ‖c‖2), we can find ε > 0 and
horizon N ∈ N after which every ε-pseudo-orbit is trapped in B(0, δ). Thus, the hyperplane
cannot be pseudo-reached after time N , as the hyperplane does not intersect with B(0, δ).
It remains to check if the hyperplane is pseudo-reachable at any of the first N time-steps.
In fact, for a bounded time interval, a hyperplane is pseudo-reachable iff it is reachable.
This is because the effect of finitely many disturbance terms (d0, . . . , dN−1) can be made
arbitrarily small for small enough ε. Therefore, decidability in this case only requires
checking if the bounded orbit (yn)0≤n≤N hits the hyperplane before the time horizon N ,
that is, if there exists a time-step 0 ≤ n ≤ N such that c>yn − v = 0, which is clearly
decidable.

We now consider the case ρH(J) > 1. The main ideas of our proof are as follows:

1. A point xn in the ε-pseudo-orbit belongs to the hyperplane (c, v) if c>xn − v = 0.
In particular, c>xn − v can be written as a sum over exponential polynomials in
eigenvalues of different sizes.

2. We factor out the scaling factor corresponding to the top eigenvalues, leaving a sum
over normalized eigenvalues, together with a sum over disturbances (of order ε) and
additional terms which go to zero with large n.

3. We relate hyperplane pseudo-reachability to the limit inferior of the sum over
normalized eigenvalues. If the limit is zero, we show the hyperplane is pseudo-
reachable. If the limit is positive, we show there is an effective bound N such that
if the hyperplane is pseudo-reachable, it is reachable within N steps.

4. We apply results from Diophantine approximation and the theory of reals to compute
the limit inferior of the sum over normalized eigenvalues.

Fix J = diag(J1, . . . , Jl) ∈ (R ∩ Q̄)m×m, a starting point x0 ∈ (R ∩ Q̄)m, and a
hyperplane H = {x ∈ Rm | c>x = v} with c, v ∈ (R ∩ Q̄)m. We assume without loss of
generality that all blocks are relevant.
Step 1: Analyzing c>xn − v. Let L = ρH(J) > 1 be the largest modulus of a relevant
eigenvalue of J and suppose the blocks are arranged in non-increasing order of the modulus
of eigenvalues. In particular, let t ≤ l be such that the first t blocks (t for “top”) have
ρ(J1) = · · · = ρ(Jt) = L > 1. We call the eigenvalues of these blocks the top eigenvalues.
The remaining blocks satisfy L > ρ(Jt+1) ≥ · · · ≥ ρ(Jl).

Let (di)i∈N be a sequence of perturbations and (xi)i∈N the resulting pseudo-orbit. We
have that for all time steps n,

c>xn − v = c>

(
Jnx0 +

n−1∑
k=0

Jkdn−k−1

)
− v =

l∑
i=1

(
ciJni x

i
0 + ci

n−1∑
k=0

Jki d
i
n−k−1

)
− v,
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where for all 1 ≤ i ≤ l, ci, xin din are projections of c>, xn and dn, respectively, onto the
coordinates governed by Ji. Observe that ci is a row vector for every i.
Step 2: Normalized sum. We define a normalized version of this sum by factoring out
Ln (the size of the top eigenvalues) and nD, where we define D in such a way that we
normalize polynomials in n that appear in the sum. Observe that for 1 ≤ i ≤ t (the top
eigenvalues),

ciJni =


[
pi1(n)λn + pi1(n)λn · · · pi2κ(i)(n)λn + pi2κ(i)(n)λn

]
if Ji has eigenvalues λ, λ[

pi1(n)ρn · · · piκ(i)(n)ρn
]
if Ji has a single eigenvalue ρ

for polynomials pi1, . . . , piκ(i) (with algebraic coefficients) where κ(i) is the multiplicity of
the block Ji.
We define D to be the largest number such that the monomial nD appears with a

non-zero coefficient in at least one of ciJni for 1 ≤ i ≤ t. (Note that if all entries of c are
non-zero D + 1 is equal to the largest multiplicity of a top eigenvalue block of J , as can
be seen from the description of powers of a Jordan block in Subsection 4.1.4.)
We can now define

f(n) :=
c> · xn − v
LnnD

=
l∑

i=1

(
ci

Jni
LnnD

xi0 + ci
n−1∑
k=0

Jki
LnnD

din−k−1

)
− v

LnnD

For notational convenience we define vector-valued functions gi(n) := ci
Jni

LnnD
for

1 ≤ i ≤ l. The following technical lemma summarizes the relevant properties of these
scaled terms.

Lemma 4.3.10 (Normalization Lemma)

1. For 1 ≤ i ≤ t (top eigenvalues),
∥∥gi(n)

∥∥
∞ = O(1) (with respect to n).

2. For t+ 1 ≤ i ≤ l (non-top eigenvalues), limn→∞
∥∥gi(n)

∥∥
∞ = 0.

3. There exists 1 ≤ j ≤ t and effectively computable N ∈ N and C > 0 such that
n > N =⇒

∥∥gj(n)
∥∥
∞ > C.

Proof We address each point individually.

1: For 1 ≤ i ≤ t let Ji have eigenvalues λ and λ (the case where Ji has a single real
eigenvalue is similar but simpler) and observe that

gi(n) =

[
pi1(n)

nD

(
λ
L

)n
+

pi1(n)

nD

(
λ
L

)n
· · ·

pi
2κ(i)

(n)

nD

(
λ
L

)n
+

pi
2κ(i)

(n)

nD

(
λ
L

)n]
.

By the definition of top eigenvalues, |λ| = L and thus λ
L and λ

L have modulus 1. By
construction of nD, the polynomials pi1(n), . . . , pi2κ(i) all have degree at most D and hence

the terms pi1(n)

nD
, . . . ,

pi
2κ(i)

(n)

nD
are bounded from above by a constant.
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2: For t+ 1 ≤ i ≤ l let Ji have eigenvalues λ and λ and observe that

gi(n) =

[
pi1(n)

nD

(
λ
L

)n
+

pi1(n)

nD

(
λ
L

)n
· · ·

pi
κ(i)

(n)

nD

(
λ
L

)n
+

pi
κ(i)

(n)

nD

(
λ
L

)n]
.

By construction |λ| < L and thus γ := λ
L and γ have moduli |γ|, |γ| < 1. The polynomials

pi1(n), . . . , pi2κ(i)(n) may not be asymptotically bounded by nD (since nD was constructed
only considering top eigenvalues). However, it is clear that the exponentially vanishing(
λ
L

)n and
(
λ
L

)n
will dominate the polynomials and all entries of gi(n) will thus vanish.

3: Observe that by construction of nD, there must exist a top eigenvalue block Jj
(1 ≤ j ≤ t) for which at least one polynomial in cjJnj has degree D. Let r > D be the
multiplicity of the block Jj, which has the form of a real Jordan matrix with a single block
(Eq. (4.4)) with sub-blocks Λ. One can write

cjJnj =
[
cjr cjr−1 · · · cj0

]


Λn nΛn−1
(
n
2

)
Λn−1 · · ·

(
n
r−1

)
Λn−r+1

0 Λn nΛn−1 · · ·
(
n
r−2

)
Λn−r+2

...
...

...
. . .

...
0 0 0 · · · nΛn−1

0 0 0 · · · Λn

 ,

(4.7)
where cjk for 1 ≤ k ≤ r corresponds to a row vector of size two or one, respectively,
when Λ is a 2× 2 or 1× 1 matrix. Analyzing this product, we see that cjr, . . . , cjD+1 = 0,
cjD 6= 0 and the single entry of cjJnj whose polynomial component has degree D is exactly
cjD
(
n
D

)
Λn−D.

We define Λ̂ := Λ/L. Note that
∥∥∥Λ̂
∥∥∥

2
= 1. Now observe that for this block Jj, we have

gj(n) =
1

LnnD
cjJni = cjD

1

D!
Λ̂n +

1

n
(O(1)).

Therefore, there exists sufficiently large N such that for all n ∈ N,

n > N =⇒
∥∥∥∥ 1

LnnD
cjJnj

∥∥∥∥
∞
>

1

2

∥∥∥∥cjD 1

D!
Λ̂n
∥∥∥∥
∞
>

∥∥∥cjD∥∥∥
2

4D!
.

Thus we have shown Point 3 with C =
‖cjD‖2

4D! .

Step 3: Conditions for reachability and non-reachability. Now we are ready to
attack our original problem. Going back, H is ε-pseudo-reachable if and only if f(n) = 0
for some disturbance sequence (di)i∈N with di ∈ [−ε, ε]m for all i. We analyze how f(n)
can be brought to 0 in this way.
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Lemma 4.3.11 Let

D = lim inf
n→∞

∣∣∣∣∣
t∑
i=1

gi(n)xi0

∣∣∣∣∣ . (4.8)

If D = 0, then H is pseudo-reachable. If D > 0, there exists a computable time bound
N such that H is pseudo-reachable if and only if it is reachable (in the standard sense)
within the first N steps.

