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Abstract

Navigating driverless minibuses through pedestrian-dense areas presents a significant
challenge, exacerbated by the necessity for these vehicles to transport passengers efficiently
to their destinations. For such vehicles to maintain a pace equal to or faster than walking
speed, it is important to minimize unnecessary braking and avoid unwarranted stops.
Achieving such navigation proficiency in pedestrian zones requires driverless minibuses to
possess advanced interactive systems capable of signaling their intentions to pedestrians
preemptively, thereby reducing potential misunderstandings.
This thesis focuses on the development and implementation of strategies for the efficient
and safe operation of driverless minibuses in pedestrian environments. Although these
vehicles are equipped with comprehensive safety systems designed to initiate emergency
stops to avert collisions, such interventions can disrupt their smooth flow. It is essential
for such vehicles to interpret pedestrian intentions and their awareness levels accurately to
prevent the undue activation of emergency stop mechanisms and pauses. Moreover, it is
vital to alert pedestrians who may be oblivious to the vehicle’s proximity. To this end, the
thesis explores various interaction strategies, including auditory signals, visual cues, and
car control adjustments, to facilitate clear communication with pedestrians.
Smart interaction strategy is proposed to enhance interactions between driverless minibuses
and pedestrians, incorporating four pivotal elements: pedestrian behavior identification,
interaction zone establishment, decision-making processes, and the activation of interaction
modules. These elements are foundational for achieving a sophisticated interaction level.
Identifying pedestrian behavior is crucial for detecting their potential unawareness of
the vehicle’s proximity. Interaction zones are crafted to calculate a risk value based
on pedestrian behavior and proximity, guiding the decision-making process within the
navigable space. Following this assessment, interaction modules are deployed to actively
engage with pedestrians, embodying the full spectrum of the interaction strategy developed
in this study.
The integration of these modules into a standard navigation system enables effective
operation in high pedestrian traffic conditions. The smart interaction strategy was
evaluated using a practical system referred to as "Autobus", which is analogous to a
driverless minibus. Initial tests of these components were conducted separately to verify
their efficacy, followed by their amalgamation into the system to realize the intended
outcomes. Experimental findings confirm that the implemented system enables Autobus
to communicate effectively with pedestrians across various scenarios, significantly reducing
the frequency of unnecessary stops.





Contents

1 Introduction 1
1.1 The Role of Sustainable Transportation in Pedestrian Spaces . . . . . . . . 2
1.2 Advancements in driverless Minibus Technology . . . . . . . . . . . . . . . 4
1.3 Challenges of Driverless Minibuses within Pedestrian Zones . . . . . . . . . 5
1.4 Contribution of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Thesis Structure: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Establishing Core Principles of Interaction for driverless Minibus in
Pedestrian Zones 13
2.1 Enhancing Vehicle-Pedestrian Communication via Smart Interaction in

Driverless Minibuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The Psychological Aspects of Human Drivers in Proximity to Pedestrians . 14
2.3 Realizing Smart Interaction for Driverless Minibuses . . . . . . . . . . . . . 17

2.3.1 Driving Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Smart Interaction Components . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Smart Interaction Framework Overview . . . . . . . . . . . . . . . . 23

3 System Fundamentals 25
3.1 Autobus Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Sensor System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Types and Applications of Sensors in Autobus . . . . . . . . . . . . 30
3.2.1.1 2D-LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1.2 3D-LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1.3 Stereo Camera . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1.4 GNSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Interaction Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2.1 LED Display . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2.2 Speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2.3 Flashers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Safety-System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Safety Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Safety Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Components and Working . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Test Environment Description . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Tailored Design Specifications . . . . . . . . . . . . . . . . . . . . . 57
3.6 Autonomous Navigation Software Architecture . . . . . . . . . . . . . . . . 60



8 Contents

4 Pedestrian Activity 67
4.1 Pedestrian Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 State-of-the-art Pedestrian Detection Techniques . . . . . . . . . . . 68
4.1.2 Skeleton Detection Techniques for Precise Activity Recognition . . . 69
4.1.3 State-of-the-art Skeleton Detectors . . . . . . . . . . . . . . . . . . 70

4.2 Pedestrian Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1 State-of-the-art Skeleton Activity Recognition . . . . . . . . . . . . 75

4.3 Methodological Framework for 3D Skeleton-Based Activity Recognition . . 77
4.3.1 Custom dataset creation . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.2 Segmented Upper and Lower Body Model Approach . . . . . . . . . 81

4.4 Experiments & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.1 Upper Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.2 Lower Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.3 Real-world Experiments . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.3.1 Upper Body Pedestrian Activity Classification . . . . . . . 87
4.4.3.2 Lower Body Pedestrian Activity Classification . . . . . . . 90
4.4.3.3 Upper and Lower body classification simultaneously . . . . 92

4.5 Geometric Analysis Approach . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Interaction Fields 101
5.1 Impact of Environmental Structure on Interaction Fields . . . . . . . . . . 102
5.2 Enhancing Pedestrian Engagement through Phased Interaction Zones . . . 104
5.3 Establishing Interaction Fields Design . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Vehicle Interaction Field . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.2 Pedestrian Interaction Fields . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Integrating Interaction Field Representation as an Entity of Aspect Maps
For Existing Navigation Framework . . . . . . . . . . . . . . . . . . . . . 111
5.4.1 Vehicle Interaction Field Aspect . . . . . . . . . . . . . . . . . . . . 112
5.4.2 Pedestrian Interaction Field Aspect . . . . . . . . . . . . . . . . . . 118
5.4.3 Merged Vehicle and Pedestrian Interaction Field Aspect . . . . . . 121

6 Decision Making 125
6.1 Design Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1.1 Planning Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 Decision-Making with Clothoid-Inspired Tentacle and Multi-Attribute En-

vironmental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3 Pedestrian-Aware Tentacles for Enhanced Decision-Making . . . . . . . . . 135



Contents 9

7 Interaction modules 141
7.1 Human Robot Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.2 Spectrum of Communication Types in driverless vehicle-Pedestrian Interac-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2.1 Verbal and Non-verbal Communication . . . . . . . . . . . . . . . . 144
7.2.2 Implicit and Explicit Communication . . . . . . . . . . . . . . . . . 144
7.2.3 Intentional and Unintentional Communication . . . . . . . . . . . . 145

7.3 Key Parameters for Effective Communication . . . . . . . . . . . . . . . . 145
7.4 Multimodal Interaction Process for Enhanced Vehicle-Pedestrian Interaction147
7.5 Optimizing Pedestrian-Aware Navigation Through Adaptive Interaction

Module Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.6 Exploring Interaction Content For Enhanced Communication . . . . . . . . 150

7.6.1 Experimental Configuration and Technique . . . . . . . . . . . . . . 151
7.6.2 Assessing Interaction Content Characteristics for Optimized Com-

munication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.7 Implementation and Integration of the Interaction Module . . . . . . . . . 159

8 Towards an Integrated Interaction Framework for Autobus in Pedestrian
Zones 163
8.1 Experiment and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.1.1 Addressing the Complexity of Pedestrian Behavior in Autobus Testing164
8.1.2 Behavioral Response of Pedestrians to Visual and Auditory Signals 165

9 Conclusion 173
9.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.2 Outlook and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A Appendix A 179
A.1 Safety System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B Appendix B 183
B.1 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Bibliography 185

C Curriculum Vitae 193



10 Contents



1. Introduction

The concept of smart cities is evolving as a vision of transformation for the future
in dynamic urban development environments. This thesis analyzes the main issues of
the development of smart cities: the integration of driverless minibuses into pedestrian
areas. The development of smart cities is moving from traditional urban projects, which
rely heavily on traditional means, to a future in which technology can coexist with the
environment and society. Smart cities are innovative urban models that integrate physical
devices with information and communication technologies (ICTs) and the Internet of
Things (IoTs), optimizing urban functions, increasing economic growth and improving the
quality of life of citizens. The model focuses on efficiency, sustainability and connectivity
in order to create a more interactive and responsive urban environment. Smart cities
are based on the use of data and technology to simplify and optimize urban services and
infrastructure.
In the rapidly developing landscape of intelligent cities, when technology and urban
planning are converged to improve quality of life, pedestrian areas are an essential element.
These areas are often rich in cultural and social vitality, and not only complement the
technological advances of intelligent cities, but also advance the human aspects of urban
development. One of these views can be seen in Figure 1.1. These areas have a profound
impact on environmental sustainability, social interaction and economic vitality and are
an essential component of smart urban planning.
The pedestrian area is designed mainly to promote comfortable and safe walking environ-
ments and is a city space reserved exclusively for pedestrians. These areas often range from
small public squares to all towns and cities, and are characterized by significant restrictions
or total bans on car traffic. The concept of pedestrianization is to transform a street or a
district into a pedestrian-only space, improve pedestrian mobility and safety, stimulate
local economic activity and improve the aesthetic quality of the urban environment. The
main attraction of the pedestrian area is the freedom of walking and cycling. Such areas
facilitate safe environments, enabling families to allow children to move freely without
concern for safety. The integration of these areas enables all demographic groups from
children to the elderly, ensuring safe walking for all pedestrian classes. Recognizing their
various benefits, such as environmental, economic and health benefits, urban planners
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Figure 1.1: An example representation of the pedestrian zone of smart city that presents a
harmonious mixture of advanced urban planning and human-centered design. The visualization
shows seamless integration between pedestrian and automated public transport, demonstrating
environmental sustainability and encouraging social interaction. The area is characterized
by pedestrian spaces. This approach emphasizes the fundamental role of pedestrian areas in
improving economic vitality and social well-being, thereby combining their status as an essential
part of the Smart cities framework. [AI-generated]

are increasingly focused on the development and expansion of these areas, as highlighted
in [Soni 16]. Taking into account these short- and long-term advantages, cities around
the world are increasingly adopting pedestrianization strategies, as Yassin et al.Yassin
et al. [Yassin 19] has demonstrated. This change leads to an increase in the length and
number of pedestrian zones. With the limitation or modification of conventional means of
transport, a safe mobility solution for the elderly and people with disabilities is required.

1.1 The Role of Sustainable Transportation in Pedes-
trian Spaces

Since the population is growing rapidly, the need for green transportation is increasing, and
it is more important to find effective ways of moving people to pedestrian areas. Minibuses
play a major role in this. As shown in Figure 1.1, minibuses connect different parts of
the city and are an essential part of sustainable transportation. Minibuses make the city
more accessible, reduce carbon emissions and keep pedestrian areas lively and easy for
everyone to get there. They meet the complex needs of urban mobility and contribute to
the creation of a more sustainable urban environment.

Enhanced Comfort The comfort of transport, especially for minibuses, has a major
impact on passengers’ happiness and overall experience. This comfort includes the
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speed with which the vehicle can reach the destination, even in extreme weather.
It ensures smooth travel for passengers without facing excessive overcrowding or
difficult conditions. But comfort not only involves physical aspects, it also includes
a comfortable and stress-free journey. People want reliable services and safe places
during their travels, as well as comfortable seats. When public transport, such as
minibuses, is considered comfortable and practical, people are more likely to use them
than reliance on private vehicles. This change helps to make urban transportation
more sustainable and efficient. Investing in transportation is therefore not only a
matter of making passengers happy. It also encourages more people to use public
transport on their daily journeys, which is beneficial to the entire urban transport
system.

Improved Accessibility for the Elderly and Disabled By integrating minibuses into
city transportation networks, the access of elderly passengers and disabled people
is greatly improved and the city becomes more inclusive.Minibuses help users stay
independent by connecting directly to essential services and improving mobility.They
provide direct transportation to medical facilities, shopping centres and recreational
areas, reducing the need for long and difficult walks or transfers.This convenience is
the key to maintaining active and social activities for older people, which is beneficial
to their physical and mental health.In addition, the small size and flexibility of
minibuses often allow door-to-door service and make it easier for older people to
travel.

First and Last Mile Transit Minibuses play an important role in bridging the first
and last mile in pedestrian areas and provide flexible and efficient solutions to one of
the most important public transport challenges. The first mile refers to the first part
of the traveler’s journey from the starting point to the main hub, while the last mile
refers to the final segment of the hub’s journey to the destination. These segments
may discourage people from using public transportation because of inconveniences
such as getting to and leaving transit stops. Smaller than traditional buses, smaller
and better maneuverable minibuses can navigate more effectively through urban
areas, narrow streets, densely populated areas, etc. This will enable them to offer
more direct and personalized routes, reduce walking distances to and from the major
transit stations and thus greatly improve public transportation convenience.

On-demand Service Moreover, minibuses can operate on dynamic routes and schedules,
including on-demand services, further minimizing wait times and making public
transportation more appealing. By efficiently connecting passengers with major
transit nodes, such as metro stations, bus terminals, and train stations, minibuses
ensure a seamless travel experience. This connectivity encourages more people to opt
for public transit over personal vehicles, contributing to reduced traffic congestion,
lower emissions, and a more sustainable urban environment.

In this context, the focus of this thesis is to examine the integration of driverless minibus
within pedestrian zones as a critical component of smart city development. It delves into
the challenges and opportunities presented by this integration, exploring how such vehicles
can coexist with pedestrians in a shared space. driverless minibuses constitute a major
focus of research and development within the automotive sector.
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1.2 Advancements in driverless Minibus Technology

In response to growing demand for better mobility in smart city shared spaces, numerous
companies are actively involved in the development of specially designed specialized
vehicles for pedestrian areas. These initiatives are part of a broader effort to integrate
advanced transportation solutions that can seamlessly exist with high density pedestrian
areas, thereby contributing to overall efficiency and sustainability of pedestrian areas.
EasyMile 1 is the leader in the sector, providing fully autonomous services at Level 4 of
the autonomous driving spectrum known as the EZ10 self-driving shuttle shown on the left
in Figure 1.2. This level means that vehicles can operate independently without human
intervention in most scenarios. EasyMile’s applications extend to various environments
such as airports, parks and industrial areas. The technology that supports these shuttles is
designed to navigate a wide range of scenarios autonomously and with minimum supervision.
Furthermore, these vehicles’ robust design is able to operate efficiently in mixed traffic
environments and different weather conditions, and they demonstrate significant progress
in autonomous urban transport.

The Karlsruher Verkehrsverbund (KVV) 2 details their involvement in the autonomous
driving project EVA-Shuttle, part of the EU project SHOW. The initiative focuses on
integrating autonomous shuttles into public transport. They are using shuttles from
EasyMile. These electric, emission-free minibuses operate in the Weiherfeld-Dammerstock
area and can be booked via an app for free rides. Operational from February 2023, the
shuttles run on weekends, showcasing KVV’s commitment to innovative, sustainable urban
mobility solutions.

Navya3, a leader in autonomous mobility solutions, offers self-driving vehicles primarily
for passenger transportation. Their product, the Autonom® Shuttle Evo 1.2 in the middle
of the figure, is an electric self-driving shuttle designed for urban and private site use,
emphasizing efficiency and environmental friendliness. They have sold around 160 units
around the world. Navya’s technology, Navya Driver®, boasts advanced software and a
unique sensor kit, ensuring optimal autonomous navigation. Their solutions aim to address
urban transport challenges, optimize travel time, reduce carbon footprint, and enhance
mobility in various settings like cities, airports, and campuses.

Zoox4 has achieved a significant milestone in driverless minibus technology by introducing
a purpose-built robotaxi shown in the right of figure 1.2 that operates without manual
controls. This vehicle, designed exclusively for riders, has successfully undergone extensive
testing and has received the necessary certifications to operate autonomously on public
roads. This development represents a major step forward in the driverless minibus industry
and is a testament to Zoox’s vision and commitment to reinventing transportation.

1https://easymile.com/
2https://www.kvv.de/index.html
3https://www.navya.tech/en/
4https://zoox.com/journal/publicroads/
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Figure 1.2: The image shows three driversless minibuses designed for pedestrian-dense smart
city environments and represents the forefront of autonomous driving technology. On the left,
EasyMile’s self-driving EZ10 shuttle, which operates at Level 4 automation, shows its ability
to operate independently in different environments such as airports and parks. In the middle,
Navya’s Electric Autonom® Evo electric shuttle demonstrated its application to cities and
private sites, highlighting its worldwide deployment, with 160 units in service. On the right,
Zoox’s revolutionary robot axis, which lacks manual control, highlights an important advance in
driverless minibus technology that is certified to operate on public roads. These developments
combine the efforts of companies and urban transportation initiatives to integrate sustainable
and efficient mobility solutions into the common spaces of growing smart cities.

1.3 Challenges of Driverless Minibuses within Pedes-
trian Zones

The integration of driverless minibuses into pedestrian zones introduces a spectrum of
complex challenges, encompassing aspects of autonomous navigation and pedestrian safety.
Pedestrian Behavior Prediction: Given that humans constitute the primary occupants
of pedestrian zones, accurately forecasting pedestrian behavior in shared environments
poses a considerable challenge. The unpredictability of pedestrian movements, with
individuals having the freedom to walk in any direction across the breadth of pedestrian
zones, complicates the task of ensuring accurate, real-time behavioral prediction essential
for the safe navigation of driverless minibuses. The randomness of pedestrian behavior
in pedestrian zones, presents a complex challenge for the planning and operation of
autonomous transportation systems. Pedestrian movements are inherently unpredictable
due to a variety of factors such as individual choices, group dynamics, environmental
influences, and spontaneous decisions. Unlike vehicles that typically follow predefined paths
and rules, pedestrians may change their direction, speed, and patterns of movement without
warning. This unpredictability is influenced by social interactions, distractions (such as
mobile devices), or obstacles within the environment. Understanding and anticipating
this randomness requires sophisticated algorithms and sensors capable of real-time data
processing and decision-making. The challenge lies not only in detecting pedestrians and
predicting their immediate actions but also in interpreting subtle cues that might indicate
a sudden change in behavior. For autonomous vehicles operating in such environments,
this unpredictability necessitates the development of advanced machine learning models
that can learn from vast amounts of data and adapt to new scenarios they have not been
explicitly programmed for.
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Pedestrian Risk Assessment: Analyzing the risk posed by pedestrians for autonomous
minibuses in pedestrian zones presents multifaceted challenges. At the core, the unpre-
dictability and complexity of human behavior create substantial hurdles, compounded by
the dynamic and often unstructured nature of these environments. The interaction between
multiple agents—pedestrians, cyclists, and other vehicles—adds layers of complexity to
risk assessment. The accuracy of such analyses is further constrained by the limitations of
sensors and perception algorithms, which can struggle under adverse conditions or due to
inherent technical limitations. Moreover, ensuring that risk assessment models are trained
on sufficiently diverse data to accurately reflect the wide range of pedestrian behaviors
encountered in different cultural and urban contexts is a daunting task. Legal and ethical
considerations also play a critical role, as the algorithms must navigate dilemmas on how to
prioritize safety in scenarios where risks cannot be entirely mitigated. Ultimately, building
public trust hinges on the transparency and reliability of these risk assessment methods,
underscoring the necessity for a holistic, multidisciplinary approach that melds advances in
technology with ethical and urban planning insights to ensure the harmonious coexistence
of autonomous minibuses and pedestrians in urban spaces.
Interaction with Pedestrians: In traditional vehicular settings, non-verbal cues play a
crucial role in facilitating communication between drivers and pedestrians. Eye contact and
hand gestures from a driver can significantly reassure pedestrians about their intentions,
such as yielding the right of way or signaling that it’s safe to cross the road. These gestures
help build a rapport and trust between human road users, contributing to a smoother
and safer traffic flow. However, the introduction of driverless minibuses disrupts this
established mode of communication. With the absence of a human driver, pedestrians
might find themselves at a loss, unsure of how to interpret the vehicle’s intentions. This
uncertainty can lead to hesitation and potentially unsafe situations, as the natural human
instinct to seek affirmation from another’s gaze or gesture is unmet. The challenge, then,
is for autonomous vehicle technology to bridge this communication gap.
Designing of Universal Interaction Signals: In addressing the complexity of pedestrian
interaction, a significant challenge emerges: the creation of signals that are universally
understandable and intuitive. This challenge is multifaceted, necessitating a consideration
of the wide range of cultural backgrounds, languages, and individual capabilities. Within
the contexts of safety, urban planning, and the integration of novel technologies into public
spaces, the importance of this issue cannot be overstated. Signals designed to direct,
inform, or caution pedestrians must effectively bridge cultural and linguistic divides to
achieve universal applicability. For example, the color red, often linked with cessation or
hazard in numerous Western societies, may symbolize fortune and prosperity within certain
Asian cultures. Such cultural variance underscores the need for meticulous selection of
symbols, colors, and signals to prevent misinterpretation and guarantee the safety of all
individuals involved. Additionally, the endeavor to make signals accessible extends to the
accommodation of diverse literacy levels and language proficiencies among the pedestrian
populace. Reliance on textual directions could potentially exclude those who are unable
to read or do not understand the language employed, thus compromising the efficacy of
the intended signals.
Mapping of Pedestrians: Integration of pedestrian dynamics into terrain mapping
poses unique challenges compared to traditional mapping of vehicular paths and obstacles.
Traditional mapping techniques that are good at cataloging physical terrain characteristics
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and identifying static and dynamic obstacles are inadequate when it comes to complex
behavioral patterns and pedestrian movements in shared spaces. As mentioned above, one
of the main challenges is the unpredictable nature of pedestrian behavior. Unlike static
obstacles, cars usually follow predictable routes and habits based on traffic rules, and
pedestrians have unique perception abilities that can change direction and stop suddenly.
They navigate the environment not only on the basis of physical obstacles, but also on
the basis of social indications, personal preferences and spontaneous decisions. This
uncertainty requires a more sophisticated approach to mapping system representation.

Navigation of driverless minibuses: The navigation of driverless minibuses in pedes-
trian zones is particularly challenging due to the lack of lane divisions, narrow pathways,
the constant presence of pedestrians, and the absence of formal traffic regulations. These
driverless minibuses must be adept at interpreting and adhering to social protocols and
informal rules to effectively navigate these shared spaces. Moreover, these systems must
also contend with the need for real-time decision-making, requiring algorithms capable
of processing data and evaluating risks swiftly to respond to rapidly changing scenarios.
Given that minibuses are designed to transport passengers, this introduces additional
complexities to autonomous navigation. The autonomous driving system must prioritize
passenger safety while also ensuring timely arrival at their destinations. It is impera-
tive for the system to anticipate and mitigate the need for emergency braking well in
advance, which could cause discomfort to passengers who are not cognizant of the external
environment.

Safety of Pedestrians: Even though driverless minibuses in shared spaces are designed
to follow social rules, there are times when pedestrian or vehicle safety could be at risk.
For example, in areas where it’s hard to see everything clearly, the sensors might miss a
pedestrian or an obstacle. Kids, in particular, are more vulnerable because they’re curious
and like to explore, which can put them in danger around these vehicles.

Undefined and Variable Bus Stops: In pedestrian zones, movement and destination
patterns differ greatly from regular urban traffic. Here, the idea of fixed bus stops is
transformed to fit a more fluid and flexible transit system. This change is vital in areas
mainly designed for walking, where people have many different places to go that fixed
stops can’t always serve. In these zones, minibuses often use a flexible routing system with
on-demand stops or service areas instead of fixed points. This setup allows for a more
personalized transit experience, meeting the diverse needs of users heading to various spots
like shops, cafes, cultural sites, and parks. It also improves accessibility, letting passengers
get on and off closer to where they actually need to be, cutting down on extra walking or
transfers.

Testing of Autonomous Driving in Pedestrian Zones: Given the challenges above,
there are a few major hurdles when it comes to testing new algorithms for autonomous
vehicles. One major issue is safety. It is impractical to test out new algorithms in real-world
settings without knowing they will work, especially with pedestrians around. When these
systems are tested in simulations, they run into another problem: it’s hard to accurately
mimic how pedestrians behave. Simulations can’t capture all the randomness and variety in
human behavior. Because of this, there’s a lot of uncertainty about whether these systems
are truly ready for the real world after just being tested in a simulated environment.
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1.4 Contribution of This Thesis
In today’s market, there are plenty of products aimed at making transportation in
pedestrian areas better, focusing on customer experience and fitting smoothly into shared
spaces (Section 1.2). Even with these advancements, there’s still a lot not known about
how driverless minibuses interact with and ensure the safety of pedestrians. Currently,
state-of-the-art systems use a basic, one-way communication setup for bus stop info and
audio announcements. This fails to adequately engage with pedestrians, especially in
areas without clear lanes or established driving rules. We need more advanced systems
that can clearly communicate what the vehicle’s intentions are. This would help build
trust and ensure safety in shared spaces. Also, the literature review shows that testing
these driverless minibuses in simulated environments is common. While this is useful
for seeing how people might respond in a controlled setting, it doesn’t quite match up
to the real-world experience. Physical tests with these minibuses, though riskier, bring
out more genuine human reactions. This highlights the gap between simulated tests
and real-world interactions. To bridge this gap, there is a need to focus on developing
better interaction mechanisms and conduct more physical tests. This will help ensure that
driverless minibuses are safe and effective in pedestrian zones.
The main objective of this thesis is to address research gaps by creating a system that
improves transport and autonomy for people relying on pedestrian-assisted mobility. These
self-contained minibuses are designed to move safely and efficiently through pedestrian
areas, which are complicated by their common nature. As has been said in previous posts,
the main problems faced by these systems are related to interaction with pedestrians in
tight and unstructured environments. To address these challenges, we are developing an
innovative "smart interaction" strategy. This strategy is aimed at facilitating effective
communication between driverless minibuses and pedestrians. The main purpose of
intelligent interactions is to improve the safety and efficiency of driverless minibuses in
pedestrian areas. Therefore, the research statement of the thesis is as follows:

To facilitate effective and intelligent interaction between driverless minibuses and
pedestrians, ensuring efficient and safe navigation.

This emphasizes the development of a sophisticated communication system aimed at
enabling driverless minibuses to interact dynamically with pedestrians. This interaction is
crucial for the vehicles’ ability to navigate pedestrian zones safely and efficiently. The term
"effective and intelligent interaction" suggests the use of advanced technologies, including
artificial intelligence, sensors, and machine learning algorithms, to interpret pedestrian
behavior and predict their movements. By doing so, the system enhances the vehicle’s
responsiveness and decision-making capabilities in real-time, thereby ensuring both the
safety of pedestrians and the smooth operation of the autonomous minibus within shared
pedestrian zones.
Smart Interaction encompasses more than merely the emission of arbitrary signals by
the vehicle. Rather, it should entail a sophisticated, context-sensitive procedure that
incorporates an analysis of diverse factors, including pedestrian behaviors, the ambient
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environment, and potential navigational routes. This system should engage in a compre-
hensive process, starting with the identification of pedestrian behaviors and culminating
in the vehicle’s tailored response to these observed behaviors. Hence, Smart Interaction
necessitates a multi-layered, technologically advanced approach to ensure seamless and safe
integration into human-centric environments. This system should be built upon several
key technical pillars:

Sensing and Perception: The foundation of Smart Interaction is a robust sensing and
perception system that detect, classify, and track pedestrians in real time, distinguishing
between static and dynamic obstacles while accurately predicting pedestrian behaviors.
Novel machine learning models, particularly those using deep learning, is trained on
datasets to recognize and predict pedestrian behaviors in varying contexts, enhancing
recognition.

Context-Aware Decision: Beyond mere detection, the system incorporates context-
aware processing capabilities. This involves analyzing the context of the vehicle’s envi-
ronment, including understanding pedestrian density, position, interpreting traversable
pathways, recognizing unawareness, and adapting to crowd of people.

Adaptive Control System: Adapting vehicle control, capable of modifying its behavior
based on the detection of pedestrian risk and available driving area for the vehicle. Selecting
best path based on traversable path availability.

Communication with Visual and Auditory Cues: Effective communication mecha-
nisms which are essential for signaling the vehicle’s intentions to pedestrians. This involves
visual signals (e.g., LED displays showing crossing symbols) and auditory cues. Controlling
the content and activation of such modules based on pedestrian risk and behavior.

Hardwired Safety System: The development of a safety system intricately integrated
with the braking mechanism is proposed to guarantee immediate cessation in response to
unforeseen circumstances, including erroneous pedestrian predictions, abrupt pedestrian
incursions in the vehicle’s path, or delays emanating from the navigation architecture.

Testing Environment: The practical implementation of the concepts presented in
this thesis is exemplified through the deployment of an driverless minibus, termed as
"Autobus", as depicted in Figure 1.3. Comparable in dimensions to existing state-of-
the-art systems, the Autobus is engineered to facilitate the transportation of individuals
across the RPTU Kaiserslautern-Landau campus. Distinguished by its capability to steer
in both directions, this feature renders the Autobus exceptionally adept at maneuvering
within pedestrian-dense areas. Comprehensive details regarding the system’s specifications
and its operational context are elaborated upon in Section 3. In addition, a simulation
environment has been established for initial concept validation tests.
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Figure 1.3: The "Autobus", a driverless minibus deployed at RPTU Kaiserslautern-Landau
University, is a practical example of the concept of autonomous transportation discussed in
this thesis. The image shows the Autobus in its operational position and shows its compact
design, which can navigate high pedestrian traffic areas with bidirectional driving capabilities.
The deployment of Autobus to transport individuals within the campus environment is a direct
application of advanced autonomous systems described in this thesis.

1.5 Thesis Structure:
This thesis explores the interaction requirements between Autobus and pedestrians in
pedestrian zones, grounding its investigation in human psychology and the development of
an effective interactive system between vehicle and pedestrians. The document is organized
as follows:
Chapter 2 delineates the fundamental concept underlying this research, emphasizing
the essential components requisite for the implementation of Smart Interaction within
the Autobus in pedestrian settings. Leveraging insights from the psychology of human
drivers, this section elucidates the process of translating principles of human interaction
to the context of a driverless minibus. Furthermore, it presents an overview of the critical
four components necessary for enabling effective communication between the Autobus and
pedestrians. The four components are: Pedestrian activity; Interaction fields; Decision
making; and Interaction interface.
Chapter 3 offers an in-depth analysis of the test vehicle’s design, i.e., Autobus, employing
it as a case study to evaluate the interaction concept proposed in this thesis. This chapter
outlines the strategic placement of sensors on the vehicle and discusses the integration of a
hardwired safety system, specifically tailored for such driverless minibuses. Additionally, it
provides a comprehensive description of the testing environment to elucidate the identical
challenges present in the designated pedestrian zones. Moreover, the chapter presents a
visualization of the simulation system developed for preliminary testing, further illustrating
the research’s methodological approach.
Chapter 4 presents the concept of pedestrian activity recognition as a foundational
element of "Smart Interaction". After examining contemporary techniques, this chapter
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delves into the pedestrian detection and activity recognition approaches formulated in
this research, concluding with an exposition of the findings. The methodology employed
involves analyzing 3D skeleton joint points alongside time series data to interpret pedestrian
behaviors.
Chapter 5 explores the creation of interaction fields, a pivotal component of the interaction
concept. Drawing inspiration from the varied scenarios encountered in pedestrian zones,
this chapter details the methodologies and design principles employed in establishing
interaction fields that cater to both vehicles and pedestrians.
Chapter 6 investigates the decision-making mechanisms in vehicles integrated with
the interaction system. It scrutinizes the impact of planning parameters on interactive
navigation, utilizing interaction modules to enhance communication with pedestrians. The
chapter adopts a tentacle navigation strategy to determine the optimal control approach
for the vehicle.
Chapter 7 discusses the interaction interface developed for this thesis. It transitions from
a general discussion on human-robot interaction to focus on vehicle-pedestrian interaction
dynamics, addressing the optimization of these interactions and the selection of content
for the interaction modules.
Chapter 8 details the results of the fully realized concept introduced in this thesis. It
examines various scenarios encountered while navigating the campus with the Autobus
and discusses how the implemented concept contributes to improved driving performance.
Chapter 9 concludes the thesis by summarizing the findings and discussing the implications
of the research. It also offers a perspective on potential future directions for further
investigation.
Appendix A provides the technical description of the sensors and modules for safety
system mounted on the Autobus as explained in Chapter 3. It provides the overall
schematics and integration of the safety modules.
Appendix B presents the questionnaire for testing the interaction modules discussed in
Chapter 7. It lists the questions designed to evaluate the effectiveness and usability of the
content for the interacting modules.



12 1. Introduction



2. Establishing Core Principles of
Interaction for driverless Minibus
in Pedestrian Zones

The previous chapter (Chapter 1) describes the complexity associated with the navigation
of driverless minibuses in pedestrian areas and gives an overview of the current state-of-
the-art systems, focusing on their general applicability. Despite these advances, there is
still a large gap in research to ensure the reliable operation of such vehicles. In order
to fill this gap and address these challenges, this chapter proposes a new methodology
to conceptualize autonomous driving from the point of view of human experience. This
approach includes a comprehensive investigation and interpretation of human drivers’
behaviors in pedestrian areas to apply these insights to the development and optimization
of driverless minibuses.
The discussion begins with the introduction of "Smart Interaction" as the main contri-
bution to this paper. It then studies human driving psychology and explores cognitive
processes and decision-making strategies used by human drivers in pedestrian-intensive
areas. This analysis not only illuminates human driving behavior but also provides a
framework for improving the autonomy of driving in pedestrian areas. Then, we examine
the complexity of the interaction between humans and vehicles. This involves a detailed
study of the interaction between driverless minibuses and pedestrians, and the breakdown
of their key components and dynamics. Factors such as communication cues, safety
protocols, and pedestrian perception of the vehicle are considered—all key factors in this
interaction.

2.1 Enhancing Vehicle-Pedestrian Communication via
Smart Interaction in Driverless Minibuses

In environments where the minibus is not driven near the pedestrian, especially in areas
without clear markings, the risk of conflict is high. In order to safely navigate around
these vehicles, pedestrians need to understand the intentions of these vehicles. It is not
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enough to simply show the next stop of these driverless vehicles to ensure safety. On the
contrary, these vehicles must actively communicate their intentions and react appropriately
to pedestrians’ actions. This paper introduced the concept of "smart interaction" as a
foundational framework for establishing an effective communication strategy between
driverless minibuses and pedestrians. Through "Smart Interaction", the vehicle evaluates
the current situation of its pedestrians and nearby pedestrians in order to provide the most
appropriate action plan. The aim is to reach mutual understanding to ensure safety and
efficiency in shared spaces. This approach not only improves pedestrian safety but also
facilitates smoother integration of driverless minibuses into pedestrian-dense environments,
paving the way for more harmonious interactions between people and vehicles.
Traditionally, vehicle and pedestrian interactions are managed by human drivers through
visual signals, body language, and sometimes verbal communication. These include direct
contact with the eye, gestures, indicators and brake lights. The introduction of driverless
minibuses into these complex interaction networks poses significant challenges. Without a
human driver, many forms of intuitive and spontaneous communication are lost, so a new
approach is needed for the interaction between vehicles and pedestrians. Here the concept
of smart interaction becomes essential. Smart interactions are inspired by the way humans
communicate with pedestrians and aim to reproduce this level of understanding and
response in minibuses without drivers. Advanced sensors, artificial intelligence, and visual
indicators enable driverless minibuses to understand pedestrian actions and intentions and
clearly communicate their intentions. This method integrates several elements into the
traditional navigation framework and establishes a complete interaction cycle. The existing
navigational framework is assumed to be fully autonomous, ensuring that the driverless
minibus moves safely and efficiently, while interacting smoothly with pedestrians.
The conclusions drawn are that the basic principles of smart interaction are directly
inspired by the dynamic and intuitive way human drivers interact with pedestrians. This
thesis recognizes the importance of these interactions in maintaining safety and order in
common spaces and proposes a technology-based approach to imitate this human aspect
in the field of autonomous vehicle technology. Smart interaction uses a human-based
strategy to bridge the gap between the impersonal nature of autonomous technology and
pedestrian expectations. This approach not only promises to improve safety and efficiency
but also fosters a sense of trust and understanding between humans and autonomous
vehicles, thereby ensuring the smooth integration of this technology into our daily lives.

2.2 The Psychological Aspects of Human Drivers in
Proximity to Pedestrians

Mimicking human driver interaction for driverless minibus interaction with pedestrians
is paramount for enhancing safety, improving traffic efficiency, and fostering societal
acceptance of autonomous technology. Human drivers utilize a combination of non-verbal
cues, such as eye contact and gestures, along with vehicle dynamics, to communicate
intentions to pedestrians, significantly reducing the likelihood of accidents. By adopting
similar interaction mechanisms, such driverless minibuses can signal their intentions
more clearly, making their behavior more predictable and understandable to pedestrians,
thereby enhancing safety. Furthermore, human-like interaction strategies enable driverless
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minibuses to navigate pedestrian-dense environments more smoothly, optimizing traffic
flow and reducing unnecessary stops. This not only contributes to overall traffic efficiency
but also aids in the seamless integration of such driverless minibuses into pedestrian rich
environments, where complex human-pedestrian interactions are the norm. Importantly,
vehicles that interact in a manner akin to human drivers may appear more trustworthy to
the public, which is crucial for the widespread acceptance of such vehicles.
Hence, it becomes important to understand the dynamics and often complex interactions
between human drivers and pedestrians. A crucial aspect of the interaction between
drivers and pedestrians is non-verbal communication [Ren 16]. It examines the impact
of pedestrians’ eye contact on the comfort level of drivers during crossing situations.
The study [Ren 16] highlights the increasing incidence of people, particularly young
individuals, using cellphones or earphones while crossing roads, which raises concerns about
pedestrian safety and driver comfort. The research aims to understand how pedestrians’ eye
contact affects drivers’ comfort boundaries, which is observable through car deceleration
patterns. The study considers drivers’ gender and the attempt to make eye contact as
variables and measures the resulting changes in car speed. The methodology involved
the use of people to simulate pedestrian behavior during the experiment. For this reason
researchers in [Onkhar 21] have been addressing the research gap in objectively measuring
eye contact between drivers and pedestrians, a non-verbal communication method thought
to reduce accident risks. In [Rasouli 17, Sucha 17], the study analyzed pedestrian and
driver behaviors focusing on non-verbal communication cues used at crossing points. It
found that in over 90% of observed cases, pedestrians looked at oncoming cars before
crossing, indicating the critical role of gaze and eye contact in pedestrian safety. One of
the key findings identifies various patterns of pedestrian behavior in crossing scenarios,
such as the sequence of looking, reacting to the driver’s actions, and finally crossing. It
categorizes these patterns based on whether attention or crossing action is observed. The
findings in [Ghosh 22] reveals that participants’ emotional responses, particularly valence,
were significantly influenced by the observed pedestrian actions. Positive actions like hand
waving and nodding were associated with positive valence, while negative actions such
as impolite gestures or inattentiveness led to negative valence. Arousal ratings showed
less variation across scenarios. A study by Onkhar et al. [Onkhar 22] shows the impact
of driver’s eye contact on pedestrian safe feeling. People crossing feel safe when having
eye contact with the driver. This emphasizes the importance of non-verbal cues in these
interactions. Such findings underscore the challenge for driverless minibuses, which must
be programmed to interpret these subtle human behaviors and respond appropriately.
Another dimension is the expectation and anticipation in these interactions. Drivers often
anticipate pedestrian actions based on context. For example, a driver might slow down
when they see a pedestrian near a crosswalk, predicting the possibility of them deciding to
cross. This anticipatory behavior is critical for safe driving but poses a significant challenge
for autonomous drive programming, which must transfer this predictive capability.
It’s also important to recognize the role of cultural and environmental contexts [Nordfjærn 11].
In dense urban environments, where pedestrian activity is high, drivers might be more
attuned to the presence of pedestrians and thus more cautious. In contrast, in rural or
suburban areas where pedestrian activity is less common, drivers may be less expectant of
pedestrian interactions, leading to a different set of behavioral responses. For instance, a
study [Papadimitriou 13] conducted in both urban and rural settings in Sweden indicated
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Figure 2.1: An illustration of the dynamics of human-vehicle interaction in urban traffic. The
image shows a scenario in which a pedestrian crossing an approaching vehicle and emphasizes the
multifaceted nature of communication and negotiation occurring during these encounters. The
main factors influencing this interaction include factors affecting pedestrians such as distance
from the vehicle, speed of movement, directional intention, body language including eye contact
and gestures, as well as personal characteristics such as clothing and style of movement. At the
same time, vehicle-related factors include vehicle kinematics, vehicle type, sound signals such as
engine noise and horns, visual signals such as headlights and turn signals, and driver behaviour
characterized by engine revving and general driving styles. Other environmental variables such
as visibility conditions, ambient noise levels and the number of road users also play an important
role in determining the result of interactions. This complex interaction is essential to understand
and improve safety protocols, traffic flow efficiency and the development of autonomous driving
systems that can correctly interpret and react to human behaviour. [Habibovic 18]
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that drivers in urban areas were more likely to slow down and yield to pedestrians, partly
due to higher pedestrian density and the drivers’ habitual exposure to such scenarios. This
highlights the need for driverless minibus to adapt to varying environmental contexts such
as width of the pathways in their interaction logic.
Hence, for a safe and enjoyable interaction on the road, it’s crucial that all road users share
a common understanding of the situation. If there’s a discrepancy in how the situation is
perceived or understood among road users, it’s likely that disruptions and conflicts will
arise [Endsley 95]. The relationship between drivers and pedestrians remains complicated,
influenced by a range of factors, as depicted in Figure 2.1.
The observation in [Schmidt 09] was made that 84% of pedestrians initiate eye contact with
drivers. It reported that pedestrians intending to cross the street engage in visual contact
with oncoming drivers as a means of seeking "acknowledgment." This acknowledgment,
particularly if the driver reciprocates the eye contact, is interpreted by pedestrians as a
sign of being noticed and achieving a mutual recognition of their intent to cross.
In such scenarios, the interaction between the pedestrian and the driver serves as a crucial
safety mechanism. When a pedestrian makes eye contact with a driver and receives
acknowledgment, it creates a shared understanding that can significantly reduce the risk of
accidents. This mutual recognition acts as an informal, yet powerful, agreement that the
pedestrian has been seen and that the driver is aware of their intention to cross. Moreover,
this interaction reflects the broader dynamics of human behavior in traffic systems, where
non-verbal cues play a vital role in coordinating actions and intentions. It highlights the
need for both drivers and pedestrians to remain alert and engaged with their surroundings,
particularly at crosswalks and intersections where the potential for conflict is high.
Building on the insights from the human driving in proximity to pedestrians, it becomes
evident that interaction with pedestrians is a fundamental solution for improving driving
performance in pedestrian-rich environments. This finding is pivotal, suggesting that
driverless minibuses need sophisticated systems to simulate or interpret such non-verbal
cues effectively.
Developing driverless systems that can ’mimic’ or recognize these non-verbal human
interaction is crucial. This includes programming such systems to understand and respond
to gestures, body language, and other subtle cues that humans use intuitively. For instance,
driverless minibuses (specifically in shared spaces) might need to be equipped with extra
modules and algorithms that can detect a pedestrian’s gaze direction or body posture,
allowing the vehicle to make more informed decisions about when to yield or proceed.
Central to this discussion is the understanding that driverless minibus must do more than
merely navigate and avoid obstacles; they must actively communicate with pedestrians.
This involves conveying intentions and acknowledging pedestrian presence in a manner
similar to human drivers. The development and integration of smart interaction is therefore
not just an enhancement but a necessity.

