
An integrated environment for mathematical public transport optimization

Documentation

Version 2024.08

Currently developed at

Department of Mathematics and Systems Analysis
Aalto University, Espoo

and

Optimization Research Group
RPTU Kaiserslautern-Landau

and

Fraunhofer ITWM
Kaiserslautern

Originally developed at

Institute for Numerical and Applied Mathematics
University of Göttingen

Contributors

Head
• Philine Schiewe (current head)

• Anita Schöbel (former head and founder)

Technical Lead
• Sven Jäger

Researchers
• Sebastian Albert

• Christine Biedinger

• Thorsten Dahlheimer

• Vera Grafe

• Sarah Roth

• Alexander Schiewe

• Felix Spühler

• Moritz Stinzendörfer

• Reena Urban

Student Assistants
• Klara Hoffmann

• Eero Ketola

• Michael Rihlmann

Former Researchers
• Urs Baumgart

• Rasmus Fuhse

• Konstantinos Gkoumas

• Marc Goerigk

• Jonas Harbering

• Jonas Ide

• Julius Pätzold

• Michael Schachtebeck

• Jochen Schulz

• Michael Siebert

• Anke Uffmann

Former Student Assistants
• Florentin Hildebrandt

• Jonas Hürter

• Jarkko Jalovaara

• David Kaiser

• Benjamin Lieser

• Kim Reece

• Leevi Rönty

• Mridul Roy

• Lisa Sandig

• Christopher Scholl

• Linda Sieber

• Vitali Telezki

Contents

1 Introduction 7
1.1 What is LinTim? . 7
1.2 Installation and Requirements . 8

1.2.1 Connecting LinTim with a solver . 8
1.3 Installation Script . 10
1.4 Typical Usage: A Hands-On-Example . 10

2 Overview on the Planning Steps 14
2.1 Stop Location . 15
2.2 Line Pool Generation . 16
2.3 Line Planning . 16
2.4 Periodic Timetabling . 18
2.5 Tariff Planning . 20
2.6 Vehicle Scheduling . 21
2.7 Delay Management . 23
2.8 Integrated Planning . 26

3 Detailed Description of Algorithms 27
3.1 Stop Location . 27

3.1.1 Without a given infrastructure network . 27
3.1.2 For a given infrastructure network . 28

3.2 Line Pool Generation . 28
3.2.1 Creating a new line pool with the tree based heuristic 29
3.2.2 Creating a line pool while restricting the duration of the lines 30
3.2.3 Creating a line pool by k shortest paths . 31
3.2.4 Terminal-to-terminal . 31
3.2.5 Center-Periphery . 31
3.2.6 Line costs . 33

3.3 Line Planning . 33
3.3.1 Cost . 34
3.3.2 Direct . 35
3.3.3 Cost direct weighted sum . 37
3.3.4 Traveling time without frequencies . 37
3.3.5 Traveling time with frequencies . 38
3.3.6 Cost with traveling time bound . 39
3.3.7 Minchanges . 39
3.3.8 Game . 40

3.4 Timetabling . 41
3.4.1 Modulo network simplex algorithms . 41
3.4.2 Constraint propagation . 42
3.4.3 Abscon . 43
3.4.4 MATCH . 43

1

3.4.5 PESP-IP . 43
3.4.6 Cycle-based IP . 43
3.4.7 Phase 1 simplex . 44
3.4.8 Adaptions . 44

3.5 Tariff Planning . 44
3.5.1 General Remarks . 45
3.5.2 Flat Tariff . 46
3.5.3 Distance Tariffs . 46
3.5.4 Zones . 47

3.6 Vehicle Scheduling . 49
3.6.1 Mdm1 . 50
3.6.2 Mdm2 . 50
3.6.3 Assignment model . 50
3.6.4 Transportation model . 50
3.6.5 Network flow model . 50
3.6.6 Canal model . 51
3.6.7 Line-based . 51
3.6.8 Simple . 51
3.6.9 IP model . 51

3.7 Delay Management . 51
3.7.1 Propagate . 52
3.7.2 Integer-Linear-Programming based methods . 52

3.8 Integrated Planning . 54
3.8.1 Integrated timetabling and passenger routing . 55
3.8.2 Integrated timetabling and aperiodic vehicle scheduling 55
3.8.3 Integrated line planning and timetabling . 56
3.8.4 Integrated line planning, timetabling and vehicle scheduling 56
3.8.5 Robust Timetabling and Vehicle Scheduling Using Machine Learning 57
3.8.6 Eigenmodel . 59

4 Auxiliary Algorithms 61
4.1 Dataset Generation . 61

4.1.1 Input . 61
4.1.2 Output . 61
4.1.3 Algorithms . 61

4.2 OD Matrix Creation . 63
4.2.1 Input . 63
4.2.2 Output . 63
4.2.3 Algorithms . 64
4.2.4 Distribute from node demand . 64

4.3 Load distribution . 64
4.3.1 Input . 65
4.3.2 Output . 65
4.3.3 Algorithms . 65
4.3.4 Using the EAN . 66

4.4 Headway creation . 67
4.4.1 Input . 67
4.4.2 Output . 67
4.4.3 Algorithm . 67

4.5 PTN to EAN . 67
4.5.1 Input . 67
4.5.2 Output . 67
4.5.3 Algorithm . 67

4.6 EAN buffer activities . 69

2

4.7 EAN reroute passengers . 70
4.8 Tariff (Reference) Price Matrix . 70

4.8.1 Input . 70
4.8.2 Output . 71
4.8.3 Algorithms . 71

4.9 Rollout . 72
4.9.1 Input . 73
4.9.2 Output . 73
4.9.3 Algorithm . 73
4.9.4 Requirements and caveats . 74
4.9.5 Generating trips . 74

4.10 Delay generation . 75
4.11 Visualization . 76

4.11.1 PTN . 76
4.11.2 OD . 77
4.11.3 Loads . 78
4.11.4 Line pool . 79
4.11.5 Line concept . 79
4.11.6 Timetable . 80
4.11.7 Disposition timetable . 80
4.11.8 Tariff . 80
4.11.9 mapgui . 82

4.12 Interaction with VISUM . 82
4.12.1 Writing files for VISUM . 82
4.12.2 Reading a config file . 82
4.12.3 Reading the infrastructure . 83
4.12.4 Reading the PTN . 84
4.12.5 Reading the demand . 84
4.12.6 Reading stops and lines . 85
4.12.7 Reading a timetable . 85
4.12.8 Reading fixed lines . 86
4.12.9 Reading fixed times . 86

5 Evaluation 88
5.1 Evaluation of the PTN Created by Stop Location . 88
5.2 Evaluation of the PTN . 89
5.3 Evaluation of the OD Matrix . 89
5.4 Evaluation of the Line Pool . 89
5.5 Evaluation of the Line Concept . 90
5.6 Evaluation of the EAN . 92
5.7 Evaluation of the Timetable . 93

5.7.1 Capacitated Routing . 94
5.8 Evaluation of the Tariff created by Tariff Planning . 95
5.9 Evaluation of the Trips . 96
5.10 Evaluation of the Vehicle Schedules . 96
5.11 Evaluation of the Disposition Timetable . 97

6 Overview of Supported Integer Programming Solvers 99

3

7 Configuration Parameters 101
7.1 General . 101
7.2 Stop Location . 101
7.3 OD . 102
7.4 PTN . 102
7.5 Line Planning . 102
7.6 Load Generation . 103
7.7 Load Visualization . 104
7.8 Periodic EAN . 104
7.9 Debug . 106
7.10 Timetabling . 106
7.11 Tariff Planning . 107
7.12 Vehicle Scheduling . 109
7.13 Delay Management . 109
7.14 Dataset Generation . 110
7.15 Integrated Models . 110

7.15.1 General . 110
7.15.2 LinTimPass . 111
7.15.3 LinTimPassVeh . 111
7.15.4 TimPass . 111
7.15.5 TimVeh . 111
7.15.6 TimVehToLin . 111

7.16 TimPassLib . 111

8 In- and Output Data 112
8.1 Config . 112
8.2 Statistic . 113
8.3 Basis . 113

8.3.1 Additional load . 113
8.3.2 Change station . 114
8.3.3 Demand . 114
8.3.4 Demand geo . 114
8.3.5 Edge . 114
8.3.6 Edge forbidden . 115
8.3.7 Edge infrastructure . 115
8.3.8 Edge infrastructure forbidden . 115
8.3.9 Edge walking . 116
8.3.10 Existing stop . 116
8.3.11 Existing stop geo . 117
8.3.12 Existing edge . 117
8.3.13 Headway . 117
8.3.14 Load . 117
8.3.15 Node . 118
8.3.16 OD . 118
8.3.17 OD node . 118
8.3.18 Pool . 118
8.3.19 Pool cost . 119
8.3.20 Reference Price Matrix . 119
8.3.21 Restricted turns . 119
8.3.22 Restricted turns infrastructure . 119
8.3.23 Routings . 119
8.3.24 Station limits . 120
8.3.25 Stop . 120
8.3.26 Stop geo . 120

4

8.3.27 Terminals . 120
8.4 Line Planning . 120

8.4.1 Line concept . 121
8.4.2 Fixed lines . 121
8.4.3 Line capacities . 121

8.5 Timetabling . 121
8.5.1 Activities periodic . 121
8.5.2 Events periodic . 122
8.5.3 Fixed times . 122
8.5.4 Initial duration assumptions . 122
8.5.5 Timetable periodic . 123
8.5.6 Timetable for VISUM . 123

8.6 Tariff Planning . 123
8.6.1 Price Matrix . 123
8.6.2 Zones . 123
8.6.3 Zone Prices . 124

8.7 Vehicle Scheduling . 124
8.7.1 Vehicle schedules . 124

8.8 Delay Management . 124
8.8.1 Events expanded . 125
8.8.2 Activities expanded . 125
8.8.3 Timetable expanded . 125
8.8.4 Timetable disposition . 126
8.8.5 Delays events . 126
8.8.6 Delays activities . 126
8.8.7 Trips . 126

8.9 GTFS . 127

9 Datasets 128
9.1 Configuration Parameters for Datasets . 128
9.2 Artificial Datasets . 129

9.2.1 Toy . 129
9.2.2 Grid . 129
9.2.3 Ring . 129

9.3 Datasets based on real world data . 129
9.3.1 Sioux Falls . 129
9.3.2 Lowersaxony . 131
9.3.3 Goevb . 131
9.3.4 Athens . 132
9.3.5 Bahn-01 . 132
9.3.6 Bahn-02 . 132
9.3.7 Bahn-03 . 134
9.3.8 Bahn-04 . 134
9.3.9 Bahn-equal-frequencies . 134
9.3.10 BOMHarbour . 136
9.3.11 Mandl . 136

9.4 Adding new datasets . 136
9.4.1 Adding a dataset from PESPlib . 137
9.4.2 Adding a dataset from TimPassLib . 137
9.4.3 Dataset generator . 139

5

10 LinTim Core 140
10.1 Model . 140

10.1.1 Interfaces . 140
10.1.2 Classes . 140
10.1.3 Enumerations . 141
10.1.4 Package model.impl . 142

10.2 Input and Output . 142
10.3 Algorithm . 142
10.4 Utility . 142
10.5 Solver . 142
10.6 Exceptions . 142

11 Introduction to extending LinTim 146
11.1 Logging . 146

11.1.1 Output from LinTim programs . 146
11.1.2 Log levels . 146
11.1.3 Error messages . 146
11.1.4 Info messages . 147

11.2 Cleaning . 147

12 Continous Integration 148
12.1 Running the tests . 148
12.2 Adding test cases . 148

13 Changelog 149

6

Chapter 1

Introduction

1.1 What is LinTim?
LinTim is an academic algorithm and dataset library for mathematical public transport optimization. Problems
in public transport optimization range from finding suitable locations for stations over calculating passenger-
friendly timetables to handling unexpected delays. As it would be too complicated (though best in theory) to
handle all these problems at the same time, they are split up and solved sequentially.
However, what seems to be best for one particular problem may have devastating influence on a different
problem: For example a good timetable might not be well suited for delay management. LinTim (standing for
Lineplanning and Timetabling) addresses this issue by integrating the various public transport optimization
problems and algorithms into one single environment. It hence gives the possibility to go back and forth in
the sequence of public transport optimization problems in order to find solutions that work well on a greater
scope and not only for the respective problem.
The data files are based on simple plain text formats that allow the implementation of algorithms in whatever
programming language the developer likes to use. Thus, it is made easy to extend the current LinTim-library
and keep up to date with new developments and ideas.
LinTim is designed for the use in UNIX, and will not work flawlessly in a native Windows environment.

Throughout the documentation, we will use some markers to indicate what certain
teletyped texts mean:

Fo foldername (relative paths w.r.t. the current dataset),

Fi filename (relative paths w.r.t. the current dataset),

R command that can run in some shell,

C config entry with key and value,

CK config key,

CV config value,

S statistic entry with key and value,

SK statistic key,

SV statistic value.

CK (Fi) a config key for a filename, followed by the default value

7

1.2 Installation and Requirements
LinTim uses many different programming languages. For the most parts, it is enough to have Java (≥ 11
with ant ≥ 1.9.8 and maven ≥ 4), C, C++ and Python3 (≥ 3.5) installed on your system. There may be some
special algorithms requiring additional programming languages, but if this is the case this is noted in the
respective section of the documentation.

Using Windows 10 The easiest way to run LinTim under Windows 10 is using a WSL installation. For
installation instructions, see https://docs.microsoft.com/en-us/windows/wsl/install-win10.
Using the WSL you can follow the installation notes listed for Linux below.

Using macOS Although macOS is a Unix-based operating systems, some of the below mentioned
installation commands need to be adjusted when using macOS. The most important difference is the
unavailability of apt-get for package management. Please check the different installed packages for the best
way to install on macOS but for most of them, there are easy installation procedures using Homebrew, see
https://brew.sh/. With that, see the installation notes for Linux below for more information.

Using a Linux distribution In this section, we list the commands to install all dependencies available
in the Debian GNU/Linux Package index using apt-get. If you use another package manager, you need to
adapt the corresponding commands.
To install all package manager dependencies of LinTim, run

R sudo apt-get install build-essential openjdk-11-jdk ant graphviz python3-pip

To install the python package dependencies using pip, run

R sudo pip3 install numpy networkx pulp holoviews weightedstats

Also for using all of LinTim, you will have to fulfill other third-party dependencies. For more information,
have a look at Fi /libs/README.md. For a list of supported integer programming solvers and how to
connect them with LinTim, see the next section.

1.2.1 Connecting LinTim with a solver
Some programs make use of integer programming solvers like Xpress, CPLEX and Gurobi, but they are only
necessary if all functions of LinTim are desired. Especially, for each of the planning stages line planning,
timetabling and vehicle scheduling there are also algorithms working without a solver installed. See the
instructions of the respective algorithms for configuring LinTim to use your chosen solver and Chapter 6 for
a general overview which methods support which solver. If you want to use an integer programming solver,
make sure to install it using the corresponding documentation and to set the environment variables correctly.
In the following, we give a short overview which environment variables need to be set for LinTim to find the
corresponding solver. We suggest adding the below code snippets to your /.bashrc-file (or your equivalent,
depending on your used environment), for automatic environment variable setting.

Gurobi For Gurobi, the CLASSPATH and LD_LIBRARY_PATH variables need to be set. On your
machine, this might mean to run

R export GUROBI_HOME=/opt/gurobi/linux64

R export CLASSPATH=${GUROBI_HOME}/lib/gurobi.jar:${CLASSPATH}

R export LD_LIBRARY_PATH=${GUROBI_HOME}/lib/:${LD_LIBRARY_PATH}

Additionally, make sure to run the python installation script provided with the Gurobi installation to install
the Gurobi python package. On your machine, this might mean to run

R sudo python3 /opt/gurobi/linux64/setup.py install

For more information, check the Gurobi documentation.

8

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://brew.sh/

Xpress For Xpress, source the xpvars.sh script provided with the installation. On your machine, this
might mean to run

R source /opt/xpressmp/bin/xpvars.sh

This will take care of setting the appropriate environment variables for Xpress. For more information, check
the Xpress documentation.

CPLEX For CPLEX, the PATH, CLASSPATH and LD_LIBRARY_PATH variables need to be set. On
your machine, this might mean to run

R export CPLEX_HOME=/opt/ibm/ILOG/CPLEX_Studio201/cplex

R export CLASSPATH=${CPLEX_HOME}/lib/cplex.jar:${CLASSPATH}

R export LD_LIBRARY_PATH=${CPLEX_HOME}/bin/x86-64_linux/:${LD_LIBRARY_PATH}

R export PATH=${CPLEX_HOME}/bin/x86-64_linux/:${PATH}

Additionally, make sure to run the python installation script provided with the CPLEX installation to install
the CPLEX python package. On your machine, this might mean to run

R sudo python3 /opt/ibm/ILOG/CPLEX_Studio201/python/setup.py install

For more information, check the CPLEX documentation.

SCIP For SCIP, the PATH and LD_LIBRARY_PATH variables need to be set. On your machine, this
might mean to run

R export SCIPOPTDIR=/opt/scipoptsuite-7.0.2

R export LD_LIBRARY_PATH=${SCIPOPTDIR}/build/lib/:${LD_LIBRARY_PATH}

R export PATH=${SCIPOPTDIR}/build/bin/:${PATH}

If you want to use SCIP from a Java program, make sure to install JSCIPOpt as well, see https://github.
com/scipopt/JSCIPOpt. After installing, extend the above environment variables with

R export JSCIPOPTDIR=/opt/scipoptsuite-7.0.2

R export LD_LIBRARY_PATH=${JSCIPOPTDIR}/build/Release:${LD_LIBRARY_PATH}

R export CLASSPATH=${JSCIPOPTDIR}/build/Release/scip.jar:${CLASSPATH}

For more information, check the SCIP and JSCIPOpt documentation.

GLPK To use GLPK as a solver in LinTim, only the binary glpsol needs to be in the PATH. You can
install GLPK e.g. with

R sudo apt-get install glpk-utils

COIN and CBC The coin and cbc solver are both bundled with the PuLP python package. Therefore you
don’t need to install anything additionally here.

9

https://github.com/scipopt/JSCIPOpt
https://github.com/scipopt/JSCIPOpt

1.3 Installation Script
The installation script is a Python script which leads you through the most parts of the installation of LinTim.
By following the instructions of the script you install the required system dependencies, LinTim, the LinTim
dependencies, Gurobi and the Python dependencies. If you want to use the installation script you have to
start it from the shell by running

R python3 install.py

after downloading Fi install.py and Fi util.py. If you already downloaded LinTim you can find the
installation file in Fo src/installation. Note that certain installations require sudo access where you
will be prompted for your password.

1.4 Typical Usage: A Hands-On-Example
In the following we describe the typical usage of LinTim and give an overview over the structure of the
repository.
Its root directory consists of the following:

• Fo /ci
Folder for continuous integration tests.

• Fo /datasets
The LinTim instances and their customized configuration files.

• Fo /doc
All documents regarding the LinTim project (e.g. this documentation).

• Fo /libs
A folder to place dependencies. If necessary, the dependency will be described in the corresponding
algorithm section.

• Fo /src
The source code of the LinTim algorithms.

In Fo /datasets you can see all the datasets which are implemented in LinTim for the time being. For
further information on these datasets see Chapter 9, including information on how to add your own datasets
to LinTim.

Our goal in this example will be to calculate a disposition timetable for the “toy”-dataset and describe
several of the in- and output files that you can find during the process. Note that in general, LinTim provides
the capability to configure all file paths. For simplicity, we will only provide the default values for this
config keys in this chapter. For more information, see the following chapters.

Change into the folder
Fo /datasets/toy

in order to run algorithms on the “toy”-dataset. You find an exemplary folder-structure of a dataset folder:

• Fo basis
Contains all the data describing the instance like OD matrix, edges, loads, line pool, headways, etc.

• Fo delay-management
Will contains all the data related to delay-management and aperiodic planning.

• Fo graphics
Will contain all graphical output of the algorithms you might use.

• Fo line-planning
Will contains all the data related to line planning.

10

• Fo statistic
Will contain all output of evaluations you might run (may not exist yet, will be created automatically
on evaluation).

• Fo timetabling
Will contain all data related to periodic timetabling.

• Fo vehicle-scheduling
Will contain all data related to vehicle scheduling.

As you can see, the folder names (and thus the contents) are related to the different steps of mathematical
public transport optimization.

Every output you produce will by default be written into the respective folders.

This means, if you somehow produce an output regarding e.g. the delay-management, it will be written to
Fo delay-management.

Also, each dataset folder contains a Makefile.

LinTim algorithms are used by calling make.

For instance typing

R make lc-line-concept

while being located in the “toy”-folder will compile all necessary files, calculate a line concept for the
“toy”-instance and write it into Fi line-planning/Line-concept.lin.
Note that by default, this will use Xpress as an integer optimization solver. Therefore to successfully run
this step, Xpress needs to be installed. See Chapter 1.2 for more information.

For calculating a line concept, LinTim uses the data given in Fo basis.
Having a look into the makefile the line

line-concept:
${SRC_DIR}/line-planning/line-planning.sh ${FILENAME_CONFIG}

tells us, that the line concept is calculated using the algorithms from
Fo /src/line-planning with the configurations given in
Fi ${FILENAME_CONFIG}, which is Fi basis/Config.cnf by default.

For detailed instructions on configuration files and how to change them see Section 8.1.
If you want wo use different algorithms see Chapter 2 to know which are already implemented, Chapter 3 for
detailed information on the implemented algorithms and Chapter 11 for instructions on how to implement
your own into LinTim.

So let’s have a look at what we got from our call

R make lc-line-concept

The file Fi line-planning/Line-concept.lin should contain something like this:

line-id; edge-order; edge-id; frequency
1;1;1;0
1;2;6;0
1;3;7;0
2;1;2;3
2;2;6;3
...

11

LinTim usually works with text files structured similarly (# comments a line). The advantage of this concept
is that they are very independent of the programming language used.
In the most text files, like in this example, an explanation will be given on how to read them.

So now we got ourselves a first line concept for our “toy”-example. Next thing to do would be calculating
a feasible timetable. For this we first have to provide an Event-Activity-Network (EAN). We can make
LinTim calculate this by calling

R make ean

Note that in order to calculate this EAN LinTim of course needs a public transportation network (PTN),
given by the network itself and a line concept on this network.
Of course it would be possible to design the algorithms in a way that a call of

R make ean

automatically generates a line concept if none is existent so far but for different reasons we refrained from
this.
Therefore before calling

R make ean

you will always have to provide a line concept. Calling it before calculating a line concept will result in an
error.
By calling

R make ean

we calculated the events and activities of our EAN. These are written to
Fi timetabling/Activities-periodic.giv and Fi timetabling/Events-periodic.giv.

For instance Fi timetabling/Events-periodic.giv should look something like this:

event_id; type; stop-id; line-id; passengers; line-direction;
line-freq-repetition

1; "departure"; 1; 1; 20; >; 1
2; "arrival"; 3; 1; 20; >; 1
3; "departure"; 3; 1; 20; >; 1
...

The first line again tells us how to read the file, i.e. e.g. event 2 is an arrival of line 1 at stop 3 carrying 20
passengers.

In order to calculate a timetable from this data we just call

R make tim-timetable

and LinTim will write a timetable to Fo timetabling/timetable-periodic.tim in which you can look
up the event given by its index and the time it is scheduled to take place.
Given this timetable we can now concentrate on the delay-management or the vehicle-scheduling.

We will try out the DM step first. This is a little bit more complex because there are some prerequisites we
have to provide.
First of all we need an aperiodic timetable since the DM-algorithms only work for these.
But we do not really need a new aperiodic timetable. We just need our periodic timetable expanded that is
we have to adhere the periods.
For LinTim we call this "Rollout" and calculate it by calling

R make ro-rollout

12

The needed “aperiodic” timetable will be written to
Fi delay-management/Timetable-expanded.tim and will also be included in
Fi delay-management/Events-expanded.tim.

After calculating this timetable we can create some delays by calling

R make dm-delays

This will call the delay-generator which generates source delays for our given network. More on how the
delay-generator works and how to control it can be found in Section 4.10.
After creating some delays we finally want to calculate a disposition timetable and do that by calling

R make dm-disposition-timetable

The timetable will be calculated and written to
Fi delay-management/Timetable-disposition.tim.

For concluding our first LinTim-cycle we now want to calculate a vehicle scheduling.
For this we first have to consider, that all the trips that have to be completed by some vehicle have to be
known. In a periodic timetable this might not be the case. Because of this we have to rollout the whole trips
and we can do so by setting C rollout_whole_trips to true. Changing a config-parameter is done in
the following way:
Change to

Fo basis

and write

rollout_whole_trips; true

into Fi basis/Private-Config.cnf.
Now for calculating the vehicle-schedules we first have to repeat the steps from and including

R make ro-rollout

We then have to calculate the trips, the vehicles have to do. We can do so by typing

R make ro-trips

and the trips will be written to Fi delay-management/Trips.giv.
Now calling

R make vs-vehicle-schedules

calculates the vehicle schedule and it is written to
Fi vehicle-scheduling/Vehicle_Schedules.vs.

In the end, we want to evaluate the created vehicle schedule. By running

R make vs-vehicle-schedules-evaluate

we evaluate the current vehicle schedule and the computed properties will be written to
Fi statistic/statistic.sta, e.g. SK vs_cost, the cost of the vehicle schedule and
SK vs_feasible, whether the computed schedule is feasible.

Beside this few make-targets we introduced there are a lot more in LinTim. Have a look into the makefiles to
see which possible targets exist. Which algorithm will be called exactly is defined by the configuration file.
For a description of which parameter setting will call which algorithm, see Chapter 2.

13

Chapter 2

Overview on the Planning Steps

The different public transport optimization problems can be summarized in the following figure:

Tariff Planning

Tariff

Input Data

Edge

Stop

Load

OD

Pool

Line Pool Generation

Line Pool

Line Planning

Line Concept

Build EAN

Events

Activities

Timetabling

Periodic
Timetable

Rollout

Aperiodic
Timetable

Vehicle Scheduling

Rolling Stock

Timetabling Data

Delay Generator

Delays

Delay Management

Disposition Timetable

Figure 2.1: Different planning steps considered in LinTim

14

2.1 Stop Location
In the the stop location step a new PTN is computed according to a given demand and a given infrastructure
of stations and tracks.

2.1.1 Input
The following files are needed as input for the classical stop location problems:

• CK default_existing_stop_file (Fi basis/Existing-Stop.giv) stops of the existing in-
frastructure network

• CK default_existing_edge_file (Fi basis/Existing-Edge.giv) edges of the existing in-
frastructure network

• CK default_demand_file (Fi basis/Demand.giv) demand at geographical positions

Additionally, there are models for a given infrastructure network. For this, the following files are needed as
input:

• CK filename_node_file (Fi basis/Node.giv) the nodes of the network, including possible
stops

• CK filename_infrastructure_edge_file (Fi basis/Edge-Infrastructure.giv) direct
connections between the nodes suitable for public transport

• CK filename_walking_edge_file (Fi basis/Edge-Walking.giv) possible walking edges
between infrastructure nodes

• CK filename_od_nodes_file (Fi basis/OD-Node.giv) od data based on infrastructure nodes

2.1.2 Output
The following files are produced as output.

• CK default_stops_file (Fi basis/Stop.giv) stops of the new PTN

• CK default_edges_file (Fi basis/Edge.giv) edges of the new PTN

2.1.3 Algorithms
Running

R make sl-stop-location

will create a new PTN with respect to the given demand points. The following algorithms are available:

• CK sl_model CV dsl finds an optimal solution for the stop location problem with fixed travel times
on PTN edges.

• CK sl_model CV greedy finds a feasible solution for the stop location problem with fixed travel
times on PTN edges with a greedy approach.

• CK sl_model CV dsl-tt solves CV dsl while considering the travel time, including acceleration
and deceleration.

• CK sl_model CV dsl-tt-2 solves CV dsl while considering the travel time, including acceleration
and deceleration.

• CK sl_model CV tt finds a travel time optimal solution for a given infrastructure network with
walking times for the passengers

• CK sl_model CV all adds every possible stop in a given infrastructure network to the new PTN.

15

2.2 Line Pool Generation
In the line pool generation step a possible set of lines is computed to use during the line planning step.

2.2.1 Preparation
Run

R make ptn-regenerate-load

to compute a new load.

2.2.2 Input
The following files are needed as input:

• CK default_stops_file (Fi basis/Stop.giv) stops of the PTN

• CK default_edges_file (Fi basis/Edge.giv) edges of the PTN

• CK default_loads_file (Fi basis/Load.giv) expected distribution of passengers to PTN
edges (depending on CK lpool_model)

• CK default_od_file (Fi basis/OD.giv) OD matrix (depending on CK lpool_model)

2.2.3 Output
The following files are produced as output.

• CK default_pool_file (Fi basis/Pool.giv) line pool, set of possible lines

• CK default_pool_cost_file (Fi basis/Pool-Cost.giv) costs of lines in line pool

2.2.4 Algorithms
To compute a line pool run

R make lpool-line-pool

The following algorithms are available:

• CK lpool_model CV tree_based a heuristic based on MST which computes a line pool that at
least allows for a feasible line concept for a given load (see 3.2.1)

• CK lpool_model CV restricted_line_duration same as CV tree_based but with additional
constraints on the duration of a line (see 3.2.2)

• CK lpool_model CV k_shortest_paths a heuristic which computes the k shortest path for all
OD pairs as line pool (see 3.2.3)

• CK lpool_model CV terminal-to-terminal enumerates the complete line pool, starting and
ending each line at a terminal (see 3.2.4).

• CK lpool_model CV center-periphery identifies some nodes as centers and some nodes as
periphery and then constructs lines between these different pairs of nodes (see 3.2.5).

2.3 Line Planning
In the line planning step a feasible line concept is determined by assigning frequencies to all lines in the line
pool.

16

HH

HB

BS

GÖ

H

OL

→

HH

HB

BS

GÖ

H

OL

l2
l2l1

l1

l1

l2

Figure 2.2: Line Planning Step

2.3.1 Preparation
Run

R make ptn-regenerate-load

to compute a new load.

2.3.2 Input
The following files are needed as input:

• CK default_stops_file (Fi basis/Stop.giv) stops of the PTN

• CK default_edges_file (Fi basis/Edge.giv) edges of the PTN

• CK default_pool_file (Fi basis/Pool.giv) line pool

• CK default_pool_cost_file (Fi basis/Pool-Cost.giv) costs of line pool

• CK default_loads_file (Fi basis/Load.giv) expected distribution of passengers to PTN
edges (depending on CK lc_model)

• CK default_od_file (Fi basis/OD.giv) OD matrix (depending on CK lc_model)

2.3.3 Output
The following file is produced as output.

• CK default_lines_file (Fi line-planning/Line-Concept.lin) line pool, set of possible
lines

2.3.4 Algorithms
To compute a line concept run

R make lc-line-concept

The following algorithms are available:

• CK lc_model CV cost optimization model minimizing the total costs of a line concept (see 3.3.1)

• CK lc_model CV cost_restricting_frequencies the CV cost-model, but with a restriction
on the number of frequencies (see 3.3.1)

17

• CK lc_model CV direct optimization model maximizing the number of passengers who can travel
on a shortest path from their origin to their destination without having to transfer (see 3.3.2)

• CK lc_model CV direct_restricting_frequencies the CV direct-model, but with a restric-
tion on the number of frequencies (see 3.3.2)

• CK lc_model CV direct_relaxation relaxation of CK lc_model CV direct

• CK lc_model CV cost_greedy_1 greedy heuristic trying to minimize the costs

• CK lc_model CV cost_greedy_2 another greedy heuristic trying to minimize the costs

• CK lc_model CV mult-cost-direct an IP minimizing the weighted sum of costs and direct
travelers

• CK lc_model CV mult-cost-direct-relax an IP minimizing the weighted sum of costs and
direct travelers. Capacity restrictions are aggregated for each edge.

• CK lc_model CV traveling-time-cg a column generation procedure minimizing the estimated
travel time of passengers. (see 3.3.4)

• CK lc_model CV traveling-time-mip (M)IP model for choosing line frequencies and passenger
routes minimizing the estimated traveling times. (see 3.3.5)

• CK lc_model CV minchanges_ip integer program trying to minimize the weighted number of
transfers (see 3.3.7)

• CK lc_model CV minchanges_cg column generation procedure trying to minimize the weighted
number of transfers (see 3.3.7)

• CK lc_model CV game a game-theoretic approach which distributes lines equally among the edges
in order to avoid congestion and delays

2.4 Periodic Timetabling
In periodic timetabling for each Event of a previously created Event-Activity-Network is assigned a time,
resulting in a timetable.

2.4.1 Preparation
Run

R make ean

to create an Event-Activity-Network from an existing line concept.

2.4.2 Input
The following files are needed as input:

• CK default_activities_periodic_file (Fi timetabling/Activities-periodic.giv) Ac-
tivities generated by the line concept.

• CK default_events_periodic_file (Fi timetabling/Events-periodic.giv) Events gen-
erated by the line concept.

For some timetabling procedures also the following files are necessary:

• CK default_stops_file (Fi basis/Stop.giv) stops of the PTN

18

HH

HB

BS

GÖ

H

OL

l2
l2l1

l1

l1

l2
→

GÖ dep H arr H dep HH arr HH dep HB arr

OL dep HB arr HB dep H arr H dep BS arr

drive wait drive wait drive

drive wait drive wait drive

change

change

change

Figure 2.3: Creation of an EAN

• CK default_edges_file (Fi basis/Edge.giv) edges of the PTN

• CK default_lines_file (Fi line-planning/Line-Concept.lin) line concept calculated in
the previous planning step

• CK filename_tim_fixed_times (Fi timetabling/Fixed-timetable-periodic.tim) fixed
time intervals for some events

2.4.3 Output
The following files are produced as output.

• CK default_timetable_periodic_file (Fi timetabling/Timetable-periodic.tim)

GÖ dep

0

H arr

15

H dep

20

HH arr

35

HH dep

40

HB arr

50

OL dep

15

HB arr

25

HB dep

30

H arr

40

H dep

45

BS arr

50

drive wait drive wait drive

drive wait drive wait drive

change

change

change

Figure 2.4: Periodic Timetabling Step

2.4.4 Algorithms
To compute a line concept run

R make tim-timetable

The following algorithms are available by setting the config parameter CK tim_model to one of the
following:

• CV MATCH (default value) Heuristic that sets the times of driving and waiting activities to their lower
bounds and then tries to minimize change durations.

• CV con_prop Heuristic that fixes events and propagates the implied constraints to the whole network.

• CV csp Heuristic that transforms the problem to a Constraint Satisfaction Problem and finds a feasible
solution for it. Currently not included in the release version of LinTim.

19

• CV ns_improve Improvement procedure (known as Network-Simplex or Modulo-Simplex) that
requires a feasible timetable.

• CV csp_ns Runs csp and ns_improve afterwards. Currently not included in the release version of
LinTim.

• CV con_ns Runs con_prop and ns_improve afterwards.

• CK ipModels the Periodic Timetabling Problem as an IP and solves it.

• CK cb_ipModels the Periodic Timetabling Problem as a cycle based IP and solves it.

• CK ns_cb First improve a given feasible solution using the network simplex and afterwards optimize
it using a cycle based IP

• CK phase-one Uses a phase 1 simplex method for finding a feasible timetable

2.5 Tariff Planning
Tariff planning computes a new tariff minimizing the deviation from given reference prices.

2.5.1 Input
The following files are needed as input:

• CK default_stops_file (Fi basis/Stop.giv), stops of the PTN

• CK default_edges_file (Fi basis/Edge.giv), edges of the PTN

• CK default_od_file (Fi basis/OD.giv), OD matrix

• CK filename_tariff_reference_price_matrix_file

(Fi basis/Reference-Price-Matrix.giv), matrix of reference prices

Depending on the parameter values a routing in the PTN is also needed:

• CK filename_routing_ptn_input (Fi basis/Routing-ptn.giv), routing in the ptn

2.5.2 Output
The following files are produced as output independent of CK taf_model:

• CK filename_tariff_price_matrix_file (Fi tariff/Price-Matrix.taf), prices for each
OD pair

• CK filename_tariff_properties_file (Fi statistic/tariff-properties.sta), statis-
tic file containing information whether the no-elongation property and the no-stopover property (see
Section 3.5.4) are fulfilled for the computed tariff. For a zone tariff it is also checked whether the
zones are connected. Additionally, the tariff model and in case of a zone tariff the counting type are
specified.

If CK taf_model is CV zone, then the two following files are produced as output as well:

• CK filename_tariff_zone_file (Fi tariff/Zones.taf), assignment of stops to zones

• CK filename_tariff_zone_price_file (Fi tariff/Zone-Prices.taf), prices per number
of traversed zones

If CK taf_model is CV network_distance or CV zone, the routing that is computed is also written as
output file:

• CK filename_routing_ptn_output (Fi basis/Routing-ptn.giv), routing in the ptn

20

2.5.3 Algorithms
To compute a tariff, run

R make taf-tariff

The following algorithms are available:

• CK taf_model CV flat, optimization model determining a flat tariff

• CK taf_model CV beeline_distance, optimization model determining an affine beeline distance
tariff,

• CK taf_model CV network_distance, optimization model determining an affine network distance
tariff,

• CK taf_model CV zone, optimization model determining a zone tariff.