Proof Suppose D = 0. Take an arbitrary ε > 0. We argue that H is ε-pseudo-reachable.
Recall that

f(n) =

l∑
i=1

(
ci

Jni
LnnD

xi0 + ci
n−1∑
k=0

Jki
LnnD

din−k−1

)
− v

LnnD

=

l∑
i=1

(
gi(n)xi0 + ci

n−1∑
k=0

Jki
LnnD

din−k−1

)
− v

LnnD
.

Let I be such that
∥∥gI(n)

∥∥
∞ > C, for C > 0 and sufficiently large n (Point 3 of the

Normalization Lemma). We construct a pseudo-orbit with all perturbations set to zero
except di0 and obtain

f(n) = cI
Jn−1
I

LnnD
dI0 +

t∑
i=1

gi(n)xi0 +
l∑

i=t+1

ci
Jni

LnnD
xi0 −

v

LnnD
.

Intuitively, we will use the term cI
Jn−1
I

LnnD
dI0 to cancel out the remaining summands above,

but we have to argue that this can be done using a disturbance of size at most ε. Moreover,
observe that cI J

n−1
I

LnnD
is very close to gI(n). Formally, we first find N large enough such

that

•
∥∥gI(N)

∥∥
∞ > C,

•
∥∥∥∑l

i=t+1 c
i JNi
LNND x

i
0 − v

LNND

∥∥∥
∞

< C2

‖Ji‖∞
ε
2 (possible because for t + 1 ≤ i ≤ l,

ρ(Ji) < 1 and L > 1), and

•
∥∥∑t

i=1 g
i(N)xi0

∥∥
∞ < C2

‖Ji‖∞
ε
2 (possible because lim infn→∞

∥∥∑t
i=1 g

i(n)xin
∥∥ = 0).

Finally, we determine the value of di0. Without loss of generality, assume that gI(N) is
of the form

[
C ′ · · ·

]
where |C ′| > C, that is the first entry of gI(N) is large. We then

observe that cI JN−1
I

LNND d
I
0 = gI(N)J−1

I dI0 and set

dI0 = JI ·
[
− 1
C′

(∑t
i=1 g

i(N)xi0 +
∑l

i=t+1 c
i JNi
LNND x

i
0 − v

LNND

)
0 0 · · · 0

]>
to obtain

cI
JN−1
I

LNND
dI0 = −

(
t∑
i=1

gi(N)xi0 +

l∑
i=t+1

ci
JNi

LNND
xi0 −

v

LNND

)
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and hence f(N) = 0.
Now suppose D > 0. Recall

f(n) =
l∑

i=1

(
gi(n)xi0 + ci

n−1∑
k=0

Jki
LnnD

din−k−1

)
− v

LnnD

=
t∑
i=1

gi(n)xi0 +
l∑

i=t+1

ci
Jni

LnnD
xi0 +

l∑
i=1

ci
n−1∑
k=0

Jki
LnnD

din−k−1 −
v

LnnD
.

In this case we shall construct a time bound N after which for all sufficiently small value of
ε, the term

∑t
i=1 g

i(n)xi0 will dominate the other summands. Let 2∆ > 0 be a lower bound
on lim infn→∞ |

∑t
i=1 g

i(n)xi0| > 0. We shall see how to obtain such a bound effectively
later (Lemma 4.3.12). We compute N with the following properties.

• For all n > N ,
∣∣∑t

i=1 g
i(n)xi0

∣∣ > ∆. Possible because lim infn→∞
∣∣∑t

i=1 g
i(n)xin

∣∣ >
2∆.

• For all n > N ,
∣∣∣∑l

i=t+1 c
i Jni
Lnnd

xi0

∣∣∣ , ∣∣ v
Lnnd

∣∣� ∆. The former is possible because for
t+ 1 ≤ i ≤ l, ρ(Ji) < L.

• For sufficiently small ε, for all n > N ,
∣∣∣ci∑n−1

k=0
Jki
Lnnd

din−k−1

∣∣∣ � ∆ for 1 ≤ i ≤ l.
To see that this is always possible, observe that∣∣∣∣∣ci

n−1∑
k=0

Jki
Lnnd

din−k−1

∣∣∣∣∣ ≤
n−1∑
k=0

∥∥∥∥ci Jki
Lnnd

∥∥∥∥
∞
Mε (where fixed M bounds the matrix dimension)

and

lim
n→∞

n∑
k=0

∥∥∥∥ci Jki
Lnnd

∥∥∥∥
∞
≤ lim

n→∞

n∑
k=0

∥∥∥∥ci 1

Ln−k
Jki
Lkkd

∥∥∥∥
∞

= lim
n→∞

n∑
k=0

∥∥∥∥ 1

Ln−k
gi(k)

∥∥∥∥
∞
.

Recalling Point 1 of the Normalization Lemma,
∥∥gi(n)

∥∥
∞ = O(1) and hence

lim
n→∞

n∑
k=0

∥∥∥∥ 1

Ln−k
gi(k)

∥∥∥∥
∞

= O(1),

by bounding the sum
∑n

k=0

∥∥ 1
Ln−k

gi(k)
∥∥
∞ from above by a geometric sequence.

Therefore,
∑n−1

k=0

∥∥∥ci Jki
Lnnd

∥∥∥
∞
Mε can be made � ∆ by choosing ε to be sufficiently

small.

Once we have chosen N , by the properties above we will have that for all n > N , for
sufficiently small ε,

|f(n)| ≥

∣∣∣∣∣
t∑
i=1

gi(n)xi0

∣∣∣∣∣−
∣∣∣∣∣

l∑
i=t+1

ci
Jni
Lnnd

xi0 +

l∑
i=1

ci
n−1∑
k=0

Jki
Lnnd

din−k−1 −
v

Lnnd

∣∣∣∣∣ > 0.
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4.3. Decidability of Pseudo-Reachability Problems

Therefore, H is pseudo-reachable if and only if for every ε > 0, H is ε-pseudo-reachable
within the first N steps. By Lemma 4.3.7, this is the case if and only if H is reachable
within the first N steps.

Step 4: Analyzing lim infn→∞ |
∑t

i=1 g
i(n)xi0|. Consider a single term gi(n)xi0. Writing

xi0 =
[
X0 X1 · · · Xz

]>, where X1, . . . , Xz ∈ R, we have

gi(n)xi0 =
z∑
r=1

(
pir(n)

nD

(
λ

L

)n
+
pir(n)

nD

(
λ

L

)n)
Xz.

Let γi = λ
L . Note that |γi| = 1. By the construction of nD, none of the polynomials have

a term of degree higher than D. Therefore, we can absorb the constants Xr and the
monomial nD into the polynomials, sum the terms up, and write them as polynomials in
1
n . That is,

gi(n)xi0 = qi(1/n)γni + qi(1/n)γi
n

for suitable polynomials qi with algebraic coefficients. Thus

lim inf
n→∞

∣∣∣∣∣
t∑
i=1

gi(n)xin

∣∣∣∣∣ = lim inf
n→∞

∣∣∣∣∣
t∑
i=1

qi(1/n)γni + qi(1/n)γi
n

∣∣∣∣∣
We defer the proof of the following lemma, which requires tools from Diophantine analysis
and the theory of reals, to the Appendix A.4.6.

Lemma 4.3.12 Let γ1, . . . , γt be algebraic numbers with modulus 1. Let q1, . . . , qt be
polynomials with algebraic coefficients. The quantity

lim inf
n→∞

∣∣∣∣∣
t∑
i=1

qi(1/n)γni + qi(1/n)γi
n

∣∣∣∣∣
can be effectively computed. If it is greater than zero, there is an effectively computable N
satisfying the requirement of Lemma 4.3.11.