2.3 Realizing Smart Interaction for Driverless Minibuses
In light of the aforementioned motivation and critical elements, this thesis introduces
a novel approach for implementing smart interaction in driverless minibus driven in
pedestrian zone. Given that such vehicles transport passengers in areas predominantly
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occupied by pedestrians, it is essential to comprehend the underlying principles of their
operation. This understanding is vital for optimizing the effectiveness of the interactive
modules.
The smart interaction draws inspiration from our preceding work [Jan 20], wherein a frame-
work for safe and efficient navigation for Autobus, through interactions with pedestrians,
is proposed. This prior study, delineated in detail towards the conclusion of Chapter 3, uti-
lized a simulated setting mirroring the RPTU campus environment to conduct experiments
with a hypothetical driverless minibus. The investigation targeted specific pedestrian
behaviors to evaluate a variety of scenarios. Central to this research is the adoption of a
behavior-based architecture for basic vehicle navigation [Proetzsch 10], which has been
specifically adapted for managing the shuttle’s movement in pedestrian-dense areas. This
navigational architecture was further enhanced through the integration of the Pedestrian
Interaction System (PIS), a system that amalgamates interaction with pedestrians and
evasion tactics, as illustrated in figure 2.2. The efficacy of the PIS was scrutinized by
monitoring the shuttle’s travel duration from its point of origin to its intended destination.
Acknowledging the variable nature of pedestrian movements, the mean travel time was
derived from conducting three distinct trials for each scenario under consideration. The
research assessed four disparate scenarios, featuring 5, 10, 15, and 20 pedestrians, respec-
tively. Comparative analysis was performed to gauge the performance in scenarios with
the PIS enabled against those where it was not activated.

Figure 2.2: Block diagram of Pedestrian Interaction System (PIS) for Autobus in simulated
environment. It uses interaction strategy along with normal vehicle control based on pedestrian
information. Based on fixed rule, it decides for evasion and/or interaction [Jan 20].

2.3.1 Driving Principle
In contrast to typical driverless minibuses, the successful integration of interaction modules
in this context demands consideration of additional factors, particularly due to the unique
communication needed with pedestrians. These vehicles operate within a dual-state
environment, catering to both pedestrians and passengers, each group characterized
by a common goal: reaching their destination efficiently, barring those on leisurely or
recreational journeys. These two groups often share a mutual desire for priority, highlighting
the complexity of managing the interactions.
To address this, the system does not solely rely on pedestrian-focused attributes. Instead,
it incorporates both external and internal factors – ’content’ pertaining to the external
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environment and ’comfort’ concerning the internal passenger experience. This compre-
hensive approach ensures a balanced interaction that caters to the needs and priorities of
both pedestrians and passengers. The distinct states and their corresponding factors are
delineated in Figure 2.3, illustrating the system harmonizing these dual aspects.

Figure 2.3: Comfort for passengers and contentment for pedestrians are defined as states
that exist on the same scale regarding their intensity levels. Green represents higher levels of
comfort and contentment, while red denotes lower levels. The color transition between these
states indicates that both follow a similar pattern.

Comfort: The presence of passengers in the vehicle significantly influences the operational
choices regarding its interaction module. Passengers typically choose driverless minibuses
over walking for reasons of comfort, in addition to necessity. Comfort allows a widespread
adoption, and one of the influential factor for acceptance [Paddeu 20]. To meet these
expectations, the driverless minibus must consider certain factors in its decision-making
process. Key factors include the time taken to reach the destination and the duration
of stops made to yield the right of way. An increase in either factor can lead to reduced
passenger comfort. Therefore, the interaction module must strive to optimize these factors,
maintaining them at the highest feasible level, while not compromising pedestrian safety.
Content: In the research documented in [Chaloupka-Risser 07], an exploration was
conducted into pedestrian contentment with the design of public spaces, the safety of
traffic systems, and overall quality of life, with the aim of deriving principles for creating
infrastructure that accommodates the needs of vulnerable road users. This dissertation
broadens the concept of pedestrian contentment to include their reactions to the proximity
of driverless minibuses. The presence of such vehicles in pedestrian-designated areas
frequently incites dissatisfaction, as pedestrians generally do not anticipate encountering
vehicles in these spaces. However, as delineated in the introductory chapter, these vehicles
fulfill a specific function within such zones. Addressing pedestrian negative reaction
necessitates the establishment of a user-centric interface between driverless minibuses and
pedestrians. Enhanced pedestrian satisfaction is achievable when the vehicle is capable
of precisely recognizing and reacting to pedestrian intentions. Conversely, pedestrian
satisfaction diminishes when they feel compelled to yield to the driverless minibus.
The metrics for measuring comfort and contentment are distinct and vary over the duration
of the vehicle’s journey. Comfort is a continuous measure, extending from the start to
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Figure 2.4: Schematic representation of the components involved in conceptual framework of
smart interaction stretegy presented in this thesis. The diagram illustrates the central role of
smart interaction, delineating its relationship with key components such as pedestrian activity,
interaction fields, decision-making processes, and interaction modules.

the end of the trip. In contrast, contentment is more fleeting, resonating primarily during
the brief interactions between the pedestrian and the Autobus. To achieve equilibrium
among the specified parameters, it is prudent to establish a series of defined interaction
fields. These fields will serve as a basis for smart interaction to determine both the nature
and content of the interaction, thereby circumventing any superfluous engagement. This
strategic approach ensures that interactions are not only contextually relevant but also
efficiently executed, enhancing the overall effectiveness of the system.

2.3.2 Smart Interaction Components
Understanding smart interaction in Autobus means exploring its various essential com-
ponents for smooth and effective communication. This system follows a complete cycle,
beginning with recognizing pedestrians and ending with different signaling methods. The
main parts of this smart interaction are shown in Figure 2.4 and described below. The
highlighted section of Figure 2.4 specifically relates to the content of this chapter.
Pedestrian activity: The introduction of the interaction mechanism within the Autobus
is based on a successful pedestrian detection. These systems are designed to detect and
identify human activities autonomously in a specific environment, primarily through
video and sensor data analysis. The aim is to equip the system with a capacity to
understand human activities similarly to human perception, a feature of the interaction
processes discussed in this thesis. The component of pedestrian activity comprises several
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subcomponents, starting with the data acquisition phase where data representing pedestrian
activity are captured via a camera. Subsequent preprocessing steps are implemented,
including application of filtering technology to refine and prepare data for analysis. Then
the function extraction leads to the classification phase, which is performed by machine
learning algorithms. In the scope of this study, the most commonly observed activities
are sitting, walking, taking phone conversations, texting, and directions. A thorough
understanding of pedestrian behaviour is essential to customize interactions in a way that
is appropriate to each unique context.
Interaction Fields: The concept of interaction fields is pivotal for ascertaining both the
timing and characteristics of interactions between Autobus and pedestrians. Interaction
fields are defined for both, vehicle as well as pedestrians explained below :

• Vehicle Interaction Field: The term refers to a designated spatial area surrounding
vehicles in which interaction with pedestrians is considered necessary. The purpose
of this thesis is to determine three different zones of the vehicle interaction field,
based on the proximity of the pedestrian to the vehicle: the risky zone indicating the
immediate possibility of collision; the direct interaction area indicating the need for
active participation or attention by the vehicle; and the ambient zone, which included
a wide range of areas in which the vehicle must recognize pedestrian movements but
where direct interaction was not immediately necessary.

• Pedestrian Interaction Field: The area is determined by the pedestrian’s orienta-
tion, perceived risk levels and orientation intentions, and integrated into the vehicle
interaction area to optimize the interaction strategy. The pedestrian interaction field
helps to understand how pedestrians navigate around the vehicles, including how
their movement patterns influence the decision-making processes of vehicles in real
time.

These interaction fields are essential for the development of algorithms that allow Autobus
to interpret and respond precisely to the dynamics in pedestrian behavior. Through this
design, the perceived risk of pedestrian movement into a complex cycle of interactions.
This cycle facilitates more awareness and decision-making in the Autobus, while ensuring
a safer and more efficient positioning system that takes into account the complexity of
pedestrian interactions.
Decision-Making: The process of deciding when to activate interaction modules or vehicle
control systems is predicated on a holistic assessment of both the vehicle and pedestrian
interaction fields. This entails a detailed analysis that integrates spatial zones around the
vehicle with the trajectories and behaviors of pedestrians. By synthesizing information
from these interaction fields, a comprehensive decision-making module is established.
This module is crucial for determining the appropriate moments for engaging interaction
modules or implementing vehicle control actions, thereby ensuring that responses are finely
tuned to the dynamics of the surrounding environment and pedestrian activities.
Interaction Modules: Within the scope of this research, three principle methods are
used to engage pedestrians: LED displays, voice communication systems, and auditory
signals (beepers). The use of these interaction modules depends on their knowledge of the
location of the pedestrian and the presence of the vehicle in relation to the interaction areas.



222. Establishing Core Principles of Interaction for driverless Minibus in Pedestrian Zones

Figure 2.5: Hierarchical representation of smart interaction strategy in the context of this
thesis concept along with chapter number for detailed description. This diagram delineates the
logical flow of processes, starting from the bottom tier, where pedestrian behavior is predicted,
to inform the Autobus’s navigation system (details in Chapter 4). Progressing upwards, the next
tier showcases the defined interaction field zones, delineating spatial areas for vehicle-pedestrian
interaction with an emphasis on safety and communication (Chapter 5). The subsequent level
illustrates the optimal decision-making strategy (Chapter 6), derived from the drivable paths
analysis with and without pedestrian presence, to ensure secure navigation. The top tier
captures the interaction module activation (Chapter 7), highlighting the selection of content for
communication through various channels such as display, voice, and light, based on the combined
analysis of trust, informational content, intentions, and commands. This tiered approach elicits a
comprehensive decision-making framework, essential for the Autobus’s operation within pedestrian
zones, as discussed in the thesis.
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Furthermore, the information presented by these modules has been carefully adapted to
match the specific activities observed by pedestrians. This approach ensures that the
communication strategy is appropriate and effective, increasing the safety and efficiency of
pedestrian-vehicle interactions.

2.3.3 Smart Interaction Framework Overview
Overview of smart interaction framework is presented in Figure 2.5. Starting from the
foundation, this diagram presents pedestrian behavior prediction, moving to the definition
of interaction zones around the vehicle. It progresses to illustrate decision-making strategies
based on pedestrian-inclusive and exclusive drivable paths, factoring in pedestrian risk
assessments. The topmost part of the figure encapsulates the interaction module, which
selects appropriate communication methods for the autonomous vehicle’s operation in
pedestrian environments, as outlined in the thesis.The diagram references specific chapters
corresponding to each component for a more detailed exposition.
Overall, smart interaction is a pivotal development in the field of driverless minibuses,
especially in addressing the challenges of the pedestrian-dominated environment. It gives
priority to safety, context awareness and effective communication and facilitates the
integration of these driverless minibuses into pedestrian areas, fostering a future in which
humans and machines can coexist seamlessly in shared spaces.
In the forthcoming chapter, a detailed exposition of smart interaction is presented, build-
ing upon the foundational concepts and formulations introduced in this chapter. This
subsequent section delves deeper into the intricacies of the system, elucidating the practical
application and operational nuances that underpin effective vehicle-pedestrian interactions.
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3. System Fundamentals

Before exploring the specific features of various modules related to the interaction concept
in this research (as indicated in the Chapters 4, 5, 6, and 7), it is necessary to provide
an overview of system architecture and test environments. This introduction is crucial
to understanding the rationale and hypotheses behind the experiments and theories
presented in these modules. Advanced systems show unique designs and functions, as
discussed in Chapter 1. In the context of human interactions with vehicles, seemingly
small characteristics such as the size and shape of the vehicle become important factors.
The vehicles in question here are distinguished by the symmetrical front and rear design,
lack of driver seats, lack of steering wheel. The absence of this driver leads to a decrease
in pedestrian predictability [Guéguen 15] – due to the lack of regular driver gestures.

The Wizard of Oz technology [Detjen 20] is an attempt to simulate the functions of
autonomous vehicles, focusing on simulation of driverless vehicles in experimental research.
The observation indicated that pedestrians showed greater concern when they did not
have a noticeable driver, which affected their confidence and decision-making processes
when considering crossing the vehicle’s path. This methodology allows a more authentic
experimental setup. However, this method is harmful to the feasibility of driverless
minibuses because there is no driver seat and thus enables the possibility of realistic
experiments.

This section is aimed at investigating the design of the Autobus used in experimental
validation of the concepts presented in this thesis. It includes a comprehensive description
of the sensors installed on the vehicle and a detailed analysis of the safety systems
integrated into the vehicle safety chain. As already stated in the introduction (Chapter 1),
prioritization of safety is crucial, especially due to pedestrians’ involvement and the need
to meet the certification standards for vehicle operations in public spaces. To explain the
complexity associated with pedestrian navigation, this chapter provides a detailed study of
the environment in which the vehicle has been tested. In addition, it presents a simulated
version of this environment that was used for preliminary tests and partially to verify the
feasibility and effectiveness of the proposed concept.
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Figure 3.1: Technical schematic of the bidirectional Autobus used for testing the concept
of this thesis, indicating key dimensions. The diagram provides a side view (top left), front
view (top right), and top-down view (bottom center) with measurements in millimeters. The
vehicle is designed to accommodate six seated and three standing passengers, as reflected by its
dimensions: a length of 4396 mm, width of 1799 mm, and height of 1900 mm. The compact
design is instrumental for maneuvering in pedestrian zones.

3.1 Autobus Design
Creating the illusion of genuine driverless minibuses by removing the driving seat and
its associated components leads to confusion among pedestrians, who seek to understand
the control mechanism and operator of the vehicle. In such contexts, interactive systems
can be leveraged to their fullest potential to maintain authenticity in human responses to
driverless minibuses. To embody this authenticity, the Robotic Research Lab at RPTU
Kaiserslautern, previously mentioned in Chapter 1 and depicted in Figure 1.3, acquired a
specific vehicle from Kompaii Robotics 1, France. This vehicle, designed to carry three
additional standing passengers in addition to six seated ones, is bidirectional, enabling it
to navigate equally effectively in both directions, as illustrated in Figure 3.1. Consequently,
the deployment of the Autobus in a real-world setting serves as a practical validation of
the thesis’s underlying concept.
Figure 3.1 delineates the dimensions of the Autobus. The vehicle is specifically designed
to navigate pedestrian zones; its size is optimized to ensure that it is neither too large to

1https://kompai-robotics.odoo.com/
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Designation Features
Dimensions Overall L x W x H : 4.4 x 1.8 x 2.2 m
Estimated weight 1500 Kg
Capacity 10 passengers: 6 people seated + 4 people standing

Motorized 4 wheel drive: 2 x 15 KW driven by CURTIS drivers
Mechanical differential front and rear

Steering Front axle (car-like steering axle)
Rear steering axle

Maximum speed 50 km/h on flat surface

Acceleration
nominal acceleration, set by software: 0.46 m/s2

maximum deceleration, controlled by soft: 1 m/s2

These values are configurable

Turning radius 7 m single steering axle
3.4 m double steering axle

Largest incline 10%
Suspensions OLEOPNEUMATIC
Lead batteries 72 V, 200 Ah, 14.40 kW
Autonomy several hours(depends on the usage scenario)
Charging time 8 hours
Doors Motorized swing door
Wheels 16 inch

Control system NVIDIA Jetson TX2 implementing basic low level
control with UDP

Operating conditions -10, +50°C, rain, fog, snow (possibility to put studded tyres)

Interior Equipment
Seat belts for sitting passengers
Ventilation opening
Handle for standing passengers

Table 3.1: Technical Specifications of the Autobus
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Designation Motor Values
Maximal torque 75 Nm
Maximal speed motor 8000 tr/min

Reductor
Maximal torque 1400 Nm
Gear ratio 1/16

Emergency Brake
Maximal brake torque 110 Nm
Tightening force 1850 N
Diameter 200
Power 10 W
Voltage AC 223V

Table 3.2: Motor, Reductor, and Emergency Brake Specifications

Designation Values
Steering
Maximal variation speed 450 °/s
Maximal torque 716 daN
Response time 30-40ms
Gear ratio 55.55 mm / revolution

Table 3.3: Steering Specifications

operate within these areas nor too small to accommodate more than two individuals. The
width of the vehicle, at 1.8 meters, is of particular note. This dimension poses operational
challenges in pedestrian zones, where space constraints may impede the free movement
of pedestrians around the vehicle. During trials conducted on the RPTU campus, the
Autobus navigated through the narrowest pathways, which measure at least 3.5 meters in
width. To address the potential maneuverability issues arising from its width, the vehicle
incorporates a double Ackermann steering system, enhancing its ability to negotiate turns
with a reduced turning radius of 3.4 meters, despite its 4.4-meter length. Table 3.1 show
the technical specification of the Autobus.
Further technical details of the traction axle, steering axle, and emergency brakes are
provided in Tables 3.2, 3.3, and 3.4, respectively. The Autobus features two motors and
emergency braking systems located at both the front and rear. Each motor delivers a
maximum torque of 75 Nm, which ensures adequate acceleration when the Autobus is fully
loaded with passengers. Additionally, a reduction gear with a torque capacity of 1400 Nm
effectively brings the vehicle to a stop when it reaches zero velocity, based on deceleration
values. However, this system is insufficient on slopes, necessitating the use of hydraulic
brakes on each tire. The emergency braking system, with a clamping force of 1850 N, is
capable of locking the wheels at varying speeds.

3.2 Sensor System
Sensor systems are a critical component in the architecture of driverless minibuses, provid-
ing the necessary data for safe and efficient operation. These systems, comprising a diverse
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Designation Values
Disc diameter 250 mm
Braking torque 140 Nm
Holding torque 1850 Nm

Table 3.4: Brake System Specifications

Figure 3.2: This image illustrates the sophisticated array of sensors equipped on the Autobus.
Red arrows point to various sensor locations, highlighting the vehicle’s comprehensive sensory
configuration essential for its navigation and safety systems. The sensors, distributed strategically
across the vehicle, include LiDARs and cameras, which together facilitate real-time environmen-
tal monitoring, pedestrian detection, and collision avoidance. This configuration enables the
Autobus to perceive its surroundings, make informed decisions, and maneuver safely within the
complex ecosystem of urban pedestrian zones, thereby exemplifying the integration of advanced
autonomous technologies in public transportation.
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array of sensors, form the cornerstone of a driverless minibus’s perception capabilities,
enabling it to interpret and interact with its environment effectively. Among the most
critical sensors are 2D and 3D Light Detection and Ranging (LiDAR) systems. These
LiDAR sensors provide high-resolution, three-dimensional information about the vehicle’s
surroundings, essential for obstacle detection and terrain mapping. Complementing Li-
DAR, stereo cameras offer valuable visual data, capturing detailed images that aid in
object recognition and scene understanding. Furthermore, Global Navigation Satellite
System (GNSS) units are integral to these sensor arrays, offering precise geolocation data
that assists in route planning and navigation. Together, these sensor systems form a
comprehensive suite that empowers Autobus to operate reliably in a various environmental
conditions, from crowded urban centers to remote rural areas. The following subsections
talks about the particular sensors mounted on Autobus for navigation use.

3.2.1 Types and Applications of Sensors in Autobus

Autobus integrates an advanced sensor, including bidimensional and tridimensional laser
scanning systems (2D and 3D LIDAR), stereo cameras and global navigation satellite
systems (GNSS). Each of these sensory components plays an important role in the Autobus
navigational scheme and provides essential data for real-time environmental modeling,
obstacle detection, and traffic planning. The application of these sensors, as explained
in the theoretical framework presented in Chapter 2, goes beyond basic location and
navigation tasks. They are essential to facilitate intelligent interaction. By high-resolution
spatial mapping and dynamic object tracking, the Autobus displays accurate detection and
responsive behaviour towards pedestrians, thus allowing a symbiotic coexistence within
shared spaces. Furthermore, this sensory fusion increases the autonomy of the Autobus
and improves decision-making processes under complex urban scenarios. At the same time,
it guarantees the interactional harmony between the automated system and human users -
the prerequisite for the effective integration of Autobus into the pedestrian zone. Figure 3.2
presents a comprehensive visual overview of the Autobus platform, indicating the strategic
positioning of various sensory devices. This figure emphasizes the physical integration of
sensors into the vehicle chassis, giving insight into the spatial distribution and field of view
of each sensor command. The annotations within the figure specify the locations of the 2D
and 3D laser scanners, stereo cameras and GNSS modules, providing a clear reference to
understand how these components together contribute to the vehicle’s perception system.
This visualization is instrumental in understanding the synergistic operation of the sensor
array, which supports the autonomy of the navigation and pedestrian interaction of the
Autobus. The following subsections are detailed for each sensor implemented within
the Autobus system. These descriptions will clarify the operational principles, technical
specifications and integration methods for the following sensory devices.
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Description 3.1: OutdoorScan3

The outdoorScan3 safety laser scanner ensures the
protection of individuals in a variety of outdoor
environments, whether for mobile or stationary
applications. Leveraging sophisticated algorithms
and its exclusive outdoor safeHDDM® scanning
technology, it delivers consistent productivity un-
der adverse weather conditions built by SICK a.

ahttps://www.sick.com/cz/en/

3.2.1.1 2D-LiDAR

The two-dimensional laser scanner, an essential element in the sensor suite of Autobus,
deserves careful attention for its vital function in their system. This unit relies on the
LiDAR technology, which involves the emission of laser pulses to gauge distances by timing
the reflection of the light from surfaces. This scanner differs from its three-dimensional
variant by mapping the environment on a flat plane. Within the Autobus, outdoorScan3
(Description 3.1) is used, which is crucial for recognizing and circumventing obstacles
close to the ground, playing a key role in preventing collisions. Its capability to furnish
immediate situational data is invaluable for navigating dynamic environments, particularly
in densely populated or urban areas where sudden obstructions might occur.

Strategically positioned at the front and rear within the protective bumper and inverted,
its scanning beam sits approximately 20cm above the ground, aligning with the lower part
of the vehicle’s chassis. This placement is significant for prompt detection of obstacles and
for basic landscape mapping, both necessary for secure vehicular movement. The scanner’s
height also allows for the potential identification of a person lying prone on the road
surface. In the provided illustration in Figure 3.3a of the Autobus, the side view reveals
the 20cm elevation of the scanner from the ground, a height optimized for detecting the
width of a human torso in a horizontal position. Average human torso width is estimated
to be more than 20cm. Figure 3.3b presents a top view of the scanning field in its original
scale. The scanner possesses a maximum operational range of 50 meters; however, such an
extensive range is superfluous for the Autobus operating within confined pedestrian areas.
Consequently, the depicted field is truncated to the cyan rectangle, which represents a
more practical detection zone extending 20 meters horizontally from the vehicle’s front
and 10 meters laterally from its sides. This positioning also confers the advantage of
facilitating detection across an arc exceeding 180°from the aggregate angle of 175°. Extra
10°are added on each side as can be seen in the shaded region of Figure 3.3b. Detection of
the vehicle’s sides using analogous methodology is impracticable, as any ground elevations,
such as humps, would result in constant detection by the scanner, notwithstanding the
vehicle’s capacity to navigate over them.

Table 3.5 outlines the characteristics of single-line scanners producing 2D polar scan points,
also employed in safety systems detailed in Section 3.3.
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(a) Side view illustration of the Autobus high-
lighting the laser scanner’s detection height set
at 20cm above the ground surface, designed to
identify low-lying obstacles, specifically humans,
and ensure ground clearance.

(b) Top-down schematic of the Autobus dis-
playing the 2D laser scanner’s fields of view.
The outer blue sector illustrates the maximum
range of 50m for front, while the inner pink sec-
tor denotes the operational field for rear. The
cyan rectangle demarcates the optimized 20m
forward and 10m lateral detection area utilized
for navigation in confined environments.

Figure 3.3: 2D-LiDAR configuration for Autobus with (a) side view and (b) top view.

Parameter Value
Protective field range 4 m
Warning field range 40 m
Number of simultaneously monitored fields ≤ 81

Number of fields 128
Number of monitoring cases 128
Scanning angle 275°
Resolution (can be configured) 50 mm

70 mm
Angular resolution 0.39°
Response time ≥ 115 ms
Protective field supplement 65 mm

Table 3.5: Technical Specifications of OutdoorScan3.

3.2.1.2 3D-LiDAR

In contrast to 2D laser-scanner, 3D LiDAR represents a quantum leap in spatial data
acquisition. It extends beyond the limitations of a single plane, capturing comprehensive
three-dimensional data. This is achieved through an intricate array of sensors and laser
beams, which collectively map environments in three dimensions with a high degree of
precision and detail. The key advantage of 3D LiDAR lies in its ability to generate detailed
point clouds that represent the environment in volumetric form. This capability is crucial
for numerous applications, including autonomous navigation, topographical mapping,
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and complex environmental modeling, where understanding the vertical structure and
complexity of the scene is paramount.

Description 3.2: Ouster-OS0

The OS0 short-range sensor achieves a detection
range of up to 35 meters on a 10% reflectivity
target, complemented by an expansive 90-degree
vertical field of view. This sensor offers a superior
balance of cost, efficiency, dependability, dimen-
sions, mass, and energy consumption within the
industry. Engineered by Ouster a for operation
across diverse meteorological conditions, its com-
pact form factor facilitates seamless integration
with autonomous vehicles, industrial machinery,
robotic systems, unmanned aerial vehicles, and
geospatial mapping technologies.

ahttps://ouster.com/

Within the Autobus platform, the employment of the Ouster-OS0 sensor (as described
in Description 3.2) is critical for complex navigational functions. This sensor enhances
the vehicle’s perception capabilities, offering an extensive and detailed awareness of the
immediate terrain and built environment. This allows for the real-time acquisition of
intricate details within pedestrian areas. The decision to utilize this particular sensor was
informed by its high-resolution 128-channel output and its broad 90-degree vertical field of
view. The 128 channels provide granular measurements at greater distances for effective
object detection. This granularity ensures that even minor miscellaneous items within
pedestrian zones are promptly recognized as potential obstacles. Furthermore, the sensor’s
90-degree opening angle affords a comprehensive sweep of the area, ranging from the
ground level proximate to the vehicle up to higher elevations, thereby maximizing coverage.
Two ousters are mounted in diagonal configuration as can be seen in Figure 3.4b. Such
configuration allows to cover the blind spots around the vehicle. The total range of the
scanner is 50m, but as discussed for 2D laser scanners, the range is minimized to rectangle
in cyan shown in the figure. The mounting angles of the scanner in rectangular cordinate
system are x=0°, y=35°, and z=-45°for front and z=135°for rear. At this position, it
is possible to cover range above the ceiling for over hanging object as demonstrated in
Figure 3.4a.
Table 3.6 details the specifications of the 3D laser scanner, featuring a vertical resolution
of 128 channels and a horizontal resolution of 2048, enabling it to create a detailed
environmental map. Consequently, the Ouster-OS0 is utilized for environmental mapping,
enhancing obstacle detection and path segmentation.

3.2.1.3 Stereo Camera

The comparative analysis of stereo camera systems and LiDAR sensors is crucial for
elucidating their distinct capabilities and potential applications. LiDAR, celebrated for its
precision in measuring distances through the reflection of laser light, is adept at producing
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(a) Side view illustration of the Autobus high-
lighting the laser scanner’s detection angle, de-
signed to identify overhanging obstacles, specifi-
cally trees and buildings, and ensure drive clear-
ance.

(b) Top-down schematic of the Autobus dis-
playing the 3D laser scanner’s fields of view.
The outer blue sector illustrates the maximum
range of 50m for front, while the inner pink sec-
tor denotes the operational field for rear. The
cyan rectangle demarcates the optimized 20m
forward and 10m lateral detection area utilized
for navigation in confined environments.

Figure 3.4: 3D-LiDAR configuration for Autobus with (a) side view and (b) top view.

Specification Value
Range (80% Lambertian reflectivity,
1024 @ 10 Hz mode)

75 m @ 100 klx sunlight,
>90% detection probability

Range (10% Lambertian reflectivity,
1024 @ 10 Hz mode)

35 m @ 100 klx sunlight,
>90% detection probability

Minimum Range 0.5 m (to be reduced in FW 3.1)
Vertical Resolution 32, 64, or 128 channels
Horizontal Resolution 512, 1024, or 2048 (configurable)
Rotation Rate 10 or 20 Hz (configurable)
Field of View Vertical: 90° (+45° to -45°)

Horizontal: 360°
Angular Sampling Accuracy Vertical: ±0.01° / Horizontal: ±0.01°
False Positive Rate 1/10,000
Range Resolution 0.1 cm
# of Returns 2 (strongest, second strongest)

Table 3.6: Technical Specifications of Ouster-OS0.
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high-resolution three-dimensional point clouds. This attribute renders it highly effective
under various lighting conditions, offering robust data essential for autonomous driving
applications. In contrast, stereo camera systems adopt an alternative methodology. By
employing a duo of cameras to mimic human binocular vision, they determine depth
through analyzing the disparity between two concurrently captured images. Although
typically more cost-effective and less computationally intensive than LiDAR, the efficacy
of stereo camera systems is significantly contingent upon favorable lighting conditions for
optimal performance. Additionally, these systems excel in providing detailed texture and
color information, rendering them especially advantageous for tasks necessitating visual
detail, such as object recognition and scene segmentation.

Description 3.3: ZED-2i

The ZED 2i, distinguished camera for depth percep-
tion, motion detection, and artificial intelligence
applications, is a robust and adaptable stereo cam-
era suitable for deployment across a broad spec-
trum of environments. Built by StereoLabs a, it
Features a 120mm stereo baseline, USB 3.1 con-
nectivity, an integrated Inertial Measurement Unit
(IMU), barometer, and magnetometer, and the ca-
pability to deliver 1080p resolution video at 30
frames per second, this device is also certified with
an IP66 rating. It uniquely combines advanced
long-range depth perception with artificial intelli-
gence to facilitate three-dimensional environmental
recognition within a 120° (Diagonal) wide-angle
field of view. Engineered to be resistant against
dust, water, and humidity, the ZED 2i caters to a
variety of demanding applications, including out-
door deployment and use in challenging medical,
industrial, and agricultural settings.

ahttps://www.stereolabs.com/

In the context of the Autobus, the ZED-2i cameras (as delineated in Description 3.3)
are deployed primarily for the detection of human skeletal structure and the recognition
of activities, selected for their proficiency in capturing and interpreting visual signals,
hues, and textures. Additionally, the Autobus employs the color imaging capabilities of
the ZED cameras for the segmentation of travel paths. The strategic configuration of
these cameras is critical, particularly in light of the operational milieu of the Autobus.
Within pedestrian domains, the erratic movements of individuals in proximity to the
vehicle necessitate a panoramic view to ensure secure maneuvering. This requirement is
accentuated at bus stations, where the monitoring of passenger dynamics during boarding
and disembarking processes is imperative for safety and service efficacy. To accomplish
comprehensive surveillance, six ZED cameras is methodically affixed to the Autobus: trio
facing anteriorly and trio posteriorly. This distribution is designed to ensure an expansive
visual field, mitigate potential occlusions, and augment situational perception. Figure 3.5a



36 3. System Fundamentals

Feature Specification

Output Resolution

Side by Side
2x (2208x1242) @15fps
2x (1920x1080) @30fps
2x (1280x720) @60fps
2x (662x376) @100fps

Interface USB Type C - External cable
(up to 10m - 32.80ft)

Baseline 12cm (4.73 in)

RGB Sensors

Dual 1/3" 4MP CMOS
2688 x 1520 pixels
2µm x 2µm
Rolling shutter
YUV 4:2:2 - UYV (8bits)

Motion Sensors Gyroscope, Accelerometer, Magnetometer
Environmental Sensors Barometer, Temperature

Table 3.7: Technical Specifications of ZED-2i.

shows front stereo camera mounting from the side view of the Autobus. It gives the
visible range of the camera where a standing pedestrian of average height is easily visible.
-Figure 3.5b offers an explicit representation of the six camera configuration from top,
elucidating their locational bearings and observational extent. The shade in blue shows
the front view cameras, whereas the pink shade shows the rear viewing cameras. An
exhaustive delineation of the ZED camera system’s specifications and technical attributes
is provided in Table 3.7.

Table 3.7 presents the technical details of ZED stereo camera, which has a 12cm baseline
and operates at various resolutions. Given this baseline and the Autobus’s slow speed
in pedestrian areas, it effectively provides depth estimation up to 8m. Different output
resolutions can be adjusted based on the application and processing power.
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(a) Schematic representation of a stereo cam-
era’s field of view mounted on a vehicle, delin-
eating the visible area with respect to a standing
human figure for perspective.

(b) Configuration of only front viewing stereo
cameras on Autobus.

Figure 3.5: Stereo camera configuration for Autobus with (a) side view for front camera and
(b) all camera top view.

Description 3.4: Trimble-BX992

The BX992, featuring a dual-antenna receiver en-
closure, integrates an inertial navigation system
powered by the BD992-INS, facilitating the gen-
eration of robust, high-accuracy positions and ori-
entations across various environments through the
amalgamation of inertial sensors within a singular
module. This system provides 336 tracking chan-
nels, employs Trimble Everest Plus™ for multipath
mitigation, incorporates advanced RF spectrum
monitoring/analysis, and utilizes proven technol-
ogy for low-elevation tracking. It ensures continu-
ous positioning capabilities in areas where GNSS
signals are obstructed or unavailable, simultane-
ously offering solutions with a high-update rate for
position and orientation. Moreover, the BX992 sup-
ports flexible interfacing options, including RS232,
USB, and Ethernet connections, enhancing its
adaptability for diverse operational requirements.
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Specification Category Details
Product Type Dual Antenna GNSS Receiver Module
GNSS Signals GPS: L1 C/A, L2C, L2E, L5

GLONASS: L1 C/A, L1P, L2 C/A, L2P, L3
Galileo: E1, E5 AltBOC, E5a, E5b, E6
BeiDou: B1, B2, B3
QZSS: L1 C/A, L1 SAIF, L2C, L5, LEX
SBAS: L1 C/A, L5

Channels 336 Channels
Heading Accuracy 0.1 degrees with 2 m baseline
Position Accuracy Horizontal: 1 cm + 1 ppm RMS

Vertical: 2 cm + 1 ppm RMS
Update Rate Up to 20 Hz
Communication Ports Ethernet, Serial, USB, CAN
Operating Temperature -40°C to +75°C
Power Requirements 3.3V DC to 5.5V DC
Dimensions 60 mm x 67 mm x 15 mm
Weight Approx. 60 g
Certifications FCC, CE, RoHS

Table 3.8: Specifications of Trimble BX992

3.2.1.4 GNSS

Global Navigation Satellite System (GNSS), an indispensable component in the techno-
logical ecosystem of autonomous driving, plays a fundamental role in their navigational
capabilities. Anywhere on or near the Earth, the satellite-based navigation system, or
GNSS, gives precise location and timing information in all weather situations. In the
domain of autonomous driving, this system is crucial for providing precise geospatial
positioning, which is a cornerstone for route planning, navigation, and overall orientation
of the vehicle in its environment.
Navigating within pedestrian areas can be difficult due to the changing nature of pedestrian
traffic, obstacles and environmental conditions. To rely solely on local navigational
functions is often not enough because sensors have limited perception ranges. In crowded
places, people, vehicles and urban infrastructure often block these sensors from tracking
important indicators. Systems that use tools such as Inert Measurement Units (IMUs) or
visual odometry may suffer from cumulative errors, which cause them to drift over time.
Without a way to correct these drifts, navigation accuracy is severely affected. Here the
Global Satellite Navigation System (GNSS) plays its role. The Trimble-BX992 unit, for
example, is a high-precision GNSS that offers up to 10 cm of accuracy, making it vital for
the Autobus. It is particularly useful in urban areas with complex environments and tall
buildings. Although traditional GNSS can face signal variations and obstructions in such
environments – known as urban canyon effect – high-precision GNSS can overcome these
problems. The greater accuracy of high-precision GNSS is crucial for various applications.
It improves pedestrian tracking, supports autonomous vehicle navigation and improves
location-based services. In these scenarios, even small position differences can lead to
significant navigation errors. High-precision GNSS ensures accurate location tracking and
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Figure 3.6: The diagram illustrates the top-down view of the Autobus, highlighting the
placement of the Trimble-BX992 unit (indicated by the blue arrow) which is integral to its
high-precision GNSS. The two yellow circles represent the primary GNSS antennas, crucial for
providing locational accuracy up to 10 cm. This system is essential for reliable navigation in
complex urban environments, counteracting the limitations posed by local navigation systems
and the ’urban canyon’ effect caused by tall buildings and dense infrastructure.

enhances navigation capabilities by improving the accuracy of bus stop locations based on
pedestrian demands.
Moreover, the two antennas provide two distinct points from which satellite signals can be
received. By analyzing the phase difference between the signals received at each antenna,
the system can determine the vehicle’s heading, which is its directional orientation in
relation to the Earth’s surface. Figure 3.6 delineates the configuration of the Trimble-
BX992 integrated with dual antennas (GA830) affixed to the vehicle’s roof, providing
better vehicular orientation capabilities for the Autobus. For more technical specifications,
refer to Table 3.8.

