Trag- und Verformungsverhalten von Verbunddübeln im Erdbebenfall

Vom Fachbereich Bauingenieurwesen der Rheinland-Pfälzischen Technischen Universität Kaiserslautern-Landau zur Verleihung des akademischen Grades

DOKTOR-INGENIEUR (Dr.-Ing.)

genehmigte

DISSERTATION

von

Nikolai Sklarov, M. Eng.

aus Kalinowskoje

Dekan:	Prof. DrIng. Karsten Körkemeyer
1. Berichterstatter:	apl. Prof. DrIng. Catherina Thiele
2. Berichterstatter:	Prof. DrIng. Wolfgang Kurz

Tag der mündlichen Prüfung: 18.04.2024

Kaiserslautern 2024

(D 386)

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Fachgebiet Massivbau und Baukonstruktion der Technischen Universität Kaiserslautern.

An dieser Stelle möchte ich Frau apl.-Prof. Dr.-Ing. Catherina Thiele ganz herzlich für die Ermöglichung meiner Promotion, die Unterstützung im Rahmen des Forschungsprojektes sowie die zahlreichen und intensiven Gespräche rund um meine Arbeit danken.

Dem zweiten Berichterstatter, Herrn Prof. Dr.-Ing. Wolfgang Kurz, gilt mein ausdrücklicher Dank für die konstruktive Unterstützung in vielen gemeinsamen Projektsitzungen sowie die Begutachtung meiner Arbeit.

Ebenso möchte ich Herrn Prof. Dr.-Ing. Christian Glock für die Übernahme des Vorsitzes der Promotionskommission danken.

Bei allen derzeitigen sowie ehemaligen Kolleginnen und Kollegen am Fachgebiet Massivbau und Baukonstruktion sowie am Fachgebiet Stahlbau möchte ich mich für die überaus offene und freundschaftliche Zusammenarbeit bedanken.

Meinen Kollegen im Lehrgebiet "Befestigungstechnik" danke ich für die ebenso konstruktive wie angenehme Zusammenarbeit im Rahmen unseres gemeinsamen Forschungsprojektes.

Allen Studentinnen und Studenten, die mich als wissenschaftliche Hilfskräfte oder im Rahmen von Studien-, Bachelor- und Masterarbeiten unterstützt haben, gilt mein außerordentlicher Dank.

Mein Dank gilt Mike Schneider und Lars Schmerberg sowie allen technischen Mitarbeitern des Labors für Konstruktiven Ingenieurbau für die Unterstützung.

Zuletzt möchte ich mich von Herzen bei meiner Frau, meinen Kindern sowie meinen Eltern bedanken, die mich immer unterstützt und gefördert haben sowie mir zuverlässig zur Seite standen und mir immer wieder die wesentlichen Dinge des Lebens vor Augen führten.

"Ich wünsche, dass dein Glück sich jeden Tag erneue, Dass eine gute Tat dich jede Stund' erfreue!"

von Friedrich Rückert

Nikolai Sklarov

Trag- und Verformungsverhalten von Verbunddübeln im Erdbebenfall

Inhalt

Zusamm	enfassung	v
Abstract		vi
Bezeich	nungen	vii
1 Eir 1.1 All(1.2 Pro 1.3 Me	nführung gemeines oblemstellung und Zielsetzung othodik	1 1 6 8
2 Be	wertungsgrundlagen	10
2.1 Üb	ersicht von Befestigungssystemen	10
2.2 Inje	ektionsanker (Verbundanker) nach EAD 330499-01-0601	12
2.2.1	Statische Eignungsversuche und Zugbeanspruchungen	14
2.2.2	Statische Eignungsversuche, Scherbeanspruchungen	17
2.2.3	Seismische Eignungsversuche und Leistungskategorie C1	20
2.3 Zw	ischenfazit	22
3 Ak	tueller Stand der Forschung	24
3.1 Allę	gemeines	24
3.2 Un	tersuchungen mit Kopfbolzen	25
3.2.1	Ollgaard et al.	25
3.2.2	Lungershausen	25
3.2.3	Roik und Hanswille	27
3.2.4	Oehlers und Johnson	28
3.3 Un	tersuchungen mit randfernen Befestigungen	29
3.3.1	Modelle auf Grundlage der Bettungsziffertheorie	29
3.3.1	I.1 Friberg	29
3.3.1	I.2 Wiedenroth	30
3.3.1	I.3 Dei Poli et al.	31
3.3.2	Geometrische Modelle	32
3.3.2	2.1 Birkeland und Birkeland	32
3.3.2	2.2 Mast	33
3.3.2	2.3 Rasmussen	34
3.3.2	2.4 Dulacska	36
3.3.2	2.5 Paulay et al.	36
3.3.2	2.6 Vintzeléou und Tassios	37
3.3.2	2.7 Welz	38

3.3.3	Modelle auf Grundlage FE-Untersuchungen	39
3.3	.3.1 Cziesielski und Friedmann	39
3.3	.3.2 Fuchs	39
3.4 B	erechnungsverfahren in Eurocode	41
3.4.1	DIN EN 1992-4	41
3.4.2	Grosser	41
3.5 G	egenüberstellung der Berechnungsansätze	42
3.6 Z	wischenfazit	45
4 A	uswertung der Zulassungsversuche für C1	48
4.1 Ü	berblick der Versuchsserie	48
4.2 M	laterialeigenschaften	50
4.2.1	Stahl	50
4.2.2	Beton	51
4.2.3	Verbundmörtel	52
4.3 V	ersuchsbeschreibung	53
4.4 V	ersuchsergebnisse	54
4.4.1	Spannungsniveau	54
4.4.2	Verformungsverhalten	59
4.5 Z	wischenfazit	64
5 E	xperimentelle Untersuchungen	66
5 E 5.1 B	xperimentelle Untersuchungen eschreibung der Vorgehensweise	66 66
5 E 5.1 B 5.2 E	xperimentelle Untersuchungen eschreibung der Vorgehensweise rmittlung der Stahleigenschaften	66 66 68
5 E 5.1 B 5.2 E 5.2.1	xperimentelle Untersuchungen eschreibung der Vorgehensweise rmittlung der Stahleigenschaften Zugprüfung	66 66 68 68
5 E 5.1 B 5.2 E 5.2.1 5.2.2	xperimentelle Untersuchungen eschreibung der Vorgehensweise rmittlung der Stahleigenschaften Zugprüfung Druckprüfung	66 66 68 68 71
5 E 5.1 B 5.2 E 5.2.1 5.2.2 5.2.3	xperimentelle Untersuchungen eschreibung der Vorgehensweise rmittlung der Stahleigenschaften Zugprüfung Druckprüfung Scherprüfung	66 66 68 68 71 72
5 E 5.1 B 5.2 E 5.2.1 5.2.2 5.2.3 5.3 E	xperimentelle Untersuchungen eschreibung der Vorgehensweise rmittlung der Stahleigenschaften Zugprüfung Druckprüfung Scherprüfung rmittlung der Betoneigenschaften	66 68 68 71 72 78
5 E 5.1 B 5.2 E 5.2.1 5.2.2 5.2.3 5.3 E 5.3.1	xperimentelle Untersuchungen eschreibung der Vorgehensweise rmittlung der Stahleigenschaften Zugprüfung Druckprüfung Scherprüfung rmittlung der Betoneigenschaften Betonrezeptur	66 68 68 71 72 78 78
5 E 5.1 B 5.2 E 5.2.1 5.2.2 5.2.3 5.3 E 5.3.1 5.3.2	xperimentelle Untersuchungen eschreibung der Vorgehensweise rmittlung der Stahleigenschaften Zugprüfung Druckprüfung Scherprüfung rmittlung der Betoneigenschaften Betonrezeptur Druck- und Spaltzugprüfung	66 68 68 71 72 78 78 78 79
5 E 5.1 B 5.2 E 5.2.1 5.2.2 5.2.3 5.3 E 5.3.1 5.3.2 5.4 E	xperimentelle Untersuchungen eschreibung der Vorgehensweise rmittlung der Stahleigenschaften Zugprüfung Druckprüfung Scherprüfung rmittlung der Betoneigenschaften Betonrezeptur Druck- und Spaltzugprüfung	66 68 68 71 72 78 78 78 79 80
5 E 5.1 B 5.2 E 5.2.1 5.2.2 5.2.3 5.3 E 5.3.1 5.3.2 5.4 E 5.4.1	xperimentelle Untersuchungen eschreibung der Vorgehensweise rmittlung der Stahleigenschaften Zugprüfung Druckprüfung Scherprüfung rmittlung der Betoneigenschaften Betonrezeptur Druck- und Spaltzugprüfung rmittlung der Mörteleigenschaften Mörtelgruppen	 66 68 68 71 72 78 78 79 80 80
5 E 5.1 B 5.2 E 5.2.1 5.2.2 5.2.3 5.3 E 5.3.1 5.3.2 5.4 E 5.4.1 5.4.2	xperimentelle Untersuchungen eschreibung der Vorgehensweise rmittlung der Stahleigenschaften Zugprüfung Druckprüfung Scherprüfung rmittlung der Betoneigenschaften Betonrezeptur Druck- und Spaltzugprüfung rmittlung der Mörteleigenschaften Mörtelgruppen Druckprüfung	66 68 68 71 72 78 78 79 80 80 80 82
5 E 5.1 B 5.2 E 5.2.1 5.2.2 5.2.3 5.3 E 5.3.1 5.3.2 5.4 E 5.4.1 5.4.2 5.4.3	xperimentelle Untersuchungeneschreibung der Vorgehensweisermittlung der StahleigenschaftenZugprüfungDruckprüfungScherprüfungrmittlung der BetoneigenschaftenBetonrezepturDruck- und Spaltzugprüfungrmittlung der MörteleigenschaftenMörtelgruppenDruckprüfung	 66 68 68 71 72 78 78 79 80 80 82 84
5 E 5.1 B 5.2 E 5.2.1 5.2.2 5.2.3 5.3 E 5.3.1 5.3.2 5.4 E 5.4.1 5.4.2 5.4.3 5.5 E	xperimentelle Untersuchungen eschreibung der Vorgehensweise rmittlung der Stahleigenschaften Zugprüfung Druckprüfung Scherprüfung rmittlung der Betoneigenschaften Betonrezeptur Druck- und Spaltzugprüfung rmittlung der Mörteleigenschaften Mörtelgruppen Druckprüfung spaltzugprüfung	66 68 68 71 72 78 78 79 80 80 80 82 84 85
 5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.3 5.3 5.3 5.3.1 5.3.2 5.4 5.4.1 5.4.2 5.4.3 5.5 5.5.1 	xperimentelle Untersuchungen eschreibung der Vorgehensweise rmittlung der Stahleigenschaften Zugprüfung Druckprüfung Scherprüfung rmittlung der Betoneigenschaften Betonrezeptur Druck- und Spaltzugprüfung rmittlung der Mörteleigenschaften Mörtelgruppen Druckprüfung Spaltzugprüfung rmittlung der Zugtragfähigkeit in gerissenem Beton	66 68 68 71 72 78 78 79 80 80 80 80 82 84 85
 5 5.1 B 5.2 5.2.1 5.2.2 5.2.3 5.3 5.3 5.3.1 5.3.2 5.4 5.4.1 5.4.2 5.4.3 5.5 5.5.1 5.5.2 	xperimentelle Untersuchungeneschreibung der Vorgehensweisermittlung der StahleigenschaftenZugprüfungDruckprüfungScherprüfungscherprüfungrmittlung der BetoneigenschaftenBetonrezepturDruck- und Spaltzugprüfungrmittlung der MörteleigenschaftenMörtelgruppenDruckprüfungspaltzugprüfungrmittlung der Zugtragfähigkeit in gerissenem BetonÜbersichtVersuchsaufbau	 66 68 68 71 72 78 78 79 80 80 82 84 85 85 87
5 E 5.1 B 5.2 E 5.2.1 5.2.2 5.2.3 5.3 E 5.3.1 5.3.2 5.4 E 5.4.1 5.4.2 5.4.3 5.5 E 5.5.1 5.5.2	xperimentelle Untersuchungen eschreibung der Vorgehensweise rmittlung der Stahleigenschaften Zugprüfung Druckprüfung Scherprüfung rmittlung der Betoneigenschaften Betonrezeptur Druck- und Spaltzugprüfung rmittlung der Mörteleigenschaften Mörtelgruppen Druckprüfung Spaltzugprüfung rmittlung der Zugtragfähigkeit in gerissenem Beton Übersicht Versuchsaufbau Versuchsergebnisse	 66 68 68 71 72 78 79 80 80 82 84 85 85 87 88
 5 5.1 B 5.2 5.2.2 5.2.3 5.3 5.3 5.3 5.4 5.4.2 5.4.3 5.5 5.5.1 5.5.2 5.5.3 5.6 	xperimentelle Untersuchungeneschreibung der Vorgehensweisermittlung der StahleigenschaftenZugprüfungDruckprüfungScherprüfungrmittlung der BetoneigenschaftenBetonrezepturDruck- und Spaltzugprüfungrmittlung der MörteleigenschaftenMörtelgruppenDruckprüfungspaltzugprüfungrmittlung der Zugtragfähigkeit in gerissenem BetonÜbersichtVersuchsaufbauVersuchsergebnissetatische Querzugversuche in gerissenem Beton	 66 68 68 71 72 78 78 79 80 80 82 84 85 85 87 88 91
5 E 5.1 B 5.2 E 5.2.1 5.2.2 5.2.3 5.3.1 5.3.2 5.3.1 5.3.2 5.3.1 5.3.2 5.3.1 5.3.2 5.4 5.4.1 5.4.2 5.4.3 5.5 5.5.1 5.5.2 5.5.3 5.5.3 5.5.5.3 5.5.3 5.6 S 5.6.1 5.6.1	xperimentelle Untersuchungeneschreibung der Vorgehensweisermittlung der StahleigenschaftenZugprüfungDruckprüfungScherprüfungrmittlung der BetoneigenschaftenBetonrezepturDruck- und Spaltzugprüfungrmittlung der MörteleigenschaftenMörtelgruppenDruckprüfungspaltzugprüfungrmittlung der Zugtragfähigkeit in gerissenem BetonÜbersichtVersuchsaufbauVersuchsergebnissetatische Querzugversuche in gerissenem BetonÜbersicht	 66 68 68 71 72 78 78 79 80 80 82 84 85 85 87 88 91 91

5.6	5.3 Versuchsergebnisse	95
5.6	6.4 Verformungsverhalten	100
5.6	6.5 Bildanalyse	104
5.6	6.6 Versagensmodelle	106
5.6	6.7 Tragverhalten	111
5.6	6.8 Vereinfachter Ansatz zur Bestimmung der Kraftanteile	116
5.6	6.9 Einfluss der verwendeten Verbundmörtel	119
5.6	6.10 Einfluss der effektiven Einbindetiefen	123
5.6	6.11 Positionierung des Drehpunkts <i>a</i> in der Fließzone	126
5.6	6.12 Einfluss von Betonrissen	129
5.6	0.13 Ermittlung des verformten Stabbereichs	131
5.6	δ.14 Ermittlung von Stabauslenkung <i>s</i>	135
5.6	6.15 Zwischenfazit	138
5.7	Seismische Querzugversuche in gerissenem Beton nach EAD 330499-01-0601	140
5.7	7.1 Übersicht	140
5.7	7.2 Versuchsaufbau	141
5.7	7.3 Bildanalyse	143
5.7	7.4 Versuchsergebnisse: Spannungsniveau	143
5.7	7.5 Tragverhalten	147
5.7	7.6 Ermittlung von Ankerverformungen	150
5.7	7.7 Materialeinflüsse auf Restquerzugtragfähigkeit	153
5.7	7.8 Einflüsse während der Wechsellastbelastung	157
5.7	7.9 Abminderung der Wechsellast	163
5.7	7.10 Einfluss der Einbindetiefe	168
5.7	7.11 Zwischenfazit	172
6	Empfehlung und Diskussion	174
6.1	Eingliederung in EAD 330499-01-0601	174
6.2	Allgemeine Empfehlung zum Versuchsaufbau nach TR 048 und EAD 330499-01-0	601
		177
6.3	Empfehlung zur Qualifikation von statischen Querzugversuchen bei nachträglich	
	installierten Injektionsankern	178
6.4	Empfehlung zur Qualifikation von querzugbelasteten nachträglich installierten	
	Injektionsankern im Beton in Leistungskategorie C1	179
7	Fazit und Ausblick	181
7.1	Zusammenfassung	181
7.2	Ausblick	183
Litera	atur	184
Anha	ang A – Stahlzugprüfung	195

Anha	Anhang B – Stahlscherprüfung 20 ⁴		
Anha	Anhang C – Betonprüfung 208		
Anha	ang D – Verbundmörtelprüfung	211	
Anha	ang E – Statische Querzugversuche in gerissenem Beton	219	
E.1	Gewindestäbe M8 4.8	219	
E.2	Gewindestäbe M8 8.8	223	
E.3	Gewindestäbe M8 A4	228	
E.4	Bewehrungsstäbe Ø8 B500B	233	
E.5	Gewindestäbe M20 4.8	236	
E.6	Gewindestäbe M20 5.6	240	
E.7	Gewindestäbe M20 8.8	244	
E.8	Gewindestäbe M20 A4	249	
E.9	Bewehrungsstäbe Ø20 B500B	254	
Anha	ang F – Seismische Querzugversuche in gerissenem Beton	258	
F.1	Gewindestäbe M8 8.8	258	
F.2	Gewindestäbe M8 A4	264	
F.3	Gewindestäbe M20 8.8	271	
F.4	Gewindestäbe M20 A4	278	
F.5	Gewindestäbe M8 8.8 – Verbundlos	285	
F.6	Gewindestäbe M8 A4 - Verbundlos	287	
F.7	Gewindestäbe M20 8.8 und A4 - Verbundlos	290	
Anha	ang G – Zugversuche in gerissenem Beton	292	
G.1	Gewindestäbe M8 12.9	292	
G.2	Gewindestäbe M20 12.9	296	
Anha	ang H – Einzelwerte aus der Bildanalyse	300	
H.1 S	Statische Querzugversuche in gerissenem Beton	301	
G.3	H.2 Seismische Querzugversuche in gerissenem Beton	311	
Anha	ang I – Zeichnungen	315	
Anha	ang J – VBA-Quellcode	319	

Zusammenfassung

Nachträglich installierte Injektionsanker aus handelsüblichen Gewindestangen und Bewehrungsstäben nehmen inzwischen ein breites Spektrum von Einbaumöglichkeiten in der Bautechnik ein. Der aktuelle Forschungsstand ermöglicht den Einsatz von Befestigungen sowohl in ungerissenem als auch in gerissenem Beton unter quasistatischen und seismischen Beanspruchungen. Die Qualifikation und Zulassung von nachträglich in Beton installierten Injektionsankern erfolgt nach der gültigen Richtlinie *EAD 330499-01-0601*.

Zur Beurteilung von Querzugtragfähigkeiten der Injektionsanker wird die Stahlzugfestigkeit des Befestigungsmittels bislang als eine maßgebliche Einflussgröße betrachtet. Der Einfluss der Stahldehnung bei Höchstlast auf verwendete Gewinde- und Bewehrungsstäbe wird für die Bewertung von statischen und seismischen Querzugversuchen jedoch in keiner Richtlinie berücksichtigt. Außerdem werden Einflüsse der Verbundmörteleigenschaften auf die Querzugtragfähigkeit von Injektionsankern nicht in die Versuchsauswertung einbezogen.

In Rahmen dieser Dissertation stand das Trag- und Verformungsverhalten von querbelasteten Injektionsankern in gerissenem Beton im Fokus. Dafür wurden statische und seismische Querzugversuche mit unterschiedlichen Güteklassen und Verbundmörteln durchgeführt. Der Vergleich der Versuchsergebnisse und der rechnerischen Querzugtragfähigkeiten ergab, dass die Berechnung der Querzugtragfähigkeit die Berücksichtigung weiterer Einflussgrößen erfordert.

In der vorliegenden Arbeit wird die Einflussnahme der Stahldehnung bei Höchstlast und der Verbundfestigkeit des verwendetes Verbundmörtels auf das Versuchsergebnis von statischen und seismischen Eignungsversuchen veranschaulicht. Die Bruchbildanalyse der freigestemmten Injektionsankern in Verbindung mit den ermittelten Materialkennwerten lieferte neue Erkenntnisse in Bezug auf eine qualitative Bewertung von querzugbeanspruchten Injektionsankern.

Auf Grundlage der erfolgten Untersuchungen wurden Empfehlungen zur Versuchsdurchführung und zur Qualifikation von Injektionsankern in gerissenem Beton unter quasistatischen und seismischen Querzugbeanspruchungen ausgearbeitet und eine Ergänzung der bestehenden Richtlinie *EAD 330499-01-0601* vorgeschlagen.

Abstract

Post-installed injection anchors, using commercially available threaded rods and reinforcing bars, have been extensively applied in civil engineering. As per current knowledge, fasteners can be utilized in both non-cracked and cracked concrete under the action of quasi-static and seismic loads. The qualification and approval of post-installed injection anchors in concrete is carried out according to the currently valid guideline *EAD* 330499-01-0601.

The assessment of shear load-bearing capacities of injection anchors currently emphasizes the steel tensile strength of the fastening element. However, the influence of steel elongation at the maximum load of the utilized threaded and reinforcing bars used is not considered in any of the guidelines for the evaluation of static and seismic shear tests. Additionally, the effect of composite mortar properties on the shear capacity of injection anchors are not taken into account in the test evaluation.

This thesis aimed to investigate the load-bearing and deformation behavior of shear-loaded injection anchors in cracked concrete. Static and seismic shear tests were carried out with different variations of steel grades and injection mortars. Upon comparing the test results with the calculated shear capacities, it was determined that the computational determination of shear capacity necessitates the consideration of additional influencing factors.

In this thesis, the influence of steel elongation at maximum load and the bond strength of the composite mortar used on the test results of static and seismic approval tests is clarified. The performance of a fracture pattern analysis on the freely grouted injection anchors, in conjunction with the determined material characteristics, provided new insights into the qualitative evaluation of injection anchors subjected to shear stress.

Based on these investigations, recommendations for test performance and qualification of injection anchors in cracked concrete under quasistatic and seismic shear loading are formulated. Additionally, a supplement to the existing guideline *EAD 330499-01-0601* is proposed that aims to enhance the accuracy and reliability of shear load assessments for injection anchors.

Bezeichnungen

Kleine lateinische Buchstaben

а	mm	Abstand von der Betonoberkannte bis zum Drehpunkt des Ankers
a_g	g	Bemessungs-Bodenbeschleunigung für Baugrundklasse A
b_1	mm	Aussparungsdurchmesser für Passzylinder
<i>b</i> ₂	mm	Passzylinderdurchmesser
С	lb/in³	Bettungsziffer
d	mm	Durchmesser
d_0	mm	Anfangsdurchmesser
d_1	mm	metrisches ISO-Gewinde
d_a	mm	Außendurchmesser
d_b	mm	Kopfbolzendurchmesser
d_i	mm	Innendurchmesser
d_f	mm	Durchgangslochdurchmesser
d_{nom}	mm	nominaler Außendurchmesser der Befestigung
d_s	mm	Nenndurchmesser für Gewinde- und Bewehrungsstäbe
е	mm	Abstand zwischen der einwirkenden Scherkraft und der Betonoberkante
f_c	N/mm²	Betondruckfestigkeit, gemessen an Zylindern
f _{cc}	N/mm²	Zulässige Betonspannung vor Anker bei Querbelastung
$f_{c,cube}$	N/mm²	Betondruckfestigkeit, gemessen an Würfeln
$f_{c,m}$	N/mm²	Mittelwert der Betondruckfestigkeit, gemessen an Zylindern
$f_{c,m,cube}$	N/mm²	Mittelwert der Betondruckfestigkeit gemessen an Würfeln
f _{c,mörtel}	N/mm²	Verbundmörteldruckfestigkeit, gemessen an Zylindern
$f_{c,t}$	N/mm²	Betondruckfestigkeit an dem Datum t (nach Weber)
<i>f</i> _{ct}	N/mm²	Betonzugfestigkeit
$f_{ct,m\"ortel}$	N/mm²	Verbundmörtelspaltzugfestigkeit
f _u	N/mm²	Stahlzugfestigkeit
f _{uk}	N/mm²	charakteristische Stahlzugfestigkeit
f_y	N/mm²	Stahlstreckgrenze

h	mm	Prüfkörperhöhe
h_0	mm	Anfangshöhe (Druckversuch)
h_1	mm	Passzylinderüberstand
h_2	mm	Passzylinderdicke
h _{ef}	mm	effektive Einbindetiefe
h _{ef,erf}	mm	erforderliche (rechnerische) Einbindetiefe
h _{ef,red}	mm	reduzierte effektive Einbindetiefe
h _{loch}	mm	Bohrlochtiefe
h _{nom}	mm	nominelle Einbindetiefe
l_d	mm	Tiefe des verformten Bereichs des Ankers
m	-	Normalisierungsexponent unter Berücksichtigung des Einflusses der Betonfestigkeit auf den Widerstand
n	-	Anzahl
r	Mm	Übergangsradius
S	mm	Ankerkopfauslenkung an der Betonoberkante
t	Datum	Hochrechnungsdatum für die Ermittlung der Betondruckfestigkeit
t_0	Datum	Prüfungsdatum der Betondruckfestigkeit
t _{fix}	mm	Dicke der Querzugplatte bzw. des Einlegebauteils
u	mm	horizontale Ankerverschiebung, gemessen an der Betonoberkante
u _{max}	mm	maximale horizontale Ankerverschiebung, gemessen an der Betonoberkante
<i>u</i> _{s0}	mm	Ankerverschiebung bei seismischen Belastungen ohne Berücksichtigung von Spalt Δ_{spalt}
u_p	mm	axiale Ankerverschiebung (Schlupf)
$u_{p,m}$	mm	Mittelwert der axialen Ankerverschiebung einer Versuchsserie
u _{p,Schätzung}	mm	Schätzungswert der axiale Ankerverschiebung (Schlupf)
W	mm	Rissbreite

Große lateinische Buchstaben

A _s	mm²	Stahlquerschnittsfläche (brutto)
A _{s,ref}	mm²	Referenzquerschnittfläche

A _{s,wahr}	mm²	wahre Stahlquerschnittsfläche (netto)
C _{fc}	N/mm²	Betondruckspannungen (Gegenkraft zu σ_c)
D	_	Schädigungsfaktor
E _c	N/mm²	Elastizitätsmodul des Betons
$E_{c,m}$	N/mm²	Elastizitätsmodul (mittleres Sekantenmodul) des Betons
Es	N/mm²	Elastizitätsmodul des Stahls
F	kN	resultierende Kraft
Ι	mm ⁴	Trägheitsmoment
L ₀	mm	Anfangsmesslänge
L _c	mm	parallele Länge ($L_c \ge L_0 + d_0$)
L _t	Mm	Gesamtlänge
<i>M</i> ₁	kNm	Biegemoment an der Betonoberkannte
<i>M</i> ₂	kNm	Biegemoment nahe dem Drehpunkt <i>a</i>
Μ	kNm	Biegemoment
M _{max}	kNm	maximales Biegemoment
M_{pl}	kNm	plastisches Widerstandsbiegemoment
N _{eq}	kN	maximale Größe der zyklischen Belastung des C1.2- Testprogramms nach dem <i>Technical Report 049</i>
N _s	kN	Zugkraft, gemessen während der Stahlabscherung
N _u	kN	maximale Zugkraft
N _{u,zug}	kN	maximale Zugkraft bei Zugversuchen in Beton
N _{u,adh}	kN	Zugkraft beim Verlust der Verbundsteifigkeit
<i>N</i> _{<i>u</i>,<i>C</i>1.1}	kN	Restzugkraft nach dem Beenden des C1.1-Testprogramms nach dem <i>Technical Report 04</i> 9
N	kN	einwirkende Zugkraft während der Querbelastung
$N_{u,\parallel}$	kN	maximale einwirkende Zugkraft während der Querbelastung
N_{pl}	kN	plastische Zugwiderstandskraft
Р	kN	Druckkraft
$P_{R,d}$	kN	Bemessungswert der Längsschubtragfähigkeit eines Dübels
$P_{R,k}$	kN	charakteristischer Wert der Längsschubtragfähigkeit eines Dübels
S	_	Bodenparameter
T _{inst}	Nm	Installationsdrehmoment
V^*	kN	Querzugkraft ohne Reibungsanteil und ohne Zugkraftanteil

V	kN	Einwirkende Scherkraft bzw. einwirkende Schubkraft bei der Querschnittbemessung
V _{eq}	kN	maximale Größe der alternierenden Querzugbelastung des C1.2- Testprogramms nach dem <i>Technical Report 049</i>
V _i	kN	50 % der Wechsellast V_{eq}
V_m	kN	75 % der Wechsellast V_{eq}
V _{max}	kN	maximale Größe der alternierenden Querzugbelastung des C2.4- Testprogramms nach dem <i>Technical Report 049</i>
V_{pl}	kN	plastische Schubwiderstandskraft
V_R	kN	Reibungskräfte (Anteil der einwirkenden Querzugkraft)
$V^0_{Rk,s}$	kN	charakteristische statische Stahlquerzugtragfähigkeit
$V_{Rk,s,C1}$	kN	charakteristische seismische Stahlquerzugtragfähigkeit der Leistungskategorie C1 nach dem <i>Technical Report 04</i> 9
V _{Rk,s,C2}	kN	charakteristische seismische Stahlquerzugtragfähigkeit der Leistungskategorie C2 nach dem <i>Technical Report 04</i> 9
Vs	kN	gemessene Größe der Querzugkraft aus einem Scherversuch in der Stahlvorrichtung
V _{s,m}	kN	Mittelwert der gemessenen Querzugkräfte einer Versuchsserie in der Stahlvorrichtung
<i>V</i> _{<i>s</i>,0}	kN	gemessene Scherwiderstandskraft der Gewindestäbe ohne Stabeinspannung
<i>V</i> _{<i>s</i>,<i>m</i>,0}	kN	Mittelwert der Scherwiderstandskräfte einer Versuchsserie ohne Stabeinspannung
V _u	kN	gemessene maximale Querzugkraft während quasistatischer Querzugbeanspruchung in Beton
<i>V_{u,C1.2}</i>	kN	Restquerzugkraft nach dem Beenden des C1.2-Testprogramms nach dem <i>Technical Report 049</i>
<i>V_{u,C2.2}</i>	kN	gemessene maximale Querzugkraft im C2.2-Versuch nach dem <i>Technical Report 04</i> 9
<i>V_{u,C2.4}</i>	kN	Restquerzugkraft nach der Beendigung des C2.4-Testprogramms nach dem <i>Technical Report 049</i>
$V_{u,m}$	kN	Mittelwert der gemessenen maximalen Querzugkräfte
$V_{u,m,C2.2}$	kN	Mittelwert der maximalen Querzugkräfte im C2.2-Versuch nach dem <i>Technical Report 049</i>
$V_{u,m,V1}$	kN	Mittelwert der maximalen Querzugkräfte im V1-Versuch nach EAD 330499-01-0601

<i>V</i> _{<i>u</i>,<i>V</i>1}	kN	maximale Querzugkraft aus dem V1-Versuch nach <i>EAD</i> 330499-01- 0601
V_{\perp}	kN	Querkraft ohne Reibungsanteil (Anteil der einwirkenden Querzugkraft)
$V_{u,\perp}$	kN	maximale Querkraft ohne Reibungsanteil (Anteil der einwirkenden Querzugkraft)
W _{el}	kN	elastisches Widerstandsmoment

Kleine griechische Buchstaben

α	-	Exponent für kombinierte Zug- und Querzugbeanspruchung
α	_	Zugkraftanteil (Anteil der einwirkenden Querzugkraft)
$\alpha_{C2.4i}$	-	Abminderungsfaktoren für die Ermittlung der charakteristischen seismischen Querzugtragfähigkeit der Leistungskategorie C2
α_{ε}	_	Faktor für die Bestimmung des Neigungswinkels $arphi^{\circ}$
α_N	_	Zugkraftanteil bei der Scherprüfung
α_V	_	Schubkraftanteil bei der Scherprüfung
α_v	-	Abminderungsfaktor für die Berechnung der Querzugtragfähigkeit aus der Stahlzugfestigkeit f_u des Ankers
$\alpha_{V,C1.2}$	-	Reduktionsfaktor für die Ermittlung der charakteristischen seismischen Querzugtragfähigkeit der Leistungskategorie C1
β	-	Formfaktor für die Ermittlung der Zylinderdruckfestigkeit aus der Würfeldruckfestigkeit (Beton)
$\beta_{CV,i}$	-	Abminderungsfaktor für die Ermittlung der charakteristischen seismischen Querzugtragfähigkeit der Leistungskategorie C2
γ_v	_	Teilsicherheitsbeiwert für Kopfbolzendübel
δ_f	_	Normierungsfaktor für unterschiedliche Güteklassen
δ_a	_	Abminderungsfaktor für Bewehrungsstähle (Flächenfaktor)
Ė	S ⁻¹	Dehnungsrate
ε	%	Dehnung
E _{fu}	%	Stahldehnung bei Erreichen der maximalen Zugfestigkeit
E _{i,mörtel}	%	Mörteldruckprobenstauchung mit $i = L_0$
$\mathcal{E}_{Rm,x}$	%	Dehnung in der X-Achse (Längsdehnung) beim Erreichen der maximalen technischen Spannung R_m

$\mathcal{E}_{Rm,y}$	%	Dehnung in der Y-Achse (Querdehnung) beim Erreichen der maximalen technischen Spannung R_m
ε_{χ}	%	Dehnung in der X-Achse (Längsdehnung)
ε_y	%	Dehnung in der Y-Achse (Querdehnung)
μ	-	Reibungsbeiwert
σ_1	N/mm²	Betonrandspannung
σ_c	N/mm²	Betondruckspannung bei Querbelastung
$\sigma_{c,m\"ortel}$	N/mm²	Verbundmörteldruckspannung (Druckprüfung)
$\sigma_{ct,m\"ortel}$	N/mm²	Verbundmörtelzugspannung (Spaltzugprüfung)
σ_{eq}	N/mm²	maximale Höhe der alternierende Querschnittspannung mit V_{eq}/A_s
σ_s	N/mm²	Stahlspannung
σ_u	N/mm²	maximale Querschnittspannung bei quasistatischer Querzugbeanspruchung in Beton mit V_u/A_s
σ_{χ}	N/mm²	Längszugspannung einer Zugprobe, bezogen auf den Ausgangsquerschnitt
$\sigma_{x,wahr}$	N/mm²	Längszugspannung einer Zugprobe, bezogen auf den wahren Stabquerschnitt
$\tau_{N_{u,adh}}$	N/mm²	Zugkraft beim Verlust der Verbundsteifigkeit
$\tau_{u,zug}$	N/mm²	maximale gemessene Verbundspannung aus Zugbeanspruchung
$ au_{u,zug,m}$	N/mm²	Mittelwert der maximalen Verbundspannung Verbundspannungen einer Zugversuchsserie
$ au_{u,zul}$	N/mm²	normierter auf C20/25 maximal gemessener Einzelwert der Verbundspannung in gerissenem Beton ($w = 0,50$ mm)
$ au_{u,zul,m}$	N/mm²	normierter Mittelwert der Verbundspannungen einer Zugversuchsserie in gerissenem Beton ($w = 0,50$ mm)
$ au_{u,\parallel}$	N/mm²	Verbundspannung aus der Zugkraft $N_{u,\parallel}$
arphi	Grad	Krümmung
$arphi^{\circ}$	Grad	Neigungswinkel am Stabende

Mathematische Zeichen

\overline{X}	-	Mittelwert
Δx_i	mm	Spalt zwischen der Gewindemutter und der Querzugplatte

Δ_{spalt}	mm	Spalt zwischen der Befestigung und der Lochwandung des Passzylinders
S()	_	Standartabweichung einer Stichprobe
Var()	_	Variationskoeffizient einer Stichprobe

Abkürzungen

ACI	American Concrete Institute
BEF	Beam resting on elastic foundation
CEN/TS	European Committee for Standardization / Technical Specifications
DIN	Deutsches Institut für Normung
EAD	European Assessment Dokuments
EOTA	European Organisation for Technical Assessment
ETA	European Technical Assessments
ETAG	European Technical Approval Guideline
ICBO ES	International Conference of Building Officials, Evaluation Service
PTFE	Polytetrafluorethylen-Folie
SEAOSC	Structural Engineers Association of Southern California
TR	Technical Report
UBC	Uniform Building Code
LVDT	Linear Variable Differential Transformer, induktiver Wegaufnehmer

1 Einführung

1.1 Allgemeines

Gegenwärtige Bauweisen stellen hohe Ansprüche an Konstruktion und Ästhetik. Mehr Flexibilität in der Planung und höhere Präzision bei der Ausführungs- und Montagearbeit stehen auf der Tagesordnung. Deshalb kommen bei der Errichtung von Neubauten oder bei der Sanierung bestehender Bauwerke immer häufiger nachträglich installierte Befestigungen zum Einsatz. Diese sind oft nicht nur dauerhaften, sondern können auch seismischen Belastungen ausgesetzt sein.

Der Nachweis für nachträgliche Verankerungen aufgrund statischer und seismischer Belastungen richtet sich nach *DIN EN 1992-4*. Die Lastermittlung für statische (quasiständige) Beanspruchungen erfolgt nach Eurocode 1. Die Berechnung der seismischen Beanspruchungen ist hingegen im Eurocode 8 bzw. in *DIN 4149* festgelegt. Hierbei geht es um Anforderungen an tragende und nicht tragende Elemente: abgehängte Decken, Rohrleitungen, Behälterbefestigungen usw. werden in den meisten Fällen mithilfe von nachträglich installierten Befestigungsmitteln im Betonuntergrund verankert. Ein Versagen dieser Befestigungen führt zu sekundären Schäden, die das Ausmaß einer Katastrophe noch vergrößern können.

Abb. 1.1: Wirkungskette seismischer Phänomene, aus: Meskouris et al. 2011, S. 53

Seismische Beanspruchungen sind eine Folge von Erdbeben. Bei diesen handelt es sich um Naturkatastrophen, die weltweit enorme Schäden anrichten und jährlich zahlreiche Todesopfer fordern. Als Hauptursache für Erdbeben gelten die Bewegungen im Bereich der Erdkruste. "Dieser besteht aus den Lithosphärenplatten (Eurasische Platte, Afrikanische Platte, Pazifische Platte, usw.), die sich aufgrund wärmebedingter Bewegungen im Erdinneren auseinander, gegeneinander oder aneinander vorbeibewegen. Durch diese Bewegungen entstehen immense Spannungen in deren Grenzbereichen. Bei der Überschreitung der aufnehmbaren Spannungen kommt es zu einem Bruchvorgang im Gestein", aus *WIRTSCHAFTSMINISTERIUM BW 2008, S. 4.* Die infolge der Plattenbewegung freigesetzten Kräfte führen zu Bodenerschütterungen – den sogenannten Erdbeben (siehe Abb. 1.1).

Obwohl Deutschland nicht zu den Erdbebenrisikogebieten zählt, können auch hier starke Erdbeben auftreten. Statistisch gesehen erreicht in Deutschland nur alle 50 Jahre ein Erdbeben eine Magnitude von 5,8. Das Erdbeben in Basel im Jahr 1356 mit einer Magnitude von bis zu 6,9 zählt zu den stärksten Erdbeben, die Auswirkungen auf Deutschland hatten (vgl. RISK MANAGEMENT SOLUTIONS 2006). Die täglichen Aufzeichnungen der Bewegungen der Lithosphärenplatten zeigen eindeutig, dass solche Erdbeben nach wie vor nicht ausgeschlossen werden können (siehe Abb. 1.2).

Erdbeben mit Magnitude >= 5 seit 04/08/2020

Aufgrund der aktuellen Prüfmethoden können neuartige Befestigungsmittel sowohl für statische als auch für seismische Beanspruchungen qualifiziert werden. Für ihre Zulassung sind die nationalen Institutionen zuständig. In Deutschland übernimmt das Deutsche Institut für Befestigungstechnik (DIBT) diese Aufgabe. Die Bewertungsrichtlinien, European Assessment Documents (EADs), werden von der Europäischen Organisation für technische Bewertung (EOTA) verwaltet und zur Verfügung gestellt. Der Bewertung neuartiger Produkte liegt die Durchführung von Eignungsversuchen an Einzel- und Gruppenbefestigungen zugrunde, um die Tragfähigkeit und das Verschiebungsverhalten von Befestigungsmitteln festzustellen.

Die erste Qualifikation der nachträglich installierten Ankersysteme in den 1970er-Jahren kann als zeitlicher Ausgangspunkt für die Entwicklung der normativen Produktregelungen für die nachträglich installierten Systeme sowohl in Europa als auch in den USA gelten. Nach einer Reihe schwerer Unfälle in Deutschland, die auf eine unsachgemäße Verwendung von gesetzten Dübeln zurückgingen, wurden 1975 die ersten bauaufsichtlichen Zulassungen für die metallischen Spreizdübel nach neuen Prüf- und Beurteilungsrichtlinien erteilt. Zudem dürfen seit April 1973 alle Verbundanker, Ankerschienen, Kopfbolzen und ähnliche Befestigungssysteme "[...] in bauaufsichtlich relevanten Anwendungsfällen nur verwendet werden, wenn ihre Brauchbarkeit durch eine Allgemeine bauaufsichtliche Zulassung nachgewiesen ist oder ihre Anwendung durch Zustimmung im Einzelfall geregelt wird", aus *Eligehausen und Mallée 2000, S. 2.*

Um eine Harmonisierung der Normen in Europa zu erreichen, wurde 1990 die Europäische Organisation für technische Bewertung EOTA gegründet: Sie regelt die Prüfung und die Beurteilung neuer Befestigungsmittel auf europäischer Ebene. Die allgemeine Leitlinie für die Europäische Technische Zulassung für Metalldübel zur Verankerung im Beton *ETAG 001* erschien im Jahr 1997 und ermöglichte die Bewertung von statischen bzw. quasistatischen Belastungen für mechanische Dübel. Im Jahr 2002 wurde mit der Veröffentlichung der ergänzenden Leitlinie *ETAG 001 - Part 5* ein europaweites Qualifikationsverfahren für nachträglich installierte Anker mit Injektionsmörtel eingeführt. Mit Einführung der *ETAG 001 - Annex E* im Jahr 2013 konnten nun Befestigungsmittel für seismische Beanspruchungen qualifiziert werden. In den folgenden Jahren wurden der *Technical Report 048* und *Technical Report 049* so weit vorbereitet, damit sie im Jahr 2016 die *ETAG 001 - Annex A* und *ETAG 001 - Annex E* vollständig ersetzen konnten. Dafür wurden nur marginale inhaltliche Veränderungen vorgenommen. Zuletzt wurden die ETAGs ebenfalls von den europäischen Bewertungsdokumenten EADs abgelöst. Eine wesentliche Verbesserung durch die Einführung der EADs erfolgte nach der Erteilung einer zeitlich unbegrenzten Zulassung für qualifizierte Produkte – den sogenannten European Technical Assessments (ETAs), *Fuchs et al. 2020, S. 36.*

Die Entwicklung der US-Qualifikationsrichtlinie für nachträglich installierte Befestigungen erfolgte zeitnah zur europäischen Normung. In *Mahrenholtz und Eligehausen 2012* wurden die Parallelen zwischen den europäischen ETAG-Richtlinien und der in den USA eingeführten Qualifizierung von nachträglich installierten mechanischen Ankern nach *ACI 355.2-01* in Verbindung mit *AC193* sowie und Injektionsanker nach *ACI 355.4-11* in Verbindung mit *AC308* klar definiert. Die europäischen und US-amerikanischen Qualifikationsleitlinien in Bezug auf ruhende Einwirkungen harmonisieren in den meisten Punkten miteinander. Die Bemessung der Befestigungsmittel erfolgt weiterhin nach der Entwurfsrichtlinie *ACI 318-11*. Eine übersichtliche Gegenüberstellung der aktuellen Bemessungsnormen in Europa nach *DIN EN 1992-4* und in den USA nach *ACI 318-11* ist in der Literatur (vgl. *Mahrenholtz und Wood 2020*) enthalten.

Die ersten Initiativen zur Untersuchung seismischer Einwirkungen auf nachträglich installierte Befestigungsmittel kamen aus der nuklearen Industrie in den USA und Kanada. Im Jahre 1990 begann eine landesweite Überprüfung des Ist-Zustands der in Nukleareinrichtungen verbauten Anker in den USA. Als Mittel zur rückwirkenden seismischen Qualifizierung der Befestigungen sollten die bestmöglichen Schätzungen des statischen Tragwiderstands von Ankern in Verbindung mit den strengen Belastungskriterien für Atomkraftwerke dienen.

Ausgehend von den einheitlichen Baubestimmungen für eingegossene Dübel nach dem Uniform Building Code (*UBC 1997*) schlug die Structural Engineers Association of Southern California (*SEAOSC 1997*) eine alternative Qualifikationsmethode vor, die als "Seite-an-Seite-Prüfung" von nachträglich eingebauten Dübeln mit Ortbetonankern gelistet war. Laut *Silva 2001* wurde nach dieser Methode die gleichzeitige Prüfung von nachträglich eingebauten Dübeln und eingegossenen Dübeln mit gleichem Durchmesser durchgeführt. Die zyklischen Ankerlasten wurden dabei schrittweise in allen fünf Zyklen bis zum Versagen erhöht (siehe Abb. 1.3).

Abb. 1.3: Seismische Testschema in SEAOSC (1997): (a) Zug, (b) Scherung, aus: Rieder 2009, S. 20

In Kanada lag der Fokus für Untersuchungen der nuklearen Industrie auf der Widerstandsantwort eines zyklisch belasteten Befestigungselements. Laut *Silva 2001* wurden die Tests so gestaltet, dass die Anker nach der Einleitung einer höheren lokalen Spannung auf ihre Ermüdung hin untersucht wurden. Alle Anker wurden in einer Frequenz von 5 Hz getestet. Das von dem Energieversorger Ontario Hydro entwickelte Prüfprogramm wurde in das Dokument *CAN3N287.2* aufgenommen. Nach einer Reihe von Verankerungsversagen beim Northridge-Erdbeben im Januar 1994 in der Nähe von Los Angeles wurden die Annahmen für die seismischen Belastungen überprüft. Neue Prüfkriterien, die weitgehend auf *CAN3N287.2* basierten, wurden 1997 mit *UBC 1997* eingeführt. Weitere Informationen hierzu sind in den Veröffentlichungen von *Rieder 2009*, S. *19, Hoehler 2006*, S. *41, Mahrenholtz und Eligehausen 2012*, *S. 27*, zu finden.

Im Gegensatz zur kanadischen Norm wurde in den USA die Höhe der zyklischen Belastungen nach ICBO ES abhängig von den statischen Referenzlasten gewählt und war unabhängig von der Zugfestigkeit f_u der verwendeten Anker. Diese Einführung führte zu einer starken Reduktion der zulässigen Erdbebenbelastung. Beim Testschema wurde auch die Anzahl der zyklischen Belastungen reduziert (siehe Abb. 1.4(a) und (b)). Die Frequenzanforderungen wurden dabei zusätzlich von 5 Hz auf 1 Hz gesenkt.

Beide Methoden waren zunächst nur für Anker in ungerissenem Beton in der Druckzone vorgesehen. Letztendlich wurden die seismischen Prüfmethoden nach *UBC 1997* in die *ACI 355.2-01* und *ACI 355.4-11* in Verbindung mit *AC193* und *AC308* aufgenommen. Daher sind sie zu einem festen Bestandteil der Qualifikation für die Erteilung von Zulassungen für mechanische und chemische Befestigungsmittel in den USA geworden.

Abb. 1.4: Seismische Testschema: (a) CAN3N287.2, (b) ICBO ES nach Silva 2001, S. 553

Parallel zu dieser Entwicklung erfolgten in Deutschland weiterführende Forschungen zu Einwirkungen auf nachträglich installierte seismischen Befestigungselemente in Kernkraftwerken. Im Jahr 1998 wurde der Leitfaden für Dübelbefestigungen in Kernkraftwerken (DIBt 1998) veröffentlicht, in dem die typischen Belastungsfälle wie Erdbeben, Flugzeuganprall und explosive Stoßwelle aufgeführt wurden. Die aktuelle Fassung von DIBt 2010 bleibt aufgrund der geforderten extremen Rissbreiten von w = 1,5 mm und der Qualifikationskriterien eine relativ strengen weiterhin der anspruchsvollsten Prüfanforderungen in Europa (siehe Hoehler 2006, S. 42).

Erst mit Einführung des *ETAG 001 - Annex E* (aktuell als *Technical Report 049* und in *EAD 330499-01-0601* erhalten) wurde die Zulassung von nachträglich installierten metallischen und chemischen Befestigungen für den zivilen Baubereich auf europäischer Ebene geregelt. Im Gegensatz zu ACI 355 wurden die beiden seismischen Leistungskategorien C1 und C2 eingeführt. C1 nach *EAD 330499-01-0601* stimmte weitgehend mit der Qualifikationsmethode nach ACI 355 überein und erforderte keine weitere Erläuterung. C2 wurde mit dem Ziel eingeführt, ein hohes Sicherheitsniveau selbst bei schweren Erdbeben zu gewährleisten. Wie aus Tab. 1.1 hervorgeht, beeinflussen die Bemessungs-Bodenbeschleunigung a_g und der Bodenparameter *S* in Abhängigkeit von der Bedeutungskategorie des Bauwerks nach *DIN EN 1998-1* im Wesentlichen die Wahl der zugehörigen seismischen Leistungskategorien (C1 und C2).

Seismicity level ^a		Importance Class acc. to EN 1998-1:2004, 4.2.5							
Class	a _g ∙S °	I	II III		IV				
Very low ^b	$a_g \cdot S \le 0,05 \ g$ No additional requirement								
Low ^b	0,05 <i>g</i> < a _g ·S ≤ 0,10 <i>g</i>	C1	r C2 ^e	C2					
> low	$a_g \cdot S > 0,10 \ g$ C1 C2								
 a The values defining the seismicity levels are may be found in the National Annex of EN 1988-1. b Definition according to EN 1998-1:2004, 3.2.1. c ag = design ground acceleration on Type A ground (EN 1998-1:2004, 3.2.1), S = soil factor (see e.g. EN 1998-1:2004, 3.2.2). d C1 for Type IP connections (see 5.1). 									
 C1 for Typ C2 for Typ 	 ^d C1 for Type 'B' connections (see 5.1) ^e C2 for Type 'A' connections (see 5.1) 								

Tab. 1.1: Empfohlene seismische Leistungskategorien für Befestigungsmitteln nach *Technical Report* 045, S. 7

Die Seismizität, die in den USA keine oder nur eine reguläre seismische Qualifikation nach ACI 355 erfordert, entspricht in Europa meistens der anspruchsvolleren Qualifikation für die Leistungskategorie C2 (siehe *Mahrenholtz und Pregartner 2016,* S. 7).

1.2 Problemstellung und Zielsetzung

Die Wahl eines geeigneten Befestigungsmittels hängt von seinem Einsatzbereich, den Randbedingungen und seiner Belastungsart ab. Das bedeutet, dass Befestigungsmittel eine entsprechende Eignung in Form einer Zulassung besitzen müssen. Die Qualifikation von nachträglich installierten Befestigungsmitteln erfolgt nach den gültigen EADs. Im weiteren Verlauf dieser Arbeit werden chemische Befestigungssysteme mit handelsüblichen Gewindestäben nach *EAD 330499-01-0601* untersucht.

Die Zulassung beinhaltet die Durchführung und Bewertung von quasistatischen und/oder seismischen Eignungsversuchen. In zahlreichen Zugversuchen werden zunächst die Zugtragfähigkeit sowie die Verschiebungen eines Befestigungssystems ermittelt. Die gemessenen Werte und die Versagensart geben Aufschluss über die Verbundfestigkeit der Verbundanker.

Es gibt verschiedene Versagensarten bei Zugbelastung von chemischen Befestigungsmitteln (siehe Abb. 1.5). Demnach kann die Variation der Einbindetiefe von Verankerungen zu einem kegelförmigen Betonausbruch (a) oder zum Stahlbruch des Befestigungselements (e) führen. Ein Adhäsionsbruch des verwendeten Verbundmörtels tritt in der Regel an der Betonwandung zwischen Verbundmörtel und Beton (b) oder zwischen Verankerung und Verbundmörtel (c) auf. In einigen Fällen kommt es auch zu einem Mischbruch (d). Bei diesen Verbundversagen entsteht zusätzlich am Bohrlochmund ein Ausbruchskegel mit einer Tiefe von ca. 2d bis 3d (vgl. *Eligehausen und Mallée 2000,* S. *167*). Alle diese Versagensarten sind bereits ausführlich erforscht und in der Literatur dokumentiert (*Kunz et al. 1998, Eligehausen und Mallée 2000, Hoehler 2006, Rieder 2009, Kunz et al. 1998* und *Silva 2001*).

Abb. 1.5: Versagensarten bei Zugbelastung, aus: Cook et al. 1998, S. 18

Querlastversuche dienen primär der Ermittlung der Schertragfähigkeit des Befestigungsmittels. Eine Querverschiebung des Ankers gegen eine Betonwandung erzeugt Zugkraft im Anker und führt zu Leibungspressungen im Bereich des Bohrlochmunds, wodurch muschelförmige Betonabplatzungen um den Anker entstehen können. Je größer die Betonabplatzungen, desto höher fällt die Biegebeanspruchung des Befestigungsmittels aus, was die Schertragfähigkeit beeinflusst (vgl. *Eligehausen und Mallée 2000, S. 101*).

Neben einem Stahlversagen des Befestigungsmittels (a) kann auch ein Betonkantenbruch (b) oder ein rückwärtiger Betonausbruch (c) entstehen (siehe Abb. 1.6). Bei den beiden letzten Fällen wird die lokale Betonzugfestigkeit überschritten. Das Herausziehen eines Ankers (d) kann laut *Welz 2011* und *Eligehausen und Mallée 2000* nur bei geringerer Einbindetiefe auftreten, wenn die haltenden Kräfte zu gering sind. Da diese Versagensart bei einer Querlastbelastung nur selten auftritt, wurde sie nicht weiter untersucht.

Abb. 1.6: Versagensarten bei einer Querbelastung, aus: Welz 2011, S. 28

Zhao 1993 und *Fuchs 1992* kamen in ihren Untersuchungen zu dem Ergebnis, dass die Querbelastung bei Dübeln eine Zugkraft von ca. 40 % der angreifenden Querkraft hervorruft. In gerissenem Beton mit einer Rissbreite von w = 0,30 mm beträgt die Abminderung der Querlasten bei einer ausreichenden Einbindetiefe weniger als 10 % (*Eligehausen und Mallée 2000,* S. *186*). Die Bewertung der statischen Schertragfähigkeit von Injektionsankern nach *EAD 330499-01-0601* erfolgt anhand von Querzugversuchen in ungerissenem Beton. Die seismische Qualifikation für die Leistungskategorie C1 umfasst die Durchführung von alternierenden Querzugbelastungen in gerissenem Beton mit einer Rissbreite von w = 0,50 mm. Dabei gelten Versuchsergebnisse in ungerissenem Beton als Referenzlasten für alternierende Querzugbelastungen in gerissenem Beton.

Obwohl allgemein bekannt ist, dass größere Rissbreiten im Beton die Zugtragfähigkeit (Verbundfestigkeit) von Injektionsankern beeinflussen und das Herausziehen von Ankern bei Querbelastung begünstigen können, wird dieser Aspekt bei der Bewertung und Qualifikation von Injektionsankern nicht berücksichtigt.

Angesichts der bisherigen Erkenntnisse ergeben sich folgende Fragen:

- a) Wie groß ist die Reduktion der Querlasten bei größeren Rissbreiten?
- b) Welchen Einfluss haben die Einbindetiefe und der verwendete Verbundmörtel auf das Versuchsergebnis?
- c) Kann die erreichte Stahldehnung bei Höchstlast eine Aussage über die Duktilität der verwendeten Anker liefern?
- d) Kann die Eignung der Injektionsanker für die Leistungskategorie C1 anhand der Materialeigenschaften bestimmt werden?

Ziel dieser Dissertation ist es, basierend auf den durchgeführten statischen und seismischen Querzugversuchen, Empfehlungen zur Versuchsdurchführung und Qualifikation von Injektionsankern in gerissenem Beton unter quasistatischen und seismischen Querzugbeanspruchungen zu erarbeitet. Darüber hinaus sollen Ergänzungen für die bestehende Richtlinie *EAD 330499-01-0601* formuliert werden, um die Zulassungskriterien und Prüfmethoden zu verbessern und an neue Erkenntnisse anzupassen.

1.3 Methodik

Die Bewertungsmethode für quasistatische und seismische Eignungsversuche nach *EAD 330499-01-0601* bildet die Grundlage für diese Untersuchung. Daher werden im Folgenden Eignungsversuche, insbesondere Querbelastungen, und die daraus resultierenden Versagensfälle erläutert.

Im Verlauf der vorliegenden Arbeit werden zunächst ausgewählte bestehende Untersuchungen und Bemessungsmodelle zu querbelasteten Dübeln beschrieben und zusammengefasst. Anschließend werden vorhandene Eignungsversuche mit Injektionsankern ausgewertet und den rechnerischen Ergebnissen der Bemessungsmodelle gegenübergestellt. Dann soll festgestellt werden, welche Materialeigenschaften und Versuchsparameter erforderlich sind, um eine ausreichende Ergebnisgenauigkeit zu erreichen.

Um das Trag- und Verformungsverhalten von querbelasteten Injektionsankern zu untersuchen, werden statische und seismische Querzugversuche an Gewindestäben der Güteklassen 4.8, 5.6, 8.8, A4/70 sowie an Bewehrungsstäben B500B mit einer Betonrissweite von w = 0,50 mm geplant. Dafür sollen drei unterschiedliche Arten von Verbundmörteln verwendet werden. Die einbetonierten Gewinde- und Bewehrungsstäbe gelten dabei als Referenzversuche zu den nachträglich installierten Ankern.

Zunächst werden die Eigenschaften der verwendeten Materialien bestimmt. Mittels Zug-, Druck- und Scherversuchen werden Materialeigenschaften der verwendeten Gewinde- und Bewehrungsstäbe ermittelt. Verbundmörteleigenschaften werden analog zu Betoneigenschaften anhand von Druck- und Spaltzugversuchen bestimmt. Anhand der statischen Zugversuche in gerissenem Beton mit einer Rissweite von w = 0,50 mm werden die Verbundspannungen definiert.

Nach der Durchführung der statischen Querzugversuche in gerissenem Beton werden alle geprüften Anker freigelegt und mithilfe einer Bildanalyse vermessen, um genauere Verschiebungs- und Neigungspunkte zu bestimmen. Basierend auf den Ergebnissen werden Rückschlüsse zum Trag- und Verformungsverhalten von Injektionsankern gewonnen, die in die Bewertung und Qualifikation von Injektionsankern in gerissenem Beton unter quasistatischen Querzugbeanspruchungen einfließen sollen.

Als Nächstes werden seismische Querzugversuche der Leistungskategorie C1 mit Gewindestäben durchgeführt. Hierfür eignen sich insbesondere die Güteklassen 8.8 und A4/70, da sich der Betonschädigungsgrad bei größeren Widerstandskräften stärker auf die Versuchsergebnisse auswirkt. Dann werden Zusammenhänge zwischen Auffälligkeiten der Verformungshysterese während der zyklischen Wechsellastbelastungen und der Größe der statischen Restquerzugtragfähigkeit untersucht. Anschließend erfolgt die Klärung, welche Materialschädigungen während der Wechselbelastungen auftreten und in welcher Relation die statischen und seismischen Versuchsergebnisse zueinander stehen. Weiterhin soll geprüft werden, in welchen Situationen auf die Durchführung von seismischen Wechselbelastungen der C1.2-Versuchsreihe verzichtet werden kann.

Eine übergeordnete Gliederung dieser Dissertation erläutert die angewendete Vorgehensweise zur Bestimmung des Trag- und Verformungsverhaltens von Injektionsankern (siehe Abb. 1.7).

Abb. 1.7: Gliederung der vorliegenden Arbeit

2 Bewertungsgrundlagen

2.1 Übersicht von Befestigungssystemen

In der Befestigungstechnik sind aktuell unterschiedliche Befestigungsverfahren für tragende und nicht tragende Konstruktionen zugelassen. Es wird zwischen eingelegten und nachträglich installierten Befestigungsmitteln unterschieden (siehe Abb. 2.1).

Abb. 2.1: Befestigungsverfahren im Betonbau nach Eligehausen und Mallée 2000, S. 1

Im Allgemeinen zählt die Einleitung von einwirkenden Zuglasten in einen Betonuntergrund zu den maßgebenden Eigenschaften von Befestigungsmitteln. Die Zuglasteneinleitung in einen Betonuntergrund durch die Befestigungselemente kann nach drei Wirkungsprinzipien erfolgen: Formschluss, Kraft- und Reibschluss sowie Stoffschluss bzw. Verbund (siehe Abb. 2.2).

Abb. 2.2: Mechanismen zur Übertragung von Zuglasten für nachträglich installierte Befestigungselemente nach *Rieder 2009,* S. *12*

Insbesondere unterschiedliche Montagemöglichkeiten sind für die richtige Wahl des Befestigungsmittels entscheidend. Es gibt verschiedene Arten von Standardbefestigungen mit den entsprechenden Tragmechanismen (siehe Abb. 2.3). Während die Spreiz- und Hinterschnittanker bei Belastung hohe Spaltzugkräfte im Beton hervorrufen und dafür einen größeren Randabstand einbüßen, können die Injektionsanker in den meisten Fällen problemlos nahe am Betonrand installiert werden. Die Injektionsanker sind dagegen auf eine strikte Einhaltung der Bohrlochreinigung angewiesen, um die Verbundhaftung zu gewährleisten. Einflüsse der Umgebungstemperatur wirken sich zudem stark auf die Trag- und Verformungsfähigkeit der Injektionsanker aus (siehe *Fuchs et al. 2015*, S. *394-401*). Hier bleibt

auch die Aushärtungszeit zu beachten: Während mechanische Anker unmittelbar nach dem Setzvorgang belastbar sind, muss bei chemischen Verbundstoffen erst eine vollständige Aushärtung vorliegen, damit sie die volle Tragfähigkeit erreichen.

Abb. 2.3: Nachträglich installierte Befestigungen und deren Tragmechanismen nach *Mahrenholtz und Eligehausen 2012,* S. *39*; Verbundspreizanker nach *Mahrenholtz und Eligehausen 2015,* S. *49*

Jeder Verankerungstyp aktiviert einen individuellen Tragmechanismus zur Einleitung von einwirkenden Zugkräften, die unterschiedliche Versagensfälle hervorrufen können. In gerissenem Beton und unter statischen sowie zyklischen Belastungen werden diese zunehmend verstärkt. So ist die Funktionsweise der Hinterschnittanker mit derjenigen von Kopfbolzen vergleichbar. Durch die mechanische Verzahnung im Betonuntergrund bildet sich ein tiefer Betonkonus mit einer relativ großen Ausbruchsfläche heraus. Ein Stahlversagen kann nur bei einer sehr tiefen Einbindung h_{ef} in den Betonuntergrund auftreten. Laut *Mahrenholtz und Eligehausen 2015* sind diese beiden Befestigungstypen wenig empfindlich gegenüber Rissen im Beton. Obwohl die Betonschrauben ebenfalls infolge der mechanischen Verzahnung innerhalb der effektiven Einbindetiefe h_{ef} die einwirkenden Zugkräfte in den Betonuntergrund einleiten, tragen die Betonrisse erheblich zur Verminderung der Zugtragfähigkeit von Betonschrauben bei. Im Laufe der Rissöffnung verringert sich die

Betondruckfläche innerhalb der Schraubengewindegänge, was zu einer hohen Spannungskonzentration und einem lokalen Versagen von Betonverzahnungen führt.

Drehmomentkontrollierte Spreizanker übertragen einwirkende Zugkräfte durch die Reibung zwischen Ankerkörper und Spreizelement auf die Betonwandung. Aufgrund der Rissbreitevergrößerung erfolgt eine Nachspreizung, die eine beträchtliche Verschiebung der Befestigung zur Folge hat.

Laut *Mahrenholtz und Eligehausen 2015* ersetzt bei Verbundspreizankern der Verbundmörtel das Spreizelement. Bereits bei der Erstbelastung bricht der Verbund zwischen dem Spreizelement und dem Verbundmörtel, wodurch die einwirkende Zuglast lediglich durch die Reibung zwischen dem Verbundmörtel und der Betonwandung übertragen wird.

Bei Injektionsankern, bei denen Gewinde- oder Bewehrungsstäbe als Anker fungieren, haben Adhäsionskräfte zwischen Anker, Verbundmörtel und Betonwandung eine zentrale Bedeutung. Abhängig von der Bindungskraft des Verbundmörtels (Kohäsion) und dessen Festigkeiten kann die einwirkende Zugkraft neben Stahlversagen auch ein Verbundversagen zwischen Anker und Verbundmörtel oder zwischen Verbundmörtel und Betonwandung verursachen. Ein Mischversagen kann ebenfalls auftreten. Im Allgemeinen reagieren Injektionsanker empfindlich auf große Rissbreitenöffnungen, die zur einer erheblichen Tragfähigkeitsreduzierung führen können.

2.2 Injektionsanker (Verbundanker) nach EAD 330499-01-0601

Das Trag- und Verformungsverhalten von Injektionsankern hängt im Wesentlichem von der Art der Installation und dem Mischungsinhalt des verwendeten Verbundmörtels ab. In der aktuellen Fassung der *EAD 330499-01-0601* sind drei Installationssysteme beschrieben: das Kapselsystem, das Injektionssystem und das System mit Einzelkomponenten (siehe Abb. 2.4).

Abb. 2.4: Installationssysteme: (a) Kapselsystem, (b) Injektionssystem, (c) System mit Einzelkomponenten, aus: *EAD 330499-01-0601*, S. 5-6

Das europäische Bewertungsdokument *EAD 330499-01-0601* bildet die Grundlage der Qualifizierung für nachträglich installierte Anker. Unter dem Begriff "Verbunddübel", auch "Verbundanker" oder "Injektionsanker" genannt, ist ein metallischer Stift zu verstehen, der mithilfe eines Verbundmörtels mit Beton kraftschlüssig verbunden ist.

Kapselsystem

Bei der Montage eines Kapselsystems (siehe Abb. 2.5) wird Verbundmörtel zunächst in einer geschlossenen Glas- oder Plastikkapsel in ein mittels Druckluft gereinigtes Bohrloch

eingebracht. Das Gewinde mit der aufgebrachten Dachschneide wird mithilfe einer Bohr- oder Drehmaschine in das Bohrloch eingedreht. Beim Eindrehen des Gewindes erfolgt die Zerstörung der Kapsel und eine anschließende Vermischung der Einzelkomponenten des Verbundmörtels. Dabei wird das feine Bohrmehl von der Bohrlochwandung abgetragen und mit den Einzelkomponenten vermischt. Es existieren drehfreie Systeme, bei denen der Anker direkt in das Bohrloch eingeschlagen wird (Hammerpatronen). Abhängig von den verwendeten Komponenten wird die Verbundwirkung durch die Reibung des Gesteins im Verbundmörtel an der Bohrlochwandung erhöht (siehe *Eligehausen et al. 2006*).

Abb. 2.5: Montage einer Glaspatrone, aus: MKT 2019, S. 146

Injektionssystem

Eine alternative Installationsmethode (siehe Abb. 2.6) besteht darin, einen Verbundmörtel in das Bohrloch zu injizieren und anschließend den metallischen Anker einzuführen. Der Verbundmörtel wird mithilfe einer Auspresspistole aus der Kartusche gepresst. Sowohl Gewindestangen als auch Bewehrungsstäbe sind für dieses Verfahren gut geeignet. Im Gegensatz zum Kapselsystem muss die Bohrlochwandung vor der Installation gereinigt werden. Zusätzlich zum Ausblasen des Bohrlochs wird das feine Bohrmehl von der Bohrwandung mittels einer Metallbürste entfernt, um einen besseren Verbund zwischen dem Mörtel und der Bohrlochwandung zu gewährleisten.

Abb. 2.6: Montage mit Injektionsmörtel, aus: MKT 2019, S. 139

System mit Einzelkomponenten

Das System mit Einzelkomponenten ähnelt dem Injektionssystem. Es besteht jedoch der Unterschied, dass die Einzelkomponenten des Verbundmörtels unmittelbar vor der Installation in einem separaten Behälter abgewogen werden, um die vorgegebene Menge der Anteile zu erreichen, und dann erfolgt die Vermischung. Diese Methode wird heutzutage jedoch selten eingesetzt.

Der Verbundmörtel unterscheidet sich je nach verwendetem Bindemittel (siehe Abb. 2.7). Kunstharz gehört zu dem am häufigsten verwendeten Bindemittel für Injektionsanker, und zwar sowohl bei Patronen- als auch bei Injektionssystemen. Im Gegensatz zu Kunstharzen ist der Einsatz von mineralischen Bindemitteln bei Injektionssystemen aufgrund ihrer niedrigeren Druck- und Zugfestigkeit nur eingeschränkt möglich (siehe *Eligehausen und Mallée 2000*).

Abb. 2.7: Einteilung von Verbunddübeln nach Eligehausen und Mallée 2000, S. 26

Injektionsanker reagieren stark auf die Umgebungstemperatur während des Setzvorgangs und der Aushärtezeit. Mit steigender Außen- und Bauteiltemperatur beschleunigt sich der Aushärtungsprozess des Verbundstoffs. Temperaturen unter 20 C führen zu einer Verzögerung dieses Prozesses. "Die mechanischen Eigenschaften von erhärteten Kunstharzen hängen vom Grad der Aushärtung, d. h. der Vollständigkeit der Vernetzung, ab, die wiederum von der Temperatur während des Reaktionsprozesses und der Zeit beeinflusst wird" (siehe *Fuchs et al. 2015,* S. 395). Einige Verbundmörtel benötigen die Einwirkung äußerer Energie wie Wärme, um die chemische Reaktion auszulösen, und können daher bei Minustemperaturen nicht aushärten.

Auch die Bohrlochreinigung und die Rauigkeit der Bohrlochwandung können die Verbundfestigkeit von Injektionsankern stark beeinflussen. Nach einem Bohrvorgang verbleibt eine große Menge Bohrmehl im Bohrloch zurück. Wird ein Verbunddübel in einem ungereinigten oder feuchten Bohrloch installiert, wird die Kraftübertragung zwischen der Bohrlochwandung und dem Mörtel gestört. Insbesondere bei Injektionssystemen führt diese Störung zu schwerwiegenden Verlusten der Verbundfestigkeit, die bis zu 70 % erreichen können (siehe *Mészároš 2002,* S. *170*). Bei den Patronensystemen mit eingedrehten Stäben wird ein gewisser Anteil an Bohrmehl von der Bohrlochwandung abgerieben und mit dem Verbundmörtel vermischt. Die Reduzierung der Verbundfestigkeit beträgt bei ungereinigten Bohrlöchern nach *Mészároš und Eligehausen 1996* und *Eligehausen und Mallée 2000* etwa 20 %.

2.2.1 Statische Eignungsversuche und Zugbeanspruchungen

Das Tragverhalten von Befestigungsmitteln wird seit längerer Zeit untersucht. Insbesondere die Tragwirkung von zugbeanspruchten Befestigungen gilt als weitgehend bekannt. So spiegelt sich dieser Kenntnisstand bei der Zulassung und Bemessung von Befestigungsmitteln wider.

Nach DIN EN 1992-4 werden sechs mögliche Versagensarten betrachtet (siehe Abb. 2.8):

a) Versagensart Stahlbruch

- b) Versagensart kegelförmiger Betonausbruch,
- c) Versagensart Herausziehen,
- d) Kombinierte Versagensart Herausziehen und Betonbruch (nur bei Injektionsankern),
- e) Versagensart Betonspalten,
- f) Versagensart lokaler Betonausbruch.

Abb. 2.8: Versagensarten bei Zuglast, aus: Meusburger 2022, S. 25

Abb. 2.9: Versuchsaufbau: (a) mit weiter Abstützung, (b) mit enger Abstützung, aus: *Technical Report* 048, S. 7-8

Wenn die Versagensart Stahlbruch (a) direkt anhand der Stahleigenschaften des Befestigungsmittels berechnet wird, erfolgt die Ermittlung von Bruchlasten für alle weiteren Versagensarten in der Regel experimentell mittels Eignungsversuchen. Versagensarten aufgrund von Betonausbruch (b, d, f) werden in Zugversuchen mit einer weiten Abstützung ermittelt (siehe Abb. 2.9(b)). Die weite Abstützung charakterisiert die Wirkungsweise des gesamten Systems (siehe Abb. 2.9(a)). Obwohl bei diesen Zugversuchen das Auftreten aller Versagensarten möglich ist, bleibt in den meisten Fällen ein kegelförmiger Betonausbruch zu erwarten. Die Größe des Betonausbruchs hängt direkt von der Einbindetiefe h_{ef} und dem Durchmesser des Befestigungsmittels ab. "Nach *Kunz et al. 1998* entsteht bei kleinen

Einbindetiefen (h_{ef} = 3d₀ bis 5d₀) ein Betonausbruch mit einer Neigung der Kegelmantelfläche α = 35°. Untersuchungen von *Sell 1973* ergeben bei Einbindetiefen von 3d bis 4d einen Ausbruchkegel mit einer Neigung des Kegelmantels von ca. 1:1,5", *Mészároš 2002, S. 19.* Nach *DIN EN 1992-4* wird für die Berechnung des Ausbruchskegels eine Fläche von $h_{ef}^{1,5}$ angenommen.

In Versuchen mit einer engen Abstützung (siehe Abb. 2.9 (b)) werden Bruchlasten für Herausziehen (c) und Betonspalten (e) ermittelt. Bei Injektionsankern wird die Versagensart "Herausziehen" zusätzlich betrachtet. Abhängig von der chemischen Zusammensetzung des Verbundmörtels kann ein Adhäsionsbruch zwischen Mörtel und Betonwandung oder zwischen Anker und Verbundmörtel auftreten. Untersuchungen von *Sell 1973* und *Lang 1979* haben ergeben, dass eine kombinierte Versagensart zwischen Mörtel und Beton bei einer Verankerungstiefe von mindestens 8d auftritt, aus *Appl 2008*, S. *26*.

Für die Zulassung eines Verbundmörtels erfolgen Zugversuche sowohl in niederfestem Beton C20/25 als auch in hochfestem Beton C50/60 mit unterschiedlichen Rissbreiten *w* und Ankergrößen. Je nach Versuchsprogramm variieren die Rissbreiten *w* von 0,0 mm bis 0,5 mm. Eine Zusammenstellung der Eignungsversuche nach *EAD 330499-01-0601* ist in Tab. 2.1 zu finden. Eine umfassende Versuchsbeschreibung ist in der Literatur verfügbar (vgl. *Zeman et al. 2015, EAD 330499-01-0601* und *Technical Report 048*).

Tab.	2.1:	Testprogramm	für	Zugbelastungen,	aus:	Tabelle	A1.1	EAD	330499-01-0601
S. 50	-51								

N°	Purpose of test					
Resistance to steel failure						
N1	Steel capacity					
N2	Maximum torque moment					
Reference tests (confined test setup)						
R1						
R2	Pond strongth with confined					
R3						
R4						
D5	Reference for sensitivity to					
NJ	reduced cleaning effort					
Pe	Reference for sustained					
NU	load					
R7	Reference for freeze/thaw					
R8	Reference for slice tests					
Basic tension tests with unconfined test setup						
A1						
A2						
A3						
A4						
45	Edge distance to prevent					
AU	splitting under load					
A6	Minimum embedment depth					

N°	Purpose of test				
Resistance to pull-out failure					
B1	Minimum edge distance and				
	spacing				
B2	Maximum long term				
	temperature				
B3	tomporature				
	Minimum installation				
B4	temperature				
	Minimum curing time at				
B5	normal ambient				
	temperature				
B6	Robustness in dry concrete				
D7	Robustness in water				
ВЛ	saturated concrete				
5.0	Robustness in water filled				
B8	holes (clean water)				
	Robustness to mixing				
B9	technique				
B10	Increased crack width				
B11	Increased crack width				
B12	Repeated loads				
B13	Crack cycling under load				
B1/	Sustained loads (normal				
	ambient temperature)				
B15	Sustained loads (maximum				
615	long term temperature)				
B16	Freeze/thaw conditions				
B17	Installation direction				
B18	High alkalinity				
B19	Sulphurous atmosphere				

Die Zugtragfähigkeit eines Injektionsankers wird von der Verbundwirkung des verwendeten Verbundstoffs zwischen Beton und Anker bestimmt. Bei der Ermittlung der Verbundspannung $\tau_{u,zug}$ ohne Berücksichtigung weiterer Faktoren wird eine konstante Schubspannungsverteilung nach Gleichung (2.1) unterstellt.

$$\tau_{u,zug} = \frac{N_u}{\pi \cdot d_s \cdot h_{ef}} \tag{2.1}$$

Die Verbundtragfähigkeit $\tau_{Nu,adh}$ wird an der Stelle des Haftungsverlusts des Verbundmörtels als $N_{u,adh}$ ermittelt. Die Bewertungskriterien sind in *EAD 330499-01-0601*.

2.2.2 Statische Eignungsversuche, Scherbeanspruchungen

Im Gegensatz zu den Zugeinwirkungen wird nach *DIN EN 1992-4* zwischen vier möglichen Versagensarten unterschieden (siehe Abb. 2.10):

- a) Stahlbruch ohne Hebelarm,
- b) Stahlbruch mit Hebelarm,
- c) Betonausbruch auf der lastabgewandten Seite (pry-out),
- d) Betonkantenbruch.

Abb. 2.10: Versagensarten bei Zuglast nach DIN EN 1992-4, aus Meusburger 2022

Den Versagensfall Betonkantenbruch hat bereits *Hofmann 2004* untersucht und nach *DIN EN 1992-4* rechnerisch ermittelt. Auch Einflüsse der Randbewehrung auf das Tragverhalten von nachträglich eingefügten Befestigungen hat *Schmid 2009* beleuchtet.

Ebenfalls erfolgt die rechnerische Ermittlung der Versagenslast durch Betonausbruch auf der lastabgewandten Seite nach dem CC-Verfahren, die auf den Untersuchungen von *Zhao 1993* beruht. Jüngste Untersuchungen von *Jebara 2018* zeigen jedoch, dass die ermittelten Bruchlasten nach dem sogenannten indirekten Zugmodell unterschätzt werden.

Da auch die Ermittlung von Bruchlasten mit Hebelarm rechnerisch erfolgt ist, wird nach *EAD* 330499-01-0601 lediglich die Schertragfähigkeit in Versuchen getestet. Das Schertragverhalten von nachträglichen Befestigungen wird nach *EAD* 330499-01-0601 durch zwei Versuchsserien in ungerissenem Beton definiert (siehe Tab. 2.2). Die V1-Versuchsserie beschreibt die Schertragfähigkeit eines einzelnen Befestigungselements. Die V2-Versuchsserie dient dagegen nur der Ermittlung von Gruppenfaktoren, die bei der Bemessung nach *DIN EN* 1992-4 relevant sind. Die Durchführung einschließlich Bewertung von V2-

Versuchsserien zur Feststellung der Versagenslast eines rückwärtigen Betonausbruchs ist ausführlich bei *Hofmann 2004* und *Jebara 2018* beschrieben und wird im weiteren Verlauf dieser Arbeit nicht diskutiert.

Tab. 2.2: Testprogramm für Querzugbelastungen, aus: Tabelle A1.1 EAD 330499-01-0601, S. 51

N°	Purpose of test
Resistance to shear load	
V1	Characteristic resistance for shear loading not influenced by edge and spacing effects
V2	Resistance to pry-out failure

Nach *EAD* 330499-01-0601 hängt die Querzugtragfähigkeit eines Verbunddübels maßgeblich von der Stahlzugfestigkeit f_u des verwendeten Ankers ab. Dabei stehen für V1-Tests zwei alternative Optionen zur Bestimmung der Querzugtragfähigkeit eines Befestigungsmittels zur Verfügung.

Option 1:

Die Durchführung von mindestens fünf Querzugversuchen mit Befestigungselementen in ungerissenem niederfesten Beton C20/25 wird im Regelfall bei der firmeneigenen Produktion von metallischen Ankern verlangt. Der Mittelwert der gemessenen maximalen Querzugkräfte $V_{u,m}$ wird der charakteristischen statischen Stahlquerzugtragfähigkeit $V_{Rk,s}^0$ gleichgestellt.

Hier wird mithilfe einer gehärteten Querzugplatte oder einer Stahlplatte mit eingelegten gehärteten Passbauteilen ein im Beton befestigter Anker auf Querzug bis zum Versagen belastet (siehe Abb. 2.11). Die Geometrie der Querzugplatte ist hinsichtlich der aufgebrachten Querzuglast so zu wählen, dass die daraus resultierende Kraft im Abstand von $t_{fix}/2$ zu der Betonoberfläche eingeleitet wird. Sowohl die Dicke des Einlegebauteils t_{fix} als auch die Geometrie des Durchgangslochs richtet sich nach dem nominalen Außendurchmesser d_{nom} des geprüften Ankers (siehe Tab. 2.3).

Tab. 2.3: Durchgangslochgeometrie der Querzugplatte bzw. der Einlegebauteile, aus: Tabelle 2.5 nach *EAD 330499-01-0601,* S. *42*

nominale Stabduchmesser d oder d _{nom} [mm]	6	8	10	12	14	16	18	20	22	24	27	30	>30
Duchgangslochdiameter d _f [mm]	7	9	12	14	16	18	20	22	24	26	30	33	d + 3 mm d _{nom} + 3 mm
Einlegeteil Dicke t _{fix} [mm]	6	8	10	12	14	16	18	20	22	24	27	30	t _{fix} = d oder d _{nom}

Um den Einfluss der Reibungskräfte zwischen der Querzugplatte und dem Beton zu minimieren, wird eine Folie aus Polytetrafluorethylen (PTFE) eingelegt. Die Querzugplatte wird während der Belastung nicht gegen Abheben gesichert.

Abb. 2.11: Querzugversuchsskizze: (a) Versuchsaufbau, (b) Querzugplatte mit Passzylinder, aus: *Technical Report 048,* S. 9-10

Option 2:

Werden bei der Zulassung eines Verbundmörtels genormte (handelsübliche) Gewinde- oder Bewehrungsstäbe verwendet, kann die Stahlquerzugtragfähigkeit direkt nach Gleichung (2.2) berechnet werden. Durch die Verwendung des Reduktionsfaktors α_v beträgt die Querzugtragfähigkeit eines Injektionsankers nach *EAD* 330499-01-0601 50 % der Stahlzugtragfähigkeit f_u .

$$V_{u,m} = V_{Rk,s}^0 = \alpha_v \cdot A_s \cdot f_{uk} \tag{2.2}$$

Sklarov und Thiele 2020 haben diskutiert, dass die Duktilität des verwendeten Stahls in diesem Kontext nicht zusätzlich betrachtet wird. Sie stellten fest, dass in Abhängigkeit von der Stahlduktilität, die durch die Zugfestigkeit f_u und die erreichte Stahldehnung ε_{fu} bei Höchstlast beschrieben wird, sich die Größe des Reduktionsfaktors α_v stark verändert. Bei diesem Ansatz wird in der ersten Näherung angenommen, dass der Quotient f_u/α_v in einem direkten Verhältnis zum Reduktionsfaktors α_v steht. In einem direkten Vergleich konnte festgestellt werden, dass die Abminderungsfaktoren α_v bei unterschiedlichen Normen widersprüchlich festgelegt wurden (siehe Abb. 2.12). An dieser Stelle sei betont, dass der Abminderungsfaktor für rostfreie Stähle wie A4 nach EAD 330499-01-0601 weiterhin mit einem Faktor von 0,50 angesetzt wird, obwohl die neue allgemeine bauaufsichtliche Zulassung Z-30.3-6 20.04.2022 ermittelten Abminderungsfaktor für rostfreie Stähle den $\alpha_{n} = 0.7$ für die Scherbeanspruchungen in durchgeführten Untersuchungen von Sklarov und Thiele 2020 bestätigt.

Abb. 2.12: Reduktions faktors α_v , aus: *Sklarov und Thiele 2020*

Somit übt die Materialduktilität einen wesentlichen Einfluss auf die Größe des Abminderungsfaktors α_v aus. *EAD 330499-01-0601* berücksichtigt diesen Einfluss aktuell nicht. *DIN EN 1992-4* fordert lediglich eine Duktilitätsgrenze für Gruppenbefestigungen, die als Bruchdehnung der verwendeten Anker von $A_5 > 8$ % definiert wird. Diese jedoch gilt nicht für Einzelbefestigungen.

2.2.3 Seismische Eignungsversuche und Leistungskategorie C1

EAD 330499-01-0601 beinhaltet Eignungsversuche der Erdbebenleistungskategorien C1 und C2. Dabei handelt es sich um Beanspruchungen in Zug- und Querrichtung mit wiederholtem Lastwechsel. Die Beanspruchungen infolge von Ermüdungslasten oder nicht-strukturellen Anwendungen deckt dieses Dokument nicht ab. Seine Anwendung erfolgt nur in Verbindung mit dem *Technical Report 045* und der *DIN EN 1992-4*. Während die Leistungskategorie C2 nur im europäischen Raum Anwendung findet, spiegelt die Versuchsbeschreibung der Leistungskategorie C1 im Wesentlichen die US-amerikanischen Vorschriften in *AC308* wider. So wurden sowohl die pulsierenden Zugversuche (C1.1) als auch die alternierenden Querzugversuche (C1.2) in gerissenem niederfestem Beton C20/25 durchgeführt (siehe Tab. 2.4).

Tab. 2.4: Eignungsversuche der Leistungskategorie C1 nach Tabelle 2.1, aus: *Technical Report 049,* S. *13*

	Purpose of test	Concrete	Crack width ∆w ¹⁾ [mm]	Minimum number of tests ²⁾	Test procedure see Section	Assessment criteria see Section
C1.1	Functioning under pulsating tension load ³⁾	C20/25	0,5	5	2.3.2	3.1.1
C1.2	Functioning under alternating shear load ⁴⁾	C20/25	0,5	5	2.3.3	3.1.2

Das Testschema der beiden seismischen Eignungsversuche sieht grundsätzlich identisch aus (siehe Abb. 2.13(a) und (b)). Allerdings besteht der Unterschied, dass bei Querzugversuchen ein Anker alternierenden Lasten ausgesetzt wird.

Abb. 2.13: Testschema: (a) alternierende Querzugversuche C1.2, (b) pulsierende Zugversuche C1.1

Die 140 Belastungszyklen sind in drei Laststufen aufgeteilt (siehe Abb. 2.13(a)). Bei den ersten 10 Zyklen wird der Prüfling der vollen seismischen Belastung V_{eq} nach Gleichung (2.3) ausgesetzt. In den folgenden 30 Zyklen beträgt die Amplitude $0,75V_{eq}$ und in den letzten 100 Zyklen $0,50V_{eq}$. Die Versuchsgeschwindigkeit liegt zwischen 0,1 und 2,0 Hz. Die alternierenden Belastungen dürfen sinus-, halb-sinus- oder dreieckförmig aufgebracht werden (siehe Abb. 2.14).

Abb. 2.14: Alternierende Belastungsformen: a) Sinusform, b) Halbsinusform, c) Dreieckform, aus: *EAD* 330499-01-0601, S. 92

Sofern keine Referenzversuche für Beton vorliegen (siehe Kapitel 2.2.2), kann die Belastung V_{eq} nach Gleichung (2.4) berechnet werden. Auch hier wurde die Stahlduktilität nicht berücksichtigt, da der Abminderungsfaktor α_v von 0,50 für alle Güteklassen zugrunde gelegt ist.

$$V_{eq} = 0.35A_s \cdot f_{uk} \tag{2.4}$$

Der Versuchsaufbau richtete sich nach den Vorgaben der *EAD* 330499-01-0601. Die Minimierung von abhebenden Lasten erfolgt durch die Verwendung von Rollenlagern (siehe Abb. 2.15).

Abb. 2.15: Versuchsskizze nach EAD 330499-01-0601, S. 85

Als Bewertungskriterium galt die erfolgreiche Durchführung des Testprogramms mit einer anschließenden statischen Querzugbelastung bis zum Stahlversagen. Dabei sollte der Mittelwert der Restquerzugkräfte $V_{u,m,C1.2}$ mindestens 160 % der seismischen Querzugbelastung V_{eq} betragen, andernfalls könnten die Versuche mit einer reduzierten Belastung nach Gleichung (2.5) erneut durchgeführt werden.

$$\alpha_{V,C1.2} = \frac{V_{eq,red}}{V_{eq}}$$
(2.5)

Eine direkte Abminderung der charakteristischen seismischen Querzugtragfähigkeit $V_{Rk,s,C1}$ nach Gleichung (2.6) war ebenfalls erlaubt.

$$V_{Rk,s,C1} = \alpha_{V,C1.2} \cdot V_{u,V1}$$
 (2.6)

mit

$$\alpha_{V,C1.2} = \frac{V_{eq}}{V_{u,V1}} \cdot \min \begin{cases} \frac{V_{u,m,C1.2}}{1,6V_{eq}} \\ 1,0 \end{cases}$$

2.3 Zwischenfazit

Die Qualifikation und Bewertung von Injektionsankern erfolgt gemäß *EAD 330499-01-0601*. Dabei dienen die Versuchsergebnisse von statischen Querlastbelastungen als Bewertungsgrundlage für seismische alternierende Querbelastungen. Die ausführlichen Versuchsbeschreibungen dieser Eignungsversuche weisen jedoch stark voneinander abweichende Randbedingungen auf. Laut *EAD 330499-01-0601* müssen seismische Querlastversuche C1.2 in gerissenem Beton mit einer Rissbreite von w = 0,50 mm durchgeführt werden. Abhebende Lasten sind dabei durch die Verwendung von Rollenlagern zu minimieren.

