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Introduction to Spectral Theory in Hilbert Space

The aim of this courseisto give avery modest introduction to the extremely rich and well-
developed theory of Hilbert spaces, an introduction that hopefully will provide the students
with a knowledge of some of the fundamental results of the theory and will make them
familiar with everything needed in order to understand, believe and apply the spectral theorem
for selfadjoint operators in Hilbert space. Thisimplies that the course will have to give
answersto such questions as

What is a Hilbert space?

What is a bounded operator in Hilbert space?

What is a selfadjoint operator in Hilbert space?

What is the spectrum of such an operator?

What is meant by a spectral decomposition of such an operator?

LITERATURE:

English:

* G. Helmberg: Introduction to Spectral Theory in Hilbert space
(North-Holland Publishing Comp., Amsterdam-London)

* R. Larsen: Functional Analysis, an introduction
(Marcel Dekker Inc., New Y ork)

M. Reed and B. Simon: Methods of Modern Mathematical Physics I:
Functional Analysis
(Academic Press, New Y ork-London)

German:

* H. Heuser: Funktionalanalysis, Theorie und Anwendung
(B.G. Teubner-Verlag, Stuttgart)
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Chapter 1: Hilbert spaces

Finite dimensional linear spaces (=vector spaces) are usually studied in a course called
Linear Algebra or Analytic Geometry, some geometric properties of these spaces may also
have been studied, properties which follow from the notion of an angle being implicit in the
definition of an inner product. We shall begin with some basic facts about Hilbert spaces
including such results as the Cauchy-Schwar z inequality and the parallelogram and
polarization identity

81 Basic definitions and results

(1.1) Déefinition: A linear space E over K € {R,C} iscaled aninner product space (or a
pre-Hilbert space) over K that if thereisa mapping ( | ): EXE — K that satisfiesthe
following conditions:

(S1) (x|x)=0and (x|x)=0if and only if x=0

(S2) (x+y|2)=(x|2)+(y|2)

(S3) (axx|y)=a(x]y)

($4) (x1y)=Hx)

The mapping ( | ): EXE — K iscalled an inner product.

(S1)—(S4) imply  (keey)=(ay|x) =a(y[x) = a(x]y) and
(X]y+z)=(x|y)*+(x|2)

Examples:
(L)R" x=(x, ..., %) € R" y=(, ..., W) €R"
(XY):=Xay1+Xoyot ... +Xyn= inyi
£
2)C" x=(x, ..., %) C" y=(4, ..., ) € C"
K=Y Xy,
]Z i7i

The Cauchy-Schwarz inequality will show that (x|y) € C

@) x, yel  x=(x) , y=(y)i X, yje C
(x|y)::§_1xjy_j

it 2
Xe = X.| <oo
>
(4) Let Gya,b] denote the set of all continuous functions f:[a;6]

(flg):=[f(Hg(t) ct

Here also the Cauchy-Schwarz inequality will make sure that (f| g) isa complex number. An
inner product space E can be made into a normed linear space with the induced Norm

X[ 2:= 4/ (x|x) for x € E. In order to prove this, however, we need a fundamental inequality:
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(1.2) Theorem: (Cauchy-Schwar z-inequality):
Let (E,( | )) bean inner product space over K € {R,C}.

Then [ (x|y) |2< (x|X) (y1y) (or [(xIV) | < X[ y]), &l x,y € E.
Moreover, given x,y € E |(x]y) | = (x| X) (y|y) if and only if x and y are linearly

dependent.
Proof:
Case (1): if x=0, the inequality obviously is valid.
Case (2): for x+0, y € E, & € C we have:

0 < (y-ax|y-aex) = (y[y)-(aex | y)-(y [ ex)+(oex | &xx)
<= 0<(Yly)-(axx|y)-a (y|¥)+oxa (x| x)
(y|¥)

Choose oxt;:=——=, then
x|x
(y|¥) (x|y) x|y)y|x)
0< XYY X)
<(yly)- X[x )( |y)- xX|x )(yl X)+ xX|x )(X|X)(><|><)
—(yly)M@I(XIy)IZS(XIX)(ny) g.ed.
(x|x)

The inequality still remains valid if in the definition of an ,inner product” the condition
»(X [ X)=0if and only if x=0" is omitted

(1.3) Corollary: Let(E,( | )) be an inner product space (o¥er.
||x||::1/(x|x) for xe E is a norm on E.

Proof:

To show: (N1) |Ix||=0 and||x||=0 if and only if x=0
(N2) Jjax]=]a]-|Ix]|| for x e K
(N3) [Ix+yll < Ix|I+lyll

We only show (N3), (N1) and (N2) are easy to prove.

(N3) [x+y||*= (x+g| X+y) = (X| X)+(y2| X)+(><|2y)+(y21 y)
= X2 +2Re(XI Y)+Y[Z < IX[Z+]lyl“+2- | Re(X]y) |

< IX %42 (< Ty) [+IYIZ < X2 +2 X1y 1 +HIYIE = A+ g.e.d.

Alinear space E over K € {R;C} iscalled a normed linear space of K if there isa mapping
I|l.]l: E—R satisfying conditiions (N1) to (N3). ||.|| iscalledanormonE. (E,||.||) iscalled a
Banachspace if every Cauchy sequence in E convergesto some element in E. i.e. for every
sequence (Xn)n < (E,||.]]) with nlrinmoo || Xn-Xm|| =0 there exists x € E with Lin; [| Xn-x||=0

(1.4) Corollary: Let (E,( | )) be an inner product space, led|= (x| x)”. Givenx,y € E we
have || x+y||=||x||+|y|l if and only if y=0 or x=4-y for some 1>0.
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Proof:

If Ix+y[|=[Ix]|+]lyl and y=0 then ((1.3)) Re(x | y)=| (x| y) |=[Ix[l- Iyl = (X[¥)=[IX]I-[IY[l-
Theorem (1.2) = ax+By=0with | & |+| f|>0 = x and y are linearly dependent.

y+0 implies =0 and x:—éy. From | (X]y) |= (X]Y) :—é(y|y) we conclude 4 :—éz 0.
a a a
g.ed.
X)n< E | Xn-X||—0
(o< E 1Yy —0 = (Xalyn)— (X]y)

(1.5) Corollary: Theinner product ( | ) of an inner product space is a K -valued continuous
mapping on ExE, where E is taken with the norm topology determined by the inner
product.

Proof:

| (X]Y)— (Xo|Yo) | <] (X]Y)-(Xo|Y) [ +](X|Yo)-(Xo]|Yo) |
= | (X]y-Yo) | +| (X-Xo | Yo) | <[ XI|-[ly-Yoll || X-Xol| || Yol|
= 2||%-Xol| [ly-Yol| * | Xoll || Y-Yoll +1 Yol| | X-Xol| g.ed.

(1.6) Corollary:
IX[[=sup [ (x]y) [=sup [(X|y) ], if xe (E(])).

Ivl=2 Ivlst

We now examine two fundamental identitiesin inner product spaces. the parallelogram
identity and the polarization identity. We shall use the former identity to give a
characterization of those normed linear spaces that are inner product spaces

(1.7) Theorem: (parallelogram identity):
Let (E,( | )) be aninner product space. Then [[x+y||* +[x-y[|* = 2:[|x||* +2-]|y[|;
X,y € E.

Proof:

IX+Y (12 +][X-Y]|? = (x+Y | X+Y) + (XY | X-Y)
=(X[x) + (X]y) +(y[x) + (y|2y) + (X|>§) - (X1y) - (Y[X) + (Y1Y)
=2 (X|X) +2- (YY) = 2[IX]|“ + 2]yl g.e.d.

{Geometrically the parallelogram identity says that the sum of the squares of the lengths of a
parallelogram’s diagonals equals the sum of the squares of the length of ots sides.

A similar direct computation also establishes the polarization identity which allows one to
express the inner product in terms of the norm}



Functional Analysis Page 6

(1.8) Theorem: (polarization identity):
Let (E,( | )) bean inner product space over K € {R,C}.

Pxevl® _[x=y)° if K =R
a2 2
Then(x|)’):[x+ 2 x — 2 -
Y X =Y 4 Ey|| HifK:C
72170 :

Proof by simple computation

The next result characterizes those normed linear spaces whose normisinduced by an inner
product.

(2.9) Theorem: If (E,|.|]) isanormed linear space over K € {R,C} such that
[x+y||?+]|x-y||? = 2-||x||?+2-||y||? for every x,y € E, then there exists an inner product
( | )onE with (x|x)” = ||x|| for x € E.
2
x+y|" _[x-y

2 .
+i
2 2 E% 2

To provethat (x|y) isan inner product.

a) (x[x):=|x| +i[% 5

- +—E@xn o Eﬁnxnz
X+z X—-Z

b (x[y)=([¥) (easyto ChGCk!)
2 T _
T DA
2 2

=Loce o +ly o) (o +ly-2P)

Proof: for K=C:

'
]

2+i[%( 2

Define (x|y):=

2

_x—|D(2

_ ‘(1— i

0 (xtyl|2)=(x|2) +(yl2)

2
Re(x|z) + Re(y|2) = xrz _

araIIe|oam

pldenuz 4?”X+Z+V+Z” _||X z-y-7|° H— B;”x z+y-7|° —||x+z y+z||H
:£%x+y+ 2+ x -yl x+y 2_ X -y E

2 2 2 2 2 H

= Re(x|2) +Re(y|2) ——Re% z%
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Put y=0: Re (x| 2) :% Re

z@forall x e E.

Replace x by x+y:

= Re(x+y|z):%Re ty

z%: Re(x|z) + Re(y[z)

The sameway: Im(x+y|z) =Im(x|2) + Im(y|2)

= (xty[2) = (x]2) + (y[2)

d) toprove (x-x]y) = x-(x|y) for ae C:
@x]Y) =(XIy) + (x]y) =2(x]y) O (mx]y)=m(x]y);meN

induction
(x|y)— == (XY) by using the definition
:>(m-X|y)=m-(X|y);meZ

1 1 1
xIy) = (N x]y) =n(Ex]y) = S(x|y) = (Zx]y)
n n n n

= (gx]y) =a(x]y);qeQ

IfxeR,qeQ

alx+y 2 B aD<—y

2 2

Re (@-x]y) =Lip; Re (gx]y) =Lip;q-Re (Xy) = x-Re (x]y)

|Re (a-x|y) — Re (ax|y) | <

‘P&+HI‘MW y|

Similarly Im (ax|y) = o-Im (x]y)

Finally: (ix]y) = ... = i(X]y) g.e.d.

This theorem asserts that a normed linear space is an inner product space if and only if the
norm satisfies the parallelogram identity. The next corollary is an immediate consequence of
this fact

(1.10) Corollary: Let (E)|.||) be a normed linear space o¥er {R,C}. If every
two-dimensional subspace of E is an inner product spac&quben E is an inner
product space ové«.

If (E,]].|]) isaninner product space the inner product induces a norm on E. We thus have the
notions of convergence, compl eteness and density. In particular, we can always complete E to

a normed linear space E inwhich E isisometrically embedded as a dense subset. In fact E is

also an inner product space since the inner product can be extended from E to E by
continuity

(1.11) Definition: Let(E,( | )) be an inner product space o¥ee {R,C}. E is called a
Hilbert space, if E is a complete normed linear space (= Banach space) with respect
to ||x||:=(x|x)*™ x € E.
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8 2 Orthogonality and orthonormal bases

In this section we study some geometric properties of an inner product space, properties
which are connected with the notion of orthogonality

(1.12) Definition: Let (E,( | )) bean inner product space, X,y € E, let M,NCE be subsets.
1) x and y are called orthogonal if and only if (x|y)=0  (x1y)
2) x and y are called orthonormal if and only if ||x||=|ly||=1 and xLy
3) M and N are called orthogonal, M_LN, if (x|y)=0 for x e M,y € N
4) M iscalled an orthonormal set if ||x||=1 for x € M and (x|y)=0 for x+y, ye M
5) N iscalled an orthogonal set if (x|y)=0 for any x,y € N, x£y

Facts. 1) MIN = MNN c {0}
2) x=0 isthe only element orthogonal to every y € E
3) 0« M if M isan orthonormal set

A criterion for orthogonality is given by the following theorem

(1.13) Theorem: (Pythagoras):
Let (E,( | )) bean inner product space over K € {R,C}. Let x,y € E.
1) If K=R thenxvy if and only if ||x+y|%= ||x||* + ||y||?
2) If K=C then a) (x|y) e Rifandonlyif ||x+i-y[|? = [|x]|% + ||y|I?
b) xuyif and onlyif (x|y) € R and [|x+y[|*= [[x[|* + ||y||?

Proof:
ad 1) [|x+y[|?= (x+y | x+y) = (X[ X) + (Y[ %) + (X|Y) + (YY) = X2+ 2:(x|y) + [[y])?

a12) 9 if (x|y) € R = x+isyl|* = (criy [ x+i) = (|x) +(y[X) = bx[y) + Gy i)
= 112 + MY [0 [) = Py =[x+ 1)
b) if (xy) € R andx+y|[*= |x|[* + ly* O (x|y)=0

if (x| y)=0 = routine computation g.e.d.

(1.14) Definition: Let (E,( | )) be an inner product space, lettH be a subset. Then the set
M*:={x € E: (x| y)=0 for all ye M} is called anorthogonal complement of M.

(1.15) Theorem: Let Mc(E,( | )), (E,( | )) inner product space. Then
1) M*is a closed linear subspace of E
2) Mc(MY)'=M*+
3) IfMis a linear subspace of E, themM={0}

If (E,||.||) isa normed linear space, x € E, MCE afinite dimensional linear subspace then
there exists a uniquely determined element yo € E such that ||X-yol||= 'QL IX-y||. Yoisusually
y
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called the element of best approximation in M with respect to x. The following result
generalizesthisfact in a certain sense
(1.16) Theorem: Let (E,( | )) bean inner product space. Let MCE be a non-empty subset.
LetxeE. If
1) M iscomplete, i.e. every Cauchy sequence (Xn)n. n&M has alimit Xo € M
2) M isconvex, i.e. A-x+(1-4)-y € M for x,y € M, 4 €[0,1]
then there exists a uniquely determined element yo € M such that ||X-yol|= LQIA |X-Y|

Proof:

If x € M, nothing isto prove.
If x ¢ M, define 6::% IX-y||, then there exists (zn)n. N&M such that lim||x-zy||:=6.
y n-o

If (Yn) n. N\&M isasequence with lim || x-yn||=0 then we show that (y,) n. n IS a Cauchy

sequence.