3.2.2 Interaction Modules
In addition to the standard navigational sensors, the Autobus incorporates specific interac-
tion modules, notably LED displays, speakers, beepers, and flashers, which are fundamental
to the overarching concept of this work. These modules play a crucial role in facilitating
effective communication between the vehicle and its external environment, particularly
with pedestrians and other road users. The integration of these interactive elements is
central to the design philosophy of the Autobus, ensuring not just autonomous navigation
but also interactive safety and information dissemination. Figure 3.7 shows the different
interaction modules mounted on the Autobus. The subsequent subsections provide a
detailed exposition of the configuration and operational principles of these interacting
modules. This includes an in-depth analysis of how the LED displays, speakers, beepers,
and flashers are configured on the Autobus.

3.2.2.1 LED Display

The LED display is a key part of the Autobus user interface and helps to communicate
important information to nearby pedestrians. To maximize its efficiency, the display is
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Figure 3.7: The image shows various components of the external communication system of the
Autobus, which are designed to interact with its environment. The LED display, strategically
placed to disseminate essential information to pedestrians shown within the red dotted rectangle,
is highlighted for increasing safety and awareness on the road. The blue square surrounds the
omnidirectional beacon lights mounted on the vehicle, which provide maximum visibility and
are used as indicators of the autonomous operational status of the car. Turn signals are defined
by yellow dots to indicate the intent of vehicles to nearby traffic participants and reduce the
likelihood of collision. Finally, flashers in front of the pedestrians are activated in front of them
shown by yellow dotted line rectangle to warn them of the immediate presence of the Autobus,
particularly important cautionary measure in densely populated areas where buses are operating
in close connection with people walking.
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Feature Details
Display Type LED
Customization Custom-made for Autobus
Dimensions Approx. 1250 x 250 x 100 mm
Brightness 6,000 cd/m2

Pixel Pitch 2.97 mm (P. 2.97)
Resolution 420 x 84 pixels
Housing Material Aluminum
Protection Class IP65, all-around
Operating Voltage 24VDC
Brightness Adjustment Via software
Control Interfaces LAN, RS232
Sensors Ambient light sensor, Temperature sensor
Connectivity WLAN module

Table 3.9: Specifications of LED Display

carefully mounted on both front and rear sections of the bus roof. The red point limit
of Figure 3.7 ensures that pedestrians and other vehicles can easily view the display. By
placing the display on this elevated position (especially 2.5 meters) it helps to avoid visual
obstruction and make information clear and accessible. This height is perfect because it
aligns with the typical sight line of a pedestrian who walks upright. As a result, people
can easily see and understand information without having to change their eyes or postures
significantly. This thoughtful position not only improves visibility, but also improves the
overall communication effectiveness of the screen.

Featuring a resolution of 420 x 84 pixels and a luminance of 6000 cd/m2, the display ensures
legibility from extended distances. Complementary to this, the appendix summarizes the
display’s specifications in Table 3.9, which encompasses the particulars of the display’s
interface for communication. This includes an overview of its integration with the central
processing unit of the bus and the protocols employed for the transmission of the data to
be exhibited.

3.2.2.2 Speaker

Apart from visual cues, audio also plays a huge role in getting the attention of pedestrians
who aren’t looking at the screen. To make sure these people notice important messages,
the bus has a speaker system placed next to both the entrance and exit points, as shown in
Figure 3.8. This setup was chosen carefully to ensure messages are heard clearly, especially
when passengers are getting on or off the bus. The speakers near the doors mean that the
audio is right where passengers need to hear it the most.

Moreover, the speaker system is meticulously designed to send sound to both the front and
back of the bus. This way, people nearby—whether they’re walking in front of or behind
the bus—can hear notifications and warnings. Having a wide-reaching sound system is
crucial for keeping everyone safe and making sure messages are heard throughout the bus’s
surroundings.
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Figure 3.8: The schematic diagram shows the strategic placement of the speaker system in
the Autobus. The speakers are located on both sides of the vehicle next to the entrance and
exit points to maximize the effectiveness of audio communication, especially during important
interactions such as boarding and alighting. The placement of the speakers near the doors is
designed to ensure clear audio messages to passengers in these important areas. In addition,
the system was designed to extend the acoustic field, transmit sound to the front and back of
the Autobus and to make announcements to pedestrians and others nearby. This wide sound
projection is essential to maintain safety and enable continuous communication near the Autobus.
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(a) The figure illustrates the utilization of front-
mounted flashers on the Autobus, which are
designed to alert pedestrians to its presence.

(b) The roof-mounted flashing lights serve as
indicators of the Autobus’s autonomous oper-
ational status. Activation of these lights, via
flashing, denotes that the vehicle is navigating
autonomously.

Figure 3.9: Front and roof-mounted flashers as pedestrian alerts and autonomous operation
indicators.

3.2.2.3 Flashers

In vehicle communication, lights and flashes signal different operational states. The
autobus uses two types of flashers, each serving a unique purpose. Figure 3.7 shows an
overview of these flashers, highlighted with blue/cyan and yellow borders. As depicted in
Figure 3.9a, the flashers at the front and back of the vehicle activate only when pedestrians
are in a critical position near the vehicle, serving as warning signals. Conversely, the
flashers in Figure 3.9b indicate the Autobus is in autonomous navigation mode. These
flashers turn on to inform pedestrians that the bus is driving itself. They are placed with
GNSS antennae in a diagonal pattern to ensure they are visible from all directions.

Feature Detail
Routing/Switching Capacity 48 Gbit/s
10/100/1000 MBit/s Ports 24 x
PoE-at Ports 12
Features PoE Function
Weight 3.3 kg
Width 440 mm
Height 44 mm
Depth 238 mm
Type HPE 1420-24G-PoE+ (124W) Switch - Switch
Interfaces RJ45
LAN Transmission Rate 1000 MBit/s

Table 3.10: Specifications of the switch
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3.2.3 Hardware Configuration
The deployment of a diverse array of sensors in the Autobus facilitates various hardware
configurations, addressing the vehicle’s substantial dimensions which prevents direct
connections of certain rooftop-mounted sensors to the central processing unit. Hence,
the communication for some sensors becomes impossible. It is aimed to ensure that the
sensor data is delivered to the main CPU without delay. Consequently, the adoption of
switch-on mechanisms alongside fiber optic technology is critical for the expedited and
efficient handling of data across an extensive network of onboard sensors. The switch has a
switching capacity of 48 Gbit/s with LAN transmission rate of 1000 MBit/s. The technical
details are given in Table 3.10. The fiber optic framework from the switch to main PCs
provides high-bandwidth and low-latency communication channels, essential for processing
the voluminous data produced by the vehicle’s assortment of sensors, such as LiDAR,
cameras, and GPS. This infrastructure enables the Autobus to swiftly assimilate and
analyze sensor data, underpinning real-time decision-making processes vital for autonomous
navigation and ensuring safety.
Additionally, the system’s architecture incorporates a distributed computing model, with
two primary embedded PCs allocated to specific functions and data streams from distinct
sensors. This modular data processing strategy permits simultaneous computations,
markedly improving the system’s capacity for managing and interpreting the copious data
emanating from the sensor array. Distributing the computational tasks among multiple
PCs allows for the efficient handling of intricate datasets, including high-definition imagery
and comprehensive 3D mappings, thereby enhancing processing speed and precision. Such
an architecture not only elevates the system’s responsiveness but also supports its ability to
execute prompt and accurate navigational decisions in the fluid and unpredictable context
of urban settings. To accommodate the demands of deep neural network applications—vital
for this thesis’s concept—without overburdening the primary PCs, three Jetson AGX boards
are also installed on the roof. This unit is directly connected to cameras for the preliminary
data processing executing neural networks, thereby alleviating computational loads on
the main processors. The synergistic application of advanced fiber optic communication
and distributed computing frameworks is thus imperative for achieving the high degrees of
accuracy and dependability requisite for autonomous urban transit systems. Figure 3.10
delineates the sensor system’s hardware configuration and the arrangement of embedded
PCs.

3.3 Safety-System
Pedestrian areas are unstructured pathways having direct access to buildings and living
premises. Main focus of such areas is to have better accessibility for pedestrians without
commercial traffic. Such zones are best suited for the environment in terms of traffic,
attractiveness, safety, and noise/air pollution. Having the appreciation for all the given
benefits for pedestrians, people often tend to walk carefree along with their adolescent
and pets walking unrestrictedly. The presence of such obstacles around the Autobus puts
safety a foremost concern in autonomous driving. This necessitates an uninterrupted safety
system to be able to react in critical situations. Often perception systems using sensors,
such as cameras and LiDARs, are prone to errors. These errors, perchance, could be due
to missing measurement or fault in the system itself. Misclassifications may arise from
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Figure 3.10: The schematic shows the extensive deployment of sensor arrays on Autobus and
the related distributed computing architecture. The 48 Gbit/s and 1000MBit/s LAN switches
facilitate fiber optic data transmission to main PCs and ensure high bandwidth and low latency
communication, which is essential for real-time processing of substantial sensor data. The
embedded PC is assigned to special functions and receives data from sensors such as LiDAR,
cameras and GPS. The distributed computing model allows parallel data processing and improves
the system’s ability to process and interpret high-definition images and 3D mappings. The three
Jetson AGX panels installed on the roof are specialized in the pre-processing and operation of
neural networks and reduce the computational load of the main processors. This strategic setting
supports the high accuracy and reliability of the system, which are essential to autonomous
navigation in urban environments.



46 3. System Fundamentals

Figure 3.11: The diagram represents the stratification of safety system in Autobus, categorizing
them into three primary levels: Software, Basic Control (integrating both software and hardware
components), and Hardware. Each level is color-coded, with green indicating the software layer,
yellow for the basic control layer, and red for the hardware layer, signifying the increasing level
of criticality from top to bottom.

detection algorithms, or instances may occur where no classification is rendered. Hence, a
hardwired safety concept is designed in the Autobus.

3.3.1 Safety Concept

The configuration depicted in Figure 3.11 illustrates a tiered safety architecture, a work
done on safety configuration for Autobus [Jan 21a], segregated into three distinct levels,
each integral to the Autobus’s overall safety strategy. The lowest block represents the most
critical safety level, denoted by its foundational position in the hierarchy. This critical
layer is characterized by its autonomy and resilience, functioning independently of external
inputs. Its primary role is to ensure a ’safe stop’ in the event of a system failure or when
a predefined safety parameter is triggered. This fundamental safety mechanism operates
as a fail-safe, designed to cease all vehicle operations securely, thereby mitigating the risk
of accidents or damage.
The intermediate layer, as visualized above the critical layer, contains non-critical safety
functions. Although this layer is less critical, it is essential for safe operation of the system
and provides additional control and balance. The upper limits of this intermediate layer are
the minimum safety thresholds of the critical layer below. It is equipped with a monitoring
dog timer that continuously monitors inputs at higher levels and starts stopping in the
absence of inputs. Therefore, any security measures implemented at this level must not
compromise the integrity of the critical layer’s essential safety functions.
The topmost block represents the least critical layer for immediate safety response, but is
crucial for complex operation of the system and interactions with its environment. This
layer includes high-level algorithms and decision-making processes. Although it is the least
safe layer, it is still designed to respect and maintain the safety constraints defined by
the fundamental layer. It includes a safety module to detect immediate obstacles, using
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hydraulic brakes instead of emergency brakes. The basic principles of this research apply
to this layer.
Each of these layers is designed to work in concert, forming a cohesive safety net. The
safety concept ensures that higher-level malfunctions are contained and managed without
impeding the operation of more critical safety functions. The subsequent section provides
a detailed description of the lower most layer, i.e., Hardware.

3.3.2 Safety Hardware Design

In a vulnerable situation where collision with humans can occur, the aforesaid errors
cannot be tolerated. This demands in designing a safety certified system for closeby
interaction process which is part of this work for assisting the smart interaction concept.
Safety certified systems are designed based on Safety Integrity Level (SIL) [Gulland 04]
and Performance Level (PL). Such systems are directly connected to the safety chain
of a vehicle. In general, the certification process is typically conducted throughout the
manufacturing phase and is completed before the system’s finalization. However, for
Autobus, a unique prototype, certification was not performed during its manufacturing.
To facilitate potential future certification, safety modules adhering to specific SIL and PL
were incorporated. These modules are directly integrated into Autobus’s safety chain. In
Figure 3.12, a schematic delineation of the safety system’s interconnections within the
Autobus is presented. A safety circuit utilizing a 12V supply line, depicted in brown,
traverses the SICK safety monitoring system, proceeding to Relay 1 and Relay 2. These
components govern the activation and deactivation of the vehicle’s motors and emergency
brakes, respectively. The depicted state of the system indicates operational safety, with
current coursing through the 12V line ensuring the relays are closed, thereby activating the
motors. In the event of a circuit interruption instigated by any element within the SICK
system, the relays transition to an open state, resulting in motor deactivation and the
concurrent activation of the emergency brakes. For the overview of the coupled components,
figure A.2 in Appendix shows a detailed schematics of the components connected to the
safety chain of the vehicle.
Table 3.11 provides an overview of specific conditions that trigger the activation of safety
protocols in a vehicular safety system. These conditions, categorized under ’Causes,’
indicate various failure or unsafe scenarios that can occur during the operation of the
vehicle. The ’Status’ elucidates the specific state or action that corresponds to each cause,
for instance, a vehicle exceeding a speed of 7 Km/h or the failure of a battery. Upon the
occurrence of any listed cause, the corresponding response of the vehicle’s safety system is
twofold, as indicated in the ’E-brake and Motor’ column. This column is merged across
all conditions to denote a uniform response: the emergency brake (E-Brake) is activated
(’enabled’), and the Motor is simultaneously deactivated (’disabled’). This standard
response is designed to immediately halt the vehicle and prevent any further motion that
could exacerbate the situation or pose additional risks. The conditions outlined include
scenarios such as ’Over speeding,’ ’Battery Failure,’ activation of the ’Emergency button,’
’Safety bumper’ being pressed, ’Door Contacts’ status during driving, and the interruption
of ’Laser scanners’ safety field. Each of these scenarios is deemed significant enough
to warrant an immediate stop of the vehicle to ensure the safety of the occupants and
surrounding environment.
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Figure 3.12: The diagram illustrates the interconnection of front and rear safety laserscanners,
a wireless safety system with a non-contact switch, SICK system for safety monitoring, and
safety bumpers. It includes the main battery supplying power to front and rear motor controllers
through relays. The loop is active with close contact indicating that the motors are enabled and
the emergency brakes (E-Brakes) are disabled, ensuring operational safety.

Causes Status E-brake and Motor
Over speeding >7 Km/h E-Brake = enabled

Motor = disabled

Battery Failure
Emergency button Pressed

Safety bumper Pressed
Door Contacts Opened (Driving)
Laser scanners Safety field interrupted

Table 3.11: The table shows failure/unsafe conditions for the safety system. Depending on the
cause and the corresponding status, the E-brake and motor are enabled and disabled, respectively.

3.3.3 Components and Working

In the design of the safety system, several key components are required, as indicated
in Table 3.11. These include a speed encoder module to monitor the vehicle’s speed, a
battery monitoring relay to track the battery status, an emergency stop switch to quickly
shut down, a magnetic switch to control the door, and a laser scanner to detect obstacles.
All these components are sourced from SICK, a specialized safety system company, and
interact with specialized programmable CPUs through SICK’s safety design software.
These relays are particularly crucial because they are activated within the vehicle’s safety
chain. The detailed technical specifications for each module can be found in Appendix B.
As laser scanners play an important role in reducing safety risks and avoiding obstacles,
detailed descriptions of these components are given in the following sections.
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Assessment of Laser-scanner for Enhanced Outdoor Safety Operations
For the purpose of scanning for obstacle, the system uses 2D-LiDAR mentioned in
Subsection 3.2.1.1 with the same configuration. The scanners in addition for higher level
navigation algorithm is connected to the processing unit of the SICK for wired safety.
OutdoorScan3 used for the purpose has safety related feature pointed in Advantages 3.1.
OutdoorScan3 is distinguished by its certification for outdoor use, bolstered by a robust
design that incorporates enhanced shock resistance. It is capable of operating under
moderately adverse weather conditions, such as rain, snow, and fog. The OutdoorScan3
complies with Safety Integrity Level 2 (SIL2) and Safety Integrity Level for Control Level
2 (SILCL2) standards, ensuring a high level of reliability and safety.

Advantages 3.1:

OutdoorScan3

• Ensures high productivity by enabling safe interactions between humans and
machines in outdoor environments.

• Maintains exceptional operational reliability, regardless of adverse weather
conditions.

• Designed with user convenience in mind, making it ideal for outdoor applica-
tions.

• Features flexible protective fields that can be customized for secure automation
tasks.

• Offers straightforward diagnostic access, allowing for quick problem-solving.
• Supports a steady and dependable flow of materials, both inside and outside,

adapting to varying weather conditions.

In the event of a system fault, the OutdoorScan3’s safety output is designed to switch to
a logic 0 state over the network. This state change is detected by the main module of the
system, triggering the activation of vehicular safety mechanisms.
A primary function of the OutdoorScan3 involves the generation and regulation of protective
and warning zones (enumerated below). These zones are defined as adjustable geometric
areas within the scanner’s range. Upon detection of an obstacle within these preset
areas, the scanner alters its output signals to indicate safe or unsafe conditions. Since
the stopping distance of the vehicle is not the same, it is important to have dynamic
safety fields. Therefore, outdoorScan3 allows capability for dynamically modifying the
safety fields based on vehicle’s stopping distances. Examples of the configurations of these
monitoring zones are illustrated in Table 3.12.

1. Warning field: For functional use only (shown in yellow in Table 3.12), with a
range of 40m.

2. Protective Field: For detection and protection (shown in red in Table 3.12, with a
range of 4m.

As delineated in Table 3.5,the OutdoorScan3 system can monitor up to eight different areas
simultaneously, as shown in Table 3.5. This includes the specifications of the protective
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Monitoring
Case Description Fields

Driving
straight

When driving
straight the fields are

perfect square

Turning
right

At full steering
towards right

Turning
left

At full steering
towards left

Table 3.12: This table exemplifies the OutdoorScan3’s capability to dynamically adjust safety
monitoring zones according to vehicle steering direction. The "Monitoring Case" column identifies
three distinct scenarios: driving straight, turning right, and turning left. The "Description"
column clarifies the vehicle’s steering status. In "Fields," the diagrams represent changes in the
warning (yellow) and protective (red) fields relative to the vehicle orientation. When driving
straight, both fields form a perfect square, indicating equal safety distance around the vehicle.
During turns, the warning field expands opposite to the turn direction, reflecting the need for
a greater safety margin due to the vehicle’s momentum and altered stopping distance. These
adjustments are vital for maintaining vehicle safety and are part of the system’s broader capability
to monitor multiple zones simultaneously, enhancing responsiveness to operational conditions.

and warning fields managed by these scanners. This safety function is enabled through the
"Safety Designer" software, allowing to create up to 4 meters of protective fields in radius.
These fields can trigger the braking mechanism, if needed. These fields can be adjusted in
terms of the shape, size and conditions for the safety system to encounter various scenarios.
This flexibility helps to tailor safety measures to the specific environment and situation of
the vehicle. Consequently, the speed of the vehicle is divided into seven different zones,
with speeds ranging from 0 to 6 kilometres per hour. Each speed zone corresponds to a
specific length of the safety field, as illustrated in Figure 3.13, which shows how speed
zones correspond to the length of the safety field.
Dynamic Configuration of Safety Fields in Response to Vehicle Speed and
Steering Dynamics
Two encoders are integral to this system. The first encoder is connected to the motor and
is responsible for measuring the speed of the vehicle. The second encoder is associated
with the steering mechanism, providing data on the steering angle. The interplay between
these two encoders is crucial for the dynamic adjustment of the safety fields.
The system architecture includes a safety field that is directly proportional to the stop
distance of the vehicle and varies according to the speed. A progressive velocity is
needed to accommodate the required extended stop distance by extending the protective
area proportionally. This adaptive mechanism ensures that the vehicle is constantly
protected from potential obstacles at all speeds and significantly reduces the probability of
collisions. Figure 3.13 shows the empirical relationship between the speed of the Autobus
and the length of the safety field. These relationships were determined by experimental
methodological experiments, which involved driving the automobile at different speeds
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Figure 3.13: The plot illustrates the empirical correlation between the velocity of the Autobus
(denoted as ’S’ for speed range in km/h) and the corresponding safety field dimensions, which are
crucial for vehicular safety. The blue bars represent the length of the safety field at various speed
ranges, demonstrating an increasing trend as the velocity escalates. This increment is designed
to ensure a proportional buffer zone for stopping the vehicle safely. The red line indicates the
actual measured stopping distances, obtained through controlled testing wherein the vehicle
was subjected to a series of stops from different speeds. These stopping distances represent the
average lengths required for the vehicle to come to a complete halt across multiple trials. The
safety field lengths (blue bars) are consistently set larger than the empirical stopping distances
(red line) to provide an additional safety margin, which is especially heightened within the
highest speed bracket. This safety margin is calibrated to be sufficient yet not excessively large
to accommodate the restricted spaces often encountered in pedestrian zones. The graph conveys
the strategic balance between safety and operational practicality, ensuring that the Autobus
maintains a safe operating distance from obstacles while accounting for dynamic speed variations.
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Table 3.13: The table presents an intricate delineation of the velocity and steering angle intervals,
alongside the identifiers for the respective monitoring cases. It articulates the distribution of
field samples, categorized into protective and warning types, assigned to the outdoorScan3 for
the purpose of operational surveillance. Instances that are marked with ’X’ signify scenarios that
are considered inapplicable within the monitoring framework; At elevated velocities, the act of
steering is restricted. Furthermore, the system is designed to reduce its speed in response to
steering inputs, ensuring safety and control during operation.

and initiating safety stops on specific markers to measure the necessary stopping distance.
Table 3.13 shows the average stopping distance of multiple trials at different speeds, while
the blue bar shows the length of the protected field in the direction of driving, which is
deliberately set to be larger than the stopping distance in order to include additional safety
margins. This surplus margin increases marginally at the higher speeds, but this margin
cannot be increased significantly given the constraints of the narrow pedestrian zone. In
addition, the responsiveness of the safety mechanism includes changes in vehicle speed and
direction, allowing an integrated safety framework that anticipates various operational
environments and the dynamic maneuvers of the vehicle.

The laser-scanner, specifically the OutdoorScan3 model, has the capability to be configured
with up to 128 distinct monitoring cases. Each of these monitoring cases can be associated
with a specific set of field configurations, which are activated based on inputs received
by the laser-scanner. The activation of a particular monitoring case is contingent upon
the values derived from the speed and steering encoder readings. Table 3.13 shows the
different monitoring cases for range of steering angles and speed.

When considering the impact of speed alone, it becomes imperative to adapt the shape of
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the safety field in accordance with the steering dynamics of the vehicle. This necessity
stems from two primary reasons:

1. Complexity in Steering Dynamics: The vehicle is equipped with a double-
Ackermann steering system, which allows for symmetrical steering of both the front
and rear wheels. This configuration typically results in a reduced turning radius.
In scenarios where the vehicle is maneuvering a curve, it is crucial to design the
protective fields in such a way that they can be timely intercepted by pedestrians
walking alongside the vehicle. The aim is to ensure that the protective fields are
sensitive and responsive enough to detect pedestrians in close proximity, especially
during tighter steering maneuvers.

2. Considerations for Narrow Turns: The design of the fields becomes increasingly
critical in situations involving narrow turns, as illustrated in Figure 3.14. When
approaching a narrow turn, the shape of the safety fields must be adjusted to prevent
the inadvertent inclusion of obstacles not present on driving path, such as peripheral
bushes or stationary structures. Since the Autobus makes a turn, these obstacles
are not existing in the drivable way. If these objects are consistently detected as
potential hazards, the vehicle would be prone to unnecessary safety stops. Therefore,
it is essential to tailor the configuration of the protective fields to distinguish between
actual hazards and benign objects, particularly in constrained turning scenarios.

These considerations underscore the importance of a dynamic and context-sensitive safety
system. By adjusting the protective fields based on steering dynamics and the vehicle’s
immediate environment, the system enhances safety without compromising operational
efficiency.

Figure 3.14: Turning example of Autobus in small spaces.

To investigate the proper usage of the aforementioned postulation, a sensible configuration
of the system is of significance. This is the first step to start-off before proving the
hypothesis. It has to be done meticulously to avoid any knock down effect of error which
will further increase the discrepancy of the tests made during the whole process. This



54 3. System Fundamentals

Figure 3.15: OpenStreetMap Visualization of the Autonomous Vehicle Testing Ground. This
map represents the designated testing area for the Autobus, highlighting the intricate network of
pathways, including pedestrian walkways and vehicular roads within a university campus setting.
Key locations and infrastructure are annotated to facilitate navigation and operational testing.

may include ineffectual location of a certain module which the subject might not even
consider. To avoid such a scenario, it is validated through different means, depending on
the module, the correctness based on its application. Since the vehicle also interacts with
the pedestrian, section of interacting modules explains the reasoning of each module.

3.4 Test Environment Description
General description of the pedestrian zone and its advantages are well explained in the
introduction chapter. This section elaborates the environment structure and dynamics
for better understanding the use case in experiments. The driverless bus (explained in
section 3.1) is driven within the campus of RPTU Kaiserslautern. Campus environment
offers an unmarked network of pavement for accessibility to every building within and
outside the campus. The connectivity of the testing area is shown in Figure 3.15 for RPTU
campus.
The roads are designed to accommodate the navigability of vehicles, taking into account
the requirements of transport, construction and emergency vehicles. This design allows for
relatively easy operation of vehicles which has size up to minibus. The minimum width of
these paths is shown in Figure 3.16. The path is not only narrow, but also incorporates
curves, which add complexity especially in the presence of pedestrians. In such narrow
spaces it is not possible to overtake pedestrians as well.
Figure 3.16 also shows a detailed view of the selected narrow sections in the campus
environment. These sections have a width greater than one meter of the width of the
vehicle. Two places that are frequently crossed are highlighted to better understand. The
areas marked with green are the most narrow sections of driving routes and the navigation
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Figure 3.16: Aerial Perspective of RPTU Campus highlighting narrow pathways. This satellite
image illustrates the campus layout with specific emphasis on the constricted pathways, delineated
by black outlines and augmented insets, that are critical for the navigation of the Autobus within
the testing environment. The insets provide an enhanced view of the areas of interest, indicating
the potential navigational challenges posed by these narrow routes.

becomes more and more difficult. This complexity is further reinforced in areas where
these narrow paths intersect with turns.
To really understand how well a proposed system configuration works, there is a need
to plan carefully and thoroughly from the start. This initial setup is crucial for making
sure the hypothesis is correct. Getting this right helps avoid a chain reaction of mistakes
that could hamper the results of later tests. Errors in the beginning, such as placing
parts incorrectly or not integrating modules properly, can lead to false conclusions or even
system failures. To circumvent such scenarios, each module’s functionality and integration
are meticulously verified through various methods appropriate to their specific application
and context within the system.

3.5 Simulation Environment
In the field of autonomous driving, especially for pedestrian areas, the importance and
complexity of simulation environments are essential. Realistic simulations faithfully
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reflecting the conditions of the real world are imperative to ensure that the trials carried
out have virtually similar implications to those carried out in the physical field. This
idea allows for preliminary validation of algorithms and provides an important step before
empirical tests.
This section explores the complex simulated environment used to test the Autobus in a
scene with a dense pedestrian population. Simulation is a controlled, but multifunctional
platform that allows researchers and engineers to replicate a wide range of pedestrian
behaviours and traffic scenarios that driverless minibuses might encounter in urban
environments. The advantages of using simulated environments for autonomous driving
are many:

• It provides a safe and risk-free setting where potentially hazardous situations can
be recreated and studied without any real-world consequences. This is particularly
crucial when examining the interactions between Autobus and pedestrians, where
safety is paramount.

• Simulation allows for the testing of extreme or rare scenarios, which although
infrequent in reality, are essential for the comprehensive training and evaluation of
Autobus algorithms.

• It enables rapid iteration and refinement of algorithms and systems. Changes can
be implemented and tested much faster in a virtual environment than in physical
testing, accelerating the development process.

• Simulations can generate vast amounts of data, essential for training machine learning
models that underpin Autobus decision-making processes.

• It offers scalability, allowing researchers to test a wide range of scenarios and
conditions, from different weather and lighting conditions to varying pedestrian
densities and behaviors, something that is time-consuming and resource-intensive to
replicate in real life.

Based on the fundamental role of simulation in autonomous driving research, our work
uses the Unreal Engine (UE) as a central platform for the simulation environment. UE
is known for its high-fidelity and photorealistic rendering capabilities and provides an
ideal backdrop for sophisticated and complex scenarios in pedestrian areas. UE is widely
praised in the game industry for its ability to create an immersive and visually astonishing
environment, and it has also proved to be an expert in the field of autonomous vehicle
simulation.
The photorealistic nature of UE provides a major advantage to the Autobus perception
system. Since Autobus relies heavily on cameras and sensors to interpret the environment,
UE’s realistic textures, lighting, and dynamics can be replicated. This level of detail
ensures that simulations are not only hypothetical scenarios, but are close to real-world
approximations. This realism is crucial for training and verifying Autobus’ perception
algorithms, ensuring that they can accurately recognize and respond to the behaviour of
pedestrians and various environmental conditions.
Moreover, the robust UE physics engine and its ability to simulate complex interactions in
real time further strengthen its adaptability for Autobus testing. It allows the creation of
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(a) This figure illustrates the sophisticated
three-dimensional simulation model of the Auto-
bus. The model has been crafted to closely repli-
cate the real vehicle’s design specifications, from
its structural dimensions to its color scheme and
surface textures. It has been developed with
an aim to simulate not only the visual aspects
but also the operational dynamics of the real-
life counterpart. The virtual Autobus is pro-
grammed with kinematic equations that mirror
the actual vehicle, ensuring it exhibits compa-
rable movement dynamics, acceleration, and
braking behaviors. The inclusion of a double
Ackermann steering mechanism further refines
its movement simulation, providing a realistic
representation of the vehicle’s maneuvering ca-
pabilities within the simulation environment.
This visual and operational parity allows for
precise analysis and testing of the Autobus’s
performance in a controlled virtual setting.

(b) Displayed here is the intricate virtual recre-
ation of the RPTU-Kaiserslautern campus as it
exists within the UE. This simulation of the cam-
pus encompasses an approximately precise and
to-scale representation of the campus buildings,
roads, pathways, and surrounding landscape,
modeled to reflect the actual campus’s architec-
ture and spatial layout. The simulation extends
to include varying weather conditions, providing
a diverse range of scenarios for evaluating the
sensory and perception systems of the Autobus
in conditions that mimic real-world challenges.
The precision in the environmental modeling
ensures a high-fidelity platform for the compre-
hensive testing and optimization of the vehicle’s
performance metrics in a realistic setting.

Figure 3.17: Autobus and RPTU Campus Model in Simulation

dynamic, unpredictable pedestrian behavior, which is essential to test the limits of AV
decision-making algorithms. Using UE, various pedestrian scenarios can be simulated,
from typical city crossings to more complex, non-structured environments, providing a
comprehensive test platform for advanced autonomous driving technology. This section
will explain in greater depth how we used UE’s capabilities to create a realistic and effective
simulation environment for our research into autonomous driving.

3.5.1 Tailored Design Specifications
Continuing from our look at UE’s ability to simulate realistic environments for this thesis,
we discuss about how the "Autobus" model and the RPTU campus within the engine
are carefully recreated. This step is crucial for making a simulation that truly reflects
real-world conditions, giving us a robust platform to test and improve the interaction
systems concept for this thesis.
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Vehicle Model:
Autobus depicted in Figure 3.17a and detailed in Section 3.1 were carefully reconstructed
in simulation to imitate their realistic analogs in aesthetics and operational behavior. This
process requires extensive three-dimensional rendering of the Autobus, achieving a high
accuracy of dimensions, structure design, color palette, and surface details. The aim was
not only to visually resemble a physical vehicle, but also to generate a simulated vehicle that
mimics the physical characteristics and performance metrics of a physical vehicle, including
movement dynamics, acceleration patterns, dimensions and acceleration/deceleration
characteristics. Therefore, the mechanical equations governing the motion of virtual
vehicles are consistent with those of the actual system and ensure identical time and space
effectiveness in achieving its navigation objectives. In addition, the simulation features a
double Ackermann steering mechanism that enhances its functionality.
Campus Model:
Furthermore, the RPTU-Kaiserslautern campus was recreated in UE as shown in Fig-
ure 3.17b, the real environment in which the Autobus is designed to work. It involved
detailed mapping and modeling, replicating buildings, roads, pathways and other campus
environmental features. Replication is not only about visual accuracy, but also about
maintaining the correct scale and spatial relationship between different elements, in order
to ensure that simulation is consistent with the actual campus architecture and design. It
also includes different weather conditions to test the performance of the perception system.
Pedestrian Model:
To test the Autobus interaction system, pedestrians are also incorporated into the simu-
lation. These characters are programmed to imitate the different pedestrian behaviours
observed in real life, such as walking, crossing the streets, and reacting to the Autobus.
In one of our earlier work [Jan 21b], we designed the movements and behaviours of the
characters as realistically possible and provided a realistic context for testing the Autobus
interaction system. The characters move around simulated RPTU campus and create
dynamic scenarios in which the Autobus must interact with these pedestrians in real time.
Figure 3.18 shows the trajectory of two characters when they encounter an upcoming
vehicle. The plot reveals the characters’ path deviations from their original path, showing
their reaction to the approaching vehicle by turning around and changing direction. This
is similar to reality, where pedestrians partly take responsibility for opening the way to
vehicles.
Sensor Model:
In addition to physical characteristics, the real Autobus sensors are replicated in simulation
as well. These include LiDAR, cameras, GPS and other sensors used in car buses to
perceive the environment. Replicating these sensors in a virtual environment is crucial
to testing the autobus’ perception system. The simulated sensors are programmed to
mimic the functions and limitations of real-world sensors, and generate data for the use of
Autobus algorithms to navigate and interact in the simulation environment.
Using UE to recreate Autobus, RPTU campus, its sensor suite and pedestrian dynamics,
required to create a very detailed and authentic simulation framework. This virtual platform
was crucial to the iterative development and validation of Autobus’ interactive systems.
It provides a rigorously controlled but very realistic environment for a comprehensive
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Figure 3.18: The plot captures two pedestrian characters simulated in the campus environment
of the RPTU campus, showing their reactions to approaching vehicle. The paths of each character
are represented by different colored lines, which change from blue to yellow to red over time,
showing their initial paths and their subsequent deviations to the vehicle. These deviations are
represented as the deviation of the original path towards a new trajectory, which symbolizes
the behavior of pedestrians who yields. This behaviour replicates realistic pedestrian actions
documented in our previous work [Jan 21b], showing that pedestrians share the responsibility
for avoiding vehicles by actively changing their course. Autobus’s ability to interact with these
dynamic agents shows the sophisticated levels of the navigation system and interaction system in
simulation settings.
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evaluation of vehicle performance and boundary conditions. In this virtual environment, a
favourable application of simulation methodology was particularly evident when Autobus’
end-to-end driving paradigm was assessed, as demonstrated in two of our papers [Jan 23b,
Jan 23c]. The end-to-end model was re-adapted to the actual campus parameters to
achieve promising results in the real-world environment, and was deployed for empirical
tests on physical vehicles. The empirical results show a high correlation with the simulation
results, underlining the value of the simulation in the prediction of system performance in
the real world.

3.6 Autonomous Navigation Software Architecture
The REACTiON architecture [Wolf 18], as delineated in Figure 3.19, represents an evolving
model for off-road autonomous navigation, specifically adapted for the Robotic Research
Lab (RRLAB) autonomous vehicles at RPTU Kaiserslautern-Landau. Developed within
the modular FINROC environment [Reichardt 12], the architecture accommodates all
requisite components for autonomous navigation—including mapping, classification, user
interaction, and fail-safe measures. Its hardware interface ensures seamless integration
with the vehicle hardware, simulation environments, and data recording functionalities.
Like other RRLab vehicles, the Autobus also uses REACTiON architecture for basic
autonomous driving. The need to adapt this framework to pedestrian zones is evident
in comparison with unstructured environments, such as pedestrian areas with random
crossings and lack of markings. The adaptation consists of innovative integration of the
"interaction" component, and this thesis highlights the distinctive contribution shown in
Cyan in Figure 3.19. As stated in Chapter 1, this interaction is essential to avoid the
potential for the Autobus to enter a "frozen" state when they face pedestrians, who can
merely be considered an obstacle in a dense environment and stop its progress.
The REACTiON architecture is structured into discrete groups to facilitate perception
and control, thereby allowing for independent and modular modifications to enhance
system adaptability. This structure ensures that interaction components, fundamental to
the interaction with pedestrians and critical to the framework’s operation in pedestrian
zones, are methodically placed within the architecture. These components facilitate the
complete cycle of interaction—from perceiving pedestrians to the expression of verbal and
non-verbal cues.
The technical design considerations for the interaction processes is shown in Figure 3.20,
illustrating how data flow between the framework’s components underpins the entire cycle
with respect to smart interaction concept. This integration of interaction components
not only provides an efficient data access path but also ensures a comprehensive under-
standing of the system’s functionalities. Figure 3.20 further elucidates the deployment of
these components within the groups as initially presented in Figure 3.19, reinforcing the
framework’s approach to smart interaction strategy in autonomous driving for Autobus.
The different groups used for interaction are described as follows.
Hardware: The hardware interface includes all the sensor systems and driver interfaces.
For stereo cameras, which are mounted on the roof are linked to the Jetsons for initial data
processing, which involves detecting skeletal structures. This data, along with images and
point clouds, is directly imported into the hardware for further analysis. The skeletal data
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Figure 3.19: This schematic represents the hierarchical organization of the REACTiON
architecture used in the autonomous driving system of the Autobus. The architecture is
segmented into four main categories: Knowledge, Interaction, Mission, and Safety Critical,
with a Remote Interface for external interactions. Each category is subdivided into functional
modules: Knowledge encompasses Context Assessment, Classification, Attention, Data-fusion,
and Quality Assessment; Interaction is divided into User Interface functions such as Navigator,
Pilot, Low-Level control, and Fail-Safe mechanisms; Mission and Safety Critical elements include
Hardware Interface operations; and the lowermost tiers consist of Hardware, Playback, and
Simulation components for system execution and testing. This structure facilitates a modular
and scalable approach to autonomous driving by delineating clear functional groups that can be
independently modified and optimized.
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is converted into 3D points and then transmitted along with other sensor data through
ports for quality evaluation.

Quality Assessment: The dissertation of Patrick Wolf [Wolf 22] explains the details of
quality assessment group. In summary, quality assessment is a multifaceted and integral
part of data processing and analysis, ensuring the reliability and accuracy of data used
in various applications. This process encompasses several key aspects and features, each
crucial for maintaining data integrity and optimizing data fusion results. Firstly, Quality
Degradation Assessment plays a pivotal role. It involves a meticulous examination of
how data quality diminishes across different stages of a behavior network’s processing
chain. By pinpointing the stages where significant quality loss occurs, this assessment aids
in identifying critical points that require rectification or improvement. This continuous
monitoring is essential for maintaining the overall quality of the data as it undergoes
various transformations or analyses throughout the processing chain.

By pointing to the camera mounted on the autobus, the skeleton point of the camera’s axis
is converted from the vehicle’s kinetic center, as described in the sensor configuration section.
This alignment with the vehicle’s kinetic center ensures that the skeleton coordinates
match other sensor data and facilitates accurate positioning on the map. The stereo
camera is set to a fixed 20° angle and captures data that changes at the tracking points
when the angle of the camera is changed from the original position. To address these
changes, the data transformation is performed by rotating the camera at 15 and 25° angles
and translating it along the x and z axes between -1m and 1m in relation to the data
of each joint. Given that the camera is stationary and only rotates on the x-axis, data
transformations include the adjustment of the x-axis rotation matrix and translations on
the x and z-axis.