Proof of Theorem 4.3.1(2). We are now ready to aggregate our case analysis into the
proof the pseudo-reachability in hyperplanes is decidable. Given A ∈ Qm×m, x0 ∈ Qm

and H = {x : c> · x = 0}, we first convert A to real Jordan normal form as described
in Section 4.1.4 to obtain J = Q−1AQ. We then perform a coordinate transform on x0

and H to obtain H ′ = {x : c>Qx = 0} and x′0 = Q−1x0. The original problem is now
equivalent to pseudo-reachability of H ′ from x′0 under J .
Next, we remove dimensions from x′0, c

>Q and J that do not correspond to relevant
blocks and determine the relevant spectral radius ρH(J) of J . If ρH(J) = 1 then H ′

is reachable by Lemma 4.3.9(1). If ρH(J) < 1, then by Lemma 4.3.9(2), H ′ is pseudo-
reachable if and only if 0 ∈ H ′ or x′0, Jx′0, . . . , JNx′0 hits H ′, where N is the computable
bound in the Lemma.
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4. Reachability and Pseudo-Reachability in Linear Dynamical Systems

Finally, we consider the case where ρH(J) > 1. Let J1, . . . , Jt be the blocks of J with
ρ(J) = ρH(J) and c1, . . . , ct, x1

0, . . . , x
t
0 be the corresponding coordinates of c>Q and x′0,

respectively. Finally, compute the value of lim infn→∞
∣∣∑t

i=1 g
i(n)xin

∣∣ using Lemma 4.3.12
and use Lemma 4.3.11 to either immediately conclude reachability or to compute the
bound N and determine reachability by checking if x′0, Jx′0, . . . , JNx′0 hits H ′.

4.4. Conclusion

In this chapter, we began with establishing the computational complexity of the point-to-
point reachability problem for discrete-time linear dynamical systems featuring hypercubic
disturbance (or control) sets. Motivated by the hardness results of this problem, we turned
our attention to the pseudo-Skolem problem for linear dynamical systems, which asks
whether a hyperplane target set can be reached under all of the hypercubic disturbance
sets that are centered at the origin and have non-zero volumes. Our findings revealed that
this problem is indeed decidable, in contrast to the enduring mystery of the decidability
of the well-known Skolem problem, which has eluded resolution despite decades of
dedicated research. In [48], we extend the results of Section 4.3.3 and show decidability
of pseudo-reachability problem for arbitrary semi-algebraic sets when the state matrix is
diagonalizable.
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5
Conclusion and Future Work

In this thesis, we have considered the controller synthesis problem for different classes of
dynamical systems and specifications. For more general classes, we focused on improving
scalability of the existing sound controller synthesis methods by proposing novel ideas. For
restricted classes of dynamics and specifications, we proposed novel sound and complete
decision procedures which enabled us to tackle unsolved problems. Below, we provide a
brief description of outcomes presented in this thesis.
Broadening the scope of abstraction-based controller design for nonlinear
dynamical systems. In Chapter 2, we considered the general class of non-linear
dynamical systems with bounded disturbances and focused on broadening the scope of
abstraction-based controller synthesis for infinite-horizon temporal specifications. We
identified three key shortcoming of ABCD method, that are (1) requirement for knowing
the analytical dynamics, (2) huge memory requirements, and (3) inapplicability of ABCD
for multi-agent scenarios. In Section 2.2, we proposed a data-driven method that could
learn an abstraction which was correct with respect to the given confidence and could be
used for synthesizing controllers against the infinite-horizon temporal specifications. In
Section 2.3, we proposed a memory-efficient method which was based on training neural
representations for the finite abstraction and also the computed controller. Through
extensive experiments, we empirically illustrated that our method was very successful
in reducing the memory requirements for ABCD method. Finally, in Section 2.4, we
considered the setting wherein a heterogeneous population of agents need to fulfill a given
joint reach-avoid task while no communication among them is allowed. Our proposed
method consists of a centralized planning step for computing nominal temporal-spatial
(open-loop) trajectories for all of the agents, and a decentralized tracking step that uses
ABCD to synthesize feedback controllers providing guaranteed track of the open-loop
trajectories computed in the first step. We empirically illustrated that our method can
efficiently solve different multi-agent scenarios, including formation control, lane merging
and multi-agent reach-avoid tasks.
Decidability and scalability of time-bounded reachability for CTMDPs. In
Chapter 3, we considered the time-bounded reachability problem for CTMDPs from both
scalability and decidability perspectives. For the first time, we provided a conditional
decidability result for the time-bounded reachability problem of CTMDPs by using tools
from number theory. Subsequently, we considered the scalability issue for approximating
the value of time-bounded reachability for both CTMCs and CTMDPs, and provided a
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5. Conclusion and Future Work

control theoretic method for reducing the state space size, while providing formal error
bounds.
Reachability-like specifications for linear dynamical systems. In Chapter4, we
first proved the hardness of the point-to-point reachability problem for discrete time linear
dynamical systems with hypercubic disturbance (equivalently, control) sets. Motivated by
this result, in Section 4.3, we considered the pseudo-Skolem problem for linear dynamical
systems, which asks whether a hyperplane target set can be reached under all of the
hypercubic disturbance sets that are centered at the origin and have non-zero volumes.
We proved that this problem is indeed decidable, although the decidability of the famous
Skolem problem remains open despite decades of continuous effort.

Future Work

In this thesis, we studied several interesting questions that are related to guaranteed
controller design for cyber-physical systems. But, many more are remained open. Following
is a list of interesting problems that can be pursued in future.
Further development of ABCD for stochastic systems. In this thesis, we mainly
considered application of ABCD for systems with bounded disturbances. As a result
of considering worst-case disturbances, the outcome controller would become relatively
conservative. The level of conservativeness can be reduced significantly. However, the
methods we developed in this thesis cannot be directly used to tackle the corresponding
bottlenecks of ABCD when applied to the stochastic systems. Therefore, one meaningful
direction for future research would be to develop solutions that are tailored for application
to the stochastic systems.
Reducing the conservativeness resulted from overapproximations. A usual
complaint about ABCD is that it cannot (successfully) be applied to solving synthesis
problems for high-dimensional systems. Although the exponential growth in number of
states and transitions is an important computational burden, increasing computational
resources (e.g., through parallel implementations) can occasionally be very helpful. A more
fundamental problem is resulted by conservative overapproximations of the dynamics.
Majority of the existing methods compute a growth bound that is valid across the
whole state space. However, such a growth bound is often extremely conservative and
drastically lowers the chances for getting a useful controller. In order to reduce the level
of conservativeness, one suggestion would be to apply local over-approximations as much
as possible. This increases the size of winning domain and hence can potentially eliminate
excessive reduction in size of discretizations, which can also lower the computational
costs.
Improving scalability of ABCD by utilizing structural sparsity in dynamics.
Structure of many systems of interest is sparse, meaning that evolution of some states
only influences a few other states immediately. We believe that this feature can be used
in order to enhance scalability of ABCD for many of the systems.
Investigating possible security consequences of the decidability results for the
pseudo-orbit and pseudo-Skolem problems. In Chapter 4, we illustrated that for
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certain cases, even when the target is far from the trajectories of the unperturbed system,
an adversary can use an arbitrarily small sequence of perturbations that steer the trajectory
of the system to actually hit the target that was unreachable by the original dynamics.
This can potentially raise security concerns and definitely is worth to be carefully studied.
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A
Appendices

A.1. Additional Data for Experiments of Section 2.4

Multi-Drone Path Planning

Every drone is modeled as a control system Σi = (X,xiin, U,W, f
d
τ ), where fdτ is the

sampled-time abstraction of the following continuous dynamics:

fd(xt, ut) :=

ẋ(1)
ẋ(2)
ẋ(3)

 =

u(1)cos(x(3))
u(1)sin(x(3))

u(2)

 .
where x(1) and x(2) denote the drone’s position in two-dimensional space, x(3) denotes
the rotational angle, and u(1) and u(2) represent control inputs for each drone. Choosing
a sampling time τ = 0.1 s, the nominal dynamics fdτ can be characterized uniquely. We
consider state and input spaces to be X = [−1, 11]2×[−2, 3.3] and U = [−2.4, 2.4]2, respec-
tively. The disturbance set and robustness margin are chosen as |W | ≤ (0, 0.025, 0.025)
and ε = (0.20, 0.20, 0.24).
Recall that we consider 10 drones, i.e., N = 10. Selecting the horizon length T = 104

and minimum safe distance δ = 0.24 m, ALTRO computes a valid open-loop trajectory
in 77.8 seconds for the product system with 30 state and 20 input variables. Figure 2.29
gives time-space illustration for the safe tubes around the nominal trajectories.
For ABCD, we set ηX = (0.025, 0.025, 0.03) and ηU = (0.3, 0.3). Table 2.10 shows the

run times and number of state-input pairs corresponding to both local and global ABCD.
Noticeably, already when N = 2, memory requirement for global ABCD exceeds memory
limits, even 1.5 TB RAM on a cluster machine is not sufficient to synthesize a controller.