2.6 Vehicle Scheduling
In the vehicle scheduling problem a set of routes for service vehicles is calculated to serve the given public
transportation system. There are two base models, one based on an aperiodic timetable, the other only
on a line concept. The following information is based on the classic formulations, based on the aperiodic
timetable.

2.6.1 Preparation
Run

R make ro-rollout

and

R make ro-trips

with CK rollout_whole_trips set to CV true to create all input files needed for the vehicle scheduling
problem.

GÖ dep

0

H arr

15

H dep

20

HH arr

35

HH dep

40

HB arr

50

OL dep

15

HB arr

25

HB dep

30

H arr

40

H dep

45

BS arr

50

drive wait drive wait drive

drive wait drive wait drive

change

change

change →

GÖ dep

8:00

H arr

8:15

H dep

8:20

HH arr

8:35

HH dep

8:40

HB arr

8:50

OL dep

8:15

HB arr

8:25

HB dep

8:30

H arr

8:40

H dep

8:45

BS arr

8:55

GÖ dep

9:00

H arr

9:15

H dep

9:20

HH arr

9:35

HH dep

9:40

HB arr

9:55

OL dep

9:15

HB arr

9:25

HB dep

9:30

H arr

9:40

H dep

9:45

BS arr

9:55

drive wait drive wait drive

drive wait drive wait drive

drive wait drive wait drive

drive wait drive wait drive

change

change

change

change

Figure 2.5: Rollout Step

21

GÖ dep

8:00

H arr

8:15

H dep

8:20

HH arr

8:35

HH dep

8:40

HB arr

8:50

OL dep

8:15

HB arr

8:25

HB dep

8:30

H arr

8:40

H dep

8:45

BS arr

8:55

GÖ dep

9:00

H arr

9:15

H dep

9:20

HH arr

9:35

HH dep

9:40

HB arr

9:55

OL dep

9:15

HB arr

9:25

HB dep

9:30

H arr

9:40

H dep

9:45

BS arr

9:55

drive wait drive wait drive

drive wait drive wait drive

drive wait drive wait drive

drive wait drive wait drive

change

change

change

change

→

GÖ to HB

8:00 - 8:50

OL to BS

8:15 - 8:55

GÖ to HB

9:00 - 9:50

OL to BS

9:15 - 9:55

Figure 2.6: Rollout to Trips Step

2.6.2 Input
For the rollout

The following files are needed as an input for the rollout-step:

• CK default_edges_file (Fi basis/Edge.giv) edges of the PTN

• CK default_headways_file (Fi basis/Headway.giv) headways of the PTN

• CK default_lines_file (Fi line-planning/Line-Concept.lin) frequencies of the lines

• CK default_events_periodic_file (Fi timetabling/Events-periodic.giv) periodic events

• CK default_activities_periodic_file (Fi timetabling/Activities-periodic.giv)
periodic activities

• CK default_timetable_periodic_file (Fi timetabling/Timetable-periodic.tim)
periodic timetable

Only for the model

The following files are needed as an input for the vehicle scheduling step:

• CK default_stops_file (Fi basis/Stop.giv) stops of the PTN

• CK default_edges_file (Fi basis/Edge.giv) edges of the PTN

• CK default_trips_file (Fi delay-management/Trips.giv) trips for the vehicle schedule

• CK default_events_expanded_file (Fi delay-management/Events-expanded.giv)
aperiodic events

2.6.3 Output
The following files will be produced:

• CK default_vehicle_schedule_file (Fi vehicle-scheduling/Vehicle_Schedules.vs)
the vehicle schedule

22

GÖ to HB

8:00 - 8:50

OL to BS

8:15 - 8:55

GÖ to HB

9:00 - 9:50

OL to BS

9:15 - 9:55

→

GÖ to HB

8:00 - 8:50

OL to BS

8:15 - 8:55

GÖ to HB

9:00 - 9:50

OL to BS

9:15 - 9:55

Depot

Figure 2.7: Vehicle Scheduling

2.6.4 Algorithms
To compute a vehicle schedule run

R make vs-vehicle-schedules

. The following models are available

• CK vs_model CV MDM1Minimizing the number of vehicles (see 3.6.1)

• CK vs_model CV MDM2Minimizing the number of vehicles (see 3.6.2)

• CK vs_model CV ASSIGNMENT_MODELMinimizing the overall costs (see 3.6.3)

• CK vs_model CV TRANSPORTATION_MODELMinimizing the overall costs (see 3.6.4)

• CK vs_model CV NETWORK_FLOW_MODELMinimizing the overall costs (see 3.6.5) (see 3.6.1)

• CK vs_model CV CANAL_MODELMore detailed version of CV ASSIGNMENT_MODEL (see 3.6.6)

• CK vs_model CV LINE_BASED vehicle scheduling only based on line planning (see 3.6.7)

• CK vs_model CV SIMPLE will create a vehicle schedule driving the lines back and forth (see 3.6.8)

• CK vs_model CV IP solve a simple ip model (see 3.6.9)

2.7 Delay Management
Delay management computes a new (disposition) timetable based on an existing timetable and unforeseen
delays that make the original timetable infeasible.

2.7.1 Preparation
If you have not already done so for the vehicle scheduling part, run

R make ro-rollout

to expand a previously computed periodic timetable on a periodic Event-Activity Network into an aperiodic
timetable on an aperiodic Event-Activity Network.

23

2.7.2 Input
For the rollout

The following files are needed as an input for the rollout-step:

• CK default_edges_file (Fi basis/Edge.giv) edges of the PTN

• CK default_headways_file (Fi basis/Headway.giv) headways of the PTN

• CK default_lines_file (Fi line-planning/Line-Concept.lin) frequencies of the lines

• CK default_events_periodic_file (Fi timetabling/Events-periodic.giv) periodic events

• CK default_activities_periodic_file (Fi timetabling/Activities-periodic.giv)
periodic activities

• CK default_timetable_periodic_file (Fi timetabling/Timetable-periodic.tim)
periodic timetable

Aperiodic Event-Activity Network

These files, generated by the rollout step, are actually used for delay management:

• CK default_events_expanded_file (Fi delay-management/Events-expanded.giv) for
the events

• CK default_activities_expanded_file (Fi delay-management/Activities-expanded.giv)
for the activities

• CK default_timetable_expanded_file (Fi delay-management/Timetable-expanded.tim)
for the initial timetable

Delays

There are two types of delays, which are both optional, and which go into separate files:

• CK default_event_delays_file (Fi delay-management/Delays-Events.giv)

• CK default_activity_delays_file (Fi delay-management/Delays-Activities.giv)

You can either manually enter delays on events and/or activities through these files, or use an automatic
(random) delay generator by running

R make dm-delays

2.7.3 Output
The result of the delay management step is a new disposition timetable with no departure earlier than in the
original timetable, and with all the delays respected: CK default_disposition_timetable_file

(Fi delay-management/Timetable-disposition.tim)

24

GÖ dep

8:00

H arr

8:15

H dep

8:20

HH arr

8:35

HH dep

8:40

HB arr

8:50

OL dep

8:15

HB arr

8:25

HB dep

8:30

H arr

8:40

H dep

8:45

BS arr

8:55

GÖ dep

9:00

H arr

9:15

H dep

9:20

HH arr

9:35

HH dep

9:40

HB arr

9:55

OL dep

9:15

HB arr

9:25

HB dep

9:30

H arr

9:40

H dep

9:45

BS arr

9:55

+35 wait drive wait drive

drive wait drive wait drive

+10
wait drive wait drive

drive wait
+10

wait drive

change

change

change

change

Figure 2.8: Generation of Delays

GÖ dep

8:00

H arr

8:15

H dep

8:20

HH arr

8:35

HH dep

8:40

HB arr

8:50

OL dep

8:15

HB arr

8:25

HB dep

8:30

H arr

8:40

H dep

8:45

BS arr

8:55

GÖ dep

9:00

H arr

9:15

H dep

9:20

HH arr

9:35

HH dep

9:40

HB arr

9:55

OL dep

9:15

HB arr

9:25

HB dep

9:30

H arr

9:40

H dep

9:45

BS arr

9:55

+35 wait drive wait drive

drive wait drive wait drive

+10
wait drive wait drive

drive wait
+10

wait drive

change

change

change

change

→

GÖ dep

8:00

H arr

8:50

H dep

8:55

HH arr

9:10

HH dep

9:15

HB arr

9:25

OL dep

8:15

HB arr

8:25

HB dep

8:30

H arr

8:40

H dep

8:55

BS arr

9:05

GÖ dep

9:00

H arr

9:30

H dep

9:35

HH arr

9:50

HH dep

9:55

HB arr

10:10

OL dep

9:15

HB arr

9:25

HB dep

9:30

H arr

9:50

H dep

9:55

BS arr

10:05

wait drive wait drive

drive wait drive wait drive

wait drive wait drive

drive wait wait drive

change

change

change

change

Figure 2.9: Delay Management Step

2.7.4 Algorithms
The delay management step is invoked via

R make dm-disposition-timetable

The main algorithms implemented in LinTim are the IP-based algorithms

• CK DM_method CV DM1

• CK DM_method CV FSFS

• CK DM_method CV FRFS

• CK DM_method CV EARLYFIX

• CK DM_method CV PRIORITY

• CK DM_method CV PRIOREPAIR

25

• CK DM_method CV best-of-allwhich computes all of the above and then chooses the best solution

• CK DM_method CV DM2

• CK DM_method CV DM2-pre

These need a solver configured via CK DM_solver (like CV Xpress or CV Gurobi, see Section 1.2 for
details). In contrast, the most basic method without any optimization is just delaying all the events according
to the delays, CK DM_method CV propagate, where a maximum waiting time for change activities can
be configured in seconds by CK DM_propagate_maxwait, and headway activities can be turned around
automatically whenever this would not result in additional delay for the train that was originally scheduled
to go first, by setting CK DM_propagate_swapHeadways to CV true (the default).

2.8 Integrated Planning
LinTim also contains algorithms to compute multiple planning stages at once or in non-ordinary order.

2.8.1 Algorithms
Timetabling and Passenger Routing: Run

R make int-tim-pass

to solve the integrated timetabling and passenger routing problem. More information can be found in
Section 3.8.1.

Timetabling and Vehicle Scheduling: Run

R make int-tim-veh

to solve the integrated timetabling and aperiodic vehicle scheduling problem. The passenger routes
are fixed in this model. More information can be found in Section 3.8.2.

Line Planning and Timetabling: Run

R make int-lin-tim-pass

to solve the integrated line planning and timetabling problem. This also includes passenger routing in
the timetabling stage. More information can be found in Section 3.8.3.

Timetabling and Vehicle Scheduling: Run

R make int-lin-tim-pass-veh

to solve the integrated line planning, timetabling and aperiodic vehicle scheduling problem. This also
includes passenger routing in the timetabling stage. More information can be found in Section 3.8.4.

Robust Timetabling and Vehicle Scheduling using Machine Learning Run

R make int-rob-ml-algo

to solve the problem of finding a robust timetable and vehicle schedule based on the current solution.
More information can be found in Section 3.8.5.

2.8.2 The Eigenmodel
The eigenmodel is an iterative approach to integrated public transport planning, re-organizing the sequential
planning approach to allow new optimization models, solving the original problem in different orderings.
For more details, see Section 3.8.6.

26

Chapter 3

Detailed Description of Algorithms

3.1 Stop Location

3.1.1 Without a given infrastructure network
Running

R make sl-stop-location

will create a new PTN with respect to the given demand points. Here, all demand points have to be covered
by at least one station, i.e., the distance between the demand point an d the nearest station has to be less than
a given radius.
The parameters used for adjusting the model are the following:

• CK sl_distance norm used for measuring the distance between demand points, stations etc. Cur-
rently the only option is euclidean_norm.

• CK sl_radius maximal distance a demand point may have from a station to be covered.

• CK sl_destruction_allowed whether it is allowed to remove station that are not covering any
demand points.

• CK sl_new_stop_default_name name prefix to be given to new stops.

Fixed travel time on edges

The first step of the classical stop location problem which uses fixed travel times on the edges is to compute a
finite dominating set of candidates for new stations. When using the euclidean norm for measuring distance
this finite dominating set can easily computed as the intersection of the tracks and circles around the demand
point with the given radius and the already existing stops.

Optimization model For the optimization model define the constants

aps =

1 if demand point p is covered by candidate s
0 otherwise

and the variables

xs =

1 if candidate s is established as station
0 otherwise

.

The objective is to minimize the number of established stations such that all demand points are covered.
The following optimization model is solved to find an optimal solution for the stop location problem.

27

(DS L) min
∑
s∈S

xs

s.t.
∑
s∈S

apsxs ≥ 1 ∀p ∈ P

xs ∈ {0, 1} ∀S

For more information, see [33, 37].

Greedy heuristic The greedy heuristic find a feasible solution to the stop location problem by successively
adding the candidate which covered most uncovered demand points at this point in time.
For more information, see [33, 37].

Travel time considering acceleration/deceleration

When considering the acceleration and deceleration phases of vehicles, the following parameters have to be
set:

• CK sl_acceleration

• CK sl_deceleration

• CK sl_waiting_time

For more information, see [4].

3.1.2 For a given infrastructure network
If a complete infrastructure network, i.e., an infrastructure network with walking and node-based od-
information, is given, the stop location models CK sl_model CV tt and CV all can be used. For CV tt,
a selection of stops is chosen such that the overall travel time of the passengers (containing public transport
use as well as walking) is minimized. Additionally, creating stops is penalized by CK sl_cost_of_stop.
For CV all, all possible stop points are converted to stops in the PTN.
Given forbidden edges in the infrastructure (CK sl_forbidden_edges) and given restricted turns in the
infrastructure (CK sl_restricted_turns) can be converted into the resulting ptn information as well
when their corresponding config parameter is set to CV true.

3.2 Line Pool Generation
A new line pool is created by running

R make lpool-line-pool

There are four main approaches implemented in LinTim.

1. Different variants of a tree-based heuristic. These are invoked by setting CK lpool_model to either
CV tree_heuristic or CV restricted_line_duration and are described in Sections 3.2.1
and 3.2.2, respectively.

2. A center-periphery heuristic, which is called with the parameter setting CK lpool_model CV

center-periphery and described in Section 3.2.5.

3. k-shortest paths. This is called by setting CK lpool_modelto CV k_shortest_paths and is
described in Section 3.2.3.

4. All paths between pairs of a given set of terminal stations. This is executed when setting CK

lpool_model to CV terminal-to-terminal and described in Section 3.2.4.

28

3.2.1 Creating a new line pool with the tree based heuristic
For an undirected PTN a line pool L may be created from an existing PTN (CK default_edges_file

(Fi basis/Edge.giv), CK default_stops_file (Fi basis/Stop.giv)), a given
CK default_loads_file (Fi basis/Load.giv) (see Chapter 8), and a given CK default_od_file

(Fi basis/OD.giv) by running

R make lpool-line-pool

with CK lpool_model CV tree_based, which creates a line pool CK default_pool_file

(Fi basis/Pool.giv) and a corresponding CK default_pool_cost_file

(Fi basis/Pool-Cost.giv). How the line costs are computed can be seen in Section 3.2.6.
The algorithm iteratively creates minimum spanning trees, on which lines are created in three different
possible ways:

• as a path from a leaf of the MST to another leaf,

• as a path from a leaf of the MST to a terminal or

• as a path from a terminal to another terminal.

Here terminals are nodes of a high node degree. Each of the three classes of lines has to fulfill different
requirements, which can be seen in the discussion of the configuration parameters. Lines are created until a
feasible line concept can be found within the line pool or until the maximal number of iterations is reached.
One iteration consists of the following steps:

1. Determine a set of preferred edges.

2. Compute minimum spanning trees and create lines until all preferred edges are covered sufficiently
often or no other line can be added.

3. Test whether a feasible line concept can be found in the constructed pool.

In the first iteration preferred edges are chosen from the usage rate in the shortest paths of the OD pairs.
Later, the lower frequencies given in the loads file are lowered until a feasible line concept can be found for
the new frequencies, and the edges for which the original frequencies are not met are chosen as preferred
edges.
The edge weight used to compute the minimum spanning tree is zero if the edge is preferred and the physical
length of the edge otherwise.
The configuration parameters are:

• CK lpool_max_iterations: the maximal number of iterations.

• CK lpool_ratio_od: the ratio of the most frequently used edges in shortest paths of the passengers,
which are preferred in the first iteration.

• CK lpool_node_degree_ratio: the percentage of the maximal node degree, which has to be
attained to qualify a node as a terminal. In the first iteration the node degree depends on the incident
edges in the PTN, later it depends on the lines passing the node.

• CK lpool_min_cover_factor: a preferred edge has to be covered

⌈
f min
e

lpool_min_cover_factor ⌉ times in order to be sufficiently covered.

• CK lpool_max_cover_factor: if a new line covers an edge more than
f max
e · lpool_max_cover_factor it cannot be used in the line pool.

• CK lpool_min_edges: the minimal number of edges in a line from a leaf to a terminal or from a
terminal to another terminal.

29

• CK lpool_min_distance_leaves: the minimal euclidean distance between two leaves to allow
for a line between them.

• CK lpool_add_shortest_paths: determines whether shortest paths are to be added as additional
lines to the line pool.

• CK lpool_ratio_shortest_paths: the percentage of the maximal number of passengers in an
OD pair which has to be attained in order to add the shortest path for an OD pair as a line. This
parameter is only relevant if CK lpool_add_shortest_paths is set to true.

• CK lpool_append_single_edges: Add all links as separate lines to the line pool.

Note that all lines which are created here are cycle-free, as they are either a path in a minimal spanning tree
or a shortest path in a network with non-negative edge-lengths.
Possible additional restrictions on the created lines are

• CK lpool_restrict_terminals Only allow lines that start or end at terminals given in
CK filename_terminals_file (Fi basis/Terminals.giv)

• CK lpool_restrict_turns Only allow lines that do not contain a restricted turn given in
CK filename_turn_restrictions (Fi basis/Restricted-Turns.giv)

• CK lpool_restrict_forbidden_edges Do not allow the forbidden links in
CK filename_forbidden_links_file (Fi basis/Edge-forbidden.giv) to be contained in
lines

For more information, see [10].

3.2.2 Creating a line pool while restricting the duration of the lines
When running

R make lpool-line-pool

with the parameter CK lpool_model set to CV restricted_line_duration the tree based heuristic
(see 3.2.1) is performed with additional constraints on the duration of lines. This is influenced by the
following parameters:

• CK ean_model_weight_drive to decide how the duration of a line is computed

• CK ean_model_weight_wait to decide how much waiting time is added in each station

• CK period_length used to determine the feasible duration interval

• CK vs_turn_over_time used to determine the feasible duration interval

• CK lpool_restricted_maximum_buffer_time used to determine the feasible duration interval

• CK lpool_restricted_allow_half_period determines if lines which fit into the interval at
exactly half a period minus the corresponding buffer times are allowed to be added

The feasible interval for the duration of a line mod CK period_length is defined as

[CK period_length − CK vs_turn_over_time

− CK lpool_restricted_maximum_buffer_time,

CK period_length − CK vs_turn_over_time].

Note: There will be no shortest paths added to line pools created by this heuristic, i.e.,
CK lpool_add_shortest_paths has no influence.
For more information, see [23].

30

3.2.3 Creating a line pool by k shortest paths
Another possibility is to create a line pool with corresponding line costs by using the k shortest paths for
each OD pair as lines and then deleting lines which are nested in other lines. To do so run

R make lpool-line-pool

with the parameters

• CK lpool_model CV k_shortest_paths

• CK lpool_number_shortest_paths, which gives the number of shortest paths which are to be
computed for each OD pair.

3.2.4 Terminal-to-terminal
When terminals are given, i.e., CK filename_terminals_file (Fi basis/Terminals.giv), running

R make lpool-line-pool

with the parameters

• CK lpool_model CV terminal-to-terminal

will result in the enumeration of all possible lines starting and ending at a terminal and therefore finding all
possible lines respecting the terminal restrictions. Note that this may result in large computation times and a
large number of lines in the linepool, depending on your PTN.

3.2.5 Center-Periphery
Another method to create a line pool is running

R make lpool-line-pool

with the parameter

• CK lpool_model CV center-periphery

This algorithm identifies some nodes as centers and some nodes as periphery to construct lines between
those different pairs of nodes. It is a heuristic that tries to identify natural patterns in the PTN and the OD
data. The following parameters have to be specified:

• CK lpool_centers_fraction Fraction of nodes that can become centers

• CK lpool_periphery_radius_factor Factor for the mean distance of two nodes in the PTN to
choose periphery nodes

• CK lpool_direct_periphery_lines_factor

• CK lpool_center_radius_factor Percentage of the mean distance in the PTN determining the
radius of the centers

• CK lpool_concatenate_lines_factor Factor for the mean OD value to choose node pairs for
which direct lines are created by concatenating existing lines

• CK lpool_min_degree_centerMinimal node degree that a center node must have

• CK lpool_min_times_edge_covered Factor for the minimal frequency of each edge to determine
how many times it should be covered by a line

• CK lpool_max_iter_postprocessingMaximal number of iterations for each postprocessing step

31

• CK lpool_opt_cost Determines, if lines are created along shortest paths w.r.t. edge costs or edge
lengths

• CK lpool_plot_centers Optional parameter. If set to True, plots of the PTN are created where
the centers are highlighted in red and the periphery nodes are highlighted in blue. The images are
written to the Fi /graphics directory.

Choice of centers and periphery

Let V be the set of nodes in the PTN and n = |V |. For each node v in the PTN we compute the number of
interactions for this node as a measure of its importance as∑

u∈V:u,v

ODu,v + ODv,u.

Only nodes with a degree of at least CK lpool_min_degree_center in the PTN are candidates for centers.
We order the set of those nodes non-increasingly by the interactions computed above. The parameter CK

lpool_centers_fraction states which portion of the candidates with the highest interaction values
should remain center candidates. We look in the interval

n · CK lpool_centers_fraction + [−0.2 · n, 0.2 · n]

for the greatest difference in the interactions between two neighboring nodes in the sorted list to identify the
biggest jump in the interactions around the desired portion. Among those candidates we choose the centers
in such a way that no centers have a distance less than the mean distance between any two nodes in the PTN
multiplied with CK lpool_center_radius_factor and the sum of the interactions of the chosen centers
is maximized. This is modelled by an IP which is solved using Gurobi.
Now we determine the periphery nodes. All Endstations, i. e. all nodes with degree 1, are defined to be
periphery nodes. Furthermore, all non-center nodes with a distance greater than

CK lpool_periphery_radius_factor ·
∑

c center

∑
u∈V:u,c

distance(u, c)
(number of centers)(n − 1)

(the mean distance from a node to a center) to it’s closest center become periphery nodes.

Line generation

If the parameter CK lpool_opt_cost is set to True then all shortest paths are computed with respect to
the costs of the edges, otherwise with respect to their lengths.
For each pair of centers lines are generated along all shortest paths between them.
For each pair of a center and a periphery node lines are generated along all shortest paths between them, if
this line is not contained in another line which was already generated.
For each pair of periphery nodes lines are generated along all shortest paths, if the correspronding OD-value
ist greater than the mean OD-value multiplied with CK lpool_direct_periphery_lines_factor.
As a next step we concatenate for each node pair with an OD-value greater than the mean OD-value
multiplied with CK lpool_concatenate_lines_factor all yet generated lines from the start node to
it’s closest center, the lines between the closest centers of the nodes and the lines from the closest center of
the end node to itself. This gives direct connections between the most important OD pairs, but they fit with
the center-periphery pattern we want to establish.
If after this procedure there is still a node not covered by a line, we create lines from this node to its closest
center along all shortest paths.
In a last step lines along small detours are created. For this we look at all edges that are covered by
the smallest number of lines. For those edges, the closest peripheries and centers of both endpoints are
determined. Then lines containing the specified edge are created, starting from one of the closest periphery
or center nodes of the left node and ending in one of the closest nodes of the right node. This is done along
all shortest paths and for all such pairs of closest peripheries or centers. If this procedure creates cylces it is
aborted and the single edge is added as a line to the pool.

32

Postprocessing

The idea of the postprocessing step is to generate lines, that contain edges which are not yet covered by
enough lines proportionally to their minimal frequency. In a while loop, we consider a residual network
which is initially the same as the PTN. In every iteration the edge weights are updated and lines are created
along the shortest paths found in the residual network. We use all line generating algorithms from the
previous section. If no new line was found or the maxmimal number of iterations was reached the while
loop is aborted. Let n(e) be the number of lines that contain the edge e and let eres denote the copy of the
edge e in the residual network. Then we compute for each residual edge it’s lower frequency bound as

fmin(eres) = max{0, fmin(e) − n(e) · min
L:e∈L

min
e′∈L

fmin(e′)}

where e ∈ L means that the edge e is contained in the line L. The length of the resiudal edge is then

l(eres) = exp(fmin(e) − fmin(eres)) · l(e)

with l(e) being the original length of the edge. The shortest paths are now computed with respect to this new
length. If we set CK lpool_opt_cost to True the costs of the edges are used instead of their lengths.
After this frequency based postprocessing step we do a covered based postprocessing step. The only
difference is that the new lengths are set to

l(eres) = n(e) · l(e).

3.2.6 Line costs
The costs of the lines created by

R make lpool-line-pool-cost

are of the following form

costl = CK lpool_costs_fixed

+
∑
e∈l

(
CK lpool_costs_length · lengthe + CK lpool_costs_edges

)
+ CK lpool_costs_vehicles ·

x ·
durationl + CK vs_turn_over_time

CK period_length

 ,
where x is 1 for directed and 2 for undirected lines (since undirected lines need to be traversed in both
directions). The duration of a line is computed as described in Section 3.2.2.
For a given line pool CK default_pool_file (Fi basis/Pool.giv) a corresponding cost file CK

default_pool_cost_file (Fi basis/Pool-Cost.giv) can be created by running

R make lpool-line-pool-cost.

3.3 Line Planning
The line planning problem can be solved by running

R make lc-line-concept.

The following subsection describe the corresponding algorithms.

33

3.3.1 Cost
Running

R make lc-line-concept

with CK lc_model CV cost, CV cost_greedy_1 or CV cost_greedy_2 results in solving the line
planning model such that the operational costs are minimized. Operational costs in line planning are defined
as line based costs costl for all line l ∈ L and are calculated once per frequency. This means the operation
costs of a line concept with line frequencies fl for line l ∈ L is∑

l∈L

costl · fl.

Optimal solution

Running

R make lc-line-concept

with CK lc_model CV cost results in solving the classic costs minimizing line planning problem, described
in [35], to optimality. The corresponding integer program is

(LP-Cost) min
∑
l∈L

costl · fl

s.t. f min
e ≤

∑
l∈L: e∈l

fl ≤ f max
e ∀e ∈ E

fl ∈ Z ∀l ∈ L.

which is solved either by the solver Gurobi or by the solver Xpress, depending on whether CK lc_solver

is set to CV GUROBI or CV XPRESS.

System frequency

Running

R make lc-line-concept

with CK lc_model CV cost and CK lc_common_frequency_divisor set to a value unequal to 1, will
result in solving the problem with a system frequency, i.e., a frequency is only allowed in a solution, if it is
the multiple of the system frequency CK lc_common_frequency_divisor. A value <= 0 will test any
system frequency (except for 1) and output the best solution.
For more information, see [9].

Heuristic solutions

Running

R make lc-line-concept

with CK lc_model CV cost_greedy_1 or CV cost_greedy_2 results in solving a heuristic for the cost
model described in this section. Lines are added to the line concept in a greedy way (w.r.t. the costs of the
lines) until the lower frequency bounds on the edges are fulfilled. Note that these algorithms ignore the
upper frequency bounds and are therefore not guaranteed to find a feasible solution w.r.t. these bounds. The
algorithms are described in [32].

34

Restricting the number of frequencies

Running

R make lc-line-concept

with CK lc_model CV cost_restricting_frequencies results in solving the cost model, while re-
stricting the number of possible frequencies. The resulting model has more variables than the original
problem, which may results in much longer running times. Even if the number of possible frequencies is
unrestricted (-1) this is still not the same model as cost due to CK lc_maximal_frequency.

• CK lc_solver either CV GUROBI or CV XPRESS, the solver to use to solve the model

• CK lc_number_of_possible_frequencies restrict the number of possible frequencies
(-1=infinity)

• CK lc_timelimit the time limit for the solver (-1=infinity)

• CK lc_maximal_frequency the maximal allowed frequency

Fixed Lines

Running

R make lc-line-concept

with CK lc_model CV cost and CK lc_respect_fixed_lines set to CV true, will result in solving
the cost model while fixing the line frequencies given by
CK filename_lc_fixed_lines (Fi line-planning/Fixed-Lines.lin). Fixed lines will count to-
wards fulfilling the lower frequency bounds for feasibility and need to be included in the line pool, i.e., CK

default_pool_file (Fi basis/Pool.giv) and CK default_pool_cost_file

(Fi basis/Pool-Cost.giv). The capacities for fixed lines need to be given in
CK filename_lc_fixed_line_capacities

(Fi line-planning/Line-Capacities.lin).

Forbidding Links

It is possible to forbid the usage of certain links in the PTN by setting CK lc_respect_forbidden_edges

to CV true and giving the forbidden links in CK filename_forbidden_links_file

(Fi basis/Edge-forbidden.giv). Then, the upper bounds for all the corresponding links will be set to
0 in the optimization problem, guaranteeing that lines using these links will not be used in a feasible line
concept. This may be useful when considering a PTN with multiple public transport modes, i.e., having
tracks and streets and optimizing a bus network that may not use tracks. Can be combined with setting fixed
lines for the forbidden edges.

3.3.2 Direct
Running

R make lc-line-concept

with CK lc_model CV direct results in solving an optimization model which aims to maximize the
number of passengers which can travel on a shortest path from their origin to their destination without
having to transfer between lines. The shortest path is determined w.r.t. CK ean_model_weight_drive.
Upper and lower frequency bounds have to be fulfilled similar to the cost model and additionally capacity
constraints on all edges have to be satisfied. Fixing lines and forbidding links is possible here as well, see
the documentation for the cost model in Section 3.3.1.
The following parameters control the behavior of the algorithm:

35

• CK ean_model_weight_drive

• CK gen_passengers_per_vehicle

• CK lc_budget

• CK lc_common_frequency_divisor

• CK lc_direct_optimize_costs

• CK lc_mip_gap

• CK lc_mult_relation

• CK lc_respect_fixed_lines

• CK lc_respect_forbidden_edges

• CK lc_timelimit

• CK period_length

For more information on the model, see [3].

Restricting the number of frequencies

Running

R make lc-line-concept

with CK lc_model CV direct_restricting_frequencies results in solving the direct model, while
restricting the number of possible frequencies. The resulting model has more variables than the original
problem, which may results in much longer running times. Even if the number of possible frequencies is
unrestricted (-1) this is still not the same model as direct due to CK lc_maximal_frequency.

• CK gen_passengers_per_vehicle

• CK lc_budget

• CK ean_model_weight_drive

• CK lc_common_frequency_divisor

• CK lc_timelimit

• CK lc_maximal_frequency

System frequency

Running

R make lc-line-concept

with CK lc_model CV direct and CK lc_common_frequency_divisor set to a value unequal to 1,
will result in solving the problem with a system frequency, i.e., a frequency is only allowed in a solution, if
it is the multiple of the system frequency CK lc_common_frequency_divisor. A value <= 0 will test
any system frequency (except for 1) and output the best solution. For more information, see [9].

36

Aggragating the passengers per OD pair

Running

R make lc-line-concept

with CK lc_model CV direct_relaxation results in solving the direct model, while aggregating the
passengers per OD pair. This is a relaxation of the original model, see [3].

Multicriteria optimization

Setting CK lc_direct_optimize_costs to CV true will result in solving the direct model with a
weighted sum, accounting for the line costs of the resulting line concept as well. As a weight factor, CK

lc_mult_relation will be used.

3.3.3 Cost direct weighted sum
Executing

R make lc-line-concept

with CK lc_model set to CV mult_cost_direct or CV mult_cost_direct_relax solve programs
which are weighted sums between the cost model (Section 3.3.1) and the direct travelers model (Sec-
tion 3.3.2). In the relaxed version (i.e.,
CV mult_cost_direct_relax) the vehicle capacity is not considered for each vehicle but only the ag-
gregated capacity for each edge is considered. The capacity consideration can be turned off by setting CK

lc_mult_cap_restrict. The weight can be set by CK lc_mult_relation where CV 0 refers to the
direct travellers model and CV 1 to the cost model. The tolerance of feasibility, integrality and optimality
can be set by CK lc_mult_tolerance. A time limit in seconds can be set by CK lc_timelimit, but it
will only stop the computation if a feasible solution was already found. Otherwise the computation will
continue until a feasible solution is found and stop then.
Additionally, there is the possibility to consider system frequencies, i.e., a common integer divisor for all
frequencies. For this, set CK lc_common_frequency_divisor to something different than CV 1. When
setting it to a value smaller or equal to CV 0, different prime values are tested as a system frequency and the
best in terms of objective value is used as output. Note that testing prime numbers is enough for finding an
optimal solution.

3.3.4 Traveling time without frequencies
Executing

R make lc-line-concept

with CK lc_model CV traveling_time_cg solves the traveltime model as stated in [38, (LPMT1)]
under the name (LPMT1). This model does not include line frequencies but only decides which lines are
established. It routes all passengers over established lines and minimizes their resulting total travel time.
Each established line incurs some cost and the total cost is bounded by a budget. This model is solved by a
column generation procedure in which the passenger paths are generated throughout the column generation
iterations. It is implemented as part of [16]. Various different method exist in order to compute a feasible
starting tableau. That is

• CK lc_traveling_time_cg_cover can be set to true or false and is a method to include passenger
paths based on the idea that every edge is covered by at least one line.

• CK lc_traveling_time_cg_k_shortest_paths can be set to an integer value. This adds a
number of shortest paths.

37

• CK lc_traveling_time_cg_add_sol_1 can be set to true or false. The passenger paths which are
based on the line concept (a file) given in
CK lc_traveling_time_cg_add_sol_1_name are added.

• CK lc_traveling_time_cg_add_sol_2 can be set to true or false. The passenger paths which are
based on the line concept (a file) given in
CK lc_traveling_time_cg_add_sol_2_name are added.

• CK lc_traveling_time_cg_add_sol_3 can be set to true or false. The passenger paths which are
based on the line concept (a file) given in
CK lc_traveling_time_cg_add_sol_3_name are added.

Then the actual column generation procedure is started. Four different versions of constraints (corresponding
to CV 1, CV 2, CV 3, CV 4) can be used which are set by CK lc_traveling_time_cg_constraint_type.
Finally the following parameters are important for execution.

• CK lc_traveling_time_cg_max_iterations: This many column generation iterations are exe-
cuted at most.

• CK lc_traveling_time_cg_termination_value: This is the gap in percent
between lower and upper bound below which the best solution is returned.

• CK lc_traveling_time_cg_weight_change_edge: The weights of the transfer (change) edges
in the Change&Go-Graph are determined by this value.

• CK lc_traveling_time_cg_weight_od_edge: The weights of the OD edges in the Change&Go-
Graph are determined by this value.

• CK lc_traveling_time_cg_relaxation_constraint: boolean for additional relaxation con-
straint yl ∀l ∈ L

• CK lc_traveling_time_cg_solve_ip: if set to true the integer program corresponding to the
final linear program should be solved in the last step to approximate an integer solution.

3.3.5 Traveling time with frequencies
Executing

R make lc-line-concept

with CK lc_model CV traveling_time_mip and CK lc_traveling_time_mip_minimize CV "time"
solves the traveling time model with line frequencies as stated in [38, (LPMTF)]. In contrast to the formula-
tion presented in this paper, flow variables belonging to the same origin are aggregated, as in [1]. It uses the
solver chosen with CK lc_solver to solve the model. The following additional options can be given:

• CK lc_traveling_time_mip_use_loads: If this is set to true, then the upper and lower bounds
on the frequency of service on each edge in the PTN given in the CK default_loads_file are
respected. This corresponds to constraint (13) from [38, (LPMTF)] and a symmetric constraint for the
lower bound. Otherwise, no bounds on the frequency are respected, i.e., the model only incorporates
constraints (10)–(12) and (14) from the referenced model.

• CK lc_traveling_time_mip_integer_flow: Boolean to specify whether the computed passen-
ger flows have to be integral.

• CK lc_traveling_time_mip_integer_frequencies: Boolean to specify whether the computed
line frequencies have to be integral.

• CK ean_model_weight_drive: Determines the method used to estimate the driving time of a
vehicle on an edge, based on the bounds given in the edge file, see Section 7.8.

38

• CK ean_model_weight_wait, CK ean_default_minimal_waiting_time, and
CK ean_default_maximal_waiting_time: Determine the method used to estimate the waiting
time of a vehicle at a station, see Section 7.8.

• CK ean_change_penalty, CK ean_default_minimal_change_time: Each transfer is charged
with the sum of these two parameters.

• CK lc_budget: Allowed total cost of the chosen line concept. It is assumed that running a line with
frequency f incurs a cost of f times the value specified in the CK default_pool_cost_file.

• CK gen_passengers_per_vehicle: Used to determine the total frequency needed to serve all
passengers using a line along an edge.

3.3.6 Cost with traveling time bound
Executing

R make lc-line-concept

with CK lc_model CV traveling_time_mip and CK lc_traveling_time_mip_minimize CV "cost"
solves a variant of the traveling time model with frequencies, in which the traveling time is bounded by
CK lc_traveling_time_mip_time_budget and the cost of the line concept is minimized. Apart from
that, it uses the same configuration parameters as the traveling time model with frequencies (exept CK

lc_budget).