Pedestrian Activity: The navigation architecture, as elaborated in Chapter 4, is
predicated on the integration of iB2C modules (Description 3.5). It employs a geometrical
method to ascertain the postures of pedestrians within the iB2C framework. The efficacy
and methodology of this approach have been substantiated in our publication [Jan 22b],
wherein the same dataset of 3D skeleton joint points were utilized to calculate various
angles between different body parts. Furthering this research, a comprehensive comparative
study was conducted by us and detailed in an extended paper [Jan 24]. Moreover, LSTM
models are also used for activity recognition. This thesis plays together with the LSTM
model and the geometrical method within the iB2C network, offering an in-depth analysis
of both approaches. This dual-approach strategy exemplifies the integration of machine
learning and geometric analysis in enhancing the robustness and reliability of pedestrian
behavior prediction in autonomous navigation architectures. The 3D joint points of the
pedestrians, taken from "Quality Assessment," are processed here for activity recognition.
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Description 3.5: Integrated Behavior-Based Control (iB2C)

iB2C architecture [Armbrust 11] is a comprehen-
sive system designed for complex behavior-based
applications. It leverages the principles of behavior-
based systems such as modularity, parallelism,
multi-goal orientation, and redundancy, along with
intelligent data fusion and behavior interaction,
influenced by Brooks Subsumption architecture
yet differing in crucial aspects. iB2C avoids strict
state-switching and allows multiple system nodes
to operate simultaneously, setting it apart from
traditional behavior trees and FSMs. It facilitates
enhanced system design and better behavior ar-
bitration by incorporating uncertainties into its
framework. The iB2C framework provides a com-
mon interface with meta signals for uniform behav-
ior interaction, featuring four main types of behav-
ior inputs and outputs: stimulation (s), inhibition
(i), activity (a), and target rating (r). Stimulation
is used to enhance the significance of a behavior
within the network, whereas inhibition serves to
constrain it. The values for both stimulation and
inhibition are confined within the range of [0, 1].
The internal state of a behavior, defined as the
potential ϕ, emerges from the dynamic balance
between stimulation and inhibition.

ϕ = min(s, (i− 1))

Classification: Interaction fields, as discussed in Chapter 5, are developed within the
Classification group. This classification leverages data from the "Pedestrian Activity"
group to represent various attributes of pedestrians in a comparable fashion.

Mapping: Classification data is integrated into the mapping system to identify navigable
zones for the Autobus. For navigation purposes, tentacles are utilized. The weighting
of these tentacles is determined by the values assigned to each cell within the map.
Considering that the current system employs a multi-feature map, various sets of tentacles
are produced. Specifically for this study, a new category of tentacles, named pedestrian
tentacles, is introduced to facilitate subsequent decision-making processes.

Pilot: The integration of the pedestrian-aware tentacles into the overall navigation system
is a crucial aspect to decide on what action should be taken by the vehicle. It is incorporated
into the Pilot group, a decision-making module within the navigation framework. This
module is responsible for adjudicating between the standard feature-based tentacles, which
primarily focuses on path segmentation, and the newly introduced pedestrian-focused
tentacles. The decision-making process within the Pilot group is thus enriched, enabling a
more nuanced and context-sensitive navigation strategy. This strategy takes into account
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not only the physical aspects of the environment but also the dynamic and potentially
unpredictable elements introduced by pedestrian movements. Detail of decision making
concept is given in Chapter 6. Once the preferred tentacle is chosen, the decision is made
either to control the vehicle or/and interact with the pedestrians.
Interaction Modules: A detailed design implementation of interaction modules is
presented in Chapter 7, which constitutes the fourth component of the smart interaction
strategy for this thesis. The content of the interacting modules, including LED displays,
audio, and lights, is controlled within this section.
The next four chapters provide an in-depth analysis of the four essential components
integral to the interaction concept of this thesis, as illustrated in Figure 2.4.
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Figure 3.20: This diagram provides a comprehensive view of the interrelated components of
the REACTiON framework for autonomous vehicle navigation. Quality Assessment is initiated
through Regions of Interest (ROIs) that undergo Transformation processes, interfacing with
the Hardware Interface, which receives sensory input data. The Classification module uses this
data to generate Vehicle Fields and an Aspect Map. Simultaneously, the Pedestrian Activity
modules monitor and evaluate pedestrian movements, labeled as "Activity." The Interaction
Module, comprising LED Display, Voice, and Lights, actively communicates with pedestrians.
Mapping components synthesize Drivable Path Tentacle and Pedestrian Tentacle data to inform
the Pilot module. The Pilot’s Decision Making component integrates these inputs to control the
vehicle effectively, ensuring adaptive responses to real-time environmental and pedestrian activity.
The flow of information between the systems underlines the complexity and integration required
for successful autonomous navigation and interaction with pedestrians in dynamic environments.
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In the field of driverless minibus technology, it is especially
difficult to determine what pedestrian activities are in busy
areas. For this reason vehicular intelligence is extremely
important in order to ensure that these minibuses work safely
and efficiently in places where many people walk around.
Thanks to recent advances in sensors, machine learning and
data processing, these systems have actually increased their
ability to detect, understand and predict what pedestrian
intentions.
The recognition of pedestrian activities refers to a systematic
process of identifying and classifying the movements and
behaviors of persons walking in a specific environment. This
interdisciplinary field combines elements of computer vision,
artificial intelligence, urban planning and human movement to
analyze patterns and characteristics of pedestrian movement.
The goal is to better understand how pedestrians navigate
and interact with the environment, which can be used to
design safer, more efficient and user-friendly urban spaces.
The main and fundamental element of the smart interaction

posited in this thesis (Chapter 2) is "Pedestrian Activity". To enhance interaction, it is
important to know the intentions of pedestrians. This section begins with a discussion of
the current state of detection, focusing on the models associated with approach used in
this thesis. Subsequently, a critical analysis of pedestrian activity recognition is provided
and the methods used to calculate pedestrian activity based on the detection model used
is explored in this thesis.

4.1 Pedestrian Detection
The process of pedestrian activity recognition starts with detecting a person. Mostly
researchers have been using RGB (Red, Green, Blue) imagery as a cornerstone, primarily
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due to its capacity to provide a rich, multi-dimensional view of the visual world. RGB
images, capturing the full spectrum of colors perceivable by the human eye, offer a com-
prehensive and nuanced perspective that is crucial for accurate pedestrian detection. This
color depth enables algorithms to distinguish pedestrian with greater precision, as subtle
variations in hue, saturation, and brightness can be critical differentiators. Furthermore,
the widespread availability and compatibility of RGB data make it a universally accessible
resource for researchers and developers. This accessibility ensures that advancements in
pedestrian detection technology can be rapidly disseminated and implemented across vari-
ous applications, specifically for driverless minibuses. Additionally, the inherent richness
of RGB images facilitates more advanced processing techniques, such as convolutional
neural networks (CNNs), which can extract and learn from the complex patterns present
in real-world scenarios. Thus, the use of RGB images in object detection not only enhances
accuracy but also fosters innovation and applicability in diverse and evolving technological
landscapes. For this work, a simple and fast model is used to recognize activities.
The quality of pedestrian recognition achieved by this method is the key to vehicle safety.
The model needs to interpret the input data accurately to quickly and accurately identify
what pedestrians are doing, which is essential for real-time self-driving. The system detects
subtle differences in the movement and appearance of pedestrians and greatly improves
the reliability of detection. This reliability is very important because it directly affects the
ability of the vehicle to make intelligent decisions and navigate safely through the busy
pedestrian area.

4.1.1 State-of-the-art Pedestrian Detection Techniques

Pedestrian detection is a specialized subset of a wider field of object detection. Object
detection models are designed to recognize many types of objects, ranging from everyday
objects such as chairs and cars to more specific entities such as faces and animals. Pedestrian
detection limits the scope of object detection and focuses exclusively on the identification
of humans within images and video frames. This concentration is crucial for applications
that are particularly interesting in the field of human presence, movement and behavior,
such as surveillance systems, autonomous vehicles and pedestrian traffic analysis. Although
the task focuses on a single category of objects (i.e. pedestrians), it is a unique challenge,
including the interaction between various poses, occlusions, different clothing, and the
environment that can have a significant impact on appearance.
State-of-the-art pedestrian detection techniques have come a long way with advancements
in deep learning and computer vision. Convolutional Neural Networks (CNNs)[Albawi 17]
are now the backbone of many pedestrian detection systems, offering big improvements
over older methods that relied on hand-crafted features. Models like YOLO (You Only
Look Once)[Redmon 16] and Faster R-CNN [Girshick 15] have been adapted to achieve
high accuracy by learning complex features from images of pedestrians. Multi-Scale
Detection [Liu 16a] tackles the issue of varying pedestrian sizes and scales in images by
applying detectors at different scales or using networks designed to capture features at
multiple resolutions. The SSD (Single Shot MultiBox Detector) [Liu 16b] framework is
a good example, as it detects objects of different sizes using feature maps from multiple
layers. Attention Mechanisms integrate with CNNs to focus on the most relevant features
of the input image for pedestrian detection, enhancing performance in crowded or complex
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scenes. CBAM (Convolutional Block Attention Module) [Woo 18] is a notable example,
selectively emphasizing important features in both spatial and channel dimensions. Part-
based Models[Girshick 14] break down the human body into parts and detect pedestrians
by recognizing and assembling these parts, which is particularly useful when the view is
obstructed or the pedestrian is partially visible. The Part-based R-CNN (P-R CNN) [Li 18]
extends the R-CNN framework to detect and assemble these parts for full pedestrian
detection. Using 3D and Depth Information, such as depth sensors and 3D modeling
techniques, improves pedestrian detection when 2D information isn’t enough. Methods
like 3D Convolutional Neural Networks (3D CNNs) [Qi 17] and LiDAR-based detection
systems offer enhanced spatial understanding and robustness to occlusions. Adversarial
Training employs Generative Adversarial Networks (GANs) [Creswell 18] to create training
datasets or improve the robustness of detection models against tough scenarios, generating
realistic examples that cover a wide range of appearances and occlusion patterns. Transfer
Learning and Domain Adaptation [Tzeng 14] leverage pre-trained models on large datasets
to improve pedestrian detection in specific or challenging domains, like night-time scenes or
bad weather. These methods adapt models to new domains with limited labeled data. The
models mentioned here form the foundation for advanced methods in pedestrian detection.

4.1.2 Skeleton Detection Techniques for Precise Activity Recog-
nition

In the context of Autobus, particularly within pedestrian-rich environments, the imple-
mentation of an optimal detection system for precise activity recognition is paramount to
ensure both safety and better interaction. In the array of available techniques, skeleton
detection has distinguished itself as a notably effective method for the recognition of
pedestrian activities. Advantages 4.1 highlights the advantages of perceiving a skeleton for
activity recognition.

Advantages 4.1: Skeleton Points for Activity Recognition

Superior Method for Activity Recognition Skeleton detection is highlighted
as a superior technique for accurately recognizing and predicting pedestrian
behavior. This is due to its focus on the skeletal structure of individuals, which
allows for sophisticated analysis of human postures and movements within
complex urban landscapes.

Reduced Computational Load A significant advantage of skeleton detection is
its efficiency in processing. By focusing on skeletal joint points, the method
requires processing fewer data points compared to other techniques, which
reduces the computational load while maintaining high accuracy, especially at
peak performance levels.

Granular Examination of Activities Skeleton detection enables a more detailed
examination of pedestrian activities by analyzing the angles between various
joint points. This allows for a comprehensive understanding of different human
postures and movements, providing a nuanced view of pedestrian behavior
that is critical for accurate activity recognition.
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Enhanced Decision-Making Capabilities The precision with which skeleton de-
tection captures the nuances of pedestrian activities significantly enhances the
decision-making capabilities of Autobus. By accurately interpreting pedestrian
behavior, Autobus can make more responsive and informed actions, improving
its ability to navigate safely in environments populated by pedestrians.

Consequently, skeleton detection stands as a pivotal innovation in the evolution of safe and
reliable urban mobility solutions, underscoring its importance in the ongoing development
of autonomous transportation technologies. Different body skeleton joints are available.
The model used for this thesis is shown in Example 4.1. In Example 4.1, a concise
description is provided for each of the numbered points in the 18-point joint skeleton.

Example 4.1: 18-Point Joint Skeletion Model

0. Nose joint.
1. Neck: Serves as a central connection between

the head and the torso.
2. Shoulder (R): Right shoulder joint.
3. Elbow (R): Right elbow joint.
4. Wrist (R): Right wrist joint.
5. Shoulder (L): Left shoulder joint.
6. Elbow (L): Left elbow joint.
7. Wrist (L): Left wrist joint.
8. Hip (R): Right hip joint.
9. Knee (R): Right knee joint.

10. Ankle (R): Right ankle joint.
11. Hip (L): Left hip joint.
12. Knee (L): Left knee joint.
13. Ankle (L): Left ankle joint.
14. Eye (R): Right eye.
15. Eye (L): Left eye.
16. Ear (R): Right ear.
17. Ear (L): Left ear.

4.1.3 State-of-the-art Skeleton Detectors

AlphaPose [Fang 22] focuses on improving the accuracy of crowd scenes. It uses a special
framework called regional multi-person Pose Estimation (RMPE) along with some other
techniques, such as symmetrical spatial transformation networks (SSTNs), parametrical
non-maximum compression of partial poses (NMSs), and proposal generators guided by
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partial poses (PGPGs). It employs a top-down approach, it first detects an individual and
then identifies their posture. This two-step process manages complex interactions well,
but can be slow less capable devices. DeepCut [Pishchulin 16] uses another strategy. It is
a partial-based model that combines CNN and integer linear programming to effectively
group the parts of a body. This model does not require separate human detection steps and
sets high accuracy standards. However, it requires a lot of computational power because
it evaluates many pairwise terms during the pose assembly. DeeperCut [Insafutdinov 16]
improves DeepCut by using deeper ResNet architectures to better identify parts and
optimize parts group algorithms. This allows even better accuracy, but requires significant
computational resources. DensePose [Güler 18] offers a unique approach for mapping all
pixels of the human body to a 3D body surface in RGB images. This gives a detailed view of
body position and movement, and is ideal for high-fidelity applications. However, it is quite
demanding in terms of computation and data. EfficientPose [Eweiwi 15] aims to balance
accuracy and efficiency. Using the scalable architecture of EfficientNet, it performs well in
real-time applications on various devices. However, this balance sometimes means trading
some precision for speed. Finally, SimpleBaseline [Zhu 23] is about keeping detection
simple. It uses ResNet and deconvolution layer basic architectures to make it efficient and
accurate. Its simplicity improves performance and computational efficiency and makes it
a good benchmark even if it is not the most advanced model.

Figure 4.1: OpenPose pipeline.

OpenPose [Osokin 18] provides multi-person 2D real-time positioning detection and uses
CNN, which is essential to understanding the positions of the human body. It leverages
a non-parametric representation known as the Part Affinity Field (PAF) to associate
parts of the body with individuals in the image. The system works from the bottom
up, first detecting the parts of the body (e.g., elbows, wrists, etc.) and then combining
them into a full pose for each person. Network architecture starts with the extraction of
features, followed by the initial estimation of the heat maps of key points and part affinity
fields (PAFs). Subsequently, the system undergoes five improvement steps, enabling the
detection of 18 different keypoint types. Then, a grouping algorithm determines the best
pairing of each keypoint based on affinity, selecting from 19 predefined keypoint pairs
(e.g., left elbow-left wrist, right hip-right knee, left eye-left ear). The process is shown in
Figure 4.1. Inference is that the input image is resized to fit the input dimensions of the



72 4. Pedestrian Activity

network, the width is adjusted to maintain the aspect ratio, and the padding is multiplied
by 8.

Model Description Approach Computational
Demand

Accuracy

AlphaPose Utilizes RMPE with
SSTN, Parametric
Pose NMS, and
PGPG. Targets
crowded scenes.

Top-down High for real-
time on less ca-
pable devices

74.2% mAP

DeepCut Combines CNNs with
integer linear program-
ming for body part
grouping without sepa-
rate human detection.

Part-based Substantial 59.8% mAP

DeeperCut Builds on DeepCut
with deeper ResNet ar-
chitectures and opti-
mized part grouping al-
gorithms.

Part-based Very substan-
tial

61.3% mAP

DensePose Maps every pixel to a
3D surface, providing
detailed body position
and movement analy-
sis.

Dense map-
ping

High and data-
intensive

57.0% mAP

EfficientPose Uses EfficientNet
architecture to bal-
ance accuracy and
efficiency, favoring
real-time applications.

Scalable ar-
chitecture

Moderate, ef-
ficient for di-
verse environ-
ments

73.8% mAP

SimpleBaseline Employs a simple
architecture with
ResNet and deconvo-
lutional layers. Ideal
for benchmarking due
to its efficiency and
accuracy.

Straight for-
ward archi-
tecture

Lower, efficient 71.4% mAP

OpenPose Real-time multi-
person system to
jointly detect human
body, hand, facial,
and foot keypoints.

Multi-
person

High, real-time
capable

65.3% mAP

Table 4.1: Comparison of Pose Estimation Models
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Implementing OpenPose for Enhanced Real-Time Multi-Person Pose Estima-
tion
Table 4.1 summarizes different pose estimation models using skeletons. We discovered that,
from our experiments with various modern skeleton detectors and from the observation of
computational requirements, OpenPose is an unparalleled tool, especially when it comes
to 2D multi-person real-time pose detection in Autobus. What distinguishes OpenPose
from us is its bottom-up approach. This method contrasts with the top-down method of
first detecting individuals and then estimating their pose. The OpenPose architecture is
modular and can be adjusted to various parts of the body including the face and hands.
Since detection is performed in small integrated PCs (Jetson AGX), it is important to
have a model with real-time capabilities. OpenPose is optimized for speed and accuracy,
making it suitable for real-time applications, and has set the standard for the estimation
of poses. This ability is crucial to this thesis because it allows to deal with scenes with
various numbers of individuals without having to obtain previous knowledge of them. This
method is a significant step forward from the top-down methods, especially in busy scenes,
and is often slow and scalable.
Moreover, OpenPose’s ability to detect up to 135 keypoints, covering body, foot, hand,
and facial landmarks, gives a level of detail in human posture and movement analysis that
is unmatched by most other models, which typically focus on fewer body keypoints. This
comprehensive detection is vital in the field of this thesis’s application, such as vehicle-
pedestrian interaction, where understanding human movement is essential. Another
aspect where OpenPose shines, and which is particularly beneficial for this thesis, is its
real-time performance. Even in scenarios involving multiple individuals, it maintains its
efficiency, making it ideal for interactive systems and live monitoring applications. While
the challenges are acknowledged, including the need for high-powered hardware for optimal
performance and some limitations in handling occlusions, the balance of speed, accuracy,
and the level of detail that OpenPose offers makes it a go-to tool for this thesis in scenarios
where rapid and comprehensive pose estimation is key to success. Hence for this thesis,
OpenPose’s 18-point joint skeleton model is used for pedestrian activity recognition as
shown in Example 4.1.

4.2 Pedestrian Activity Recognition
Following the critical phase of skeleton detection, we now move to the complex domain of
activity recognition, an essential component to fully understand the dynamics of a scene.
Based on advanced object detection techniques, such as OpenPose’s human pose estimation
technology, activity recognition aims to interpret and classify actions and interactions in
the captured data. This section gives detailed information about detecting and analyzing
patterns of movement and behaviour and converting raw data into meaningful insights
about the activities carried out. Through advanced algorithms and machine learning
techniques, activity recognition extends beyond mere detection, providing a deeper layer of
interpretation, which is essential for applications ranging from monitoring and interaction
between humans and computers to health monitoring - particularly driverless minibus
navigation. As mentioned earlier, the human skeleton joint point is used to predict different
activities around the Autobus in shared spaces to recognize activities. In this thesis, a
personalized data set is created to accommodate specific inputs and activities. This section
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explores how the subtleties of human gestures and movements are decoded and lay the
foundations for intelligent interactions that can not only see, but also understand and
respond to the complexity of human activity.
There exist multiple state-of-the-art works for activity recognition using skeletons from
images. Various deep neural networks are used, such as High Resolution-Net [Sun 19],
through heat maps, and ClueNet [Kishore 19], which is an unsupervised method for esti-
mating occluded pedestrian pose. Li et al. [Li 20] use three main components: AlphaPose,
a sequence-to-sequence network, and a softmax classifier, with an improved accuracy of
11.6% on the JAAD dataset compared to prior methods. Finally, tracking using a Kalman
filter is used in [Fang 19], followed by CNNs. This methodology proficiently forecasts
pedestrian intentions through 2D poses and images. However, it’s crucial to emphasize
that the focal point of this thesis is on detecting 3D poses. To achieve this, 3D pose data
needs to be reconstructed from 2D sources, necessitating the integration of perspectives
from various viewpoints.

Enhancing Activity Recognition with 3D Skeleton Joint Points
The reason 3D skeleton points are so much better for active detection is because they
capture deep spatial information and precise information. Unlike 2D joint points that
track movement only in two dimensions (x and y axes), 3D points add the important z axis.
This offers a comprehensive representation of exactly where things are in the real world
space. This understanding—when analyzing movements and postures, having this third
dimension- allows for more information. For activities such as stepping forward or reaching
out, which involve a lot of depth, 3D data gives a much clearer picture. Assumptions or
use complex calculations is not needed to know how far away pedestrian is, as with 2D
data processing. This makes the whole process easier and more precise. Additionally, 3D
data can distinguish between activities that may appear the same in 2D but are quite
different in reality. For example, from a 2D perspective, one may see the same hand
movement forward vs backward, but in 3D, the difference can be seen clearly. Thus, in the
short term, 3D skeleton points will give richer and more detailed information to recognize
activities. They can analyze human movements more accurately by capturing the whole
picture of the real world space.
Utilizing 3D skeleton joint points in machine learning models for activity recognition
presents significant advantages over using images, primarily due to the substantial reduction
in input data size and complexity. Images, especially high-resolution ones, consist of a vast
array of pixel data, encompassing color, brightness, and texture information, which results
in a high-dimensional input space for the model. Processing such extensive data requires
considerable computational resources and can lead to longer training times and increased
complexity in model architecture. In contrast, 3D skeleton joint points represent movement
and posture through a relatively small set of coordinates in three-dimensional space. Each
joint is defined by just three values (x, y, and z coordinates), drastically reducing the
amount of data fed into the model. This reduction simplifies the data preprocessing
steps, decreases the computational load, and often leads to more efficient training of the
machine learning models. Moreover, using 3D joint points focuses the model’s attention
directly on the human body’s movement dynamics, eliminating potential distractions and
noise present in full images, such as background details or varying lighting conditions.
This focused approach not only improves the efficiency and speed of the learning process



4.2. Pedestrian Activity Recognition 75

but also enhances the model’s ability to generalize across different environments, making
it more robust and accurate in real-world applications of activity recognition. Hence,
this capability to accurately capture the full spectrum of human motion, including the
intricacies of body language and interaction with surroundings, makes 3D joint points
particularly effective for activity recognition systems that require a deep understanding of
pedestrian behaviors.

4.2.1 State-of-the-art Skeleton Activity Recognition

The methodology introduced in [Sanchez-Caballero 22] is a completely convolutionary 3D
neuronal network that uses 3DFCNN to automatically encode spatial-temporal patterns
derived from depth sequences, eliminating the need for pre-processing. This study outlines
a technique for real-time human observation using an unprocessed depth image sequence
captured by RGB-D cameras. The model architecture integrates both 2D and 3D convolu-
tionary layers, complements maximum and average pool strategies. The network is trained
and evaluated on the NTU RGB+D dataset [Shahroudy 16], which includes 60 different
human actions. A graph-convolution network (GCN) alternative approach named pose3D
was presented in the study [Duan 22]. This skeleton-based activity recognition framework
is designed based on the NTU RGB data set, and uses 2D skeletons to generate 2D heat
maps. These heat maps are layered in the temporal dimension to form a volume of a 3D
heat map. Next, the 3D CNN processes these 3D heat maps to recognize the actions. This
method demonstrated superior performance than all of the latest approaches, proving
that it is more robust, interoperable, and scalable than the GCN as shown in Table 4.2.
Despite its success, the initial 2D to 3D conversion and its training on NTU RGB data,
collected via Kinect, are noted limitations.

Dataset Previous state-of-the-art Pose3CD
FineGYM-99 25.2 (2D-Ske) 94.3
NTU60 (X-Sub) 91.5 (3D-Ske) 94.1
NTU60 (X-View) 96.6 (3D-Ske) 97.1
NTU120 (X-Sub) 86.9 (3D-Ske) 86.9
NTU120 (X-Set) 88.4 (3D-Ske) 90.3
Kinetics (OpenPose) 38.0 (2D-Ske) 38.0
Kinetics (Ours) 44.9 (2D-Ske) 47.7

Table 4.2: Pose3CD accuracy performance compared to other approaches [Duan 22].

Since this thesis uses pure 3D-skeleton joint points without the use of depth images, the
methodology of this thesis is inspired from [Botache 19]. Botache et al. employed a smart
device-based approach to detect early pedestrian movement transitions, delineated into four
states: waiting, starting, moving, and stopping. Following the Human Activity Recognition
(HAR) baseline methodology, the process encompasses: preprocessing of acceleration and
gyroscope data, data segmentation and feature extraction, feature selection alongside
dimensionality reduction, and classification via machine learning algorithms, specifically
linear SVM and XGBoost. Testing with 11 individuals across 79 scenarios demonstrated
the model’s capability to preemptively predict movement transitions, achieving an F1-score
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of 85%. The HAR pipeline central to our methodology for detecting pedestrian movement
is illustrated in Figure 4.2.

Figure 4.2: Smart device-based method for detecting fundamental pedestrian move-
ments [Botache 19].

Replacing inertial data with 3D skeleton joint points as input for an LSTM model in activity
recognition tasks presents a viable and potentially advantageous alternative. Both inertial
data and 3D-joint points inherently share similar dimensional characteristics, typically
operating in three-dimensional space (x, y, z coordinates), which ensures compatibility
with LSTM models designed to process this kind of multidimensional data. Inertial
sensors capture movements by recording accelerations and angular velocities, reflecting
how different parts of a device (or, by extension, a body part) move in space. Similarly, 3D
skeleton joint points track the spatial positions of various body joints over time, offering a
direct visualization of bodily movements. The transition from inertial data to 3D joint
points in an LSTM model is relatively seamless due to these shared characteristics. Both
types of data provide a temporal sequence of movements, which is the kind of data LSTM
models excel in processing. LSTMs are designed to understand and predict patterns in
sequential data, making them equally adept at interpreting the sequences of movement
data, whether they originate from inertial sensors or skeletal tracking.

Moreover, 3D joint points can potentially offer more precise and explicit information about
body posture and movement compared to inertial data. While inertial sensors provide a
general sense of movement and orientation, 3D skeletal data precisely locates each joint in
space, allowing for a more detailed and nuanced analysis of human activities. This leads
to more accurate activity recognition, as the model can directly learn from the specific
positions and movements of body parts, rather than inferring them from acceleration or
gyroscopic data. Hence, utilizing 3D skeleton joint points instead of inertial data in an
LSTM model for activity recognition is not only feasible due to their similar dimensional
properties but also enhances the model’s accuracy and effectiveness. Both data types
record movement sequences in three-dimensional space, aligning well with the LSTM’s
capabilities, and the transition from one data type to the other should be straightforward
while potentially offering richer and more detailed insights into human motion. The LSTM
model contains four gates shown in Figure 4.3:

• Forget Gate (f): The initial phase in an LSTM network involves determining the
portions of the cell state to be omitted from further calculations. This decision is
facilitated by a sigmoid activation layer known as the forget gate layer. It evaluates
the previous hidden state ht−1 and the current input xt, producing a value within
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the range [0, 1] for each component of the cell state Ct−1. Here, a value close to 1
suggests retaining the information, whereas a value near 0 implies its exclusion.

ft = σ (Wf · [ht−1, xt] + bf ) (4.1)

• Input Gate (i): Following the forget gate, the LSTM decides on the new information
to be stored in the cell state. This process is two-fold: initially, a sigmoid layer—the
input gate—identifies the values in the cell state to update. Subsequently, a tanh
layer produces a vector C̃t of candidate values for addition to the cell state. These
components are combined in the subsequent update phase.

it = σ (Wi · [ht−1, xt] + bi) (4.2)

C̃t = tanh (WC · [ht−1, xt] + bC) (4.3)

• Input Modulation Gate (g): The transition to the updated cell state Ct from
the previous state Ct−1 is executed at this stage. Following the decisions made by
the forget and input gates, the cell state is updated by multiplying the old state by
ft, thereby discarding the deemed unnecessary information. Afterwards, the product
of it and C̃t—the new candidate values adjusted by their respective update rates—is
added.

Ct = ft · Ct−1 + it · C̃t (4.4)

• Output Gate (o): The final step involves determining the output based on the
current cell state. A sigmoid layer identifies the components of the cell state to be
transmitted as output. The cell state is then processed through a tanh function, and
the result is element-wise multiplied by the output of the sigmoid gate, ensuring
that only the selected parts are outputted.

ot = σ (Wo · [ht−1, xt] + bo) ht = ot · tanh(Ct) (4.5)

4.3 Methodological Framework for 3D Skeleton-Based
Activity Recognition

The process of activity recognition for this thesis is based on our previous work [Jan 22a,
Jan 24]. The recognition process includes a stereo camera mounted on the roof of the vehicle
to get images of the pedestrians. Initially, OpenPose is employed to detect and map the 2D
skeleton points of a subject in a scene, effectively capturing their pose in two dimensions.
Following this, these 2D points are meticulously overlaid onto the point cloud generated
by the stereo camera, which provides the crucial third dimension: depth. This stereo
camera, by capturing two slightly different views of the same scene, is able to calculate
the distance of objects from the camera (depth information) by comparing the two images.
When the 2D skeleton points are aligned with this depth data, each point is enriched with
a depth value, effectively transforming it from a flat, two-dimensional coordinate to a
three-dimensional one. This process involves careful calibration and alignment of the 2D
pose data with the depth field to ensure accuracy. The resulting 3D skeleton points offer a
more comprehensive understanding of the subject’s spatial orientation and movement in
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Figure 4.3: Diagram of a Long Short-Term Memory (LSTM) Unit. This figure illustrates the
components and operations within an LSTM cell at a given time step t. It demonstrates the
interplay between the cell’s input Xt, the previous hidden state ht−1, and the previous cell state
Ct−1. Gates within the LSTM, namely the forget gate (in yellow, with a sigmoid activation σ),
the input gate (in blue), and the output gate (in green), are crucial for information regulation
within the cell. These gates control the cell state’s update mechanism, represented by pointwise
multiplication (denoted by ×) and addition (denoted by +). The activation function tanh is
applied to the cell state and to the combined input and cell state to produce the current hidden
state ht. The updated cell state Ct, along with ht, is then forwarded to the subsequent time
step. Weights and biases associated with these gates, symbolized by ’b’, are adaptively modified
during the training process to refine the cell’s information processing capabilities.
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Label Activity Augmentation
Without With

Secondary
1 Calling 331 1324
2 Texting 310 1240
3 None 382 1528
4 Waving 94 376

Primary
5 Parallel Crossing Towards 260 1040
6 parallel Crossing Away 208 832
7 Left Perpendicular Crossing 220 880
8 Right Perpendicular Crossing 219 876
9 Standing 210 840

Table 4.3: Labels for pedestrian activities with number of sequences for 18 keypoints data.
The augmentation column shows the number of recorded sequences for every activity with and
without augmentation.

the real world, which is pivotal for our dataset of understanding behaviors and directions.
For this thesis LSTM models is used to predict pedestrian activities. To predict specific
activities existing around the Autobus, a custom dataset is created and the occurring
activities are explained within.

4.3.1 Custom dataset creation

In the development of training processes, custom dataset was constructed because the
existing datasets did not allow to capture activities specific to pedestrian areas around
the Autobus. Common datasets often differentiate between actions such as crossing and
non-crossing, mainly in the context of zebra crossings. This limitation required the creation
of a dataset containing scenarios involving Autobus in university campus environments,
thereby reflecting more realistic pedestrian behaviour.

The behaviour of pedestrians is heavily influenced by the environment, especially in traf-
fic. Observations show that pedestrians generally show a sense of security and therefore
potentially dangerous behaviour at zebra crossings and intersections. This behaviour is
remarkable in areas where there are no clear markings and traditional transport infras-
tructure.

To investigate these dynamics, the minibus was navigated through the campus of RPTU
Kaiserslautern to observe and record pedestrian responses in proximity to the vehicle.
During the observational study conducted around the campus, a variety of frequent and
critical pedestrian activities were identified, including calling and texting. These activities
were particularly noted while pedestrians crossed in various directions relative to the vehicle.
The diverse nature of these movements is attributed to the campus environment, where
pedestrians have the freedom to traverse the entire path area, as opposed to structured
urban streets with defined sidewalks. Consequently, the activities identified in this context
are detailed in Table 4.3.
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Upon analysis, these activities were classified into two distinct categories: "Primary"
and "Secondary" activities. This bifurcation was based on the nature of the activities
and the specific body joints involved. Primary activities are dynamic and predominantly
associated with the lower body joint points, specifically from the hip to the toes (joints
8-13). These activities typically involve motion and are essential for pedestrian mobility.
In contrast, secondary activities are primarily related to the upper body and involve joint
points above the hip, specifically joints 0-7 and 14-17. These activities often encompass
actions such as holding objects or using a mobile device and are less about locomotion
and more about interaction or engagement with objects or devices. Figure 4.4 displays
a sequence of frames showing pedestrians engaged in various activities, which serve as
training samples for the LSTM model. Each frame shows the 2D skeletal model that
maps the posture and movement of the individual. The primary and secondary activities
are concatenated to show full person activity. The selection of 46 frames per activity is
predicated on identifying the minimum number of frames required to fully encapsulate the
essence of each activity.

The dataset includes 240,000 records, each describing 18 body joint coordinates. These
records were used both for the training and testing of the neural networks. Each instance
is a time series sequence encoded in 46 frames and selected as the standard sequence
length in the dataset. This length was determined to effectively capture the average walk,
covering about 6-8 steps, representing a full walk cycle for an average stride. The dataset
was carefully chosen to include participants showing a variety of postures and speeds
during walking, with 23 frames that sufficiently cover the spread of almost all actions.
The classes were designated by activity and focused on the posture and movements of the
upper and lower body, respectively.
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Figure 4.4: The figure displays a collection of representative images demonstrating various
pedestrian activities, each tagged with corresponding actions for use in LSTM model training.
From left to right: (1) An individual engaged in a phone call while crossing the street perpendic-
ularly, which may indicate a potential distraction. (2) A pedestrian texting on a mobile device
while crossing the street in a path parallel to the camera’s viewpoint (3) A person making a
phone call and crossing parallel to the camera, which is used to predict pedestrian intent and
trajectory. (4) A person crossing the street perpendicularly without any visible engagement with
a device, representing undistracted walking behavior. (5) An individual exhibiting a waving
gesture while standing, which signify attempting to stop a vehicle or interacting with other
pedestrians. These images are processed to include skeletal tracking overlays in fluorescent colors
to facilitate the identification of limb positions and body movement patterns essential for the
algorithm’s learning process.

The rationale behind this categorization is to facilitate targeted analysis and classification.
By segregating activities based on the joint points involved, it becomes possible to focus
on specific groups of joints independently. This distinction is crucial in understanding
and analyzing pedestrian behavior in a campus setting, where the range of activities and
movements can be more varied and less predictable than in structured urban environments.
This approach allows for a more nuanced and accurate classification of pedestrian activities,
enhancing the understanding of pedestrian behavior in different contexts.

4.3.2 Segmented Upper and Lower Body Model Approach

The methodology presented in this study is structured into three sequential phases, as
illustrated in Figure 4.5: Data Preprocessing, Modeling, and Post-Processing. Initially,
raw 3D skeleton joint data are acquired and subsequently segregated into upper and
lower body points during the data preprocessing phase. This segregation is imperative
given the objective to discern the primary and secondary activities. Additionally, different
mathematical operations are performed for better accuracy based on the lower and upper
body. Consequently, two separate models are trained to identify primary and secondary
activities, respectively. In the final phase, i.e., post-processing, the activities predicted



82 4. Pedestrian Activity

Figure 4.5: This schematic represents the methodology utilized in this thesis for the recognition
of complex activities using 3D skeletal data. The initial stage involves the collection of raw 3D
skeletal joint data from CSV files, obtained via stereo camera systems. During preprocessing,
this data is transformed into a structured 3D array consisting of [Samples, Sequence Length,
Features], which allows for the handling of both the spatial and temporal dimensions of the
skeletal sequences. The data is bifurcated into upper and lower body joint indices to facilitate
specialized processing by two separate LSTM-based neural network models—Model 1 for the
upper body and Model 2 for the lower body. Each model employs LSTM layers followed by Dense
layers to effectively capture and learn from the temporal dependencies inherent in the sequential
data. The post-processing stage involves the conversion of the output labels from each model
into descriptive activity labels, which are then synthesized to form a complete representation
of the subject’s activity. This approach allows for an understanding of primary and secondary
activities, necessary for finalizing the results for activity recognition component of the concept.
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by both models are combined to yield a comprehensive representation of the combined
activity.
To feed the sequences to the model, the raw data is reshaped into a 3-dimensional array
where it considers the number of samples, Sequence length of each skeleton, and number
of features i.e., total joints (18x3=54). The lower joints are defined in indices 8, 9, 10,
11, 12, and 13 from the entire skeleton, while the rest represents upper body data in the
framework. The frames within the window are fed into the LSTM sequentially, respecting
the temporal order. The LSTM processes these sequences, extracting temporal features
and patterns critical for understanding the activity. After processing one window, the
window is "slid" forward by a certain number of frames (determined by the degree of
overlap), and the process repeats. As the LSTM processes each window, it builds an
internal state that captures the temporal context. This state is updated as the window
slides across the sequence, allowing the LSTM to maintain a continuous understanding of
the temporal dynamics.
This thesis explores the use of various optimization algorithms, including Stochastic
Gradient Descent (SGD), Adaptive Moment Estimation (Adam), and Root Mean Square
Propagation (RMSprop). The data labels are converted to one-hot encoded vectors
prior to being inputted into the model. To mitigate the risk of overfitting during the
training of expansive networks, regularization strategies such as Early Stopping and
Dropout are employed. Overfitting occurs when a model, instead of generalizing, starts
to memorize the noise in the training dataset, leading to a rise in generalization error
and diminished predictive performance on unseen data. The objective is to calibrate the
training duration to ensure the network comprehends the mapping from inputs to outputs
without memorizing the training data. The model’s performance is assessed on a validation
set post each training epoch, and training ceases under the Early Stopping criterion if
the model’s validation performance degrades, such as an increase in loss or a decrease in
accuracy.
In multi-class classification tasks, categorical cross-entropy is used as a loss function. For
example, a sample can only fit into one of many possible categories, and the model must
choose one. This approach uses a cross-entropy loss function, as the task is to classify
different pedestrian activities. The categorical cross-entropy loss function computes a
sample’s loss by adding the following values:

Loss = −
output∑

i=1
yi · log ŷi (4.6)

where ŷi is the i-th scalar value in the model output, yi is the corresponding target value,
and output size is the number of scalar values in the model output. It uses softmax as the
activation function. After the model outputs the array of softmax probabilities, highest
probability index is chosen as the predicted label.

4.4 Experiments & Results
The experimental methods of this thesis were adopted step by step, tailored to the specific
nature of the methodology. The incremental approach is the key to tracking the progress
of improving prediction accuracy. The thesis methodology here consists of two different
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models, aimed at the lower and upper joints, respectively. As a result, each model’s
evaluation is performed separately and detailed analysis of results for each body region is
given.
Following this approach, upper body joint data are standardized at a uniform scale to
ensure invariability for position and location. This standardization is particularly relevant
for actions such as calls or text, which involve minimal movements. Thus, the upper joints
are aligned within similar ranges, a process that is feasible because the secondary actions
under consideration do not necessitate temporal sequencing. For standardization purposes,
each data sequence of 23 units is subject to standard scale. This scale is calculated on
the basis of the lowest and highest values of the entire sequence, meaning that each
sequence with 23x54 data points is scaled on the basis of its minimum and maximum
values. Equation 4.7 shows the normalization process. Here, xi represents the individual
data points of the sequence, min(x) represents the minimum value of 23 units in the
sequence (assuming the total number of data points is 54), and max(x) represents the
maximum value of the sequence. This formula effectively scales each data point from 0
to 1, compared to the minimum and maximum values found in each sequence, thereby
standardizing the scale of the upper body data.

xi, normalized = xi −min(x)
max(x)−min(x) (4.7)

Contrastingly, lower-body joint data are not normalized. This decision stems from the
consideration that normalization could potentially impact the performance of the network.
The rationale is that the lower-body joint data need to accurately reflect changes in
movement, which is crucial for identifying activities like parallel or perpendicular crossing.
Hence, maintaining the original scale of the lower-body joint data is essential for capturing
these dynamic movements effectively.