Demgegenüber stehen die statischen Querlastversuche (V1) in ungerissenem Beton mit w = 0,0 mm, die als Referenzversuche für seismische Querbelastungen (C1.2) verwendet werden. Diese Diskrepanzen sind derzeit unbegründet, da auch die US-Vorschriften *AC308* eine Durchführung von statischen Querbelastungen in gerissenem Beton fordern.

Weiterhin werden bei seismischen Querversuchen (C1.2) abhebende Lasten durch zusätzliche Maßnahmen weitgehend minimiert. Bei statischen Querbelastungen (V1) wird wiederum eine freie Abhebung der Scherplatte gefordert (siehe Abb. 2.11 im Kapitel 2.2.2). Dass die Rissbildung im Beton einen Einfluss auf das Trag- und Verformungsverhalten von Injektionsankern hat, steht außer Frage. Dennoch gilt die in <u>ungerissenem</u> Beton ermittelte Querzugtragfähigkeit sowohl für ungerissenen als auch für gerissenen Beton.

Zur Ermittlung der Querzugtragfähigkeit durch statische Querzugsversuche (V1) nimmt *EAD 330499-01-0601* keinen Bezug zu dem verwendeten Verbundmörtel oder zu der erforderlichen Ankereinbindetiefe. Bei der Überschreitung der zulässigen Verbundspannungen kann ein

Herausziehen des Injektionsankers auftreten. Durch horizontale Stabverformungen des Ankerstabs entstehen Zugkräfte. Deren Stärke hängt maßgeblich von Stahleigenschaften des Ankers ab. Bis heute wurde diese Versagensart bei Injektionsankern wenig beachtet.

Des Weiteren besteht nach *EAD 330499-01-0601* die Möglichkeit, die Querzugtragfähigkeit von Injektionsankern anhand der Stahlwiderstandskraft nach Gleichung (2.2) aus Kapitel 2.2.2 rechnerisch zu ermitteln. Aktuelle Untersuchungen bestätigen, dass der Abminderungsfaktor α_v nicht pauschal gewählt werden kann. In Abhängigkeit von der Stahlduktilität, die durch die Zugfestigkeit f_u und die erreichte Stahldehnung ε_{fu} bei der Höchstlast beschrieben wird, können die Abminderungsfaktoren α_v stark voneinander abweichen. So wird für nicht rostende Stähle ein Faktor von 0,7 in *Z-30.3-6 20.04.2022* vorgeschlagen, während in *EAD 330499-01-0601* weiterhin der Faktor 0,50 bestehen bleibt. Diese Thematik wurde bereits von *Sklarov und Thiele 2020* behandelt und bedarf weiterer Untersuchungen.

Die Erarbeitung der hier zusammengefassten Fragestellungen sollte die Weiterentwicklung der aktuellen Richtlinie voranbringen und neue Randbedingungen für eine wirtschaftliche Anwendung der Zulassungsvorschriften schaffen.

3 Aktueller Stand der Forschung

3.1 Allgemeines

Als Grundlage für die vorliegende Arbeit dienten Untersuchungen von nachträglich eingebauten Ankern und solchen, die in Ortbeton eingegossen wurden. Aktuell besteht die allgemeine Annahme, dass unterschiedliche Ankertypen wie Verbundanker oder Kopfbolzen grundsätzlich ein ähnliches Bruchverhalten zeigen. Nach *Hofmann 2004* kann aufgrund experimenteller Untersuchungen kein signifikanter Einfluss auf das Tragverhalten des verwendeten Ankertyps unter Querbeanspruchung beobachtet werden. Eine typische Last-Verschiebungs-Kurve für zug- und querbelastete Anker hat *Grosser 2012* dargestellt (siehe Abb. 3.1).

Abb. 3.1: Idealisiertes Last-Verschiebungs-Verhalten eines Ankers mit Zug- und Scherbelastung (ohne Einfluss von Betonkanten), aus: *Grosser 2012,* S. 8

Für die Ermittlung der Schertragfähigkeit von randfernen Befestigungen im Beton finden sich in der Literatur zahlreiche Berechnungsvorschläge. Diese können in zwei große Bereiche unterteilt werden: Untersuchungen mit Kopfbolzen und Untersuchungen mit randfernen Befestigungen. Die Berücksichtigung von Literatur über Kopfbolzen ist insofern relevant, weil horizontale Stabverformungen von teilvorgespannten und verdrehungssicheren Schrauben Zugkräfte sowohl bei Kopfbolzenankern als auch bei Injektionsankern erzeugen. Ebenso wird ein Anteil der Querbelastung durch die Zugkomponente in den Beton eingeleitet.

Untersuchungen mit randfernen Befestigungen basieren auf unterschiedlichen Modellen, die vereinfacht in drei Gruppen auftreten: geometrische Modelle, Modelle auf der Grundlage der Bettungsziffertheorie und Modelle, die auf der Finite-Elemente-Methode beruhen.

Der Themenbereich Herausziehen von Verankerungen wird in der Literatur nur wenig behandelt. Laut *fib Bulletin 58* entsteht das Herausziehen durch die Kettenzugkraft, die bei Querbelastung entsteht, wenn der Herausziehwiderstand des Ankers nicht ausreicht, um einen Betonausbruch zu erzeugen. Ähnlich beschreiben *Hoehler 2006* und *Schmid 2009* dieses Versagen. *Akiyama et al. 1997* beobachteten das Herausziehen bei Injektionsankern mit einem Verhältnis von Einbindetiefe zu Durchmesser $h_{ef}/d = 5$. Sie stellten dabei fest, dass die Einbindetiefe bei zyklischen Querbelastungen einen wesentlichen Einfluss auf die

Schertragfähigkeit von Befestigungen ausübt. Bei Kopfbolzen mit $h_{ef}/d = 5$ beobachteten sie bei zyklischen Versuchen eine Reduktion der Schertragfähigkeit von 25 %. In Untersuchungen von *Grosser 2012* trat lediglich bei kleinen Einbindetiefen mit $h_{ef} = 60$ mm bei M16-Gewindestangen ein Herausziehen auf. Die Verbundfestigkeit des verwendeten Verbundmörtels wurde hier in diesem Zusammenhang nicht weiterverfolgt.

In den folgenden Kapiteln wurden wenige mathematische Bezeichnungen aus den Originaltexten an die heutige Schreibweise angepasst, um eine klare Übersicht über die Formulierungen zu erhalten.

- V_u = maximale Größe der einwirkenden Querzugkraft
- h_{ef} = Einbindetiefe der Anker
- d_s = Stabdurchmesser von Gewinde- und Bewehrungsstäbe sowie Kopfbolzen
- f_y = Streckgrenze von Stahl
- f_c = Betondruckfestigkeit

Alle weiteren Bezeichnungen bleiben wie in den Originaltexten und werden in jedem Unterkapitel ausführlich erklärt.

3.2 Untersuchungen mit Kopfbolzen

3.2.1 Ollgaard et al.

Ollgaard et al. 1971 analysierten mithilfe von Push-out-Tests die Schubfestigkeit und die Schlupfverlagerungen von Kopfbolzen in typischen Verbundträgern aus Normal- und Leichtbeton. Dabei legten sie den Fokus auf stehende Kopfbolzen, ohne mögliche Betonrandeinflüsse wie Betonkantenbruch zu berücksichtigen.

Bei den Versuchen im Leicht- und Normalbeton beobachteten sie, dass das Nachbruchverhalten der Kopfbolzen in beiden Betonarten ein ähnliches nicht lineares Verschiebungsverhalten aufweist. Dabei liegt die maximale Bruchlast in Normalbeton ca. 25 % über den Ergebnissen mit Leichtbeton. Neben Stahlversagen und Betonversagen trat auch ein kombiniertes Versagensbild auf.

Basierend auf den Versuchsergebnissen wurde ein Modell für die Ermittlung der Schubtragfähigkeit einzelner Kopfbolzen abgeleitet. Dieses Bemessungsmodell beruht auf den Betoneigenschaften wie dem Elastizitätsmodul E_c und der Druckfestigkeit f_c des Betons sowie der Querschnittsfläche des Bolzens A_s . Mithilfe der Gleichung (3.1) kann die maximal aufnehmbare Scherkraft V_u durch Kopfbolzen ermittelt werden.

$$V_u = 0.5A_s \sqrt{f_c \cdot E_c} \tag{3.1}$$

3.2.2 Lungershausen

Lungershausen 1988 befasste sich mit der Schubtragfähigkeit und dem Tragverhalten von Kopfbolzen in einer Vollbetonplatte und in einer Rippenzelle.

Er zeigte zudem das Tragverhalten von Kopfbolzen in einer Vollbetonplatte auf (siehe Abb. 3.2). Demnach setzt sich die Gesamtschubtragfähigkeit des Kopfbolzens aus vier einzelnen Traganteilen zusammen. Die einwirkende Schubkraft *T* wird hauptsächlich in einem Winkel β direkt in den Betonuntergrund eingeleitet (Traganteil A). Bei Überschreitung der zulässigen Betondruckspannungen f_c entstehen erhebliche Betonschädigungen vor dem Bolzen. Mit der Zunahme von Betonschädigungen erfährt der Kopfbolzen plastische Verformungen, die eine Steigerung der Biege- und Schubspannungen im Bolzen hervorrufen (Traganteil B). Bei einer zunehmenden Verschiebung *w* wird der Kopfbolzen zusätzlich einer Zugbelastung *Z* ausgesetzt (Traganteil C). Die Zuglasten werden durch den Kopfbolzen in den Betonuntergrund eingeleitet. Eine Zunahme von Verschiebung und Zuglast führt jedoch zur Reduzierung der Traganteile A und B. Die steigende Bolzenverformung und die Krümmung des Bolzens erzeugen die Reibungskraft *D* (Traganteil D) zwischen Stahlgurt- und Betonoberfläche.

Abb. 3.2: (a) Versagenszustand des Kopfbolzens in der Vollbetonplatte, (b) qualitative Darstellung der einzelnen Traglastanteile, aus: *Lungershausen 1988, 33, 68*

Lungershausens Versuchsergebnisse zeigen, dass die Bruchlasten V_u mit zunehmender Betonfestigkeit f_c nahezu linear ansteigen. Demzufolge wurde der Kopfbolzen mit der steigenden Verformung den Zug- und Schubspannungen ausgesetzt, bis die Bruchlast V_u durch Überschreiten der zulässigen Bruchdehnungen im Kopfbolzen erreicht war. Die vorgeschlagene Bemessungsgleichung (3.2) basiert auf der Lochleibungsgleichung aus dem Eurocode 4 (Stand: 1988).

$$V_u = 0.034 \cdot d^2 \cdot f_c^{2/3} \tag{3.2}$$

Um das Biegeversagen des Kopfbolzens zu erfassen, beschrieb Lungershausen in Anlehnung an die Fließgelenktheorie zwei Biegeversagensfälle (siehe Abb. 3.3). Die Versagensfälle unterscheiden sich in der Anzahl der Fließgelenke. Fall A tritt bei kleineren Einbindetiefen des Kopfbolzens auf, während Fall B bei ausreichend großer Einbindung das zweite Fließgelenk bildet, wodurch sich das Trag- und Verformungsverhalten des Bolzens ändert.

Abb. 3.3: Traglasten eines biegebelasteten Kopfbolzens mit unterschiedlichen Randbedingungen, aus: *Lungershausen 1988*, S. 74

3.2.3 Roik und Hanswille

Roik und Hanswille 1988 analysierten den vorhandenen Bemessungsansatz für Kopfbolzendübel nach Eurocode 4 (Entwurf 1985) und entwickelten anhand der vorhandenen Versuchsergebnisse neue Bemessungsvorschläge.

Die statistischen Auswertungen erfolgten mithilfe des Rechenmodells nach Eurocode 4 (Entwurf 1985) und des Rechenmodells von *Oehlers und Johnson 1987*. Beide Ansätze zeigten im Vergleich zufriedenstellende Ergebnisse und konnten als gleichwertig eingestuft werden, wobei die Bemessungsgleichung in Anlehnung nach EC 4 sich besser für die praktische Anwendung eignete.

Nach Einführung des Teilsicherheitsbeiwerts und der Anpassung der einzelnen Vorfaktoren, bezogen auf die Betondruckfestigkeit f_c , wurde Gleichung (3.3) für das Betonversagen und Gleichung (3.4) für das Stahlversagen des Dübels formuliert. Im Gegensatz zu den anderen Modellen handelt es sich hier um die Bemessungslasten $P_{R,d}$. Um die charakteristischen Bruchlasten zu erhalten, muss der Teilsicherheitsfaktor $\gamma_v = 1,0$ eingesetzt werden.

$$P_{R,d} = \frac{1}{3} \cdot \frac{\pi d^2}{4} \cdot \alpha \cdot \sqrt{f_c \cdot E_{cm}} \cdot \frac{1}{\gamma_v}$$
(3.3)

$$P_{R,d} = 0.85 \cdot A_s \cdot f_{uk} \cdot 1/\gamma_v \tag{3.4}$$

mit

$$\alpha = 0,2 \cdot \left(\frac{h}{d} + 1\right) \qquad f \ddot{u}r \ 3 \le \frac{h}{d} \le 4$$

$$\alpha = 1 \qquad \qquad f \ddot{u}r \frac{h}{d} \ge 4$$

$$h \qquad \qquad \text{Gesamthöhe des Bolzens}$$

$$\gamma_{v} = 1,20 \qquad \qquad \text{Teilsicherheitsbeiwert}$$

$$f_{uk} = 600 \frac{N}{mm^2}$$

In der späteren Arbeit von *Hanswille und Sedlacek 2003* erfolgte eine weitere Auswertung von Push-out-Versuchen, nach der sie die obigen Bemessungsgleichungen anpassten. In der aktuellen *DIN EN 1994-1-1* wird die Tragfähigkeit der Kopfbolzen nach Gleichung (3.5) für das Betonversagen und nach Gleichung (3.6) für das Stahlversagen von Bolzen definiert.

$$P_{R,d} = \frac{1}{3} \cdot \frac{\pi d^2}{4} \cdot \alpha \cdot \sqrt{f_c \cdot E_{cm}} \cdot \frac{1}{\gamma_{\nu}}$$
(3.5)

$$P_{R,d} = 0.85 \cdot A_s \cdot f_{uk} \cdot 1/\gamma_v \tag{3.6}$$

mit

 $\gamma_v=1,\!50$

Hanswille et al. 2007 untersuchten weiterhin die Kopfbolzentragfähigkeit unter Dauerbeanspruchung sowohl experimentell als auch analytisch. Die Versuchsdurchführung erfolgte mit konstanten und variierenden zyklischen Belastungen. Sie beobachteten, dass die Eigenschaften von Beton und Stahl das Tragverhalten von Kopfbolzen gleichermaßen beeinflussten. Die Versuchsergebnisse zeigten eine gute Übereinstimmung mit dem theoretischen Bemessungsmodell nach Eurocode 4 (Stand 2004). Abhängig von der Betondruckfestigkeit f_c wurden die Gleichungen (3.7) und (3.8) formuliert, wobei der kleinste Wert der Bruchlast P_u maßgebend war. Die Berechnung des Betonversagens kommt der Formulierung von Lungershausen 1988 sehr nah, wobei hier zusätzlich die Betonsteifigkeit durch das Elastizitätsmodul E_c berücksichtigt wurde.

$$P_{R,k} = 0.275 \cdot d^2 \cdot \sqrt{E_c \cdot f_c} \tag{3.7}$$

$$P_{R,k} = 0,808 \cdot \frac{\pi \cdot d^2}{4} \cdot f_u \tag{3.8}$$

3.2.4 Oehlers und Johnson

In ihrer Studie analysierten *Oehlers und Johnson 1987* die Schubtragfähigkeit von Kopfbolzen in Vollbetonplatten sowohl aus Leicht- als auch Normalbeton.

Die Versuchsergebnisse zeigten, dass die Schubtragfähigkeit der Kopfbolzen im Wesentlichen von zwei Faktoren abhängt: dem Spannungsquerschnitt des Kopfbolzens A_s und der Materialsteifigkeit des Betons. Bei einem kleineren Elastizitätsmodul des Betons E_c werden die Druckspannungen im Beton gleichmäßiger verteilt, was zu einem größeren Biegemoment im Stahlträger führen kann und somit das Risiko eines Stahlversagens erhöht. Im Gegensatz dazu konzentriert sich bei einer Reduzierung des Elastizitätsmoduls des Stahls E_s der Grenzflächendruck auf die Mittelspannweite des Stabs. Dadurch verringert sich nicht nur das maximale Biegemoment, sondern auch das Risiko eines Stahlversagens.

Mithilfe der Regressionsanalyse der Testergebnisse hat Oehlers die halbempirische Gleichung (3.9) hergeleitet, um die Schubtragfähigkeit eines Kopfbolzens zu berechnen.

$$V_u = K \cdot A_s \cdot \left(\frac{E_c}{E_s}\right)^{\alpha} \cdot f_{ck}^{\beta} \cdot f_u^{\gamma}$$
(3.9)

mit

 $\alpha = 0,40$ $\beta = 0,35$ $\gamma = 0,65$ $K = \frac{4,10 \quad bei \ n = 1}{4,10 - n^{-\frac{1}{2}} \quad bei \ n > 1}$ n = 0,65

Die Exponenten α , β wurden als Ergebnis einer statischen Analyse bestimmt. Dabei muss die Summe der Exponenten β und γ stets gleich 1,0 sein, um lineare und nicht lineare Spannungs-Dehnungs-Beziehungen des Betons und des Stahls bei der Bestimmung des Materialversagens zu berücksichtigen.

Bei der Festlegung der Konstanten *K* wurde der Einfluss der in den Push-out-Versuchen in der Schubfuge zwischen Beton und Stahlplatte aufgetretenen Druckkräfte implementiert.

3.3 Untersuchungen mit randfernen Befestigungen

3.3.1 Modelle auf Grundlage der Bettungsziffertheorie

3.3.1.1 Friberg

Im Jahr 1938 entwickelte Friberg einen der ersten Berechnungsansätze auf der Grundlage der Theorie eines elastisch gebetteten Balkens zur Ermittlung der Quertragfähigkeit von Bewehrungsstäben. Hierbei führte er die Untersuchungen von TIMOSHENKO UND LESSELS 1925 fort. Die Berechnung der maximalen Scherkraft V_u nach *Friberg 1938a, 1938b* erfolgte nach Gleichung (3.10).

$$V_u = \frac{2E_s I_s \cdot \alpha \cdot i}{\frac{1 + (1 + k \cdot a_i)^2}{k^3} + \frac{a_i^3}{6}}$$
(3.10)

mit

- α = Schiefstellung des Bolzens im Bogenmaß
- *i* = zusätzliche Öffnung der Fuge
- a_i = neue Breite der Fuge
- *k* = relative Steifigkeit einer Struktur
- c = 1.000.000 lb/in³ Bettungsziffer

Um die starken Stabverformungen oberhalb und unterhalb des Ankers zu beschreiben, wurde eine relative Steifigkeit der Struktur *k* nach Gleichung (3.11) eingeführt. Die relative Steifigkeit *k* ergibt sich aus der Steifigkeit des Ankers $E_s I_s$ sowie aus der experimentell ermittelten Bettungsziffer des Betons *c*.

$$k = \sqrt[4]{\frac{c \cdot d_s}{4E_s I_s}}$$
(3.11)

Die Annahme vorausgesetzt, die Bettungsziffer *c* sei kleiner als das Elastizitätsmodul von Beton E_c , wurde für alle Dübelgrößen ein Wert von 1.000.000 lb/in³ zugrunde gelegt. Infolge der einwirkenden Querzugkraft auf den Dübel an der Betonoberkante kam es zur Durchbiegung des Stabs, und es entstanden hohe Druckspannungen am Betonrand, die als kritisch gelten.

Friberg betrachtete zusätzlich Versuche mit Kopfbolzen, die eine Einbindetiefen von $8d_s$ aufweisen. Er stellte fest, dass mit zunehmendem Bolzendurchmesser die Betonrandspannungen abnehmen. Basierend auf den neuen Ergebnissen formulierte er die Gleichung (3.12) zur Bestimmung der kritischen Betonrandspannungen unmittelbar vor dem Bolzen.

Dieses Modell beschrieben *Hofmann 2004*, *Welz 2011* und *Fuchs 1992* später in einer abgewandelten Form.

$$V_{u,k} = \frac{1}{c} \cdot \frac{2 \cdot k^3 \cdot E_s I_s \cdot \sigma_{krit,R}}{1 + k \cdot e}$$
(3.12)

mit

$$\sigma_{c,krit} = \frac{25 \cdot (f_c - 4,8) + 13,5d_s}{0,9d_s + 24}$$

e = Hebelarm bis zum Angriffspunkt der resultierenden Querzugkraft

 $c = 400 \text{ N/mm}^3$

3.3.1.2 Wiedenroth

Wiedenroth 1971 betrachtete die Spannungsverteilung eines in einen Betonkörper eingelassenen Stabs, der an der Einspannstelle die Scherkraft *V* und ein daraus resultierendes Biegemoment beansprucht. Für seine Untersuchungen nahm er an, dass sich die Betondruckspannungen σ_1 ab einer großen Verankerungstiefe linear verhalten würden. Daher konnte er die Bettungszifferntheorie für die Berechnung der Betonspannungen anwenden (siehe Abb. 3.4).

Abb. 3.4: Eingespannter Stab mit linear angenommener Verteilung der Reaktionskräfte aus Wiedenroth 1971, S. 426

Die maximale Scherkraft V_u wurde anhand der Höhe der Betonrandspannung σ_1 , die geschätzt die Hälfte der Würfeldruckfestigkeit $f_{c,cube}/2$ betrug, sowie anhand der Stahlstreckgrenze f_y des verwendeten Stabs nach Gleichung (3.13) beschrieben. Dabei beeinflusste der Quotient aus dem Hebelarm e und der Einbindetiefe h_{ef} maßgeblich die gesamte Schertragfähigkeit des Stabs.

$$V_{u} = 0.411 \cdot \sqrt{\frac{f_{c}}{2} \cdot f_{y}} \cdot d_{s}^{2} \cdot \frac{1}{\sqrt{1 + 1.5\eta} \cdot \sqrt{h_{ef}}}$$
(3.13)

mit

$$\eta = \frac{e}{h_{ef}}$$

Es ist inzwischen jedoch bekannt, dass nicht nur *Wiedenroth 1971* die Berechnungsansätze für Bruchlasten deutlich unterschätzte, sondern auch *Friberg 1938a, 1938b* und *Basler/Witta 1967*.

3.3.1.3 Dei Poli et al.

Dei Poli et al. 1993 untersuchten das Tragverhalten von Bewehrungsstäben als Scherbolzen unter den Scherbeanspruchungen im Beton in randferner und in randnaher Befestigung (siehe Abb. 3.5).

Bei der Testdurchführung stellten sie fest, dass die Steifigkeit k des Betonuntergrunds nur einen geringfügigen Einfluss auf Bruchlastniveau V_u ausübte. Vielmehr waren das elastoplastische Verhalten des Bewehrungsstabs und die Lage des plastischen Fließgelenks entscheidend, um größere Scherlasten V_u zu erreichen. Sie beobachteten, dass die Bügelrandbewehrung das Tragverhalten der randnahen Bewehrungsstäbe nur dann beeinflusste, wenn die einwirkende Scherkraft in Richtung Betonrand gerichtet war. Bei randfernen Befestigungen wirkte sich die Bügelbewehrung nicht auf das Bruchlastniveau aus.

Abb. 3.5: (a) Parameter, die für die Dübelwirkung relevant sind, (b) Blockproben, die in dieser Studie verwendet wurden, (c) und (d) das endgültige Verhalten eines Dübels, der gegen die Betonoberfläche und den Betonkörper drückt aus: *Dei Poli et al. 1993*, S. 442

Das Verformungsverhalten des Bewehrungsstabs wurde durch das BEF-Modell (Beam resting on elastic foundation) beschrieben, welches einen elastisch gebetteten Stab darstellt. Die Stabverschiebungen wurden in Abhängigkeit von der einwirkenden Scherkraft *V* nach Gleichung (3.14) bestimmt. Hierbei wurde die Bewehrungssteifigkeit als Funktion aus dem Elastizitätsmodul E_s , dem Stabdurchmesser d_s und dem Trägheitsmoment I_s des Bewehrungsstabs berücksichtigt.

$$w = \frac{V_u}{2\alpha^3 \cdot E_s I_s} \tag{3.14}$$

mit

$$\alpha = \sqrt[4]{\frac{k_c \cdot d_s}{4E_s \cdot I_s}}$$
$$k_c = 127 \cdot \frac{\sqrt{f_c}}{d_s}$$

Das Überschreiten der zulässigen Betondruckspannungen rief die Veränderung der Betonsteifigkeit hervor und führte zur Betonschädigung vor dem Bewehrungsstab. Das Verhältnis der reduzierten Betonsteifigkeit k und der berechneten Betonsteifigkeit k_c stellt einen Betonschädigungsfaktor in Bezug auf das Verhältnis der vorhandenen und der maximalen Schubkraft nach Gleichung (3.15) dar.

$$\frac{k}{k_c} = \omega \cdot \frac{V}{V_u} \tag{3.15}$$

mit

$$\omega = 0,85 \qquad \qquad \text{wenn } \frac{V}{V_u} \le 0,40$$
$$\omega = \left[1,104 + 0,026\cosh\left(8\left(\frac{V}{V_u} - 0,4\right)\right)\right]^{-4/3} \qquad \qquad \text{wenn } \frac{V}{V_u} > 0,40$$

3.3.2 Geometrische Modelle

3.3.2.1 Birkeland und Birkeland

Birkeland und Birkeland 1966 untersuchten das Wirkungsprinzip einer Scherfuge zwischen zwei Betonkörperschaften. Die von ihnen angewendete Scherreibungstheorie basiert auf einer kraftschlüssigen Verbindung zwischen zwei Betonoberflächen (siehe Abb. 3.6). Die Kontaktfläche zwischen den Betonoberflächen beschrieben sie dabei als ein einfaches Sägemodell.

Abb. 3.6: Hypothese der Scherreibung, aus: Birkeland und Birkeland 1966, S. 359

Durch die Belastung eines Betonelements mit einer Scherkraft *V* entstehen Reibungskräfte, deren Stärke der einwirkenden äußeren Druckkraft *P* entspricht. Bei der Verwendung von senkrecht angeordneten Bewehrungsstäben zwischen zwei Betonelementen wird die einwirkende Spannung durch die Druckkraft *P* und die Streckgrenze f_y der eingelegten Bewehrung beschrieben. In Abhängigkeit vom Sägezahnwinkel φ bzw. der Rauigkeit der Betonoberfläche μ kann die aufnehmbare Scherkraft V_u nach Gleichung (3.16) berechnet werden.

$$V_u = A_s \cdot f_y \cdot \tan \varphi \tag{3.16}$$

mit

$\tan \varphi = 1,7$	für monolithischen Beton
$\tan \varphi = 1,4$	für künstlich aufgeraute Fugen
$\tan \phi = 0,8 - 1,0$	für Verbindungen zwischen Beton und Stahl

3.3.2.2 Mast

Im Jahr 1968 veröffentlichte Mast eine Methode zum Entwerfen und Bemessen von Bewehrungsverbindungen in Betonfertigteilen. Seine Methode hatte er aus den Untersuchungen der Grenzflächenscherung in Verbundträgern abgeleitet. Sie ist für verschiedene Bemessungskonzepte geeignet, die sich auf einen Nachweis der Scherfuge, genauer gesagt: Verbundfuge, berufen (siehe Abb. 3.7).

Nach der Beobachtung von bewehrten und unbewehrten Rissen entlang eines Betonbauteils hat Mast die empfohlenen Werte für die Annahme des Reibungswinkels φ für verschiedene Kontaktoberflächen angepasst. Ist der Probekörper nicht nur Scherkräften ausgesetzt, sondern auch einer senkrecht zur Fuge wirkenden Zugkraft H_u , kann die aufnehmbare Scherkraft V_u nach Gleichung (3.17) berechnet werden.

Abb. 3.7: Bemessungsverfahren: (a) Scherung entlang eines Risses, (b) Spannung und Kräfte an der Rissoberfläche, aus: *Mast und* M. ASCE *1968,* S. *1486-1487*

$$V_u = (A_s \cdot f_y - H_u) \cdot \tan \varphi \tag{3.17}$$

mit

$\tan \varphi = 1,4$	Beton zu Beton, raue Oberfläche
$\tan \phi = 1,0$	Beton zu Stahl, Verbundträger
$\tan \phi = 0,7$	ohne Reibung

3.3.2.3 Rasmussen

Im Gegensatz zu Fribergs Untersuchungen von 1938 entwickelte Rasmussen im Jahr 1963 ein Berechnungsmodell (siehe Abb. 3.8). Dabei umging er die Frage nach der Verteilung der Betonpressungen vor dem Bolzen. Die Wirkung der Scherkraft P auf Bolzen mit einem Abstand e bewirkt die Überschreitung der Stahlfließgrenze und die Entstehung eines plastischen Gelenks im Bolzen, das sich im Abstand z zur Oberkante des Betons befindet. Das umliegende Beton erzeugt eine Gegenkraft, die der auftretenden Scherkraft P entgegenarbeitet. Durch das Aufstellen des Systemgleichgewichts und das Lösen der Gleichungen mit den daraus resultierenden Momenten und Anpassungen an die Versuchsergebnisse erhielt Rasmussen die Bemessungsgleichung (3.18).

Abb. 3.8: Belastung des Dübels bei Versagen, aus: (Rasmussen 1963)

$$V_u = c \cdot (\sqrt{1 - (\varepsilon \cdot c)^2} - \varepsilon \cdot c) \cdot d_s^2 \cdot \sqrt{f_c \cdot f_y}$$
(3.18)

mit

$$\varepsilon = 3 \cdot \frac{e}{d_s} \cdot \sqrt{f_c/f_y}$$

Die Anwendung der obigen Gleichung ist an die folgenden Randbedingungen geknüpft:

$$\begin{split} h &\geq 6d_{s} \\ 0 &\leq e \leq 13 \text{ [mm]} \\ 16 &\leq d_{s} \leq 25,4 \text{ [mm]} \\ 11 &\leq f_{c} \leq 44 \text{ [N/mm^{2}]} \\ 225 &\leq f_{y} \leq 440 \text{ [N/mm^{2}]} \\ f_{y} &\leq 0,7f_{u} \text{ [N/mm^{2}]} \end{split}$$

Die Gleichung (3.19) stellt eine vereinfachte Form der Gleichung (3.18) dar. Rasmussen definierte den Koeffizienten c in einem Bereich von 1,20 bis 1,50. Für einseitig in den Beton eigelassene Stäbe schlug er den Koeffizienten c mit 1,30 vor. Für den Fall, dass der Hebelarm e = 0 beträgt, erhöht sich der Koeffizient c auf den Wert 2,50.

$$V_u = c \cdot d_s^{2} \cdot \sqrt{f_c \cdot f_y}$$
(3.19)

In späteren Jahren bildete diese Gleichung die Grundlage für weitere Untersuchungen zur Schertragfähigkeit von Bewehrungsstäben. So betrachtete *Dulacska* 1972 doppelseitig in

Beton eingelassene Stäbe. Bei einem senkrecht eingebauten Stabtest ermittelte er den Koeffizienten *c* von 1,15 wie von *Engström 1986*, S. *21* beschrieben.

Engström 1986 betrachtete Rasmussens Modell und Dulacskas Arbeit kombiniert. In seinen Untersuchungen vernachlässigte er die Reibung an der Betonoberfläche, wodurch der Koeffizient c von 1,03 ermittelt wurde.

Anschließend wurde in dem *fib Bulletin 1* der Bemessungsansatz durch eine weitere Untersuchung modifiziert und an die im Ankerstab vorherrschenden Längsstahlspannungen σ_s geknüpft. Dieser Ansatz kann nach Gleichung (3.20) berechnet werden (siehe Abb. 3.9).

Abb. 3.9: Dübelwirkung der Bewehrung aus fib Bulletin 1, S. 215

$$V_u = 1,35 \cdot \left(\sqrt{1 - 9\varepsilon^2} - 3\varepsilon\right) \cdot d_s^2 \cdot \sqrt{f_c \cdot f_y} \cdot \sqrt{1 - \left(\sigma_s/f_y\right)^2}$$
(3.20)

mit

$$\varepsilon = \frac{e}{d_s} \cdot \sqrt{f_{c,cube}/f_y}$$

Dieser Ansatz gilt für einen doppelseitig in Beton eingelassenen Stab. Der Koeffizient *c* aus dem *fib Bulletin 43* wurde demnach mit 1,0 angenommen. In den neueren Ausgaben des *fib Bulletin 65* wurde wieder Bezug auf Gleichung (3.20) genommen. Im *fib Bulletin 65* wird zusätzlich die maximale Schubwiderstandskraft eines Querdorns durch das Von-Mises-Kriterium begrenzt und kann nach Gleichung (3.21) berechnet werden. Im Wesentlichen bleibt der Ansatz nach Rasmussen weiterhin erkennbar.

$$V_u(s) = k_2 \cdot A_s \cdot \sqrt{f_c \cdot f_y} \cdot \left(\frac{s}{s_{max}}\right) \le \frac{A_s \cdot f_y}{\sqrt{3}}$$
(3.21)

mit

 $k_2 = 1,6$ für runde Stähle in Beton C20/25 bis C50/60

s = Verschiebung in Querrichtung (siehe Abb. 3.10)

Abb. 3.10: Spannkrafteffekt und Dübelwirkung, aus: fib Bulletin 65, S. 294

3.3.2.4 Dulacska

Dulacska 1972 untersuchte die Schertragfähigkeit von einbetonierten Bewehrungsstäben. Dabei lag der Fokus seiner Arbeit auf den unterschiedlichen Neigungswinkeln δ der Bewehrungsstäbe (siehe Abb. 3.11). Zur Erstellung des Bemessungsmodells nach Gleichung (3.22) wurde das Tragverhalten von Bewehrungsstäben mit drei verschiedenen Stabdurchmessern d_s unter Verwendung von unterschiedlichen Betondruckfestigkeiten f_c getestet.

$$V_u = 0.2 \cdot d_s^2 \cdot f_y \cdot \sin\delta \cdot \left[\sqrt{1 + \frac{f_{c,cube}}{0.03 \cdot f_y \cdot \sin^2\delta} - 1} \right]$$
(3.22)

3.3.2.5 Paulay et al.

In der Arbeit von *Paulay et al. 1974* wurde das Tragverhalten von Bewehrungsstäben zwischen zwei Betonelementen untersucht und festgestellt, dass die Rauigkeit der Betonoberfläche zwischen den Betonelementen einen wesentlichen Einfluss auf die Schertragfähigkeit der Verbindung ausübt. Dabei wurden erstmals die Versagensmechanismen der eingelegten Befestigungen klar definiert (siehe Abb. 3.12).

Abb. 3.12: Versagensmechanismen, aus: Paulay et al. 1974, S. 613

Das nach Gleichung (3.23) ermittelte Biegeversagen tritt dann auf, wenn der Stab beidseitig in Betonprüfkörpern eingespannt ist. Das Abscheren nach Gleichung (3.24) und das Knickversagen nach Gleichung (3.25) wurden als Hauptversagensmechanismen bezeichnet.

Die Widerstandskraft V_u wurde mithilfe der Stahleigenschaften wie Streckgrenze f_y und Spannungsquerschnittsfläche A_s ohne eine konkrete Abgrenzung zum Eintritt des jeweiligen Versagensmechanismus beschrieben.

$$V_u = \frac{2M}{l} = \frac{4d_s}{3\pi} \cdot \frac{A_s \cdot f_y}{l}$$
(3.23)

$$V_u = \frac{A_s f_y}{\sqrt{3}} \tag{3.24}$$

$$V_u = A_s f_y \cos \alpha \tag{3.25}$$

3.3.2.6 Vintzeléou und Tassios

Vintzéleou und Tassios 1987 haben das Tragverhalten von Dübeln unter zyklischen Beanspruchungen betrachtet, vor allem die statische Schubtragfähigkeit von randfernen und randnahen Dübeln. Eine Verankerung im Beton stuften sie als randfern ein, wenn der Randabstand $c_1 > 6$ bis $8d_s$ betrug. Der Tragmechanismus eines in Beton eingelassenen Dübels beschrieben sie analog zu dem eines horizontal belasteten Pfahls an der Erdoberfläche in bindigem Boden.

Nach der Einleitung einer horizontalen Kraft in den Betonuntergrund beginnt die Bildung eines Fließgelenks im Stahl des Dübels etwa in einem Abstand a von der Betonoberkante entfernt. Dadurch entstanden hohe Druckspannungen unmittelbar um den Dübel. Vintzeléou und Tassios nahmen den Verlauf der Betonspannungen bis zum Fließgelenk linear als rechteckig an (siehe Abb. 3.13). Dabei schätzten sie die zulässigen Betonspannungen in diesem Bereich auf das Fünffache der Betondruckfestigkeit f_c .

Abb. 3.13: Prognose der maximalen Dübelkraft, aus: Vintzéleou und Tassios 1987, S. 27

Ähnlich wie *Rasmussen 1963* berücksichtigten sie bei der Berechnung der kritischen Bruchlast V_u die Widerstandskräfte aus Stahl- und Betonanteilen. Dafür stellten sie die Reaktionskraft aus Beton der einwirkenden Kraft aus Stahl (also der Befestigung) gegenüber. Die Stahltragfähigkeit des Befestigungselements berechneten sie mithilfe des aufnehmbaren Biegemoments nach Gleichung (3.26).

$$M_{max} = 0.17 d_s^3 f_y \tag{3.26}$$

Mit dem Ansatz in Gleichung (3.26) wurde die Schertragfähigkeit des Befestigungsmittels nach Gleichung (3.27) formuliert. Die daraus resultierende kritische Bruchlast V_u hängt somit stark vom Verhältnis des Hebelarms *e* zur Betonoberfläche ab.

$$V_u = \sqrt{25 (f_c d_s e)^2 + 1.7 d_s^4 \cdot f_c \cdot f_y} - 5 f_c d_s e$$
(3.27)

3.3.2.7 Welz

Welz 2011 stellte das Tragverhalten von Verbunddübeln in Mauerwerkswänden in seinen Fokus. Dabei griff er die Parallele zwischen dem Tragverhalten der Holz-Holz-Verbindungen mit stiftförmigen Verbindungselementen und dem von Injektionsankern im Mauerwerk auf. Basierend auf der Johansen-Theorie definierte er vier Versagensfälle (siehe Abb.Abb. 3.14). Die Versagensmechanismen formulierte er unter Berücksichtigung der Stabeinbindetiefe h_{ef} , der Dicke des Anbauteils t_{fix} sowie durch die Einführung der Iokalen Druckfestigkeit $f_{1,k}$. Dabei waren die Versagensfälle nur mit dickeren Anbauteilen $t_{fix} \ge d_s$ von Relevanz.

Abb. 3.14: Berechnungsfälle für lokales Materialversagen in Vollstein, aus: Welz 2011, S. 158

Die Bruchlasten V_u für Stäbe mit kleineren und größeren Einbindetiefen h_{ef} in einem Vollstein können mithilfe der Gleichungen (3.28) und (3.29) näherungsweise bestimmt werden. Einen Grenzwert zwischen den beiden Einbindetiefen legte Welz jedoch nicht fest. Aber die lokale Festigkeit $f_{1,k}$ bestimmte er experimentell und beschrieb die Lochleibung im Untergrund (Mauerwerk). Der Erhöhungsfaktor φ_H benennt das Verhältnis des Biegemoments zwischen dem Stahlquerschnitt und dem gesamten Dübelsystem. Für die Gewindestäbe M8 bis M12 ergaben sich Faktoren zwischen 1,28 und 1,76.

$$V_u = 0.75 d_s f_{1,k} h_{ef} \left(\sqrt{2 + \frac{4M_{Pl,s,k}}{d_s f_{1,k} h_{ef}^2}} - 1 \right)$$
(3.28)

$$V_u = 0.75 \sqrt{2(1+\varphi_H)M_{Pl,s,k}d_s f_{1,k}}$$
(3.29)

mit

$$M_{Pl,s,k} = 1,7W_{el}f_y$$

3.3.3 Modelle auf Grundlage FE-Untersuchungen

3.3.3.1 Cziesielski und Friedmann

Cziesielski und Friedmann 1983 widmeten sich dem Tragverhalten von Scherbolzen unter Anwendung des Bettungszifferverfahrens und der Finite-Elemente-Methode (FE). Beim Bettungszifferverfahren wird die Tragfähigkeit des Bolzens näherungsweise nach der Theorie eines elastisch eingebetteten Balkens berechnet. Der Einsatz der FE-Simulation ermöglichte ihnen die Bestimmung der Spannungsverteilung um den Verankerungsstab. Dabei stellten sie fest, dass das Elastizitätsmodul des Betons E_c einen nur geringen Einfluss auf das Tragverhalten des Befestigungsmittels ausübt.

Die Schertragfähigkeit des verwendeten Bolzens bestimmten sie nach Gleichung (3.30) durch die Überschreitung der Biegespannung im Stabquerschnitt. Der Einfluss aus der effektiven Einbindetiefe h_{ef} darf ab dem Verhältnis $h_{ef} > 5d_s$ unberücksichtigt bleiben. Die Steigerung der Betondruckfestigkeit f_c und die Reduzierung des Hebelarms *e* können nach *Utescher und Herrmann 1983* die aufnehmbare Scherkraft V_u erhöhen.

$$V_u = \frac{f_c}{3} \cdot \frac{d_s^{2,1}}{333 + e \cdot 12,2} \tag{3.30}$$

Die obige Gleichung gilt jedoch nur für (randferne) Befestigungen, die einen Randabstand c_1 von über $6d_s$ aufweisen.

3.3.3.2 Fuchs

Fuchs 1992 führte umfangreiche Untersuchungen mit der Finite-Elemente-Methode an randnahen und randfernen Befestigungen in ungerissenem Beton durch. Zur Ermittlung der Zugspannungen im Beton legte er einen nicht linearen bruchmechanischen Ansatz zugrunde. Das Ergebnis: Bei ausreichend großem Randabstand trat beim Erreichen von großen plastischen Verformungen ein Stahlversagen des Befestigungsmittels auf. Dieses führte zu sehr großen Lochleibungspressungen auf der lastabgewandten Seite des Ankers, die muschelförmige Betonabplatzungen verursachten (siehe Abb. 3.15).

Abb. 3.15: Verteilung der Betondruckspannungen, aus: Fuchs 1992, S. 61

Bei einer im Abstand *e* wirkenden Scherkraft *V* setzt sich die Schubwiderstandstragfähigkeit des Befestigungsmittels aus dem maximalen Biegemoment im Dübel und in den zulässigen Betonspannungen zusammen. Bei der Versuchsdurchführung beobachtete Fuchs, dass die aus der einwirkenden Scherkraft *V* entstehende Betonspannungen sich auf eine Länge von etwa $2d_s$ vor dem Bolzen verteilten. Die Spannungspitze lag etwa bei $0.5d_s$ unterhalb der Betonoberkante und wurde in Anlehnung an *Vintzéleou und Tassios 1987* auf die zulässige Betonspannung von $3.5f_c$ geschätzt.

Die Einbindetiefe h_{ef} übte einen direkten Einfluss auf das Verformungsverhalten des Befestigungsmittels aus, wodurch sich die Verteilung der Betondruckspannungen änderte. Bei der Formulierung von Gleichung (3.31) zur Bestimmung der Bruchlasten V_u wurden die Bedingungen für den Stabdurchmesser d_s und die Einbindetiefe h_{ef} festgestellt.

$$V_u = \chi_{hv} \cdot \frac{d_s^3}{2d_s + e} \cdot (0.17f_y + 4.5f_{c,cube})$$
(3.31)

mit

$$\chi_{hv} = 0.2 \cdot \frac{h_{ef}}{d_s} \le 1 \qquad \qquad f \ddot{u}r \ 3 \le \frac{h_{ef}}{d_s} \le 5$$

Einige Jahre zuvor hatte bereits *Fuchs 1984* einen vereinfachten Bemessungsansatz nach Gleichung (3.32) vorgeschlagen, um die Scherfestigkeit eines in Beton eingebetteten Dübels zu berechnen.

$$V_u = \alpha_v A_s f_u \tag{3.32}$$

mit

 $\alpha_v = 0,60$

Streng genommen gilt die obere Gleichung nur für "Kopfbolzen mit einem Schaftdurchmesser von $d_b < 22 mm$ und einer Zugfestigkeit von $f_u < 500 N/mm^2$ sowie für Dübel mit einer Gewindegröße von $d_s < M20$ und einer Zugfestigkeit von $f_u < 800 N/mm^{2^u}$, *Rehm et al. 1991,* S. 36. Dabei liegt der theoretische Wert des Abminderungsfaktors α_v nach MISES UND v 1913 bei $1/\sqrt{3} \approx 0.58$.

In verschiedenen Literaturquellen und Normenwerken dient die Gleichung (3.32) zur Bemessung der Schertragfähigkeit. *Grosser 2012* hat Auszüge aus verschiedenen Literaturquellen und Normen zusammengetragen (siehe Tab. 3.1).

Quelle	Faktor α_v	Kommentar		
Huber-Hencky-Mises	0,575	Theoretischer Wert		
Klingner, Mendonca (1982)	0,675	Kopfbolzen		
Roik (1982)	0,7	Kopfbolzen		
Anderson, Meinheit (2006) 1,0 Kopfbolzen		Kopfbolzen		
Valtinat (1982)	0,625	Maschinen Schrauben		
	0,67	Gewindeschrauben 4.6, 5.6		
Schmidt, Knobioch (1982)	0,6	Gewindeschrauben 8.8, 10.9		
0 k (1000)	0,5	Verbundanker		
Cook (1989)	0,6	Hinterschnittanker		
	0,7	Gewindeschrauben 4.6, 5.6		
	0,65	Gewindeschrauben 8.8		
VDI-Z 126	0,62	Gewindeschrauben 10.9		
	0,60	Gewindeschrauben 12.9		
	0,6	Gewindeschrauben 4.6, 5.6, 8.8		
DIN EN 1993-1-8	0,5	Gewindeschrauben 10.9		
	0,6	Gewindestangen $f_u \leq 500 Mpa$		
Grosser	0,5	Gewindestangen $500 < f_u \le 1000$ Mpa		
	0,4	Gewindestangen $f_u > 1000Mpa$		
Welz	0,45	Gewindestangen 5.8, 10.9, 12.9		

Tab. 3.1: Variationen des *α_v*-Abminderungsfaktors, aus: *Grosser 2012*, S. *30*, *DIN EN 1993-1-8*, *VDI 2230 Blatt 1*, S. *104*, *Welz 2011*, S. *173*

3.4 Berechnungsverfahren in Eurocode

3.4.1 DIN EN 1992-4

Nach *DIN EN 1992-4* kann der charakteristische Widerstand eines einzelnen Befestigungselements im Fall eines Stahlbruchs nach Gleichung (3.33) berechnet werden. Die Duktilität des Befestigungselements wird hierbei nicht berücksichtigt.

$$V_{Rk,s}^{0} = k_{6}A_{s}f_{u}$$
(3.33)

mit

$$k_{6} = \begin{cases} 0,6 & f_{u} < 500 \, Mpa \\ 0,5 & 500 \, Mpa \le f_{u} \le 1000 \, Mpa \end{cases}$$

3.4.2 Grosser

Grosser 2012 untersuchte das Tragverhalten von Injektionsankern, die sowohl durch Querzugals auch Torsionsbelastung in beliebiger Richtung beansprucht wurden. Hervorzuheben sind die statischen randfernen Querzugversuche an nachträglich installierten Gewindestangen (Injektionsanker). Er betrachtete vor allem verschiedene Einflüsse der Stahleigenschaften wie Duktilität und Bruchfestigkeit. In Anlehnung an den vereinfachten Ansatz von *Fuchs 1984* ersetzte Grosser den Abminderungsfaktor α_v durch zwei Reduktionsfaktoren und entwickelte somit ein neues Bemessungskonzept nach Gleichung (3.34). Der Faktor k_{s1} bezieht sich auf die Stahlzugfestigkeit f_u des verwendeten Materials. Dabei wird indirekt auf die Stahlduktilität verwiesen, da die hochfesten Stähle in der Regel ein sehr sprödes Verhalten zeigen. Nicht rostende Stähle wurden in der Untersuchung von Großer nicht berücksichtigt. Durch den Faktor k_{s2} wird zwischen eingelegten und angeschweißten Befestigungen unterschieden.

$$V_u = k_{s1} k_{s2} A_s f_u (3.34)$$

mit

 $\begin{aligned} k_{s1} &= \begin{cases} 0,6 \\ 0,5 \\ 0,4 \end{cases} & \begin{array}{c} f_u < 500 \ Mpa \\ 500 \ Mpa \leq f_u \leq 1000 \ Mpa \\ f_u \geq 1000 \ Mpa \end{cases} \\ k_{s2} &= \begin{cases} 1,0 \\ 1,2 \end{cases} & \begin{array}{c} nicht \ angeschweißte \ Anker \ und \ Kopfd \ddot{u}bel \\ eingebettete \ Platte \ mit \ angeschweißten \ Kopf bolzen \end{cases}$

3.5 Gegenüberstellung der Berechnungsansätze

Die vorgestellten Bemessungsmodelle basieren auf unterschiedlichen Ansätzen und berücksichtigen individuelle Randbedingungen sowie diverse Arten der Verankerung. Diese Unterschiede erschweren einen theoretischen Vergleich. Daher wurden die Bemessungsansätze den Ergebnissen aus den Querzugbelastungen in gerissenem Beton gegenübergestellt. Die Versuchsergebnisse können Anhang E entnommen werden.

Für die Berechnung der rechnerischen Querzugtragfähigkeiten wurde für die Gewindestange in der Güteklasse 8.8 und für den Bewehrungsstahl B500 B das Elastizitätsmodul mit 210.000 N/mm² und für nicht rostende Stähle A4/70 mit 200.000 N/mm² zugrunde gelegt. Alle weiteren Materialkennwerte stehen in Tab. 3.2.

Material	Größe	R _{p0,2}	f_u	h_{ef}	f _c	E _c
[-]	[-]	[N/mm²]	[N/mm²]	[mm]	[N/mm²]	[N/mm²]
	M8	823	992	70	25,7	32.250
8.8	M20	807	969	120	25,7	32.250
A4/70	M8	652	780	70	31,1	33.870
	M20	658	775	120	23,2	31.420
DECOD	Ø 8	458	605	70	31,1	33.870
B200B	Ø 20	434	621	120	23,2	31.420

Tab. 3.2: Materialkennwerte aus statischen Querzugversuchen, aus Anhang A

Abb. 3.16: Vergleich der rechnerischen Querzugtragfähigkeit unterschiedlicher Bemessungsmodelle mit dem Mittelwert aus I1-, I2- und I4-Verbundmörtel, aus Anhang E

Abb. 3.17: Vergleich der rechnerischen Querzugtragfähigkeit unterschiedlicher Bemessungsmodelle mit dem Mittelwert von in Beton eingelassenen Stäben, aus Anhang E

Es wurden die Versuchsergebnisse und die anhand der Bemessungsmodelle berechneten Querzugtragfähigkeiten einander gegenübergestellt (siehe Abb. 3.21 und Abb. 3.22). Dabei wurde das Verhältnis der ermittelten Querzugkräften zu den geschätzten Querzugkräften $V_{u,Test}/V_{u,Modell}$ dargestellt.

Beim Vergleich von nachträglich installierten Ankern mit Verbundmörtel (siehe Abb. 3.21) wurde festgestellt, dass die vorgestellten Modelle stark von den verwendeten Materialien abhängig sind. Berechnungsansätze, die einen Bezug zur Stahlzugfestigkeit f_u und zum Stabdurchmesser d_s haben, zeigten eine gute Übereinstimmung für die Güteklasse 8.8. Diese Modelle entsprachen im Wesentlichen der Gleichung (2.2) aus Kapitel 2.2.2.

Die Änderung der Stahlduktilität führt jedoch bei diesen Bemessungsmodellen zu einer unzureichenden Näherung von Verbundankern. So stellen beispielhaft Bemessungsmodelle nach *Rasmussen 1963* und *Wiedenroth 1971* eine relativ gute Näherung der Querzugtragfähigkeit für Gewindestäbe der Güteklasse 8.8 dar. Die Anwendung dieser Modelle für A4/70-Stähle zeigte eine starke Unterschätzung ihrer Querzugstragfähigkeit. Hier ist die Beachtung der Anwendungsgrenzen wichtig, die durch die verwendeten Materialien und Abmessungen des Befestigungsmittels definiert werden.

Im Allgemeinen sei festgestellt: In den meisten Berechnungsmodellen besteht der Bezug zur Streckgrenze f_y , wodurch die Querzugtragfähigkeit zu niedrig geschätzt wird. Da bei den durchgeführten Versuchen das Stahlversagen der Befestigungselemente maßgebend ist, nähern sich die Bemessungsmodelle in Bezug auf die Stahlzugfestigkeit f_u eher den Versuchsergebnissen an als die Bemessungsmodelle in Bezug zur Streckgrenze f_y .

Das Bemessungsmodell nach *Oehlers und Johnson 1987* liefert im Vergleich zu den anderen Modellen bei allen Stählen eine gute Näherung mit einer Abweichung von 5 bis 15 %. Hier werden die Eigenschaften von Beton und Stahl berücksichtigt, wobei die Betondruckfestigkeit f_c einen übermäßig hohen Einfluss auf die berechnete Querzugtragfähigkeit ausübt. Die Anwendbarkeit dieses Bemessungsmodells für die Zulassungsversuche von nachträglich installierten Injektionsanker ist jedoch eingeschränkt, da der fehlende Bezug zu der Höhe der Stabeinbindetiefe h_{ef} keine zuverlässige Schätzung der Querzugtragfähigkeiten von Ankern mit variierender Verbundmörtelfestigkeit und kleineren Einbindetiefen ermöglicht. Diese Feststellung bestätigt der Vergleich der Ergebnisse von einbetonierten Stäben (siehe Abb. 3.22).

Da das ursprüngliche Bemessungsmodell für die Ermittlung der Querzugtragfähigkeit von Kopfbolzen entwickelt wurde, ist es plausibel, dass die Querzugtragfähigkeit von Gewindestäben der Güteklasse 8.8 demnach stark überschätzt wird. Kopfbolzen sind in der Regel wesentlich duktiler als Gewindestäbe der Güteklasse 8.8.

3.6 Zwischenfazit

Erkenntnisse aus den Untersuchungen im Bereich von einbetonierten und nachträglich installierten Befestigungselementen werden oft gleichgesetzt. Obwohl die ihnen zugrunde liegenden Bruchmechanismen sowohl für einbetonierte Kopfbolzen als auch für nachträglich installierte Injektionsanker gelten, sind bei den jeweiligen Befestigungssystemen unterschiedliche Versagensfälle zu erwarten. Es gibt drei mögliche Versagensfälle bei randferner Einzelbefestigung unter Querbelastung (siehe Abb. 3.18).

Abb. 3.18: Versagen von randfernen Befestigungen auf Querbeanspruchung: (a) Abscheren durch Stahlversagen, (b) Betonversagen oder Herausziehen, (c) rückwärtiger Betonausbruch, aus: *fib Bulletin 58, S. 40-41*

Für die Beschreibung der Querzugtragfähigkeit von einbetonierten Kopfbolzen wird allgemein zwischen Beton- und Stahlversagen unterschieden. Bei den randfernen nachträglich installierten Injektionsankern wird dagegen entweder auf das Kombinationsversagen (Beton und Stahl) oder nur auf das Stahlversagen des Befestigungsmittels eingegangen. Bemessungsansätze, die ein kombiniertes Versagensbild betrachten, unterschätzen die Querzugtragfähigkeit von nachträglich installierten Injektionsankern. Randbedingungen und Versuchsaufbau haben hier eine entscheidende Bedeutung, da den meisten Bemessungsmodellen die Annahme einer frei verdrehbaren Befestigung zugrunde liegt. Diese Annahme entspricht jedoch nicht der aktuellen Eignungsprüfungen nach EADs und der Bemessung nach Eurocode 2. Bei randfernen, nachträglich installierten Befestigungselementen wird aktuell nach EAD 330499-01-0601 und DIN EN 1992-4 in der Regel allein die Stahlschubtragfähigkeit der Befestigungselemente nach Gleichung (2.2) aus Kapitel 2.2.2 ermittelt. Bei einem Stahlversagen wird jedoch nur die Zugfestigkeit des Materials betrachtet, nicht die Stahlduktilität. Dementsprechend wird die Schubwiderstandskraft von hochduktilen Stählen stark unterschätzt.

Bei der Gegenüberstellung der Bemessungsmodelle mit den Versuchsergebnissen von Injektionsankern (siehe Kapitel 3.5) konnte festgestellt werden, dass es aktuell kein geeignetes Bemessungsmodell zur Beschreibung der Querzugtragfähigkeit von Injektionsankern gibt, dass Einflüsse aus Verbundmörtel und Stahlduktilität berücksichtigt. Um das Trag- und Verformungsverhalten von querbelasteten Injektionsankern zu beschreiben, müssen weitere Untersuchungen erfolgen, denen folgende Aspekte zugrunde liegen:

- 1. Die Durchführung von statischen und seismischen Querzugversuchen muss unter identischen Randbedingungen erfolgen.
- Infolge horizontaler Stabverformungen während einer Querzugbelastung entstehen Zugkräfte. Einflüsse aus der Einbindetiefe des Ankers sowie der Duktilität des verwendeten Stahls müssen zusätzlich untersucht werden, um die Größe der aufnehmbaren Zugkräfte zu ermitteln.
- 3. Plastische Stabverformungen von Gewinde- und Bewehrungsstäben werden durch die Betrachtung von weiteren Stahleigenschaften berücksichtigt.

- 4. In Bezug auf Verbundmörtel üben die Verbundfestigkeit des verwendeten Verbundmaterials und die Einbindetiefe des Befestigungselements einen Einfluss auf den Herausziehwiderstand aus, der untersucht werden muss.
- 5. Ein möglicher Einfluss der Herausziehkraft auf die Injektionsanker bei seismischen Querbelastungen muss im Detail untersucht werden.

4 Auswertung der Zulassungsversuche für C1

4.1 Überblick der Versuchsserie

Im Rahmen der vorliegenden Arbeit wurden etwa 175 seismische Querzugversuche an Injektionsankern mit Gewindestangen und Bewehrungsstäben ausgewertet. Die große Anzahl an Versuchsergebnissen ermöglichte eine genauere Untersuchung der Querzugtragfähigkeit der Injektionsanker unter seismischer Querzugbelastung.

Untersucht und ausgewertet wurden seismische Querzugversuche der Leistungskategorie C1 nach dem *Technical Report 049* und *AC308* in niederfestem gerissenem Beton C20/25. Dabei betrugen die Rissbreiten $w \ge 0,50$ mm. Als Ankerstangen fungierten europäische und US-amerikanische handelsübliche Bewehrungsstäbe sowie Gewindestangen. Die Einbindetiefe h_{ef} der Stäbe wurde so gewählt, dass kein rückwärtiger Betonausbruch auftreten konnte. In Abhängigkeit vom verwendeten Verbundmörtel variierten die Einbindetiefen h_{ef} innerhalb der identischen Stabgrößen. In einer Übersicht wurden alle Versuchsserien zusammengefasst und nach je verwendetem Verbundmörtel sortiert (siehe Tab. 4.1 und Tab. 4.2).

Dokume	Versuchs-	Mörtel	Größe	Gütekla	Einbindetiefe	h_{ef}/d_s
nt	bezeichnung			sse	h _{ef}	0,, 0
[-]	[-]	[-]	[-]	[-]	[mm]	[-]
			M8		70	8,75
TR 049	C1 0		M12	0 0	90	7,50
	01.2		M24	0.0	120	5,00
			M30		160	5,33
			3/8"	ASTM	70	7,35
AC 308	18	11	3/4"	A193	110	5,77
			1-1/4"	B7	160	5,03
	C1.2		Ø 8		70	8,75
			Ø 10		80	8,00
			Ø 12	DEOOD	90	7,50
1 K 049			Ø 16	DOUD	100	6,25
			Ø 25		125	5,00
			Ø 32		160	5,00
			# 3	ASTM	70	7,36
AC 308	18		# 7	A615	115	5,18
			# 10	Gr. 60	160	5,03

Tab. 4.1: Übersicht der Versuchsserie I1

Dokume nt	Versuchs- bezeichnung	Mörtel	Größe	Gütekla sse	Einbindetiefe h_{ef}	h _{ef} /d _s
[-]	[-]	[-]	[-]	[-]	[mm]	[-]
			M8		80	10,00
TR 049	C1.2	12	M12	8.8	100	8,30
			M16		110	6,87
			M8		60	7,50
	01.0		M12	0.0	70	5,83
TR 049	C1.2		M26	0.0	150	6,25
			M30		190	6,33
		13	3/8"	ASTM	60	6,30
AC 308	18		3/4"	A193	89	4,60
			1-1/4"	B7	200	6,20
			Ø 8		60	7,50
			Ø 10		60	6,00
	C1 0		Ø 12	DEOOD	70	5,83
18 049	U1.2		Ø 16	BOUR	80	5,00
			Ø 25		160	6,40
			Ø 32		155	4,80
			# 3	ASTM	60	6,30
AC 308	18		#6	A615	89	4,50
			# 10	Gr. 60	155	4,80

Tab. 4.2: Übersicht der Versuchsserien I2 und I3

Die Verwendung unterschiedlicher Injektionssysteme von mehreren Herstellern ermöglichte eine materialübergreifende Ergebnisanalyse. Aus Datenschutzgründen wurden die zugehörigen Versuchsreihen anonym behandelt. Die verwendeten Verbundstoffe, genauer gesagt: die Injektionssysteme, wurden im weiteren Verlauf dieser Arbeit mit dem Buchstabe I und den fortlaufenden Index-Nummern 1, 2 und 3 gekennzeichnet: I1, I2, I3. Die verwendeten Daten wurden mit dem Einverständnis jedes Herstellers den internen Berichten 16076CT/15515_1 2018, 16076CT/15515_2 2018, 18073HK/15567_4 2019, 18073HK/15567_5 2019 und 14056CT1515 2016 entnommen.

Die in den Versuchen gewonnenen Ergebnisse lieferten nicht nur Zahlenwerte, sondern auch neue Erkenntnisse zum Tragverhalten von Verbunddübeln. Das Tragverhalten eines Befestigungsmittels und dessen Versagensbild hängen stark von den Eigenschaften der verwendeten Materialien, von der Art der Beanspruchung und letztlich von dem

Versuchsaufbau ab. Diese großen Kategorien bilden einen Grundsatz für die Bestimmung der Querzugtragfähigkeit eines Injektionsankers (siehe Abb. 4.1).

Im Kapitel 4.2 wurden die Eigenschaften der verwendeten Materialien aus den vorliegenden Berichten definiert. Die Vorgehensweise bei der Versuchsausführung wurde zusätzlich im Kapitel 4.3 beschrieben. Alle weiteren Einzelheiten können den bereits genannten Versuchsberichten entnommen werden.

4.2 Materialeigenschaften

4.2.1 Stahl

Die Stahleigenschaften der verwendeten Bewehrungs- und Gewindestäbe wurden mithilfe von Zugversuchen ermittelt. Während die Materialkennwerte der Gewindestangen den mitgelieferten Prüfzertifikaten entnommen wurden, führte das Materialprüfamt Kaiserslautern die Ermittlung der Materialkennwerte der Bewehrungsstäbe aus. Dabei stellte es die Stahleigenschaften wie Elastizitätsmodul E_s , Steckgrenze f_y und Zugfestigkeit f_u an nicht abgedrehten Bewehrungsstäben fest. Die Bruchdehnung in Längsrichtung $e_{R_{m,x}}$ wurde nach der Durchführung von Zugversuchen direkt anhand der Bruchproben bestimmt. Es wurden ferner alle erfassten Stahleigenschaften zusammengetragen (siehe Tab. 4.3).

Mörtel	Material	Größe	$R_{e}(f_{y})$	$R_{m}(f_{u})$	$\varepsilon_{R_{m},x}$	
[-]	[-]	[-]	[N/mm²]	[N/mm²]	[%]	
		M8	838	923	12,5	
		M12	809	898	14,6	
		M16	812	895	13,1	
1	8.8	M20	803	891	12,7	
12		M24	802	891	13,0	
13		M30	879	955	17,6	
	A OT 14	3/8"	_	970	9,9	R a R _m
	ASTM	3/4"	837	916	6,7	
	A193 B7	1-1/4"	402	984	15,4	R _e
	B500B	Ø 8	566	659	16,0	
		Ø 10	556	649	12,0	
l1		Ø 12	582	626	13,0	
13		Ø 16	564	649	15,5	$\Lambda_{g'} = \varepsilon_{Rm,x}$
		Ø 25	528	658	13,7	
		Ø 32	453	674	_	
	ASTM	# 3	458	760	7,2	
11	A615 Gr.	# 7	480	750	15,8	
	60	# 10	467	801	18,0	
	ASTM	#3	558	653	_	
13	A615 Gr.	# 6	440	676	_	
	60	# 10	417	694	-	

Tab. 4.3: Stahleigenschaften von verwendeten Stäben

4.2.2 Beton

Die Betoneigenschaften wurden mittels Druckprüfung an Betonprüfwürfeln bestimmt. Dabei wurde der Mittelwert der Betondruckfestigkeit $f_{c,cube}$ aus mindestens drei Betondruckversuchen ermittelt. Die Betondruckwürfel mit Kantenlängen von 150 mm wurden gemeinsam mit den Betonprüfkörpern mindestens 28 Tage trocken gelagert. Die Zylinderdruckfestigkeit $f_{c,m}$ wurde nach Gleichung (4.1) anhand der Würfeldruckfestigkeit $f_{c,m,cube}$ umgerechnet.

$$f_{c,m} = \beta \cdot f_{c,m,cube} \tag{4.1}$$

mit

$$\beta = 0.80$$
 für C20/25
 $\beta = 0.83$ für C50/60

Mithilfe der Gleichung (5.6) nach *Weber 1979* aus Kapitel 5.3.2 wurde die Betondruckfestigkeit $f_{c,m}$ auf den Versuchstag genau hochgerechnet. Daher bestand kein Bedarf, eine tägliche Betondruckprüfung für jede Versuchsserie durchzuführen. Die Betonzugfestigkeit $f_{ct,m}$ wurde gemäß dem *fib Bulletin 65* nach Gleichung (5.8) aus Kapitel 5.3.2 berechnet. In *EAD 330499-01-0601* spielt die Betondruckfestigkeit f_c eine untergeordnete Rolle und wurde zur Bewertung der Querzugversuche nicht herangezogen. Die Betoneigenschaften aus den untersuchten Versuchsserien wurden zusammengefasst (siehe Tab. 4.4).

Mörtel	Größe	f _{c,m,cube}	$f_{c,m}$	f _{ct,m}	Ν
[-]	[-]	[N/mm²]	[N/mm ²]	[N/mm²]	
	M8	32,6	26,1	2,5	
	M12	32,7	26,2	2,5	
	M24	33,2	26,5	2,5	
	M30	35,7	28,6	2,6	
	3/8"	30,7	24,5	2,4	
	3/4"	32,2	25,8	2,4	
	1,25"	35,7	28,6	2,6	
14	Ø 8	32,7	26,2	2,5	
11	Ø 10	30,3	24,2	2,3	
	Ø 12	30,3	24,2	2,3	
	Ø 16	30,3	24,3	2,3	
	Ø 25	26,8	21,4	2,1	
	Ø 32	34,9	27,9	2,6	
	# 3	32,7	26,1	2,5	
	# 7	31,1	24,8	2,4	
	# 10	38,8	31,1	2,8	
	M8	26,8	21,4	2,1	
12	M12	26,8	21,4	2,1	
	M16	26,8	21,4	2,1	

Nörtel	Größe	$f_{c,m,cube}$	$f_{c,m}$	f _{ct,m}
[-]	[-]	[N/mm²]	[N/mm²]	[N/mm²]
	M8	28,6	26,1	2,5
	M12	28,5	26,2	2,5
	M24	27,9	26,5	2,5
	M30	27,8	28,6	2,6
	3/8"	29,1	24,5	2,4
	3/4"	24,7	25,8	2,4
	1,25"	27,5	28,6	2,6
	Ø 8	35,2	26,2	2,5
13	Ø 10	35,1	24,2	2,3
	Ø 12	25,0	24,2	2,3
	<i>α</i> 40	25,0	24,3	2,3
	Ø 16	28,5	21,4	2,1
	Ø 25	27,9	27,9	2,6
	Ø 32	36,3	26,1	2,5
	#3	28,5	24,8	2,4
	#6	25,1	31,1	2,8
	# 10	35,6	31,0	2,8

Tab. 4.4: Betondruckfestigkeit von verwendeten Prüfplatten

Abhängig von der Einbindetiefe h_{ef} und dem Stabdurchmesser d_s der Befestigung wurden zwei Betonprüfkörpertypen verwendet. Die kleinen Dehnkörper mit den Abmessungen 0,80 × 0,80 × 0,40 m kamen für die Stäbe mit $d_s < 16$ mm und $h_{ef} < 125$ mm zum Einsatz. Für alle anderen Stabgrößen wurden große Dehnkörper mit den Abmessungen 2,30 × 0,85 × 0,55 m verwendet. Die zugehörigen Bewehrungszeichnungen stehen im Anhang I.

4.2.3 Verbundmörtel

Die Eigenschaften des Verbundmörtels sind für die Bewertung der Versuchsergebnisse nicht explizit gefordert.

Abb. 4.2: chemische Bestandsteile der verwendeten Verbundmörtel

Um die Verbundmörteleigenschaften der verwendeten Injektionssystem (siehe Abb. 4.2) heranzuziehen, wurden die Ergebnisse der Zugversuche betrachtet. Abhängig von der Größe der Rissbreite *w* ändert sich die maximale Größe der erreichbaren Zugkräfte N_u bzw. die Verbundspannungen $\tau_{u,zug}$. Da bei den seismischen Eignungsversuchen C1.2 nach *EAD 330499-01-0601* die Rissbreite w = 0,50 mm beträgt, wurden die maximalen Verbundspannungen $\tau_{u,zug}$ aus den entsprechenden Zugversuchen mit gleich großen Rissbreiten als Referenzversuche gewählt: Dazu zählen B10 nach *EAD 330499-01-0601* und Nr. 3 nach *AC308*.

Tab. 4.5: Verbundspannung aus Zugversuchen mit der Rissbreite w = 0,50 mm

Mörtel	Größe	h_{ef}	$\tau_{u,zug,m}$	S	V	u_m	f _{c,cube}
[-]	[-]	[mm]	[N/mm²]	[N/mm²]	[%]	[mm]	[N/mm²]
	M8	55	31,97	1,06	3,33	5,10	29,50
14	3/8"	60	30,37	0,63	2,09	2,21	31,54
	5/8"	79	25,97	2,31	8,90	2,22	25,10
	1-1/4"	127	22,86	1,90	8,31	2,34	26,60
	M8	61	16,47	3,47	21,07	1,46	32,90
12	M12	70	20,49	2,49	12,15	1,18	32,90
	M16	80	20,50	1,65	8,07	0,95	32,90
13	3/8"	60	17,08	2,16	12,63	0,41	34,90
	3/4"	89	18,10	0,80	4,41	1,19	27,00
	1-1/4"	127	21,23	2,12	9,97	1,67	27,00
	M8	60	17,24	0,14	13,66	1,13	33,40

Zudem wurden die Verbundspannungen als Mittelwerte $\tau_{u,zug,m}$ mit den dazugehörigen Ankerverschiebungen u_p sowie den Betonfestigkeiten am Tag der Testdurchführung betrachtet (siehe Tab. 4.5). Der Tabelle kann entnommen werden, dass der I1-Verbundmörtel auf Pure Epoxy Basis die höchsten Verbundspannungen $\tau_{u,zug}$ aufweist. Die I2- und I3-Verbundmörtel erreichten in etwa ein vergleichbares Verbundspannungsniveau.

4.3 Versuchsbeschreibung

Die Eignungsversuche von Injektionsdübeln für die Leistungskategorien C1 und C2 wurden in Europa nach dem *Technical Report 049* unter Beachtung der Vorgaben nach *EAD 330499-01-0601* und dem *Technical Report 048* durchgeführt. Die Eignungsprüfung wurde bereits ausführlich in Kapitel 2.2.3 beschrieben. In Bezug auf die US-amerikanischen Dokumente *AC308, ACI 355.4-11* und *E488 / E488M-15* gibt es nur wenige Unterschiede zu den europäischen Vorschriften. Für die USA existieren derzeit keine Eignungsversuche der Leistungskategorie C2; diese gelten nur für den europäischen Raum. Eine nennenswerte Abweichung zwischen diesen Vorschriften besteht in der Abmessung des Durchgangslochs d_f in der Querzugplatte, bei der ein Spalt von $3 \pm 1,5$ mm zwischen der Befestigung und dem Durchgangsloch in der Querzugplatte akzeptiert wird. Die Dicke der Querzugplatte darf sich ebenfalls um -1,5 bis +3,0 mm vom nominalen Stabdurchmesser d_{nom} unterscheiden. Die europäischen Vorschriften sind in dieser Hinsicht wesentlich strenger und erlauben keine Abweichung oder Variation der Vorgaben. So muss die Dicke der Querzugplatte t_{fix} dem nominalen Stabdurchmesser d_{nom} entsprechen (siehe Kapitel 2.2.2).

Abb. 4.3: Versuchsaufbau: (a) Skizze mit Anordnung der Messtechnik, (b) Prüfaufbau

Hinsichtlich des im Kapitel 2.2.3 dargestellten Testprogramms ist zu erwähnen, dass die US-Vorschriften lediglich eine sinusförmige Querzugbelastung der nachträglich installierten Befestigungen akzeptieren. Das zeigt die beispielhafte Skizze eines seismischen Querzugversuchsaufbaus nach *EAD 330499-01-0601* (siehe Abb. 2.15 in Kapitel 2.2.3). Prinzipiell wurde bei den seismischen Querzugversuchen mit den Verbundmörteln I1 bis I3 ein einheitlicher Versuchsaufbau verwendet (siehe Abb. 4.3). Der Betonprüfkörper mit einem nachträglich befestigten Injektionsanker wurde zunächst lotrecht zu der Querzugplatte unter dem hydraulischen Prüfzylinder positioniert und im Boden fest verankert. Die Querzugplatte wurde am hydraulischen Prüfzylinder biegefest angeschlossen, was einen sofortigen Wechsel der Lastrichtung während des seismischen Querzugversuchs ermöglichte. Daher konnten auch höhere Belastungsfrequenzen erreicht werden. Um abhebende Lasten zu minimieren, wurde die Querzugplatte mittels Rollenlager gegen diese Kräfte gesichert. Eine 0,5 mm dicke PTFE-Folie zwischen der Betonoberfläche und der Querzugplatte sorgte für nahezu reibungsfreie Krafteinleitung.

Der einzige, jedoch maßgebende Unterschied in der Versuchsdurchführung für die unterschiedlichen Verbundmörtel liegt in der Anwendung der Rollenlager. Bei den 11- und I2-Verbundmörtelserien wurde die Querzugplatte sowohl während der zyklischen alternierenden Wechsellasten als auch bei der Restquerzugbelastung gegen abhebende Lasten gesichert. Die Sicherung der Querzugplatte gegen Abheben erfolgte bei den I3-Verbundmörtelserien nur zum Zeitpunkt der zyklischen Belastungen. Bei der Restquerzugbelastung wurde die Absicherung entfernt. Diese Handhabung wurde bei der Aufbereitung und Auswertung der vorhandenen Datensätze berücksichtigt und stellte im Vorfeld einen versuchstechnischen Einfluss auf das Trag- und Verformungsverhalten der geprüften Befestigungen dar.

4.4 Versuchsergebnisse

In den folgenden Kapiteln werden die Ergebnisse der seismischen Querzugversuche der C1.2-Reihen an Gewinde- und Bewehrungsstäben dargestellt. Bei der Bestimmung der Wechselkraft V_{eq} wurde auf die statischen Referenzversuche der Serie V1 nach *EAD 330499-01-0601* verzichtet. Die Größe der Wechselkraft V_{eq} wird in Abhängigkeit von der Stahlzugfestigkeit f_u unter Berücksichtigung von Erfahrungswerten nach Gleichung (2.4) aus Kapitel 2.2.3 berechnet. Die Einbindetiefe h_{ef} betrug bei allen Versuchen mehr als $5d_s$, um einen rückwärtigen Betonausbruch während der Versuchsdurchführung auszuschließen.

Im Rahmen der Analyse der vorhandenen Datensätze wurden die Querzugtragfähigkeit der Injektionsanker in Bezug auf die alternierenden Querzugbelastungen und die daraus resultierenden Resttragfähigkeiten untersucht. Insbesondere wurden das Verformungsverhalten sowie die Spannungs-Verschiebungs-Beziehungen der Versuchsserien mit I1- und I2-Verbundmörtel betrachtet. Die Versuchsergebnisse mit I3-Verbundmörtel wurden im Gegensatz zu den I1- und I2-Verbundmörtelserien maßgeblich von der Abhebung der Querzugplatte beeinflusst. Diese Erkenntnisse wurden bei der Analyse Insgesamt wurden 175 seismische Bestandsquerzugversuche berücksichtigt. der Leistungskategorie C1 analysiert. Alle Einzelwerte können den Versuchsberichten entnommen werden, die im Literaturverzeichnis aufgeführt sind.

4.4.1 Spannungsniveau

Die umfangreichen Datensätze und die Versuchsergebnisse der seismischen Querzugversuche mit Gewinde- und Bewehrungsstäben aus Europa und den USA wurden separat dargestellt, um die Übersichtlichkeit der Einzelwerte zu gewährleisten. Im Kapitel 2.2.3 wurden bereits alle Gleichungen für die Berechnung und Abminderung der Höhe der
Wechsellastbelastung V_{eq} beschrieben. Daher wird hier lediglich auf die entsprechenden Gleichungen verwiesen.

Mörtel	Größe	Gütekl asse	h _{ef}	V _{eq}	$\sigma_{eq,m}$	V _{u,m}	$\sigma_{u,m}$	$S(V_u)$	$Var(V_u)$
[-]	[-]	[-]	[mm]	[kN]	[N/mm²]	[kN]	[N/mm²]	[kN]	[%]
	M8		70	8,5	231,4	16,3	445,2	1,15	7,03
4	M12		90	19,1	227,0	35,1	416,0	1,07	3,06
11	M24		120	76,7	217,6	150,6	427,2	5,06	3,36
	M30		160	124,3	221,7	239,5	427,2	9,83	4,11
	M8		80	8,3	225,6	17,3	472,7	0,21	1,24
12	M12	8.8	100	18,8	223,5	37,3	443,0	0,13	0,36
	M16		110	34,6	220,2	60,0	382,5	4,05	6,74
	M8		60	7,3	200,7	17,2	469,3	0,83	4,86
10	M12		70	16,8	199,6	39,4	467,7	1,76	4,46
13	M24		150	65,0	184,5	133,2	377,8	8,56	6,43
	M30		190	105,7	188,5	248,1	442,6	7,92	3,19
	3/8"		70	11,2	220,0	21,7	428,8	1,40	6,3
11	3/4"		110	46,7	214,0	79,9	366,1	9,90	12,40
	1-1/4"	ASTM	160	142,8	226,3	252,5	400,1	32,40	12,80
	3/8"	A193	60	10,6	209,6	24,1	474,9	1,40	6,00
13	3/4"	В/	89	51,5	236,0	87,9	402,8	9,90	11,30
	1-1/4"		200	128,1	203,1	254,3	403,0	39,80	15,70
	Ø 8		70	7,6	151,6	24,5	488,3	1,7	7,0
	Ø 10		80	11,7	149,5	34,6	440,8	1,4	4,1
14	Ø 12		90	16,7	147,9	49,6	438,6	1,1	2,2
II.	Ø 16		100	29,4	146,3	81,4	404,9	5,3	6,5
	Ø 25		125	70,9	144,5	201,8	411,2	11,5	5,7
	Ø 32	DEOOD	160	116,5	144,8	314,9	391,6	9,3	2,9
	Ø 8	B200B	60	7,4	146,9	19,7	392,7	1,9	9,6
	Ø 10		60	11,6	148,0	28,0	356,7	1,0	3,6
10	Ø 12	-	70	17,2	151,8	38,6	341,2	4,4	11,5
13	Ø 16		80	29,2	145,1	75,4	374,8	9,3	12,3
	Ø 25		160	63,2	128,7	204,2	415,9	14,7	7,2
	Ø 32		155	104,9	130,5	276,1	343,3	16,7	6,0
	# 3		70	11,7	164,7	24,9	351,4	3,3	13,4
11	# 7	AOTM	115	64,1	165,7	142,6	368,5	13,6	9,5
	# 10	ASTM	160	135,5	170,6	314,5	395,9	20,4	6,5
	# 3	Cr 60	60	10,0	140,8	32,8	463,3	5,4	16,5
13	# 6	GI. 00	89	45,7	153,1	73,3	245,4	6,7	9,2
	# 10		155	120,6	151,8	263,7	332,0	23,0	8,7

Tab. 4.6: Testergebnisse als Mittelwerte der seismischen Querzugversuche

Es wurden die wichtigsten Versuchsparameter wie Einbindetiefe h_{ef} , Größe der Wechselkraft V_{eq} und Restquerzugkraft $V_{u,m}$ als Mittelwert zusammengestellt (siehe Tab. 4.6). Mithilfe der

Standardabweichung S() und des Variationskoeffizienten Var() der Restquerzugkraft V_u konnte die Streuung der Ergebnisse ermittelt werden.

Anhand des Variationskoeffizienten Var() können die Streuungen unterschiedlicher Stichproben miteinander verglichen werden. Bezogen auf die US-Gewindestäbe wurde eine zunehmende Varianz der Ergebnisse mit ebenfalls zunehmendem Gewindedurchmesser d_s beobachtet. Zweifelsfrei ist dieser Trend nicht nur auf die Erhöhung der Resttragfähigkeit V_u und damit verbundenen lokalen Überschreitungen der Betondruckfestigkeit f_c auf der lastangewandten Seite zurückzuführen, sondern auch auf die jeweiligen Stahleigenschaften. Bei den Bewehrungsstäben #3 wurde ebenfalls ein hoher Variationskoeffizient Var() im Vergleich zu den anderen Stabdurchmessern beobachtet, der auf das Stahlversagen im Gewinde und im Schaft zurückzuführen ist und somit als Ausreißer behandelt wurde. Insgesamt zeigten die Versuchsergebnisse eine konsistente und geringe Streuung von unter 15 %. Folglich können die berechneten Mittelwerte zur Beschreibung des Tragverhaltens der Injektionsanker herangezogen werden.

Abb. 4.4: Gegenüberstellung der Versuchsergebnissen aus Resttragfähigkeit V_u und Wechsellast V_{eq}:
 (a) EU-Gewindestäbe, (b) US-Gewindestäbe, (c) EU-Bewehrungsstäbe, (d) US-Bewehrungsstäbe

Dann wurden die Einzelwerte der Wechsellast V_{eq} und der Restquerkraft V_u für die Gewindeund Bewehrungsstäbe verglichen (siehe Abb. 4.4). Dabei wurden die Versuchsserien nach den Stabgrößen d_s und den verwendeten Verbundmörteln nach Farben getrennt und sortiert, um einen besseren Überblick der Ergebnisse zu ermöglichen. Die farbigen Kennzeichnungen für I1-, I2- und I3-Verbundmörtel werden im Verlauf dieses Kapitels beibehalten.

Nach der Gegenüberstellung der Wechsellasten V_{eq} und der Resttragfähigkeiten V_u (siehe Abb. 4.4) wurde beobachtet, dass sowohl die Gewindestangen als auch die Bewehrungsstäbe mit größeren Stabdurchmessern $d_s \ge 20$ mm unter Verwendung des I1-Verbundmörtels wesentlich höheren Wechselbeanspruchungen ausgesetzt waren als die Injektionsanker mit I3-Verbundmörtel. Dennoch wurde bei den I1-Versuchsserien ein vergleichbares oder sogar höheres Lastniveau der Resttragfähigkeit V_u erreicht. In Anbetracht der Einbindetiefe h_{ef} (siehe Tab. 4.6 und Abb. 4.7) war zu erwarten, dass die Versuchsserien mit I3-Verbundmörtel aufgrund tieferer Einbindetiefen h_{ef} ein höheres Lastniveau erreichen würden. Die Tatsache, dass die Querzugplatte bei den Versuchen mit I3-Verbundmörtel nicht gegen Abheben gesichert war, führte jedoch zu keiner vergleichbaren Ausgangssituation.

Da die durchgeführten Tests einen gegenteiligen Einfluss der Einbindetiefe h_{ef} zeigten, wurde das Spannungsniveau in Abhängigkeit von der Zugfestigkeit f_u der verwendeten Anker für Gewindestangen und für Bewehrungsstäbe gegenübergestellt (siehe Abb. 4.5).

Abb. 4.5: Gegenüberstellung der Versuchsergebnisse mit den Quotienten σ_{eq}/σ_u , σ_u/f_u und σ_{eq}/f_u in (a) und (b) für EU-Gewindestangen und in (c) und (d) für US-Gewindestangen

Bei der Betrachtung der Spannungsverhältnisse zwischen σ_{eq} und σ_u wurde eine Abhängigkeit der beiden Größen voneinander festgestellt, die in Gleichung (4.2) formuliert ist. Die Summation der Quotienten aus den einwirkenden Spannungen σ_{eq}/σ_u und das Verhältnis aus

der Restquerzugspannung σ_u und der Zugfestigkeit f_u definiert exakt die Zusammenhänge der einwirkenden Querbelastungen. Die Stahleigenschaften des verwendeten Materials beeinflussen hier maßgeblich das Trag- und Verformungsverhalten der Injektionsanker.

$$\frac{\sigma_{eq}}{\sigma_u} + \frac{\sigma_u}{f_u} \approx 0.95 \text{ bis } 1.05$$
(4.2)

Die einzelnen Versuche zeigten, dass die Summe der Quotienten aus Gleichung (4.2) stark von den geometrischen Gegebenheiten und den Materialeigenschaften beeinflusst wurde. Alle Versuchsergebnisse mit I3-Verbundmörtel, bei denen die Sicherung der Querzugplatte nicht erfolgte, führten zu keiner Einheit mit den Versuchsergebnissen der I1-Verbundserien. Diese "Phasenverschiebung" ist besonders deutlich bei den einzelnen Versuchsserien mit dem I3dem I1- Verbundmörtel zu sehen. Weiterhin führte die und Steigerung der Wechsellastbeanspruchung zwangsläufig zur Reduktion der Resttragfähigkeit der Injektionsanker (siehe Abb. 4.5).

Abb. 4.6: Gegenüberstellung der Versuchsergebnisse mit den Quotienten σ_{eq}/σ_u , σ_u/f_u und σ_{eq}/f_u in (a) und (b) für EU-Bewehrungsstäbe und in (c) und (d) für US-Bewehrungsstäbe

Obwohl der Dokument *EAD 330499-01-0601* ausdrücklich ihre Anwendung auf Bewehrungsstäbe erlaubt, wird in der Bewertung der Versuchsergebnisse die Anwendung von Gleichung (2.2) und (2.3) (siehe Kapitel 2) zur Bestimmung der Wechsellastbelastung V_{eq} nicht explizit behandelt. Dabei bleibt lediglich die Größe der Stahlzugfestigkeit f_u unter Berücksichtigung des Abminderungsfaktors $\alpha_v = 0,50$ maßgebend, was potenziell zu einer Überschätzung oder Unterschätzung der tatsächlichen Schertragfähigkeit des Ankers führen

kann. Die Versuchsergebnisse mit den Gewinde- und Bewehrungsstäben belegen, dass die statische Querzugtragfähigkeit V_u der Bewehrungsstäbe bislang sehr stark unterschätzt wurde. Dies wird durch die Betrachtung der σ_u/f_u -Quotienten der Bewehrung- und Gewindestäbe belegt (siehe Abb. 4.5 und Abb. 4.6). Während die Restquerzugkräfte der Gewindestäbe in etwa $0,50f_u$ entsprachen, wurden bei den Bewehrungsstäben Restquerzugkräfte bis zu $0,80f_u$ festgestellt. Diese Laststeigerung wurde sowohl bei allen Verbundmörtelserien festgestellt.

Die beobachtete Streuung der Resttragfähigkeiten innerhalb eines Wechsellastniveaus konnte aufgrund der dargestellten Zusammenhänge nicht endgültig bewertet werden. Im Kapitel 4.4.2 wurde das Verformungsverhalten der Injektionsanker während der zyklischen Beanspruchung und bei der Bestimmung der Resttragfähigkeit untersucht, um auf Grundlage der so ermittelten Erkenntnisse Aussagen zum Trag- und Verformungsverhalten der betrachteten Versuchsserien zu formulieren.