3.3.7 Minchanges
Running

R make lc-line-concept

with CK lc_model CV minchanges_ip or CV minchanges_cg results in solving a program to minimize
the number of passenger weighted transfers. For further reference see [15].

Integer program

The integer program corresponding to method CV minchanges_ip is

(IP-LPT) min
∑
i, j∈V

∑
p∈P

i j
CG

dpcp (3.1)

∑
p∈P

i j
CG

dp ≥ Ci j ∀i, j ∈ V (3.2)

∑
i, j∈V

∑
p∈P

i j
CG

(e,l)∈p

dp ≤ A fl ∀l ∈ L,∀e ∈ l (3.3)

∑
l∈L
e∈l

fl ≤ f max
e ∀e ∈ E (3.4)

dp ∈ N0 ∀p ∈ PCG (3.5)
fl ∈ N0 ∀l ∈ L (3.6)

Since paths of passengers have to be tracked in order to obtain their transfers, the model is based on the
Change&Go-Graph CG proposed in [38]. Paths in the Change&Go-Graph are referred to as PCG. The
number cp then gives the number of transfers on a path p ∈ PCG. The variables dp and fl specify the
number of passengers on path p and the frequency of line l ∈ L, respectively.
The following parameters are used to execute the computation:

39

• CK lc_minchanges_nr_ptn_paths determines the maximum number of paths in the PTN on
which passengers from each OD pair are allowed to travel. This ensures that also |PCG | is bounded.

• CK lc_minchanges_xpress_miprelstop. This parameters is passed to the execution of Xpress
and determines the gap (in percent) between lower and upper bound which has to be reached such
that the best solution is returned.

• CK lc_minchanges_nr_max_changes. Since the number of paths in the
Change&Go-Graph could become very large this parameter is used to bound them. Only paths which
have less or equal transfers (changes) are considered. A value of 0 means that all paths are considered.

• CK gen_passengers_per_vehicle. This parameter corresponds to the A in constraint (3.3) and
determines the vehicle capacity.

Column Generation procedure

In the column generation procedure the integer program (IP-LPT) is relaxed and initially only solved for a
subset of all possible paths PCG. Throughout the column generation procedure paths which are likely to
improve the current solution are determined and added to the program. The column generation procedure
ends if no such paths can be found anymore. The problem which is solved in order to determine paths which
are likely to improve the current solution is an all pairs shortest path problem. Since the correspondence
of the solution of this problem to the primarily determined paths in the PTN, PG has to be checked, two
different implementations can be used via CK lc_minchanges_pricing_method.

• CV exact: For each path p ∈ PG the corresponding subgraph of CG is constructed and herein the
all-pairs shortest path problem is solved.

• CV heuristic: The all-pairs shortest path problem is solved in the entire
Change&Go-Graph CG for all pairs of nodes. It may happen that for a pair of nodes the shortest
path does not correspond to a path in PG. In this case a warning is returned because the computation
could be wrong. Still, this procedure is much faster since the Change&Go-Graph does not need to be
constructed in every iteration.

Additional to the parameters in Section 3.3.7 the following parameters are of relevance.

• CK lc_minchanges_nr_cg_paths_per_ptn_path: For the starting tableau of the column genera-
tion procedure a set of initial paths has to be computed. This parameter determines how many paths
in the Change&Go-Graph are computed for each path in the PTN.

• CK lc_minchanges_cg_var_per_it: Only at most this many variables are added in each column
generation iteration.

• CK lc_minchanges_max_reduced_costs_included_IP: After the column generation only vari-
ables which have reduced costs less than or equal to this value are included in the final IP.

For more information on the model, see [15].

3.3.8 Game
Running

R make lc-line-concept

with CK lc_model set to CV game results in solving a game theoretic model where each line acts as a
player and aims to minimize its own (expected delay). The delay is dependent on the traffic loads along its
edges, i.e, a lines tries to choose less-frequent edges. The algorithm uses a potential function to find a line
plan at an equilibrium which is a system optimum. This line plan is computed by an integer program. For
more information, see [39].

40

3.4 Timetabling

3.4.1 Modulo network simplex algorithms
There are different ways to use the Modulo Network Simplex Algorithm, depending on how to provide a
starting solution:

• CK tim_model CV ns_improve It is assumed that Timetable-periodic.tim already contains a feasible
starting solution; only improvement steps are taken.

• CK tim_model CV csp_ns A starting solution is found using Abscon; high reliability, small running
times, but the starting solution quality is usually bad – see Section 3.4.2.

• CK tim_model CV con_ns A starting solution is found using constraint propagation; may take too
long for some networks, but has good quality when it succeeds – see Section 3.4.3.

• CK tim_model CV ns_cb It is assumed that Timetable-periodic.tim already contains a feaseible
starting solution. It is improved with the network simplex. Afterwards, a cycle based IP is called. CK

tim_use_old_solution needs to be set to CV true such that the network simplex solution is used
as a starting solution for the IP.

There are two search procedures that may be further specified, one for local search and one for fundamental
search for cuts, see [12]. The first is represented by the parameter CK tim_nws_loc_search, the second
by CK tim_nws_tab_search.
The possible local search algorithms are:

• CV SINGLE_NODE_CUT.
The first improving single node cut that is found will be used. No further parameters have to be
specified.

• CV RANDOM_CUT.
Single node cuts are chosen at random, ignoring whether they are improving or not. This will be
repeated 10 times. This procedure is likely to give better results than SINGLE_NODE_CUT, but will
take longer. No further parameters have to be specified.

• CV WAITING_CUT.
Cuts are chosen along each waiting edge cut. This will only improve
SINGLE_NODE_CUT if the interval [le, ue] is especially small for waiting activities. No further
parameters have to be specified.

• CV CONNECTED_CUT.
Cuts are found using a local search technique. This will be repeated up to 3 times. Usually yields the
best results.

These are the possible fundamental search algorithms. Their setting will have the largest impact on the
quality and time consumption of the solution.

• CV TAB_FULL.
All possible base exchanges are considered and the best one is chosen. This is usually quite time
consuming but gives high quality results. No further parameters have to be specified. This may be
considered as the default setting.

• CV TAB_SIMPLE_TABU_SEARCH.
As in TAB_FULL, all base exchanges are considered, but a tabu list gives the possibility to leave local
optima again. Parameters are:

– CK tim_nws_ts_memory. The length of the tabu list.

41

– CK tim_nws_ts_max_iterations. The number of iterations that are allowed before searching
for a local cut.

Because of the tabu list this algorithm is even slower than TAB_FULL but will seldom give better
results because of the large number of neighbors in every step.

• CV TAB_SIMULATED_ANNEALING.
Base exchanges are chosen at random and used despite of being non-improving considering a steadily
cooling temperature. Parameters are:

– CK tim_nws_sa_init. The starting temperature.

– CK tim_nws_sa_cooldown. The cooling factor < 1.

This algorithm may improve TAB_FULL significantly. The time consumption is about the same.

• CV TAB_STEEPEST_SA_HYBRID.
A mix of TAB_FULL and TAB_SIMULATED_ANNEALING. This will usually yield the best results
but takes longer than TAB_FULL. The same parameters are used as in
TAB_SIMULATED_ANNEALING.

• CV TAB_PERCENTAGE.
A fast algorithm that decreases the quality of the solution only slightly. Parameters are:

– CK tim_nws_percentage. An integer < 100 that gives the size of the search space.

• CV TAB_FASTEST.
Similar to TAB_PERCENTAGE. Parameters are

– CK tim_nws_min_pivot. The minimum relative improvement a base exchange has to give.

– CK tim_nws_dyn_pivot. The value by which the first parameter is multiplied if no cut
fulfilling the criteria is being found.

For more information, see [13].

3.4.2 Constraint propagation
This is a way to find a feasible solution. The corresponding parameter is:

• C tim_model; "con_prop"

A solution is found by fixing any event time, and propagating this information through the network, thus
removing infeasible solutions. A backtracking procedure is used to fix times differently, if there is no
feasible solution anymore.
Parameters are:

• C tim_cp_sortmode; "UP", "DOWN", "RANDOM" Determines how event times are fixed. "UP"
tries to tighten them as far as possible, while "DOWN" tries to relax them as far as possible. "RAN-
DOM" chooses randomly from the set of locally feasible times, and often succeeds where the other
two settings don’t.

• C tim_cp_check_feasibility; true/false If set to true, a heuristic check for feasibility is
performed before the actual constraint propagation. This takes some time, but may help to determine
infeasibility.

42

3.4.3 Abscon
Currently not included in the release version of LinTim.
To use Abscon, set

• C tim_model; "csp"

The problem of finding a feasible timetable is then translated to a generic constraint satisfaction problem,
and the third-party solver Abscon is started to find a feasible solution. If the problem is feasible, a feasible
solution can be found relatively fast; however, its objective value tend to be worse than the one generated by
constraint propagation. No parameters.

3.4.4 MATCH
To use MATCH, set

• C tim_model; "MATCH"

A feasible timetable is found by a matching-merge heuristic. The details of this method can be looked up
in [24].

3.4.5 PESP-IP
To use the pesp ip formulation, set

• C tim_model; "ip"

This will try to solve an integer programming model of the periodic timetabling problem, see [32]. The IP
model is implemented in Xpress and Gurobi. You can set a time limit, a thread limit and a desired gap by
setting

• C tim_pesp_ip_gap

• C tim_pesp_ip_timelimit

• C tim_solver_threads.

Additionally for Gurobi, a solution limit, a best bound stop value, starting solution procedure and a MIPFocus
are implemented (see Gurobi documentation):

• C tim_pesp_ip_solution_limit

• C tim_pesp_ip_best_bound_stop

• C tim_pesp_ip_mip_focus

• C tim_use_old_solution

For all parameters the default value of 0 will disable the respective option.
For more information on the model, see [40].

3.4.6 Cycle-based IP
To use the cycle based mip formulation, set

• C tim_model; "cb_ip"

This will try to solve a cycle based integer programming model of the periodic timetabling problem, see
[32]. You can set a time limit, a thread limit and a desired gap by setting

43

• C tim_mip_gap

• C tim_timelimit

• C tim_threads.

The following parameter is for a (heuristic) preprocessing step where edges with few passengers are removed:

• C tim_pesp_cb_passenger_cut.

Additionally for Gurobi, a solution limit,a best bound stop value, and a MIPFocus are implemented (see
Gurobi documentation):

• C tim_pesp_cb_solution_limit

• C tim_pesp_cb_best_bound_stop

• C tim_pesp_cb_mip_focus_stop.

For all parameters the default value of 0 will disable the respective option.
For more information on the model, see [40].

3.4.7 Phase 1 simplex
To use the phase 1 simplex method, set CK tim_model to CV phase-one. The idea of this model is to
construct an auxiliary PESP instance that is easy to solve and a feasible solution can be converted into
a feasible solution for the original problem or prove the infeasiblity of the original problem. For more
information on this procedure, see [14].

3.4.8 Adaptions
Fixed times

Some timetabling models are able to handle additional restrictions on the events, namely an additional
interval for each one. Note that this interval may only include one value, fixing some events to a specific
time.
To use this feature, set CK tim_respect_fixed_times to CV true and add
CK filename_tim_fixed_times (Fi timetabling/Fixed-timetable-periodic.tim) for the ad-
ditonal information.

3.5 Tariff Planning
Running

R make taf-tariff

will determine a new tariff minimizing the deviation from reference prices in a prespecified model. The
available models are the following:

• CK taf_model CV flat, optimization model determining a flat tariff

• CK taf_model CV beeline_distance, optimization model determining an affine beeline distance
tariff

• CK taf_model CV network_distance, optimization model determining an affine network distance
tariff

• CK taf_model CV zone, optimization model determining a zone tariff

All models optimize prices such that the new tariff is close to the reference prices, which can e.g. be obtained
from a former tariff, given in CK filename_tariff_reference_price_matrix_file

(Fi basis/Reference-Price-Matrix.giv).

44

3.5.1 General Remarks
In tariff planning we only consider node pairs with different nodes and call them non-trivial OD pairs:

D := (V × V) \ {(v, v) : v ∈ V}.

Tariff planning always produces a price matrix file CK filename_tariff_price_matrix_file (Fi

tariff/Price-Matrix.taf) as output. Prices for trivial OD pairs, i.e. pairs with the same origin and
destination node, are set to zero.

Objective function and weight options

In each of the available tariff models there are two options for the objective function. For each option
one can chose one out of three possible weight options. The objective function is determined by CK

taf_objective and CK taf_weights_objective.
If CK taf_objective has the value

• CV sum_absolute_deviation, the objective function is the weighted sum of absolute deviations
between the new prices and the reference prices (see equation (3.7)),

• CV max_absolute_deviation, the objective function is the weighted maximum absolute deviation
between the new prices and the reference prices (see equation (3.8)).

If CK taf_weights_objective has the value

• CV od, the price deviations are weighted by the OD data,

• CV unit, the price deviations have weight 1,

• CV reference_inverse, the price deviations are weighted by the inverse of the given reference
prices.

This results in one of the two objectives ∑
d∈D

Cd |rd − πd |, (3.7)

max
d∈D

Cd |rd − πd | (3.8)

with the above defined set D of all non-trivial OD pairs and reference prices rd for all non-trivial OD pairs
d ∈ D. The new prices that have to be computed are denoted by πd. The weights Cd refer either to the
OD data if CK taf_weights_objective CV od, or is Cd = 1 for all d ∈ D if CV unit, or is Cd =

1
rd

for all d ∈ D if CV reference_inverse. Both objective functions are applied in a linearized form in the
programming formulations.

Routing options

In the tariff models CV distance and CV zone the prices are optimized with respect to given passenger
paths in the PTN. Which paths are used is determined by CK taf_routing_generation:

• CV fastest-paths, a new routing using fastest paths with respect to the lower time bounds on the
edges is created,

• CV read-all, a routing for all non-trivial OD pairs given in CK filename_routing_ptn_input

(Fi basis/Routing-ptn.giv) is read and used,

• CV read-partial-fill, a partial routing given in CK filename_routing_ptn_input (Fi

basis/Routing-ptn.giv) is read. Unspecified paths for non-trivial OD pairs are filled with fastest
paths with respect to the lower time bounds on the edges.

In all cases the used routing is stored to CK filename_routing_ptn_output (Fi basis/Routing-ptn.giv).

45

Solver options

The following parameters control the behavior of the solver in all models.

• CK taf_solver determines the solver to be used. Note that currently only Gurobi is supported.

• CK taf_threads determines the maximum number of threads to use for the solver (-1=use default
value, i.e., no restriction). Note that this will only be used for a possible solver integration of the
chosen model, not for the rest of the algorithm.

• CK taf_timelimit sets a time limit for the solver in seconds (-1=use default value).

• CK taf_write_lp_file determines whether to write the lp file of the model to solve.

• CK taf_mip_gap sets the MIP optimization gap for the solver. The solver will terminate with an
optimal solution if the gap between lower and upper objective bound is less than this value times the
absolute value of the incumbent objective value.

3.5.2 Flat Tariff
Running

R make taf-tariff

with CK taf_model CV flat determines a new flat tariff, i.e. a fixed price f for all paths W in the given
PTN.
The flat tariff model solves the following linear program to optimality:

min g(f)
s.t. f ≥ 0,

where the objective function g is determined by CK taf_objective and CK taf_weights_objective
as described in Section 3.5.1, i.e.

g(f) =

∑

d∈D
Cd |rd − f | for CV sum_absolute_deviation,

max
d∈D

Cd |rd − f | for CV max_absolute_deviation.

The computed flat price is written as CK taf_flat_price to the State-Config-file CK filename_state_config

(Fi basis/State-Config.cnf). The following file is produced as output:

• CK filename_tariff_price_matrix_file (Fi tariff/Price-Matrix.taf), price matrix
containing the price f for each OD pair.

3.5.3 Distance Tariffs
Running

R make taf-tariff

with CK taf_model CV beeline_distance or CV network_distance results in determining a new
distance-based tariff, i.e. the price p(W) for travelling along the path W in the given PTN is determined
by p(W) = f + l(W) · p where f ≥ 0 are fixed costs and p ≥ 0 is a price factor that is multiplied with the
distance l(W), which is either the Euclidean distance between the start and the end station of the path or the
sum of all edge lengths of the path.
The distance-based model solves the following program to optimality:

min g(f , p)
s. t. f , p ≥ 0,

46

where the objective function g is determined by CK taf_model, CK taf_objective and CK taf_weights_objective.
This results in one of the two objectives:

g(f) =

∑

d∈D
Cd |rd − (f + ld · p)| for CV sum_absolute_deviation,

max
d∈D

Cd |rd − (f + ld · p)| for CV max_absolute_deviation.

as described in Section 3.5.1. The value of ld is determined by CK taf_model:

• CV beeline_distance, the distance ld of a non-trivial OD pair d ∈ D is calculated as the Euclidean
distance in km in the plane,

• CV network_distance, the distance ld of a non-trivial OD pair d ∈ D is the length (in terms of edge
length) of the path of this node pair in the routing. The parameter CK taf_routing_generation
specifies how the routing is determined as described in Section 3.5.1.

The computed fixed price f and the price factor p are written as CK taf_fixed_costs and CK taf_factor_costs

to the State-Config-file CK filename_state_config (Fi basis/State-Config.cnf). The following
file is produced as output:

• CK filename_tariff_price_matrix_file (Fi tariff/Price-Matrix.taf), price matrix
containing the prices for each OD pair.

3.5.4 Zones
Running

R make taf-tariff

with CK taf_model CV zone determines a new zone tariff by determining zones and a price list. The set
of zones is a partition of the set of nodes of the PTN. Prices are given as a price list that assigns a price to
the number of traversed zones. The price of a path depends on the number of traversed zones on that path.
We say that a zone is traversed if a node of this zone is part of the path, in particular the zones of the start
node and end node of a path are traversed. The price for traversing more zones than the maximal specified
number in the price list is just the price for traversing the maximal specified number of zones.
It is also possible to determine only a price list for given zones or only zones for a given price list.
The parameters are

• CK taf_zone_counting: Specifies how the number of traversed zones is counted. If CV single,
then each different zone is only counted once. If CV multiple, then a zone is counted each time
that it is entered. For example consider the path from station 1 to station 3 in the PTNs with zones

1 2 3 1 2 3

Figure 3.1: PTNs with zones

given in Figure 3.1. In the multiple counting case, the number of traversed zones is 3 in both PTNs.
In the single counting case, the number of traversed zones is 3 in the left PTN and 2 in the right PTN
because there are only two different zones on the path and the reentry is not counted.

• CK taf_zone_n_zones integer number specifying the maximum number of zones,

• CK taf_zone_enforce_all_zones boolean, determines whether exactly CK taf_zone_n_zones-
many zones (CV true) or at most that many zones (CV false) must be determined,

47

• CK taf_zone_connected boolean, specifies whether the subgraph of a zone, induced by the nodes
assigned to the zone, needs to be connected (in case of a directed graph it is weakly connected),

• CK taf_zone_enforce_no_elongation boolean, determines whether the no-elongation property
must be satisfied. This property ensures, that it is never cheaper for passengers to buy a ticket for
more zones than they actually want to travel through. Let pk be the price of a path that traverses k
zones. The no-elongation property is satisfied if it holds that

pk ≤ pk+1 for all k ∈ {1, ..., (CK taf_zone_n_zones) − 1}.

• CK taf_zone_enforce_no_stopover boolean, determines whether the no-stopover property must
be satisfied. This property ensures that it is never cheaper for a passenger to buy two seperate tickets
for one journey and combine them instead of buying one ticket for the whole journey. Let again pk be
the price of a path that traverses k zones. The no-stopover property in the case of single counting is

pk ≤ pi + p j for all k ∈ N≥1, i, j ∈ {1, ..., k} with i + j ≥ k + 1.

In the case of multiple counting the property holds if

pk ≤ pi + p j for all k ∈ N≥1, i, j ∈ {1, ..., k} with i + j = k + 1.

• CK taf_zone_symmetry_breaking, determines which symmetry breaking model (see below)
should be used. Possible values are CV A, CV B and CV NONE.

• CK taf_routing_generation, determines which routing should be used, see Section 3.5.1.

• CK taf_zone_only_zones boolean, specifies whether only zones based on given prices must be
computed,

• CK taf_zone_only_prices boolean, specifies whether only prices based on given zones must be
computed.

The objective in the zone model is to minimize the objective function g(π) such that the above men-
tioned constraints are satisfied. The objective function is determined by CK taf_objective and CK

taf_weights_objective as described in Section 3.5.1, i.e.

g(π) =

∑

d∈D
Cd |rd − πd | for CV sum_absolute_deviation,

max
d∈D

Cd |rd − πd | for CV max_absolute_deviation.

Here πd refers to the price of OD pair d for travelling along the path given in the routing determined by CK

taf_routing_generation (see Section 3.5.1).
The results are written to:

• CK filename_tariff_price_matrix_file (Fi tariff/Price-Matrix.taf), containing the
prices,

• CK filename_tariff_zone_file (Fi tariff/Zones.taf), containing the assignment of stops
to zones and

• CK filename_tariff_zone_price_file (Fi tariff/Zone-Prices.taf), price list of the
zone tariff.

48

Symmetry Breaking

When determining a zone tariff some feasible solutions may only vary in name. Therefore symmetry
breaking constraints can be introduced to the MILP solving the problem.
Let xvz = 1 if and only if the stop with stop-ID v is allocated to the zone with zone-ID z and 0 else. Then the
following constraints can be introduced:

xvz = 0 for all v ∈ {1, . . . ,min{n,N}}, z ∈ {v + 1, . . . ,N} (3.9)

xvz ≤

v−1∑
k=1

xk,z−1 for all v ∈ {3, . . . , n}, z ∈ {3, . . . ,N} (3.10)∑
v∈V

xvz ≥
∑
v∈V

xv,z+1 for all z ∈ {1, . . . ,N − 1} (3.11)

Here, N denotes the maximum number of zones (CK taf_zone_n_zones) and n is the number of nodes in
the PTN.
The first constraint (3.9) ensures that the i-th stop can only be in the first i zones. The second one (3.10)
ensures that a stop is only allowed in a zone if a node with a smaller stop-ID is in the zone with the next
smaller zone-ID. The third one (3.11) orders the zones descending by size such that the one with the smalles
zone-ID is the biggest in terms of number of nodes.
The parameter CV taf_zone_symmetry_breaking determines which one of them will be used. Three
options are available:

• CK A, implementing (3.9) and (3.10). This seems to be the fastest.

• CK B, implementing (3.11). This seems to be slower.

• CK NONE, no symmetry breaking constraints are applied.

Only Prices

If only prices should be optimized for given zones, CK taf_zone_only_prices (boolean) must be set to
CV true. By default it is CV false.
If CV true, the same MILP as described above is solved, but the zones are fixed. Therefore a zone file CK

filename_tariff_zone_file (Fi tariff/Zones.taf) must be given, otherwise the algorithm fails.

Only Zones

If only zones should be optimized for given prices, CK taf_zone_only_zones (boolean) must be set to
CV true. By default it is CV false.
If CV true, the same MILP as described above is solved, but the prices for travelling through a certain
number of zones are fixed. Therefore a zone-price file CK filename_tariff_zone_price_file (Fi

tariff/Zone-Prices.taf) must be given, otherwise the algorithm fails.

3.6 Vehicle Scheduling
The vehicle scheduling step can be invoked via

R make vs-vehicle-schedules

It assumes that there is an aperiodic Event-Activity Network with a given timetable for the aperiodic events
and a set of trips to cover, which can be generated from a periodic timetable by the auxiliary rollout algorithm
(see Section 4.9).

49

3.6.1 Mdm1
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV MDM1 will result in running a model minimizing the number of vehicles
used in the vehicle schedule. For two consecutive trips the last station of the first trip has to be equal
to the first station of the second trip. A depot, given by CK vs_depot_index, is considered. For more
information on the model, see [2].

3.6.2 Mdm2
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV MDM2 will result in running a model that is equivalent to CV MDM1, except
that no depot is considered. For more information on the model, see [2].

3.6.3 Assignment model
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV ASSIGNMENT_MODEL will result in running a model minimizing the overall
costs, considering vehicle costs(CK vs_vehicle_costs) and empty meters costs (given by the respective
distance in time). A depot, given by CK vs_depot_index, can be considered.
Two consecutive trips can have different end and start stations respectively. Whether they can be connected
relies on the end time of trip on, the start time of trip two, the distance between the two respective stations (in
terms of minimal running times on shortest path) and a minimal turnover time (CK vs_turn_over_time).
Note that the turnover time is not a simple restriction on the time between two connected consecutive trips,
but includes the time needed to travel to the later station, i.e., it is the designated time the vehicle needs to
be available at the later station before departing again.
For more information on the model, see [2].

3.6.4 Transportation model
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV TRANSPORTATION_MODEL will result in running a model minimizing the
overall costs, considering vehicle costs by driving to/from the depot, given by CK vs_depot_index, and
(fixed) penalty costs CK vs_penalty_costs for not giving service on a trip. For more information on the
model, see [2].

3.6.5 Network flow model
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV NETWORK_FLOW_MODEL will result in running a model minimizing the
overall costs considering both vehicle and empty meters costs. A depot, given by CK vs_depot_index, is
considered. The number of vehicles can be bounded. For more information on the model, see [2].

50

3.6.6 Canal model
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV CANAL_MODEL will result in running a more detailed version of CV

ASSIGNMENT_MODEL incorporating the actual waiting times at every node and furthermore the considered
period can be extended. Thus, each station can be regarded as a depot if trains from one day wait at the station
for a service from that station the next day. Also, depot and maintenance decisions for locations which are
farther away from the actual station can be taken. The minimal turnover time (CK vs_turn_over_time)
will be respected. For more information on the model, see [42].

3.6.7 Line-based
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV LINE-BASED will result in running a model based on line planning
only. This model runs with the CK vs_line_based_method set to CV 4, CV 3 or CV 2 and CK

vs_line_based_alpha set to CV 0.3. Here the CK vs_line_based_method describes the program
type and the CK vs_line_based_alpha describes the value of α. For more information on the model,
see [17].

3.6.8 Simple
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV SIMPLE will result in a homogeneous vehicle schedule, i.e., all vehicles
will serve only one line, back and forth.

3.6.9 IP model
Running

R make vs-vehicle-schedules

with the CK vs_model set to CV IP will result in a simple ip model to determine a cost efficient vehi-
cle schedule. Trips are determined compatible, if the shortest path w.r.t. the lower bounds is sufficient
to serve the trips after each other. A depot, given by CK vs_depot_index can be considered. Cur-
rently, only CV GUROBI is allowed as CK vs_solver. A time limit for the ip model can be set via
CK vs_timelimit, where CV -1 disables this option. The cost of a vehicle is determined using CK

vs_vehicle_costs and the cost of an empty trip by CK vs_eval_cost_factor_empty_trips_length

and CK vs_eval_cost_factor_empty_trips_duration. The minimal turnover time
(CK vs_turn_over_time) will be respected. For more information on the model, see [2].

3.7 Delay Management
The delay-management step can be invoked via

R make dm-disposition-timetable

51

It assumes that there is an aperiodic Event-Activity Network with a given timetable for the aperiodic events,
which can be generated from a periodic timetable by the auxiliary rollout algorithm (see Section 4.9), and
some primary delays on events and/or activities (see Section 4.10). The lower bounds on the drive, wait
(dwell) and fixed-circulation activities can be automatically reduced to account for a globally applied buffer
that is contained in the lower bounds but may be exploited in case of delays. To this end, the parameter CK

DM_lower_bound_reduction_factor can be set to a value below CV 1.0.

!Note that during all these steps – in contrast to preceding planning steps like line planning or periodic
timetabling – time intervals are measured in seconds, points in time in seconds since 0:00. E.g., if an activity
has a lower bound of 60, this means 60 seconds, and if the time of an event is 28 800, this means 08:00 a.m.

The following parameters are used by all methods:

• CK DM_verbose: enable verbose output

• CK DM_enable_consistency_checks: enable (time-consuming) consistency
checks of input data and results

• CK DM_debug: enable debugging output (also enables verbose output and consistency checks)

3.7.1 Propagate
The mere propagation of delays to produce a feasible disposition timetable is done when CK DM_method

is set to CV propagate. After applying the given delays on events and on the lower bounds on activity
durations, the (rolled-out) events are traversed in a topological sorting. Upon visit of each event, its time
becomes fixed (since, due to the topological sorting, all events taking place earlier have been fixed before)
and its successor events (targets of outgoing activities) are delayed as much as necessary to fulfill the lower
bound on the duration of the respective activity.
During this propagation procedure, change activities can be cut off (so that delays will not propagate along
them) based on a maximum waiting time: If the target event of a change activity would be delayed by more
than CK DM_propagate_maxwait seconds, then this change activity is not respected at all. If all change
activities shall be maintained, this parameter must be set to a very large value (e.g. the duration of the time
horizon according to the rollout parameters, in seconds).
Furthermore, the headway constraints can be swapped around in those cases where the train that was
originally scheduled first is so late that the train that was originally scheduled to go second can actually
go first without affecting the train originally scheduled first. To enable this swapping of headways, CK

DM_propagate_swapHeadways must be set to CV true.

3.7.2 Integer-Linear-Programming based methods
The aim of delay management is to react to delays in such a way that the effect on the passengers is minimal.
To this end, one has to decide for each connection whether it should be maintained or not (i.e., if a connecting
train waits for a delayed feeder train or not) and for each pair of trains using the same piece of track which
train should go first. The delay management problem is for example described in [26]. The following
parameters are used by all delay management algorithms:

• CK DM_solver: Defines which MIP solver should be used. Possible choices are Gurobi and Xpress.
Please note that your environment (e.g. the CLASSPATH variable) has to be set up properly.

• CK DM_solver_time_limit: Time limit for the MIP solver in seconds – after this time, the solver
is interrupted and the best solution found so far is used. If set to 0, no time limit is used.

• CK DM_lower_bound_reduction_factor: Describes how much buffer time is included in the
minimal duration of the activities in the event-activity network. The lower bounds read from the input
are multiplied with this number, so setting CK DM_lower_bound_reduction_factor to 1 does not
change the lower bounds, while setting it to a value in]0, 1[reduces the lower bound of all activities.

52

The variable CK DM_method defines which algorithm should be used to solve the delay management
problem:

CV DM1: Computes an optimal solution of the MIP formulation (DM1) presented in [33, 34]. This is the
slowest algorithm provided. To perform the calculation, the rollout must have been done where the
parameter CK rollout_passenger_paths is set to CV true since the algorithm minimizes the
delays on the passenger paths given in CK default_passenger_paths_file.

CV DM2: Computes an optimal solution of the MIP formulation (DM2) presented in [33, 34]. This is an
approximation for (DM1) and a bit faster but still far slower than the other algorithms.

CV DM2-pre: The same as CV DM2, but with a preprocessing step. Computes an optimal solution of the
MIP formulation (DM2) after applying Algorithm 3.2 from [26, p. 38] for reducing the size of the
event-activity network. For more information, see [33, 34].

CV FSFS: “First scheduled, first served” – fixes the forward headways, deletes the backward headways, and
solves the resulting uncapacitated delay management problem with fixed headways to optimality using
DM1 or DM2, as specified in CK DM_opt_method_for_heuristic, see Algorithm 4.1 in [26, p. 56].
For more information, see [26, 27]. Heuristic algorithm – might not find the global optimum.

CV FRFS: “First rescheduled, first served” – fixes the headways according to the optimal solution of the
corresponding uncapacitated delay management problem, then solves the resulting uncapacitated
delay management problem with fixed headways to optimality using CV DM1 or CV DM2, as specified
in CK DM_opt_method_for_heuristic, see Algorithm 4.2 in [26, p. 57]. For more information,
see [26, 27]. Heuristic algorithm – might not find the global optimum.

CV EARLYFIX: Similar to CV FRFS – but also fixes the changing activities according to the solution of the
corresponding uncapacitated delay management problem by using CV DM1 or CV DM2, as specified
in CK DM_opt_method_for_heuristic, see Algorithm 4.3 in [26, p. 57]. For more information,
see [26, 27]. Heuristic algorithm – might not find the global optimum. Note that CV FRFS is always
at least as good as this method [26, Lemma 4.5], while this method might be faster on instances with
many changing activities.

CV PRIORITY: Similar to CV FSFS – but also fixes the “most important” connections (the variable CK

DM_method_prio_percentage defines how many percent of all connections should be main-
tained), see Algorithm 4.4 in [26, p. 57]. For more information, see [26, 27]. Heuristic al-
gorithm – might not find the global optimum. Uses CV DM1 or CV DM2, as specified in CK

DM_opt_method_for_heuristic for optimization. Note that CV FSFS is always at least as good
as this method [26, Lemma 4.6], while this method might be faster on instances with many changing
activities.

CV PRIOREPAIR: Fixes the connections according to their weights like
CV PRIORITY, relaxes the headway constraints, and solves the resulting problem using CV DM1 or
CV DM2, as specified in CK DM_opt_method_for_heuristic. Then it uses this solution to fix the
headways and solves the problem again (again CV DM1 or CV DM2) (see Algorithm 4.7 in [26, p. 68]).
For more information, see [26, 27]. Heuristic algorithm – might not find the global optimum.

CV best-of-all: Runs CV FSFS, CV FRFS and CV PRIOREPAIR consecutively and takes the best solu-
tion. Due to [26, Lemma 4.5] and [26, Lemma 4.6], it’s sufficient to run CV FSFS, CV FRFS, and CV

PRIOREPAIR and to ignore CV EARLYFIX and CV PRIORITY. Uses CV DM1 or CV DM2, as specified
in CK DM_opt_method_for_heuristic for optimization. If
CK DM_best_of_all_write_objectives is set to CV true, this will output all objective values
of the different methods into
CK filename_dm_best_of_all_objectives (Fi statistic/dm_objectives.sta). For more
information, see [27]. Heuristic algorithm – might not find the global optimum.

53

CV PASSENGERFIX: Uses a IP to fix the headways of passenger paths with the most passenger weight sum
possible without contradictions and solves the following smaller problem with CV DM1. Note that all
headways on a path get fixed if and only if no headway contradicts the earlier decisions. Otherwise no
headway gets fixed. Same requirement as CV DM1. The IP is very big and slow!

CV PASSENGERPRIOFIX: A heuristic for the IP of CV PASSENGERFIX, fixes the headways of the first CK

DM_method_prio_percentage percent of the passenger paths sorted by weight. Fixes any headway
for a path only if this is possible without contradiction to the previous paths. After that, it solves the
smaller problem with CV DM1. Same requirement as this method.

CV FIXFSFS: First uses the fixing method of CV PASSENGERPRIOFIX on as many paths as possible, again
sorted by weight. After that it uses the fixing method of CV FSFS to fix the remaining headways.
After that, it solves the reduced problem with CV DM1 with the same requirement.

CV FIXFRFS: Like CV FIXFSFS, just uses the fixing method of CV FRFS instead of CV FSFS

3.8 Integrated Planning
The common parameters for all integrated programs are the following. Whether these parameters are used is
dependent on the specific problems.

CK int_max_threads The maximal number of cpu threads used for optimization

CK int_factor_travel_time The objective factor for the travel time

CK int_factor_drive_time The objective factor for the drive time of the passengers

CK int_factor_transfer_time The objective factor for the transfer time of the passengers

CK int_factor_wait_time The objective factor for the waiting time of the passengers

CK int_factor_penalty_time_slice The penalty for changing time slices for the passengers. Only
applicable on models respecting time slices. Only applicable for models with passenger routing.

CK int_time_slices The number of time slices to use. Only applicable for models with passenger
routing.

CK int_number_of_periods The number of periods to consider the vehicle schedule for. Lines will not
be cut off at the end of the planning period. Only applicable for models with vehicle scheduling.

CK int_restrict_to_system_frequency Whether to use a system frequency, i.e., a common divisor
for all frequency values. Only applicable for models with line planning.

CK int_system_frequency The value for the system frequency, i.e., the common divisor for all frequency
values. Only applicable for models with line planning.

CK int_check_lower_frequencies Whether the model should respect the lower frequency bounds,
i.e., the minimal number of times edges in the public transport network need to be covered. Only
applicable for models with line planning.

CK int_check_upper_frequencies Whether the model should respect the upper frequency bounds, i.e.,
the maximal number of times edges in the public transport network may be covered. Only applicable
for models with line planning.

CK int_set_starting_timetable Whether to set the starting values for timetabling. Only applicable
for models not containing line planning.

CK int_solver_type The solver to use.

54

3.8.1 Integrated timetabling and passenger routing
An implementation of the integrated periodic timetabling and passenger routing problem. For details on the
model, see [29].

CK tim_pass_use_preprocessing Whether to use an exact preprocessing method to reduce the problem
size before optimization.

CK tim_pass_use_cycle_base Whether to use a cycle-base formulation. This is normally much faster.

CK tim_pass_restrict_transfer_stations Whether to use an auxiliary IP to restrict the transfer
stations. This method is only exact if all drive- and wait-activities are fixed.

CK tim_pass_add_fixed_passenger_paths Whether to add the non-routed passengers as fixed weigths
to the model.

CK tim_pass_number_of_routed_od_pairs The number of routed od pairs.