4.4.1 Upper Body
The upper body activity classification model undergoes training over 50 epochs (plateau
reached) utilizing SGD, Adam, and RMSprop as optimizers, with corresponding learning
rates set at 0.1, 0.01, and 0.001. Training is conducted on both normalized and non-
normalized data. In the preprocessing phase, the data undergoes uniform scaling facilitated
by the application of the StandardScaler transformation, a component of the Scikit-learn
library.
Results before data augmentation: Table 4.5 presents the model’s accuracy on test
data when trained with normalization, while Table 4.4 shows the outcomes for the model
trained without data normalization prior to augmentation.

Optimizers Learning Rates
0.1 0.01 0.001

SGD .45 .41 .29
Adam .2804 .2805 .46
RMSprop .3018 .32 .45
Adagrad .416 .408 .422

Table 4.4: Accuracies of LSTM model for upper body data classification without normalization
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Optimizers Learning Rates
0.1 0.01 0.001

SGD .82 .69 .309
Adam .28 .57 .82
RMSprop .80 .78 .35
Adagrad .60 .672 .719

Table 4.5: Accuracies of LSTM model for upper body data classification after normalization

The data presented in the aforementioned tables unequivocally indicates an enhancement in
the model’s performance following normalization, as evidenced by the increase in accuracy
from 40% to between 70-80%. Notably, at a learning rate (η) of 0.1 with the SGD optimizer,
the model attained its peak accuracy at 82%. Conversely, employing Adam with the same
learning rate resulted in the lowest performance relative to the other configurations.
Results after data augmentation: In the subsequent experiment, the previously de-
scribed models were replicated utilizing analogous hyperparameters. However, this iteration
incorporated a blend of augmented and original data, with the training extending over 40
to 50 epochs. Additionally, an alternative optimization algorithm, Adagrad [Défossez 20],
was employed. The outcomes of this experiment are quantitatively detailed in the accom-
panying tables 4.6, specifically focusing on the models’ accuracy when evaluated against
test data.

Optimizers Learning Rates
0.1 0.01 0.001 0.0001

SGD .493 .483 .591 .613
Adam .40 .34 .34 .27
RMSprop .79 .809 .751 .78
Adagrad .817 .80 .808 .833

Table 4.6: Accuracies of LSTM model for upper body data classification without normalization
after augmentation

Optimizers Learning Rates
0.1 0.01 0.001 0.0001

SGD .4685 .57 .85 .85
Adam .89 .33 .68 .43
RMSprop .9485 .925 .88 .52
Adagrad .9138 .89 .86 .89

Table 4.7: Accuracies of LSTM model for upper body data classification after normalization
after augmentation

The model using normalized data for upper body joints consistently exceeds its counterpart
trained in non-normalized data. As shown in Table 4.6, Adagrad optimizers with a
learning rate of 0.0001 yield the highest accuracy among tested configurations. In contrast,
other optimizers show average performance at different learning rates. Especially the
generalization of the network in test data shows a significant improvement with normalized
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data, as shown in Table 4.7. The best results are obtained using RMSprop Optimizer
with learning rates of 0.1 and 0.01, while SGD Optimizer with learning rates of 0.1 shows
low performance. Remarkably, some optimizers at certain learning rates have achieved
more than 80% accuracy, a significant advancement over the results observed in previous
analyses.

4.4.2 Lower Body

In the final phase of the study, the LSTM model, designed for the classification of lower
body activity in pedestrians, was trained under two conditions: with and without data
augmentation. The plateau was reached at 75 epochs for the training. Impressively, in at
least one of the tested configurations, the model’s accuracy on the test data surpassed the
90% threshold. The model underwent experimental training using a variety of optimizers,
including SGD, Adam, RMSprop, and Adagrad, each tested with different learning rates
of 0.1, 0.01, 0.001, and 0.0001.

Results before data augmentation: Table 4.8 presents results indicating that the
Adagrad and Adam optimizers, when set to a learning rate of 0.1, achieve the highest
accuracies, registering at 98% and 96% respectively. The performance of other optimizers
varies, ranging from average to poor across the spectrum of tested learning rates.

Optimizers Learning Rates
0.1 0.01 0.001 0.0001

SGD .58 .65 .44 .76
Adam .96 .28 .26 .20
RMSprop .89 .23 .28 .20
Adagrad .98 .47 .20 .93

Table 4.8: Accuracies of LSTM model for lower body data classification before augmentation

Results after data augmentation: Notably, as shown in Table 4.9, the network’s
performance has experienced significant enhancement following data augmentation. In
terms of optimization, RMSprop demonstrates superior results across all η, while Adam
shows the least favorable outcomes, particularly at learning rates of 0.001 and 0.0001. It
is noteworthy that several optimizers have managed to surpass the 90% accuracy mark at
specific learning rates, marking a substantial improvement.

Optimizers Learning Rates
0.1 0.01 0.001 0.0001

SGD .974 .97 .965 .964
Adam .94 .96 .19 .21
RMSprop .98 .986 .984 .99
Adagrad .91 .727 .986 .98

Table 4.9: Accuracies of LSTM model for lower body data classification after augmentation
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4.4.3 Real-world Experiments

The practical applicability of the methodologies introduced in this chapter has been
evaluated through a series of experiments. These experiments were designed to test the
methods under various scenarios and with real-time, previously unseen data. For this
thesis, the test videos were captured using a stereo camera mounted on the autobus
operating at the RPTU Kaiserslautern campus. Autobus served as a mobile recording
unit, capturing videos across various locations and at different times.

In the context of this study, LSTM networks exhibited marginally superior performance
compared to Gated Recurrent Units (GRUs) across a range of hyperparameters. Therefore,
LSTMs were the chosen architecture for classifying pedestrian activities. The focus of this
analysis was on the separate joints of the detected pedestrian skeletons, which are divided
into upper and lower body parts. The activity sequence for each pedestrian comprised 23
frames, aligning with the training sequence length of the model. During preprocessing,
data passed through the SequenceConversion module, and thereafter, it was fed into the
LSTM model via the TensorflowInterface module for the prediction of pedestrian activities.

4.4.3.1 Upper Body Pedestrian Activity Classification

The frozen model, designed for recognizing upper body activities, employs LSTM layers
and utilizes an RMSprop optimizer with a learning rate of 0.1. This model effectively
classifies upper body activities, notably identifying actions such as "None" and "Calling,"
as demonstrated in Figure 4.6 (a) and (b), respectively. These classifications were observed
while monitoring a pedestrian moving between point A and B on the campus. The
corresponding videos were recorded at two distinct campus locations, capturing random
pedestrians near the vehicle.

However, the model also produced some false predictions, which might have been accurate
based on the joint data. A notable source of error is the misclassification of actions
involving arm movements, such as holding a cup or bag, as "Calling" or "Texting." This
misclassification arises because these activities share similar shoulder, arm, and head
pose data, with joint coordinates closely aligned. Additionally, instances where phones
were used in speaker mode by other pedestrians were incorrectly categorized as "Texting."
Furthermore, discrepancies in the labeling of the custom data, where holding a cup or
bag was sometimes tagged as "None" or "Texting," likely contributed to the network’s
confusion.

It’s important to note that the model bases its classifications solely on the 3D joint data of
the upper body, without considering the objects held by individuals. This limitation leads
to scenarios where pedestrians holding objects, yet facing straight ahead, are classified as
"None," indicating no upper body activity. In such instances, even if the real-time activity
class is incorrect, the model’s prediction, based on joint pose data, could be considered
accurate.

These factors, alongside general inaccuracies, significantly influence the model’s perfor-
mance. Two examples of such classifications are illustrated in Figures a and b of Figure
4.7.
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(a) A pedestrian detected with no upper body activity walking from B
to A.

(b) A pedestrian detected while calling, walking from A to B.

Figure 4.6: Correct Classification of upper body activity of a pedestrian and walking.
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(a) A pedestrian detected as Calling while holding a paper.

(b) A pedestrian detected as Texting who actually had no upper body
activity.

Figure 4.7: False positive classification of upper body activity of a pedestrian moving from
distance A to B.
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4.4.3.2 Lower Body Pedestrian Activity Classification

A modified version of the previously described model, employing the same hyperparameters
but trained for fewer epochs, was applied to lower joint data without normalization. This
model achieved a successful classification rate of upper body actions in 90% of cases. The
approach of focusing exclusively on the Hip, Knee, and Ankle joints for identifying primary
activities such as Parallel Crossing (Away and Towards), Perpendicular Crossing (Left and
Right), and Standing has proven to be effective. This was corroborated by the accurate
results obtained on test videos, as depicted in the visualization and illustrated in the
corresponding figure.

However, a few instances of misclassification were observed, as shown in Figures 4.8 and
4.9. These were less frequent compared to those in the upper body model. Potential
sources of error include the absence of certain frames or missing joint data. Additionally,
a lag in the input data coupled with minimal movement could erroneously result in a
classification of "standing."
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(a) A pedestrian detected with activity Right Perpendicular Crossing.

(b) A pedestrian detected with Parallel Crossing Away from the vehicle activity.

Figure 4.8: True positives classification of lower body activity of a pedestrian moving from
distance A to B
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(a) A pedestrian detected as Standing instead of Parallel Crossing Away from the vehicle.

(b) A pedestrian detected as Parallel Crossing Towards who actually is Perpendicular Crossing.

Figure 4.9: False negative classification of lower body activity of a pedestrian moving from
distance A to B.

4.4.3.3 Upper and Lower body classification simultaneously

In a subsequent experiment, a different approach was employed where models for upper and
lower body activity classification were operated concurrently, as opposed to the separate
execution observed in the previous scenarios. This setup involved the simultaneous
implementation of two distinct frozen models, each tailored to classify activities related
to either the upper or lower joints, on a single detected pedestrian. The test videos were
identical to those used in the earlier scenario, with the addition of a new video captured
while the bus was slowly traversing the campus.
For this experiment, the complete skeleton data of each pedestrian was bifurcated into upper
and lower joint datasets. These datasets were then fed into their respective classification
models. The predicted outcomes were visualized, where each identified activity was
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represented by changing labels. These labels shifted following each activity sequence or in
response to variations in pedestrian activity. It’s important to note that the frozen models
utilized in this experiment are identical to those described in the previously mentioned
scenario.
The models demonstrated a high degree of accuracy in recognizing various pedestrian
activities on unseen data. As evidenced in Figure 4.10, activities of pedestrians moving
from point A to B were successfully identified in terms of both upper and lower body
classifications, including scenarios (a) and (b), and even in data captured while the vehicle
was in motion (c). However, despite their enhanced performance on new skeleton data,
the models also exhibited misclassifications for both upper and lower body activities, as
depicted in Figure 4.11.
A common mistake in the classification of upper body activities is that pedestrians activity
is misinterpreted for movement of their arms holding bags, cups or other objects as "Calling"
or "Text". This is due to the similarity in shoulder and hand joint positions when holding
objects and participating in these activities. Another factor contributing to the wrong
classification of upper and lower body activities is the relative directions of vehicles and
pedestrians. In particular, as shown in Figure4.11 (a), the movement or position of the car
in combination with the movement of pedestrians on an undefined path has a significant
impact on the classification accuracy. The complexity of the scenario is that the car is not
on a normal straight road or open terrain, which is an additional challenge. For example,
pedestrians moving towards vehicles may normally indicate "Parallel Crossing Towards",
but given the distance and orientation of the path in relation to the stereo camera, it may
also be interpreted as "Perpendicular Crossing Left", complicating the model predictions.
In real-world environments, such challenges are often encountered, with factors such as
unclear paths or the position of the pedestrian in relation to the camera angle affecting
the model’s results considerably. In addition, missing data and incorrect joint position
estimates lead to inaccurate classification. This problem is particularly evident in Figure
4.11 (a) and 4.11 (b), where the opposite joints (e.g., shoulders or hand) on the pedestrian
are missing or incorrectly estimated. Although the lower body (heel, knee, ankle) has a
different leg movement and visibility, the upper body, including the shoulder and hand, has
limited movements and a limited range of joints values. This may confuse the distinction
between "Text" and "None" activities, especially when objects are held and transported.
In Table 4.10, activities are classified into safe (S) and unsafe (U) categories. For example,
pedestrians who walk away from a vehicle are always labeled as unsafe, regardless of
what they are doing. However, when a person goes to the vehicle, the safety depends
on what the person is doing — for example, when the pedestrian is busy with texting
or calling, it is considered unsafe. Similarly, it is absolutely unsafe if a pedestrian passes
perpendicularly while texting or calling. This classification facilitates smart interaction,
enabling the conveyance of messages in a manner tailored to the pedestrian’s current state
and actions.

4.5 Geometric Analysis Approach
The efficacy of machine learning models in learning pedestrian behaviors is fundamentally
dependent on the diversity and authenticity of the training data employed. Analysis in the
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(a) A pedestrian detected while Perpendicularly crossing to the vehicle in left direction with no
upper body activity.

(b) A pedestrian detected as Parallel Crossing Towards the autobus.

(c) A pedestrian detected as Parallel Crossing Towards while calling or talking on phone.

Figure 4.10: Correct classification of upper & lower body activity of a pedestrian moving from
distance A to B.
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(a) Activity of pedestrian detected as Calling and Perpendicular Crossing instead of Parallel
Crossing Towards and None.

(b) Pedestrian activity detected as Perpendicular Crossing but in wrong direction and Texting
instead of None.

Figure 4.11: Misclassification of upper & lower body activity of a pedestrian moving from
distance A to B.
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Activities Secondary
Calling Texting None Waving

P
r
i

m
a
r
y

Parallel
Crossing
Towards

U U S S

Parallel
Crossing

Away
U U U U

Left
Perpendicular

Crossing
U U S S

Right
Perpendicular

Crossing
U U S S

Standing U U S S

Table 4.10: The table presents an integration of primary and secondary activities to evaluate
conditions as Safe (S) or Unsafe (U).

use case, accuracy of 94% for upper body (Table 4.7) and 99% for lower body (Table 4.9)
is adequate. However, to the inherent unpredictability of pedestrian behavior, curating a
dataset that is both exhaustive and reflective of real-world conditions presents a significant
challenge. Therefore, to ensure robustness, this thesis employs a geometric approach to
posture analysis serving as a supplementary method to address potential deficiencies in case
of wrong predictions. Moreover, through this approach other attributes can be reckoned
such as distance, orientation which is further used for interaction fields (Chapter 5). The
efficacy and methodology of this approach have been substantiated in [Jan 22b], wherein
the same data type of 3D skeleton joint points were utilized to calculate various angles
between different body parts. Furthering this research, a comprehensive comparative
study was conducted by us and detailed in an extended paper [Jan 24]. This study plays
together with the LSTM model and the geometrical method within the iB2C network,
offering an in-depth analysis of both approaches. This dual-approach strategy exemplifies
the integration of machine learning and geometric analysis in enhancing the robustness
and reliability of pedestrian behavior prediction in autonomous navigation architectures.
Upon detecting the skeleton, the 18 joint points of the skeleton are represented as vectors
within a rectangular coordinate system. These vectors are instrumental in determining
the angles between various body segments. For instance, the vector representing the spine
which is lying between neck and right hip joint (Example 4.1) is denoted by −−−−−→Spine1,8 and
defined as follows:

−−−−−→
Spine1,8 = ⟨x1 − x8, y1 − y8, z1 − z8⟩ (4.8)

Angles between each pair of vectors are computed to ascertain the posture of the skeleton.
The orientation of the person is calculated by finding the angle between the shoulder
vector −−−−−−−−→Shoulder2,5 and y-normal vector. The posture is determined by analyzing a series
of angles formed by different parts of the skeleton. These angles are calculated using the
dot product formula between adjacent vectors, as shown in the equation:



4.5. Geometric Analysis Approach 97

Figure 4.12: The image depicts a flowchart for a computational methodology designed to assess
pedestrian postures through 3D skeletal joint point analysis. The process begins with a ZED
camera capturing raw data, which is then converted into a point cloud representation. This
point cloud serves as the foundation for constructing a 3D skeleton of the pedestrian. From the
3D skeleton, vectors are established to represent the orientation and position of various joints.
Subsequently, angles between these vectors are calculated to provide detailed information on
joint articulation. These angles are fused using iB2C. The resulting refined data feeds into a risk
assessment algorithm that evaluates the potential hazards related to the pedestrian’s posture,
as well as into a human posture recognition system that categorizes the posture according to
predefined classes for further analysis or action.

cos θ = p⃗ · q⃗
|p⃗| |q⃗|

(4.9)

In conjunction with the classes delineated for LSTM model, the geometric approach
incorporates additional postures suggestive of an individual’s lack of awareness:

• Texting on a phone

• Sitting

• Bending

• Looking away from the vehicle

• Having their back turned

These specific postures were identified and classified as activities within a behavior node,
following the framework proposed by [Ropertz 17]. The activity level within this behavior
node is quantified, reaching a maximum value (α=1) when a complete posture is exhibited,
and reducing to zero in the absence of any posture. The risk associated with each behavior
is correlated with the skeleton’s proximity to the vehicle. A state of awareness in the
person negates the risk, whereas unawareness triggers a risk activity proportional to the
stimulation of the risk behavior.
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Figure 4.13: The figure presents a case study within the framework of posture recognition,
which explains the detection of person with texting postures. This methodology involves a fusion
process for the positions of the elbow, assessing whether the right elbow and the left elbow are
bent upwards in a way consistent with the text on the smartphone. At the same time, it evaluates
the angle of the temple, integrates the position of the visible temple, and further improves the
posture analysis. This double evaluation activates the smartphone text fusion module, which
requires a typical downward view of text and a typical elbow flexion. The system is specific;
the smartphone text recognition module remains inactive unless the position of the individual
complies with the text recognition parameters (the downward eye and curved elbow). Once these
conditions are met, the system stimulates the unconscious fusion module, which is suggested to
play a broader role in the context of behavior analysis, possibly assessing the individual’s lack of
understanding of their environment through their interaction with smartphones. As a result, the
unaware fusion module becomes correspondingly active.

The methodology for computing human postures is illustrated in Figure 4.12. This
structured approach facilitates the identification of potential risks based on the posture
and proximity of pedestrians relative to the vehicle.
In examining the texting posture as illustrated in Figure 4.13, it is commonly observed
that individuals often exhibit one or both elbows bent, with their heads tilted downward
to focus on the smartphone. This behavioral pattern facilitates the establishment of
anticipated angles for elbows and the temporal region of the head. To accommodate
variations in body side involvement, a ’maximum fusion behavior’ approach is implemented.
This approach ensures that if either elbow or temple exhibits increased activity, the overall
activity level of the maximum fusion behavior matches that of the most active module.
The detection of the texting posture is contingent upon the activation of two key fusion
modules: the ’folding arms fusion’ and the ’looking down fusion’. The activity level of the
texting posture module is directly influenced by the ’folding arms fusion’ activity, while
also being equivalent to the activity of the ’looking down fusion’. The rationale behind this
approach is that the texting posture should primarily be identified by the characteristic
arm position associated with texting. While looking down can occur in various contexts
and may not necessarily indicate texting, the combination of this behavior with the specific
arm posture significantly increases the likelihood of identifying a texting posture.
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Moreover, the ’unaware fusion behavior’ amalgamates various indicators of a pedestrian’s
lack of awareness, such as looking away, sitting, or the presence of a child. This fusion is
crucial in assessing the risk posed by a pedestrian.
In geometric approach, the assessment of pedestrian risk is based on two principal factors:
proximity to the vehicle and the level of awareness. The risk module’s response is
proportionate to the pedestrian’s distance from the vehicle, with closer proximity resulting
in higher stimulation. However, the actual activation of the risk module is contingent upon
the pedestrian’s awareness. This implies that a pedestrian in close proximity to the vehicle
does not inherently constitute a significant risk if they are aware of their surroundings.
Conversely, a lack of awareness in such situations directly elevates the risk level, equating
it with the proximity factor. This dual-criteria mechanism ensures a more nuanced and
accurate evaluation of pedestrian risk in varying contexts.
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The pedestrian zones present a spectrum of structural vari-
ations that have a significant impact on the navigation of
driverless minibuses such as the Autobus. These areas can
range from highly organized environments with narrow paths
and crossings to complex, unstructured spaces where tradi-
tional navigational clues are minimal or absent. The struc-
tures of pedestrian areas are influenced by their design, their
intended use and the level of pedestrian and vehicle inte-
gration. Well-defined areas promotes predictable pedestrian
behaviour, while more open shared spaces necessitate complex
navigational interpretation algorithms. The creation of a in-
teraction field around the Autobus and pedestrians is essential
for smart interaction in pedestrian areas. These interaction
fields are virtual dynamic zones that include the vehicle, mod-
ulating size and shape in response to the movements of the
vehicle. These fields serve a dual purpose, namely to improve
safety and enable useful interaction between vehicles and
pedestrians. Therefore, after the recognition of the activity
of the pedestrian (Chapter 4), the risk of the pedestrian can

be translated into such interaction fields. Based on this assumption, the following section
briefly describes the challenges and implications of different environmental structures. It
examines the different levels of risk associated with pedestrian encounters and indicates
the likelihood of pedestrian and vehicle collisions. The upcoming section reviews research
pertaining to interaction fields, drawing inspiration for development of such fields for
Autobus. Finally, the practical implementation explains the design concepts that support
this research.
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5.1 Impact of Environmental Structure on Interaction
Fields

Figure 5.1 illustrates the relationship between varying degree of environmental structure
to path clarity and pedestrian risk. An approximation graph is depicted that shows a
decrease in pathway clarity when the geometrical structure of the environment becomes
less defined. The approximation is derived from a generalized understanding of the
environment, excluding anomalies. For instance, the presence of a man-made pathway
within a forested area is not accounted for in this model. Additionally, factors such as lane
markings and fixed road colors further contribute to this approximation, enhancing the
accuracy of detection algorithms in structured environments by aiding in the identification
of drivable paths.

Figure 5.1: The graph illustrates the relationship between "Pathway Clarity" and "Pedestrian
Risk" for variability of "Structuredness" in urban environment. It shows how the risk to pedestrians
varies with the clarity of pathways in different environments. The x-axis denotes the degree
of geometric structuring in pedestrian zones, ranging from low to high, signifying the extent
to which pedestrian pathways are distinctly demarcated. The y-axis quantifies pedestrian risk,
with higher values denoting increased danger, and pathway clarity with higher value denoting
segregation of pathway for pedestrians.

In pedestrian zones, the complexity of autonomous navigation varies widely, influenced by
the degree of structure within the environment. Example 5.1 compares different pedestrian
zones, highlighting this variance. The left image in the example presents a pedestrian zone
with a clear drivable path, indicative of a structured environment. The right image shows
trails in a busy pedestrian area with no segregation which is further depicted in Figure 5.1
as "pedestrian zone". It can be seen that the pedestrian risk tremendously increases
Figure 5.1 demonstrates a lower dip in pedestrian risk in highly structured environments,
such as street settings with separate walkways for pedestrians and designated roads for
vehicles, indicating a safer interaction dynamic.
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Example 5.1: Comparison of Various Pedestrian Zones

The image showcases a pedestrian zone
with a more structured urban design.
It features distinct walkways for pedes-
trians, separated from the areas where
vehicles are permitted. This setting aids
driver-less minibuses in path planning,
providing more predictable pedestrian
behavior patterns. However, challenges
persist with the occasional pedestrian
deviating from the designated paths,
necessitating that vehicles maintain an
alert monitoring system. Transitioning
between different types of zones, like
from a clear path to a shared zone,
also requires careful negotiation by
the vehicle. Interaction fields in such
structured zones, while possibly less
variable than in open plazas, must
still be capable of adapting quickly to
unforeseen pedestrian movements to
maintain safety.

Contrastingly, the image shows an open
and broad space with very few physi-
cal guides like marked paths or barriers,
challenging autonomous vehicle naviga-
tion. In such an environment, the ve-
hicle must rely on complex algorithms
to predict pedestrian movements that
can be highly random and multidirec-
tional. The absence of structural cues
increases the need for vigilant risk as-
sessment, as pedestrians could poten-
tially traverse any part of the plaza at
any instant. Driver-less minibuses here
must employ dynamic and highly respon-
sive interaction fields to safely navigate
through the varying pedestrian densities
and activities.

In the context of Autobus, it is imperative to establish clearly defined spatial zones around
the vehicle, also referred as "interaction field". These fields are essential for facilitating
effective communication between the Autobus and pedestrians. The complexity and
inherent risks associated with various pedestrian zones necessitate this stratification. By
delineating specific regions around the vehicle, these interaction fields allow the Autobus to
gauge the position and potential risk associated with individual pedestrians. Consequently,
the Autobus can modulate its behavior and communication strategies accordingly. The
idea of interaction fields focuses primarily on pedestrians who are in immediate need
of interaction, based on their proximity and the level of risk they pose. This approach
ensures that the Autobus can operate safely and efficiently in environments with varying
pedestrian densities and behaviors.
Based on the preceding motivation, this chapter delves into the design of interaction fields
between Autobus and pedestrians. The chapter commences with literature review, aiming
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to elucidate and distill the concept of interaction fields. This is followed by an in-depth
exploration of the methodologies employed in this study. The chapter concludes with a
detailed discussion of the findings in the discussion section.

5.2 Enhancing Pedestrian Engagement through Phased
Interaction Zones

This idea of introducing interaction phases is given in [Vogel 04]. The authors have
developed an interaction framework that progresses through four phases, moving from
public to personal interaction with fluid transitions between each stage. These phases
are Ambient Display, Implicit Interaction, Subtle Interaction, and Personal Interaction.
Unlike previous models, their framework doesn’t rely solely on physical proximity to
define phases, nor does it require handheld devices for personal interaction. It emphasizes
fluidity and supports multiple users, each in their own phase. The ambient display shows
general information as a neutral state, subtly shifting to implicit interaction when a user
approaches, inferring their receptiveness to information. During subtle interaction, the
display provides more detailed notifications and personalizes public information for the
user. Simple explicit actions, like hand gestures, are used for interaction in this phase,
allowing shared use and maintaining an overview of the display. Finally, in the personal
interaction phase, users can engage more directly with the display, such as through touch,
for detailed and personal information. This phase allows for longer interaction while
minimizing disruption to others, using the user’s body to occlude sensitive information
from onlookers. An example is shown in Figure 5.2.
Based on the interaction framework proposed by D. Vogel et. al. [Vogel 04], this thesis
proposes the implementation of Autobus interaction zones in order to significantly improve
their engagement with pedestrians. This model adopts a phased interaction approach,
which seamlessly moves from the environment to direct engagement, which promotes a more
natural and effective communication channel between the Autobus and pedestrians. The
basic area, similar to the "Ambient Display", serves as a stage of general awareness, where
the Autobus communicates its presence to pedestrians nearby through passive interaction,
ensuring that pedestrians recognize the intentions of the vehicle without needing direct
interaction. As the pedestrians come closer and reflect the "implicit interaction" phase,
the Autobus dynamically adjusts its behaviour in response to the pedestrian’s path and
speed, revealing subtle intentions such as speed adjustments.
Progressing to a more "direct" interaction phase, the Autobus begins a more explicit
communication with pedestrians in the surrounding area, using visual or auditory signals to
define its forthcoming actions or to recognize pedestrian priority. This level of engagement
improves security and clarity in densely populated or complex urban environments. In the
most interactive environments, similar to the "personal interaction" phase, the Autobus
transitions to the "risk" interaction mode, including emergency braking and other direct
communication methods to ensure the highest safety.
By articulating these interaction zones, the Autobus is placed to significantly improve its
communication effectiveness with pedestrians, safety, predictability and trust in similar
driverless minibuses. This strategic approach is aligned not only with the paradigms of
human interaction, but also adapts to the different degrees of involvement required in
different pedestrian environments.
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Figure 5.2: The image depicts a sequence of interactions between people and a display,
categorized into four levels: Ambient Display - A person walking by without interacting. Implicit
Interaction - A person standing and looking at the display with interest in Red. Subtle Interaction
- A person (in blue) closer to the display, looking to the screen. Personal Interaction - A person
(in green) directly touching and interacting with the display [Vogel 04].

Establishing interaction fields for Autobus offers several advantages. Three primary
benefits, as highlighted in this study with respect to the interaction concept defined in
Chapter 2, are outlined in Advantages 5.1

Advantages 5.1: Interaction Fields

Understanding the Risk Posed by Pedestrians Understanding how close
pedestrians are and how they move is very important for Autobus in pedestrian
zone. The interaction fields helps Autobus to identify risks of pedestrians.
These interaction fields help the Autobus navigation system not only to point
out the presence pedestrians, but also to understand how dangerous a situation
could be based on how close they are, their movement direction, and how fast
they are moving. For example, a pedestrian moving rapidly towards the vehi-
cle’s trajectory represents a higher risk than someone moving away or standing
still. By looking at these dynamic fields, the Autobus can identify risks in
real-time and distinguish between safe and potentially hazardous situations.
In this way, the Autobus can make informed decisions such as slow down, stop
or reroute, thereby significantly enhancing safety for both pedestrians and
vehicle occupants.
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Localizing Pedestrian Risk Around the Vehicle Another key aspect of these
interaction fields is their role to map pedestrian risks around vehicles. By
dividing the area around a vehicle into different areas with varying levels of risk
based on what pedestrians activity, the vehicle can maintain spatial awareness
of its immediate surroundings. This is particularly important in urban areas
where pedestrians can approach from all directions. These interaction fields
are dynamic buffer zones that are updated to respond to how pedestrians move.
This real-time information allows Autobus to adjust its path and speeds as
needed, ensuring the safety of pedestrians and reduce the risk of accidents.

Determining Required Interaction Types Furthermore, the interaction field is
the key to understanding how the Autobus interacts with pedestrians. Different
behaviours require different responses. For example, a pedestrian making eye
contact and indicating intention to cross may require the vehicle to yield, while
walking pedestrian groups on the marked streets with separate sidewalk do
not need immediate action. By analyzing these fields, the autonomous system
can detect these subtle indications and react accordingly. This capability not
only contributes to safety, but also helps to ensure that traffic flows smoothly.
This avoids unnecessary stops and maneuvers that may disturb traffic flow.

5.3 Establishing Interaction Fields Design
Understanding and defining these various interaction fields is crucial to the development
of the Autobus. It allows customized navigation systems and safety protocols to meet the
specific challenges of each environment. In highly structured environments, the autobus can
be programmed to expect more predictable pedestrian behaviour, whereas in unstructured
zones, it can give priority to the navigation of the ground and the sudden detection
of pedestrians. This tailored approach not only improves the safety of pedestrians and
passengers, but also contributes to the wider acceptance and trust of driverless minibus
technology by showing adaptability and understanding of various urban changes by the
degree of access of the population.
In developing vehicle interaction field for Autobus, it is essential to incorporate a compre-
hensive understanding of pedestrian behavior, particularly the risk of pedestrians. This
risk stems mainly from a lack of awareness among pedestrians about the presence of
Autobus, which may occur in scenarios where pedestrians are moving in the same direction
as the Autobus in the front or where pedestrians are busy with electronic devices. Such
behaviour significantly increases the risk of collision or delays in the transportation of the
Autobus. This thesis therefore proposes a customized model of pedestrian and vehicle
interaction fields to improve the decision-making capabilities of Autobus navigation and
interaction systems. The aim of this model is to mitigate risk by facilitating more informed
and responsive adjustment of driving and interaction strategies of vehicles.

5.3.1 Vehicle Interaction Field
Not all the visible surrounding regions around the vehicle are of interest for interacting
with pedestrians when driving. Due to open space and presence of many people in the
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surrounding, interaction should, certainly, be more dedicated to the interactee. Interactee
may not be reacting to the vehicle, but is anyone in the drivable area of the vehicle. For
such purposes, there is a need to segregate the region of interest and further divide them
according to the types of interactions. To embrace this strategy, interaction fields are
created around the vehicle which assists in encumbering the usage of interaction modules;
hence, narrowing the wide range of activated combinations of interacting modules in a
sensible way.

Figure 5.3: The depicted plot illustrates recorded pedestrian trajectories during their encounters
with the Autobus. A discernible pattern emerges from the data, suggesting that pedestrians tend
to initiate avoidance maneuvers in response to the vehicle’s presence in a consistent manner.
This observed regularity indicates the potential for predictable pedestrian behavior, which could
be leveraged to design the a pattern for interaction field where it is not interrupt in normal
circumstances.

The configuration of the interaction field is informed by pedestrian trajectories relative
to the vehicle. As depicted in Figure 5.3, there is a clear pattern in the movement
of pedestrians who are moving towards the Autobus. Under typical conditions, where
pedestrians are cognizant of the approaching Autobus, they tend to alter their path to
yield to the vehicle, especially in constrained spaces. This behavior, as observed and
analyzed by F. Schneemann and I. Gohl [Schneemann 16], indicates that pedestrians often
take the responsibility of avoiding the vehicle, demonstrating a collective pattern of spatial
negotiation and collision avoidance.
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The interaction fields around the Autobus, as illustrated in Figure 5.4, are designed to
facilitate graduated levels of communication and risk assessment based on the proximity
of pedestrians. This design is motivated by the observed pedestrian behavior from the
plot shown in Figure 5.3, which highlighted the varying responses of pedestrians to the
presence of the Autobus in their vicinity. The design of the interaction fields around the
Autobus, extending longer in the direction of travel and shorter in the opposite direction,
is informed by the dynamics of pedestrian and vehicle interaction as well as the principles
of risk assessment.

• The forward elongation of the fields accounts for the vehicle’s stopping distance,
which is proportional to its speed.

• A longer interaction field in the direction of travel ensures that there is ample space
for the Autobus to come to a safe stop if necessary.

• In contrast, the interaction fields are smaller on the sides of the Autobus because
pedestrians moving in this direction are more likely to have already observed the
vehicle passing by, reducing the level of risk.

Additionally, the Autobus’s sensory and navigation systems should be more readily detect
and respond to pedestrians who are entering these fields from the front or sides rather
than only from sides. Thus, the risk of a collision is naturally lower from the sides, and
the fields can be reduced in size without compromising safety. The other reason of narrow
size on the sides is because of narrow pathways, as discussed in Chapter 3 Overall, the
asymmetric design of the interaction fields around the Autobus optimizes the vehicle’s
response time and decision-making capabilities, enhancing pedestrian safety in varying
traffic conditions and pedestrian behaviors. The three categories of interaction field are:

• Ambient interaction: The outermost ’Ambient’ field represents a zone of general
awareness, where the vehicle signals its presence passively to pedestrians. This field
aligns with the observed tendency of pedestrians to acknowledge the vehicle from a
distance without requiring direct engagement. The extended Ambient field in the
driving direction reflect the focus on pedestrian crossing from the front. This is
the furthest distance in interaction. It is meant to show general information of the
vehicle’s intention. There is no risk of collision in ambient field, hence it has the
same idea of "Ambient Display" shown in Figure 5.2.

• Direct interaction: The ’Direct’ interaction field, as demarcated in Figure 5.2,
facilitates overt communication, in contrast to the more nuanced ’Implicit’ and
’Subtle’ interactions shown in Figure 5.2. This field is notably extended in the
direction of the Autobus’s travel to preemptively address the safety of pedestrians
who have not yet engaged with the vehicle. The lengthened ’Direct’ field enables
the early detection of pedestrians, particularly those who, due to distraction or
orientation away from the traffic, may not be cognizant of the vehicle’s proximity.
Such anticipatory design affords the Autobus the necessary freedom to modify
its trajectory or velocity in response to pedestrian movements, thereby enhancing
safety. Upon entry into the ’Direct’ field, the Autobus escalates its interaction
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with pedestrians to more active forms of communication. This shift is grounded in
empirical pedestrian behavior, which shows that individuals tend to realign their
walking patterns acknowledging the vehicle’s path, thus mitigating the risk of collision.
Ideally, the ’Direct’ field is to be circumvented by pedestrians to avoid unnecessary
alerts. However, if a pedestrian does penetrate this zone—indicating a lack of spatial
awareness—the system is designed to issue an immediate auditory signal or verbal
warning through speech synthesis to promptly capture the pedestrian’s attention
and convey critical safety information.

• Risk interaction: The ’Risk’ interaction field, situated immediately around the
Autobus, is designed to initiate a critical response measures when pedestrians enter
this area. The establishment of this zone is informed by the risk data of pedestrians,
which underscores the necessity for swift action in instances of pedestrian unawareness
or erratic movement. Upon a pedestrian’s entry into this zone, the Autobus is
programmed to elevate its alert status to the maximum, potentially triggering
emergency protocols to avert a collision. The zone being closest to the vehicle, the
’Risk’ field is inherently associated with a high collision threat. In such events, the
Autobus is required to engage its emergency braking systems promptly and employ
clearly visible visual signals, such as flashing lights, to alert the pedestrian. This
immediate and forceful response is a vital aspect of the vehicle’s interaction strategy,
ensuring the highest level of safety during close encounters.

Figure 5.4: Schematic representation of the Autobus with delineated interaction fields. The
’Ambient’ field, shown in light red, signifies an initial zone of awareness, extending predominantly
in the direction of the vehicle’s travel to provide early detection of pedestrians. The ’Direct’
interaction field, depicted in a darker shade of red, indicates an intermediate zone where more
active communication with pedestrians occurs, allowing for dynamic response as pedestrians
approach closer. The ’Risk’ field, marked in the darkest red, encompasses the immediate vicinity
of the Autobus, where the potential for collision is highest, necessitating prompt response
measures. This stratification facilitates graded interaction with pedestrians, enhancing safety
protocols based on proximity and relative motion for Autobus.

Overall, the vehicle interaction field is strategically layered to allow the Autobus to
modulate its communication and safety measures dynamically. This structure ensures that
the vehicle remains aware of its surroundings and can react appropriately to the fluid and
sometimes unpredictable nature of pedestrian movement, thereby enhancing safety for all
parties involved.
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5.3.2 Pedestrian Interaction Fields

For the integration of pedestrian models into vehicular interaction field mappings, it
is imperative that pedestrians are represented in a manner analogous to interaction
fields. Ellipses constitutes an appropriate geometric representation for this purpose, as
suggested by W. Limprasert et al. [Limprasert 13]. Using ellipses to represent pedestrians
in vehicular interaction fields provides significant benefits for decision making. Elliptical
models effectively capture the spatial extent and movement direction of pedestrians with
their major and minor axes, aligning well with natural human motion paths. This simplifies
computational processes, enabling quicker decision-making in Autobus due to the geometric
simplicity and reduced processing demands of ellipses. Furthermore, ellipses allow for
dynamic adjustments in scale and orientation, accommodating variations in pedestrian
speeds and directions. This adaptability, combined with the compatibility of ellipses with
Pedestrian detection (Chapter 4), facilitates efficient prediction of pedestrian movements
and seamless vehicular adjustments. Overall, the use of ellipses strikes a practical balance
between representing human movement accurately and ensuring computational efficiency,
enhancing the safety and reliability of pedestrian-vehicle interactions. Figure 5.5 shows
the representation of pedestrian as ellipses.

An ellipse is mathematically characterized by its geometric parameters, which can be
correlated with pedestrian movement aspects relevant to interaction fields for Autobus.
The standard equation of an ellipse, centered at the origin and aligned with the coordinate
axes, is:

x2

a2 + y2

b2 = 1 (5.1)

where a and b are the lengths of the semi-major and semi-minor axes, respectively. For
an ellipse that is centered at a point (x0, y0) and rotated by an angle θ, we adapt this
equation to encompass pedestrian positioning and orientation.

• Center (x0, y0): Represents the pedestrian’s current location or pose in the plane,
acting as the geometric center of the ellipse.

• Major axis (2a): The longest diameter of the ellipse, corresponding to the primary
direction of pedestrian movement. The semi-major axis a signifies the forward
movement direction and intended path length of a pedestrian.

• Minor axis (2b): Denotes the shortest diameter of the ellipse, orthogonal to the
major axis. The semi-minor axis b reflects the lateral movement or space occupied
by the pedestrian, essentially representing the pedestrian’s width in the movement
space.