4.4.2 Verformungsverhalten

Der Versagensmechanismus der nachträglich installierten Befestigungen wird durch deren Verformungsverhalten beschrieben. Erst nach der Betrachtung der Stabverformungen u und der zugehörigen Querzugkräfte bei der seismischen und quasistatischen Beanspruchung kann das Trag- und Verformungsverhalten der Injektionsanker beschrieben werden. Beispielhaft sind zwei Versagensbilder der Gewinde- und Bewehrungsstäbe als Injektionsanker mit I1 als Verbundmörtel (siehe Abb. 4.7). Der Vergleich dieser Bilder zeigt deutliche Unterschiede in den Ankerverformungen auf der Betonoberfläche zwischen den spröden Gewindestäben der Güteklasse 8.8 und den hochduktilen Bewehrungsstäben B500B.

(a)

Abb. 4.7: Versagensbilder der C1.2-Serie: (a) M12_I1_8.8_Test 5, (b) Ø 10_I1_B500B_Test 1

Die Kraft-Verschiebungs-Diagramme bestätigen die großen Ankerverschiebungen durch die quasistatische Belastung der Anker bei Ermittlung der Restquerzugtragfähigkeit V_u der Bewehrungsstäbe im Vergleich zu den Gewindestangen (siehe Abb. 4.8 und Abb. 4.9). Bereits bei den kleineren Stabgrößen mit $d_s = 8$ mm zeigen die Bewehrungsstäbe ausgeprägte Verformungen. Dabei sind diese im Gegensatz zu den Gewindestangen sehr duktil. Zudem treten bei den Gewindestäben im Bereich der Gewindekerben große Spannungsspitzen auf, die das Rotationsvermögen der Anker erheblich beeinträchtigen.

Abb. 4.8: Kraft-Verschiebungs-Diagramme: (a) EU-Gewindestangen, (b) EU-Bewehrungsstäbe

Aus den Diagrammen (siehe Abb. 4.9) geht hervor, dass die Querzugversuche mit I1- und I2-Verbundmörtel deutlich geringere Ankerverschiebungen u als die Versuchsserien mit I3-Verbundmörtel aufweisen. Da die Querzugplatte bei der I3-Verbundmörtelserie nicht gegen Abheben gesichert war, kann die Ursache für den großen Anstieg der Verformung beim I3-Verbundmörtel im Vergleich zum I1-Verbundmörtel nicht eindeutig geklärt werden.

Um die Auswirkungen des Lastverformungsverhaltens während der zyklischen Belastungen auf die Resttragfähigkeit der Injektionsanker zu untersuchen, wurden sämtliche Kraft-Verformungs-Diagramme aus allen Versuchsserien gründlich analysiert. Als beispielhaft können drei unterschiedliche Verläufe der Hysterese des C1.2-Versuchsprogramms gelten (siehe Abb. 4.10). Typ (a) stellt einen gewöhnlichen Verlauf der Kraft-Verformungs-Hysterese dar, bei dem die maximalen Stabverformungen u nach den ersten zehn Zyklen mit der Wechsellast V_{eq} erreicht wurden. Bei den Typen (b) und (c) wurde eine ein- bzw. beidseitige Steigerung der Stabverformungen u bei kleineren Wechsellasten beobachtet (mit "ein- bzw. zweiseitig" ist der Hystereseverlauf im negativen und positiven Verformungsbereich gemeint). Der direkte Vergleich aller drei Typen zeigte, dass in einigen Versuchen mit den Hysteresetypen (b) und (c) eine Abminderung der Restquerzugkraft V_u im Vergleich zu den Versuchen mit dem Hysteresetyp (a) auftrat.

- Gleichmäßige Stabverformungen in beiden Lastrichtungen
- Bei kleineren Belastungen wurde kein weiterer Anstieg der Verformungen festgestellt.
- $u_{140} \leq u_{10}$
- Gleichmäßige Stabverformungen in beiden Lastrichtungen
- Bei kleineren Belastungen wurde ein weiterer Anstieg der Verformungen festgestellt.
- $u_{140} > u_{10}$
- Ungleichmäßige Stabverformungen in eine Lastrichtung
- Einseitiger stetiger Anstieg der Stabverformungen
- $u_{40} > u_{10}$
- $u_{140} > u_{40}$

Abb. 4.10: Formen der Hysterese während der seismischen Beanspruchung

Um diese Beobachtung auf die große Anzahl der Daten zu übertragen, wurde das Verhältnis der Stabverschiebungen im 10. Zyklus und im 140. Zyklus u_{10}/u_{140} mit den entsprechenden Spannungsquotienten σ_{eq}/σ_u aus der Wechselkraft und der Restquerzugkraft gegenübergestellt (siehe in Abb. 4.11). Dabei diente das Verhältnis u_{10}/u_{140} als Indikator für die Identifizierung der Hysteresetypen (b) und (c). In diesen Fällen betrug das Verhältnis $u_{10}/u_{140} < 1,0$.

Abb. 4.11: Identifikation der Hysteresetypen durch den Vergleich der Quotienten aus Spannung σ_{eq}/σ_u und Verschiebung u_{10}/u_{140} : (a) EU-Gewindestäbe, (b) US-Gewindestäbe, (c) EU-Bewehrungsstäbe, (d) US-Bewehrungsstäbe

In einigen Versuchsserien stieg die Restquerzugtragfähigkeit V_u aufgrund erhöhter Stabverformung u_{140} in den letzten Zyklen im Vergleich zum 10. Zyklus u_{140} an. Möglicherweise beeinflussen die infolge der zyklischen Querzugsbelastungen verursachten Zugspannungen N_u das Tragverhalten der Injektionsanker, wie die Hysteresekurven nach Rieder 2009 und Takase et al. 2012, Takase 2019 erkennen lassen. Da jedoch keine Variation der Versuchsergebnisse innerhalb eines Injektionsmörtels mit unterschiedlichen Einbindetiefen hef vorliegt, konnte der Einfluss der Zugspannungen nicht genau untersucht werden. Um die Schädigungsprozesse des Befestigungselementes zu beschreiben, wurden bereits verschiedene Methoden entwickelt. Eine von ihnen ist die Betrachtung der Energiedissipation des Lastverformungsverhaltens aus der Hysterese eines Befestigungsmittels. Als beispielhaft kann der Verlauf des C1.2-Versuchsprogramms gelten (siehe Abb. 4.12).

Abb. 4.12: (a) Kraft-Verschiebungs-Hysterese, V2_M12_8.8_I1, (b) Energiedissipation nach dem *fib Bulletin 25*, aus: *Rieder 2009,* S. *4*7

Diese Methode hat *Rieder 2009* ausführlich aufgearbeitet und die Entwicklung des Kraft-Verschiebungs-Verlaufs dargestellt (siehe Abb. 4.13(a) und Abb. 4.13 (b)). Im Hinblick auf den Tragmechanismus wirkt sich das lokale Betonversagen in unmittelbarer Nähe zur Betonoberkante entscheidend auf die Verteilung der Spannungen im Befestigungsmittel und im Betonuntergrund aus.

Abb. 4.13: (a) Hystereseverhalten eines Dübels bei Schubbeanspruchung über die Elastizitätsgrenze hinaus, (b) qualitative Entwicklung des maximalen Moments unter zyklischen Scherbelastungen, aus: *Rieder 2009,* S. *39-40*

Die Faktoren, die die Hysterese beeinflussen, sind vielfältiger Art. Die Festigkeit und die Steifigkeit von Beton, Stahl sowie Verbundmörtel, ebenso wie die Stabgeometrie, die Höhe und die Dauer der Belastungen wirken sich gravierend auf das Trag- und Verformungsverhalten der Injektionsanker aus. Eine Gegenüberstellung der jeweiligen Modelle von *Takase et al. 2012*, VINTZÉLEOU UND TASSIOS *1986*, *Prujssers 1988* und anderen führte nicht zu einer eindeutigen Festlegung der Gewichtung der Einflussparameter.

Müller 2019, S. *30* erklärte bereits, dass aufgrund der verschiedenen Modelle zur Beschreibung des zyklischen Verhaltens von Dowel-Aktionen und den Unterschieden dieser Modelle hinsichtlich der Form der Hysterese von zyklisch belasteten Befestigungsmitteln keine Aussagen über die maßgebenden Effekte zur Formgebung des Verlaufs der Hysterese von Befestigungsmitteln gemacht werden können.

4.5 Zwischenfazit

Für die Analyse des Trag- und Verformungsverhaltens von seismisch belasteten Injektionsankern wurden die Bestandsdaten aus den Versuchen zur Ermittlung von Widerstandskräften für die Leistungskategorie C1 zugrunde gelegt. Dabei wurden die C1.2-Versuchsserien mit drei unterschiedlichen Verbundmörteln I1, I2 und I3 unter der Verwendung von vier Güteklassen wie 8.8, B500B, ASTM A615 Gr. 60 und ASTM 193 B7 analysiert. Die Versuchsdaten bestanden aus erfolgreich durchgeführten Versuchsserien, weshalb eine effiziente Identifikation der maßgebenden Einflussfaktoren nicht möglich war. Dennoch konnte ein Zusammenhang zwischen der Verformungshysterese während der zyklischen Wechsellastbelastungen V_{Eq} und der Größe der Restquerzugtragfähigkeit V_u beobachtet werden. Aufgrund der axialen Stabverformungen der Injektionsanker wird eine zusätzliche Zugkraft N_u vermutet, deren Wert und Einfluss bei der Bewertung der Versuchsergebnisse nicht berücksichtigt wurde.

Es wurde festgestellt, dass der Versuchsaufbau einen großen Einfluss auf das Trag- und Verformungsverhalten der Befestigungsmittel ausübt. So konnte bei den Versuchsserien, deren Querzugplatte gegen Abheben gesichert wurde, eine höhere Wechsellast V_{eq} aufgebracht werden. Bei diesen Versuchsserien wurden ebenfalls im Allgemeinen kleinere Ankerverschiebungen u sowohl bei den seismischen Belastungen als auch bei der Ermittlung der Restquerzugkraft V_u beobachtet.

Die festgestellte Abhängigkeit der Wechsellast V_{eq} , der Restquerzugkraft V_u und der Zugfestigkeit f_u nach Gleichung (4.2) kann dazu dienen, die Versuchsergebnisse effektiv zu bewerten und die optimale Höhe der seismischen Wechselbelastung V_{eq} zu ermitteln.

In Bezug auf die aktuellen Vorschriften zur Ermittlung der Wechsellast V_{eq} nach Gleichung (2.2) aus Kapitel 2 wurde weder die tatsächliche Duktilität des Ankers beachtet noch die Abgrenzung zwischen Schaft und Gewinde der geprüften Befestigungen vorgenommen. Die Untersuchung einzelner Parameter ergab, dass die rechnerischen Ansätze zur Bestimmung der Stahlscherkraft eines Befestigungsmittels gemäß *EAD* 330499-01-0601 und *DIN EN* 1992-4 nicht immer zutreffend sind. Sie hängen somit im Wesentlichen von weit mehr Materialeigenschaften als nur von der Stahlzugfestigkeit f_u des Befestigungsmittels ab. So konnte bei dem hochduktilen Bewehrungsstahl B500B eine wesentlich größere Querzugtragfähigkeit V_u experimentell ermittelt werden, als der rechnerische Ansatz ergeben hatte.

Um eine Aussage über das Trag- und Verformungsverhalten von Injektionsankern zu formulieren, müssen die Materialeigenschaften aus Stahl, Beton und Verbundmörtel detailliert

und unabhängig voneinander betrachtet werden. Dabei können bereits aus gängigen Zug- und Scherversuchen die notwendigen Materialeigenschaften ermittelt werden. Insbesondere stehen Stahleigenschaften und Verbundmörtelfestigkeiten im Fokus, um den Einfluss von Stahlduktilität und Verbundmörtelsteifigkeit auf das Trag- und Verformungsverhalten der Injektionsanker zu beschreiben.

Alle hier gewonnenen Erkenntnisse wurden bei der Erstellung des Versuchsprogramms im folgenden Kapitel 5 berücksichtigt und umgesetzt.

5 Experimentelle Untersuchungen

5.1 Beschreibung der Vorgehensweise

Die Analyse der vorhandenen Datensätze im Kapitel 4 verdeutlicht die Komplexität des Tragund Verformungsverhaltens von Injektionsankern unter Querzugbelastung. Die zusammengestellten Materialeigenschaften und Versuchsrandbedingungen beeinflussen die Bildung des Versagensmechanismus der querzugbelasteten Injektionsanker (siehe Abb. 5.1).

Materialeige	nschaften	Versuchsrandbedingungen
Stahl	Beton	Querzugversuch
 Spannungsquerschnitt A_s Zugfestigkeit f_v 	• Zugfestigkeit f_{ct} • Druckfestigkeit f_c	 Einbindetiefe h_{ef} Drehmoment T_{inst}
 Bruchfestigkeit f_u Dehnung ε_{fu} Botationsvermögen 	 Elastizitätsmodul E_c Zugfestigkeit f_{ct.mörtel} Druckfestigkeit f_c mörtel 	 Prüfgeschwindigkeit Abhebung der Scherplatte Geometrie der Scherplatte
 Duktilität Elastizitätsmodul E_s 	J.C.INDICAL	Geometrie des Prüfkörpers

Abb. 5.1: Zusammenstellung der möglichen Einflussgrößen der Materialeigenschaften und der Versuchsrandbedingungen

Basierend auf diesen Erkenntnissen wurde ein Modell entwickelt, das eine genaue Definition des Trag- und Verformungsverhaltens von Injektionsankern ermöglichen kann. Als Grundlage dafür diente ein Konzept zur separaten Ermittlung von Materialeigenschaften und zur Betrachtung des gegenseitigen Einflusses unter gleichen Versuchsrandbedingungen. Das Konzept umfasste sowohl eine prüftechnische Ermittlung als auch eine anschließende Analyse der Materialeigenschaften (siehe Abb. 5.2). Dabei stellen die statischen Querzugversuche in gerissenem Beton einen Referenzzustand zu den alternierenden Querzugversuchen nach EAD 330499-01-0601 dar, da alle Materialien miteinander in Kontakt treten und sich gegenseitig beeinflussen. Es erfolgte eine Korrelation der Ergebnisse aus statischen Querzugversuchen den ermittelten Materialeigenschaften, mit um die Versagensmechanismen möglichst genau zu beschreiben.

Das Freilegen der Injektionsanker in den untersuchten Betonproben ermöglichte eine umfassende Analyse des Versagensbilds der geprüften Gewinde- und Bewehrungsstäbe. Eine anschließende Untersuchung der Querschnittsspannungen von Injektionsankern sollte zu einem neuen Blickwinkel für die Bewertung von Querzugversuchen in gerissenem Beton unter statischer und seismischer Querzugbeanspruchung führen.

Die Validierung des entwickelten Verfahrens erfolgte mit einem bis dato für seismische Beanspruchungen nicht zugelassenen Verbundmörtel I4 (VMK-SFZ *K-A-L-M 2017*) für die Durchführung von alternierenden Querzugversuchen der Leistungskategorie C1.

Die experimentellen Untersuchungen erfassten ein breites Spektrum an Materialvariationen. Fünf verschiedene Güteklassen in unterschiedlichen Formgrößen unter Verwendung von drei Arten von Verbundmörtel (siehe Abb. 5.3) bildeten das Fundament für das vorgestellte Konzept (siehe Abb. 5.2).

Abb. 5.3: Verwendete Materialien in den experimentellen Untersuchungen der Befestigungsmitteln und Bauteilversuchen

Die Versuche sind entsprechend den verwendeten Materialien den jeweiligen experimentellen Untersuchungen zugeordnet (siehe Abb. 5.3). Die statischen Querzugversuche mit einbetonierten Gewindestäben I0 stellen dabei Referenzversuche zu den Versuchen mit den Verbundmörteln I1, I2 und I4 dar. Um den Anforderungen der *EAD 330499-01-0601* zu entsprechen, wurde bei allen Versuchen niederfester Beton C20/25 verwendet. Die Rissbreite w betrug sowohl bei den statischen als auch bei den seismischen Versuchen 0,50 mm. Daher sind die Versuchsergebnisse gut vergleichbar. Außerdem ist es möglich, die Einflüsse der seismischen Einwirkungen auf die Querzugtragfähigkeit der Injektionsanker zu beurteilen.

5.2 Ermittlung der Stahleigenschaften

5.2.1 Zugprüfung

Um die maßgebenden Materialeigenschaften zu erhalten, erfolgten Zugprüfungen in Anlehnung an *DIN 50125* und *DIN EN ISO 6892-1* an den abgedrehten Zugproben der Formen A und B (siehe Tab. 5.1)

Tab.	5.1:	Zugpr	obenge	ometrie
------	------	-------	--------	---------

	Zugprobe Form A										
	$Rz 6,3$ $h \downarrow L_{o} \downarrow h$ $L_{c} \downarrow L_{c} \downarrow L_{c} \downarrow L_{c}$ $L_{c} \downarrow L_{c} \downarrow L_{$										
	$ \begin{array}{c} h \\ \hline \\$										
Form	Material	Größe	d_0	L ₀	d_1	r	h	L _c	L_t		
[-]	[-]	[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		
	8.8	M8	4	20	5	3	100	24	228		
		M20	12	60	15	9	150	72	382		
		M24	14	70	17	11	150	84	396		
٨		M30	20	100	24	15	150	120	435		
~		Ø 8	4	20	5	3	100	24	228		
	8500 B	Ø 20	12	60	15	9	150	72	382		
	D200 D	Ø 25	14	70	17	11	150	84	396		
		Ø 32	20	100	24	15	150	120	435		
	4.8	M8	5	25	M8	4	20	30	77		
	5.6	M20	14	70	M20	11	40	84	180		
	8.8	M24	14	70	M20	11	40	84	180		
D	A4/70	M30	14	70	M20	11	40	84	180		
ט		Ø 8	5	25	M8	4	20	30	77		
	8500 P	Ø 20	14	70	M20	11	40	84	180		
	D300 D	Ø 25	14	70	M20	11	40	84	180		
		Ø 32	14	70	M20	11	40	84	180		

Zugversuche an Zugproben der Form A dienten der Voruntersuchung der Materialeigenschaften der Bewehrungsstäbe B500B und der Gewindestäbe der Güteklasse 8.8. Dabei wurden die Längsdehnungen sowie Zugkräfte bis zum Versagenspunkt gemessen und analysiert. Als Prüfgeschwindigkeit wurde das Verfahren A zugrunde gelegt (siehe Abb.

5.4). Lediglich die Untersuchung der Bewehrungsstäbe mit einem Durchmesser von 8 mm erfolgte mit der Dehngeschwindigkeit *e* nach Verfahren B.

Abb. 5.4: Dehngeschwindigkeit nach DIN EN ISO 6892-1

Basierend auf den Ergebnissen der Voruntersuchungen wurde das Materialspektrum der Gewindestäbe auf die Güteklassen 4.8, 5.6 und A4/70 erweitert. Durch den Einsatz des RTSS-VIDEOEXTENSOMETERs der Firma LIMESS erfolgte eine parallele Messung der Längs- und Querdehnungen (siehe Abb. 5.5). Die gemessenen Querdehnungen bezogen sich immer auf den minimalen Stabquerschnitt aus dem Suchbereich innerhalb der Messlänge L_0 und erlaubten die Berechnung der vorherrschenden wahren Spannungen im Stabquerschnitt.

Abb. 5.5: Zugprüfung: (a) RTSS-VIDEOEXTENSOMETER, (b) Zugprobe

Die Prüfgeschwindigkeit wurde für alle Querschnitte in Anlehnung an das Verfahren A gewählt (siehe Abb. 5.4). Dabei wurde jede Zugprobe im elastischen Bereich mit einer konstanten Traversengeschwindigkeit $\dot{e} = 0,00007 \, s^{-1}$ belastet. Dann wurde die Traversengeschwindigkeit auf $\dot{e} = 0,00025 \, s^{-1}$ erhöht und bis zum Stahlversagen beibehalten. Diese Vorgehensweise erlaubte eine umfangreiche Messung der Dehnungen bei elastischen

und plastischen Stabverformungen. Als beispielhaft können Zugproben aus M20 A4-Gewindestangen gelten (siehe Abb. 5.6).

(a)

(b)

Abb. 5.6: Zugproben M20 A4: (a) unbelastet, (b) Bruchproben nach der Belastung

Es wurden die Stahleigenschaften aus Zugversuchen als Mittelwerte zusammengefasst und nach Güteklasse und Stabgröße sortiert (siehe Tab. 5.2). Jede Versuchsserie bestand aus mindestens sechs Zugversuchen. Die Einzelwerte können Anhang A entnommen werden.

Abb. 5.7: Auszug von Versuchsergebnissen aus Zugprüfungen an M20- und an Ø-20-Stäben: (a) technische Spannung, (b) wahre Spannung

Die ermittelten technischen (Cauchy) Spannungen σ_x (siehe Abb. 5.7(a)) beziehen sich auf den unveränderten Spannungsquerschnitt A_s und wurden zur Nachweisführung und zur Aufstellung des analytischen Modells verwendet. Die wahren Spannungen $\sigma_{x,wahr}$ (siehe Abb. 5.7(b)) hingegen sind unverzichtbar für FE-Simulationen, die das Fließverhalten und die Stahlentfestigung realitätsnahe abbilden können. Die wahre Querschnittspannung $\sigma_{x,wahr}$ wurde in Bezug auf den tatsächlichen Spannungsquerschnitt $A_{s,wahr}$ in Abhängigkeit von der aufgebrachten Zugkraft N_u berechnet.

Form	Material	Größe	R _m	$\varepsilon_{R_m,x}$	$\mathcal{E}_{R_{m},y}$
[-]	[-]	[-]	[N/mm²]	[%]	[%]
	4.0	M8	530	3,24	-1,92
	4.8	M20	435	8,28	-3,68
	5.6	M20	579	6,19	-3,10
		M8	992	3,22	-1,70
		M20	969	2,35	-1,30
	8.8	M24	936	3,01	-1,44
A+B		M30	1.045	7,13	-3,40
	A 4/70	M8	780	23,19	-9,96
	A4/70	M20	775	21,12	-9,54
		Ø 8	605	14,92	-6,71
		Ø 20	621	14,44	-7,26
	B200 B	Ø 25	625	14,17	-7,45
		Ø 32	615	13,29	-6,57

Tab. 5.2: Stahleigenschaften

5.2.2 Druckprüfung

Die Druckprüfung erfolgte in Anlehnung an *DIN 50106* anhand von abgedrehten zylindrischen Druckproben, die aus M20-Gewindestäben der Güteklasse 4.8, 5.6, 8.8, A4 und B500B-Bewehrungsstäben mit einem Durchmesser von 20 mm angefertigt wurden. Das Verhältnis der Höhe h_0 zum Durchmesser d_0 der Druckproben wurde so gewählt, dass die Probendurchmesser d_0 der Druckproben (siehe Tab. 5.3) und der Zugversuche (siehe Tab. 5.2) entsprechen.

Tab. 5.3: Druckprobengeometrie

Größe	Material	n	d_0	h_0	h_0/d_0	
[-]	[-]	[-]	[mm]	[mm]	[mm]	
	4.8	2				
	5.6	2		21	1,5	
M20	8.8	2	14			
	A4/70	2				
Ø 20	B500 B	2				

Die Stauchung der Druckproben (siehe Abb. 5.8) wurde mittels zwei parallel angeordneten induktiven Wegaufnehmern der Firma HBM gemessen. Die Prüfgeschwindigkeit wurde analog zu den Zugversuchen im Kapitel 5.2.1 gewählt. Dabei wurde jede Druckprobe im elastischen Bereich mit einer konstanten Traversengeschwindigkeit $\dot{e} = 0,00007 \, s^{-1}$ belastet. Danach wurde die Traversengeschwindigkeit auf $\dot{e} = 0,00025 \, s^{-1}$ erhöht und bis zum Auftreten des Stahlversagens beibehalten. Wenn kein sichtbares oder messbares Materialversagen nach

dem Erreichen einer 50-prozentigen Stauchungsgrenze eintrat, wurde der Druckversuch abgebrochen und die maximale Drucklast F als Versagenslast angenommen.

Abb. 5.8: Druckprüfung: (a) Druckproben in ihrer Anfangsform, (b) Druckprobe während der Stauchung

Die Ergebnisse der Druckversuche können in der ersten Linie zur Validierung und Anpassung der in FE-Simulationen iterativ ermittelten Materialkennwerte im Entfestigungsbereich eingesetzt werden.

5.2.3 Scherprüfung

Die Schertragfähigkeit von eingeklebten Gewinde- und Bewehrungsstäben wird stark von der Stabeinbindetiefe h_{ef} und der Verbundtragfähigkeit des verwendeten Verbundmörtels beeinflusst. Um die Stahlscherfestigkeit ohne Fremdeinflüsse aus Beton und Verbundmörtel zu ermitteln, wurden Scherversuche in einer Stahlvorrichtung durchgeführt. Im Gegensatz zu dem standardisierten Scherversuch nach *DIN EN 28749* erfolgte die Prüfung als einschnittiger Abscherversuch (siehe Abb. 5.9(a) und Abb. 5.9(b)).

Die Prüfeinrichtung wurde so konzipiert, dass an ihr während eines Abscherversuchs keine vertikalen oder horizontalen Verformungen auftreten können. Die Baseplatte und die Scherplatte besitzen eine zentrisch ausgerichtete Öffnung mit einem Durchmesser von 90 mm. Während eines Versuchs befindet sich die Ankerstange zwischen zwei gehärteten Passzylindern (42CrMo4, HCR 56), die in die Scherplatte und die Baseplatte eingelegt wurden. Zuvor wurden sowohl die Gewindestäbe als auch die Bewehrungsstäbe von beiden Seiten mit Muttern gekontert, um axiale Stabverschiebungen in Längsrichtung zu vermeiden. Infolge der einseitigen Belastung entstehen zusätzliche Zugkräfte im Stab, die zum Abheben der Scherplatte führen können. Zusätzlich aufgebrachte Rollenlager verhindern das Abheben der Scherplatte.

Die eingelegte PTFE-Folie minimiert die Reibung zwischen den Passzylindern in der Scherplatte und in der Baseplatte. In Anlehnung an *EAD 330499-01-0601* wurde eine 0,50 mm dicke PTFE-Folie gewählt. Die beschriebene Vorgehensweise entspricht weitgehend der Durchführung von Eignungsversuchen nach EAD. Es besteht jedoch der Unterschied, dass

nun der Anker nicht in den Beton eingeklebt wird, sondern zwischen zwei gehärteten Metallplatten angebracht wird.

Abb. 5.9: Scherprüfung: (a) Skizze des Versuchsaufbaus, (b) Versuchsaufbau

Die Gewinde- und Bewehrungsstäbe wurden durch die linear ansteigende Scherkraft *V* (Kraftregelung) innerhalb von 1 bis 3 Minuten zum Versagen gebracht. Die Messung der Ankerverschiebung erfolgte mittels zweier LVDT-Aufnehmer direkt an der Scherplatte. Ein Kraftaufnehmer wurde auf der Baseplatte befestigt (siehe Abb. 5.9). Während des gesamten Schervorgangs wurde die im geprüften Stab einzuleitende Zugkraft in den Untergrund gemessen. Vor einem Scherversuchen mit Gewindemutter wurde der Stab handfest mit einer Vorspannkraft von ca. 1,0 kN angezogen.

Das Prüfkonzept umfasste die Durchführung von Scherversuchen unter vier unterschiedlichen Einbauparametern (siehe Abb. 5.10).

Abb. 5.10: Prüfpositionen: (a) Typ A, (b) Typ B, (c) Typ C, (d) Typ D

	Crößo		Scher	platte		Baseplatte							
	Große	$d_{ m f}$	h_1	h_2	b_1	$d_{ m f}$	h_1	h_2	b_1				
	[-]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]				
	M8	8		8	-	8							
D	M20	20		20		20	20						
qv	M24	24		24		24							
yp A und T	M30	30	F	30	00	30	F	50	00	ц			
	Ø 8	9	Э	8	90	9	Э	50	90	h ₂			
	Ø 20	22		20		22							
-	Ø 25	29		25		29							
	Ø 32	35		32		35							
	M8	9		8		8				02			
	M20	22		20	90	20							
	M24	26	5	24		24 30 9							
В	M30	33		30			5	50					
Tyi	Ø 8	10		8				50	90				
	Ø 20	24		20		22							
	Ø 25	31		25		29							
	Ø 32	38		32		35							
	M8	9		8		9							
	M20	22		20		22							
	M24	26		24		26							
U U	M30	33	_	30	~~	33	_	50					
TyF	Ø 8	10	5	8	90	10	5	50	90				
-	Ø 20	24		20		24							
	Ø 25	31		25		31	1						
	Ø 32	38		32		38							

Tab. 5.4: Passzylindergeometrie

Bei **Typ A** wird der Gewindestab zwischen der Scherplatte und der Baseplatte ohne Einspannung gelagert. Es ist kein Spalt im Durchgangsloch zwischen der Baseplatte und der Scherplatte vorhanden. Die ermittelte Scherkraft entspricht der Schubwiderstandskraft V_s des geprüften Gewindestabs und dient als Referenzversuch für alle weiteren Scherversuche. Zwischen der Lochwandung und dem geprüften Stab entstehen während der Abscherung Reibungskräfte. Es wird weiterhin angenommen, dass die Reibungskräfte bei allen Prüfpositionen von A bis D gleich groß sind und bei der Ermittlung der Schubwiderstandskraft V_{pl} bereits berücksichtigt wurden.

Bei **Typ B** wird der Gewindestab an beiden Stabenden handfest mit Gewindemuttern angeschraubt. Es ist kein Spalt in Durchgangsloch zwischen Baseplatte und Scherplatte vorhanden. Auf der Baseplattenseite misst ein Kraftaufnehmer die Zugkraft (siehe Abb. 5.9(a)). Die gemessenen Zugkräfte während der Scherbelastung werden als Zwangszugkräfte $N_{s,zwang}$ definiert, die durch eine horizontale Stabverformung hervorgerufen werden. Bei querbelasteten Befestigungen im Beton müssen diese Zugkräfte in den Betonuntergrund

eingeleitet werden. Zwischen der Lochwandung und dem geprüften Stab entstehen zum Zeitpunkt der Abscherung Reibungskräfte. Diese Reibungskräfte müssen nicht in den Betonuntergrund eingeleitet werden, da diese keine Zugbeanspruchung im Beton verursachen.

Bei den **Typen B, C** und **D** wurde der Einfluss des Durchgangslochs auf die Versuchsergebnisse untersucht, indem der Durchmesser des Durchgangslochs d_f in der Baseplatte und Scherplatte gemäß *EAD 330499-01-0601* variiert wurde (siehe Tab. 5.4). Der vorhandene Spalt Δ zwischen der Lochwandung im Passzylinder und dem Prüfling ermöglichte eine Stabverformung, die in Abhängigkeit vom verwendeten Gewinde- und Bewehrungsstab die Umlenkung der einwirkenden Scherkraft in Zugkraft begünstigte.

Die Ergebnisse der Scherversuche wurden als Mittelwerte zusammengefasst und der Güteklasse und der Stabgröße zugeordnet (seine Tab. 5.5). Die Einzelwerte können Anhang B entnommen werden.

	C ==== 0 =		A	bscherk	raft V _m		Zugkraft N _m				
Einbau	Groise	4.8	5.6	8.8	A4/70	B500B	4.8	5.6	8.8	A4/70	B500B
	[-]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Тур А	M8	10,4	¤	19,3	18,6	21,5	_		_	_	
	M20	66,0	86,6	126,4	126,7	148,8	_	-	_	_	
	M8 Ø 8	11,5		20,1	19,6	22,4	2,4		2,8	2,2	1,8
Tup P	M20 Ø 20	69,4	91	133,6	131,7	155,6	4,7	5,4	7,8	7,2	7,3
тур Б	M24 Ø 25			183,9		218,6			13,6		21,4
	M30 Ø 32			348,1		386,3			29,8		29,8
	M8 Ø 8	11,2		19,9	19,3	22,1	2,4		3,6	2,6	1,7
Typ C	M20 Ø 20	69,3	92,1	132,5	129,9	153,7	4,8	6,4	7,4	6,2	6,7
Typ C	M24 Ø 25			182,9		230,6			17,7		30,0
	M30 Ø 32			342,4		383,9			25,8		26,1
	M8 Ø 8	11,3		20,1	19,3	22,4	3,0		5,1	3,7	1,9
Тур D	M20 Ø 20	69,3	92,1	135,6	132	152,1	10,1	13,2	19,4	16,4	15,1
	M24 Ø 25			182,2		231,6			28,5		35,0
	M30 Ø 32			350,0					49,3		

Tab. 5.5: Versuchsergebnisse der Abscherprüfung

In Abscherversuchen mit der Prüfpositionen A wurden im Vergleich zu anderen Prüfpositionen die niedrigsten Scherkräfte gemessen. Wie bereits erwähnt wurden diese Ergebnisse als Schubwiderstandskraft V_{pl} für die jeweiligen Stabgrößen definiert. Bei den Positionen B, C und D wurden bei etwa gleich bleibender Scherkraft *V* unterschiedlich hohe Zugkräfte *N* gemessen. So wurden bei Prüfposition D bis zu 2,5-fach größere Zugkräfte als bei Prüfposition B gemessen. Diese Unterschiede gehen auf die geometrischen Randbedingungen des Durchgangslochs zurück. Zu den Zwangszugkräften $N_{s,zwang}$ kommen zusätzliche Zugkräfte infolge der Stabverformung hinzu. Dabei wird ein Teil der Querzugkräfte in Zugkräfte umgelagert, wobei die Größe der Zugkräfte maßgeblich von der Stabgeometrie und der Stahlduktilität abhängig bleibt.

Die vorherrschenden Spannungszustände im Stabquerschnitt bei Stahlversagen können gemäß *DIN EN 1992-4* nach Gleichung (5.1) berechnet werden. Untersuchungen von

Knobloch und Schmidt 1987 und eine neue Auswertung von kombinierten Zug- und Scherbeanspruchungen an Gewindeschrauben aus dem Forschungsbericht von *Lange* 2021 zeigten, dass für Gewindestäbe aus Stahl ein Exponent $\alpha = 2,0$ angenommen werden kann. Für Edelstahl ist nach aktuellen Erkenntnissen aus *Z*-30.3-6 20.04.2022 ein Exponent von $\alpha = 1,7$ anzunehmen.

$$\left(\frac{N}{N_{pl}}\right)^{\alpha} + \left(\frac{V}{V_{pl}}\right)^{\alpha} \le 1,0$$
(5.1)

mit

$$N_{pl} = A_s \cdot f_u \tag{5.2}$$

$$V_{pl} = V_m (Typ A) \tag{5.3}$$

Es wurde nach Gleichung (5.1) der Quotient für Zug- und Scherbeanspruchung ermittelt (siehe Abb. 5.11).

Abb. 5.11: Gegenüberstellung von Quotienten aus Zug- und Scherkräften: (a) Übersicht, (b) Details, aus Anhang B

Die Größe der ermittelten Scherkräfte *V* beeinflussen die einwirkenden Zugkräfte *N*, wie bei den Prüfpositionen A und D zu beobachten ist. Die Ergebnisse zeigen, dass der Wert der gemessenen Zugkräfte *N* von verschiedenen Faktoren wie dem verwendeten Stabdurchmesser und der Güteklasse abhängig ist. So sind bei spröden Gewindestäben der Güteklasse 8.8 höhere Zugspannungen festzustellen als bei anderen Güteklassen.

Die Spannungsverhältnisse in den Stäben können als Abminderungsfaktoren der Stahlzugfestigkeit f_u betrachtet werden wie in den Gleichungen (5.4) und (5.5) gezeigt. Die errechneten Quotienten beziehen sich dabei auf die Brutto-Querschnittsfläche A_s der Stäbe. Die Stahlduktilität wird im Rahmen dieser Untersuchungen anhand der Stahldehnungen ε_{fu} bei einer maximalen Zugkraft während der Zugprüfung definiert (siehe Kapitel 5.2.1). Die Faktoren α_N und α_V wurden neben den Stahldehnungen ε_{fu} in ein Diagramm eingetragen (siehe Abb. 5.12). Die Versuchsergebnisse von Gewindestäben der Prüfposition A gelten hier als Referenzversuche und dienen zur Bestimmung der Schubtragfähigkeit von Gewindestäben ohne den Einfluss von Zugkräften.

$$\alpha_V = \left(\frac{V_s}{A_s}\right) / f_u \tag{5.4}$$

$$\alpha_N = \left(\frac{N_u}{A_s}\right) / f_u \tag{5.5}$$

Abb. 5.12: Gegenüberstellung von Querschnittspannungen und Stahldehnungen, aus Anhang A und B

Es lässt sich eine klare Steigerungstendenz des Abminderungsfaktors α_v feststellen, sobald die Zugdehnungen ε_{f_u} zunehmen. Abgesehen von den Bewehrungsstäben besteht eine direkte Abhängigkeit zwischen der Zugprobendehnung ε_{f_u} bei dem Erreichen der Zugfestigkeit f_u und der aus Scherversuchen ermittelten Schubtragfähigkeit von Gewinde- und Bewehrungsstäben, wie *Sklarov und Thiele 2020* festgestellt haben. Die durchgeführten Scherversuche zeigten, dass die Gewindestäbe der Güteklasse 4.8 und 8.8 die größten Zugspannungen im Stabquerschnitt erreichten. Im Gegensatz dazu wiesen die Edelstahlstäbe A4/70 und die Bewehrungsstäbe B500 B geringere Zugspannungen auf. Aufgrund der hohen Duktilität der A4/70- und B500B-Stähle weisen diese Stäbe größere Stabverformungen auf, wodurch der Zuganteil ansteigt. Die spröden Stähle lassen jedoch keine großen Stabauslenkungen zu und versagten bei der Überschreitung der Stahldehnungen ε_{fu} im Stabquerschnitt.

Im Gegensatz zu den Gewindestäben A4/70 besitzen die Bewehrungsstäbe B500B keine Gewindekerbungen. Bei Gewindestäben führen die Einkerbungen zur Bildung von Spannungsspitzen in den Kerbbereichen und zu einer starken Abminderung der Schubtragfähigkeit. Der Einfluss der Kerbformen auf das Materialtragverhalten ist in den Untersuchungen von *Scherrer 2004* beschrieben. Um die Versuchsergebnisse an Bewehrungsstäben dennoch mit denen an Gewindestäben vergleichen zu können, wurden aus Bewehrungsstäben B500B glatte Stäbe mit einem Durchmesser von 10 mm und Gewindestäbe mit dem Gewindegang M10 hergestellt. Bei der Durchführung von Scherversuchen an diesen Proben erreichten die glatten 10-mm-Stäbe etwa eine um 6 % größere Schubtragfähigkeit als die Stäbe mit dem Gewindegang M10. Die Einzelwerte können

dem Anhang B entnommen werden; sie ermöglichen eine genaue Zuordnung der Versuchsergebnisse der Gewindestäbe aus Abb. 5.12.

Zur Bestimmung der Schubtragfähigkeit der Gewindestäbe wurden die Mittelwerte der Versuchsergebnisse als a_v -Reduktionsfaktoren nach Gleichung (5.4) ermittelt und den Werten aus den gängigen Regelwerken gegenübergestellt (siehe Abb. 5.13). Innerhalb der Bemessungsrichtlinien liegt kein konsistentes Vorgehen zur Bestimmung der Reduktionsfaktoren vor. Die aus den Scherversuchen ermittelten a_v -Faktoren bewegen sich deswegen innerhalb des Streubereichs der aktuellen Richtlinien. Die Versuche unterstreichen zudem den bedeutenden Einfluss unterschiedlicher Randbedingungen auf das Ergebnis, insbesondere die Aufnahme von Zugkräften N_s .

Abb. 5.13: Abminderungsfaktor α_v

Während der Querzugversuche an Injektionsankern in Beton tritt zwangsläufig eine Zugkraft auf. Der Zuganteil aus der horizontalen Zwangsverformung der Anker wird sowohl bei den statischen Querzugversuchen in Beton als auch bei der Lagerungsart Typ B in Stahl als Teil der Querzugtragfähigkeit berücksichtigt. Dieser Zuganteil ist bei allen Querzugversuchen in Beton stets vorhanden. Für die Ermittlung der Schubtragfähigkeit von Injektionsankern dienen die Versuchsergebnisse aus der Lagerungsart Typ B als Referenzlasten (Querzugkräfte $V_{s,m}$) für die statischen Querzugversuche in gerissenem Beton.

Im weiteren Verlauf dieser Arbeit werden die gewonnenen Erkenntnisse zur Stahlduktilität im Kontext des Verformungsverhaltens von querzugbelasteten Injektionsankern in gerissenem Beton vertieft.

5.3 Ermittlung der Betoneigenschaften

5.3.1 Betonrezeptur

Die Prüfung der Injektionsanker erfolgte in den Betonprüfkörpern, die sowohl an der TU Kaiserslautern als auch bei der Firma RAU betoniert worden sind. In Übereinstimmung mit *EAD 330499-01-0601* wurden keine Zusatzmittel und keine Zusatzstoffe für die Betonmischung verwendet. Unter Einhaltung des vorgeschriebenen Zementgehalts von 240 kg/m³ wurde die gewünschte Betonfestigkeit durch einen erhöhten Wasseranteil im Beton

angestrebt. Die verwendeten Gesteinskörnungsanteile befinden sich im zugelassenen Bereich (Abb. 5.14). Die Bestimmung der Betoneigenschaft erfolgte mittels Druck- und Spaltzugversuche.

Abb. 5.14: Sieblinie der Gesteinskörnung, aus EAD 330499-01-0601

5.3.2 Druck- und Spaltzugprüfung

Die Materialprüfung erfolgte in einer Druckprüfmaschine nach *DIN EN 12390-4*. Zur Ermittlung der Betondruckfestigkeit $f_{c,cube}$ wurden Betondruckwürfel nach *DIN EN 12390-1* eingesetzt. Die daraus ermittelte Betondruckfestigkeit $f_{c,cube}$ stellt immer einen Mittelwert aus drei Prüfergebnissen dar. Die Belastungsgeschwindigkeit der Probenkörper betrug nach *DIN EN 12390-3* ca. 0,6 ± 0,2 MPa/s bis zum Versagenseintritt. Um die Betondruckfestigkeit für einen vom Prüfdatum abweichenden Tag näherungsweise zu bestimmen, wurde die Gleichung (5.6) nach *Weber 1979* verwendet.

$$f_{c,t} = f_c \cdot e^{\frac{1,49}{t_0^{0.55}} - \frac{1,49}{t^{0.55}}}$$
(5.6)

Das Elastizitätsmodul des Betons E_c wurde nach Gleichung (5.7) aus dem *fib Bulletin 65* berechnet.

$$E_c = 21.5 \cdot 10^3 \cdot \left(\frac{f_c + 8}{10}\right)^{1/3} \tag{5.7}$$

Die Betonzugfestigkeit f_{ct} der Risskeilplatten (RKP) für die statischen Querzugversuche wurde mittels Spaltzugversuche an Betonzylindern gemäß *DIN EN 12390-6* und *DIN EN 12390-1* ermittelt. Sowohl die Spaltzugprüfung (siehe Abb. 5.15(a)) als auch die Druckprüfung (siehe Abb. 5.15(b)) erfolgte in der FORM+TEST-Prüfmaschine.

Abb. 5.15: Betonprüfung: (a) Druckprüfung und E-Modulprüfung, (b) Spaltzugprüfung

Als Wechsellastprüfkörper wurden kleine Dehnkörper verwendet, deren Betonzugfestigkeit f_{ct} nach Gleichung (5.8) aus dem *fib Bulletin 65* berechnet wurde.

$$f_{ct} = 0.3 \cdot f_c^{2/3} \tag{5.8}$$

Dann wurden die so gewonnenen Materialkennwerte als Mittelwerte zusammengestellt (siehe Tab. 5.6). Für die statischen Querzugversuche dienten RKP, für die seismischen kleine Dehnkörper (DK) und für die Zugversuche Reißprüfkörper (KKW). Die Einzelwerte sind Anhang C zu entnehmen.

Туре	Abmessungen	Herstelldat	Prüfdatum	f _c	$f_{c,cube}$	f _{ct}	E _c
		um					
[-]	[m]	[Datum]	[Datum]	[N/m	[N/m	[N/m	[N/mm²]
				m²]	m²]	m²]	
RKP	1,60 × 1,60 × 0,26	06.07.2018	09.10.2020	29,41	36,76	2,85	33.380
RKP	1,60 × 1,60 × 0,26	12.07.2018	08.10.2020	29,74	37,17	2,88	33.480
RKP	1,60 × 1,60 × 0,26	13.09.2019	13.01.2020	25,73	32,16	2,75	32.250
RKP	1,60 × 1,60 × 0,26	20.09.2019	13.01.2020	31,07	38,84	2,89	33.870
RKP	1,60 × 1,60 × 0,26	27.09.2019	13.01.2020	23,21	29,01	2,77	31.420
DK	0,80 × 0,40 × 0,25	17.07.2018	09.10.2020	28,80	36,00	2,82	33.200
DK	0,80 × 0,40 × 0,25	21.09.2018	08.10.2020	30,28	37,85	2,92	33.640
DK	0,80 × 0,40 × 0,25	25.09.2018	09.10.2020	30,22	37,77	2,92	33.620
KKW	2,40 × 0,85 × 0,35	05.10.2018	14.12.2020	27,39	34,24	_	_

Tab. 5.6: Beton – Druckprüfung

5.4 Ermittlung der Mörteleigenschaften

5.4.1 Mörtelgruppen

Die verwendeten Verbundmörtel wurden bereits im Kapitel 4.2.3 vorgestellt. Bei den experimentellen Untersuchungen wurde ein weiteres auf dem Markt verfügbares Produkt der

Firma Kalm hinzugezogen: VMK SFZ wird hier als I4 benannt. Im Gegensatz zu den anderen Verbundmörteln besitzt I4 keine Zulassung für die Erdbebenleistungskategorien C1 und C2. Verbundmörtel wurden anhand ihrer chemischen Bestandsteile unterteilt (siehe Abb. 5.16).

Abb. 5.16: chemische Bestandteile der verwendeten Verbundmörtel

Die Bestimmung der Verbundmörteleigenschaften erfolgte mittels Druck- und Spaltzugversuchen.

In Anlehnung an die Prüfnorm für Festbeton *DIN EN 12390-1* wurde die Zylindergeometrie der Verbundmörtelproben festgelegt. Das Verhältnis von h = 2d wurde sowohl den Druck- als auch Spaltzugversuchen zugrunde gelegt (siehe Abb. 5.17).

Abb. 5.17: Abmessungen der Verbundmörtelproben

Als Schalung dienten rechtwinklig abgeschnittene Kunststoffrohre, die den Innendurchmesser $d_i = 22$ mm aufweisen. Dementsprechend wurde die Probenhöhe h = 44 mm gewählt. Aufgrund einer sehr hohen Zug- und Haftfestigkeit der Verbundmörtel bestand die Gefahr eines Verklebens des Füllmaterials mit der Schalung. Es erfolgten mehrere Vorversuche, um die Beschaffenheit der Innenwandung der zylindrischen Schalungsformen so zu gestalten, dass die vollständig ausgehärtete Verbundmörtelprobe ohne Schädigung der Schalung entnommen werden konnte (siehe Abb. 5.18).

Abb. 5.18: Verbundmörtelproben: (a) leere Schalungsformen, (b) befüllte Schalungsformen

5.4.2 Druckprüfung

Insgesamt wurden 28 Druckproben angefertigt und geprüft. Die Ausschalung der Proben erfolgte nach zwei Wochen Aushärtungszeit unmittelbar vor Versuchsbeginn (siehe Abb. 5.19). Damit war sichergestellt, dass der Verbundmörtel keinen zusätzlichen äußeren Einflüssen ausgesetzt wurde. Die Umgebung in der Schalung ist vergleichbar mit der Verbundmörtelschicht eines Verbundankers, der durch den umgebenen Beton und Stahl während der Aushärtezeit vor äußeren Einwirkungen geschützt wird. Nach der Ausschalung wurden die Stirnseiten der Prüfproben eben geschliffen.

(a)

(b)

Abb. 5.19: Verbundmörteldruckproben: (a) Ausschalung der Mörtelproben, (b) ausgeschalte Verbundmörteldruckproben

Die Durchführung der Druckprüfung erfolgte in einer universalen Zug-/Druckprüfmaschine. Zur Messung der Probenstauchung dienten zwei unterschiedliche Messsysteme:

• Mittels der in der Prüfmaschine eingebauten LVDT-Wegaufnehmer wurde die Stauchung der gesamten Probe aufgenommen, mit $L_0 = h$.

 Durch den Einsatz eines Videoextensometers der Firma LIMESS erfolgt die Messung der Stauchung im mittleren Bereich der Druckprobe (siehe Abb. 5.20). Der Messbereich L₀ betrug 25 mm und entsprach den Vorgaben nach *DIN EN 12390-13*.

Abb. 5.20: Verbundmörtel – Druckversuch: (a) Versuchsaufbau, (b) Druckprobe mit dem markierten Messbereich

Die Druckproben wurden in Anlehnung an *DIN EN 12390-3* mit einer konstanten Geschwindigkeit von 0.6 ± 0.2 MPa/s bis zum Bruch belastet.

Das Bruchverhalten der Verbundmörtel I2, I3 und I4 zeichnete sich durch ein plötzlich auftretendes, sprödes Versagen ab. Der Verbundmörtel I1 zeigte ein kunststoffähnliches zähes Bruchverhalten, bei dem die Homogenität des Materials auch nach dem Erreichen der maximalen Druckspannungen $\sigma_{c,mörtel}$ erhalten blieb (siehe Abb. 5.21). Die aufgezeichneten Spannungs-Dehnungs-Verläufe belegen das unterschiedliche Bruchverhalten (siehe Abb. 5.22).

Abb. 5.21: Versagensbild: (a) I1, (b) I2, (c) I3, (d) I4

Abb. 5.22: Verbundmörtel – Druckprüfung: (a) Stauchung im mittleren Bereich $l_0 = 25$ mm, (b) Stauchung der gesamten Druckprobe $l_0 = h$

Die Messergebnisse der Druckprüfung wurden als Mittelwerte zusammengestellt (siehe Tab. 5.7). Die Einzelwerte können Anhang D entnommen werden.

Mörtel	$f_{c,i}$	mörtel	ε	44,mörtel	€ _{25,mörtel}		
	\overline{X}	$S(f_{c,m\"ortel})$	\overline{X}	$S(\varepsilon_{44,m\"ortel})$	\overline{X}	$S(\varepsilon_{25,m\"ortel})$	
[-]	[N/mm²]	[-]	[%]	[-]	[%]	[-]	
l1	105,60	4,40	12,92	6,11	2,04	0,39	
12	49,90	12,49	4,82	1,11	1,39	0,24	
13	132,56	7,60	5,40	0,41	1,96	0,15	
14	77,95	4,84	7,77	0,20	2,09	0,16	

Tab. 5.7: Verbundmörtel – Druckprüfung

5.4.3 Spaltzugprüfung

Die Durchführung der Spaltzugversuche erfolgte wie bei Druckversuchen an kleinen Verbundmörtelzylindern. Die Prüfzylinder wurden mit einer konstanten Geschwindigkeit von ca. 40 N/s bis zum Versagen belastet. Dafür wurde jede Verbundmörtelprobe zentrisch zwischen zwei gehärteten Stahlplatten platziert. Die Stauchung in der Querachse wurde mittels zwei extern angebrachten LVDT-Wegaufnehmern aufgenommen (siehe Abb. 5.23 dargestellt).

Die während des Spaltzugversuchs erreichte Dehnung ε_y (siehe Abb. 5.24) ist vergleichbar mit der bei Druckversuchen gemessenen Stauchung ε_x (siehe Abb. 5.22).

Abb. 5.24: Verbundmörtel – Spaltzugfestigkeit

Die Zugfestigkeit $f_{ct,m\"{o}rtel}$ von I1-Verbundmörtel mit ca. 23 N/mm² übertrifft deutlich die Druckfestigkeit eines Normalbetons C20/25. Das Verhältnis der Zugfestigkeit zur Druckfestigkeit $f_{ct,m\"{o}rtel}/f_{c,m\"{o}rtel}$ liegt weit über 20 % (siehe Tab. 5.8). Im Gegensatz dazu zeigen die Verbundmörtel I2 bis I4 ein betonähnliches Verhalten, bei dem die Zugfestigkeit $f_{ct,m\"{o}rtel}$ ca. 10 % der Druckfestigkeit $f_{c,m\"{o}rtel}$ beträgt. Die Messergebnisse der Druckprüfung wurden als Mittelwerte zusammengestellt (siehe Tab. 5.8). Die Einzelwerte können Anhang D entnommen werden.

Mörtel	f_{ct}	,mörtel	ε_y	,mörtel	f _{ct,mörtel}
	\overline{X}	$S(f_{ct,m\"ortel})$	\overline{X}	$S(\varepsilon_{y,m\"ortel})$	$f_{c,m\"ortel}$
[-]	[N/mm²]	[-]	[%]	[-]	[%]
11	23,36	0,82	5,05	1,23	22,1
12	6,80	0,35	2,92	0,74	13,6
13	12,56	1,37	2,22	0,07	9,5
14	9,01	0,56	2,51	0,06	11,6

Tab. 5.8: Verbundmörtel – Spaltzugprüfung

5.5 Ermittlung der Zugtragfähigkeit in gerissenem Beton

5.5.1 Übersicht

Die Querzugtragfähigkeit von nachträglich installierten Befestigungen wurde anhand der Stahlzugfestigkeit f_u des verwendeten Ankers oder im Fall eines rückwärtigen Betonausbruchs anhand der Betondruckfestigkeit f_c bestimmt. Dabei wurde jedoch das Versagen der Verbundfuge beim Herausziehen einer Befestigung eindeutig vernachlässigt. Die Verbundmörteleigenschaften wurden in diesem Kontext dennoch nicht berücksichtigt. Eine wichtige Schlüsselrolle bei der Bestimmung des Verformungsverhaltens von querbelasteten Befestigungen spielte die Betrachtung des Kraft-Verformungs-Verhaltens von zugbelasteten Injektionsankern.

Die Durchführung von statischen Querzugversuchen ergab, dass die Verformbarkeit der Anker direkt von der Duktilität des Stahls abhängig ist. Sofern eine Befestigung einer Querbelastung *V* ausgesetzt wird, leitet der Anker mit zunehmender Ankerkopfauslenkung *s* größere Zugkräfte *N* in den Betonuntergrund ein (siehe Abb. 5.25). Auf diese Weise erfährt der Injektionsanker zusätzliche axiale Verschiebungen u_p (Schlupf). Abhängig von der Stahlduktilität, der maximalen Verbundspannung $\tau_{u,zug}$ und der effektiven Einbindetiefe des Ankers können sowohl Stahlversagen als auch Herausziehen als Versagensarten auftreten.

Die Zugversuche in gerissenem Beton wurden nachträglich durchgeführt, weshalb die Ergebnisse der statischen und seismischen Versuche aus Kapitel 5.6 bereits vorlagen. Die Auswertung der Bruchbilder zeigte, dass der verformte Bereich der Gewindestäbe sich in einer Entfernung von etwa $2,0d_s \div 2,5d_s$ von der Betonoberkante erstreckte.

Basierend auf diesen Erkenntnissen wurden die Zugversuche in gerissenem Beton mit einer engen Abstützung geplant. Dabei wurde die Reduzierung der effektiven Einbindetiefe $h_{ef,red}$ aufgrund lokaler Betonschädigungen während der Querbelastung berücksichtigt. Während die Bohrlochtiefen h_{loch} bei Zugversuchen den Einbindetiefen h_{ef} aus Querzugversuchen entsprachen, wurde die effektive Einbindetiefe der Gewindestäbe um die Länge l_d reduziert. Die Reduzierung der effektiven Einbindetiefe h_{ef} wurde durch das Umwickeln der Gewindestäbe mit einem Kunststoffband über die Stablänge l_d erreicht (siehe Abb. 5.26). Die reduzierte Einbindetiefe $h_{ef,red}$ wurde nach Gleichung (5.9) berechnet.

$$h_{ef,red} = h_{ef} - l_d \tag{5.9}$$

Abb. 5.26: Prüflinge für Zugversuch: (a) M20-Gewindestäbe, (b) M8-Gewindestäbe

Die Anzahl der durchgeführten Zugversuche sowie die entsprechenden effektiven Einbindetiefen $h_{ef,red}$ wurden zusammengefasst (siehe Tab. 5.9). Für die Versuchsdurchführung wurden hochfeste Gewindestäbe der Güteklasse 12.9 in Anlehnung an *EAD 330499-01-0601* verwendet.

Mörtel	Größe	Güteklasse	Einbindetiefe h _{ef,red}	h_{nom}	Anzahl
[-]	[-]	[-]	[mm]	[mm]	[-]
10	M20	12.9	70	70	3
I1	M8	12.9	50	70	3
I1	M20	12.9	70	120	3
I1	M20	12.9	80	120	3
12	M8	12.9	50	70	3
12	M20	12.9	70	120	3
12	M20	12.9	80	120	3
14	M8	12.9	20	40	3
14	M8	12.9	25	40	3
14	M8	12.9	50	70	3
14	M8	12.9	55	70	3
14	M20	12.9	50	100	3
14	M20	12.9	60	100	3
14	M20	12.9	70	120	3
14	M20	12.9	80	120	3

Tab. 5.9: Zugversuche in gerissenem Beton

5.5.2 Versuchsaufbau

Die Versuchsdurchführung erfolgte in Übereinstimmung mit *EAD 330499-01-0601* in einem niederfesten Beton C20/25. Die Rissbreite *w* wurde auf 0,50 mm festgelegt. Wie bereits im Kapitel 2.2.1 beschrieben wurde bei Zugversuchen mit enger Abstützung die Verbundspannung $\tau_{u,zug}$ entlang der Verbundfuge im Injektionsanker bestimmt.

Die Messung der Betonrisse erfolgte mithilfe von analogen Rissuhren. Sobald die Rissbreite von 0,50 mm erreicht war, wurden die Rissuhren von der Betonoberfläche entfernt, um die

Versuchseinrichtung über dem Injektionsanker zu platzieren (siehe Abb. 5.27). Die Ankerverschiebungen maßen zwei induktive Wegaufnehmer (LVDT), die am Anker befestigt waren. Die Zugkräfte wurden über einen Kraftsensor gemessen, der über dem Anker positioniert war. Wie auch bei den Querzugversuchen wurde der QuantumX als Messverstärker verwendet.

Abb. 5.27: (a) Skizze der Prüfeinrichtung und Anordnung der Messtechnik, (b) Versuchsaufbau

5.5.3 Versuchsergebnisse

Die Versuchsergebnisse stellen Mittelwerte der Schubspannungen τ_{zug} und der zugehörigen axialen Stabverschiebungen u_p dar (siehe Abb. 5.28 und Abb. 5.29). Die maximalen und minimalen Werte repräsentieren das Streuungsband. Die Verbundspannungen τ_{zug} wurden unter Berücksichtigung des Stabdurchmessers d_s und der effektiven Einbindetiefen $h_{ef,red}$ nach Gleichung (2.1) aus Kapitel 2.2.1 berechnet.

Bei allen Tests mit unterschiedlichen Verbundmörteln und variierenden Einbindetiefen trat das Herausziehen des Ankers als Versagensart auf. Es wurde beobachtet, dass die in den Beton eingebetteten Gewindestäbe die niedrigste Verbundspannung $\tau_{u,zug}$ aufwiesen. Die Versuche mit I1-Verbundmörtel erreichten demnach die höchsten Verbundspannungen. Bei den Tests mit I2- und I4-Verbundmörteln wurden in etwa gleich hohe maximale Verbundspannung $\tau_{u,zug}$ erreicht.

 $11_M8 (h_{nom} = 70)$

Abb. 5.28: Versuchsverläufe als Mittelwerte mit M8-Gewindestäben

Abb. 5.29: Versuchsverläufe als Mittelwerte mit M20-Gewindestäben

Bei den M20-Gewindestäben mit der reduzierten Einbindetiefe h_{ef} war während der Auszugsversuche eine deutliche Zunahme der axialen Verschiebungen u_p zu erkennen. Selbst nach Erreichen der maximalen Zugkraft trat kein unmittelbarer Abfall der Kraft auf. Für die einbetonierten M8_I0-Gewindestäbe liegen keine spezifischen Versuchsergebnisse aus Zugversuchen vor. Die Verbundspannung $\tau_{u,zug}$ wird auf ein ähnliches Lastniveau wie bei M20_I0 geschätzt, etwa ca. 4 bis 5 N/mm².

Die Höhe der Verbundspannungen $\tau_{u,zug}$ hängt von der Betonzugfestigkeit f_t ab. Um die Versuchsergebnisse in Anlehnung an *EAD 330499-01-0601* vergleichbar zu machen, werden die Verbundspannungen $\tau_{u,zul}$ nach Gleichung (5.10) normalisiert. Der Normalisierungsexponent *m* wird der dazugehörigen ETA entnommen. Auf diese Weise werden die Versuchsergebnisse auf das Niveau eines niederfesten Betons C20/25 gebracht.

Die Verbundfestigkeit der Injektionsanker hängt von der Zusammensetzung des Verbundmörtels ab. Es wurde festgestellt, dass es keine Korrelation zwischen der
Verbundmörteldruckfestigkeit $f_{c,mörtel}$, der Verbundmörtelzugfestigkeiten $f_{ct,mörtel}$ (siehe Kapitel 5.4) und den Betoneigenschaften (wie im Kapitel 5.3 beschrieben) gibt (siehe Abb. 5.30(b)). Allerdings besteht eine Abhängigkeit zwischen der Spaltzugfestigkeit des Verbundmörtels $f_{ct,mörtel}$ und den charakteristischen Verbundspannungen $\tau_{20,u,zul}$ aus den Zugversuchen (siehe Abb. 5.30(a)). Wichtig: Diese Ergebnisse gelten ausdrücklich nur für die Gewindestäbe. Da in dieser Arbeit das Tragverhalten von querbelasteten Injektionsankern untersucht wird, wurden andere Zusammenhänge nicht weiter berücksichtigt.

Es wurden die maximalen Verbundspannungen $\tau_{u,zug,m}$ und die dazugehörigen Verschiebungen u_p als Mittelwerte in Abhängigkeit von der Einbindetiefe zusammengefasst (siehe Tab. 5.10). Alle weiteren Daten können Anhang G entnommen werden.

Mörtel	h_{nom}	fc	d_s	$\tau_{u,zug,m}$ $\tau_{20,u,zug,m}$		$u_{p,m}$
[-]	[mm]	[N/mm²]	[mm]	[N/mm²]	[N/mm²]	[mm]
10	70	22,9	20	5,1	5,1 4,8	
l1	70	22,9	8	30,8	30,6	1,4
l1	120	22,9	20	24,1	23,9	1,4
12	70	22,9	8	14,8	14,4	3,5
12	120	22,9	20	12,2 11,8		5,0
14	40	27,4	8	15,0	14,5	0,8
14	70	27,4	8	14,0	13,5	1,1
14	100	27,4	20	14,3	13,9	3,3
14	120	27,4	20	14,2	13,7	5,0

Tab. 5.10: Zusammenfassung der maximalen Verbundspannungen

Die folgenden Analysen berücksichtigen durchweg die normierte Verbundspannung. Zum Zweck der Klarheit wird der Index $, \text{Im}_{20}^{\circ}$ nicht verwendet.

5.6 Statische Querzugversuche in gerissenem Beton

5.6.1 Übersicht

Die statischen Querzugversuche erfolgten in Anlehnung an *EAD 330499-01-0601*. Um einen besseren Zusammenhang zwischen den statischen und seismischen Versuchen herzustellen, wurden die statischen Querzugversuche im Gegensatz zu der im Kapitel 2.2.2 beschriebenen Vorgehensweise in gerissenem, niederfestem Beton C20/25 durchgeführt. Die Querzugplatte wurde gegen Abheben gesichert, um ein frühzeitiges Versagen durch einen rückwärtigen Betonausbruch zu vermeiden. Die Rissbreite *w* wurde gemäß der Erdbebenleistungskategorie C1 nach *EAD 330499-01-0601* mit 0,50 mm gewählt. Somit dienen die statischen Versuche als Referenz für die seismischen Querzugversuche aus Kapitel 5.7.

Wie im Kapitel 5.1 bereits erläutert, wurde die Trag- und Verformungsfähigkeit von Injektionsankern in unterschiedlichen Güteklassen unter Verwendung von drei verschiedenen Verbundmörteln und im einbetonierten Zustand untersucht. Die Verbundmörtel bleiben mit den Bezeichnungen I1, I2 und I4 anonymisiert. Die einbetonierten Stäbe werden als I0 gekennzeichnet. Die verschiedenen Versuchskombinationen wurden in einer detaillierten Übersicht zusammengefasst (siehe Tab. 5.11).

Im Hinblick auf die geplanten seismischen Querzugversuche erfolgten zusätzlich statische Querzugversuche mit einer minimalen Einbindetiefe $h_{ef} = 5d_s$ und dem Verbundmörtel I4. Als Injektionsanker wurden die Gewindestäbe M8 und M20 der Güteklasse 8.8 und A4/70 verwendet, da sie trotz ihrer hohen Belastbarkeit ein unterschiedliches Verformungsverhalten aufweisen.

Mörtel	Größe	Gütekla	Einbindetiefe h_{c}	h_{ef}/d_s	Δnzahl
	CICISC	sse	Embridotione nef		Anzani
[-]	[-]	[-]	[mm]	[-]	[-]
10 / 11 / 12 / 14	M8	4.8	70	8,75	4
14	M8	8.8	40	5,00	3
10 / 11 / 12 / 14	M8	8.8	70	8,75	4
14	M8	A4/70	40	5,00	3
10 / 11 / 12 / 14	M8	A4/70	70	8,75	4
10 / 11 / 14	Ø 8	B500B	70	8,75	4
10 / 11 / 12 / 14	M20	4.8	120	6,00	4
10 / 11 / 12 / 14	M20	5.6	120	6,00	4
14	M20	8.8	100	5,00	3
10 / 11 / 12 / 14	M20	8.8	120	6,00	4
14	M20	A4/70	100	5,00	3
10 / 11 / 12 / 14	M20	A4/70	120	6,00	4
10 / 11 / 12 / 14	Ø 20	B500B	120	6,00	4

Tab. 5.11: Querzugversuche in gerissenem Beton

Die statischen Querzugversuche erfolgten in Betonrisskeilplatten. Von ihnen wurden neun im Labor der TU Kaiserslautern und zwei von der Firma RAU betoniert. Alle Prüfkörper mit den Außenmaßen 1,60 × 1,60 × 0,26 m wurden nach derselben Betonrezeptur hergestellt (siehe Kapitel 5.3.1).

Um den Einfluss der Betoneigenschaften auf die Ergebnisse zu minimieren, wurden bei der Versuchsplanung die Betonprüfkörper so ausgelegt, dass die Gewinde- und Bewehrungsstäbe je Einbindetiefe h_{ef} und Güteklasse in denselben Betonprüfkörper gesetzt wurden. Die Einbindetiefen h_{ef} wurden in Abhängigkeit vom nominalen Stabdurchmesser d_{nom} und nach Erfahrungswerten gewählt.

Eine Betonrisskeilplatte bietet Platz für 16 Setzstellen. Die bereits vor der Betonage eingelegten Anker I0 (siehe Abb. 5.31(b)) wurden auf der Schalseite angebracht. Auf diese Weise war eine präzise und störungsfreie Betonage möglich. Alle nachträglich installierten Anker I1 bis I4 wurden ebenfalls auf derselben Schalseite angeordnet (siehe Abb. 5.31(a)).

Abb. 5.31: Risskeilplatte: (a) Prüfkörperzeichnung und Anordnung der Verbundmörtelreihen, (b) fertige Schalung mit eingelegten Ankern

5.6.2 Versuchsaufbau

Vor der Versuchsdurchführung wurden die eingelegten Leerrohre aus den ausgehärteten Betonplatten entfernt. So entstanden glatte und parallel ausgerichtete Betonaussparungen, in die Risskeile einsetzt wurden. Die Verwendung von Risskeilen (siehe Abb. 5.32) ermöglicht die Erzeugung von Trennrissen mit parallelen Rissufern. Durch das Eintreiben des Risskeils zwischen die gehärteten Keilhülsen entstehen hohe Spaltzugkräfte in der Betonplatte. Sobald die Zugfestigkeit des Betons f_{ct} überschritten wird, spaltet sich der Betonprüfkörper und es entsteht ein durchgehender Riss. Für jede Versuchsreihe wurden fünf Risskeilsätze benötigt, um einen gleichmäßigen Riss in einem Betonprüfkörper zu erzeugen. Diese Methode ist auch in der Literatur vgl. (*Simons 2007, Reichert 2020*) zu finden; sie wurde bei allen statischen Querzugversuchen angewendet.

Abb. 5.32: Erzeugung von Rissen mittels Risskeilen, aus: Reichert 2020, S. 143

Die Installation der Injektionsanker I1 bis I4 erfolgte nach einer ausführlichen Anleitung (siehe Tab. 5.12). Diese Installationsmethode wurde bei allen Stabgrößen angewendet.

Tab. 5.12: Installationsanleitung

Vorbohren

Setzstellen werden mithilfe der Schlagbohrmaschine Hilti TE 30 auf die gewünschte Einbindetiefe gebohrt.

Risserzeugung

Die Risskeilplatten werden unmittelbar vor dem Ankersetzen mithilfe der Risskeile vorgerissen. Die Risskontrolle erfolgt auf Sicht.

Reinigung

Die Bohrungen werden zwei Mal mit einer Luftdruckpistole ausgeblasen, zwei Mal ausgebürstet und anschließend noch zwei Mal mit einer Luftdruckpistole ausgeblasen.

Setzen

Bei der Verwendung einer neuen Verbundmörtelkartusche wurde so viel Mörtel ausgepresst, bis gut vermischtes Verhältnis zu erkennen war. Es wurden immer mindestens drei 10 cm lange Streifen ausgepresst. Die gereinigten Bohrlöcher wurden auf ca. 75 % der Bohrlochtiefe mit Mörtel gefüllt und die Stangen mit einer drehenden Bewegung geradwinklig gesetzt.

Aushärtung

Eine ausreichende Aushärtung war nach 24 Stunden erreicht.

Die Querzugversuche erfolgten in gerissenem Beton. Dabei wurden die Risskeile gleichmäßig innerhalb einer Reihe in die Hülsen eingetrieben. Die Rissbreitemessung (siehe Abb. 5.33(a)) wurde auf der Betonoberkante mithilfe von analogen Messuhren durchgeführt. Nach Erreichen einer Rissbreite von $w \ge 0.50$ mm wurden alle Messuhren von der Betonoberfläche entfernt, um die Versuchseinrichtung für einen Querzugversuch zu befestigen. Die Versuchseinrichtung bestand aus einer Querzugplatte mit einem eingelegten Passzylinder, der durch die Verschraubung biegefest an der Platte befestigt wurde (siehe Abb. 5.33(b)). Um ein Abheben der Platte zu minimieren, wurde die Querzugplatte in Anlehnung an EAD 330499-01-0601 mittels vier Rollenlagern gesichert (siehe Abb. 5.33(b)). Daher wurden die abhebenden Kräfte direkt von den Rollenlagern aufgenommen und in den Betonuntergrund eingeleitet. Zwischen

der Betonoberfläche und der Querzugplatte wurde eine 0,50 mm dicke PTFE-Folie platziert, um die Reibungskräfte weitgehend zu minimieren.

(a)

(b)

Abb. 5.33: Risskeilplatte: (a) Positionierung von analogen Rissuhren, (b) Befestigung der Querzugplatte auf der Betonoberfläche

Des Weiteren bestand die Querzugeinrichtung aus einer biegesteifen Stahlkonstruktion (siehe Abb. 5.34), die auf der Betonoberfläche positioniert wurde. Die Querzugplatte wurde mithilfe von Gewindestäben mit einer Hydraulikpresse verbunden. In der Stahlkonstruktion integrierte Kraftsensor maßen die auftretenden Zugkräfte. Zusätzlich wurden die Verschiebungen der Anker *u* an der Querzugplatte von zwei induktiven Wegaufnehmern (LVDT) der Firma HBM erfasst. Die Messsignale wurden mit einem QuantumX-Messverstärker der Firma HBM verarbeitet. Sowohl der Kraftsensor als auch die Wegaufnehmer wurden kalibriert, um eine hohe Genauigkeit der Messergebnisse zu erzielen.

Abb. 5.34: Querzugaufbau: (a) Prüfeinrichtung auf dem Prüfkörper platziert, (b) Aufbauskizze mit Anordnung der Messtechnik

5.6.3 Versuchsergebnisse

Dieses Kapitel präsentiert die Ergebnisse der quasistatischen Querzugversuche in gerissenem Beton und stellt sie einander gegenüber. Die vollständigen Versuchsdaten, Auswertungen und Versagensbilder sind für jede Versuchsserie im Anhang E und H aufgeführt. Im weiteren Verlauf dieser Arbeit wird zwischen Querzugkräften in Beton V_u und Abscherkräften V_s in der Stahlvorrichtung unterschieden (siehe Abb. 5.35). Im Folgenden werden die entsprechenden Bezeichnungen und Abkürzungen erklärt, um das Verständnis zu erleichtern.

Abb. 5.35: (a) Querbelastung in gerissenem Beton, (b) Scherprüfung in Stahlvorrichtung (siehe Kapitel 5.2.3)

mit

- V_u = gemessene maximale Querzugkraft während der Querzugbeanspruchung in Beton
- $V_{u,m}$ = Mittelwert der gemessenen Querzugkräfte während der Querzugbeanspruchung in Beton

 V_s = gemessene maximale Querzugkraft einer Versuchsserie in Stahl

 $V_{s,m}$ = Mittelwert der gemessenen Querzugkräfte einer Versuchsserie in Stahl

u = horizontale Ankerverschiebung, gemessen auf der Betonoberkante

Die Versuchsergebnisse werden im Text nach folgendem Prinzip benannt und abgekürzt:

Es wurden die Versuchsergebnisse in gerissenem Beton für die Stabgrößen M8 bzw. Ø 8 und M20 bzw. Ø 20 zusammengestellt (siehe Abb. 5.36 und Abb. 5.37). Es werden die gemessenen Querzugkräfte V_u in Abhängigkeit von den Ankerverschiebungen u gezeigt. Die Versuchsergebnisse sind jeweils nach verwendetem Verbundmörtel aufgeteilt.

Abb. 5.36: Statische Querzugversuche mit M8- und Ø-8-Stäben

Abb. 5.37: Statische Querzugversuche mit M20- und Ø-20-Stäben

Die Versuchsergebnisse zeigen, dass Gewindestäbe und Bewehrungsstäbe innerhalb derselben Güteklasse ein unterschiedliches Verformungsverhalten aufweisen. Bei Gewindestäben der Güteklassen 4.8 und 5.6 wurden keine signifikanten Auswirkungen auf die erreichbare Querzugtragfähigkeit festgestellt. Hingegen gab es bei den Güteklassen 8.8, A4/70 und B500B große Variationen bei den Ankerverschiebungen u und den erreichbaren Querzugtragfähigkeiten V_u .

Für den Vergleich der Querzugtragfähigkeiten werden die Ergebnisse der Scherversuche im Kapitel 5.2.3 als Referenzversuche herangezogen, bei denen die Lagerungsart Typ B verwendet wurde. Die gemessenen Querzugkräfte V_u in gerissenem Beton werden den Referenzlasten $V_{s,m}$ gegenübergestellt (siehe Abb. 5.38 und Abb. 5.39).

Abb. 5.38: Gegenüberstellung der Querzugkräfte V_u und $V_{s,m}$: M8 und Ø 8 mm

Abb. 5.39: Gegenüberstellung der Querzugkräfte V_u und $V_{s,m}$: M20 und Ø 20 mm

In Tab. 5.13 sind die Mittelwerte der gemessenen Querzugkräfte in gerissenem Beton $V_{u,m}$ für jede Versuchsserie zusammengefasst. Die entsprechenden Mittelwerte der Querzugkräfte $V_{s,m}$ aus den Scherversuchen können Tab. 5.5 im Kapitel 5.2.3 entnommen werden. Durch den Quotienten der beiden Mittelwerte $V_{u,m}$ und $V_{s,m}$ lassen sich die Abweichungen für jedes Material und jeden Verbundmörtel feststellen. Die Variationskoeffizienten Var $(V_{u,m})$ der einzelnen Versuchsserien liegen unter der 10-Prozent-Marke: Das weist auf eine einheitliche Versuchsdurchführung hin und auch darauf, dass keine Ausreißer die Abminderung oder die Erhöhung der Querzugtragfähigkeit beeinflusst haben.

Stabgröße	Gütekl	h_{ef}/d_s	Verbund-	V _{u,m}	$S(V_{u,m})$	$Var(V_{u,m})$	$\frac{V_{u,m}}{V_{u,m}}$
		r 1	r 1	[LN]	1	۲0/ ₁	rs,m
[-]	[-]	[-]	<u>[-]</u>	[NIN]	0.51	[⁷⁰]	0.00
M8	4.8	8,75	10	10.4	1.01	4,55	0,99
			11	12,4	0.40	0,09	1,00
			12	11,5	0,40	5,44	1,01
			14	11,9	0,63	5,23	1,04
	8.8	8,75	10	17,4	1,48	8,50	0,87
M8			11	19,9	0,87	4,34	0,99
			12	19,5	1,08	5,53	0,97
			14	19,3	0,41	2,10	0,96
		5,00	14	19,3	0,29	1,51	0,96
	A4/70	8,75	10	20,0	0,54	2,67	1,02
			1	20,7	0,72	3,48	1,06
M8			12	21,5	0,31	1,46	1,10
			14	21,5	0,65	3,00	1,10
		5,00	14	19,7	0,25	1,28	1,00
			10	22,0	1,28	5,80	0,95
Ø 8	B500B	8,75	l1	23,3	1,51	6,46	1,04
00			12	-	-	-	_
			14	22,7	1,31	5,75	1,02
	4.8	6,0	10	71,7	0,86	1,21	1,03
MOO			l1	72,2	0,57	0,79	1,04
M20			12	71,9	0,90	1,25	1,04
			14	71,3	0,93	1,31	1,03
	5.6	6,0	10	93,4	0,96	1,03	1,03
N00			l1	94,2	1,02	1,08	1,04
M20			12	94,3	1,33	1,41	1,04
			14	93,2	0,96	1,02	1,02
	8.8	6,0	10	108,0	4,68	4,34	0,81
			11	127,3	3,70	2,91	0,95
M20			12	123,8	1,38	1,11	0,93
			14	126,0	2,80	2,22	0,94
		5,0	14	118,4	6,36	5,37	0,89
	A4/70	6,0	10	113,2	2,77	2,45	0,86
			11	136,5	7,88	5,77	1,04
M20			12	125.6	8.64	6.88	0.95
			14	130.0	6.24	4.80	0.99
		5.0	4	120.4	5.80	4.82	0.91
	B500B	-,-	10	141.0	4.01	2.84	0.91
		6,0	1	161.3	4.32	2.68	1.04
Ø 20			2	147.6	5.07	3,43	0.95
			14	155,7	4,41	2,83	1,00

Tab. 5.13: Statische Querzugversuche

In den Versuchsserien I0 mit einbetonierten Stäben wurde eine deutliche Reduzierung der Querzugtragfähigkeit in gerissenem Beton, und zwar um bis zu 20 % im Vergleich zu den Referenzversuchen, festgestellt. Hingegen konnte bei einigen Versuchsserien mit den Verbundmörteln I1 bis I4 eine Steigerung der Querzugtragfähigkeit um bis zu 10 % zu beobachtet werden.

Die Versuchsergebnisse mit Gewindestäben der Güteklassen 4.8 und 5.6 zeigten keine signifikante Veränderung in der Querzugtragfähigkeit. Sowohl bei einbetonierten als auch bei eingeklebten Gewindestäben wurden bei diesen Güteklassen in etwa ähnliche Querzugtragfähigkeiten erreicht.

Während der Querbelastung mit M20-Gewindestäben der Güteklassen 8.8 und A4/70 wurde beobachtet, dass die Größe der erreichten Querzugtragfähigkeiten von der Art der Verankerung abhängt, das heißt ob die Stäbe einbetoniert oder mit einem Verbundmörtel eingeklebt wurden. In der I1-Versuchsserie wurden die höchsten Querzugkräfte gemessen, während in der I0-Versuchsserie die niedrigsten Werte erreicht wurden. Da die Querbelastung für unterschiedliche Einbindetiefen mit den Güteklassen 8.8 und A4/70 erfolgte, konnte festgestellt werden, dass die Einbindetiefe der Verankerung h_{ef} einen Einfluss auf die erzielten Querzugkräfte V_u ausübt. Bei der I4-Versuchsserie, die unterschiedliche Einbindetiefen umfasste, wurde eine Reduktion der Querzugtragfähigkeit um bis zu 8 % beobachtet.

5.6.4 Verformungsverhalten

Unabhängig von der jeweiligen Einbausituation trat bei allen Gewindestäben ein Stahlversagen auf. Bei einbetonierten Bewehrungsstäben B500B hingegen fand ein Herausziehen der Stäbe statt. Die Kraft-Verschiebungs-Diagramme zeigen die einzelnen Tests der Versuchsserien mit B500B-Bewehrungsstäben, die einen Durchmesser von 8 mm haben (siehe Abb. 5.40). Dabei war zu beobachten, dass beim Test mit B500B_I0_V4 mit einem Durchmesser von 8 mm nach Erreichen der maximalen Querzugkraft V_u kein Stahlversagen auftritt und der Bewehrungsstab durch eine weitere Querbelastung große horizontale Verschiebungen u erfährt. In der Versuchsserie I0 war eindeutig zu erkennen, dass bei einbetonierten Bewehrungsstäben deren Herausziehen erfolgte (siehe Abb. 5.41).

Abb. 5.40: Kraft-Verschiebungs-Diagramm mit Ø 8_B500B_(I0 bis I4)_V4

Abb. 5.41: Versagensbilder nach Querbelastung von (a) Ø 8_B500B_I0_V4, (b) Ø 8_B500B_I1_V4, (c) Ø 8_B500B_I4_V4

Das Kraft-Verschiebungs-Verhalten der Gewindestäbe M20 der Güteklasse 8.8 und A4/70 wurde ebenfalls für einzelne Test dargestellt (siehe Abb. 5.42 und Abb. 5.43). Es sind deutliche Unterschiede sowohl bei der Ankerverschiebung *u* als bei den erreichten Querzugkräften *V_u* zwischen den verschiedenen Versuchsserien zu erkennen. Für beide Güteklassen wurde eine Reduktion der Querzugtragfähigkeit *V_u* bei einbetonierten Stäben der Versuchsserie I0 und bei Tests mit einer geringeren Einbindetiefe von $h_{ef}/d_s = 5$ festgestellt. Anders als bei den Bewehrungsstäben konnte hier kein Herausziehen der Stäbe an der Betonoberfläche beobachtet werden. Bei allen Gewindestäben trat ein Stahlversagen auf (siehe Abb. 5.44).

Abb. 5.42: Kraft-Verschiebungs-Diagramme mit M20_8.8_(I0 bis I4)_(V1-V2)

Abb. 5.43: Kraft-Verschiebungs-Diagramme mit M20_A4/70_(I0 bis I4)_(V1-V2)

(b)

Abb. 5.44: Versagensbilder nach Querbelastung von (a) M20_8.8_(I0 bis I4), (b) M20_A4/70_(I0 bis I4)

(a)

(b)

Abb. 5.45: Freilegen von geprüften Injektionsankern durch (a) Durchsägen einer Betonplatte, (b) Diamantbohrung in einer Betonplatte

Um die Stabverformungen der getesteten Anker zu untersuchen, wurden nach Abschluss der Querzugversuche alle Betonprüfkörper entlang der Injektionsanker parallel zur Belastungsrichtung durchgesägt oder mithilfe eines Diamantbohrgeräts aus der Betonplatte entnommen (siehe Abb. 5.45).

5.6.5 Bildanalyse

Nachdem die getesteten Injektionsanker im Betonquerschnitt freigelegt wurden, folgte eine zweistufige Analyse der Stabverformungen:

<u>Schritt 1</u>

Mithilfe einer hochauflösenden Kamera wurden Bilder von freigelegten Ankern im Betonquerschnitt aufgenommen. Auf diese Weise konnten die auftretenden axialen Stabverformungen in Form von Betonschlupf u_p erfasst und bei der Bildanalyse gemessen werden (siehe Abb. 5.46(a)).

<u>Schritt 2</u>

Anschließend wurden die Anker vollständig aus dem Beton entfernt, gereinigt und für eine weitere Bildanalyse vorbereitet. Mithilfe des systems wurden scharfe schwarz-weiße Kontrastbildaufnahmen erstellt (siehe Abb. 5.46(b)). Die maßstabgetreuen Aufnahmen ermöglichten eine präzise Bestimmung des Verformungsverlaufs der Stäbe.

Bei beiden Schritten wurden die Aufnahmen in Archicad 23 exportiert und dort zur weiteren Auswertung verwendet.

(a)

(b)

Abb. 5.46: Bildanalyse mit CAD (Bezeichnung der gemessenen Verformungsparametern): (a) Bildaufnahme eines freigelegten Injektionsankers, (b) scharfe schwarz-weiße Kontrastbildaufnahmen

Der Bildanalyse beruht auf der Bestimmung mehrerer Verformungsparameter (siehe Abb. 5.46):

- a) Stabauslenkung s,
- b) verformter Stabbereich l_d ,

- c) Neigungswinkel φ° am Stabende und
- d) aufgetretene axiale Stabverformungen u_p .

Zur Bestimmung der Stabgeometrien diente die CAD-Software. Zuerst wurden die geraden parallelen Bereiche der Gewinde- und Bewehrungsstäbe ermittelt. Hierfür wurden zwei Linien gezeichnet. Der erste Punkt befand sich ungefähr 0,5 bis $1d_s$ vom Stabende entfernt. Der zweite Punkt wurde bei etwa $0,4h_{ef}$ vom unteren Stabende aus gemessen festgelegt. Dieser Ansatz gewährleistete, dass keine signifikante Stabverformung *s* im Stab vorliegt. Dabei wurden auch natürliche Imperfektionen berücksichtigt, die durch den Herstellungsprozess entstehen können. Die Stabauslenkung *s* wurde als der Abstand zwischen den geraden Linien und dem geprüften Stab definiert, um eine genaue Bestimmung der Stabgeometrien zu erhalten.

Um den verformten Stabbereich l_d zu bestimmen, wurde eine zweite parallele Linie auf der lastangewandten Seite im Abstand von $d_s/100$ gezeichnet. Dieser Bereich zwischen den beiden Linien diente zur Identifizierung des verformten Stabbereichs. Es wurde die Überschreitung des $d_s/100$ -Bereichs durch die Stabverformungen als Anfangsposition des verformten Stabbereichs l_d angenommen (siehe Abb. 5.47).

Abb. 5.47: Bildanalyse mithilfe von CAD zur Ermittlung der Anfangsposition des verformten Stabbereichs eines Gewindestabs

Die Ermittlung des Neigungswinkels φ° am Stabende erfolgte ebenfalls durch eine zeichnerische Analyse. Im Rahmen der Bildanalyse wurde festgestellt, dass Gewindestäbe mit unterschiedlichen Stahlqualitäten einen geometrieunabhängigen Neigungswinkel φ° aufweisen. Dann wurden beispielhaft ein M20-8.8- und ein M20-5.6-Gewindestab einander gegenübergestellt (siehe Abb. 5.48). Obwohl die Anfangsposition des verformten Stabbereichs vergleichbar ist, unterscheiden sich die Stabauslenkungen *s* deutlich voneinander. Basierend auf den vorhandenen Geometrien der Gewindestäbe wurde angenommen, dass die Ermittlung des Neigungswinkels φ° im Abstand $d_s/4$ vom Stabende aus gemessen repräsentativ ist und eine gute Näherung für die Berechnung der geometriebedingten Zugkomponente darstellt.

Alle Einzelwerte der Bildanalyse an Gewinde- und Bewehrungsstäben sind im Anhang H aufgeführt.

Abb. 5.48: Gegenüberstellung der ermittelten Verformungsparameter: (a) M20_8.8_I1_V2, (b) M20_5.6_I2_V3

5.6.6 Versagensmodelle

Die Auswertung der Bruchbilder im Betonquerschnitt bestätigte die Vermutung, dass bei allen Tests, die eine Abminderung der Querzugtragfähigkeit V_u im Vergleich zu den Referenzlasten $V_{s,m}$ aufweisen, eine große axiale Stabverformung u_p auftreten wird. Während der Querbelastung können drei Versagensfälle auftreten:

- e) Stahlversagen durch Abscheren,
- f) Stahlversagen durch Abscheren bei gleichzeitigem Herausziehen des Ankers: In diesem Fall tritt neben dem Abscheren des Stabs auch ein Herausziehen des Ankers aus dem Beton auf, was zu einer Reduktion der Verbundsteifigkeit führt,
- g) und vollständiges Herausziehen des Ankers aus dem Beton.

Da während der Versuchsdurchführung das Abheben der Querzugplatte mithilfe von aufgebrachten Rollenlagern weitgehend minimiert wurde, konnte ein Auftreten des rückwärtigen Betonausbruchs ausgeschlossen werden.

Um genauer auf die zuvor genannten Versagensfälle einzugehen, wurden zwei repräsentative Versuchsserien mit unterschiedlichem Trag- und Verformungsverhalten durchgeführt (siehe

Abb. 5.49). Dabei wurde ein besonderes Augenmerk auf das Verhalten der unterschiedlichen Arten von Verbundmörtel gelegt.