CK tim_pass_choose_routed_od_pairs How to choose the routed od pairs. The following methods
are possible:

CV POTENTIAL Choose the od pairs with the most potential, i.e., compute the shortest path w.r.t. lower
bounds on the EAN, evaluate these paths w.r.t. the difference of upper and lower bound on each
activity and weight the result by the number of passengers of the od pair.

CV LARGEST_WEIGHT Choose the od pairs with the largest weight.

CV SMALLEST_WEIGHT Choose the od pairs with the smallest weight.

CV LARGEST_WEIGHT_WITH_TRANSFER Choose the od pairs with the largest weight that additionally
have at least one transfer in their shortest path w.r.t. the lower bounds on the EAN.

CV LARGEST_DISTANCE Choose the od pairs with the largest euclidian distance.

CV DIFF Similar to CV POTENTIAL but without the additional scaling by the number of passengers.

CV RANDOM Random.

CK tim_pass_time_limit The time limit for the optimization.

CK tim_pass_mip_gap The mip gap for the optimization.

CK tim_pass_write_lp_output Whether to write the lp output. Will additionally compute an IIS for
infeasible programs.

3.8.2 Integrated timetabling and aperiodic vehicle scheduling
Solve the integrated periodic timetabling and aperiodic vehicle scheduling problem. Includes passenger
routing for the timetabling step. For more information, see [29].

CK tim_veh_allow_empty_trips Whether to allow empty trips in the vehicle schedule.

CK tim_veh_use_lower_bound Whether to include an additional lower bound on the objective function.

CK tim_veh_time_limit The time limit for the optimization.

CK tim_veh_mip_gap The mip gap for the optimization.

CK tim_veh_write_lp_output Whether to write the lp output. Will additionally compute an IIS for
infeasible programs.

55

3.8.3 Integrated line planning and timetabling
Solve the integrated line planning and periodic timetabling problem. Includes passenger routing for the
timetabling stage. For more information, see [29].

CK lin_tim_pass_use_preprocessing Whether to use an exact preprocessing method to reduce the
problem size before optimization.

CK lin_tim_pass_add_fixed_passenger_paths Whether to add the non-routed passengers as fixed
weigths to the model.

CK lin_tim_pass_number_of_routed_od_pairs The number of routed od pairs.

CK lin_tim_pass_factor_line_cost The factor for the line costs.

CK lin_tim_pass_time_limit The time limit for the optimization.

CK lin_tim_pass_mip_gap The mip gap for the optimization.

CK lin_tim_pass_write_lp_output Whether to write the lp output. Will additionally compute an IIS
for infeasible programs.

CK lin_tim_pass_choose_routed_od_pairs How to choose the routed od pairs. The following meth-
ods are possible:

CV LARGEST_WEIGHT Choose the od pairs with the smallest weight.

CV SMALLEST_WEIGHT Choose the od pairs with the smallest weight.

CV LARGEST_DISTANCE Choose the od pairs with the largest euclidian distance.

CV RANDOM Random.

3.8.4 Integrated line planning, timetabling and vehicle scheduling
Solve the integrated line planning, periodic timetabling and aperiodic vehicle scheduling problem. Includes
passenger routing for the timetabling stage. For more information, see [29].

CK lin_tim_pass_veh_use_preprocessing Whether to use an exact preprocessing method to reduce
the problem size before optimization.

CK lin_tim_pass_veh_add_fixed_passenger_paths Whether to add the non-routed passengers as
fixed weigths to the model.

CK lin_tim_pass_veh_number_of_routed_od_pairs The number of routed od pairs.

CK lin_tim_pass_veh_time_limit The time limit for the optimization.

CK lin_tim_pass_veh_mip_gap The mip gap for the optimization.

CK lin_tim_pass_veh_write_lp_output Whether to write the lp output. Will additionally compute
an IIS for infeasible programs.

CK lin_tim_pass_choose_routed_od_pairs How to choose the routed od pairs. The following meth-
ods are possible:

CV LARGEST_WEIGHT Choose the od pairs with the smallest weight.

CV SMALLEST_WEIGHT Choose the od pairs with the smallest weight.

CV LARGEST_DISTANCE Choose the od pairs with the largest euclidian distance.

CV RANDOM Random.

56

3.8.5 Robust Timetabling and Vehicle Scheduling Using Machine Learning
This algorithm tries to improve the robustness of the given timetable and vehicle schedule by using a
machine-learned oracle and meta-heuristics for robustness prediction and determining possible improvement
steps. For more information, see [21].
For this model to work, a machine-learned oracle needs to be trained first. This step is not part of LinTim.
For more information on the training process, see [20]. To compute the key features described there and in
the publication above, use

R make int-rob-ml-key-features

This will create CK filename_robustness_tensor_file_name (Fi statistic/data.tensor) which
can then be used for training externally.
The following configuration parameters determine the behavior of the algorithm.

CK ean_change_penalty the change penalty to respect when routing passengers

CK ean_default_maximal_change_time the maximal change time. Will be used when
CK rob_create_missing_changes is set to CV true

CK ean_default_minimal_change_time the minimal change time. Will be used when
CK rob_create_missing_changes is set to CV true

CK filename_robustness_ml_model the filename of the machine-learned model to consider. Will only
be used when CK rob_use_api_for_prediction is set to CV false.

CK gen_passengers_per_vehicle the vehicle capacity

CK rob_max_changes the maximal changes allowed in the key feature vector used for rbustness prediction

CK rob_max_group_size the maximal passenger group size to route. Grouping passengers may improve
routing runtime.

CK rob_max_iteration the maximal number of iterations the algorithm is allowed to perform before
aborting

CK rob_max_travel_time the maximal travel time in the key feature vector used for robustness predic-
tion

CK rob_max_turnaround_time the maximale turnaround time allowed in the key feature vector used
for rbustness prediction

CK rob_output_every_solution whether every solution should be written to disk. If set to CV true,
a subfolder CK rob_debug_output_path will be used to store the result of every iteration. Note
that this may take up a large amount of disk space when used on large datasets with many iterations.

CK rob_reroute_interval the interval to reroute, i.e., setting this to CV 5 will result in rerouting taking
place every fifth iteration. Inceasing this value may improve the runtime but decrease the prediction
quality.

CK rob_routing_end_time the time when the routing of the passengers should stop. You should allow
enough time for your transportation system to settle after ending the routing of passengers. Events
outside of the routing window will not be considered for the key features. Note that we will consider
at most 4 hours, i.e., setting this higher will have no effect.

CK rob_routing_start_time the time when the routing of the passengers should start. You should
allow enough “startup” time for your transportation system to settle before starting the routing of
passengers.

57

CK rob_start_solutions_file the start solution file to read. Start solutions are read for the genetic
algorithm (i.e. CK rob_use_genetic_algorithm CV true) or when a specific start solution
should be used for the local search (i.e. CK rob_local_search_start_solution, −1). The file
should be a zip file containing the possible start solutions each in a seperate folder, named e.g. Fi

A_10 for start solution with index 10. In this folder should be a valid LinTim dataset.

CK rob_use_api_for_prediction will not read the model directly but use an api provided on port CK

rob_api_port. The algorithm will send the key feature vector seperated with ";" and expect the
resulting values as a ";" seperated vector as well, followed by "
n". The average of the received vector will be used as the predicition value for the given key feature
vector.

CK rob_use_single_ann_models will not read a single neural network model but one for each of the
four robustness objectives. Will insert “_1”, . . . , “_4” into the filename, i.e., for CV model.h5 in CK

filename_robustness_ml_model, this will try to read Fi model_1.h5,. . . Fi model_4.h5.

Specific for the local search, i.e., with CK rob_use_genetic_algorithm set to CV false

CK rob_ls_allowed_travel_time_increase the allowed travel time increase of the passengers, i.e.,
when this is set to CV 1.1 the algorithm allows an average travel time increase of 10% before aborting

CK rob_ls_buffer_increase_per_step the amount of buffer to add in each step, in seconds.

CK _ls_candidates_per_type determines how many candidates per activity type should be added in
each neighboorhood

CK rob_ls_change_weight the weight factor for change activities in the neighborhood selection process

CK rob_ls_drive_weight the weight factor for drive activities in the neighborhood selection process

CK rob_ls_propagate_slack_use_percentage determindes the propagation of slack on activities.
When set to CV true, CK rob_ls_propagate_slack_percentage gives the ratio of the activity
slack to reduce in each step. When set to CV false, a minimal slack time of CK rob_ls_propagate_slack_min_time
will be used instead.

CK rob_ls_select_by_ratio when set to true, not the absolute robustness improvement but the robust-
ness improvement divided by the lost passenger travel time will be used to determine the best solution
in each neighboorhood.

CK rob_ls_turn_weight the weight factor for turnover activities in the neighborhood selection process

CK rob_ls_use_periodic_timetabling whether to maintain a periodic timetable in every step or not

CK rob_ls_wait_weight the weight factor for wait activities in the neighborhood selection process

Specific for the genetic algorithm, i.e., CK rob_use_genetic_algorithm set to CV true

CK rob_ga_breedings_per_iteration the number of breedings to perform per generation

CK rob_ga_mutation_amount the maximal amount of mutation to use in each mutation

CK rob_ga_number_mutations_at_breeding the number of vector entries to mutate during the breed-
ing process

CK rob_ga_number_mutations_at_start the number of vector entries to mutate in the start solutions

CK rob_ga_number_start_solutions the number of start solutions to use.

58

line planning

timetabling
given a line plan

vehicle scheduling
given a line plan

vehicle scheduling
given a line plan
and a timetable

timetabling
given a line plan

and vehicle schedules

line planning
given a timetable

line planning
given vehicle schedules

timetabling

vehicle scheduling
given a timetable

line planning
given a timetable

and vehicle schedules

timetabling
given vehicle schedules

vehicle scheduling

Figure 3.2: Depiction of the eigenmodel described in [36].

CK rob_ga_only_best_breeding whether to use only the best/fittest or all of the population for breeding

CK rob_ga_seed the random seed

CK rob_ga_selection determines how to choose the next generation. While CV QUALITY will only
keep the best/fittest solutions, CV PARETO will keep all non-dominated (w.r.t. predicted robustness
and travel time) individuals and add the best/fittest solutions if those are not enough (compared to CK

rob_genetic_solution_pool_size).

CK rob_ga_solution_pool_size the number of solutions in each generation

CK rob_mip_gap the mip gap for the vehicle scheduling subproblem. Set to -1 to disable.

CK rob_threads the thread limit for the vehicle scheduling subproblem. Set to -1 to disable.

CK rob_timelimit the time limit for the vehicle scheduling subproblem. Set to -1 to not set a time limit.

3.8.6 Eigenmodel
The eigenmodel is a theoretical model for iteratively solving the integrated public transport model. A
representation can be seen in Figure 3.2. For more information, see [36].

Tim-Veh-To-Lin

Implementation of one of the steps of the inner circle of the eigenmodel. For a fixed line plan and vehicle
schedule, compute a new periodic timetable. For more information, see [28]. Note that this model will only
work for line frequencies of 1.

59

CK tim_veh_to_lin_time_limit The time limit for the optimization.

CK tim_veh_to_lin_mip_gap The mip gap for the optimization.

CK tim_veh_to_lin_write_lp_output Whether to write the lp output. Will additionally compute an
IIS for infeasible programs.

CK DM_earliest_time_EM The earliest time for events to consider for this model. Should be large
enough that the time between CK DM_earliest_time_EM and CK DM_latest_time_EM is free of
any aperiodic side effects.

CK DM_latest_time_EM The latest time for events to consider for this model. Should be small enough
that the time between CK DM_earliest_time_EM and CK DM_latest_time_EM is free of any
aperiodic side effects.

60

Chapter 4

Auxiliary Algorithms

4.1 Dataset Generation
With the dataset generator it is possible to create new artificial datasets. To use it, navigate into the Fo

/datasets directory and run

R make dg-generate-dataset

This will create a new subdirectory in Fo /datasets.

4.1.1 Input
As input, only some parameters in the file Fi /dataset-generation/basis/Config.cnf are needed.

CK ptn_name The name for the new dataset. As default, this is set to be new_generic_dataset.

CK dg_model specifies the method by which the new dataset is created.

Depending on the chosen CK dg_model, some more config parameters are required; see below.

4.1.2 Output
As output a new directory Fo /datasets/ CK ptn_name is created. The config file from the directory Fo

dataset-generation is copied into the new dataset. This is then ready to be used as a dataset with all
functionalities of LinTim.

4.1.3 Algorithms
Parametrized City

CK dg_model CV parametrized_city

The model is based on a paper by Fielbaum et al. [5]. This model divides a city into various zones. The
authors state, that most big cities consist of one Central Business District (CBD) sourrounded by some
subcenters. As output, the files Fi Stop.giv, Fi Edge.giv and Fi OD.giv are created in the new
directory. The PTN is generated by the following procedure:
First, the CBD is represented by a node in the center of the PTN. The CBD is surrounded by n zones, each
of which consists of a subcenter-node and a periphery node. All the subcenters are then connected to the
CBD and their neighboring subcenters. The periphery nodes are only connected to their own subcenter.
The distance between a subcenter and the geometrical center C of the graph is L. It is not necessary that
the CBD is located at C, but it can have an offset to C by ηL along an axis CBD-subcenter. The distance

61

between a periphery and its subcenter is gL.
Considering the creation of the OD-Matrix, the parameter Y states how many trips are generated in total.
They are evenly splitted among the n zones, such that exactly Y

n trips start in each zone. A fraction a of
those trips start in the subcenter and a fraction of b = 1 − a depart from the periphery. Usually we have
b < a. A fraction of α of all trips generated in a periphery goes to the CBD and a fraction of β goes to it’s
own subcenter. The rest (γ = 1 − α − β) goes evently splitted to all other (foreign) subcenters.
To use the Parametrized city model, specify the following parameters:

CK gen_vehicle_speed Speed of the vehicles in km/h.

CK dg_param_city_number_subcenters Number of subcenters sourrounding the CBD. The PTN has
2n + 1 nodes.

CK dg_param_city_alpha Trips proportion from periphery that go to the CBD.

CK dg_param_city_beta Trips proportion from periphery to own subcenter. From α and β we calculate
the value of γ = 1 − α − β representing the trips proportion from periphery to foreign subcenters.

CK dg_param_city_eta Portion of displacement of the CBD from the center of the city in an axis
CBD-subcenter.

CK dg_param_city_Y Total number of trips generated.

CK dg_param_city_L Distance from any subcenter to the geometrical center of the city.

CK dg_param_city_g Distance periphery-subcenter / Distance subcenter-CBD.

CK dg_param_city_a Trips proportion that depart from the periphery. From this we calculate the value
of b = 1 − a representing the trips proportion that depart from a subcenter.

According to [5] the parameters in table 4.1.3 should give a reasonable model of the corresponding cities.

Santiago Bordeaux Los Angeles
n 7 3 7
α 0.25 0.18 0.0033
β 0.22 0.72 0.287
γ 0.53 0.1 0.68
η 0 0 0
Y 2,565,622 250,000 4,500,000
L 10 6.6 11.65
g 0.85 1.2 0.79
a 0.78 0.3 0.91
b 0.22 0.7 0.09

Table 4.1: These parameters should reproduce a reasonable model for the correpsonding cities.

Ring

CK dg_model CV ring

This model creates an undirected PTN consiting of some concentric rings and a center node. For each edge
the lower bound is set to 1 and the upper bound is set to 20. The following parameters control the layout:

CK dg_ring_number_of_rings Number of concentric rings that are generated.

CK dg_ring_nodes_per_ring Number of nodes that each ring consists of

62

CK dg_ring_length_1 If this boolean parameter is set to true, the lengths of all edges are equal to 1.

CK dg_ring_radius specifies the radius of the inner ring, i.e. the lengths of the edges from the center to
the nodes of the inner ring. The lengths of all other edges are set according to the euclidean distance
in the plane. Only used, if CK dg_ring_length_1 is false.

There are different methods for the creation of the OD data, specified by CK dg_ring_demand_type.
OD-values are always created symmetrically and they are equal to zero if both nodes are identical. Available
options are:

CV UNIFORM All OD-values are set to 1.

CV UNIFORM_CENTRE If one of the nodes is the center node, the OD value is 100, otherwise it is 10.

CV RANDOM All OD-values are set to random integers between 1 and 100.

CV RANDOM_NEIGHBOUR_CENTRE If one of the nodes is the center node, then the OD-value is a random
integer between 40 and 150. If there exists an edge between both nodes, the OD-value is a random
integer between 20 and 50 and otherwise it is a random integer between 0 and 30.

CV SPOKE_RING For each pair of nodes we compute a shortest path in the PTN with respect to the
euclidean distance (even if the edge lengths are set to 1). Along this path we count the number of ring
edges and the number of spoke edges. A spoke edge is an edge between two nodes in different rings.
The following parameters need to be specified:

CK dg_ring_spoke_edge_demand

CK dg_ring_ring_edge_demand

CK dg_ring_demand_scaling_factor

The OD value is then computed as

scaling_factor ·

(
spoke_edge_demand

#spoke edges + 1
+
ring_edge_demand

#ring edges + 1

)
rounded to the nearest integer.

4.2 OD Matrix Creation
In the OD matrix creation step, an OD matrix is calculated using a given demand and a PTN.

4.2.1 Input
The following files are needed as input:

• CK default_stops_file (Fi basis/Stop.giv) stops of the PTN

• CK default_edges_file (Fi basis/Edge.giv) edges of the PTN

• CK default_demand_file (Fi basis/Demand.giv) demand at geographical positions

4.2.2 Output
The following file is produced as output:

• CK default_od_file (Fi basis/OD.giv) OD matrix for one planning period

63

4.2.3 Algorithms
To compute an OD matrix run

R make od-create

For all pairs of demand point a shortest path is computed, which includes the path to and from the PTN and
might also not use any PTN edges. The demand at one demand point is distributed randomly to all other
demand points with probabilities proportional to

demand at other demand point
(distance between demand points)2 .

The passengers which are computed to travel between to demand points are attributed to the OD pairs
consisting of the first and last station on the shortest path. If the shortest path does not contain any stations,
the passengers are not counted towards the OD matrix.
The following parameters can be used to influence the OD matrix which is created:

• CK od_use_network_distance: if set to true, the distance between demand point which is used
for distributing passengers to destination demand points is the travel time between the demand points
on the shortest paths. Otherwise it is proportional to the geographical distance between the demand
point depending on the norm
CK sl_distance.

• CK od_remove_uncovered_demand_points: if set to true, demand points which are more than
CK sl_radius away from the nearest station are not included in the computation.

• CK od_network_acceleration: speed up factor for driving in the PTN compared to traveling
directly, also used for driving to and from the network.

• CK ptn_stop_waiting_time: the time (in minutes) a vehicle has to stop at each station which is
considered during the computation of the shortest path.

4.2.4 Distribute from node demand
If an od demand based on an infrastructure is given, i.e., CK filename_od_nodes_file (Fi basis/OD-Node.giv),
an od distribution algorithm can be used to create a stop based od matrix. For this, run

R make od-distribute-from-nodes

to obtain CK default_od_file (Fi basis/OD.giv). This will find travel-time-minimal paths for all
passengers and create a stop od matrix based on their chosen route, i.e., the first boarding station and
the last alighting station will determine the new od matrix. For this, the walking edges provided in
CK filename_walking_edge_file (Fi basis/Edge-Walking.giv) and a penalty factor for walk-
ing, i.e., CK gen_walking_utility, will be considered. The drive time on infrastructure edges is
based on CK ean_model_weight_drive and the waiting time at stations is calculated based on CK

ean_model_weight_wait. Additionally, the obtained assignment from node od pair to stop od pair can
be written to CK filename_od_node_assignment_file (Fi basis/OD-Node-Assignment.giv) by
setting CK od_node_write_assignment to CV true.

4.3 Load distribution
This step takes the OD matrix and distributes the passengers to the PTN. The resulting edge loads are used
as an input for following steps, e.g. most line planning algorithms. This section first handles the setting of
CK load_generator_model to CV LOAD_FROM_PTN, for the other case, see 4.3.4.

64

4.3.1 Input
The following files are needed as input:

• CK default_stops_file (Fi basis/Stop.giv)

• CK default_edges_file (Fi basis/Edge.giv)

• CK default_od_file (Fi basis/OD.giv)

When parameter CK load_generator_use_cg is set to CV true, the line pool is needed as well to build
the Change&Go-network, i.e.,

• CK default_pool_file (Fi basis/Pool.giv)

• CK default_pool_cost_file (Fi basis/Pool-Cost.giv)

4.3.2 Output
The following file is produced as output:

• CK default_loads_file (Fi basis/Load.giv)

4.3.3 Algorithms
To compute a new load, run

R make ptn-regenerate-load

There are different objective functions to distribute the passengers, namely

• CK load_generator_type CV SP

• CK load_generator_type CV REWARD

• CK load_generator_type CV REDUCTION

CV SP distributes the passengers on shortest paths. For determining the length of a PTN edge, parameter
CK ean_model_weight_drive is used.
The load generators CV REWARD and CV REDUCTION are iterative and include an additional term, rewarding
in different ways the bundling of passengers. The weight of the additional terms is determined by CK

load_generator_scaling_factor. CV REDUCTION adds a penalty depending on the usage of the edge
in PTN (high penalty for low usage) and CV REWARD rewards an edge more if less passengers are needed to
fill the next vehicle on the edge. For a more detailed description of the models, see [8].
There are two other parameters to determine the behavior of the algorithm:

CK load_generator_use_cg When this is set to CV true, a Change&Go-network is used for routing the
passengers. This includes the knowledge of the line pool, allowing to consider transfers. The cost of a
transfer will be the estimated change time (CK load_generator_min_change_time_factor times
CK ean_default_minimal_change_time; at most CK ean_default_maximal_change_time)
plus CK ean_change_penalty. For waiting at a stop, the behavior of CK ean_model_weight_wait
is adopted. For a more detailed description of the Change&Go-network see [38]. Since the network to
route in is much larger, this increases the runtime, especially for bigger pools. But the resulting load
is often more realistic.

CK load_generator_number_of_shortest_paths This determines the number of shortest paths the
passenger are distributed to, i.e., if this is set to K, the K shortest paths are computed in each step.
This increases the runtime! To distribute the passengers on the different paths, a logit model with
parameter CK load_generator_sp_distribution_factor is used.

65

For an undirected PTN the algorithm does not distinguish the direction in which an edge is traversed,
i.e., the load on an edge is the sum of the numbers of passengers traversing it in each direction. To
determine the lower and upper frequency values in the CK default_loads_file (Fi basis/Load.giv),
the resulting load is divided by the vehicle capacity CK gen_passengers_per_vehicle. Overall, the
following parameters determine the behavior of the algorithm:

CK ean_change_penalty

CK ean_default_maximal_change_time

CK ean_default_maximal_waiting_time

CK ean_default_minimal_change_time

CK ean_default_minimal_waiting_time

CK ean_model_weight_drive

CK ean_model_weight_wait

CK gen_passengers_per_vehicle

CK load_generator_add_additional_load

CK load_generator_fixed_upper_frequency

CK load_generator_fix_upper_frequency

CK load_generator_lower_frequency_factor

CK load_generator_max_iteration

CK load_generator_min_change_time_factor

CK load_generator_model

CK load_generator_number_of_shortest_paths

CK load_generator_scaling_factor

CK load_generator_sp_distribution_factor

CK load_generator_type

CK load_generator_use_cg

CK load_generator_upper_frequency_factor

4.3.4 Using the EAN
If CK load_generator_model is set to CV LOAD_FROM_EAN, the EAN is used to determine the load of
the PTN edges. Therefore the EAN is read and has to be present, i.e., the files

• CK default_events_periodic_file (Fi timetabling/Events-periodic.giv)

• CK default_activities_periodic_file (Fi timetabling/Activities-periodic.giv)

66

4.4 Headway creation
This is a small helper script to create a headway file for the current dataset. Some older methods still need a
headway file present, even if the content is not used.

4.4.1 Input
The following file is needed as input

• CK default_edges_file (Fi basis/Edge.giv) edges of the PTN

4.4.2 Output
The following file is produced as output:

• CK default_headways_file (Fi basis/Headway.giv) a file containing a default headway value
for each edge

4.4.3 Algorithm
To create the headways, run

R make ptn-headways

This will create a new headway file, using CK ptn_default_headway_value as a value for each edge.

4.5 PTN to EAN

4.5.1 Input
The following files are required as input

• CK default_stops_file (Fi basis/Stop.giv) edges of the PTN

• CK default_edges_file (Fi basis/Edge.giv) edges of the PTN

• CK default_lines_file (Fi line-planning/Line-Concept.lin) a line concept on the PTN

4.5.2 Output
This procedure gives the following output

• CK default_events_periodic_file (Fi timetabling/Events-periodic.giv)

• CK default_activities_periodic_file (Fi timetabling/Activities-periodic.giv)

4.5.3 Algorithm
To create the Event-Activity-Network (required as input for Timetabling etc.), run

R make ean

The event-activity-network is then created. To this end for every line departure and arrival events for every
station the line passes (every line is executed in both directions, depending on CK ptn_is_undirected)
will be created. These events are then connected either with drive or wait activities (respecting the bounds
given by the configuration of CK ean_default_minimal_waiting_time etc.). Furthermore it will assign

67

each arc with some weight, corresponding to the amount of passengers driving on it. The calculation assumes
that the times for each activity are given by CK ean_model_weight_drive (resp. wait/change/etc.).
Per default CK ean_construction_target_model_frequency is set to
CV FREQUENCY_AS_MULTIPLICITY, which additionally creates synchronisation activities between every
repetition of each line. This ensures that in the EAN the frequency of each line is indeed respected. Note,
that such synchronisation activities have fixed upper and lower bounds, that are equal. If the frequency of a
line does not divide the period length, this routine will distribute the remaining time buffer evenly to the
different activities.
If headways exist, they can also be created for the EAN by setting
CK ean_construction_target_model_headway to something different than
CV NO_HEADWAYS (which is the default), e.g. to CV SIMPLE.
Individual station limits can be provided by CK filename_station_limit_file (Fi basis/Station-Limits.giv)
when CK ean_individual_station_limits is set to CV true. For every station in the station limit file,
the given individual limits will be used. For stops not in the limit file or entries of -1 the global default
values will be used.
Additionally, it is possible to restrict the set of stations where transfers may take place. For this, set
CK ean_respect_change_stations to CV true and provide a list of possible transfer stations in CK

filename_change_station_file (Fi basis/Change-Stations.giv). Transferring in other stations
will be forbidden, i.e., no transfer activities will be created there.
It is also possible to enable walking, i.e., transferring between different stops connected by walking edges.
For this, CK ean_use_walking must be set to CV true and an infrastructure network with corresponding
walking edges needs to be provided that is consistent with the PTN used, i.e., we assume that the node id of
the corresponding node is stored in the long name of the stops. Additionally, a total maximal walking time
(CK sl_max_walking_time) can be provided, only allowing walking transfers with the given maximal
length.
The following parameters control the behavior of the algorithm:

CK debug_paths_in_ptn

CK debug_paths_in_ean

CK ean_algorithm_shortest_paths

CK ean_change_penalty

CK ean_construction_skip_passenger_distribution

CK ean_construction_target_model_frequency

CK ean_construction_target_model_headway

CK ean_default_maximal_change_time

CK ean_default_maximal_waiting_time

CK ean_default_minimal_change_time

CK ean_default_minimal_waiting_time

CK ean_discard_unused_change_activities

CK ean_dump_initial_duration_assumption

CK ean_individual_station_limits

CK ean_initial_duration_assumption_model

68

CK ean_model_weight_change

CK ean_model_weight_drive

CK ean_model_weight_wait

CK ean_random_shortest_paths

CK ean_use_walking

CK period_length

CK sl_max_walking_time

4.6 EAN buffer activities
There are several algorithms to add buffer times to the EAN. All methods are called using

R make ean-buffer-activities

and the implementation used is determined by the config parameter CK rob_buffer_generator with the
following choices:

• CV exponential: Exponential distribution

• CV reverse-exponential: Reverse exponential distribution

• CV uniform-random: Uniform random buffer distribution

• CV exceed-random: Uniform random distribution with an additonal upper bound

• CV proportional: Add a fixed buffer to all activities

• CV proportional-restricted: Buffer all activities with a fixed term, but restrict the number of
events or activities to buffer

For CV proportional-restricted, the following config parameters determine the behavior:

• CK rob_buffer_link_list: A given list of link ids to buffer. All activities belonging to the given
links will be buffered

• CK rob_buffer_on_wait_activity: The buffer to add to wait activities, only activities determined
by the CK rob_buffer_stop_percentage will be buffered.

• CK rob_buffer_on_drive_activity: The buffer to add to drive activities, only activities de-
termined by the CK rob_buffer_link_percentage or CK rob_buffer_link_list: will be
buffered.

• CK rob_proportional_drive_activity_buffer: An additional percentage based buffer for the
drive activities, should be between 0 and 1

• CK rob_buffer_link_percentage: The percentage of links to buffer. Will buffer all drive activ-
ities on the most used links, i.e., the links with the most drive activities. Should be between 0 and
1.

• CK rob_buffer_stop_percentage: The percentage of stops to buffer. Will buffer all wait activities
at the most used stops, i.e., the stops with the most changing passengers. Should be between 0 and 1.

The buffered activities will be written to CK default_activity_buffer_file and
CK use_buffered_activities will be set to CV true. Reading
CK default_activities_periodic_file should always return the value for
CK default_activity_buffer_file when CK use_buffered_activities is set to CV true.

69

4.7 EAN reroute passengers
R make ean-reroute-passengers

This generates a passenger distribution (i.e., new weights on the activities) by rerouting the passengers (i.e.,
the OD pairs) through the periodic EAN on shortest paths with respect to the timetable derived durations.
Note that the passengers of the same OD pair will not be split up, but will all use the same shortest path in
the EAN.

4.8 Tariff (Reference) Price Matrix
Running

R make taf-tariff-price-matrix

creates a price matrix for a specified tariff with given tariff information. No optimization is done.
Running

R make taf-tariff-reference-price-matrix

creates a reference price matrix for a specified tariff with given tariff information.

4.8.1 Input
The following files are needed as input:

• CK default_stops_file (Fi basis/Stop.giv), stops of the PTN,

• CK default_edges_file (Fi basis/Edge.giv), edges of the PTN.

If CK taf_model CV flat, the following configuration value is needed:

• CK taf_flat_price, the constant price for all paths in the tariff.

If CK taf_model CV beeline_distance or CV network_distance, the following configuration values
are needed:

• CK taf_fixed_costs, the fixed costs of an affine beeline distance or network distance tariff,

• CK taf_factor_costs, the factor costs of an affine beeline distance or network distance tariff.

If CK taf_model CV zone, then the two following files are additionally needed as input:

• CK filename_tariff_zone_file (Fi tariff/Zones.taf), assignment of stops to zones,

• CK filename_tariff_zone_price_file (Fi tariff/Zone-Prices.taf), price list of the
zone tariff.

If CK taf_model is CV network_distance or CV zone and CK taf_routing_generation is CV

read-all or CV read-partial-fill, then the following file is additionally needed as input:

• CK filename_routing_ptn_input (Fi basis/Routing-ptn.giv).

70

4.8.2 Output
Running

R make taf-tariff-price-matrix

yields as output

• CK filename_tariff_price_matrix_file (Fi tariff/Price-Matrix.taf), prices for each
OD pair,

and

R make taf-tariff-reference-price-matrix

yields as output

• CK filename_tariff_reference_price_matrix_file (Fi basis/Reference-Price-Matrix.giv),
reference prices for each OD pair.

If CK taf_model is CV network_distance or CV zone, the routing file is produced as output as well:

• CK filename_routing_ptn_output (Fi basis/Routing-ptn.giv), routing in the PTN.

In all cases, the following statistic file is also produced as output:

• CK filename_tariff_properties_file (Fi statistic/tariff-properties.sta), statis-
tic file containing information whether the no-elongation property and the no-stopover property (see
Section 3.5.4) are fulfilled for the computed price matrix.

4.8.3 Algorithms
Price Matrix

Run

R make taf-tariff-price-matrix

to create a price matrix for all OD pairs for a specified tariff with given tariff information. The following
models CK taf_model are available:

• CV flat, write price matrix for a flat tariff,

• CV beeline_distance, write price matrix for an affine beeline distance tariff,

• CV network_distance, write price matrix for an affine network distance tariff,

• CV zone, write price matrix for a zone tariff.

If CK taf_model CV flat, CK taf_flat_price is read and for each non-trivial OD pair (i.e. for all
d ∈ D := (V×V)\{(v, v) : v ∈ V}) this flat price is written to CK filename_tariff_price_matrix_file

(Fi tariff/Price-Matrix.taf). For trivial OD pairs d = (v, v) for v ∈ V the price is set to 0.
Be aware that entries for CK taf_flat_price in the private configuration file overwrite those specified in
the state configuration file (see Section 8.1).

If CK taf_model CV beeline_distance, the Euclidean distances ld between the start and end station
of each OD pair d are determined. Then the fixed costs f (CK taf_fixed_costs) and factor costs p
(CK taf_factor_costs) are read from the configuration file and the prices are determined for each
non-trivial OD pair d by f + ld · p and written to CK filename_tariff_price_matrix_file (Fi

tariff/Price-Matrix.taf). For trivial OD pairs d = (v, v) for v ∈ V the price is set to 0.

71

Be aware that entries for CK taf_fixed_costs and CK taf_factor_costs in the private configuration
file overwrite those specified in the state configuration file (see Section 8.1).

If CK taf_model CV network_distance, for each OD pair the summed edge lengths of the routing
specified by CK taf_routing_generation with the following possible values are used as distances:

• CV fastest-paths, a new routing using fastest paths with respect to the lower time bounds is
created,

• CV read-all, a routing given in CK filename_routing_ptn_input (Fi basis/Routing-ptn.giv)
is read and used to determine distances,

• CV read-partial-fill, a partial routing given in CK filename_routing_ptn_input (Fi

basis/Routing-ptn.giv) is read and used to determine distances. Unspecified paths are filled with
fastest paths with respect to the lower time bounds.

From this the paths lengths ld are calculated by summing up the edge lengths on the path. For all non-trivial
OD pairs d ∈ D the prices are calculated by f + ld · p with fixed costs f (CK taf_fixed_costs) and factor
costs p (CK taf_factor_costs). For trivial OD pairs d = (v, v) for v ∈ V the price is set to 0. The prices
are written to CK filename_tariff_price_matrix_file (Fi tariff/Price-Matrix.taf).
Be aware that entries for CK taf_fixed_costs and CK taf_factor_costs in the private configuration
file overwrite those specified in the state configuration file (see Section 8.1).

If CK taf_model CV zone, then CK filename_tariff_zone_file (Fi tariff/Zones.taf), CK

filename_tariff_zone_price_file (Fi tariff/Zone-Prices.taf) and CK taf_zone_counting

are read. From this for each non-trivial OD pair a path specified by CK taf_routing_generation (as
explained above and in Section 3.5.1) is used to determine the price by counting the number of traversed
zones respecting CK taf_zone_counting (as explained in Section 3.5.4). For trivial OD pairs d = (v, v)
for v ∈ V the price is set to 0. The prices are written to CK filename_tariff_price_matrix_file (Fi

tariff/Price-Matrix.taf).

Reference Price Matrix

Run

R make taf-tariff-reference-price-matrix

to create a reference price matrix for all OD pairs for a specified tariff with given tariff information.
This command follows the same logic as

R make taf-tariff-price-matrix

with the difference being that the prices are written to CK filename_tariff_reference_price_matrix_file

(Fi basis/Reference-Price-Matrix.giv) instead of CK filename_tariff_price_matrix_file

(Fi tariff/Price-Matrix.taf).

4.9 Rollout
The periodic event-activity network and the periodic timetable have to be converted to a nonperiodic
event-activity network that can be used in the operational phase of public transport.

72

4.9.1 Input
The following files are needed as input

• CK default_edges_file (default: basis/Edge.giv)

• CK default_headways_file (default: basis/Headway.giv)

• CK default_events_periodic_file (Fi timetabling/Events-periodic.giv)

• CK default_activities_periodic_file (Fi timetabling/Activities-periodic.giv)

4.9.2 Output
The following files are produced as output:

• CK default_events_expanded_file (Fi delay-management/Events-expanded.giv) a file
containing the aperiodic events

• CK default_activities_expanded_file

(Fi delay-management/Activities-expanded.giv) a file containing the aperiodic activities

• CK default_timetable_expanded_file

(Fi delay-management/Timetable-expanded.tim) a file containing the aperiodic timetable

4.9.3 Algorithm
To roll out, all (nonperiodic) events that take place in the time interval [CK DM_earliest_time, CK

DM_latest_time] (given in seconds since 0:00) as well as all (nonperiodic) activities connecting those
events are taken into account. If CK rollout_whole_trips is set to CV true, all trips whose start
event or end event are not contained in [CK DM_earliest_time, CK DM_latest_time] are deleted. If
CK rollout_discard_unused_change_edges is set to CV true, changing activities with weight 0 are
ignored (this might significantly reduce the size of the nonperiodic event-activity network, speeding up the
delay management step). The parameter CK rollout_for_nonperiodic_timetabling influences the
output: if set to CV true, only forward headways are contained in the output, and for each activity, the
output also contains an upper bound on its duration (note that this parameter always should be set to false
unless you really know what you are doing!).