1 1 1
YnYm €M = E(yn+ym) eM= 5£||><-§(yn+ym)ll= > || X-Yn+X-Ym) |

1 1
< |IX=Vnll+= ||%- 5> 0
5 [ X-Yn| 5 | X=Yml| o

= nlrinrpw ||x-%(yn+ym)||:6. Using parallelogram identity we see

21Xyl 42 [ X-Yim ]| * = [|(6-Ym)+(X-Ym) | + 1 (¢-Yi)-(x-Yan) | Z = 1| 2X-(YrrtYm) [|* + [[Yr-Yel|®
= 4 LI 2y

= (m— o) 48°=4.6"+ lim |ywym|® = lim |yrym|=0

= (Yn)n Cauchy sequence in M | |

= since M complete there exists yp € M such that Liﬂn; | Yn-Yml|| =0

O<[1X-Yol <[ X-Ynll +yn-Yoll — O

= ||X-Yo||=0. Suppose, there are elements y1,y> € M with ||x-y1 ||=||X-y2||=6.
We consider the Cauchy sequence y1,Y2,Y1,Y2,... . From this we conclude y;=y.. g.ed.

Snce every linear subspace of a linear space is convex, we get

(1.17) Corollary: Let (E,( | )) beaninner product space, MCE be a non-empty complete
subspace, x € E, then there exists a unique element yo € M with || x-yo||= 'QIA |X-y||.
y!

(1.18) Corollary: Let (E,( | )) be aHilbert space, @+McE be a closed convex set, x € E,
then there exists a unique element y, of best approximation: ||X-yo||= 'QIA IX-yI|.
y!

The element of best approximation in a complete subspace of an inner product space
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(E,( ] )) can be characterized as follows

(1.19) Theorem: Let (E,( | )) beaninner product space, let x € E, MCE be a complete linear
subspace in E. Let yo € M. Then || X-yol|= 'QIA |Ix-y|| if and only if X-yp € M".
y!

Proof:

f—

Suppose y< M with [[X-Yol|= iygg‘ﬂ 1=y

To show: (x-y|y)=0 for every y= M.
Suppose ¥ M, y=0 andx=(X-yo | y)=0.

Consider y:y0+<x-L:> y1 € M and||x-y1||*= (x- yo-O(-L | X- yo-O(-L
(vy) (vy) (vy)
2
a
= %-Yol|*- o <||x-yo||? contrary to the fact thaitx-yo||=inf ||X-y|| = X-yo € M*.
(vy) YoM
"<:“:

(113

)
XYoe M, yeM = = [Ix-Yoll® + [IYo-y [ = %-Yol|?

X-YotYo-Y
N7 N —
om® oM

= [xyol =inf |x-y]| ge.d.

(1.20) Corollary: Let (E,( | )) be an inner product spacg+M<E be a complete subspace.
Let xe E. Then there exist two uniquely determined elemants= M, x, € M*

such that x =, + X, ..

(1.21) Definition: Let E be a linear space ower{R,C}, let F and G be linear subspaces of
E. E is thadirect sum of F and G if
1) for each x E we find x € F and x € G with X=x+Xg
2) FG={0}
In this case we write ExBG.

It follows easily from the definition that the decomposition x=y+z isunique, if E=FpG

(1.22) Corollary: (orthogonal decomposition theorem):
Let H be a Hilbert space, &H be closed subspace. Then H&M".

Proof:

M* is a closed subspace. SupposeMe&M-, then (Hh)=0 hence h=0. Thus M M* = {0}.
(1.20) completes the proof.



Functional Analysis Page 11

It should be remarked that the hypothesis of the preceding corollary cannot be weakened, i.e.,
the corollary may fail if either M is not closed or H is hot complete.

It is apparent from the orthogonal decomposition theorem that, given a closed linear
subspace M of a Hilbert space H, there exists precisely one linear subspace N of H so that
H=M@N and M L N, namely N=M", and that this subspace N is closed. If, however, we drop
the orthogonality requirement, then there may exist many linear subspaces N with H=M®N.
We now study orthonormal sets and in particular orthonormal basesin a Hilbert space

(1.23) Theorem: (Bessel inequality):
Let (E,( | )) beaninner product space, | be afinite or at most countable set of
integers. Let (y;); .1 be an orthonormal set in E.

Then for eachx € E g‘(x|yj)‘2 < |Ix||%
J

Proof:

For any finite subset 1,1 we have

X = (X|yj)yj :H - (X|yj)yj
Rl i

2

0< g.ed.

- g(x|y])y] E:HXHZ'

(xly;)

(1.24) Corollary: Let (E,( | )) beaninner product space, MCE be an orthonormal set. Then
for each x € E there exist a most countably many elementsy € M such that (x| y)=0.

Proof:

Suppose there are m+1 elementsyy, ..., Y1 € M sothat |(x|y,-) |>eforje{l,.., mtl}, then

Fix x € E, let £>0, then there exists m N so that m< <m+l.

m+1
Z‘(x|yj)‘2 > (m+1)-¢? > ||x||% is contrary to Bessel inequality. For every x < E you find at
]:

most afinite number of elementsy € M, sothat | (X|y) |> e. If one chosese :%, k € N, the

proof isdone, |(x]|y)]|=+O0.

(1.25) Lemma: Let (H,( | )) beaHilbert space, let (x;); n be an orthonormal systemin H
and Iet((x,-),-ENC K, then

1) Za [X; convergesin H if and only if Z‘a‘ <o

2) HZU X,

=3 Jef
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3) If thesum Zai [X; convergesin H then this convergence is independent of
]:

order
Proof:

ad 1)
Consider y = Zai [, : since
]:
2

o =yal® =3 a5 =Y a; | = > a; X
= =

j=m+1

2

:%Zaﬁ X,

J
m+1

Sa D‘i%:i i“iﬂk[(xi‘xk):jimjl“i\z

j=m+1 [ j=m+lk=m+l

(yn)n isa Cauchy sequence in H if and only if (am)m With an:= Z‘ai ‘2 is a Cauchy sequence
]:

inK.
ad 3)
]Zl‘a,-‘z <o = ]Zl‘a,-‘z = ]ZI‘O',T(])‘Z , . N—N permutation. g.ed.

(1.26) Theorem: Let (H,( | )) be aHilbert space, McH be an orthonormal set. Then
1) for every x € Hthesum gm(x|y)y converges in H where the sum istaken over all
y

y € M with (x| y)+0
2) x= Y (xy)y ifxeM
2.

3 x= gm(x|y)y if X € span(M)

Proof:

ad 1)
Given x € H, there are a most countably many y € M with (x| y)+=0. Bessel's inequality

. | 2 < 2
implies y;‘(X|Y)‘ X

Lemma (1.25) shows thagm(x|y)y is convergent in H to some elemepexH.
y

ad 2)
If x € M = x=(X| X)x= gm(x|y)y =Xo
y

ad 3)
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If X € span(M) then there areyy, ..., ymcM with x = Za 0y,

= ZM(XIy)y ;EZ y, EVE{ ;Za dy,ly)y Za E(y\y Za ¥ =x

Consider the linear operator T: H—H with X — gm(x|y)y T is continuous since

2
(x, - x gm‘x —x2|y ||xl—x2||

[T0c =) =
y

From this one can easily deduce that x = gm(x|y)y if X e span(M). g.ed.
y

We now can make a meaningful definition of orthonormal basis

(1.27) Definition: Let (E,( | )) be an inner product space. A subset MCE is called an
orthonormal basisfor E if
1) M isanorthonormal set in E

2) for each x € E we have x = gm(x|y)y
y

We don’t need to mention the linear independence in the definition explicitly since an
orthonormal set of elements is always linearly independehtislfa Hilbert space, then an

orthonormal seMcE is an orthonormal basis fdg if and only ifE=span(M) .
Orthonormal bases in a Hilbert space can be characterized as follows

(1.28) Theorem: Let (H,( | )) be aHilbert space, MCH be an orthonormal set. Then the
following statements are equivalent:
1) M isan orthonormal basisfor H

2) For eachx e H wehavex = gm(x|y)y (Fourier expansioh
y

3) Foreachx e H we have|jx|” = ;A‘(x|y)‘2 (Parseval’s relatiol
y

4) For each x,xe H we have (xx") = ;M(x|y)(y|x’) (Parseval’s identity
y

5) (x|y)=0foralyeM implies x=0
6) M ismaximal orthonormal set

Proof:

1) = 2) isevident

2) = 4) consequence of continuity

4) = 3) take x=x'

3)= 5) if x e H with (x| y)=0 for all ye M = ||x||%*= gm(x|y)y:0:> x=0
y
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5) = 6) Suppose My is an orthonormal set with McMy, suppose G+xo=Mo, Xo ¢ M
= (Xo|y)=0 for al y € Mg hence (x| y)=0 for all y e MCM, = Xo=0 = contradiction
6) = 1) Suppose span(M)+H, then xo ¢ span(M), X0, Xo € H, span(M) is a proper closed
subspace of H. X € span(M)" = (Xo|y)=0 for all y € M: contrary to the fact that M is
maximal. g.ed.
(1.29) Definition: Let (E,( | )) be an inner product space, MCE be an orthonormal set,

let x € E. Then the sum gm(x|y)y is called the Fourier seriesof x with respect to
y

M. The numbers (x| y) are called the Fourier coefficients of x with respect to M.

The question whether a Hilbert space has an orthonormal basis, is answered by
(1.30) Theorem: Every Hilbert space has an orthonormal basis.
Proof:

Consider the collection % of orthonormal setsin H. We order % by inclusion, i.e. we say

M1<M; if M1C&My, M1,M, € €. €is partially ordered; it is also non-empty sinceif x e H is
X
|

be alinearly ordered subset of . Then U M, isan orthonormal set which contains each M,

any element of H, x+0, the set Mo consisting only of isaorthonormal set. Now let (M),

and is thus an upper bound, for (M,),. Since every linearly ordered subset of ¢ has an upper
bound, we can apply Zorn’s lemma and conclude #¥hhaas a maximal element, i.e. an

orthonormal set not properly contained in any other orthonormal set.
g.e.d.

(1.31) Theorem: Any two orthonormal basis M and N of a Hilbert space have the same
cardinality.

Proof:

If one of the cardinalitie$M | or |N| is finite, then H is a finite dinmensional Hilbert space.
So supposeM |= o and|N|=w. For xe M the set g={y € N: (x|y)+0} is an at most
countable set. HencU S, = N, if not, there would exist& N with ze USX , i.e. (Zx)=0
xOM xOM
for all xe M and thus z=0 contrary to the fact that the zero element does not belong to a basis.
Since N=| JS, we have|N|=]| [JS, |<|M||N|=|M|. The same argument gives
xOM xOM

M |<|N], which implies equality. g.e.d.

(1.32) Definition: Let (H,( | )) be a Hilbert space. If M={xj € I}<H (I = index set) is an
orthonormal basis of H, then tdemension of H is defined to be the cardinality of |
and is denoted by dim(H).

Examples:
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1) 1L={(&)jon: ;‘51‘2 <o} isaHilbert space
j
xly:=Y & &= Oj
j; i = J
2) L ={f: [a,b]—»C:]'|f(t)|2 dt <o} (f-g)::If(t) [(t) ot
One useful result involving this concept is the following theorem

(1.33) Theorem: Let (H,( | )) be aHilbert space. Then the following statements are
equivalent:

1) Hisseparable (i.e. there exists a countable set NcH with N:H)
2) H hasacountable orthonormal basis M, i.e. dim(H) = [N| =)o.

Proof:

Suppose H is separable and let N be a countable set with H=N. By throwing out some of the
elements of N we can get a subcollection Ny of independent vectors whose span (finite linear
combinations) isthe same as N.

This gives H=N =span N = span N, . Applying the Gram-Schmidt procedure of this
subcollection No we obtain a countable orthonormal basis of H. Conversely if M={y;, j € N}
is an orthonormal basis for H then it follows from theorem (1.28) that the set of finite linear

combinations of the y; with rational coefficientsis dense in H. Since this set is countable, H is
separable. g.ed.
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8 3 Isomorphisms

Most Hilbert spaces that arise in practise have a countable orthonormal basis. We will show
that such an infinite-dimensional Hilbert space s just a disguised copy of the sequence space
l,.To some extent this has already been done in theorem (1.28)

(1.34) Theorem: Let (H,( | )) be aseparable Hilbert space. If dim(H)=c (if dim(H)=n) then
there exists a one-to-one (=injective) mapping U: H—l, (U: H—(K",( | )))

[(x|y)2 = ij [y_] furx =04, ..., %), Y = (W, ..., W] with the following properties:
]:
1) U(x+y) = Ux+Uy
U(4x) = 4-Ux for all x,ye H, 1 €K
2) (Ux]|Uy)2 = (x|y), in particular||Ux||o=||x]|| for x,ye H

Proof:

Suppose: dim(H)=, let (y);. n be an orthonormal basis of H. Takgj(e < I»
(e.=(1,0,...,0), &(0.,...,0,1,0,...,0) to be the canonical basis.iéke xe H,

X= i(x|yj) [y, , define U: H-l; to be Ux::§1 (X]y;) &, Uyi=e
1= 1=

2(x|yj)tejg
22()4)/;) |]X|Tk)|1ej’ek)2

Since||x||*= Z‘(X|y,~)‘2 <oo, [|Ux|?= (Ux|Ux)= EZ(XW;‘) (&,
= 1=

5 Gy ) = 3 oy ) =

= UxI=Ix|
(Ux| Uy) =E2(x|yj> Eej‘ > Oy, E: > 6y T = 3 () Ty, ) = ()
= 2) for dim(H) =

U is one-to-one (=injective) since Ux=Uy implies
Ix=y|* =(x-y}x-y)= (Uex - y)|U(x - y))2 =|ux - y)|||22 =||lux - Uy|||22 =0 hence x=y

U is onto (=surjective), takex()j.n < >, definex = Zai y,, xeH
]:
= Ux=Y a & =(&)jn;
]Z I I

also (dy,) =3 (@ yly.) =Y @, Wy =a, qed.
IE IE
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This theorem clarifies what is meant by ,disguised copy"“. Intuitively, it says that by means of
the mappindJ we may identify the elementstbaindl, in such a way that each of these
Hilbert spaces appears (algebraically and topologically) as a perfect copy of the other

Example:

Lo=(f: [f|" dx exists)
(f|g)::If Bjdx Lo |~ with N={f: ||f||=0} isaHilbert space

(1.35) Definition: Let Hy, H2 be Hilbert spaces over K. Let DCH be alinear subspace.
A mapping A: D—H, iscalled
1) linear, if A(A-X+u-y)=A-Ax+u-Ay
2) isometric (or anisometry) if (Ax|Ay),, = (X]y), foral x,yeD
3) an isometric isomorphism of H; onto Hy, if D=H;, A(H1)=H,, A islinear and
isometric
4) an automorphism if Hy=H, and A is an isometric isomorphism
H, and H, are called isometric isomorphic if there exists an isometric isomorphism
T: Hi—Ho.