Abb. 5.49: Statische Querzugversuche: (a) M20_A4_I1_V1, (b) M20_A4_I2_V1, (c) M20_A4_I2_V2, (d) Kraft-Verschiebungs-Diagramm zu statischen Querzugversuchen, (e) schematisches Kraft-Verschiebungs-Diagramm zu statischen Zugversuchen

Stahlversagen (a)

Die Versuchsergebnisse mit dem I1-Verbundmörtel zeigten einen kontinuierlichen Anstieg der Kraft bis zum Eintritt des Stahlversagens ohne ein sichtbares Herausziehen des Ankers (siehe Abb. 5.49(a)). Es wurde zudem festzustellt, dass die axiale Ankerverschiebung u_p so geringfügig ausfiel, dass sie keinen signifikanten Einfluss auf die maximale Querzugzugkraft V_u ausübte.

Stahlversagen und Überschreitung der maximalen Verbundtragfähigkeit (b1)

Im Gegensatz zur I1-Versuchsserie kam es bei allen Ankern mit dem I2-Verbundmörtel zu einer sichtbaren axialen Verschiebung u_p , wie den Versuchsergebnisse im Anhang E zu entnehmen ist. Ein Beispiel dafür ist das Herausziehen des Ankers M20_A4_I2_V1 (siehe Abb. 5.49(b)). Bei diesem Test wurde eine große axiale Verschiebung u_p (Schlupf) beobachtet, die mit einer Abminderung der Querzugkraft V_u einherging. Der Kraft-Verschiebungs-Verlauf während der Querbelastung zeigte, dass der Gewindestab große horizontale Verschiebungen u erfuhr, bis das Stahlversagen eintrat (siehe Abb. 5.49(d)). Dabei konnte ein Abfall der einwirkende Querzugskraft V um ca. 20 % von der maximal gemessene Querzugkraft V_u beobachtet werden. Die einwirkende Querkraft verursachte eine Zugkraft N, die durch den Verbundmörtel in den Betonuntergrund eingeleitet werden musste. Hierbei überschritt die einwirkende Zugkraft die zulässigen Verbundspannungen $\tau_{u,zul}$ entlang des Injektionsankers, was zum Herausziehen und zu einem Abfall der Querzugkraft V führte. Die zulässigen Verbundspannungen $\tau_{u,zul}$ der Anker wurden überschritten (siehe Abb. 5.49(e)).

Stahlversagen ohne Überschreitung der maximalen Verbundtragfähigkeit (b2)

Die Tests mit den M20_A4_I2-Injektionsankern V2 bis V4 zeigten ebenfalls eine vertikale Verschiebung u_p und einen stetigen Kraftanstieg bis zum Eintreten des Stahlversagens. Ein Beispiel dafür ist der M20_A4_I2_V1-Injektionsanker (siehe Abb. 5.49(c)). Dabei überschreiten die Zugkräfte *N* im Injektionsanker nicht die zulässigen Verbundspannungen $\tau_{u,zul}$. Es treten bei einer Zugbeanspruchung gewisse axiale Stabverformungen auf, die die Querzugkrafttragfähigkeit der Injektionsanker jedoch nicht signifikant beeinflussen, da die einwirkenden Zugkräfte über den Verbundmörtel in den Betonuntergrund eingeleitet werden können (siehe Abb. 5.49(e)). Der direkte Vergleich dieser Tests mit den Versuchsergebnissen der M20_A4_I1-Serie ließ einen ähnlichen Kraft-Verschiebungs-Verlauf erkennen, was auf einen intakten Verbund zwischen Anker und Beton hinweist.

Herausziehen (c)

Grundsätzlich ist das Herausziehen eines Injektionsankers ohne ein Stahlversagen möglich, allerdings wurde dieses Versagensfall in den Untersuchungen nicht beobachtet. Versagensbilder von einem einbetonierten B500B-Bewehrungsstab mit einem Durchmesser von 8 mm zeigen das Auftreten eines Seileffekts (siehe Abb. 5.50). Das bedeutet: Die Querkräfte wirken als Zugkräfte auf den Bewehrungsstab ein.

Abb. 5.50: Seileffekt bei Ø 8 B500B: (a) Versagensbild auf der Oberfläche, (b) Querschnittaufnahme

Die Auswertung der Kontrastaufnahmen ergab, dass unterschiedliche Verformungen im Beton abhängig vom verwendeten Material und der daraus resultierenden Querbelastung auftreten. Es wurde beobachtet, dass mit steigender Querbelastung sowohl die Stabauslenkung *s* als auch der Abstand l_d größer wurden (siehe Abb. 5.51 und Abb. 5.52).

Abb. 5.51: Stabverformungen mit M20- und Ø-20-Stäben (Gegenüberstellung von l_d/s zu s/d_s)

Abb. 5.52: Stabverformungen mit M8- und Ø-8-Stäben (Gegenüberstellung von l_d/s zu s/d_s)

Die Verformungszustände von Gewindestäben der Güteklassen 4.8 und 5.6 zeigen keine Unregelmäßigkeiten. Bei diesen Güteklassen wurde keine kritischen Querbelastungen erreicht, die das Trag- und Verformungsverhalten dieser Stäbe signifikant beeinflussen würden.

Im Gegensatz dazu waren bei Gewindestäben M20 der Güteklassen 8.8 und A4/70 sowie bei Bewehrungsstäben B500B mit einem Durchmesser von 20 mm wie im Kapitel 5.6.4 vermutet, große axiale und horizontale Stabverformungen zu erkennen.

Es wurden alle Tests, bei denen axiale Stabverformungen und die damit verbundene Reduktion der maximalen Querzugkraft V_u auftraten, mit gestrichelten Linien markiert (siehe Abb. 5.51 und Abb. 5.52). Aus der Auswertung kann abgeleitet werden, dass bei Gewindestäben mit einem Verhältnis von der Stabauslenkung *s* zum Ankerdurchmesser $d_s > 0,6$ eine Reduktion der Querzugtragfähigkeit auftritt. Bei Bewehrungsstäben beträgt das Verhältnis *s*/ $d_s > 0,8$.

Die Kenntnisnahme der Verformungsparameter ermöglicht eine Untersuchung des Trag- und Verformungsverhaltens von querzugbelasteten Injektionsankern unter Berücksichtigung der Einflüsse von Verbundmörtel, Stabeinbindetiefen, Stahleigenschaften und Betonrissen.

5.6.7 Tragverhalten

Unterschiedliche Versuchsergebnisse je nach Verbundmörtelgruppe deuten darauf hin, dass das Tragverhalten der Injektionsanker beeinflussbar ist. Während der Querbelastung wurde sowohl eine Steigerung als auch eine Abminderung der Querzugkräfte V_u in gerissenem Beton im Vergleich zu den Abscherversuchen aus Kapitel 5.2.3 festgestellt.

Bereits in Kapitel 5.2.3 wurde im Laufe der Abscherbelastung beobachtet, dass die durch die horizontale Stabverformung hervorgerufenen axialen Zugkräfte die Schubtragfähigkeit signifikant erhöhen. Auch bei Querbelastungen in gerissenem Beton kann davon ausgegangen werden, dass die horizontale Stabverformung zwangsläufig axiale Zugkräfte N_u in den Stäben hervorruft.

Versagensbilder zeigen Holz-Holz-Verbindungen, einbetonierte Kopfbolzen und Injektionsanker in gerissenem Beton (siehe Abb. 5.53). Diese Bilder verdeutlichen, dass die Druckfestigkeit des Untergrunds im Bereich der Befestigungsmittels einen erheblichen Einfluss auf das Tragverhalten ausübt und somit die erreichbare Querzugtragfähigkeit V_{μ} beeinflusst.

Die Bruchbilder von querbelasteten Kopfbolzen und eingespannten Injektionsankern zeigen vergleichbare Bruchverformungen. Eine detaillierte Beschreibung des Tragverhaltens von Kopfbolzendübeln bietet die Untersuchung von *Lungershausen 1988*. Um das Tragverhalten von Injektionsankern zu beschreiben, wird ein Bruchmodell beschrieben (siehe Abb. 5.54). Ähnlich wie bei Kopfbolzen wird die einwirkende Querkraft *V* zu Beginn der Belastung hauptsächlich über den im Einspannbereich an der Betonoberfläche liegenden Anker in den Betonuntergrund eingeleitet. Die daraus resultierenden Betonpressungen σ_c in diesem Bereich führen zur Überschreitung der Betonfestigkeit f_{cc} und zu einer Betonschädigung. Anschließend tritt eine horizontale Verformung *s* des Ankers auf, wodurch zusätzliche Biegebeanspruchung *M* und Zugbeanspruchung N_{\parallel} im Anker entstehen. Die Größe der induzierten Zugkräfte N_{\parallel} im Anker richtet sich nach der Verbundfestigkeit $\tau_{u,zul}$ zwischen dem Injektionsmörtel und dem Beton. Die Zugkräfte im Anker erzeugen eine Druckkraft auf der Betonoberfläche, wodurch die Reibungskräfte V_R aktivieren werden.

Abb. 5.54: Traganteile aus Querbelastung

Anders als bei früheren Untersuchungen mit einbetonierten Kopfbolzen (*Lungershausen 1988*, *Jähring 2008*) wurde ein Berechnungsmodell für Traglastanteile querbelasteter Injektionsanker entwickelt. Dieses Modell basiert auf den Ankerverformungen infolge der Querbelastung. Es wird angenommen, dass bei Anbauteildicken mit $t_{fix} \ge d_s$ eine vollständige Stabeinspannung im Anbauteil vorherrscht, wie *Welz 2011*, S. *156* dargelegt hat.

Bei einer Querbelastung bewirken zunehmende Querschnittsspannungen im Anker die Entstehung einer plastischen Verformungszone unterhalb des Anbauteils. Sie ermöglicht eine Umverteilung der Biegemomente von der Einspannposition zu tiefer gelegenen Ankerbereichen, bis schließlich eine weitere plastische Zone entsteht. Es bilden sich Fließgelenke, die die Steifigkeit des Ankers verringern und dazu führen, dass die Betonpressungen aus dem Bereich des Anbauteils in Richtung des zweiten Fließgelenks umverteilt werden. Zwischen den Fließgelenken bleibt die Betonpressung σ_c konstant, da der Beton in diesem Bereich plastifiziert ist. Infolgedessen nimmt die Betonpressung linear bis zum Ende des verformten Bereichs l_d ab. Im tieferen Bereich des Ankerverbinders entsteht eine gegengerichtete Betonpressung C_{fc} , um das Gleichgewicht aufrechtzuerhalten. Die maximale Traglast wird durch die Ausbildung der Fließgelenke erreicht.

Dann wurde der Abstand *a* bei einem Injektionsanker mit zwei Fließzonen von der Betonoberfläche bis zu seinem Drehpunkt betrachtet (siehe Abb. 5.55). Die Größe der einwirkenden Zugkräfte N_{\parallel} wird von den Verbundspannungen τ im unverformten Ankerbereich mit $h_{ef} - l_d$ begrenzt. Obwohl diese Vereinfachung den rechnerischen Ansatz maßgeblich erleichtert, wirkt sie sich nur geringfügig auf das Ergebnis aus. Die Zugkräfte N im Anker selbst können vereinfacht als Anteil α der Querbelastung V_u ohne Reibungskraft V_R beschrieben werden.

Abb. 5.55: Modifiziertes Berechnungsmodell

Die Betonfestigkeit f_c begrenzt die maximale Höhe der einwirkenden Bodenpressungen σ_c . Untersuchungen von *VINTZÉLEOU UND TASSIOS 1986* und *Fuchs 1992* haben ergeben, dass die zulässige Betonspannung f_{cc} an der Betonoberfläche unmittelbar vor dem Dübel während der Querbelastung zwischen dem 3,5-fachen und dem 5-fachen Wert der Betondruckfestigkeit f_c liegt. Die Größe der Reibungskräfte V_R zwischen der Scherplatte und der PTFE-Folie ergibt sich aus der einwirkenden Querbelastung und der Ankerverschiebung. Der Reibkoeffizient zwischen der PTFE-Folie und der Scherplatte wird dabei mit $\mu = 0,15$ angenommen. Nach *Welz 2011* kann der Reibungskoeffizient auch mit $\mu = 0,20$ angenommen werden.

Nachfolgende Gleichungen dienen dazu, die Größe der einwirkenden Zug- und Querkräfte sowie Biegemomente im Anker zu berechnen.

Kräftegleichgewicht:

$$V_u = V^* + V_R + N_{\parallel} \le V_{pl}$$
(5.11)

$$C_{fc} \cdot d_s \cdot \left(h_{ef} - l_d\right) = \frac{\sigma_c \cdot d_s \cdot \left(l_d - a\right)}{2}$$
(5.12)

mit

$$\sigma_c = \frac{V^*}{a \cdot d_s + (l_d - a) \cdot d_s / 2} \le f_{cc}$$
(5.13)

$$V_R = \mu \cdot N_{\parallel} \tag{5.14}$$

$$V_{\perp} = V_u - V_R \tag{5.15}$$

$$N_{\parallel} = \alpha \cdot V_{\perp} \le N_{pl} \tag{5.16}$$

Momentengleichgewicht:

$$M_2 = \left(\frac{h_{ef} - l_d}{2} + l_d\right) \cdot C_{fc} \cdot d_s \cdot \left(h_{ef} - l_d\right) - \frac{l_d - a}{2} \cdot \sigma_c \cdot d_s \cdot \frac{l_d - a}{3} = M_{pl}$$
(5.17)

$$M_{1} = \sigma_{c} \cdot d_{s} \cdot \frac{a^{2}}{2} - M_{2} \le M_{pl}$$
(5.18)

Die Gleichungen (5.12) und (5.17) stellen ein Gleichungssystem dar. Nach dem Umformen kann die Position des Drehpunkts *a* nach Gleichung (5.19) berechnet werden.

$$a = \frac{0.75 \cdot \sqrt{d_s \left(d_s \cdot \sigma_c (h_{ef} + l_d)^2 - 10.67 \cdot M_{pl}\right) \cdot \sigma_c - d_s \cdot \sigma_c (h_{ef} - 0.33 \cdot l_d)}}{d_s \cdot \sigma_c}$$
(5.19)

Um die Spannungszustände im Stabquerschnitt an der Einspannstelle an der Betonoberfläche zu bestimmen, sind neben der einwirkenden Querbelastung V_u auch die Tiefe des verformten Stabbereichs l_d , die Einbindetiefe des Ankers h_{ef} und die Lage des Drehpunkts *a* erforderlich.

Nach *DIN EN 1992-4* können die Spannungsverhältnisse bei kombinierter Zug- und Querbelastung nach Gleichung (5.20) berechnet werden.

$$\left(\frac{N_{\parallel}}{N_{pl}}\right)^2 + \left(\frac{V^*}{V_{pl}}\right)^2 \le 1,0 \tag{5.20}$$

Das Versagen von Injektionsankern infolge einer Biegung wurde separat und ohne den Einfluss des Schubwiederstands V_{pl} nach Gleichung (5.21) ermittelt. Aufgrund der Berücksichtigung der einwirkenden Zugkräfte erfolgte eine lineare Reduzierung des Biegewederstands M_{pl} .

$$\frac{M_1}{M_{pl}\left(1-\frac{N_{\parallel}}{N_{pl}}\right)} \le 1,0 \tag{5.21}$$

Die Interaktion zwischen der Normalkraft N_{\parallel} , der Querkraft V^* und der Biegung *M* wurde nach Gleichung (5.22) berechnet. Dafür wurde die kombinierte Beanspruchung zwischen der Normalkraft N_{\parallel} und dem Biegemoment *M* näherungsweise nach *Randl* 1997 berücksichtigt. Diese Interaktion erfolgte in vollplastischem Zustand. Einflüsse aus der Querbelastung V^* wurden als Faktor β zusammengefasst, der eine Reduzierung der Zugfestigkeit f_u des Ankers in den Gleichungen (5.24) und (5.26) darstellt. Die plastische Schubtragfähigkeit V_{pl} wurde in Abscherversuchen im Kapitel 5.2.3 ermittelt.

$$\frac{M_{1}}{1,7 \cdot W_{el} \cdot f_{u} \cdot \sqrt{1 - \left(\frac{V^{*}}{\alpha_{v} \cdot A_{s} \cdot f_{u}}\right)^{2}} \cdot \left(1 - \left(\frac{N_{\parallel}}{A_{s} \cdot f_{u} \cdot \sqrt{1 - \left(\frac{V^{*}}{\alpha_{v} \cdot A_{s} \cdot f_{u}}\right)^{2}}}\right)^{2}\right)^{2}\right)$$
(5.22)
$$\beta = \sqrt{1 - \left(\frac{V^{*}}{\alpha_{v} \cdot A_{s} \cdot f_{u}}\right)^{2}}$$
(5.23)

$$=\sqrt{1-\left(\frac{1}{V_{pl}}\right)}$$
(5.23)

$$N_{pl} = A_s \cdot f_u \cdot \beta \tag{5.24}$$

$$V_{pl} = \alpha_v \cdot A_s \cdot f_u = V_{s,m} \ (Typ \ B \ Kap. 5.2.3)$$
(5.25)

$$M_{pl} = 1,7 \cdot W_{el} \cdot f_u \cdot \beta \tag{5.26}$$

Das in der Einspannstelle an der Betonoberfläche wirkende Moment aus Gleichung (5.18) wurde in Gleichung (5.22) eingesetzt. Basierend auf der Annahme $M = M_1$ wurde iterativ die Position des Drehpunkts *a* und entsprechenden Kraftanteile aus der Querbelastung berechnet. Dann wurden die der beiden Injektionsanker in den Durchmessern 8 und 20 dargestellt (siehe Abb. 5.56 und Abb. 5.57).

Abb. 5.56: Kraftanteile der M8- und Ø-8-Injektionsanker (hnom = 70 mm)

Abb. 5.57: Kraftanteile der M20- und Ø-20-Injektionsanker (hnom = 120 mm)

5.6.8 Vereinfachter Ansatz zur Bestimmung der Kraftanteile

Die Stahleigenschaften der verwendeten Gewinde- und Bewehrungsstäbe beeinflussen maßgeblich das Trag- und Verformungsverhalten der Injektionsanker. Während hochduktiler Stahl wie A4/70 oder der Bewehrungsstahl B500B größere horizontale Ankerverschiebungen u aufweisen können, zeigen Stähle der Güteklasse 8.8 ein sprödes Verhalten, das sich in der geringeren Ankerverschiebung u äußert. Im Kapitel 5.2.3 wurde bereits der negative Einfluss der Kerbspannungen bei den Gewindestäben gegenüber den Bewehrungsstäben erläutert. Daher unterscheidet sich das Tragverhalten von Bewehrungsstäben deutlich von dem Tragverhalten der Gewindestäbe.

Durch die Auswertung der Bruchbilder (siehe Kapitel 5.6.5) wurden die plastischen Verformungen an Injektionsankern festgestellt. Es wurden alle Verformungs- und Kraftparameter schematisch dargestellt (siehe Abb. 5.58). Dafür erfolgte eine Unterscheidung zwischen der Ankerverschiebung u und der Stabauslenkung s. Die Stabauslenkung s wurde mithilfe der Bildanalyse ermittelt und beschreibt die maximale plastische Verformung, die ein Injektionsanker an der Betonoberkante bis zum Versagensmoment erfahren hat. Die Ankerverschiebung u hingegen wurde an der Scherplatte gemessen und gibt die Gesamtverformung des Stabs während der Querbelastung an.

Abb. 5.58: Schematische Versuchsdarstellung: (a) Querzugversuch in gerissenem Beton, (b) Querzugversuch in Stahlvorrichtung für Lagerungsart Typ B

Die Stahlduktilität wird im Rahmen dieser Untersuchungen anhand der Stahldehnungen ε_{fu} bei Erreichen der maximalen Zugkraft während einer Zugprüfung definiert (siehe Kapitel 5.2.1). Die Bewehrungsstäbe B500B und A4/70 weisen daher eine hohe Duktilität auf und sind in der Lage, bei einer großen Stabauslenkung *s* einen signifikanten Anteil der einwirkenden Querzugkräfte V_u in Zugkräfte umzuleiten. Es wurde festgestellt, dass die Gleichungen (5.27) und (5.28) als Vereinfachung dienen, um die Zugkraftanteile N_{\parallel} und die Querkraft ohne Reibungsanteil V_{\perp} für jeden getesteten Injektionsanker mit Gewindestab basierend auf der Querzugkraft V_u und den Neigungswinkeln φ° näherungsweise zu berechnen.

$$N_{u,\parallel} = V_u \cdot \cos(\varphi^\circ) \tag{5.27}$$

$$V_{u,\perp} = V_u \cdot \sin(\varphi^\circ) \tag{5.28}$$

Es wurden die berechneten Kraftanteile gemäß den Gleichungen (5.16) und (5.15) mit den entsprechenden Zugkraftanteilen $N_{u,\parallel}$ und Querkraftanteilen $V_{u,\perp}$, die anhand des vereinfachten Ansatzes aus der Verformung nach den Gleichungen (5.27) und (5.28) ermittelt wurden, verglichen (siehe Abb. 5.59 und Abb. 5.60). Es zeigte sich eine gute Übereinstimmung der Ergebnisse mit den ermittelten Kraftanteilen. Allerdings waren die Zugkräfte nach dem vereinfachten Ansatz zum Teil überschätzt, wenn die zulässigen Verbundspannungen $\tau_{u,zul}$ überschritten wurden. Da die ermittelten Zugkräfte $N_{u,\parallel}$ lediglich den Zustand der Verbundfuge widerspiegeln, wirkte sich die Überschätzung der einwirkenden Zugkräfte jedoch nicht auf die Ermittlung der Verbundtragfähigkeit der Injektionsanker aus und liegen dabei auf der sicheren Seite (siehe dazu Kapitel 5.6.9).

Abb. 5.59: Vergleich der ermittelten Zugkräfte aus den Querschnittspannungen nach Gleichung (5.11) mit den geschätzten Zugkräften nach Gleichung (5.26) (a) M8 und Ø 8 mm, (b) M20 und Ø 20 mm

Abb. 5.60: Vergleich der ermittelten Querkräfte aus den Querschnittspannungen nach Gleichung (5.16) und den geschätzten Querkräften nach Gleichung (5.27) (a) M8 und Ø 8 mm, (b) M20 und Ø 20 mm

Bei Querbelastung zeigten die ermittelten und die geschätzten Querkraftanteile in den Versuchsergebnissen mit Gewindestäben eine relativ gute Übereinstimmung, während bei den Bewehrungsstäben eine leichte Unterschätzung der Querkraftanteile $V_{u,\perp}$ vorlag, die jedoch keine signifikante Auswirkung auf die Versuchsergebnisse hatte.

Die Zugkraftanteile $N_{u,\parallel}$ sind abhängig von der Größe der Stabauslenkung *s* dargestellt (siehe Abb. 5.61). Es ist zu erkennen, dass der Zugkraftanteil mit zunehmender Stabauslenkung *s* ansteigt. Dieses Verhalten wurde sowohl bei den duktilen Stählen A4/70 und B500B als auch bei den spröden Stählen 8.8 beobachtet.

Abb. 5.61: Zugkraftanteil $N_{u,\parallel}$ und Stabauslenkung s: (a) M8 und Ø 8 mm, (b) M20 und Ø 20 mm

Abb. 5.62: (a) Ermittlung des Neigungswinkels φ° in Abhängigkeit von dem Verhältnis l_d zu s, (b) Gegenüberstellung des rechnerisch ermittelten und gemessenen Neigungswinkels φ°

Weiterhin wurde festgestellt, dass der Neigungswinkel anhand der Stabauslenkung *s* und der Position des Hebelarms im Abstand l_d von der Betonoberkante aus näherungsweise nach Gleichung (5.29) berechnet werden kann. Diese Gleichung wurde aus der Betrachtung der Querzugversuche mit den Gewindestäben abgeleitet (siehe Abb. 5.62(a)). Mit einem Bestimmungsmaß von 85 Prozent erzielte die Näherung ein zufriedenstellendes Ergebnis.

Dann erfolgte die Gegenüberstellung von rechnerisch ermittelten Neigungswinkeln (siehe Abb. 5.62(b)). Die berechneten Werte lagen dabei auf der sicheren Seite.

$$\varphi^{\circ} = 16,93 \ln\left(\frac{l_d}{s}\right) + 41,56$$
 (5.29)

Im weiteren Verlauf dieser Arbeit werden die ermittelten Kraftanteile aus Kapitel 5.6.7 verwendet.

5.6.9 Einfluss der verwendeten Verbundmörtel

Bei der Durchführung von statischen Querzugversuchen lag der Fokus auf der Verwendung unterschiedlicher Verbundmörtel. Die Versuchsergebnisse (siehe Abb. 5.63) zeigen, dass bei Stäben derselben Größe unterschiedlich große Querzugkräfte $V_{u,\perp}$ auftreten, abhängig von dem jeweils verwendeten Verbundmörtel (oder den einbetonierten Stäben). Es besteht eine Korrelation zwischen den einwirkenden Zugkräften $N_{u,\parallel}$ während eines Querzugversuchs und den Querzugkräften $V_{u,\perp}$. Dabei wurde festgestellt, dass mit zunehmendem Zugkraftanteil $N_{u,\parallel}$ auch der Querkraftanteil $V_{u,\perp}$ steigt.

Abb. 5.63: Gegenüberstellung der Zugkraftanteile $N_{u,\parallel}$ und Querkraftanteile $V_{u,\perp}$: (a) M8 und Ø 8 mm, (b) M20 und Ø 20 mm

Nach *Zhao 1993,* S. *94* wird die auftretende axiale Zugkraft auf etwa 30 bis 40 % der Querbelastung geschätzt. Dieser Wert kann je nach Stahleigenschaften jedoch variieren. Die Größe der aufnehmbaren Zugkräfte hängt direkt von den Eigenschaften einer etwa 1 bis 2 mm starken Schicht aus Verbundmörtel um den Anker herum sowie von der Einbindetiefe des Ankers ab. Aufgrund dieser relativ geringen Schichtdicke übt die Mörteldruckfestigkeit keinen signifikanten Einfluss auf die Größe der Querzugtragfähigkeit aus und wird daher im weiteren Verlauf dieser Arbeit nicht thematisiert.

Während der Versuchsdurchführung wurde beobachtet, dass bei tief eingebundenen Stäben mit einem Verhältnis der Stabeinbindetiefe zum Stabdurchmesser $h_{ef}/d_s \ge 5$ gelegentlich ein Herausziehen der Stäbe auftrat. Die Auswertung der Bruchbilder im Betonquerschnitt (siehe Kapitel 5.6.5) ergab, dass alle einbetonierten Bewehrungsstäbe sowie Gewindestäbe M20 der Güteklasse 8.8 und A4/70 der I0-Versuchsserie große axiale Stabverschiebungen u_n aufwiesen. Ebenfalls wurden bei vereinzelten Querzugversuchen mit 20-mm-Durchmesser-B500B- und M20-A4/70-Stäben mit I2- und I4-Verbundmörtel große axiale Stabverschiebungen u_p des Ankers festgestellt.

Zudem wurde ermittelt, dass die einwirkenden Zugkräfte $N_{u,\parallel}$ zu einer Überschreitung der zulässigen Verbundspannungen führten, weshalb beim Injektionsanker eine axiale Stabverschiebung u_p auftrat. Bruchbilder zeigen beispielhaft einbetonierte und eingeklebte Anker (siehe Abb. 5.64).

Es kann ein sogenannter Seileffekt auftreten, zum Beispiel an hochduktilen Stählen wie B500B (siehe Abb. 5.64 (a)). Dabei erfährt der Bewehrungsstab eine enorme plastische Verformung. Da die Querzugplatte durch Rollenlager gegen ein Abheben gesichert ist, kommt es zum Stahlversagen. Ohne Behinderung der Plattenabhebung wäre der Anker vollständig herausgezogen worden.

Durch die Verwendung eines Verbundmörtels bei einem vergleichbaren Bewehrungsstab (siehe Abb. 5.64 (b)), konnten die einwirkenden Zugkräfte $N_{u,\parallel}$ sicher in den Betonuntergrund eingeleitet werden.

Der Seileffekt tritt bei hochduktilen Gewindestäben selten auf. Aufgrund der Geometrien der Gewindegänge kommt es zu Spannungsspitzen in diesen Bereichen, die zu einem frühzeitigen Stahlversagen führen (siehe Abb. 5.64 (c)).

Abb. 5.64: Versuchsbilder: (a) Ø 8_B500B_I0_V3, (b) Ø 8_B500B_I4_V1, (c) M20_A4_I4_V6

Es war nicht unmittelbar feststellbar, ob es zu einer Überschreitung der zulässigen Verbundspannungen oder einer Reduktion der Verbundfestigkeit gekommen war. Obwohl die Bildanalyse ein Herausziehen deutlich erkennen lässt, führte es nicht zu einem vollständigen Verlust der Verbundkraft. Die Ergebnisse der Zugprüfungen in gerissenem Beton (siehe Kapitel 5.5.3) zeigen, dass nach Erreichen der maximalen Verbundkraft τ_u kein plötzlicher Abfall der Verbundsteifigkeit auftrat.

Eine Überschreitung der aufnehmbaren Zugkräfte geht auf eine geringere Verbundwiderstandskraft oder eine geringe Einbindetiefe zurück. Im Allgemeinen werden die Verbundspannungen nach Gleichung (2.1) aus Kapitel 2.2.1 berechnet.

Zur Bestimmung der in der Verbundfuge auftretenden Verbundspannung $\tau_{u,\parallel}$ während einer Querbelastung wird die effektive Einbindetiefe h_{ef} , berechnet nach Gleichung (5.9) aus Kapitel 5.5.1, reduziert. Es besteht die Annahme, dass nach Bildung der Fließzone keine Zugkräfte

im verformten Stabbereich l_d über die Verbundfuge übertragen werden können. Die Höhe der einwirkenden Verbundspannung $\tau_{u,\parallel}$ bei gleichzeitig reduzierter Einbindetiefe $h_{ef,red}$ wird nach Gleichung (5.10) aus Kapitel 5.5.3 berechnet. Dabei werden die Verbundspannungen auf die Festigkeit des niederfesten Betons C20/25 normalisiert, um den Vergleich der einwirkenden Verbundspannungen $\tau_{u,\parallel}$ mit den zulässigen Verbundspannungen $\tau_{u,zul}$ zu ermöglichen (siehe Kapitel 5.5.3).

Das Tragverhalten von querbelasteten Injektionsanker in gerissenem Beton kann als Verhältnis von der höchsten einwirkenden Querzugkraft V_u zu Schubwiderstandskraft $V_{s,m}$ (siehe Kapitel 5.2.3) in Abhängigkeit vom Quotienten der Verbundspannung $\tau_{u,\parallel}/\tau_{u,zul}$ beschrieben werden (siehe Abb. 5.65).

Abb. 5.65: Abhängigkeit der Querzugtragfähigkeit $V_u/V_{s,m}$ von der Überschreitung der zulässigen Verbundspannungen: (a) M8 und Ø 8 mm, (b) M20 und Ø 20 mm

Die dargestellten Zusammenhänge verdeutlichen den Einfluss der Eigenschaften des Verbundmörtels sowie der zulässigen Verbundspannungen $\tau_{u,zul}$ im Betonuntergrund. Es ist eine fallende Tendenz in den gemessenen Querzugkräften V_u im Vergleich zu den Referenzlasten $V_{s,m}$ erkennbar. Diese Tendenz ist insbesondere bei den M20- und Durchmesser-20-mm-Stäben deutlich zu beobachten. Nach Überschreiten der zulässigen Verbundspannungen $\tau_{u,zul}$ kommt es zu einer Reduktion der erreichbaren Querzugkräfte V_u .

Für die M8- und Durchmesser-8-mm-Stäbe ließ sich feststellen, dass bei allen M8-Gewindestäben außer I0_M8_I2_(V1 und V4) keine Überschreitung der zulässigen Verbundspannungen $\tau_{u,zul}$ stattgefunden hat (siehe Abb. 5.65). Hingegen zeigten alle einbetonierten Bewehrungsstäbe B500B mit einem Durchmesser von 8 mm eine deutliche Überschreitung der zulässigen Verbundspannungen. Bei den Versuchsergebnissen der Gewindestäbe der M20- und Durchmesser-20-mm-Injektionsanker mit den Güteklassen 4.8, 5.6 und 8.8 bildete sich eine dichte Ergebniswolke aus Querzugkräften $V_u/V_{s,m}$ mit einem Ausnutzungsgrad von etwa 0,95 bis 1,05, ohne dass die zulässigen Verbundspannungen überschritten wurden. Die Ergebnisse für das duktile A4/70- und B500B-Material wiesen hingegen starke Streuungen auf. Ähnlich wie bei B500B-Stäben mit einem Durchmesser von 8 mm zeigen auch die einbetonierten Bewehrungsstäbe Ø 20_B500B_I0 während der Querzugversuche eine deutliche Überschreitung der zulässigen Verbundspannungen $\tau_{u,zul}$. Weiterhin konnte beobachtet werden, dass außerdem bei M20 A4/70- und B500B-Stäben mit einem Durchmesser von 20 mm sowie bei I2- und I4-Verbundmörteln eine Überschreitung der zulässigen Verbundspannung $\tau_{u,zul}$ vorliegt. Zusätzlich wurde die Querzugtragfähigkeit der Anker um bis zu 15 % abgemindert.

Vereinzelte Versuche zeigten unabhängig von dem verwendeten Verbundmörtel und der Güteklasse eine geringere Erhöhung der Querzugkraft V_u im Vergleich zu den Referenzlasten $V_{s,m}$. Diese Laststeigerung ist auf das Vorhandensein von Reibungskräften zwischen dem Injektionsanker und dem Beton in beschädigten Bereichen an der Betonoberkante zurückzuführen. Da die Reibungskräfte auf der Widerstandsseite durch eine statische Wiederbelastung oder alternierende Belastung erheblich abnahmen, wurden diese Reibungsanteile in weiteren Untersuchungen nicht mehr berücksichtigt.

Die Betrachtung der Quotienten aus dem Betonkraftanteil $V_{u,\perp}$ und der Stahlscherkraft $V_{s,m}$ in Abhängigkeit von dem Verhältnis der Verbundfestigkeit $\tau_{u,\parallel}/\tau_{u,zul}$ bestätigte die Vermutung, dass das Überschreiten der zulässigen Verbundspannungen zu einer Reduktion der Querzugkraft V_u führt (Abb. 5.66). Diese Beobachtung konnte mithilfe des bruchmechanischen Modells aus Kapitel 5.6.7 bestätigt werden. Gemäß Gleichung (5.22) setzt sich die einwirkende Querzugkraft V_u aus drei Komponenten zusammen: dem Betonkraftanteil, dem Reibungskraftanteil und dem Zugkraftanteil. Der Anstieg der Zugkraftanteile N_u ging mit einer gleichzeitigen Abnahme der Betonkraftanteile $V_{u,\perp}$ einher, was jedoch insgesamt zu einer Erhöhung der einwirkenden Querzugkraft V_u führte. Wenn die einwirkenden Zugkräfte nicht in den Beton eingeleitet werden konnten, erfolgte keine weitere Kraftumlagerung von Querkräften in Zugkräfte. Die Zunahme der Querzugkraft V_u . Die Größe der einwirkenden Zugkräfte hängt dabei von den Verbundmörteleigenschaften, den Stahleigenschaften, der Bruchdehnung ε_{fu} und der Zugfestigkeit f_u sowie von der Einbindetiefe h_{ef} ab.

Abb. 5.66: Abhängigkeit der Querzugtragfähigkeit $V_{u,\perp}/V_{s,m}$ von der Überschreitung der zulässigen Verbundspannungen: (a) M8 und Ø 8 mm, (b) M20 und Ø 20 mm

5.6.10 Einfluss der effektiven Einbindetiefen

Die Auswertung der Bruchbilder von Injektionsankern im Beton (siehe Kapitel 5.6.5) ermöglichte eine Gegenüberstellung der axialen Stabverschiebungen u_p und dem Ausnutzungsgrad der Verbundfuge (Abb. 5.67). Dabei wurde festgestellt, dass das Überschreiten der Verbundspannungsgrenze $\tau_{u,\parallel}/\tau_{u,zul}$ zu steigenden axialen Verschiebungen u_p führt. Die Größe der axialen Verschiebungen u_p hängt stark von dem verwendeten Verbundmörtel und der Einbindetiefe ab.

Die durchgeführten Querzugversuche mit den Einbindetiefen $h_{ef}/d_s > 5$ ergaben, dass bei Querzugversuchen mit einbetonierten und nachträglich installierten Ankern aufgrund von geringerer Zugfestigkeit f_u der Gewindestäbe der Güteklasse 4.8 und 5.6 im Vergleich zur Güteklasse 8.8 und A4/70 keine messbaren axialen Stabverschiebungen u_p auftraten. Die ermittelten Querzugkräfte V_u entsprachen in etwa der Referenzlast $V_{s,m}$. Daher lieferten weitere Querzugversuche mit den Gewindestäben M8 und M20 der Güteklasse 8.8 und A4/70 relevante Ergebnisse für die folgenden Untersuchungen.

Um das Untersuchungsfeld im Einflussbereich der effektiven Einbindetiefe zu erweitern, wurden zusätzliche Querzugversuche bei den minimalen Einbindetiefen $h_{ef}/d_s = 5$ durchgeführt. Dafür wurde ausschließlich der Verbundmörtel I4 verwendet. Da er eine im Vergleich zu den anderen verwendeten Verbundmörteln eine mittlere Verbundfestigkeit aufweist, lieferten die Versuchsergebnisse mit den minimalen Einbindetiefen $h_{ef}/d_s = 5$ eine gute Referenz.

Abb. 5.68: (a) Gegenüberstellung der Querzugkräfte V_u und $V_{s,m}$, (b) Abhängigkeit der Querzugtragfähigkeit $V_u/V_{s,m}$ von der effektiven Einbindetiefe h_{ef}

Die Querzugkräfte V_u und $V_{s,m}$ sind abhängig von den unterschiedlichen Einbindetiefen eines I4-Verbundmörtels dargestellt (siehe Abb. 5.68). Bei einem Querzugversuch mit der Güteklasse 8.8 hob sich die Querzugplatte trotz Sicherung ab. Dieser Versuch wurden als Ausreißer gewertet und für die weiteren Untersuchungen nicht berücksichtigt.

Der Vergleich der Querzugtragfähigkeiten ergab, dass sich die Reduzierung der Einbindetiefe h_{ef} unterschiedlich auf die Güteklasse 8.8 und A4/70 auswirkte. Bei A4/70-Gewindestäben wurde die gemessene Querzugkraft V_u im Vergleich zur Referenzlast $V_{s,m}$ um bis zu 15 % verringert. Im Gegensatz dazu erfuhren die Gewindestäbe der Güteklasse 8.8 nur eine geringfügige Reduktion der Querzugtragfähigkeit von weniger als 5 % im Vergleich zu den Versuchsergebnissen mit A4/70-Gewindestäben.

Kapitel 5.5 hat aufgezeigt, dass die Zugtragfähigkeit eines Injektionsankers von der effektiven Einbindetiefe h_{ef} und den aufnehmbaren Verbundspannungen $\tau_{u,zug}$ abhängt. Die Reduzierung der Stabeinbindetiefe h_{ef} führte zu einer Zunahme der maximalen axialen Stabverschiebungen u_p , während eine Vergrößerung der Einbindetiefe h_{ef} eine Reduzierung der axialen Stabverschiebungen u_p nach sich zog. Die Verbundspannungen $\tau_{u,zug}$ blieben dabei auf einem vergleichbaren Niveau. Daraus lässt sich folgern, dass ein Anstieg der axialen Verschiebungen u_p bei reduzierten Einbindetiefen nicht zwangsläufig eine Überschreitung der aufnehmbaren Verbundspannungen $\tau_{u,zul}$ bedeutet.

Dann erfolgte ein Vergleich von zwei Injektionsankern der Stahlgüte A4/70 (siehe Abb. 5.69). Es ist deutlich zu erkennen, dass bei einer geringeren Einbindetiefe $h_{ef}/d_s = 5$ eine axiale Stabverformung u_p vorliegt. Die Länge des verformten Stabbereichs l_d von der Betonoberkante aus gemessen bleibt in beiden Fällen ungefähr gleich.

Abb. 5.69: Versagensbilder: (a) M8_h_40_A4_I4_V2 mit $h_{ef}/d_s = 5$, (b) M8_h_70_A4_I4_V2 mit $h_{ef}/d_s = 8,75$

Nun wurden die Zugkraftanteile $N_{u,\parallel}$ und die entsprechenden axialen Stabverschiebungen u_p (siehe Abb. Abb. 5.70(a)) sowie die Stabauslenkungen s (siehe Abb. 5.70(b)) einander gegenübergestellt. Aus dem Vergleich geht hervor, dass bei den Versuchsserien mit den minimalen Einbindetiefen $h_{ef}/d_s = 5$ bei vergleichbarer Zugkrafteinwirkung $N_{u,\parallel}$ größere axiale Stabverformungen u_p und die Stabauslenkung s aufgetreten sind. Insbesondere bei den M20-Gewindestäben ist eine deutliche Zunahme der axialen und horizontalen Verschiebungen um bis zu 50 % erkennbar. Damit kann belegt werden, dass die Veränderung der Einbindetiefe h_{ef} einen wesentlichen Einfluss auf das Trag- und Verformungsverhalten von Injektionsankern ausübt.

Abb. 5.70: Gegenüberstellung der einwirkenden Zugkraft $N_{u,\parallel}$: (a) mit axialen Stabverschiebungen u_p , (b) mit der Stabauslenkung *s*

Der Kontrast zwischen den Versuchsreihen mit unterschiedlichen Einbindetiefen wird so deutlich erkennbar. Infolge der Reduzierung der effektiven Einbindetiefen auf $h_{ef}/d_s = 5$ konnte bei einzelnen Versuchen die Einleitung der auftretenden Zugkräfte $N_{u,\parallel}$ in Form von Verbundspannungen $\tau_{u,\parallel}$ nicht vollständig in den Betonuntergrund erfolgen, wodurch die Querzugtragfähigkeit abnahm.

Die Stahlduktilität wird im Rahmen dieser Untersuchung anhand der Stahldehnungen ε_{fu} bei Erreichen einer maximalen Zugkraft während einer Zugprüfung definiert (siehe Kapitel 5.2.1). Bei Gewindestäben der Güteklasse A4/70 beträgt die Stahldehnung ε_{fu} etwa 20 %. Bei diesen Güteklassen erfolgte eine signifikante Umlagerung der Querzugkräfte V_u in Zugkräfte $N_{u,\parallel}$, wodurch sich bei einer Reduzierung der effektiven Einbindetiefe unmittelbar in einer Abnahme der Betontraganteile V^* bemerkbar machte.

Da die Stahldehnungen ε_{fu} der Gewindestäbe der Güteklasse 8.8 unter 5 % liegen, erfolgt im Vergleich eine geringe Umlagerung der einwirkenden Querzugkräfte V_u in Zugkräfte $N_{u,\parallel}$, die mit einer Abminderung der Querzugtragfähigkeit einhergeht.

Abschließend kann festgestellt werden, dass die Höhe der reduzierten Einbindetiefe $h_{ef,red}$ von der Tiefe des verformten Stabbereichs l_d und die Intensität der einwirkenden Zugkraft $N_{u,\parallel}$ von der Stabauslenkung *s* abhängen. Diese beiden geometrischen Größen beeinflussen direkt die Höhe der einwirkenden Verbundspannungen $\tau_{u,\parallel}$. Die Überschreitung der zulässigen Verbundspannungen $\tau_{u,\parallel}/\tau_{u,zul}$ geht mit einer zunehmenden axialen Verschiebung des Ankers u_p einher und führt letztendlich zu einer erheblichen Reduktion der Querzugkraft V_u von Injektionsankern.

5.6.11 Positionierung des Drehpunkts a in der Fließzone

Die Position der Fließzone hängt hauptsächlich von den Stahleigenschaften des Injektionsankers ab und wird üblicherweise in Bezug zum Stabdurchmesser angegeben. In der Literatur (vgl. *Fuchs 1992, Eligehausen et al. 2006*) wird die Position des Drehpunkts *a* auf einen Abstand von etwa $2d_s$ von der Betonoberkante aus gemessen geschätzt. Diese Schätzung gilt jedoch nur für wenig duktile Stähle. Die Lage des Drehpunkts *a* kann nach Gleichung (5.19) aus Kapitel 5.6.7 berechnet werden und wird in Abhängigkeit vom Stabdurchmesser d_s als Quotient a/d_s dargestellt (siehe Abb. 5.71 und Abb. 5.72).

Abb. 5.71: Position des Drehpunkts a bei M8- und Ø-8-mm-Stäben

Abb. 5.72: Position des Drehpunkts a bei M20- und Ø-20-mm-Stäben

Ein Vergleich der vorliegenden Ergebnisse ergab, dass der Drehpunkt *a* bei Gewindestäben unter Verwendung von Injektionsmörtel überwiegend in einem Abstand von 1,5 bis $2,0d_s$ von der Betonoberkannte entfernt liegt. Tiefere Positionen des Drehpunkts wurden bei B500B- und einbetonierten I0-Gewindestäben beobachtet. Der Zustand der Verbundfuge zwischen Anker und Beton übt ebenfalls einen großen Einfluss sowohl auf die maximale Querzugkraft V_u als auch auf die Lage des Drehpunkts *a* aus.

Wie bereits in Kapitel 5.6.9 gezeigt, führt das Überschreiten der zulässigen Verbundspannungen zu einer Abnahme der Querzugkraft V_u . Liegen die Positionen des Drehpunkts *a* und des Quotienten der einwirkenden und zulässigen Verbundspannungen $\tau_u/\tau_{u,zul}$ vor (siehe Abb. 5.73), ist zu erkennen, dass eine Zunahme Drehpunktposition mit einer gleichzeitigen Steigerung des Quotienten einhergeht. Die Reduzierung der Verbundsteifigkeit entlang des Injektionsankers führt zu dessen axialen Stabverschiebungen (siehe Kapitel 5.6.10). Zusammengefasst lässt sich feststellen, dass das Trag- und

Verformungsverhalten von Injektionsankern sowohl von der Güteklasse als auch von der Tragfähigkeit der Verbundfuge abhängig ist (zum Einfluss von Rissbreiten auf die Steifigkeit der Verbundfuge siehe Kapitel 5.6.12).

Abb. 5.73: Gegenüberstellung der Tiefe des Drehpunkts *a* und der Verbundspannungen $\tau_u/\tau_{u,zul}$: (a) M8 und Ø 8 mm, (b) M20 und Ø 20 mm

Weiterhin ist aus den streuenden Versuchsergebnissen innerhalb einer Güteklasse eine deutliche Abhängigkeit von dem verwendetem Verbundmörtel erkennbar. Bei jeder Güteklasse wurde eine Zunahme der Drehpunktposition *a* in folgender Reihenfolge beobachtet: $I1 \rightarrow I4 \rightarrow I2 \rightarrow I0$. Dementsprechend konnte die Reduktion der Querzugtragfähigkeit dieser Reihenfolge zugeordnet werden.

Abb. 5.74: (a) Verhältnis der Tiefe des Drehpunkts a und verformten Bereichs l_d , (b) schematische Darstellung der Tragbereiche

$$a = 0,75l_d + 1,53 \tag{5.30}$$

Die Tiefe des verformten Bereichs l_d übt nach Gleichung (5.19) aus Kapitel 5.6.7 einen direkten Einfluss auf die Position des Drehpunkts *a* aus. Es besteht eine deutlich erkennbare Korrelation zwischen diesen beiden Größen (siehe Abb. 5.74). Daher konnte die Position des

Drehpunkts *a* vereinfacht nach Gleichung (5.30) berechnet werden. Der Bestimmtheitsmaß R^2 von etwa 1,0 deutet auf eine relativ gute Übereinstimmung der Werte hin.

5.6.12 Einfluss von Betonrissen

Der Einfluss der Rissbreite w auf einen quasistatischen Querzugversuch wurde bisher als unkritisch betrachtet. Jedoch führen die bereits erfolgten Untersuchungen zu den Einflüssen von Stahl- und Verbundmörteleigenschaften zu einem gegenteiligen Ergebnis.

Abb. 5.75: Muschelförmiges Betonversagen

In der Literatur (vgl. Fuchs 1992, Eligehausen und Mallée 2000, Hofmann 2004, Schmied 2008, Eligehausen et al. 2006, S. 207) liegen bereits zahlreiche Untersuchungen zur Bestimmung der Betondruckspannungen in ungerissenem Beton vor. In Bezug auf die Höhe der Betondruckspannungen vor dem Injektionsanker auf der lastzugewandten Seite übt die Betonrissweite w einen geringeren Einfluss (< 10 %) auf das Tragverhalten des Ankers aus (Eligehausen et al. 2006, S. 207). Bei Querzugversuchen in gerissenem Beton bleibt der Prozess der Betondruckspannungsverteilung weitgehend erhalten. Der Injektionsanker belastet dabei gleichzeitig die durch den Riss getrennten Betonflächen. Sobald die zulässigen Betonspannungen überschritten werden, entsteht der Betonoberfläche an ein muschelförmiger Kegelausbruch. In Abhängigkeit von der Größe der einwirkenden Querzugkraft führt eine Verschiebung des Betonkegels gegen die Querzugplatte zur Bildung zusätzlicher abhebender Kräfte (siehe Abb. 5.75).

Die Bruchbildauswertung ergab, dass der muschelförmige Betonkegel eine Tiefe von etwa 0,5 d_s aufweist. Dieses Ergebnis stimmt mit dem aus den Untersuchungen von *Vintzéleou und Tassios 1987* überein, die die Betonspannungsspitze unter der Betonoberkante bei ca. 0,5 d_s vermutet haben. Die Bruchbilder zeigen zwei unterschiedliche Gewindestäbe: M20 8.8 und M20 A4/70 (siehe Abb. 5.76).

(a)

Abb. 5.76: Bruchbilder von Querzugversuchen an Gewindestäben: (a) M20_8.8_I0_V2, (b) M20_A4_I1_V1

Je nach verwendetem Verbundmörtel kann die Abnahme der Zugtragfähigkeit in gerissenem Beton bis zu 80 % im Vergleich zu ungerissenem Beton betragen (*Eligehausen et al. 2006,* S. *205*). Die Stärke dieser Abnahme hängt von den einzelnen Bestandteilen des Verbundmörtels und der Beschaffenheit des Bohrlochs ab.

Wie bereits erläutert, führt das Überschreiten der aufnehmbaren Verbundspannungen $\tau_{u,zul}$ entlang der Injektionsanker zu einer Zunahme der Stabauslenkungen *s* und des Abstands l_d , was mit einer kontinuierlichen Erhöhung der axialen Verschiebung u_p einhergeht (siehe Kapitel 5.6.9). Die Stabauslenkung *s* und die Position des verformten Stabbereichs l_d von der Betonoberkante aus gemessen beschreiben dabei indirekt den Zustand des Verbunds zwischen Anker und Betonuntergrund. Der Einfluss der Betondruckfestigkeit wird dabei indirekt bei der Ermittlung der aufnehmbaren Verbundspannungen $\tau_{u,zul}$ berücksichtigt.

5.6.13 Ermittlung des verformten Stabbereichs

Die bisherigen Beobachtungen bestätigen einen Zusammenhang zwischen der Stabauslenkung *s*, dem Abstand l_d und dem Stabdurchmesser d_s . Darauf beruht die Vermutung, dass die Länge l_d direkt von der Stabauslenkung *s* abhängt und in Bezug auf den Stabdurchmesser d_s bestimmen werden kann. Um eine bessere Übersicht der einzelnen Werte zu erhalten, wurden der Abstand l_d und die Stabauslenkung *s* einander gegenübergestellt (siehe Abb. 5.77(a) und Abb. 5.77(b). Hier können die Ergebnisse der einzelnen Güteklassen in Verbindung mit dem jeweiligen Verbundmörtel abgelesen werden.

Die Unterschiede in der Stabgeometrie zwischen den Bewehrungs- und Gewindestäben sind hier deutlich erkennbar (siehe Abb. 5.77(a)). Die Bewehrungsstäbe besitzen nicht nur Stahlrippen, sondern auch Stahlstege. Je nach Einbaurichtung wurden bei den Querzugversuchen entweder die Stahlrippen oder die Stahlstege belastet. Bei den Bewehrungsstäbe mit einem I1- oder I2-Verbundmörtel wurden bei Querzugversuchen die Stahlstege belastet. Diese Belastung führte zu einem abweichenden Verformungsverhalten im Vergleich zu anderen Querzugversuchen.

Abb. 5.77: Gegenüberstellung des Abstands l_d zur Stabauslenkung s: (a) M8- und Ø-8-mm-Stäbe, (b) M20- und Ø-20-mm-Stäbe

Bei den M20-Gewindestäben konnte ein duktilitätsabhängiges Verformungsverhalten der Stäbe beobachtet werden. So wiesen zum Beispiel die M20-8.8- und M20-5.6-Gewindestäbe ein sich deutlich voneinander unterscheidendes Verformungsbild auf (siehe Abb. 5.77(a) und Abb. 5.77(b)). Die einbetonierten Stäbe der I0-Versuchsserie zeigten im Vergleich zu den Injektionsankern große Stabauslenkungen *s* und tiefere Abstände l_d . Dieses Verformungsverhalten bei den einbetonierten Stäben wird durch geringe aufnehmbare Verbundspannungen $\tau_{u,zul}$ im Vergleich zu den Injektionsankern verursacht.

Abb. 5.78: Abstand l_d von der Betonoberkante in Abhängigkeit von der Stahldehnung ε_{fu} : (a) M8 und Ø 8 mm, (b) M20 und Ø 20 mm

Um den Einfluss der Stahleigenschaften auf das Verformungsverhalten von Injektionsankern zu untersuchen, wurden zunächst die gemessenen Abstände l_d und die Stahldehnungen ε_{fu} bei der Erreichung der maximalen Zugkraft während einer Zugprüfung gegenübergestellt (siehe Abb. 5.78). Es wurde festgestellt, dass bei Gewindestäben der Güteklasse A4/70 mit Stahldehnungen ε_{fu} über 20 % und Gewindestäbe der Güteklasse 8.8 mit Stahldehnungen ε_{fu} unter 5 % die Abstände l_d auf einem vergleichbaren Niveau liegen. Die M8-Gewindestäbe der Güteklasse 4.8 weisen ebenfalls Stahldehnungen $\varepsilon_{fu} < 5$ % auf. Der Abstand l_d ist bei diesen Güteklassen eindeutig kleiner als bei Gewindestäben der Güteklasse 8.8. Daher kann die Position des verformten Stabbereichs l_d nicht allein anhand der Stahldehnungen ε_{fu} beschrieben werden. Die Versuchsergebnisse der Bewehrungsstäbe lassen sich auch nicht direkt zuordnen, da sie im Gegensatz zu den Gewindestäben über einen größeren Spannungsquerschnitt A_s verfügen, obwohl die nominalen Stabdurchmesser d_s gleich sind.

Da in dieser Arbeit das Verformungsverhalten von Injektionsankern untersucht wird, bleiben die I0-Versuchsserien in weiterem Verlauf der Untersuchungen unberücksichtigt.

Die Steifigkeit des Ankers hängt direkt von den Stahldehnungen ε_{fu} ab und kann anhand der Stabverformungen wie der Stabauslenkung *s* und dem Abstand l_d beschrieben werden (siehe Abb. 5.79(a)). Während die Versuchsergebnisse der Gewindestäben eine homogene Punktwolke bilden, weisen die Bewehrungsstäbe ein vom Verhalten der Gewindestäben abweichendes Verformungsbild auf (siehe Abb. 5.79(b)). Hier wird die Stabgeometrie (Stabauslenkung *s* und Abstand l_d) durch den Quotienten aus l_d/s sowie die Stahleigenschaften durch die Stahldehnungen ε_{fu} ausgedrückt.

Die Gegenüberstellung aus l_d/s und ε_{fu} liefert den Schlüssel zur Beschreibung des Trag- und Verformungsverhaltens von Injektionsankern (siehe Abb. 5.79(b)). Durch eine weitere Umformulierung der zuvor genannten Zusammenhänge und die Einführung der Abminderungsfaktoren δ_a und δ_f können die Stabsteifigkeiten als modifizierte Quotienten l_d/s und s/d_s dargestellt werden (in Abb. 5.80(a)). Die Position des verformten Stabbereichs l_d von der Betonoberkante aus gemessen kann dabei direkt nach Gleichung (5.31) ermittelt werden. Durch die Berücksichtigung der Abminderungsfaktoren nach Gleichung (5.31) wurde die

Streuung der Ergebnisse wesentlich verbessert (siehe Abb. 5.80(a)), wobei das Bestimmtheitsmaß R^2 ca. 94 Prozent beträgt.

Abb. 5.79: (a) Gegenüberstellung von Abstand l_d zur Stabauslenkung s, (b) Stabsteifigkeit als Quotient l_d/s in Abhängigkeit von der Stahldehnung ε_{fu}

Abb. 5.80: (a) Verhältnis von modifizierten Quotienten l_d/s zu s/d_s , (b) Gegenüberstellung von berechneten und gemessenen Abständen l_d

Dann wurden die berechneten Abstände l_d den gemessenen Werten gegenübergestellt (siehe Abb. 5.80(b)). Die berechneten Werte nach Gleichung (5.31) stellen eine relativ gute Näherung zu den Versuchsdaten dar, wobei das Bestimmtheitsmaß R^2 ca. 99 Prozent beträgt. Lediglich bei den Bewehrungsstäben mit einem Durchmesser von 8 mm kamen große Abweichungen vor. Dieses bereits erläuterte Verformungsverhalten ist auf die Belastungsposition (Steg oder Rippe) des Bewehrungsstabs zurückzuführen.

$$l_d = \frac{1,197s \cdot \varepsilon_{fu} \left(\frac{s}{d_s}\right)^{-0,823}}{\delta_a \cdot \delta_{f,i}}$$
(5.31)

Wie zuvor festgestellt weisen Ankerstäbe von unterschiedlicher Güteklasse bei einer vergleichbaren Position des verformten Stabbereichs unterschiedliche Verhältnisse l_d zu *s* auf. Anhand der Untersuchungen konnte festgestellt werden, dass das Ausmaß der Stahldehnungen ε_{fu} bei den verwendeten Ankern diese Effekte verursachen. Um die Versuchsergebnisse auf ein vergleichbares Niveau zu bringen, wurden die Einflüsse der Stahlqualität anhand der Stahldehnungen ε_{fu} der jeweiligen Materialien empirisch untersucht. Dafür wurde eine Funktion zur Ermittlung des Abminderungsfaktors δ_f nach Gleichung (5.32) für M8- und Stäbe mit einem Durchmesser von 8 mm und nach Gleichung (5.33) für M20- und Stäbe mit einem Durchmesser von 20 mm abgeleitet. Der Abminderungsfaktor δ_f kann in Abhängigkeit von der Stahldehnung ε_{fu} direkt abgelesen werden (siehe Abb. 5.81).

$$\delta_{f,M8} = -0.0072\varepsilon_{fu}^2 + 0.711\varepsilon_{fu} - 0.4962$$
(5.32)

$$\delta_{f,M20} = -0.0165\varepsilon_{fu}^2 + 0.8215\varepsilon_{fu} - 0.8114$$
(5.33)

Abb. 5.81: Ermittlung des Abminderungsfaktors δ_f von der Stahldehnung ε_{fu}

Die dargestellten Zusammenhänge beziehen sich auf den Nenndurchmesser d_{nom} . Da die Bewehrungsstäbe keine den Gewindestäben vergleichbare Geometrie besitzen, wurde der Spannungsquerschnitt A_s näherungsweise anhand des Nenndurchmessers bestimmt und mit dem Abminderungsfaktor δ_a an den Spannungsquerschnitt A_s der Gewindestäbe nach Gleichung (5.34) berechnet und angepasst. Die Modifizierung gilt als Näherung für Bewehrungsstäbe. Dabei gelten die Gleichungen (5.32) und (5.33) ausdrücklich für die Beschreibung des Verformungsverhaltens der Gewindestäbe.

$$\delta_a = A_{s,Gewinde} / A_{s,Bewehrung} \tag{5.34}$$

mit

 $\delta_{a_{\emptyset 8}} = 0,72$ für Ø-8-Bewehrungsstahl $\delta_{a_{\emptyset 20}} = 0,79$ für Ø-20-Bewehrungsstahl $\delta_a = 1,0$ für Gewindestäbe

5.6.14 Ermittlung von Stabauslenkung s

Die Stabauslenkung *s* gilt hier als eine wichtige Eingangsgröße, um die Position des verformten Stabbereichs l_d von der Betonoberkante nach Gleichung (5.31) aus Kapitel 5.6.13 zu bestimmen. Die Größe der Stabauslenkung *s* kann auf drei Wegen ermittelt werden:

- durch die Entnahme des Ankers aus dem Betonpr
 üfkörper und die Durchf
 ührung einer Bildanalyse (siehe Abb. 5.82(a)),
- durch die Vermessung der Stabauslenkung s direkt auf der Betonoberfläche (siehe Abb. 5.82(b)) und
- näherungsweise nach Gleichung (5.37).

Abb. 5.82: Ermittlung von Stabauslenkungen *s* durch: (a) Bildanalyse an geprüften Ankern, (b) direkte Messung auf der Betonoberfläche

Die Durchführung einer Bildanalyse erforderte die Entnahme jedes einzelnen Ankerstabs aus den Betonprüfkörpern und war daher mit großem Aufwand verbunden. In den meisten Fällen können die Stabauslenkungen *s* direkt nach der Versuchsdurchführung auf der Betonoberfläche ausgemessen werden. Wie dargestellt muss die Anfangsposition vor der Versuchsdurchführung exakt markiert werden, um die Größe der Stabauslenkung *s* genau zu ermitteln (siehe Abb. 5.82(b)).

Für alle anderen Fälle kann die Größe der Stabauslenkung *s* anhand der gemessenen maximalen Ankerverschiebungen u_{max} nach Gleichung (5.35) für Durchmesser-8-mm-Stäbe und nach Gleichung (5.36) für Durchmesser-20-mm-Stäbe abgeschätzt werden. Zwischenwerte für andere Stabgrößen dürfen interpoliert werden.

$$s_8 = 0,619u_{max} - 0,923 \tag{5.35}$$

$$s_{20} = 0,667u_{max} - 1,923 \tag{5.36}$$

Diese Gleichungen wurden mithilfe einer linearen Regression der durchgeführten Versuchsergebnisse mit den Stabdurchmessern 8 mm und 20 mm ermittelt (siehe Abb. 5.83(a)). Die dargestellten Zusammenhänge für die Anker mit $d_s = 8$ mm besitzen ein Bestimmtheitsmaß R^2 von ca. 89 %. Bei den Stäben mit $d_s = 20$ mm wird ein größeres Bestimmtheitsmaß R^2 von ca. 99 % verzeichnet. Die berechneten Stabauslenkungen $s_{berechnet}$ zeigen eine zufriedenstellende Übereinstimmung mit den gemessenen Stabauslenkungen $s_{Versuch}$ (siehe Abb. 5.83(b)).

Abb. 5.83: (a) Verhältnis der maximalen Ankerverschiebungen u_{max} zur Stabauslenkungen s, (b) Gegenüberstellung von berechneten und gemessenen Stabauslenkungen s

Die maximalen Ankerverschiebungen u_{max} beschreiben den Punkt, an dem die kritische Schädigung des Ankers bereits erreicht wurde und das Stahlversagen auftritt (siehe Abb. 5.84). Wenn die Ankerverschiebungen u_{max} nicht unmittelbar nach dem Erreichen der maximale Querzugkraft V_u sich befindet, dann hat der Injektionsanker ein signifikantes Herausziehen erfahren, welches mit der Reduktion der Querzugkraft V_u einhergeht. Weist ein Injektionsanker bereits einen Kraftverlust auf, dann entspricht die Ankerverschiebung u an der Stelle der maximalen Querzugkraft V_u nicht der maximalen Ankerverschiebung u_{max} . Die Position von u_{max} kann mithilfe des Last-Verschiebungs-Diagramms beurteilt werden.

Durch die Berücksichtigung der Flächenverhältnisse des betrachteten Ankers $A_{s,i}$ und des Referenzquerschnitts $A_{s,ref}$ entfällt eine Splittung der Versuchsergebnisse auf einzelne Stabdurchmesser. Nach Gleichung (5.37) können die Stabauslenkungen *s* näherungsweise für die Anker mit einem Stabdurchmesser von 8 mm und 20 mm direkt berechnet werden.

$$s = 0.3151 \cdot u_{max}^{1.191} / (1 - A_{s,i} / A_{s,ref})$$
(5.37)

mit

A_{s,i} die Querschnittsfläche des betrachteten Ankers

As,ref die Referenzquerschnittsfläche

Abb. 5.84: Ermittlung der maximalen Ankerverschiebung u_{max}

Dann wurden die gemessenen Stabauslenkungen *s* und die Ankerverschiebungen u_{max} einander gegenübergestellt (siehe Abb. 5.85(a)). Das Bestimmtheitsmaß R^2 nach der abgeleiteten Gleichung (5.37) beträgt 99 %. Im Hinblick auf die erreichte Genauigkeit zeigt die Gegenüberstellung der berechneten und gemessenen Stabauslenkungen *s* eine relativ gute Übereinstimmung (siehe Abb. 5.85(b)).

Da die Gewindestäbe und die Bewehrungsstäbe unterschiedlich hergestellt wurden (kalt und warm verformt) sowie die Stabgeometrie bei beiden stark voneinander abweicht, wird hier empfohlen, bei allen weiteren Untersuchungen die Versuchsergebnisse von den Gewindestäben separat von den Bewehrungsstäben zu betrachten.

Abb. 5.85: Betrachtung aller Stabgrößen: (a) Verhältnis der maximalen Ankerverschiebungen u_{max} zur Stabauslenkungen s, (b) Gegenüberstellung von berechneten und gemessenen Stabauslenkungen s

5.6.15 Zwischenfazit

Um das Trag- und Verformungsverhalten von nachträglich installierten Injektionsankern unter Querbeanspruchung zu bewerten, erfolgten insgesamt 152 statische Querzugversuche in gerissenem Beton. Hierbei wurden M8- und M20-Gewindestäbe der Güteklasse 4.8, 5.6, 8.8 und A4/70 sowie Bewehrungsstäbe B500B mit einem Durchmesser von 8 mm bzw. 20 mm verwendet. Untersucht wurde der Einfluss von drei Injektionsmörteln, deren Zusammensetzung auf Pure Epoxy (I1), styrolfreiem Polyester (I2) und ungesättigtem Polyester (I4) basiert. Als Referenz dienten einbetonierte Gewinde- und Bewehrungsstäbe.

Die genaue Analyse der Bruchbilder ergab drei maßgebende Versagensmodelle:

- a) Stahlversagen durch Abscheren,
- b) Stahlversagen durch Abscheren bei gleichzeitigem Herausziehen des Ankers: In diesem Fall trat neben dem Abscheren des Stabs auch ein Herausziehen des Ankers aus dem Beton auf, was zu einer Reduktion der Verbundsteifigkeit führte.
- c) Herausziehen: Hierbei kam es zum vollständigen Herausziehen des Ankers aus dem Beton.

Auf der Grundlage durchgeführter Querzugversuche wurde in Kapitel 5.6.7 das Tragverhalten querbelasteter Injektionsanker anhand eines bruchmechanischen Modells beschrieben. Demnach setzt sich die einwirkende Querzugkraft V_u aus drei Kraftanteilen zusammen: Betonanteil V^* , Zugkraftanteil N_{\parallel} und Reibungsanteil V_R . Die Interaktion der einwirkenden Zugund Querkraftanteile erfolgte iterativ nach Gleichung (5.22).

Die Analyse der Versuchsergebnisse und der Bruchbilder ergab, dass die Reduktion der Querzugtragfähigkeit der Injektionsanker in gerissenem Beton auf die Überschreitung der zulässigen Verbundspannungen $\tau_{u,zul}$ infolge der einwirkenden Zugkraftanteile $N_{u,\parallel}$ und die damit verbundene axiale Stabverschiebung u_p zurückzuführen ist. Die Duktilität des verwenden Stahls sowie die Einbindetiefe h_{ef} und die Verbundfestigkeit des Injektionsmörtels beeinflussten maßgeblich die Höhe der zulässigen Verbundspannungen $\tau_{u,zul}$.

Die Duktilität des Stahls, die durch die Zugfestigkeit f_u und die erreichte Stahldehnung ε_{fu} bei Höchstlast definiert wird, ist entscheidend, um die für den Abtrag der einwirkenden Zugkraft erforderlichen Einbindetiefe $h_{ef,red} = h_{ef} - l_d$ zu ermitteln. Die Tiefe des verformten Bereichs l_d , die bei der Einleitung der Zugkräfte nicht berücksichtigt wird, kann entweder den Bruchbildern entnommen oder zerstörungsfrei nach Gleichung (5.31) berechnet werden. Der Einfluss des verwendeten Verbundmörtels äußert sich in Variation der Stabauslenkung *s* und der Tiefe des verformten Bereichs l_d . Daher kann die abgeleitete Gleichung für unterschiedliche Güteklassen und Verbundmörtel angewendet werden.

Die Höhe der zulässigen Verbundspannungen $\tau_{u,zul}$ wird anhand der Zugversuche in gerissenem Beton bestimmt. Je nach Rissbreite und Betongüte variiert hierbei die Zugtragfähigkeit des Injektionsankers. Zudem konnte ein Zusammenhang zwischen der ermitteln zulässigen Verbundspannung $\tau_{u,zul}$ und der Spaltzugfestigkeit $f_{ct,mörtel}$ festgestellt werden (siehe Kapitel 5.6.9). Diese Beobachtung wird hier nicht weiterverfolgt, sollte aber bei zukünftigen Forschungsarbeiten untersucht werden.

In Kapitel 5.6.8 wurde das vereinfachte Verfahren zur Ermittlung der Zugkraftanteile N_{\parallel} und der Querbelastung $V_{u,\perp}$ ohne Reibungskraft V_R vorgestellt. Dabei werden die Kraftanteile

näherungsweise anhand des Neigungswinkelns φ° der geprüften Anker ermittelt. Dieser Ansatz ermöglicht die Überprüfung der einwirkenden und zulässigen Verbundspannungen $\tau_u/\tau_{u,zul}$ und eignet sich besonders gut bei auftretenden Materialschädigungen des Stahlquerschnitts oder des Betons. So können auch bei seismischen alternierenden Wechselbelastungen die einwirkenden Zug- und Querkraftanteile annähernd ermittelt werden.

5.7 Seismische Querzugversuche in gerissenem Beton nach EAD 330499-01-0601

5.7.1 Übersicht

Die Versuchsergebnisse der statischen Querbelastungen haben eindeutig gezeigt, dass die Verwendung von Gewindestäben der Güteklassen 8.8 und A4/70 eine größere Relevanz für die Beschreibung des Trag- und Verformungsverhaltens von Injektionsankern hat. Ein entsprechender Hinweis findet sich auch in *EAD 330499-01-0601*, wonach die seismische Versuche mit Kohlenstahlstäben der Güteklasse 8.8 erfolgen müssen.

Für die vorliegende Arbeit wurden seismische Querbelastungen der Leistungskategorie C1 durchgeführt: die Versuchsserie C1.2. Für das Prüfprogramm dienten die Güteklassen 8.8 und A4/70 mit den Stabgrößen M8 und M20. Die Wahl des Verbundmörtels I4 macht die Trag- und Verformungsfähigkeitsanalyse bedeutsam, da diese Erkenntnisse eine frühzeitige Aussage über die Verwendbarkeit eines beliebigen Verbundmörtels ermöglichen sollen. Zur seismischen Prüfung wurden Injektionsanker in Kombination mit dem Verbundmörtel I4 eingesetzt, da diejenigen der Kategorie I1 und I2 bereits eine gültige Zulassung für die Erdbebenleistungskategorie C1 besitzen.

Die seismischen Querbelastungen der Leistungskategorie C1 erfolgte in Übereinstimmung mit *EAD 330499-01-0601*. Eine umfassende Beschreibung der Versuche findet sich in Kapitel 2.2.3.

Das Versuchskonzept sieht die Durchführung von seismischen Querzugversuchen mit den gleichen Stabeinbindetiefen h_{ef} vor, wie sie bei den statischen Querzugversuchen in Tab. 5.11 in Kapitel 5.6.1 verwendet wurden. In der folgenden Tab. 5.14 ist die Anzahl, die Einbindetiefe und die verwendete Güteklasse der seismischen Querzugversuche aufgelistet.

Mörtel	Größe	Gütekla sse	Einbindetiefe h_{ef}	h_{ef}/d_s	Anzahl
[-]	[-]	[-]	[mm]	[-]	[-]
l4 – Verbundlos	M8	8.8	40	5,00	3
14	M8	8.8	40	5,00	4
14	M8	8.8	70	8,75	6
I4 – Verbundlos	M8	A4/70	40	5,00	5
14	M8	A4/70	40	5,00	7
14	M8	A4/70	70	8,75	6
l4 – Verbundlos	M20	8.8	100	5,00	2
14	M20	8.8	100	5,00	6
14	M20	8.8	120	6,00	7
I4 – Verbundlos	M20	A4/70	100	5,00	2
14	M20	A4/70	100	5,00	6
14	M20	A4/70	120	6,00	8

Tab. 5.14: Seismische Querzugversuche C1.2 in gerissenem Beton

Zusätzlich erfolgten spezielle Versuche mit "verbundlosen" Injektionsankern, bei denen die Gewindegänge der Gewindestangen mit Mörtel ausgefüllt wurden, um die Biegesteifigkeit im Vergleich zu den Standardversuchen nicht zu beeinflussen. Anschließend wurden die

Gewindestäbe mit einer dünnen Gleitfolie umgewickelt, um den Verbund zwischen der Stange und dem verwendeten Verbundmörtel zu stören (siehe Kapitel 5.7.10).

5.7.2 Versuchsaufbau

Die Versuchsdurchführung erfolgte mithilfe einer universalen Hydraulikmaschine an Dehnprüfkörpern aus dem niederfesten Beton C20/25. Die Prüfkörpergeometrie von 0,80 × 0,80 × 0,25 m ermöglichte die Prüfung von zwei Injektionsankern. Dabei wurde ein Injektionsanker pro Riss und Seite geprüft. Die Einlegung eines 2 mm dicken Rissblechs im mittleren Bereich des Prüfkörpers ermöglichte eine äußerst effektive Risserzeugung im Beton. Um die zulässige Stahldehnung der einbetonierten Bewehrungsstäbe bei der Rissöffnung nicht zu überschreiten, wurde der Verbund der Stäbe mit dem Beton im Setzbereich des Ankers unterbrochen. Hier wurden die Bewehrungsstäbe um etwa 30 cm mit einem Stoffband umgewickelt (siehe Abb. 5.86).

Abb. 5.86: Prüfkörperzeichnung von Dehnkörpern: (a) Längsschnitt, (b) Querschnitt mit eingelegtem Rissblech

Die Betonrisse wurden mithilfe eines Reißrahmens erzeugt. Dafür wurde der Prüfkörper (siehe Abb. 5.87) auf die Startposition unter dem hydraulischen Prüfzylinder platziert und anschließend mittels zweier Stahlträger und zweier Hohlzylinder im Spannfeld positioniert und befestigt. Die Höhe der Einspannung entsprach in etwa der maximalen entgegenwirkenden Querzugkraft, wodurch eine vertikale Verschiebung des Prüfkörpers ausgeschlossen wurde.

Im Reißrahmen eingespannt, wurden die aus dem Prüfkörper ragenden Bewehrungsstäbe auf Zug belastet, bis die gewünschte Rissbreite $w \ge 0,50$ mm erreicht war. Die Rissbreitemessung erfolgte über vier induktive Wegaufnehmer, die wiederum an vier Ecken des Betonprüfkörpers platziert wurden.

Abb. 5.88: Versuchsaufbau: (a) Prüfkörper in der Prüfeinrichtung aufgebaut, (b) Querzugplatte mit eingebautem Injektionsanker

Unmittelbar vor dem Versuchsstart wurde ein Passzylinder in die Querzugplatte eingelegt und mit dem Injektionsanker handfest verschraubt. Der Passzylinder wurde zusätzlich mit der Querzugplatte biegefest verschraubt, um sein ungewolltes Herausdrücken während des Versuchs zu vermeiden. In Anlehnung an *EAD 330499-01-0601* wurde der Aufbau durch die Verwendung von Rollenlagern gegen ein Abheben gesichert (siehe Abb. 5.88(a) und Abb. 5.88(b)). Bei der Ermittlung der statischen Restquerzugtragfähigkeit V_u^{\square} wurden die Rollenlager nicht entfernt.

Die Aufnahme der einwirkenden Querzugkräfte erfolgte durch den in der Prüfmaschine verbauten Kraftsensor. Zwei an der Querzugplatte befestigte LVDT-Wegaufnehmer maßen die Ankerverschiebungen. Wie bei den statischen Querzugversuchen diente auch hier der QuantumX als Messverstärker.

5.7.3 Bildanalyse

Alle Injektionsanker wurden analog zu den statischen Querzugversuchen den geprüften Betonprüfkörpern entnommen. Es erfolgte eine zweistufige Analyse der Stabverformungen der Gewindestäbe. Die Auswertung der Bruchbilder und die Bestimmung der geometrischen Größen sind in Kapitel 5.6.5 bereits beschrieben.

5.7.4 Versuchsergebnisse: Spannungsniveau

Kapitel 2.2.3 enthält bereits alle Gleichungen für die Berechnung und die Reduzierung der Wechselbelastung, daher geht dieser Abschnitt lediglich auf diese Gleichungen ein.

Zur Ermittlung der Wechselbelastung V_{eq} nach Gleichung (5.38) wurden die Ergebnisse der Scherprüfung mit der Lagerungsart Typ B aus Kapitel 5.2.3 als Referenzlasten $V_{s,m}$ verwendet. Die Abminderung der Wechsellast V_{eq} infolge eines vorzeitigen Ankerversagens während des Testprogramms erfolgte nach Gleichung (2.4). Für alle erfolgreich abgeschlossenen Versuche zu seismischen Querzugbelastungen wurde der Abminderungsfaktor α_v nach Gleichung (2.5) bestimmt. Dabei wurden keine Versuche wiederholt, wenn die Bedingung $V_u > 1,6V_{eq}$ nicht erfüllt wurde. Das Testprogramm wurde schematisch dargestellt (siehe Abb. 5.89).

Abb. 5.89: Testschema der alternierenden Querzugversuche C1.2

Die tabellarische Präsentation der Versuchsergebnisse ermöglicht die direkte Entnahme der Einzelwerte jeder Versuchsserie. Alle Tests, die das Programm nicht erfolgreich absolvierten, sind hier ebenfalls aufgeführt. Das Spannungsniveau der einwirkenden Wechsellast V_{eq} wurde als σ_{eq} sowie die erreichten Resttragfähigkeiten V_u als σ_u nach dem erfolgreichen Absolvieren des Testprogramms angegeben. Die Querzugspannungen σ_{eq} und σ_u infolge der Wechselkraft V_{eq} und der Restquerzugskraft V_u wurden nach den Gleichungen (5.39) und (5.40) berechnet.

$$V_{eq} = 0.50 V_{s,m} \tag{5.38}$$

$$\sigma_{eq} = V_{eq}/A_s \tag{5.39}$$

$$\sigma_u = V_u / A_s \tag{5.40}$$

Alle durchgeführten seismischen Querzugversuche wurden aufgelistet (siehe Tab. 5.15 bis Tab. 5.18). Weitere Einzelwerte können den Anhängen F und H entnommen werden.

Größe	Gütekl asse	Nr.	h_{ef}	V _{eq}	σ_{eq}	V _u	σ_u	Zyklen	Versagensart
[-]	[-]	[-]	[mm]	[kN]	[N/mm ²]	[kN]	[N/mm ²]	[-]	[-]
		1	41,8	9,8	267,4	-	-	126	Sm
		2	40,5	8,8	239,8	1	-	109	Sm
		3	40,9	7,8	212,9	18,9	518,7	140	S
		4	40,1	7,8	212,5	15,6	426,8	140	S
M8	A4/70	5	39,4	7,8	212,2	14,2	388,5	140	S
		6	38,4	7,3	198,7	18,8	514,3	140	S
		7	40,9	7,3	198,7	15,6	427,8	140	S
		1	70,0	9,8	267,1	0,0	0,0	140	Sm
		2	68,5	8,9	242,9	19,3	527,7	140	S
		3	70,0	9,8	267,8	20,1	550,4	140	S
		4	70,6	9,8	267,2	17,7	485,4	140	S
		5	71,5	9,8	267,0	18,1	496,4	140	S
		6	89,8	9,8	267,8	20,9	573,0	140	S

Tab. 5.15: Seismische Querzugversuche mit M8 und Güteklasse A4/70

Tab. 5.16: Seismische Querzugversuche mit M20 und Gütek	lasse A4/70
---	-------------

Größe	Gütekl	Nr.	h _{ef}	V _{eq}	σ_{eq}	V _u	σ_u	Zyklen	Versagensart
[-]	[-]	[-]	[mm]	[kN]	[N/mm²]	[kN]	[N/mm²]	[-]	[-]
		1	99,5	62,0	253,2	102,9	420,2	140	s
		2	101,3	56,0	228,7	109,0	444,9	140	S
		3	99,9	62,0	253,1	108,0	440,9	140	s
		4	98,3	56,0	228,7	101,1	412,8	140	S
M20		5	101,0	62,0	253,1	100,0	408,5	140	S
	A4/70	6	100,9	62,0	253,2	110,0	449,1	140	S
		1	124,0	64,1	261,4	108,3	442,1	140	S
		2	120,8	64,0	261,4	95,2	388,9	140	S
		3	121,0	62,0	253,3	_	_	103	Sm
		4	121,6	56,0	228,7	123,5	504,1	140	S
		5	121,7	56,0	228,7	116,8	476,9	140	S
		6	120,9	64,0	261,3	102,7	419,4	140	S
		7	119,8	75,0	306,1		_	8	Sm
		8	120,1	64,0	261,3	115,3	470,7	140	s

Größe	Gütekl asse	Nr.	h _{ef}	V _{eq}	σ_{eq}	V _u	σ_u	Zyklen	Versagensart
[-]	[-]	[-]	[mm]	[kN]	[N/mm ²]	[kN]	[N/mm ²]	[-]	[-]
		1	40,0	9,8	267,6	17,6	481,5	140	S
	8.8	2	40,0	9,8	267,2	17,3	474,1	140	S
M8		3	40,3	9,8	267,8	16,0	439,5	140	S
		4	42,0	8,3	226,7	16,8	460,0	140	S
		1	69,2	9,8	267,3	16,6	455,9	140	S
		2	68,9	9,8	267,6	17,1	469,7	140	S
		3	70,0	9,8	267,7	17,3	472,7	140	S
		4	70,8	10,5	274,2	1	-	140	Sm
		5	70,2	9,8	267,3	16,3	445,3	140	S
		6	71,0	9,8	267,5	17,5	479,2	140	S

Tab. 5.17: Seismische Querzugversuche mit M8 und Güteklasse 8.8

Tab. 5.18: Seismische Querzugversuche mit M20 und Güteklas	se 8.8
--	--------

Größe	Gütekl	Nr.	h _{ef}	V _{eq}	σ_{eq}	V _u	σ_u	Zyklen	Versagensart
[-]	[-]	[-]	[mm]	[kN]	[N/mm²]	[kN]	[N/mm²]	[-]	[-]
		1	100,8	64,0	261,3	101,30	413,7	140	S
		2	97,8	64,0	261,4	104,20	425,5	140	S
		3	102,7	64,0	261,3	103,50	422,6	140	S
		4	101,3	64,0	261,3	102,30	417,8	140	s
		5	100,1	64,0	261,4	104,20	425,5	140	s
		6	99,0	64,0	261,3	101,60	415,0	140	S
M20	8.8	1	121,2	60,1	245,1	107,16	437,4	140	S
		2	122,5	65,0	265,5	103,25	421,4	140	s
		3	119,8	65,1	265,6	_	_	75	Sm
		4	119,9	60,0	245,1	113,87	464,8	140	S
		5	119,3	64,0	261,4	114,10	465,7	140	S
		6	120,6	64,0	261,4	98,91	403,7	140	S
		7	120,4	64.0	261,4	119,48	487,7	140	S

mit

s = Stahlversagen

 $s_m \quad = \quad \text{Biegeversagen}$

- V_u = Resttragfähigkeiten nach der seismischen Belastung
- V_{eq} = maximale Wechselkraft während der seismischen Belastung

 A_s = Spannungsquerschnitt

Abb. 5.90: Spannungsniveau: (a) Übersicht der Versuchsserien, (b) Überprüfung der Bedingung $\sigma_u/(1.6\sigma_{eq})$ in Abhängigkeit von Quotienten σ_{eq}/f_u , (c) Gegenüberstellung der Quotienten σ_{eq}/σ_u und σ_u/f_u

Bereits in Kapitel 4.4.1 wurden die Zusammenhänge zwischen der Höhe der einwirkenden Wechsellast V_{eq} und der Größe der Resttragfähigkeit V_u erörtert. Analog dazu werden die Quotienten σ_{eq}/σ_u und σ_u/f_u aus zwei unterschiedlichen Perspektiven einander gegenübergestellt. Die ermittelten Daten bieten eine Übersicht der einzelnen Versuchsserien (siehe Abb. 5.90 (a)). Aus dieser Betrachtung geht hervor, dass eine Erhöhung der Wechselspannung σ_{eq} zu einer proportionalen Reduzierung der Restquerzugspannung σ_u führt. Umgekehrt steigt die Restquerzugspannung σ_u , wenn die einwirkende Wechselspannung σ_{eq} während der seismischen Querbelastung reduziert wird.

Ein Vergleich der Quotienten verdeutlicht den linearen Zusammenhang der beiden Größen (siehe Abb. 5.90 (b)). Während die Verteilung der Einzelwerte bei den Gewindestäben der Güteklasse 8.8 ein einheitliches Muster aufweist, variieren die Ergebnisse der Gewindestäbe der Güteklasse A4/70 stärker. Bei der Untersuchung der Versagensarten wurde festgestellt,

dass die Stahleigenschaften und die Einbindetiefen der Stäbe h_{ef} offensichtlich einen Einfluss auf die Größe der Resttragfähigkeit V_u haben.

Die Bedingung für das erfolgreiche Bestehen der Wechselbeanspruchung wurde grafisch dargestellt (siehe Abb. 5.90(c)). Dafür muss der Quotient aus der Restquerzugskraft V_u größer als 160 % der Wechselkraft V_{eq} sein. Das Verhältnis der Querschnittsspannungen wird mit $\sigma_u/1,6\sigma_{eq}$ ausgedrückt. Die Höhe der aufgebrachten Wechselspannung wird im Verhältnis zur Stahlzugfestigkeit als σ_{eq}/f_u angegeben. Der Vergleich der beiden Quotienten zeigt deutlich, dass die Veränderung der Einbindetiefe ($h_{ef} = 5d_s$ und $h_{ef} > 5d_s$) einen Einfluss auf die Höhe der aufzubringenden Wechselspannung σ_{eq} und der resultierenden Resttragfähigkeit σ_u ausübt. Die Höhe der Wechsellastbelastung σ_{eq} bei Stäben mit einer Einbindetiefe $h_{ef} = 5d_s$ musste im Vergleich zu Versuchen mit $h_{ef} > 5d_s$ um fast 25 % reduziert werden (siehe Versuchsergebnisse M8-A4/70-Stäbe), damit das Testprogramm erfolgreich bestanden werden konnte.

Wie den Tabellen und Diagrammen zuvor zu entnehmen ist, wurde die Wechsellast V_{eq} bei allen Versuchsserien variiert, um ihren Einfluss auf das Tragverhalten der Injektionsanker zu untersuchen. Während die wenig duktilen Gewindestäbe der Güteklasse 8.8 fast ausschließlich ein reines Stahlversagen ohne Anzeichen auf ein Herausziehen belegen, wurden bei der Güteklasse A4/70 vermehrt große axiale Verschiebungen der Gewindestäbe beobachtet. Für eine weitere Untersuchung des Tragverhaltens der seismisch belasteten Injektionsanker wurden die Ankerverschiebungen u bzw. Stabauslenkungen s im Verlauf des Testprogramms und bei der Ermittlung der Resttragfähigkeit genau untersucht (siehe Kapitel 5.7.5). Dabei stehen die aus den statischen Querzugversuchen gewonnenen Erkenntnisse über die Umlenkung der Querzugkräfte in Zugkräfte $N_{u,\parallel}$ und die daraus resultierenden axialen Ankerverschiebungen u_p im Fokus dieser Untersuchungen.

Im Laufe der Versuchsdurchführung wurden alle Auffälligkeiten protokolliert. Alle nicht erfolgreich abgeschlossenen Tests wurden analysiert, um einen technischen Fehler auszuschließen. Die Problematiken und Fragestellungen zu jedem Versagensfall wurden explizit betrachtet und geklärt. Die Versuchsergebnisse sind hier zusammengefasst:

- In der Versuchsserie M8_A4_h_40 mit der Einbindetiefe h_{ef} = 5d_s wurde die Wechsellast V_{eq} um 20 % reduziert, um das Testprogramm erfolgreich zu absolvieren. Die Höhe der Wechsellast V_{eq} wurde experimentell ermittelt. Die Versuche M8_A4_h_40_V1 und M8_A4_h_40_V2 konnten die angegebenen Wechsellasten V_{eq} nicht aufnehmen.
- Bei dem Versuch M20_A4_h_120_V7 wurde eine zu hohe Wechsellast aufgebracht, um die Einflüsse aus der Überbelastung näher zu betrachten.
- Bei den Versuchen M20_A4_h_120_V3, M20_8.8_h_120_V3, M8_8.8_h_70_V4 und M8_A4_h_70_V1 wurde die Mutter vorsätzlich in einem Abstand von etwa 2 mm zum Anbauteil befestigt, um den Einfluss einer gelösten Gewindemutter zu untersuchen. Diese Thematik wird im Kapitel 5.7.8 aufgegriffen.