• Angle of rotation (θ): Indicates the orientation of the ellipse in relation to
the coordinate frame, aligning the major axis with the pedestrian’s movement
direction. This angle provides an alignment of the pedestrian’s projected path with
the environment for accurate interaction simulation.
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• Color gradient: The color gradient within the ellipse symbolizes the pedestrian’s
level of awareness, originating at the center and extending outwards to the ellipse’s
periphery. A progression from the center towards the outer edge indicates an increase
in the pedestrian’s unawareness, with values escalating from the core to the boundary.

These parameters collectively define the spatial and directional attributes of a pedestrian
within an interaction field, aiding autonomous vehicles in dynamically adjusting their
navigation for pedestrian safety.

Figure 5.5: A graphical representation of a pedestrian interaction field in a coordinate system,
depicted as a gradient-filled ellipse. The axes labeled ’X’ and ’Y’ represent the coordinate frame
of reference on the horizontal and vertical planes, respectively. The gradient intensity within the
ellipse signifies the awareness of the pedestrian, with the highest value at the center transitioning
to lower values towards the periphery. The values increases with increase in unawareness. The
two arrows denote the major (vertical arrow) and minor (horizontal arrow) axes of the ellipse,
illustrating the pedestrian’s primary forward movement direction and the lateral dimension of
space occupation, respectively.

5.4 Integrating Interaction Field Representation as
an Entity of Aspect Maps For Existing Navigation
Framework

The design of interaction fields is performed using aspect maps. This is a novel frame-
work for applying cognitive processes in robotics, which was developed by GregorGre-
gor [Zolynski 18]. This framework clearly differs from traditional object-oriented ap-
proaches and instead chooses parallel data flow networks. These networks are inspired
by the first visual perception systems observed in animals and humans. Aspect maps,
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which are integrated spatial and symbolic structures that represent limited aspects of
the environment and capture only one aspect. These maps are constructed using aspects
from different sources, including other aspect maps, general storage, expert knowledge
and sensor data. Aspect maps are used not only to unite data, but also to combine
aspects to answer specific questions, extrapolate new information, and identify contradic-
tions. The methodology focuses on modular and reusable solutions and applies a strategy
of division and conquer to address cognitive challenges. This approach uses multilevel
abstractions of sub-symbolic information. By focusing on environmental aspects rather
than objects, this architecture opens the door to a number of potential applications. Its
strengths include early data abstraction and unification, facilitating general processing
algorithms and multimodal data integration. In addition, data flow network approaches
improve transparency and simplify the control and verification of cognitive processes, thus
accelerating development and improving the reliability and effectiveness of architectures.
Since, aspect maps are elements of a representation architecture for processing spatial
knowledge, the interaction fields for vehicle and pedestrian are created as one of its
representation in its spatial structure so that it can be easily correlated and combined.

5.4.1 Vehicle Interaction Field Aspect
The delineation of the interaction field surrounding a vehicle is an essential process that
requires establishing its dimensions and form. As delineated in Figure 5.4, the vehicle’s
interaction field possesses a distinct configuration, for which Bézier curves are employed
in the design process. The application of Bézier curves for crafting the interaction field
contours around the bus, as illustrated in Figure 5.4, has proven to be highly efficient,
with its benefits detailed in Advantages 5.2.
Four control point bezier curve is created. The cubic Bézier curve equation with four
control points is represented in Equation 5.2

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3 (5.2)

where:

• B(t) represents the point on the Bézier curve.

• P0, P1, P2, and P3 are the control points.

• t is the parameter that varies from 0 to 1.

At t = 0, the curve starts at the first control point P0, and at t = 1, the curve ends at the
last control point P3. The intermediate control points P1 and P2 define the tangents to
the curve at the endpoints and govern the curve’s shape. As the parameter t progresses
from 0 to 1, the curve passes through the intermediate points, generating a smooth path
within the convex hull of these control points.

Advantages 5.2: Bézier Curves For Interaction Field Design

Precision of Shape Definition: Bézier curves offer a high level of control over
the shape through the manipulation of control points. By adjusting these
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points, the designer can precisely define the curvature of the interaction field
to accurately represent the physical characteristics of the phenomena being
modeled.

Smoothness and Continuity: Bézier curves are mathematically smooth and con-
tinuous. This characteristic is critical when representing fields that naturally
exhibit smooth gradations. The smoothness ensures that there are no sharp
edges or abrupt changes in the interaction field that would be physically
unrealistic.

Scalability and Flexibility: The interaction fields can be scaled up or down or
stretched to simulate different scenarios or to fit into different scene contexts.
Bézier curves are parametric, which means they can be easily scaled and
transformed without loss of detail or shape integrity.

Visual Clarity: When illustrating concepts, clarity is paramount. Bézier curves
provide a clear and aesthetically pleasing way to represent interaction fields.

Animation and Interpolation: Since grid maps are used, the interaction fields
need to be animated or interpolated between states (for example, showing
how the risk area expands as a Autobus accelerates), Bézier curves facilitate
smooth transitions. The intermediate shapes during animation can be easily
calculated, providing a realistic and continuous motion.

Mathematical Operations and Collision Detection: When simulating inter-
action fields, it may be necessary to perform operations such as finding inter-
sections or calculating the area within a curve. Bézier curves have well-defined
mathematical properties that facilitate these operations, which can be critical
for simulations involving collision detection or overlap analysis.

Figure 5.6 illustrates a top-down schematic view of Autobus with two Bézier curves
extending from its front to the right and left, each depicting the interaction field shape for
both sides. In aspect maps, they are used to create the boundary of the vehicle interaction
field. Algorithm 5.1 shows the creation of Bézier curve on a grid map. Figure 5.7 shows
the corresponding implementation of Bézier curves on the grid for aspect map.

In the associated grid map, the contours of the vehicle’s interaction field are defined by
the placement of the interpolated points. In close proximity of the vehicle, grid values are
purposefully designated as null, a detail vividly captured in Figure 5.8. In this depiction,
regions with null values are indicated in red, and those assigned a value of one are shown
in green. This chromatic demarcation ensures a stark visual contrast between zones in the
grid, and later, for establishing a gradient encircling the vehicle.
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Figure 5.6: Top-down view of Autobus with associated interaction field outline: the cyan curve
represents the left side of the interaction field, while the red curve indicates an alternative side,
both modeled using cubic Bézier curves.

Algorithm 5.1: Updating Aspect Grid with Spline Function Values
1 in_gradient, in_spline_pts, par_cell_size ;
2 Initialize aspect grid with gradient values;
3 pts← GetPointer(in_spline_pts);
4 if pts.size() > 0 then
5 forall points in pts do
6 t← aspect grid.GetCellIndex(point.X() / GetValue(par_cell_size), point.Y() /

GetValue(par_cell_size));
7 aspect grid.SetCellValue(t, 1.0);
8 end
9 end

10 return aspect grid
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(a) Bézier curve on the left of the vehicle as
shown in Figure 5.6.

(b) Bézier curve right of the vehicle as shown
in Figure 5.6.

Figure 5.7: Implementation of a cubic Bézier curve applied in aspect map modeling.
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(a) Left side segmentation curve

(b) right side segmentation curve

Figure 5.8: Visualization of spatial partitioning using a cubic Bézier curve to delineate
boundaries: The red region is assigned a value of zero, representing one classification, while the
green region is assigned a value of one, indicating a separate classification. The curve provides a
smooth transition between two distinct value domains on a two-dimensional plot, with coordinates
measured on an orthogonal axis system.

Upon the successful delineation of the boundary maps as depicted in Figure 5.9, an
additional step involves the incorporation of gradient data. Initially, the ’right filtered
boundary’ undergoes a thresholding process using the gradient map as a reference. During
this process, the zero values, indicated in red, are assigned values from the gradient,
while the green cells are designated as NaN (Not a Number), indicating the absence of
a value. A similar procedure is then applied to the composite map resulting from the
previous operation, this time employing the ’left filtered boundary’ for thresholding. The
culmination of these steps is illustrated in the uppermost map of the figure, which presents
the finalized vehicle field map. A similar process is done for the rear of the Autobus to
have a similar shape shown in Figure 5.4. Depending on the driving direction, half the
vehicle fields are active.

The gradient is structured to symbolize three distinct interaction zones within the vehicular
field, namely, the ambient zone, the direct interaction zone, and the risk zone. It is
parametrically defined such that the values are at their highest proximate to the vehicle’s
centroid and decrement progressively towards the periphery of the field. Consequently, this
gradient serves as a quantifier of spatial interaction potential, delineating regions of varying
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Figure 5.9: Process flow diagram for boundary integration with gradient thresholding. The
lower left and adjacent right panels illustrate the ’Left filtered boundary’ and ’Right filtered
boundary’ maps, respectively, with green indicating defined ones and red indicating null values.
The right middle panel shows the ’Gradient’ map with a color gradient applied. This gradient
map is utilized to threshold the ’Right filtered boundary’ map, as depicted in the middle left panel,
titled ’Gradient threshold with Right boundary’, where red areas are replaced by corresponding
gradient values and green areas become non-numeric (NaN). The ’Left filtered boundary’ is
then similarly applied to the outcome of this operation, resulting in the ’Final threshold with
Left’ map shown in the top panel, which represents the completed vehicle field with integrated
gradient thresholds. This sequence of operations demonstrates the stepwise refinement of the
boundary maps through gradient integration, ultimately yielding a comprehensive field suitable
for further analysis.
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Figure 5.10: The image presents a schematic representation of a vehicle’s forward interaction
field, visualized from a top-down perspective. The graphic showcases an overlay of the vehicle’s
outline on a contrasting background, with the interaction field delineated in a distinct orange
hue emanating from the front of the vehicle.

engagement intensity with the vehicle. By accumulating this gradient with data indicative
of pedestrian unawareness, one can find out the spatial distribution of interaction values.
This fusion of datasets allows for an analysis of the interaction intensities, providing a
framework to predict potential risk areas based on the pedestrian’s level of unawareness in
relation to the vehicle’s operational domain. Figure 5.10 illustrates the interaction field
at the front of the vehicle, with a top-down view of the vehicle provided to visualize its
appearance.

5.4.2 Pedestrian Interaction Field Aspect
The vehicle interaction field, a concept crucial for comprehending pedestrian unaware-
ness and associated risk levels, necessitates an analogous representation of pedestrians.
While the implementation methodology mirrors the methodology used in the pedestrian
interaction field, it diverges in terms of the geometric shape utilized for representation.
As shown in Figure 5.5 that the represented as ellipse, this specific geometric choice is
instrumental for accurately modeling the spatial dimensions and movement dynamics
associated with pedestrians. As demonstrated in Figure 5.11, pedestrians are represented
by an ellipse, shaded in a yellow-greenish hue. This visual representation is significant for
several reasons.
Firstly, the origin point (0, 0) of the coordinate system is aligned with the center of the
vehicle. Consequently, the center of the ellipsoid, representing the pedestrian, is placed in
accordance with the pedestrian’s actual position relative to the vehicle. This alignment
is critical for a precise spatial representation of the pedestrian in relation to the vehicle,
enhancing the model’s accuracy in assessing interactions and potential collision risks.
Additionally, the orientation of the ellipsoid’s elongated axis is carefully chosen to indicate
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the pedestrian’s direction of movement. This directional aspect is not merely a visual
attribute but also plays a pivotal role in the analytical model. It further enables the
prediction of the pedestrian’s trajectory and enhances the assessment of potential risks
arising from their movement patterns. Algorithm 5.2 gives the process of creating ellipse
on a 2D grid map.

Algorithm 5.2: Creating Ellipse function on a Grid
1 in_yaw, in_center, par_cell_size in_radius_x, in_radius_y, in_off_set, in_gradient;
2 Aspect grid with ellipsoid influence values;
3 θ ← GetYawValue(in_yaw);
4 cosθ ← cos(θ);
5 sinθ ← sin(θ);

6 rot_matrix←
[
cosθ − sinθ

sinθ cosθ

]
;

7 origin← GetPointer (in_center);
8 cx ← origin.X()/ GetValue (par_cell_size);
9 cy ← origin.Y ()/ GetValue(par_cell_size);

10 for x← −radius_ to radius_ do
11 for y ← −radius_ to radius_ do
12 relx ← x− cx;
13 rely ← y − cy;
14 newx ← rot_matrix[0][0] · relx + rot_matrix[0][1] · rely;
15 newy ← rot_matrix[1][0] · relx + rot_matrix[1][1] · rely;
16 newx ← newx + cx;
17 newy ← newy + cy;
18 ellipse_value← 1 +

(
newx−cx

GetV alue(in_radius_x)

)2
+
(

newy−cy

GetV alue(in_radius_y)

)2
;

19 SetCellValue(aspect_, x, y, in_off_set + ellipse_value . in_gradient) ;
20 end
21 end
22 return aspect_grid

Figure 5.11 shows the ellipse representing a pedestrian visualization for this thesis. The
model enhances the understanding of pedestrian awareness by integrating a dynamic
intensity scale into the ellipse on the network map, which varies directly with the level
of pedestrian awareness. Decreased awareness leads to an increase in the intensity of
grid values within the ellipse. The methodology for calculating pedestrian unawareness
based on their activity is described in Chapter 4. This method is crucial to accurately
represent the awareness of pedestrians in the context of the interactions with the Autobus.
Figure 5.12 provides a zoomed-in view of the pedestrian’s representation on the grid map
and compares the state of unawareness in the range of zero and one. A value of zero does
not completely eliminate the presence of pedestrians in the visualization. The grid cells
change color depending on the pedestrian’s level of awareness and change from red to
green in a spectrum corresponding to the grid value from 0 to 1. In this case, the red
represents a lower value of the grid and a higher pedestrian awareness, while the green
represents a higher value of the grid and thus a lower awareness. This color scheme is not
only a visual aid, but it is also crucial for the model’s ability to quantitatively evaluate and
visually represent variations in pedestrian awareness. This strategy effectively identified
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(a) Image of a pedestrian captured from front
camera, walking in front the Autobus.

(b) The spacial occupation of the pedestrian
in the grid map from top view.

Figure 5.11: Representation of pedestrian space on a grid map. The grid map depicts the
spatial occupancy of a pedestrian within a defined area, with the pedestrian’s presence illustrated
by an ellipsoid in a yellow-green hue. The red background signifies unoccupied space on the grid.
This graphical abstraction serves as a quantification tool for analyzing pedestrian dynamics and
spatial interaction on the grid, providing a visual approximation of the physical space influenced
by a pedestrian’s presence.

areas where pedestrians may be more vulnerable or at higher risk, thereby improving
understanding of pedestrian behaviour and its impact on safety in vehicle-pedestrian
interaction.

(a) Visualization of pedestrian awareness
with a calibrated unawareness value of 0,
depicted as an isolated area of heightened

intensity amidst a red background indicating
maximum awareness.

(b) Visualization of pedestrian awareness
with a calibrated unawareness value of 1,
demonstrating a gradient of decreasing
awareness from green to red within the

ellipsoid representation on the grid map.

Figure 5.12: The provided figures present magnified interpretation of Figure 5.5, each corre-
sponding to distinct values of pedestrian unawareness on the same scale.

In order to depict the collective awareness of multiple pedestrians, the respective values
assigned to each pedestrian are aggregated. This process is exemplified in Figure 5.13,
which illustrates two pedestrians with reduced awareness in the vicinity of the Autobus.
The lack of awareness among these pedestrians is indicated by elevated intensity values,
which, when coinciding in space, intensifies cumulatively. Consequently, the areas of
overlap are visually represented by a more saturated color, denoting increased values. In
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(a) Image of two pedestrians captured from
front camera, walking in front the Autobus.

(b) The spacial occupation of both pedestrians
in the grid map from top view.

Figure 5.13: Composite Grid Map Illustrating Multiple Pedestrians. The grid map visualizes
two overlapping pedestrian spaces, each modeled as an ellipse with additive value layers, against
an unoccupied red background. The overlay of the ellipses generates a gradient of values where
the spatial extents intersect. The central yellow region indicates the highest value concentration,
signifying the greatest degree of pedestrian overlap. This composite representation is pivotal
for understanding the collective spatial impact of pedestrian movements and for applications
requiring the analysis of pedestrian density and interaction.

instances of such overlap, the awareness values are summed, adopting the maximum value
from the individual contributions as the representative metric. This methodology ensures
that the heightened risk associated with reduced awareness is accurately captured and
emphasized in the model’s output for multiple pedestrian groups.

5.4.3 Merged Vehicle and Pedestrian Interaction Field Aspect

The analysis of merged values within the interaction fields is crucial for understanding
how pedestrians interact with vehicles, such as an Autobus. Figure 5.14 provides a clear
depiction of this interaction, illustrating a pedestrian entering the Autobus’ interaction
field. This scenario is particularly important for evaluating the dynamic relationship
between the pedestrian and Autobus.

Upon the pedestrian’s entry into the interaction field, the model immediately begins to
detect and analyze their awareness levels. This process involves the assessment of the
pedestrian’s specific location within the field and the corresponding awareness values at
that point. The integration of these values is essential for calculating the overall risk
associated with the pedestrian’s presence in the vicinity of the vehicle.
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Figure 5.14: Spatial distribution of risk assessment in the interaction field between a pedestrian
and the Autobus. The pedestrian’s location is indicated by a black elliptical outline on the
grid map, and the vehicle interaction field shape is shown with gray dotted line. To the left, a
schematic representation of the Autobus is superimposed to orient the viewer to the vehicle’s
position and direction. The gradient from red to yellow on the heat map signifies a graded increase
in perceived risk, with yellow indicating higher concentrations of merged awareness values. These
values are computed to evaluate the likelihood and potential severity of an encounter between the
pedestrian and the vehicle. This visualization facilitates an understanding of how a pedestrian’s
position within the interaction field affects the Autobus’ risk assessment.

An illustrative example of how grid values increase in response to the pedestrian’s movement
within the interaction field is presented in Figure 5.15. This figure demonstrates the gradual
escalation of risk values as the pedestrian moves deeper into the interaction field. The
increasing grid values are indicative of the rising level of potential risk or conflict between
the pedestrian and the Autobus, making it a critical aspect of the safety analysis.
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Figure 5.15: This figure presents a quantitative representation of risk values associated with a
pedestrian’s movement within the interaction field of an Autobus. The data matrix indicates
the progressive increase in grid values corresponding to the pedestrian’s deeper penetration into
the field, which translates to a higher potential for risk or conflict. The gradation from lower
to higher values, particularly noticeable in the central columns (from right to left), reflects the
criticality of location-based risk assessment for the Autobus stationed to be on the left side. A
zoomed version is extracted in purple box.

Associated pedestrian risk: The "risk" parameter from the overall map is calculated
by summing up the ellipsoid grid values for a pedestrian and the vehicle interaction field
grid values. As the grid is represented as a two-dimensional matrix where each entry
corresponds to a grid value at a specific position, the formula for the sum within the
overlapped area of the pedestrian’s ellipsoid and the vehicle’s interaction field can be
expressed as follows:

Let E be the set of grid positions occupied by the pedestrian’s ellipsoid and V be the set
of grid positions occupied by the vehicle’s interaction field.

S =
∑

(i,j)∈E∩V

(Eij + Vij)

Where:

• S is the total sum of the overlapped grid values.

• Eij is the grid value at position (i, j) due to the pedestrian’s ellipsoid.

• Vij is the grid value at position (i, j) due to the vehicle’s interaction field.

• E ∩ V represents the set of grid positions where the ellipsoid and interaction field
overlap.
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Since the ellipsoid grid values are designed to represent the level of unawareness of the
pedestrian and the vehicle interaction field grid values represent potential risk, then the
sum S provides a composite value representing the combined effect of pedestrian awareness
and vehicle interaction at each overlapped position. This sum can be used to assess the
risk level in the interaction zone between the pedestrian and the vehicle based on the
threshold value set for the different interaction fields.
In addition, the aggregated grid values are transmitted to the "Decision Making" process
described in Chapter 6. This phase analyzes the integrated data to determine whether
escape maneuvers are feasible or whether the "interaction module" activation is necessary.
Decision-making protocols integrate these assessments into comprehensive responses,
strengthening safety protocols in scenarios where active interactions or prevention measures
are required.
Furthermore, the calculated risk value is fed into the "interaction module", as delineated
in the Chapter 7. This module uses a threshold mechanism to classify the risk value
into three different types of interaction: ambient, direct or risk-based. The interaction
classification determines the subsequent activation of the appropriate modules within the
interaction module. This stratification is crucial because it dictates the module’s reaction
to different levels of pedestrian-vehicle interaction and ensures an adaptive and contextual
approach to managing potential hazards.
In conclusion, design perspective gives priority to an effective risk assessment using
interaction fields adapted to the vehicle’s environment. The shape and direction of these
fields are strategically designed to be aligned significantly with the travel direction of the
Autobus. This alignment reduces the likelihood of engaging in inappropriate interactions,
especially in the peripheral parts of the vehicle where these interactions are less critical.
On the other hand, the pedestrian interaction area is oriented in accordance with the
pedestrian’s walking path. This orientation is crucial to the creation of a safety buffer that
allows the Autobus to have sufficient time and space to begin communication or to take
the necessary steps to react to the movements of the pedestrians.
Furthermore, the adaptability of the design is highlighted by its customizable features. The
size and intensity of the interaction fields can be modified to meet specific environmental
conditions, increasing the versatility of the system. This customization is essential to
ensure that the interaction fields are optimally configured for different scenarios, be it a
crowded urban street or a more isolated suburban area.
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Decision making is a crucial aspect of navigation of driverless
minibuses. This is the key to ensure that these vehicles
are safe, efficient and reliable. On highways, everything is
structured and predictable, and decision-making algorithms
can be very confident in predictability. However, as mentioned
in the previous chapter (Chapter 5), the driving in pedestrian
areas becomes more difficult with these driverless minibuses;
such areas are characterized by their unpredictability and the
diverse range of variables that the vehicle must consider in
real-time. This uncertainty means that the decision-making
framework for driverless minibuses must be adaptable. Unlike
the relatively predictable pattern of vehicular traffic in marked
streets, pedestrian movements are irregular and spontaneous
in pedestrian zones. Therefore, the driverless minibuses must
not only react to existing behavior, but also anticipate what
pedestrians might do next. In order to do so, a driverless
minibus must have a high-level perception system to detect
and predict the behavior of pedestrians accurately. They also
need an interface to interact with pedestrians and adjust their

navigation strategies to ensure smooth and safe travel.
This chapter examines the decision-making processes in the context of pedestrian trans-
portation in shared spaces and is an important element of the smart interaction strategy
used by Autobus. The Autobus decision-making mechanism is a complex combination of
navigation and interaction strategies designed to emulate and strengthen human decision-
making capabilities in dynamic and often unpredictable environments. These features are
crucial to the core functionality of the Autobus, which allows the vehicle to interpret and
react appropriately to the environment. Given the thesis’s emphasis on pedestrian interac-
tion, the decision-making module combines both navigation and interactive elements by
using audio and visual signals to communicate with pedestrians. This integrated approach
is essential to manage the interaction of vehicles in scenarios where traditional evasion
tactics are not practical due to space constraints. The process begins with analyzing



126 6. Decision Making

pedestrian activity (see Chapter 4) and representing pedestrian awareness on the map
(Chapter 5). These insights are crucial to the formulation of effective strategies, to guide
the Autobus in determining whether to navigate around or interact with pedestrians
blocking its paths. The risk assessment of pedestrian proximity is based on the interactive
field map defined in Chapter 5 which helps to determine the most suitable navigation and
interaction strategy. This decision-making framework emphasizes the main objective of the
thesis: improving the interaction between the Autobus and pedestrians, and ensuring safe
and efficient navigation within pedestrian areas. This chapter begins with an examination
of the design principles underlying decision-making processes. It provides a detailed
examination of various factors influencing pedestrian behaviour. Then three planning
parameters are explained to develop effective strategies. The discussion then turns to the
formulation of an interactive navigation strategy for Autobus. The implementation of
these strategies is detailed at the end of this chapter.

6.1 Design Principle
The navigation of pedestrian areas is a unique challenge for the Autobus, and pedestrians’
very dynamic behaviour introduce a significant level of uncertainty in predicting their
intentions. Unlike other environments, pedestrian areas are characterized by spontaneous
and unpredictable movements, and can vary greatly at frequent intervals. This variability
requires a sophisticated approach to intention prediction and behavior analysis to ensure
safe and effective navigation. In order to understand and effectively manage this complexity,
it is essential to identify and analyse factors influencing the behaviour and interactions
of pedestrians and the Autobus. These factors are classified and illustrated in a series
of graphs, ranging from Figures 6.1 to 6.4. In these graphs, the largest circle represents
the primary factor affecting pedestrian behavior in pedestrian areas. The smaller and
interconnected circles around this main factor represent various parameters that are
influenced by this main factor.
The considerations in Figures 6.1 to 6.4 must be envisaged during the design process.
For simplicity, the sub-categories of the different factors have been discretized. There
must exist approaches which should consider all these parameters and automate the entire
driving process and interaction, accordingly. Due to such complexity, driving algorithms
for pedestrian zone is not only enhanced by a single module but consists of different
components in a navigation framework to achieve the desired goal.

6.1.1 Planning Parameters
Generally, interaction is intertwined to so many aspects between different agents that there
is a need to specify its application and purpose in order to implement a strategy. Looking
at the overall application of this work and the relevant literature, three determinants are
chosen:

• Safety: Safety is essential and is an important factor for the community to accept
driverless minibuses, as highlighted in [Rahman 21]. In the autonomous navigation
of pedestrian areas, safety focuses primarily on alleviating the risk of collisions with
pedestrians. This requires a proactive approach in which the vehicle’s decision-making
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Figure 6.1: Hierarchical influence diagram of pedestrian physical context factors for Autobus
Navigation. The central node represents the overarching ’Physical context’ of pedestrian envi-
ronments. The secondary nodes illustrate the critical factors affecting this context, including
’Crossing type’ (with ’Perpendicular’ and ’Parallel’ as sub-factors), ’Street width’ (with ’Narrow’
and ’Wide’ as sub-factors), and ’Distance to vehicle’ (with ’High’ and ’Low’ as sub-factors).
This diagram serves as a conceptual map to understand how different physical attributes of a
pedestrian zone can influence the decision-making processes of the Autobus. Physical context
defines the factors related to the environment such as crossing types, street width, and distance
to vehicle. These are sub-categorized based on the type of environment the vehicle is driving
through.

Figure 6.2: Schematic representation of the impact of group size as a social factor on pedestrian
dynamics. The central node signifies the ’Social factor’ affecting pedestrian behavior, with
’Group size’ as a key component. The secondary nodes indicate the two sub-categories of group
size: ’Large’ groups and individuals (’Single’), each exerting a distinct influence on pedestrian
movement patterns and interactions in the context of Autobus navigation. Social factor are
dependent on the crowd size. It mainly refers to group size. It should be taken into consideration
for some of the driving behaviors such as evasion.
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Figure 6.3: Conceptual framework of pedestrian state variables affecting the decision-making
of Autobus. The core node labeled ’Pedestrian state’ connects to critical state descriptors such
as ’Speed,’ ’Trajectory,’ and ’Awareness.’ The ’Speed’ category distinguishes between ’Walking’
and ’Standing,’ while ’Trajectory’ divides into ’Towards’ and ’Away,’ indicating the pedestrian’s
movement relative to the vehicle. The ’Awareness’ node bifurcates into ’Yes’ and ’No,’ reflecting
the pedestrian’s consciousness of the vehicle’s presence. This framework outlines the fundamental
aspects of pedestrian behaviors that Autobus must interpret to navigate safely and interact
effectively with humans. Pedestrian state is relevant to pedestrian behavior. For this thesis speed,
trajectory, and awareness based on activity (Chapter 4) are considered. The speed is further
divided into standing and walking. Due to short interaction intervals, the speed of walking is not
considered. Trajectory considers the direction of the pedestrian and attention is the awareness of
the pedestrian towards the AV.

Figure 6.4: Diagram of dynamic factors in Autobus Control. The central, large node represents
’Dynamic factors’ that are critical to the operation of Autobus. This is linked to two key
operational elements: ’Speed’ and ’Steering.’ The ’Speed’ node further connects to its operational
states: ’Accelerate,’ ’Decelerate,’ and ’Stop.’ Similarly, ’Steering’ is associated with directional
choices of ’Same’ and ’Opposite,’ denoting the vehicle’s steering decisions in response to obstacles
or the driving environment. This schematic serves to illustrate the variable elements of vehicle
dynamics that are continuously adjusted during autonomous navigation.
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algorithms prioritize pedestrian safety. To this end, vehicles must engage in clear
and comprehensible interaction with pedestrians. This means effectively signaling
intentions, such as stopping or delivering its intentions to avoid potential risks. Safety
is an important planning parameter, and it is essential that the Autobus not only
detects and responds to pedestrians’ immediate movements, but also anticipates
and adjusts its course accordingly. This double approach ensures higher safety by
reducing the likelihood of accidents and improving vehicle predictability, promoting
pedestrian trust and facilitating more smooth integration of Autobus into pedestrian-
intensive environments. Based on the risk assessment provided by the interaction
field analysis (referenced in Chapter 5, it is preferred to ensure safe navigation.

• Efficiency: The main purpose of driverless minibuses such as the Autobus is to
transport people through densely populated areas with pedestrians. This scenario
presents a unique challenge, as the passengers on the vehicles and the pedestrians
who pass share a common goal of arriving at their destination quickly. Because
Autobus is designed to navigate a normally wakable path, their interest is based on
their ability to provide a cost-effective alternative to walking. As a result, efficiency
becomes an essential planning parameter in the decision-making process of the
operation of Autobus in pedestrian zones.

In this respect, efficiency is twofold: not only to minimize travel time, but also
to optimize routes and speeds to ensure timely arrival without jeopardising safety.
Autobus must intelligently calculate the most direct and less crowded routes taking
into account pedestrian traffic patterns and possible delays. This approach requires
a sophisticated navigation system capable of processing real-time data and making
adaptive decisions to improve overall trip efficiency. In addition to focusing on
efficiency, the goal of the Autobus is to provide a convincing and competitive means
of transport that meets both the needs of passengers and pedestrians and ensures
seamless integration into urban mobility ecosystems. The navigation system evaluates
delays to determine whether escape maneuvers or interactions are prioritizing.

• Trust: Empirical research has shown that people are afraid and anxious about
self-driving, and concerns are often centered on the possibility of system fail-
ure [Cugurullo 21]. Trust plays an important role in reducing these fears and bridges
the inherent uncertainty of autonomous driving technology with the acceptance
by the general public [Ribeiro 22, Lee 04, Ghazizadeh 12]. In the field of driverless
minibuses that navigate pedestrian zones, trust is especially important to ensure
that pedestrians are aware of the existence of vehicles and consider their existence.
Trust transcends emotional meaning in the context of AV-pedestrian interaction and
adopts a more symbolic form of communication. This symbolic trust is supported
by clear and undoubtedly reliable signs that convey the intention of the minibus and
the recognition of pedestrians. For example, by implementing a display that displays
animations or uses verbal signals, an effective communication of vehicle’s actions
can be done in response to real-time situations, increasing the trust of pedestrians.
Such measures ensure that trust is not only an abstract concept, but also a tangible
element of vehicle operation protocols and an important component of the smooth
integration of Autobus into pedestrian environments.
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By integrating trust as the basis for planning parameters, Autobus’ decision-making process
becomes more sophisticated. This requires not only the recognition and reaction of the
immediate environment, but also the psychological and emotional comfort of the people
nearby. This can be done by displaying an animation or providing verbal indications
adapted to a specific situation (Chapter 7). These factors improve the usability of the
Autobus in crowded environments. The future acceptance of such driverless minibuses
is expected to lead to the deployment of a fleet and thus improve connectivity. In the
planning phase, these parameters will be considered depending on the interaction phase.
This change is explained in the following subsections and explains the phase distribution
of the interaction system in detail.

6.2 Decision-Making with Clothoid-Inspired Tentacle
and Multi-Attribute Environmental Analysis

The tentacle-based approach relies on a map to derive weights essential for formulating
navigation strategies. Consequently, understanding the operational dynamics of tentacle-
based navigation necessitates a preliminary elucidation of the map’s structural configuration
and its constituent features.

Strategic Exclusion and Specialized Mapping in the Multi Feature Map Frame-
work

Multifunctional mapping has changed the way autonomous system navigates unstructured
environments such as pedestrian zones. This method combines various types of data to
improve navigation, such as simple obstacle data, elevation data and segmented paths
across different terrains. At the heart of this system are the ground elevation data that
form the map’s "base surface". This foundational layer is necessary to build maps and
add additional data layers. These additional layers make the map richer and provide
a more detailed and accurate view of the terrain. This technology provides a complete
multi-dimensional landscape picture that is crucial for driving complex off-road areas. The
data within these maps are categorized into four distinct types: ground elevation data,
ground classification data, obstacle elevation data, and obstacle classification data. This
detailed breakdown helps in understanding the terrain and obstacles within. Such detailed
classification is crucial in an off-road environment where navigation is more difficult than
in structured areas such as roads.

The main aspects of the multi-functional map system are the data interface and storage
mechanism. The system uses independent data input and retrieval interfaces and adheres
to the design of a perception-based design proposed by Schäfer et. al. [Schafer 08]. In
this design, the data is stored in the map at the level of the individual cell. Each cell
contains a list of data that contains all known information about the specific cell, thereby
creating a complete data archive for each segment of the map. An example can be seen in
Figure 6.5. One of the most important results of this data integration is the calculation of
navigation values for each cell of the map. This value lies in the spectrum from 0 to 1,
which indicates the cell’s transferability for the vehicle.
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Figure 6.5: The figure depicts a composite structure of a multi-layered feature map, essential
for advanced robotic navigation in unstructured environments. The highlighted cell spans across
multiple informational layers, each representing a different type of data—ground elevation, such
as ground classification, obstacle elevation, and obstacle classification. This multi-dimensional
approach enriches the map’s texture and provides a nuanced landscape representation, offering a
detailed understanding of the terrain and potential obstacles for optimized path finding

In the methods discussed in this thesis, pedestrians are deliberately left out of the primary
obstacle map, which is part of the framework of multifunctional maps. This is a deliberate
design choice that is performed during the characteristic classification stage, as described in
the section that explains interaction fields (Chapter 5). In order to address this exclusion,
the different categories of the multi-functional map are specifically focused on pedestrian
awareness, as shown in Figure 6.6. This special category is essential to improve the ability
of the navigation system to recognize and react to pedestrians in the environment without
observing them as obstacles.

Figure 6.6: The figure depicts an additional layer (in red) for pedestrian awareness which are
removed from normal obstacle layer in multi feature map framework.

Figure 6.7 illustrates an instance where a pedestrian engaged in a phone conversation
is detected in the vicinity of an Autobus. The first part of the figure, denoted as (a),
captures the visual from a camera where the pedestrian’s skeletal structure is pinpointed.
Subsequently, part (b) of the figure displays the map that exclusively represents the pedes-
trian. In order to evaluate the accuracy, two variations of obstacle maps are demonstrated.
The first variant, marked with a black square in part (c), incorporates the pedestrian as
an obstacle. In contrast, the second variant, shown in part (d), depicts the obstacle map
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after the pedestrian has been removed through aspect map, also highlighted with a black
square for reference.

(a) Camera image with pedestrian skeleton
detection: The visual input captures a

pedestrian, and the processing algorithm
outlines the human figure’s skeletal

structure for identification and tracking.

(b) Pedestrian-Only Map Representation:
This high-contrast map isolates the

pedestrian from the background, presenting
a focused visual representation used for

detailed analysis.

(c) Obstacle Map Including the Pedestrian:
The comprehensive obstacle map shows

various elements with the pedestrian
marked within a black box, indicating the
presence of a pedestrian as a navigational

consideration.

(d) Obstacle Map with Pedestrian Excluded:
Here, the obstacle map is displayed after

the pedestrian has been removed via aspect
map, demonstrating the map’s adaptive

feature for scenarios excluding pedestrians.

Figure 6.7: Figure illustrates the process and results of a pedestrian detection and exclusion
algorithm in Autobus navigation. The system uses a Multi Feature Map approach to separate
pedestrian features from other obstacles (as demonstrated in Figure 6.6) during the classification
phase for enhanced navigation responsiveness.

By creating separate pedestrian categories, navigation values can be specifically designed
to take pedestrian awareness into account. These values take into account factors such as
location, how people move and the density of crowded areas. This novel approach ensures
that the navigation system responds to the dynamic and often unpredictable movement of
pedestrians in a practical way and not just avoiding them as regular obstacles.
Integrating Dynamic Clothoid Tentacles in Multi Feature Map
Advanced technical navigation frameworks based on the principle of Multi Feature Map
are significant advances in robotic navigation, especially in complex and unstructured
environments. This framework is distinguished by the integration of advanced spatial
awareness and reactive decision-making mechanisms, which are essential for safe and
efficient navigation.
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This research centers on the innovative use of clothoid-based tentacles, which are integral
to robotic navigation. A clothoid is a curve that changes linearly with its arc length, so
that it is perfect for smooth transitions between different curvature values for kinematics
of a vehicle. These tentacles are not physical structures, but abstract structures, used for
road planning and environmental analysis. Each tentacle represents a possible navigational
path and projected on the basis of the current position and direction of the robot. This
method allows dynamic path planning, which allows robots to adapt to their surroundings
and avoid obstacles. The path of these tentacles is evaluated in real time, taking into
account factors such as proximity to objects, terrain slope and overall traversability of the
path.

Algorithm 6.1: Clothoid Path Computation for Navigation
1 in_start_curvature, in_end_curvature, in_path_length, aspect_grid
2 ∆κ← in_end_curvature− in_start_curvature

3 a←
√

2×in_path_length
|∆κ|

4 sstart ← in_start_curvature×a2

2
5 send ← in_end_curvature×a2

2
6 θrotation ← GetCurrentRotationAngle()
7 for s← sstart to send do
8 x← a · FresnelCos

(
s
a

)
9 y ← a · FresnelSin

(
s
a

)
10 θ ←

(
s
a

)2 − θinitial

11 direction_vector ← ComputeDirectionVector(x, y)
12 Normalize(direction_vector)
13 Rotate(direction_vector, θrotation)
14 sample_point.position← (x, y)
15 sample_point.direction← direction_vector
16 StoreSamplePoint(sample_point)
17 end
18 return aspect_grid

The core of the algorithm described in Algorithm 6.1 hinges on calculating the parameters
that define the shape of a clothoid. A clothoid, or Cornu spiral, is characterized by
a curvature that changes linearly with the arc length. This property makes clothoids
particularly useful in applications like road design, where smooth transitions between
different curvatures are required.

The primary equations used to define the Cartesian coordinates (x, y) of a clothoid in
terms of its arc length s are given by:

x(s) = a · FresnelC
(

s√
πa

)
,

y(s) = a · FresnelS
(

s√
πa

)

Here, s is the arc length along the clothoid, and a is a scaling factor related to the rate of
curvature change. The functions FresnelC and FresnelS are the Fresnel cosine and sine
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integrals, respectively, defined as follows:

FresnelC(u) =
∫ u

0
cos

(
πt2

2

)
dt,

FresnelS(u) =
∫ u

0
sin

(
πt2

2

)
dt

These integrals are not the usual cosine and sine functions but special functions used in
wave optics and related fields. They provide the Cartesian coordinates x(s) and y(s) of a
point at arc length s along the clothoid.
In the implementation of the algorithm, the change in curvature (∆κ) is initially computed.
Subsequently, the scaling factor a is determined using the path length and the absolute
value of ∆κ. The normalized distances along the clothoid from the start to the end (sstart
and send) are then calculated using a and the respective curvatures at these points.
The algorithm constructs the clothoid by incrementally calculating the position of points
along the path. For each point, the primary clothoid formula is used to compute the
Cartesian coordinates based on the scaled arc length s and scaling factor a. It also
computes the orientation for each segment and normalizes the direction vector to ensure a
consistent tangent along the path. The computed points and directions are stored as pairs
to represent the potential navigational paths, which are often referred to as "tentacles."
This dynamic construction allows for real-time adjustments to the path as the vehicle
navigates, providing a mechanism that is responsive to changes in the environment.
Such adaptability is crucial in complex and unpredictable settings, where continuous
reassessment of trajectory is necessary for safe and efficient navigation.
The selection of the optimal tentacle, or navigational path, is based on a rigorous evaluation
process. Each tentacle is scored using a set of predefined metrics, with the highest-scoring
tentacle being chosen for navigation. This process involves calculating the mean navigation
value across all the cells that a tentacle covers, effectively weighing the safety and feasibility
of traversing that path. The chosen tentacle’s curvature parameter is then fed into the
robot’s control system, guiding its movement along the selected path.
Let T = {t1, t2, . . . , tn} be the set of all possible tentacles. For each tentacle ti, calculate
its score S(ti) based on predefined metrics:

S(ti) = 1
Nti

∑
c∈Cti

M(c)

where:

• S(ti) is the score of tentacle ti.