On the other hand, using ALTRO alone would not provide guarantee against bounded
disturbance. Figure A.2 illustrates the performance of open-loop and feedback controllers
in regulating distance between two particular the drones with and without disturbances.
As expected, in the absence of disturbances, the open-loop controllers suffice and the
distance between the two drones (shown in solid blue) does not go below the defined
threshold. Next, we consider the case when constant additive disturbances (0, 0.025, 0.025)
and (0,−0.025,−0.025) are being applied to the two drones throughout the whole horizon.
It can be noticed that applying the open-loop controller causes that distance between the
two drones (shown in solid yellow) to go below the predefined threshold. However, the
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𝑥1

𝑥2

Figure A.1.: The mission map for the multi-drone path planning example
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Figure A.2.: Performance of open-loop and feedback controllers in regulating distance
between two selected drones for disturbance-free and perturbed situations
for the multi-drone path planning example

feedback controller is capable of maintaining distance (shown in solid red) within the safe
region when the same disturbance is being applied.

Crane and Vehicle

We model the crane and vehicle as control systems Σ1 = (X1, x1
in, U

1,W 1, f cτ ) and
Σ2 = (X2, x2

in, U
2,W 2, f lτ ), respectively. The dynamics are obtained by discretizing the

following continuous-time dynamics.
The crane is modeled as cart-pole system [19]:

θ̈ =
Mtg sin(θ)− cos(θ)(F +Mplθ̇

2 sin(θ))

l(4/3Mt −Mp cos2(θ))
= f c1(θ, θ̇, F )

z̈ =
F +Mplθ̇

2 sin(θ)−Mplθ̈ cos(θ)

Mt
= f c2(θ, θ̇, F ),

where g = −9.8 m/s2 is the acceleration of gravity, Mc = 1 kg is the cart mass, Mp = 0.1
kg is the pole mass, Mt = Mc +Mp denotes the total mass, and l = 0.5 m is the half-pole
length. Further, the cart’s position, the pole’s angle, and input force to the cart are
denoted by x(1)(1) = z, x(1)(3) = θ, and u(1) = F , respectively. The continuous-time
dynamics of the crane is of the following form:

f c(x
(1)
t , u

(1)
t ) :=


ẋ(1)(1)

ẋ(1)(2)

ẋ(1)(3)

ẋ(1)(4)

 =


ż
z̈

θ̇

θ̈

 =


x(1)(2)

f c1(x(1)(3), x(1)(4), u(1))

x(1)(4)

f c2(x(1)(3), x(1)(4), u(1))

 .
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Figure A.3.: Comparison of open-loop and feedback controllers for the lane merging
example

The vehicle’s continuous-time dynamics takes the form of

f l(x
(2)
t , u

(2)
t ) =

[
ẋ(2)(1)

ẋ(2)(2)

]
=

[
x(2)(2)

u(2)

]
,

where x(2)(1) and x(2)(2) denote the vehicle’s position and speed, and u(2) represents the
vehicle’s control input (acceleration). On fixing the sampling time τ = 0.1 s, one can
derive f cτ and f lτ . For the crane, the disturbance set and robustness margin are chosen
as |W 1| ≤ (0, 0.05, 0, 0) and ε1 = (0.135, 0.385, 0.176, 0.768). Similarly, for the vehicle,
disturbance set and robustness margin are chosen as |W 2| ≤ (0, 0.1) and ε2 = (0.08, 0.12).
There is no obstacle for this example and for minimum distance between the crane

and the vehicle we choose δ = 0.035 m. Fixing the horizon length to T = 70, ALTRO
was capable of generating a valid nominal trajectory in 0.65 seconds. Figure 2.26 (left)
demonstrates snapshots of the produced trajectory. As before, under the nominal open-
loop controllers, applying (constant) additive disturbance W = (0, 0.05, 0, 0) (to the
cart-pole system) causes a collision between the crane and the vehicle before the end of
the mission (Figure 2.26 (right)).
In the next step, we use SCOTS in order to compute a feedback controller tolerating

disturbances. We choose state and input spaces for the crane to be X1 = [−0.195, 5.49]×
[−1.99, 4.37]× [1.20, 4.68]× [−5.44, 5.28] and U1 = [−7, 7], respectively. For the vehicle,
we set X2 = [3, 9]× [−3, 1.995] and U2 = [−3, 3]. We choose state and input partition sizes
η1
X = (0.015, 0.035, 0.016, 0.064), η1

U = 0.2, η2
X = (0.01, 0.015) and η2

U = 0.1. Table 2.10
shows the run times and number of state-input pairs corresponding to local and global
ABCD. As before, for the cart-pole model, global ABCD exceeds our 1.5 TB memory limit.
Note that computing feedback controllers for the crane and vehicle takes 511 seconds
and 0.3 seconds, respectively. The large difference is due to the difference in the size of
transition systems for the two dynamics.

Lane Merging

The nominal dynamics for each of the vehicles is the same as the one for modeling
drones (given in Section A.1). The disturbance set and robustness margin are chosen as
|W | ≤ (0.03, 0.03, 0.03) and ε = (0.16, 0.16, 0.16). For collision and obstacle avoidance,
we choose δ = 0.37 m. The horizon length is fixed to T = 110. Given these settings,
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Figure A.4.: Comparison of open-loop and feedback controllers for the formation control
example

ALTRO generates a valid nominal trajectory in 89.02 seconds. Next, we use ABCD in
order to compute feedback controllers tolerating additive disturbance W . We choose
state and input spaces for each vehicle’s model to be X = [−0.5, 15]× [0.1, 7.4]× [−1, 0.4]
and U = [−0.9, 3]× [−2.1, 2.1], respectively. State and input partition sizes are chosen
as ηX = (0.02, 0.02, 0.02) and ηU = (0.3, 0.15). Table 2.10 shows run times and number
of state-input pairs corresponding to local and global ABCD. For N > 1, memory
requirement for global ABCD exceeds memory limits. Figure 2.30 demonstrates snapshots
of one sample trajectory when feedback controllers are employed under the presence of
disturbance. It should be noticed that using ALTRO alone would not provide guarantee
against bounded disturbance. Figure A.3 illustrates the fact that open-loop controller fails
in keeping one of the vehicles away from the road’s sides under perturbed situation when
constant additive disturbance vector (−0.03, 0.03,−0.03) is being applied throughout the
whole horizon. In contrast, employing a feedback controller results in successful lane
merging.

Multi-Drone Formation Control

In the multi-drone formation control case study, the nominal dynamics for each of the
drones is the same as that in Section A.1. The disturbance set and robustness margin
are chosen as |W | ≤ (0.03, 0.03, 0.03) and ε = (0.24, 0.24, 0.24). Distance between
each pair of drones positioned at the diamond’s vertices is set to be λi,j = 3

√
2

2 m
for i, j ∈ {1, 2, 3, 4}, while the drone positioned at the center is supposed to keep
distance λ5,j = 1.5 m for j ∈ {1, 2, 3, 4}. Setting the minimum distance for obstacle
avoidance to δ = 0.4 m and horizon length T = 100, ALTRO finds a valid solution
over the product system with 15 state and 10 input variables within 114.3 seconds.
Next, we synthesize local controllers for every drone such that the specifications hold
for the perturbed models with µ = 0.5 m. We consider state and input spaces to be
X = [−2, 17]× [−2, 17]× [0.6, 1.6] and U = [−0.9, 4.8]× [−3, 3], respectively. We select
ηX = (0.03, 0.03, 0.03) and ηU = (0.3, 0.15). Table 2.10 shows the run times and number
of state-input pairs corresponding to local and global ABCD. Already for two drones,
the memory requirement for global ABCD exceeds the available memory of 1.5 TB of
RAM. Figure 2.31 illustrates four sequential frames of a sample perturbed trajectory
generated by employing feedback controllers. Notice that both relative position and
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orientation between drones are kept (almost) constant throughout the journey. On the
other hand, using ALTRO alone would not provide guarantee against bounded disturbance.
Figure A.4 illustrates performance of open-loop and feedback controllers on regulating
distance between two specific drones with and without disturbances. As expected, in
the absence of disturbances, the open-loop controllers suffice and the distance between
the two drones (shown in solid blue) does not go below the threshold line (showed as
the dotted line). However, when constant additive disturbance vectors (0, 0.03, 0.03)
and (0,−0.03,−0.03) are being applied to the two drones throughout the whole horizon,
open-loop controller fails, whereas the feedback controller is still capable of maintaining
distance above the given threshold.

A.2. A Direct Algorithm for Problem 3.2

We now show a “direct” method for decidability of Problem 3.2 based on Schanuel’s
conjecture but without relying on the decidability of RMW. As stated before, a switch
point in a strategy corresponds to the existence of a non-tangential zero for the functions
ys,bt (d1) for s ∈ S and b ∈ Ds \ d1(s). We know ys,bt (d1) is an exponential polynomial
of the form (3.7). Thus, deciding Problem 3.2 reduces to checking if an exponential
polynomial of the form (3.7) in one free variable t has a non-tangential zero in a bounded
interval. We use the following result from [38].