5.7.5 Tragverhalten

Das Tragverhalten von statisch querbelasteten Injektionsankern wird in Kapitel 5.6.7 beschrieben. Es wurde ein Injektionsanker mit zwei Fließzonen betrachtet, die im Abstand *a*

bis zum Drehpunkt von der Betonoberfläche entfernt waren (siehe Abb. 5.91(a)). Die Querbelastung V_u setzt sich aus dem Betontraganteil V^* , dem Reibungsanteil V_R und dem Zugkraftanteil N_{\parallel} zusammen. Eine vereinfachte Übertragung dieses Berechnungsmodells auf die seismische Querbelastungen kann jedoch nicht erfolgen. *Vintzéleou und Eligehausen 1991* hat bereits in seiner Untersuchung die Abminderung der Ankersteifigkeit durch die alternierenden Wechselbelastungen aufgezeigt (siehe Abb. 5.91(b)). Demzufolge führt jede wiederholte Querbelastung zu Betonschäden um den Injektionsanker herum, wodurch seine Querzugsteifigkeit rapide reduziert wird.

Abb. 5.91: (a) Traganteile aus seismischer Querbelastung, (b) Reduktion der Querzugsteifigkeit nach *Vintzéleou und Eligehausen 1991, S. 203*

Die wiederholten Querbelastungen führten zu der axialen Stabverschiebung u_p , die eine Veränderung der Stabeinspannung im Anbauteil bewirkte (siehe Abb. 5.92). Neben Biegemomenten erzeugten alternierende Querbelastungen V_{eq} ebenfalls Zugbeanspruchungen. Abhängig von der Verbundfestigkeit und der Einbindetiefe, führten diese zu axialen Stabverschiebungen u_p . Es entstand ein Spalt zwischen der Gewindemutter und dem Anbauteil. Die Veränderung des Einspanngrads im Anbauteil erhöhte die einwirkenden Biegemomente, wodurch die Querschnittschädigung des Gewindestabs durch die alternierende Wechselbelastung verstärkt wurde. Diese Biegemomente führten zur Reduktion der Querzugtragfähigkeit oder ggf. zum vorzeitigen Stahlversagen der Injektionsanker.

Das in Kapitel 5.6.7 dargestellte Berechnungsmodell basiert auf einem Gleichgewicht der Spannungsverhältnisse, ohne jedoch die Schädigungsdegradation von Beton und den Stahlquerschnitt zu berücksichtigen. Durch die Einbeziehung des Schädigungsfaktors D wird die Gleichung (5.21) erweitert, wodurch die Querschnittschädigung nach Gleichung (5.41) einbezogen werden kann. Der Schädigungsfaktor D = 1,0 kennzeichnet die volle Stahltragfähigkeit, während D = 0 eine theoretisch vollständige Zerstörung des Stahlquerschnitts beschreibt. Die Untersuchung der Degradierung der Stahltragfähigkeit wird in dieser Arbeit nicht thematisiert. Daher wird der Schädigungsfaktor D als unbekannt behandelt und die Berechnung der Kraftanteile erfolgt nach dem vereinfachten Ansatz wie in Kapitel 5.6.8 dargestellt.

Abb. 5.92: Versagensvorgang während der Wechsellastbelastung und Abbau der Teileinspannung an Gewindemutter

$$\frac{M_{1}}{M_{pl} \cdot D \cdot \sqrt{1 - \left(\frac{V^{*}}{V_{pl} \cdot D}\right)^{2}} \cdot \left(1 - \left(\frac{N_{\parallel}}{N_{pl} \cdot D \cdot \sqrt{1 - \left(\frac{V^{*}}{V_{pl} \cdot D}\right)^{2}}}\right)^{2}\right)^{2}\right)}$$
(5.41)

Nach der Untersuchung des Trag- und Verformungsverhaltens von statisch belasteten Injektionsankern (siehe Kapitel 5.6) konnte aufgezeigt werden, dass die Überschreitung der zulässigen Verbundspannungen durch die Zugbeanspruchung $N_{u,\parallel}$ einen wesentlichen Einfluss auf die Querzugtragfähigkeit der Injektionsanker ausübt. In Kapitel 5.6.8 wurde bereits der vereinfachte Ansatz für die Bestimmung der Kraftanteile beschrieben, der auf der Betrachtung der Stabgeometrie basiert. Daher bleibt die Ermittlung der Kraftanteile infolge der Beton- und Querschnittschädigungen unbeeinflusst. Es können aus den einwirkenden Querzugkräften V_u und V_{eq} in Abhängigkeit vom Neigungswinkel φ° näherungsweise der Zugkraftanteil $N_{u,\parallel}$ und der Querkraftanteil $V_{u,\perp}$ nach den Gleichungen (5.27) und (5.28) aus Kapitel 5.6.8 entsprechend berechnet werden (siehe Abb. 5.93).

Abb. 5.93: Neigungswinkel φ° bei seismischen Querbelastungen

Der Neigungswinkel φ° kann durch die Auswertung der Bruchbilder (siehe Kapitel 5.7.3) oder zerstörungsfrei nach Gleichung (5.29) aus Kapitel 5.6.8 anhand der Position des verformten Bereichs l_d und der Stabauslenkung *s* bestimmt werden. Es wird angenommen, dass die ermittelten Zusammenhänge sowohl für die statischen als auch für die seismischen Beanspruchungen näherungsweise gelten.

Dann wurde die anhand der Bildanalyse gemessenen und nach Gleichung (5.29) berechneten Neigungswinkel φ° nach der Restquerzugbelastung V_u einander gegenübergestellt (siehe Abb. 5.94).

Abb. 5.94: Gegenüberstellung der in Kapitel 5.7.3 gemessenen und nach Gleichung (5.29) berechneten Neigungswinkel φ° in seismischen Versuchen nach der Restquerzugbelastung V_{u}

Nach Gleichung (5.29) kann der Neigungswinkel φ° auch während der Wechsellastbelastung ermittelt werden. Die Belastungsintensität der Wechsellasten V_{eq} ist deutlich geringer als die Restquerzugkraft V_u , weshalb die rechnerisch ermittelte Größe der Querzugkraftkomponente unterschätzt werden könnte. Während der seismischen Wechsellastbelastung sind weder die Stabauslenkung *s* noch die Anfangsposition des verformten Stabbereichs l_d bekannt. Diese Werte können jedoch näherungsweise analog zu den statischen Querzugversuchen nach Gleichung (5.31) aus Kapitel 5.6.13 und Gleichung (5.37) aus Kapitel 5.6.14 berechnet werden.

Die Faktoren δ_f für M8- und M20-Gewindestäbe können nach den Gleichungen (5.32) und (5.33) aus Kapitel 5.6.13 ebenfalls berechnet werden und entsprechen somit den Angaben für die statischen Querzugversuche. Der Faktor δ_a wird für Gewindestäbe mit dem Wert 1,0 angesetzt.

5.7.6 Ermittlung von Ankerverformungen

Bei der Ermittlung der Stabauslenkungen *s* nach Gleichung (5.37) muss berücksichtigt werden, dass die gemessene Ankerverschiebungen u_{max} einen Spaltmaß Δ_{spalt} zwischen dem Anker und der Lochwandung des Passzylinders enthalten (siehe Abb. 5.95). Die Größe des Spalts Δ_{spalt} ist in *EAD 330499-01-0601* vordefiniert. Im Kapitel 2.2.2 sind in Tab. 2.3 die Lochdurchgangsgeometrie für jede Gewindegröße zusammengefasst. Demnach beträgt der Spalt Δ_{spalt} für M8-Gewindestäbe 1 mm und für M20-Gewindestäbe 2 mm.

Zu Beginn des Testprogramms wurden alle Passzylinder zentrisch auf dem Anker platziert. Daher legt die Querzugplatte in jede Richtung einen Schlupf von $\Delta_{spalt}/2$ zurück. Dieser gemessene Weg wird nicht berücksichtigt, da er keine Querbelastung am Injektionsanker erzeugt und keine Stabverformungen beschreibt. Um die Länge l_d während der seismischen Querzugversuche rechnerisch zu bestimmen, wurden die Ankerverschiebungen u_{so} nach Gleichung (5.42) berechnet. Dabei wurde der vorhandene Spalt Δ_{spalt} zwischen dem Injektionsanker und der Querlastbuchse von der gemessenen Verschiebung u_i subtrahiert (siehe Abb. 5.95).

$$u_{so} = u_i - \frac{\Delta_{spalt}}{2} \tag{5.42}$$

Daraus ergibt sich eine Modifizierung der Gleichung (5.37), in der u_{max} durch u_{so} ersetzt wird. Die Stabauslenkung *s* wurde nach der folgenden Gleichung (5.43) ermittelt.

 Abb. 5.95: Ankerverschiebungen während der Wechsellastbelastung: (a) Ausgangszustand vor der Prüfung, (b) Position des Ankers und des Passzylinders während der Querzugbelastung,
 (c) Kraft-Verschiebungs-Diagramm eines Wechselkraftzyklus mit und ohne Lochdurchgang

Um die Qualität der Berechnung zu überprüfen, wurden die berechneten Stabauslenkungen $s_{rechnerisch}$ nach Gleichung (5.43) und die bei der Bruchbildauswertung (siehe Kapitel 5.7.3) beschriebenen, gemessenen Stabauslenkungen *s* einander gegenübergestellt (siehe Abb. 5.96(a)). Die ermittelten Werte stellen dabei eine gute Näherung der Stabauslenkungen *s* nach der Durchführung der Restquerzugbelastung V_u dar. Um die Größe des Abstands l_d zu bestimmen, wurden die berechneten Werte der Stabauslenkungen nach Gleichung (5.43) in Gleichung (5.31) eingesetzt.

Es wurden die ermittelten und in der Bildanalyse gemessenen Abstände l_d einander gegenübergestellt (siehe Abb. 5.96(b)). Die Näherung des Abstands l_d liegt dabei auf der sicheren Seite. Nach seismischen Querzugbelastungen trat bei einzelnen Tests eine Schädigung des Gewindequerschnitts im Bereich der Fließzone auf. Dadurch entstanden größere Stabauslenkungen *s*, die zu einer Überschätzung der Anfangsposition des verformten Stabbereichs l_d führten. Bei den Versuchsergebnissen von allen Gewindestäben, deren Querschnitt während der seismischen Querzugbelastung nicht geschädigt wurden, stellen die ermittelten Werte nach Gleichung (5.31) eine gute Näherung an die gemessenen Abstände l_d dar.

Abb. 5.96: Gegenüberstellung der in Kapitel 5.7.3 gemessenen und in (a) nach Gleichung (5.42) berechnete Stabauslenkung s, (b) nach Gleichung (5.31) berechnete Tiefe l_d

Die vorangegangenen Gegenüberstellungen von rechnerisch ermittelten und tatsächlich gemessenen Werten bestätigen die Robustheit der im Kapitel 5.6 abgeleiteten Gleichung zur Bestimmung der Stabauslenkung *s*, des Abstands l_d und des Neigungswinkels φ° für quasistatische Querzugversuche. Diese Gleichungen stellen somit eine verlässliche Näherung für die Ermittlung von Ankerverformungen in seismischen Querzugversuchen der Leistungskategorie C1, Versuchsreihe C1.2, dar und können ohne weitere Modifikationen direkt eingesetzt werden.

Zur Durchführung weiterer Berechnungen werden zur besseren Übersicht die Ankerverschiebungen *s* und u_{so} in Abhängigkeit von den Restquerzugkräften V_u (siehe Abb. 5.97(a)) und in Abhängigkeit von den Wechsellasten V_{eq} (siehe Abb. 5.97(b)) dargestellt. Einzelne Versuche, deren Durchführung Auffälligkeiten zeigten, erhielten Kommentare. Da eine komplette Darstellung aller Ergebnisse unübersichtlich wäre, wird hier auf die Anhänge F und H verwiesen, denen alle errechneten Einzelwerte aus den jeweiligen Versuchsprotokollen entnommen werden können. In weiterführenden Untersuchungen werden die Kraftkomponenten $N_{u,\parallel}$ und $V_{u,\perp}$ gemäß dem vereinfachten Ansatz direkt aus den einwirkenden Querzugkräften für die seismischen Wechsellasten V_{eq} und die Restquerzugkräfte V_u berechnet. Der Neigungswinkel φ° wird dabei nicht mehr explizit angegeben.

5.7.7 Materialeinflüsse auf Restquerzugtragfähigkeit

Die bisherigen Untersuchungen haben die Bedeutung der Stahl- und Verbundmörteleigenschaften auf das Trag- und Verformungsverhalten von Injektionsankern unterstrichen. Es wurde bereits im Kapitel 5.6 diskutiert, dass die Stahleigenschaften wie die Stahldehnung ε_{fu} einen entscheidenden Einfluss auf die Umlenkung der Querzugkräfte in Zugkräfte ausüben.

Die Kraftkomponenten $N_{u,\parallel}$ und $V_{u,\perp}$ bzw. $N_{eq,\parallel}$ und $V_{eq,\perp}$ lassen sich aus den Querzugkräften V_u und V_{eq} nach den Gleichungen (5.27) und (5.28) entsprechend ermitteln. Die Zugkraftanteile $N_{u,\parallel}$ und $N_{eq,\parallel}$ verändern sich in Abhängigkeit von den Stabauslenkungen *s* und $u_{so,Zyklus 10}$ (siehe Abb. 5.98). Es lässt sich feststellen, dass sich die Größe der Zugkraftanteile mit der zunehmenden Stabauslenkung erhöht. Dieses Tragverhalten wurde gleichermaßen bei den statischen Querzugversuchen beobachtet. Daher wird auch hier eine Reduktion der Restquerzugtragfähigkeit V_u in seismischen Querzugversuchen gegenüber den statischen Referenzquerzugkräften $V_{s,m}$ erwartet, welche im Kapitel 5.2.3 anhand der Ergebnisse der Scherprüfung mit der Lagerungsart des Typs B ermittelt wurden.

Abb. 5.98: Gegenüberstellung von Zugkraftkomponenten und Stabauslenkungen: (a) bei der Ermittlung der Restquerzugskraft V_u , (b) während der Wechsellastbelastung V_{eq} im Zyklus Nr. 10

Da bei den Gewindestäben A4/70 ein großer Teil der einwirkenden Querkraft V_u auf die Zugkräfte $N_{u,\parallel}$ umgeleitet wird, fällt die Größe der Querzugkomponenten $V_{u,\perp}$ im Vergleich zur Querkraft V_u deutlich geringer aus als bei den Gewindestäben der Güteklasse 8.8, siehe Abb. 5.99(a).

Hinsichtlich der Stabauslenkungen *s* konnte eine abfallende Tendenz des Quotienten $V_{u,\perp}/V_s$ beobachtet werden, bei der das Herausziehen der Injektionsanker von abnehmenden Querkräften $V_{u,\perp}$ begleitet wurde. Wie in Abb. 5.99(b) dargestellt, wurde die Restquerzugskraft V_u durch die seismischen Querzugversuche um bis zu 40 % gegenüber den Referenzlasten $V_{s,m}$ reduziert.

Abb. 5.99: (a) Verhältnis von Restquerzugkräften V_u zu Querzugkraftkomponenten $V_{u,\perp}$, (b) Gegenüberstellung der Quotienten $V_{u,\perp}/V_{s,m}$ zu den Stabauslenkungen *s*

Die Gewindestäbe der Güteklasse A4/70 zeigten zudem eine deutlich stärkere Reduktion als die 8.8-Gewindestäbe, die auf eine Vorschädigung im Injektionsanker und/oder im Betonuntergrund hindeuten könnte. Besonders beim Vergleich der Anker mit minimalen Einbindetiefen $h_{ef} = 5d_s$ zeigte sich das Trag- und Verformungsverhalten der A4/70-Stäbe als besonders anfällig. Zusätzlich sollte beachtet werden, dass in allen Tests der Versuchsserie M8_A4_I4_h40 erhebliche axiale Stabverschiebungen auftraten. Dieses Verhalten spiegelt sich unmittelbar in einer starken Reduzierung der Querkrafttragfähigkeit wider.

Um das jeweilige Verformungsverhalten von Gewindestäben der Güteklassen 8.8 und A4/70 zu verdeutlichen, wurden exemplarisch einzelne Bruchbilder nach der Durchführung der Wechsellastbelastungen erstellt (siehe Abb. 5.100). Sie lassen erkennen, dass das duktile Verhalten des A4/70-Stahls eine wesentlich größere Stabverformung des Gewindestabs erlaubt, ohne ein vorzeitiges Stahlversagen zu verursachen. Solche Verformungen zeigten die Gewindestäbe der Güteklasse 8.8 nicht.

Abb. 5.100: Versagensbilder: (a) M8_8.8_I4_V2 (h_{ef} = 40 mm), (b) M8_A4_I4_V6 (h_{ef} = 40 mm), (c) M20_8.8_I4_V3 (h_{ef} = 100 mm), (d) M20_A4_I4_V5 (h_{ef} = 100 mm)

Um ein umfassendes Bild von der Verteilung der Restquerzugkraft V_u auf die Kraftanteile $N_{u,\parallel}$ und $V_{u,\perp}$ zu präsentieren, wurde das Verhältnis der Querkräfte V_u und $V_{u,\perp}$ zur Referenzkraft $V_{s,m}$ dargestellt (siehe Abb. 5.101(a)).

Abb. 5.101: (a) Gegenüberstellung von Quotienten aus $V_u/V_{s,m}$ zu $V_{u,\perp}/V_{s,m}$, (b) Abhängigkeit der Querzugtragfähigkeit $V_{u,\perp}/V_{s,m}$ von der Überschreitung der zulässigen Verbundspannungen

Die Gegenüberstellung der Ergebnisse der Versuche an Gewindestäben der Güteklassen 8.8 und A4/70 ergab zwei lineare Verläufe der Quotienten zu $V_u/V_{s,m}$ zu $V_{u,\perp}/V_{s,m}$ (siehe Abb. 5.101(a)). Dabei wurde festgestellt, dass die Steigungen beider Regressionsverläufen annähernd gleich waren. Die Stabauslenkungen *s* beeinflussen maßgeblich die Größe der Querkräfte $V_{u,\perp}$ und der Zugkräfte $N_{u,\parallel}$. Daraus lässt sich schlussfolgern, dass das duktile Verhalten der A4/70-Gewindestäbe im Gegensatz zu den 8.8-Gewindestäben größere Stabverformungen zulässt, die zudem eine steigende Umlenkung der Querzugkräfte in die Zugkräfte begünstigen. Genau dieses Verhalten beschreibt die "Phasenverschiebung" der Regressionskurven 8.8 und A4, die durch den Unterschied der Quotienten $V_{u,\perp}/V_s$ von ca. 10 % charakterisiert ist.

Die Versuchsserie M8_A4_I4_h_70 beinhaltet zwei Tests, die nach Abschluss des seismischen Programms einen Quotienten von $V_u/V_{s,m} > 1,0$ aufzeigen. Der Vergleich des berechneten Ausnutzungsgrads, abgeleitet aus $V_{u,\perp}/V_{s,m}$ (siehe Abb. 5.101(b)), zeigt deutlich, dass die gemessene Restquerzugkraft V_u keineswegs eine reine Schubtragfähigkeit der Injektionsanker repräsentiert.

Die Darstellung der Versuchsergebnisse wird um die Abhängigkeit vom Quotienten der Verbundspannung $\tau_{u,\parallel}$ zu der zulässigen Verbundspannung $\tau_{u,zul}$ ergänzt (siehe Abb. 5.101(b)). Der Anstieg der Zugkräfte $N_{u,\parallel}$ bzw. der Zugspannungen $\tau_{u,\parallel}$ führt zur Überschreitung der zulässigen Verbundspannungen $\tau_{u,zul}$, die von einer starken Reduktion der Querzugkraft $V_{u,\perp}$ begleitet werden. Zudem weisen die Versuchsergebnisse mit A4/70-Gewindestäben einen wesentlich größeren Anteil der Zugkräfte $N_{u,\parallel}$ auf als die 8.8-Gewindestäbe. Dabei wirken sich die Vorschädigungen des Injektionssystems, verursacht durch den Lastwechsel in C1.2-Versuchen, deutlich auf das Verformungsverhalten der Anker bei der Bestimmung der Restquerzugtragfähigkeit aus. Der Schädigungsgrad am Verbundanker während der Lastwechselbelastung nach C1.2 wird anhand der Kraft-Verformungs-Diagramme beschrieben und im folgenden Kapitel 5.7.8 genau untersucht.

5.7.8 Einflüsse während der Wechsellastbelastung

Seismische Wechselbelastungen führen bei Injektionsankern sowohl am Stahlquerschnitt als auch an der Verbundfuge zu zusätzlichen Materialschäden.

Analog zu den Restquerzugkräften V_u wurden aus der Wechsellast $\pm V_{eq}$ die Kraftanteile $N_{eq,\parallel}$ und $V_{eq,\perp}$ nach den Gleichungen (5.27) und (5.28) im Kapitel 5.6.8 berechnet, ebenso der Neigungswinkel φ° nach Gleichung (5.29). Dabei wurden die Kräfte aus 50 %, 75 % und 100 % der Wechselbelastung V_{eq} jeweils am Ende der Zyklen Nr. 10, 40 und 140 zugrunde gelegt. Versagte ein Injektionsanker vorzeitig, dann wurde der letzte Zyklus erfasst. Die Quotienten $V_{eq,\perp}/V_{eq}$ beschreiben den Querkraftanteil der Wechselkraft, der aus den geometrischen Stabverformungen in Bezug auf die Ankerverschiebung u_{so} resultiert (siehe Abb. 5.102(a)). Hierbei wurde beobachtet, dass die M20-Gewindestäbe diejenigen Tests, die stets in allen Zyklen das Verhältnis $u_{so}/d_s < 0,30$ ($u_{so} \le 6$ mm) aufweisen, das Testprogramm erfolgreich beendeten. Bei M8-Gewindestäben lag dieses Verhältnis bei $u_{so}/d_s < 0,60$ ($u_{so} \le 4,8$ mm).

Die Erhöhung der Stabauslenkungen u_{so} nach Gleichung (5.29) führte zur Reduktion der Querkraftanteile $V_{eq,\perp}$ und gleichzeitig zur Steigerung der Zugkräfte $N_{eq,\parallel}$ (siehe Abb. 5.102(b)). Die die ermittelte Zugkraft $N_{eq,\parallel}$ konnte nicht direkt als ausschlaggebend für das Eintreten eines frühzeitigen Stahlversagens bestätigt werden. Es besteht vielmehr die Vermutung, dass die horizontalen Verschiebungen der Injektionsankern während der Wechselbelastung zu axialen starken Stabverformungen führten und somit die Verbundfuge zwischen Anker und Beton signifikant belasteten und beschädigten. Alle Tests, die entweder ein frühzeitiges Versagen oder einen auffallend niedrigen Quotienten auswiesen, wurden zur besseren Übersichtlichkeit beschriftet und markiert.

Abb. 5.102: Gegenüberstellung von: (a) Quotienten $V_{eq,\perp}/V_{eq}$ und u_{so} , (b) Quotienten $V_{eq,\perp}/V_{eq}$ und $N_{eq,\parallel}$

Die Analyse der statischen Querzugversuche wie im Kapitel 5.6.9 beschrieben ergab, dass die einwirkenden Zugkräfte $N_{u,\parallel}$ die zulässigen Verbundspannungen $\tau_{u,zul}$ überschritten. Diese Überschreitung führte zur axialen Stabverschiebung u_p und zur Reduktion der Querzugtragfähigkeit V_u .

Um den Einfluss der Zugkomponenten $N_{eq,\parallel}$ durch die Wechsellastbelastung V_{eq} auf das Tragverhalten der Injektionsanker zu untersuchen, erfolgten Versuche mit nicht handfest angezogenen Muttern. Der Abstand zwischen Mutter und Unterlegscheibe betrug dabei ungefähr 2 mm. Er sollte dazu dienen, die Umlenkung der einwirkenden Querzugkräfte V_{eq} in Zugkräfte $N_{eq,\parallel}$ weitgehend zu minimieren. Für diese Versuche wurden die Anker M20_A4_h_120_V3, M20_8.8_I4_h_120_V3, M8_A4_h_70_V1 und M8_8.8_h_70_V4 eingesetzt.

Die Umlenkung der Querzugkräfte in Zugkräfte infolge der Verformungen des Ankers setzt eine kraftschlüssige Verbindung zwischen Mutter und Querzugplatte voraus. Das Trag- und Verformungsverhalten der Anker verändert sich grundlegend, sobald die Zugkräfte bei einer losen Verbindung zwischen Mutter und Querzugplatte nicht mehr in den Betonuntergrund eingeleitet werden können (siehe Abb. 5.103). Die fehlende Teileinspannung durch die fest angezogene Mutter reduziert zudem das aufnehmbare Biegemoment. In Abb. 5.103 sind die beiden Modelle schematisch dargestellt. Diese vereinfachte Gegenüberstellung zeigt den enormen Einfluss beider auf das Tragsystem. Der Verlust der Einspannung am Anbauteil führt zu einer erheblichen Steigerung der Biegemomente, wodurch sich die Tragfähigkeit der Injektionsanker maßgeblich reduziert.

Die Analyse der Versuchsergebnisse mit M20-Gewindestäben ermöglichte den Vergleich von Kraft-Verschiebungs-Diagrammen aus Tests sowohl mit als auch ohne Teileinspannung durch die Gewindemutter (siehe Abb. 5.104 und Abb. 5.105).

Injektionsanker ohne Teileinspannung (siehe Abb. 5.104(a) und Abb. 5.105(a)) erfuhren größere Querzugkräfte $V_{eq,\perp}$ als diejenigen mit Teileinspannung. Die hohen Querzugkräfte führte zu einem Biegestahlversagen in der Tiefe bei etwa l_d . Der Versagensquerschnitt lässt eine fortschreitende Querschnittschädigung erkennen (siehe Abb. 5.106).

Die Teileinspannung der Gewindemutter erzeugt die zusätzliche Zugkraftkomponente $N_{eq,\parallel}$, wodurch sich die Größe der einwirkenden Querkräfte $V_{eq,\perp}$ verringert. Injektionsanker mit Teileinspannung bewältigten alle Wechsellastbelastungen in seismischen Tests und schlossen sie erfolgreich ab (siehe Abb. 5.104(b) und Abb. 5.105(b)). Die Versuchsergebnissen zeigen, dass eine Reduzierung der Wechselbelastungen auf $0,75V_{eq}$ und $0,5V_{eq}$ keine signifikante Steigerung der Ankerverschiebungen u verursacht. Dieses

Verhalten deutet auf eine noch intakte Verbundfuge zwischen Anker und Beton hin. Die Restquerzugkraft V_u betrug mehr als $1,60V_{eq}$. Damit erfüllten sie die Bedingungen nach der aktuellen *EAD* 330499-01-0601.

Abb. 5.104: Wechselbelastung nach C1.2: (a) ohne Teileinspannung V3_M20_8.8_h_120, (b) mit Teileinspannung V2_M20_8.8_h_120

Abb. 5.105: Wechselbelastung nach C1.2: (a) ohne Teileinspannung V3_M20_A4_h_120, (b) mit Teileinspannung V2_M20_A4_h_120

Die Gewindestäbe M20_8.8_h_120 und M20_A4_h_120 haben bei allen weiteren Tests mit Teileinspannung die Wechsellastbelastungen in der C1.2-Versuchsreihe erfolgreich bewältigt. Eine fehlende Teileinspannung führt, unabhängig von der Güteklasse des verwendeten Stahls, zu einer kontinuierlichen Zunahme der Ankerverschiebungen u an der Betonoberkante. Zudem wurde bei Versuchen ohne Teileinspannung durch die Gewindemutter, selbst nach der Reduktion der Wechsellast V_{eq} auf 75 % und 50 %, eine weitere Zunahme der Ankerverschiebungen u festgestellt. Dieses Ergebnis erlaubt den Schluss, dass die zunehmenden Ankerverschiebungen u auf eine fehlende Teileinspannung und ein fortschreitendes Querschnittversagen hindeuten.

(b)

Abb. 5.106: Versagensbilder: (a) M20_A4_h_120_V3, (b) M20_8.8_h_120_V3

Vergleich der Kraft-Verschiebungs-Diagramme Beim der M8-Gewindestäbe mit unterschiedlichen Einspannungsgraden zeigte sich zunächst ein ähnlicher Verlauf wie bei den M20-Gewindestäben (siehe Abb. 5.107 und Abb. 5.108). Allerdings offenbarte sich ein signifikanter Unterschied: Während die Versuche mit M20-Gewindestäben ohne Teileinspannung frühzeitig versagten, konnten die M8-Gewindestäbe die Wechsellastbelastungen sowohl mit als auch ohne Teileinspannung vollständig trotz Versagen durchlaufen.

Abb. 5.107: Wechselbelastung nach C1.2: (a) ohne Teileinspannung M8_8.8_h_70_V4, (b) mit Teileinspannung M8_8.8_h_70_V5

Abb. 5.108: Wechselbelastung nach C1.2: (a) ohne Teileinspannung M8_A4_h_70_V1, (b) mit Teileinspannung M8_A4_h_70_V4

Beim Eintritt des Biegeversagens während der Wechselbelastung bei M8-Gewindestäben verbleibt der versagende Teil des Ankers im Passzylinder. Die Bruchtiefe von $1,5d_s$ bis $1,7d_s$ entspricht in etwa dem Drehpunkt *a*. Über die Restlänge des Gewindestabs können weiterhin Querzugkräfte übertragen werden (siehe Abb. 5.109(a)). Diese Krafteinleitung ist auf den Durchmesser des Durchgangslochs zurückzuführen, da der Spalt zwischen dem Durchgangsloch d_f und dem Ankerstab d_s lediglich 1 mm beträgt. Daher wurde der versagende Ankerstab im Passzylinder während der Querzugbelastung teilweise eingespannt. Die einwirkenden Wechsellasten konnten mit vergrößerten Ankerverschiebungen in den Betonuntergrund eingeleitet werden. Dieses Tragverhalten tritt allerdings nur dann auf, wenn die Querzugplatte gegen Abheben gesichert ist.

Bei größeren Stabdurchmessern wie M20 führten zusätzliche Wechselbelastungen zu starken Betonausbrüchen um den Ankerbereich herum. Letztendlich wurde der versagende Teil des Ankers aus der Querzugplatte hinausgedrängt, weshalb es zum vollständigen Versagen des Systems kam.

Erst bei der Durchführung des Restquerzugtests (siehe Abb. 5.109(b)) konnte beobachtet werden, dass sich das Trag- und Verformungsverhalten grundlegend von den anderen Versuchen unterscheidet: Die Kraft-Verschiebungs-Verläufe zeigen ein klares Herausziehen der Stäbe aus dem Bohrloch.

Die erreichten Restquerzugkräfte V_u spiegeln keine Querzugtragfähigkeit der Injektionsanker wider und wurden daher nicht in die Betrachtung von anderen Testserien einbezogen. In Abb. 5.109(c) und (d) sind die Versagensquerschnitte der beschriebenen Gewindestäbe M8, 8.8 und A4/70 dargestellt.

(d)

Abb. 5.109: Stahlbruch durch Wechsellasten nach C1.2: (a) schematische Darstellung der Bruchstelle,
 (b) Restquerzugbelastung von M8-Gewindestäben nach dem Absolvieren von
 Wechselbelastungen, (c) Versagensbild von V4_M8_8.8_h_70, (d) Versagensbild von
 V1_M8_A4_h_70
5.7.9 Abminderung der Wechsellast

Um den Einfluss der alternierenden Querbelastung V_{eq} der Erdbebenleistungskategorie C1 während der Durchführung der Versuchsreihe C1.2 im Detail zu untersuchen, wurde bei dem Anker M20_A4_h_120_V7 die Höhe der Wechsellast V_{eq} um 15 % gegenüber den nach Gleichung (2.3) errechneten Werten erhöht. Diese Erhöhung entspricht der folgenden Gleichung:

$$V_{eq} = 1,15 \cdot (0,5V_{s,m})$$

Es wurden nur acht Wechsellastzyklen erfolgreich durchgeführt, bevor signifikante Ankerverschiebungen u_{so} auftraten. Daraufhin wurde das Versuchsprogramm abgebrochen und der Prüfkörper aufgeschnitten, um die axialen Ankerverschiebungen u_p im Schnittbereich zu untersuchen. Der Schnitt durch den Prüfkörper (siehe Abb. 5.110(a)) ließ eine im Vergleich zu den statischen Querzugversuchen große axiale Verschiebung u_p von etwa 2,7 mm erkennen. Es war zu erwarten, dass der Injektionsanker durch die Fortsetzung der Querzugbelastungen aus dem Bohrloch weiter herausgedrängt wird. Durch die Bildung eines Spalts zwischen Mutter und Querzugplatte wäre dann eine volle Einspannung des Injektionsankers nicht mehr möglich gewesen.

Es konnte eine stufenweise ansteigende horizontale Ankerverschiebung u beobachtet werden (siehe Abb. 5.110(b)). Mit jedem weiteren Zyklus wurde die Verbundfuge des Injektionsankers erneut beansprucht und beschädigt, sodass es zu seinem langsamen Herausziehen kam.

Dieses Verformungsverhalten kann mit den zyklischen Zugbelastungen der Versuchsreihe C1.1 verglichen werden (siehe Kapitel 2.2.3). Die durch die horizontalen Stabverformungen induzierte Zugkraft wirkt hier zyklisch. Mit jeder weiteren Wechselbelastung wurde der Injektionsanker in Zugrichtung beansprucht. Die stufenweise reduzierte Einspannung des Gewindestabs in der Scherplatte bewirkte die verringerte Biegetragfähigkeit des Stabs.

Im Gegensatz dazu wurde bei der Versuchsserie M8_A4_h_40 die einwirkende Wechsellast V_{eq} zwei Mal nacheinander um jeweils 10 % reduziert, um das seismische Testprogramm ohne

ein frühzeitiges Stahlversagen abzuschließen. Eine genauere Betrachtung der Kraft-Verschiebungs-Diagramme der Versuche M8_A4_h_40_V1 und M8_A4_h_40_V2 (siehe Abb. 5.111(a) und Abb. 5.112(a)) verdeutlicht das zuvor beschriebene Trag- und Verformungsverhalten der Injektionsanker. Die Ausschnitte der Kraft-Verformungs-Verläufe bringen diese Komplexität präzise zum Ausdruck (siehe Abb. 5.111(b) und Abb. 5.112(b)).

Abb. 5.111: M8_A4_h_40_V1: (a) Wechselbelastung nach C1.2, (b) Ausschnitt der Querschnittschädigung

Abb. 5.112: M8_A4_h_40_V2: (a) Wechselbelastung nach C1.2, (b) Ausschnitt der Querschnittschädigung

Die ersten zehn Zyklen mit der größten Wechsellast V_{eq} führten zu erheblichen Schäden im umliegenden Betonuntergrund und zu einer axialen Stabverschiebung u_p des Ankers. Abhängig von der zulässigen Verbundspannung $\tau_{u,zul}$ und der Einbindetiefe h_{ef} erfuhr der Anker unterschiedlich große axiale Verschiebungen u_p . Nach der Durchführung von 40 Zyklen wurden die Anker mit der kleinsten Wechsellast von $0.5V_{eq}$ belastet. Nach nur wenigen Wechsellastzyklen wurde der Stahlquerschnitt des Gewindestabs beschädigt und die Ankerverschiebung u nahm während der Wechsellast $0.5V_{eq}$ erheblich zu. Ein Riss bildete sich im Stahlgefüge und vergrößerte sich mit jeder weiteren Belastung. Anschließend kam es zu einem vollständigen Verlust der Tragfähigkeit und einem Versagen des Injektionsankers aufgrund seiner Biegung. Dieser Vorgang konnte während der Versuchsdurchführung beobachtet und stellenweise per Videoaufzeichnung dokumentiert werden (siehe *Sklarov 2020*).

Grundsätzlich lassen die zuvor geschilderten Beobachtungen darauf schließen, dass das Ansteigen der horizontalen Verschiebungen u während der Laststufe $0.5V_{eq}$ als kritischer Punkt zu bewerten ist. Bei der Gegenüberstellung der Versuchsergebnisse mit den Einbindetiefen $h_{ef} > 5d_s$ und $h_{ef} = 5d_s$ zeigte sich eine Zunahme der horizontalen Verschiebungen u in nahezu allen Versuchen, wodurch im weiteren Verlauf des Versuchsprogramms ein vorzeitiges Stahlversagen erfolgte.

Wenn bei den Wechsellastzyklen der Spalt zwischen Mutter und Querzugplatte so groß wird, dass die Gewindemutter während der Querzugverschiebung keine kraftschlüssige Verbindung zur Querzugplatte mehr aufweist, ist der Injektionsanker erhöhten Biegebeanspruchungen ausgesetzt (siehe Abb. 5.113). Bei A4/70-Gewindestäben wurde größere axiale Stabverschiebungen u_p als bei 8.8-Gewindestäben beobachtet.

mit

- Δx_i = Spalt zwischen der Mutter und der Querzugplatte bei der Ausgangsposition
- *spalt* = Spalt zwischen der Mutter und der Querzugplatte während der Querzugbelastung

Es wurden die aufgebrachten Wechsellasten V_{eq} den Ankerverschiebungen aus dem Zyklus 10 und 140 als Quotient aus max $\{+u_{so,140}/+u_{so,10}|-u_{so,140}/-u_{so,10}\}$ gegenübergestellt (siehe Abb. 5.114). Bei den Versuchen mit weniger als 140 Zyklen (vorzeitiges Stahlversagen) wurde der letzte Zyklus dargestellt.

Abb. 5.114: Gegenüberstellung der Wechsellast V_{eq} und des Verschiebungsquotienten $u_{so,140}/u_{so,10}$ aus seismischer Beanspruchung

Die vorgestellten Zusammenhänge zeigen, dass eine Überschreitung des Verschiebungsquotienten von $u_{so,140}/u_{so,10} \ge 1,0$ ein deutlicher Indikator für ein vorzeitiges Stahlversagen der Injektionsanker durch die aufgebrachte Wechsellast darstellt:

- Bildung eines Spalts zwischen der Gewindemutter und der Querzugplatte,
- Anwendung von Wechsellasten mit $V_{eq} \gg 0.5 V_u$,
- unzureichende Stabeinbindetiefe h_{ef} (die einwirkenden Zugkräfte während der seismischen Querzugbelastung führen zur Bildung eines Spalts zwischen Gewindemutter und Querzugplatte).

Eine Reduktion der Wechselbelastung V_{eq} ermöglicht zunächst eine erfolgreiche Durchführung des Versuchsprogramms mit allen Güteklassen von Gewindestäben. Da die Größe der seismischen Querzugtragfähigkeit durch den Reduktionsfaktor $\alpha_{V,C1.2}$ nach Gleichung (2.6) aus Kapitel 2.2.3 definiert wurde, musste die Restquerzugtragfähigkeit zusätzlich betrachtet werden. Eine weitere Reduktion der seismischen Querzugtragfähigkeit erfolgte nur dann, wenn die Bedingung $V_u/1,6V_{eq} \ge 1,0$ nicht erfüllt war. Gemäß *EAD* 330499-01-0601 beschreibt der Reduktionsfaktor $\alpha_{V,C1.2}$ die Abminderung der charakteristischen Scherkraft $V_{Rk,s,C1}$ nach Gleichung (5.44).

$$V_{Rk,s,C1} = \alpha_{V,C1.2} \cdot V_{V1}$$
(5.44)

Wie in Kapitel 5.7.4 erläutert erfolgte die Bestimmung der Wechselbelastung V_{eq} nach Gleichung (5.38) aus Kapitel 5.2.3 basierend auf den Referenzlasten $V_{s,m}$ unter Anwendung der Lagerungsart Typ B. Der Reduktionsfaktor $\alpha_{V,C1.2}$ wurde demzufolge nach Gleichung (5.45) berechnet.

Abb. 5.115: Gegenüberstellung der Reduktionsfaktoren $\alpha_{V,C1.2,Vs,m}$: (a) der Bedingung $V_u/(1,6V_{eq})$ mit (b) dem Quotienten der Verbundspannungen $\tau_{u,\parallel}/\tau_{u,zul}$

Die ermittelten Reduktionsfaktoren $\alpha_{V,C1.2}$ wurden abhängig von den Quotienten $V_u/1,6V_{eq}$ dargestellt (siehe Abb. 5.115 (a)). In dieser Darstellung wurden alle Versuche ausgeschlossen, die ein vorzeitiges Versagen ohne Restquerzugkraft V_u zeigten. Um den Einfluss der Wechselkraft V_{eq} zu untersuchen, wurde sie im Vorfeld bei einzelnen Versuchen reduziert. Es zeigte sich, dass diese Reduktion der Wechselkraft V_{eq} keine signifikante Erhöhung der seismischen Tragfähigkeit nach sich zog. Obwohl die Bedingung $V_u/1,6V_{eq} \ge 1,0$ für M8_I4_h_40 und M20_I4_h_100 erfüllt war, wurde bei der Durchführung der abschließenden Querbelastung eine Überschreitung der einwirkenden zulässigen Verbundspannungen $\tau_{u,\parallel}/\tau_{u,zul}$ festgestellt. Deren Analyse während der Restquerzugbelastung (siehe Abb. 5.115(b)) ergab ebenfalls, dass bei den Versuchsserien mit der Güteklasse A4/70 und der minimalen Einbindetiefe $h_{ef} = 5d_s$ eine Überschreitung der zulässigen Verbundspannungen stattfand. Sie beeinträchtigten die ermittelten Tragfähigkeiten, wodurch das angestrebte Ziel, seismische Wechsellastbelastungen erfolgreich durchzuführen, nicht erfüllt werden konnte.

Grundsätzlich wird bei den C1.2-Versuchen nach *EAD* 330499-01-0601 kein Stahlversagen bei seismischen Querzugversuchen gefordert. Diese Anforderung ist jedoch bereits in der C2.4-Versuchsreihe der Erdbebenleistungskategorie C2 nach *EAD* 330499-01-0601 vorgeschrieben. Daher muss bei allen Versuchen, die eine Überschreitung der zulässigen Verbundspannungen $\tau_{u,\parallel}/\tau_{u,zul}$ zeigen, die Einbindetiefe h_{ef} erhöht werden, um ein Herausziehen der Injektionsanker zu verhindern. Die Fragestellung, welchen Einfluss die effektive Einbindetiefe ausübt, wird im folgenden Kapitel 5.7.10 behandelt.

5.7.10 Einfluss der Einbindetiefe

Im Kapitel 5.6.10 wurde bereits erörtert, inwiefern sich die Einbindetiefe h_{ef} erheblich auf das Trag- und Verformungsverhalten von querzugbelasteten Injektionsankern auswirkt. Die Untersuchungen unter statischen sowie seismischen Beanspruchungen bestätigten, dass die Verbundspannung im Verlauf des Belastungsprozesses eine entscheidende Rolle für die Querzugwiderstandsfähigkeit der Injektionsanker spielt. Die zulässige Verbundspannung entlang des Ankers berechnen sich aus der effektiven Mantelfläche, der Zugfestigkeit des Verbundmörtels $f_{ct,mörtel}$ und der Rissbreite w.

Um die Bedeutung des Verbundmörtels für das Trag- und Verformungsverhalten zu verdeutlichen, wurden mehrere seismische Querzugversuche mit Injektionsankern durchgeführt, bei denen eine Gleitfolie die Verbindung zwischen Anker und Verbundmörtel unterbrach (siehe Abb. 5.116). Die Installation der Injektionsanker einschließlich der "verbundlosen" erfolgte standardmäßig nach dem Verfahren wie in Kapitel 5.6.2 und in Tab. 5.12 beschrieben. Die Umwicklung der Stäbe mit der Gleitfolie verhinderte die Bildung von Adhäsionskräften zwischen dem Gewindestab und dem Verbundmörtel, sodass keine Zugkräfte aufgenommen werden konnten. Durch diesen Effekt sollte die Bedeutung des Verbundmörtels auf das Tragverhalten von Injektionsankern hervorgehoben werden.

(a)

(b)

Abb. 5.116: "Verbundlose" Gewindestäbe: (a) vor der Installation bereits umwickelt, (b) nach der Installation

Für die seismischen Versuche mit verbundlosen Ankern wurden M8- und M20-Gewindestäbe mit unterschiedlichen Einbindetiefen h_{ef} in gerissenem und ungerissenem Beton getestet (siehe Tab. 5.19). Die vollständigen Versuchsergebnisse können dem Anhang F entnommen werden.

Sowohl in gerissenem als auch in ungerissenem Beton mussten die einwirkenden Wechsellasten V_{eq} signifikant reduziert werden, um die seismischen Wechsellastversuche erfolgreich abschließen zu können. Bei den M8-Gewindestangen wurde die Wechsellast V_{eq} um etwa 40 Prozent reduziert. Mit M20-Gewindestangen erfolgten zwei Versuche ohne Reduktion der Wechsellast V_{eq} in gerissenem und ungerissenem Beton. Dabei kam es in gerissenem Beton nach mehreren Wechselbelastungen zum Versagen des Ankers, während die Versuche in ungerissenem Beton vollständig durchgeführt werden konnten. Der bereits in Kapitel 5.7.9 in Abb. 5.113 beschriebene Versagensprozess beinhaltete signifikante axiale Stabverschiebungen der Injektionsanker und eine folgende Querschnittschädigung des Gewindestabs durch die Wechselbelastung.

Größe	Gütek lasse	Nr.	Riss	h _{ef}	V _{eq}	σ_{eq}	V _u	σ_u	Zyklen	Versagen sart
[-]	[-]	[-]	[mm]	[mm]	[kN]	[N/mm²]	[kN]	[N/mm²]	[-]	[-]
	A4	1	0,0	40,0	7,8	212,4	8,55	233,7	140	S
		2	0,0	70,0	9,8	266,9	0,0	0,0	28	Sm
M8		3	> 0,5	66,7	5,8	157,7	11,6	317,2	140	S
		4	> 0,5	70,8	7,8	212,2	0,0	0,0	29	Sm
		5	> 0,5	40,5	5,8	157,5	12,0	328,3	140	S
	8.8	1	0,0	38,6	5,8	157,1	14,3	391,6	140	Sm
M8		2	0,0	69,6	7,8	211,7	0,0	0,0	140	Sm
		3	> 0,5	69,3	5,8	157,1	0,0	0,0	21	Sm
M20	A4/70	1	0,0	105,8	64,0	261,4	0,0	0,0	140	s
M20	8.8	1	> 0,5	104,5	64,0	261,3	0,0	0,0	38	Sm

Tab. 5.19: Seismische Querzugversuche mit verbundlosen Ankern

Die aufgebrachten Wechsellasten V_{ea} wurden den Ankerverschiebungen aus dem Zyklus 10 und 140 als Quotient aus max $\{+u_{so,140}/+u_{so,10}|-u_{so,140}/-u_{so,10}\}$ gegenübergestellt (siehe Abb. 5.117(a)). Bei Versuchen mit weniger als 140 Zyklen (vorzeitiges Stahlversagen) wurde nur der letzte Zyklus dargestellt. Analog zu den Versuchen mit einer intakten 5.7.9 Verbundmörtelschicht wie im Kapitel beschrieben kam es bei allen Wechsellastversuchen zu einer Schädigung des Gewindequerschnitts, deren Quotient $u_{so,140}/u_{so,10}$ einen Wert von 1,0 überschritt.

Es konnten nur die Versuche in ungerissenem Beton oder bei starker Reduktion der Wechselkraft V_{eq} ($V_{eq,red} \approx 0,60V_{eq}$) in gerissenem Beton erfolgreich abgeschlossen werden (siehe Abb. 5.117(b)). Bei Versuchen in ungerissenem Beton konnte eine größere Wechsellast V_{eq} auf die Anker angewendet werden. Trotzdem kam es bei der Prüfung der Restquerzugkraft V_u zum Herausziehen der Anker und einer signifikanten Reduktion der Querzugtragfähigkeit im Vergleich zu den Querzugversuchen mit einer intakten Verbundmörtelschicht.

Die Ergebnisse der Versuche ohne Verbund gaben Anlass zu der Überlegung, die erforderliche effektive Einbindetiefe h_{ef} anhand der Größe der einwirkenden Zugkraftkomponenten $N_{u,\parallel}$ der Restquerzugkräfte V_u aus statischen und seismischen Querzugversuchen abzuleiten. Dabei liegt das Hauptziel in der Ermittlung der Einbindetiefe h_{ef} , die erforderlich ist, um seismische Wechselbelastungen erfolgreich zu bewältigen, ohne dass ein Herausziehen des Injektionsankers eintritt.

Die auf den Anker einwirkenden Verbundspannungen $\tau_{u,\parallel}$ werden aus den Zugkraftkomponenten $N_{u,\parallel}$ berechnet. Die effektiven Einbindetiefen aus statischen und seismischen Querzugversuchen stehen in einem Verhältnis zu den Quotienten aus den einwirkenden und zulässigen Verbundspannungen $\tau_{u,\parallel}/\tau_{u,zul}$ (siehe Abb. 5.118).

Es wurde festgestellt, dass bei den statischen und seismischen Querzugversuchen mit A4/70-Gewindestäben die zulässigen Verbundspannungen $\tau_{u,zul}$ überschritten wurden. Dabei konnte beobachtet werden, dass alle statischen Versuchsserien, die einen Quotienten von $\tau_{u,\parallel}/\tau_{u,zul} < 1,0$ aufweisen, über die erforderliche Einbindetiefe h_{ef} verfügen. Dadurch konnte die seismische Wechselbelastung ohne Reduktion der einwirkenden Querkraft V_{eq} erfolgreich durchgeführt werden, ohne dass es zum Herausziehen des Injektionsankers kam.

Abb. 5.118: Gegenüberstellung der Einbindetiefen und der Verbundspannungen als Quotienten $\tau_{u,\parallel}/\tau_{u,zul}$ aus statischen und seismischen Querzugversuchen

Der Verlauf und die Größe der Rissbreite *w* beeinflussen das Trag- und Verformungsverhalten der Injektionsanker erheblich. Wird die vorgegebene Rissbreite *w* = 0,50 mm über- oder unterschritten, verringern oder erhöhen sich die zulässigen Verbundspannungen $\tau_{u,zul}$ entsprechend. Daher können Veränderungen im statischen System oder im Versuchsaufbau wie das Anbringen oder Entfernen der Sicherung gegen Abheben der Querzugplatte einen erheblichen Einfluss auf die Versuchsergebnisse ausüben und zu Ergebnisstreuungen führen.

Laut der aktuellen Richtlinie für die Leistungskategorie C1 ist ein teilweises oder vollständiges Herausziehen der Injektionsanker zulässig. Jedoch deuten bisherige Untersuchungen darauf hin, dass die volle Querzugfähigkeit der Injektionsanker nur dann gewährleistet ist, wenn die Zugkräfte $N_{u,\parallel}$, die während eines Querzugversuchs induziert werden, sicher in den Betonuntergrund eingeleitet werden können. Die Krafteinleitung setzt voraus, dass die Verbundspannungen $\tau_{u,zul}$ entlang des Ankers nicht überschritten werden. Die Literatur enthält zahlreiche Vergleiche des Querzugtragverhaltens von Injektionsankern und mechanischen Spreizdübeln, die indirekt auf den hier beschriebenen Versagensmechanismus hinweisen. So stellte Rieder 2004 fest, dass die Verbundspreizanker im Vergleich zu mechanischen Spreizankern eine um etwa 25 % höhere seismische Querzugbelastung aufnehmen können, bevor ein Stahlversagen eintritt. Akiyama et al. 1997 wies nach, dass die mechanischen Anker mit der minimalen Einbindetiefe $h_{ef} = 5d_s$ durch Herausziehen versagten, bevor ein Stahlversagen durch die Querzugbelastung eintrat. Zusammenfassend lässt sich sagen, dass die Querzugtragfähigkeit der Injektionsanker durch eine sichere Einleitung der Zugkräfte deutlich verbessert werden kann.

Aus einem Vergleich der Stabeinbindetiefe h_{nom} mit den reduzierten Einbindetiefen $h_{ef} - l_d$ geht hervor, dass die Anfangsposition des verformten Stabbereichs l_d bei seismischen Versuchen um etwa $d_s/2$ tiefer liegt als bei statischen Querzugversuchen (siehe Abb. 5.119(a)).

Wird das Herausziehen der Injektionsanker als Kriterium für das Versagen herangezogen, lässt sich die erforderliche Einbindetiefe $h_{ef,erf}$ näherungsweise auf Grundlage der Versuchsergebnisse statischer Querzugversuche nach Gleichung (5.46) bestimmen. Dabei wird anhand der maximal aufgetretenen Zugkraft $N_{u,\parallel}$ während der statischen Querzugversuche und der zulässigen Verbundspannung $\tau_{u,zul}$ die erforderliche reduzierte Einbindetiefe $h_{ef,red}$ ermittelt. Dieser Wert wird um die Länge des verformten Bereichs $l_d + d_s/2$ erhöht, um eine Angabe für die gesamte Stabeinbindetiefe zu erhalten.

$$h_{ef,erf} = \frac{N_{u,\parallel,statisch}}{\pi \cdot d_s \cdot \tau_{u,zul}} + l_d + d_s/2$$
(5.46)

Die erforderliche Einbindetiefe $h_{ef,erf,C1.2}$ für seismische Versuche der Leistungskategorie C1 kann auf Grundlage der Versuchsergebnisse nach Gleichung (5.47) berechnet werden.

$$h_{ef,erf,C1.2} = \frac{N_{u,\parallel,C1.2}}{\pi \cdot d_s \cdot \tau_{u,zul}} + l_d$$
(5.47)

Um die Zuverlässigkeit der aufgestellten Gleichungen zu überprüfen, wurde die berechnete Einbindetiefe $h_{ef,berechnet}$ nach den Gleichungen (5.46) und (5.47) dargestellt (siehe Abb. 5.119(b)). Diese Werte sind den nominalen Einbindetiefen h_{nom} zugeordnet, um eine bessere Übersicht der Ergebnisse zu erhalten. Für diesen Vergleich wurden die Zugkraftanteile $N_{u,\parallel}$ sowohl für statische als auch für seismische Querbelastungen nach dem vereinfachten Ansatz in Kapitel 5.6.8 berechnet. In der Gegenüberstellung zeigte sich, dass die berechnete Einbindetiefe $h_{ef,berechnet}$ aufgrund der statischen Querzugversuche im Durchschnitt größer war als die erforderlichen Einbindetiefen der seismischen Wechselversuche.

Abb. 5.119: Gegenüberstellung: (a) der Stabeinbindetiefe h_{ef} und reduzierten effektiven Einbindetiefen $h_{ef,red} = h_{ef} - l_d$, (b) der berechneten Einbindetiefe nach Gleichung (5.46) und (5.47)

Die Größe der ermittelten Zugkräfte $N_{u,\parallel}$ und die damit einhergehenden Verbundspannungen hängen in den Gleichungen (5.46) und (5.47) von der Größe der einwirkenden Querzugkraft V_u ab. Das bedeutet, dass sich bei Querzugversuchen mit der reduzierten Querzugkraft V_u niedrigere Zugkräfte $N_{u,\parallel}$ ergeben und sich somit auch die erforderliche Einbindetiefe ändert. Daher beinhaltet die Anwendung der beiden Gleichungen einen iterativen Prozess, der die Ermittlung der optimalen Einbindetiefe ermöglicht, um die volle Querzugtragfähigkeit der Injektionsanker in gerissenem Beton zu gewährleisten.

5.7.11 Zwischenfazit

Die seismischen Querzugversuche der Leistungskategorie C1 wurden gemäß *EAD* 330499-01-0601 in gerissenem Beton mit einer Rissbreite von 0,50 mm durchgeführt. Hierbei standen M8- und M20-Gewindestäbe der Güteklasse 8.8 und A4/70 mit unterschiedlichen Einbindetiefen h_{ef} im Fokus. In der Literatur (vgl. *Hofmann* 2004, *Fuchs* 1992, *Cziesielski und Friedmann* 1983) gilt eine minimale Einbindetiefe von $h_{ef} = 5d_s$ als ausreichend anerkannt für die Aufnahme von Querbelastungen. Auf dieser Grundlage wurde die kleinste Einbindetiefe h_{ef} sowohl für statische als auch seismische Versuche der Injektionsanker definiert.

Für die Durchführung der seismischen Querzugversuche der C1.2-Versuchsreihe wurden die Wechsellasten V_{eq} basierend auf den Referenzlasten $V_{s,m}$ aus Kapitel 5.7.5 ermittelt. Die Berechnung der Wechsellast V_{eq} erfolgte nach Gleichung (2.3) aus Kapitel 2.2.3, wobei der Einfluss der effektiven Einbindetiefe h_{ef} und der zulässigen Verbundspannung $\tau_{u,zul}$ nicht berücksichtigt wurde.

Die Analyse der durchgeführten seismischen Versuche und der Auswertung der Bruchbilder ergab, dass alle Versuchsserien, die weder eine signifikante axiale Ankerverschiebung u_p noch eine Überschreitung der zulässigen Verbundspannungen $\tau_{u,zul}$ in den statischen Querzugversuchen in Kapitel 5.6 auswiesen, die Kriterien $V_u > 1,6V_{eq}$ nach *EAD 330499-01-0601* erfüllten. Somit könnten sie das seismische Versuchsprogramm ohne eine Reduzierung der Wechselkraft V_{eq} beenden.

Das Tragverhalten von Injektionsankern unter seismischer Wechselbelastung wurde in Kapitel 5.7.5 detailliert dargestellt. Wie bereits aus statischen Querzugversuchen bekannt führen horizontale Stabverschiebungen zu Zugkräften $N_{u,\parallel}$, die in den Betonuntergrund eingeleitet werden müssen. Die axiale Verschiebung u_p des Ankers hängt von der Einbindetiefe h_{ef} und der Verbundfestigkeit des eingesetzten Injektionsmörtels ab. Diese Verschiebung bewirkt eine Reduzierung der Teileinspannung des Injektionsankers an der Querzugplatte. Folglich verändert diese Reduktion das Tragsystem und mindert die Biegetragfähigkeit des Ankers. Bei den M8-A4/70-Gewindestäben beispielsweise musste die einwirkende Wechselkraft V_{eq} um 20 % reduziert werden, um das Versuchsprogramm ohne Biegeversagen abschließen zu können. Trotz dieser Maßnahme wurde die Verbundfuge zwischen Anker und Betonuntergrund im Verlauf des Testprogramms derart beschädigt, dass die Anforderung $V_u > 1,6V_{eq}$ nach *EAD 330499-01-0601* nicht erfüllt war.

Zur Überprüfung dieser Erkenntnisse erfolgten zusätzliche seismische Versuche. Bei diesen wurde der Verbund zwischen Anker und Bohrloch mittels einer dünnen PTFE-Folie gestört, weshalb eine axiale Kraftübertragung nicht mehr gewährleistet war. Anders als bei den Standardtests zeigten die Versuche mit diesem gestörten Bereich ein vorzeitiges Biegeversagen unter den seismischen Wechselbelastungen. Dieses Ergebnis bestätigte, dass sowohl die Stabeinbindetiefe h_{ef} als auch die Verbundmörtelfestigkeit einen erheblichen Einfluss auf das Trag- und Verformungsverhalten von querbelasteten Injektionsankern in gerissenem Beton ausüben.

In Kapitel 5.7.10 wurde auf Basis der durchgeführten Untersuchungen die Gleichung (5.46) vorgestellt. Diese Gleichung in Verbindung mit statischen Querzugversuchen in gerissenem Beton ermöglicht eine annähernde Bestimmung der erforderlichen Einbindetiefe $h_{ef,erf}$ für Injektionsanker. Gemäß den getroffenen Annahmen kann jeder beliebige Injektionsanker das Kriterium $V_u > 1,6V_{eq}$ nach EAD 330499-01-0601 erfüllen, ohne die Wechselkraft V_{eq} zu reduzieren.

Weiterhin ermöglicht Gleichung (5.47) aus demselben Kapitel die Ermittlung der erforderlichen Einbindetiefe $h_{ef,erf,C1.2}$. Mithilfe dieses Werts kann überprüft werden, ob die zulässige Verbundspannung $\tau_{u,zul}$ aufgrund der abschließenden Querzugbelastung überschritten wurde. Bei einer solchen Überschreitung muss die Einbindetiefe gemäß der genannten Gleichung angepasst werden.

6 Empfehlung und Diskussion

6.1 Eingliederung in EAD 330499-01-0601

Basierend auf den durchgeführten Untersuchungen von statischen Querbelastungen in gerissenem Beton und seismischen Querbelastungen der Leistungskategorie C1 gemäß *EAD* 330499-01-0601 wurde festgestellt, dass sich die effektive Einbindetiefe h_{ef} der Injektionsanker und die Größe der einwirkenden Zugkräfte N_{\parallel} signifikant auf die Querzugtragfähigkeit von Injektionsankern auswirken. Um diesen Einfluss bei der Bewertung der Eignungsversuche gemäß *EAD* 330499-01-0601 berücksichtigen zu können, wurden Änderungsvorschläge zur Bestimmung der statischen Schertragfähigkeit (siehe Abb. 6.2) dargestellt. Die ausführlichen Erläuterungen zu den Änderungsvorschlägen sind im Folgenden zusammengefasst.

EAD 330499-01-0601
Original / Änderungsvorschlag
Statische Versuche
2.2.7.1 Single fastener (test series V1)
[]
$V_{0Rk,s} = k_6 \cdot A_s \cdot f_{uk}$ (E.2.2)
where
$ \begin{array}{l} k_6 & = 0,6 \text{ for fasteners made of carbon steel with } f_{uk} \leq 500 \text{ N/mm}^2 \\ = 0,5 \text{ for fasteners made of carbon/stainless steel with } 500 < f_{uk} \leq 1000 \text{ N/mm}^2 \\ \text{with } \varepsilon_{fu} < 8 \% \\ = 0,7 \text{ for fasteners made of carbon/stainless steel with } 500 < f_{uk} \leq 1000 \text{ N/mm}^2 \\ \text{with } \varepsilon_{fu} > 15 \% \end{array} $
[]
If equation (2.22) is not applicable, the characteristic resistance to steel failure $V_{0Rk,s}$ shall be determined by tests in cracked concrete C20/25 with $\Delta w = 0.5$ mm.
If equation E.2.22.1 is not fulfilled, the embedment depth of the bonded anchors must be increased.
$ au_{u,\parallel}/ au_{u,zul} \le 1,0 \; (E.2.22.1)$
where
τ_{u} = bonded strength at failure shear loads, normalized to C20/25 concrete strength

 $\tau_{u,zul}$ = bond resistance for cracked concrete C20/25 with Δw = 0,5 mm

Abb. 6.1: Vorschlag zur Bewertung von statischen Querzugversuchen

EAD 330499-01-0601
Original / Änderungsvorschlag
Seismische Versuche
E.3.3.3 Tests under alternating shear load cycling (test series C1.2)
[]
$V_{eq} = 0.5 \cdot V_{u,m} \cdot (f_{u,C1.2}/f_{u,5})(E.7)$
where
$V_{u,m} = [N]$ - mean shear capacity from tests for "characteristic resistance to steel failure under shear load" in cracked concrete C20/25 with $\Delta w = 0.5$ mm.
[]
If tests for "characteristic resistance to steel failure under shear load" have not been performed, V_{eq} shall be permitted to be calculated in accordance with Equation (E.9).
$V_{eq} = k_6 \cdot 0.5 \cdot A_s \cdot f_{uk} (E.9)$
[]
If Equation E.9.1 is fulfilled, tests under alternating shear load cycling may be omitted.
$ au_{u, , red} / au_{u, zul} \le 1,0 \ (E.9.1)$
where
$\tau_{u,\parallel,red}$ = mean bonded strength from tests for "characteristic resistance to steel failure under shear load" with reduced embedment depth
$\tau_{u,zul}$ = bond resistance for cracked concrete C20/25 with Δw = 0,5 mm
E.4.1.2 Assessment of tests under alternating shear load (test series C1.2)
[]
If equation E.26.1 is not fulfilled, the embedment depth of the bonded anchors must be increased.
$ au_{u, , C1.2} / au_{u, zul} \leq 1,0 \; (E.26.1)$
where
$\tau_{u,\parallel,C1.2}$ = bonded strength at failure shear loads, normalized to C20/25 concrete strength
$\tau_{u,zul}$ = bond resistance for cracked concrete C20/25 with Δw = 0,5 mm
[]

Abb. 6.2: Vorschlag zur Bewertung von seismischen Querzugversuchen

Die Bestimmung der zulässigen Verbundfestigkeit $\tau_{u,zul}$ erfolgte anhand der Zugversuche in gerissenem niederfestem C20/25-Beton mit einer Rissbreite von w = 0,50 mm nach Gleichung (5.10) aus Kapitel 5.5.3. Es wurden die Verbundfestigkeiten $\tau_{u,\parallel}$ ($\tau_{u,\parallel,c1.2}$) und $\tau_{u,\parallel,red}$ gleichermaßen aus einwirkenden Zugkräften N_{\parallel} unter der statischen Querbelastung durch die Umformung der Gleichungen (5.46) und (5.47) aus Kapitel 5.7.10 nach den Gleichungen (6.1) und (6.2) berechnet.

$$\tau_{u,zul} = \left(\frac{f_{c,20}}{f_{c,test}}\right)^m \cdot \frac{N_{u,zug}}{\pi \cdot d_s \cdot h_{ef}}$$
(5.10)
Kapitel 5.5.3

$$\tau_{u,\parallel} = \left(\frac{f_{c,20}}{f_{c,test}}\right)^m \cdot \frac{N_{\parallel}}{\pi \cdot d_s \cdot (h_{ef} - l_d)}$$
(6.1)

$$\tau_{u,\parallel,red} = \left(\frac{f_{c,20}}{f_{c,test}}\right)^m \cdot \frac{N_{\parallel}}{\pi \cdot d_s \cdot \left(h_{ef} - l_d - \frac{d_s}{2}\right)}$$
(6.2)

mit

 $N_{u,zug}$ maximale Zugkraft bei Zugversuchen in gerissenem Beton in [N]

 N_{\parallel} maximale Zugkraft bei Querbelastung in gerissenem Beton [N]

m Normalisierungsexponent unter Berücksichtigung des Einflusses der Betonfestigkeit auf den Widerstand

 $f_{c,20}$ 20 [N/mm²]

 $f_{c,test}$ Zylinderdruckfestigkeit des Betonprüfkörpers zum Zeitpunkt der Belastung in [N/mm²]

Die Größe der einwirkenden Zugkräfte N_{\parallel} kann iterativ durch die Ermittlung der Querschnittspannungen aus Kapitel 5.6.7 oder näherungsweise nach dem vereinfachten Ansatz aus Kapitel 5.6.8 berechnet werden. Aufgrund des hohen Rechenaufwands eignet sich das iterative Verfahren für eine computergestützte Berechnung. Der Quellcode für eine Excelbasierte VBA-Anwendung kann Anhang J entnommen werden.

Für eine Handberechnung kann näherungsweise der vereinfachte Ansatz verwendet werden. Durch die Umformung der Gleichungen (5.27), (5.28), (5.29), (5.31), (5.32), (5.33), (5.35), (5.36) aus Kapitel 5.6 können die einwirkenden Zugkräfte N_{\parallel} anhand der durchgeführten Querbelastungen für Gewindestäbe der Größe M8 und M20 nach den Gleichungen (6.3) und (6.4) berechnet werden. Zwischengrößen können interpoliert werden.

M8-Gewindestäbe:
$$N_{u,\parallel} = V_u \cdot cos\left(16,93 \ln\left(\frac{-246,72\varepsilon_{fu}}{\left(\varepsilon_{fu}^2 - 98,75\varepsilon_{fu} + 68,917\right) \cdot \left(\frac{u_{max} - 1,4911}{d_s}\right)^{0,823}}\right) + 41,56\right)$$
 (6.3)

M20-Gewindestäbe:
$$N_{u,\parallel} = V_u \cdot cos \left(16,93 \ln \left(\frac{-101,24\varepsilon_{fu}}{\left(\varepsilon_{fu}^2 - 49,788\varepsilon_{fu} + 49,176\right) \cdot \left(\frac{u_{max} - 2,8831}{d_s}\right)^{0,823}} \right) + 41,56 \right)$$
 (6.4)

mit

ε_{fu} Stahldehnung bei Erreichen der maximalen Zugfestigkeit in [%]

 u_{max} maximale horizontale Ankerverschiebung, gemessen auf der Betonoberkante in [mm]

6.2 Allgemeine Empfehlung zum Versuchsaufbau nach TR 048 und EAD 330499-01-0601

I. Im Vergleich der aktuellen Version des Technical Report 048 und dem Anhand D und E der EAD 330499-01-0601 zeigt sich ein signifikanter Unterschied zwischen dem Aufbau der Versuchseinrichtung für statische und dem für seismische Querzugversuche. Da die aus statischen Querzugversuchen im Beton bestimmte Querzugtragfähigkeit der Injektionsanker in die Berechnung und Bewertung der seismischen Querzugtragfähigkeit einfließt, sollten bei statischen Querzugversuchen identische Randbedingungen für die Versuchseinrichtung vorherrschen, wie sie für seismische Querzugversuche im Technical Report 049 (S.7, Figure 2.5) bzw. EAD 330499-01-0601(S.85, Figure E.5) vorgegeben sind.

Es wird empfohlen, bei sämtlichen Querzugversuchen in Beton die Abhebung der Querzugplatte mittels zusätzlicher Rollenlager zu minimieren. Auf diese Weise werden konsistente Randbedingungen für die Durchführung sowohl statischer als auch seismischer Querzugversuche gewährleistet. Eine Skizze des vorgeschlagenen Versuchsaufbaus findet sich in der folgenden Abb. 6.3.

Abb. 6.3: Skizze: (a) Position der Rollenlager, (b) Versuchsaufbau

II. Für eine konsistente und zuverlässige Bewertung sollte das aufgebrachte Installationsdrehmoment T_{inst} bei den statischen wie auch bei den seismischen Querzugversuchen einheitlich im Protokoll festgehalten werden. Ein variierendes

Installationsdrehmoment T_{inst} zwischen statischen und seismischen Querzugversuchen könnte entweder zu einer Über- oder Unterschätzung der Querzugtragfähigkeit führen. Dieses Risiko ist insbesondere bei Befestigungen in gerissenem Beton von Bedeutung.

6.3 Empfehlung zur Qualifikation von statischen Querzugversuchen bei nachträglich installierten Injektionsankern

I. In den aktuellen Bestimmungen der EAD 330499-01-0601 wird nicht zwischen der Schubtragfähigkeit und der Querzugtragfähigkeit eines Befestigungsmittels differenziert. Bei der Stahlscherfestigkeit oder der Stahlschubtragfähigkeit handelt es sich um die Bestimmung der maximalen Schubkraft, die auf den Querschnitt des Ankers einwirkt. Hingegen bezeichnet die "Querzugtragfähigkeit" die Ermittlung der maximalen Querzugkraft, die auf die Befestigung einwirkt. Diese ermittelte Querzugkraft ist eine Kraft, die aus den einwirkenden Querzug- und Zugkräften (inklusive Biegemomente) resultiert.

Es wird empfohlen, eine umfassende Diskussion über diese Thematik zu initiieren. Sie sollte klären, welche Einwirkungs- und Widerstandskräfte bei den Eignungsversuchen festgestellt werden und wie diese bei einer kombinierten Beanspruchung (N + V) zu beurteilen sind.

П. Die rechnerische Ermittlung der Schubtragfähigkeit eines einzelnen Befestigungselements nach EAD 330499-01-0601 wird kritisch betrachtet. Nach Gleichung (2.2) aus Kapitel 2.2.2 wird der Reduktionsfaktor $\alpha_v = 0.5$ vorgesehen. Diese Reduktion impliziert, dass die Schubtragfähigkeit von verwendeten Stählen in etwa 50 % ihrer Zugtragfähigkeit entspricht. Zwar deckt sich die Gewindestangen Güteklasse 8.8 diesem Schubtragfähigkeit von der Abminderungsfaktor $\alpha_v \approx 0.5$, doch wird die Schubtragfähigkeit der hochduktilen Stähle wie A4/70 mit einem Wert von $\alpha_v \approx 0.7$ stark unterschätzt. Dieser Umstand gewinnt insbesondere bei der Bewertung der seismischen Querzugversuche an Bedeutung: "The reduction factor $\alpha_{V,C1}$ shall not exceed the value $\alpha_{V,C1} = 0,7$ for commercial standard rods or standard reinforcing bars which are not produced and subjected to factory production control by the manufacturer of the bonded fastener system" (Technical Report 049, S. 26).

Um den Faktor $\alpha_{V,C1}$ wirklichkeitsnah zu bestimmen, ist es unerlässlich, die tatsächliche Schubtragfähigkeit des verwendeten Ankers und nicht nur eine Schätzung zu kennen. Weiterhin muss klar spezifiziert werden, ob der Faktor $\alpha_{V,C1}$ anhand der Schubkraft oder der Querzugkraft ermittelt werden kann.

Zur Bestimmung der Schubtragfähigkeit von metallischen Verbindungselementen wird die Durchführung von einseitigen Scherversuchen gemäß Kapitel 5.2.3 empfohlen. Es wird auch in Erwägung gezogen, die Schubtragfähigkeit der Gewindestangen mithilfe von Scherversuchen nach *DIN EN 28749* zu bestimmen, wobei bei dem zweischnittigen Versuchsaufbau eine größere Schubtragfähigkeit der Befestigungselemente zu erwarten ist.

III. Zur Bestimmung der Querzugtragfähigkeit von Injektionsankern in gerissenem Beton wird empfohlen, Querzugversuche in Beton mit einer Rissbreite von w = 0,50mm durchzuführen. So soll der Einfluss von Betonrissen, der Einbindetiefe und den Eigenschaften des Verbundmörtels auf die Querzugtragfähigkeit der Injektionsanker berücksichtigt werden.

Während der Versuchsdurchführung muss die Querzugplatte mittels Rollenlager gegen Abheben gesichert sein (siehe Abb. 6.3). Hierbei sind die einwirkenden Querzugkräfte und die zugehörigen Verschiebungen bis zum Eintritt des Stahlversagens aufzuzeichnen. Ein Versagen der Injektionsanker durch Herausziehen gilt als unzulässig. Da die Messung der axialen Ankerverschiebungen u_p im Laufe des Versuchs mit einem hohen Aufwand verbunden ist, kann ein solches Herausziehen der Injektionsanker durch den Vergleich der einwirkenden und zulässigen Verbundspannungen hinreichend ausgeschlossen werden. Das den durchgeführten Untersuchungen zugrunde liegende Nachweiskonzept, auf dem diese Arbeit basiert, wird in Kapitel 6.1 detailliert ausgeführt.

Sollte der Nachweis nicht gelingen, ist eine Anpassung der Einbindetiefe h_{ef} der Injektionsanker notwendig. Dann müssen die Querzugversuche in gerissenem Beton wiederholt werden. Diese Vorgabe erleichtert zudem die Bestimmung der seismischen Querzugtragfähigkeit der Injektionsanker der Leistungskategorie C1.

IV. Die in gerissenem Beton gemessene Querzugkraft V_u darf die Referenzkraft aus den Abscherversuchen nicht überschreiten. Zur Bestimmung der Wechselkraft V_{eq} für die Versuchsreihe C1.2 sollte stets der geringste ermittelte Wert herangezogen werden.

6.4 Empfehlung zur Qualifikation von querzugbelasteten nachträglich installierten Injektionsankern im Beton in Leistungskategorie C1

- I. Statische Querzugversuche in gerissenem Beton dienen als vergleichbare Referenzversuche zu den seismischen Querzugversuchen der Leistungskategorie C1. Sofern Injektionsanker über eine rechnerisch erforderliche Einbindetiefe $h_{ef,erf}$ verfügen, die ein sicheres Einleiten der Zugkräfte $N_{u,\parallel}$ in den Beton gewährleistet, kann auf die seismische Querzugversuche der C1.2-Reihe verzichtet werden. Der Wert der charakteristischen seismischen Querzugtragfähigkeit $V_{Rkc,s,C1}$ kann rechnerisch ohne Abminderung mit 50 % der quasistatischen Querzugkraft $V_{u,m}$ angesetzt werden.
- II. Es wird dringend empfohlen, das Auftreten von Biegeversagen oder Herausziehen der Injektionsanker sowohl während der seismischen Wechsellastbeanspruchung als auch bei der Bestimmung der Restquerzugkraft als unzulässig zu bewerten. Auf diese Weise wird gewährleistet, dass die einwirkenden Zugkräfte sicher in den

Betonuntergrund eingeleitet werden können, ohne die Querzugtragfähigkeit der Injektionsanker dadurch negativ zu beeinflussen. Hauptziel der Querzugversuche ist die Ermittlung der Querzugtragfähigkeit der Injektionsanker. Ein Versagen der Verbundfuge unter Zugbelastung muss konsequent vermieden werden.

7 Fazit und Ausblick

7.1 Zusammenfassung

In Rahmen der vorliegenden Dissertation wurde das Trag- und Verformungsverhalten von querzugbeanspruchten Injektionsankern in gerissenem Beton intensiv untersucht. Hierfür wurden sowohl statische als auch seismische Querzugversuche unter Berücksichtigung verschiedener Güteklassen und Verbundmörteltypen durchgeführt.

Ausgehend von bestehenden Bewertungsgrundlagen gemäß *EAD 330499-01-0601* und dem aktuellen Forschungsstand wurden in Kapitel 4 die Versuchsergebnisse einer vorhandenen Datenbank zu Injektionsankern analysiert. Diese Datenbank enthält Ergebnisse von seismischen Querbelastungstests der Leistungskategorie C1 gemäß *EAD 330499-01-0601*. Untersucht wurden die Versuchsreihe C1.2 mit Gewindestäben der Güteklasse 8.8 und Bewehrungsstäbe der Güteklasse B500 B. Bei diesen Versuchen kamen die drei unterschiedlichen Verbundmörtel Pure Epoxy, styrolfreier Polyester und Vinylesterurethan zum Einsatz.

Die in Kapitel 5 gewonnenen Erkenntnisse aufgrund der Datenanalyse mündeten in ein Prüfkonzept, das sich auf die Ermittlung der Materialeigenschaften wie Druck-, Zug- und Verbundfestigkeit konzentrierte. Entsprechend wurden handelsübliche M8- und M20-Gewindestangen der Güteklasse 4.8, 5.6, 8.8 und A4/70 sowie Bewehrungsstäbe der Güte B500B mit Durchmessern von 8 bzw. 20 mm getestet.

Die Zugprüfungen erfolgten mithilfe eines Videoextensometers, der die Bruchdehnungen der Stahlproben sowohl in Längs- als auch in Querrichtung zur Stabachse erfassen konnte. Für die Scherprüfung wurde eine Prüfvorrichtung in Anlehnung an *EAD 330499-01-0601* entwickelt, in der die geprüften Anker einseitig, mit und ohne Einspannung durch Gewindemuttern an der Scherplatte abgeschert wurden. So konnte das Tragverhalten eines im Beton verankerten Injektionsankers simuliert und die durch horizontale Stabverschiebung induzierten Zugkräfte gemessen wurden. Diese Messergebnisse bildeten eine solide Basis für die abschließende Bewertung der statischen und seismischen Querzugtests.

In den Scherversuchen wurde festgestellt, dass die gemessenen Querzugkräfte V_s in direktem Verhältnis zu den bei Erreichen der Zugfestigkeit f_u ermittelten Zugprobendehnungen ε_{fu} der Gewindestäbe stehen. Ein Anstieg der Querzugkräfte V_s der Gewindestangen korrelierte mit einem Anstieg der Stahldehnungen ε_{fu} . Die Schubtragfähigkeit der Gewindestäbe lässt sich näherungsweise wie folgt in Abhängigkeit von Bruchdehnung und Zugfestigkeit beschreiben: Bei spröden Gewindestäben (vgl. Güteklasse 8.8) mit $\varepsilon_{fu} < 8 \%$ beträgt die Schubtragfähigkeit ca. $0.5f_u$, wohingegen sie bei hochduktilen Gewindestäben (vgl. Güteklasse A4/70) mit $\varepsilon_{fu} > 15 \%$ etwa $0.7f_u$ beträgt. Diese Beobachtung hinsichtlich der A4/70-Stähle wurde inzwischen von der allgemeinen bauaufsichtlichen Zulassung *Z-30.3-6 20.04.2022* bestätigt.

Die Eigenschaften von Beton und Verbundmörtel wurden mittels Druck- und Spaltzugversuchen getestet, wobei die Verbundmörteleigenschaften auf ähnliche Weise wie die von Beton bestimmt und die Probengröße an die Menge des Verbundmörtels angepasst wurde.

Die Verbundfestigkeit $\tau_{u,zul}$ der verwendeten Verbundmörtel wurde durch Zugversuche in gerissenem Beton mit einer Rissweite von w = 0,50 mm ermittelt. Der Vergleich der

Verbundfestigkeit und der Spaltzugfestigkeit der Verbundmörtel zeigte, dass die übertragbaren Verbundspannungen des Injektionsankers sich linear erhöhen, wenn die Spaltzugfestigkeit des Verbundmörtels zunimmt.

Im Kapitel 5.6 wurden die Ergebnisse der statischen Querzugversuchen in gerissenem Beton präsentiert. Die Versuche wurden in Anlehnung an *EAD 330499-01-0601* in gerissenem Beton mit einer Rissweite von w = 0,50 mm durchgeführt. Während der Querbelastung war die Scherplatte sicher gegen ein Abheben fixiert.

Basierend auf der Analyse der Bruchbilder der aus den Prüfkörpern extrahierten Injektionsanker wurde ein bruchmechanisches Modell beschrieben. Dieses ermöglichte anhand der Versuchsergebnisse die zerstörungsfreie Bestimmung der Querkraftanteile und der Stabverformungen von Injektionsankern im Beton.

Des Weiteren wurde bei querzugbelasteten Injektionsankern festgestellt, dass der Verbundmörtel einen entscheidenden Einfluss auf ihr Trag- und vor allem ihr Verformungsverhalten ausübt. Bei Querzugversuchen in gerissenem Beton zeigte sich eine signifikante Umlagerung der Querzugkräfte V_u in die einwirkenden Zugkräfte $N_{u,\parallel}$. Sobald die zulässigen Verbundspannungen $\tau_{u,zul}$ durch die einwirkenden Zugkräfte $N_{u,\parallel}$ überschritten wurden, erfolgte eine axiale Verschiebung u_p des Ankers im Bohrloch, die eine Verringerung der Querzugtragfähigkeit der Injektionsanker zur Folge hatte.

Die Größe der einwirkenden Zugkräfte $N_{u,\parallel}$ ließ sich näherungsweise durch die ermittelte Stabauslenkung *s* und die Anfangsposition des verformten Stabbereichs l_d im Anker bestimmen. Bei der Ermittlung dieser Parameter wurden die Materialeigenschaften der verwendeten Anker für die empirische Untersuchung berücksichtigt.

In den seismischen Querzugversuchen der Leistungskategorie C1 wie im Kapitel 5.7 beschrieben wurde das Trag- und Verformungsverhalten von Gewindestäben der Güteklassen 8.8 und A4/70 in Kombination mit einem für seismische Anwendungen nicht zugelassenen Verbundmörtel auf Basis von ungesättigtem Polyester untersucht. Das im Kapitel 5.6 entwickelte Modell kam zur Ermittlung der einwirkenden Querzugkräfte $V_{u,\perp}$ und Zugkräfte $N_{u,\parallel}$ zum Einsatz.

Die Ergebnisse dieser Untersuchungen deuten darauf hin, dass prinzipiell jeder Injektionsanker in der Lage ist, das C1.2-Testprogramm gemäß *EAD* 330499-01-0601 mit aufgebrachten seismischen Querzugbelastungen V_{eq} zu bestehen und dabei die Kriterien zur Resttragfähigkeit $V_u > 1,6V_{eq}$ zu erfüllen. Diese Aussage ist allerdings nur dann gültig, sofern während aller Testläufe keine bedeutende axiale Ankerverschiebung u_p erfolgt und die zulässigen Verbundspannungen $\tau_{u,zul}$ in den statischen Querzugversuchen in gerissenem Beton nicht überschritten werden. Beide Faktoren implizieren, dass die einwirkenden Zugkräfte sicher in den Betonuntergrund eingeleitet werden müssen, um eine Beeinträchtigung des Trag- und Verformungsverhaltens der Injektionsanker zu verhindern.

Bei der Analyse des Verformungsverhaltens von seismisch belasteten Injektionsankern ließen sich zwei Versagensmodelle identifizieren, die maßgeblich von der Integrität der Verbundmörtelfuge beeinflusst wurden. Bei einer unbeschädigten Fuge wurden die Zugkräfte aus den Querzugversuchen sicher in den Betonuntergrund eingeleitet. Folglich erfuhr der Metallanker während des Testprogramms nur geringfügige Schädigungen. Wenn jedoch die zulässigen Verbundspannungen $\tau_{u,\parallel,zul}$ entlang des Injektionsankers überschritten wurden,

änderte sich das statische System. Eine axiale Stabverschiebung u_p trat auf, und zwischen der Gewindemutter und dem Anbauteil entstand ein Spalt. Dieser führte zu einer zusätzlichen Biegebeanspruchung des Injektionsankers und könnte eine Überbelastung sowie ein vorzeitiges Stahlbiegeversagen verursachen.

In Kapitel 6 ist die Methodik zur Bewertung der Querzugtragfähigkeit von Injektionsankern in gerissenem Beton zusammengefasst. Hierbei kann die erforderliche Einbindetiefe $h_{ef,erf}$, um die maximale Querzugtragfähigkeit von Injektionsankern zu gewährleisten, entweder durch einen vereinfachten Ansatz oder iterativ durch den Spannungsnachweis bestimmt werden. Die in statischen Querzugversuchen berechneten Querschnittskräfte zeigen deutlich, dass die gemessene Querzugkraft V_u keine reine Schubtragfähigkeit der Injektionsanker präsentiert. Vielmehr kann hier, abhängig vom gewählten Bemessungsmodell, von einer Interaktion zwischen Schub- und Zugkraft einschließlich Biegemoment ausgegangen werden.

7.2 Ausblick

Die vorliegende Arbeit hat aufgezeigt, dass das Trag- und Verformungsverhalten von Injektionsankern unter seismischer Beanspruchung der Leistungskategorie C1 mittels der vorgestellten Vorgehensweise und der berücksichtigten Materialeigenschaften treffend approximiert werden kann. Dennoch gibt es Aspekte, die weiterer Forschung bedürfen:

- I. Im Kapitel 5.6.9 wurde festgestellt, dass ein direkter Zusammenhang zwischen der Spaltzugfestigkeit des Verbundmörtels und den bei Zugversuchen in gerissenem Beton gemessenen Verbundspannungen existiert. Dieser Zusammenhang wurde bisher nicht ausreichend berücksichtigt und begründet somit einen weiteren Forschungsbedarf.
- II. Zur Erweiterung des vorgestellten Ansatzes auf Querzugversuche der Leistungskategorie C2 nach *EAD 330499-01-0601* bedarf es weiterer Analysen an quasistatischen und seismisch belasteten Injektionsankern in gerissenem Beton mit einer Rissbreite von w = 0,80 mm. Die in dieser Arbeit bereits gewonnenen Erkenntnisse können sowohl für die Planung- und Bewertungsphase von C2.2- und C2.4-Versuchsreihen genutzt werden.
- III. III.Die Erkenntnisse zum Tragverhalten querzugbelasteter Injektionsanker sind auch für kombinierte Zug-Querzug-Versuche relevant. Hochduktiler Stahl, der Stahldehnungen beim Erreichen der maximalen Zugfestigkeit f_u von $\varepsilon_{fu} > 15 \%$ aufweist, kann große Anteile der einwirkenden Querzugkräfte in Zugkräfte umlagern. Solche Beziehungen wurden bis jetzt nicht ausreichend untersucht, was weiteren Forschungsbedarf rechtfertigt.

Literatur

14056CT1515 2016

14056CT1515: *Versuchsbericht 14056CT1515. Verbundmörtel I3* MATERIALPRÜFAMT KAISERSLAUTERN, 2016. (nicht veröffentlicht).

16076CT/15515_1 2018

16076CT/15515_1: *Versuchsbericht 16076CT/15515_1. Verbundmörtel I1* MATERIALPRÜFAMT KAISERSLAUTERN, 2018. (nicht veröffentlicht).

16076CT/15515_2 2018

16076CT/15515_2: *Versuchsbericht 16076CT/15515_2. Verbundmörtel I1* MATERIALPRÜFAMT KAISERSLAUTERN, 2018. (nicht veröffentlicht).

18073HK/15567_4 2019

18073HK/15567_4: *Versuchsbericht 18073HK/15567_4. Verbundmörtel I2* MATERIALPRÜFAMT KAISERSLAUTERN, 2019. (nicht veröffentlicht).

18073HK/15567_5 2019

18073HK/15567_5: *Versuchsbericht 18073HK/15567_5. Verbundmörtel I2* MATERIALPRÜFAMT KAISERSLAUTERN, 2019. (nicht veröffentlicht).

AC193

ICC EVALUATION SERVICE, AC193 Acceptance Criteria for Mechanical Anchors in Concrete Elements. ICC EVALUATION SERVICE, LLC, Oktober 2017.

AC308

ICC EVALUATION SERVICE, AC308 Acceptance Criteria for Post-Installed Adhesive Anchors in Concrete Elements, Juni 2019.

ACI 318-11

ACI COMMITTEE, ACI 318-11 *Building Code Requirements for Structural Concrete.* Michigan, August 2011.