Delay Management and Vehicle Scheduling When rolling out for vehicle scheduling, usually a long
time period (e.g. a whole day) is considered and CK rollout_whole_trips must be set to CV true.
When rolling out for delay management, usually a short time period (e.g. two hours) is considered and CK

rollout_whole_trips should be set to CV false. Typically, the combination of vehicle scheduling and
delay management could be like this:

1. Set [CK DM_earliest_time, CK DM_latest_time] to a “large” time interval, e.g. one day, and
CK rollout_whole_trips to CV true.

2. Run

R make ro-rollout && make ro-trips

3. Run

R make vs-vehicle-schedules

to generate the vehicle schedules.

73

4. Set [CK DM_earliest_time, CK DM_latest_time] to the time interval needed for delay manage-
ment, e.g. two hours, and CK rollout_whole_trips to CV false.

5. Run

R make ro-rollout && make vs-add-circulations-to-ean

to roll out for delay management and to add the circulations to the rolled-out event-activity network.

Generating passenger paths For more precise methods of delay management, OD pairs may be rolled out
over the delay management period into distinct paths in the aperiodic EAN. As this takes quite some time in
the rollout and in the evaluation of the delay management, this has to be explicitly enabled by setting the
rollout_passenger_paths parameter to true. A new file determined by default_passenger_paths_file
will be created containing in each line a departure event, an arrival event, the source and target station id, an
integral passenger weight and a comma-separated list of change activities. The weights are distributed from
the original OD file, where passengers are equally distributed over the time between DM_earliest_time and
the departure time of their last connection. Every passenger gets assigned to the next possible departure
event. If there exists multiple paths with the same arrival time, among them only those with a minimal
number of changes and with the latest possible departure time will be kept and considered. A path for which
another path with the same or a later departure time but an earlier arrival time exists will not be considered
either. If there still are multiple paths for one departure time, the passengers will be divided between them
equally but integrally (such that some of them may have 1 passenger less than others). If passenger paths are
rolled out, there will be an additional file according to default_od_expanded_file will be created. This file
contains a timestamped OD demand according to the path-distribution of the passengers.

4.9.4 Requirements and caveats
• If CK DM_enable_consistency_checks is set to CV true, IDs in files are checked to be consecu-

tively numbered beginning from 1.

4.9.5 Generating trips
For vehicle scheduling, it is necessary to additionally create the trips after rolling out, i.e., after

R make ro-rollout

with CK rollout_whole_trips set to CV true,

R make ro-trips

should be run as well. This method uses the files

• CK default_activities_expanded_file

(Fi delay-management/Activities-expanded.giv)

• CK default_events_expanded_file (Fi delay-management/Events-expanded.giv)

to create

• CK default_trips_file (Fi delay-management/Trips.giv)

The file CK default_trips_file (Fi delay-management/Trips.giv) will then contain all informa-
tion regarding line trips that need to be covered of a feasible vehicle schedule.

74

4.10 Delay generation
To simulate source delays during the operational phase, different delay generators are included in LinTim.
The following parameters are used by all delay generators:

• The interval [CK delays_min_time, CK delays_max_time] defines which events and/or activ-
ities might be delayed (only events taking place in this time interval or activities connecting two
such events might be delayed). Note that [CK delays_min_time, CK delays_max_time] ⊆ [CK

DM_earliest_time, CK DM_latest_time] is required.

• The parameters CK delays_min_delay and CK delays_max_delay define lower and upper
bounds on the amount of a source delay. If CK delays_absolute_numbers is set to CV true, the
bounds are in seconds, otherwise the bounds are in % of the nominal duration of a delayed activity
(this is needed for delays on activities only).

• If CK delays_append is set to CV true, the generated source delays are appended to already
existing files containing source delays (to allow a combination of delays, generated by different delay
generators); if set to CV false, existing files containing source delays are replaced. Please note that
several source delays of the same event (activity) are not additive: newly generated source delays are
simply appended to the file containing the source delays, and this file is read sequentially – so for
each event (activity), only the last source delay contained in the file is taken into account.

Which generator is going to be used is controlled by the CK delays_generator parameter.

CV uniform_distribution: Adds random source delays to randomly chosen events and/or activities. Its
behavior can be controlled by the following parameters:

• CK delays_events: If set to CV true, source delays on events are generated (can be combined
with CK delays_activities).

• CK delays_activities: If set to CV true, source delays on driving activities are generated
(can be combined with CK delays_events).

• CK delays_count: Number of source delays that will be generated. If
CK delays_count_is_absolute is set to CV true, CK delays_count is an absolute num-
ber; otherwise it defines how many events of all events taking place in
[CK delays_min_time, CK delays_max_time] (in %) and/or how many driving activi-
ties of all driving activities with start event and end event in [CK delays_min_time, CK

delays_max_time] (in %) will be delayed.

CV events_in_station: Delays all events in the station defined by
CK delays_station_id_for_delays. If CK delays_station_id_for_delays is CV -1, the
station is chosen randomly. If you want to delay all events in several different stations, you have to run
the delay generator several times with different values of CK delays_station_id_for_delays

and CK delays_append set to CV true.

CV activities_on_track: Delays all driving activities on the track defined by
CK delays_edge_id_for_delays. If CK delays_edge_id_for_delays is CV -1, the track
is chosen randomly. If you want to delay all driving activities on several different tracks, you have to
run the delay generator several times with different values of CK delays_edge_id_for_delays

and CK delays_append set to CV true.

CV uniform_background_noise: Adds random source delays to every event and/or activity. Its behavior
can be controlled by the following parameters:

• CK delays_seed: For reproducible purpose a seed for generating random delay amount is
introduced. If delays seed is set to CV 0, no seed will be set and thus the experiment in general
is not reproducible.

75

• CK delays_events: If set to CV true, source delays on events are generated (can be combined
with CK delays_activities).

• CK delays_activities: If set to CV true, source delays on driving activities are generated
(can be combined with CK delays_events).

• CK delays_append: If this is set to CV true, the already delayed events and activities are not
further manipulated.

4.11 Visualization
LinTim offers algorithms for drawing several states of the public transportation system. The output files can
be found in Fo graphics.

4.11.1 PTN
To create an illustration of the PTN run

R make ptn-draw

The result for dataset toy is depicted in Figure 4.1.

Figure 4.1: The PTN of the toy dataset

The graph can be scaled by adapting CK ptn_draw_conversion_factor.
Setting CK ptn_draw_use_coordinates to CV false results in disregarding the stop-coordinates. In-
stead, the stops are arranged automatically. The result for dataset toy is depicted in Figure 4.2.

Figure 4.2: The PTN of the toy dataset with automatically arranged stops

To create an illustration of the PTN that is readable even for larger datasets, run

76

R make ptn-draw-interactive

The resulting html-script allows for some interaction, like changing node sizes or viewing network informa-
tion when tracing over the graph. One possible output for dataset bahn-01 is depicted in Figure 4.3. Edge
labels can be enabled with CK ptn_draw_interactive_graph_edge_labels.

Figure 4.3: The PTN of the bahn-01 dataset

4.11.2 OD
To create an illustration of the OD data run

R make od-draw

The result for dataset toy is depicted in Figure 4.4. The graph displays only those OD pairs whose

Figure 4.4: The OD data of the toy dataset where the edge width indicates the number of passengers traveling

fractional value in relation to the maximal value of the OD pairs lies within the closed interval given
by CK od_visualization_lower_bound and CK od_visualization_upper_bound. Datasets with

77

symmetric OD data will be illustrated using undirected graphs. Otherwise a directed graph will be used.
The output is saved in CK filename_od_visualization_file. The graph can visualize the loga-
rithm of the number of passengers traveling with CK od_visualization_use_log_scale. The graphs
maximal edge width can be adjusted with CK od_visualization_max_edge_width. The number of
passengers traveling can be indicated with edge color instead of edge width using the parameter CK

od_visualization_use_edge_color. The result for dataset toy is depicted in Figure 4.5. Either graph
can be scaled by adapting CK od_draw_conversion_factor.

Figure 4.5: The OD data of the toy dataset where the edge color indicates the number of passengers traveling

Alternatively, a heatmap visualization can be used with CK od_visualization_use_heatmap. It can be
annotated using CK od_visualization_use_annotations. As with the graph visualization, the heatmap
can visualize the logarithm of the number of passengers traveling with CK od_visualization_use_log_scale
The result for dataset toy is depicted in Figure 4.6.

Figure 4.6: The OD data of the toy dataset visualized as a heatmap

4.11.3 Loads
To create an illustration of the traffic loads in the PTN run

R make ptn-load-draw

Displayed are the links whose traffic load in relation to the maximal traffic load in the network is within the
interval given by the fractions CK loads_graph_lower_bound and CK loads_graph_upper_bound.
The traffic loads can be illustrated using the edge color or the edge width of the PTN. This can be chosen
using CK loads_graph_use_edge_color. The result of the former for dataset toy is depicted on the left
hand side of Figure 4.7, whereas the result of the latter is depicted on the right hand side of Figure 4.7. In the

78

latter case, the maximal edge width can be scaled by adapting CK loads_graph_max_edge_width.The
entire figure can be scaled by adapting CK loads_draw_conversion_factor

Figure 4.7: The traffic loads of the toy dataset. On the left hand side, the load of an edge is indicated by its
width, on the right hand side by its color

4.11.4 Line pool
To create an illustration of the line pool run

R make lpool-line-pool-draw

The result for dataset toy is depicted in Figure 4.8.

Figure 4.8: The line pool of the toy dataset

The graph can be scaled by adapting CK lpool_coordinate_factor.

4.11.5 Line concept
To create an illustration of the line concept run

R make lc-line-concept-draw

The result for dataset toy is depicted in Figure 4.9.
The graph can be scaled by adapting CK lpool_coordinate_factor.

79

Figure 4.9: One possible line concept of the toy dataset

4.11.6 Timetable
To create an illustration of the timetable, run

R make tim-timetable-draw

The result for dataset toy is depicted in Figure 4.10. Note, that this command will draw only the ean, if no

Figure 4.10: Extract of one possible timetable of the toy dataset

timetable is present.

4.11.7 Disposition timetable
To create an illustration of the disposition timetable, run

R make dm-disposition-timetable-draw

The result for dataset toy is depicted in Figure 4.11. Delayed events will be displayed in red (more delay
results in more saturation). Note, that this command will draw only the extended timetable, if no disposition
timetable is present.

4.11.8 Tariff
Running

80

Figure 4.11: Extract of one possible disposition timetable of the toy dataset

R make taf-tariff-draw

yields a heatmap of prices or of price differences between two specified price matrices and can draw the
PTN with nodes assigned to their zones in case of a zone tariff.

Heatmap

If CK taf_draw_heatmap CV true (which is the default), executing the above make command generates
a heatmap of prices or of price differences for all OD pairs and stores it to CK filename_tariff_heatmap

(Fi graphics/tariff-heatmap.png).
Which price matrix or which comparison of price matrices is visualized, is controlled by CK taf_heatmap_mode
with the following possible values:

• CV old, the price matrix specified by CK taf_evaluate_old_prices (default: CV basis/Reference-Price-Matrix.giv)
is visualized,

• CV new, the price matrix specified by CK taf_evaluate_new_prices (default: CV tariff/Price-Matrix.taf)
is visualized and

• CV compare, the price differences between the price matrices specified by CK taf_evaluate_new_prices

and CK taf_evaluate_old_prices are visualized such that the heatmap shows the change from
the old prices to the new prices, i.e. the old prices are subtracted from the new prices.

By default CK taf_heatmap_mode is CV old.
Furthermore the following features of the heatmap can be controlled:

• CK taf_heatmap_log_scale boolean, whether or not the heatmap should use a logarithmic scale.
By default it is CV false.

• CK taf_heatmap_use_annotations, whether or not the heatmap should be annotated with the
calculated differences in each square. By default it is CV false.

Zones

If CK taf_draw_zones is CV true (default: CV false), then a PTN with stops colored fittingly to their
zones is drawn (see Section 4.11.1), which is outputed to CK filename_tariff_ptn_zone_graph (Fi

graphics/ptn-zones.png).
An example for the dataset toy with four zones is depicted in Figure 4.12.

81

Figure 4.12: The graph of the toy dataset with zones in different colors

4.11.9 mapgui
Additionally, there is an interactive tool for displaying public transportation systems on a map which is used
by running

R make mapgui

To decide which step is displayed, set the parameter CK mapgui_show_step to CV ptn, CV linepool,
CV lineconcept, CV timetable or CV dispotimetable, respectively. The speed of the visualization
is controlled by CK mapgui_visual_speed.

4.12 Interaction with VISUM
During the work on DFG FOR 20831, a basic interface to PTV VISUM [25] was created. For this, LinTim
gained the ability to write the periodic timetable in a format that can be easily read by VISUM, as well as
reading different infrastructure and solution information from VISUM-net-files. In this section, we will
describe the different interfaces and their file requirements. Note that the name of the transport system to
read can be set by CK visum_tsyscode, which defaults to “B”. In this documentation, all attributes will
include this default in their name when necessary but the read attributes are dependent on the config key.

4.12.1 Writing files for VISUM
By calling

R make tim-transform-to-visum

LinTim will create a timetable file based on stops (or stop points in VISUM) at
CK default_timetable_visum_file (Fi timetabling/Timetable-visum-nodes.tim), that can
be read easier by VISUM.

4.12.2 Reading a config file
By calling

R make config-fill-config-from-visum

LinTim will read a visum configuration file provided for LinTim and set the contained config parameters
in the LinTim config file Fi basis/Config.cnf. It will read CK filename_visum_config_file (Fi

config.net). The following parameters will be read
1https://for2083.mathematik.uni-kl.de

82

https://for2083.mathematik.uni-kl.de

LINTIM_BASE_UNIT_FOR_HEADWAY : The system frequency to use, i.e., the common frequency
divisor for all line freuqencies. Will set CK lc_common_frequency_divisor.

LINTIM_DEFDWELLTIME the default minimal waiting time at each station, will set
CK ean_default_minimal_waiting_time.

LINTIM_MIN_TRANSFERTIME the default minimal transfer time at each station, will set
CK min_change_time

LINTIM_PERIOD_LENGTH the period length in time units to use. Will set CK period_length.

LINTIM_POSTPREPTIME the turnover time after each line serving. One part of
CK vs_turn_over_time, i.e., the values of LINTIM_POSTPREPTIME and LINTIM_PREPREPTIME
will be summed up.

LINTIM_PREPREPTIME the turnover time before each line serving. One part of
CK vs_turn_over_time, i.e., the values of LINTIM_POSTPREPTIME and LINTIM_PREPREPTIME
will be summed up.

LINTIM_TIME_UNITS_PER_MINUTE the time units per minute to use. Will set
CK time_units_per_minute.

LINTIM_TRANSFER_UTILITY the change penalty to use, i.e., the additional penalty to add for each
transfer. Will set CK ean_change_penalty.

LINTIM_TSYS_FOR_ADAPTING the public transport mode to adapt. Will determine, which set of
ptn links/infrastructure edges from Visum will be set to usable/forbidden in LinTim. Will set CK

visum_tsyscode.

LINTIM_WALKTIME_UTILITY the walk time utility, i.e., the penalty factor for time spend walking.
Will set CK gen_walking_utility.

SCENARIO_NAME the name of the dataset, will set CK ptn_name.

4.12.3 Reading the infrastructure
By calling

R make ptn-read-infrastructure-from-visum

LinTim will read the infrastructure information on node-level from the provided VISUM-net-file and the
corresponding walking information. Note that this will not create a PTN but the underlying infrastructure,
i.e., you need to compute the PTN yourself. Whether the walking information is assumed to be symmetric is
dependent on CK sl_walking_is_directed. The following files and contents will be read:

CK filename_net_file (Fi infrastructure.net) the infrastructure file with the following objects
and attributes

$ NODE: NO, XCOORD, YCOORD

$ LINK: FROMNODENO, LENGTH, NO, TONODENO, TSYSSET, T_PUTSYS(B)

CK filename_visum_walk_file (Fi walk_times.att) the walking file with the following objects
and attributes

$ ODPAIR: FROMZONENO, TOZONENO, WALK_TIME (note that any third attribute will be
interpreted as the walk time and only three attributes are allowed here!)

The following files will be written:

83

• CK filename_node_file (Fi basis/Node.giv): The nodes will contain the original visum node
number as name.

• CK filename_infrastructure_edge_file (Fi basis/Edge-Infrastructure.giv)

• CK filename_walking_edge_file (Fi basis/Edge-Walking.giv)

4.12.4 Reading the PTN
By calling

R make ptn-read-ptn-from-visum

LinTim will read the infrastructure information regarding the PTN from the provided VISUM-net-file. Note
that the read infrastructure needs to represent a valid LinTim PTN, i.e., links may only include nodes that are
stop points. The following files and contents will be read:

CK filename_net_file (Fi infrastructure.net) the infrastructure file with the following objects
and attributes

$ NODE: NO, XCOORD, YCOORD

$ STOPPOINT: NO, NODENO

$ LINK: FROMNODENO, LENGTH, NO, TONODENO, TSYSSET, T_PUTSYS(B)

The following files will be written:

• CK default_stops_file (Fi basis/Stop.giv): The stops will contain the original visum node
number as short and long name.

• CK default_edges_file (Fi basis/Edge.giv)

4.12.5 Reading the demand
Reading stop demand

By calling

R make od-read-stop-od-from-visum

LinTim will read the demand data for the current stops from the provided VISUM-net-file. This step will
assume that all zones in the demand matrix are located and named by their corresponding stopping point,
which should be present in the short name of the LinTim stops. Demand from and to the same zone will be
ignored and set to 0. The following files and contents will be read:

CK filename_visum_od_file (Fi od.att) the demand file with the following objects and attributes

$ ODPAIR: FROMZONENO, TOZONENO, DEMAND (note that any third attribute will be inter-
preted as the demand and only three attributes are allowed here!)

The following file will be written:

• CK default_od_file (Fi basis/OD.giv)

84

Reading node demand

By calling

R make od-read-node-od-from-visum

LinTim will read the demand data for the nodes from the provided VISUM-net-file. This step will assume
that all zone numbers correspond to the original visum node numbers which should be stored in the names
of the LinTim nodes. The following files and contents will be read:

CK filename_visum_od_file (Fi od.att) the demand file with the following objects and attributes

$ ODPAIR: FROMZONENO, TOZONENO, DEMAND (note that any third attribute will be inter-
preted as the demand and only three attributes are allowed here!)

The following file will be written:

• CK filename_od_nodes_file (Fi basis/OD-Node.giv)

4.12.6 Reading stops and lines
For a given infrastructure network and demand, i.e., nodes, infrastructure edges and a node-based demand,
given VISUM stops and lines can be read by calling

R make lc-read-stops-and-lines-from-visum

This step will assume that the original visum node numbers are stored in the names of the LinTim nodes and
that the read lines are undirected. The following files and contents will be read:

CK filename_visum_timetable_file (Fi vehicle_journeys.att) the vehicle journey file with
the following objects and attributes:

$ VEHJOURNEYITEM: DEP, DIRECTIONCODE, INDEX, LINENAME,
TIMEPROFILEITEM\LINEROUTEITEM\STOPPOINT\NO, VEHJOURNEYNO

The following files will be written:

• CK default_stops_file (Fi basis/Stop.giv): The stops will contain the original visum node
number as short and long name.

• CK default_edges_file (Fi basis/Edge.giv)

• CK default_pool_file (Fi basis/Pool.giv)

• CK default_pool_cost_file (Fi basis/Pool-Cost.giv)

• CK default_lines_file (Fi lineplanning/Line-Concept.lin)

4.12.7 Reading a timetable
For a given line concept a timetable for the same lines can be read from provided VISUM-net-files by calling

R make tim-read-timetable-from-visum

This step will assume that the lines for the VISUM timetable are the same as in the current line concept,
including the frequencies but excluding the direction, i.e., LinTim and VISUM may have the same lines
noted in different directions, since lines are assumed to be undirected. The original VISUM node numbers
are assumed to be present in the short names of the stops. This method will read the timetable in one specific
hour, given by CK visum_hour_to_consider. The corresponding periodic EAN is assumed to be present.
The following files will be read:

85

CK filename_visum_timetable_file (Fi vehicle_journeys.att) the vehicle journey file with
the following objects and attributes:

$ VEHJOURNEYITEM: ARR, DEP, DIRECTIONCODE, INDEX, LINENAME,
TIMEPROFILEITEM\LINEROUTEITEM\STOPPOINT\NO, VEHJOURNEYNO

The following file will be written:

• CK default_timetable_periodic_file (Fi timetabling/Timetable-periodic.tim)

4.12.8 Reading fixed lines
By calling

R make lc-read-fixed-lines-from-visum

LinTim will read lines to fix from the provided VISUM-net-file. For this, we assume that there is a trans-
portation system that should be optimized (given by CK visum_tsyscode) and other fixed transportation
systems. All fixed lines are read and added to the line pool as well as a fixed line file with their respective
frequency and the corresponding capacities. Note that this will change the line pool, i.e., running this
multiple times in a row without resetting the pool may lead to unintended consequences. We assume that the
short name of the LinTim stops contains the original VISUM node number.
Afterwards, setting CK lc_respect_fixed_lines to CV true will respect these lines for the line
planning problem. This is not supported for all line planning problems, see the corresponding line planning
documentation in Section 3.3.
The following file and contents will be read:

CK filename_net_fixed_lines_file (Fi visum-fixed-lines.net) the infrastructure file with the
following objects and attributes

$ LINE: NAME, TSYSCODE

$ LINEROUTEITEM: DIRECTIONCODE, LINENAME, NODENO

$ LINK: FROMNODENO, NO, TONODENO

$ VEHJOURNEY: DEP, LINENAME

$ VEHUNIT: TOTALCAP, TSYSSET

The following files will be written:

• CK filename_lc_fixed_lines (Fi line-planning/Fixed-Lines.lin) the fixed lines

• CK filename_lc_fixed_line_capacities (Fi line-planning/Line-Capacities.lin) the
capacities of the fixed lines

4.12.9 Reading fixed times
By calling

R make tim-read-fixed-times-from-visum

LinTim will read the timetable of some fixed lines from the provided VISUM-net-file. For this, we assume
that there is a transportation system that should be optimized (given by CK visum_tsyscode) and other
fixed transportation systems. The fixed lines are assumed to be included in the event-activity-network and
the corresponding times will be read.
Afterwards, setting CK tim_respect_fixed_times to CV truewill respect these times for the timetabling
problem. For more information, see Section 3.4.8.
The following file and contents will be read:

86

CK filename_net_fixed_lines_file (Fi visum-fixed-lines.net) the infrastructure file with the
following objects and attributes

$ LINK: FROMNODENO, NO, TONODENO

$ LINEROUTEITEM: DIRECTIONCODE, LINENAME, NODENO

$ TIMEPROFILE: ARR, DEP, DIRECTIONCODE, LINENAME

The following file will be written:

• CK filename_tim_fixed_times (Fi timetabling/Fixed-timetable-periodic.tim) the
fixed times

87

Chapter 5

Evaluation

5.1 Evaluation of the PTN Created by Stop Location
To evaluate the properties of the public transportation network created by stop location, you can use the
makefile target

R make sl-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file (Fi statistic/statistic.sta):

SK ptn_feasible_od For every OD pair exists a path through the PTN. (Only evaluated if an OD matrix
exists.)

SK ptn_feasible_sl Every demand point that is no more than CK sl_radius away from the PTN is
covered by a stop, i.e., it is no more than CK sl_radius away from a stop.

SK ptn_time_average Average travel-time of all passengers on shortest path through the PTN in seconds.
(Only evaluated if an OD matrix exists.)

SK ptn_obj_stops Number of stops.

SK ptn_prop_edges Number of undirected edges for an undirected PTN, number of directed edges for a
directed PTN.

SK ptn_prop_existing_stops Number of stops before a stop location algorithm was executed.

SK ptn_prop_existing_edges Number of undirected edges for an undirected PTN, number of directed
edges for a directed PTN before a stop location algorithm was executed.

SK ptn_prop_demand_point Number of demand points.

SK ptn_prop_relevant_demand_point Number of demand points that are no more than
CK sl_radius away from the PTN.

SK ptn_travel_time_realistic Sum of the realistic travel-travel time on all edges of the PTN in sec-
onds considering the acceleration (CK sl_acceleration) and deceleration
(CK sl_deceleration) of the vehicles.

SK ptn_travel_time_const Sum of the travel-travel time on all edges of the PTN in seconds assuming
the vehicles would maintain a constant speed of CK gen_vehicle_speed.

If

88

C sl_eval_extended; true

is set, the following parameters will additionally be evaluated:

SK ptn_max_distance Maximal distance any demand point has to the stop nearest to it.

SK ptn_candidates Number of candidates considered as new stops during the stop location algorithm.

5.2 Evaluation of the PTN
To evaluate the properties of the public transportation network, you can use the makefile target

R make ptn-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file (Fi statistic/statistic.sta):

SK ptn_feasible_od For every OD pair exists a path through the PTN. (Only evaluated if an OD matrix
exists.)

SK ptn_time_average Average travel-time of all passengers on shortest path through the PTN. (Only
evaluated if an OD matrix exists.)

SK ptn_obj_stops Number of stops.

SK ptn_prop_edges Number of undirected edges for an undirected PTN, number of directed edges for a
directed PTN.

5.3 Evaluation of the OD Matrix
To evaluate the properties of the origin destination matrix, you can use the makefile target

R make od-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file (Fi statistic/statistic.sta):

SK od_prop_entries_greater_zero Number of entries greater than zero, i.e., of OD pairs (A, B) where
more than zero passengers want to travel from A to B.

SK od_prop_overall_sum Sum over all entries in the matrix, i.e., all passengers who want to travel in
the network.

5.4 Evaluation of the Line Pool
To evaluate the properties of the line pool, you can use the makefile target

R make lpool-line-pool-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file (Fi statistic/statistic.sta):

SK lpool_cost
∑

l∈L costl - sum over costs per line.

SK lpool_feasible_circles No line is containing a circle.

SK lpool_feasible_od For every passenger there exists a path through the PTN that is only using edges
occurring in the line pool.

SK lpool_prop_directed_lines Number of directed lines.

SK lpool_time_average Average travel-time of all passengers on shortest path through the PTN where
only edges occurring in the line pool are used.

89

5.5 Evaluation of the Line Concept
To evaluate the properties of the line concept, you can use the makefile target

R make lc-line-concept-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file (Fi statistic/statistic.sta). Some of them (travel times, changes)
depend on the routes of the passengers, which can be computed in different ways. Their meaning is illustrated
with the following example.

Example.

1 2 3

4

1 1
1

5

CK period_length: CV 60

CK ean_default_minimal_waiting_time: CV 1

CK ean_default_maximal_waiting_time: CV 3

CK ean_default_minimal_change_time: CV 3

CK ean_model_weight_wait: CV AVERAGE_WAITING_TIME

CK ean_model_weight_change: CV FORMULA_1

CK ean_change_penalty: CV 5

CK gen_passengers_per_vehicle: CV 1

The numbers at the arcs indicate the driving times. Assume that the red line is operated at frequency 2 and
all other lines have a frequency of 1. Let there be a demand of 2 between nodes 1 and 3 and of 1 between
nodes 1 and 4.

SK lc_average_distance Average Euclidean distance between the two endpoints of a line.

SK lc_average_edges/length Average number of edges/length of the lines in the line concept.

SK lc_cost Sum over costs of line times frequency:
∑

l∈L costl fl.

SK lc_feasible Lower and upper bounds on frequency on every edge respected: f min
e ≤

∑
l∈L
e∈l

fl ≤ f max
e .

SK lc_min_distance/edges/length Minimal distance/number of edges/length of the lines in the line
concept.

SK lc_obj_game Sum of the squared frequencies on all edges:
∑

e∈E f 2
e .

SK lc_prop_directed_lines number of directed lines. If a line is undirected, it is counted twice.

SK lc_prop_freq_max The maximal frequency: maxl∈L fl.

SK lc_var_distance/edges/length Variance of the distance/number of edges/length of the lines in
the line concept.

For the following two properties, passengers are routed along shortest paths in the network consisting of all
edges that are covered with frequency at least one. Every driving edge contributes its driving time (computed
according to CK ean_model_weight_drive) and every intermediate station contributes the waiting time
(computed according to CK ean_model_weight_wait), independently of whether a change is necessary.
Hence, the passenger routing respects neither vehicle capacities nor changes.

SK lc_time_average_without_transfers Average travel-time of all passengers in the routing de-
scribed above, where every driving edge contributes its driving time and every intermediate station
contributes the waiting time, independently of whether a change is necessary.

90

SK lc_uncapacitated_direct_travelers Number of travelers that have a shortest path in the routing
described above that does not require a transfer. Does not respect the changing times, change penalty,
and the capacity of lines, so this is not the same as the objective of the direct travelers model, see
Section 3.3.2. For this, please check SK lc_obj_direct_travelers in the extended evaluation.

In the example the path 1,2,3 is has cost 1 + 2 + 1 = 4 < 5. Therefore, both passengers between 1 and 3 are
routed along this path and are counted as direct passengers. Moreover, the passenger from 1 to 4 is routed
along the path 1,2,4, which also has travel time 4 but cannot be followed without changing. Therefore, SK

lc_time_average_without_transfers is SV 4 and SK lc_uncapacitated_direct_travelers is
SV 2.
When setting the config-parameter CK lc_eval_extended to true, additionally the following properties
will be evaluated and written to CK default_statistic_file (Fi statistic/statistic.sta). Note
that an IP solver is necessary for that. The IP solver used is selected via CK lc_solver.
For the following two properties, passengers are routed along shortest paths in the Change&Go graph, where
every change contributes the transfer penalty (CK ean_change_penalty) plus the transfer time calculated
according to CK ean_model_weight_change. Hence the vehicle capacities are not respected.

SK lc_perceived_time_average Average travel time including a penalty for each transfer
(CK ean_change_penalty) in the passenger routing described above.

SK lc_prop_changes Total number of transfers in the passenger routing described above.

In the example, the transfer time between the red and one of the other two lines is computed according to
Formula 1 (see Section 7.8) as 60

2 +
60
1 + 5 = 95. Since capacities are ignored, the passengers between 1

and 3 are routed via the blue line with perceived travel time 4, while the passenger between 1 and 4 has
a perceived travel time of 97. Therefore, SK lc_perceived_time_average is 2·4+97

3 = SV 35 and SK

lc_prop_changes is SV 1.
For the following property, passengers are routed according to a minimum-cost multi-commodity flow in the
Change&Go graph, respecting the capacities and the transfer times, taken as
CK ean_default_minimal_change_time plus CK ean_change_penalty.

SK lc_obj_travel_time Average travel time including a transfer penalty (CK ean_change_penalty)
in the routing described above. This is the objective value of the current solution the travel time model,
see Section 3.3.4.

In the example the transfer times are estimated as 3 + 5 = 8. Only one passenger between 1 and 3 can
be routed via the blue line. The other will take the brown line with travel time 5 < 10 = 1 + 8 + 1.
The passenger between 1 and 4 has a travel time of 10. Therefore, the SK lc_obj_travel_time is
4+5+10

3 = SV 6.33333.
For the following two properties, passengers are routed according to a minimum-cost multi-commodity
flow in the Change&Go graph, respecting the capacities and the transfer times, computed according to CK

ean_model_weight_change plus CK ean_change_penalty.

SK lc_capacitated_perceived_time_average Average travel time including a transfer penalty (CK

ean_change_penalty) in the routing described above.

SK lc_capacitated_prop_changes Total number of transfers in the passenger routing described above.

In the example the transfer time between the red line and another line is again estimated as 95. Therefore,
SK lc_capacitated_perceived_time_average is 4+5+97

3 = SV 35.33333 and
SK lc_capacitated_prop_changes is SV 1.
For the following property, the passengers are routed according to a minimum-cost path-based multi-
commodity flow in the Change&Go graph, where every origin-destination pair (commodity) is restricted to
paths that correspond to a shortest path in the PTN (with the length of a path including the waiting time at
every intermediate station).

91

SK lc_obj_direct_travelers Total number of passengers travelling without transfer in the passenger
routing described above. This is the objective of the direct travelers model for the current solution,
see Section 3.3.2.

In the example, the passengers between 1 and 3 can only be routed along the path 1,2,3, which has length
4 < 5 in the PTN. Therefore, one passenger uses the blue line and the other changes at 2. Also the passenger
between 1 and 4 changes at 2. Therefore, SK lc_obj_direct_travelers is only SV 1.

5.6 Evaluation of the EAN
To evaluate the properties of the event activity network, you can use the makefile target

R make ean-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file (Fi statistic/statistic.sta):

SK ean_prop_events |E| - number of events.

SK ean_prop_events_arrival |{e ∈ E : e is arrival}| - number of arrival events.

SK ean_prop_events_departure |{e ∈ E : e is departure}| - number of departure events.

SK ean_prop_activities |A| - number of activities.

SK ean_prop_activities_change |Achange| - number of change activities.

SK ean_prop_activities_drive |Adrive| - number of drive activities.

SK ean_prop_activities_wait |Await | - number of wait activities.

SK ean_prop_activities_headway |Aheadway| - number of headway activities.

SK ean_prop_activities_od |{a ∈ A : ca > 0}| - number of activities with more than 0 passengers.

SK ean_prop_activities_od_change |{a ∈ Achange : ca > 0}| - number of change activities with more
than 0 passengers.

SK ean_prop_activities_od_drive |{a ∈ Adrive : ca > 0}| - number of drive activities with more than
0 passengers.

SK ean_prop_activities_od_wait |{a ∈ Await : ca > 0}| - number of wait activities with more than 0
passengers.

SK ean_time_average 1∑
a∈A ca

∑
a∈Aca · ”duration assumption” - estimated average travel time. For dura-

tion assumption see 4.5.

Furthermore by setting config-parameter CK ean_eval_extended to true additionally the following param-
eter will be evaluated and written to CK default_statistic_file (Fi statistic/statistic.sta):

SK ean_prop_activities_feas |{a ∈ A : Ua − La < T − 1}| - number of activities that impose
constraints.

SK ean_prop_activities_objective |{a ∈ A : ca > 0 or Ua − La < T − 1}| - number of activities that
have an influence on the objective value.

SK ean_prop_changes_od_max max
a∈Achange

ca>0

”duration assumption of a” - maximal used

change duration.

92

SK ean_prop_changes_od_min min
a∈Achange

ca>0

”duration assumption of a” - minimal used

change duration.

SK ean_prop_headways_dep Are headways between departures only.

SK ean_prop_headways_interstation Do headways exist between different stations.

Additionally, the loads on the ean will be evaluated and compared to the maximal feasible load on the ptn
edges given by the line concept. If the load on the ptn is invalid, i.e., too high, the respective ptn edges
and their load will be written to CK filename_invalid_loads (Fi statistic/Invalid-Loads.sta).
Additionally, the maximal load factor will be written as SK ean_max_load_factor to
CK default_statistic_file (Fi statistic/statistic.sta).

5.7 Evaluation of the Timetable
To evaluate the properties of the timetable, you can use the makefile target

R make tim-timetable-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file (Fi statistic/statistic.sta):

SK tim_feasible La ≤ ((π j − πi − La)mod T) + La ≤ Ua for all (i, j) = a ∈ A - Are lower and upper
bounds on travel time on each activity respected.

SK tim_obj_ptt1
∑

(i, j)=a∈Aca

(((
π j − πi − La

)
mod T

)
+ La

)
- Sum of weighted travel time. Weights

correspond to the number of passengers specified in activity file.

SK tim_obj_slack_average 1
|A|

∑
(i, j)=a∈A

(
π j − πi − La

)
mod T - Average of slacks.

SK tim_time_average - Average travel time per passenger. The travel time for every OD pair is calculated
according to its shortest path in the EAN.

SK tim_perceived_time_average - Average travel time per passenger. The travel time for every OD
pair is calculated according to its shortest path in the EAN with additionally
CK ean_change_penalty on change activities.

Furthermore by setting config-parameter CK tim_eval_extended to true additionally the following param-
eter will be evaluated and written to CK default_statistic_file (Fi statistic/statistic.sta):

SK tim_obj_slack_drive_average 1
|Adrive |

∑
(i, j)=a∈Adrive

(
π j − πi − La

)
mod T - average slack on drive

activities.

SK tim_obj_slack_wait_average 1
|Await |

∑
(i, j)=a∈Await

(
π j − πi − La

)
mod T - average

slack on wait activities.

SK tim_obj_slack_change_average 1
|Achange |

∑
(i, j)=a∈Achange

(
π j − πi − La

)
mod T - average slack on

change activities.

SK tim_obj_slack_headway_average 1
|Aheadway |

∑
(i, j)=a∈Aheadway

(
π j − πi − La

)
mod T

average slack on headway activities.

SK tim_overcrowded_time_average the average time that passengers are overcrowded in the vehicles.
Does not take any rerouting into account, i.e., will use the passenger weights currently stored in the
EAN. A drive or wait activity is overcrowded, if the number of passengers using the activity is larger
than CK gen_passengers_per_vehicle.

93

SK tim_prop_changes_od_max max
(i, j)=a∈Achange

ca>0

(
π j − πi

)
modT - maximal used change duration.

SK tim_prop_changes_od_min min
(i, j)=a∈Achange

ca>0

(
π j − πi

)
modT - minimal used change duration.

SK tim_number_of_transfers Weighted number of transfers.

5.7.1 Capacitated Routing
There is also the possibility to do a capacitated routing of the passengers in the EAN by solving a multicom-
modity flow problem. To do so, set the config-parameter

CK tim_cap_eval CV true.