• Nti
is the number of cells covered by tentacle ti.

• Cti
is the set of cells covered by tentacle ti.

• M(c) is the metric value for cell c, which evaluates the safety and feasibility of the
cell for navigation.
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The optimal tentacle topt is then chosen by:

topt = arg max
ti∈T

S(ti)

Finally, the curvature parameter κtopt of the chosen tentacle topt is fed into the vehicle’s
control system:

ControlSystem(κtopt)

where ControlSystem represents the function of the robot’s control system that processes
the curvature parameter and guides the robot’s movement along the path determined by
topt.
A crucial aspect of this framework is the way in which it reacts and adapts. Instead of
sticking to a fixed path, the system is always checking and adjusting its path by continually
recalculating and reevaluating the tentacles. It can be reconfigured at a regular interval,
i.e. respond quickly to changes around it. This is especially useful when the environment
is changing rapidly, such as obstacles that appear suddenly or terrain conditions may
rapidly change. As a result, it constantly adjusts its course to stay on track, making it
super efficient in unpredictable situations.
The framework also extends to sophisticated assessment of tentacle pathways incorporating
multifunctional content. Each cell of the map is assessed on the basis of several attributes
such as the type of ground segment, obstacles, and sensory data quality. This comprehensive
assessment ensures that the chosen path is not only free of direct physical obstructions,
but is also optimally drivable depending on the robot’s capabilities and environmental
conditions.

6.3 Pedestrian-Aware Tentacles for Enhanced Decision-
Making

Generally, a driverless minibus drives over a traversible path and avoids obstacle present
on the path. As illustrated in chapter 3, pedestrian pathways can be considerably narrow.
Driving Autobus with a single person on the pathway will impel the vehicle to slow
down due to unavailability of evasion. In such case, a traditional navigation will make a
safety slow down or completely stop. As stated earlier, humans have the aptitude to take
responsibility and give way; therefore, the best strategy in this capacity is to inform them
when needed. By doing so will reduce unnecessary breaking and slowdown behavior.
When removing pedestrians from obstacle maps, as shown in Figure 6.7(d), the detection
of pedestrians in the environment becomes mandatory. As a result, the development
of a set of tentacles specifically designed to assess the risks associated with pedestrians
is necessary. To this end, additional pedestrian-oriented tentacles are generated using
pedestrian maps to facilitate risk assessments. Pre-existing tentacles use the characteristic
map to define driving areas and continue to calculate the best navigation path. These are
now called feature tentacles throughout the thesis. The selection of pedestrian tentacles
depends on the index of the highest value on the pedestrian map and guarantees the risk
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in the driving area. The choice between evasion maneuvers and interaction modules is
influenced by a global risk assessment of both feature tentacles and pedestrian tentacles,
as indicated by the feature tentacle index.

Let Wf,i represent the weight assigned by the feature tentacle, and Wp,i represent the
weight assigned by the pedestrian tentacle. If i denotes the index of the tentacle (with i =
being the indexes of the feature and pedestrian tentacle), the aggregation of each tentacle
index is given by the equation:

Wtotal,i = Wf,i + Wp,i (6.1)

Subsequent sections delineate three scenarios to elucidate the application of both tentacle
types and the resultant decision-making processes of Autobus. While myriad situations may
arise in pedestrian environments, varying according to factors discussed in subsection 6.1,
it is beyond the scope of this thesis to catalogue every potential scenario. However, to
validate the proposed methodology, an exemplar scenario involving a pedestrian under
varied environmental conditions is presented.

• Narrow pathway: Since pedestrian zones include narrow pathways, where the
evasion is not possible, an example is shown in figure 6.8. The scene is explained
by using three tentacles. Figure 6.8a shows the feature tentacle for traversible path,
where as figure 6.8b shows the pedestrian tentacle which avoids other obstacle and
calculates the weights based on pedestrian awareness.

(a) Feature Tentacle (b) Pedestrian Tentacle

Figure 6.8: Narrow pathway tentacle visualization: Green color show high traversiblity and red
color shows low traversibility.

When summing up the weights from both sets of corresponding tentacles as shown
in figure 6.9, It is seen that all the corresponding tentacles have equal weights. The
best index from feature tentacle is chosen (middle). Since it is not possible to drive
due to pedestrian, interaction modules generates commands to make the pedestrian
aware of the vehicle.
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Figure 6.9: Narrow pathway: Sum of tentacle weights for tentacle shown in Figure 6.8.

• Semi-narrow pathway: Such situations allow for the possibility of evasion if not
too crowded, meaning the AV can maneuver to one side of the pedestrian. In the
specific case shown in figure 6.10, an unaware pedestrian is walking in front of
the vehicle. The feature tentacle can drive straight and to the left, whereas the
pedestrian tentacle has the lowest value in the forward direction due to the unaware
pedestrian.

(a) Feature Tentacle (b) Pedestrian Tentacle

Figure 6.10: Semi-narrow pathway tentacle visualization: Green color show high traversiblity
and red color shows low traversibility.

Observing the sum of weights in figure 6.11 for the semi-narrow pathway, the highest
value is taken by the left most tentacle. For this case the left feature tentacle can
be selected, and the vehicle can simply steer in the left direction. For this case the
interaction is not necessary.
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Figure 6.11: Semi-narrow pathway: Sum of tentacle weights for tentacle shown in Figure 6.10.

• Open area: Open areas, as the name suggests, are areas with no driving restrictions.
AV is able to drive along the width of the pathway. For such scenario, there are more
evasion possibilities. Also in this case, less interaction is needed since pedestrians
have the possibility to walk in different directions other than the vehicle direction.
But for the purpose of understanding, an unaware pedestrian is located in the same
location similar to previous scenarios. Figure 6.12b shows the forward tentacle with
lowest weight.

(a) Feature Tentacle (b) Pedestrian Tentacle

Figure 6.12: Open area tentacle visualization: Green color show high traversiblity and red
color shows low traversibility.

Examining the weight for this scenario in figure 6.13, it is shown that the left
and right tentacle has the highest value; hence, it is possible to drive on either of
the tentacles. Generally the tentacle is chosen which is in the direction of global
trajectory.
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Figure 6.13: Open area: Sum of tentacle weights for tentacle shown in Figure 6.12.

Figure 6.14 illustrates the results from an experimental visualization of the implemented
’tentacle’ approach to pedestrian navigation mapping. The depicted ’pedestrian tentacles’
are overlaid on a pedestrian-density map, serving as a heuristic representation of potential
pathways for Autobus navigation. Each tentacle index is assigned a color-coded weight,
which transitions from green to red to represent a spectrum of values ranging from lower
to higher. This gradation is directly influenced by the pedestrian unawareness beneath
each tentacle path: areas with higher pedestrian risk yield increased risk values, which
in turn amplify the corresponding tentacle index’s value. The methodology employed for
computing these values integrates both the spatial distribution of pedestrians and the
projected trajectories of the Autobus, with the aim of optimizing route selection for safety
and efficiency.
Overall, the implementation of a dual-tentacle approach for Autobus navigation has
achieved significant progress in the area of navigation for crowded environment. Given the
sensitivity of pedestrians and the principles of traditional navigation, the system is well
equipped to deal with the complexity of pedestrian environments in the real world. This
component is the basis for future improvements in the driverless minibus navigation system
and emphasizes the critical role of pedestrian awareness in safe and effective autonomous
driving.
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(a) Camera Image with Pedestrian Skeleton
Detection: The visual input captures a

pedestrian talking on the phone, and the
skeleton detection outlines the human

figure’s skeletal structure for identification
and tracking.

(b) Obstacle Map with pedestrian excluded:
Here, the obstacle map is displayed after

the pedestrian has been removed via aspect
map, demonstrating the map’s adaptive

feature for scenarios excluding pedestrians.

(c) Feature Tentacle: The traversable path
for the Autobus is delineated by segmented
paths. The regions depicted in red signify
areas with higher weights, indicating the

presence of obstacles.

(d) Pedestrian Tentacle: The depicted
tentacle visualizes pedestrian detection.

Areas marked in green indicate low weights,
signifying an absence of pedestrians. As the

color transitions to yellow, it denotes
increasing weights, reflecting the presence of

pedestrians within the vicinity.

Figure 6.14: Figure illustrates a scenario of pedestrian in narrow space. (a) shows the scene,
(b) shows the obstacle map. Two different tentacles are shown, (c) feature for path detection and
(d) pedestrian tentacle for pedestrian awareness.
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The interaction module is a key element of smart interac-
tion strategies, as described in Chapter 6, especially when
traveling through various pedestrian environments. Interac-
tion modules bridge the gap between the complex driving
environment of the Autobus and the human-centered environ-
ment they operate in. It includes tools and technologies that
allow effective communication and interaction between vehi-
cles, their occupants and external entities such as pedestrians.
This chapter focuses on the importance of each interaction
module used in Autobus and provides detailed analysis to
emphasize its essential role as a major communication channel.
These modules transcend basic operational elements and serve
as the main interface for Autobus to interact and transmit
information to external environments.
Based on the outputs of the decision-making module dis-
cussed in Chapter 6, there are specific scenarios where the
targeted interaction of the vehicle with pedestrians is manda-
tory. To solve this problem, the interaction module uses
various Human-Machine Interface (HMI) technologies, includ-

ing LED displays, auditory communication, and light signals. This chapter starts with a
detailed analysis of the HMI system that is essential to the dynamic interface between
the user and the technology. In particular, the integration of HMI into the Autobus is
highlighted, which means a significant advancement in human interaction with technologi-
cal collection. HMI deployment is essential to ensuring clear and natural communication
between individuals and complex automated systems and a key consideration in the era of
rapid technological development.
Integration of the HMI system into Autobus has many advantages. These include improving
accessibility and interaction fluidity of the system, which is necessary to ensure that
pedestrians can effectively interact with these advanced vehicles regardless of their technical
knowledge. This improvement in system intuitiveness transcends simple user convenience
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Figure 7.1: This triangular model maps the spectrum of HRI methodologies, ranging from
a robot-centered view to a robot cognition-centered view and a human-centered view. At the
vertices, we have ’A’ denoting socially evocative approaches, ’B’ indicating socially situated
approaches, ’C’ representing sociable robots, ’D’ pertaining to socially intelligent robots, and
’E’ at the apex as socially interactive robots. Each point within this triangle implies a varying
degree of robotic complexity, from sophisticated service robots requiring advanced skills at one
extreme to simpler, toy-like robots used for basic HRI research at the other. The underlying
implication is that the robotic component’s complexity scales with the sophistication of the HRI
approach."The conceptual space of HRI approaches. A - Socially evocative, B - Socially situated,
C - sociable, D - Socially intelligent, E - Socially Interactive. [Dautenhahn 07]

and plays an important role in safety assurance. It facilitates the clear and transparent
transmission to pedestrians of the operational intentions of the Autobus. Additionally, this
encompasses the conveyance of the vehicle’s navigational intentions or yielding instructions
to pedestrians, contingent upon the interaction field delineated in Chapter 5. Such
transparency is essential to promote trust and predictability in vehicle behaviour and thus
contribute to the overall safety of the ecosystems of the environment. This chapter begins
with various communication categories to clarify the importance of the content used in
Autobus communications. Afterwards, the existing literature to examined to explore the
nature and application of interaction modules in research. The final section focuses on
specific interaction modules implemented in the thesis, beginning with a description of the
communication process and then a detailed review of the functionality of each interaction
module is given.

7.1 Human Robot Interaction
Human-Robot Interaction (HRI) is a diverse topic which is still being extensively researched.
Since the invention of technology, one aspect which is always kept in mind is the human
interaction with such technologies. Human factors are considered throughout the period
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of designing, researching and evaluating new technologies. HRI is important where social
interaction with people is the central part of the application such as driverless minibuses in
shared spaces. The vehicle should exhibit intelligent cognitive skills in order to be accepted
and appealing; this results from findings of exemplary social intelligence in humans.
The spectrum of social skills in robots are application dependent [Yanco 02, Scholtz 03].
Robots performing independent tasks to robots used as human companions have low to
high levels of social skill requirements, respectively. In the context of vehicle-pedestrian
interaction, the inquiry pertains to the requisite social capabilities a vehicle must possess.
The responses fall within the scope of understanding human social cognition and its princi-
ples. A relationship between different approaches of HRI is developed in [Dautenhahn 07]
shown in figure 7.1.
Figure 7.2 is a triangular model that provides a comprehensive framework for categorizing
Autobus HRI functions which contains pedestrian interaction modules. Autobus uses these
modules to interact with pedestrians on the basis of its activities and communicate its
driving state, including aspects of the model’s defined HRI approach. It represents "D" for
socially intelligent robots through the advanced processing of social indicators and "E" for
socially interactive robots through its proactive engagement with nearby pedestrians. As
a result, the Autobus is located in a sophisticated link between "D" and "E", showing not
only a higher level of robot complexity, but also a higher level of HRI complexity. This
position in the triangular model highlights the ability of the Autobus to navigate complex
social environments safely and effectively, using nuanced social behaviors that are aware
of human social standards and expectations.
Classification and Strategies of Vehicle-to-Pedestrian Communication Modali-
ties
In the specific area of this research, vehicle interaction modes are classified into two
broad categories: formal and informal, as previously established in [Färber 15]. Formal
interactions include universally recognized signals, and are included in the design and
function of vehicles, including turn signals, horn and headlight activation. However,
informal interactions are those that arise from the human driver itself and encompass a
number of non-verbal signs that are subjective and dependent on individual behavior.
In the field of vehicle-to-pedestrian communication, [Mirnig 17] identifies three major
communication strategies. These are the practical communication of standard vehicles,
the use of vehicles with human-like characteristics, and the concept of placing a social
robot within the driver’s area. This scope of research focuses on the utility approach.
This choice is informed by its alignment with the inherent attributes of the system and
the requirements for the interactions it must manage. The aim is to communicate the
decision-making process of the vehicle directly to pedestrians without the need for human
characteristics on the vehicle. In addition, the idea of placing a social robot in the driver’s
seat is abandoned because it would have a negative impact on the space otherwise available
to passengers.
Moving forward„ this chapter will conduct a comprehensive analysis of the dynamics of
interaction between Autobus and pedestrians. The discussion begins with a systematic
explanation of the different communication channels that facilitate interaction between
these agents. This examination will include an in-depth examination of the important
factors that affect the nature and effectiveness of these communications.
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7.2 Spectrum of Communication Types in driverless
vehicle-Pedestrian Interactions

Building upon the foundational understanding of the Autobus interaction module, it is
essential to examine the various types of communication promoted by these systems. In
general, these communications can be classified into verbal and non-verbal forms, implicit
and explicit, as well as intentional and unintentional. Each category plays a unique role in
the transmission of information and intentions, especially in the case of driverless minibuses
that interact with pedestrians.

7.2.1 Verbal and Non-verbal Communication
In the field of driverless minibus technology, especially the interaction between driverless
minibuses and pedestrians, it is important to classify communication into verbal and
non-verbal forms. Verbal communication, which includes oral and written expressions,
is the basis for articulating vehicle directives. Its effectiveness depends on the fusion of
factors such as volume, intonation, articulation and content selection. Furthermore, the
way the receiver absorbs and interprets feedback is equally important to determine the
success of verbal interaction.
On the contrary, non-verbal communication refers to communication of messages without
the use of spoken or written languages employing medium such as such as speech patterns
and animation. Non-verbal signals, such as voice tone, body language, and visual contact,
could either strengthen or contradict the messages that are communicated verbally, and
provide multifaceted communication layers that cannot be communicated by verbal means
alone.
In the context of Autobus, such communication capabilities are instrumental. Integration
of verbal communication methods may include sound signals or verbal warnings to inform
pedestrians of the intention of the vehicle. Non-verbal communication includes visual
signals such as lighting patterns or screen displays that imitate human movements and
recognize the presence of pedestrians. With these means of communication, the Autobus
can effectively signal their actions and intentions to pedestrians, improve safety and
facilitate harmonious coexistence with pedestrians. The subtle application of these types of
communication is not only fundamental to interpersonal communication, but also adapted
and refined to interaction between pedestrians and Autobus.

7.2.2 Implicit and Explicit Communication
In scientific debate, it is necessary to distinguish between implicit and explicit communica-
tion in order to understand the complex relationship between driverless minibuses and
pedestrians. Implicit communication involves subtler, often non-verbal, signals that indi-
rectly convey intentions or information. In the case of Autobus, this can be demonstrated
by applying specific lighting colours or sequences on the display, indicating caution, or
by decelerating as the vehicle approaches a pedestrian, thus indicating, non-verbally, its
intention to stop.
In contrast, explicit communication is characterized by clear communication of messages.
For the Autobus, this may take the form of a audible announcement like "crossing forward"
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or a visual message on an LED display that clearly states messages such as "walking for
pedestrians". Such straightforward communication is vital to eliminating ambiguities and
minimizing the risk of misinterpretation of the dynamic interactions between the Autobus
and the pedestrians.
The employment of both implicit and explicit communication methods is vital in the
autonomous operation of Autobus. Implicit cues are often used as preemptive signals, subtly
alerting pedestrians to the vehicle’s immediate intentions and enabling them to anticipate
its subsequent actions. Explicit communication serves as a clear confirmation of the
vehicle’s imminent behavior, providing pedestrians with the certainty needed to navigate
their interactions with the Autobus safely. The strategic use of these communication
modes enhances the overall efficacy of the interaction, ensuring that the shared space
between Autobus and pedestrians is navigated with mutual understanding and safety.

7.2.3 Intentional and Unintentional Communication
Within the scientific framework of driverless minibus design, particularly in relation to
pedestrian interaction, communication is bifurcated into intentional and unintentional
categories. Intentional communication is characterized by deliberate actions taken by
the vehicle to transmit information or warnings to pedestrians and other road users. For
Autobus, this encompasses the strategic utilization of auditory signals or the exhibition of
specific messages or icons on LED screens, all designed to articulate the vehicle’s imminent
movements or its operational status.
Unintentional communication, although not explicitly designed in the vehicle’s commu-
nication suite, nevertheless provides information. This type of communication can be
generated by sensory signals such as vehicle electric motor noise, visual indicators such as
Autobus speed, or kinetic signals such as tyre orientation. Although these elements have
not been deliberately used as communication tools, they can provide pedestrians with
information about the current situation of the vehicle or the planned maneuver.
For Autobus operating in shared areas, intentional communication systems are crucial
to the role of a link between vehicles and pedestrians and to ensure that pedestrians are
aware of mini-bus behaviour. Unintentional communication also plays a supportive role;
pedestrians can identify certain behaviours from these indications and help to develop a
comprehensive understanding of vehicle behaviour. Together, these forms of communication
enhance the symbiotic interaction between the Autobus and pedestrians, ensuring a safer
and more predictable shared road environment.

7.3 Key Parameters for Effective Communication
Driving in pedestrian zones differs from driving in a normal street environment. As
the name suggests, these zones are meant to be for pedestrians to walk over the entire
width of the area. Conventional traffic is diverted from this area. Due to the presence of
people, researchers working in autonomous driving in such zones use the jargon of social
interaction for many different reasons: focusing on trust factor; clarifying incertitude;
cutout indecisiveness and increase overall safety. Interaction modules play a vital part
in explicit communication with pedestrians. Pedestrians are comfortable with knowing
about the intentions of the vehicle. For a human driver, there is a resonant eye contact
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between the driver and the pedestrian (explained in psychological aspects of human drivers
section of Chapter 2). By means of head and hand gestures – in advance – the driver
avoids decelerating the vehicle and politely solicits the vehicle’s right to pass. On the
other side, knowingly the priority of a pedestrian, the pedestrian volunteers to prorogate
its rights to pass. The said communications are likely to happen when an unexpected
vehicle drives through tight spaces as pedestrian zones. Unlike urban-streets, a vehicle
would never be expected to drive on footpaths and make sure to stop before zebra crossing
to give way to the pedestrian. These interactions must exist in this interaction concept of
this thesis in order to maintain the same receptivity from pedestrians. In the development
of communication systems for interactions between Autobus and pedestrians, several key
factors are considered to ensure effective and safe exchanges. These factors are derived
from an array of research studies focusing on different aspects of Autobus-pedestrian
communication:

• Trust [Schmidt-Wolf 22, Matthews 17]: One of the popular problems in the umbrella
of relationship is the trusting factor [Ayupova 19]. Risk and uncertainty are reduced
with higher trust. Hence, trust becomes a ground for decision making. Trust
is a fluctuating belief having multiple stages, from establishment to restoration
when undermined. Ontology based recognition and understanding natural language
in smart devices is a breakthrough of interaction between users and technology.
There are five components extracted which affect trust: social intelligence, voice
characteristics and communication style, look of the agent, non-verbal communication,
and performance quality [Rheu 21]. Interpersonal relationship trust definition is
defined in [Rempel 85]. Faith, predictability and dependability are the dimensions
examined for trust. Focusing on Autobus and pedestrian dynamics, trust is a
critical factor that underpins the safety and harmony of shared spaces. This trust
encompasses several key dimensions, including faith in the autobus’s capabilities,
the predictability of its actions. Similar work with its dependability across various
situations—elements that has been thoroughly explored by researchers in [Rempel 85].
In this context, faith means that pedestrians have confidence in the Autobus that
allows them to navigate safely and make decisions without human intervention
and to ensure their safety in all interactions. Predictability is also important, so
that pedestrians can anticipate the vehicle’s movements, such as stopping at the
intersection or yielding, which is essential to safe coexistence in shared spaces.
Dependability refers to the continuous performance and reliability of cars to detect
pedestrians and comply with traffic regulations, strengthening pedestrian confidence
in these systems. The implementation of the intent display system in Autobus is
an important factor in this process of building trust. By clearly communicating the
intention of the vehicle, whether stopping, turning or driving, these systems help to
make Autobus movements more predictable and understandable to pedestrians and
thus to directly increase trust.

• Information: In the interaction between Autobus and pedestrians, the transmission
of information is fundamental in fostering trust. Trust is based essentially on
knowledge, which, in the case of the Autobus, means that pedestrians have a clear
understanding of the operation of the vehicle. Essential details such as the Autobus’s
speed or its current mode of operation needs to be communicated transparently to
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pedestrians to demystify the vehicle’s actions. For effective pedestrian interaction, this
information must be shared in a direct and unambiguous manner, often through verbal
announcements. For instance, Autobus might audibly inform nearby pedestrians of
its intention to halt or accelerate, thereby eliminating confusion. Such straightforward
communication of the Autobus’s status empowers pedestrians with the necessary
information to safely navigate their interactions with the vehicle. The clarity and
precision of this information exchange are pivotal in mitigating misunderstandings
and enhancing pedestrian confidence in the safety protocols of the vehicle.

• Intention: The articulation of intentions by an Autobus is a pivotal element
in its interactions with pedestrians. The explicit clarification of the Autobus’s
prospective actions plays a significant role in clarifying any doubts or uncertainties
that pedestrians may harbor. Communication of these intentions should be direct
and clear, often employing verbal cues or clear text displays, typically limited to
three or four words for clarity. For example, an Autobus may utilize displays or audio
messages to signal actions such as "Turning left" or "Slowing down". This precise
expression of intent is crucial for support transparent communication, enabling
pedestrians to anticipate and appropriately respond to the Autobus’s movements.

• Commands: The Autobus’s controls are essential to ensure pedestrian safety and
awareness. Commands such as information and intentions should be intentional, clear
and verbal. The purpose of these commands is to get pedestrians to understand and
react immediately. For safety reasons, it is essential to formulate these commands so
that they can be deduced quickly and easily. Examples of such commands include
direct and friendly instructions such as "Please give the way" or "Please leave."
The directness of these commands prevents misunderstandings and ensures that
pedestrians can quickly understand and act on the requests of the Autobus. This
direct communication helps to maintain the coexistence of Autobus and pedestrians,
particularly in situations where immediate pedestrian actions are required to avoid
potential safety risks.

Incorporating these factors into the design and operation of Autobus can significantly
improve the safety and efficiency of their interactions with pedestrians.

7.4 Multimodal Interaction Process for Enhanced
Vehicle-Pedestrian Interaction

In previous discussion, the interaction mechanisms between the Autobus and pedestrians
were studied. These interactions are designed to be fluid and intuitive, and the diversity
of communication exchanges is proportional to the number of interaction channels used.
For example, multimodal communication combines visual and auditory information and
usually provides a clearer understanding than a single communication channel. Effective
communication is characterized by facilitating understanding and promoting reciprocal
exchange. These qualities, fluidity, clarity and bidirectional communication, are especially
important in the environment with dense pedestrians.
The configuration of this interaction is depicted in Figure 7.2, elucidating the interactive
exchange as established in this research. For illustrative purposes, the diagrammatic
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representation in Figure 7.2 is bifurcated into two distinct sections: the upper section
illustrates the Autobus-to-pedestrian communication vectors, whereas the lower section
visualizes the pedestrian-to-Autobus information flow.

The upper part of the figure shows the potential inputs observed by pedestrians from the
Autobus. Communication from the vehicle can be performed either by a single channel or
by a composite of multiple channels simultaneously. Each of these interaction modules
has its own characteristics, display, lighting and sound, and has a specific communication
purpose that will be discussed in the following section.

Conversely, the lower segment of the image details the vehicle’s perception mechanisms of
pedestrian information. This includes the acquisition of 3D human skeletal joint points via
stereo cameras strategically mounted atop the Autobus (Chapter 4). These joint points are
captured from all cameras in the system (the technical configuration of which is expounded
in Chapter 3); however, the figure exemplifies only the lateral perspective from the foremost
camera. Such perception capabilities enable the Autobus to discern pedestrian posture and
movement, forming a foundational component for responsive vehicle-pedestrian interaction.

Figure 7.2: The upper section of the illustration presents the Autobus’s communication modules,
including visual displays, lighting signals, and auditory notifications, which provide pedestrians
with multimodal cues about the vehicle’s intentions. The lower section depicts the pedestrian
information acquisition system utilized by the Autobus, capturing 3D human skeletal joint points
through an array of stereo cameras mounted on the vehicle’s roof, showcasing the side view
from the front camera only. This figure encapsulates the dual aspects of interaction—outgoing
communication from the Autobus to the pedestrian and the incoming pedestrian data to the
Autobus, underlining the system’s comprehensive approach to interaction in pedestrian zones.
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7.5 Optimizing Pedestrian-Aware Navigation Through
Adaptive Interaction Module Activation

The efficacy of pedestrian-influenced vehicle navigation can be enhanced through judicious
activation of interaction modules. These modules offer a range of application possibilities,
which are streamlined by activating them in response to specific interaction fields. The
conditions for this activation are depicted in Figure 7.3, with the interaction fields, defined
in Chapter 5, serving as regulatory mechanisms. As discussed in the interaction process
section of this chapter, there are three primary types of interaction: audio, video, and
beepers. A key objective of this thesis is to employ these interaction modules in a manner
that avoids startling pedestrians. Consequently, the potential activation of each interaction
module is delineated for different zones, as illustrated in Figure 7.3.

In the ambient interaction zone, interaction is limited to LED displays, suitable for a safe
environment where pedestrian attention is not imperative. This allows for the display of
intentions or information for pedestrians who may be interested. The direct interaction
zone offers a broader scope for interaction, facilitating most priority negotiations. Here,
urgent commands and awareness signals are communicated, and the use of voice and
beepers is appropriate given the proximity to the risky interaction zone. Progressing to the
risky interaction zone, light flickering is employed to convey a sense of urgency, coinciding
with the activation of brakes. This zone is critical for signaling imminent hazards.

Figure 7.3: This figure illustrates the tailored application of various interaction modules across
different pedestrian proximity zones, as established in Chapter 5. Each zone triggers specific
modules to optimize the communication of risk, intentions, information, and commands to
pedestrians. In the ambient zone, LED displays are used for non-critical information sharing
where pedestrian alertness is not immediately necessary. Moving closer, in the direct interaction
zone, a combination of displays, voice, and sound signals facilitates essential communication
for priority negotiation. The most critical, the risky interaction zone, employs light signals to
indicate urgent situations, such as the vehicle’s imminent stopping, aligning with the deployment
of the braking system. This systematic approach ensures effective, non-startling interaction
tailored to the context of pedestrian proximity and the associated level of navigational risk.



150 7. Interaction modules

7.6 Exploring Interaction Content For Enhanced Com-
munication

This section focuses on the interaction content used by the Autobus for communications
with pedestrians. The design and implementation of effective interaction content is the most
important to ensure safety and promote trust between the Autobus and pedestrians. This
section examines various types of content that can be used by the Autobus to communicate
intentions and actions to pedestrians, including visual, auditory and combined modes. The
aim of analysing current research and practice in this area is to understand the impact of
these modes of interaction on pedestrian behaviour and perception, thereby contributing
to the development of more intuitive and safer autonomous transportation systems.

To evaluate the effectiveness of the interaction system, a comprehensive experiment with
Autobus [Jan 23a] was conducted, using the two basic components of the interaction
system: visual displays and audio signals. An extensive analysis was conducted to assess
the pedestrian understanding of the interaction system by displaying various signals on
the display. These modules can transmit various content, including text, images and
animations, with adjustable attributes such as size, blinking rate, colors etc. One of the
distinctive characteristics of this research is the iterative improvements in display content
which are made based on feedback from pedestrians to ensure continuous improvement of
the system.

Figure 7.4: Initial distribution of content.

The interaction content was initially categorized based on typical pedestrian activities
around a moving Autobus, such as yielding, and parallel or perpendicular crossing. These
activities were then broken down into various representational forms, including texts,
signs, and animations. The representations were further diversified by displaying them in
different color combinations and animation styles, resulting in over 200 potential variations.
An example of some of these primitive designs is illustrated in Figure 7.4, providing a
visual reference for the diversity and scope of the interaction content tested.

The primary objective of this thesis is to improve and optimize various visual elements
(such as animation, text, and signs) in order to enable effective and clear interactions,
especially in scenarios where pedestrians have limited time to interpret these signals
while crossing the Autobus. The research focuses on the clarity and efficiency of these
visual signals, establishing a solid foundation for the interaction system. The goal is to
significantly reduce the likelihood of misinterpretations and accidents in the real world,
thus enhancing the safety and reliability of the interaction between vehicles and pedestrians.
The testing process and results are described as follows.
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7.6.1 Experimental Configuration and Technique
Static tests were conducted on controlled-environment with the Autobus, in which partici-
pants were instructed to position themselves in front of the stationary vehicle. This static
test method minimizes uncertainty in pedestrian reactions and provides valuable insight
into pedestrian perceptions and responses to specific characteristics of interaction content.
The static test consists of two separate phases:

• Phase 1: This initial stage involved the system displaying a complete set of primitive
variations of the interaction content. The aim was to determine which symbols are
most relevant and easily understood by participants. Feedback was actively sought
during this phase in order to incorporate these suggestions into the next phase of
the testing.

• Phase 2: Building on the findings from Phase 1, refined content was sequentially
displayed. Participants were asked to cross the front of the vehicle while these
sequences were active. This phase aimed to evaluate the ease with which participants
could understand and respond to the sequence of interactions, a critical factor
given the typically brief duration of real-world Autobus-pedestrian interactions.
Participants were encouraged to vary their positions relative to the vehicle, such as
standing parallel or perpendicular to it, to simulate different real-world scenarios.
After each test scenario, participants were queried about their recognition, visibility,
and comprehension of the signs, with their responses collected via a questionnaire.

Participants: During the first phase of static testing, the participants consisted of 14
individuals, ranging in age from 23 to 58 years. This group comprised 1 female and 13
male participants, all of whom were engaging with the interaction system for the first time.
The second stage of static testing collected data from 20 participants. The group had a
similar age distribution, with 14 men and 6 women. Participants come from a variety of
backgrounds within the university environment, including students, researchers, and faculty
members. In particular, six of these participants participated in the first phase of the
study, providing continuity of experience to enrich the data collected. Other participants,
some had previously experienced similar experimental settings, but were entirely new to
this type of experimental interaction. The combination of the experiment and the novice
sample was designed to simulate a realistic representation of possible Autobus-Pedestrian
interactions that includes familiarity and expertise with Autobus technology.
Questionnaire: The questionnaire designed for this study contained queries specifically
aimed at elucidating the participants’ comprehension of the content displayed by the
Autobus and the logic underpinning the sequence in which this content was presented.
Detail of questionnaire can be found in Appendix B. The testing was bifurcated into two
distinct phases, each with its own targeted objective.

• Phase 1: The primary aim during this initial phase was to gather pedestrian
feedback on the various types of displayed content. The goal was to filter and
identify the most effective and comprehensible content for pedestrian interaction.
The insights gathered in this phase were crucial for refining the interaction modules,
as depicted in Figures 7.5, 7.6, and 7.7.
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Figure 7.5: The matrix represents Phase 1 of static testing for pedestrian comprehension of
Autobus interaction content. The left column categorizes the visual communication strategies:
Bidirectional Man, Waiting Text, Zebra Crossing Arrow (Bidirectional), and Arrow Man (Bidi-
rectional), which are designed to direct or instruct pedestrian movement. The right column
illustrates practical applications of these strategies: Red and White Bus Zebra Crossings indi-
cate vehicular presence at pedestrian crossings, while Traffic Light Green signals safe crossing
conditions. This phase aims to identify the most effective communication content for refining
pedestrian interaction modules with Autobus.

Figure 7.6: Displayed is a compilation of interaction content continued from Figure 7.5 used in
static testing for pedestrian communication, categorized under three test cases: STOPPING,
PARALLEL CROSSING, and KEEP DISTANCE. In the STOPPING case, the imagery includes
a red traffic light, a red figure, and a ’STOP’ text, all indicating a clear command for pedestrians
to halt. The PARALLEL CROSSING case presents scenarios with both sides of a crosswalk
accessible, restricted access on one side indicated by a red figure, and a stop sign commanding
no crossing. The KEEP DISTANCE case illustrates variations of vehicular proximity with
corresponding pedestrian actions: green figures denote safe passage, while red figures and stop
signs advise caution and stopping, tailored for both right and left sides. This figure underscores
the importance of clear visual cues for safe pedestrian behaviors around Autobus.
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Figure 7.7: This matrix illustrates interaction content for Autobus communication, continued
from Figure 7.6, organized into three test cases: TURNING VEHICLE, STATES OF BUS, and
BUS ENTRY/EXIT. The TURNING VEHICLE case shows yellow arrows in two styles indicating
bidirectional turning options. The STATES OF BUS case presents textual information for the
operational status of the bus: ’DRIVING’ in red indicates motion, ’SORRY FOR THE DELAY’
in mixed colors communicates a halt, and ’WELCOME’ in blue signifies readiness for boarding.
The BUS ENTRY/EXIT case depicts green figures entering and exiting a bus, coupled with
directional eye patterns suggesting the safe direction for these actions. These visual cues aim
to provide clear instructions and status updates to pedestrians and passengers interacting with
Autobus.

• Phase 2: The focus in this subsequent phase shifted towards understanding how
pedestrians processed and reacted to the sequence of the displayed content from
Phase 1. This phase was critical in evaluating the effectiveness of the content flow
and its impact on pedestrian behavior and perception. Figures 7.8 and 7.9 illustrate
specific test scenes and the sequences utilized in this phase.

An example sequence for the evaluation of a perpendicular crossing scenario during Phase
2, the test sequence was methodically structured as follows: initiation with ’DRIVING,’
transitioning to ’EYES’ (denoting the Autobus’s environmental scanning), progressing
to ’STOPPING’ (paired with a descending numerical indicator), proceeding to the per-
pendicular crossing test case (inclusive of a Red Bus icon, Zebra Crossing representation,
and a pedestrian motion animation), then advancing to ’RESUMING’ (again, with a
numerical countdown), and culminating with the resumption of ’DRIVING.’ This sequence
is representative of the intricate communication paradigms explored for this thesis.

Participants were engaged in a binary query sequence built to explain their understanding
of the content sequence, their tendency to follow the instructions described, and their
subjective assessment of safety in realistic conditions. The grouping of these responses
gave a decisive idea of the communication effectiveness of the sequences presented, thus
forming an integrated assessment of the applicability of the interactive system in a real
traffic environment.
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Figure 7.8: Depiction of the sequence of interaction content tested in Phase 2, analyzing
pedestrian processing and reaction. Test scenes for ’Yielding,’ ’Non-Yielding,’ ’Parallel Crossing,’
and ’Vehicle Turning’ are presented, each with a sequential flow of visual cues. For ’Yielding,’ the
sequence starts with ’DRIVING,’ followed by ’EYES’ to capture attention, ’HAPPY EMOTICON’
to signal positive intent, a countdown ’STOPPING 5...1,’ a ’RED BUS’ indicating a full stop,
then ’RESUMING 5...1,’ and concludes with ’DRIVING.’ ’Non-Yielding’ replaces the positive
cues with direct ’STOP TEXT’ and ’STOP MAN’ commands, indicating no intention to yield.
’Parallel Crossing’ reinforces safe crossing with ’Happy Emoticon’ and ’Parallel Crossing Both’
directions, and ’Vehicle Turning’ alerts to the ’VEHICLE TURNING LEFT and Right’ before
resuming ’DRIVING.’ This visual progression assesses the clarity of intent and ensures pedestrians
can anticipate the vehicle’s actions, promoting safety and trust in Autobus operation.
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Figure 7.9: This figure, continued from Figure 7.8, outlines the sequence of interaction content for
the second phase of testing, with a focus on ’KEEP SAFE DISTANCE,’ ’SORRY_FOR_DELAY,’
and ’ENTRY_EXIT’ test scenes. ’KEEP SAFE DISTANCE’ involves a sequence beginning
with ’DRIVING,’ attention-grabbing ’EYES,’ a directive to ’KEEP SAFE DISTANCE’ from the
vehicle, and then resuming ’DRIVING.’ The ’SORRY_FOR_DELAY’ scene communicates a
stop in vehicle movement with ’Stopping 5...,’ an apologetic ’Sorry for delay,’ a holding pattern
’Waiting,’ followed by ’Resuming 5...’ and then the continuation of ’Driving.’ The ’ENTRY_EXIT’
scene guides the passenger flow with ’DRIVING,’ a countdown ’STOPPING 5...,’ ’EXIT FROM
BUS,’ a pause ’WAITING,’ invitation ’ENTRY TO BUS,’ countdown ’RESUMING 5...,’ and
finally, ’DRIVING’ resumes. These sequences are crucial in studying pedestrian and passenger
responses to dynamic visual communications from Autobus.