ACI 355.2-01

AMERICAN CONCRETE INSTITUTE, ACI 355.2-01 Evaluating the Performance of Post-Installed Mechanical Anchors in Concrete. Michigan, Januar 2002.

ACI 355.4-11

AMERICAN CONCRETE INSTITUTE, ACI 355.4-11 *Qualification of Post-Installed Adhesive Anchors in Concrete.* Michigan, August 2011.

Akiyama et al. 1997

AKIYAMA, T.; HIROSAWA, M.; SHIMIZU, Y.; KATAGIRI, T.: *A study on shear strength of post-installed anchors.* The papers to be related to design of anchors under seismic loading, Universität Stuttgart, 1997.

Appl 2008

APPL, J.-J.: *Tragverhalten von Verbunddübeln unter Zugbelastung.* Stuttgart, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, Dissertation, 2008.

BGR 2021

BGR: Aktuelle Erdbeben ab einer Magnitude 5.0.

<https://www.bgr.bund.de/DE/Themen/Erdbeben-

Gefaehrdungsanalysen/Seismologie/Seismologie/weltweit_1Jahr/weltweit_node.html > - 04.08.2021.

Birkeland und Birkeland 1966

BIRKELAND, P. W.; BIRKELAND, H. W.: Connections in Precast Concrete Construction. In Journal Proceedings 63-15, 3 (1966).

CAN3N287.2

CAS CANADIAN STANDARDS ASSOCIATION, CAN3N287.2 *Material requirements for concrete containment structures for CANDU nuclear power plants.* Toronto, Janur 1982.

Cook et al. 1998

COOK, R. A.; KUNZ, J.; FUCHS, W.; KONZ, R. C.: Behavior and Design of Single Adhesive Anchors under Tensile Load in Uncracked Concrete. In Structural Journal 95, 1 (1998), S. 9-26.

Cziesielski und Friedmann 1983

CZIESIELSKI, E.; FRIEDMANN, M.: *Tragfähigkeit geschweißter Verbindungen im Betonfertigteilbau.* DAfStb Heft 346. Berlin-München, Wilhelm Ernst & Sohn,Deutscher Ausschuß für Stahlbeton - DAfStb Dissertation, 1983. ISBN: 3-433-00979-1.

Dei Poli et al. July-August 1993

DEI POLI, S.; DI PRISCO, M.; GAMBAROVA, P. G.: Cover and Stirrup Effects on the Shear Response of Dowel Bar Embedded in Concerete. In ACI Structural Journal, 90-S46 (July-August 1993), S. 441-450.

DIBt 1998

DIBT DEUTSCHES INSTITUT FÜR BAUTECHNIK, DIBt 1998 *Leitfaden für Dübelbefestigungen in Kernkraftwerken und anderen kerntechnischen Anlagen.* Berlin, September 1998.

DIBt 2010

DIBT DEUTSCHES INSTITUT FÜR BAUTECHNIK, DIBt 2010 *Leitfaden für Dübelbefestigungen in Kernkraftwerken und anderen kerntechnischen Anlagen.* Berlin, Juni 2010.

DIN 4149

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN 4149 Bauten in deutschen Erdbebengebieten – Lastannahmen, Bemessung und Ausführung üblicher Hochbauten dra. Berlin, 2005.

DIN 50106

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN 50106 Prüfung metallischer Werkstoffe - Druckversuch bei Raumtemperatur. Berlin, November 2016.

DIN 50125

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN 50125, 50125: *Prüfung metallischer Werkstoffe - Zugproben.* Berlin, Dezember 2016.

DIN EN 1992-4

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN EN 1992-4 Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 4: Bemessung der Verankerung von Befestigungen in Beton. Berlin, April 2019.

DIN EN 1993-1-8

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN EN 1993-1-8 Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1–8: Bemessung von Anschlüssen. Berlin, Dezember 2010.

DIN EN 1994-1-1

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN EN 1994-1-1 Eurocode 4: Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton – Teil 1–1: Allgemeine Bemessungsregeln und Anwendungsregeln für den Hochbau. Berlin, Dezember 2010.

DIN EN 1998-1

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN EN 1998-1 Eurocode 8: Auslegung von Bauwerken gegen Erdbeben – Teil 1: Grundlagen, Erdbebeneinwirkungen und Regeln für Hochbauten. Berlin, Dezember 2010.

DIN EN 12390-1

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN EN 12390-1 *Prüfung von Festbeton – Teil 1: Form, Maße und andere Anforderungen für Probekörper und Formen.* Berlin, Dezember 2012.

DIN EN 12390-3

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN EN 12390-3 *Prüfung von Festbeton – Teil 3: Druckfestigkeit von Probekörpern.* Berlin, Oktober 2019.

DIN EN 12390-4

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN EN 12390-4 *Prüfung von Festbeton – Teil 4: Bestimmung der Druckfestigkeit – Anforderungen an Prüfmaschinen.* Berlin, April 2020.

DIN EN 12390-6

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN EN 12390-6 *Prüfung von Festbeton – Teil 6: Spaltzugfestigkeit von Probekörpern.* Berlin, September 2010.

DIN EN 12390-13

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN EN 12390-13 *Prüfung von Festbeton – Teil 13: Bestimmung des Elastizitätsmoduls unter Druckbelastung.* Berlin, Juni 2014.

DIN EN 28749

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN EN 28749 *Stifte und Kerbstifte - Scherversuch.* Berlin, Oktober 1992.

DIN EN ISO 6892-1

DIN DEUTSCHES INSTITUT FÜR NORMUNG, DIN EN ISO 6892-1 Metallische Werkstoffe - Zugversuch - Teil 1: Prüfverfahren bei Raumtemperatur. Berlin, Juni 2020.

Dulacska 1972

DULACSKA, H.: Dowel Action of Reinforcement Crossing Cracks in Concrete. In Proceedings / American Concrete Institute 69, 12 (1972), S. 754-757.

E488 / E488M-15

ASTM, E488 / E488M-15 *Standard Test Methods for Strength of Anchors in Concrete Elements.* West Conshohocken, Pennsylvania, 2015.

EAD 330499-01-0601

EOTA, EAD 330499-01-0601 Bonded Fasteners for Use in Concrete. EOTA, 2018.

Engström 1986

ENGSTRÖM, B.: Combined effects of dowel action and friction in bolted connections. In Nordic Concrete Research 1990, 9 (1986), S. 14-33.

Eligehausen und Mallée 2000

ELIGEHAUSEN, R.; MALLÉE, R.: *Befestigungstechnik im Beton- und Mauerwerkbau.* Berlin, Ernst & Sohn, Bauingenieur-Praxis, 2000. ISBN: 3-433-01134-6.

Eligehausen et al. 2006

ELIGEHAUSEN, R.; MALLÉE, R.; SILVA, J. F.: Anchorage in concrete construction. 1. Aufl. Berlin, Ernst & Sohn, 2006. ISBN: 978-3-433-01143-0.

ETAG 001

EOTA, ETAG 001 *Metal Anchors for Use in Concrete: Anchors in General.* EOTA, April 2013.

ETAG 001 - Annex A

EOTA, ETAG 001 - Annex A *Metal Anchors for Use in Concrete: Details of Tests*. EOTA, April 2013.

ETAG 001 - Annex E

EOTA, ETAG 001 - Annex E *Assessment of Metal Anchors under Seismic Action*. EOTA, April 2013.

ETAG 001 - Part 5

EOTA, ETAG 001 - Part 5 *Metal Anchors for Use in Concrete: Bonded Anchors.* EOTA, April 2013.

fib Bulletin 1

FIB, fib Bulletin 1 *Structural Concrete. Textbook on behaviour, design and performance.* Lausanne, Juli 1999.

fib Bulletin 25

FIB, fib Bulletin 25 *Displacement-based seismic design of reinforced concrete buildings*. Lausanne, 2003.

fib Bulletin 43

FIB, fib Bulletin 43 *Structural connections for precast concrete buildings.* Lausanne, Februar 2008.

fib Bulletin 58

FIB, fib Bulletin 58 Design of anchorage in concrete. Lausanne, 2010.

fib Bulletin 65

FIB, fib Bulletin 65 Model Code 2010. Lausanne, März 2012.

Friberg 1938a

FRIBERG, B. F.: Load and deflection characteristics of dowles in transverse joints of concrete pavements. In Proceedings of the Eighteenth Annual Meeting of the Highway Research Board Held at Washington. Vol 18, Part I (1938), S. 140-161.

Friberg 1938b

FRIBERG, B. F.: Design of Dowels in Transverse Joints of Concrete Pavements. In American Society of Civil Engineers. Vol. 64, 9 (1938), S. 1809-1828.

Fuchs 1984

FUCHS, W.: Tragverhalten von Befestigungsmitteln bei Querzugbeanspruchung. In Werkstoffe und Konstruktion. Institut für Werkstoffe im Bauwesen der Universität Stuttgart und Forschungs- und Materialprüfungsanstalt Baden-Württemberg (1984), S. 37-46.

Fuchs 1992

FUCHS, W.: *Tragverhalten von Befestigungen unter Querlasten in ungerissenem Beton.* DAfStb Heft 424. Berlin, Beuth Verlag, Deutscher Ausschuss für Stahlbeton Publikation, 1992. ISBN: 3-410-65624-3.

Fuchs et al. 2015

FUCHS, W.; HOFMANN, J.; HÜLDER, G.: *Montage bei tiefen Temperaturen - Einfluss auf das Tragverhalten chemischer Dübel.* In *Beton- und Stahlbetonbau* 110, 6 (2015), S. 394-401.

Fuchs et al. 2020

FUCHS, W.; ELIGEHAUSE, R.; HOFMANN, J.: *Bemessung der Verankerung von Befestigungen in Beton.* In *Beton- und Stahlbetonbau* 115, 1 (2020), S. 36-44.

Grosser 2012

GROSSER, P. R.: *Load-bearing behavior and design of anchorages subjected to shear and torsion loading in uncracked concrete.* Stuttgart, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, Dissertation, 2012.

Hanswille und Sedlacek 2003

HANSWILLE, G.; SEDLACEK, G.: Composite bridge design for small and medium spans. Report EUR 20583 EN. Luxembourg, Office for Official Publications of the European Communities, EUR Technical steel research Steel structures, 2003. ISBN: 9289448148.

Hanswille et al. 2007

HANSWILLE, G.; PORSCH, M.; USTUNDAG, C.: *Resistance of headed studs subjected to fatigue loading Part II: Analytical study*. In *Journal of Constructional Steel Research* 63, 4 (2007), S. 485-493.

Hoehler 2006

HOEHLER, M. S.: *Behavior and testing of fastenings to concrete for use in seismic applications.* Stuttgart, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, Mitteilungen des Institut für Werkstoffe im Bauwesen Dissertation, 2006. ISBN: 3980854272.

Hofmann 2004

HOFMANN, J.: *Tragverhalten und Bemessung von Befestigungen unter beliebiger Querbelastung in ungerissenem Beton.* Stuttgart, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, Dissertation, 2004.

Jähring 2008

JÄHRING, A.: *Zum Tragverhalten von Kopfbolzendübeln in hochfestem Beton,* Lehrstuhl für Massivbau Institut für Baustoffe und Konstruktion Technische Universität München, Dissertation, 2008.

Jebara 2018

JEBARA, K.: *Pryout capacity and bearing behavior of stocky headed stud anchorages.* Stuttgart, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, Dissertation, 2018.

K-A-L-M 2017

Zulassung angemeldet durch: Kalm Befestigungssysteme GmbH Pr.: K-A-L-M: *ETA-* 15/0858.

Knobloch und Schmidt 1987

KNOBLOCH, M.; SCHMIDT, H.: *Tragfähigkeit und Tragverhalten stahlbauüblicher Schrauben unter reiner Scherbeanspruchung und unter kombinierter Scher-Zugbeanspruchung.* Essen, Forschungsberichte aus dem Fachbereich Bauwesen Heft 41, 1987.

Kunz et al. 1998

KUNZ, J.; COOK, R. A.; FUCHS, W.; SPIETH, H.: *Tragverhalten und Bemessung von chemischen Befestigungen*. Berlin, Verlag für Architektur und technische Wissenschaften, Beton- und Stahlbetonbau Heft 1 und 2, 1998.

Lang 1979

LANG, G.: *Festigkeitseigenschaften von Verbundanker-Systemen*. In *Bauingenieur* 55 (1979), S. 41-46.

Lange 2021

LANGE, J.: Untersuchungen zum Tragverhalten von hochfesten Schrauben unter kombinierter Zug- und Scherbeanspruchung. DAfSt Heft 2/2017. Düsseldorf, Deutscher Ausschuß für Stahlbau - DASt Forschungsbericht, 2021.

Lungershausen 1988

LUNGERSHAUSEN, H.: *Zur Schubtragfähigkeit von Kopfbolzendübeln.* Bochum, Institut für Konstruktiven Ingenieurbau Ruhr-Universität Bochum, Technischwissenschaftliche Mitteilungen / Institut für Konstruktiven Ingenieurbau Ruhr-Universität Bochum Dissertation, 1988.

Mahrenholtz und Eligehausen 2012

MAHRENHOLTZ, P.; ELIGEHAUSEN, R.: *Experimental performance and recommendations for qualification of post-installed anchors for seismic applications.* Stuttgart, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, Dissertation, 2012.

Mahrenholtz und Eligehausen 2015

MAHRENHOLTZ, P.; ELIGEHAUSEN, R.: *Post-installed concrete anchors in nuclear power plants: Performance and qualification*. In *Nuclear Engineering and Design* 287 (2015), S. 48-56.

Mahrenholtz und Pregartner 2016

MAHRENHOLTZ, P.; PREGARTNER, T.: Qualification and design of seismic anchors – *Requirements in New Zealand and Australia*. In 2016 NZSEE Conference (2016), S. 1-9.

Mahrenholtz und Wood 2020

MAHRENHOLTZ, P.; WOOD, R. L.: Design of post-installed and cast-in-place anchors according to the new EN 1992-4 and ACI 318-19. In Structural Concrete (2020), S. 1-16.

Mast und M. ASCE 1968

MAST, R. F.; M. ASCE: Auxiliary Reinforcement in Concrete Connections. In Journal of Structural Division, Vol. 94 (1968), S. 1485-1504.

Mises und v 1913

Mises; V, R.: Mechanik der festen Körper im plastisch- deformablen Zustand. In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 4 (1913), S. 582-592.

Meskouris et al. 2011

MESKOURIS, K.; HINZEN, K.; BUTENWEG, C.; MISTLER, M.: *Bauwerke und Erdbeben.* Grundlagen – Anwendung – Beispiele. 3., aktualisierte und erw. Aufl. Wiesbaden, Vieweg + Teubner, Praxis, 2011. ISBN: 9783834807793.

Mészároš 2002

MÉSZÁROŠ, J.: *Tragverhalten von Einzelverbunddübeln unter zentrischer Kurzzeitbelastung.* Stuttgart, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, Dissertation, 2002.

Mészároš und Eligehausen 1996

MÉSZÁROŠ, J.; ELIGEHAUSEN, R.: Influenceof Installation Inaccuracies on the Behaviourof Bonded Anchors, Evaluation of the TestResults. Report No. 1/81-96/14. Stuttgart, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, (nicht veröffentlicht), 1996.

Meusburger 2022

MEUSBURGER, M.: *Technischer Vergleich von Befestigungs- und Verankerungssystemen in Beton.* Diplomarbeit. Leipzig, 2022.

Müller 2019

MÜLLER, S.: Ein Beitrag zum Energiedissipationsvermögen von Betonschrauben. Heft

85. Karlsruhe, Baden, KIT Scientific Publishing, Karlsruher Reihe Massivbau, Baustofftechnologie, Materialprüfung, 2019. ISBN: 978-3-7315-0943-1.

MKT 2019

MKT: *Lieferprogramm 2019* (2019), https://www.schellberg-bruehl.de/wp-content/uploads/2019/02/MKT-Lieferprogramm-2019.pdf.

Oehlers und Johnson 1987

OEHLERS, D. J.; JOHNSON, R. P.: *The strength of stud shear connections incomposit*. In *The Strucktural Engenier* 65B, 2 (1987), S. 44-48.

Ollgaard et al. 1971

OLLGAARD, J. G.; SLUTTER, R. G.; Fischer; J. W.: Shear strength of stud connectors in lightweight and normal weigh. In AISC Engineering Journal 71, 10 (1971), S. 55-64.

Paulay et al. 1974

PAULAY, T.; PARK, R.; PHILLIPS, M. H.: Horizontal Construction Joints in Cast-In-Place Reinforced Concrete. In American Concrete Institute 42, 2 (1974), S. 599-616.

Prujssers 1988

PRUJSSERS, A. F.: Aggregate Interlock And Dowel Action Under Monotonic And Cyclic Loadinginterlock and dowel action under monotonic and cyclic loading. Delft, Delft University Press, Dissertation, 1988. ISBN: 90-6275-451-1.

Randl 1997

RANDL, N.: Untersuchungen zur Kraftübertragung zwischen Alt- und Neubeton bei unter- schiedlichen Fugenrauhigkeiten, Universität Innsbruck, Dissertation, 1997.

Rasmussen 1963

RASMUSSEN, B. H.: The Carrying Capacity of Transversely Loaded Bolts and Dowles Embded in Concrete. In Bygningsstatiske meddelelser 34, 2 (1963), S. 39-55.

Rehm et al. 1991

REHM, G.; ELIGEHAUSEN, R.; MALLEE, R.: *Befestigungstechnik*. Sonderdruck aus dem Beton-Kalender 1992. Berlin, Ernst & Sohn, 1991.

Reichert 2020

REICHERT, M.: Zur Bestimmung des Feuerwiderstands von Injektionsankern mit variabler Verankerungstiefe in Beton. Kaiserslautern, Technische Universität Kaiserslautern, Dissertation, 2020.

Rieder 2004

RIEDER, A.: Anchoring to concrete under seismic conditions. In 5th International PhD Symposium in Civil Engineering (2004), S. 1489-1494.

Rieder 2009

RIEDER, A.: *Seismic response of post-installed anchors in concrete.* Wien, Universität für Bodenkultur Wien Department für Bautechnik und Naturgefahren Institut für Konstruktiven Ingenieurbau, Dissertation, 2009.

Risk Management Solutions 2006

RISK MANAGEMENT SOLUTIONS: *1356 Basel Earthquake*. 650-Year Retrospective. In *Risk Management Solutions* (2006).

Roik und Hanswille 1988

ROIK, K.; HANSWILLE, G.: *Harmonisierung der europäischen Baubestimmungen. Hintergrundsbericht zu Eurocode 4.* Bochum, Minister für Raumordnung, Bauwesen und Städtebau, 1988.

RTSS-Videoextensometer

RTSS-VIDEOEXTENSOMETER: Limess Messtechnik und Software GmbH.

Scherrer 2004

SCHERRER, M.: *Kerbspannung und Kerbformoptimierung.* FZKA 7021. Forschungszentrum Karlsruhe, Wissenschaftliche Berichte, 2004. ISBN: ISSN: 0947-8620.

Schmid 2009

SCHMID, K.: *Tragverhalten und Bemessung von Befestigungen am Bauteilrand mit Rückhängebewehrung unter Querlasten rechtwinklig zum Rand.* Stuttgart, Universität Stuttgart, Dissertation, 2009.

Schmied 2008

SCHMIED, S.: *Dehnungsverteilung in Beton bei Dübeln unter Querlast.* Wien, Universität für Bodenkultur Wien Department für Bautechnik und Naturgefahren Institut für Konstruktiven Ingenieurbau, Diplomarbeit, 2008.

SEAOSC 1997

SEAOSC, SEAOSC 1997 Standard Method for Cyclic Load Test for Anchors in Concrete or Grouted Masonry. Whittier, California, 1997.

Sell 1973

SELL, R.: Über Festigkeit und Verformung mit Reaktionsharzmörtelpatronen versetzten Betonankern. In Verbindungstechnik, 8 (1973), S. 11-16.

Silva 2001

SILVA, J. F.: Test Methods for Seismic Qualification of Post-Installed Anchors. In International Symposium on Connections between Steel and Concrete (2001), S. 551-563.

Simons 2007

SIMONS, I. N.: Verbundverhalten von eingemörtelten Bewehrungsstäben unter zyklischer Beanspruchung. Stuttgart, Institut für Werkstoffe im Bauwesen der Universität Stuttgart,IWB-Mitteilungen Dissertation, 2007. ISBN: 9783981168211.

Sklarov 2020

SKLAROV, N.: *Tragverhalten von dynamisch belasteten Injektionsankern,* 2020. Online verfügbar unter https://seafile.rlp.net/d/679a318f00504cfca5a9/, zuletzt abgerufen am 21.07.2024.

Sklarov und Thiele 2020

SKLAROV, N.; THIELE, C.: *Material-Dependent Shear Capacity of Threaded Rods*. In *CivilEng* 1, 3 (2020), S. 351-367.

Takase et al. 2012

TAKASE, Y.; WADA, T.; IKEDA, T.; SHINOHARA, Y.: Mechanical modell of adhesive post-

installed anchor subjected to tyclic shear force. In Journal of Structural and Construction Engineering (Transactions of AIJ) 682, 77 (2012), S. 1915-1924.

Takase 2019

TAKASE, Y.: Testing and modeling of dowel action for a post-installed anchor subjected to combined shear force and tensile force. In Engineering Structures 195 (2019), S. 551-558.

Technical Report 045

EOTA TECHNICAL REPORT, Technical Report 045 *Design of Metal Anchors For Use In Concrete Under Seismic Actions.* EOTA, Februar 2013.

Technical Report 045

EOTA, Technical Report 045 *Design Methods for Anchorages with Metal Injection Anchors and Screw Anchors for Use in Masonry*, 2021.

Technical Report 048

EOTA TECHNICAL REPORT, Technical Report 048 *Details of test for post-installed fasteners in concrete.* EOTA, August 2016.

Technical Report 049

EOTA TECHNICAL REPORT, Technical Report 049 *Post-installed fasteners in concrete under seismic action.* EOTA, August 2016.

Timoshenko und Lessels 1925

TIMOSHENKO; LESSELS: *Applied Elasticity*. In *Westinghouse Technical Night School press* (1925), S. 133-141.

UBC 1997

INTERNATIONAL CODE COUNCIL ICC, UBC 1997 Uniform Building Code. Whittier, 1997.

Utescher und Herrmann 1983

UTESCHER, G.; HERRMANN, H.: Versuche zur Ermittlung der Tragfähigkeiten in Beton eingespannter Rundstahldollen aus nichtrostendem austenitischem Stahl. Heft 346. Berlin, Wilhelm Ernst & Sohn,Deutscher Ausschuß für Stahlbeton Publikation, 1983. ISBN: 3-433-00979-1.

VDI 2230 Blatt 1

VDI-RICHTLINIE, VDI 2230 Blatt 1 *Systematische Berechnung hochbeanspruchter Schraubenverbindungen Zylindrische Einschraubenverbindungen,* November 2015.

Vintzéleou und Tassios 1986

VINTZÉLEOU; TASSIOS: Mathematical Models For Dowel Action Under Monotonic and Cyclic Conditions. In Magazine Of Concrete Research, Vol. 38 (1986), S. 13-22.

Vintzéleou und Eligehausen 1991

VINTZÉLEOU, E.; ELIGEHAUSEN, R.: *Behaviour of Fasteners Under Monotonic or Cylcic Shear Displacements.* SP 130-7 (1991).

Vintzéleou und Tassios 1987

VINTZÉLEOU, E. N.; TASSIOS, T. P.: Behavior of Dowels under Cyclic Deformations. In ACI Structural Journal 84, 1 (1987), S. 18–30, ISBN: 0889-325X.

Weber 1979

WEBER, J. W.: *Empirische Formeln zur Beschreibung der Festigkeitsentwicklung und der Entwicklung des E-Moduls von Beton.* In *BETONWERK* + *FERTIGTEILTECHNIK*, 12 (1979), 753–756, ISSN: 0373-4331.

Welz 2011

WELZ, G.: *Tragverhalten und Bemessung von Injektionsdübeln unter Quer- und Schrägzugbelastung im Mauerwerk*. Stuttgart, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, Mitteilungen / Institut für Werkstoffe im Bauwesen Dissertation, 2011. ISBN: 9783981168235.

Wirtschaftsministerium BW 2008

WIRTSCHAFTSMINISTERIUM BW: *Erdbebensicher Bauen*, Wirtschaftsministerium Baden-Württemberg, Stuttgart, 2008.

Wiedenroth 1971

WIEDENROTH, M.: Einspanntiefe und zulässige Belastung eines in einen Betonkörper eingespannten Stabes. In Die Bautechnik 48, 12 (1971), 426-429.

Z-30.3-6 20.04.2022

Zulassung angemeldet durch: Informationsstelle Edelstahl Rostfrei. Erzeugnisse, Bauteile und Verbindungselemente aus nichtrostenden Stählen, Berlin, Mai 2022

Zeman et al. 2015

ZEMAN, O.; GUGGENBERGER, T.; BERGMEISTER, K.; ZIMMERMANN, T.: Versuchstechnische Bestimmung der Eignung von Befestigungssysteme unter seismischer Beanspruchung. In Beton- und Stahlbetonbau 110, 4 (2015), S. 281-292.

Zhao 1993

ZHAO, G.: *Tragverhalten von randfernen Kopfbolzenverankerungen bei Betonbruch.* Stuttgart, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, Mitteilungen / Institut für Werkstoffe im Bauwesen Dissertation, 1993. ISBN: 3-9803044-2-6.

Anhang A – Stahlzugprüfung

Abb. A 1: Statischer Zugversuch an Zugproben

Tab. A1: Zugversuche	an M20-5.6-Gewindestäben
----------------------	--------------------------

Form	Material	Größe	R _m	$\mathcal{E}_{R_m,x}$	$\mathcal{E}_{R_{m},\mathcal{Y}}$
[-]	[-]	[-]	[N/mm²]	[%]	[%]
			562,9	5,95	-3,21
			575,5	6,23	-3,45
			580,4	6,13	-3,42
			569,6	5,94	-3,34
			571,7	5,97	-3,08
			574,7	6,66	-3,47
			_	_	_
			578,2	6,59	-3,13
			583,1	5,99	-3,22
	5.0	M00	581,7	5,70	-3,46
В	5.6	M20	592,0	5,58	-2,41
			589,9	5,67	-2,69
			587,6	6,15	-2,84
			582,4	7,13	-3,41
			576,8	6,72	-2,78
			577,1	5,51	-3,23
			574,2	6,57	-2,90
			583,9	6,59	-3,00
			574,6	6,27	-2,57
			583,6	_	-3,32

Form	Material	Größe	R _m	$\mathcal{E}_{R_m,x}$	$\mathcal{E}_{R_m, \mathcal{Y}}$
[-]	[-]	[-]	[N/mm²]	[%]	[%]
			515,6	3,47	-1,90
			528,6	2,92	-1,61
			530,9	3,34	-1,81
			518,4	I	_
			516,1	3,25	-1,59
			521,5	-	-1,96
			545,3	3,72	-1,85
			535,3	3,95	-2,30
	4.0		546,2	3,98	-2,23
В	4.8	NI8	527,0	_	-1,67
			541,3	2,97	-2,34
			518,9	3,06	-2,62
			501,2	2,92	-3,45
			558,0	2,84	-2,16
			547,0	_	_
			516,4	2,74	-1,59
			534,3	3,32	-1,52
			541,3	2,94	-2,06
	4.8		475,6	9,19	_
			428,8	7,90	-3,30
			413,4		-3,21
			412,6	_	-3,79
			407,2	_	-3,74
			412,0	7,66	-3,62
			414,2	7,48	-3,22
			425,2	7,64	-2,63
D			463,0	8,74	-4,04
D		IVIZU	462,8	8,20	_
			453,7	8,60	-4,16
			455,3	8,30	-4,30
			465,0	8,64	-3,91
			427,7	8,10	-3,49
			430,9	8,08	-4,05
			430,2		-2,74
			427,5	8,43	-4,18
			429,7	8,91	-4,42

Tab. A2: Zugversuche an M8- und M20-4.8-Gewindestäben

Form	Material	Größe	R _m	$\varepsilon_{R_m,x}$	$\varepsilon_{R_{m},y}$
[-]	[-]	[-]	[N/mm²]	[%]	[%]
			977,7	3,38	-2,19
-	0.0	140	983,7	3,20	-1,78
В	8.8	NI8	1004,2	3,10	-1,24
			1002,1	3,18	-1,60
			1049,9	2,58	-
		M20	1031,4	2,92	-
А	8.8		1017,3	2,57	_
			1003,6	2,87	_
			1025,5	2,63	_
			944,6	2,56	-1,14
			950,1	2,48	-1,38
		M20	956,7	2,34	-1,14
			945,3	2,27	-1,42
			961,5	_	-1,25
_	8.8		951,1	2,62	-1,36
В			946,4	2,52	-1,36
			917,3	2,42	-1,34
			944,5	2,36	-1,33
			943,7	2,56	-1,45
			941,8	1,95	-1,10
			949,7	_	-1,33
	8.8	M24	952,7	2,56	_
			940,6	3,04	_
			940,1	3,16	_
A			940,8	3,41	_
			927,2	3,19	_
			930,4	3,10	_
			929,7	3,08	-1,57
	8.8	M24	933,7	2,98	-1,73
В			933,9	2,91	-1,39
			932,7	3,04	-1,32
			933,3	2,84	-1,34
		M30	1049,4	6,63	
A	8.8		1031,8	6,38	
			1031,2	6,86	_
			1016,6	7,01	
			1058,4	7,33	-3,59
В	8.8	M30	1054,0	7,90	-3,22
			1054,7	7,34	-3,52
			1053,2	7,32	-3,30
			1054,7	7,41	-3,37

Tab. A3: Zugversuche an M8-, M20-, M24- und M30-8.8-Gewindestäben

Form Material		Größe	R _m	$\mathcal{E}_{R_{m},x}$	$\mathcal{E}_{R_{m},y}$
[-]	[-]	[-]	[N/mm ²]	[%]	[%]
			797,5	23,60	-11,10
			798,0	21,45	-9,36
			743,0	21,50	-13,33
			795,2	22,91	-9,49
			775,0	18,86	-7,86
			748,7	21,50	-8,92
			779,3	25,07	-10,86
			777,6	23,28	-10,18
	A 4/70	140	775,0	25,95	-10,93
В	A4/70	M8	775,4	24,82	-11,21
			777,5	24,50	-11,54
			774,2	24,63	-11,00
			779,9	23,08	-10,65
			780,6	25,78	-11,46
			791,3	21,53	-9,94
			791,3	21,53	-9,94
			790,9	24,12	-11,01
			788,0	23,35	-10,43
	A4/70	M20	776,6	_	-7,90
			782,7	19,14	_
			764,8	-	-8,97
			766,2	_	-8,61
			765,3	_	-9,22
			779,6	_	-6,82
			_	_	_
			773,2	19,72	-9,33
			783,4	19,95	-9,42
В			774,2	20,87	-10,13
			780,0	· · · · ·	-10,57
			783,4	18,88	-9,65
			774,3	21,69	-10,19
			772,8	21,48	-9,92
			774.16	_	_
			765.90	24.12	-11.29
			785.68		_
			769.69	22.53	-10.32
			774.99	22.82	-10.73

Tab. A4: Zugversuche an M8- und M20-A4/70-Gewindestäben
Form	Material	Größe	R _m	$\mathcal{E}_{R_{m,x}}$	$\mathcal{E}_{R_{m},y}$		
[-]			[N/mm²]	[%]	[%]		
			592,9	16,99	-		
٨	BEUUD	a	604,8	15,51	_		
А	DOUD	00	596,0	14,93	_		
			600,8	15,48	-		
			608,7	14,61	-6,87		
			609,1	14,08	-6,53		
В			606,1	14,51	-6,34		
	B500B	Ø 8	602,1	13,72	-6,25		
			615,8	15,46	-7,06		
			613,0	14,28	-6,83		
			608,0	14,59	-7,10		
			634,9	11,49	_		
	B500B		635,9	12,15	_		
٨		<i>a</i> 20	635,5	12,44	_		
A		Ø 20	641,5	12,23	_		
			635,6	12,45	_		
			639,3	12,39	_		
			602,4	15,94	-7,41		
			606,8	15,26	-7,23		
			607,6	15,30	-7,12		
В	B500B	Ø 20	614,2	14,46	-7,08		
			603,8	15,40	-7,34		
			609,7	15,18	-6,84		
			608,0	15,23	-6,84		
			591,3	13,2	_		
			592,6	14,4	_		
۸	DEOOD	<i>a</i> 05	646,2	10,8	_		
А	ROOR	25	668,3	12,7	_		
			630,0	14,1	_		
			645,4	10,6	_		
			618,7	16,30	-7,43		
			617,6	16,08	-7,41		
В	B500B	Ø 25	619,2	15,98	-7,81		
			621,5	15,62	-7,19		
					618,7	15,98	-7,42

Tab. A5: Zugversuche an B500B-Bewehrungsstäben Ø 8, Ø 20 und Ø 25

Form	Material	Größe	R _m	$\mathcal{E}_{R_{m},x}$	$\mathcal{E}_{R_{m},\mathcal{Y}}$
[-]	[-]	[-]	[N/mm²]	[%]	[%]
			600,4	14,40	_
А			613,5	12,01	_ _ _
	DEOOD	Ø 32	621,8	11,99	_
	B200B		611,0	11,40	-
			601,7 13,		_
			608,6	11,49	-
			620,6	14,39	-6,46
			619,1	14,46	-7,01
В	B500B	Ø 32	622,8	14,45	-6,61
			623,0	14,24	-6,29
			622,2	14,31	-6,50

Tab. A6: Zugversuche an B500B-Bewehrungsstäben Ø 32

Anhang B – Stahlscherprüfung

Abb. B1: Statischer Scherversuch an Gewinde- und Bewehrungsstäben

Einspannung	Material	Größe	Querzugkraft	Verschiebung	Verschiebung	Zugkraft
[-]	[-]	[-]	[kN]	[mm]	[mm]	[kN]
.			91,7	3,29	0,53	5,6
			89,5	3,43	0,59	7,8
	5.0		91,1	3,44	0,64	6,3
Тур В	5.6	M20	91,6	3,15	0,63	3,4
			91,4	3,25	0,65	4,1
			90,9	3,28	0,69	5,2
	5.6		90,2	3,86	0,77	9,3
			93,3	3,76	0,77	4,4
Turn O		M20	93,3	3,82	0,76	6,3
Typ C			91,4	3,25	0,73	5,2
			90,5	3,43	0,80	6,1
			93,5	3,82	0,83	7,3
			90,7	3,86	1,16	11,6
			90,6	3,72	1,07	16,0
T D	5.0	N400	90,8	3,80	1,06	14,2
тур О	0.0	IVIZU	94,7	3,98	1,15	13,2
			91,2	3,54	0,98	11,7
			94,6	4,06	1,14	12,6

Tab. B1: Scherversuche an M20-5.6-Gewindestäben

Finanannung	Matarial	0	Querzugkraft	Verschiebung	Verschiebung	Zugkraft
Einspannung	material	Groise	V_s	u _s	<i>u</i> _{<i>s</i>,50%}	N _u
[-]	[-]	[-]	[kN]	[mm]	[mm]	[kN]
			10,9	1,28	0,23	2,3
			10,9	1,88	0,25	2,6
Turn D	1.0	MO	11,6	2,24	0,28	2,6
Тур В	4.8	INI8	12,0	1,43	0,34	2,6
			12,0	1,55	0,34	2,5
			11,5	1,55	0,29	1,5
			11,5	2,03	0,35	2,5
			11,0	2,00	0,33	3,0
Turn O	1.0	MO	10,8	2,01	0,33	2,4
Тур С	4.8	INI8	11,1	1,44	0,33	1,9
			11,6	1,80	0,33	2,4
			11,4	1,27	0,30	2,3
	4.8		11,5	1,72	0,39	3,1
			11,3	1,75	0,45	3,1
Tur D		M8	11,2	2,02	0,59	3,0
Тур D			11,3	1,63	0,43	3,5
			11,7	1,71	0,45	3,0
			10,8	1,52	0,34	2,3
			69,0	3,19	0,55	4,4
			69,2	3,73	0,55	4,3
Ture D	4.0	MOO	68,7	3,48	0,57	5,6
Тур В	4.8	IVI20	70,7	4,02	0,63	5,0
			68,8	3,30	0,57	4,0
			70,2	3,92	0,60	5,1
			68,3	3,43	0,72	4,5
			70,3	4,27	0,73	5,2
Turn C	4.0	MOO	70,5	3,97	0,78	4,1
Typ C	4.8	IVI20	69,6	3,46	0,72	5,1
			69,5	3,48	0,69	5,1
			67,8	3,43	0,74	4,7
			68,7	4,00	1,04	10,6
			69,1	4,38	0,95	9,6
	4.0	MOO	68,7	4,09	0,97	10,9
тур D	4.8	W20	70,1	3,78	0,90	10,6
			69,4	3,61	0,89	8,8
			69,6	3,52	0,87	10,0

Tab. B2: Scherversuche an M8- und M20-4.8-Gewindestäben

Finanannung	Matarial	0	Querzugkraft	Verschiebung	Verschiebung	Zugkraft
Einspannung	Material	Groise	V_s	u _s	<i>u</i> _{s,50%}	N _u
[-]	[-]	[-]	[kN]	[mm]	[mm]	[kN]
			19,8	1,50	0,45	3,8
			19,8	1,81	0,45	2,8
T D		MO	19,7	1,73	0,45	3,0
Тур В	8.8	NI8	20,4	1,57	0,48	2,2
			20,3	1,52	0,48	2,9
			20,6	1,59	0,51	2,3
			19,4	1,78	0,57	4,0
			20,0	2,05	0,52	3,5
T			19,6	1,86	0,57	3,1
Typ C	8.8	M8	19,8	1,75	0,64	2,9
			20,1	1,66	0,60	4,2
			20,4	1,82	0,61	4,0
			20,1	1,98	0,79	5,1
	8.8		20,0	1,82	0,66	4,3
		M8	20,2	1,96	0,71	5,1
Typ D			20,4	1,90	0,76	5,4
			20,0	1,85	0,71	5,6
			19,9	1,84	0,62	5,0
			134,3	2,59	0,87	10,6
			135,9	2,55	0,78	11,8
Tur D		N400	130,5	2,55	0,81	10,9
Тур В	8.8	M20	134,8	2,59	0,81	7,9
			133,5	2,70	0,89	6,6
			132,7	2,65	0,86	7,3
			135,2	2,74	0,94	10,0
			134,7	2,62	0,92	11,4
Turn O		N400	132,3	2,70	1,00	12,4
Typ C	8.8	M20	130,6	2,66	1,01	6,1
			132,2	2,65	0,96	7,1
			129,9	2,62	0,96	7,7
			134,5	3,03	1,33	20,2
			134,6	2,96	1,26	22,6
.			134,5	2,88	1,21	20,6
Тур D	8.8	M20	138,2	3,28	1,44	17,8
			133,3	3,04	1,34	15,6
			138,7	3,35	1,47	19,6

Tab. B3: Scherversuche an M8- und M20-8.8-Gewindestäben

Finanannung	Matarial	0	Querzugkraft	Verschiebung	Verschiebung	Zugkraft
Einspannung	Material	Groise	V_s	u _s	$u_{s,50\%}$	N _u
[-]	[-]	[-]	[kN]	[mm]	[mm]	[kN]
			19,8	1,50	0,45	3,8
			19,8	1,81	0,45	2,8
TOD		1404	19,7	1,73	0,45	3,0
Тур В	8.8	M24	20,4	1,57	0,48	2,2
			20,3	1,52	0,48	2,9
			20,6	1,59	0,51	2,3
			19,4	1,78	0,57	4,0
			20,0	2,05	0,52	3,5
T		1404	19,6	1,86	0,57	3,1
Typ C	8.8	M24	19,8	1,75	0,64	2,9
			20,1	1,66	0,60	4,2
			20,4	1,82	0,61	4,0
			20,1	1,98	0,79	5,1
	8.8		20,0	1,82	0,66	4,3
			20,2	1,96	0,71	5,1
Typ D		M24	20,4	1,90	0,76	5,4
			20,0	1,85	0,71	5,6
			19,9	1,84	0,62	5,0
			134,3	2,59	0,87	10,6
			135,9	2,55	0,78	11,8
Turn D		M00	130,5	2,55	0,81	10,9
Тур В	8.8	IVI30	134,8	2,59	0,81	7,9
			133,5	2,70	0,89	6,6
			132,7	2,65	0,86	7,3
			135,2	2,74	0,94	10,0
			134,7	2,62	0,92	11,4
T			132,3	2,70	1,00	12,4
Typ C	8.8	M30	130,6	2,66	1,01	6,1
			132,2	2,65	0,96	7,1
			129,9	2,62	0,96	7,7
			134,5	3,03	1,33	20,2
			134,6	2,96	1,26	22,6
THE		N400	134,5	2,88	1,21	20,6
Тур D	8.8	1/130	138,2	3,28	1,44	17,8
			133,3	3,04	1,34	15,6
			138,7	3,35	1,47	19,6

Tab. B4: Scherversuche an M24- und M30-8.8-Gewindestäben

Finenannung	Matarial	Größe	Querzugkraft	Verschiebung	Verschiebung	Zugkraft
Emspannung	Material	Globe	V_s	u _s	<i>u</i> _{s,50%}	N _u
[-]	[-]	[-]	[kN]	[mm]	[mm]	[kN]
			19,2	1,64	0,34	2,1
			19,1	1,83	0,35	2,2
Ture D	A 4/70	MO	19,4	2,07	0,36	0,0
Тур В	A4/70	IVIð	20,1	2,32	0,50	2,2
			19,9	2,27	0,47	2,3
			20,0	2,20	0,45	2,3
			18,2	1,88	0,47	2,3
			19,3	2,02	0,43	1,9
T	A 4/70		19,6	2,11	0,45	2,4
Тур С	A4/70	IN 8	19,5	2,46	0,53	3,4
			19,8	2,38	0,47	2,3
			19,3	2,22	0,44	3,1
	A4/70		18,9	2,46	0,54	4,2
			20,1	2,63	0,61	3,3
TOD		M8	20,2	3,11	0,60	3,6
Тур D			18,6	2,33	0,50	3,2
			19,4	2,47	0,54	3,9
			18,7	2,30	0,50	4,0
			134,7	3,37	0,78	7,3
			132,4	3,28	0,71	8,7
Turn D	A 4/70	N400	135,7	3,35	0,74	10,6
Тур в	A4/70	M20	129,9	3,38	0,70	9,6
			129,2	3,20	0,74	3,2
			128,4	3,29	0,74	3,5
			131,2	3,67	0,94	10,6
			129,5	3,42	0,88	8,1
Turn O	A 4/70	N400	129,6	3,44	0,91	5,4
Тур С	A4/70	M20	128,8	3,54	0,89	3,2
			130,3	3,34	0,84	4,3
			130,2	3,32	0,86	5,7
			128,7	4,20	1,27	16,4
			129,3	3,87	1,31	16,2
THE	A 4/70	N400	130,0	4,33	1,31	18,9
тур D	A4/70	W20	136,5	4,32	1,33	16,3
			136,9	4,48	1,33	15,9
			130,4	3,92	1,26	14,7

Tab. B5: Scherversuche an M8- und M20-A4/70-Gewindestäben

Einspannung	Material	Größe	Schubkraft <i>V</i> s	Mittelwert ΣV_s	Standardab. S	Variation. V
[-]	[-]	[-]	[kN]	[kN]	[kN]	[%]
			10,4			
		M8	10,5	10,4	0,08	0,80
	4.0		10,3			
Тур А	4.8		64,8			
		M20	66,7	66,0	1,05	1,60
			66,6			
			85,9			
Тур А	5.6	M20	87,7	86,6	0,98	1,13
			86,1			
			19,8			
	8.8		19,8			
		MO	20,2	10.0	0.47	0.40
		IVIð	19,5	19,3	0,47	2,42
Тур А			18,8			
			19,4			
			120,2		2,73	
		M20	119,7	126,4		2,16
			124,7			
			19,0			
		M8	18,5	18,6	0,40	2,16
	A 4/70		18,2			
ТурА	A4/70		124,1			
		M20	127,6	126,7	2,25	1,77
			128,3			
			21,6			1,60 1,13 2,42 2,16 2,16 1,77 0,83 1,89
Ture A		Ø8	21,7	21,5	0,18	
	8500B		21,3			
i yp A	00000		151,2			
		Ø20	145,6	148,5	2,81	1,89
			148,8			

Tab. B6: Scherversuche an Gewindestäben ohne Stabeinspannung

Einspannung	Material	Größe	Querzugkraft <i>Vs</i>	Verschiebung <i>u</i> s	Verschiebung $u_{s,50\%}$
[-]	[-]	[-]	[kN]	[mm]	[mm]
Тур В			32,5	3,0	0,4
	B500B	Ø 20 zu Ø 10	33,9	2,8	0,3
			33,2	3,0	0,4
			23,0	2,0	0,5
Тур В	B500B	Ø 20 zu M10	23,2	2,1	0,5
			23,2	2,0	0,4

Tab. B7: Scherversuche an abgedrehten Bewehrungsstäben- B500B Ø 20

Tab. B8: Scherversuche an abgedrehten M20-A4/70-Gewindestäben

Finspannung	Material	Größe	Querzugkraft	Verschiebung	Verschiebung
Linspannung	Material	010136	V_s	u_s	$u_{s,50\%}$
[-]	[-]	[-]	[kN]	[mm]	[mm]
			43,6	3,4	0,3
Тур В	A4/70	M20 zu Ø 10	43,9	43,9 3,2	0,3
			45,0	3,3	0,3
			32,3	2,7	0,6
Тур В	A4/70	M20 zu M10	33,6	3,2	0,5
			32,6	3,1	0,5

Anhang C – Betonprüfung

Tab. C1:	Betondruckfestigkeit,	Charge	06.07.2018
----------	-----------------------	--------	------------

Hers Te	stelldatum stdatum	06.07.2018 09.10.2020						
	Alter	826 Tage						
N		Abmessungen		Gewicht	Wichte	Bruchlast	$f_{c,cube}$	f _{c,cyl}
INF.	L [mm]	B [mm]	H [mm]	[kg]	[kg/m³]	[N]	[N/mm²]	[N/mm²]
1	150,4	149,8	149,7	7,75	2298,14	834,0	37,02	29,61
2	150,2	149,8	149,8	7,74	2296,70	868,1	38,58	30,87
3	150,6	149,8	149,7	7,79	2306,04	782,6	34,69	27,75

Tab. C2: Betondruckfestigkeit, Charge 12.07.2018

Herstelldatum	12.07.2018
Testdatum	08.10.2020
Alter	819 Tage

N	Abmessungen			Gewicht	Wichte	Bruchlast	f _{c,cube}	$f_{c,cyl}$
Nr.	L [mm]	B [mm]	H [mm]	[kg]	[kg/m³]	[N]	[N/mm²]	[N/mm²]
1	149,9	149,7	149,7	7,71	2294,25	800,7	35,68	28,55
2	150,2	149,7	149,8	7,69	2282,20	847,6	37,70	30,16
3	151,3	149,7	149,7	7,68	2263,87	863,7	38,13	30,51

Tab. C3: Betondruckfestigkeit, Charge 13.09.2018

Here	stelldatum	13.09.2018						
Testdatum 13.01.2020		13.01.2020						
	Alter	122 Tage						
N.	ŀ	Abmessungen		Gewicht	Wichte	Bruchlast	f _{c,cube}	$f_{c,cyl}$
INF.	L [mm]	B [mm]	H [mm]	[kg]	[kg/m³]	[N]	[N/mm²]	[N/mm²]
1	151,2	150,9	149,9	7,46	2181,20	721,8	31,64	25,31
2	149,9	149,9	150,0	7,50	2225,19	731,6	32,56	26,05
3	149,0	149,9	150,0	7,50	2238,63	721,1	32,29	25,83

Tab. C4: Betondruckfestigkeit, Charge 20.09.2018

Herstelldatum 20.09.2018

Те	stdatum	13.01.2020						
	Alter	115 Tage						
Nu		Abmessungen		Gewicht	Wichte	Bruchlast	f _{c,cube}	$f_{c,cyl}$
Nr.	L [mm]	B [mm]	H [mm]	[kg]	[kg/m³]	[N]	[N/mm²]	[N/mm²]
1	153,3	149,7	150,1	7,64	2217,93	879,9	38,34	30,67
2	149,8	149,9	149,8	7,72	2295,05	901,2	40,13	32,11
3	150,9	150,3	150,3	7,68	2252,96	863,0	38,05	30,44

Tab. C5: Betondruckfestigkeit, Charge 27.09.2018

Herstelldatum	27.09.2018
Testdatum	13.01.2020
Alter	108 Tage

N	Abmessungen			Gewicht	Wichte	Bruchlast	f _{c,cube}	f _{c,cyl}
INF.	L [mm]	B [mm]	H [mm]	[kg]	[kg/m³]	[N]	[N/mm²]	[N/mm²]
1	149,4	151,1	150,0	7,38	2179,47	654,4	28,99	23,19
2	151,6	150,9	150,5	7,52	2184,20	671,3	29,34	23,48
3	150,7	149,7	150,3	7,52	2217,81	647,4	28,70	22,96

Tab. C6: Betondruckfestigkeit, Charge 17.07.2018

Herstelldatum	17.07.2018
Testdatum	09.10.2020
Alter	815 Tage

		<u> </u>						
N.	Abmessungen			Gewicht	Wichte	Bruchlast	$f_{c,cube}$	$f_{c,cyl}$
Nr.	L [mm]	B [mm]	H [mm]	[kg]	[kg/m³]	[N]	[N/mm²]	[N/mm²]
1	151,0	149,7	149,6	7,70	2277,87	763,0	33,75	27,00
2	150,6	149,9	149,9	7,77	2295,22	832,1	36,86	29,49
3	150,5	150,0	150,0	7,71	2275,67	843,9	37,38	29,91

Tab. C7: Betondruckfestigkeit, Charge 21.09.2018

Herstelldatum	21.09.2018
Testdatum	08.10.2020
Alter	748 Tage

N	Abmessungen			Gewicht	Wichte	Bruchlast	f _{c,cube}	f _{c,cyl}
INF.	L [mm]	B [mm]	H [mm]	[kg]	[kg/m³]	[N]	[N/mm²]	[N/mm²]
1	149,6	149,7	149,8	7,72	2300,59	848,3	37,88	30,30
2	149,3	149,7	149,8	7,68	2292,67	871,2	38,98	31,18
3	150,2	149,7	149,8	7,71	2288,73	825,1	36,70	29,36

Tab. C8: Betondruckfestigkeit, Charge 25.09.2018

Herstelldatum	25.09.2018
Testdatum	09.10.2020

	Alter	745 Tage						
N.L.	Abmessungen			Gewicht	Wichte	Bruchlast	$f_{c,cube}$	f _{c,cyl}
Nr.	L [mm]	B [mm]	H [mm]	[kg]	[kg/m³]	[N]	[N/mm²]	[N/mm²]
1	150,0	149,8	149,8	7,71	2290,25	900,6	40,08	32,06
2	150,3	149,8	149,8	7,74	2295,76	882,5	39,20	31,36
3	149,9	149,9	149,8	7,72	2292,63	764,7	34,03	27,23

Herstelldatum 05.10.2018								
Те	stdatum	14.12.2020						
	Alter	801 Tage						
Nu	ŀ	Abmessungen		Gewicht	Wichte	Bruchlast	f _{c,cube}	f _{c,cyl}
INF.	L [mm]	B [mm]	H [mm]	[kg]	[kg/m³]	[N]	[N/mm²]	[N/mm²]
1	149,9	149,6	149,5	7,88	2348,96	776,3	34,62	27,69
2	150,5	149,9	149,5	7,99	2367,83	761,7	33,76	27,01
3	150,0	149,6	149,6	7,96	2369,96	770,5	34,34	27,47

Tab. C10:Spaltzugfestigkeit und E-Modul, Charge 13.09.2019

Hers	stelldatum	13.09.2019						
Те	stdatum	13.01.2020						
	Alter	122 Tage						
NI	ŀ	Abmessungen		Gewicht	Wichte	Bruchlast	f_{ct}	E _c
INF.	Ø [mm]		H [mm]	[kg]	[kg/m³]	[N]	[N/mm²]	[N/mm²]
1	149,0		294,8	11,72	2280,02	205,8	2,98	31.840
2	149,6		294,4	11,70	2260,97	192,7	2,79	31.706
3	149,8		295,0	11,80	2269,59	172,8	2,49	33.183

Tab. C11:Spaltzugfestigkeit und E-Modul, Charge 20.09.2019

Hers	stelldatum	20.09.2019						
Те	stdatum	13.01.2020						
	Alter	115 Tage						
Nu	ŀ	Abmessungen		Gewicht	Wichte	Bruchlast	f_{ct}	E _c
INF.	Ø [mm]		H [mm]	[kg]	[kg/m³]	[N]	[N/mm²]	[N/mm²]
1	149,9		297,4	11,96	2278,75	211,6	3,02	34.860
2	149,7		298,7	11,02	2096,10	203,9	2,90	33.490
3	149,5		297,4	11,92	2283,30	192,7	2,76	33.241

Tab. C12:Spaltzugfestigkeit und E-Modul, Charge 27.09.2019

Hers	stelldatum	27.09.2019		
Te	stdatum	13.01.2020		
	Alter	108 Tage		
		Abmessungen		
Nr.			 -	

Nr.		Abmessungen		Gewicht	Wichte	Bruchlast	f_{ct}	E_c
Nr.	Ø [mm]		H [mm]	[kg]	[kg/m³]	[N]	[N/mm²]	[N/mm²]
1	149,7		297,3	11,64	2224,46	193,0	2,76	30.699
2	150,0		296,2	11,66	2227,62	195,7	2,80	31.419
3	149,7		294,0	11,72	2264,89	190,2	2,75	32.140

				Druck	(prüfun	g - pure	e Epoxy	/					11
Test	Herstellungs-				Durchmesser					Hà	óhe		Fläche
INF.	datum	d ₁	d ₂	d ₃	d ₁	d ₂	d ₃	d _m	h ₁	h ₂	h ₃	h _m	Ac
•	[Datum]	00.4	[mm]	00.0	21.0	[mm]	00.0	[mm]	10.7	[mm]	40.7	[mm]	[mm²]
1	12.02.2020	22,1	22,3	22,2	21,2	22,0	22,0	22,0	42,7	42,7	42,7	42,7	3/8,6
3	12.02.2020	22,0	22,3	22, 1	22,1	22,3	22,2	22,2	42,7	42,7	42,0	42,0	385.4
4	12.02.2020	22,0	22,2	22,1	21,3	21.8	21.9	22.0	43.4	42,0	43.4	43.3	379.0
5	12.02.2020	22,0	22,1	22,0	21,8	21,4	21,9	21,9	2.3	42,5	42,3	29,0	376.0
6	12.02.2020	22,1	22,1	22,0	22,1	22,1	22,2	22,1	42,3	42,6	42,2	42,4	382,9
7	12.02.2020	22,3	22,2	22,1	22,1	22,0	22,0	22,1	39,5	39,8	39,6	39,6	383,8
						Tes	tresults						
Test Nr.	Prüfdatum	Bruchlast N _u	Gesamtver- schiebung bei max. Ν _u δ _{Nu}	Gesamtver- schiebung bei 0.5 _{Nu,m} δ _{0.5Nu,m}	Stauchung L ₀ =25mm bei max. N _u _{ENu}	Druck- festigkeit σ _{c,mörtel}				0		i 30	
[-]	[Datum]	[kN]	[mm]	[mm]	[%]	[N/mm ²]		1					
1	26.2.2020	36,98	-	-	2,70	97,68							
2	26.2.2020	40,35	6,79	0,76	7,24	104,48					m 🔥		
3	26.2.2020	41,73	8,56	1,13	5,11	108,28							
4	26.2.2020	41,45	2,75	0,70	5,62	109,35		6	9		ا 🕑 🔗	V	
5	26.2.2020	41,28	2,81	0,69	4,93	109,79							
6	26.2.2020	39,19	2,84	0,78	5,55	102,34							
7	26.2.2020	41,18	7,45	0,78	13,94	107,30							
	Interpretation:	1	N		5	8							
			10.01.1.11	Oc,mörtel	O _{Nu}	0 01	6Nu	©Nu,0,5m	-				
	Mittelwert:		40,31 KN	106 N/mm*	5,20 mm	0,81 mm	6,44 %	0,62 %					
	Standartabweich	hung:	1,70	4,40	2,69	0,16	3,57	0,14					
	Variationskoeffiz	zient:	4,22%	4,17%									
	Charakteristisch	ner Wert:	35,38 kN	92,9 N/mm²					с				
	n = 7	k = 2,89			-								
2	45					1			-				
/um						• Test 1	• Test 2	2 • Test	3 • Test	4 • Test	t 5 • Tes	t6 • Te	st 7
N D													
Inu	40								•	·••			
pan					*******	••••	•		• •	•••			
l °								· · .					
	35					• 🔪		-	•	•			
									•	•			
									•				
	30						•		•				
		·/											
	25						•						
	25	1						•		• .			
	20												
	20							•					
												•	
	15								•				
								•		•			
										; 			
1	10							•					
1							•						
	5						•	-		+			
1										1		-	
1	-									;			
1	0 +	1 2	3	4	5	6	7	8	9	10 11	12	13	14
	-	. 2	5		÷	-		-	-			Stau	 ichung [%]
1													

Anhang D – Verbundmörtelprüfung

			Dru	ıckprüf	ung - s	tyrolfre	ier Poly	ester				I	2
Test	Herstellungs-				Durchmesser					Hö	öhe		Fläche
Nr.	datum	d ₁	d ₂	d ₃	d ₁	d ₂	d ₃	d _m	h ₁	h ₂	h ₃	h _m	A _c
[-]	[Datum]		[mm]	1		[mm]		[mm]		[mm]		[mm]	[mm²]
1	12.02.2020	21,9	22,0	22,0	22,0	22,1	22,0	22,0	43,4	43,4	4,5	30,4	380,5
2	12.02.2020	22,0	22,1	22,1	21,9	21,9	22,2	22,0	43,1	43,3	43,1	43,2	381,2
4	12.02.2020	22,5	22,1	22,1	22,1	21,8	21,5	22,1	43,2	43,4	43,1	43,2	380.4
5	12.02.2020	22,3	21,9	22,0	22,4	21,7	22,3	22,1	43,5	43,6	43,5	43,5	382,9
6	12.02.2020	22,0	22,0	21,9	21,4	22,2	21,7	21,9	43,9	43,5	43,9	43,7	375,2
7	12.02.2020	22,0	22,3	22,0	22,1	21,9	21,9	22,0	43,1	43,2	43,1	43,1	380,8
						Tes	t results						
			Gesamtver-	Gesamtver-	Stauchung	Druck							
Test	Prüfdatum	Bruchlast	schiebung bei max N.	schiebung bei 0.5mm	L ₀ =25mm bei	festigkeit							
1.1.1		Nu	δ _{Nu}	δ _{0.5Nu,m}	ε _{Nu}	σ _{c,mörtel}							
[-]	[Datum]	[kN]	[mm]	[mm]	[%]	[N/mm²]					7 🖌 🌢		
1	26.2.2020	13.01	-	-	1.67	34,18		2				P	
2	26.2.2020	15.76	1,41	0.70	1,97	41.35		L					
3	26.2.2020	20.05	2 12	0.75	3.29	52 44		3			0	S	
1	26.2.2020	20,00	2,12	0,75	3 70	EQ 00		- Angel			0	6	
4	20.2.2020	22,75	2,37	0,56	5,18	59,60		6				-	
5	26.2.2020	22,43	2,22	0,57	4,18	58,58							
6	26.2.2020	24,82	2,77	0,50	5,83	66,14							
7	26.2.2020	14,01	1,66	0,50	0,84	36,81							
	Interpretation:		Nu	$\sigma_{c,mortel}$	δ _{Nu}	δ _{Nu,0,5 m}	ε _{Nu}	€ _{Nu,0,5m}					
	Mittelwert:		18,98 kN	50 N/mm ²	2,09 mm	0,60 mm	3,08 %	0,46 %					
	Standartabweich	hung:	4,69	12,49	0,49	0,10	1,71	0,15					
	Variationskoeffiz	zient:	24,72%	25,02%									
	Charakteristisch	ner Wert:	5,40 kN	13,8 N/mm ²									
	n = 7	k = 2.89]								
		1000 - 1007 - 1007 10											
m ²	30						oot 2	Teet 2	Test 4	Test	Test	e Tor	+7
N/N							512	Test 5	16214	• Test J	• Test	0 • Tes	
ßun													
ann													
s,	25								-				
						h	Sea.			•			
							N. 1.			•			
	20												
								· •					
									••				
	15			<u></u>	~	• · · · · ·			•	•			
				-		•		•					
					- N								
					•								
	10					•							
										~			
						1.	•	•					
	5							•		•			
							•	-		8 -			
									•	in a l			
							L	. A.					
	0			•		•••••	********			•			
	0		1			2		3			4		5
												Stau	cnung [%]

			D	ruckprü	ifung - '	Vinyles	ter-Ure	than				1	3
Test	Herstellungs-				Durchmesser					Ha	öhe		Fläche
Nr.	datum	d ₁	d ₂	d ₃	d ₁	d ₂	d ₃	d _m	h ₁	h ₂	h ₃	h _m	A _c
[-]	[Datum]		[mm]			[mm]		[mm]		[mm]		[mm]	[mm²]
1	12.02.2020	22,7	21,8	22,0	22,2	21,9	22,2	22,1	43,9	43,4	43,6	43,6	385,2
2	12.02.2020	21,9	21,7	21,8	21,9	21,9	21,9	21,8	42,8	43,1	42,9	42,9	366.6
4	12.02.2020	22,0	21,9	21,8	21,9	22,2	21,9	22,0	43,2	43,3	43,3	43,3	378,4
5	12.02.2020	22,1	21,9	22,0	21,8	22,0	21,8	21,9	43,3	43,6	43,4	43,5	377,4
6	12.02.2020	21,9	22,2	21,9	21,6	21,7	21,8	21,8	44,2	44,2	44,3	44,2	374,4
7	12.02.2020	21,7	21,9	21,6	21,8	22,0	21,9	21,8	43,2	43,2	43,2	43,2	373,3
		~				Tes	t results						
			Gesamtver-	Gesamtver-	Stauchung	Druck-							
Test	Prüfdatum	Bruchlast	schiebung bei max. N.	schiebung bei 0.5 mm	L ₀ =25mm bei	festigkeit							
			δ _{Nu}	δ _{0.5Nu,m}	ε _{Nu}	σ _{c,mörtel}						-	
[-]	[Datum]	[kN]	[mm]	[mm]	[%]	[N/mm²]					a 🖌 🌢		
1	26.2.2020	48,94	2,31	0,85	4,00	127,06		2			0 /0 /	1	
2	26.2.2020	51,10	2,37	0,79	4,24	136,43							
3	26.2.2020	51,25	2,29	0,77	3,76	139,81		3					
4	26.2.2020	50,37	2,40	0,87	5,42	133,11			0		8 9	0	
5	26.2.2020	51,05	2,40	0,81	4,88	135,27							
6	26.2.2020	51,73	2,66	0,94	4,77	138,17							
7	26.2.2020	44,08	2,01	0,94	2,71	118,07							
	Interpretation:		Nu	$\sigma_{c,mortel}$	δ _{Nu}	δ _{Nu,0,5m}	ε _{Nu}	٤ _{Nu,0,5m}					
	Mittelwert:		49,79 kN	133 N/mm ²	2,35 mm	0,85 mm	4,26 %	0,95 %					
	Standartabweic	hung:	2,67	7,60	0,19	0,07	0,89	0,17					
	Variationskoeffiz	zient:	5,37%	5,73%									
	Charakteristisch	ner Wert:	42,05 kN	111 N/mm ²	-								
	n = 7	k = 2.89]								
nm²]	60						Test 2	Test 2	- Test 4	Test	E Tee	C . To	+7
[N/n					•	iesti •	Test 2	• Test 5	 Test 4 	· lest	5 • Tes	to • re	st /
bun													
ann									~				
g	50							1 m					
								• •					
								•	•				
	40												
								•					
							•	•					
	30												
									•				
	20								•	•			
								•					
								•					
									•				
	10												
									•				
								• •		-			
	0								•				
	U			1			2			3		Stau	4 chung 1% 1
												Jau	

	Druckprüfung - ungesättigter Polyester												4
												•	
Test	Herstellungs-				Durchmesser					Hö	he		Fläche
Nr.	datum	d ₁	d ₂	d ₃	d ₁	d ₂	d ₃	d _m	h ₁	h ₂	h ₃	h _m	A _c
[-]	[Datum]		[mm]			[mm]		[mm]		[mm]		[mm]	[mm²]
1	12.02.2020	22,5	20,6	22,2	22,5	21,8	21,9	21,9	43,1	43,4	43,1	43,2	377,2
2	12.02.2020	21,9	21,8	21,9	21,9	22,2	22,0	22,0	43,2	43,2	43,4	43,3	375.7
4	12.02.2020	22.3	22,2	21,0	21,0	21,9	21,7	22.0	43.1	43.1	43.1	43.1	380.4
5	12.02.2020	21,7	21,9	22,2	21,9	22,1	22,1	22,0	43,1	43,0	43,1	43,0	379,7
6	12.02.2020	21,8	21,7	21,8	22,1	21,9	22,0	21,9	42,9	43,1	42,9	42,9	376,1
7	12.02.2020	22,0	21,9	22,2	21,9	21,8	22,0	22,0	42,7	42,8	42,7	42,8	378,6
						Tes	t results						
			Cocomtune	Cocomture	Stauchung								
Test	Dröfdeture	Bruchlast	schiebung	schiebung	L ₀ =25mm bei	Druck-							
Nr.	Turuuturii	Nu	bei max. N _u	bei 0.5 _{Nu,m}	max. N _u	σ _{c,mörtel}							
			ONU	0.5NU,M	ε _{Nu}			4			2 🦉 🍐	2	
[-]	[Datum]	[kN]	[mm]	[mm]	[%]	[N/mm ²]		-					
1	26.2.2020	29,86	3,24	0,94	4,91	79,17							
2	26.2.2020	30,45	3,29	0,85	5,92	80,42		3			m 🖉	S	
3	26.2.2020	29,59	3,30	0,87	6,39	78,78				2-M-3			
4	26.2.2020	30,89	3,35	0,78	6,59	81,22		6	9		8 🕚	0	
5	26.2.2020	25,53	3,43	0,96	2,54	67,24						i	
6	26.2.2020	29,44	3,47	0,94	6,84	78,27							
7	26.2.2020	30,49	3,28	0,94	7,04	80,53							
	Interpretation:		N		5	2							
	interpretation.		Nu .	c,mörtel	UNU	0Nu,0,5m	C _{Nu}	©Nu,0,5m					
	Mittelwert:		29,46 kN	78 N/mm²	3,34 mm	0,90 mm	5,75 %	0,63 %					
	Standartabweich	nung:	1,81	4,84	0,09	0,07	1,58	0,30					
	Variationskoeffiz	ient:	6,15%	6,21%									
	Charakteristisch	er Wert:	24,22 kN	63,9 N/mm ²									
	n = 7	k = 2,89			1								
_													
un.	35					Test 1	• Test 2	• Test 3	• Test	4 • Tes	t5 • Te	st6 • Te	est 7
Ň						10001	10012	10010	1000	- 100		010 10	
l													
ann	30												
5													
										. •			
:	25												
	20									•			
										•			
											•		
	15									•			
										•			
										•			
										•			
	10	_////											
										• •	•		
	5												
										••••			
	0		1			2		3		••••	4		5
												Stau	chung [%]

	Spaltzugversuch - Verbundmörtel										I	1	
						l1 - pu	re Epoxy	1					
					Durchmassar					Lia	ha		Eläobo
Test Nr.	Herstellungs- datum	d1	da	da	d	da	da	dm	h1	ho Ho	ne ha	hm	Anon
[-]	[Datum]	u,	[mm]			[mm]	43	[mm]		[mm]	- 13	[mm]	[mm ²]
1	23.04.2020	20,9	20,9	20,9	20,9	20,9	20,9	20,9	38,8	38,5	38,2	38,5	2528
2	23.04.2020	20,9	20,9	20,9	20,9	20,9	20,9	20,9	39,6	39,8	39,5	39,6	2601
3	23.04.2020	20,9	20,8	20,9	20,8	20,8	20,8	20,8	40,1	40,0	40,0	40,0	2622
4	23.04.2020	20,8	20,8	20,9	20,9	20,9	20,8	20,8	39,3	39,3	39,3	39,3	2572
2	23.04.2020	20,9	20,9	20,0	20,9	20,0	20,9	20,9	39,6	39,7	39,0	39,7	2004
						Tes	t results						
Test Nr.	Prüfdatum	Bruchlast N _u	Gesamtver- schiebung bei max. Ν _u δ _{Nu}	Gesamtver- schiebung bei 0.5 _{Nu,m} δ _{0.5Nu,m}	Spalt- zugfestigkeit σ _{sp,mörtel}				99 ()				
Ŀ	[Datum]		[mm]	[mm]	[N/mm²]								
	4.5.2020	28,76	1,15	0,47	22,75				S				
2	4.5.2020	31,31	1,14	0,42	24,08			E				1	
3	4.5.2020	31,98	1,19	0,43	24,39								
4	4.5.2020	29,65	1,19	0.51	23,05								
5	4.5.2020	29,31	0,60	0,20	22,55								
	Interpretation:		Nu	σ _{sp,mörtel}	δ _{Νυ}	δ _{Nu,0,5m}							
	Mittelwert:		30,21 kN	23,4 N/mm ²	1,05 mm	0,42 mm							
-	Standartabweich	nung:	1,37	0,82	0,26	0,09							
8	Variationskoeffiz	cient:	4,52%	3,51%									
	Charakteristisch	er Wert:	25,57 kN	20,6 N/mm ²	l,								
	n = 5	k = 3,40											
ž :	35												
"N								• Test	1 • Test	2 • Tes	t3 • Tes	st4 • Te	st 5
	30												
					•			•					
	25								•				
	20												
4	20		7							•			
										•			
					•					•			
1	15									•			
1	10												
	°												
	0	02	0.4	0.6	() 8	10	1 2	1 /		16	1.8	20
	0,0	0,2	0,4	0,0		5,0	1,0	۲,۲	1,4		.,.	ι,σ δι	2,0 رر [mm]

	Spaltzugversuch - Verbundmörtel											I	2
					12	- styrolfre	eier Poly	erster					
						-							
122.00					Durahmagaar					10:	ha		Eläobo
Test Nr.	Herstellungs- datum	d,	da	da	d	da	d2	dm	h1	h ₂	ha ha	hm	Aara
[-]	[Datum]	-1	[mm]	~		[mm]	~	[mm]		[mm]		[mm]	[mm²]
1	23.04.2020	20,9	20,9	20,9	20,9	20,9	20,9	20,9	41,1	40,7	41,2	41,0	2693
2	23.04.2020	20,5	20,6	20,5	20,6	20,7	20,6	20,6	40,6	40,8	41,1	40,8	2643
3	23.04.2020	20,6	20,6	20,6	20,6	20,6	20,7	20,6	40,4	40,6	40,5	40,5	2623
4	23.04.2020	20,7	20,7	20,7	20,5	20,6	20,6	20,6	40,5	40,7	40,8	40,7	2637
5	23.04.2020	20,6	20,6	20,5	20,7	20,7	20,7	20,6	40,9	40,7	40,9	40,8	2644
					×	Tes	t results				A 19-11 - A11 - A1 - A11-		
Test Nr.	Prüfdatum	Bruchlast Nu	Gesamtver- schiebung bei max. Ν _u δ _{Nu}	Gesamtver- schiebung bei 0.5 _{Nu,m} δ _{0.5Nu,m}	Spalt- zugfestigkeit σ _{sp,mörtel}								
[-]	[Datum]	[kN]	[mm]	[mm]	[N/mm²]			-			1		
1	4.5.2020	13,30	0,54	0,21	9,88				3	22	2 4		
2	4.5.2020	11,43	0,51	0,24	8,65			1.					
3	4.5.2020	11,44	0,53	0,26	8,72					90			
4	4.5.2020	11,25	0,51	0,24	8,53								
5	4.5.2020	12,25	0,51	0,23	9,27								
	Interpretation:		Nu	σ _{sp,mörtel}	δ _{Nu}	$\delta_{Nu,0,5m}$							
	Mittelwert:		11,94 kN	9,0 N/mm²	0,52 mm	0,23 mm							
	Standartabweich	hung:	0,86	0,56	0,01	0,02							
-	Variationskoeffiz	zient:	7,18%	6,23%	-								
	Charakteristisch	ner Wert:	9,02 kN	7,1 N/mm ²]								
	n = 5	k = 3,40											
Σ,	14]
n I								• Te	st 1 • Te	est 2 • Te	est 3 • Te	est 4 • T	est 5
	12												
						1.2							
						// ·							
						/:	•						
	10							•					
								•					
	8		-	+##				•					
								•					
	6												
								•					
	4												
	1									•			
	2	/											
		,											
	0												
	0,0		0,2		0,4		0,6		0,8		1,0		1,2
												U	un ruuni

	Spaltzugversuch - Verbundmörtel											13	
					ĸ	3 - Vinyle	ster-Ure	than					
- .					Durchmesser					Hö	ha		Fläche
Test Nr.	datum	d ₁	d ₂	d ₃	d ₁	d ₂	d ₃	d _m	h ₁	h ₂	h ₃	h _m	A _{c,sp}
[-]	[Datum]		[mm]	1		[mm]		[mm]		[mm]		[mm]	[mm²]
1	23.04.2020	20,9	20,9	20,9	20,9	20,9	20,9	20,9	41,1	41,5	40,9	41,2	2704
2	23.04.2020	20,9	20,8	20,8	21,0	20,9	20,9	20,9	40,9	40,6	40,7	40,7	2674
3	23.04.2020	20,8	20,8	20,7	20,9	20,7	20,9	20,8	41,3	41,1	41,0	41,1	2680
	20.01.2020	20,0	20,0	20,0	20,1	20,0	20,7	20,0		,.	10,0	,.	2000
						Tes	t results						
			Cooperation	Cocombuor									1
Test Nr.	Prüfdatum	Bruchlast N _u	schiebung bei max. N _u δ _{Nu}	schiebung bei 0.5 _{Nu,m} δ _{0.5Nu,m}	Spalt- zugfestigkeit σ _{sp,mörtel}			:					
[-]	[Datum]	[kN]	[mm]	[mm]	[N/mm²]					301	11		
1	4.5.2020	16,73	0,44	0,24	12,38				2	22	2 2		
2	4.5.2020	18,38	0,47	0,22	13,75				-				
3	4.5.2020	14,37	0,46	0,29	10,70								
4	4.5.2020	17,96	0,48	0,24	13,41								
5													
	Interpretation:		N _u	σ _{sp,mörtel}	δ _{Nu}	δ _{Nu,0,5m}							
	Witterwert:		10,00 KIN	12,6 W/mm-	0,46 mm	0,25 mm							
	Standartabweich	nung:	1,80	1,37	0,01	0,03							
	Variationskoeffiz	zient:	10,68%	10,91%									
1	Charakteristisch	ner Wert:	9,74 kN	7,1 N/mm ²									
	n = 4	K = 3,96											
[kN]	20												
z									• lest	1 • lest	2 • les	t3 • les	st 4
1	18												
1	16		/										
				. .									
1	14			•									
				•									
1	12		╢┼										
				••									
1	10												
	8	17											
	6					-						_	
	4	//											
	2 L												
	0.0	0.2	0.4	0.6	; 1	0,8	1.0	1.2	1 4		1,6	1.8	2.0
	,		-,.	510				-,-	- , ,			δ	_{Nu} [mm]

Anhang E – Statische Querzugversuche in gerissenem Beton

E.1 Gewindestäbe M8 4.8

A8 ,5 mm 60 x 160 x 26 cm charge 1 Prüfdatum Bohrlochtiefe h1 [Datum] [mm] 4.12.2019 75,0 4.12.2019 75,0 4.12.2019 75,0	Durchgangslo Abscherzylind Herstellungsta Bc Ankerlänge Io [mm] 95,0 95,0 95,0	Verb ch dr: der Dicke: ag: rhlochreinig Überstand ü ₁ [mm]	M8 - undmörtel: 9,00 mm 8,00 mm 13.09.19 ung: 2x Luftdruck Einbindetiefe her	4.8 - 11 11 - pure Epox Bohrmaschine: Einbindetiefe h _{ef} : Prüftag: , 2x Bürste (händi	y Hilti TE30 70 mm 13.01.20	In system of the								
A8 ,5 mm 60 x 160 x 26 cm 2harge 1 Prüfdatum Bohrlochtiefe h; [Datum] [mm] 4.12.2019 75,0 4.12.2019 75,0 4.12.2019 75,0 4.12.2019 75,0	Durchgangslo Abscherzylind Herstellungsta Bo Ankerlänge Io [mm] 95,0 95,0 95,0 95,0	Verb ch d _f : der Dicke: ag: rhlochreinig Überstand ü ₁ [mm]	9,00 mm 8,00 mm 13.09.19 Ung: 2x Luftdruck Einbindetiefe her	I1 - pure Epox Bohrmaschine: Einbindetiefe h _{er} : Prüftag: , 2x Bürste (händi	y Hilti TE30 70 mm 13.01.20	to whe do i								
5 mm 60 x 160 x 26 cm harge 1 Prüfdatum Bohrlochtiefe h; [Datum] [mm] 4.12.2019 75,0 4.12.2019 75,0 4.12.2019 75,0	Durchgangslo Abscherzylint Herstellungsta Bo Ankerlänge Io [mm] 95,0 95,0 95,0	ch d _f : der Dicke: ag: rhlochreinig Überstand ū ₁ [mm]	9,00 mm 8,00 mm 13.09.19 ung: 2x Luftdruck Einbindetiefe hef	Bohrmaschine: Einbindetiefe h _{ef} : Prüftag: , 2x Bürste (händi	Hilti TE30 70 mm 13.01.20	fo cube de c								
60 x 160 x 26 cm tharge 1 Prüfdatum Bohrlochtiefe h, 10atum [mm] 4.12.2019 75,0 4.12.2019 75,0 4.12.2019 75,0 4.12.2019 75,0	Abscherzylind Herstellungsta Bo Ankerlänge I ₀ [mm] 95,0 95,0 95,0	der Dicke: ag: rhlochreinig Überstand ü ₁ [mm]	8,00 mm 13.09.19 ung: 2x Luftdruck Einbindetiefe h _{ef}	Einbindetiefe h _{ef} : Prüftag: ., 2x Bürste (händi	70 mm 13.01.20	fo oute dou'								
Bohrlochtiefe Prüfdatum Bohrlochtiefe [Datum] [mm] 4.12.2019 75.0 4.12.2019 75.0 4.12.2019 75.0 4.12.2019 75.0 4.12.2019 75.0	Herstellungst Br Ankerlänge Io [mm] 95,0 95,0 95,0	ag: prhlochreinig Überstand ü ₁ [mm]	13.09.19 Jung: 2x Luftdruck Einbindetiefe h _{ef}	Prüftag:	13.01.20	fo whe dou'								
Bohdochiefe h1 [Datum] [mm] 4.12.2019 75.0 4.12.2019 75.0 4.12.2019 75.0 4.12.2019 75.0 4.12.2019 75.0	Bc Ankerlänge I 0 [mm] 95,0 95,0 95,0 95,0	Uberstand Überstand Ün [mm]	ung: 2x Luftdruck Einbindetiefe hef	, 2x Bürste (händi		-o,obbe,ory-	32,16 N/mm ²	F	tissbreite w:	0,50 mm				
Profidatum Immunol h1 [Datum] [mm] 4.12.2019 75.0 4.12.2019 75.0 4.12.2019 75.0 4.12.2019 75.0	Ankenange lo [mm] 95,0 95,0 95,0	ü ₁ [mm]	hef		sch), 2x Lufto	Iruck	Marashiaharan "	N						
[Datum] [mm] 4.12.2019 75.0 4.12.2019 75.0 4.12.2019 75.0 4.12.2019 75.0 4.12.2019 75.0	[mm] 95,0 95,0 95,0	[mm]	100000	f _{c,cube}	Vu	bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerku	ingen				
4.12.2019 75.0 4.12.2019 75.0 4.12.2019 75.0 4.12.2019 75.0	95,0 95,0 95.0		[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]					
4.12.2019 75,0 4.12.2019 75,0	95.0	20,8	74,2	31,34	13,19 10,97	4,49	0,93	s	ohne R ohne F	liss liss				
4.12.2019 75,0	00,0	21,5	73,5	31,34	12,97	3,33	0,38	s						
	95,0	22,2	72,8	31,34	12,56	2,94	0,53	S	ohne R	liss				
$\frac{\left \begin{array}{c c c c c c c c c c c c c c c c c c c $														
	Vu	δ _{Vu}	δ _{ν0,5u}	n = 4	k = 3,96									
	12,42 kN	3,73 mm	0,69 mm	_				a) t = Test unte cs = Betona	erbrochen abplatzung					
	1,01	0,72 mm	0,27 mm	-				p = Herausz s = Stahlver	iehen sagen					
Vert:	8,44 kN	6,59 mm	1,76 mm	-				anc = Klebs	toff nicht ausg	ehärtet				
		~		•	•	•	est 1 • Te	st 2 • Tes		•st 4				

			Scherve	ersuch	e in geriss	enem Bet	on				12				
					M8 -	4.8 - 12									
Gewindestab:	M8			Verb	oundmörtel:	12 - styrolfreie	er Polyester								
PTFE Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	9,00 mm	Bohrmaschine:	Hilti TE30								
Betonprüfkörper TU KL	160 x 160 x 26	i cm	Abscherzylin	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	70 mm								
Betoncharge:	Charge 1		Herstellungst	ag:	13.09.19	Prüftag:	13.01.20	f _{o,oube,dry} :	32,16 N/mm ²		Rissbreite w: 0,	,50 mm			
			B	orhlochreinig	gung: 2x Luftdruc	k, 2x Bürste (händ	lisch), 2x Luft	druck							
Test Installation	Prüfdatum	Bohrlochtiefe h ₁	Ankerlänge I ₀	Uberstand ü ₁	Einbindetiefe h _{ef}	Druckfestigkeit f _{c,cube}	Bruchlast V _u	Verschiebung ⁷⁾ bei max. V _u	Verschiebung ^{*)} bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerkunge	en			
[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]				
1 13.9.2019	5.12.2019	75,0	95,0	23,0	72,0	31,36	11,60	5,23	1,69	s					
3 13.9.2019	5.12.2019	75,0	95,0	21,9	73,1	31,36	11,63	4,64	0,90	s					
4 13.9.2019	5.12.2019	75,0	95,0	23,3	71,7	31,36	11,98	4,51	0,66	s	ohne Riss	2			
14	$\frac{1}{12} + \frac{1}{12} $														
Interpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96					1			
Mittelwert:			11,56 kN	4,97 mm	1,21 mm	_				a) t = Test unt cs = Beton	erbrochen abplatzung				
Standartabweich	ung: ient:		0,40	0,47 mm	0,51 mm	-				p = Heraus s = Stahlve	ziehen rsagen				
Charakteristische	er Wert:		9,99 kN	6,81 mm	3,23 mm	-				anc = Kleb	stoff nicht ausgehä	irtet			
2 ¹⁴					1				Test 1 • Te	st2 Te	st 3 . Test	+ 4			
Kraft K 10 10 10 10 10 10 10 10 10 10		2				5		•	est 1 • l e	•	9				

				Scherve	ersuche	e in geriss	enem Bet	on				14	0		
						M8 -	4.8 - 14								
Gewi	ndestab:	M8			Verb	undmörtel:	l4 - ungesättig	jter Polyes	ter						
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	9,00 mm	Bohrmaschine:	Hilti TE30							
Betonp	rüfkörper TU KL	160 x 160 x 26	6 cm	Abscherzylin	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	70 mm							
Betond	harge:	Charge 1		Herstellungst	ag:	13.09.19	Prüftag:	13.01.20	f _{o,cube,dry} :	32,16 N/mm ²		Rissbreite w:	0,50 mm		
		5	BULLER	Be	orhlochreinig	jung: 2x Luftdruck	, 2x Bürste (händi	sch), 2x Lufte	Iruck						
Test	Installation	Prüfdatum	Bohrlochtiefe h ₁	Ankerlange I ₀	Überstand Ü1	Einbindetiefe h _{ef}	f _{c,cube}	Bruchlast V _u	bei max. Vu	Verschiebung / bei 0.5 _{Vu,m}	fall ^{a)}	Bemerku	ngen		
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]			
1	13.9.2019	4.12.2019	75,0	95,0 95.0	22,2	72,8	31,34	11,35 11,47	3,96 4,61	1,08	S	ohne R ohne R	iss		
3	13.9.2019	4.12.2019	75,0	95,0	21,5	73,5	31,34	12,45	3,74	1,12	s				
4	13.9.2019	4.12.2019	75,0	95,0	24,0	71,0	31,34	12,52	4,13	0,43	S				
III IIII	$\frac{1}{10000000000000000000000000000000000$														
In	terpretation:			Vu	δ _{Vu}	δ _{V0.5u}	n = 4	k = 3,96							
	Mittelwert:			11,95 kN	4,11 mm	0,92 mm					a) t = Test unt cs = Beton	erbrochen abplatzung			
	Standartabweich	ung:		0,63	0,37 mm	0,33 mm	-				p = Heraus s = Stahlve	ziehen rsagen			
	Charakteristische	er Wert:		9,47 kN	5,57 mm	2,22 mm	1				anc = Kleb	stoff nicht ausge	ehärtet		
Kraft [kN]								•	• Te	est 1 • Tes	•	• •	st 4		
)	ohne Lochdurg	1 chgang	2	3		4	5	6	7	8	Versc	, hiebung	10 [mm]		