First, the standard timetable evaluation is executed and written to the statistics-file. The algorithm then
creates a routing network from the EAN. For each Stop s ∈ Swe add two additional nodes to the EAN,
one origin event and one destinantion event. We add arcs from the origin event to all departure events
corresponding to stop s and from all arrival events of s to the destination event, those activities are added to
A. Let origin(s) be the origin event to the stop s and dest(s) the correspronding destination event. The set of
all origin events is denoted by Eorigin and the set of all destination events by Edest.
Let duration(a) be the duration of activity a, wich comes from the existing timetable. If the config-parameter
CK tim_cap_eval_tt is false, we don’t use the timetable but the lower bound of the activity. If a is a
change activity, we add a penalty time CK ean_change_penalty. Furthermore we need the capacity C of
each vehicle, given by CK gen_passengers_per_vehicle.
For each activity a and each stop s there is a variable xs,a that states how many passengers starting from
stop s use activity a. Depending on CK tim_cap_eval_integer_flow they are integer or continuous
variables. We set up the following optimization problem and solve it with Gurobi.

min
∑
s∈S

∑
a∈A

duration(a) · xs,a (5.1a)

s.t.
∑
a∈A

a∈δ+(e)

xs,a −
∑
a∈A

a∈δ−(e)

xs,a =
∑
u∈S

Cs,u ∀e ∈ Eorigin,∀s ∈ S, (5.1b)

∑
a∈A

a∈δ−(e)

xs,a −
∑
a∈A

a∈δ+(e)

xs,a = Cs,t ∀e ∈ Edest,∀s ∈ S : e = dest(t), (5.1c)

∑
a∈A

a∈δ+(e)

xs,a −
∑
a∈A

a∈δ−(e)

xs,a = 0 ∀e ∈ Earr ∪ Edep,∀s ∈ S, (5.1d)

∑
s∈S

xs,a ≤ C ∀a ∈ Adrive, (5.1e)

xs,a ∈ {0, ...,C} ⊆ N ∀s ∈ S, a ∈ A (5.1f)

Here, δ+(e) is the set of all outgoing arcs of the node e and δ−(e) is the set of all ingoing arcs. Cu,v denotes
the OD-value from stop u to stop v, i.e. the number of passengers that start from the stop u and end at stop
v according to the given OD-Matrix. If CK tim_cap_eval_integer_flow is false, constraint (5.1f) is
replaced by xs,a ∈ [0,C] ⊆ R.
If CK tim_cap_eval_accumulate_on_links is true, constraint (5.1e) is replaced by∑

s∈S
a∈activities(l)

xs,a ≤ C · |activities(l)| ∀l Link in PTN

where activities(l) is the set of all activities a that belong to the link l of the PTN. This gives a weaker
version of the IP.

94

The following parameters will be evaluated and written to
CK default_statistic_file (Fi statistic/statistic.sta):

SK tim_capacitated_travel_time
∑

a∈Apassengers(a) · duration(a) - sum of all travel times, where
passengers(a) denotes the number of passengers using activity a according to the optimal solution of
the IP.

SK tim_capacitated_travel_time_average travel time divided by the total number of passengers -
average travel time per passenger.

SK tim_capacitated_percieved_travel_time
∑

a∈Apassengers(a) · percieved_duration(a) - sum of
all percieved travel times. percieved_duration(a) = duration(a)+ CK ean_change_penalty if
a ∈ Await and percieved_duration(a) = duration(a) for all other activities a.

SK tim_capacitated_percieved_travel_time_average percieved travel time divided by the total
number of passengers - average percieved travel time per passenger.

SK tim_capacitated_max_load maxa∈A
passengers(a)

C - maximal percentage load. Could be greater than
1, if CK tim_cap_eval_accumulate_on_links is true.

5.8 Evaluation of the Tariff created by Tariff Planning
To evaluate the properties of a tariff created by

R make taf-tariff

or the price matrices created by

R make taf-tariff-price-matrix

run

R make taf-tariff-evaluate

The following configuration parameters control the evaluation:

• CK taf_evaluate_old_prices, points towards a price matrix. By default this is the reference
price matrix CV basis/Reference-Price-Matrix.giv.

• CK taf_evaluate_new_prices, points towards a price matrix. By default this is the tariff price
matrix CV tariff/Price-Matrix.taf.

The following parameters will be evaluated and written to
CK default_statistic_file (Fi statistic/statistic.sta), where they are sorted alphabetically:

SK taf_revenue_old The revenue genereated by the tariff if all passengers pay the prices in CK

taf_evaluate_old_prices.

SK taf_revenue_new The revenue genereated by the tariff if all passengers pay the prices in CK

taf_evaluate_new_prices.

SK taf_od_pairs_increased_prices The absolute number of OD pairs for which the price increases
comparing the prices in CK taf_evaluate_old_prices to the prices in CK taf_evaluate_new_prices.

SK taf_od_pairs_decreased_prices The absolute number of OD pairs for which the price decreases
comparing the prices in CK taf_evaluate_old_prices to the prices in CK taf_evaluate_new_prices.

SK taf_passengers_increased_prices The absolute number of passengers for which the price in-
creases comparing the prices in CK taf_evaluate_old_prices to the prices in CK taf_evaluate_new_prices.

95

SK taf_passengers_decreased_prices The absolute number of passengers for which the price de-
creases comparing the prices in CK taf_evaluate_old_prices to the prices in CK taf_evaluate_new_prices.

SK taf_objective_sum_unit The sum of absolute deviations between the new prices (CK taf_evaluate_new_prices)
and the old prices (CK taf_evaluate_old_prices) all weighted with one.

SK taf_objective_sum_od The sum of absolute deviations between the new prices (CK taf_evaluate_new_prices)
and the old prices (CK taf_evaluate_old_prices) weighted with the od values.

SK taf_objective_sum_reference_inverse The sum of absolute deviations between the new prices
(CK taf_evaluate_new_prices) and the old prices (CK taf_evaluate_old_prices) weighted
with the inverse of the old prices.

SK taf_objective_max_unit The maximum of absolute deviations between the new prices (CK taf_evaluate_new_prices)
and the old prices (CK taf_evaluate_old_prices) all weighted with one.

SK taf_objective_max_od The maximum of absolute deviations between the new prices (CK taf_evaluate_new_prices)
and the old prices (CK taf_evaluate_old_prices) weighted with the od values.

SK taf_objective_max_reference_inverse The maximum of absolute deviations between the new
prices (CK taf_evaluate_new_prices) and the old prices (CK taf_evaluate_old_prices)
weighted with the inverse of the old prices.

For the calculation of the objective values only non-trivial OD pairs are considered as described in section
7.11. If there are zero prices for non-trivial OD pairs, SK taf_objective_sum_reference_inverse

and SK taf_objective_max_reference_inverse are None.

5.9 Evaluation of the Trips
To evaluate the properties of the trips, you can use the makefile target

R make ro-trips-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file (Fi statistic/statistic.sta):

SK ro_trips_feasible whether the trips are feasible. The trips are considered feasible if they cover
every event in the aperiodic event activity network and no event is used in multiple trips.

SK ro_prop_trips |T| - number of trips.

SK ro_prop_stops_at_begin_or_end Number of stations that are start or end station of a trip.

5.10 Evaluation of the Vehicle Schedules
To evaluate the properties of the vehicle scheduling, you can use the makefile target

R make vs-vehicle-schedules-evaluate

This evaluation will read the following parameters from the config-files:

CK vs_vehicle_cost The cost of a vehicle, needed to determine the costs

CK vs_eval_cost_factor_empty_length the cost of a kilometer on an empty trip

CK vs_eval_cost_factor_empty_duration the cost for the vehicle driving on an empty trip for an
hour

96

CK vs_eval_cost_factor_full_length the cost of a kilometer serving a line

CK vs_eval_cost_factor_full_duration the cost for the vehicle driving for an hour while serving a
line

The following parameters will be evaluated and written to
CK default_statistic_file (Fi statistic/statistic.sta):

SK vs_cost The cost of the vehicle schedule, weighted according to the parameters above.

SK vs_feasible Whether the current vehicle schedule is feasible. This only checks, whether the time for
the empty trips is sufficient, not the viability of the covered lines.

SK vs_circulations The number of circulations in the vehicle schedule.

SK vs_vehicles The number of used vehicles in the vehicle schedule.

SK vs_empty_distance The distance a vehicle drives without passengers in the current vehicle schedule,
given in kilometers.

SK vs_empty_distance_with_depot The distance a vehicle drives without passengers in the current
vehicle schedule including driving from and to the depot, given in kilometers. Will be the same as
above if the depot index is not set.

SK vs_empty_duration The time needed for empty trips in the current vehicle schedule, given in minutes.
Does not include waiting in stations.

SK vs_empty_duration_with_depot The time needed for empty trips in the current vehicle schedule
including driving from and to the depot, given in minutes. Does not include waiting in stations. Will
be the same as above if the depot index is not set.

SK vs_empty_trips The number of empty trips in the current vehicle schedule. Does not include waiting
in stations.

SK vs_emtpy_trips_depot The number of empty trips to and from the depot.

SK vs_minimal_waiting_time The minimal waiting time in a station between two consecutive trips,
served by the same vehicle. Only if the station is not changed in the empty trip.

SK vs_maximal_waiting_time The maximal waiting time in a station between two consecutive trips,
served by the same vehicle. Only if the station is not changed in the empty trip.

SK vs_average_waiting_time The average waiting time in a station between two consecutive trips,
served by the same vehicle. Only if the station is not changed in the empty trip.

SK vs_full_distance The distance a vehicle drives with passengers in the current vehicle schedule,
given in kilometers.

SK vs_full_duration The time needed for serving trips in the current vehicle schedule, given in minutes.

5.11 Evaluation of the Disposition Timetable
To evaluate the properties of the delay management, you can use the makefile target

R make dm-disposition-timetable-evaluate

The following parameters will be evaluated and written to
CK default_statistic_file (Fi statistic/statistic.sta):

97

SK dm_feasible Whether the disposition timetable is feasible according to the lower bounds of the
activities.

SK dm_obj_changes_missed_od The number of missed used connections in the disposition timetable.

SK dm_obj_delay_events_average The average delay of the events in the disposition timetable.

SK dm_obj_dm2 The objective value of the DM_method DM2.

SK dm_obj_dm2_average The objective value of DM_method DM2, divided by the number of passengers.

SK dm_prop_events_delayed The number of delayed events in the disposition timetable.

SK dm_prop_headways_swapped The number of headways swapped in the disposition timetable, com-
pared to the original timetable.

SK dm_time_average The average travel time of the passengers according to the disposition timetable.

Furthermore by setting config-parameter CK DM_eval_extended to true additionally the following param-
eters will be written to CK default_statistic_file (Fi statistic/statistic.sta). Note, that
the rollout must have been done with the parameter ro_rollout_passenger_paths set to true.

SK dm_obj_dm1 The objective value of DM_method DM1.

SK dm_obj_dm1_average The objective value of DM_method DM1, divided by the number of passengers.

SK dm_passenger_delay The delay of the passenger after rerouting, given the distribution of
DM_passenger_routing_arrival_on_time.

SK dm_passenger_delay_average The average delay of the passenger after rerouting, given the distri-
bution of DM_passenger_routing_arrival_on_time.

Additionally, when the config-parameter CK DM_eval_extended is set to true, the following distributions
will be written to Fi ./statistic/statistic_dist.sta:

SK dm_dist_delays_events For each possible delay (in seconds) there is one entry giving the number
of events with this delay in the disposition timetable.

SK dm_dist_delays_od For each possible delay (in seconds) there is one entry giving the number of
passengers with this delay in the disposition timetable.

98

Chapter 6

Overview of Supported Integer
Programming Solvers

Different algorithms in LinTim use integer programm solvers. Altogether, the following solvers are currently
used in LinTim

• Gurobi

• Xpress

• CPLEX

• SCIP

• COIN

• CBC

• GLPK

For an overview, which algorithms support which solver choice, see Table 6.1. For information on how to
combine LinTim with one of the solvers above, see Section 1.2.1.

99

Algorithm Supported Solvers Config-Key Reference

Stop Location CK sl_solver Section 3.1
dsl, dsl-tt, dsl-tt-2 Xpress
tt Gurobi, Xpress, CPLEX, SCIP, GLPK

Line Pool Generation CK lc_solver Section 3.2
all Gurobi, Xpress, CPLEX, SCIP, GLPK

Line Planning CK lc_solver Section 3.3
Cost Gurobi, Xpress, CPLEX, SCIP, GLPK
CostRestricted Gurobi, Xpress, CPLEX, SCIP, GLPK
CostExtended Gurobi, Xpress, CPLEX, SCIP, GLPK
Direct Gurobi, Xpress, CPLEX, SCIP, GLPK
DirectRelaxation Xpress
DirectRestricted Gurobi, Xpress, CPLEX, SCIP, GLPK
CostDirect Xpress
Game Xpress
Min-Changes Xpress
Travelling-Time-CG Xpress
Traveling Time IP Gurobi

Timetabling CK tim_solver Section 3.4
IP Gurobi, Xpress, CPLEX, SCIP, GLPK
Aperiodic-robust Xpress
Cycle-base Gurobi, Xpress, CPLEX, SCIP, COIN,

CBC, GLPK

Tariff Planning CK taf_solver Section 7.11
Distance Gurobi
Beeline Gurobi
Zone Gurobi

Vehicle Scheduling CK vs_solver Section 3.6
Canal-based Xpress
IP Gurobi, Xpress, CPLEX, SCIP, GLPK
Line-Based Xpress

Delay Management CK DM_solver Section 3.7
IP Gurobi, Xpress

Integrated Models CK int_solver Section 3.8
all Gurobi, Xpress, CPLEX, SCIP, COIN,

CBC, GLPK

Tools
Line-Rearrange Xpress

Table 6.1: Table of all algorithms using an integer programming solver

100

Chapter 7

Configuration Parameters

This section describes the configuration parameter available in LinTim. For a detailed description of the
different algorithms, see Section 3. There, you find a list of corresponding parameters for the different
algorithms.

7.1 General
CK console_log_level the log level to use, determines the amount of output on the console. The

possible log levels are:

CV ERROR: Only write error messages

CV WARN: Additionally write warnings

CV INFO: The default. Will give general information about the current step of the algorithm used.

CV DEBUG: This includes many information to better understand the behavior of the algorithm, e.g.,
information about substeps of the algorithm, the read configuration values, the read input files,
solver output, . . .

CK gen_passengers_per_vehicle the capacity of the vehicles.

CK gen_walking_utility the penalty factor for walking.

CK period_length the length of the periodic planning period.

7.2 Stop Location
CK sl_destruction_allowed whether it is allowed to destroy existing stops

CK sl_distance the distance function to use

CK sl_eval_extended activate the extended evaluation

CK sl_max_walking_time the maximal walking time allowed for passengers

CK sl_mip_gap the mip optimization gap for the solver, 0.1 equals a gap of 10 % (-1=use default value).

CK sl_model the model to use. For an overview on all models, see Section 3.1.

CK sl_radius the covering radius of a stop

CK sl_solver determine the solver to be used. Note that not all solvers are supported by all models.

101

CK sl_threads determine the maximal number of threads to use for the solver (-1=use default value, i.e.,
no restriction). Note that this will only be used for a possible solver integration of the chosen model,
not for the rest of the algorithm.

CK sl_timelimit the time limit for the solver in seconds (-1=use default value).

CK sl_write_lp_file whether to write the lp file of the model to solve

7.3 OD
CK od_draw_conversion_factor scaling factor for the graph visualization of the OD data.

CK od_visualization_lower_bound percentage of the maximum OD pair value. Lower valued OD
pairs will not be displayed in the graph visualization of the OD data.

CK od_visualization_upper_bound percentage of the maximum OD pair value. Higher valued OD
pairs will not be displayed in the graph visualization of the OD data.

CK od_visualization_use_annotations whether to use annotations in the heatmap visualization of
the OD data.

CK od_visualization_use_edge_colors whether to use the edge color (instead of the edge width) to
indicate passenger numbers in the graph visualization of the OD data.

CK od_visualization_use_heatmap whether to use a heatmap (instead of a graph) for the visualization
of the OD data

CK od_visualization_use_log_scale whether to visualize the logarithmic values of the passenger
numbers.

CK od_visualization_max_edge_width the maximal edge width in points in the graph visualization
where the edge width is used to visualize passenger numbers.

7.4 PTN
CK ptn_draw_use_coordinates whether stop-coordinates are used for plotting the PTN or stops are

arranged automatically.

CK ptn_draw_interactive_graph_edge_labels whether edge labels are displayed in the interactive
PTN visualizations

7.5 Line Planning
CK lc_budget the budget for the line concept, i.e., the maximal weighted sum of the line costs and the

computed frequencies.

CK lc_common_frequency_divisor the common divisor of the frequencies, i.e., a frequency is only
allowed if it is a multiple of this value. A value <= 0 will test any system frequency (except for 1) and
output the best solution.

CK lc_direct_optimize_costs whether to additionally optimize the costs in the direct model, see
Section 3.3.2. When set to CV true, the model will optimize a weighted sum of line costs and direct
travelers and will use CK lc_mult_relation as a weight.

CK lc_eval_extended enables the extended evaluation. Needs an IP solver present. For more informa-
tion, see Section 5.5.

102

CK lc_maximal_frequency the maximal frequency value allowed

CK lc_mult_relation weighting factor in a convex combination of costs and direct travelers. A value of
0 is equivalent to solving the direct travelers model while a value of 1 is equivalent to solving the cost
model, therefore the value should be in [0, 1].

CK lc_mip_gap the mip optimization gap for the solver, 0.1 equals a gap of 10 % (-1=use default value).

CK lc_model the line planning model to use. For an overview of all models, see Section 2.3.

CK lc_number_of_possible_frequencies the maximal number of different frequency values allowed
to use.

CK lc_respect_fixed_lines whether to respect fixed lines, i.e., lines with a given frequency

CK lc_respect_forbidden_edges whether to respect forbidden links, i.e., links in the PTN that may
not be used by the public transport model currently optimized. This may e.g. be the case when
optimizing a bus network and considering a PTN containing train tracks.

CK lc_solver determine the solver to be used. Note that not all solvers are supported by all models.

CK lc_threads determine the maximal number of threads to use for the solver (-1=use default value, i.e.,
no restriction). Note that this will only be used for a possible solver integration of the chosen model,
not for the rest of the algorithm.

CK lc_timelimit the time limit for the solver in seconds (-1=use default value).

CK lc_write_lp_file whether to write the lp file of the model to solve

7.6 Load Generation
CK load_generator_add_additional_load whether to add additional load per link, given in CK

filename_additional_load_file (Fi basis/Additional-Load.giv).

CK load_generator_fixed_upper_frequency the fixed upper frequency bound of a link after load
generation. Whether this or a factor of the lower frequency bound is used is determined by CK

load_generator_fix_upper_frequency

CK load_generator_fix_upper_frequency whether a fixed upper frequency bound (CV true) or a
multiple of the lower bound should be used for a link after load generation.

CK load_generator_lower_frequency_factor the factor to multiply the minimal lower frequency
bound (given by the capacity of the vehicle) to obtain the new lower frequency bound. The result is
rounded up.

CK load_generator_max_iteration determines the number of iterations allowed before the algorithms
terminates, if no convergence is observed

CK load_generator_min_change_time_factor the factor to weight the minimal change time (CK

ean_default_minimal_change_time) to obtain the change objective function for routing. The
change objective function will never be higher than the maximal change time
(CK ean_default_maximal_change_time)

CK load_generator_model how to route the passengers

CV LOAD_FROM_EAN use the current weights in the EAN to determine the weights on the PTN links.
The EAN has to be present.

103

CV LOAD_FROM_PTN determine new passenger routes based on the other parameters given.

CK load_generator_number_of_shortest_paths the number of shortest paths to use. For every
passenger, the given number of shortest paths are computed and the passengers are distributed with a
logit model using CK load_generator_sp_distribution_factor on their different paths

CK load_generator_scaling_factor the factor for the reward or reduction cost factor in the objective
function when CK load_generator_type is set to CV REWARD or CV REDUCTION. A higher value
will result in larger detours for the passengers.

CK load_generator_sp_distribution_factor the parameter for the logit model used to distribute
the passenger when CK load_generator_number_of_shortest_paths is bigger than 1.

CK load_generator_type the different ptn load generator types.

CV SP use the travel time shortest paths for the passengers, depending on the travel time approxima-
tion used.

CV REDUCTION adds a penalty depending on the usage of the edge in the PTN (high penalty for low
usage)

CV REWARD reward an edge more, if less passengers are needed to fill the next vehicle on the edge

For a more detailed description of the different models, see [8].

CK load_generator_use_cg whether to use a change and go network for routing. This includes knowl-
edge of the line pool, allowing to consider transfers. The line pool needs to be present!

CK load_generator_upper_frequency_factor the factor to multiply the lower frequency bound to
obtain the new upper frequency bound. The result is rounded up. Whether this or a fixed bound is
used depends on CK load_generator_fix_upper_frequency.

7.7 Load Visualization
CK filename_loads_graph_file filename under which the load visualization is saved.

CK loads_draw_conversion_factor scaling factor for the load visualization.

CK loads_graph_lower_bound percentage of the maximum load. Lower loads will not be displayed in
the load visualization.

CK loads_graph_max_edge_width maximum edge width used in the load visualization which uses edge
width as a medium to display the traffic load.

CK loads_graph_upper_bound percentage of the maximum load. Higher loads will not be displayed in
the load.

CK loads_graph_use_edge_color whether to use the edge color to represent the traffic loads. Otherwise
edge width will be used.

7.8 Periodic EAN
CK ean_algorithm_shortest_paths the algorithm to use to compute the shortest paths in the ean.

Choices are CV JOHNSON, CV FLOYD, CV FIBONACCI_HEAP and CV TREE_MAP_QUEUE.

CK ean_change_penalty the change penalty for routing, i.e., a penalty for each transfer a passenger
needs to take during their journey. Given in time units.

104

CK ean_construction_skip_passenger_distribution whether to skip the initial passenger distri-
bution during ean construction.

CK ean_construction_target_model_frequency whether to include the frequency of lines only
as attributes in the ean (CV FREQUENCY_AS_ATTRIBUTE) or include multiple frequency repeti-
tions, connected by synchronization activities (CV FREQUENCY_AS_MULTIPLICITY). Note that CV

FREQUENCY_AS_ATTRIBUTE can not be handled by all timetabling algorithms.

CK ean_construction_target_model_headway how to model headways in the ean. The following
options are available:

CV NO_HEADWAYS create new headway activities

CV SIMPLE creates a headway between every two departures from the same station using the same
link

CV PRODUCT_OF_FREQUENCIES When using CV FREQUENCY_AS_ATTRIBUTE as a
CK ean_construction_target_model_frequency, this will create all the necessary head-
way activities between the corresponding departure events, i.e., will include multiple headway
activities for lines with frequency > 1. Note that this is not necessary when
CK ean_construction_target_model_frequency is set to
CV FREQUENCY_AS_MULTIPLICITY, in this case this model is the same as CV SIMPLE.

CV LCM_OF_FREQUENCIES This will create as many headway activities as the least commom mul-
tiple of the two corresponding line frequencies between all departures from the same station
using the same link.

CV LCM_REPRESENTATION For headway creation, this behaves the same as CV SIMPLE but some
timetabling models will respect these headways the same as CV LCM_OF_FREQUENCIES later
on.

CK ean_default_maximal_change_time the default maxmimal change time at a station

CK ean_default_maximal_waiting_time the default maximal waiting time at a station

CK ean_default_minimal_change_time the default minimal change time at a station

CK ean_default_minimal_waiting_time the default minimal waiting time at a station

CK ean_discard_unused_change_activities when set to CV true, this will remove all change
activities from the ean that do not have a positive weight after the initial passenger distribution

CK ean_dump_initial_duration_assumption when set to CV true, this will output the initial dura-
tion assumption of every activity, i.e., the computed duration of every activity in the initial passenger
distribution. CK filename_initial_duration_assumption

(Fi timetabling/Initial-duration-assumption-periodic.giv) will be used for output.

CK ean_individual_station_limits when set to CV true, individual station limits for change and
waiting time will be used. For information on how to give these limits, see the documentation for CK

filename_station_limit_file (Fi basis/Station-Limits.giv).

CK ean_initial_duration_assumption_model How to compute the initial duration assumption. The
following options are available:

CV AUTOMATIC fully automated initial durations, based on CK ean_model_weight_change, CK

ean_model_weight_drive and CK ean_model_weight_wait.

105

CV SEMI_AUTOMATIC the initial duration for individual activities can be given. For information on
how to give these durations, see the documentation for
CK filename_initial_duration_assumption

(Fi timetabling/Initial-duration-assumption-periodic.giv).

CK ean_model_weight_change determines how to estimate the transfer time between two lines without
a given timetable. For a transfer between the lines l1 and l2, let f1 and f2 be the respective frequencies
and T the CK period_length. The following options are available:

CV FORMULA_1 T
f1
+ T

f2
+ CK ean_change_penalty.

CV FORMULA_2 T
2· f1· f2

+ CK ean_change_penalty.

CV FORMULA_3 T
2· f2
+ CK ean_change_penalty.

CV MINIMAL_CHANGING_TIME CK ean_default_minimal_change_time + CK ean_change_penalty.

CK ean_model_weight_drive determines how to estimate the drive time on an infrastructure edge
without a given timetable. The following options are available:

CV AVERAGE_DRIVING_TIME using the average between minimal and maximal travel time of the
infrastructure edge.

CV EDGE_LENGTH using the edge length of the infrastructure edge.

CV MINIMAL_DRIVING_TIME using the minimal travel time of the infrastructure edge.

CV MAXIMAL_DRIVING_TIME using the maximal travel time of the infrastructure edge.

CK ean_model_weight_wait determines how to estimate the waiting time when traversing a stop in a
line without a given timetable. The following options are available:

CV AVERAGE_WAITING_TIME using the average of CK ean_default_minimal_waiting_time

and CK ean_default_maximal_waiting_time.

CV MAXIMAL_WAITING_TIME using CK ean_default_maximal_waiting_time.

CV MINIMAL_WAITING_TIME using CK ean_default_minimal_waiting_time.

CV ZERO_COST assume the waiting time to be 0.

CK ean_random_shortest_paths

CK ean_use_walking whether to allow walking transfers in the EAN

7.9 Debug
CK debug_paths_in_ptn when set to CV true, some routing methods will output the found ptn paths

to CK default_debug_od_link_paths_file (Fi Debug/ODLinkPaths.dbg)

CK debug_paths_in_ean when set to CV true, some routing methods will output the found ean paths
to CK default_debug_od_activity_paths_file (Fi Debug/ODActivityPaths.dbg).

7.10 Timetabling
CK tim_mip_gap the mip optimization gap for the solver, 0.1 equals a gap of 10% (-1=use default value).

CK tim_model the timetabling model to use. For an overview of all models, see Section 3.4

106

CK tim_pesp_ip_solution_limit limit the number of feasible solutions found. Only implemented in
Gurobi. Set to 0 to deactivate.

CK tim_pesp_ip_best_bound_stop a best bound stop criterion, only implemented for Gurobi. For
details, see Gurobi documentation. Set to 0 to deactivate.

CK tim_pesp_ip_mip_focus set the MIPFocus, only implemented for Gurobi. For details, see Gurobi
documentation. Set to 0 to deactivate.

CK tim_solver the solver to use for timetabling. Which solvers are implemented depends on the chose
CK tim_model, see the corresponding documentation.

CK tim_threads determine the maximal number of threads to use for the solver (-1=use default value,
i.e., no restriction). Note that this will only be used for a possible solver integration of the chosen
model, not for the rest of the algorithm.

CK tim_timelimit the time limit to use for the solver in seconds (-1 = use default value).

CK tim_use_old_solution whether to use the current solution as a starting solution, only implemented
for Gurobi and the pesp ip.

CK tim_write_lp_file whether to write the lp file of the model to solve

7.11 Tariff Planning
CK taf_model either CV flat, CV beeline_distance, CV network_distance or CV zone. Deter-

mining the model used to calculate a new tariff.

CK taf_objective either CV sum_absolute_deviation or CV max_absolute_deviation. Deter-
mining whether the sum or maximum of absolute price deviations is minimized.

CK taf_weights_objective either CV od, CV unit or CV reference-inverse. Determining whether
the price deviations in the objective are weighted by the OD data, by unit weights or by the inverse of
the given reference prices.

CV taf_zone_counting either CV single or CV multiple. If CV single, then each zone is only
counted once when determining the number of traversed zones of a path. If CV multiple, a zone is
counted each time that it is entered.

CV taf_zone_n_zones positive integer number, specifies the maximum number of zones when calculating
a new zone tariff.

CK taf_zone_enforce_all_zones boolean, determines whether exactly CK taf_zone_n_zones-many
zones (CV true) or at most that many zones (CV false) must be determined.

CK taf_zone_connected boolean, specifies whether the subgraph of a zone, induced by the nodes
assigned to the zone, needs to be connected (in case of a directed graph it is weakly connected).

CK taf_zone_enforce_no_elongation boolean, determining whether the no-elongation property must
be satisfied. This property ensures, that it is never cheaper for passengers to buy tickets for more
zones than they actually want to travel through. Let pk be the price of a path that uses k zones. The
no-elongation property is satisfied if it holds that

pk ≤ pk+1 for all k ∈ {1, ..., (CK taf_zone_n_zones) − 1}.

107

CK taf_zone_enforce_no_stopover boolean, determining whether the no-stopover property must be
satisfied. This property ensures that it is never cheaper for passengers to buy two separate tickets for
one journey and combine them instead of buying one ticket for the whole journey. Let pk be the price
of a path that uses k zones. The no-stopover property in the case of single counting holds if

pk ≤ pi + p j for all k ∈ N≥1, i, j ∈ {1, ..., k} with i + j ≥ k + 1.

In the case of multiple counting the property holds if

pk ≤ pi + p j for all k ∈ N≥1, i, j ∈ {1, ..., k} with i + j = k + 1.

CK taf_zone_symmetry_breaking determines which symmetry breaking model (see below) should be
used. Possible values are CV A, CV B and CV NONE.

CK taf_routing_generation either CV fastest-paths, CV read-all or CV read-partial-fill.
Determines which routing should be used, see Section 3.5.1.

CK taf_zone_only_zones boolean, specifies whether only zones based on given prices are computed.

CK taf_zone_only_prices boolean, specifies whether only prices based on given zones are computed.

CK taf_draw_zones boolean, specifies whether a PTN with nodes allocated to their zones should be
drawn. By default CV false.

CK taf_draw_heatmap boolean, specifies whether a heatmap should be drawn.

CK taf_heatmap_mode either CV old, CV new or CV compare. Specifies which prices or price differ-
ences should be shown in a heatmap.

CK taf_heatmap_log_scale boolean, specifies whether or not the heatmap should use a logarithmic
scale. By default CV false.

CK taf_heatmap_use_annotations boolean, specifies whether or not the heatmap should be annotated.
By default CV false.

CK taf_evaluate_old_prices points towards a first price matrix for the evaluation and for the heatmap.
By default it is the reference price matrix CV basis/Reference-Price-Matrix.giv.

CK taf_evaluate_new_prices points towards a second price matrix for the evaluation and the heatmap.
By default it is the tariff price matrix CV tariff/Price-Matrix.taf.

CK taf_solver determine the solver to be used. Note that currently only Gurobi is supported.

CK taf_threads determine the maximum number of threads to use for the solver (-1=use default value,
i.e., no restriction). Note that this will only be used for a possible solver integration of the chosen
model, not for the rest of the algorithm.

CK taf_timelimit the time limit for the solver in seconds (-1=use default value).

CK taf_write_lp_file whether to write the lp file of the model to solve.

CK taf_mip_gap sets the MIP optimization gap for the solver. The solver will terminate with an optimal
solution if the gap between lower and upper objective bound is less than this value times the absolute
value of the incumbent objective value.

108

7.12 Vehicle Scheduling
CK vs_depot_index the stop index of the depot. Set to -1 to disable to consideration of a depot.

CK vs_eval_cost_factor_empty_trips_duration the weight factor for the duration of empty trips
in the cost function for a vehicle schedule

CK vs_eval_cost_factor_empty_trips_length the weight factor for the length of empty trips in the
cost function for a vehicle schedule

CK vs_eval_cost_factor_full_trips_duration the weight factor for the duration of services in the
cost function for a vehicle schedule

CK vs_eval_cost_factor_full_trips_length the weight factor for the length of services in the cost
function for a vehicle schedule

CK vs_maximum_buffer_time the maximal buffer time between the service of two trips

CK vs_mip_gap the mip optimization gap for the solver, 0.1 equals a gap of 10% (-1=use default value).

CK vs_model] the vehicle scheduling model to use. For an overview of all models, see Section 3.6

CK vs_solver the solver to use for vehicle scheduling. Which solvers are implemented depends on the
chose CK vs_model, see the corresponding documentation.

CK vs_timelimit the time limit to use for the solver in seconds (-1 = use default value).

CK vs_threads determine the maximal number of threads to use for the solver (-1=use default value, i.e.,
no restriction). Note that this will only be used for a possible solver integration of the chosen model,
not for the rest of the algorithm.

CK vs_turn_over_time the minimal time between two services, given in time units.

CK vs_vehicle_costs the costs of a vehicle

CK vs_write_lp_file whether to write the lp file of the model to solve

7.13 Delay Management
CK DM_best_of_all_write_objectives whether to write all objectives to a file, when CK DM_method

CV best-of-all is used

CK DM_debug enable debug output

CK DM_earliest_time the start of the rollout period

CK DM_enable_consistency_checks enable consistency checks for the input data, i.e., 28800 is 08:00.

CK DM_eval_extended enable the extended evaluation

CK DM_latest_time the end of the rollout period, given in seconds after midnight, i.e., 28800 is 08:00.

CK DM_method the delay management model to use. For an overview of all models, see Section 3.7.

CK DM_mip_gap the mip optimization gap for the solver, 0.1 equals a gap of 10% (-1=use default value).

CK DM_opt_method_for_heuristic the optimization method to use for the heuristics.

109

CK DM_solver the solver to use for vehicle scheduling. Which solvers are implemented depends on the
chose CK DM_model, see the corresponding documentation.

CK DM_threads determine the maximal number of threads to use for the solver (-1=use default value, i.e.,
no restriction). Note that this will only be used for a possible solver integration of the chosen model,
not for the rest of the algorithm.

CK DM_timelimit the time limit to use for the solver in seconds (-1 = use default value).

CK DM_write_lp_file whether to write the lp file of the model to solve

CK DM_verbose enable verbose output

7.14 Dataset Generation
CK dg_model The model that should be used to create the new dataset. For a detailed description of the

available algorithms see Section 4.1.

The following parameters are only valid for the Parametrized-City-Model:

CK dg_param_city_number_subcenters Number of subcenters sourrounding the CBD. The PTN has
2n + 1 nodes.

CK dg_param_city_alpha Trips proportion from periphery that go to the CBD.

CK dg_param_city_beta Trips proportion from periphery to own subcenter.

CK dg_param_city_eta Portion of displacement of the CBD from the center of the city in an axis
CBD-subcenter.

CK dg_param_city_Y Total number of trips generated.

CK dg_param_city_L Distance from any subcenter to the geometrical center of the city.

CK dg_param_city_g Distance periphery-subcenter / Distance subcenter-CBD.

CK dg_param_city_a Trips proportion that depart from the periphery.

CK dg_ring_number_of_rings Number of concentric rings that are generated.

CK dg_ring_nodes_per_ring Number of nodes that each ring consists of

CK dg_ring_length_1 If this boolean parameter is set to true, the lengths of all edges are equal to 1.

CK dg_ring_radius specifies the radius of the inner ring, i.e. the lengths of the edges from the center to
the nodes of the inner ring.

CK dg_ring_demand_type specifies the moethod for the creation of the OD data.

7.15 Integrated Models

7.15.1 General
CK int_solver the solver to use. Which solvers are implemented depends on the chosen model, see the

corresponding documentation.

CK int_threads determine the maximal number of threads to use for the solver (-1=use default value,
i.e., no restriction). Note that this will only be used for a possible solver integration of the chosen
model, not for the rest of the algorithm.

110

7.15.2 LinTimPass

CK lin_tim_pass_mip_gap the mip optimization gap for the solver, 0.1 equals a gap of 10% (-1=use
default value).

CK lin_tim_pass_timelimit the time limit to use for the solver in seconds (-1 = use default value).

CK lin_tim_pass_write_lp_file whether to write the lp file of the model to solve.

7.15.3 LinTimPassVeh

CK lin_tim_pass_veh_mip_gap the mip optimization gap for the solver, 0.1 equals a gap of 10%
(-1=use default value).

CK lin_tim_pass_veh_timelimit the time limit to use for the solver in seconds (-1 = use default
value).

CK lin_tim_pass_veh_write_lp_file whether to write the lp file of the model to solve.

7.15.4 TimPass

CK tim_pass_mip_gap the mip optimization gap for the solver, 0.1 equals a gap of 10% (-1=use default
value).

CK tim_pass_timelimit the time limit to use for the solver in seconds (-1 = use default value).

CK tim_pass_write_lp_file whether to write the lp file of the model to solve.

7.15.5 TimVeh

CK tim_veh_mip_gap the mip optimization gap for the solver, 0.1 equals a gap of 10% (-1=use default
value).

CK tim_veh_timelimit the time limit to use for the solver in seconds (-1 = use default value).