Theorem A.2.1 ([38]) Assume SC. It is decidable whether an exponential polynomial
of the form (3.7) has a zero in the interval (t1, t2) with t1, t2 ∈ Q.

Theorem A.2.1 decides whether a zero, not necessarily a non-tangential one, exists. We
shall use the characterization of Proposition 3.2.2 to check if a non-tangential zero of
yt := ys,bt (d1) exists in (0, B). Define the functions

zkt = y2
t +

k∑
j=1

(
dj

dtj
yt

)2

, k ∈ {0, 1, 2, . . .}. (A.1)

Theorem A.2.2 Fix rational numbers t1 < t2. Suppose yt has a zero in the interval
(t1, t2) and yt is not identically zero over this interval. There is k0 as the smallest k such
that zkt in (A.1) does not have any zero in (t1, t2). Moreover, the zero of yt in (t1, t2) is
non-tangential if k0 is odd and is tangential if k0 is even.

Intuitively, the above theorem states that if yt has at least one zero in (t1, t2), we
can check for the existence of a tangential or non-tangential zero by a finite number of
applications of Theorem A.2.1 to functions zkt in (A.1). Note that yt may have both
tangential and non-tangential zeros; Theorem A.2.2 gives a way of identifying the type of
one of the zeros (the one with the largest order).

167



A. Appendices

Proof (Proof of Theorem A.2.2) Since yt is an exponential polynomial, so is zkt for
all k. Thus, we can use Theorem A.2.1 to check if zkt has a zero in (t1, t2). Note that zkt
is the sum of squares of dj

dtj
yt, which means

zkt∗ = 0 ⇒ yt∗ =
dyt
dt

∣∣
t=t∗

= · · · = dkyt
dtk

∣∣
t=t∗

= 0. (A.2)

The first part of the theorem is proved by showing that if for each k, zkt has a zero in
(t1, t2), then yt is identically zero. Suppose zkt = 0 for some t = t∗k in the interval (t1, t2),
for any k ∈ {0, 1, 2, . . .}. Using (A.2), we get that yt = 0 for all t ∈ {t∗0, t∗1, t∗2, . . .}. If the
set {t∗0, t∗1, t∗2, . . .} is not finite, we get that yt is identically zero according to the identity
theorem [2]. If the set of zeros is finite, there is some t∗ that appears infinitely often in
the sequence (t∗0, t

∗
1, t
∗
2, . . .). Therefore, z

k
t∗ = 0 for infinitely many indices, which means

dkyt
dtk

∣∣
t=t∗

= 0 for all k. Having yk as an analytic function, this again implies that yt is
identically zero.

Since yt is not identically zero, take k0 such that zk0
t does not have a zero in (t1, t2)

but zk0−1
t does. Then, there is t∗ ∈ (t1, t2) such that yt and all its derivatives up to

order k0 − 1 are zero at t∗ but dk0

dtk0
yt
∣∣
t=t∗
6= 0. This t∗ and k0 satisfy the conditions of

Proposition 3.2.2. Thus, t∗ is a non-tangential zero for yt if k0 is odd and a tangential
zero if k0 is even.

To check if there is a non-tangential zero in an interval (0, B), we apply Theorem A.2.2
to each zero of yt individually. Suppose yt has at least one zero. We can localize all zeros
of yt as follows:

1. Set (t1, t2) := (0, B);

2. Set k0 to be the smallest index such that zkt in (A.1) does not have any zero in
(t1, t2);

3. If k0 > 0, do the next steps:
• Use bisection to find an interval (t′, t′′) ⊂ (t1, t2) such that over this interval,
zk0−1
t has a zero and zk0

t and dk0

dtk0
yt do not have any zero;

• Store (t′, t′′);
• Repeat Steps 2-3 with (t1, t2) := (t1, t

′);
• Repeat Steps 2-3 with (t1, t2) := (t′′, t2).

The bisection used in the above algorithm sequentially splits the interval into two sub-
intervals and picks the one that contains the zero of zk0−1

t . It stops when dk0

dtk0
yt does not

have any zero over the selected sub-interval. The splitting terminates after a finite number
of iterations due to the fact that dk0

dtk0
yt is a continuous function and non-zero at the zero

of yt. The whole algorithm terminates after a finite number of iterations since yt has a
finite number of zeros in (0, B) (note that if yt has infinite number of zeros in (0, B), it
will be identically zero according to the identity theorem [2]). The output of the algorithm
is a set of intervals. Within each interval, yt has a single zero. Applying Theorem A.2.2
to each such interval will decide whether the zero is tangential or non-tangential.
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A.3. Proofs Related to Reduction for CTMCs and
CTMDPs

A.3.1. Error Bounds for ε-Bisimilar CTMCs

Given matrices A and Ā corresponding to stochastic matrices Q and Q̄, suppose that there
exists a matrix Pb such that APb = PbĀ+ ∆APb and β = Pbβ̄ + ∆β, where all elements
of ∆A and ∆β are bounded by ε in the absolute value sense. Hence, a CTMC with
Â = A−∆A and β̂ = β −∆β can be reduced based on the notion of exact bisimulation.
∆A and ∆β include all rate mismatches with respect to the equivalence classes specified
by Pb. Defining the error vector as et = Xt − PbX̄t, dynamics of error would be as the
following:

ėt = Aet + ∆APbX̄t

˙̄Xt = ĀX̄t (A.3)

Since A and Ā are both stable matrices (extracted from the stochastic matrices Q and
Q̄), steady state value of the vector et would be zero. The next theorem gives a bound
on et for the case that absolute value of elements of ∆A and ∆β do not exceed a certain
threshold ε.

Theorem A.3.1 Suppose that elements of ∆A and ∆β are bounded by ε. The elements
of the error et ∈ Rn defined in (A.3) are bounded by

|et(i)| ≤ (mε+ ρ)Λi

where, ρ = ||e0||∞, Λ = −A−1 and Λi =
∑n

j=1 Λ(i, j).

Proof Let us denote state transition matrix G(t) := eAt and write its ith row as gt(i).
We also denote the ith column of ∆A by ∆Ai. For et(i) we can write:

et(i) = gt(i)∆A ∗ PbX̄t + gt(i)e0 =
n∑
j=1

∫ t

0
gt−τ (i)∆AjFτ (j)dτ + gt(i)e0

where, ∗ operator stands for convolution of two signals in time domain and Ft(i) is a
scalar and obtained by multiplying jth row of Pb by vector X̄t which is bounded by 1.
Therefore:

|et(i)| ≤ εn
∫ t

0
||gi(τ)||1dτ + gt(i)e0

Moreover, for every arbitrary time t ≥ 0 we have ‖et(i)‖ ≤ (εn + ρ)
∫∞

0 ||gτ (i)||1dτ .
However, this bound cannot be easily found since it requires computing Gt = eAt. To avoid
the computation of Gt, we use the uniformized form of Q defined as H0 := Q

γ0
+ In+2. H0
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is a row stochastic matrix and γ0 is the maximum of absolute value of diagonal elements
of Q. Using H0 one can compute state transition matrix corresponding to Q as [32]:

eQt =

∞∑
k=0

Hk
0 e

(−γ0t) (γ0t)
k

k!

It is easy to notice that for every k, inner argument in the above summation is (element-
wise) non-negative. We can also expand eQt in the following form:

eQt =

e
At

... (eAt − I)A−1β · · ·
. . . . . .

0
... 1


It can be seen that eAt is one of the blocks inside eQt. Therefore, eAt is (element-wise)
a non-negative matrix for all t ≥ 0. Using the definition of the Fourier transform of a
function [138], we get ∫ ∞

0
|Gij(τ)|dτ =

∫ ∞
0

Gij(τ)dτ = −A−1
ij

where, A−1
ij denotes the ijth element of A−1. Setting Λ := −A−1 and Λi :=

∑n
j=1 Λ(i, j),

we get
|et(i)| ≤ (εn+ ρ)Λi.

A.3.2. Reducible CTMC Case

Throughout Section 3.3, irreducibility of models is assumed. In this section, we show
that our results are applicable to reducible CTMCs. The only assumption required for
validity of the results of Subsection 3.3.1 is the stability of the matrix A. We prove in the
sequel that this assumption holds also for reducible CTMCs by preprocessing its structure
and eliminating bottom strongly connected components (BSCCs) that do not affect the
reachability probability.

Remark 19 For any given time bound, the reachability probabilities corresponding to the
BSCCs of the CTMC C are zero except for the BSCC containing the single state good.
Therefore, these BSCCs can be eliminated from the generator matrix. Thus we obtain a
dynamical system for which the only BSCC is {good}.

Proposition A.3.1 For a reducible CTMC C, after eliminating all the BSCCs except
{good} and the states that can never reach {good}, the matrix A in (3.19) will be stable.