E.2Gewindestäbe M8 8.8

		Scherve	ersuch	e in geris	senem Bet	on				10				
				M8	- 8.8 - 10									
M8			Verb	oundmörtel:	10 - Einbetonie	ert								
0,5 mm		Durchgangslo	och d _f :	9,00 mm	Bohrmaschine:	Hilti TE30								
160 x 160 x 26	6 cm	Abscherzyline	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	70 mm								
Charge 1		Herstellungst	ag:	13.09.19	Prüftag:	13.01.20	fo,cube,dry:	32,16 N/mm ²		Rissbreite w:	0,50 mm			
100 100	Bohrlochtiefe	Ankerlänge	Überstand	Einbindetiefe	k, 2x Bürste (händi Druckfestigkeit	Bruchlast	druck Verschiebung ^{*)}	Verschiebung*)	Versagens-					
Prüfdatum	h ₁	I ₀	ü ₁	h _{ef}	f _{c,cube}	Vu	bei max. V _u	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerk	ungen			
[Datum]	[mm] 130.0	[mm] 130.0	[mm] 59.9	[mm] 70.1	[N/mm ²] 31.13	[kN] 16.08	[mm] 6.88	[mm] 2.07	[/] S	[/]				
27.11.2019	130,0	130,0	59,4	70,6	31,13	18,55	5,17	0,39	s	ohne F	Riss			
27.11.2019	130,0	130,0	61,0	69	31,13	18,80	4,02	0,35	s	ohne F	Riss			
21.11.2013	130,0	130,0	00,0	70,0	31,13	10,10	3,31	1,50	-	10 m	transpoored.			
$\frac{ }{ } = \frac{ }{ } = \frac{ }{ $														
		Vu	δ _{Vu}	δ _{ν0.5u}	n = 4	k = 3,96								
		17,40 kN	5,50 mm	1,20 mm					a) t = Test un cs = Betor	terbrochen nabplatzung				
iung: ient:		1,48	1,21 mm	0,96 mm	_				p = Heraus s = Stahlve	sziehen ersagen				
er Wert:		11,55 kN	10,27 mm	4,99 mm	_				anc = Kleb	stoff nicht ausg	jehärtet			
					•		• Test	1 • Test 2	2 • Test	:3 • Tes	st 4			
	M8 0,5 mm 160 x 160 x 20 Charge 1 Prüfdatum 27.11.2019 27.11.2019 27.11.2019 27.11.2019 image: image: <td>M8 0.5 mm 160 x 160 x 26 cm Charge 1 Proteau 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 20.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0</td> <td>N8 Durchgangski 160 x 160 x 26 cm Abscherzylin Charge 1 Herstellungst Prüfdatum Bohrlochtieft Ankerlänge Prüfdatum Scherve Abscherzylin 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 20.0 Vu 17.40 kN hung: 1.48 zient: 8.60% ster Wert: 11.55 kN</td> <td>Scherversuch M8 Vert 0,5 mm Durchgangsloch di: 160 x 160 x 26 cm Abscherzyinder Dick: Charge 1 Herstellungstar Image: Charge 1 Herstellungstar Image: Charge 1 Softworkerzyinder Dick: Image: Charge 1 Herstellungstar Image: Charge 1 Image: Charge 1 Image: Charge 1 Image: C</td> <td>Scherversuche in gerist M8 Verbundmötel: 0.5 mm Durchgangsloch d: 9.00 mm 160 x 160 x 26 cm Abscherzylinder Dick: 8.00 mm Verbundmötel: Nom Charge Enterterter 100 rdatum Bohrlochtlefe Abscherzylinder Dick: 8.00 mm 100 rdatum Bohrlochtlefe Abscherzylinder Dick: 9.00 mm 100 rdatum Bohrlochtlefe Abscherzylinder Dick: 9.00 mm 127.11 2019 130.0 130.0 69.9 70.1 127.11 2019 130.0 130.0 60.0 70.0 127.11 2019 130.0 130.0 60.0 70.0 127.11 2019 130.0 130.0 60.0 70.0 1000000000000000000000000000000000000</td> <td>Scherversuche in gerissenen Bett M8 Verbundmotte IP-Einbetnin 0,5 mm Durchgangloch (d. 9,00 mm) Behrmachnick (t. 10,00 mm) Behrmachnick (t. 10,00 mm) Durchgangloch (d. 10,00 mm) Dertradingting 13 0.91 9 Portagi Torbechreitigung 2: Luftrick - 2: Euffrick - 2: Euff</td> <td>Scherversuche in gerissenem Beton Is 3: - 1: Ma Verbundmöre D-Einbedneife Mil 12:0 0.5 nm Durchgangsloch die 0.0 mm Einbiedliefe hur 70 mm Oth x 160 x 26 cm Abscherspinder Dick 0.0 mm Einbiedliefe hur 70 mm Datem Behnschliefe Nu 73 mm 13:3 16:06 Z 27:12219 13:00 13:00 60:0 70.0 31:33 16:06 Z 1:11:2216 13:00 13:00 60:0 70.0 31:33 16:06 Z 1:11:2216 13:00 13:00 60:0 70.0 31:33 16:06 Z 1:11:2216 13:00 13:00 60:0 70.0 31:31 16:06 Z 1:11:2216 13:00 13:00 60:0 70.0 70.0 2 V Numerick Numerick Numerick Numerick Numerick Numerick V Numerick Numerick<!--</td--><td>Scherversuche in gerissenem Betein Jar Seine Stellen Stellen</td><td>Scherversuche In gerissenen Beton Met - 8.8 - 8.1 A deschargebach de so 20 mm demandative in direction of the source of</td><td></td><td>Scherversuche in gerissene Beton Id Na Verbanding 0-Einhonint 6.5 m Duriggepärch (k. 20 m) Betwersne: 18 12) Usea 2.0.6 mol Betwersne: 18 12) 10 Duriggepärch (k. 20 m) Betwersne: 19 12) Usea 2.0.6 mol Betwersne: 19 12) Usea 2.0.6 mol Betwersne: 19 12</td></td>	M8 0.5 mm 160 x 160 x 26 cm Charge 1 Proteau 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 130.0 27.11 2019 20.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	N8 Durchgangski 160 x 160 x 26 cm Abscherzylin Charge 1 Herstellungst Prüfdatum Bohrlochtieft Ankerlänge Prüfdatum Scherve Abscherzylin 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 27.11.2019 130.0 130.0 20.0 Vu 17.40 kN hung: 1.48 zient: 8.60% ster Wert: 11.55 kN	Scherversuch M8 Vert 0,5 mm Durchgangsloch di: 160 x 160 x 26 cm Abscherzyinder Dick: Charge 1 Herstellungstar Image: Charge 1 Herstellungstar Image: Charge 1 Softworkerzyinder Dick: Image: Charge 1 Herstellungstar Image: Charge 1 Image: Charge 1 Image: Charge 1 Image: C	Scherversuche in gerist M8 Verbundmötel: 0.5 mm Durchgangsloch d: 9.00 mm 160 x 160 x 26 cm Abscherzylinder Dick: 8.00 mm Verbundmötel: Nom Charge Enterterter 100 rdatum Bohrlochtlefe Abscherzylinder Dick: 8.00 mm 100 rdatum Bohrlochtlefe Abscherzylinder Dick: 9.00 mm 100 rdatum Bohrlochtlefe Abscherzylinder Dick: 9.00 mm 127.11 2019 130.0 130.0 69.9 70.1 127.11 2019 130.0 130.0 60.0 70.0 127.11 2019 130.0 130.0 60.0 70.0 127.11 2019 130.0 130.0 60.0 70.0 1000000000000000000000000000000000000	Scherversuche in gerissenen Bett M8 Verbundmotte IP-Einbetnin 0,5 mm Durchgangloch (d. 9,00 mm) Behrmachnick (t. 10,00 mm) Behrmachnick (t. 10,00 mm) Durchgangloch (d. 10,00 mm) Dertradingting 13 0.91 9 Portagi Torbechreitigung 2: Luftrick - 2: Euffrick - 2: Euff	Scherversuche in gerissenem Beton Is 3: - 1: Ma Verbundmöre D-Einbedneife Mil 12:0 0.5 nm Durchgangsloch die 0.0 mm Einbiedliefe hur 70 mm Oth x 160 x 26 cm Abscherspinder Dick 0.0 mm Einbiedliefe hur 70 mm Datem Behnschliefe Nu 73 mm 13:3 16:06 Z 27:12219 13:00 13:00 60:0 70.0 31:33 16:06 Z 1:11:2216 13:00 13:00 60:0 70.0 31:33 16:06 Z 1:11:2216 13:00 13:00 60:0 70.0 31:33 16:06 Z 1:11:2216 13:00 13:00 60:0 70.0 31:31 16:06 Z 1:11:2216 13:00 13:00 60:0 70.0 70.0 2 V Numerick Numerick Numerick Numerick Numerick Numerick V Numerick Numerick </td <td>Scherversuche in gerissenem Betein Jar Seine Stellen Stellen</td> <td>Scherversuche In gerissenen Beton Met - 8.8 - 8.1 A deschargebach de so 20 mm demandative in direction of the source of</td> <td></td> <td>Scherversuche in gerissene Beton Id Na Verbanding 0-Einhonint 6.5 m Duriggepärch (k. 20 m) Betwersne: 18 12) Usea 2.0.6 mol Betwersne: 18 12) 10 Duriggepärch (k. 20 m) Betwersne: 19 12) Usea 2.0.6 mol Betwersne: 19 12) Usea 2.0.6 mol Betwersne: 19 12</td>	Scherversuche in gerissenem Betein Jar Seine Stellen	Scherversuche In gerissenen Beton Met - 8.8 - 8.1 A deschargebach de so 20 mm demandative in direction of the source of		Scherversuche in gerissene Beton Id Na Verbanding 0-Einhonint 6.5 m Duriggepärch (k. 20 m) Betwersne: 18 12) Usea 2.0.6 mol Betwersne: 18 12) 10 Duriggepärch (k. 20 m) Betwersne: 19 12) Usea 2.0.6 mol Betwersne: 19 12) Usea 2.0.6 mol Betwersne: 19 12			

				Scherve	ersuche	e in geriss	enem Bet	on				11			
						M8 -	· 8.8 - I1								
Gewi	ndestab:	M8			Verb	oundmörtel:	I1 - pure Epo	хy							
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	9,00 mm	Bohrmaschine:	Hilti TE30							
Beton	prüfkörper TU KL	160 x 160 x 26	cm	Abscherzylin	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	70 mm							
Beton	charge:	Charge 1		Herstellungst	ag:	13.09.19	Prüftag:	13.01.20	f _{c,cube,dry} :	32,16 N/mm ²		Rissbreite w: 0,50 mm			
		1 ²	Debdeskist	Bo	orhlochreinig	gung: 2x Luftdruck	k, 2x Bürste (händ	isch), 2x Luft	druck						
Test Nr	Installation	Prüfdatum	bonriochtiefe h ₁	I ₀	Überstand ü ₁	Einbindetiefe h _{ef}	f _{c,cube}	V _u	bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerkungen			
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]			
1	13.9.2019	27.11.2019	75,0	95,0 95,0	22,3	72,7	31,13	21,24	4,95	0,86	s				
3	13.9.2019	27.11.2019	75,0	95,0	22,6	72,4	31,13	19,58	4,66	0,89	s	ohne Riss			
4	13.9.2019	27.11.2019	75,0	95,0	22,5	72,5	31,13	19,41	4,99	1,07	S				
1.	$ \frac{1}{1 + 5 \times 1} + \frac{5 \times 1}{1 + 6 \times 1} + \frac$														
	nterpretation:			Vu	δω	δ _{νΩ Su}	n = 4	k = 3,96			1				
	Mittelwert:			19,95 kN	4,84 mm	1,01 mm					a) t = Test un cs = Beton	terbrochen abplatzung			
	Standartabweichu	ing:		0,87	0,16 mm	0,17 mm	-				p = Heraus s = Stahlve	ziehen Irsagen			
	Charakteristische	r Wert:		16,53 kN	5,47 mm	1,69 mm	-				anc = Kleb	stoff nicht ausgehärtet			
Kraft [kn									•	Fest 1 • Te	est 2 • Te	• •			
)	ohne Lochdurg	chgang									Versc	niebung [mm]			

M8 0,5 mm				M8 -										
M8 0,5 mm				1110 -	8.8 - 12									
0,5 mm			Verb	undmörtel:	l2 - styrolfreie	r Polyester								
		Durchgangslo	och d _f :	9,00 mm	Bohrmaschine:	Hilti TE30								
160 x 160 x 26	cm	Abscherzyline	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	70 mm								
Charge 1		Herstellungsta	ag:	13.09.19	Prüftag:	13.01.20	f _{o,oube,dry} :	32,16 N/mm ²	F	Rissbreite w: 0,50 mm				
	D-L-L-L-L-C	Bo	orhlochreinig	ung: 2x Luftdruck	, 2x Bürste (händi	isch), 2x Lufto	druck							
Prüfdatum	bonriochtiefe h ₁	I ₀	Überstand Ü1	Linbindetiere h _{ef}	f _{c,cube}	U Vu Vu	bei max. Vu	bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerkungen				
[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]				
27.11.2019 27.11.2019	75,0	95,0 95,0	22,9	72,1	31,13	18,75 19,28	5,40 6,05	1,05	S	ohne Riss				
27.11.2019	75,0	95,0	22,1	72,9	31,13	18,95	6,44	1,41	S	ohne Riss				
27.11.2019	75,0	95,0	21,5	73,5	31,13	21,11	3,94	0,89	S					
$\frac{ }{ } $														
		Vu	δ _{Vu}	δ _{V0,5u}	n = 4	k = 3,96								
		19,52 kN	5,46 mm	1,28 mm	-				a) t = Test unt cs = Betona	erbrochen abplatzung				
ung: ient:		1,08	1,10 mm 20,11%	0,40 mm 31,45%	-				p = Herausz s = Stahlver	ziehen rsagen stoff nicht ausgehöttet				
er Wert:		15,25 kN	9,80 mm	2,88 mm					and - Klebs	aon nicht ausgehaltet				
	2	3						• Test 1 • T	•	• •				
	0,5 mm 160 x 160 x 26 Charge 1 Prüfdatum [Datum] 27.11.2019	0,5 mm 160 x 160 x 26 cm Charge 1 Profidatum Bohrlochtiefe h; [Datum] [mm] 27.11.2019 75.0 27.11.2019	0.5 mm Durchgangsle 160 x 160 x 26 cm Abscherzylin Charge 1 Herstellungsl Priddatum Bohrlochtiefe h ₁ Ankerlänge 0 [Datum] [mm] [mm] 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 75.0 95.0 27.11.2019 70.0 95.0 27.11.2019 70.0	0.5 mm Durchgangsloch d;: 160 x 160 x 26 cm Abscherzylinder Dicke: Charge 1 Herstellungstag: Profdatum Bohtlochtiefe Ankerlange Überstand 0, 5 mm [mm] [mm] [mm] 27.11.2019 75,0 95,0 22,9 27.11.2019 75,0 95,0 22,1 27.11.2019 75,0 95,0 21,5	0.5 mm Durchgangaloch d; 9.00 mm 100 x 160 x 25 cm Abscherzylinder Dicke: 8.00 mm 101 y 100 x 25 cm 3.03 13 Dorbechreining: 2x Lufforder Profestant Emboderief International provider of the standing of the postant distribution of the postant distrepostant distribution of the postant distribution o	0, fm Durchgangsloch di: 9, 00 mm Bohmaschnei: 100 x 100 x 26 cm Abscherzylinder Dicke: 8, 00 mm Enblindelieh fur. Charge 1 Herrstellungstag: 10 mm Charge 1 Enblindelieh fur. 100 x 100 x 26 cm Bohtoccharlung: 2x Unthrux: x Burne Charge Putdatum Bohtoccharlung: 2x Unthrux: x Burne Charge 100 x 100 rmm Imm 00 mm Enblindelieh fur. 100 x 100 rmm Find 00 mm Enblindelieh fur. 100 x 100 rmm Find 00 rmm Enblindelieh fur. 100 x 100 rmm Find 00 rmm Enblindelieh fur. 100 x 100 rmm Find 00 rmm Enblindelieh fur. 100 x 100 rmm Find 00 rmm Enblindelieh fur. 100 x 100 rmm Find 00 rmm Find 100 x 10 rmm Find Find Find 100 x 10 rmm Find Find	0.5 m Durchangsloch is 9.0 m Behrmachne is HII TE30 150 x 150 x 25 cm Abscherzylinder Dicks: 0.0 mm Einbiddtiefle is: 70 m Chang 1 Herts Hungtazi 130 13 130 13 Portsie 130 13 100 x 150 x 25 cm Abscherzylinder Dicks: 0.0 mm Einbiddtiefle is: 70 m Chang 1 Herts Hungtazi 130 13 130 13 150 75 100 x 150 x 25 cm Abscherzylinder Dicks: Einbiddtiefle is: Curcleszigiefle ibendicity Astation 100 x 150 x 25 cm Internet ibendicity Internet ibendicity Internet ibendicity Internet ibendicity Internet ibendicity 100 x 150 x 25 cm 150 x 25 cm 150 x 25 x 12 x 13 x 13 11 13 12 x 11 13 11 15 12 x 13 x 12 x 11 13 11 15 12 x 13 x 12 x 11 13 11 15 12 x 13 x 12 x 11 13 11 15 12 x 13 x 12 x 11 13 11 15 12 x 13 x 12 x 11 10 10 x 10 x 10 x 10 x 10 x 1	0.5 m Duchganglach die 9.0 mm Beitmachen in HE180 100 x 100 v2 6 cm Abscherzigheit Dicke 8.0 mm Einsteuten in 10.120 i.e.unergi 100 x 100 v2 6 cm Abscherzigheit Dicke 8.0 mm Einsteuten in 10.120 i.e.unergi 100 x 100 v2 6 cm Abscherzigheit Dicke Dickeit in Dickeit in Dickeit in Dickeit in Dickeit in 100 x 100 v2 6 cm Abscherzigheit Dickeit in Dickeit in Dickeit in Dickeit in Dickeit in Dickeit in 100 x 100 v2 6 cm 100 v2 6 cm 100 x 100 v2 6 cm 100 x 100 v2 6 cm 100 x 100 v2 6 cm 100 x 100 v2 0	9.6 m Durbangslich die, Ausschweiter 9.0 m Beitmacken, Weiter 100 TB3 Total Total <thtotal< th=""> <thtotal< th=""> Total<!--</td--><td></td></thtotal<></thtotal<>					

				Scherve	ersuche	e in geriss	enem Bet	on				14
						M8 -	8.8 - 14					
Gewir	ndestab:	M8			Verb	undmörtel:	l4 - ungesättig	gter Polyes	ter			
PTFE (Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	9,00 mm	Bohrmaschine:	Hilti TE30				
Betonp	rüfkörper TU KL	160 x 160 x 26	icm	Abscherzyling	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	70 mm				
Betonc	harge:	Charge 1		Herstellungsta	ag:	13.09.19	Prüftag:	13.01.20	f _{o,cube,dry} :	32,16 N/mm ²		Rissbreite w: 0,50 mm
			Bohrlochtiefe	Bo Ankerlänge	Uberstand	jung: 2x Luftdruck Einbindetiefe	A. 2x Bürste (händi Druckfestigkeit	isch), 2x Lufte Bruchlast	druck Verschiebuna ^{*)}	Verschiebung ^{*)}	Versagens-	
Test Nr.	Installation	Prüfdatum	h1	lo	ü ₁	h _{ef}	f _{c,cube}	Vu	bei max. V _u	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerkungen
1	[Datum] 13.9.2019	[Datum] 26.11.2019	[mm] 75.0	[mm] 95.0	[mm] 22.8	[mm] 72.2	[N/mm ²] 31.10	[kN] 18.74	[mm] 6.62	[mm] 1.75	[/] s	[/]
2	13.9.2019	26.11.2019	75,0	95,0	22,8	72,2	31,10	19,53	5,64	1,29	S	ohne Riss
3	13.9.2019 13.9.2019	26.11.2019 26.11.2019	75,0 75,0	95,0 95,0	22,8	72,2	31,10 31,10	19,62 19.45	4,92 5.74	1,45 1 88	s	
1.					22 · · · ·			2		3		4
In	terpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96				
	Mittelwert:			19,33 kN	5,73 mm	1,59 mm	_				a) t = Test un cs = Beton	terbrochen abplatzung
-	Variationskoeffizi	ent:		2,10%	12,17%	16,88%	-				s = Stahlve anc = Kleb	rsagen stoff nicht ausgehärtet
	Charakteristische	er Wert:		17,73 kN	8,49 mm	2,66 mm]					
Kraft [kl			2	3					• Tes	t 1 • Test	2 • Tes	9 10
*)	ohne Lochdurg	chgang									VEISC	աշտում, նուլվ

				Scherve	ersuch	e in geriss	senem Bet	on				14	
						M8 - 8.8	- l4 - h - 40					9 	
Gewin	idestab:	M8			Vert	oundmörtel:	l4 - ungesättig	iter Polyes	ter				
PTFE G	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	9,00 mm	Bohrmaschine:	Hilti TE30					
Betonp	rüfkörper TU KL	160 x 160 x 26	i cm	Abscherzylin	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	40 mm					
Betoncl	harge:	275-18		Herstellungst	ag:	12.07.18	Prüftag:	08.10.20	f _{c,cube,dry} :	37,17 N/mm ²	6	Rissbreite w:	0,50 mm
			Rohrlachtisfo	Ankorlänge	orhlochreini	gung: 2x Luftdruc	k, 2x Bürste (händi	sch), 2x Lufte	druck	Varashishuna*)	Maragana		
Test Nr.	Installation	Prüfdatum	h ₁	l ₀	Ü1	h _{ef}	f _{c,cube}	Vu	bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerku	ungen
1	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]	
1	5.10.2020	12.10.2020	45,0	62,8	22,2	40,8	37,17	19,69	5,38	1,55	s+p s+p		
3	5.10.2020	12.10.2020	45,0	62,3	22,5	39,8	37,17	19,11	5,13	1,72	s+p		
						15	1		2		3		
Int	terpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 3	k = 5,31			a) t = Test un	terbrochen	
	Mittelwert: Standartabweich	ung:		19,37 kN 0,29	5,36 mm 0,23 mm	1,73 mm 0,18 mm	-				cs = Beton p = Heraus	abplatzung	
9	Variationskoeffizi	ent:		1,51%	4,30%	10,51%					s = Stahlve anc = Kleb	ersagen stoff nicht ausg	ehärtet
_	Charakteristische	er Wert:		17,82 kN	6,59 mm	2,69 mm					-		
L Provincial Control C								•		•			
)	0 ohne Lochdur	1 chgang	2	3	·	4	5	6	7	8	Versc	9 hiebung	10 [mm]

E.3Gewindestäbe M8 A4

				Scherve	ersuche	e im geriss	senen Bet	on				10		
						M8 -	A4 - 10							
Gewinde	estab:	M8			Verb	undmörtel:	I0 - Einbetonie	ert						
PTFE Glei	tfolie:	0,5 mm		Durchgangslo	och d _f :	9,00 mm	Bohrmaschine:	Hilti TE30						
Betonprüfk	körper TU KL	160 x 160 x 26	cm	Abscherzyline	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	70 mm						
Betonchar	ge:	Charge 1		Herstellungst	ag:	13.09.19	Prüftag:	13.01.20	tc,cube,dry	32,16 N/mm*		Rissbreite w: 0,50 mm		
			Bohrlochtiefe	Ankerlänge	Überstand	Einbindetiefe	, 2x Bürste (hand) Druckfestigkeit	sch), 2x Luπ Bruchlast	druck Verschiebung ^{*)}	Verschiebung ^{*)}	Versagens-			
Test Nr.	Installation	Prüfdatum	h ₁	lo	ü ₁	h _{ef}	f _{c,cube}	Vu	bei max. V _u	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerkungen		
1	[Datum] 13.9.2019	[Datum] 4.12.2019	[mm] 130,0	[mm] 130,0	[mm] 60	[mm] 70,0	[N/mm ²] 31,34	[kN] 19,63	[mm] 5,96	[mm] 1,47	[/] s	[/]		
2	13.9.2019	4.12.2019	130,0	130,0	60,3	69,7	31,34	19,71	7,12	1,58	S			
3 4	13.9.2019 13.9.2019	4.12.2019 4.12.2019	130,0 130,0	130,0 130,0	60,5 60	69,5 70,0	31,34 31,34	20,12 20,80	5,77 6,03	1,33 0,75	S S	ohne Riss		
$\frac{1}{1 + 1} = \frac{1}{20.07 \text{ kH}} \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \end{array} \right] \left[\begin{array}{c} \hline 0 \\ 6.27 \text{ mm} \end{array} \right] \left[\begin{array}{c} \hline 0 \end{array} \\] \left[\begin{array}{c} \hline 0 \end{array} \end{array}] \left[\begin{array}{c} \hline 0 \end{array} \end{array}] \left[\begin{array}{c} \hline 0 \end{array} \end{array}] \left[\begin{array}{c} \end{array} \\] \left[\begin{array}{c} \end{array} \end{array}] \\[\end{array}] $														
Inter	pretation:	-		V _u	δ _{Vu}	δ _{v0.5u}	n = 4	k = 3,96						
Mit	Interpretation: Vu δ _{Vu} δ _{Vus} n = 4 k = 3,96 Mittelwert: 20,07 kN 6,22 mm 1,28 mm a) t = Test unterb cs = Betonabr cs = Betonabr													
Sta	andartabweicht	ung:		0,54	0,61 mm	0,37 mm	-				p = Heraus: s = Stahlve	ziehen rsagen		
Ch	arakteristische	er Wert:		17,94 kN	8,64 mm	2,74 mm	-				anc = Klebs	stoff nicht ausgehärtet		
225 Kraft [KN] 20 10 5			2				5			Test 1 • Te	• • • • • •	• •		
) ob	una Laabdurr										Versc	hiebung [mm]		

				Scherve	ersuche	e in geriss	enem Bet	on				11
						M8 -	A4 - I1					
Gewi	ndestab:	M8			Verb	oundmörtel:	I1 - pure Epox	(y				
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	9,00 mm	Bohrmaschine:	Hilti TE30				
Betonp	prüfkörper TU KL	160 x 160 x 26	i cm	Abscherzylin	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	70 mm				
Betond	charge:	Charge 1		Herstellungst	ag:	13.09.19	Prüftag:	13.01.20	f _{o,cube,dry} :	32,16 N/mm ²	6	Rissbreite w: 0,50 mm
				Be	orhlochreinig	gung: 2x Luftdruck	k, 2x Bürste (händ	isch), 2x Lufte	Iruck			
Test	Installation	Prüfdatum	Bohrlochtiefe h ₁	Ankerlänge I ₀	Uberstand ü ₁	Einbindetiefe h _{ef}	Druckfestigkeit f _{c,cube}	Bruchlast V _u	Verschiebung ⁻⁾ bei max. V _u	Verschiebung ⁻⁾ bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerkungen
INF.	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]
1	13.9.2019	3.12.2019	75,0	95,0	20	75,0	31,31	20,54	6,42	1,72	S	obne Diss
3	13.9.2019	3.12.2019	75,0	95,0	22,5	72,5	31,31	20,27	6,04	1,53	S	onne Riss
4	13.9.2019	3.12.2019	75,0	95,0	21,5	73,5	31,31	20,47	7,80	1,73	S	
	AI	A A			and a set of the set o			2		3		4
line 7	nterpretation:	1		Vu	διμ	δ _{νΩ Su}	n = 4	k = 3,96				
	Mittelwert:			20,78 kN	6,91 mm	1,60 mm	_				a) t = Test unt cs = Beton	erbrochen abplatzung
	Standartabweich	ung:		0,72	0,82 mm	0,15 mm	_				p = Heraus s = Stahlve	ziehen rsagen
	Charakteristische	er Wert:		17,92 kN	10,14 mm	2,19 mm	-				anc = Kleb	stoff nicht ausgehärtet
Kraft [kN										rest 1 • Te	est 2 • Te	est 3 • Test 4
)	0 ohne Lochdur	1 chgang	2	3		4	5	6	7	8	Versc	9 10 hiebung [mm]

				Scherve	ersuche	e in geriss	enem Bet	on				12
_						M8 -	A4 - I2					
Gewi	indestab:	M8			Verb	undmörtel:	l2 - styrolfreie	r Polyester				
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	ch d _f :	9,00 mm	Bohrmaschine:	Hilti TE30				
Beton	prüfkörper TU KL	160 x 160 x 26	5 cm	Abscherzylind	ler Dicke:	8,00 mm	Einbindetiefe h _{ef} :	70 mm				
Beton	charge:	Charge 1		Herstellungsta	ag:	13.09.19	Prüftag:	13.01.20	fo,cube,dry:	32,16 N/mm ²		Rissbreite w: 0,50 mm
		5	Debelsebist	Bo	rhlochreinig	jung: 2x Luftdruck	, 2x Bürste (händ	isch), 2x Lufto	Iruck	····· •)		
Test Nr.	Installation	Prüfdatum	bonriochtiefe h ₁	I ₀	Überstand Ü1	Einbindetiere h _{ef}	f _{c,cube}	U Vu Vu	bei max. Vu	bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerkungen
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]
1	13.9.2019	3.12.2019	75,0	95,0 95,0	23,4 22,5	71,6	31,31 31,31	21,60 21,37	6,35 7,14	1,45	S	ohne Riss
3	13.9.2019	3.12.2019	75,0	95,0	23,3	71,7	31,31	21,93	7,02	1,84	S	
4	13.9.2019	3.12.2019	75,0	95,0	22,5	72,5	31,31	21,20	7,71	2,12	S	
	A4 - 2							2		3		4
	nterpretation:			Vu	δ _{Vu}	δ _{ν0,5u}	n = 4	k = 3,96				
	Mittelwert:			21,53 kN	7,05 mm	1,80 mm					a) t = Test unt cs = Beton	erbrochen abplatzung
	Standartabweich Variationskoeffizi	ung: ent:		0,31	0,56 mm 7.91%	0,27 mm 15.24%	-				p = Heraus s = Stahlve	ziehen rsagen
	Charakteristische	er Wert:		20,28 kN	9,26 mm	2,88 mm					anc = Kleb	stom nicht ausgehartet
Kraft [kN							5				st 2 • Tes	9 10
)	ohne Lochdurg		2	3		4	U	o	1	8	Versc	hiebung [mm]

M8 0,5 mm 160 x 160 x 26 Charge 1 Prüfdatum [Datum]		Durchgangslo Abscherzylino	Verb	M8 - undmörtel:	A4 - I4 I4 - ungesättig													
M8 0,5 mm 160 x 160 x 26 Charge 1 Prüfdatum [Datum]	cm	Durchgangslo Abscherzyling	Verb	Gewindestab: M8 Verbundmörtel: I4 - ungesättigter Polyester														
0,5 mm 160 x 160 x 26 Charge 1 Prüfdatum	cm	Durchgangslo Abscherzylind	och d _f :			ter Polyes	ter											
160 x 160 x 26 Charge 1 Prüfdatum	cm	Abscherzyline		9,00 mm	Bohrmaschine:	Hilti TE30												
Charge 1 Prüfdatum [Datum]		Horetall	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	70 mm												
Prüfdatum [Datum]		nerstellungsta	ag:	13.09.19	Prüftag:	13.01.20	fo,cube,dry:	32,16 N/mm ²		Rissbreite w:	0,50 mm							
Prüfdatum [Datum]	Debeleehtiefe	Bo	orhlochreinig	jung: 2x Luftdruck	, 2x Bürste (händi	sch), 2x Lufto	Iruck	Marashiaharan "	N									
[Datum]	h ₁	I ₀	ü ₁	h _{ef}	f _{c,cube}	V _u	bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerk	ungen							
2.40.0040	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]								
3.12.2019	75,0	95,0	23,9	71,1	31,31	21,55	7,36	1,94	s	onne	<iss< td=""></iss<>							
3.12.2019	75,0	95,0	23,4	71,6	31,31	21,41	6,74	1,22	S									
3.12.2019	75,0	95,0	22,2	72,8	31,31	22,39	6,21	1,22	S									
			A A A A A A A A A A A A A A A A A A A			2		3		4								
		Vu	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96												
		21,54 kN	7,22 mm	1,52 mm	-				a) t = Test un cs = Beton	terbrochen abplatzung								
ing: ent:		0,65	1,02 mm	0,36 mm					p = Heraus s = Stahlve	ziehen ersagen								
r Wert:		18,99 kN	11,25 mm	2,96 mm	-				anc = Kleb	stoff nicht aus	ehärtet							
					2	8	• Test 1	• Test 2	• Test	3 • Te:								
	Prufdatum [Datum] 3.12.2019 3.12.2019 3.12.2019 3.12.2019 The second seco	Prüfdatum ht [Datum] [mm] 3.12.2019 75,0 3.12.2019 75,0 3.12.2019 75,0 3.12.2019 75,0 3.12.2019 75,0 3.12.2019 75,0 3.12.2019 75,0 3.12.2019 75,0 3.12.2019 75,0 3.12.2019 75,0 3.12.2019 75,0 3.12.2019 75,0 3.12.2019 75,0 The implement of the	Prüfdatum ht lo [Datum] [mm] [mm] 3.12.2019 75.0 95.0 3.12.2019 75.0 95.0 3.12.2019 75.0 95.0 3.12.2019 75.0 95.0 3.12.2019 75.0 95.0 3.12.2019 75.0 95.0 3.12.2019 75.0 95.0 Statum 0.65 0.000 mg: 0.65 3.00% Wert: 18.99 kM 0.05 Magang 2 4	Profidatum h b 01 IDatumi [mm] [mm] [mm] 3.12.2019 75,0 96,0 23,9 3.12.2019 75,0 95,0 23,4 3.12.2019 75,0 95,0 23,4 3.12.2019 75,0 95,0 22,2 Image: 0.65 1.02 mm min: 3,00% 14.08% Wert: 18,99 kN 11.25 mm	Priddatum In Is Is	Pridiatum In In	Poldatum h b 0 h her E.com Vc Datumij (rmmij) (rmij) (rmij)	Production In 6 6 6 h her Eccas V/ beimax V/ Datum [mm] [mm] [mm] [mm] [mm] [Poling] [Poling]	Profit n b oh hu fcaal V. be max V.	Produce No On Poor Score V/ Detrock V Det Poor Det Poor <thdet poor<="" th=""> <thdet poor<="" th=""> <thdet poo<="" td=""><td>Partial mem hn 6 01 Nu Case Vu No Nu Nu</td></thdet></thdet></thdet>	Partial mem hn 6 01 Nu Case Vu No Nu Nu							

Scherversuche in gerissenem Beton											
M8 - A4 - I4 - h - 40											
Gewindestab: M8 Verbundmörtel: I4 - ungesättigter Polyester											
PTFE Gleitfolie: 0,5 mm Betonprüfkörper TU KL 160 x 160 x 26 cm			Durchgangsloch d _f : Abscherzylinder Dicke:		9,00 mm 8,00 mm	Bohrmaschine: Einbindetiefe h _{ef} :	Hilti TE30 40 mm		27 17 N/mm2		Piechroite ur 0.50 mm
Betoncharge:	275-18		Herstellungst	ag:	12.07.18	Pruttag:	08.10.20	To,oube,dry:	37,17 N/mm*		Rissbreite W: 0,50 mn
Test Installation	Prüfdatum	Bohrlochtiefe h ₁	Ankerlänge	Überstand Überstand	gung: 2x Luftdruc Einbindetiefe h _{ef}	k, 2x Bürste (händi Druckfestigkeit f _{c,cube}	sch), 2x Lufto Bruchlast V _u	Verschiebung ^{*)} bei max. V _u	Verschiebung ^{*)} bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerkungen
[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm ²]	[kN]	[mm]	[mm]	[/]	[/]
2 5.10.2020	13.10.2020	45,0	61,7	22,7	39	37,17	20,00	8,67	1,46	s+p	
3 5.10.2020	13.10.2020	45,0	62,2	22,7	39,5	37,17	19,53	9,40	1,34	s+p	
					- 	1		2		3	
Interpretation: Mittelwert:	V _u 19,71 kN	δ _{Vu} 8,21 mm	δ _{v0,5u} 1,58 mm	n = 3	k = 5,31			a) t = Test un	terbrochen		
Standartabwei	0,25	1,47 mm	0,32 mm					p = Heraus s = Stahlve	abplatzung ziehen ersagen		
Charakteristis	1,28% 18,37 kN	17,92% 16,02 mm	19,98% 3,25 mm	-				anc = Kleb	stoff nicht ausgehärtet		
		2		4				8	• T	est 1 • T(est 2 • Test 3

E.4Bewehrungsstäbe Ø8 B500B

Scherversuche im gerissenen Beton											10	
Ø 8 - B500B - 10												
Bewehrungsstab: Ø 8 Verbundmörtel: 10 - Einbetoniert												
PTFE Gleitfolie: 0,5 mm				Durchgangslo	och d _f :	10,00 mm	Bohrmaschine:	Hilti TE30				
Betonpr	üfkörper TU KL	160 x 160 x 26	cm	Abscherzyline	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	70 mm				
Betoncharge: Charge 2		Herstellungst	ag:	20.09.19	Prüftag:	13.01.20	fc,cube,dry:	38,84 N/mm ²		Rissbreite w: 0,50 mr		
	Borhlochreinigung: 2x Luftdruck, 2x Bürste (händisch), 2x Luftdruck											
Test	Installation	Prüfdatum	Bonriochtiefe h ₁	Ankerlange I ₀	Uberstand ü1	Einbindetiefe h _{ef}	f _{c,cube}	Bruchlast V _u	bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerkungen
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]
1	20.9.2019	25.11.2019	100,0	100,0	30	70,0	37,35	22,64	11,86	2,69	s	ohne Riss
3	20.9.2019	25.11.2019	100,0	100,0	29	71	37,35	19,04	7,80	1,05	p	
4	20.9.2019	25.11.2019	100,0	100,0	30	70,0	37,35	23,31	10,84	1,18	р	
		2-4-						2		3		4
Int	orprotation			V	5		n=4	k = 2.06	1			
Mittelwert:				21,34 kN	10,62 mm	1,82 mm	11-4	K - 3,30			a) t = Test unt	terbrochen
Standartabweichung:				1,98	1,95 mm	0,83 mm	1	ziehen				
Variationskoeffizient:				9,30%	18,33%	45,61%	-				anc = Kleb	stoff nicht ausgehärtet
2 2 Kraft [KN]					•••••	5	20	25	• Te	est 1 • Tes	st 2 • Tes	st 3 • Test 4

Scherversuche in gerissenem Beton											11		
Ø8 - B500B - I1													
Bewehrungsstab: Ø 8 Verbundmörtel: 11 - pure Epoxy													
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	10,00 mm	Bohrmaschine:	Hilti TE30)				
Betonprüfkörper TU KL 160 x 160 x 26 cm		i cm	Abscherzylinder Dicke:		8,00 mm	Einbindetiefe h _{ef} :	70 mm						
Betond	charge:	Charge 2		Herstellungst	ag:	20.09.19	Prüftag:	13.01.20	f _{c,cube,dry}	38,84 N/mm ²		Rissbreite w:	0,50 mm
	Borhlochreinigung: 2x Luftdruck, 2x Bürste (händisch), 2x Luftdruck												
Test	Installation	Prüfdatum	Bohrlochtiefe h ₁	Ankerlänge I ₀	Überstand ü ₁	Einbindetiefe h _{ef}	Druckfestigkeit f _{c,cube}	Bruchlast V _u	Verschiebung ^{*)} bei max. V _u	Verschiebung ^{*)} bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerku	ingen
Nr.	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]	
1	20.9.2019	19.11.2019	75,0	95,0	24,3	70,7	37,05	21,21	8,05	1,73	S		
3	20.9.2019	19.11.2019	75,0	95,0	26	69 70	37,05	24,74	8,79 9,31	1,80	S	ohne R ohne R	liss
4	20.9.2019	19.11.2019	75,0	95,0	27	68,0	37,05	23,87	8,07	1,30	S	ohne R	liss
In	nterpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96			-) + - T +		
Mittelwert:				23,33 kN	8,55 mm	1,71 mm	_				cs = Beton	abplatzung	
Variationskoeffizient:				6,46%	7,13%	17,00%	- s = Stahly					rsagen etoff nicht auso	ohārtot
	Charakteristische	r Wert:		17,36 kN	10,97 mm	2,86 mm					and - Kleb	ston ment ausy	enaltet
ž.	30									est 1 • Te	st2 • Te	st3 • Te	st 4
Kraft [2						8				•	
)	0 0 0	2 chgang		4		6		8	10		,	12 Versc	¹² Verschiebung
				Scherve	ersuche	e in geriss	enem Bet	on				14	
-----------	--------------------	----------------	---------------------------------	------------------------------	-----------------------------	----------------------------------	---------------------------------	-----------------------------	---------------------------	---	----------------------------------	-------------------------------------	
						Ø 8 - E	3500 B - I 4						
Bewe	hrungsstab:	Ø 8			Verb	oundmörtel:	14						
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	10,00 mm	Bohrmaschine:	Hilti TE30					
Betonp	orüfkörper TU KL	160 x 160 x 26	cm	Abscherzyline	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	70 mm					
Betond	charge:	Charge 2		Herstellungst	ag:	20.09.19	Prüftag:	13.01.20	f _{o,cube,dry} :	38,84 N/mm ²	8	Rissbreite w: 0,50 mm	
				Bo	orhlochreinig	gung: 2x Luftdruc	k, 2x Bürste (händ	isch), 2x Luft	druck				
Test	Installation	Prüfdatum	Bohrlochtiefe h ₁	Ankerlange I ₀	Überstand ü ₁	Einbindetiefe h _{ef}	f _{c,cube}	Bruchlast V _u	bei max. Vu	Verschiebung / bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerkungen	
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]	
1	20.9.2019	19.11.2019	75,0	95,0 95,0	26,7	68,3 70	37,05	24,20	9,99 9,64	2,57	s	ohne Riss ohne Riss	
3	20.9.2019	19.11.2019	75,0	95,0	26,3	68,7	37,05	23,44	10,36	1,84	s		
4	20.9.2019	19.11.2019	75,0	95,0	25,2	69,8	37,05	22,33	9,70	2,28	S		
			-17-011					2		3		4	
In	terpretation:			Vu	δ _{Vu}	δ _{V0,5u}	n = 4	k = 3,96					
	Mittelwert:			22,79 kN	9,92 mm	2,08 mm	-				a) t = lest un cs = Betor	terbrochen nabplatzung	
	Variationskoeffizi	ient:		5,75%	3,31%	20,68%	-				s = Stahlve	ersagen estoff nicht ausgehärtet	
	Charakteristische	er Wert:		17,61 kN	11,22 mm	3,78 mm	1						
Kraft [KN										Test 1 • Te	•	•	
)	ohne Lochdur	chgang		7		5		-	10		Versc	hiebung [mm]	

E.5Gewindestäbe M20 4.8

				Scherve	ersuche	e in geris	ssenem Be	ton				10	
						M2	20 - 4.8 - 10					2	
Gew	indestab:	M20			Verb	undmörtel:	I0 - Einbeton	iert					
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	22,00 mm	Bohrmaschine:	Hilti TE30	2				
Beton	prüfkörper TU KL	160 x 160 x 26	6 cm	Abscherzylin	der Dicke:	20,00 mm	Einbindetiefe h _{ef}	: 120 mm					
Beton	charge:	Charge 2		Herstellungst	ag:	20.09.19	Prüftag:	13.01.20	fc,cube,dry	38,84 N/mm ²		Rissbreite w:	0,50 mm
				Be	orhlochreinig	jung: 2x Luftdr	uck, 2x Bürste (hän	disch), 2x Luft	druck				
Test	Installation	Prüfdatum	Bohrlochtiete h1	Ankerlänge I ₀	Uberstand ü1	Einbindetief h _{ef}	e Drucktestigkeit f _{c,cube}	Bruchlast V _u	Verschiebung / bei max. Vu	Verschiebung ⁷ bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerk	ungen
191.	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]	
1	20.9.2019	8.1.2020	180,0	180,0	59,5	120,5	38,73	70,63	8,30	1,18	S		
3	20.9.2019	8.1.2020	180,0	180,0	61,9	119,5	38,73	72,58	8,88	1,10	s		
4	20.9.2019	8.1.2020	180,0	180,0	60,4	119,6	38,73	71,47	8,20	1,12	S		
	25	34 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			10 1 - 2 5 413		1	2		3		4	
I	nterpretation:			Vu	δ _{Vu}	δ _{V0,5u}	n = 4	k = 3,96					
	Mittelwert: Standartabweich	100		71,72 kN	8,31 mm	1,14 mm	_				a) t = lest un cs = Beton	abplatzung	
	Variationskoeffizi	ient:		1,21%	5,21%	0,04 mm 3,12%	_				s = Stahlve	ersagen	
1	Charakteristische	er Wert:		68,30 kN	10,02 mm	1,28 mm					and - Kieb	ston ment ausy	enaner
ž	80									Test 1 • Te	est 2 • Te	est 3 • Te	est 4
ft [-												
Kra	70												
	/0				_			•	S				
									•				
	60								•				
				Y									
	-		//							. •			
	50		<u> </u>							-			
	-												
	40												
	201	F											
	30												
	- 1 🖊												
	20												
	10												
	1												
	1												
	0	2	· · · ·	4				8		, <u>, ,</u>	12		
)	ohne Lochdur	chaana				ÿ					Versc	hiebung	[mm]

				Scherve	ersuche	im geris	senen Bet	ton				11	1
						M20	- 4.8 - I1						
Gewin	destab:	M20			Verb	undmörtel:	I1 - pure Epo	ху					
PTFE C	Gleitfolie:	0,5 mm		Durchgangslo	ch d _f :	22,00 mm	Bohrmaschine:	Hilti TE30					
Betonp	rüfkörper TU KL	160 x 160 x 26	6 cm	Abscherzylind	der Dicke:	20,00 mm	Einbindetiefe her	120 mm					
Betonc	harge:	Charge 2		Herstellungsta	ag:	20.09.19	Prüftag:	13.01.20	f _{o,cube,dry} :	38,84 N/mm ²		Rissbreite w:	0,50 mm
				Bo	orhlochreinig	ung: 2x Luftdruck	, 2x Bürste (händ	lisch), 2x Luft	druck				
Test	Installation	Prüfdatum	Bohrlochtiefe h1	Ankerlänge I ₀	Uberstand ü ₁	Einbindetiefe h _{ef}	Druckfestigkeit	Bruchlast V _u	Verschiebung ⁷⁾ bei max. V _u	Verschiebung ⁻⁾ bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerk	ungen
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]]
1	20.9.2019	10.1.2020	175,0	170,3	50,5 48.9	119,8	38,78	71,86	7,49	1,40	S		
3	20.9.2019	10.1.2020	175,0	170,0	51,9	118,1	38,78	72,22	7,83	1,04	s	ohne	Riss
4	20.9.2019	10.1.2020	175,0	170,8	49,6	121,2	38,78	71,88	6,89	1,18	S		
	Anna har ba	34 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			to 1 a 2 a 4 g			2		3		4	
Int	terpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96			a) t = Test u	nterbrochen	
	Mittelwert: Standartabweich	ing:		72,26 kN	7,37 mm 0.39 mm	1,22 mm	-				cs = Beto	nabplatzung	
	Variationskoeffizi	ent:		0,79%	5,34%	12,26%					s = Stahly anc = Kle	versagen bstoff nicht aus	gehärtet
1	Charakteristische	r Wert:		70,01 kN	8,93 mm	1,81 mm							
N S	80							15	•	Test 1 • Te	est 2 • T	est 3 • T	est 4
aft [-												
¥,	0												
	- -							•					
	_							۰.					
6													
	-		/ /						•				
	-												
5													
	-										•		
4	10												
	-												
3													
1	0												
	o I							<u> </u>					
	0	2		4		6		8	10)	12 Vers	hiehung	14 * [mm]
*)	ohne Lochdurg	chgang									10120	menung	found

			Scherve	ersuche	e in geriss	senem Bet	on				12
					M20	- 4.8 - 12					
Gewindestab:	M20			Verb	oundmörtel:	12 - styrolfreie	er Polyester				
PTFE Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	22,00 mm	Bohrmaschine:	Hilti TE30				
Betonprüfkörper TU KL	160 x 160 x 26	i cm	Abscherzyline	der Dicke:	20,00 mm	Einbindetiefe hef:	120 mm				
Betoncharge:	Charge 2		Herstellungst	ag:	20.09.19	Prüftag:	13.01.20	f _{o,oube,dry} :	38,84 N/mm ²		Rissbreite w: 0,50 mm
	5°	Debdeebiete	Bo	orhlochreinig	gung: 2x Luftdruc	k, 2x Bürste (händ	lisch), 2x Luft	druck			
Test Installation	Prüfdatum	h ₁	I ₀	Überstand ü ₁	Einbindetiefe h _{ef}	f _{c,cube}	U Vu	bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerkungen
[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]
2 20.9.2019	10.1.2020	175,0	169,0	48,9	118,7	38,78	73,20	9,40	1,73	s	
3 20.9.2019	10.1.2020	175,0	169,8	49,4	120,4	38,78	72,04	8,05	1,99	S	
4 20.9.2019	10.1.2020	175,0	169,2	50,0	119,2	38,78	71,11	8,71	2,11	S	
	and a second of a			30 7 ° 1 ° 2		1	2		3		4
Interpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96				
Mittelwert:			71,98 kN	8,65 mm	1,90 mm	_				a) t = Test un cs = Beton	terbrochen abplatzung
Standartabweich	iung: ient:		0,90	0,57 mm	0,17 mm	_				p = Heraus s = Stahlve	ziehen Irsagen
Charakteristisch	er Wert:		68,42 kN	10,91 mm	2,59 mm	_				anc = Kleb	stoff nicht ausgehärtet
2 ⁸⁰									Test 1 • Te	st2 Te	et 3 Test 4
t i										.512 - 10	
X 70									N .		
-								•			
60				1				•			
-											
										•	
50											
40										•	
-											
30											
20											
	-										
1 1											
10							1				
o 1											
0	2		4		6		8	10)	12 Versc	14 hiebung* [mm]
*) ohne Lochdur	chgang										5 p1

				Scherve	ersuche	e im geris	senen Bet	ton				14
						M20	- 4.8 - 14					
Gewi	ndestab:	M20			Verb	undmörtel:	l4 - ungesätti	gter Polyes	ter			
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och dr:	22,00 mm	Bohrmaschine:	Hilti TE30				
Beton	prüfkörper TU KL	160 x 160 x 26	5 cm	Abscherzylin	der Dicke:	20,00 mm	Einbindetiefe her	120 mm				
Beton	charge:	Charge 2	10.070.074	Herstellungst	ag:	20.09.19	Prüftag:	13.01.20	f _{o,cube,dry}	38,84 N/mm ²)	Rissbreite w: 0,50 mm
				В	orhlochreinig	ung: 2x Luftdruc	k, 2x Bürste (händ	lisch), 2x Lufte	lruck			
Test	Installation	Prüfdatum	Bohrlochtiefe	Ankerlänge	Überstand	Einbindetiefe	Druckfestigkeit	Bruchlast	Verschiebung ^{*)}	Verschiebung [*])	Versagens-	Bemerkungen
Nr.	[Datum]	[Datum]	[mm]	0 [mm]	u1 [mm]	Imm]	IC,cube	(kN)	[mm]	[mm]		1/1
1	20.9.2019	10.1.2020	175,0	169,7	49,5	120,2	38,78	70,33	8,62	2,06	e'i s	141
2	20.9.2019	10.1.2020	175,0	169,9	51,3	118,6	38,78	70,84	9,54	2,23	S	ohne Riss
3	20.9.2019	10.1.2020	175,0	169,7	50,5	119,2	38,78	71,98	10,10	2,28	S	
4	20.9.2019	10.1.2020	1/5,0	169,6	50,7	118,9	38,78	72,30	8,71	1,96	S	
-	32 				50 1 . 2 · 3 48			2		3		4
li	nterpretation:	-		Vu	δ _{Vu}	δ _{V0,5u}	n = 4	k = 3,96				
	Mittelwert:			71,36 kN	9,24 mm	2,13 mm	-				a) t = lest unt cs = Beton	erbrochen abplatzung
	Variationskoeffizi	ung: ent:		0,93	0,70 mm 7.60%	0,15 mm 6.96%	-				p = Heraus s = Stahlve	ziehen rsagen
1	Charakteristische	er Wert:		67,68 kN	12,02 mm	2,72 mm	1				anc = Kleb:	stoff nicht ausgehärtet
F	80									T	10 T	
T.	-									iesti •ie	estz • re	st3 • Test4
Krat	-											
-	70											
	-								•			
0	60									•		
											•	
	50											
	-											
	-											•
	40											
	-											
	30											
	20											
								8		, , , , , , , , , , , , , , , , , , ,	12	
)	ohne Lochdurg	chgang		7		Ŭ		÷	K		Versc	hiebung [mm]

E.6Gewindestäbe M20 5.6

				Scherve	ersuche	e in geriss	senem Bet	ton				10	
-						M20	- 5.6 - 10						
Gewi	ndestab:	M20			Verb	undmörtel:	I0 - Einbeton	iert					
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	22,00 mm	Bohrmaschine:	Hilti TE30					
Betonp	orüfkörper TU KL	160 x 160 x 20	5 cm	Abscherzyline	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm				-	
Betono	charge:	Charge 2		Herstellungst	ag:	20.09.19	Prüftag:	13.01.20	fc.cube.dry:	38,84 N/mm ²		Rissbreite w:	0,50 mm
			Bohrlochtiefe	Ankerlänge	Orhlochreinig Überstand	Jung: 2x Luftdruc	k, 2x Bürste (händ Druckfestigkeit	Bruchlast	druck Verschiebung ^{*)}	Verschiebung*)	Versagens-		
Test Nr.	Installation	Prüfdatum	h ₁	l ₀	ü ₁	h _{ef}	f _{c,cube}	Vu	bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerkung	gen
1	[Datum]	[Datum]	[mm] 180.0	[mm] 180.0	[mm] 61.7	[mm] 118.3	[N/mm ²]	[kN] 93.21	[mm]	[mm] 2.42	[/] S	[/]	
2	20.9.2019	13.1.2020	180,0	180,0	60,5	119,5	38,84	94,85	7,70	1,57	S		
3	20.9.2019 20.9.2019	13.1.2020 13.1.2020	180,0 180,0	180,0 180,0	60,9 60,5	119,1 119,5	38,84 38,84	92,62 93,19	7,64 7,78	1,51 1,77	s s		
							1	2		3		4	
Ir	terpretation:			Vu	δ _{Vu}	δ _{V0,5u}	n = 4	k = 3,96			-) T		
	Mittelwert: Standartabweich	100		93,47 kN	8,20 mm	1,82 mm	-				cs = Beton	abplatzung ziohon	
	Variationskoeffizi	ient:		1,03%	12,03%	22,81%	-				s = Stahlve	rsagen stoff nicht ausgeh	artet
	Charakteristische	er Wert:		89,66 kN	12,10 mm	3,46 mm					une rueb.	ston ment dusgen	unter
[kN]	100 -								• Te	st 1 • Test	t2 • Tes	t 3 • Test	4
aft										h.			
Ā	90									•			
	-							9	•				
	80		+										_
	-												
	70												
	60											•	
	50	1											•
	40		<u> </u>										
		// //											
	30	1.											
	20												
	0 1		2	,,4	-, ,			8	10)	12		14
)	ohno Lochdur	abaana									Versc	niebung [[mm]

				Scherve	ersuche	e in geris	senem Bet	ton				11	
						M20	- 5.6 - I1						
Gewi	ndestab:	M20			Verb	undmörtel:	l1 - pure Epo	ху					
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	ich d _f :	22,00 mm	Bohrmaschine:	Hilti TE30					
Beton	prüfkörper TU k	L 160 x 160 x 2	6 cm	Abscherzyline	der Dicke:	20,00 mm	Einbindetiefe h _{ef}	120 mm					
Beton	charge:	Charge 2		Herstellungst	ag:	20.09.19	Prüftag:	13.01.20	f _{o,oube,dry} :	38,84 N/mm ²		Rissbreite w:	0,50 mm
		2		Bo	orhlochreinig	ung: 2x Luftdru	ck, 2x Bürste (händ	disch), 2x Luft	iruck				
Test	Installation	n Prüfdatum	Bohrlochtiefe h ₁	Ankerlänge I ₀	Überstand ü ₁	Einbindetiefe h _{ef}	Druckfestigkeit f _{c,cube}	Bruchlast V _u	Verschiebung ^{*)} bei max. V _u	Verschiebung ^{*)} bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerku	ungen
Nr.	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]	
1	20.9.2019	8.1.2020	175,0	172,6	51,6	121,0	38,73	95,47	8,28	1,58	S		
2	20.9.2019	8.1.2020	175,0	170,4	51	119,4	38,73	94,10 94,51	8,21	1,36	s		
4	20.9.2019	8.1.2020	175,0	172,5	52,2	120,3	38,73	93,01	7,90	1,43	S		
1 · · · · · · · · · · · · · · · · · · ·					14 14 12		1	2		3		4	
li	nterpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96			a) t = Test un	tarbrachan	
	Mittelwert: Standartabwe	ichung:		94,27 kN	8,25 mm	1,46 mm	-				cs = Beton	abplatzung	
	Variationskoe	ffizient:		1,08%	3,52%	6,37%	-				s = Stahlve	ersagen etoff nicht auso	ohärtet
	Charakteristis	cher Wert:		90,25 kN	9,40 mm	1,83 mm						eten ment deeg	
Kraft [kN]	120								• Tes	t1 •Test:	2 • Tesi	t3 •Tes	st 4
	80				_								
	-									•••			
	-												
)	0 +		2	4	<u> </u>	6		8		0	12 Versc	hiebung	14 [mm]

				Scherve	ersuche	e in geriss	enem Bet	on				12	
						M20 -	5.6 - 1 2						
Gewir	ndestab:	M20			Verb	undmörtel:	12 - styrolfreie	er Polyester	-				
PTFE (Gleitfolie:	0,5 mm		Durchgangslo	ch d _f :	22,00 mm	Bohrmaschine:	Hilti TE30					_
Betonp	rüfkörper TU KL	160 x 160 x 26	6 cm	Abscherzylind	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm					
Betonc	harge:	Charge 2		Herstellungst	ag:	20.09.19	Prüftag:	13.01.20	f _{o,oube,dry} :	38,84 N/mm ²		Rissbreite w: 0,50	0 mm
			Bohrlochtiefe	Bo	orhlochreinig	Einhindetiefe	, 2x Bürste (händ	Bruchlast	druck	Varashishung")	Voroagona		
Test Nr.	Installation	Prüfdatum	h ₁	lo	Ü1	h _{ef}	f _{c,cube}	Vu	bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerkungen	
1	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]	
2	20.9.2019	10.1.2020	175,0	171,0	44,0	126,8	38,78	92,82	11,88	2,72	s		
3	20.9.2019	10.1.2020	175,0	171,7	49,4	122,3	38,78	93,76	13,16	3,01	S		
4	20.9.2019	10.1.2020	175,0	171,8	52,4	119,4	38,78	95,59	10,27	2,31	S		
					S S S S S S S S S S S S S S S S S S S			2		3		4	
In	terpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96			-) - T - I	a de la compañía de l	
_	Mittelwert:			94,39 kN	11,11 mm	2,48 mm	-				a) t = lest u cs = Beto	nterbrochen nabplatzung	
1	Variationskoeffizi	ung: ent:		1,33	1,78 mm 15,99%	20,06%	-				p = Herau s = Stahlv	szienen ersagen betoff nicht ausgehärte	at
	Charakteristische	er Wert:		89,12 kN	18,13 mm	4,44 mm					and - Nie	uston ment ausgenate	
Kraft [kN	80									• Test 1 • T	- est2 · -	Test 3 • Test	4
		2				6	8	10		12	•	4	16
)	ohne Lochdurg					-	J	10		12	Verso	hiebung [m	m]

				Scherve	rsuche	e in geriss	enem Bet	on				14	
						M20 -	5.6 - 14						
Gewin	ndestab:	M20			Verb	undmörtel:	l4 - ungesätti	gter Polyes	ter				
PTFE G	Gleitfolie:	0,5 mm		Durchgangslo	ch d _f :	22,00 mm	Bohrmaschine:	Hilti TE30					
Betonp	rüfkörper TU KL	160 x 160 x 26	6 cm	Abscherzylind	ler Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm					
Betoncl	harge:	Charge 2		Herstellungsta	ig:	20.09.19	Prüftag:	13.01.20	f _{o,cube,dry} :	38,84 N/mm ²	8	Rissbreite w: 0,50	mm
		2		Bo	rhlochreinig	jung: 2x Luftdruck	, 2x Bürste (händ	isch), 2x Luft	druck		5.000 C		
Test	Installation	Prüfdatum	Bohrlochtiefe h1	Ankerlänge I ₀	Uberstand ü ₁	Einbindetiefe h _{ef}	Druckfestigkeit f _{c,cube}	Bruchlast V _u	Verschiebung ⁻⁾ bei max. V _u	Verschiebung ^{*)} bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerkungen	
INF.	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]	
1	20.9.2019	10.1.2020	175,0	171,8	50,7 53,8	121,1	38,78	93,11	8,25	2,15	S		
3	20.9.2019	10.1.2020	175,0	172,0	49,4	121,6	38,78	93,31	11,38	2,96	s		
4	20.9.2019	10.1.2020	175,0	172,0	52	120,0	38,78	92,20	10,63	2,23	S		
								2		3		4	A State of the sta
Int	terpretation:			V.	δ	διας	n = 4	k = 3.96					
	Mittelwert:			93,28 kN	9,87 mm	2,43 mm		,	J		a) t = Test un cs = Beton	erbrochen abplatzung	
	Standartabweich	ung:		0,96	1,40 mm	0,37 mm					p = Heraus s = Stahlve	ziehen rsagen	
-	Charakteristische	ent: er Wert:		1,02% 89,50 kN	14,22% 15,43 mm	3,88 mm	-				anc = Kleb	stoff nicht ausgehärtet	t
Z ¹	00			1					Ter	t 1 . Teet	2 . Tee	t2 . Teet 4	٦
TT N	1							\sim	• 105	st Test	2 • Tes	13 • 18514	-
Kra	90							•					_
	1												
	80							•		· .			_
	-												
	70								•		•		
	60		_//										
	-												
	50												
	-											•	
	40												
	-												
	30												
	20												
	10												
	0 +	2		4		6	8	10)	12	14		16
)	ohne Lochdur	chgang									Versc	hiebung [mr	m]

E.7Gewindestäbe M20 8.8

				Scherve	ersuche	e in geriss	enem Bet	on				10
						M20 ·	• 8.8 - 10					2
Gew	indestab:	M20			Verb	undmörtel:	I0 - Einbetoni	ert				
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	ich d _f :	22,00 mm	Bohrmaschine:	Hilti TE30	2			
Beton	prüfkörper TU KL	160 x 160 x 26	6 cm	Abscherzyline	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm				
Beton	icharge:	Charge 3		Herstellungst	ag:	27.09.19	Prüftag:	13.01.20	fc,cube,dry:	29,01 N/mm ²		Rissbreite w: 0,50 mm
				Bo	orhlochreinig	ung: 2x Luftdruck	, 2x Bürste (händ	isch), 2x Luft	druck			
Test	Installation	Prüfdatum	Bohrlochtiefe h1	Ankerlänge I ₀	Uberstand ü1	Einbindetiefe h _{ef}	Druckfestigkeit f _{c,cube}	Bruchlast V _u	Verschiebung ^{*)} bei max. V _u	Verschiebung" bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerkungen
INI.	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]
1	27.9.2019	14.1.2020	180,0	180,0	60,5	119,5	29,03	110,70	12,86	2,57	S	ohne Riss
3	27.9.2019	14.1.2020	180,0	180,0	60,5	119,5	29,03	101,50	17,02	4,00	s+p	Be- und Entlastung
4	27.9.2019	14.1.2020	180,0	180,0	61,9	118,1	29,03	107,61	14,60	2,14	S	
and a state of the	1 × 2 · 3 · 4 · 1	and a stand of the						2		3		4
=	nterpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96			[
	Mittelwert:			107,95 kN	14,68 mm	2,89 mm					a) t = Test ur cs = Beto	nterbrochen nabplatzung
	Standartabweichu	ing:		4,68	1,73 mm	0,80 mm	-				p = Herau s = Stahlv	sziehen ersagen
-	Charakteristische	r Wert:		89,43 kN	21,53 mm	6,04 mm					anc = Klel	bstoff nicht ausgehärtet
Kraft [kN	100		1			X	•	<u> </u>	• Tes	st 1 • Test	2 • Tes	st 3 • Test 4
									•			•
)				10		15	20	25	5	30	34 Verso	5 40 chiebung [mm]

			Scherve	ersuche	e in geriss	enem Bet	on				11
					M20	- 8.8 - 11					
Gewindestab:	M20			Verb	oundmörtel:	I1 - pure Epo	ĸy				
PTFE Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	22,00 mm	Bohrmaschine:	Hilti TE30	1			
Betonprüfkörper TU KI	160 x 160 x 20	6 cm	Abscherzylin	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm				
Betoncharge:	Charge 3		Herstellungst	ag:	27.09.19	Prüftag:	13.01.20	f _{o,cube,dry} :	29,01 N/mm ²		Rissbreite w: 0,50 mm
	50 	Babrlachtiefe	Ankerlänge	orhlochreinig	gung: 2x Luftdruc	k, 2x Bürste (händ	isch), 2x Luft	druck	Vorachishung [*])	Verengene	
Test Installation Nr.	Prüfdatum	h ₁	l ₀	ū ₁	h _{ef}	f _{c,cube}	Vu	bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerkungen
[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]
2 27.9.2019	17.1.2020	175,0	172,2	47,7	120,7	29,08	129,06	9,40	3,28	s	
3 27.9.2019	17.1.2020	175,0	170,7	54,9	115,8	29,08	124,38	11,16	3,24	S	
4 27.9.2019	17.1.2020	175,0	171,5	51,4	120,1	29,08	124,02	11,01	4,18	S	
· · · · · · · · · · · · · · · · · · ·	in a second					1	2		3		4
Interpretation:			Vu	δ _{Vu}	δ _{V0,5u}	n = 4	k = 3,96			-) t - Ttt	
Mittelwert: Standartabwei	chung:		127,27 kN	10,00 mm	3,27 mm	-				cs = Beton	abplatzung ziehen
Variationskoef	izient:		2,91%	13,07%	22,25%					s = Stahlve anc = Klebs	rsagen stoff nicht ausgehärtet
Charakteristisc	cher Wert:		112,63 kN	15,18 mm	<mark>6,15 mm</mark>					BUDIES CONTRACTOR	
N 140									• Test 1 • T	est 2 • T	est 3 • Test 4
aft						~					
Ϋ́Υ							•				
120											
100											
100				//			•				
-								•			
80											
-											
-								•			
60									•		
-											
40											•
40										•	
20											
									T		
o /	_, , , , , , , , ,				_,						
0	2	4	6	3	8	10	12	14	16	Verse	18 20 hiebung* [mm]
*) ohne Lochd	urchgang									10130	

				Scherve	ersuch	e in geriss	enem Bet	on				12
						M20	- 8.8 - 12					
Gewi	ndestab:	M20			Vert	oundmörtel:	12 - styrolfreie	r Polyester				
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	ch d _f :	22,00 mm	Bohrmaschine:	Hilti TE30				
Beton	prüfkörper TU KL	160 x 160 x 26	6 cm	Abscherzylin	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm				
Beton	charge:	Charge 3		Herstellungst	ag:	27.09.19	Prüftag:	13.01.20	f _{o,oube,dry} :	29,01 N/mm ²		Rissbreite w: 0,50 mm
		5		Bo	orhlochreini	gung: 2x Luftdruc	k, 2x Bürste (händi	sch), 2x Lufto	lruck			
Test	Installation	Prüfdatum	Bohrlochtiefe h1	Ankerlänge I ₀	Uberstand ü ₁	Einbindetiefe h _{ef}	Druckfestigkeit f _{c,cube}	Bruchlast V _u	Verschiebung ^{*)} bei max. V _u	Verschiebung ^{*)} bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerkungen
INF.	[Datum]	Stab: M20 folie: 0,5 mm orper TU KL 160 x 160 x 26 cm pe: Charge 3 Installation Prüfdatum Bohrlor [Datum] [Datum] [n 27.9.2019 15.1.2020 17 27.9.2019 15.1.2020 17 27.9.2019 15.1.2020 17 27.9.2019 15.1.2020 17 27.9.2019 15.1.2020 17 27.9.2019 15.1.2020 17 27.9.2019 15.1.2020 17 27.9.2019 15.1.2020 17 27.9.2019 15.1.2020 17 27.9.2019 15.1.2020 17 27.9.2019 15.1.2020 17 27.9.2019 15.1.2020 17 20.000 20.000 20.000 20.010 20.000 20.000 21.010 20.000 20.000 21.010 20.000 20.000 21.010 20.000 20.000 21.010 20.000 20.000 21.010 <t< td=""><td>[mm]</td><td>[mm]</td><td>[mm]</td><td>[N/mm²]</td><td>[kN]</td><td>[mm]</td><td>[mm]</td><td>[/]</td><td>[/]</td></t<>		[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]
1	27.9.2019	15.1.2020	175,0	171,5	54,2	117,3	29,04	123,15	10,85	2,75	S	
3	27.9.2019	15.1.2020	175,0	171,5	49,5 51,2	122	29,04	125,67	10,79	2,71	s	
4	27.9.2019	15.1.2020	175,0	173,3	51,7	121,6	29,04	123,75	10,57	3,25	S	
		a solution of the					1	2		3		4
	nterpretation:			V	διώ	δ	n = 4	k = 3.96				
	Mittelwert:			123,76 kN	10,96 mm	2,93 mm					a) t = Test unt cs = Beton	erbrochen abplatzung
	Standartabweich	ung:		1,38	0,46 mm	0,25 mm]				p = Heraus s = Stahlve	ziehen rsagen
7	Variationskoeffizi Charakteristische	ent: er Wert:		1,11% 118,31 kN	4,19% 12,77 mm	8,53%	-				anc = Kleb	stoff nicht ausgehärtet
Ξ	140		~									
Kraft [k										• •	t2 • Tes	• •
)	ohne Lochdurg	- chgang				-					Versc	hiebung [mm]

				Scherve	ersuche	e in geriss	enem Bet	on				14
						M20	- 8.8 - 14					
Gewin	ndestab:	M20			Verb	undmörtel:	l4 - ungesättig	gter Polyes	ter			
PTFE C	Gleitfolie:	0,5 mm		Durchgangslo	ich d _f :	22,00 mm	Bohrmaschine:	Hilti TE30				
Betonp	rüfkörper TU KL	160 x 160 x 26	5 cm	Abscherzylind	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm				
Betonc	harge:	Charge 3		Herstellungsta	ag:	27.09.19	Prüftag:	13.01.20	f _{o,cube,dry} :	29,01 N/mm ²	F	Rissbreite w: 0,50 mm
		8	Debularbiate	Bo	orhlochreinig	jung: 2x Luftdruck	, 2x Bürste (händ	isch), 2x Lufto	Iruck			
Test	Installation	Prüfdatum	bonriochtiefe h1	I ₀	Überstand Ü1	Einbindetiere h _{ef}	f _{c,cube}	V _u	bei max. Vu	bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerkungen
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]
1	27.9.2019 27.9.2019	14.1.2020	175,0	171,0 170,3	51,8 50,5	119,2	29,03	130,16 124,05	9,46 9,50	2,29	S S	
3	27.9.2019	14.1.2020	175,0	172,9	48,8	124,1	29,03	124,99	9,08	3,04	S	
4	27.9.2019	14.1.2020	175,0	173,3	51,3	122,0	29,03	124,81	8,95	2,74	S	
The second in the second is	1 · · · · · · · · · · · · · · · · · · ·						1	2		3		4
Int	terpretation:			V _u	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96			a) t = Test unte	erbrochen
	Mittelwert: Standartabweich	ung:		126,00 kN 2,80	9,25 mm 0,27 mm	2,82 mm 0,40 mm	_				cs = Betona p = Herausz	abplatzung tiehen
	Variationskoeffizi	ent:		2,22%	2,95%	14,16%					s = Stahlver anc = Klebs	sagen toff nicht ausgehärtet
_	Charakteristische	er Wert:		114,92 kN	10,33 mm	4,40 mm						
Kraft [kN	20						C .		• Te	est 1 • Tes	st2 •Tes	st 3 • Test 4
1	00						•					
									•			
	40											
	20											
	0											
)	0 ohne Lochdum	2	4	6		8	10	12	14	16	Versch	18 20 niebung [mm]

				Scherve	ersuch	e in geriss	senem Bet	on				14
						M20 - 8.8	8 - I4 - h - 100					
Gewi	ndestab:	M20			Vert	oundmörtel:	l4 - ungesättig	iter Polyes	ter			
PTFE Betonp	Gleitfolie: prüfkörper TU KL	0,5 mm 160 x 160 x 26 275-18) cm	Durchgangslo Abscherzylin Herstellungst	och d _f : der Dicke: ag:	22,00 mm 20,00 mm 12 07 18	Bohrmaschine: Einbindetiefe h _{ef} : Prüftan:	Hilti TE30 100 mm 08 10 20	former	37 17 N/mm²		Rissbreite w: 0.50 mm
		21010		B	orblochreini	auna: 2x Luftdruc	k 2v Bürete (händi	ech) 2x Luft	ro,cube,ary-		,	0,00 1111
Test Nr.	Installation	Prüfdatum	Bohrlochtiefe h ₁	Ankerlänge	Überstand ü ₁	Einbindetiefe h _{ef}	Druckfestigkeit f _{c,cube}	Bruchlast V _u	Verschiebung ^{*)} bei max. V _u	Verschiebung ^{*)} bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerkungen
1	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]
2	5.10.2020	14.10.2020	105,0	151,7	47	104,7	37,18	121,33	14,35	1,86	s+p s+p	
3	5.10.2020	14.10.2020	105,0	152,0	49,2	102,8	37,18	122,74	12,27	2,03	s+p	
	2	4		A A A A A A A A A A A A A A A A A A A			1		2		3	
In	nterpretation: Mittelwert:			V _u 118,39 kN	δ _{Vu} 12,59 mm	δ _{v0,5u} 2,37 mm	n = 3	k = 5,31			a) t = Test unt	erbrochen
	Standartabweich Variationskoeffizi	ung: ient: er Wert:		6,36 5,37%	1,62 mm 12,84%	0,74 mm 31,18%	-				cs = Beton p = Heraus s = Stahlve anc = Kleb	applatzung ziehen rsagen stoff nicht ausgehärtet
Kraft [kN		2				8		12		• Test	1 • Test	12 • Test 3
)	0 ohne Lochdur	2 chaana	4	(3	8	10	12	14	16	Versc	18 20 hiebung [mm

E.8Gewindestäbe M20 A4

				Scherve	ersuche	e in geriss	enem Bet	on				10	
						M20	- A4 - I0					<i></i>	
Gewi	ndestab:	M20			Verb	undmörtel:	10 - Einbetoni	ert					
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	22,00 mm	Bohrmaschine:	Hilti TE30					
Betonp	orüfkörper TU KL	160 x 160 x 26	6 cm	Abscherzylin	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm					
Betono	charge:	Charge 3		Herstellungst	ag:	27.09.19	Prüftag:	13.01.20	fc,cube,dry:	29,01 N/mm ²		Rissbreite w:	0,50 mm
			Dabala abiliata	Belevelance	orhlochreinig	jung: 2x Luftdruck	, 2x Bürste (händ	isch), 2x Luft	druck				
Test Nr.	Installation	Prüfdatum	bonriochtiere h ₁	I ₀	ü ₁	h _{ef}	f _{c,cube}	Vu	bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerku	ingen
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]	
2	27.9.2019	21.1.2020	120,0	180,0	61	119,0	29,14	114,04	19,09	2,44	s		
3	27.9.2019	21.1.2020	120,0	180,0	60,6	119,4	29,14	113,43	18,50	2,70	s	ohne R	iss
4	27.9.2019	21.1.2020	120,0	180,0	62	118,0	29,14	115,94	14,50	3,37	S		
		and a start			a a a a a a a					3		4	
Ir	terpretation:			Vu	δ _{Vu}	δ _{V0,5u}	n = 4	k = 3,96	1				
	Mittelwert:			113,19 kN	17,17 mm	3,11 mm	-				a) t = Test un cs = Betor	terbrochen abplatzung	
-	Standartabweichu Variationskoeffizi	ung: ent:		2,77	2,08 mm	0,66 mm 21.40%	-				p = Heraus s = Stahlve	ziehen ersagen	
	Charakteristische	er Wert:		102,21 kN	25,39 mm	5,73 mm	-				anc = Kleb	istoff nicht ausg	ehärtet
Kraft [kN]										Test 1 T	•	est 3 • Te	est 4
	0 0	5		10		15	20	25		30	35	hiebunc*	40
*)	ohne Lochdurg	chgang									10130	mobully	found

				Scherve	ersuche	e in geriss	enem Bet	on				11	
_						M20	- A4 - I1					19 	
Gewir	ndestab:	M20			Verb	undmörtel:	I1 - pure Epo	(y					
PTFE (Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	22,00 mm	Bohrmaschine:	Hilti TE30)				
Betonp	rüfkörper TU KL	160 x 160 x 26	6 cm	Abscherzylin	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm					
Betonc	harge:	Charge 3		Herstellungst	ag:	27.09.19	Prüftag:	13.01.20	f _{o,oube,dry} :	29,01 N/mm ²	6	Rissbreite w:	0,50 mm
				В	orhlochreinig	ung: 2x Luftdruck	, 2x Bürste (händ	isch), 2x Luft	druck	-	-		
Test	Installation	Prüfdatum	Bohrlochtiefe	Ankerlänge	Überstand ü1	Einbindetiefe her	Druckfestigkeit	Bruchlast V.	Verschiebung ^{*)} bei max V.	Verschiebung ^{*)} bei 0.5wm	Versagens- fall ^{a)}	Bemerk	ingen
Nr.	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm ²]	[kN]	[mm]	[mm]	[/]	[/]	
1	27.9.2019	14.1.2020	120,0	170,9	49	121,9	29,03	145,96	15,58	2,78	s		
2	27.9.2019	14.1.2020	120,0	171,6	50,5	121,1	29,03	140,16	15,15	3,19	S		
4	27.9.2019	14.1.2020	120,0	170,7	50,1	120,6	29,03	129,85	14,79	2,42	s		
								2		3		4	
In	terpretation:			Vu	δ _{Vu}	δ _{V0,Su}	n = 4	k = 3,96	[
	Mittelwert:			136,55 kN	14,60 mm	2,71 mm					a) t = Test un cs = Beton	terbrochen abplatzung	
_	Standartabweich	ung:		7,88	1,18 mm	0,36 mm	-				p = Heraus s = Stahlve	ziehen ersagen	
_	Charakteristische	ent: er Wert:		5,77% 105.35 kN	8,11% 19.29 mm	4.12 mm	-				anc = Kleb	stoff nicht ausg	ehärtet
Z 1	160 T												
K									•	Test 1 • T	est 2 • T	est 3 • To	est 4
raf	1								-				
× 1	40								•				
	-												
1	120												
	-												
	-								•				
1	100												
	1									•			
	80												
	-									•			
	-												
	60												
										•			
	40												
	20											•	
	0		5			10		15		20	Verse	hiebung*	25 [mm]
*)	ohne Lochdurg	chgang									VEISC	menung	funul

				Scherve	ersuche	e in gerise	senem Bet	on				12	
						M20	- A4 - I2						
Gewi	ndestab:	M20			Verb	undmörtel:	l2 - styrolfreie	r Polyester	•				
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	ich d _f :	22,00 mm	Bohrmaschine:	Hilti TE30					
Beton	prüfkörper TU KL	160 x 160 x 26	6 cm	Abscherzyline	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm					
Beton	charge:	Charge 3		Herstellungst	ag:	27.09.19	Prüftag:	13.01.20	f _{o,oube,dry} :	29,01 N/mm ²		Rissbreite w: 0,50	0 mm
		P.	Dahalaahaiafa	Bo	orhlochreinig	ung: 2x Luftdruc	k, 2x Bürste (händ	sch), 2x Luft	druck		N		_
Test Nr.	Installation	Prüfdatum	h ₁	I ₀	ü ₁	h _{ef}	fc,cube	V _u	bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerkungen	
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]	
1	27.9.2019	21.1.2020	120,0	1/0,7	49,5	121,2	29,14	114,17	23,78	3,97	S		
3	27.9.2019	21.1.2020	120,0	171,7	49	122,7	29,14	123,63	17,18	4,11	S		
4	27.9.2019	21.1.2020	120,0	171,0	50,5	120,5	29,14	133,09	20,74	4,35	S		
		and the the the				•		2		3		4	していたかいろう
ling and the second sec	nterpretation:	A 9		Vu	δ _{Vu}	δ _{v0,Su}	n = 4	k = 3,96					
	Mittelwert:			125,56 kN	19,92 mm	4,00 mm	_				a) t = Test u cs = Beto	nterbrochen nabplatzung	
	Standartabweichu Variationskoeffizie	ing: ent:		8,64 6,88%	2,99 mm 15,02%	0,32 mm 8,09%	-				p = Herau s = Stahlv	sziehen ersagen	
	Charakteristische	r Wert:		91,39 kN	31,75 mm	5,28 mm					anc = Kie	ostoff nicht ausgeharte	et
Kraft [kN]	120						\leq	·		• Test 1 • T	est 2 • 1	Test3 ● Test	4
	1									**** * * * * * * * * * * * * * * * * *			
	100							•			^{• •} • • • • • • • • • • •	**************************************	
	60								•	•		•	
	40								•				
	20									•	_	60 0 0 0 8 0	
										•			
)	0 ohne Lochdurd	hgang	5	10		15		20	2	5	30 Verso	chiebung [m	35 [m]

				Scherve	ersuche	in gerise	senem Bet	on				14	
						M20	- A4 - I4						
Gewi	ndestab:	M20			Verb	undmörtel:	l4 - ungesätti	gter Polyes	ter				
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	22,00 mm	Bohrmaschine:	Hilti TE30					
Betonp	prüfkörper TU KL	160 x 160 x 26	6 cm	Abscherzylin	der Dicke:	20,00 mm	Einbindetiefe hef:	120 mm					
Betond	charge:	Charge 3		Herstellungst	ag:	27.09.19	Prüftag:	13.01.20	f _{o,cube,dry} :	29,01 N/mm ²	6	Rissbreite w: 0,	50 mm
		5		Be	orhlochreinig	ung: 2x Luftdruc	k, 2x Bürste (händ	lisch), 2x Luft	druck	•			
Test	Installation	Prüfdatum	Bohrlochtiefe h ₁	Ankerlänge I ₀	Überstand Ü1	Einbindetiefe h _{ef}	f _{c,cube}	Bruchlast V _u	Verschiebung ¹ bei max. V _u	Verschiebung [/] bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerkunge	n
191.	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]	
1	27.9.2019	17.1.2020	120,0	170,1	48,0	122,1	29,08	138,23	19,98	3,69	S	ohne Riss	
3	27.9.2019	17.1.2020	120,0	169,1	48,6	120,5	29,08	126,75	13,99	3,36	S		
4	27.9.2019	17.1.2020	120,0	170,3	48,4	121,9	29,08	123,92	14,97	3,59	S		
		the the the the			and the second second			2		3		4	
In	nterpretation:			Vu	δ _{Vu}	δ _{V0,5u}	n = 4	k = 3,96					
	Mittelwert:			130,03 kN	16,55 mm	3,43 mm					a) t = Test un cs = Beton	iterbrochen nabplatzung	
	Standartabweichu	ung:		6,24	2,66 mm	0,27 mm	-				p = Herau s = Stahlv	sziehen ersagen	
	Charakteristische	ent. er Wert:		4,00 % 105,35 kN	27,09 mm	4,49 mm	-				anc = Klei	ostoff nicht ausgehär	tet
٣	160									Tost 1 • To	et 2 • T	ost 3 . Tost	1
ft [k	-										512 1		-
Kra	-												
	140												
	-												
1	120												_
	-												
	-					•							
1	100												
	-						•		•				
	80	/											
	60	_//											
									•				
	40							•					
	//										•		
	20												
	1										•	•	
	1								•	-	į		.
	0 1		1 5	10		15	1 1 1	20	25	5	30		35
)	ohne Lochdurg	chgang									Verso	hiebung [n	nm]

M20											
M20				M20 - A4	- l4 - h - 100						
THE O			Verbu	undmörtel:	l4 - ungesättig	ter Polyes	ter				
0,5 mm		Durchgangslo	ch d _f :	22,00 mm	Bohrmaschine:	Hilti TE30					
160 x 160 x 26	cm	Abscherzylind	ler Dicke:	20,00 mm	Einbindetiefe h _{ef} :	100 mm					
275-18		Herstellungsta	ag:	12.07.18	Prüftag:	08.10.20	f _{c,cube,dry} :	37,17 N/mm ²		Rissbreite w:	0,50 mm
	Bohrlochtiefe	Bo	rhlochreinig	ung: 2x Luftdruck	, 2x Bürste (händi:	sch), 2x Lufte	druck	Vorachishung ^{*)}	Voroagono		
Prüfdatum	h ₁	I ₀	Ü1	h _{ef}	f _{c,cube}	Vu	bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerk	ungen
[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]	
13.10.2020	105,0	151,4 151,3	50 52,4	101,4 98,9	37,17	114,63 120,18	19,48	2,16	s+p s+p		
13.10.2020	105,0	151,3	49,8	101,5	37,17	126,23	15,38	2,13	s+p		
11 1 91 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Annual and a second sec			1		2		3		
ung:		Vu 120,35 kN 5,80	δ _{Vu} 17,93 mm 2,23 mm	δ _{v0,5u} 2,11 mm 0,06 mm	n = 3	k = 5,31			a) t = Test un cs = Beton p = Heraus	erbrochen abplatzung ziehen	
ent: er Wert:		4,82% 89,54 kN	12,41% 29,74 mm	2,83% 2,43 mm	-				s = Stahlve anc = Kleb	rsagen stoff nicht aus	gehärtet
	5			10		15		• Te	est 1 • Te	est 2 • T	est 3
	M20 0.5 mm 160 × 160 × 26 275-18 Prúfdatum Datum 13.10.2020 13.10.2020 13.10.2020 13.10.2020	M20 0.5 mm 160 x 160 x 26 cm 275-18 Pruidatum Bohrlochtiefe 13.10.2020 105,0 13.10.2020 105,0	M20 Durchgangslo 160 x 160 x 26 cm Abscherzylind 275-18 Herstellungsta Bohrlochtiefe Ankerlange 0 Prüfdatum Bohrlochtiefe Ankerlange 10 at 100 202 105,0 151,4 13,10,2020 105,0 151,3 13,10,2020 105,0 151,3 13,10,2020 105,0 151,3 13,10,2020 105,0 151,3 151,3 151,3 13,10,2020 105,0 151,3 151,3 10,000 105,0 151,3 151,3 110,12020 105,0 151,3 151,3 110,12020 105,0 151,3 151,3 110,12020 105,0 151,3 151,3 110,12020 105,0 151,3 151,3 110,12020 105,0 151,3 151,3 110,1203 120,35 kN 120,35 kN 141,3 110,130 120,35 kN 141,3 141,3 110,130 141,3 141,3 14	M20 Verbu 0.5 mm Durchgangsloch d,: 160 x 160 x 26 cm Abscherzylinder Dicke: 275-18 Herstellungstag: Prufdatum Bohrlochtiefe h, Ankerlänge Uberstand isi Oberstand isi 13.10.2020 105.0 151.3 52.4 13.10.2020 105.0 151.3 52.4 13.10.2020 105.0 151.3 49.8 Verbu 0.0 151.3 49.8 Verbu 0.0 151.3 49.8 Verbu 0.0 151.3 49.8 Verbu 0.0 151.3 2.23 mm ient: 4.822% 12.47% er Wert: 89.54 kN 29.74 mm	M20 Verbundmörtel: 0.5 mm Durchgangsloch d: 22.00 mm 275-18 Herstellungstag: 12.07.18 Borhochtreining: 24. Luffurder Prufdatum Borhochtreining: Durchgangsloch d: 22.00 mm 101 x10 2020 105.0 151.1 50.4 Embodelief Prufdatum Borhochtreining Durchgang Durchgang Durchgang Durchgang 13.10.2020 105.0 151.3 52.4 94.9 101.5 Terreter and the second se	M20 Verbundmörle: H - ungesättig 0.5 mm Durchgangsloch di: 2.00 mm Bohrmachnet: 160 x 160 x 26 cm Abscherzylinder Dicke: 20.00 mm Bohrmachnet: 160 x 160 x 26 cm Abscherzylinder Dicke: 20.00 mm Bohrmachnet: 160 x 160 x 26 cm Herstellingstag: 120.718 Puhdag 17 Datem Imm Imm Imm Imm 13 10 2020 105.0 151.3 49.8 37.77 13 10 2020 105.0 151.3 49.8 37.77 13 10 2020 105.0 151.3 49.8 37.77 13 10 2020 105.0 151.3 49.8 37.77 13 10 2020 105.0 151.3 49.8 101.5 37.17 13 10 2020 105.0 151.3 17.93 mm 2.11 mm 1 1 120.35 Mi 17.93 mm 2.01 mm 2.05 mm 1 1 120.35 Mi 17.93 mm 2.43 mm 1 1 10.05 mm <td>M20 Verbundhnöfel 4-ungesättigter Polyes 0.5 mm Durchganglech ki: 2.00 mm Bohmaschne: Hill E30 0.6 mt Durchganglech ki: 2.00 mm Bohmaschne: Hill E30 10 mt Durchganglech ki: 2.00 mm Bohmaschne: Hill E30 10 20 Definitional method Durchganglech ki: 2.00 mm Bohmaschne: Hill E30 10 20 20 Definitional method Durchganglech ki: 2.00 mm Einblochenke: Durchganglech ki: 2.00 mm 11 3 10 2020 10 50 1513 2.24 9.3 37.77 126.20 11 3 10 2020 10 50 1513 2.49 9.15 37.77 126.20 11 10 2020 10 50 1513 2.40 9.3 17.77 126.20 11 10 202 10 50 1513 2.41 9.3 17.77 126.20 10 10 20 10 50 1513 2.42 19.3 1 1 10 10 20 10 50 1513 17.37 120.30</td> <td>M20 Vetrum/note: 4 - ungesättigter Polyester 95 min 2002 Bodrägsgisch die 2519 200 min Behrmachlier 1001 Behrmachlier</td> <td>N20 Vetburdhölt H-ungeätigter Polyeter 0.5 min Buerdgangslich di, 25.7 min 22.00 min Buerdgangslich di, 25.7 min 20.00 min Buerdgangslich di, 25.0 min 20.00 min Buerdgangslich di, 25.0 min 20.00 min Buerdgangslich di, 20.0 min 20.00 min Buerdgangslich di, 20.0 min 20.00 min 20.0 min<td>ND Vehundholt H-ungehältigter Poyeser 6.5 mm Dectagengleich d. 2.5 20 mm Belmeichter 100 mm Tomagengleich d. 2.5 mm<td>No.0 Vetburdhold Hungestägligter Polyster 55 sm Durgsgupulek källen 22.0 m Behrandlen källen 20.0 m Behrandlen källen Behrandlen källen<</td></td></td>	M20 Verbundhnöfel 4-ungesättigter Polyes 0.5 mm Durchganglech ki: 2.00 mm Bohmaschne: Hill E30 0.6 mt Durchganglech ki: 2.00 mm Bohmaschne: Hill E30 10 mt Durchganglech ki: 2.00 mm Bohmaschne: Hill E30 10 20 Definitional method Durchganglech ki: 2.00 mm Bohmaschne: Hill E30 10 20 20 Definitional method Durchganglech ki: 2.00 mm Einblochenke: Durchganglech ki: 2.00 mm 11 3 10 2020 10 50 1513 2.24 9.3 37.77 126.20 11 3 10 2020 10 50 1513 2.49 9.15 37.77 126.20 11 10 2020 10 50 1513 2.40 9.3 17.77 126.20 11 10 202 10 50 1513 2.41 9.3 17.77 126.20 10 10 20 10 50 1513 2.42 19.3 1 1 10 10 20 10 50 1513 17.37 120.30	M20 Vetrum/note: 4 - ungesättigter Polyester 95 min 2002 Bodrägsgisch die 2519 200 min Behrmachlier 1001 Behrmachlier	N20 Vetburdhölt H-ungeätigter Polyeter 0.5 min Buerdgangslich di, 25.7 min 22.00 min Buerdgangslich di, 25.7 min 20.00 min Buerdgangslich di, 25.0 min 20.00 min Buerdgangslich di, 25.0 min 20.00 min Buerdgangslich di, 20.0 min 20.00 min Buerdgangslich di, 20.0 min 20.00 min 20.0 min <td>ND Vehundholt H-ungehältigter Poyeser 6.5 mm Dectagengleich d. 2.5 20 mm Belmeichter 100 mm Tomagengleich d. 2.5 mm<td>No.0 Vetburdhold Hungestägligter Polyster 55 sm Durgsgupulek källen 22.0 m Behrandlen källen 20.0 m Behrandlen källen Behrandlen källen<</td></td>	ND Vehundholt H-ungehältigter Poyeser 6.5 mm Dectagengleich d. 2.5 20 mm Belmeichter 100 mm Tomagengleich d. 2.5 mm <td>No.0 Vetburdhold Hungestägligter Polyster 55 sm Durgsgupulek källen 22.0 m Behrandlen källen 20.0 m Behrandlen källen Behrandlen källen<</td>	No.0 Vetburdhold Hungestägligter Polyster 55 sm Durgsgupulek källen 22.0 m Behrandlen källen 20.0 m Behrandlen källen Behrandlen källen<