CK tim_veh_write_lp_file whether to write the lp file of the model to solve.

7.15.6 TimVehToLin

CK tim_veh_to_lin_mip_gap the mip optimization gap for the solver, 0.1 equals a gap of 10% (-1=use
default value).

CK tim_veh_to_lin_timelimit the time limit to use for the solver in seconds (-1 = use default value).

CK tim_veh_to_lin_write_lp_file whether to write the lp file of the model to solve.

7.16 TimPassLib
CK timpasslib_import_timetable whether timetable is imported.

CK timpasslib_export_timetable whether timetable is exported.

111

Chapter 8

In- and Output Data

This section will describe all files and their contents that are in- or outputs of the LinTim algorithms.

8.1 Config
Config is the short form for configuration and an important tool in LinTim. We will now have a look at the
general structure of the LinTim config files.
The LinTim config is contained in several CSV files that have the syntax

config_key; config_value

It organizes those values that are parameters to the calculation. Typical examples are the period length,
the vehicle capacity (if there is only one), which algorithm to use for a specific computation step, e.g. for
timetabling and filenames as well and could thus look like

period_length; 60
gen_passengers_per_vehicle; 100
tim_model; MATCH

Besides key-value pairs the configuration may also include other config files with either the CK include or
CK include_if_exists statement. Former states that the file must exists or else an exception is thrown,
in latter case, if the file does not exist, it will not be included. This inclusion is recursive, i.e. files included
in already included files are included as well.
If a certain config key occurs twice, the latter value overwrites the former, e.g.

period_length; 60
period_length; 120

sets the CK period_length to 120. As a consequence, all values that belong to keys in an included file
overwrite those defined before.
All keys demanded by programs are expected to exist, i.e., there are no in-program default values. Programs
accessing config are expected to exit with an error message in case a key does not exist.
The meaning of the parameters is explained in the corresponding sections of this documentation.
Config has the following file hierarchy

Fi /datasets/Global-Config.cnf offers a default value for all config parameters that are not network
specific, like CK ptn_name or CK period_length.

112

Fi basis/Config.cnf contains all the values specific to the dataset. Together with the global config this
offers a value for all parameters. It includes the global config at the beginning, i.e., every parameter
that was already defined in the global config will be overwritten. It roughly looks like

include; "../../Global-Config.cnf"
ptn_name; "DATASET"
...
include_if_exists; "State-Config.cnf"
include_if_exists; "Private-Config.cnf"
include_if_exists; "After-Config.cnf"

CK filename_state_config (Fi basis/State-Config.cnf) is intended to allow programs to not
only generate networks, but also to save and modify state information about them, e.g. whether the
event activity network is modeled with frequency_as_attribute or
frequency_as_multiplicitywhich is once set on construction and may be modified by a Pe-
riodic Rollout. The network specific state is not part of the version control system, although there
are state defaults in the global config.

Fi basis/Private-Config.cnf is used for user specific settings, e.g. for choosing a specific algorithm
for solving or manipulating its parameters and is not part of the version control system. Note that if
a value is defined in the config or state config as well as in the private config, the one given in the
private config is used.

Fi basis/After-Config.cnf can be used for automation and is intended to be thrown away upon usage,
unlike all other configurations. A script that automatically evaluates a wide range of configurations
thus may overwrite the after config in every step. Make sure that at the end of the script, the after
config is deleted again or else it still influences manual runs as it overwrites all other configs.

8.2 Statistic
The statistic file CK default_statistic_file (Fi statistic/statistic.sta) contains the outcome
of the evaluation routines described in 5. The content is formatted as follows

statistic_key; statistik_value

where the statistic key described what is evaluated and the statistic value gives the corresponding value.
Statistic files are intended to be modified, i.e., new entries are added but old entries are not deleted, although
the statistic file itself may be deleted any time. Make sure that the entries are up to date, e.g. R make
tim-timetable-evaluate is run after calculating a new timetable and before evaluating the statistic.

8.3 Basis
Files in the folder Fo basis describe the structure of the Public Transportation Network, the demand and
the line pool with its corresponding costs.

8.3.1 Additional load
The file CK filename_additional_load_file (Fi basis/Additional-Load.giv) contains addi-
tional load on single PTN links. When CK load_generator_add_additional_load is set to CV true,
these loads will be added to the corresponding links during load generation. For an undirected network, a
link may be given in both directions, allowing for different additional load values for the different directions.
Unmentioned links will be assumed to have no additional load. The columns of the csv file correspond to:

113

edge-id id of the PTN edge

left-stop-id the id of the left stop, i.e., the origin of the edge

right-stop-id the id of the right stop, i.e., the destination of the edge

additional-load the value of the additional load

8.3.2 Change station
The file CK filename_change_station_file (Fi basis/Change-Stations.giv) contains a list of
change stations, i.e., a list of stops where passengers can transfer. The columns of the csv file correspond to:

stop-id id of the stop

8.3.3 Demand
The file CK default_demand_file (Fi basis/Demand.giv) contains the demand at specified locations.
The columns of the csv file correspond to:

demand-id id of the demand point

short-name short name of the demand point

long-name log name of the demand point

x-coordinate x-coordinate of the demand point

y-coordinate y-coordinate of the demand point

demand demand at the demand point

Note: the distance between two demand points can be transformed to kilometers by multiplying with CK

gen_conversion_coordinates.

8.3.4 Demand geo
The file CK default_demand_coordinates_file (Fi basis/Demand.giv.geo) gives the geograph-
ical coordinates (latitude and longitude) of the demand points. The columns of the csv file correspond
to:

demand-id id of the demand point

latitude latitude of the demand point

longitude longitude of the demand point

8.3.5 Edge
The file CK default_edges_file (Fi basis/Edge.giv) contains information about the edges in the
PTN. The columns of the csv file correspond to:

edge-id id of the edge

left-stop-id id of the left stop (source node in directed case)

right-stop-id id of the right stop (target node in directed case)

length length of the edge

lower-bound minimum time to traverse the edge in minutes

114

upper-bound maximum time to traverse the edge in minutes

Note: whether the edges are directed or undirected in defined by CK ptn_is_undirected.
Note: the length of an edge can be transformed to kilometers by multiplying with
CK gen_conversion_length.

8.3.6 Edge forbidden
The file CK filename_forbidden_links_file (Fi basis/Edge-forbidden.giv) contains informa-
tion about the edges in the PTN that are forbidden, i.e., that may not be used by the public transport mode
that is being planned. These edges should be a subset of the edges in CK default_edges_file (Fi

basis/Edge.giv). The columns of the csv file correspond to:

edge-id id of the edge

left-stop-id id of the left stop (source node in directed case)

right-stop-id id of the right stop (target node in directed case)

length length of the edge

lower-bound minimum time to traverse the edge in minutes

upper-bound maximum time to traverse the edge in minutes

Note: whether the edges are directed or undirected in defined by CK ptn_is_undirected.
Note: the length of an edge can be transformed to kilometers by multiplying with
CK gen_conversion_length.

8.3.7 Edge infrastructure
The file CK filename_infrastructure_edge_file (Fi basis/Edge-Infrastructure.giv) con-
tains information about the infrastructure edges, i.e., edges that connect infrastructure nodes. The columns
of the csv file correspond to:

edge-id id of the edge

left-node-id id of the left stop (source node in directed case)

right-node-id id of the right stop (target node in directed case)

length length of the edge

lower-bound minimum time to traverse the edge in minutes

upper-bound maximum time to traverse the edge in minutes

Note: whether the edges are directed or undirected in defined by CK ptn_is_undirected.
Note: the length of an edge can be transformed to kilometers by multiplying with
CK gen_conversion_length.

8.3.8 Edge infrastructure forbidden
The file CK filename_forbidden_infrastructure_edges_file

(Fi basis/Edge-Infrastructure-forbidden.giv) contains information about the infrastructure edges
that are forbidden, i.e., that may not be used by the public transport mode that is being planned. These edges
should be a subset of the edges in CK filename_infrastructure_edge_file

(Fi basis/Edge-Infrastructure.giv). The columns of the csv file correspond to:

115

edge-id id of the edge

left-node-id id of the left node (source node in directed case)

right-node-id id of the right node (target node in directed case)

length length of the edge

lower-bound minimum time to traverse the edge in minutes

upper-bound maximum time to traverse the edge in minutes

Note: whether the edges are directed or undirected in defined by CK ptn_is_undirected.
Note: the length of an edge can be transformed to kilometers by multiplying with
CK gen_conversion_length.

8.3.9 Edge walking
The file CK filename_walking_edge_file (Fi basis/Edge-Walking.giv) contains information
about the possible walking edges, i.e., connections between infrastructure nodes that can directly be used for
walking by the passengers. The columns of the csv file correspond to:

edge-id id of the edge

left-node-id id of the left node (source node in directed case)

right-node-id id of the right node (target node in directed case)

length length of the edge, given in seconds

Note: whether the edges are directed or undirected in defined by CK sl_walking_is_directed.
Note: when read by LinTim, CK sl_max_walking_time will be respected, i.e., only edges with a length
smaller than the given value will be read. A value of CV -1 will disable this and allow all edges will be read.
Note: it is possible to preprocess the walking edges by using

R make ptn-preprocess-walking.

With this, walking edges will be filtered by CK sl_max_walking_amount, CK sl_max_walking_ratio

(both per node with outgoing demand) and CK sl_max_walking_time, possibly reducing the size of the
walking graph.

8.3.10 Existing stop
The file CK default_existing_stop_file (Fi basis/Existing-Stop.giv) contains information
about already existing stops in the PTN. The columns of the csv file correspond to:

stop-id id of the stop

short-name short name of the stop

long-name log name of the stop

x-coordinate x-coordinate of the stop

y-coordinate y-coordinate of the stop

Note: the distance between two stops can be transformed to kilometers by multiplying with
CK gen_conversion_coordinates.

116

8.3.11 Existing stop geo
The file CK default_existing_stop_coordinates_file (Fi basis/Existing-Stop.giv.geo)
gives the geographical coordinates (latitude and longitude) of the already existing stops. The columns of the
csv file correspond to:

stop-id id of the stop

latitude latitude of the stop

longitude longitude of the stop

8.3.12 Existing edge
The file CK default_existing_edge_file (Fi basis/Existing-Edge.giv) contains information
about already existing edges in the PTN. The columns of the csv file correspond to:

edge-id id of the edge

left-stop-id id of the left stop (source node in directed case)

right-stop-id id of the right stop (target node in directed case)

length length of the edge

lower-bound minimum time to traverse the edge in minutes

upper-bound maximum time to traverse the edge in minutes

Note: whether the edges are directed or undirected in defined by CK ptn_is_undirected.
Note: the length of an edge can be transformed to kilometers by multiplying with
CK gen_conversion_length.

8.3.13 Headway
The file CK default_headways_file (Fi basis/Headway.giv) contains information about the head-
way needed for the edges in the PTN. The columns of the csv file correspond to:

edge-id id of the edge

headway headway on the edge, i.e., the minimum time between two consecutive vehicles on this edge in
minutes

8.3.14 Load
The file CK default_loads_file (Fi basis/Load.giv) contains information about the load and
frequency constraints of the edges in the PTN. The columns of the csv file correspond to:

edge-id id of the edge

load load on the edge

lower-frequency minimal frequency all lines in the line concept have to add up to the edge

upper-frequency maximal frequency all lines in the line concept are allowed to add up to for the edge

117

8.3.15 Node
The file CK filename_node_file (Fi basis/Node.giv) contains information about infrastructure
nodes. Infrastructure nodes are the smalles unit of nodes in LinTim, they may e.g. represent crossings or
(potential) stops. The columns of the csv file correspond to:

node-id the id of the node

name the name of the nod

x-coordinate the x coordinate of the node

y-coordinate the y coordinate of the node

stop-possible? whether its possible for this node to be a stop

Note: x- and y-coordinate are assumed to be planar coordinates, i.e., will be directly used the compute the
euclidean distance between stops. The distance between two stops can be transformed to kilometers by
multiplying with CK gen_conversion_coordinates.

8.3.16 OD
The file CK default_od_file (Fi basis/OD.giv) contains information about the passenger demand
between all pairs of stops in the PTN. The columns of the csv file correspond to:

left-stop-id id of the stop the passengers start at

right-stop-id id of the stop the passengers travel to

customers number of passengers traveling

8.3.17 OD node
The file CK filename_od_nodes_file (Fi basis/OD-Node.giv) contains information about the pas-
senger demand between pairs of nodes in the infrastructure network. The columns of the csv file correspond
to:

left-node-id id of the node the passengers start at

right-node-id id of the node the passengers travel to

customers number of passengers traveling

8.3.18 Pool
The file CK default_pool_file (Fi basis/Pool.giv) contains information about the line pool. The
columns of the csv file correspond to:

line-id id of the line

edge-order where the edge is in the line

edge-id id of the edge

118

8.3.19 Pool cost
The file CK default_pool_cost_file (Fi basis/Pool-Cost.giv) contains information about the
cost and length of lines in the line pool. The columns of the csv file correspond to:

line-id id of the line

length length of the line

cost cost of the line

Note: the length of a line can be transformed to kilometers by multiplying with
CK gen_conversion_length.

8.3.20 Reference Price Matrix
The file CK filename_tariff_reference_price_matrix_file (Fi basis/Reference-Price-Matrix.giv)
contains the given reference prices for each OD pair. The columns of the csv file correspond to:

origin-id id of the origin of the OD pair,

destination-id id of the destination of the OD pair,

price reference price when travelling from the origin to the destination.

8.3.21 Restricted turns
The file CK filename_turn_restrictions (Fi basis/Restricted-Turns.giv) contains informa-
tion about restricted turns, i.e., pairs of link ids of the PTN that are not allowed to be traversed by a line
directly after each other. The columns of the csv file correspond to:

first-edge-id the first edge id

second-edge-id the second edge id

Note: whether the information will be interpreted as directed is dependent on CK ptn_is_undirected.

8.3.22 Restricted turns infrastructure
The file CK filename_turn_restrictions_infrastructure

(Fi basis/Restricted-Turns-Infrastructure.giv) contains information about restricted turns, i.e.,
pairs of edge ids in the infrastructure network that are not allowed to be traversed by a line directly after
each other. The columns of the csv file correspond to:

first-edge-id the first edge id

second-edge-id the second edge id

Note: whether the information will be interpreted as directed is dependent on CK ptn_is_undirected.

8.3.23 Routings
The files CK filename_routing_ptn_input (Fi basis/Routing-ptn.giv) contains a routing in the
PTN, i.e. for each node pair at most one path is specified as a list of nodes. The columns of the csv file
correspond to:

origin-id id of the first node of the path,

destination-id id of the last node of the path,

node-ids path specified by the sequence of the stop-ids.

The parameter CK filename_routing_ptn_output (Fi basis/Routing-ptn.giv) specifies the file,
where the computed routing is written to.

119

8.3.24 Station limits
The file CK filename_station_limit_file (Fi basis/Station-Limits.giv) contains information
about individual station limits on wait or change times. The columns of the csv file correspond to:

stop-id the id of the stop

min-wait-time the minimal waiting time.

max-wait-time the maximal waiting time.

min-change-time the minimal change time.

max-change-time the maximal change time.

Note: every individual limit may be set to -1 if there is none. Then the corresponding default parameters
will be used. The same holds for stops not present in this file.

8.3.25 Stop
The file CK default_stops_file (Fi basis/Stop.giv) contains information about the stops in the
PTN. The columns of the csv file correspond to:

stop-id id of the stop

short-name short name of the stop

long-name log name of the stop

x-coordinate x-coordinate of the stop

y-coordinate y-coordinate of the stop

Note: x- and y-coordinate are assumed to be planar coordinates, i.e., will be directly used the compute the
euclidean distance between stops. The distance between two stops can be transformed to kilometers by
multiplying with CK gen_conversion_coordinates.

8.3.26 Stop geo
The file CK default_stops_coordinates_file (Fi basis/Stop.giv.geo) gives the geographical
coordinates (latitude and longitude) of the stops. The columns of the csv file correspond to:

stop-id id of the stop

latitude latitude of the stop

longitude longitude of the stop

8.3.27 Terminals
The file CK filename_terminals_file (Fi basis/Terminals.giv) gives the stop ids of terminals,
i.e., stops where lines are allowed to terminate. The columns of the csv file correspond to:

stop-id id of the stop

Note: the stop ids should be a subset of the ptn stops, i.e., of
CK default_stops_file (Fi basis/Stop.giv).

8.4 Line Planning
The folder Fo line-planning contains information about the line concept.

120

8.4.1 Line concept
The file CK default_lines_file (Fi line-planning/Line-Concept.lin) contains information
about the line concept. The columns of the csv file correspond to:

line-id id of the line

edge-order where the edge is in the line

edge-id id of the edge

frequency frequency of the line. If this is zero, the line is not used in the line concept.

8.4.2 Fixed lines
The file CK filename_lc_fixed_lines (Fi line-planning/Fixed-Lines.lin) contains informa-
tion about the fixed lines that should be in the line concept. It can not be read/respected by all line planning
methods, so see Section 3.3 for more information. The columns of the csv file correspond to:

line-id id of the line

edge-order where the edge is in the line

edge-id id of the edge

frequency frequency of the line. If this is zero, the line is not used in the line concept.

8.4.3 Line capacities
The file CK filename_lc_fixed_line_capacities (Fi line-planning/Line-Capacities.lin)
contains information about the capacities of the fixed lines that should be in the line concept. It can not be
read/respected by all line planning methods, so see Section 3.3 for more information. The columns of the
csv file correspond to:

line-id id of the line

capacity the capacity of the line

8.5 Timetabling
The folder Fo timetabling contains information about the periodic event-activity-network and the
timetable.

8.5.1 Activities periodic
The file CK default_activities_periodic_file (Fi timetabling/Activities-periodic.giv)
contains information about activities in the periodic EAN. The columns of the csv file correspond to:

activity-id id of the activity

type type of the activity, can be drive for drive activities, wait for wait activities, change for transfers of
passengers, sync for synchronization activities between different servings of a line with frequency
greater than one or turnaround for turnaround activities, i.e., activities of vehicles serving one line
after another

tail-event-id id of source event, i.e., the start of the activity

head-event-id id of target event, i.e., the end of the activity

121

lower-bound the minimal time for this activity, i.e., the minimal time duration needed between the
corresponding source and target event to be feasible

upper-bound the maximal time for this activity, i.e., the maximal time duration allowed between the
corresponding source and target event to be feasible

passengers the number of passengers using this activity

8.5.2 Events periodic
The file CK default_events_periodic_file (Fi timetabling/Events-periodic.giv) contains
information about events in the periodic EAN. The columns of the csv file correspond to:

event-id id of the event

type type of the event, can be departure for events which are departures of a line at a stop or arrival
for events which are arrivals of a line at a stop

stop-id id of the corresponding stop

line-id id of the corresponding line

passengers number of passengers boarding/alighting at the event

line-direction direction of the line, > for forward direction (i.e., the direction given in the file Fi

Pool.giv) or < for the backward direction

line-freq-repetition repetition of the line, i.e., how often the line has already been used in the
planning period

8.5.3 Fixed times
The file CK filename_tim_fixed_times (Fi timetabling/Fixed-timetable-periodic.tim)
gives restrictions on the allowed times for single events. Not all events need to be included in this file, only
the ones with additional restrictions.

event-id the periodic event id

lower-bound the lower time bound on the event

upper-bound the upper time bound on the event

8.5.4 Initial duration assumptions
The file CK filename_initial_duration_assumption

(Fi timetabling/Initial-duration-assumption-periodic.giv) may contain a duration for each
activity used in the initial passenger distribution of the ean creation. The columns of the csv file correspond
to:

activity-id id of the activity

duration the duration to use for the passenger distribution

Note that CK ean_initial_duration_assumption_model needs to be set to CV SEMI_AUTOMATIC for
this file to be read. Not all activities need to be present in the file, the duration of activities not present will
be computed normally.

122

8.5.5 Timetable periodic
The file CK default_timetable_periodic_file (Fi timetabling/Timetable-periodic.tim)
contains a time for each event in the periodic EAN. The columns of the csv file correspond to:

event-id id of the event

time the periodic time of the event

8.5.6 Timetable for VISUM
The file CK default_timetable_visum_file (Fi timetabling/Timetable-visum-nodes.tim) is
an intermediate format for reading a LinTim timetable into VISUM. For more information, see 4.12. The
columns of the csv file correspond to:

line-id the line id

line-code the line code, i.e., a short name

direction the direction of the line

stop-order where the stop is in the line

stop-id the id of the stop

frequency the frequency of the line

departure_time the departure time at this stop

arrival_time the arrival time at this stop

line-freq-repetition the repetition of the line

8.6 Tariff Planning

8.6.1 Price Matrix
The file CK filename_tariff_price_matrix_file (Fi tariff/Price-Matrix.taf) contains the
(newly calculated) prices with respect to the specified model (CK taf_model) for all OD pairs. The columns
of the csv file correspond to:

origin-id id of the origin of the OD pair,

destination-id id of the destination of the OD pair,

price price when travelling from the origin to the destination.

8.6.2 Zones
The file CK filename_tariff_zone_file (Fi tariff/Zones.taf) contains the assignment of stops
to their zones within the zone model CK taf_model CV zone. The columns of the csv file correspond to:

zone-id id of a zone,

stop-id id of the stop belonging to that zone.

123

8.6.3 Zone Prices
The file CK filename_tariff_zone_price_file (Fi tariff/Zone-Prices.taf) contains the prices
in zone model CK taf_model CV zone for traversing a certain number of zones. The price for traversing
more zones than the maximum number of zones specified is just the price for traversing the maximum
number of zones specified. The columns of the csv file correspond to:

n-traversed-zones number of traversed zones,

price price for traversing a given number of zones, i.e the price list.

8.7 Vehicle Scheduling
The folder Fo vehicle-scheduling contains information about the vehicle tours in the dataset.

8.7.1 Vehicle schedules
The file CK default_vehicle_schedule_file

(Fi vehicle-scheduling/Vehicle_Schedules.vs) contains information regarding the scheduling of
the vehicles. The columns of the csv file correspond to:

circulation-ID Id of the corresponding circulation

vehicle-ID Id of the vehicle

trip-number of this vehicle the trip number of the vehicle

type the type of the tour, can be trip for a line serving or empty for an empty trip

aperiodic-start-ID the aperiodic event id of the start event of this serving of the line

periodic-start-ID the periodic event id of the start event of this serving of the line

start-stop-id the stop id of the start of the line

start-time the starting time of this service of the line

aperiodic-end-ID the aperiodic event id of the end event of this serving of the line

periodic-end-ID the periodic event id of the end event of this serving of the line

end-stop-id the stop id of the end of the line

end-time the ending time of this service of the line

line the line id

8.8 Delay Management
The folder Fo delay-management contains information about the aperiodic event-activity-network,
timetable and delays with a disposition timetable

124

8.8.1 Events expanded
The file CK default_events_expanded_file (Fi delay-management/Events-expanded.giv)
contains information about events in the aperiodic EAN. The columns of the csv file correspond to:

event-id id of the event

periodic-id the corresponding periodic id

type type of the event, can be departure for events which are departures of a line at a stop or arrival
for events which are arrivals of a line at a stop

time the time of the event

passengers number of passengers boarding/alighting at the event

stop-id id of the corresponding stop

8.8.2 Activities expanded
The file CK default_activities_expanded_file

(Fi delay-management/Activities-expanded.giv) contains information about activities in the ape-
riodic EAN. The columns of the csv file correspond to:

activity-id id of the activity

periodic-id the corresponding periodic id

type type of the activity, can be drive for drive activities, wait for wait activities, change for transfers of
passengers, sync for synchronization activities between different servings of a line with frequency
greater than one or turnaround for turnaround activities, i.e., activities of vehicles serving one line
after another

tail-event-id id of source event, i.e., the start of the activity

head-event-id id of target event, i.e., the end of the activity

lower-bound the minimal time for this activity, i.e., the minimal time duration needed between the
corresponding source and target event to be feasible

upper-bound the maximal time for this activity, i.e., the maximal time duration allowed between the
corresponding source and target event to be feasible

passengers the number of passengers using this activity

8.8.3 Timetable expanded
The file CK default_timetable_expanded_file

(Fi delay-management/Timetable-expanded.tim) contains information about the aperiodic time-
table, i.e., the time for each aperiodic event. The columns of the csv file correspond to:

event-id id of the event

time the time of the event

125

8.8.4 Timetable disposition
The file CK default_disposition_timetable_file

(Fi delay-management/Timetable-disposition.tim) contains information about the disposition
timetable, i.e., the time for each aperiodic event in the given delay scenario. The columns of the csv file
correspond to:

event-id id of the event

time the time of the event

8.8.5 Delays events
The file CK default_event_delays_file (Fi delay-management/Delays-Events.giv) contains
information about the delay induced at the events. The columns of the csv file correspond to:

ID the id of the delayed event

delay the delay, given in seconds

8.8.6 Delays activities
The file CK default_activity_delays_file

(Fi delay-management/Delays-Activities.giv) contains information about the delay induced at the
activities. The columns of the csv file correspond to:

ID the id of the delayed activity

delay the delay, given in seconds

8.8.7 Trips
The file CK default_trips_file (Fi delay-management/Trips.giv) contains information regarding
the vehicle trips. A vehicle trips is the serving of a line by a vehicle, i.e., this file contains all line servings in
the aperiodic EAN. The columns of the csv file correspond to:

aperiodic-start-ID the aperiodic event id of the start event of this serving of the line

periodic-start-ID the periodic event id of the start event of this serving of the line

start-stop-id the stop id of the start of the line

start-time the starting time of this service of the line

aperiodic-end-ID the aperiodic event id of the end event of this serving of the line

periodic-end-ID the periodic event id of the end event of this serving of the line

end-stop-id the stop id of the end of the line

end-time the ending time of this service of the line

line the line id

126

8.9 GTFS
Using

R make gtfs

will create all required gtfs files. For this, the stops (CK default_stops_file (Fi basis/Stop.giv)),
the line concept (CK default_lines_file (Fi line-planning/Line-Concept.lin)), the aperiodic
ean (CK default_events_expanded_file (Fi delay-management/Events-expanded.giv), CK

default_activities_expanded_file (Fi delay-management/Activities-expanded.giv)) and
the trips (CK default_trips_file (Fi delay-management/Trips.giv)) will be read and the corre-
sponding raw gtfs files will be written to CK gtfs_output_path (Fi gtfs), i.e. the files

• Fi agency.txt,

• Fi stops.txt,

• Fi routes.txt,

• Fi trips.txt,

• Fi stop_times.txt and

• Fi calendar.txt.

Additionally, a zipped file containing the raw data will be created in CK gtfs_output_path (Fi gtfs),
named after CK ptn_name.

127

Chapter 9

Datasets

LinTim provides many datasets to test and evaluate public transport planning algorithms. The following
chapter should give an overview over the available datasets and the compatibility with the different planning
steps.

9.1 Configuration Parameters for Datasets
There are some configuration parameters used per dataset and not per algorithm. These are set in the file Fi

basis/Config.cnf.

• CK gen_conversion_length: conversion factor used to convert the edge length given in CK

default_edges_file (Fi basis/Edge.giv) to kilometers.

• CK gen_conversion_coordinates: conversion factor used to convert the distance between two
stations given in CK default_stops_file (Fi basis/Stop.giv) by the coordinates to kilome-
ters.

• CK gen_vehicle_speed: speed of the vehicles in km/h.

• CK ptn_name: the name of the network

• CK ptn_stop_waiting_time: the time each vehicle has to stop at each stop in average. Used in
shortest path computation during OD creation.

• CK period_length: the length of a period in time units

• CK time_units_per_minutes: the number of time units per minute

• CK ean_default_minimal_waiting_time: the lower bound for wait activities in the ean. Used
during the creation of the ean.

• CK ean_default_maximal_waiting_time: the upper bound for wait activities in the ean. Used
during the creation of the ean.

• CK ean_default_minimal_change_time: the lower bound for change activities in the ean. Used
during the creation of the ean.

• CK ean_default_maximal_change_time: the upper bound for change activities in the ean. Used
during the creation of the ean.

• CK ean_change_penalty: the penalty for using a change activity in the ean. Used for routing
passengers in the ean and evaluating the perceived travel time.

• CK gen_passengers_per_vehicle: the maximal number of passengers per
vehicle. Used in computing lower frequency bounds in preparation of line planning.

128

Figure 9.1: The PTN of the toy dataset

9.2 Artificial Datasets
There are two purely artificial datasets in LinTim. These are small examples to test and understand new
algorithms.

9.2.1 Toy
The toy dataset is purely designed for testing purposes. It contains 8 nodes, 8 edges and 22 OD pairs,
consisting of 2622 passengers in total. An overview of the structure is given in Fig. 9.1.
Since the dataset does not contain the necessary information, stop location is not supported on this dataset
out of the box.

9.2.2 Grid
The grid dataset is designed to be overseeable, yet complex enough to contain complex effects. Therefore,
the dataset contains a simple PTN structure but a reasonable demand structure designed by transportation
planners, see [7]. It is part of the benchmark datasets found at [6].
The dataset contains 25 nodes, 40 edges and 567 OD pairs, consisting of 2546 passengers in total. An
overview of the structure is given in Fig. 9.2. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

9.2.3 Ring
The ring dataset is a little bit larger than the grid dataset but still maintains a clear structure. It is part of the
benchmark datasets found at [6].
The dataset contains 161 nodes, 320 edges and 25760 OD pairs, consisting of 2766.12 passengers in total.
An overview of the structure is given in Fig. 9.3. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

9.3 Datasets based on real world data

9.3.1 Sioux Falls
The sioux falls dataset is a dataset often used in practical public transport planning. It was first introduced
in [18] and is available at [41]. It is a representation of the city of Sioux Falls, South Dakote, USA. It is part
of the benchmark datasets found at [6].

129

Figure 9.2: The PTN of the grid dataset

Figure 9.3: The PTN of the ring dataset

130

Figure 9.4: Infrastructure of the sioux falls dataset

Figure 9.5: Existing infrastructure of the lower saxony dataset

The dataset contains 24 stops, 38 edges and 4114.57 passengers in 552 od pairs. An overview of the structure
of the dataset is given in Fig. 9.4.

9.3.2 Lowersaxony
The lower saxony dataset was included to test the effects of stop location and line pool generation. It contains
the regional railway data of lower saxony, a region in northern Germany.
The dataset contains 34 existing stops, 35 existing edges and 31 demand points. An overview of the structure
given by the existing stops and edges is given in Fig. 9.5. To work with this dataset, you need to start with
the stop location step.

9.3.3 Goevb
The goevb dataset represents the bus network in Göttingen, a city in the middle of Germany and home of the
LinTim project. It was included as part of a student project in 2011.

131

Figure 9.6: The PTN of the goevb dataset

The dataset contains 257 stops, 548 edges and 58226 OD pairs, consisting of 406146 passengers in total. An
overview of the structure is given in Fig. 9.6. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.
Note, that goevb is a directed network!

9.3.4 Athens
The athens dataset represents the metro system in Athens.
The dataset contains 51 stops, 52 edges and 2385 OD pairs, consisting of 63323 passengers in total. An
overview of the structure is given in Fig. 9.7. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

9.3.5 Bahn-01
Currently not included in the release version of LinTim.
The bahn-01 dataset represents parts of the German railway network, including the long distance network.
For larger datasets, see Sec. 9.3.6-9.3.8.
The dataset contains 250 stops, 326 edges and 48842 OD pairs, consisting of 3147382 passengers in total.
An overview of the structure is given in Fig. 9.8. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

9.3.6 Bahn-02
Currently not included in the release version of LinTim.
The bahn-02 dataset represents parts of the German railway network, including the long distance network.
For a smaller dataset see Sec. 9.3.5, for larger datasets, see Sec. 9.3.7 and 9.3.8.

132

Figure 9.7: The PTN of the athens dataset

Figure 9.8: The PTN of the bahn-01 dataset

133

Figure 9.9: The PTN of the bahn-02 dataset

The dataset contains 280 stops, 354 edges and 61110 OD pairs, consisting of 3666720 passengers in total.
An overview of the structure is given in Fig. 9.9. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

9.3.7 Bahn-03
Currently not included in the release version of LinTim.
The bahn-03 dataset represents parts of the German railway network, including the long distance network.
For smaller datasets see Sec. 9.3.5 and 9.3.6, for a larger dataset, see Sec. 9.3.8.
The dataset contains 296 stops, 393 edges and 68284 OD pairs, consisting of 3878392 passengers in total. An
overview of the structure is given in Fig. 9.10. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

9.3.8 Bahn-04
Currently not included in the release version of LinTim.
The bahn-04 dataset represents parts of the German railway network, including the regional network. For
smaller datasets, see Sec. 9.3.5-9.3.7.
The dataset contains 319 stops, 452 edges and 77878 OD pairs, consisting of 4183088 passengers in total. An
overview of the structure is given in Fig. 9.11. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

9.3.9 Bahn-equal-frequencies
Currently not included in the release version of LinTim.
The bahn-equal-frequencies dataset is based on bahn-01(9.3.5). It is designed, such that running the line
planning step with default parameters will result in a line concept with binary frequencies. This is therefore
helpful to test algorithms that do not work for frequencies > 1.
The dataset contains 250 stops, 326 edges and 6106 OD pairs, consisting of 385868 passengers in total. An
overview of the structure is given in Fig. 9.12. Since the dataset does not contain the necessary information,
stop location is not supported on this dataset out of the box.

134

Figure 9.10: The PTN of the bahn-03 dataset

Figure 9.11: The PTN of the bahn-04 dataset

135

Figure 9.12: The PTN of the bahn-equal-frequencies dataset

Figure 9.13: The PTN of the BOMHarbour dataset

9.3.10 BOMHarbour
BOMHarbour is based on the metro network in Mumbai, India. Since the metro is quite new, the dataset
only consists of a few stations. The main focus investigated in BOMHarbour is to find a feasible timetable
for the given line concept.
The dataset contains 11 stops, 11 edges and no passenger information. An overview of the structure is given
in Fig. 9.13. Since the dataset does not contain the necessary information, stop location is not supported on
this dataset out of the box.

9.3.11 Mandl
Mandl is based on a case study in Switzerland provided by Christoph Mandl, see [19]. The dataset
contains 15 stops, 21 edges and 172 OD pairs, consisting of 15570 passengers in total. Since the travel time
for each edge was given in minutes, the distances between stations are approximated, considering an average
speed of 40 km/h. The OD matrix holds the demand over one day. To obtain reasonable line concepts for
a period of one hour, the capacity of the vehicles has to be set to the actual capacity times the number of
service hours per day (the default setting in the dataset is 450 corresponding to an actual capacity of 30
and 15 daily service hours). Moreover, since there are no coordinates for the stops in Mandl’s work, the
coordinates provided by Mumford [22] are used. An overview of the structure is given in Fig. 9.14.

9.4 Adding new datasets
For adding a new dataset, use the content of the template dataset as input. Therefore create a new folder in
Fi datasets and copy the content into a new directory with a name of your choosing. Afterwards, adapt

136

Figure 9.14: The PTN of the Mandl dataset

the local only default parameters in the Fi basis/Config.cnf file. For an explanation of the parameters,
see Section 9.1.
Before running anything, you need to fill the new dataset with data. To see, which algorithm needs which
data, see the respective section in this documentation. For information on the file structure, see Chapter 8.

9.4.1 Adding a dataset from PESPlib
There is a helper method to import a PESPlib dataset. PESPlib ([11]) is a benchmark library for Periodic
Event Scheduling Problems, based on timetabling problems in public transport planning.
To import a PESPlib dataset, place the dataset file (e.g. R1L1.txt) into Fi /src/tools/PESPlib_import
and run e.g.

R python3 pesplib_import.py R1L1

there. This will create a new dataset folder with the given dataset name and all required files for timetabling
in the Fi /datasets-directory.

9.4.2 Adding a dataset from TimPassLib
There is a helper method to import a TimPassLib dataset. TimPassLib, see [30, 31], is a library for
integrated timetabling and passenger routing problems. To import a dataset, create a new dataset based
on the template dataset and copy the files Activities.csv, Events.csv, OD.csv and Config.csv to
CK filename_timpasslib_activities (Fi timpasslib/Activities.csv),
CK filename_timpasslib_events (Fi timpasslib/Events.csv),
CK filename_timpasslib_od (Fi timpasslib/OD.csv) and
CK filename_timpasslib_config (Fi timpasslib/Config.csv), respectively. Depending on CK

timpasslib_import_timetable, the timetable is imported, i.e., you might need to copy Timetable.csv
to CK filename_timpasslib_timetable (Fi timpasslib/Timetable.csv). Run

R timpasslib-import

such that the following files are created:

• CK default_stops_file (Fi basis/Stop.giv),

• CK default_edges_file (Fi basis/Edge.giv),

• CK default_od_file (Fi basis/OD.giv),

• CK default_pool_file (Fi basis/Pool.giv),

• CK default_pool_cost_file (Fi basis/Pool-Cost.giv),

• CK default_lines_file (Fi line-planning/Line-Concept.lin),

137

• CK default_events_periodic_file (Fi timetabling/Events-periodic.giv),

• CK default_activities_periodic_file (Fi timetabling/Activities-periodic.giv),

• CK default_timetable_periodic_file (Fi timetabling/Timetable-periodic.tim) (if
CK timpasslib_import_timetable is set to CV true),

Note that the TimPassLib files contain no information on the coordinates of stops, such that the coordinates
(x-coordinate, y-coordinate) in Fi default_stops_file will be set to (0, 0). Similarly, in Fi

default_edges_file, the parameter length is set to zero and lower-bound and upper-bound are set
according to lower-bound and upper-bound in Fi default_activities_periodic_file.
Additionally, config parameters specified in Fi filename_timpasslib_config will be used to update
Fi Config.cnf. Note that parameters in Fi filename_timpasslib_config that are not already present

in Fi Config.cnf will not be added. These need to be added manually to the corresponding configuration
file.