Obvious observations:

A ‘Hi—H> linear, isometric, then A is one-to-one:

IX-y[12= (x-y | x-y) = (A(x-y) | A(x-)) = (Ax-Ay| Ax-Ay) = | AX-Ay|?

A: H;—H, isometric isomorphism, then A™: H,—H; is an isometric isomorphism.

(1.36) Corollary: Two separable Hilbert spaces are isometric isomorphic if and only if they
have the same dimension.

The statement of this corollary remains if the word ,separable” is omitted
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Chapter 2: Bounded linear operators

In this chapter we will study mappings of some subset D of a Hilbert space H+Z into some
other Hilbert space H'. In this context we get confronted with two familiar aspects of such
mappings. the algebraic aspect iswell taken care of if the mapping A in questionislinear. In
order that this requirement should make sense it is necessary that the subset DCH on which A
is defined be a linear subspace of H.

In order to be able to take care of the topological aspect we study two concepts for linear
mappings which will turn out to be closely related with each other: boundedness and
continuity

81 Bounded linear mappings

(2.1) Déefinition: A linear mapping A: DcH;—H (H1,H2 Hilbert spaces, DcHj linear
subspace) is called bounded if there is M>0 so that ||Ax||<M-||x|| for all x € D.
If A: D—H> isbounded and D+Z, then the non-negative number

A= = sup ”||x||” is called the norm of A.

x¢0

25 (D,H>) denotesthe set of all bounded linear operators A: DcHi—H>

{The definition of a bounded linear mapping can easily be extended to the case where Hy,H>
are normed linear spaces}

(220 Lemma: If A: D€H;—H, isabounded linear mapping, then
1) |All=sup|Ax] = sup|Ax|

= <t

2) ||AX||§||A||-||X|| foral xe D

Examples:

1) U: H;—H> be an isometric isomorphism, U is bounded
IU[[=1 and (Ux|Uy)=(x1y)

2) Let McH be a closed linear subspace of the Hilbert space H. Given x € H, define
Pv: H—M, x—Pux (PuX is the unigue element of best approximation in M), then
Pux=x if x € M. Py’=Py
Py islinear: xe H = x=xy + X,

X+Y=Xy +X 0+ Yy Y0 =Xy +Yy) (X0 +Y,,0)
= Py(x+y)=xy +y, =PyXx+R,y
also: Py(/x) = A-Pux
2 2 2
2[xy[" =[P O [Py ] <2

P =+, [ =l # e,
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— ||PM || =1 since PuXy=Xm; Xm € M

Py is linear and bounded, Py?=Py, Pu: H—M isonto. Also |d-Py: H—M-" is linear,
(1d-Pw)?=1d-Py , |[ld-Py|=1

(2.3) Déefinition: Let Hi,H, be inner product spaces, let DCH; be a subset.
A mapping A: D—Hs is
1) saidto be continuousat o € D if for every £>0 there exists >0 such that
| A-Xo-A-X|| < & for al x € D with || x-Xo||<5
2) saidtobe continuouson D if A iscontinuous at every point of D

This definition can also be extended to the case where Hi,H, are normed linear spaces. The
same istrue for the following characterizations in case of linear mappings

(2.4) Theorem: Let Hi,H, be inner product spaces, let DcH; be alinear subspace. For a
linear mapping A: D—H, the following statements are equivalent:
1) A isbounded onD
2) A iscontinuouson D
3) A iscontinuous at xo=0
4) For every sequence (xn)s=D with lim || x,[|=0 we have lim || A-xy|| =0

5) For every sequence (X,)r=D converging to some Xo € D we have
lim || A-Xn-A-Xo||=0

Proof:

1) = 2):
A bounded implies the existence of M>0 with || A-x||<M-||x]|| for all x € D, hence
IA-X-A-y[|=[| A-(X-y) | <M- [ x-y|| implies 2)

2) =3
obvious, since x)=0< D

3) =4
Given a sequence (X,)n=D with lim ||x,||=0; given ¢>0, there exists n, € N so that ||x,||<d for

n>n,,  chosen as in definition (2.2).
Then ||Axa||< ¢ for al ns which gives lim || Ax,||=0

4) = 5)
simple, if one considers (Xn-X)n. N
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5) =1
Suppose A is not bounded, then for every n e N one can find y, € D, y=0 with
| A-Ynl| >0 [ Yall, define zy= 0 = | A-zp||>n?, consider X = 20
[yl n
z
= lim ||Xn||=|imM:O, but || A-Xn||>n. g.ed.
n- o n- o n

As soon as one thinks of a linear mapping one also has to think of its particular domain. The
following example indicates that this may have something to do with unboundedness of the
mapping in question.

Examples:

H=l,, D:={ (Xx)k - n € l2: Xx+0 for a most finitely many k € N} isalinear subspace
A: D—l; A(Xk):=(K-X)k, A islinear,

=k

E

=[1(k-Opdk=nlI= ] A is unbounded

: a
take Q:(éjk)ke N with 6jk: E)

A

On the other hand, any bounded linear mapping A: DcH;—H, can be extended to a bounded

linear mapping A D - H ,, S0 the domain of bounded linear mappings can always be
assumed to be a Hilbert space

(25) Theorem: Let Hi,H, be Hilbert spaces, let DCH; be alinear subspace. For every
bounded linear operator A: D—H, there exists a unique bounded linear operator

A: D —H,with
1) Ax=A-xforxeD and
2) 1A =IIA]

Proof:

Let X € D, then there exists a sequence (Xn)n. N&D with lim ||xn-§ |=0. The sequence

(A-Xn)n -~ isa Cauchy sequence in Hz since || A-Xn-A-Xm||=[| A-(Xn-Xm) [ <[ Al [ XaXm|| -
Since Hy is complete, (A-Xn)n. n CONVergesto some element y- in He. If (yn)=D with

im [ ymxnll, then [ A-yn-A-Xall <[| Al [ Ya-Xal <[ AL (e +[XaX][) -~ O

Define A: D —H, by A-X:=limA-x, if Iim||xn-§||:0, A islinear (easy to verify!)
A isbounded since || A-Xa[|<||A |- [|Xall @nd lim | [|Xal-|| X || | <lim [|Xq- X |=0 imply

I A-x||<[|A]- x || which gives || A |<||A].
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On the other hand || A |=sup|| A X||>sup ||A-X||=||All
xOD xJD
I¥=1

— 1) and 2)

Uniqueness of A:
If B: D —H;isabounded linear operator on D with B-x=A-x for x € D, take x € D, choose
sequence (Xn)n. N&D with lim ||Xq- X || =0,

then ||B- X - A - X ||<|| B+ X -B-Xq[| +[|B-Xq A + X [|=[| B- X -BeXq | +[| A-Xe- A - X ||
<IBI- | X Xall [ All-| XXl - O. g.ed.

(2.6) Lemma: Let Hy,H2 be inner product spaces, let DacH;, DgcH; be linear subspaces.
If A: Dao—H, and B: Dg—H, arelinear, then A+B: Da N Dg — H; defined by
(A+B)x:=Ax+Bx and A-A: Da—H; defined by (AA)(X):=A-Ax are linear. Let DccH>
be alinear subspace, C. Dc—H3 be alinear operator if Hs is another inner product
space, then the operator C-A defined by (C-A)-x:=C-(A-x) for al x € Da with A-x €
Dc islinear aso.

This theorem shows that in general case we ought to be careful about the domains of these
operators

(2.7) Déefinition: Let Hy,H, be inner product spaces. DacH1, Dg<H; be linear subspaces.
A: Dp—H; and B: Dg—H, are said to be equal if Da=Dg and A-x=B-x for x €
DA:DB.

(2.8) Theorem: Let Hi,Hz,H3 be inner product spaces, DacH;, DscHi, DccH> be linear
subspaces. Let A: Da—H,, B: Dg—H> and C: Dc—H3 be bounded linear operators
then
1) A+BlI<[|Al+]B]]

2) NAAl=1A]-IA]
3) IICA[<IICl-IAl

Proof:

For x € Da N Dg We have ||(A+B)x| <[ Ax||+]|Bx[|<([[A[|+]|BI|)x.
For X € Da we have [|(ZA)X[[= [ A ]-[|AX]I<] A ]-[|All-lIX]]
For x € Da with Ax € D¢ one has || CAX||<||C||- JAX||<|| ClI- [|A - 1 X]I g.ed.

(29) Theorem: Let Hi be an inner product space, H, be a Hilbert space, DcH; be linear
subspace. The set 2,(D,Hy) of all bounded linear operators on D is complete (Banach
space) with respect to ||A|| for A € 2,(D,H>).
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Proof:

Let (An)n. NS 2b(D,H2) be a Cauchy sequence, i.e. lim [|As-Am||=0. Consider (An-X)n. N,

x € D, (AnX)n isa Cauchy sequence in Hz since || An-X-AmX|| =] (An-Am)-X|| <[ An-Aml] - || X]|
which convergesin Ho.
Define A: D—H; by A-x:=limA.-x for x € D. A islinear and bounded, because of

n- oo

IAX[[=1im | Anx]|<lim || An|l- X[ <M-[x]|

It remains to show that lim ||Anr-A||=0:
Given >0 we can find n, € N such that ||Ay-Am||< ¢ for dl nm> n,
= X € Dt [[AnX-Am X[ <[| An-Anml|- [ X]| <e-[[X]|

O [JA-Xy-A-X| <e||x]| for al n>n,. g.ed.

N

Two special cases. 1) 2u(H,H)
2) 2u(H,K)=:H' (dual of H)

(2.10) Definition: Let H be a Hilbert space,dMH be a subset. A mapping A—BH is called
1) an operator in H
2) an operator on H, if D=H

(2.11) Theorem: Let H be a Hilbert space. Let {A_n and (B)..n be sequences of
bounded linear operators on H witlm A=A (i.e. lim||Ar-A||=0) andlimB,=B.

ThenlimA,-B,=A-B.

n- o
Proof:

|A-B-ArBn|[<[|A-B-ArB||+|| AnB-AnBnl <[ A-An||-|| BI|+]|Anl|- | B-Bn|| and
[ IARI-[IAT <[l An-All. g.e.d.

(2.12) Definition: Let Hi,H, be Hilbert spaces. An operatoreR,(H1,Hy) is called
invertible if there exists an operatoré®y(Hz,Hy) such that AB=Id, and BA=

Id,,, . We denote the inverse of A by'A

(2.13) Theorem: Let Hy,H, be Hilbert spaces. An invertible bounded linear operator
A: Hi—H; is one-to-one and maps Binto H. The inverse of A is unique.
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Proof:

Suppose A and B are inverses of A. Then we conclude

Bx = 1dyBx = (A*A)Bx = A (AB)x = A ldyx = Ax for all x € H,

FromAA™= Id,,, we conclude that A maps H1 onto Hy; for every y € H, we have

y = (AA™M)y = A(A"y). From AA™ =Id,, we deducethat A is one-to-one:

for Ax;=Ax, we get x1 = (A*A)xg = A (Ax1) = A AX) = (ATA)x = X2 g.ed.

Remark:

Consider ,={ (Xn)n. n: 2|xk|p <w}, define

1
||X||p:=[Hz|xk|p[B] for 1<p<eo, then I,'=l4 is thedual of I,

1+1:1

—
lp =l q_lp

l,'=I_ but ¢=l;. We will show H'=H thus H"“=H'=H

(2.14) Definition: Let H be an inner product space oker{R,C}. A linear mapping of H
into K is called dinear functional on H.

The set of all bounded linear functionals or2k5{H,K), will be denoted H* and is
called thedual of H.

T: X=>Y T Y = X

y' Ty with Ty (X)=<x,T'y>=<Tx,y">

Theorem (2.8) in particular statesthat H* is a Banach space. The following theorem shows
that there is a one-to-one correspondence between a Hilbert space and its dual

(2.15) Theorem: (Riesz-representation theorem):
Let H be a Hilbert space ovEr={R,C}.
1) If x € H, then {: H—K defined by f(y):= (y|X) is a bounded linear functional on
H with [[fx[| =[]
2) Given x'e H'=2,(H,K). Then there exists a unique elemertkt such that£x’,
l.e. (y|X)=x(y) for ally € H. Also ||x]|=]|X"]|.

Proof:

ad 1)
fx(X1-y1+ X2 Y2)=( X1 Y1+ X0 Y2 | X)= X1 (Y1 | X)+ (Y2 | X)=afx(Y) + Xofx(Y2) = fx is linear.
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W) =1 D) [<IYIIXI = T1x]1=sup [ fx(y) [ <[IX]

Iyl=1
and also [|x[|*= (x| x) = | f(x) |
ad 2)
We consider N={y € H: x‘(y)=0}, N is a linear subspace of H, N is closed since for any
sequence Yn.n in N with Lim lyn-y||=0 we have

[XY)-X(Y ) [ =1 X(Y-y) [ZIXEN-Y-ynll = O 5 n— 0.

x'(y)= limx‘(yn)=0.
If N=H, i.e. x'(y)=0 forall y € H, then take x=0. x'(y)=0=()0).
If N=0, then there existsx H, X ¢ N, | Xo[|=1, %L N. As a consequence we have 0.

Xy) . X
X)) X))

ON ONP

Define x:=x’(X,) [X,, then xL N. For every y= N we have yy -

sincex’g/— x’(y)2 D(H:x’(y)——x,(y)2 D(’(x):x’(y)——x,(y)2 DTXO)D(’(XO)ZO.
X)) F X' (x,)| X (x,)|

= (YIX)=

%/_ X' (y) D(‘Xg_'_ X'(y) ﬂX|X):0+ x'(y) ﬂX|X): X’(y)zD(’(XO)D(’(XQ)HXO|XO)
L

o e X xo)° X o) X (xo)
= x(y) for y € H.

= fy) = (y[x) =X(y) € N = fi=x",

Unigueness:

If X e H such that (yX)=x‘(y) forye H= (y| X-X) = (y| X)- (Y| X) = X'(y)-x‘(y) = 0
= X=X. g.e.d.
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8 2 Adjoint operators

Not every bounded linear operator A on a Hilbert space H has an inverse, but A always has a
twin brother A* of some other sort, connected with A by the equation (Ax |y) = (x| A*y) for
X,y € H.

To seethis, let H be a Hilbert space over K € {R,C} and A a bounded linear operator on H.
For given x € H we define x' by x'(y):=(Ay | x) for y € H. Clearly x* is bounded linear
functional on H, i.e. x* € H', sincefor all y € H | X'(y) |=|(Ay | X) | <||AY [[IX]<I[A] Y]] X]]
hence ||x" ||<||A|l]|X]|. Thus by the Riesz representation theorem (2.14) there exists a unique
z, € Hsuch that (y] z) = x'(y) = (Ay | x) for all y € H.