Proof If the CTMC is reducible, we first eliminate all the BSCCs except {good}. We
also eliminate states that can never reach {good}. Therefore, the modified CTMC consists
of only transient states and {good}. The transient states can be partitioned into strongly
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connected components. The canonical form of matrix A for such a CTMC will have the
following structure:

A′ =



A′11 A′12 A′13 · · · · · · A′1n
0 A′22 A′23 A′24 · · · A′2n
0 0 A′33 A′34 · · · A′3n
...

...
...

...
. . .

...
0 0 0 · · · A′(n−1)(n−1) A′(n−1)n

0 0 0 · · · 0 A′nn,


(A.4)

where A′iis correspond to different strongly connected components. Since it is possible to
reach from any state to {good}, A′iis satisfy Assumption 2 are stable.

Equation (3.24) with the block upper-diagonal matrix A′ in (A.4) can be solved bottom-up
while the order reduction can be utilized in each step.

A.4. Proofs for Decidability of Pseudo-Skolem

A.4.1. Proof of Proposition 4.1.1

We want to show

Q Õγ2(B,Q−1x) ⊆ Õε(A, x) ⊆ Q Õγ1(B,Q−1x), (A.5)

where γ1 = ε
∥∥Q−1

∥∥
∞ and γ2 = ε/ ‖Q‖∞.

Take any y ∈ Õε(A, x). We show that Q−1y ∈ Õγ1(B,Q−1x) to get the right-hand
side of (A.5). Since y ∈ Õε(A, x), there is a state trajectory (x0, x1, . . .) and a sequence
(d0, d1, . . .) such that x0 = x, xn+1 = Axn+dn, dn ∈ [−ε, ε]m for all n ∈ N, and y appears
in the state trajectory. We construct a new state trajectory (y0, y1, . . .) and the sequence
(d̄0, d̄1, . . .) with the transformation xn = Qyn and dn = Qd̄n. Then we have yn+1 =
Q−1AQyn+Q−1dn = Byn+ d̄n. Note that

∥∥d̄n∥∥∞ =
∥∥Q−1dn

∥∥
∞ ≤

∥∥Q−1
∥∥
∞ ‖dn‖∞ ≤ γ1.

Since y appears in the state trajectory (x0, x1, . . .), Q−1y appears in the state trajectory
(y0, y1, . . .) with y0 = Q−1x0 = Q−1x. Therefore, Q−1y ∈ Õγ1(B,Q−1x) which results in
y ∈ QÕγ1(B,Q−1x).
To prove the left-hand side of (A.5), We invoke the right-hand side by replacing

(A,B,Q, x, ε) with (B,A,Q−1, Q−1x, γ2). This gives Õγ2(B,Q−1x) ⊆ Q−1 Õγ′1(A, x)
with γ′1 = γ2 ‖Q‖∞. Setting γ′1 = ε proves the left-hand side of (A.5).

To prove that Õ(A, x) = QÕ(B,Q−1x), we take intersection of all the sides in (A.5)
over ε > 0: ⋂

ε>0

Q Õγ2(B,Q−1x) ⊆
⋂
ε>0

Õε(A, x) ⊆
⋂
ε>0

Q Õγ1(B,Q−1x).

Due to the linear relation between γ1 and γ2 with ε, we get

Q Õ(B,Q−1x) ⊆ Õ(A, x) ⊆ Q Õ(B,Q−1x) ⇒ Õ(A, x) = Q Õ(B,Q−1x).
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A.4.2. Proof of Lemma 4.3.1

Any t ∈ Õε(A, s) is of the form t = Ans+
∑n−1

i=0 A
idn−i−1 for some n ∈ N and some di

with ‖di‖∞ ≤ ε. This means s = A−nt+
∑n−1

i=0 A
−id′n−i−1 with d′n−1−i = A−1di. Since∥∥d′n−1−i

∥∥
∞ ≤

∥∥A−1
∥∥
∞ ε, we get s ∈ Õγ(A−1, t). To get (4.5), notice that

t ∈ Õ(A, s)⇒ t ∈
⋂
ε>0

Õε(A, s)⇒ s ∈
⋂
γ>0

Õγ(A−1, t)⇒ s ∈ Õ(A−1, t).

Applying the same argument to the matrix A−1 will give the other side of (4.5).

A.4.3. Proof of Lemma 4.3.2

We prove the lemma by showing there is a constant C > 0 satisfying

O(J, s)
∗
= O(J, s) ∪ {0}

∗∗
⊆ Õ(J, s)

†
⊆
⋂
ε>0

⋃
z∈O(J,s)

B(z, Cε)
§
⊆ O(J, s), (A.6)

where B(z, ε) := {y ∈ Rm | ‖z − y‖2 ≤ ε} is the closed ball with respect to two norm with
center z and radius ε. It is easy to see that equality (*) holds since all the eigenvalues of
J are inside the unit circle, limn→∞ J

n = 0, and 0 is the only limiting point of any state
trajectory.
It is also easy to see that inclusion (**) is correct. Note that for any ε > 0, O(J, s) ⊆
Õε(J, s) and the set Õε(J, s) is closed by definition. Taking intersection over ε > 0, we
get O(J, s) ⊆ Õ(J, s) with Õ(J, s) being a closed set. Therefore, O(J, s) ⊆ Õ(J, s).
We now choose a value of C which allows us to prove inclusion (†). First pick γ such

that ρ(J) < γ < 1. Next choose c1 to be a constant (which is guaranteed to exist)
satisfying ‖Jn‖2 ≤ c1γ

n for all n ∈ N, and finally set C := c1m/(1− γ). We show that
Õε(J, s) ⊆

⋃
z∈O(J,s) B(z, Cε) for any ε > 0. Take any x ∈ Õε(J, s). Then there is a

sequence (d0, d1, . . .) and n ∈ N such that ‖di‖∞ ≤ ε and x = Jns+
∑n−1

i=0 J
idn−i−1. Now

‖x− Jns‖2 =

∥∥∥∥∥
n−1∑
i=0

J idn−i−1

∥∥∥∥∥
2

≤
n−1∑
i=0

∥∥J i∥∥
2
‖dn−i−1‖2 ≤

n−1∑
i=0

c1γ
imε ≤ c1mε

1− γ
= Cε,

We then get x ∈ B(z, Cε) for z := Jns ∈ O(J, s).
The inclusion § can be proven by taking an arbitrary point y 6∈ O(J, s) and showing that

there is an ε > 0 for which y 6∈ B(z, Cε) for all z ∈ O(J, s). Note that the complement
of O(J, s) is an open set, which means there is a θ > 0 such that B(y, θ) ∩ O(J, s) = ∅.
Taking ε such that Cε < θ will give the intended result.

A.4.4. Proof of Lemma 4.3.5

The key part of the proof is to show that 0 ∈ Õ(A, s) for any s and for any A having the
eigenvalues on the unit circle. Once we show this, we know that s ∈ Õ(A−1,0) is true for
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any s and any matrix A due to the Reversibility lemma. Stated for the inverse of A and
any x, we get x ∈ Õ(A,0). Since pseudo-orbits are transitive, we have x ∈ Õ(A, s) for
any x and s, which is the intended result.
We show 0 ∈ Õ(A, s) equivalently by replacing A with its Jordan form J and doing

induction on the structure of J . The proof has two stages. The first stage is to show that
0 ∈ Õ(J, s) for all s when J has a single block simple eigenvalues. The second stage is to
show that we can sequentially increase the multiplicity of eigenvalues and multiple blocks.

Base case: Suppose J =

[
a −b
b a

]
with a2 + b2 = 1 or J = r with |r| = 1. Observe that

the multiplication by J does not increase the two norm of a vector. Hence setting

dn =

{
−ε · Jxn

‖Jxn‖2
if ||Jxn||∞ > ε,

−Jxn otherwise,

we obtain the ε-pseudo-orbit (x0 = s, x1, x2, . . . , xm,0,0, . . .) from any s where ‖xk‖2 =

‖xk−1‖2 − ε for k ≤ m, which gives 0 ∈ Õ(J, s).

Inductive case: We show that if 0 ∈ Õ(J1, s1) and 0 ∈ Õ(J2, s2) for all s1 and s2 of

appropriate dimensions, we also have 0 ∈ Õ(J, s) with J =

[
J1 B
0 J2

]
for any B and

any s with appropriate dimensions. Let us partition any state x = (x1, x2) according
to the dimensions of J1 and J2. Let ε > 0 and s = (s1, s2). By the assumption, there
exist ε-perturbations (d2

0, d
2
1, . . . , d

2
N−1) that bring s2 to 0 under J2. Let dn = (0, d2

n) for
0 ≤ n < N be a sequence of ε-perturbations for the linear system with mapping J . We
obtain the sequence (x0 = s, x1, . . . , xN ) with x2

N = 0: the ε-perturbations d0, . . . , dN−1

have brought the second coordinate to 0. By the assumption, we also have 0 ∈ Õε(J1, x
1
N ),

which gives ε-perturbations (d1
0, . . . , d

1
M ) that bring x1

N to 0 under J1. Let us expand the
sequence of perturbations for the linear system J with dn+N = (d1

n,0) for 0 ≤ n ≤M . It
is easy to see that (d0, . . . , dN+M ) bring the system from s to 0 due to the structure of J
that is upper triangular.