Exporting a dataset in TimPassLib format

A dataset can be exported in TimPassLib format by running

R timpasslib-import

such that the follwoing files are created according to the specification of [30]:

• CK filename_timpasslib_activities (Fi timpasslib/Activities.csv),

• CK filename_timpasslib_events (Fi timpasslib/Events.csv),

• CK filename_timpasslib_od (Fi timpasslib/OD.csv),

• CK filename_timpasslib_config (Fi timpasslib/Config.csv) and

• CK filename_timpasslib_timetable (Fi timpasslib/Timetable.csv) (depending on CK

timpasslib_export_timetable.

Additionally, basic evaluations of the data set are computed and added to CK default_statistic_file

(Fi statistic/statistic.sta):

SK n_stations: The number of stations.

SK n_lines: The number of operated lines. Note that a line can have a frequency higher than one.

SK od_prop_entries_greater_zero: The number of OD pairs with dst > 0.

SK od_prop_overall_sum: The total number of passengers.

SK n_events: The number of events in the event-activity network.

SK n_activities: The total number of activities in the event-activity network.

SK n_activities_fixed: The number of activities in the event-activity network with ℓa = ua.

SK n_activities_free: The number of activities in the event-activity network with ua − ℓa = T − 1.

SK n_activities_restricted: The number of activities in the event-activity network with ℓa < ua <
ℓa + T − 1.

138

9.4.3 Dataset generator
There is a make command to create new artificial datasets. To use it, navigate into the Fi /datasets-
directory and run

R make dg-generate-dataset

This creates a new dataset as new subdirectory with the method specified by CK dg_model. For a detailed
description of the available models see Section 4.1.

139

Chapter 10

LinTim Core

For allowing easier extensions of LinTim, its core functionality is provided in two languages, namely Python
(3) and Java. There is a version for C++ too, but it is deprecated.
In the following the vocabulary of Java is used, but the versions for Python is structured in the same way.
The core is organized into several packages, which are briefly explained in the following sections. Note that
for continuity all core libraries follow the naming convention for Java for their public API as far as possible.
To create a javadoc version of the documentation run

R make docs

in the folder Fo /src/core/java. An HTML version of the documentation can then be found in Fo

/src/core/java/docs.

10.1 Model
The package model consists of interfaces which represent basic concepts and classes which represent the
basic objects used in public transport planning.

10.1.1 Interfaces
The following interfaces are given.

Graph with basic graph functionality

Node with basic node functionality

Edge with basic edge functionality, can be directed or undirected

Path with basic path functionality

OD structure to handle OD information

10.1.2 Classes
The following classes are given.

Stop representing a stop in a PTN, implementing Node

Link representing a link in a PTN, implementing Edge

InfrastructureNode representing a node in an infrastructure network, e.g., a possible stop location or
an intersection, implementing Node

140

InfrastructureEdge representing an infrastrcture edge between infrastructure nodes, e.g. a street or a
track, implementing Edge

WalkingEdge representing a walking path between infrastructure nodes, implementing Edge

DemandPoint representing a demand point, i.e., the demand at a certain location

StationLimit representing an individual station limit for a stop, containing individual bounds on the
transfer or waiting times

Line representing a line in the PTN

LinePool representing a line pool

ODPair representing an origin destination pair

PeriodicEvent representing an event in the periodic event activity network

PeriodicActivity representing an activity in the periodic event activity network

PeriodicHeadway representing a headway activity in the periodic event activity network

AperiodicEvent representing an event in the aperiodic event activity network

AperiodicActivity representing an activity in the aperiodic event activity network

AperiodicHeadway representing a headway activity in the aperiodic event activity network

Timetable representation of a timetable

PeriodicTimetable representation of a periodic timetable

Trip representing an aperiodic trip, e.g., a line serving

Routing representing a routing in a PTN or an EAN.

Zone representing a zone, i.e. a subset of the nodes of a PTN.

ZonePrices stores the prices for travelling through a specified number of zones.

PriceMatrix representing a matrix of prices for each node pair in the PTN.

VehicleTour collecting multiple trips to represent the tour of a vehicle throughout the day

Circulation collecting multiple vehicle tours to represent a circulation

10.1.3 Enumerations
The following enumerations are given.

EventType possible types of events

ActivityType possible types of activities

LineDirection possible direction of a line (FORWARDS, BACKWARDS)

TariffModelType possible types of tariff models.

TariffObjectiveType possible objectives in tariff planning.

TariffWeightType possible weight options in the objective for tariff planning.

TariffZoneCountingType possible counting modes in a zone tariff.

TariffZoneSymmetryOption possible options for symmetry breaking in the optimization of a zone tariff.

TariffRoutingType possible options for generating a routing in tariff planning.

141

10.1.4 Package model.impl
The package model.impl in the Java core contains different implementations of the interfaces, which might
be useful in different scenarios.

SimpleMapGraph graph implementation based on Java Maps. Most of the times faster than an ArrayListGraph.
May not contain multiple nodes/edges with the same index.

ArrayListGraph graph implementation

LinkedListPath path implementation

MapOD OD implementation used for OD matrices with unknown amount of entries. In most cases the fastest.

FullOD OD implementation used for OD matrices with many entries

SparseOD OD implementation used for OD matrices with few entries

10.2 Input and Output
The package io contains reader and writer for all classes in model as well as the ones in util which need
them.

10.3 Algorithm
The package algorithm contains implementation of algorithms working on model classes, which are
needed at several places in LinTim.

Dijkstra shortest path implementation using Dijkstra’s algorithm

10.4 Utility
The package util contains utility classes and enumerations.

Config a representation of the config

Statistic a representation of the statistic

Pair representation of a tuple consisting of 2 elements

LogLevel wrapper mapping different Java logging levels to the ones we are using

SolverType enumeration of different solver types

10.5 Solver
The package solver contains an abstract solver implementation, used to formulate a model once and switch
the used solver easily. Currently only a small subset of all possible features is implemented, aimed towards
high performance to avoid unneccessary overhead. For more information, see the corresponding Javadoc or
documentation in the python code.

10.6 Exceptions
The following error catalog is used. All exceptions inherit from LinTimException such that logging is
handled only once.

142

Input

• input file cannot be found: Error I1: File <filename> cannot be found.

• format of input files is wrong: Error I2: File <filename> is not
formatted correctly: <x> columns given, <y> needed.

• inconsistency: Error I3: Column <x> of file <filename> should be
of type <type> but entry in line <line number> is <entry>.

• inconsistent numbering: Error I4: Datatype <data-type> is not
numbered consistently starting from 1, but <algorithm-name>
needs that.

Output

• output cannot be written: Error O1: File <filename> cannot be written.

• no output is produced: Error O2: Algorithm <algo> did not terminate correctly, no
output will be produced.

Config parameters

• file not found: Error C1: No config file can be found.

• existence: Error C2: Config parameter <configkey> does not exist.

• type: Error C3: Config parameter <configkey> should be of type
<type> but is <configparameter>.

• file name not given: Error C4: No config file name given.

• invalid value: Error C5: Value(s) of config parameter(s) <configparameters> are
invalid or incompatible in this context.

Algorithms

• stopping criterion reached: Error A1: Stopping criterion of algorithm <algo>
reached without finding a feasible/optimal solution.

• infeasible parameter setting: Error A2: Algorithm <algo> cannot be run with
parameter setting <configkey>; <configparameter>.

• in Dijkstra, distance was queried before computation: Error A3: Distance to <node> was
queried before computation

• in Dijkstra, path was queried before computation: Error A4: Path to <node> was queried
before computation

• in Dijkstra, algo was called with node, that was not in the graph, when the class was initialized:
Error A5: Usage of unknown node <node>. This may happen, when the graph was altered
after initialization

• in Dijkstra, there is an edge with negative length: Error A6: Edge <edge> has negative
length <length>. Dijkstra cannot work reliably with negative edge length.

• in Dijkstra, if the network is not connected: Error A7: Node <sourceNode> is not
connected to node <targetNode>, but a shortest path was
queried. This may happen during computation of a shortest path or when computing all shortest
paths starting from a specific node.

143

Graphs

• multiple nodes with same index: Error G1: Node with id <node id> already exists.

• multiple edges with same index: Error G2: Edge with id <edge id> already exists.

• left or right node of edge does not exist: Error G3: Edge <edge id> is incident to
node <node id> but node <node id> does not exist.

• edge between two nodes does not exist: Error G4: Edge between <node id> and <node
id> does not exist.

Lines

• link cannot be added to line: Error L1: Link <link id> cannot be added to line
<line id>.

• line contains a circle: Error L2: Line <line id> contains a circle.

• line is no path: Error L3: Line <line id> is no path.

Routings

• no path specified between two nodes: Error R1: No path available from <node id> to
<node id>

• path in routing is inconsistent: Error R2: The given path from <node id> to <node id>
is not consistent.

Data inconsistency

• periodic event to aperiodic event does not exist: Error D1: Periodic event <event id> to
aperiodic event <event id> does not exist.

• periodic activity to aperiodic activity does not exist: Error D2: Periodic activity
<activity id> to aperiodic activity <activity id> does not exist.

• index not found: Error D3: <Element> with index <index> not found.

• illegal event type: Error D4: <Event type> of event <event id> is no legal event
type.

• illegal activity type: Error D5: <Activity type> of activity <activity id> is no
legal activity type.

• illegal line direction: Error D6: <Line direction> of event <event id> is no legal
line direction.

• number of lines in Pool-Cost-file does not match number of lines in the linepool: Error D7: Read
<number of> entries in the line cost file <filename>, but <number of> lines are
in the line pool.

• multiple paths given for one node pair in a routing: Error D8: There are multiple paths
given from <node id> to <node id>.

• Path in a routing is inconsistent: Error D9: The path from <node id> to <node id> is
not valid.

• Routing is incomplete, but complete routing is needed: Error D10: The given routing is
incomplete, but a complete routing is needed.

144

• Stop is assigned to no zone: Error D11: The stop <stop id> is not assigned to any
zone.

• Stop is assigned to multiple zones: Error D12: The stop <stop id> is assigned to more
than one zone.

• price matrix does not contain a price for all node pairs with distinct origin and destnation node: Error
D13: There is no price specified from <node id> to <node id>.

• zone price list is inconsistent: Error D14: Zone price file is inconsistent

Solver

• solver not supported: Error S1: Solver <solver name> not supported for algorithm
<algo>.

• Gurobi Error: Error S2: Gurobi returned the following error:
<exception.toString()>

• Cplex Error: Error S3: Cplex returned the following error:
<exception.toString()>

• Cplex Error: Error S4: The solver <solver name> is not yet implemented in the
core solver library.

• Attribute not implemented: Error S5: Attribute <attribute name> is not
implemented for <solver name> yet.

• Parameter not implemented: Error S6: The parameter <parameter name> is not
implemented for <solver name> yet.

• Variable type not implemented: Error S7: The variable type <variable type> is not
implemented for <solver name> yet.

• Invalid call: There was an invalid call, e.g., reading variables of an infeasible model. Please check the
text for further information. Error S8: <error message>

• Glpk Error: Error S9: Glpk returned the following error:
<exception.toString()>

• Solver found no feasible solution: Error S10: Solver found no feasible solution. Check
solver output for further information.

Statistic

• type mismatch: Error ST1: Statistic key <key> should have type <type> but has
value <value>.

• key not found: Error ST2: Statistic parameter <configkey> does not exist.

145

Chapter 11

Introduction to extending LinTim

11.1 Logging
The following guidelines govern the output expected from LinTim programs.

11.1.1 Output from LinTim programs
Output from LinTim programs must adhere to the formatting described here.
For software using a LinTim core Library (Java, C++, ...), there are dedicated logging Classes to use for
output.
These will default to write to STDOUT, and the Makefile invocations shall do so, but they can also be
configured otherwise.
Software not using a LinTim library should use STDOUT or a commonly used facility for its respective
programming environment/language that can be configured for writing to STDOUT, so Makefile invocations
can do so.

11.1.2 Log levels
The following Levels shall be used:

FATAL for errors that cancel the execution

ERROR for errors that are severe, but do not stop the program

WARN (a.k.a. warning) for messages from the program that need not be a real error, but may be of interest
to the user (also hints for probably wrong configuration) because they might want to be cautious about
it, as something is probably different from what they might expect

INFO for everything that happens as expected and is of interest to the end user

DEBUG for output that allows to see what’s happening under the hood

In the output to STDOUT (be it configurable through a library or not), the loglevel must be written in capital
letters, preceded by the current system time formatted as YYYY-MM-DD HH:mm:ss at the beginning of
the line, followed by a colon, a space, and the actual message. (Only) DEBUG messages may additionally
contain hints to the source code like the classname, source code line, and/or stack traces of Exceptions, etc..
Multi-line messages are allowed for DEBUG messages.

11.1.3 Error messages
The messages outlined in the Error catalog (Section 10.6) shall be used literally for their respective FATAL,
ERROR or WARN messages. The level depends upon the severity for the respective program.

146

11.1.4 Info messages
The following INFO and DEBUG messages should be written at the beginning and end of the respective
steps. If a step is not present in a particular program, the respective output can be omitted. Any introductory
INFO message(s) (e.g. stating the program name and version) or nothing at all can be output at the beginning.

INFO: Begin reading configuration

DEBUG: Parameter <key> set to <value>

INFO: Finished reading configuration

INFO: Begin reading input data

DEBUG: Reading file <path/and/filename> (done automatically by the respective reader)

INFO: Finished reading input data

INFO: Begin execution

further DEBUG and INFO messages as you see fit

INFO: Finished execution

INFO: Begin writing output data

DEBUG: Writing to file <path/and/filename> or Appending to file <path/and/filename> (done automati-
cally by the respective writer)

INFO: Finished writing output data

Whether the setup of a mathematical program for a solver is done during the reading step (maybe on the
fly) or as part of the execution step is up to the author. Solvers may produce their own output to report
progress. Whenever possible, the output of a solver shall be configured to go into the filename provided
by the configuration key CK solver_output_file. (which may contain a relative or absolute path). If
the key is the empty string or not set at all, solver output shall be printed to STDOUT, but not through the
logging facility (or only at the DEBUG level). (Note: Solver output refers to the usual progress report, not
to the results, i.e., values of variables in the solution. Still, intermediate or final results may or may not be
part of the solver output.)

11.2 Cleaning
Due to the vast number of algorithms in LinTim, manually cleaning the Fo src directory is tedious.
Therefore, LinTim provides an automatic capability to do so by running

R make clean-src

in a dataset-folder or

R make clean

in the Fo src directory. There are several file types cleaned automatically from all directories in Fo src

(see Fi src/FILES_TO_CLEAN) but you may add additional files as well. To do so, create a file named Fi

FILES_TO_CLEAN in the source directory of the algorithm and add all files that should be deleted, one per
line. Glob patterns, e.g. Fi bin/* are supported.

147

Chapter 12

Continous Integration

There are some continous integration tests contained in LinTim. They can be found in the folder Fo /ci.

12.1 Running the tests
There are two possibilities, running all test cases and running a specific test.
For running all tests, run the script Fi /ci/run_all_tests.sh. This file will set some basic environment
variables for the solvers and run every test separately. Failed tests will output their respective console log and
the names of all failed tests will be collected in Fi /ci/failed_tests. Also, you may need to make sure,
that the environment variables for running the necessary solvers are set for your system, see Chapter 1.2.
There is also the possibility to run a single test. For this, use Fi /ci/run ussingle_test.sh with the
corresponding test name as the first and only parameter.
Additionally, note that the tests are mostly regression tests, designed to find unintended changes on already
implemented algorithms. Therefore, the results are based on running specific software versions on specific
hardware. They are therefore likely to fail for you. On the other hand, the unit tests should work for every
installation of LinTim. You can run them separately with Fi /ci/run_unit_tests.sh

12.2 Adding test cases
There is the possibility to add your own test cases. A test contains of four things, a list of LinTim commands
to run, a dataset to run the commands on, a Fi Private-Config.cnf for configuration, and an expected
statistic result.
To add your own test, copy the content of Fo /ci/template into a new subdirectory of Fo /ci. In there,
the commands to run and the dataset can be changed by setting the corresponding variables in Fi run.sh.
To add your own configuration parameters, adapt Fi basis/Private-Config.cnf in your test directory.
This file will be copied in the given dataset before running the test commands.
For the expected results, add data into the file Fi expected-statistic.sta in your test directory. This
file will be compared to the statistic file created by the test commands and will determine the success or the
failure of the test. For a successful test, all statistic keys in the Fi expected-statistic.sta need to be
contained in the produced statistic file and their values need to coincide. Note that the produced statistic file
may contain more data, this will not cause the test to fail.
Every test will create a new version of the corresponding dataset, you may therefore not assume the dataset
to differ from the currently commited version.

148

Chapter 13

Changelog

This section contains a brief changelog of the different versions. Note that the changelog is not complete
and does only include the most important features. For a complete list of changes, use the version control
system. The version numbers of LinTim are based on the date of release and are not semantic.

2024.08
Added

• Added functionality for tariff planning including optimizing and evaluating fares.

• New method to generate a line pool based on centers and periphery nodes.

• Added IP model for line planning with passenger routing to minimize the total (estimated) traveling
time.

• Added Mandl dataset.

Fixed

• Line pool creators also add lines starting with an edge specified in backwards direction (of the line
direction).

• Timetable evaluation parameter SK tim_overcrowded_time_average now also considers over-
crowded wait activities.

• Correctly compute wait and transfer time in line concept evaluation using change-and-go graph.

• Specified change stations are taken into account when constructing the EAN.

• Upper frequency bounds computed via CK load_generator_upper_frequency_factor are
rounded up.

• The terminal-to-terminal model for line pool generation uses the standard line cost computation
method including the CK lpool_costs_vehicles.

• Line reader now uses CK gen_conversion_length.

2023.12
Added

• Functionality for creating artificial datasets, see Section 4.1.

• Import and export to TimPassLib format, see Section 9.4.2.

149

• Multi-commodity flow routing in order to evaluate a timetable, taking into account the capacities, see
Section 5.7.1.

• Possibility to draw PTN without stop-coordinates.

Changed

• Allow non-integer activity weights for all activity buffer models.

• If OD pair is not present, it is interpreted as 0 in the python core.

Fixed

• Key feature computation for ml-robustness framework will now correctly respect the chosen routing
window.

• Extended evaluation of line concept solve a multi-commodity flow problem instead of independent
source problems for all origins.

• Timetable evaluation can now handle non-integer passengers.

• Fixed integer overflow in c++ core when writing large integers.

• Fixed bug in timetable evaluation that allowed routing of passengers on sync and headway activities.

• Periodic timetabling with constraint propagation terminates with an exception if activity file is missing.

• An error when reading a CSV file with the Java core is no longer always indicated by the message
“File not found”. Message “Wrong encoding” was added.

• Fixed candidate set for stop location; will now correctly handle cases where demand points are exactly
CK sl_radius distanced from possible stop locations.

• Added CK gen_conversion_length and CK gen_conversion_coordinates to core writers, so
that a the values are not changed when a graph is only read and written again.

• Use CK ean_change_penalty under all settings of the configuration parameter CK ean_model_weight_change.

2022.08
Added

• Possibility to read stop geo coordinates in Java and Python core libraries

• Interactive visualization of a PTN, see Section 4.11.1

• Visualization of the OD data via a graph or a heatmap, see Section 4.11.2

• Possibility to visualize the ptn load weights, see Section 4.11.3

• Installation script for installing dependencies automatically, see Section 1.3

150

Changed

• Remove Station-Distance requirement of

R make vs-add-circulations-to-ean

• Updated JUnit-version from 4.12 to 4.13.2

• Update Java core cplex interface to CPLEX 20.1

• Now most config parameters are case insensitive

• Rewrite line concept evaluation for better performance and more evaluations. Note that the names of
some statistic entries changed to be more clear. For all current evaluations, see Section 5.5.

Fixed

• Python Core: Prevent overwriting statistic when trying to append

• Python Core: Correctly parse the entries in stop-possible? for infrastructure nodes

• Python & Java Core: Dijkstra will now return copies of the computed paths to prevent accidental
changes by the user.

• Fix solver core interface of the stop location travel time model

• Fix solver dependency of extended line planning cost model

• Line planning direct model can now handle non-zero diagonal entries in the od matrix

2021.12
Added

• Added more integer programming solver support. For an overview which solvers are support by
which algorithms, see Section 6. For more information on how to combine solvers with LinTim, see
Section 1.2.1.

• Robust integrated planning based on machine learning predictions. For more information, see
Section 3.8.5.

• Possibility to run LinTim an ARM-based cpus, e.g. Apple-M1

Fixed

• Add java core dependency installation for terminal-to-terminal line pool generation

• Fix wrong make target for ean passenger reroute

• Fix missing build files for line pool drawing

• Line pool cost computation will now scale the ptn edges acccording to CK gen_conversion_length

• Will now read CK ptn_stop_waiting_time for the ptn evaluation

• The vehicle-based term of the line costs now accounts for undirected lines as well

Removed

• Possibility to run LinTim on i586 cpus.

151

2021.10
Added

• Ability to respect additional load per link in load generation, see Section 7.6

• Export to GTFS, see Section 8.9

• Cycle base formulation for periodic timetabling, see Section 3.4.6

• Phase 1 simplex for periodic timetabling, see Section 3.4.7

• Visum-Interface to import datasets from PTV Visum, see Section 4.12. This includes several additions
to LinTim:

– An infrastructure model, more detailed than the current PTN representations, see e.g. Sec-
tion 3.1.2

– Possibility of passengers to walk, see e.g. Section 4.5 and Section 4.2.4

– Respecting transfer stations and line terminals, see e.g. Section 4.5 and Section 3.2.1

– Forbidding edges in line planning, see e.g. Section 3.3.1

Changed

• Bump used JGraphT version, now JGraphT 1.5 and JHeaps 0.13 are required

• Java 11 is now required

• Maven (≥ 4) is now required

• Rewrite several ip models, using a common naming scheme for solver parameters and align the output
of the programs to the rest of LinTim

Fixed

• The rollout step will not read the headways anymore if they are not needed

• Python Core now reads directed ptns correctly

• DM extended evaluation now computes average values correctly

• Rolling out passenger paths now works on aperiodic eans without changes

• PTN load generator will now compute correct variable upper frequency bounds for very small load
values

• Rolling out passenger paths does not allow headways in passenger paths anymore

• Fixed Big-M-value for DM1

2020.12
Added

• Additional IP parameters for Gurobi

• Dataset ring

152

Changed

• Python Core: Replaced usage of DictGraph by SimpleDictGraph to improve performance

• Core: StatisticWriter will default to appending to the file on disc instead of overwriting

• Line planning model direct is now allowed a non-integer budget restriction

• Remove goblin dependency from periodic modulo simplex, use gurobi now instead

• Allow periodic timetable evaluation without an od matrix present

Fixed

• R make ean-add-simple-vs will now respect the parameter CK time_units_per_minute

• Line Planning method CV cost_restricting_frequencies can now be compiled with only one
of the supported solvers installed

• Python core will use default statistic for reading if none is given

• Fixed bug in cycle base version of integrated timetabling and passenger routing model

• Adapted ean_change_penalty for time_units_per_minute in dataset athens

• Equals method in periodic and aperiodic ean now working in python core

• Suppress double logging/console output when using the core gurobi solver interface with gurobi 9

• Python core vehicle schedule writer reads correct default config key for the vehicle schedule file

• R make ean-add-simple-vs will now throw an error when run on a directed ptn

• CK time_units_per_minute are now consistently handled in all vehicle scheduling methods

2020.02
Added

• Sioux Falls dataset

• Models for integrated planning

– Integrated timetabling and passenger routing
– Integrated line planning, timetabling and passenger routing
– Integrated timetabling and vehicle scheduling
– Integrated line planning, timetabling, passenger routing and vehicle scheduling
– Computing a new timetable for given line plan and vehicle schedule

• Respect fixed lines in line planning

• Respect fixed lines in timetabling

• Modulo Simplex algorithm for timetabling

• Full support for running under Windows

• Import of VISUM datasets

• New Python core graph implementation

• Automatic cleaning of src folders

• Robustness checks for delay management

153

Changed

• The export format to visum does now include the line repetition

Deprecated

• the cpp core will not be maintained any more and will be removed in a future version

2018.06
First release version

154

Bibliography

[1] S. H. Bull, R. M. Lusby, and J. Larsen, An optimization based method for line planning to minimize travel time, Proceedings of
the 13th conference on advanced systems in public transport (CASPT), 2015.

[2] S. Bunte and N. Kliewer, An overview on vehicle scheduling models, Public Transport 1 2009, no. 4, 299–317.

[3] M. Bussieck, Optimal lines in public rail transport, Ph.D. Thesis, 1998.

[4] E. Carrizosa, J. Harbering, and A. Schöbel, Minimizing the passengers’ traveling time in the stop location problem, Journal of the
Operational Research Society 67 2016, no. 10, 1325–1337.

[5] A. Fielbaum, S. Jara-Diaz, and A. Gschwender, A parametric description of cities for the normative analysis of transport systems,
Networks and Spatial Economics 17 2017, no. 2, 343–365.

[6] Collection of open source public transport networks by DFG Research Unit “FOR 2083: Integrated Planning For Public
Transportation”, 2018. https://github.com/FOR2083/PublicTransportNetworks.

[7] M. Friedrich, M. Hartl, A. Schiewe, and A. Schöbel, Angebotsplanung im öffentlichen Verkehr - Planerische und algorithmische
Lösungen, Heureka, 2017.

[8] , Integrating passengers’ assignment in cost-optimal line planning, 17th workshop on algorithmic approaches for
transportation modelling, optimization, and systems (ATMOS 2017), 2017, pp. 1–16.

[9] , System headways in line planning, CASPT 2018, 2018.

[10] P. Gattermann, J. Harbering, and A. Schöbel, Line pool generation, Public Transport 9 2017, 7–32.

[11] M. Goerigk, PESPlib. https://timpasslib.net/pesplib.html.

[12] , Verallgemeinerte Schnittheuristiken in der periodischen Fahrplangestaltung, Master’s Thesis, 2009.

[13] M. Goerigk and A. Schöbel, Improving the modulo simplex algorithm for large-scale periodic timetabling, Computers &
Operations Research 40 2013, no. 5, 1363–1370.

[14] M. Goerigk, A. Schöbel, and F. Spühler, A phase I simplex method for finding feasible periodic timetables, 21st symposium on
algorithmic approaches for transportation modelling, optimization, and systems (ATMOS 2021), 2021, pp. 6:1–6:13.

[15] J. Harbering, Delay resistant line planning with a view towards passenger transfers, TOP 25 2017, 467–496.

[16] A. Kaufmann, Column generation for line planning with minimal traveling time, Master’s Thesis, 2016.

[17] M. Lachmann, Vehicle scheduling based on a line plan only, Master’s Thesis, 2016.

[18] L. J. LeBlanc, E. K. Morlok, and W. P. Pierskalla, An efficient approach to solving the road network equilibrium traffic assignment
problem, Transportation Research 9 1975, no. 5, 309–318.

[19] C. Mandl, Applied network optimization, Academic Press, New York, 1979.

[20] M. Müller-Hannemann, R. Rückert, A. Schiewe, and A. Schöbel, Framework for generating machine learning models for
robustness, 2021. available at https://gitlab.rlp.net/for2083/framework-for-generating-machine-learning-
models-for-robustness.

[21] M. Müller-Hannemann, R. Rückert, A. Schiewe, and A. Schöbel, Towards Improved Robustness of Public Transport by a
Machine-Learned Oracle, 21st symposium on algorithmic approaches for transportation modelling, optimization, and systems
(atmos 2021), 2021, pp. 3:1–3:20.

[22] C. L. Mumford, Research on the urban transit routing problem (bus routing), 2016. https://users.cs.cf.ac.uk/C.L.
Mumford/Research%20Topics/UTRP/Outline.html#Xmumford2013.

[23] J. Pätzold, A. Schiewe, P. Schiewe, and A. Schöbel, Look-ahead approaches for integrated planning in public transportation, 17th
workshop on algorithmic approaches for transportation modelling, optimization, and systems (ATMOS 2017), 2017, pp. 17:1–
17:16.

[24] J. Pätzold and A. Schöbel, A matching approach for periodic timetabling, 16th workshop on algorithmic approaches for
transportation modelling, optimization, and systems (ATMOS 2016), 2016, pp. 1:1–1:15.

[25] PTV AG, Visum 17 user manual, 2018.

[26] M. Schachtebeck, Delay management in public transportation: Capacities, robustness, and integration, Ph.D. Thesis, 2010.

155

https://github.com/FOR2083/PublicTransportNetworks
https://timpasslib.net/pesplib.html
https://gitlab.rlp.net/for2083/framework-for-generating-machine-learning-models-for-robustness
https://gitlab.rlp.net/for2083/framework-for-generating-machine-learning-models-for-robustness
https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/Outline.html#Xmumford2013
https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/Outline.html#Xmumford2013

[27] M. Schachtebeck and A. Schöbel, To wait or not to wait—and who goes first? Delay management with priority decisions,
Transportation Science 44 2010, no. 3, 307–321.

[28] A. Schiewe and P. Schiewe, An iterative approach for integrated planning in public transportation, Georg-August-Universität
Göttingen, 2018. Working Paper.

[29] P. Schiewe, Integrated optimization in public transport planning, Ph.D. Thesis, 2018.

[30] P. Schiewe, M. Goerigk, and N. Lindner, TimPassLib. https://timpasslib.net/.

[31] , Introducing TimPassLib – a library for integrated periodic timetabling and passenger routing, Operations Research
Forum 4 2023, no. 3.

[32] A. Schöbel, Optimization models in public transportation, 2004.

[33] , Optimization in public transportation. stop location, delay management and tariff planning from a customer-oriented
point of view, Optimization and Its Applications, Springer, New York, 2006.

[34] , Integer programming approaches for solving the delay management problem, Algorithmic methods for railway optimiza-
tion, 2007, pp. 145–170.

[35] , Line planning in public transportation: models and methods, OR Spectrum 34 2012, no. 3, 491–510.

[36] , An eigenmodel for iterative line planning, timetabling and vehicle scheduling in public transportation, Transportation
Research C 74 2017, 348–365.

[37] A. Schöbel, H. W. Hamacher, A. Liebers, and D. Wagner, The continuous stop location problem in public transportation,
Asia-Pacific Journal of Operational Research 26 2009, no. 1, 13–30.

[38] A. Schöbel and S. Scholl, Line planning with minimal traveling time, 5th workshop on algorithmic methods and models for
optimization of railways, 2006.

[39] A. Schöbel and S. Schwarze, Finding delay-resistant line concepts using a game-theoretic approach, Netnomics 14 2013, no. 3,
95–117.

[40] P. Serafini and W. Ukovich, A mathematical model for periodic scheduling problems, SIAM Journal on Discrete Mathematics 2
1989, no. 4, 550–581.

[41] B. Stabler, Sioux falls - github, 2018. available at https://github.com/bstabler/TransportationNetworks/tree/
master/SiouxFalls.

[42] A. Uffmann, Umlaufplanung mit dem Kanalmodell, Master’s Thesis, 2010.

156

https://timpasslib.net/
https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls
https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls

	Introduction
	What is LinTim?
	Installation and Requirements
	Connecting LinTim with a solver

	Installation Script
	Typical Usage: A Hands-On-Example

	Overview on the Planning Steps
	Stop Location
	Input
	Output
	Algorithms

	Line Pool Generation
	Preparation
	Input
	Output
	Algorithms

	Line Planning
	Preparation
	Input
	Output
	Algorithms

	Periodic Timetabling
	Preparation
	Input
	Output
	Algorithms

	Tariff Planning
	Input
	Output
	Algorithms

	Vehicle Scheduling
	Preparation
	Input
	Output
	Algorithms

	Delay Management
	Preparation
	Input
	Output
	Algorithms

	Integrated Planning
	Algorithms
	The Eigenmodel

	Detailed Description of Algorithms
	Stop Location
	Without a given infrastructure network
	For a given infrastructure network

	Line Pool Generation
	Creating a new line pool with the tree based heuristic
	Creating a line pool while restricting the duration of the lines
	Creating a line pool by k shortest paths
	Terminal-to-terminal
	Center-Periphery
	Line costs

	Line Planning
	Cost
	Direct
	Cost direct weighted sum
	Traveling time without frequencies
	Traveling time with frequencies
	Cost with traveling time bound
	Minchanges
	Game

	Timetabling
	Modulo network simplex algorithms
	Constraint propagation
	Abscon
	MATCH
	PESP-IP
	Cycle-based IP
	Phase 1 simplex
	Adaptions

	Tariff Planning
	General Remarks
	Flat Tariff
	Distance Tariffs
	Zones

	Vehicle Scheduling
	Mdm1
	Mdm2
	Assignment model
	Transportation model
	Network flow model
	Canal model
	Line-based
	Simple
	IP model

	Delay Management
	Propagate
	Integer-Linear-Programming based methods

	Integrated Planning
	Integrated timetabling and passenger routing
	Integrated timetabling and aperiodic vehicle scheduling
	Integrated line planning and timetabling
	Integrated line planning, timetabling and vehicle scheduling
	Robust Timetabling and Vehicle Scheduling Using Machine Learning
	Eigenmodel

	Auxiliary Algorithms
	Dataset Generation
	Input
	Output
	Algorithms

	OD Matrix Creation
	Input
	Output
	Algorithms
	Distribute from node demand

	Load distribution
	Input
	Output
	Algorithms
	Using the EAN

	Headway creation
	Input
	Output
	Algorithm

	PTN to EAN
	Input
	Output
	Algorithm

	EAN buffer activities
	EAN reroute passengers
	Tariff (Reference) Price Matrix
	Input
	Output
	Algorithms

	Rollout
	Input
	Output
	Algorithm
	Requirements and caveats
	Generating trips

	Delay generation
	Visualization
	PTN
	OD
	Loads
	Line pool
	Line concept
	Timetable
	Disposition timetable
	Tariff
	mapgui

	Interaction with VISUM
	Writing files for VISUM
	Reading a config file
	Reading the infrastructure
	Reading the PTN
	Reading the demand
	Reading stops and lines
	Reading a timetable
	Reading fixed lines
	Reading fixed times

	Evaluation
	Evaluation of the PTN Created by Stop Location
	Evaluation of the PTN
	Evaluation of the OD Matrix
	Evaluation of the Line Pool
	Evaluation of the Line Concept
	Evaluation of the EAN
	Evaluation of the Timetable
	Capacitated Routing

	Evaluation of the Tariff created by Tariff Planning
	Evaluation of the Trips
	Evaluation of the Vehicle Schedules
	Evaluation of the Disposition Timetable

	Overview of Supported Integer Programming Solvers
	Configuration Parameters
	General
	Stop Location
	OD
	PTN
	Line Planning
	Load Generation
	Load Visualization
	Periodic EAN
	Debug
	Timetabling
	Tariff Planning
	Vehicle Scheduling
	Delay Management
	Dataset Generation
	Integrated Models
	General
	LinTimPass
	LinTimPassVeh
	TimPass
	TimVeh
	TimVehToLin

	TimPassLib

	In- and Output Data
	Config
	Statistic
	Basis
	Additional load
	Change station
	Demand
	Demand geo
	Edge
	Edge forbidden
	Edge infrastructure
	Edge infrastructure forbidden
	Edge walking
	Existing stop
	Existing stop geo
	Existing edge
	Headway
	Load
	Node
	OD
	OD node
	Pool
	Pool cost
	Reference Price Matrix
	Restricted turns
	Restricted turns infrastructure
	Routings
	Station limits
	Stop
	Stop geo
	Terminals

	Line Planning
	Line concept
	Fixed lines
	Line capacities

	Timetabling
	Activities periodic
	Events periodic
	Fixed times
	Initial duration assumptions
	Timetable periodic
	Timetable for VISUM

	Tariff Planning
	Price Matrix
	Zones
	Zone Prices

	Vehicle Scheduling
	Vehicle schedules

	Delay Management
	Events expanded
	Activities expanded
	Timetable expanded
	Timetable disposition
	Delays events
	Delays activities
	Trips

	GTFS

	Datasets
	Configuration Parameters for Datasets
	Artificial Datasets
	Toy
	Grid
	Ring

	Datasets based on real world data
	Sioux Falls
	Lowersaxony
	Goevb
	Athens
	Bahn-01
	Bahn-02
	Bahn-03
	Bahn-04
	Bahn-equal-frequencies
	BOMHarbour
	Mandl

	Adding new datasets
	Adding a dataset from PESPlib
	Adding a dataset from TimPassLib
	Dataset generator

	LinTim Core
	Model
	Interfaces
	Classes
	Enumerations
	Package model.impl

	Input and Output
	Algorithm
	Utility
	Solver
	Exceptions

	Introduction to extending LinTim
	Logging
	Output from LinTim programs
	Log levels
	Error messages
	Info messages

	Cleaning

	Continous Integration
	Running the tests
	Adding test cases

	Changelog