This leads to the following definition

(2.16) Definition: Let H be a Hilbert space. LetA2,(H,H). Then theHilbert space
adjoint A* of A is the mapping A*: H-H defined by A*y:=z, y < H, where zis the
unique element in H, so that (AW=(x|z) (= (x| A*y)).

(2.17) Theorem: Let A,Be 24(H,H), / € K. Then
1) A* isabounded linear operator on H with || A* ||=||A||
2) (A*x]y)=(x]Ay)
3) A**:=(A*)*=A
4) (A-A)*=A-A*
5) (A+b)*=A*+B*
6) (AB)*=B*A*
7) if A isinvertible then so is A* with (A*)*= (A™)*
8) A*A[=]A|?

(2.18) Definition: Let H be aHilbert space over K € {R,C}. A bounded linear operator A on
Hiscalled
1) selfadjoint or hermitesch, if A=A*
2) unitary (or orthogonal if K=R) if A-A* = A*.A =dy
3) normal if A*.-A = A-A*

Obvioudy selfadjoint bounded linear operators as well as unitary ones are normal

Examples:

1) A=2:i-ldy = A*-A = (2i-ldy)*-(2i-1dy) = -2-i-1dy-2-i-1dy = (2-i-1dy)-(-2:i-1dy) = A-A*
= Aisnormal
A is neither selfadjoint nor unitary

2)  Ar b=l with (x1,x0,K3,...)— (0,001, X2, X3,...) right shift operator
A =l with (o, o, 3,..)— (X2,X3,K4,...) left shift operator
a=(x)); b=(B);

(Aralb) = ((0,&1,0¢z,...) | (B1.B2.--.)) = 201 [B,.. = (al Arb) = A=A,

Ar*°Ar = A|°Ar = Idl2
Ar°Ar*(0(1,0(2,0(3,...) = ArA = Ar°(0(2,0(3,...) = (0,0(2,0(3,...) * |d|2
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Our first general results about selfadjoint operatorsare givenin

(2.19) Theorem: Let H be aHilbert space over K={R,C}. Let A € 2y(H,H).
1) If A isselfadjoint, then (Ax|X) € R
2) If K=C andif (Ax|x) € R for all x € H, then A is selfadjoint

Proof:

ad 1) L
A=A* = (AX|X) = (X| A*X) = (X| AX) = (Ax|x) = (AX|X) e R

ad 2)
K=C and (Ax|x) € R

(A*x|x) = (X|A*X):(AX|X):(AX|X)€Rf0ra||X€H

Consequently ((A-A*)x|x) = (x| (A*-A)x) = ((A* ~A)X| x)=(A* X| X)- (Ax| x)

= (A*x [ X)=(Ax| x) = {(A-A%)x |x)

= ((A*-A)x | x)=0 for all xe H

= A*=A by the following result g.e.d.

(2.20) Theorem: Let H be acomplex Hilbert space, let S,& 2,(H,H). Then
1) (Tx|x)=0 for all xe H implies T=0
2) (Tx|x)=(Sx|x) for all xe H implies S=T

Proof:

ad 1)

To show: (TX x)=0 implies (TX y)=0 for all x,ye H. Let x,ye H:
O=(T(x+y) | x+y)=(Tx | x) + (Ty|x) + (Tx|y) + (Ty| y) =(Ty | x)+(Tx|y)
= (Ty|)=—(Txly) _
= (T(iy) | X) = =(Tx|iy)

= 0 =(T(y) [x) + (Tx|iy) = i-(Ty[x)-i-(Tx]|y)
= (Ty[x) = (Tx]y)

= (Tx]y) ==(Ty[x) = ~(Tx]y)

= (Tx|y) = 0 for all x,ye H

= 0 = (TX| Tx) = || Tx||* = Tx=0; xe H

ad 2)
simple g.e.d.

(Tx|x) is called thequadratic form of T



Functional Analysis Page 27

(2.21) Theorem: Let H be aHilbert space over K € {R,C}. Let A be a selfadjoint operator
on H. Then ||A||=sup|Ax| = sup‘(Ax| xl

Ix]= IxJ=1
Proof:

[(AX )| <[ AX]-IXI<I AL (X))

- wg\(Ax| x)] <A

Define n(A):= sup‘(Ax| xl , then n(A)< oo; let A>0 then

[x|=2

4||Ax||?= EAB/\D(-EAD( AD(+£DAD(%~EAB\D(-EAD( AD(—EDAD(%
0 A A 0 A 1

2

2|:barallelogam
AN+ AN +px-tmn g < 2Eh(A)[§\ x| +i[ﬂA D<||D
A A E identity AZ E
case 1: ||Ax||=0 = 0 < n(A)-||x||?
= ||Ax| < n(A) for al x € H, ||x||=1
|AX|
case 2. ||Ax||+0, take A :W
X
= 4[| AX||? < 2n(A)-[ | AX]|- | XI[ +]|AX]|- | X[|] = 4-n(A)- | AX]|-]|]
= [|AX|| < n(A)-IX]| = [|A]l < n(A) g.ed.

This theorem shows that the quadratic form of a selfadjoint operator on a Hilbert space
determines the norm of this operator.
A final simple, but useful result about selfadjoint operatorsisgiven in

(2.22) Theorem: Let H be acomplex Hilbertspace. Let T € 2,(H,H). Then there exist

uniquely determined (bounded) selfadjoint opeartors A € 2,(H,H), B € 2,(H,H), 0
that T=A+i-B. The operator T isnormal if and only if AB=BA.

Proof:

DefineA::1 qr+1%), B;:i[(-r--r*):_i_ T -T*)
2 20 2

Then A=A* and B=B*

If T=C+D-i = T*=C*-i-D*=C-i-D
= T+T*=2C = C:% QT+T*)=A

T-T*=2..D = D=——_ [(T-T*) =B
20
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If T isnormal

1 1 1 1
= AB=ZT+T%). — OT-T*)=—— T2+ T*OT-TT*-(T*)?)=— T2 - (T*)?
ZEQ ) ZEHE{ ) 4EHE( ( )) 4[|'JE( ( ))
1 [_]]_- 1 2 2 1 2 2
B-A=— (T -T* T+T*)=—— QT2 -T*T+ T *«(T%)?)=— T2 - (T*
ZEHE( )ZE( ) 4[|'JE( ( )) 4[|'JE( ( ))
— A-B=B-A

If A-B=B-A
= T-.T*= (A+i-B)-(A*-i-B*) = (A+i-B)-(A-i-B) = A%+i-B-A-i-B-A+B?= ... = T*.T g.e.d.

Let us pay our attention to normal operators. A result similar to (2.19) is given by

(2.23) Theorem: (compare 2.19):

Let H be aHilbert space over K € {R,C}. Let A € 2(H,H)
1) If Aisnormal then ||Ax||=||A*X|| for al x e H
2) If K=C andif ||AX||=||A*x|| for al x € H, then A is normal

Proof:

ad 1)
A*A=AA* implies
|AX|% = (AX| AX) = (x| A*AX) = (x| AA*X) = (X| A**A*X) = (A*x | A*X) = ||A*x||?

ad 2)

If K=C and || Ax||=||A*x]|| for all x € H, then || Ax||?= (Ax | AX) = (A*Ax|x) and

|A*x||% = (A*x | A*X) = (AA*X]| X), hence (AA*x | x) = (A* Ax | x) for x € H.

By theorem (2.19) we have AA*=A*A g.ed.

(2.24) Theorem: Let H be aHilbert space over K € {R,C}. Let A € 2,(H,H). Then the
following statements are equivalent:
1) Aisunitary
2) A issurjective (=onto) and ||AX||=]|X||,x € H
3) A isonto and one-to-one, and A™* = A*

Proof:

1H)=2
IAX[1* = (Ax| AX) = (A*Ax|X) = (x| X) = [|]*

AA*=|d=A*A given ,onto“
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2) =3
xyeH
2 2 2 2 2 2
2) = [AX+AY |M =la Y A Yl =BV By
2 2 O 2 g 2 O 2 O 2

= (Ax|Ay) = (x|y) by using polarization identity
= (A*AX]Y) = (AX|Ay) = (X|y) = A*A =ldy

||AX||=]|x]|| impliesthat A is one-to-one
= A" exists (since A is onto)
— Al=A*

=1
A=A
= ldy =AA = A*A and Idy = AA™ = AA* g.e.d.

It is perhaps worth to mention explicitly that a unitary operator preservesinner products, i.e.
(Ax|Ay) = (x]Y), X,y € H. In particular, every unitary operator is an isometry.

Note that in defining a unitary operator it is not enough to require only that either A* A=Idy
or AA*=ldy. For instance, the shift operator on I, is an operator such that A* A=Idy.
However it isnot unitary since it is not onto (=surjective).

The general reason for each of the equations A* A=ldy or AA*=ldy alone not being enough
to imply A to be unitary is asfollows: for infinite-dimensional Hilbert spaces H a bounded
linear operator A on H must be bijective (=onto and one-to-one) in order to be sure that A™
exists and is a bounded linear operator on H. If H isa finite dimensional Hilbert space then
injectivity and surjectivity of linear operators are equivalent.

Why should selfadjoint and normal operators be so interesting? There is a large class of very
special and simple bounded selfadjoint operators, namely the projection operators which will
be studied in the next section. Every bounded selfadjoint operator on H (in fact even every
unbounded selfadjoint operator on H) can be built up in some sense with the help of
projections. Thisisthe central result of spectral theory. The point hereis that every bounded
linear operator A on H isa linear combination of two bounded selfadjoint operators B and C

an H which even commute, i.e. satisfy BC=CB, if A isnormal (theorem (2.21))
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8 3 Projection operators

An important class of operators on Hilbert spacesis that of the orthogonal projections

(2.25) Definition: Let H be aHilbert space over K € {R,C}. A bounded linear operator
PonHiscalled
1) aprojection if PP=P
2) anorthogonal projection if P> =Pand P* =P

Note that the range Ran(P)=P(H) of a projection on a Hilbert space H alwaysis a closed
linear subspace of H on which P acts like the identity. If in addition P is orthogonal, then P
acts like the zero operator on (Ran(P))*. If x=y+z with y € Ran(P) and z € Ran(P)*, is the
decomposition guaranteed by the projection theorem, then Px=y. Thus the projection theorem
Sets up a one-to-one correspondence between orthogonal projections and closed linear
subspaces. This correspondence will be clarified in the following theorem

(2.26) Theorem: Let H be aHilbert space MCH be a subset. Then the following statements
are equivalent:
1) M isaclosed linear subspace

2) There exists a unique orthogonal projection P € 2,,(H,H) withRan P=P(H) =M
Proof:

1H)=2

Define Py: H—M by PyX:=xm, where Xy is the unique element of best approximation in M

with respect to x € H. Py is linear and Py (X)=x for x € M = Py%(X)=Pu(x), i.e. Pu’=Py,

also ||Pw||=1;

takexe H,ye H, X=Xy +X o, Y=Yy +V¥,:-

To show: (Pux|y) = (x| Puy)

(Pux1y) = (Pm(Xy + X o) | Y + Yo ) = (X [ Y +Y,0) = (X [ Yu) + (X 1Y,,0)
:(XM | yM):(XM | yM)+(XMD |y|v|):(x|v| +XMD |PMy):(X|PMy)

= PM* = Pw.

Uniqueness: take Q € 2(H,H) with Q> = Q = Q* and Ran Q = M. To show: Py = Q.
1) {xeH:Puyx=x} =RanPy =M =Ran Q ={x € H: Qx=x}
since{x € H: Pyx=x} < Ran Py = M and if X € Ran Py then x = Pyz (for some element z)
= Pux = Py’z=Puz=x
= Ran Py < {x € H: Pyx=x}
2) {xe H: Pux=0} = (RanPy)" =M* = (Ran Q)" = {x € H: Qx=0}
Pux=0 = (Puy|X) = (y|Pux) =0 for all y e H = x € (Ran Py)*
if xe M* = (Ran Py)" = (y|Pux) = (Puy|X) =0for a y € H put y:=Pyx
= 0= (Pux | PwX) = ||Pux]||? = Pux=0

Let x e H, x =X, + X, o = Pux=Pu(x, +X,,.) =X, =Q(xy +X,,.)=0Qx
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2)=1)

Ran P =M isalinear subspace; to show: M is closed by showing M=N* for some set NcH
(theorem 1.15)

Pisbounded , linear = Idy-Pislinear and bounded,

define N:=(Idy-P)(H) = Ran (1d-P).

If xe M =RanP = x=Pufor someue H; if y e N = Ran (Id-P) = y=(Id-P)v

for someveH

s (x|y) = (Pul(I-PWV) = (U] PIA-PIY) = (U] Pv-PA) = (| Pv-Pv) =0

McN*: Conversely if x € N*, then for any y € H: (Id-P)y € N

= 0= (x|(1d-P)y) = (x|y-Py) = (x]y) = (x| Py) = (x|y) — (PXy) = ((Id-P)x]y)

in particular: y = (Id-P)»x= || (1d-P)x||=0

= x=Pxe Ran P = M= M=N". g.e.d.

It is because of this characterization that one speaks of the orthogonal projection P onto the
closed linear subspace MCH.

It iseasily verified that a bounded linear operator P on a Hilbert space is an orthogonal
projection if and only if Idy-P is an orthogonal projection, and that for an orthogonal
projection P always Ran(P)£Ran(lds-P))* and (Ran(Idi-P))=(Ran(P)". These observations
combined with the orthogonal decomposition theorem (1.22) immediately yield

(2.27) Theorem: If P € 2y(H,H) is an orthogonal projection on H,
then H = Rankp (Ran P) = Ran P® Ran (Id-P) and Ran (Id-R)Ran P.

We now study the question under what circumstances the product, sum and difference of two
orthogonal projections again is an orthogonal projection. We start with the product of two
orthogonal projections

(2.28) Theorem: Let P and Q be orthogonal projections on H. Then the following statements
are equivalent:
1) PQ=QP
2) PQ is an orthogonal projection
3) QP is an orthogonal projection

Proof:

1)=2)
(PQ)*=Q*P*=QP =PQ and PQPQ =PPQQeP=PQ

2)=1)
QP = Q*P* = (PQ)* = PQ

the same with 3) g.e.d.

(2.29) Corollary: If PQ is an orthogonal projection, then PQ is an orthogonal projection onto
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M N N if M=P(H), N=Q(H).