A.4.5. Proof of Theorem 4.3.2

Recall that a set S is pseudo-reachable from s under A if for every ε > 0, there exists a
point xε ∈ S that is ε-pseudo-reachable from s under A. In this section, we show that
pseudo-reachability in bounded semialgebraic sets is decidable.
We need the following lemma that shows that deciding pseudo-reachability in a given

bounded set S reduces to checking whether S ∩ Õ(J, s) = ∅, allowing us to restrict our
attention to compact sets and the existence of a pseudo-reachable point in a set as opposed
to pseudo-reachability of the set as a whole.

Lemma A.4.1 Let S be a bounded set. S is pseudo-reachable from s under A if and
only if there exists x ∈ S that is pseudo-reachable from s under A.
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Proof Suppose S is pseudo-reachable. Let (εi)i∈N be a sequence of positive numbers with
limε→0 = 0, and (xi)i∈N be a sequence of elements of S such that xi is εi-pseudo-reachable
for all i ≥ 0. By the Bolzano–Weierstrass theorem, boundedness of S implies that (xi)i∈N
must have a limit point x in S. To argue that x is pseudo-reachable, let ε > 0. Since x is
the limit point of (xi)i∈N, there must exist an ε

2 -pseudo-orbit (yi)i∈N containing a point
yN such that ‖x− yN‖∞ < ε

2 . Therefore, x is ε-pseudo-reachable from s via the sequence
s, y1, . . . , yN−1, x.
Now suppose x ∈ S is pseudo-reachable. To argue that S is pseudo-reachable, let

ε > 0. Since x ∈ S, there must exist a point x′ ∈ S such that ‖x′ − x‖∞ < ε
2 . Since x is

ε
2 -pseudo-reachable, x

′ must be ε-pseudo-reachable.

Now we are ready to prove the main theorem.

Theorem A.4.1 Given a bounded semialgebraic set S, it is decidable whether S is
pseudo-reachable from x0 under A.

Proof It suffices to consider A = J for J in real Jordan normal form (see Proposi-
tion 4.1.1) and S that is closed. Let J1, . . . , Jt be all the blocks of J with spectral radius
> 1, Jt+1, . . . , Jt′ all the blocks of with spectral radius = 1 and Jt′+1, . . . , Jl all the blocks
of with spectral radius < 1. Let M be an upper bound on the `2-norm of all vectors in S.
We show how to decide whether there exists a point x ∈ S that is also in Õ(J, s).

1. Suppose J has a block Ji with an eigenvalue of modulus greater than 1 such that
si 6= 0. Then Õ(J, s) = O(J, s) (Lemma 4.3.4). By Lemma A.4.3, there exists a
computable N such that for all n > N ,

∥∥Jni si∥∥2
> M (observe that orbit itself is a

pseudo-orbit), and therefore we only need to check whether any of the first N points
in orbit of s under J belong to the set S.

2. Let Jc = diag(Jt′+1, . . . , Jl). If for all x ∈ S, the projection xc of x onto the
coordinates governed by Jc is not 0, then using our characterization of the pseudo-
orbit we can conclude that x ∈ Õ(J, s)S only if xc ∈ O(Jc, s

c). Now observe that
because S is compact, it must be the case that infx∈S ‖xc‖ > 0 (since by assumption
‖xc‖ is never 0). Therefore, using Lemma A.4.3 we can compute a time bound N
such that for n > N and sufficiently small ε, ‖xcn‖ < infx∈S ‖xc‖ and hence S can
only be reached within the first N steps. It then remains to check whether any of
s, Js, . . . , JN−1s belongs to S.

3. Suppose 1 and 2 are not the case. Assuming S is not empty, it must then contain a
point whose projection onto Jc = 0. In other words S must contain a point x whose
projections onto blocks with spectral radius < 1 are all 0. From our characterization
of the pseudo-orbit we can see that xi ∈ ∆(Ji, si) for every 1 ≤ i ≤ m and hence
x ∈ Õ(J, s).

A.4.6. Proof of Lemma 4.3.12

We now prove a generalization of Lemma 4.3.12. Let λ1, . . . , λm be algebraic num-
bers of modulus 1 and let p1, . . . , pm be polynomials with algebraic coefficients. Let
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n range over the natural numbers. We show how to effectively determine the value
of lim infn→∞ |

∑m
j=1 pj(1/n)λnj |. Moreover, if the value is strictly greater than 0, we

show we can find an explicit bound ∆ and N ∈ N such that for all n > N , we have
|
∑m

j=1 pj(1/n)λnj | > ∆. Lemma 4.3.12 follows as a special case.
We require some technical machinery from the theory of Diophantine approximations.

We need the following theorem of Masser [124]. A proof can be found in [35] or [65].

Theorem A.4.2 ([124]) Let m ∈ N be fixed and let λ1, . . . , λm be complex algebraic
numbers each of modulus 1. Consider the free Abelian group

L = {(v1, . . . , vm) ∈ Zm : λv1
1 λ

v2
2 . . . λvmm = 1}.

L has a basis { ~̀1, . . . , ~̀p} ⊆ Zm (with p ≤ m), where the entries of each of the ~̀j are all
polynomially bounded in the total description length of λ1, . . . , λm. Moreover, such a basis
can be can also computed in time polynomial in the total description length.

Let L be as described in Theorem A.4.2 above and suppose we have computed a basis
{ ~̀1, . . . , ~̀p} ⊆ Zm. For each j ∈ {1, . . . , p}, let ~̀j = (`j,1, . . . , `j,m). Now we define a set

T := {(z1, . . . , zm) ∈ Cm : |z1| = · · · = |zm| = 1 and

for each j ∈ {1, . . . , p}, z`j,11 . . . z
`j,m
m = 1} (A.7)

Notice that |z| = 1 ⇐⇒ Re(z)2 + Im(z)2 − 1 = 0, and the `j,k are fixed integers, and
thus the conditions above can be written as polynomials in the real and imaginary parts
of z. Thus T is an algebraic set.

We now state a version of Kronecker’s theorem on simultaneous Diophantine approxi-
mation. A derivation of this version of the theorem from the standard version ([72] Chap
23) can be found in [139].

Theorem A.4.3 (Kronecker’s theorem, density version) Let T be defined from λ1, . . . , λm
as in (A.7). Then {(λn1 , . . . , λnm) : n ∈ N} is a dense subset of T .

Theorem A.4.3 enables us to compute the lim inf by minimizing a function over a
compact algebraic set:

Theorem A.4.4 Let λ1, . . . , λm be complex numbers of modulus 1. Let p1, . . . , pm be
polynomials (with algebraic coefficients) with constant terms c1, . . . , cm respectively. Let
z = (z1, . . . , zm) and c = (c1, . . . , cm). We have that

lim inf
n→∞

∣∣∣∣∣∣
m∑
j=1

pj(1/n)λnj

∣∣∣∣∣∣ = lim inf
n→∞

∣∣∣∣∣∣
m∑
j=1

cjλ
n
j

∣∣∣∣∣∣ = inf
z∈T
|c> · z| = min

z∈T
|c> · z|,

where T is the algebraic set computed in (A.7) as the closure of {(λn1 , . . . , λnm) : n ∈ N}.

To prove the theorem, we need the following lemma that shows that we can replace the
polynomials by their constant terms.
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Lemma A.4.2 Let λ1, . . . , λm be complex numbers of modulus 1. Let p1, . . . , pm be
polynomials (with algebraic coefficients) with constant terms c1, . . . , cm respectively. Then

lim inf
n→∞

∣∣∣∣∣∣
m∑
j=1

pj(1/n)λnj

∣∣∣∣∣∣ = lim inf
n→∞

∣∣∣∣∣∣
m∑
j=1

cjλ
n
j

∣∣∣∣∣∣ .
Proof (of Theorem A.4.4). The first equality follows from Lemma A.4.2 and the second
follows from Theorem A.4.3. The third equality holds because the function z 7→ |c> · z| is
continuous and T is compact.