7.6.2 Assessing Interaction Content Characteristics for Opti-
mized Communication

In the first phase of the testing, the study focused on establishing the basic requirements
for effective interaction between the Autobus and pedestrians. A major finding is that
the size of the display significantly influences the readability of various elements such as
symbols, texts or figures. Furthermore, the context and interpretation of the message
depend on the relative position of the Autobus and pedestrian. This emphasized the need
to adapt the position of the display to target different audiences in the vicinity. Thus, the
ability to communicate multiple messages simultaneously became a critical factor in the
success of interaction.
Testing Phase 1: Two subjective opinions, Recognition and Preferences, were reckoned
for the displayed content. Recognition is how easy it is to recognize the content, and
preference is which content is liked independent of recognition.
Utilizing the responses compiled via the questionnaire delineated in Appendix B, the sub-
sequent graphical representations, specifically bar charts, are presented. These charts are
structured with the test case categories positioned along the X-axis and the corresponding
percentages, indicative of recognition or preference rates, plotted along the Y-axis. In
the context of the perpendicular crossing scenario, a range of combinations derived from
Figures 7.5, 7.6, and 7.7 were subjected to evaluation. Their respective recognizability and
preference levels are depicted in the upper and lower portions of Figure 7.10, accordingly.
Interpretation of these results suggests that the ’Man-Zebra Crossing-Arrow’ symbology
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Figure 7.10: The upper chart quantitatively represents participant recognition rates for various
signal types, with the ’Red Bus’ and ’Man-ZC_Arrow’ configurations achieving nearly 80% and
the highest recognition, respectively. The lower chart displays participant preference percentages,
highlighting a strong predilection for the ’Red Bus’ signal, while the ’Man-ZC_Arrow’ is identified
as the least favored. These metrics reflect the efficacy and desirability of specific visual cues used
in Autobus-to-pedestrian communication within a controlled testing environment.

garners the highest recognition yet the lowest preference among the study’s participants.
Conversely, the ’Red Bus-Zebra Crossing-Man’ iconography achieves recognition by 80% of
the cohort, simultaneously attaining the status of most favored. In a similar vein, the bar
charts within Figure 7.11 (upper chart) corresponding to the non-yielding perpendicular
crossing delineate that the ’red stop man’ icon registers as the most identifiable sign for
the aforementioned scenario. Additionally, Figure 7.11 (lower chart) encapsulates data
for various other scenarios, including ’keep safe distance,’ ’entry case,’ and ’exit’ case,
indicating that these were perceived as intended by the participants. Notwithstanding
that certain test cases did not achieve universal comprehension, a substantial proportion
of the participant base exhibited an understanding of the conveyed messages.
Testing Phase 2: Figure 7.12 illustrates bar charts for Phase 2, encompassing test
sequences for ’Yielding,’ ’Entry-Exit,’ and ’Sorry for Delay’ from Figure 7.8 and 7.9.
These sequences achieved a complete (100%) recognition and comprehension rate among
participants, who reported full adherence to and a sense of safety following these directives.
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Figure 7.11: The upper graph presents recognition rates for the ’Red Traffic Light,’ ’Red
Stop Man,’ and ’Stop Text’ test cases within Phase 2, illustrating a high level of participant
recognition for ’Red Stop Man.’ The lower graph details recognition percentages across a broader
spectrum of test cases: ’Keep Distance,’ ’Parallel Yield Man,’ ’Parallel Yield...’, ’Entry,’ ’Exit,’
’Driving Text,’ ’Turning Blinking,’ and ’Turning Progress...,’ with ’Keep Distance’ and ’Red Stop
Man’ achieving near-universal recognition. This graphical representation indicates varied levels
of perceptual accuracy among participants for different visual cues in Autobus communication
protocols, emphasizing areas for potential enhancement in the ’Turning’ related cues.
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Figure 7.12: Results for Phase II testing.

Conversely, the test scenes ’Parallel Crossing’ and ’Keep Safe Distance’ were subject to
analogous perception by the participants. The ’Non-yielding’ scenario was substantially
understood by 95% of the participant cohort. However, the ’Vehicle Turning’ scenario
necessitates enhancements, as its current perceptual recognition lingers between 60 and
70%, which is below the targeted benchmark of 90%.

In conclusion, the testing phases have provided valuable insights into the effectiveness of
the interaction between the Autobus and pedestrians. In the first phase, the importance
of the readability of symbols, texts and figures is strongly influenced by display size and
positioning. The need to adapt displays to different audience groups and the ability to
transmit multiple messages simultaneously were highlighted.

Subjective assessment of recognition and preference revealed specific preferences and
understandings. The combination of the "Man-Zebra Crossing Arrow" was the most
recognized but the least preferred. On the contrary, the combination "Red Bus-Zebra
Crossing-Man" achieved a high score both in recognition and in preference. These results
show a complex relationship between recognition and preference, and show that the most
recognized content is not always the most preferred one.

Phase 2 testing further demonstrated that certain messages, such as ’Yielding’, ’Entry-
Exit’, and ’Sorry for Delay’, achieved 100% recognition and were understood and followed



7.7. Implementation and Integration of the Interaction Module 159

by all participants, indicating a high level of clarity and effectiveness. However, scenarios
like ’Vehicle Turning’ need improvement, as their perception levels were notably lower.

Overall, this thesis highlights the critical importance of clear, adaptable and public-focused
communication in driverless minibus-pedestrian interactions. It suggests that recognition
of signs and signals is vital, but that the preference and context-specific understanding of
preferences are equally important to ensure safe and effective interactions. In this thesis,
text is assigned priority to facilitate a clear understanding of the information transmitted.
Generally speaking and readable texts are easy to understand and effectively communicates
knowledge without confusion.

7.7 Implementation and Integration of the Interaction
Module

The final part of this chapter explains implementation and explains the practical ap-
plications associated with integration with other modules. It delves into the details of
content that facilitates interaction by using a series of experiments to refine and distill
this content and improve the effectiveness and utility of interactions. This is the focus of
a careful implementation process to ensure the seamless integration of interaction modules
into a broader navigation architecture of the Autobus. The deployment of the module is
crucial to the effective and safe autonomous navigation of the vehicle, which represents
the tangible interface between the vehicle and the pedestrian environment through which
it communicates and interacts.

The block diagram depicted in Figure 7.13 defines the structure of the interaction modules
in the group, which are mainly designed to communicate with pedestrians nearby. The
central component of the system is the activation module, which acts as a switch and
triggers interaction protocols based on navigation results obtained from the "decision-
making" component (Chapter 6). At the time of activation, this module orchestrates a
coordinated response to three output channels: display, voice and blinker. These channels
are supplemented by a content database, a repository that provides the necessary content
for each mode of interaction. This database is essential for providing visual data for
displays, text for voice channels and blinker with a specific signal speed. The interactive
content is selected from the content database module and transmitted from the respective
mode to ensure that communication is not only appropriate to the context, but also
compatible with the predefined protocol.
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Figure 7.13: At the core of the module lies the Activation Module, tasked with initiating
interaction procedures based on the Navigation score derived from the Decision-Making component
(detailed in Chapter 6). The Activation Module triggers a synchronized operation across
three communication channels: Display, Voice, and Blinker. The integration with the Content
Database is pivotal, serving as abundant source of tailored content for each communicative
avenue—supplying visual information to the Display, textual data to the Voice channel, and
signal timing to the Blinker. The strategic distribution of interaction content from the Content
Database to the output channels ensures the conveyance of context-specific and protocol-compliant
communications to pedestrians.

The activation and participation of these interaction elements are greatly influenced by the
associated risk assessments derived from the interaction fields (Chapter 5). An increase
in the risk level may require a system to respond more immediately or more strongly
to mitigate potential hazards. On the other hand, the reduction in risk could lead to a
subdued or passive response from the system. This layered response strategy ensures that
the system’s response is in line with the risk level detected, thus improving the efficiency
and effectiveness of pedestrian and Autobus interaction. The diagram in Figure 7.14 shows
the activation of modules according to pedestrian risk assessments. In the field of ambient
interaction, at the lowest risk level, the system uses LEDs to communicate the intentions
of the vehicle. At moderate risk levels, within the direct and risk interaction domains,
the auditory signals are activated together with the LED displays to communicate with
pedestrians. When entering a high-risk zone in the risk area, the system activates a blinker
to indicate the imminent danger.
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Figure 7.14: The figure illustration delineates the correlation between the risk levels ascertained
from the interaction fields (discussed in Chapter 5) and the corresponding activation of the
Autobus’ communication modules. For minimal risk situations within the ambient interaction
domain, the vehicle deploys LED signals. As the risk escalates to a moderate level within the
direct interaction and risk domains, the system concurrently employs auditory cues alongside
LEDs to enhance communication clarity with pedestrians. In high-risk zones, blinkers are engaged
to provide an immediate and conspicuous warning. The strategic gradation of communication
methods depicted here demonstrates the system’s adaptive response mechanism, ensuring pro-
portional reactivity to the dynamic pedestrian risk assessments.

This chapter concludes the examination of the fourth and final component of the smart
interaction concept. The subsequent chapter will synthesize the integrated findings
pertaining to the overall performance of the Autobus when operating within a campus
setting.
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8. Towards an Integrated Interaction
Framework for Autobus in
Pedestrian Zones

Transitioning from the fundamental four components of smart interaction strategy (Pedes-
trian Activity - Chapter 4, Interaction Fields - 5, Decision Making - 6, and Interaction
Modules - 7), which meticulously detailed the technical development and theoretical
underpinnings of individual components in Autobus navigation architecture, we now
advance to the experiments of the whole architecture. This subsequent chapter serves
as a critical juncture, shifting focus from theoretical concepts and system design to the
practical application and real-world testing of the Autobus in pedestrian zones. Here, the
implementation strategies elucidated in the previous chapter are put to the test, providing
empirical evidence of their efficacy. This phase is pivotal as it bridges the gap between the
conceptual framework and its tangible outcomes, offering insights into the functionality,
efficiency, and reliability of smart interaction under actual operating conditions. The
experiments conducted are designed to rigorously evaluate the various components of the
system when integrated in as a whole.
The experiments conducted aim to validate the efficacy of these modules in real-world
scenarios, demonstrating the vehicle’s enhanced ability to communicate with pedestrians
and thereby reducing unnecessary stops and interruptions in its journey. The outcomes of
these experiments are critical in showcasing the practical applicability and effectiveness of
the developed interaction system in managing the intricacies of autonomous driving in
pedestrian zones.

8.1 Experiment and Evaluation
This section of this thesis delves into developing and testing various interaction strategies
and facilitate clear communication between the Autobus and pedestrians. These strategies
aim to alert pedestrians, especially those not initially aware of the vehicle’s presence,
and to comprehend pedestrian intentions effectively. The experimental framework is
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structured around four pivotal elements: identifying pedestrian behavior (Chapter 4),
establishing interaction zones (Chapter 5), decision-making (Chapter 6), and the activation
of interaction modules (Chapter 7). Each component of the interaction system was initially
tested in isolation to assess its effectiveness, results given in their respective chapters.
Following this, they were integrated into the standard navigation system, tailored for
off-road environments.

8.1.1 Addressing the Complexity of Pedestrian Behavior in Au-
tobus Testing

Before examining the test scenario presented in this thesis, it is important to recognize
the numerous challenges associated with the test system that interacts with pedestrians.
Pedestrian behaviour is chaotic and poses various challenges in assessing specific interactions
between Autobus and pedestrians. This uncertainty introduces complexity in modeling,
predicting, and testing to ensure the safety and reliability of these technologies in real
environments. Due to the random and varied behaviour of pedestrians, the test challenge
in certain scenarios can be examined from multiple perspectives.

Behavioral Unpredictability Unlike programmed machines, pedestrians do not fol-
low predictable rules or behaviours. Factors such as individual differences, social
influences, environmental context, mental state, even temporary distraction can
dramatically alter the actions of pedestrians. For example, people who usually wait
for the pedestrian signal to change before crossing can decide to take the jaywalk if
they are running late. This variability means that even the same person may react
differently to the same situation at different times, making it more difficult for the
Autobus to predict and respond to pedestrian movements.

Scenario Complexity The examination of Autobus interactions with pedestrians must
take into account almost infinite scenarios influenced by variables such as weather
conditions, time of day and number of people. The complexity increases when
dealing with interactions in specific contexts, such as the presence of children, where
children’s behaviour can be even less predictable than that of adults. Designing tests
that simulate these different conditions accurately and comprehensively to evaluate
the responses of the driverless minibus is a significant challenge.

Safety and Ethical Constraints The uncertainty of pedestrian behaviour means that
ensuring the safety of all participants during the test is important but also complex.
It is ethically unacceptable to put pedestrians in potentially dangerous situations
to observe how Autobus or pedestrians react. As a result, most of the preliminary
tests were conducted in simulated environments or with staged scenarios that do not
capture the full range of realistic human behaviour. This limitation raises questions
about the completeness and applicableness of the test results in the real world.

Data Collection and Analysis Challenges The collection of data on pedestrian be-
haviours in a meaningful way for Autobus testing involves significant challenges. A
large number of possible behaviours and scenarios require collection and analysis of
huge amounts of data to identify patterns, anomalies, and potential responses. This
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process is complicated by the need to respect privacy and obtain consent, especially
in public places where pedestrian behaviour is more diverse and unpredictable.

Adaptation and Evolution Pedestrian behaviour is not static; with the passage of
time, social norms, urban environments change, and new technologies are introduced,
such as new modalities on the Autobus itself. This evolution means that even an
autonomous driving system that has been thoroughly tested and initially effective
may need constant updates and re-evaluations to keep pace with changes in human
behavior.

Despite these challenges, we strive to capture some of the behaviors present during testing
and observe how the Autobus responds.

8.1.2 Behavioral Response of Pedestrians to Visual and Auditory
Signals

Considering the difficulties outlined in the prior subsection, this dissertation delineates
and details the most common and unique scenarios that the Autobus encountered within
the campus milieu. The investigation aims to address the concerns of safety, efficiency,
and passenger experience through the judicious selection of test scenarios for evaluation.
Verification of outcomes is achieved by monitoring alterations in pedestrian awareness
and movement, as represented in the figures and plots. The plots have been presented
with corresponding images to see how the environment looks like where the situation was
encountered. The ensuing sections provide an in-depth examination of the selected test
scenarios.

Pedestrian Engaged in Telephonic Conversation Unaware of Autobus

An experiment was performed to assess the effectiveness of various signaling modalities in
attracting the attention of pedestrians engaged in telephone conversations while walking
along the path of an approaching Autobus. Given that the pedestrian was distracted and
the Autobus was navigating a narrow pathway (as depicted in Figure 8.1a), avoiding the
pedestrian was not feasible, necessitating prioritized interaction by the decision-making
module. Figure 8.1b displays the pedestrian’s temporal response to auditory and visual
signals from the Autobus. The graph, marked with circles on the line, indicates the
separation distance between the pedestrian and the vehicle, with red highlighting the
pedestrian’s initial lack of awareness, as indicated by their orientation away from the
Autobus. Although a visual cue was provided through LED signaling, the pedestrian
remained unaware, due to looking at the opposite side. In contrast, the introduction of a
voice command led to a notable shift in the pedestrian’s orientation towards the Autobus,
indicating a recovery of situational awareness, as marked by a change to green on the
graph. This regained alertness is corroborated by the subsequent horizontal line (enclosed
in a red dotted box), suggesting a maintained distance between the pedestrian and the
Autobus, indicative of the pedestrian making space for the vehicle.
In summary, the graphical representation clearly delineates the crucial shift from distraction
to awareness facilitated by an auditory stimulus, highlighting the essential role of effective
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(a) The figure shows a scenario where a pedestrian walking infront of the Autobus in narrow
space talking on the phone. The pedestrian is unaware of the approaching vehicle behind.

(b) A pedestrian’s response to voice signaling while on the phone: red circles indicate unawareness;
awareness is signified by green circles upon receipt of a voice command.

Figure 8.1: Unaware pedestrian talking on the phone reacting to voice command from the
Autobus.
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(a) The illustration depicts a scenario where two pedestrians are walking ahead of a vehicle,
engrossed in conversation and unaware of its presence.

(b) The figure presents a visual analysis of pedestrian response to auditory signals from Autobus
in a simulated environment. The vehicle, depicted at the coordinate origin, serves as a reference
point for assessing pedestrian awareness and orientation. Initially, two pedestrians, represented
by red dots and indicated by their respective trajectories and orientation arrows, are observed to
be unaware of the vehicle’s presence. Upon activation of a voice signal by the vehicle, a marked
change in pedestrian behavior is noted. The red dots transition to green, suggesting a heightened
awareness of the vehicle. Concurrently, there is a noticeable shift in the direction of movement, as
illustrated by the orientation of the arrows. This reaction demonstrates the efficacy of auditory
signaling in alerting pedestrians, thereby potentially enhancing safety measures in autonomous
vehicle operations.

Figure 8.2: Unaware pedestrian crossing in front of the Autobus yields as soon as the pedestrian
sees the yielding signal on the LED.
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audio signal transmission in ensuring pedestrian safety in scenarios where visual signals,
such as LEDs, go unnoticed.
Two Unaware Pedestrians Walking and Engaged in Conversation
Figure 8.2 depicts a scatter plot superimposed over a grid, representing the interaction
between Autobus and two pedestrians in narrow path. The Autobus is illustrated at the
origin (0,0) of the plot, detailed with a top-view image. Two distinct pedestrian trajectories
are plotted on the graph. Both pedestrians are captured from 8 meters. As the vehicle
approaches them, the pedestrian can be seen getting close to the vehicle.
The pedestrians initially proceeding along their path, oblivious to the approaching vehicle
from behind as can be seen in the camera view (Figure 8.2a). Upon approach, the
Autobus activates its visual signaling system. However, due to the orientation of the
pedestrians—away from the vehicle—the visual cues fail to capture their attention, and
they continue along their trajectory undeterred. Consequently, as the Autobus draws
nearer, it resorts to an auditory signaling. This auditory prompt evokes a response from
the pedestrians, leading them to diverge to opposite sides of the path, thereby allowing
the Autobus to pass unimpeded. Under typical conditions, one might expect that two
pedestrians entering as a pair would yield to the right, since both tend to be slightly right
of the Autobus. However, the pedestrian on the left chooses to separate from the company
and move aside in the opposite direction as can be seen from the plot in Figure 8.2b. This
interaction underscores the importance of multi-modal signaling in Autobus to ensure
effective communication with pedestrians and the safe navigation of around people.
Pedestrian Crossing Yielded
Figure 8.3b shows the interaction between pedestrians and buses in the cross scenario.
The Autobus is shown on the left side of the map, and a side view graphic is placed at the
source of the coordinate system. The pedestrian path is mapped using a series of points
connected by line segments to follow the trail. The dots change in color from red to green,
where red indicates the pedestrian’s initial unawareness and green marks the transition to
awareness of the Autobus. This change coincides with the activation of the display signal
from the vehicle, which warns pedestrians not to cross.
The arrows originating from the dots indicate the direction in which the pedestrian is
moving. Initially, these arrows move towards the Autobus, but after the display signal is
activated, the pedestrian yields and complies with the vehicle instructions. Figure 8.3a
provides a complementary view, showing a pedestrian who has a smartphone in texting
position and who originally planned to cross before the Autobus. The pedestrian stops
after receiving the signal and the vehicle passes safely.
An Incident of Non-compliance: Aware Pedestrian Standing in Front
Figure 8.5a illustrates a scenario where two pedestrians, aware of the Autobus, approach
the vehicle. As they near the vehicle, one individual steps directly into its path. According
to their awareness of the Autobus, the interaction fields register low awareness values.
Upon the pedestrian’s close approach, both visual and auditory signals are activated.
However, the pedestrian ignores the visual cues displayed on the vehicle’s LED panel and
positions themselves in front of the bus before returning to their original path, as shown
by the cyan arrows in Figure 8.5b. This incident exemplifies a distinctive category of
pedestrian behavior that appears to be influenced by factors such as curiosity or amusement
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(a) The figure illustrates a scenario in which a pedestrian is cross in front of the Autobus. The
pedestrian is preoccupied with their mobile device, using it in a texting position. The pedestrian
becomes aware immediately after receiving a signal from the Autobus.

(b) Scatter plot demonstrating a pedestrian’s trajectory alteration in response to a visual ’Do
Not Cross’ signal from an Autobus. The initial pedestrian pathway, indicated by green dots and
arrows, shows movement towards the vehicle’s trajectory. Upon activation of the visual display,
the pedestrian ceases forward motion, and stops, allowing the Autobus to pass safely.

Figure 8.3: Unaware pedestrian crossing in front of the Autobus yields as soon as the pedestrian
sees the yielding signal on the LED.
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(a) The image illustrates the pedestrian tenta-
cle, when the pedestrian is unaware. Due to this
unawareness, the ellipse has higher values and a
larger radius because the pedestrian is walking
towards the Autobus. The corresponding tenta-
cle is shown in yellow, indicating higher values.

(b) The image shows when the pedestrian be-
comes aware of the Autobus after the signal is
given. The green values of the pedestrian tenta-
cle shows the it is safe to drive.

Figure 8.4: Illustration of the pedestrian tentacle in scenarios where the pedestrian is unaware
(a) and becomes aware (b).

rather than the vehicle’s signals or speed. The dataset contains multiple instances of such
unconventional pedestrian behaviors that are unresponsive to the vehicle’s communicative
signals, ultimately necessitating the Autobus to initiate a full stop for safety considerations.
The above-mentioned unique scenarios show how the Autobus navigates in unexpected
situations using smart interaction strategies. This approach improves vehicle efficiency
by warning pedestrians not aware of the presence of the vehicle. Through its interactive
modules, the vehicle often encounters pedestrians engaged in conversation, texting or
calling. The interaction system communicates effectively the presence of the vehicle to
them. Most pedestrians courteously make way for the Autobus when they receive the
signal. However, the combination of Autobus slowdown and signaling confuses pedestrians,
and there is uncertainty about what steps should be taken. Some people leave the path,
while others, especially those in hurry, ignore the signals.
It is impractical to measure the time saved using the interaction system accurately compared
to normal driving without such interaction. This is due to various influencing factors
such as daytime, lecture program, type of area where interactions take place, and the size
of pedestrian groups. These variables significantly skew the average values, making it
difficult to draw a definitive conclusion about the efficiency of the system in reducing travel
time. On the basis of the results presented in this chapter, there are obvious qualitative
improvements. However, in order to quantify the extent of improvement, extensive tests
are required over several years, taking into account variable such as time, school timetables,
lunch breaks and weather conditions.
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(a) The figure depicts a scenario in which two pedestrians are walking in front of the Autobus in
a semi-narrow space, crossing its path while conversing. One of the pedestrians intentionally
stands directly in front of the vehicle, causing it to halt despite the signal displayed.

(b) The plot shows two pedestrians approaching the vehicle from the front. The pedestrian on
the left disregards the Autobus signals and stands directly in front of it, causing the vehicle to
stop.

Figure 8.5: A situation where two aware pedestrian approaching the Autobus. One pedestrian
ignores the signal from the Autobus and stands in front of the vehicle.
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9. Conclusion

This thesis successfully developed a smart interaction strategy (Figure 2.5) suitable for
driverless minibuses operating in pedestrian areas. An important element of this approach
is the ability to adapt to different behaviors of pedestrians, which requires adapting
different parameters. These adjustments are based on the size of a driverless minibus
and specific characteristics of the pedestrian environment. Therefore, the autonomy of
pedestrian areas requires special forms of interaction to ensure smooth operation. The
concept of intelligent interaction is inspired by the way humans use to communicate with
pedestrians. Implementing this tailored interaction strategy in driverless minibuses has
demonstrated promising performance in real-world experiments.
The deficiencies identified in the modern driverless minibus systems highlight the crucial
need for interaction mechanisms adapted to pedestrian dynamics and emphasize its crucial
role in the effectiveness and safety of such vehicles. This thesis introduces an integrated
framework based on four fundamental components to improve the communication between
vehicle and pedestrians. The process begins with a detailed analysis of pedestrian behaviour
to identify and understand their core activities and movements. The framework then
establishes a pedestrian risk assessment zone around the vehicle and uses its location
relative to the vehicle to inform safety measures. The decision-making aspects of the
framework are then at the forefront, weighing the options between navigating around
pedestrians, initiating direct interaction with pedestrians, identifying safe driving regions
and responding to pedestrians’ unawareness. The last step of this process is to deploy the
interaction module. This module is responsible for managing a series of communication tools
ranging from visual and auditory signals to more nuanced message transmission. It controls
both the dissemination of information to pedestrians and the activation or deactivation of
these communication mechanisms, ensuring the effective exchange of essential information.
This comprehensive approach not only addresses the gap in pedestrian interaction, but
also sets new standards for the development of driverless minibuses.
The results of this research are included in the existing navigation system REAC-
TiON [Wolf 18] (Figure 3.20). This strategic integration greatly improves REACTiON’s
ability to navigate in pedestrian-dominated areas and ensures an optimal and effective
driving experience. To rigorously evaluate the effectiveness of smart interaction strategies
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to address current limitations, a comprehensive test protocol using Autobus has been
implemented (Figure 1.3). Autobus is a vehicle engineered with kinetic and dynamic
characteristics similar to other driverless minibuses and has been an ideal platform for
empirical research. The validation process is rigorously carried out in the campus en-
vironment of the RPTU Kaiserslautern (Figure 3.16), offering a realistic environment
for measuring performance improvements attributed to smart interaction strategies. An
important component of this assessment focused on Autobus interaction modules, espe-
cially in scenarios where pedestrians were previously unaware of the vehicle’s presence. In
such cases, activating these modules is an important aspect of this thesis, as it directly
contributes to improving the safe navigation in the campus environment.
By implementing these interaction modules, the Autobus was able to effectively communi-
cate with pedestrians, thereby significantly mitigating the risks associated with pedestrian
unawareness. This enhancement not only underscores the potential of incorporating smart
interaction strategies into autonomous navigation systems but also demonstrates the tangi-
ble benefits of such innovations in improving safety and efficiency in pedestrian-rich zones.
The successful integration and validation of the smart interaction strategy within the
navigation architecture mark a significant step forward in the development of autonomous
driving technologies, offering promising avenues for future research and application in
shared spaces of smart cities.

9.1 Evaluation
This research has made significant contributions to autonomous driving in pedestrian areas,
especially by improving efficiency and safety through innovative pedestrian interaction
strategies. It clearly shows that pedestrian signals, who are unaware of the existence of the
Autobus in their surroundings, can significantly improve navigation results. The research
promotes a deeper sense of trust and understanding between the vehicle and pedestrians
by adapting traditional human driver signals such as visual and auditory warnings in
the Autobus navigation system. This approach not only simulates the typical intuitive
interaction of human drivers, but also integrates these indications into vehicle autonomous
operation to ensure clearer intentions.
Each of the four interaction components of the smart interaction framework (Figure 2.4)
plays an important role in the realization of this comprehensive process. From detection
and assessment of pedestrian behaviour to decision-making and real-time navigation and
engagement and finally, the management of visual and auditory signals, all elements
contribute to a holistic interaction strategy. This multifaceted approach demonstrates
the important role, mentioned in this thesis, in the development of autonomous driving
technologies for pedestrian areas. It highlights how a precise and pedestrian-focused
communication can significantly increase the efficiency and safety of driverless minibuses,
and shows the practical application and relevance of these findings in the real world.
The pedestrian activity module provides a sophisticated approach to the recognition of
pedestrian activity by using 3D skeleton joints (Example 4.1) through the LSTM model
(Figure 4.5) and the geometric approach (Figure 4.12). This method significantly increases
the speed of detection activities by focusing on a less but highly informative set of 3D
point data. Activities classified in this thesis (Table 4.3) are the most commonly occurring
in the close vicinity of the vehicle, including different pedestrian crossing patterns. These
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patterns not only help identify typical movements, but also detect signs of pedestrian
unawareness, such as walking orientation. The strategic categorization of pedestrian
activities, combined with the increase in data points, plays a key role in increasing the
system’s overall accuracy in recognizing and interpreting pedestrian behaviours. This
thesis proved that the accuracy of the upper body (Table 4.7) is 95%, and the lower
body (Table 4.9) is 99%. The inclusion of specific behaviors that indicate distraction,
such as texting or using a phone during a crossing, adds a crucial layer to the system
for understanding pedestrian risk (Table 4.10). With the geometric approach using iB2C
(Description 3.5), additional/redundant attributes such as position, distance and movement
can be obtained (Figure 4.13).
The development of an interaction field around the vehicle (Figure 5.4) and pedestrians
(Figure 5.5) has introduced a novel method of assessing pedestrian risk. These fields are
seamlessly integrated into existing navigation maps (Figure 5.14) and effectively distinguish
pedestrians from other obstacles. This differentiation allows the Autobus to adapt its
interaction more appropriately to pedestrians. The characteristics of pedestrians, including
direction, awareness level, and movement patterns, are packaged into elliptical shapes
and provides a brief, clear and complete representation within interaction field of the
vehicle. This representation is crucial for understanding the behaviour of pedestrians and
for translating complex human activities into a form that can be easily understood by
autonomous driving systems. Dividing the vehicle’s interaction fields into ambient, direct
and risky zones further improves the system’s reaction to pedestrians. This structured
representation greatly improves the decision-making process by identifying the type of
interaction required, be it simple recognition or more urgent avoidance operations. This
representation helps to generalize the number of different pedestrians (e.g. groups) in
different areas depending on their level of awareness (Figure 5.13).
The decision-making module within the framework played a pivotal role in navigating
pedestrian encounters by evaluating the assessed risk levels. By using separate set of
tentacles for pedestrian risk named as "pedestrian tentacle" and drivable pathway as
"feature tentacle", the decision focuses on the awareness level of the pedestrian instead of
accounting it for normal obstacle (Figure 6.14). When it detected a pedestrian who appears
to be unaware of the vehicle’s presence, the system initially looked for an alternative path
that avoided the need for direct interaction. Based on sum of the weight from feature
and pedestrian tentacle (Equation 6.1), it checks for best strategy. If no such path was
available (Figure 6.8) or if the pedestrian’s actions necessitated closer communication, the
system then engaged the interaction module.
Interaction module was responsible for activating specific channels of communication
(Figure 7.3), such as LED displays, voice messages, and flashers, tailored to address the
situation effectively. The selection of content (Figure 7.4) for these communication tools
was meticulously refined through extensive testing with people by the use of questionnaire
(Appendix B) to ensure clarity and comprehensibility. Pedestrians demonstrated a high
level of responsiveness to these cues, as evidenced by unaware individuals making way for
the vehicle following voice prompts. Similarly, pedestrians adjusted their walking paths
upon reading messages displayed on the LED screen, facilitating smoother navigation for
the Autobus. It can be seen from results of phase-I that "Man with Arrows" for most
recognized, but "Red bus" is preferred (Figure 7.10). This shows that, recognition and
preference of shown content can vary. For phase-II, 60% of the recognition and people
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following the content was above 95% (Figure 7.12). These interactions underscore the
effectiveness of the chosen communication strategies in enhancing pedestrian safety and
vehicle navigability.
Using the smart interaction strategy enabled in the Autobus, it has demonstrated remark-
able flexibility in driving strategies, adjusting to different situations in a way that greatly
improves the overall passenger experience. With a smart interaction strategy, the Autobus
could drive smoothly wherever pedestrians were unaware of the vehicle. The brakes were
significantly reduced by giving such signals to pedestrians. People who recognized the
intentions of the Autobus yielded, resulting in a reduction in braking when the vehicle
was driving around the campus. This dynamic adaptation capacity to the crowded en-
vironment not only improves the safety and efficiency, but also ensures the safety and
seamless transport of the passengers in the vehicle. The inherent modularity of the design
is especially advantageous and allows additional specialized controls to be integrated,
when needed. This modular architecture also allows individual components to be updated
without affecting the functionality of other components, so that the system can evolve over
time and have minimal disruption. Such a framework supports continuous improvements
and adaptations to emerging technologies and changing conditions and highlights the
potential of the Autobus for the future development of autonomous transportation. This
thoughtful approach to system design highlights the readiness of vehicles to meet current
and future challenges and is a pioneering solution in the field of driverless minibuses for
pedestrian zones.

9.2 Outlook and Future Work
Future work, informed by the discussions and findings within this thesis, will pivot around
four core areas: enhancing pedestrian interaction models, refining autonomous decision-
making capabilities, and the usage of interaction modules. Moreover, it also discusses the
modular system integration and updates. The thesis has demonstrated that the smart
interaction strategy within Autobus significantly elevates the driving strategy, particularly
in pedestrian-rich environments, suggesting that further advancements in cognition and
perception algorithms could yield even greater improvements in driverless minibus driving
performance.
Firstly, enhancing pedestrian interaction models involves developing more sophisticated
algorithms for interpreting pedestrian behaviors and intentions. This could lead to a
deeper understanding of complex semantic scenes, enabling driverless minibuses to navigate
more effectively in dynamic urban environments. An emphasis on novel classification
algorithms could allow for the recognition of a broader array of objects and pedestrian
activities, thus enhancing the vehicle’s semantic evaluation capabilities. Such algorithms
are expected to broaden the scope of detectable objects and pedestrian actions, thereby
elevating the vehicle’s capacity for semantic analysis. This advancement will extend to the
nuanced detection of pedestrian features, including facial expressions and the presence
of handheld objects, like mobile phones or beverages. Recognizing facial expressions
could unveil new layers of insight into pedestrian emotional states, potentially informing
the vehicle’s interaction strategy in a more nuanced manner. For example, detecting
a pedestrian’s distracted demeanor could trigger specific cautionary measures by the
autonomous system. Expanding the scope of pedestrian interaction models to include
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the detection of animals and bicycles represents a significant advancement in autonomous
vehicle technologies. These entities, which frequently share urban spaces with pedestrians,
pose unique challenges and opportunities for driverless minibuses navigating dynamic
environments. By developing algorithms capable of identifying and interpreting the
behaviors and trajectories of both animals and bicycles, autonomous systems can achieve
a more comprehensive situational awareness. Additionally, increasing redundancy in the
system could help mitigate semantic and measurement errors, contributing to a more
robust and reliable autonomous driving system.
Secondly, advancing autonomous decision-making capabilities is crucial. A key aspect
of this advancement is the development of sophisticated decision-making frameworks
capable of navigating the complex terrain of ethical considerations. The decision-making
can be improved by incorporating additional features of both the pedestrian and the
environment. Integrating ethical decision-making processes into autonomous systems
requires a multidisciplinary approach, drawing on insights from ethics, law, psychology,
and robotics to establish guidelines that ensure decisions are made in a manner that is
both morally responsible and aligned with societal values. Future research should focus on
creating systems that are not only technically proficient but also possess an embedded
ethical reasoning capability. This would allow vehicles to make informed decisions in
critical situations, balancing the need for safety, efficiency, and ethical compliance. Later,
on-demand mobility [Husemann 22], which will utilize a fleet of driverless minibuses,
should also include scheduling in its decision-making processes. Such advancements would
significantly enhance the trustworthiness and reliability of driverless minibuses, paving the
way for their broader acceptance and integration into daily life.
In addition, the potential integration of more sophisticated interaction modules, such as
the direct projection of visual signals onto the path of unaware pedestrians, improves
safety and clarity in complex or unclear situations. The development of a deep learning
model using content from more casual conversations, rather than relying exclusively on
fixed databases, will facilitate a more relaxed interaction between pedestrians and vehicles.
These models should enable dynamic adaptation of communication strategies based on
specific contexts, and ensure that the most effective methods of interaction are always
used. This capability is essential for the scalable and flexible deployment of driverless
minibuses that adapt to a wide range of environments and scenarios.
By addressing these areas, future research aims to not only refine the capabilities of such
interaction strategy in Autobus and similar driverless minibuses but also to contribute
to the broader field of autonomous driving and human-robot interaction, ensuring these
systems can safely and effectively integrate into human-centric environments.
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A. Appendix A

A.1 Safety System
The appendix presented herein details the components of safety system utilized in the
Autobus, including technical specifications and parameters necessary for comprehending
the system’s configuration as outlined in Chapter 3. The components used in the safety
system schematics (Figure A.2) are shown in Figure A.1 and explained below:

• CPU (FX3-CPU000000): The CPU serves as the primary module, processing
all incoming signals from connected modules. It executes actions based on sensor
inputs according to the valid configurations stored within its system plug. The
included logical editor in the SD software facilitates the implementation of control
logic tailored to specific requirements.

• Gateway (FX3-GEPR00000): This gateway module facilitates the connection of
laser scanners and the external system to the CPU via Ethernet, using the Safety
Designer software. It supports EFI-pro and EtherNet/IP™ CIP Safety™ protocols,
allowing data transmission rates ranging from 10 Mbit/s on a 10Base-T network to
100 Mbit/s on a 100Base-TX network. The module features autosensing capabilities
and a configurable Requested Packet Interval (RPI) from 4 ms to 500 ms for packet
production and 1 ms intervals for packet consumption.

• Input/Output (FX3-XTIO84002): Positioned adjacent to the gateway, this
module receives various signal inputs from external sources and provides correspond-
ing outputs. It features a rapid shutdown response time of 8 ms and includes four
safety outputs, which are primarily used for controlling relay activation.

• Digital input (FX3-XTDI80002): This module captures digital signals from
external safety switches. Upon signal deactivation, it communicates with the CPU
to trigger appropriate responses. It is equipped with eight safety inputs.

• Motion controller (FX3-MOC100000): Employed to capture encoder readings
from steering and motor control units, this module translates these readings for
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Figure A.1: An integrated safety system module featuring various components of a SICK
Flexi Soft safety controller. The Central Processing Unit (CPU) (FX3-CPU000000) on the
left, responsible for processing signals from the system’s modules based on preconfigured logic.
Adjacent to the CPU is the Input/Output Module (FX3-XTIO84002), which manages external
signal inputs and actuates safety outputs. The Gateway Module (FX3-GEPR00000) on the
right of CPU facilitates Ethernet connectivity, supporting EFI-pro and EtherNet/IP™ CIP
Safety™ protocols for network communication. The Digital Input Module (FX3-XTDI80002)
is placed next to the Gateway, handling digital inputs from safety switches and signaling the
CPU for appropriate action upon deactivation. On the right, the Motion Control Module
(FX3-MOC100000) is dedicated to interpreting encoder signals from motion-related components.
Finally, multiple Safety Relays (RLY3-OSSD100/200/300) are seen on the far right, which ensure
the rapid disengagement of the safety circuit to enable emergency stops, with individual relays
dedicated to managing different safety-critical outputs, such as flashers and braking systems.

subsequent processing by the CPU. Two motion controllers are utilized, one for
steering and the other for speed regulation, supporting various drive safety functions
including safe stop, safely-limited speed, safe direction, and safe limited position.

• Rely (RLY3-OSSD100/200/300): This relay is crucial for interrupting the main
safety circuit to facilitate emergency stops. It receives inputs from the Input/Output
module. The deployment of three relays is strategic; two relays manage different
flashers, while the third controls braking mechanisms.
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Figure A.2: Safety system schematics.
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B. Appendix B

B.1 Questionnaire
The following section introduces a detailed questionnaire tailored to support the empirical
data presented in Chapter 7. This questionnaire is the result of a comprehensive effort to
identify the most effective methods of content delivery for the Autobus’s LED displays. It
is designed to explore participants’ preferences and recognition experiences, transforming
a variety of factors into quantifiable data that define ’optimal content’.
Structured to elicit a wide range of information, the questionnaire starts with basic
demographic queries to frame the data within a context of varied participant backgrounds.
It then advances to explore a mix of qualitative and quantitative metrics that assess
aspects such as the lucidity, engagement, and overall effectiveness of the content displayed.
Likert-scale items measure responses to the content’s visual appeal and memorability, while
open-ended questions encourage participants to share unstructured, in-depth feedback.
Each question comes with clear instructions to ensure comprehensive and accurate partici-
pant responses. The responses obtained are critical for the statistical analysis that follows,
with outcomes which significantly contribute to the iterative enhancement of the LED
interaction modules discussed in the chapter.

Personal Information
Name:
Age:
Sex:
Occupation:
Date:

Test Phase I
1. Have you been part of this kind of test before?

Yes No
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2. Is the sign/text/animation understandable?
□ Strongly Agree □ Agree □ Neutral □ Disagree □ Strongly Disagree

3. The color used in the sign/text/animation are easy visible?
□ Strongly Agree □ Agree □ Neutral □ Disagree □ Strongly Disagree

4. Is this sign/text/animation Recognizable?
□ Strongly Agree □ Agree □ Neutral □ Disagree □ Strongly Disagree

5. Is this sign/text/animation preferred?
□ Strongly Agree □ Agree □ Neutral □ Disagree □ Strongly Disagree

6. Do you feel safe with this type of sign/text/animation?
□ Strongly Agree □ Agree □ Neutral □ Disagree □ Strongly Disagree

7. Do you have any extra comment regarding the displayed content?

8. Do you have any other preferences regarding the shown content?

Test Phase II
1. Were you part of "Phase I" testing?

Yes No

2. Is the sequence understandable?
□ Strongly Agree □ Agree □ Neutral □ Disagree □ Strongly Disagree

3. Is this sequence Recognizable?
□ Strongly Agree □ Agree □ Neutral □ Disagree □ Strongly Disagree

4. Is this sequence preferred?
□ Strongly Agree □ Agree □ Neutral □ Disagree □ Strongly Disagree

5. Do you feel safe with this type of sequence?
□ Strongly Agree □ Agree □ Neutral □ Disagree □ Strongly Disagree

6. Do you have any extra comment regarding the displayed content?

7. Do you have any other preferences regarding the shown content?

I acknowledge that my participation in this questionnaire is entirely voluntary. I have been
informed that I am free to discontinue my involvement at any stage without providing a
reason and without any negative consequences.
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