Let us turn to the sum of two orthogonal projections

(2.30) Theorem: Let P and Q be orthogonal projections on H with M:=P(H) =Ran P and
N:=Q(H) = Ran Q. Then the following statements are equivalent:
1) MLN
2) P(N) ={0}
3) QM) ={ G}
4) PQ=0
5 QP=0
6) P+Q isan orthogonal projection

Proof:

1H)=2

N LM = NcM" = P(N) ={0} (see2.27)

2) = 4)

XxeH=0QxeN = PQx=0

4) = 6)

(P+Q)* =P*+Q* =P+Q and (P+Q)’ = (P+Q)(P+Q) = PHQP+PQHQ* = P+Q° = P+Q

6) = 1)

xe M = [Ix[2= [|(P+Q)x||* = (P+Q)x| (P+Q)x) = ((P+Q)*x| X) + ((P+Q)x|x)
= (Px[QX]X) = (x[%) +(Qx]X) = [x]|* + (Q%[X) = [Ix]|* + (Qx| Qx)
= |Ix[1* + |Qx||* = Qx| =0

= foryeN,xeM (x]y) =(x|Qy) =(Qx|y)=0=M LN g.ed.

(2.31) Corollary: If P+Q isan orthogonal projection, then P+Q is an orthogonal projection
onto M+N with M=P(H)=Ran P and N=Q(H)=Ran Q.

In view of the equivalence of (1), (4) and (6), the projections P and Q are called orthogonal to
each other (denoted by P . Q) if PQ=0, or, equivalently, QP=0. Finally we come to the
dfference of two orthogonal projections which in particular takes care of the orthogonal
projection Id-Pif Pisan orthogonal projection.

(2.32) Theorem: Let P and Q be orthogonal projection on H with M=P(H)=Ran P and
N=Q(H)=Ran Q. Then the following statements are equivalent:
1) MCN
2) QP=P
3) PQ=P
4) |IPx| <|1Qx]| foral xe H
5 ((Q-P)x|x)>0foralxeH
6) (Qx|x)>(Px|x)forxeH
7) Q-Pisan orthogonal projection
Proof:
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1H)=2

If x € H then Px € McN and QPx=Px

2) =3

PQ=P"Q* = (QP* =P =P

=17

trivial: (Q-P)* = Q-P and (Q-P)* = (Q-P)

7) = 5) (< 6)

5(3()Q_P)4))( 1X) = ((Q-P)*x | x) = ((Q-P)x | (Q-P)x) = [(Q-P)x[|*> 0

1QXI1 - [IPX]|? = (Qx| QX) — (PX PX) = (FX|X) - (PX|X) = (Qx|X) — (PX/X)
=((Q-P)Xx)>0

4)=1)

xeM= x| = [IPX]| < |Qx|| =Ix]| = [[x]|=[|Qx]| if x+0

then|[x||? = [| X 17+ [ X oo 17 = [1QX[I% + || X o II?

= X IF0=x,=0

= X=X, €N g.e.d.

(2.33) Corollary: If Q-P is an orthogonal projection, then Q-P is an orthogonal projection
onto N-M:= NN M".

Proof:

Q-P = Q-QP = Q(ld-P) is the orthogonal projection onta M* by corollary (2.29) g.e.d.
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84 Baire’s Category Theorem and Banach-Steinhaus-Theorem

There probably is no theorem in functional analysis which is more boring on one side but
more powerful on the other side. In order to be able to present Baire’s category theorem in a
general form we need some notation

(2.34) Definition:

1) Let X+ beaset. A mapping d: X x X — R iscalled ametric if it hasthe
following properties:
(M1) d(x,y)=0 for x,y € X
(M2) d(x,y)=0 if and only if x=y
(M3) d(x,y)=d(y.x)
(M4) d(x,y)<d(x,2)+d(z)y)
(X,d) iscalled ametric space

2) A metric space (X,d) is called complete if every sequence (Xn)n.nS X with

lim d(x,,x,) =0 converges, i.e.: thereis an element x € X so that

n,m- oo

limd(x,,x) =0

n- oo

3) Let M beasubset of (X,d). A point x € X iscalled alimit point of M, if for every
r>0 B:(xX) N (M \{x}) = & where B,(x):={y € (X,d): d(x,y)<r}
4) M c (X,d)iscalled closed if M contains al its limit points (M = M)

If (X,].]]) is given, then d(x,y):=||x-y|| isametric on X.

(2.35) Theorem: (Baire’s Category Theorenj:
Let (X,d) be acomplete metric space, let F,.=X be closed subsets of X, n< N, so that

X= U F, . Then at least one F, contains a closed ball (hence an open ball).

nON

Proof:

|dea: Suppose X= U F, . Fn:F_n and each subset F, contains no closed ball.

nON

Let ne N, if Bi(xo)={y e X: d(Xo,y)<r}, then E% (Xo) contains an element x, ¢ Fy; since F, is

closed, there exists 0<rn<% sothat B: (X,) N Fn=@ and B, (X)) < B (Xo) since

d(y,Xo) < d(y,xr) + d(XnXo) < n + %< rforye B.. (Xo).

We start with B (Xo) an arbitrary closed ball of radius 1. We find By, (x1) € Bu(Xo) With
grl (x1)) NF =@ and I’1<%.

We also find B, (x2) < By, (1) with By, (X2) N F2 = @ and r2<2—12. By induction we find a

sequence (Br, (x)); . of closed ballswith Br, (Xi+1) B, (X), Br, (x) NF =@, r,-<2—1]..
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Now (x;); is a Cauchy sequence in X since for n,m > N we have Xn,Xm € §rN (XN),
d(n,Xm) < 2N+ 2N =2"N 0 for N — oo,

Since (X,d) is complete, we find x € X withx=limx; (limd(x,x,) =0). Sincex, € B, (xn)
joo joo N

for n>N, we have X € B, (Xn) € B, (Xn-1)
= X ¢ Fy.1 for any N, contradicting X= U F. g.ed.

jON

One of the most important consequences is the principle of uniform boundedness which we
state in a special form

(2.36) Theorem: (Banach-Steinhaus, principle of uniform boundedness):
Let X be aBanch space, Y be anormed linear space. Let (A;); be a sequence of

bounded linear operators, Aj € 25(X,Y). If for each x € X there exists M with
sup|A ;x| <M, then there exists M>0 so that sup|A <M .
! j

Proof:

ne N, define F:={x € X: supHijHg n}, then X= U F, . Since A, is bounded, F, is closed.
i nON
At least one set F, contains a closed (and hence open) ball. There exist N € N, y € Fy and >0,
so that ||x-y||< & impliesx € F,.
-y has the same property. Since Fy is convex, every n € X with ||u||< ¢ implies

u:%(u+y)+%(u—y)[H]%(FN +F,)OF,, ie |Aul<N foraljeN

= supHAjH < ﬂ g.ed.
£

jON

(2.37) Corollary: Let X be aBanach-space, Y be anormed linear space. If (Aj); isa
sequence of operators A; € 2p(X,Y), s0 that for each x € X there exists y, € Y with
limA x =y, , then the formula A: X—Y with Ax:=yy defines a bounded linear

j oo
operaor on X with ||A||§Iji@w inf HA]H
Proof:

A islinear (easy to verify), (Ajx); isa Cauchy sequencein Y for each x € X. By the triangle
inequality for the norm, (||AjX||); is a Cauchy sequence in R which convergesto | yx||=||AX]|.

Therefore there exists M>0 with supHA j H <M.
I

Hence ||AX||=1lim
]_>00

A]-XH < Ijiﬁmm inf HA]H Oix||< M Ojx| g.ed.
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Chapter 3: Spectral analysis of bounded linear operators

A linear operator A from afinite-dimensional linear space E into itself can always be
represented by some matrix (gi)jx and the coefficient vectors of the elements of E; the matrix
(k) and the coefficient vectors, of course, depend on the choice of a basisin E. For certain
types of such operators one can choose the basisin E in such a way that the matrix (g;) isa
diagonal matrix. This means that for example in the case where E is C", one can write

AX = Z (x |ej )Ae; forxe C" whereey,e,...,en are certain linearly independent orthonormal
]:

vectorsin C", 4j,...,Am are the (not necessarily distinct) non-zero diagonal entries of the
matrix (a;), and m<n. Thisisthe case, for instance, whenever the matrix corresponding to A
is equal to its conjugate transpose, i.e. whenever A is selfadjoint.

In this chapter a counterpart of this result for certain selfadjoint linear operators on an
arbitrary (infinite-dimensional) Hilbert space over C will be established. Throughout this
chapter any Hilbert space considered is supposed to be a complex Hilbert space

81 The order relation for bounded selfadjoint operators

Recall that a bounded linear operator A on a Hilbert space H is selfadjoint if and only if
(Ax|x) € R for all x € H (theorem (2.19)) and that for a selfadjoint operator A
||A||:SDJE(AX|X) = WFH) l‘(Ax|yl (theorem (2.21))

X X|[=ly[=

Ix[=1
With the help of the quadratic form (Ax | X) we introduce an order relation on the set of all
bounded selfadjoint operators on H.

(3.1) Definition: Let A be abounded linear selfadjoint operator on H. A iscalled
1) positiveif (Ax|x)>0for eachx e H (wewrite A>0)
2) larger or equal to B if A-B ispositive, i.e. (Ax|X)>(Bx|x) (wewrite A>B)

Examples:

1) Pw: H—M orthogonal projection, then 0 < Py < Idy since
0 < [[Pux||? = (Pux| Pux) = (Pux| %) < [IX1% = (x| X) = (Idwx| X).
Pu < QN < McN
2) A e2p(H,H) = A*A and AA* are positive, A* A and AA* are not comparable

The following theorem justifies the use of the familiar notation < for the relation between
bounded selfadjoint operators
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(3.2) Theorem: Let A,B and C be bounded selfadjoint operators on a Hilbert space H. Let
o,B € R, then
1) if A<B and B<C, then A<C
2) if A<B and B<A, then A=B
3) if A<B and «¢>0, then A+C<B+C and x-A<x-B
4) A<A
5) If <P, then o-A<B-A

[x|y]=(Ax|y) with A>0 is asemi inner product (conditions (S2) — (S4) of (1.1), but not
(S1)

Because of Cauchy-Schwarz:

(3.3) Theorem: Let A be a positive bounded selfadjoint operator on H. Then

1) ([XIy],Z)zé [x|X]-[y | ], i.e. (AX]y)* < (AX|X)-(Ay |y)
2) [JAX]|“< |All- (AX]X)

Proof:

ad 2)

|AX||* = (Ax| AX)? < (AX| X)-(A%X | AX) < (AX|X)-||A|l-]|Ax % Divided by||Ax||* the
statement is proved. g.e.d.

We want to prove the existence of a special decomposition for operators on a Hilbert space
which is analogous to the decomposition z=| z| -€ ¥%? for complex numbers.
First we must describe a suitable analogue of the positive numbers

(34) Theorem: Let (A;); and B be bounded selfadjoint operators on H with
A1 <A< ... <An< ... < B. Then there exists a bounded selfadjoint operator A on H, so
that An< A <Bfordl ne N and Ax =limAjx.

] — 00
Proof:

A1<Ar<...<A<...<B= B-Apn>Ar-An>0 (n>m>1)
= [ ArAnl=supl((A, - A ,)x| x| <sup((B - A,)x| x) =)1B-Aq |

Ixls1
= ((ij| x))jDN isincreasing and has an upper bound, i.e. ((ij| x))j converges for
every x e H
(3.3)
= [lA-ADXI? < [(ArAn)ll- (ArAmx|X) < [[B-Axl-(ArAmX|X) - O (nm-e,

n>m)
= (Ajx); isa Cauchy sequence in H for every x e H, Ajx converges to a unigque element yy for
every X € H.
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Define A: H—H by Ax:= yx=limA;x.
IAOO
A islinear. Banach-Steinhaus implies, that A is bounded.

xy < H: (Ax|y) =lim (Ax|y) =lim (x| Ay) = (x| AY)
= A isabounded selfadjoint operator. With (Amx | X) <lim (Anx|X) = (AX|X) < (BX|X)

n=zm

g.ed.

(3.5) Lemma: Let A and B be selfadjoint operatorson H. If A and B are positive, then
1) A+B ispositive
2) AB ispositiveif AB=BA

Proof:

ad 2)
AB=BA — AB is selfadjoint (see (2.17)). To show: AB>0. Define a sequence (By)n. n Of

”—:”, B2=B1-B/ ..., Bp1i= BBy’ ;ne N,
= By are bounded and selfadjoint (by induction)

(BrX|X) = (BreaX | X) + (Bi2X|X) = (BreaX | X) + (BiX | BiX) > (BneaX | X) = B> Bres
f— B]_‘Bn < B]_‘Bn+1, to §]OW 0 < Bné Id

linear operators by B;:=

0<B = 0< (Bx|X) = ||B||- (Bix| X) = B1>0, 0< (Bx|X) < ||B| |- x[|* = | BJ|- (x| )
= Bi<ld.

If 0 < Bk < Id then 0 < ((1d-By)Bix | Bkx) = (Bi(1d-Bi)x | x) = 0 < Bi*(1d-By)

Similarly (1d-B)?Bx > 0 = 0 < B *(1d-By) + (1d-By)*Bk = ... = Bk-Bi® = Byaa,
also: 0< (Id- Bk) + By ? = 1d-Bgsy = 0< Bysr < 1d.

Slnc:eZB2 ZB -B,,=B,-B,,<B,
= ZHB xH Z Bx‘Bx) lZ(szx|x)s(le|x)

= I|m||an||—0for every xand limBx =0

]aoo

= le:Zszx for all x € H.
]:

AB;=BjA

(ABx|x):||B||-(Ale|x):||B||-i(Afo|x) = ||B||-i(BjABjx|x)
IE IE

= ||B||-2(ABjX‘ABjX)20 g.ed.
£
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We now come to a result which isimportant for the decomposition of a bounded linear
operator as a product of a positive (selfadjoint bounded linear) operator and a unitary

operator

(3.6) Lemma: (Squareroot lemma):

Let A € 2,(H,H) be positive (and selfadjoint). Then there exists a unique B € 2(H,H)
which is positive (and selfadjoint) and A=B?. Furthermore, any bounded linear
operator C with AC=CA commutes with B also.

Proof:

0<(AX|X) < [|All-(X|X) = 0< A < ||A]|-1d, weassume ||All<land 0 < A < Id.
Consider (Bp)n. n defined by Bo=0, Bn+1:Bn+% {A-B.?) ; ne N.