Now, since T is an algebraic set, the minimum minz∈T |c> · z| can be expressed in
the theory of reals with addition and multiplication (omitting the encoding of absolute
values):

∃z ∈ T.v = |c> · z| ∧ ∀z′ ∈ T.v ≤ |c> · z′|

Therefore, by Tarski’s theorem [147, 20, 44], we can characterize the unique v that attains
the minimum.
Suppose the minimum v is some number B > 0. In this case, we require a bound

∆ ∈ R and N ∈ N such that |
∑m

j=1 pj(1/n)λnj | > B for all n > N . By emulating
the proof of Lemma A.4.2, we can find a bound N such that for all n > N , we have
|
∑m

j=1 pj(1/n)λnj | > B/2. The required bounds are ∆ = B/2 and this N .
This concludes the proof of Lemma 4.3.12 and therefore also Theorem 4.3.1.

A.4.7. Proof of Lemma A.4.3

Lemma A.4.3 1. Let A ∈ Rm×m and s ∈ Rm. If ρ(A) < 1, then for every δ > 0
there exists an effectively computable N ∈ N and ε > 0 such that after time N , all
ε-pseudo-orbits are contained inside the ball B(0, δ).

2. Suppose J = diag(J1, . . . , Jz) is a Jordan normal form with one block Ji associated
to eigenvalues outside the unit circle. for any s = (s1, . . . , sz) with si 6= 0 and for
every δ > 0, there exists an effectively computable N ∈ N and ε > 0 such that after
time N , all ε-pseudo-orbits of J are contained outside the ball B(0, δ).

Proof Let (xn)n∈N denote an ε-pseudo-orbit starting from s with a sequence of disturbances
(dn)n∈N. Suppose ρ(A) < 1 and let γ ∈ (ρ(A), 1). There is a constant c > 0 satisfying
‖An‖2 ≤ cγn for all n. Then we get

‖xn‖2 =

∥∥∥∥∥Ans+
n−1∑
k=0

Akdn−k−1

∥∥∥∥∥
2

≤ ‖An‖2 ‖s‖2 +
n−1∑
k=0

∥∥∥Ak∥∥∥
2
‖dn−k−1‖2

≤ cγn ‖s‖2 +

n−1∑
k=0

mε cγk ≤ cγn ‖s‖2 +
mε c

1− γ
.

Taking ε = δ(1− γ)/(2mc) and N with γN ‖s‖2 ≤ δ/(2c) gives the intended result.
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For the second part of the lemma, take an ε-pseudo-orbits of J as (s = x0, x1, x2, . . .) with
xn+1 = Jxn + dn. We have ‖xn‖2 ≥

∥∥xin∥∥2
where the states xn are partitioned according

to the structure of J and xin is the one associated with Ji. Note that (si = xi0, x
i
1, x

i
2, . . .)

satisfy xin+1 = Jix
i
n + din. There is a constant c > 0 satisfying

∥∥J−ni ∥∥
2
≤ cγn for all n

with some γ ∈ (ρ(J−1
i ), 1). We can write

xin = Jni s
i +

n−1∑
k=0

Jki d
i
n−k−1 ⇒ si = J−ni xin −

n−1∑
k=0

Jk−ni din−k−1

⇒
∥∥si∥∥

2
≤
∥∥J−ni ∥∥

2

∥∥xin∥∥2
+
n−1∑
k=0

∥∥∥Jk−ni

∥∥∥
2

∥∥din−k−1

∥∥
2
≤ cγn

∥∥xin∥∥2
+
cm ε

1− γ

⇒
∥∥xin∥∥2

≥ 1

cγn

[∥∥si∥∥
2
− cm ε

1− γ

]
.

It is sufficient to take ε = (1−γ)
2cm

∥∥si∥∥
2
> 0 and N sufficiently large such that 2δcγN <

∥∥si∥∥
2
.

This forces xin (thus also xn) to move outside the ball B(0, δ) for all n > N .

A.4.8. Proof of Lemma A.4.2

We can write pj(1/n) as cj +
∑dj

i=1 c(j,i)
1
ni
, where cj is the constant term, c(j,i) are the

other coefficients, and dj is the degree. Define Ai =
∑dj

i=1 |c(j,i)| and observe that

|pj(1/n)− cj | < |
dj∑
i=1

c(j,i)
1

ni
| <

∑dj
i=1 |c(j,i)|
n

=
Aj
n

Thus for any ε, setting Nj(ε) = dAj/εe ensures that

n > Nj(ε) =⇒ |pj(1/n)− cj | < ε.

Define N(ε) = maxj∈{1,...,m}Nj(ε/m).

Claim A.1 Let Sn be defined as |
∑m

j=1 cjλ
n
j |. For all ε > 0,

Sn − ε ≤ |
m∑
j=1

pj(1/n)λnj | ≤ Sn + ε

Taking the limit inferior of each term gives us the desired result.

Proof (of Claim A.1) We write

|
m∑
j=1

pj(1/n)λnj | = |
m∑
j=1

(cj + pj(1/n)− cj)λnj |,
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which gives us

Sn − |
m∑
j=1

(pj(1/n)− cj)λnj | ≤ |
m∑
j=1

pj(1/n)λnj | ≤ Sn + |
m∑
j=1

(pj(1/n)− cj)λnj |

and thus

Sn −
m∑
j=1

|(pj(1/n)− cj)λnj | ≤ |
m∑
j=1

pj(1/n)λnj | ≤ Sn +
m∑
j=1

|(pj(1/n)− cj)λnj |,

by elementary properties of sums of absolute values. Observing that λjs have absolute
value 1, we can reduce the proposition above to

Sn −
m∑
j=1

|(pj(1/n)− cj)| ≤ |
m∑
j=1

pj(1/n)λnj | ≤ Sn +
m∑
j=1

|(pj(1/n)− cj)|.

Now setting n > N(ε) = maxj∈{1,...,m}Nj(ε/m)}, we have |(pj(1/n)− cj)| < ε/m for
all j, which gives us

Sn − ε ≤

∣∣∣∣∣∣
m∑
j=1

pj(1/n)λnj

∣∣∣∣∣∣ ≤ Sn + ε

A.4.9. Computing Real JNF in Polynomial Time

We discuss how to compute the the real Jordan normal form of A in polynomial time.
First compute, in polynomial time, the (complex) Jordan normal form J ′ and matrices
T, T−1 such that A = TJ ′T−1 using the algorithm from [34].

Computing J : Suppose, without loss of generality, that

J ′ = diag(J ′1, J
′
2, . . . , J

′
2k−1, J

′
2k, J

′
2k+1, . . . , J

′
2k+z)

where for 1 ≤ j ≤ k, the Jordan blocks J2j−1 and J2j have the same dimension and
have conjugate eigenvalues λj = aj + bji and λ = aj − bji, respectively. The blocks
J ′2k+1, . . . , J

′
2k+z, on the other hand, have real eigenvalues. J is obtained by replacing,

for each 1 ≤ j ≤ k, diag(J ′2j−1, J
′
2j) with a real Jordan block of the same dimension with

Λ =

[
a −b
b a

]
and keeping the blocks J ′2k+1, . . . , J

′
2k+z unchanged.

Computing P : Let κ(j) denote the multiplicity of the Jordan block J ′i for 1 ≤ i ≤ 2k+z,
and v1

1, . . . , v
1
κ(1), . . . , v

2k
1 , . . . , v2k

κ(2k), . . . , v
2k+z
1 , . . . , v2k+z

κ(2k+z) ∈ Q̄m be the columns of T . It

will be the case that for all 1 ≤ j ≤ k and l, v2j−1
l = v2j

l in the sense that v2j−1
l = xjl +yjl i

and v2j
l = xjl − y

j
l i for vectors xjl , y

j
l ∈ Rm. Moreover, for j > 2k, v2j

l ∈ Rm. Finally,
columns of P are obtained from columns of T as follows. For 1 ≤ j ≤ k and all l, replace
v2j−1
l with xjl and v

2j
l with yjl and keep v2k+z

l for all l and m > 0 unchanged, in the same
way the proof of existence of real Jordan normal form proceeds.
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Computing P−1: Summarizing the construction above, P is obtained from T by
replacing columns x + yi and x − yi, x, y ∈ Rm by x and y, respectively. Since
x = 1

2(x+ yi) + 1
2(x− yi) and y = −1

2 i(x+ yi) + 1
2 i(x− yi), this construction is linear and

we can write P = T · · ·A for some A ∈ Cm×m with entries in {1
2 ,−

1
2 ,

1
2 i,−

1
2 i, 1, 0}.

Moreover, the linear transformation is clearly invertible: x + yi = 1 · x + iy and
x − yi = 1 · x − (−i)y, and hence A−1 ∈ Cm×m with entries in {1, i,−i}. Finally,
compute P−1 via P = TA =⇒ P−1 = A−1T−1, observing that we already know how to
compute T−1 in polynomial time.
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