1) Ce2p(H,H) with CA=AC = B,C=CB,, and if ByC=CB:
Bk+1C = Bk+% {A-B®)C = ... = CBysn1
= B,C=CB,, for al ne Ng in particular: B, A=AB, for all n € No.
m € N: BnBo=BoBn if BBi=BkBm = BrnBi+1= Bm-(Bk+% [A-B?) = ... = Bxu1Bn
= BnBm = BmBi, for al n,m e No.
2) A and By are selfadjoint. If By is selfadjoint
= (Birax|y) = (Bix|y) +% [{(AX]y)-(BX|Y)) = (x| Be1y) = B is selfadjoint
for all ne No.
3) 0 g% {Id-B,)2 +% Qid-A) = Id-Bn-% MA-B.d) = 1d-Bo
= Bna< Id for al ne No.
Bn-1Bn= BiBn1 = ((10-Bp1)+(10-Bp))-(Bn-Bra) = Brea-Bhn mduﬁ: _ Bn<BraandBy<Id
= 0<Bp<B1<B;<..<Bp<..<ld
By (3.4) there exists B € 2,(H,H) with Liﬂn; Bnx and B, < B < Id for al ne No.
Bn+1:Bn+% {A-B.?) " B:B+% [{A-B?) = A=B?with AC=CA implying BC=CB
4) Unigueness of B:

B e 2(H,H) be positive and B2=A and . B, are positive and commute with B
= Bn commute with B . Take x € H, define y:= (B-B)x
= (Byly) +(By|y) = ((B+B)yly) = ((B*B*)x|y) = 0 since (By|y)=0 and

(By|y)=0= (By|y) = (By|y)=0

We can find positive R with RB=BR and B=R?
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= 0=(By|y) = (Ry|y) = |Ry|*= Ry=0

— 0=R% =By ;as By=0

B, B and B-B are selfadjoint

= [|Bx-Bx ||*= ((B-B) x| (B-B) ) = ((B-B)x|y) = (x| (B-B) y) = 0

= Bx =Bx g.ed.

(3.7) Corollary: Let A be abounded linear operator on a Hilbert space H. For A* A there
exists a unique positive operator |A| € 2,(H,H) sothat |A|%= AA*

| A| isoften called the absolute value of A € 2,(H,H), we also write |A|:=VA* A

In definition (1.35) we defined what is meant by a linear isometric operator in a Hilbert
gpace. If A: DCH—H isan isometrix linear operator, then in particular ||Ax||=|/x]|| for all

x e D. Thisimpliesthat ker(A):={y € H: Ay=0}={0} and hence D = (ker(A))". Also an
isometric linear operator A in H does not have to be onto. With these remarksin mind we
define

(3.8) Definition: A bounded linear operator U € 2,(H,H) on a Hilbert space H iscalled a
partial isometry if || Ux||=||x]|| for all x € (Ker(U))".

If U isapartial isometry = H = Ker(U) @ (Ker(U))* = Ran(U) & (Ran(U))*
U: (Ker(U))* — Ran(U) is a unitary operator
U* isa partial isometry: U*: Ran(U) — (Ker(U))*

We now come to the announced decomposition

(3.9) Theorem: (polar decomposition):

Let A € 2,(H,H) be an operator on a Hilbert space H. Then there exists a partial
isometry U with the following properties:
1) A=U|A|

2) U: Ran‘A ')a Ran(A)
3) U isunitary and an isometry on Ran<A|)

4) Ker(A) =Ker(U) and Ran(U) = Ran(A)

5 |A| =U*A

6) A* =U*|A*|

7) |A*|=UJA|U*

8) U isuniquely determined in the following sense: for any positive operator
B € 2,(H,H) and any unitary operator V: Ran(B) — Ran(A) with A=V B we have
V=Uand B=|A|

Proof:
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ad 1) -3)
HAIXIZ= (JAlx] [A]x) = (JA]%X] X) = (A*AX |x) = (Ax| AX) = [|Ax]
= [ IA[x] = |AX] ; xe H

Define W: Ran|A|— Ran(A) by Y(|A|x):=Ax for x e Ran(A), then is linear and onto
(=surjective)

also:|[[Uo(|A[X)]l = IAX]| = [ |A|x]| for x e H.

If [A|x=|A]y= 0=|A|?(x-y) = A*A (X-y) = Ax=Ay

If Ax = Ay = 0= A*A (x-y) = [A|2(x-y) = 0 = (|A[* (xy) [ xy) = (IA[(xy) | [A](x-Y))
= TA =)

Up is one-to-one (=injective) since ifezRan| A | with 0 = Uyz, then z 2A | x for some x H

= 0=Wz=W|A|x=Ax= xe Ker(A) =KerlA| > z=|A|x=0.

Thus: W: RanA|— Ran(A) is an isomorphism.

Extend U to the cIosurdJ_O : Ran|A| - Ran(A) which is an isomorphism, too.

Now define U: H-H by
_BUox if xORan|A|
' 0 otherwise
Then A =UJA| and U is a partial isometry. Sin¢@& | is selfadjoint we have
(UU [A x| [Aly) = (U|A[x|UJA|y) = (Ax| Ay) = (A*Ax |y) = (|A|* ] y)
=(Alx] |AlY)
— for all v,we Ran| A |: 0 =((U*U-Idpv |w), in particular with w = (U*U-Ig})v we have
U*U = Idy = U is unitary.

Ux

ad 4)

Since Ker(A) = KefA| and KejA|=(RanA|)*
= Ker(A) = (RanA|)" = Ker(U)

Similarly Ran(A) = Ran(U)

ad 5)
A=U|A| = UA=U*U |A|=|A|

ad 7)

|A|>0= 0< (JA|U*x | U*x) = (U|A|U*x | x) for x e Ran(A)

— U|A|U* is positive since (JA |U*)? = U|A|U*U |A|U* = U|A|?U*
=(UA]) (|A|U*) =AA* = |A*|?

= |A* |= U|A|U*

ad 6)
7)= U*|A* |= U*U |A|U* = |A|U* = A*
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ad 8)

if A=VB with B>0, V unitary

= A*=B*V* = |A|?= A*A = BV*VB = B?

= |A|=B

= U=V g.ed.

In the decomposition A=|U | A of a bounded linear operator on a Hilbert space the operator

| A| corresponds to the absolute value of a complex number z written in the form
z=|z|-€¥@ while U is the analogue of the complex number €¥9® whi ch is of modulus one.
One might expect that the unitary operators would be the anal ogue of the complex numbers of
modulus one. The following example shows that thisis not the case

Example:

Let Ar: I,— 1, betheright shift operator on I, with (X1, X2,...)— (0,1, X2,...).

Then Ai*=A,; and Ai* A= A/A; =ldy, thus | A | = Idy. If wewrite A,=U|A| we have A.=U.
However, A, is not unitary since the sequence e;=(1,0,...,0) ishot in itsrange.
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8§ 2 Compact operators on a Hilbert space

For the case of a one-dimensional Hilbert space H the well known theorem of Bolzano-

Weierstral3 asserts that a bounded sequence of vectdrsantains a converging

subsequence. Combining this with some simple topological facts one arrives at the statement,
well-known from elementary analysis, that a subset of the complex plane is compact if and
only if it is closed and bounded. We first want to study the connections between compactness,
closure and boundedness in case of a subset of a Hilbert Bpiacgeneral, and later on we

want to use the results founded to characterize a special class of bounded linear operators,
the so-called compact operators

(3.10) Definition: Let H be a Hilbert space. A subset McH iscalled
1) relatively compact if every sequence (x;);=M contains a subsequence which
converges to some element x € H
2) compact if every sequence (x;);=M contains a subsequence which converges to
somex € M
3) bounded if there exists y>0 so that ||x||<y for al x e M

compact = relatively compact

Before going on let us describe a very useful ,diagonalization lemma“

(3.11) Theorem: Let (e« be a sequence in a Hilbert space H. Let (h,),.=H be a sequence so
that for every k € N | (hn| &) | < 6k for all n (8,>0). Then there exists a subsequence

(h); € (hn)non < H, so that the limit y:=lim | (hy | &) | exists for every k e N and
] o
| Y| <Ok

(3.12) Theorem: A subset McH, H Hilbert space, isrelatively compact if and only if M is
compact.

Proof:

If M isrelatively compact and if (X,), iSany sequence in M, then for every ne N we may

choose y, € M such that ||xn-yn||g£. If (Y )k=(Yn)n IS @ Subsegquence converging to some
n

— 1
element yp € M, then we also have || Yo-Xnk || < || Yo- Yk 1 Ynk=Xnk|| <[ Yo-Ynk ]| +n_ and hence
k

II(im IYo-Xn||=0. Thus M iscompact. If M is compact then obviously M is relatively

compact. g.ed.

(3.13) Corollary: A closed relatively compact set McH, H Hilbert space, is compact.

(3.14) Theorem: A compact set McH, H Hilbert space, is closed and bounded.
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The following theorem shows that in contrast to what happens in finite-dimensional Euclidean
gpaces, a closed and bounded subset of a Hilbert space does not have to be compact in
general

(3.15) Theorem: The closed unit ball B,(0) ={x € H: ||x||<1} in aHilbert space is compact
if and only if dim(H) < oo.

Proof:

If dim(H)=:m < o then H—C"™; let (&)1 .k < m be an orthonormal basis of H. Let ()« bea
sequence in B, (0) , then with (3.11) there exists a subsequence (hik); . n < (h«) so that
Yni= Ijiﬂn;(h,-k | en) with || ynll<l, ne {1,...,n}

m m 2
Definex=9 y.e, e H= lim||x-hk,-||2: lim yn(hk. e ) =0 and lim ||hy||=] x|
yZl H j oo Jawyzl " H j oo

= [Ix]|<1

If H isinfinite-dimensional = let (g); be an orthonormal sequence

= |lg-al’ = (g-&| g-&) = 2 for j=k

Therefore there is no converging subsequence. g.ed.

(3.16) Corollary: A bounded set of afinite dimensional Hilbert space is relatively compact.

We now come to a special class of bounded linear operators, the so-called compact operators

(3.17) Definition: A linear operator A on a Hilbert space H is called compact (=completely
continuous) if it maps the closed unit ball B, (0) into arelatively compact set

A(B,(0)).
The following two results to some extent motivate the alternative terminology ,,completely
continuous* for a compact linear operator
(3.18) Theorem: Let A be acompact operator on a Hilbert space H. Then

1) A isbounded (hence continuous)
2) A maps every bounded set into arelatively compact set

Proof:
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ad 2)
Let McH be bounded, i.e. there exists >0 with || x||<x for all x € M, let (x);cM

X .
‘E; 5,0

f—

a

A %% has a converging subsegquence
a
ON

— (AXj)k converges also
= A(M) isrelatively compact. g.ed.

f—

[T 11 CIO4I)

We exhibit a special class of compact linear operators which will turn out later to reflect
quite typically the structure of compact linear operatorsin general.

(3.19) Definition: A bounded linear operator T on a Hilbert space H is said to be of finite
rank if Ran(T):=T(H) is afinite-dimensional subspace of H.

(3.20) Theorem: Let T € 2(H,H) be an operator on H. Then
1) Tisafiniterank operator if and only if there exist Xa,...,Xm,Y1,-..,Ym With

™x=Y (X|X,)y.
]Z ‘ i77]
2) Tiscompact if T isof finite rank

Proof:

ad 1)
T finite rank operator = n:= dim(T(H)) <o
Choose an orthonormal basisyy,...,yn in T(H)

n

= Tx = Z (Tx‘yj)y]. = i(x |m)y1 g.ed.
< -

J
i

Compact linear operators can be characterized in another way. This new characterization
will not only reveal some further interesting features of theindividual compact linear
operators but it will also help usto gain some insight in the algebraic and topological
structure of the set of all compact linear operators or a given Hilbert space H. For this
purpose wWe have to introduce the concept of a weakly convergent sequencein H.

(3.21) Definition: A sequence (x;); . n in aHilbert space H is said
1) to converge weakly if for every y € H the sequence ((x; | y)); - n converges (in C)
2) toconverge weakly to x if for every y € H one has lim | (x;|y)-(x|y) |=0
IAOO

Example:

(X;); be an orthonormal basisinH. Takey € H
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lylI? =i\(y|x,)2 = lim | (y[) | =0
Z

= (X;); converges weakly to 0
But lim [ x-0[[=lim ||| =1
]aw ]aw

= (X;); does not converge to 0 in the usual norm sense.

If Xo € H with Ijin; [ Xj-Xol|= 0

= 0<lim [ lxofl- [l < 1im [x-Xol| = 0

= [I%ol|= lim [Ixj[|=1

=0=lim 1%-%o|* = lim (Xj-Xo| Xj-X0) = Ijiﬁn;(||x,-||2- (Xo| X)) - (% | X0) + [|Xo]l*)

= lim (|| x]|*-2-Re((X; | X)) + [|Xol|* ) = 2-2- limRe(x; | Xo) = 2 contradiction !
joo joo

(3.22) Theorem: Let (x));. n be asequence in a Hilbert space with
lim ||Xj-Xo|| =0 for some xo € H. Then lim (Xj-Xo|y) = O for every y € H.
joo joo

Proof:

lim [ (%ol y) [<lim [|y][|Xn-Xo[| =0, y € H. q.ed.

(3.23) Theorem: Let (x;); be aweskly convergent sequence in a Hilbert space H. Then
1) (x); isbounded
2) thereexists aunique element Xo € H with lim(x;-x|y) for all y e H
IAOO

Proof:

ad 1)
(x); converges weakly = ((x;|y)); convergesin C and is bounded. Apply Banach-Steinhaus,
then (||x]|); is bounded

ad 2)
By 1) there exists y>0 with || xj|| <y, j € N. Define f: H—K by f(y):=lim ‘xj| y):lim(y|x,-)
joo joo

fisalinear functional with | f(y) | <lim [ (X |y) |<lim X[l lyII<y- Y]

joo joo
= f is continuous and linear.
By Riesz representation theorem there exists a unique x; € H with f(y) = (y | x¢)
= (y|x) = fy)=limC1y) g.ed.
The following result ought to be compared with theorem (3.15) that shows that in the closed
unit ball B,(0) of a Hilbert space every sequence contains a subsequence which convergesin

B, (0) (intheusual normsense) if and only if H isfinite-dimensional
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(3.24) Theorem: Let H be aHilbert space with the closed unit ball B, (0) . Every sequence in
B, (0) contains a subsegquence which converges weakly to some element in B, (0) .

Proof:
Let (Xo)n.n< B,(0) beasequence and let Ho:=span{ x;: j € N}.

If Ho is finite-dimensional then applying theorem (3.15) we find a subsequence
(Xn)i < (Xn)n< B, (0) with lim||Xn-Xo||=0 for some element x, € B, (0) .
IAOO

With (3.22) = (Xyj); converges wesakly to Xo. If Ho is infinite-dimensional we choose an
orthonormal basis (&)« for Ho. Since (Xn)n < m we have | (Xn|&)|<lforalneN, keN.
By theorem (3.11) there exists a subsequence (Xnj); < (Xn)n < m such that the limit

Ijin;(xn,- | &) exists for every k € N.

| | |
= lim (Xy | Zam (e, ) =) a,, lim(X,|en) exists for every linear combination ) a,, (&, .
jooo o= &= Joo m=!

Let y € H be arbitrary, suppose y=y;+y, with y; € Hp and y» € Hg".
|

Let >0 begiven and | N be chosen such that =" (y,|e,,)e, € Hoand ||y1-zl||<%.

m=.

Then for sufficiently large no=no(¢) and ni>no, N>no we have

| (Xni) [Y) =X [Y) | = 1 (RnisXng | Y) | = | (Knim X [ Ya+Y2) | = | (Xni=Xnj | Y1) |
& &
< | (Kni=Xnj | Z2) | + | (Xni-Xnj | Y1-21) | < E +{| Xni=Xnj | ||)/1‘21||<§ +2 ELEI =€

= (Xpj); converges weakly.
By theorem (3.23) there exists a unique element xo € H such that (Xo|y)=lim (X |y) and
] — 00

[ (ol y)[=lim [ (x| ) [ <[ly|| for everyy < H.

We conclude [|Xol|=sup | (Xo|y) | <1
It

= Xo € B,(0) g.ed.

(3.25) Corollary: Every bounded sequence in a Hilbert space H contains a weakly
converging subsequence.

(3.26) Corollary: Let A be abounded linear operator on a Hilbert space H and let the
sequence (Xn)r=H converge weakly to x € H. Then the sequence (Axy), converges
weakly to AX.

If we apply a compact linear operator to a weakly converging sequence then something
happens which even serves to characterize compactness of the operator in question
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(3.27) Theorem: A bounded linear operator on a Hilbert space H is compact if and only if it
maps every weakly converging sequence into a sequence converging in the usual norm
sense.

Proof:

f—

Let A< 2,(H,H) be a compact linear operator, lef){xH be a weakly converging sequence.
Then (%), is bounded by theorem (3.23) and the set M:z{A» N} is relatively compact

by theorem (3.18). If the sequence fHvdid not converge, then by the relative compactness
of M it would have to contain at least two subsequenceg)(Axrd (Axy); converging (in the
usual| sense) to different elemerss andX , respectively.

We then obtain (X, |y) = im (Axy 1Y) = 1im (xy | A*y) = lim (a] A*y) = lim (xey | A*)
J oo J oo n- o joow
— lim (Ax|) = (%, |y) for all y < H
] o

which implies X, =X, contradiction!
Therefore the sequence (Axn)n must converge.

p="
Suppose A is a bounded linear operator on H mapping every weakly converging sequence
into a converging one.

Let (yn)n be a sequence in(m ). Without loss of generality we may assunfeAxp,

IXn/|<1 for all ne N.

By theorem (3.24) there exists a weakly converging subsequef)ee (%.)n = m which

by hypothesis is mapped by A into the converging sequencg;(Aince (Ax); is a
subsequence of (A) (= (yn)n) we see that @B, (0) ) is relatively compact and that A is a
compact linear operator. g.e.d.

(3.28) Corollary: Let A be a compact linear operator on a Hilbert space H. Let the sequence
(Xn)n=H converge weakly to x. Thelnm || Ax-Ax||= 0.

Proof:

By theorem (3.27) there existsyH with lim||Axq-y||= 0. Thenlim | (Ax,-y|h)|= 0 for

every he H. On the other hand by corollary (3.26) the sequencg{Aanverges weakly to
AX. Since there is only one weak limit of the sequence)(Ay theorem (3.23), we conclude
y=AX. g.e.d.

The following results are concerned with the set of all compact linear operators on a Hilbert
space H
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(3.29) Theorem: Let A and B be compact linear operators on a Hilbert space H and let C be
a bounded linear operator on H. Then
1) A+B isacompact linear operator on H
2) A-A (4 € C)isacompact linear operator on H
3) AC and CA are compact linear operatorson H
4) A* isacompact linear operator on H

Proof:
1) — 3) are proved easily by using theorem (3.27) anc corollary (3.26)

ad 4
If thez sequence (x<H is weakly convergent, then it is bounded by theorem (3.23), i.e.
I Xnll<ex (x>0) for all ne N.
We obtain|| A*X n-A*X ml|% = (A*(X n-Xm) | A*(X -Xm)) = (AA*(X -Xm) | Xn-Xm)
= | AA*(X n=Xm) || [[Xn-Xm|| < 2- X || AA*X n-AA*X || =0
A* therefore is compact. g.e.d.

(3.30) Theorem: Let (An)n be a sequence of compact linear operators on a Hilbert space H
with lim ||As-An||=0. Then the operator AlamA,, is a compact linear operator

n- oo

on H.
Proof:

The proof of theorem (2.9) shows that A, defined by AmFAx for x € H, is a bounded

n- oo

linear operator on H. Let Q% be a weakly converging sequence in H and supjpaoge o
(ex>0) for all ne N.

Then for every ke N we have
[ AXn-AXmll <[l (A-Aw)Xnl[ ]| (A-Ai) Xmll + [| ArXn-AiXin || <2 & || A- Al + ]| Aikn-AiXim| -

Given anye>0 we choose k so thﬁA'AkH<%. Keeping k fixed we then choose:ngo

large that||Akxn-Aka||<£§ for all r=n(g), m>n(e)
= by theorem (3.28) (&;)n converges.
We concludg| Axn-Ax || < 2-0(-% +£2: ¢ for all n=n(e), m=n(g).

Thus (Ax)n is a Cauchy sequence in H which converges in H. By theorem (3.27) the operator
A is compact. g.e.d.

This result shows, that the set C(H,H) of all compact linear operators on a Hilbert spaceH is
a closed linear subspace of 2,(H,H) with respect to the operator norm. C(H,H) is also closed
under passing to adjoints. Thisisformulated in short by saying that C(H,H) is symmetric.
Snce C(H,H) isalso closed under addition, scalar multiplication and under Ieft and right
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multiplication by arbitrary bounded linear operators on H, all these statements are combined
in the following statement:

C(H,H) isa closed symmetric two-sided ideal in 2,(H,H).
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8 3 Eigenvalues of compact operators

Generalizing the concept of an eigenvalue of a matrix we say

(3.31) Definition: Let H be aHilbert space, Da be alinear subspace. Let A: Do—H bea
linear operator in H. A complex number 4 is called
1) aneigenvalueof A inH if there exists a non-zero element x € D, called the
corresponding eigenvector, such that Ax=4-x
2) ageneralized eigenvalue of A inH if there exists a sequence of unit vectors
(Xn)n=D such that Lim(A-l-IdH)xn: 0

3) aregular value of A if the operator A-4-1dy is one-to-one (=injective) and
(A-7-1dw)™ is abounded linear operator on H

The set o(A) of al 4 € C that are not regular values of A is called the spectrum of A.

If A € Cisaneigenvalue of A, thenH,:={y € D: Ay=/-y} iscalled the corresponding

eigenspace.

Obvioudly every eigenvalue of A is a generalized eigenvalue of A and cannot be a regular
value of A. More precisely we show in the next theorem.

(3.32) Theorem: Let A bealinear operator in aHilbert space H. A complex number 4 isan
eigenvalue of A if and only if the operator A-/-1dy is not one-to-one (=not injective).

Proof:

If 4 € C isan eigenvalue then there exists x+0 with x € D and Ax=4-X. Since A-0=4.0,
A-/-1dy is not one-to-one. If A-A-1dy is not one-to-one, then there exist x; € D and x, € D with
Xp#X2 and Axi=A-x1 and Axz=4-X2. Thisimplies (A-2-1du)(X1-X2)=0 with X;-Xo+0. g.ed.

(3.33) Theorem: Let A be alinear operator in aHilbert space H. The following statements
are equivalent:
1) /e Cisaneigenvalue of A or (if 1 isnot an eigenvalue of A) (A-1-1dy)™ exists
and is unbounded
2) there exists a sequence(Xn)n=Da of unit vectors such that lim (A-A-1dy)x, = 0

[
Proof:

1H)=2

If / isan eigenvalue of A and if x is a corresponding eigenvector then choose the sequence
(Xn)n With x,=x for all ne N. If 1 is not an eigenvalue and (A-A-1dy)™ is unbounded, then there
exists a sequence of unit vectorsy, € D ., suchthat lim||(A-2-1dy) ™ yn||= .

_ -1
With x,;:= (A-AQdy) y, e Da for ne N, we have || xn||=1 and

|a-a0d) My,

(A-Ady )
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lim (A-2-1d)xa = li Yo

im =0, since y, are unit vectors.
= |(A-A0d,) ty,

2)=1)
If the sequence (Xn)r=Da has the properties mentioned in 2) and if 4 is not an eigenvalue of A,
(A-A0d,)7x,

then taking y,:= H(A a0d,) x,

eD AAT,) we obtain a sequence of unit vectors
- H

: ) . 1
D ., suchthat lim||(A-A-1d4)yn|| = lim = o0,
Yn€ (A-Ady,) Noo i€ H) Yol Noo ||(A - DdH)Xn” x
This shows that the operator (A-2-1dy)™ is unbounded. g.ed.

This theorem shows that every generalized eigenvalue and in particular every eigenvalue of A
belongs to the spectrum of A. If 1 is not an eigenvalue of A, then the operator A-A-1dy is one-
to-one and therefore the inverse operator (A-2-1dy)™ is defined on (A-2-1dy)Da .

There are still two possibilities that something goes wrong with the inverse:

Its domain (A-2-1dy)Da might not yet coincide with H or (A-2-1dy)™ might not be bounded.
Thus the spectrum of an operator might contain complex numbers which are not generalized
eigenvalues. However it will turn out that for the classes of selfadjoint operators, the
spectrum consists entirely of generalized eigenval ues.

The special features displayed by compact operatorsin general also have effect upon the
spectrum of such an operator. Apart from the point 0 it only consists of eigenvalues;
moreover, if there are infinitely many eigenval ues then they may be arranged to a sequence
converging to 0. We will study this more systematically.

(3.34) Lemma: Let A be compact linear operator on a Hilbert space H, let (e,), be an
orthonormal sequence in H. Then lim (Ae, | e,)=0.

Proof:

The sequence (e,), converges weakly to zero. The sequence (Aen), then converges to zero
also. By Cauchy’s inequality we thus obtaim | (Ae, | ey) | <lim||Ae,||=0. g.e.d.

(3.35) Theorem: Let A be a compact linear operator on a Hilbert space Hx3}@be given.
Every family of linearly independent eigenvectors of A corresponding to eigenvalues
with absolute values not smaller thais finite.

Proof:

Assume that there exists an infinite sequengg ¢f linearly independent eigenvectors of A
such that for the corresponding eigenvalugae have| in|>p for all ne N.

Let the orthonormal sequence)¢ee obtained from g%, by Gram-Schmidt
orthonormalization.

We obtain (Adldi)en = (A-irldh) lea“'k x, = > s (A = Ax,)
T [ A
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n n-1
:Zan,k(Aka _Anxn)zzan,k(Ak -A0)X, =Yn

with y, € span{ Xa,...,Xn-1} -
Therefore y, L e, We conclude (Ae,| &) = (Yntinen| €n) = Ak(en| €n) = 4n and by lemma (3.34)

limAn = lim(Ae,| e,) = 0in contradiction to our assumption | A, |>p>0 for 1l<n<cc.
n- o n- o

g.ed.

(3.36) Corollary: Let A be acompact linear operator on a Hilbert space H. If 4+0 isan
eigenvalue of A, then the corresponding eigenspace is a finite-dimensional subspace.

(3.37) Corollary: Let A be acompact linear opeartor on a Hilbert space H. The only possible
accumulation point of the eigenvalues of A in the complex planeisO.

Proof:

If (An)n Were a sequence of different eigenvalues converging to 4+0, then a sequence of
corresponding eigenvectors would be linearly independent and therefore would violate the
conclusion of theorem (3.35). g.ed.

(3.38) Corollary: Let A beacompact linear operator on a Hilbert space H. There exist at
most countably many differrent eigenvalues of A. If A hasinfinitely many eigenvalues
An, N€ N, then lim 4,=0.

n- o

So far nothing has been said about the rest of the spectrum of A which for bounded linear
operatorsin general need not consist of eigenvalues only. The statement which we are

looking for in the compact case — the rest of the spectrum consists at most of the point 0 — is
quite satisfying but the theorem laying the ground for this statement seems somewhat
technical-confusing rather than satisfying.

Asking whethey/ € C belongs to the spectrum of A we are interested in the invertibility of
A-Z-1dy . An inverse of-4-1dy should assign to evegye (A-A-1dy)(H) a unique element

x € H . Moreover, as a bounded linear operator, it should do this in such a way that
1[|=| (A-2-1du) Yy||<y ;- |ly| for some constan,>0 not depending ow (x being the image
ofy) .

The following theorem states that we can always reverse the acton-ty in a bounded
way: never mind uniqueness, for every giyen(A-A-1dy)(H) there is an elemenmnt
associated witly by some sort of bounded inversedef-1dy, the bound being; .

(3.39) Theorem: Let A be acompact linear operator on a Hilbert space H. Given /=0, 4 € C,
there exists a constant y ,>0 with the following property:
For every y € (A-A-1dy)(H) there exists some element x, (depending on y) such that
(A-Z-ldu)xy =y and [ xy[[<y - I YIl-
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Proof:

We consider the linear subspace H;:={x € H: Ax=4-x}={x € H: (A-A-1dy)x=0}. If 4 isan
eigenvalue of A, then H, is the corresponding eigenspace; if 4 is not an eigenvalue, then
H,={0}. H, isclosed since for any x € H we have Ax-Ax=0 if and only if (Ax-4x|y)=0 for all
y € H if and only if (x| (A*- A -Idn)y)=0 for al y € H if and only if x L (A*- A -Idy)(H), i.e.
H,=((A*- A -ldy)H)". Given any y € (A-A-1dy)(H) and any x such that (A-A-Idn)x=y, we
observe that (A-A-1dy)(x-2)=y if and only if z< H,.

If P,: H—H, isthe orthogonal projection, we consider z:=P,x € H, and x,:=x-P,x and obtain
(A-A-1du)xy=y and || xy||=]/X-P,x||=min{ | x-z||: z € H,} and therefore (putting x-z=:x")

%y [[=min{[|x"[|: (A-2-1dH)x’=y}.

In this way we have associated with every §A-2-1dy)(H) a unique elementsuch that
(A-2-1du)xy=y holds.

We now prove the existence of a constay#0 such that|x,||<y,-||y|| for all

y € (A-A-ldy)(H).

X
Assuming the contrary, we have s‘ H . y#0, ye (A-A-ldy)(H)}= .

Y

We can therefore choose a sequengl &/ (A-4-1dw)(H) such that y+ 0, x, #0

[x
forallne N andlim 1 22l = o,
A
Xyn = yn

For .=

we obtain (Ad-1dy)Xn=2x,

.
| Xnl|=min{||X"||: (A-A-ldu)x'=2z,}=1 and limz,=0

(Xn)n contains a weakly convergent subsequengp (gorollary (3.26)
Then (Ax;); converges to some element h and, as a consequendex,;=lim (Axn-zy)=h
]aw ]aw
Becausei+0, also the sequence,jxconverges to the eleme{q]]t.
Ty, - limzy= .
From (A-A-1dw) L lim (A-A-1du)Xn = limz,; = 0 and (A4-1du)Xn=2, we conclude
]aw ]aw
h
(A'},'IdH)(Xn‘;):Zn

while lim ||xn,--; |=0 and therefor@xn-; ||<1 for infinitely many re N.
IAOO

This however contradictsx,||=1 for all ne N. g.e.d.

(3.40) Theorem: If A is a compact linear operator on a Hilbert space H aigdif then
(A-2-1dy)(H) is a closed linear subspace of H.



Functional Analysis Page 55

Proof:

Suppose the sequence (Yn)n < (A-2-1dy)(H) convergesto some yo € H. The sequence (Yi)n is
bounded and therefore the sequence (X, )n contains aweakly converging subsequence

(X))j < (X, )n. Then the sequence (AX;); converges. Since x,-:/]1 -(AX;-Ynj) the sequence (X;);
converges also. For Xo:=limx; we obtain (A-A-1d4)Xo= lim (A-Z-1du)X; = limyy; = Yo,
joo joo joe

i.e. Yo € (A-A-ldy)(H) g.ed.
We now characterize regular values 4+0 of a compact linear operator

(3.41) Theorem: Let A be acompact linear operator on a Hilbert space H. A complex
number 4+0 isaregular value of A if and only if (A-A-1dy)(H)=H.

Proof:

=

If 2+0 is a regular value, then (Atdy)(H)=H by definition.

L=

Suppose (At-1dy)(H)=H with A+0. Supposé. is an eigenvalue of A and let ke a
corresponding eigenvector, then fAdy)x;=0 with x+0.

Since (A4-1dy)(H)=H we can find x< H such that (At-1dy)x>=x; and inductively construct
a sequence f¥ such that (At-1dy)X=Xn.1 for ne N with xo:=0.

The elementspare linearly independent,enN, which can be easily seen by induction. Let
the orthonormal sequence)gbe obtained from g%, by Gram-Schmidt orthonormalization.
As in the proof of theorem (3.35) we conclude

(A-A-ldu)e, = (A-i-IdH)[HZanvk X, [H:Za“'k A% - A%) = (A =A%)

n-1

:Zanvk(Ak - A )X, =:¥n€ span {x,...,%-1} and therefore y_ e,.

We obtain (Ag|e,) = (Yn+A-€n| ) = A-(en| &) =4 = 0 for all ne N, which contradicts the
conclusion of lemma (3.34). Hengecannot be an eigenvalue of A/lis not an eigenvalue
of A, then (A--1dp)™ exists and is defined on H and bounded by theorem (3.39).
Therefore/ is a regular value. g.e.d.

(3.42) Corollary: Let A be a compact linear operator on a Hilbert space H. A complex
numberi+0 is an eigenvalue of A if and only & is an eigenvalue of A*.
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Proof:

If A isane genvalue of A*, then (A*- A -1dy)(H) is a proper subspace of H by theorems
(3.40) and (3.41) (remember A* is also compact by theorem (3.29)).

Then ((A*- A -1dw)(H))* = H,:={x € H: Ax=2-x} (compare proof of theorem (3.39))

and / is an eigenvalue of A with H, as the corresponding eigenspace.

A symmetric reasoning in the other direction completes the proof. g.ed.

(3.43) Corollary: Let A be acompact linear operator on a Hilbert space H. A complex
number 1+0 is either aregular value of A or an eigenvalue of A.

Proof:

If 7 isnot aregular value then (A-4-1dy)(H) is a proper subspace of H. By the argument used

in the proof of theorem (3.39) we conclude that A isanei genvalue of A*. Then / isan
eigenvalue of A. g.ed.

This corollary cannot be extended to a bounded linear operator on H in general. For this
consider the left shift operator A on I, defined by A(&1,62,83,...):= (£2,E3,...) - Then A=0isan
eigenvalue of A with the corresponding eigenvector e;=( 1x)k . -

A* istheright shift operator on |, which does not have eigenvalues at all. Consequently =1
isan eigenviaue of A+ldy but not of (A+ldy)* = A*+ldy

(3.44) Corollary: Let A be acompact linear operator on an infinite-dimensional Hilbert
space H. Then /=0 is a generalized eigenvalue and therefore belongs to the spectrum
of A.

Proof:

Let (e,)n be an orthonormal sequence in H. The sequence (e,), converges weakly to 0 and
therefore (Ae,), converges also to 0. Thus 4=0 is a generalized eigenvalue. g.ed.

As a summary of the previous results we obtain:

(3.45) Theorem: (Fredholm alternative):
Let A be acompact linear operator on a Hilbert space H. Let /. € C\ {0} be given.
Either the inhomogenous equations (A-A-1dy)x=y and (A*- A -Idy)x'=y* have solutions
x and x* for every given y and y' respectively or the homogenous equations
(A-4-1dy)x=0 and (A*-A -Idy)x'=0 have non-zero solutions x and x'.
In the first case the solutions x and x‘ are unique and depend continuously on y and y*
respectively.
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In the second case (A-4-1dy)x=y has a solution x if and only if y is orthogonal to all
solutions of (A*- A -1dy)x=0. Also (A*- A -Idy)x'=y* has a solution x* if and only if y
is orthogonal to all solutions of (Addy)x=0.

Proof:

Either 4 is a regular value of A (and is a regular value of A*) ak (respectivelyl) is an
eigenvalue of A (A* respectively). In the first case we have x&(dr)™y,

x‘=(A*- A-ldy)™y* where (A+-1dw)* and (A*-A -Idy) ™ are bounded linear operators on H.

In the second case, if;Hk the eigenspace of A corresponding tave have

(A*- A-Idy)(H)=H,".

(A*- A-ldy)x‘=y* has a solution x' if and only if y& (A*- A -ldy)(H) or, in other words, if

and only if y* is orthogonal to the eigenspacg Which in turn consists of all solutions of
(A-A-1dy)x=0.

The remaining assertion is shown similarly. g.e.d.
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84 The spectral decomposition of a compact linear operator

With all the informations we have collected so far we shall now obtain the desired
decomposition of a compact linear operator into simpler parts. We will do this with the help
of the eigenvalues of compact selfadjoint operators and the corresponding e genspaces and
with the help of the polar decomposition of the compact linear operator

(3.46) Theorem: Let A+0 be acompact selfadjoint operator on a Hilbert space H. Then
1) thereexistsan eigenvalue 4 of A suchthat | 4|=|A]|l
2) each eigenvalue of A isreal
3) the spectrum of A isreal
4) the eigenspaces corresponding to eigenvalues / and u with A+0, u+0, A+u are
orthogonal

Proof:

ad 1)

We choose a sequence (xn)n=H such that ||Xa||=1 and lim |[|Axq||=||A||=sup |AX].
n-e Ix|=1

Since A is compact we can find a subseguence (Axy); of (AXn)n Which converges to some

element y. Since | [|Y/[- | Axqll | <[ly-AXy || we have ||y||=|jiﬁn; [[AX[=[[A]>0.

By the Cauchy-Schwarz-inequality we obtain

IA[%= 1im ]| AXy [ = lim (AXy | AXq) = 1im (A%Xq | Xq) < 1lim || A%y || = ||Ay]| and thus
joo joo joo joo

IA%YIYI= (A%y1y) = (Ay | Ay) =AY (22l AIF=[AIPIYI 2| A% VI = ALY

A%y|y) _JAl"
Thisimplies || A%y||ly||= (A% |y) and therefore A%y=xxy with = = =|| Al

vly) A
Now we define x ::y+ﬂ.
Al
If x=0, then Ay = 4A|||ly|, i.e.i:= -|A]| is an eigenvalue of A
A%y ay Ay B AyE
If x+0, then Ax = Ay +—-= Ay + == Ay +=— == Ay +||A|ly =||A|| by + —=-
Al Al Al Al

Which shows that Ax #A| X, i.e.A:=||A|| is an eigenvalue of A

ad 2)
Let 1 be an eigenvalue of H with the corresponding eigenvector x. Then

AX]X) = (AX[X) = (AX|X) = (X| AX) = (X| AX) = j(x|x) and hencé=A

ad 3)
Corollaries (3.43) and (3.44) imply thatA) = {0} U {4 € C: 4 eigenvalue of A}

ad 4)

If #+0 andu+0 are different eigenvalues of A and iExH, and ye H, are eigenvectors
corresponding td andu respectively, then

Axly) = (@x1y) = (Ax]y) = (X|Ay) = (X|uy) = @ (X]y) =u(x]y), ie.@-u)(x|y) = 0 and
hence (xy)=0 g.e.d.
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If a compact linear operator A on a Hilbert space H is selfadjoint, then all of its eigenvalues
arereal, A has at most countably many different eigenvalues 40 with ||<i mA=0if A has

infinitely many eigenvalues. If ;0 is an eigenvalue of A then the corresponding eigenspace
isafinite-dimensional subspace of H . We count every non-zero eigenvalue as many times as
indicated by ist multiplicity, i.e. by the dimension of the corresponding eigenspace, and obtain
a sequence (4;); of non-zero eigenvalues of A with ||A||=|41|>|42]> ... >| A |>0and Ijiml,-:O

if A hasinfinitely many non-zero eigenvalues. For j € | we choose an orthonormal basis of
the corresponding eigenspace H A ={x e H: Ax=4;x}. Snce H Pt H, for eigenvalues ii+4;,
Ax#0, 40, we obtain an orthonormal system (x;); . corresponding to the sequence (4;); .1 ;
here I=N if A hasinfinitely many non-zero eigenvaluesor |1 |< o if A hasfinitely many

non-zero eigenval ues.
The sequence (4;,X;); is called an eigensystem of the compact selfadjoint operator A

(3.47) Theorem: (Spectral theorem for compact selfadjoint operators):
Let A be acompact selfadjoint operator on a Hilbert space H, let (4;,%);.1 beits
eigensystem. Then we have
1) Ax :;Aj(x |x,)x; foralxeH
I

2) A(H)=0UOH, where H, ={x e H: Ax=4jx}
j J ]
3) H=N(A) & A(H) where N(A)={x € H: Ax=0} isthe kernel of A

Proof:

adl) +2)
SinceH, L H, if 4, u € o(A)\ {0} and A+, we have A(H)= 0O H,.

AOo(A)
A£0

Theorem (3.46) guarantees the existence of 4; € o(A) {0} suchthat | 1;]=||A]|. Let X; be an
eigenvector with ||x;]|=1 corresponding to /;. We define H:=H and

Ho:={x € H: (X| x1)=0}=H1 & span{x1}. Since A is selfadjoint we have

(AX|X1) = (X] AXy) = (X| A1X1) = A; (X|X1) = A1(X | X1) = O for al x € H, and hence A(H2)<Ho,
i.e. A|H,: Ho—Hj. A|H, iscompact and selfadjoint. If A |H,+0 we can find 4, € C with

| 22| =||A | H,|| and X2 € Hz such that ||X2]|=1 and AXa=4.X2.

Obhviously | 42| <] 41| since || A |H,||<||A]l.

Continuing this way we find a system (41,X1), ..., (A4p,Xp) SUCh that | A1|>|A2]> ... >| 4p],

(X, XK)=0jk, and Ax;=4jx; for j,k € {1,...,p}.

We also find subspaces Hi, Hy, ..., Hp, Hp+1 such that Hjw={x € H;: (x| x;)=0} forj<{1,...,p}.
The system (41,X1), ..., (An,Xn) IS finite and ends with (in,Xn) and Hy.1 if and only if A |H,.,=0.

In this case we define yn:= x- Z(x | X;)X; and obtain
]:

(Yn| %) = (X| X) - i(x X)X, [X;)= (x| %) = (x|x) = 0 forie {1,...,n}, i.e. y € Hys1 and

hence 0 = Ay= Ax-i(x|xj)ij :Ax-iAj(x|xj)xj .
IE IE
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If A|H,+0 for al ne N, we again define yn:= x- Z(x|xj)xj and obtain
]:
1 2
1Ynll? = x| Z‘(X |xj)‘ < ||x||? and therefore
]:
Ayn = AX_ Z(X | Xj)Aij and ||Ayn||:||A | Hn+lyn||£ | ln+1| ||yn|| .
]:

Since lim 4;=0 we finally have Ax=1lim ZAj(x X)X, :ZAj(x |x,)x; and therefore
IE IE

] o

(4j,%;); is an eigensystem.

If A4#0 isan eigenvalue of A and x+0 is a corresponding eigenvector and if (4,x) isnot a
member of the eigensystem (4;,x;);, then (x| x;)=0 for j € N and thus

AX=AX= iAj(x |xj)xj = 0 contrary to A+0 and x+0.
Therefore t]he system (4;,x;); contains every non-zero eigenvalue of A.
Suppose x+0and x € H, =N(A-Acldn), ke N, thenx L HAJ forall j € N, j=k.
Therefore Axx = Ax = ZAj(x | x,)x; which implies x = ZAj(x X)X,
I I

A=A A=A
Thisshows that every x € H, isalinear combination of (x));. Thisimplies (X;),;, isabasis
in H, , where lo={j € N: 4j=/«}. Hence for any eigenvalue /+0 of A an orthonormal basis of
H, =N(A-4-1dy) is part of the eigensystem (4;,X;);

ad 3)

If x e A(H)" then 0 = (x| Ay) = (Ax|y) for every y € H that is Ax=0 or x € N(A).

Conversely x € N(A) impliesx € A(H)*. Since A(H)" = N(A) we have H = N(A) & A(H)
g.ed.

Now we apply the polar decomposition (theorem (3.9)) and obtain the main result of this
chapter

(3.48) Theorem: Let H be aHilbert space. Let A € 2,(H,H) be a compact linear operator.
Then there exist orthonormal systems (x;);=H and (y;);=H and a sequence (/;);cC

suchthat | 4j|=| 41|, ] €N, IAim/1,-:OandAx:ZAj(x|xj)yj for x € H.
jo <
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Proof:

Since A is acompact linear operator, |A| € 2,(H,H) isalso compact (theorem (3.29)).
|A| isselfadjoint = we have |A|X :ZAj(x |xj)xj forxeH

]:
Where (4;,%)j € | isthe eigensystem of | A| obtained in theorem (3.47). If the system

(A1,X2), (A2,X2), ... , (An,Xn) isfinite we define 4;:=0 for j € N, j>n+1.
By the polar decomposition theorem (3.9) we find a partial isometry U such that

Ax=U|A|x= ZAj(x | X, )UX, :ZAj(x |x,)y; withy;:=Ux;.
1= 1=
Since (y; | yk) =(Ux; | Uxi) = (U*Ux; | ) = (Xj | X) = Oj we obtain that (y;); is an orthonormal

system also.
Since 0 < (| A x| %) = (4] %) = 4j, j € N, we obtain the desired result. g.ed.