E.9Bewehrungsstäbe Ø20 B500B

				Scherve	ersuche	in geriss	enem Bet	on				10	
						Ø 20 - E	3500 B - 1 0						
Gewi	ndestab:	Ø 20			Verbu	undmörtel:	10 - Einbetoni	ert					
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	uch d _f :	22,00 mm	Bohrmaschine:	Hilti TE30					
Betonp	prüfkörper TU KL	160 x 160 x 26	i cm	Abscherzylind	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm					
Betond	charge:	Charge 3		Herstellungsta	ag:	27.09.19	Prüftag:	13.01.20	fc,cube,dry:	29,01 N/mm ²		Rissbreite w:	0,50 mm
				Bo	orhlochreinig	ung: 2x Luftdruck	, 2x Bürste (händ	lisch), 2x Luft	druck				
Test	Installation	Prüfdatum	Bohrlochtiefe h1	Ankerlänge In	Überstand üı	Einbindetiefe	Druckfestigkeit	Bruchlast V.	Verschiebung [*]) bei max V.	Verschiebung") bei 0.5//mm	Versagens- fall ^{a)}	Bemerk	ungen
Nr.	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]	
1	27.9.2019	21.1.2020	120,0	180,0	58,5	121,5	29,14	143,26	20,25	2,59	p	Abbru	ich
2	27.9.2019	21.1.2020	120,0	180,0	60	120,00	29,14	145,35	22,47	2,36	p+s	Abbru	ich
3	27.9.2019 27.9.2019	21.1.2020	120,0	180,0	60,9 61,6	119,1 118,4	29,14 29,14	136,85 138,36	20,09 20,85	3,21 3,85	p	Abbru Abbru	ich ich
State Stat								2		3		4	
Ir	terpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96					
	Mittelwert:			140,96 kN	20,91 mm	3,00 mm	-				a) t = Test un cs = Beton	terbrochen abplatzung	
-	Standartabweichu	ung:		4,01	1,09 mm	0,67 mm	-				p = Heraus s = Stahlve	ziehen rsagen	
	Charakteristische	er Wert:		125,09 kN	25,21 mm	5,65 mm					anc = Kleb	stoff nicht ausg	ehärtet
Ξ	160			-			1						
t [k	-								• T	est 1 • Te	st 2 • Te	st3 ∙Te	est 4
raf	1												
x	140			_						· · · ·			
	-									States of some			
	-										*****	•	
	120												
	-												
	-											•	
	100		//	-									
	-											••	
	80												
	⁶⁰												
	Ĩ												
	- 1//												
	20												
	1												
	1												
	0				_,,			_, ,					
)	0 obro Lochdurr	5		10	1	5	20	25		30	35 Versc	hiebung	40 [mm]

			Scherve	ersuche	e im gerise	senen Bet	on				11
					Ø 20 - I	3500B - I1					
Gewindestab:	Ø 20			Verb	oundmörtel:	I1 - pure Epo	ky				
PTFE Gleitfolie:	0,5 mm		Durchgangslo	ich d _f :	22,00 mm	Bohrmaschine:	Hilti TE30				
Betonprüfkörper TU KL	160 x 160 x 26	cm	Abscherzyline	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm				
Betoncharge:	Charge 3		Herstellungst	ag:	27.09.19	Prüftag:	13.01.20	f _{o,oube,dry} :	29,01 N/mm ²		Rissbreite w: 0,50 mm
	N	Bohrlochtiefe	Ankerlänge	Uberstand	gung: 2x Luftdruck Einbindetiefe	A. 2x Bürste (händ Druckfestigkeit	Bruchlast	druck Verschiebuna ^{*)}	Verschiebung ^{*)}	Versagens-	
Test Installation Nr.	Prüfdatum	h ₁	lo	Ü1	h _{ef}	f _{c,cube}	Vu	bei max. V _u	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerkungen
[Datum]	[Datum]	[mm] 120.0	[mm] 180.0	[mm] 57.9	[mm] 122.1	[N/mm ²] 29.14	[kN]	[mm] 15.80	[mm] 3.55	[/] S	[/]
2 27.9.2019	21.1.2020	120,0	180,0	59,9	120,10	29,14	158,10	23,18	5,67	S	
3 27.9.2019	21.1.2020	120,0	180,0	57,3	122,7	29,14	166,85	18,77	3,54	s	
VA VA VA VA VA VA VA VA VA VA VA VA VA V							2		3		4
Interpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96				
Mittelwert: Standartabweichu	na:		161,28 kN	19,06 mm	4,20 mm	_				a) t = lest un cs = Betor	terbrochen nabplatzung sziehen
Variationskoeffizie	ing. ent:		2,68%	16,03%	23,94%	-				s = Stahlve	ersagen estoff nicht ausgehärtet
Charakteristische	r Wert:		144,17 kN	31,15 mm	8,18 mm]					
180 140 140 120 100 80 60 40 40 20 0 0			10			20	25	• • •	• 30	est 2 • Te	est 3 • Test 4

				Scherve	ersuch	e in geriss	enem Bet	on				12
						Ø 20 - E	3500B - 12					
Gewi	indestab:	Ø 20			Vert	oundmörtel:	I2 - styrolfreie	r Polyester	ł			
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	ch d _f :	22,00 mm	Bohrmaschine:	Hilti TE30				
Beton	prüfkörper TU KL	160 x 160 x 26	6 cm	Abscherzyline	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm				
Beton	charge:	Charge 3		Herstellungst	ag:	27.09.19	Prüftag:	13.01.20	f _{o,cube,dry} :	29,01 N/mm ²	8	Rissbreite w: 0,50 mm
		8		Bo	orhlochreini	gung: 2x Luftdruck	, 2x Bürste (händ	isch), 2x Luft	druck			
Test	Installation	Prüfdatum	Bohrlochtiefe h1	Ankerlänge I ₀	Überstand ü ₁	Einbindetiefe h _{ef}	Druckfestigkeit f _{c,cube}	Bruchlast V _u	Verschiebung ^{*)} bei max. V _u	Verschiebung ^{*)} bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerkungen
Nr.	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]
1	27.9.2019	29.1.2020	120,0	180,0	57,6	122,4	29,25	143,17	25,34	3,34	S	
3	27.9.2019	29.1.2020	120,0	180,0	58	122,00	29,25	143,70	34,53 28,67	3,81	p+s s	
4	27.9.2019	29.1.2020	120,0	180,0	57,6	122,4	29,25	149,69	25,08	4,69	S	Abhebung
Value Value De	22 23 24 24							2		3		4
	nterpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96				
	Mittelwert:			147,58 kN	28,41 mm	3,99 mm	-				a) t = Test un cs = Beton	terbrochen nabplatzung
	Standartabweich Variationskoeffiz	iung: ient:		5,07	4,40 mm 15,48%	0,57 mm 14.24%	-				p = Heraus s = Stahlve	sziehen ersagen
	Charakteristisch	er Wert:		127,53 kN	45,80 mm	6,24 mm					anc = Kieb	istoff nicht ausgehartet
ŝ	180					15					10 T	to Testal
ft D									• 1 €	est 1 • les	tz • ies	st 3 • Test 4
Kra	160											
	-								_	-		
	-											
	140											
											•	
	120											
	-											
	100										•	
	-											
	80											
									•	•		
	-										•	
	60											
	40			_								•
	1											
	20									•		
	~											•
	1											•
	0 <mark>1</mark>			,, 10		15 15	20	25		30	35	40
)	ohne Lochdur	chaana									Versc	hiebung [mm]

				Scherve	ersuche	e in geris	senem Bet	ton				14
						Ø 20 -	B500B - I4					
Gewi	ndestab:	Ø 20			Verb	undmörtel:	l4 - ungesätti	gter Polyes	ter			
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	22,00 mm	Bohrmaschine:	Hilti TE30				
Beton	prüfkörper TU KL	160 x 160 x 26	5 cm	Abscherzylin	der Dicke:	20,00 mm	Einbindetiefe hef:	120 mm				
Beton	charge:	Charge 3		Herstellungst	ag:	27.09.19	Prüftag:	13.01.20	f _{o,cube,dry}	29,01 N/mm ²		Rissbreite w: 0,50 mm
			BULLER	Be	orhlochreinig	ung: 2x Luftdru	ck, 2x Bürste (händ	lisch), 2x Luft	druck			
Test Nr	Installation	Prüfdatum	bonriochtiefe h ₁	I ₀	Überstand Ü1	Einbindetiere h _{ef}	f _{c,cube}	V _u	bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}	Bemerkungen
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]
1	27.9.2019	24.1.2020	120,0	180,0	54,4 54	125,6 126.00	29,18	156,34 156,45	27,75	5,70	S	
3	27.9.2019	24.1.2020	120,0	180,0	54	126	29,18	160,33	23,35	4,27	s	
4	27.9.2019	24.1.2020	120,0	180,0	56,5	123,5	29,18	149,71	23,86	5,21	S	
V Burno	51.14 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.						1	2		3		4
li li	nterpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 4	k = 3,96	[a) t = Test u	nterbrochen
	Mittelwert: Standartabweich	ung:		155,71 kN 4,41	23,96 mm 2,84 mm	4,60 mm 1,10 mm	-				cs = Beto p = Herau	nabplatzung sziehen
	Variationskoeffizi	ent:		2,83%	11,85%	23,90%					s = Stahlv anc = Kle	/ersagen bstoff nicht ausgehärtet
_	Charakteristische	er Wert:		138,27 kN	35,20 mm	8,95 mm						
Kraft [kN]								20		Test 1 • To	est 2 • T	est 3 • Test 4

Anhang F – Seismische Querzugversuche in gerissenem Beton

F.1 Gewindestäbe M8 8.8

			Seism	ische S	cherve	rsuche in	gerissene	m Beto	on			4	4
						M8 - 8.	.8 - h = 40						
Gewi	ndestab:	M8			Verb	undmörtel:	l4 - ungesättig	gter Polyes	ster				
PTFE Beton Beton	Gleitfolie: prüfkörper TU KL charge:	0,5 mm 80 x 80 x 50 c RAU	m	Durchgangslo Abscherzylind Herstellungsta	ch d _f : ler Dicke: lq:	9,00 mm 8,00 mm 21.09.18	Bohrmaschine: Einbindetiefe h _{ef} : Prüftag:	Hilti TE30 40 mm 08.10.20) fo cube dry:	37,85 N/mm²		Rissbreite w:	0,50 mr
Beton	charge:	RAU		Herstellungsta	ig:	17.07.18	Prüftag:	09.10.20	fc,cube,dry:	36,00 N/mm²		Rissbreite w:	0,50 mn
				Bo	rhlochreinig	jung: 2x Luftdruc	k, 2x Bürste (händ	isch), 2x Luf	tdruck				
Test	Installation	Prüfdatum	Bohrlochtiefe h1	Ankerlänge I ₀	Überstand ü ₁	Einbindetiefe h _{ef}	Druckfestigkeit f _{c.cube}	Bruchlast Vu	Verschiebung ^{*)} bei max. V _u	Verschiebung ^{*)} bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemerk	kungen
Nr.	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]
1	30.10.2020	3.11.2020	>40	61,0	21,0	40,0	36,02	17,62	7,37	3,32	S	Veq =	9,8 kN
3	6.11.2020	11.11.2020	>40	61,3	22,2	40,0	37,89	16,09	5,28	2,69	s	Veq =	9,8 kN
4	6.11.2020	12.11.2020	>40	62,0	20	42,0	36,03	16,83	8,04	3,12	S	Veq =	8,3 kN
			1	2			3	3	1				
h	nterpretation: Mittelwert:			V _u 16,97 kN	δ _{Vu} 7,02 mm	δ _{v0,5u} 3,18 mm	n = 6	k = 3,09			a) t = Test u cs = Beto	nterbrochen nabplatzung	
	Standartabweich Variationskoeffiz	iung: iient:		0,68 3,98%	1,20 mm 17,13%	0,38 mm 11,87%	-				p = Herau s = Stahl	sziehen versagen	a a b änd ad
_	Charakteristisch	er Wert:		14,88 kN	10,74 mm	4,34 mm					and - Kie	ostoli nicht aus	genanet
L KN	2								• Test	1 • Test 2	• Tes	t3 •Te	st 4
Kraf	-												
18	3							10					
16	6								i N		_		
	-						7						
14	4					1	\mathbf{I}		1	•			
	1						N						
12	2									•			
	-			/ //					Ī	- -			
10	0 <u> </u>									-			
	-		/	///					•	•			
8	8												
							•						
(5 <u> </u>		+							•			
	-												
4	4			/									
	-												
	2												
(0		2		4		6		8		10		12
)	ohne Lochdur	chaana										Verschiebu	ng)[mm]

Abb. F1: Test 1 M8_8.8_h_40: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F2: Test 2 M8_8.8_h_40: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F3: Test 3 M8_8.8_h_40: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F4: Test 4 M8_8.8_h_40: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Seismische Scherversuche in gerissenem Beton										14			
						M8 - 8	.8 - h = 70						
Gew	indestab:	M8			Verb	undmörtel:	l4 - ungesätti	gter Polyes	ter				
PTFE Gleitfolie: (0,5 mm		Durchgangsl	och d _f :	9,00 mm	Bohrmaschine:	Hilti TE30	2				
Betonprüfkörper TU KL		80 x 80 x 50 c	m	Abscherzylin	der Dicke:	8,00 mm	Einbindetiefe her	70 mm					
Betoncharge:		RAU		Herstellungst	ag:	21.09.18	Prüftag:	08.10.20	fc,cube,dry	37,85 N/mm ²		Rissbreite	w: 0,50 mm
				B	orhlochreinig	ung: 2x Luftdruc	k, 2x Bürste (händ	lisch), 2x Luft	druck				
Test	Installation	Prüfdatum	Bohrlochtiefe h ₁	Ankerlange I ₀	Überstand ü ₁	Einbindetiefe h _{ef}	Drucktestigkeit f _{c,cube}	Bruchlast V _u	Verschiebung / bei max. Vu	Verschiebung ⁺ bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Ben	nerkungen
INF.	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]		[/]
1	30.10.2020	3.11.2020	>70	102,4	33,2	69,2	37,88	16,69	5,33	2,42	S	Veq =	9,8 kN
3	6.11.2020	4.11.2020	>70	101,4	32,5	70,0	37,89	17,19	5,87	2,85	s	Veq =	9,8 kN
4	6.11.2020	12.11.2020	>70	101,8	31	70,8	37,89	9,94	13,04	8,91	s+m	Veq =	10,0 kN
5 6	6.11.2020 20.11.2020	12.11.2020 25.11.2020	>70 >70	101,5 90,4	31,3 19,4	70,2 71,0	37,89 37,90	16,30 17,54	6,95 6,81	3,71 2,56	s	Veq = Veq =	9,8 kN 9,8 kN
	1		2			3		4		5	Maria	6	2 2 2 2 2
I	nterpretation:			V _u	δ _{Vu}	δ _{v0,5u}	n = 6	k = 3,09			a) t = Test u	nterbrochen	
Standartabweichung:			2,92	2,80 mm	2,45 mm	-				cs = Beto p = Herau	nabplatzung sziehen		
	Variationskoeffizi	ient:		18,45%	37,48%	60,31%	1				s = Stahlv anc = Kle	versagen bstoff nicht	ausgehärtet
= -	Charakteristische	er Wert:		6,80 kN	16,14 mm	11,64 mm							
ft [kN	1										Test 1 •	Test 2	• Test 3
Krat											Teet 4	Test 5	Test 6
1	8										Test 4 •	Test 5	• Test o
	1												
1	6												
	1												
1	4				i								
	-			•	•								
1	2					:							
	-					.*							
1	o]	— 											
	-				•		_						
	8		_//						__				
	-								l l				
	6												
	-					1							
	4												
	-		// 🗌		·	•					`		
	2												
	-		/ _									2	
	0												
	0	2	4	6		8	10	12	14	16		18	20
*)	ohne Lochdur	chaana										verschiel	oung ^{-,} [mm]

Abb. F5: Test 1 M8_8.8_h_70: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F6: Test 2 M8_8.8_h_70: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F7: Test 3 M8_8.8_h_70: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F8: Test 4 M8_8.8_h_70: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F9: Test 5 M8_8.8_h_70: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F10:Test 6 M8_8.8_h_70: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

F.2 Gewindestäbe M8 A4

Seismische Scherversuche in gerissenem Beton										14			
						M8 - A4	- h = 40 - 14						
Gewindestab: M8 Verbundmörtel: I4 - ungesättigter Polyester													
PTFE Gleitfolie:		0,5mm		Durchgangslo	ch d _f :	9,00 mm	Bohrmaschine:	Hilti TE30					
Betonprüfkörper TU KL Betoncharge		80 x 80 x 50 cr	m	Abscherzyling	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	40 mm	f	37.85 N/mm²		Rissbreite w:	0.50 mm
Detone	naige.	RAU		Be	ay.	21.03.10	r unay.	ech) 2x Lufte	lo,cube,dry-	57,05 14/1111		Nasbielle W.	0,50 mm
-	Installation	Pröfdatum	Bohrlochtiefe	Ankerlänge	Überstand	Einbindetiefe	Druckfestigkeit	Bruchlast	Verschiebung ^{*)}	Verschiebung*)	Versagens-	Bamark	ungon
Nr.	Datum	[Datum]	h ₁	lo [mm]	ü ₁	h _{ef}	f _{o,cube}		bei max. Vu	bei 0.5 _{Vu,m}	fall ^{a)}		1
1	30.10.2020	6.11.2020	>40	61,8	20,0	41,8	37,88	[Kiv]	Vorzeitiges Versa	agen	s+m	Veq =	9,79 kN
2	30.10.2020	9.11.2020	>40	61,8	21,3	40,5	37,88	10.00	Vorzeitiges Versa	agen	s+m	Veq =	8,78 kN
4	6.11.2020	9.11.2020	>40	61,4	20,5	40,9	37,88	18,98	9,83	3,19	s+p p	Veq = Veq =	7,79 kN 7,78 kN
5	13.11.2020	16.11.2020	>40	60,7	21,3	39,4	37,89	14,22	15,78	6,94	р	Veq =	7,77 kN
6	13.11.2020	17.11.2020	>40	59,7 59.9	21,3 19	38,4	37,89	18,82 15.66	9,01	1,88	s+p s+p	Veq =	7,27 kN
	13.11.2020	23.11.2020	240	33,3	15	40,0	51,50	15,00	15,51	1,00	310	veq -	7,27 KN
	1		2		3		4	St large		6		7	
Interpretation: V _u δ _{vu} δ _{vussu} n = 7 k = 2,89 Mittelwert: 16,66 kN 13,91 mm 3,19 mm a) t = Test unter							nterbrochen nabolatzung						
Standartabweichung:			2,13	4,43 mm	2,18 mm					p = Herau s = Stahly	sziehen ersagen		
	Charakteristische	ent: er Wert:		12,77% 10,50 kN	26,73 mm	9,49 mm	-				anc = Kle	bstoff nicht aus	gehärtet
Image: Constraint of the second sec			5					15	• Tes	st 3 • Test 4	Test 5	Test 6 • T	25

Abb. F11:Test 1 M8_A4_h_40: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F12:Test 2 M8_A4_h_40: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F13:Test 3 M8_A4_h_40: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F14:Test 4 M8_A4_h_40: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F15:Test 5 M8_A4_h_40: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F16:Test 6 M8_A4_h_40: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F17:Test 7 M8_A4_h_40: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Seismische Scherversuche in gerissenem Beton										14		
					M8 - A	4 - h = 70						
Gewindestab: MR Verbundmörtel: 14 - ungesättigter Polvester												
PTFE Gleitfolie: 0,5 mm		Durchgangslo	uch d _f :	9,00 mm	Bohrmaschine:	Hilti TE30						
Betonprüfkörper TU KL 80 x 80 x 50 cm		m	Abscherzyline	der Dicke:	8,00 mm	Einbindetiefe h _{ef} :	70 mm					
Betoncharge: RAU			Herstellungsta	ag:	21.09.18	Prüftag:	08.10.20	fc,cube,dry:	37,85 N/mm ²		Rissbreite w:	0,50 mm
			Bo	orhlochreinig	jung: 2x Luftdruck	, 2x Bürste (händi	sch), 2x Luft	druck				
Test Installation	Prüfdatum	Bohrlochtiefe h1	Ankerlänge	Überstand üı	Einbindetiefe her	Druckfestigkeit	Bruchlast V.	Verschiebung*) bei max V.	Verschiebung ^{*)} bei 0.5wm	Versagens- fall ^{a)}	Bemerk	tungen
Nr. [Datum]	[Datum]	[mm]	 [mm]	[mm]	[mm]	[N/mm ²]	[kN]	[mm]	[mm]	[/]	[/	1
1 30.10.2020	3.11.2020	>70	92,5	22,5	70,0	37,88	8,36	8,81	8,80	s+m	Veq =	9,78 kN
2 30.10.2020	5.11.2020	>70	91,0	22,5	68,5	37,88	19,31	10,95	3,41	S	Veq =	8,89 kN
3 30.10.2020	5.11.2020	>70	91,0	21	70,0	37,88	20,15	9,65	2,26	S	Veq =	9,80 kN
5 6.11.2020	12.11.2020	>70	90,9	19,4	71,5	37,89	18,17	9,78	3,90	S	Veq =	9,77 kN
6 6.11.2020	9.11.2020	>90	111,3	21,5	89,8	37,88	20,45	9,28	4,05	S	Veq =	9,80 kN
Stan 1			3	4			5		6			
Interpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 6	k = 3,09					
Mittelwert:			17,37 kN	9,47 mm	4,31 mm	-				a) t = Test unt cs = Beton	erbrochen abplatzung	
Standartabweichung:			4,54	0,91 mm 9.59%	2,29 mm 53.04%					p = Heraus s = Stahlve	rsagen	
Charakteristisch	er Wert:		3,34 kN	12,27 mm	11,38 mm					anc = Kleb	stoff nicht aus	gehartet
End 25									• Te • Te	st 1 • Te st 4 • Te	est 2 • T est 5 • T	est 3 est 6
		5				•	15		20	<u>ب</u>	 /erschiebui	

Abb. F18:Test 1 M8_A4_h_70: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F19:Test 2 M8_A4_h_70: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F20:Test 3 M8_A4_h_70: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F21:Test 4 M8_A4_h_70: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F22:Test 5 M8_A4_h_70: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F23:Test 6 M8_A4_h_70: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm
F.3 Gewindestäbe M20 8.8

	Seismische Scherversuche in gerissenem Beton									
			M20 -	8.8 - h = 100						
Gewindestab:	M20	Ver	bundmörtel:	l4 - ungesättig	ter Polyester					
PTFE Gleitfolie:	0,5 mm	Durchgangsloch d _f :	22,00 mm	Bohrmaschine:	Hilti TE30					
Betonprüfkörper TU KL	80 x 80 x 50 cm	Abscherzylinder Dicke:	20,00 mm	Einbindetiefe h _{ef} :	100 mm					
Betoncharge:	RAU	Herstellungstag:	21.09.18	Prüftag:	08.10.20	f _{c.cube.drv} :	37,85 N/mm ²	Rissbreite w:	0,50 mm	

	Borhlochreinigung: 2x Luftdruck, 2x Bürste (händisch), 2x Luftdruck													
Test Nr.	Installation	Prüfdatum	Bohrlochtiefe h ₁	Ankerlänge I ₀	Überstand ü ₁	Einbindetiefe h _{ef}	Druckfestigkeit f _{c,cube}	Bruchlast V _u	Verschiebung ^{*)} bei max. V _u	Verschiebung ^{*)} bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemer	kungen	
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]	
1	23.10.2020	27.10.2020	>120	151,0	50,2	100,8	37,87	101,35	12,61	5,38	S	Veq =	64,0 kN	
2	23.10.2020	27.10.2020	>120	150,8	53	97,8	37,87	104,26	10,45	3,76	S	Veq =	64,0 kN	
3	23.10.2020	27.10.2020	>120	150,9	48,2	102,7	37,87	103,53	12,15	5,23	S	Veq =	64,0 kN	
4	23.10.2020	28.10.2020	>120	152,0	50,7	101,3	37,87	102,35	12,56	3,65	S	Veq =	64,0 kN	
5	23.10.2020	28.10.2020	>120	151,5	51,4	100,1	37,87	104,25	10,86	3,64	S	Veq =	64,0 kN	
6	13.11.2020	20.11.2020	>120	152,2	53,2	99,0	37,89	101,68	14,33	5,33	S	Veq =	64,0 kN	

Interpretation:	Vu	δ _{Vu}	δ _{v0,5u}	n = 6	k = 3,09	
Mittelwert:	102,90 kN	12,16 mm	4,50 mm			a) t = Test unterbrochen cs = Betonabolatzung
Standartabweichung:	1,29	1,39 mm	0,89 mm	1		p = Herausziehen
Variationskoeffizient:	1,25%	11,46%	19,85%			s = Stahlversagen anc = Klebstoff nicht ausgehärtet
Charakteristischer Wert:	98,92 kN	16,47 mm	7,26 mm			

Abb. F24:Test 1 M20_8.8_h_100: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F25:Test 2 M20_8.8_h_100: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F26:Test 3 M20_8.8_h_100: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F27:Test 4 M20_8.8_h_100: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F28:Test 5 M20_8.8_h_100: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F29:Test 6 M20_8.8_h_100: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

			Seism	ische S	cherver	rsuche in	gerissene	m Beto	n			14	L
						M20 - 8.	8 - h = 120						
Gewi	ndestab:	M20			Verbr	undmörtel:	l4 - ungesättig	jter Polyes	ter				
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	ch d _f :	22,00 mm	Bohrmaschine:	Hilti TE30					
Betonp	orüfkörper TU KL	80 x 80 x 50 c	m	Abscherzylind	ler Dicke:	20,00 mm	Einbindetiefe h _{ef} :	100 mm					
Betond	charge:	RAU		Herstellungsta	ig:	25.09.18	Prüftag:	09.10.20	fc,cube,dry:	37,77 N/mm ²		Rissbreite w:	0,50 mm
				Bc	rhlochreinig	ung: 2x Luftdruck	, 2x Bürste (händi	isch), 2x Luft	druck				
Test	Installation	Prüfdatum	Bohrlochtiefe	Ankerlänge	Überstand	Einbindetiefe	Druckfestigkeit	Bruchlast	Verschiebung ^{*)}	Verschiebung*)	Versagens-	Bemerk	ungen
Nr.	[Datum]	[Datum]	[mm]	10 [mm]	[mm]	[mm]	[N/mm ²]	(kN)	[mm]	[mm]	[/]	[/	
1	16.10.2020	19.10.2020	>120	165,0	43,8	121,2	37,78	107,16	10,01	3,73	s	Veq =	60,1 kN
2	16.10.2020	20.10.2020	>120	165,5	43 45.8	122,5	37,78	103,25	11,22 Vorzeitiges Vers	3,93 agen	s s+m	Veq = Veq =	65,0 kN 65,1 kN
4	16.10.2020	20.10.2020	>120	160,4	40,5	119,9	37,78	113,87	8,76	2,33	S	Veq =	60,0 kN
5	16.10.2020	21.10.2020	>120	160,0 172,5	40,7	119,3	37,78	114,10 98.91	10,09	4,01	s s+n	Veq =	64,0 kN
7	23.10.2020	28.10.2020	>120	169,4	49	120,0	37,79	119,48	11,01	2,88	s	Veq =	64,0 kN
	1		2					5		e e		7	A A A A A A A A A A A A A A A A A A A
In	terpretation:			Vu	δ _{Vu}	δ _{V0,5u}	n = 6	k = 3,09			a) t = Taat up	tarbrachan	
	Mittelwert: Standartabweichu	ing:		109,46 kN 7,70	10,66 mm 1,39 mm	3,69 mm 1,01 mm	-				cs = Betor p = Heraus	abplatzung ziehen	
_	Variationskoeffizie	ent:		7,04%	13,08%	27,30%					s = Stahlve anc = Kleb	ersagen stoff nicht aus	gehärtet
2 140	Charakteristische	r Wert:		85,65 kN	14,97 mm	6,80 mm							
Kraft [kN	-									• Test • Test	1 •Tes 5 •Tes	t2 ●Te t6 ●Te	est 4 est 7
120				0	-								
100)												
	-									h			
80	-						RIS	spreite w >	1,0mm		5		
60											•		
40													
20		V					45						
)	ohne Lochdurg	haana	9		τυ		15		20		25	/erschiebur	30 1 g)[mm]

Abb. F30:Test 1 M20_8.8_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F31:Test 2 M20_8.8_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F32:Test 3 M20_8.8_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F33:Test 4 M20_8.8_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F34:Test 5 M20_8.8_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F35:Test 6 M20_8.8_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F36:Test 7 M20_8.8_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

F.4 Gewindestäbe M20 A4

	Se	ismische Scherve	ersuche i	n gerissene	m Beton			14	
			M20 -	A4 - h = 100					
Gewindestab: M20 Verbundmörtel: I4 - ungesättigter Polyester									
PTFE Gleitfolie:	0,5 mm	Durchgangsloch d _f :	22,00 mm	Bohrmaschine:	Hilti TE30				
Betonprüfkörper TU KL	80 x 80 x 50 cm	Abscherzylinder Dicke:	20,00 mm	Einbindetiefe h _{ef} :	100 mm				
Betoncharge:	RAU	Herstellungstag:	21.09.18	Prüftag:	08.10.20	f _{c,cube,dry} :	37,85 N/mm²	Rissbreite w:	0,50 mm

			-	Bo	rhlochreinig	ung: 2x Luftdruck	2x Bürste (händi	sch), 2x Luft	druck				
Test Nr.	Installation	Prüfdatum	Bohrlochtiefe h ₁	Ankerlänge I ₀	Überstand ü ₁	Einbindetiefe h _{ef}	Druckfestigkeit f _{c,cube}	Bruchlast V _u	Verschiebung ^{*)} bei max. V _u	Verschiebung ^{*)} bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemer	kungen
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[Ŋ
1	16.10.2020	23.10.2020	>120	150,5	51,0	99,5	37,87	102,94	26,19	5,62	s+p	Veq =	62,0 kN
2	16.10.2020	23.10.2020	>120	152,2	50,9	101,3	37,87	109,00	18,30	3,99	s+p	Veq =	56,0 kN
3	16.10.2020	26.10.2020	>120	151,9	52	99,9	37,87	108,01	28,93	5,08	s+p	Veq =	62,0 kN
4	16.10.2020	26.10.2020	>120	147,8	49,5	98,3	37,87	101,13	25,46	4,26	s+p	Veq =	56,0 kN
5	23.10.2020	26.10.2020	>120	150,5	49,5	101,0	37,87	100,09	15,67	4,87	s+p	Veq =	62,0 kN
6	23.10.2020	27.10.2020	>120	152,3	51,4	100,9	37,87	110,04	19,30	4,31	s+p	Veq =	62,0 kN

Interpretation:	Vu	δ _{Vu}	δ _{V0,5u}	n = 6	k = 3,09	
Mittelwert:	105,20 kN	22,31 mm	4,69 mm			a) t = Test unterbrochen cs = Betonabplatzung
Standartabweichung:	4,32	5,25 mm	0,61 mm	1		p = Herausziehen
Variationskoeffizient:	4,11%	23,55%	13,04%			s = Stahlversagen and = Klebstoff nicht ausgehärtet
Charakteristischer Wert:	91,83 kN	38,55 mm	6,58 mm			

Abb. F37:Test 1 M20_A4/70_h_100: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F38:Test 2 M20_A4/70_h_100: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F40:Test 4 M20_A4/70_h_100: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F41:Test 5 M20_A4/70_h_100: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F42:Test 6 M20_A4/70_h_100: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

			Seism	ische S	cherve	rsuche in	gerissene	m Beto	on			14	4
						M20 - A	4 - h = 120					С.	
Gew	indestab:	M20			Verb	undmörtel:	l4 - ungesättig	ter Polyes	ster				
PTFE	Gleitfolie:	0,5mm		Durchgangslo	ch d _f :	22,00 mm	Bohrmaschine:	Hilti TE30	2				
Beton	prüfkörper TU KL	80 x 80 x 50 c	m	Abscherzylin	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	120 mm					
Beton	charge:	RAU		Herstellungst	ag:	25.09.18	Prüftag:	09.10.20	fo,cube,dry:	37,77 N/mm ²		Rissbreite w:	0,50 mm
				Be	orhlochreinig	ung: 2x Luftdruck	k, 2x Bürste (händi	isch), 2x Luff	druck				
Test	Installation	Prüfdatum	Bohrlochtiefe	Ankerlänge	Überstand	Einbindetiefe	Druckfestigkeit	Bruchlast	Verschiebung")	Verschiebung"	Versagens-	Bemer	kungen
Nr.	[Datum]	[Datum]	[mm]	(mm]	[mm]	[mm]	IN/mm ²	[kN]	[mm]	[mm]	[/]	[/]
1	16.10.2020	21.10.2020	>120	166,0	42,0	124,0	37,78	108,32	20,39	5,43	s	Veq =	64,1 kN
2	16.10.2020	21.10.2020	>120	165,7	44,9	120,8	37,78	95,28	24,25 Vorzeitiges Vers:	5,44	s+p	Veq =	64,0 kN
4	16.10.2020	22.10.2020	>120	164,7	43,1	121,6	37,78	123,51	18,10	2,59	s	Veq =	56,0 kN
5	16.10.2020	22.10.2020	>120	165,5	43,8	121,7	37,78	116,83	19,94	4,15	s	Veq =	56,0 kN
6	23.10.2020	29.10.2020	>120	1/1,3	50,4	120,9	37,79	102,76	23,27 Vorzeitiges Versa	6,44 agen	s	Veq = Veq =	64,0 kN 75,0 kN
8	20.11.2020	23.11.2020	>120	170,5	50,4	120,1	37,82	115,31	28,38	3,38	s	Veq =	64,0 kN
arov No 1	T		2		3	4		6		The second secon	Stared	8	
I	nterpretation:			Vu	δ _{Vu}	δ _{v0,5u}	n = 6	k = 3,09			a) t = Test un	terbrochen	
	Standartabweicht	ung:		10,34 KN	3,70 mm	4,57 mm 1,45 mm	-				cs = Betor p = Heraus	abplatzung ziehen	
	Variationskoeffizi	ent:		9,32%	16,55%	31,68%					s = Stahlve anc = Kleb	ersagen Istoff nicht aus	gehärtet
Z 14	0 T	a vvert.		70,55 KIN	33,04 mm	9,05 mm							
Kraft [k	0								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• Test	1 • Test 2 5 • Test 6	• Test 3 • • Test 7 •	Test 4 Test 8
10 8 6			4										
4)	 	10		15	2	20	25	<i>і</i>	30		35
)	obne Lochdurr	chaana									١	/erschiebu	ng)[mm]

Abb. F43:Test 1 M20_A4/70_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F44:Test 2 M20_A4/70_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F45:Test 3 M20_A4/70_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F46:Test 4 M20_A4/70_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F47:Test 5 M20_A4/70_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F48:Test 6 M20_A4/70_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F49:Test 7 M20_A4/70_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F50:Test 8 M20_A4/70_h_120: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

F.5 Gewindestäbe M8 8.8 – Verbundlos

Abb. F51:Test 1 M8_8.8_h_40_Verbundlos_Rissfrei: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F52:Test 2 M8_8.8_h_70_Verbundlos_Rissfrei: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F53:Test 3 M8_8.8_h_70_Verbundlos: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

F.6 Gewindestäbe M8 A4 - Verbundlos

1

2

	Se	ismische Scherve	ersuche i	n gerissene	m Beton			14	
			M8 - A4	- Verbundlos					
Gewindestab:	M8	Ver	bundmörtel:	l4 - ungesättig	ter Polyester				
PTFE Gleitfolie:	0,5 mm	Durchgangsloch d _f :	9,00 mm	Bohrmaschine:	Hilti TE30				
Betonprüfkörper TU KL	80 x 80 x 50 cm	Abscherzylinder Dicke:	8,00 mm	Einbindetiefe h _{ef} :	40-70 mm				l
Betoncharge:	RAU	Herstellungstag:	02.10.18	Prüftag:	09.10.20	f _{o,cube,dry} :	41,32 N/mm ²	Rissbreite w:	0,50 mm

				Bo	orhlochreinig	ung: 2x Luftdruck	2x Bürste (händi	sch), 2x Luft	druck				
Test Nr.	Installation	Prüfdatum	Bohrlochtiefe h ₁	Ankerlänge I ₀	Überstand ü ₁	Einbindetiefe h _{ef}	Druckfestigkeit f _{o,cube}	Bruchlast V _u	Verschiebung ^{*)} bei max. V _u	Verschiebung ^{*)} bei 0.5 _{Vu,m}	Versagens- fall ^{a)}	Bemer	kungen
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	[/]
1	30.10.2020	3.11.2020	>40	60,0	20,0	40,0	41,35	8,55	9,79	5,87	s+p	Veq =	7,77 kN
2	30.10.2020	5.11.2020	>70	90,0	20,0	70,0	41,35		Vorzeitiges Vers	agen	s+p	Veq =	9,77 kN
3	30.10.2020	5.11.2020	>70	90,0	23,3	66,7	41,35	11,61	9,44	4,81	s+p	Veq =	5,77 kN
4	6.11.2020	11.11.2020	>70	91,3	20,5	70,8	41,36		Vorzeitiges Vers	agen	s+p	Veq =	7,76 kN
5	6.11.2020	12.11.2020	>40	60,5	20,0	40,5	41,36	12,02	12,39	4,14	s+p	Veq =	5,76 kN

Interpretation:	Vu	δ _{Vu}	δ _{v0,Su}	n = 5	k = 3,40		
Mittelwert:	10,73 kN	10,54 mm	4,94 mm			a	 a) t = Test unterbrochen cs = Betonabolatzung
Standartabweichung:	1,89	1,61 mm	0,88 mm	1			p = Herausziehen
Variationskoeffizient:	17,65%	15,30%	17,74%	1			s = Stahlversagen anc = Klebstoff nicht ausgehärtet
Charakteristischer Wert:	4,29 kN	16,02 mm	7,92 mm	1			

Abb. F54:Test 1 M8_A4/70_h_40_Verbundlos_Rissfrei: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F55:Test 2 M8_A4/70_h_70_Verbundlos_Rissfrei: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F56:Test 3 M8_A4/70_h_70_Verbundlos: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F58:Test 5 M8_A4/70_h_40_Verbundlos: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

F.7 Gewindestäbe M20 8.8 und A4 - Verbundlos

			Seism	ische S	cherve	rsuche in	gerissene	m Beto	n			ŀ	4
						M20 - Verbu	Indlos - h = 10	00				9 	
Gewi	ndestab:	M20			Verb	undmörtel:	l4 - ungesättig	ter Polyes	ter				
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	22,00 mm	Bohrmaschine:	Hilti TE30	1				
Beton	prüfkörper TU KL	80 x 80 x 50 cr	m	Abscherzylin	der Dicke:	20,00 mm	Einbindetiefe h _{ef} :	100 mm					
Beton	charge:	RAU		Herstellungst	ag:	21.09.18	Prüftag:	08.10.20	f _{o,cube,dry} :	37,85 N/mm ²		Rissbreite w:	0,50 mm
			Bohrlochtiefe	Ankerlänge	Uberstand	jung: 2x Luftdruc	k, 2x Bürste (händis	sch), 2x Luft Bruchlast	druck	Verschiebung ^{*)}	Versagens-		
Test Nr.	Installation	Prüfdatum	h ₁	l _o	ü ₁	h _{ef}	f _{o,cube}	Vu	bei max. V _u	bei 0.5 _{Vu,m}	fall ^{a)}	Bemer	kungen
	[Datum]	[Datum]	[mm]	[mm]	[mm]	[mm]	[N/mm²]	[kN]	[mm]	[mm]	[/]	Į.]
A4	13.11.2020	19.11.2020	>100	150,8	45,0	105,8	37,89	69,59	10,93 frühzeitiges Versa	6,// agen	s+p s+m	Veq = Veq =	64,0 KN
					1			17		-3			
					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	A4	8.8						
II	nterpretation: Mittelwert: Standartabweich Variationskoeffiz Charakteristisch	iung: ient: er Wert:		V _u 69,59 kN	δ _{Vu} 10,93 mm	δ _{ν0,5u} 6,77 mm	n = 2				a) t = Test un cs = Beton p = Heraus s = Stahlve anc = Kleb	terbrochen abplatzung ziehen rrsagen stoff nicht aus	gehärtet
Kraft [kN]	0											• Test 1	
7	o 												
	-							-					
	-						Ohne Disebrai			V			
6	0				(Unne Rissbrei	le		- 1	- 1		
				/									
5													
	-												
4	0												
3	0			1									
20	- - -												
	1			1									
	1			/									
10	0												
	0		5			10		15		20			25
*)	ohne Lochdur	chgang									V	erschiebur	ıg '[mm]

Abb. F59:Test 1 M20_A4/70_h_100_Verbundlos_Rissfrei: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Abb. F60:Test 2 M20_8.8_h_100_Verbundlos: (a) Maximale Querzugkraft; (b) Kraft-Verschiebungsdiagramm

Anhang G – Zugversuche in gerissenem Beton

lestab: eitfolie: fkörper TU KL arge: Installation [Datum] 24.5.2023	M8 0,5 mm 163,5 x 155 x 2 RAU Prüfdatum	26 cm	Durchgangslo Bauteildicke: Herstellungst	M8 h Verbu	n _{nom} = 70 mn undmörtel: 17,5 mm	n h _{ef} = 50 mr I1	n												
lestab: eitfolie: fkörper TU KL arge: Installation [Datum] 24.5.2023	M8 0,5 mm 163,5 x 155 x 2 RAU Prüfdatum	26 cm	Durchgangslo Bauteildicke: Herstellungst	Verbu	Gewindestab: M8 Verbundmörtel: I1 PTFE Gleitfolie: 0,5 mm Durchgangsloch dr.: 17,5 mm Bohrmaschine: Hilti TE30														
eitfolie: fkörper TU KL arge: Installation [Datum] 24.5.2023	0,5 mm 163,5 x 155 x 2 RAU Prüfdatum	26 cm	Durchgangslo Bauteildicke: Herstellungst	och d _f :	17,5 mm														
fkörper TU KL arge: Installation [Datum] 24.5.2023	163,5 x 155 x 2 RAU Prüfdatum	26 cm	Bauteildicke: Herstellungst			Bohrmaschine:	Hilti TE30												
Installation [Datum] 24.5.2023	RAU		Herstellungst		20,0 mm	Einbindetiefe h1:	70 mm												
Installation [Datum] 24.5.2023	Prüfdatum			ag:	29.06.22	Prüftag:	27.07.22	f _{c,cube,dry} :	24,00 N/mm ²	0,50 mm									
Installation [Datum] 24.5.2023	Prüfdatum		Borhle	ochreinigung	: 2x Luftdruck, 2x	Bürste (händisch), 2x Luftdruck												
[Datum] 24.5.2023		Bohrlochtiefe h ₁	Einbindetiefe h _{ef}	Versagens fall ^{a)}	Druckfestigkeit f _{o,cube}	Bruchlast N _u	Verbundspannung _{Tu}	Verschiebung ^{*)} bei max. N _u	Verschiebung ^{*)} bei 0.5 _{Nu,m}	Bemerkungen									
24.5.2023	[Datum]	[mm]	[mm]	[/]	[N/mm²]	[kN]	[N/mm²]	[mm]	[mm]	[/]									
	26.5.2023	>70	50 <mark>,</mark> 0	р	28,65	40,5	32,2	1,26	0,50										
24.5.2023	26.5.2023	>70	50,0	р	28,65	39,4	31,3	1,46	0,58										
24.5.2023	26.5.2023	>70	50,0	р	28,65	37,4	29,7	1,46	0,50										
rpretation:			Nu	Tu	δ _{Nu}	δ _{N0,5u}	n = 3	k = 5,31	-) • - T••										
littelwert:			39,08 kN	31,10 N/mm ²	1,39 mm	0,53 mm	_		cs = Betonab	platzung									
tandartabweichu	ing:		1,58	1,26	0,12 mm	0,04 mm	_		p = Herauszie s = Stahlversa	hen									
ariationskoeffizie	ent:		4,04%	4,04%	8,32%	8,43%	_		anc = Klebsto	ff nicht ausgehärtet									
harakteristischer	r Wert:		30,70 kN	24,43 N/mm ²	2,01 mm	0,77 mm				<u>-</u>									
							—Test	1 —T	est 2 -	Test 3									
	arakteristische	arakteristischer Wert:	arakteristischer Wert:	arakteristischer Wert: 30,70 kN	arakteristischer Wert: 30,70 kN 24,43 N/mm [*]	arakteristischer Wert: 30,70 kN 24.43 N/mm² 2,01 mm	arakteristischer Wert: 30,70 kN 24.43 N/mm ² 2,01 mm 0,77 mm 0,77 mm	arakteristischer Wert: 30,70 kN 224,43 N/mm² 2,01 mm 0,77 mm	arakteristischer Wert: 30,70 kN 24.43 N/mm ² 2,01 mm 0,77 mm	arakteristischer Wert: 30,70 kN 24,43 N/mm ² 2,01 mm 0,77 mm									

G.1 Gewindestäbe M8 12.9

			Z	ugversi	uche in	gerissene	em Beton				12
					M8 h	n _{nom} = 70 mn	n h _{ef} = 50 mn	n			
Gewi	ndestab:	M8			Verbu	undmörtel:	12				
PTFE (Betonp	Gleitfolie: rüfkörper TU KL	0,5 mm 163,5 x 155 x 2	26 cm	Durchgangslo Bauteildicke:	ch d _f :	17,5 mm 20,0 mm	Bohrmaschine: Einbindetiefe h1:	Hilti TE30 70 mm	<i>.</i>	24.00 N/	0.50
Detono	narge.	RAU		Herstellungst	ag:	29.06.22	Prutag:	21.01.22	Tc,cube,dry:	24,00 N/mm	- 0,50 mm
Test	Installation	Prüfdatum	Bohrlochtiefe h1	Borhlo Einbindetiefe h _{ef}	Versagens fall ^{a)}	2x Luftdruck, 2x Druckfestigkeit f _{c,cube}	Bürste (händisch Bruchlast Nu	, 2x Luftdruck Verbundspannung Tu	Verschiebung ^{*)} bei max. N _u	Verschiebung ^{*)} bei 0.5 _{Nu,m}	Bemerkungen
INF.	[Datum]	[datum]	[mm]	[mm]	[/]	[N/mm²]	[kN]	[N/mm²]	[mm]	[mm]	[/]
1	24.5.2023	26.5.2023	>70	50,0	р	28,65	17,9	14,3	3,95	0,44	
2	24.5.2023	26.5.2023	>70	50,0	р	28,65	18,3	14,5	7,38	1,50	
3	24.5.2023	26.5.2023	>70	55,0	р	28,65	21,6	15,6	3,62	0,26	
4	24.5.2023	26.5.2023	>70	55,0	р	28,65	20,3	14,7	2,62	0,35	
In	terpretation:			Nu	Tu	δ _{Nu}	δ _{N0,5u}	n = 4	k = 3,96		
	Mittelwert:			19,50 kN	14,76 N/mm ²	4,39 mm	0,64 mm	_		 a) t = Test unter cs = Betonab 	platzung
	Standartabweichu	ng:		1,71	0,58	2,07 mm	0,58 mm			p = Herauszie	ehen
	Variationskoeffizie	ent:		8,77%	3,91%	47,17%	90,82%	_		anc = Klebste	agen off nicht ausgehärtet
	Charakteristische	r Wert:		12,73 kN	12,48 N/mm ²	12,59 mm	2,93 mm				
Kraft [—Test 1	-Test 2	Test 3	-Test 4
	0	2		4		6	8		10	12 Versc	hiebung [mm]

			Z	ugversı	uche in	gerissene	m Beton				14
				М	8 h _{nom} = 4	40 mm h _{ef} = 2	20 mm h _{ef} =	25 mm			
Gew	indestab:	M8			Verbu	undmörtel:	14				
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	ich d _f :	16,0 mm	Bohrmaschine:	Hilti TE30			
Beton	prüfkörper TU KL	240 x 85 x 35	cm	Bauteildicke:		20,0 mm	Einbindetiefe h1:	40 mm			
Beton	charge:	RAU		Herstellungst	ag:	05.10.18	Prüftag:	14.12.20	f _{c,cube,dry} :	34,24 N/mm²	0,50 mn
	1		1	Borhlo	ochreinigung	2x Luftdruck, 2x	Bürste (händisch)), 2x Luftdruck			
Test	Installation	Prüfdatum	Bohrlochtiefe h1	Einbindetiefe	Versagens fall ^{a)}	Druckfestigkeit	Bruchlast N.,	Verbundspannung	Verschiebung*)	Verschiebung ^{*)} bei 0.5mm	Bemerkungen
Nr.	[Datum]	[Datum]	[mm]	[mm]	[/]	[N/mm²]	[kN]	[N/mm²]	[mm]	[mm]	[/]
1	11.12.2020	14.12.2020	>40	24,6	be	34,24	8,8	14,2	0,87	0,30	
2	11.12.2020	14.12.2020	>40	24,6	be	34,24	9,4	15,2	0,90	0,24	
3	11.12.2020	14.12.2020	>40	25,8	be	34,24	10,6	16,4	0,96	0,30	
1	nterpretation:			N _u	Tu	δ _{Nu}	δ _{N0,5u}	n = 3	k = 5,31	a) t = Test unterb	prochen
	Standartabweichu	ing.		9,60 KN	15,27 N/mm ⁻	0,91 mm	0.04 mm	-		cs = Betonabu	platzung hen
	Variationskoeffizie	ent:		9,78%	7,14%	5,16%	13,10%			s = Stahlversa	igen ff nicht ausgehärtet
	Charakteristische	r Wert:		4,61 kN	9,48 N/mm ²	1,16 mm	0,47 mm			and - Riebsto	in nicht ausgehaltet
Test Nr.	Installation	Prüfdatum	Bohrlochtiefe h ₁	Einbindetife h _{eff}	Versagens fall ^{a)}	Druckfestigkeit f _{c,cube}	Bruchlast N _u	Verbundspannung Tu	Verschiebung ^{*)} bei max. N _u	Verschiebung ^{*)} bei 0.5 _{Nu,m}	Bemerkungen
	[datum]	[datum]	[mm]	[mm]	[/]	[N/mm²]	[kN]	[N/mm²]	[mm]	[mm]	[/]
1	11.12.2020	14.12.2020	>40	19,5	be	34,24	7,49	15,3	0,81	0,14	
2	11.12.2020	14.12.2020	>40	19,2 20.2	be	34,24	7,07	14,7	0,89	0,17	
	nterpretation:	1		, N	Ти	δ	δ _{N0 5.0}	n = 3	k = 5.31	-,	
	Mittelwert:			7,55 kN	15,28 N/mm ²	0,80 mm	0,18 mm			a) t = Test unterb	prochen
	Standartabweichu	ing:		0,51	0,63	0,09 mm	0,04 mm			p = Heruaszie	hen
	Variationskoeffizie	ent:		6,70%	4,10%	10,98%	24,95%	_		s = Stahlversa anc = Klebsto	igen ff nicht ausgehärtet
_	Charakteristische	r Wert:		4,86 kN	11,95 N/mm ²	1,27 mm	0,42 mm				
Kraft [kN	10								_M8_h_40- _M8_h_40- _M8_h_40-	15 —V2_I 15 —V1_I 20 —V3_I	M8_h_40-15 M8_h_40-20 M8_h_40-20
	8	C C C C C C C C C C C C C C C C C C C	M							_	
	6		- fe								
	2										
		0,5	1	1,5		2 2	,5	3 3,	5	4	4,5 5

			Z	ugversi	uche in	gerissene	m Beton				14
				М	8 h _{nom} = 7	70 mm h _{ef} = {	50 mm h _{ef} =	55 mm			
Gewi	ndestab:	M8			Verbu	undmörtel:	14				
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	16,0 mm	Bohrmaschine:	Hilti TE30			
Beton	prüfkörper TU KL	240 x 85 x 35	cm	Bauteildicke:		20,0 mm	Einbindetiefe h1:	70 mm			
Beton	charge:	RAU		Herstellungst	ag:	05.10.18	Prüftag:	14.12.20	f _{c,cube,dry} :	34,24 N/mm²	0,50 mm
				Borhle	ochreinigung:	2x Luftdruck, 2x	Bürste (händisch), 2x Luftdruck			
Test	Installation	Prüfdatum	Bohrlochtiefe h ₁	Einbindetiefe h _{ef}	Versagens fall ^{a)}	Druckfestigkeit f _{c,cube}	Bruchlast N _u	Verbundspannung Tu	Verschiebung ^{*)} bei max. N _u	Verschiebung ^{*)} bei 0.5 _{Nu,m}	Bemerkungen
INF.	[Datum]	[Datum]	[mm]	[mm]	[/]	[N/mm²]	[kN]	[N/mm²]	[mm]	[mm]	[/]
1	11.12.2020	14.12.2020	>70	53,2	be	34,24	18,7	14,0	1,09	0,29	
2	11.12.2020	14.12.2020	>70	55,3	be	34,24	21,2	15,2	1,26	0,42	
3	11.12.2020	14.12.2020	>70	55,4	De	34,24	21,0	15,1	1,63	0,33	
II	Mittelwert:			Nu 20.29 kN	T _u	δ _{Nu} 1 33 mm	δ _{N0,5u} 0.35 mm	n = 3	k = 5,31	a) t = Test unterl	prochen
	Standartabweichu	ing:		1,38	0,68	0,27 mm	0,06 mm	_		cs = Betonab p = Herauszie	platzung hen
	Variationskoeffizi	ent:		6,78%	4,63%	20,61%	18,29%	-		s = Stahlversa	igen ff nicht ausgehärtet
	Charakteristische	r Wert:		12,98 kN	11,13 N/mm ²	2,78 mm	0,69 mm				in nicht ausgehaltet
Test Nr	Installation	Prüfdatum	Bohrlochtiefe h ₁	Einbindetiefe h _{ef}	Versagens fall ^{a)}	Druckfestigkeit f _{c,cube}	Bruchlast N _u	Verbundspannung _{Tu}	Verschiebung ^{*)} bei max. N _u	Verschiebung ^{*)} bei 0.5 _{Nu,m}	Bemerkungen
	[Datum]	[Datum]	[mm]	[mm]	[/]	[N/mm²]	[kN]	[N/mm²]	[mm]	[mm]	[/]
1	11.12.2020	14.12.2020	>70	47,9	be	34,24	15,93	13,2	1,48	0,33	
2	11.12.2020	14.12.2020	>70	50,6	be	34,24	18,45	14,5	0,98	0,30	
		14.12.2020	>10	43,5 N	De	54,24	10,00	13,3	1,00	0,21	
	Mittelwert			17 00 kN	Tu 13 70 N/mm²	0 _{Nu} 1 18 mm	0 _{N0,5u}	n = 5	K = 0,01	a) t = Test unterl	prochen
	Standartabweichu	ing:		1,30	0,71	0,27 mm	0,03 mm	-		cs = Betonab p = Herauszie	platzung hen
	Variationskoeffizi	ent:		7,68%	5,16%	22,50%	10,10%	-		s = Stahlversa	igen ff nicht ausgehärtet
	Charakteristische	r Wert:		10,07 kN	9,94 N/mm²	2,59 mm	0,46 mm			4110 1405010	in mont adogonanter
[kN]	25							—V1		 15 —_V2_I	M8_h_70-15
Kraft	-							V3_	_M8_h_70-	15 —V1_I	M8_h_70-20
	-				\sim			V2_	_M8_h_70-	20 —V3_I	M8_h_70-20
	20				-/)						
	-				$ \rightarrow $	\backslash					
	-										
	-										
	15		manner and		P		\searrow				
	-	X		\mathbf{X}		\land					
	-						\searrow				
	-										
	- /										
	10										
	- ////										
	5										
	1///										
	1//										
	0	0,5	1	1,5		2 2	2,5	3 3	,5	4 Verscl	4,5 5 hiebuna [mm]

G.2Gewindestäbe M20 12.9

			Z	ugversı	uche in	em Beton				l1	
				M2	0 h _{nom} = 1	120 mm h _{ef} =	: 70 mm h _{ef}	= 80 mm			
Gewi	ndestab:	M20			Verbu	undmörtel:	11				
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	ch d _f :	37,5 mm	Bohrmaschine:	Hilti TE30			
Beton	prüfkörper TU KL	163,5 x 155 x	26 cm	Bauteildicke:		20,0 mm	Einbindetiefe h1:	120 mm			
Beton	Charge:	RAU		Herstellungst	ag:	29.06.22	Prüftag:	27.07.22	f _{c,cube,dry} :	24,00 N/mm ²	0,50 mm
				Borhle	ochreinigung	2x Luftdruck, 2x	Bürste (händisch), 2x Luftdruck			
_	Installation	Dröfdatum	Bohrlochtiefe	Einbindetiefe	Versagens	Druckfestigkeit	Bruchlast	Verbundspannung	Verschiebung*)	Verschiebung*)	Pamarkungan
Test Nr.	Installation	Pruidatum	h ₁	h _{ef}	fall ^{a)}	f _{o,cube}	Nu	τ _u	bei max. N _u	bei 0.5 _{Nu,m}	Demerkungen
	[Datum]	[datum]	[mm]	[mm]	[/]	[N/mm²]	[kN]	[N/mm²]	[mm]	[mm]	[/]
1	24.5.2023	26.5.2023	>120	70,0	р	28,65	103,3	23,5	1,14	0,39	
2	24.5.2023	26.5.2023	>120	70,0	р	28,65	108,3	24,6	1,10	0,32	
3	24.5.2023	26.5.2023	>120	70,0	Р	20,00	110,2	24,6	1,44	0,32	
- 11	nterpretation:			N _u	Tu	δ _{Nu}	δ _{N0,5u}	n = 3	k = 5,31	a) t = Test unter	brochen
	Mittelwert:	201		107,27 kN	24,24 N/mm ²	1,23 mm	0,34 mm	-		cs = Betonab	platzung
	Variationskoeffizie	ng. ent:		3,33%	2 70%	14 99%	12 00%	-		s = Stahlversa	agen
	Charakteristische	r Wert:		88.28 kN	20,76 N/mm ²	2.21 mm	0.56 mm	-		anc = Klebsto	ff nicht ausgehärtet
Tost	Installation	Prüfdatum	Bohrlochtiefe	Einbindetiefe	Versagens	Druckfestigkeit	Bruchlast	Verbundspannung	Verschiebung*)	Verschiebung ^{*)}	Bemerkungen
Nr.			n ₁	n _{ef}	fall %	Tc,cube	Nu	Tu	bei max. N _u	bei 0.5 _{Nu,m}	
4	[Datum]	[datum]	[mm]	[mm] 80.0	[/]	[N/mm²]	[KN]	[N/mm ²]	[mm]	[mm]	[/]
- 4	26.05.23 10.45.30	26.5.2023	>120	80.0	p p	28,65	119,10	23,8	6.45	0,30	
6	26.05.23 11:01:37	26.5.2023	>120	80.0	p p	28,65	130.13	25,9	1.23	0,40	
h	ternretation:			N.	т.	δ.	δυασ	n = 3	k = 5 31		
	Mittelwert:			122.88 kN	24.45 N/mm ²	2.97 mm	0.42 mm		K 0,01	a) t = Test unter	brochen
	Standartabweichu	ng:		6,28	1,25	3,01 mm	0,06 mm	_		cs = Betonab p = Herauszie	platzung hen
	Variationskoeffizie	ent:		5,11%	5,11%	101,48%	14,65%	-		s = Stahlversa	agen Af nicht ausgehärtet
	Charakteristische	r Wert:		89,53 kN	17,81 N/mm ²	18,97 mm	0,75 mm	_		and recosed	in ment ausgenater
Kraft [k	Standartabweichung: Variationskoeffizient: Charakteristischer Wert: 140 120 100 80 60 40										
	20							—Test 1 —Test 5	т— т	est 4 est 3	—Test 2 —Test 6
	0		1		2		3	4		5 Versc	hiebung [mm]

				Z	ugversı	uche in	gerissene	em Beton				12
					M2	0 h _{nom} = 1	120 mm h _{ef} =	: 70 mm h _{ef}	= 80 mm			
Gewi	ndestab:		M20			Verbu	undmörtel:	12				
PTFE	Gleitfolie:		0,5 mm		Durchgangslo	ich d _f :	37,5 mm	Bohrmaschine:	Hilti TE30			
Beton	prüfkörper TL	J KL	163,5 x 155 x	26 cm	Bauteildicke:		20,0 mm	Einbindetiefe h ₁ :	120 mm			
Beton	charge:		RAU		Herstellungst	ag:	29.06.22	Prüftag:	27.07.22	f _{c,cube,dry} :	24,00 N/mm ²	0,50 mn
					Borhlo	ochreinigung	2x Luftdruck, 2x	Bürste (händisch), 2x Luftdruck			-
Test Nr.	Installat	ion	Prüfdatum	Bohrlochtiefe h ₁	Einbindetiefe h _{ef}	Versagens fall ^{a)}	Druckfestigkeit f _{c,cube}	Bruchlast N _u	Verbundspannung _{Tu}	Verschiebung ^{*)} bei max. N _u	Verschiebung ^{*)} bei 0.5 _{Nu,m}	Bemerkungen
	[Datur	n]	[Datum]	[mm]	[mm]	[/]	[N/mm²]	[kN]	[N/mm²]	[mm]	[mm]	[/]
1	24.5.20)23	26.5.2023	>120	70,0	р	28,65	75,7	17,2	1,14	0,39	
2	24.5.20)23	26.5.2023	>120	70,0	р	28,65	78,2	17,8	1,10	0,32	
3	24.5.20)23	26.5.2023	>120	70,0	р	28,65	80,9	17,8	1,44	0,32	
b	nterpretatio	n:			Nu	Tu	δ _{Nu}	δ _{N0,5u}	n = 3	k = 5,31		
	Mittelwert:				78,29 kN	17,60 N/mm ²	1,23 mm	0,34 mm			 a) t = lest unter cs = Betonab 	brochen platzung
	Standartab	weichur	ng:		2,59	0,33	0,18 mm	0,04 mm			p = Herauszie	ehen
	Variationsk	oeffizie	nt:		3,31%	1,85%	14,99%	12,00%			anc = Klebsto	off nicht ausgehärtet
	Charakteris	tischer	Wert:		64,54 kN	15,87 N/mm ²	2,21 mm	0,56 mm				
Test Nr.	Installat	tion	Prüfdatum	Bohrlochtiefe h ₁	Einbindetife h _{eff}	Versagens fall ^{a)}	Druckfestigkeit f _{c,cube}	Bruchlast N _u	Verbundspannung _{Tu}	Verschiebung ^{*)} bei max. N _u	Verschiebung ^{*)} bei 0.5 _{Nu,m}	Bemerkungen
	[datur	n]	[datum]	[mm]	[mm]	[/]	[N/mm²]	[kN]	[N/mm²]	[mm]	[mm]	[/]
4	24.5.20)23	26.5.2023	>120	80,0	р	28,65	72,70	14,5	1,23	0,38	
5	24.5.20)23	26.5.2023	>120	80,0	р	28,65	65,59	13,0	6,45	0,49	ohne Riss
6	24.5.20)23	26.5.2023	>120	80,0	р	28,65	66,51	13,2	1,23	0,39	
b	nterpretatio	n:			Nu	ти	δ _{Nu}	δ _{N0,5u}	n = 3	k = 5,31	-) + - T++	hara hara
	Mittelwert:				68,26 kN	13,58 N/mm ²	2,97 mm	0,42 mm			a) t = lest unter cs = Beton A	brocnen bplatzung
	Standartab	weichur	ng:		3,86	0,77	3,01 mm	0,06 mm			p = Heruaszie	ehen
	Variationsk	oeffizie	nt:		5,66%	5,66%	101,48%	14,65%	_		anc = Klebsto	agen off nicht ausgehärtet
	Charakteris	tischer	Wert:		47,74 kN	9,50 N/mm ²	18,97 mm	0,75 mm				
Kraft [k	Standartabweichung: Variationskoeffizient: Charakteristischer Wert: 90 80 70 60 60 50 40 40 40 20											
	10								—Test 1 —Test 5	т— т	est 4 est 6	—Test 2
	0		2		4		6	8		10	12 Versc	14 hiebung [mm]

			Z	ugversı	uche in	gerissene	m Beton				14
				M2	0 h _{nom} = 1	100 mm h _{ef} =	50 mm h _{ef}	= 60 mm			
Gewi	ndestab:	M20			Verbu	undmörtel:	14				
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	ich d _f :	40,0 mm	Bohrmaschine:	Hilti TE30			
Betonp	orüfkörper TU KL	240 x 85 x 35	cm	Bauteildicke:		20,0 mm	Einbindetiefe h1:	100 mm			
Betond	charge:	RAU		Herstellungst	ag:	05.10.18	Prüftag:	14.12.20	f _{c,cube,dry} :	34,24 N/mm²	0,50 mm
				Borhlo	ochreinigung:	2x Luftdruck, 2x	Bürste (händisch), 2x Luftdruck			
Test Nr.	Installation	Prüfdatum	Bohrlochtiefe h ₁	Einbindetiefe h _{ef}	Versagens fall ^{a)}	Druckfestigkeit f _{o,cube}	Bruchlast N _u	Verbundspannung Tu	Verschiebung*) bei max. N _u	Verschiebung ^{*)} bei 0.5 _{Nu,m}	Bemerkungen
	[Datum]	[Datum]	[mm]	[mm]	[/]	[N/mm²]	[kN]	[N/mm²]	[mm]	[mm]	[/]
1	11.12.2020	14.12.2020	>100	58,4	be	34,24	51,5	14,0	3,47	0,36	
2	11.12.2020	14.12.2020	>100	58,0	be	34,24	52,1	14,3	4,57	0,49	
-	terprotation	14.12.2020	2100	50,5 N		54,24	55,5	n=2	5,25 k = 5.21	0,42	
	Mittelwert:			52.49 kN	T _u 14.30 N/mm ²	0 _{Nu} 3 78 mm	0 _{N0,5u}	n = 3	K = 0,31	a) t = Test unterl	brochen
	Standartabweichu	ina:		1.25	0.27	0.69 mm	0,42 mm	-		cs = Betonab p = Herauszie	platzung hen
	Variationskoeffizie	ent:		2,38%	1,90%	18,39%	15,32%	-		s = Stahlversa	agen ff nicht ausgehättet
	Charakteristische	r Wert:		45,85 kN	12,86 N/mm ²	7,47 mm	0,77 mm	1		and - Klebsto	in nicht ausgehaltet
Test	Installation	Prüfdatum	Bohrlochtiefe h ₁	Einbindetiefe h _{ef}	Versagens fall ^{a)}	Druckfestigkeit f _{c,cube}	Bruchlast N _u	Verbundspannung Tu	Verschiebung*) bei max. N _u	Verschiebung ^{*)} bei 0.5 _{Nu,m}	Bemerkungen
INI.	[Datum]	[Datum]	[mm]	[mm]	[/]	[N/mm²]	[kN]	[N/mm²]	[mm]	[mm]	[/]
1	11.12.2020	14.12.2020	>100	52,0	be	34,24	53,73	16,4	5,01	0,33	
2	11.12.2020	14.12.2020	>100	48,9	be	34,24	47,23	15,4	3,40	0,38	
3	11.12.2020	14.12.2020	>100	47,8	be	34,24	42,99	14,3	2,97	0,46	
lr	terpretation:			Nu	Tu	δ _{Nu}	δ _{N0,5u}	n = 3	k = 5,31	a) t = Test unter	brochen
	Mittelwert:			47,98 kN	15,38 N/mm ²	3,79 mm	0,39 mm	4		cs = Betonab	platzung
	Standartabweichu	ing:		5,41	1,06	1,08 mm	0,07 mm	-		p = Herauszie s = Stahlversa	hen agen
	Charakteristische	r Wert		19.26 kN	9.72 N/mm ²	20,30% 9.51 mm	0.73 mm	-		anc = Klebsto	ff nicht ausgehärtet
Ŧ	60				-,						
ť [k	-							—V1_M20_	_h_100-40	—V2_M2	20_h_100-40
(raf	-							—V3_M20	_h_100-40	—V1_M2	0_h_100-50
-								—V2_M20_	_h_100-50	—V3_M2	0_h_100-50
	50		1								
		\mathbb{A}									
		γ									
	40										
	-	\									
	30										
]										
								$\overline{\ }$			
	-										
	20										
								<			
]										
	-										
	10 -										
	-										
	1										
	1										
	0					, , ,	_, _, _		<u> </u>	, , <u> </u> ,	,
	0	5		10		15	20		25	30 Versc	35 hiebuna [mm]

			Z	ugversi	uche in	gerissene	em Beton				14
				M	20 h _{nom} =	120mm h _{ef} =	: 70mm h _{ef}	= 80mm			
Gewi	ndestab:	M20			Verbu	undmörtel:	14				
PTFE	Gleitfolie:	0,5 mm		Durchgangslo	och d _f :	40,0 mm	Bohrmaschine:	Hilti TE30			
Betonp	prüfkörper TU KL	240 x 85 x 35	cm	Bauteildicke:		20,0 mm	Einbindetiefe h1:	120 mm			
Betond	charge:	RAU		Herstellungst	ag:	05.10.18	Prüftag:	14.12.20	f _{c,cube,dry} :	34,24 N/mm ²	0,50 mm
				Borhle	ochreinigung	2x Luftdruck, 2x	Bürste (händisch), 2x Luftdruck			
Test Nr.	Installation	Prüfdatum	Bohrlochtiefe h ₁	Einbindetiefe h _{ef}	Versagens fall ^{a)}	Druckfestigkeit f _{o,cube}	Bruchlast N _u	Verbundspannung Tu	Verschiebung ^{*)} bei max. N _u	Verschiebung ^{*)} bei 0.5 _{Nu,m}	Bemerkungen
	[Datum]	[Datum]	[mm]	[mm]	[/]	[N/mm²]	[kN]	[N/mm²]	[mm]	[mm]	[/]
1	11.12.2020	14.12.2020	>120	78,4	be	34,24	73,2	14,9	6,95	0,47	
2	11.12.2020	14.12.2020	>120	79,2	be	34,24	75.2	15,3	5,74	0,56	
	ternretation:			N.	T.	δ.,	δ	n = 3	k = 5.31		
	Mittelwert:			74,85 kN	15,20 N/mm ²	6,22 mm	0,46 mm		K 3,31	a) t = Test unter	prochen
	Standartabweichu	ing:		1,52	0,30	0,65 mm	0,08 mm	1		p = Herauszie	hen
	Variationskoeffizie	ent:		2,03%	2,00%	10,41%	17,71%			s = Stahlversa anc = Klebsto	igen ff nicht ausgehärtet
	Charakteristische	r Wert:		66,77 kN	13,58 N/mm ²	9,65 mm	0,89 mm				5
Test Nr.	Installation	Prüfdatum	Bohrlochtiefe h ₁	Einbindetiefe h _{ef}	Versagens fall ^{a)}	Druckfestigkeit f _{c,cube}	Bruchlast N _u	Verbundspannung _{Tu}	Verschiebung ^{*)} bei max. N _u	Verschiebung ^{*)} bei 0.5 _{Nu,m}	Bemerkungen
	[Datum]	[Datum]	[mm]	[mm]	[/]	[N/mm²]	[kN]	[N/mm²]	[mm]	[mm]	[/]
1	11.12.2020	14.12.2020	>120	69,1	be	34,24	63,8	14,7	7,47	0,66	
2	11.12.2020	11.12.2020 14.12.2020 >120 11.12.2020 14.12.2020 >120 pretation:			be	34,24	68,9	15,8	6,46	0,63	
	11.12.2020 14.12.2020 >120 erpretation:			N	- DC	δ., <u></u>	δ	n = 3	k = 5 31	0,23	
	Mittelwert:			65,61 kN	15,10 N/mm ²	6,14 mm	0,51 mm	11-5	K = 3,31	a) t = Test unter	prochen
	Standartabweichu	ing:		2,81	0,58	1,53 mm	0,24 mm	1		cs = Betonab p = Herauszie	platzung hen
	Variationskoeffizie	ent:		4,29%	3,81%	24,89%	47,34%	1		s = Stahlversa anc = Klebsto	igen ff nicht ausgehärtet
	Charakteristische	r Wert:		50,68 kN	12,05 N/mm ²	14,25 mm	1,78 mm				5
Σ,	80							-V1 M20 h	120-40		h 120-40
1 H	1		\sim					V0_M00_h	400.40	V2_11120	
Kra	70							-v3_w20_n_	120-40	v1_ivi20	_n_120-50
	/0			K				-V2_M20_h_	120-50	V3_M20	_h_120-50
			X	\sim	+						
,	°°		X	A					_		
				$\langle \rangle$							
				\sim '	\mathbf{X}						
;				$\overline{}$					\langle		
		/			$\langle \rangle$						
						\sim					
	40										
										\rightarrow	
	30										
1	20										
	-										
	10				1						
	1										
	0		5		10		15	20		25	30
										Versc	hiebung [mm]

Anhang H – Einzelwerte aus der Bildanalyse

Abb. H1: Bildanalyse

H.1 Statische Querzugversuche in gerissenem Beton

Alle nachfolgenden Einzelwerte den statischen Querzugversuchen wurden anhand der durchgeführten Bildanalyse an Gewinde- und Bewehrungsstäben mithilfe der ArchiCAD-Software ermittelt.

	V_u	и	V _{u,max}	u _{max}	$l_{d,L}$	S _L	$l_{d,R}$	S _R	$arphi_L^\circ$	$arphi_R^\circ$	l/s	s/d _s	s/d _s	$N_{u,\parallel}$	$V_{u,\perp}$
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[-]	[-]	[-]	[kN]	[kN]
	10,8	3,8	10,8	3,8	16,2	1,9	15,9	1,8	75,6	76,1	8,7	2,0	0,23	2,6	10,5
10	11,4	3,8	11,4	3,8	16,7	1,7	16,4	1,7	79,8	80,9	9,7	2,1	0,21	1,9	11,2
10	11,2	3,2	11,2	3,2	19,0	2,0	20,0	2,0	75,7	77,7	9,6	2,4	0,25	2,6	10,9
	12,0	4,0	12,0	4,0	16,9	2,1	16,4	2,0	79,0	79,3	8,0	2,1	0,26	2,3	11,8
	13,2	4,5	13,2	4,5	11,4	1,6	11,6	1,7	78,2	76,7	6,9	1,4	0,21	2,9	12,9
14	11,0	4,2	11,0	4,2	14,3	2,3	14,1	2,3	75,3	75,2	6,1	1,8	0,29	2,8	10,6
T1	13,0	3,3	13,0	3,3	30,6	1,8	29,5	1,9	78,1	76,2	-	-	-	-	-
	12,6	2,9	12,6	2,9	9,2	0,9	9,6	0,9	81,2	81,7	10,2	1,2	0,12	1,9	12,4
	11,6	5,2	11,6	5,2	15,0	3,0	14,6	3,0	69,1	70,0	4,9	1,9	0,38	4,1	10,9
10	11,0	5,5	11,0	5,5	15,1	3,3	14,7	3,2	69,9	70,4	4,5	1,9	0,41	3,7	10,4
12	11,6	4,6	11,6	4,6	17,5	2,8	17,1	2,7	75,2	75,2	6,2	2,2	0,35	3,0	11,2
	12,0	4,5	12,0	4,5	14,0	2,3	13,9	2,3	72,0	72,7	6,0	1,7	0,29	3,6	11,4
	11,4	4,0	11,4	4,0	12,1	2,0	12,0	1,9	72,3	73,4	6,1	1,5	0,25	3,3	10,8
14	11,5	4,6	11,5	4,6	12,6	2,3	12,1	2,3	75,4	74,5	5,3	1,5	0,29	3,0	11,1
14	12,5	3,7	12,5	3,7	13,1	1,5	13,1	1,4	79,9	80,1	8,9	1,6	0,18	2,2	12,3
	12,5	4,1	12,5	4,1	13,0	2,2	11,6	2,0	74,5	75,7	5,9	1,5	0,26	3,2	12,1

Tab. H1: Bildanalyse: Einzelwerte der Versuchsserie M8 4.8 h = 70 mm- statisch

	V _u	и	V _{u,max}	u _{max}	$l_{d,L}$	S _L	$l_{d,R}$	S _R	$arphi_L^\circ$	$arphi_R^\circ$	l/s	s/d _s	s/d _s	$N_{u,\parallel}$	$V_{u,\perp}$	a0.
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[-]	[-]	[-]	[kN]	[kN]	N.
	16,1	6,9	14,7	9,6	23,8	6,7	24,2	6,6	59,0	59,0	3,6	3,0	0,83	8,3	13,8	
10	18,6	5,2	18,2	5,9	21,3	3,3	22,0	3,3	76,7	76,4	6,5	2,7	0,41	4,3	18,0	alys
10	18,8	4,0	18,3	5,3	19,9	3,1	20,3	3,2	75,9	75,6	6,4	2,5	0,39	4,6	18,2	
	16,2	5,9	14,2	9,6	26,2	6,8	24,6	6,9	62,4	62,4	3,7	3,2	0,86	7,5	14,3	
	21,2	4,9	21,2	4,9	20,8	2,3	21,8	2,4	77,8	76,2	9,0	2,7	0,30	4,8	20,7	קונ
11	19,6	4,8	19,6	4,8	16,3	2,8	17,0	2,7	75,3	75,5	6,1	2,1	0,34	4,9	18,9	
11	19,6	4,7	19,6	4,7	14,8	2,3	15,4	2,3	76,7	76,2	6,7	1,9	0,28	4,6	19,0	
12	19,4	5,0	19,4	5,0	17,9	3,0	18,2	3,0	75,1	75,5	6,0	2,3	0,37	4,9	18,8	
	18,7	5,4	18,7	5,4	17,5	3,3	17,2	3,3	72,9	71,6	5,3	2,2	0,41	5,7	17,9	
	19,3	6,0	19,3	6,0	18,9	3,4	18,3	3,3	72,0	73,2	5,5	2,3	0,42	5,8	18,4	0.0
	19,0	6,4	19,0	6,4	17,0	4,0	16,3	3,9	67,2	67,6	4,2	2,1	0,50	7,3	17,5	
	21,1	3,9	21,1	3,9	16,3	2,1	16,4	2,1	78,4	79,1	7,8	2,0	0,26	4,1	20,7	
	18,7	6,6	18,7	6,6	18,1	3,9	17,3	3,8	72,1	72,5	4,6	2,2	0,48	5,7	17,8	ן אום
	19,5	5,6	19,5	5,6	15,7	3,0	15,7	3,0	73,1	72,7	5,2	2,0	0,38	5,7	18,7	
14	19,6	4,9	19,6	4,9	15,6	2,4	15,5	2,5	76,3	75,2	6,4	1,9	0,30	4,8	19,0	
	19,5	5,7	19,5	5,7	16,7	2,9	17,2	3,0	74,1	73,1	5,7	2,1	0,37	5,5	18,7	

	V _u	и	V _{u,max}	u _{max}	$l_{d,L}$	S _L	$l_{d,R}$	S _R	$arphi_L^\circ$	$arphi^\circ_R$	l/s	s/d _s	s/d _s	$N_{u,\parallel}$	$V_{u,\perp}$	ар.
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[-]	[-]	[-]	[kN]	[kN]	
	19,6	6,0	19,6	6,0	18,0	3,1	17,2	3,0	67,6	68,5	5,7	2,2	0,39	7,3	18,2	
10	19,7	7,1	19,7	7,1	19,3	4,0	19,1	3,9	66,4	66,1	4,9	2,4	0,49	7,9	18,0	alys
10	20,1	5,8	20,1	5,8	16,8	2,7	16,7	2,6	69,4	70,0	6,3	2,1	0,33	7,0	18,9	
	20,8	6,0	20,8	6,0	18,8	3,0	19,3	3,1	66,5	65,2	6,2	2,4	0,38	8,5	19,0	
	20,5	6,4	20,5	6,4	15,7	3,0	15,7	2,9	66,4	67,6	5,3	2,0	0,37	8,0	18,9	
11	21,9	7,4	21,9	7,4	18,5	3,6	18,3	3,7	62,3	61,5	5,0	2,3	0,46	10,3	19,3	
	20,3	6,0	20,3	6,0	14,2	3,1	14,2	3,1	67,8	68,1	4,6	1,8	0,39	7,6	18,8	
	20,5	7,8	20,5	7,8	16,6	4,1	15,9	4,3	59,5	58,6	3,9	2,0	0,53	10,5	17,6	
	21,6	6,4	21,6	6,4	16,4	3,2	16,2	3,3	64,4	63,3	5,0	2,0	0,41	9,5	19,4	Č
10	21,4	7,1	21,4	7,1	15,7	3,6	15,0	3,5	61,3	61,7	4,3	1,9	0,45	10,2	18,8	
12	21,9	7,0	21,9	7,0	18,2	3,6	18,1	3,6	66,4	66,9	5,0	2,3	0,45	8,7	20,1	Ĩ
12	21,2	7,7	21,2	7,7	16,4	3,7	16,4	3,6	64,3	64,1	4,5	2,1	0,46	9,2	19,1	=
	21,5	8,6	21,5	8,6	17,0	4,9	18,2	4,6	55,4	62,7	3,7	2,2	0,59	11,1	18,5	
14	20,8	7,4	20,8	7,4	17,0	4,1	16,7	4,0	63,5	62,9	4,1	2,1	0,51	9,4	18,6	0
14	21,4	6,7	21,4	6,7	15,4	3,5	14,9	3,4	62,9	62,9	4,4	1,9	0,43	9,7	19,1	i anac
	22,4	6,2	22,4	6,2	14,9	3,0	14,9	3,0	67,9	68,3	5,0	1,9	0,38	8,4	20,8	1

	V _u	и	V _{u,max}	u _{max}	$l_{d,L}$	S _L	$l_{d,R}$	S _R	$arphi_L^\circ$	$arphi_R^\circ$	l/s	s/d _s	s/d _s	$N_{u,\parallel}$	$V_{u,\perp}$	a0.
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[-]	[-]	[-]	[kN]	[kN]	-
	22,6	11,9	22,6	11,9	27,2	7,3	26,7	7,2	53,5	53,5	2,7	3,4	0,90	13,5	18,2	
10	20,4	12,0	18,5	24,4	32,8	17,9	28,8	17,9	26,5	25,8	1,3	3,8	2,23	18,3	9,0	laiyə
10	19,0	7,8	21,5	32,8	36,2	26,1	36,3	25,7	17,2	17,6	1,0	4,5	3,23	18,2	5,7	מ [
	23,3	10,8	19,2	38,2	33,8	28,9	34,4	29,0	11,4	10,8	0,9	4,3	3,62	22,9	4,5	
	21,2	8,0	21,2	8,0	20,2	6,6	21,2	6,7	50,3	49,8	2,3	2,6	0,83	13,6	16,3	מונס
11	24,7	8,8	24,7	8,8	28,2	5,5	27,9	5,5	50,8	53,1	3,7	3,5	0,69	15,2	19,5	
n	23,5	9,3	23,5	9,3	26,4	5,7	26,1	5,7	55,7	56,1	3,3	3,3	0,72	13,2	19,4	
	23,9	8,1	23,9	8,1	16,3	4,3	16,5	4,2	61,6	63,8	2,8	2,1	0,53	11,0	21,2	
12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	מ
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Č
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=
	24,2	10,0	24,2	10,0	28,7	6,0	28,9	6,0	55,0	55,2	3,5	3,6	0,8	13,8	19,8	2
14	21,2	9,6	21,2	9,6	17,3	6,6	17,4	6,6	56,4	56,2	1,9	2,2	0,8	11,8	17,6	Ē
14	23,4	10,4	23,4	10,4	21,5	6,6	21,4	6,5	54,8	56,3	2,4	2,7	0,8	13,3	19,3	อเสแอ
	22,3	9,7	22,3	9,7	23,1	5,8	22,0	5,7	57,3	61,5	2,9	2,8	0,7	11,4	19,2	

Anhang H – Einzelwerte aus der Bildanalyse

	V _u	и	V _{u,max}	u _{max}	$l_{d,L}$	S _L	l _{d,R}	S _R	$arphi_L^\circ$	$arphi_R^\circ$	l/s	s/d_s	s/d _s	$N_{u,\parallel}$	$V_{u,\perp}$	Tab.
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[-]	[-]	[-]	[kN]	[kN]	H5: E
10	70,6	8,3	70,6	8,3	31,9	4,2	29,0	4,4	73,1	70,5	7,0	1,5	0,2	22,1	67,1	Bildar
	72,2	7,8	72,2	7,8	30,7	3,9	29,0	3,5	72,6	74,8	8,0	1,5	0,2	20,3	69,3	nalys
	72,6	8,9	72,6	8,9	30,3	3,9	29,6	3,6	72,0	73,8	7,9	1,5	0,2	21,4	69,4	
	71,5	8,2	71,5	8,2	31,5	3,7	30,7	3,6	75,6	75,9	8,5	1,6	0,2	17,6	69,3	nzelv
11	71,9	7,5	71,9	7,5	31,4	4,3	31,4	4,5	71,8	71,2	7,2	1,6	0,2	22,8	68,1	verte
	73,1	7,3	73,1	7,3	29,7	4,0	29,3	3,8	73,2	74,3	7,6	1,5	0,2	20,5	70,1	der \
	72,2	7,8	72,2	7,8	32,7	4,1	32,8	3,9	72,7	74,2	8,2	1,6	0,2	20,6	69,2	/ersu
	71,9	6,9	71,9	6,9	30,1	3,4	29,6	3,5	76,6	76,3	8,7	1,5	0,2	16,8	69,9	uchss
12	71,6	8,4	71,6	8,4	32,3	4,3	30,9	4,2	71,2	71,0	7,5	1,6	0,2	23,2	67,7	ierie
	73,2	9,4	73,2	9,4	31,9	4,6	32,2	4,7	72,2	72,0	6,8	1,6	0,2	22,5	69,7	M20
	72,0	8,0	72,0	8,0	27,7	3,5	27,9	3,6	75,8	75,7	7,9	1,4	0,2	17,8	69,8	4.81
	71,1	8,7	71,1	8,7	30,7	3,8	29,6	3,9	75,2	75,0	7,8	1,5	0,2	18,3	68,7	=
14	70,3	8,6	70,3	8,6	29,3	4,0	29,2	4,2	74,5	73,0	7,2	1,5	0,2	19,7	67,5	20 m
	70,8	9,5	70,8	9,5	30,7	4,7	31,8	4,8	70,3	70,6	6,6	1,6	0,2	23,7	66,8	m– s
	72,0	10,1	72,0	10,1	31,0	5,0	30,8	4,8	69,4	70,6	6,3	1,5	0,2	24,6	67,6	tatisc
	72,3	8,7	72,3	8,7	30,5	3,8	29,7	3,9	74,8	74,2	7,8	1,5	0,2	19,3	69,7	ř

Anhang H – Einzelwerte aus der Bildanalyse

	V _u	и	V _{u,max}	u _{max}	$l_{d,L}$	S _L	$l_{d,R}$	S _R	$arphi_L^\circ$	φ_R°	l/s	s/d _s	s/d _s	$N_{u,\parallel}$	$V_{u,\perp}$	20.
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[-]	[-]	[-]	[kN]	[kN]	Ģ
10	93,2	9,7	93,2	9,7	32,3	3,9	33,8	4,1	75,8	75,7	8,2	1,7	0,2	23,0	90,3	
	94,9	7,7	94,9	7,7	29,2	3,3	30,6	3,5	75,2	75,0	8,8	1,5	0,2	24,4	91,6	- yo
	92,6	7,6	92,6	7,6	31,2	3,1	31,0	3,5	79,0	74,8	9,4	1,6	0,2	21,0	90,2	
	93,2	7,8	93,2	7,8	31,0	3,4	30,7	3,2	75,5	78,8	9,3	1,5	0,2	20,7	90,9	
11	95,5	8,3	95,5	8,3	25,4	3,2	26,4	3,2	74,7	75,3	8,1	1,3	0,2	24,7	92,2	
	94,1	8,2	94,1	8,2	26,0	3,0	25,0	3,0	74,1	74,9	8,5	1,3	0,2	25,1	90,7	
	94,5	8,6	94,5	8,6	26,5	3,7	26,5	3,8	70,8	70,9	7,1	1,3	0,2	31,0	89,3	
	93,0	7,9	93,0	7,9	21,5	3,0	23,1	2,9	74,0	75,7	7,5	1,1	0,1	24,3	89,8	
12	95,4	9,1	95,4	9,1	32,3	4,3	31,8	4,1	70,8	71,7	7,6	1,6	0,2	30,6	90,3	Ċ
	92,8	11,9	92,8	11,9	36,3	6,6	37,6	6,8	68,7	67,4	5,5	1,8	0,3	34,7	86,1	
	93,8	13,2	93,8	13,2	39,9	7,1	39,7	7,1	69,5	69,7	5,6	2,0	0,4	32,6	87,9	Ċ
	95,6	10,3	95,6	10,3	35,9	5,1	35,7	4,8	70,5	72,5	7,2	1,8	0,2	30,3	90,7	
14	93,1	8,3	93,1	8,3	30,4	3,4	31,5	3,6	77,4	77,6	9,0	1,5	0,2	20,2	90,9	Ċ
	94,5	9,2	94,5	9,2	31,3	3,9	31,2	4,0	74,8	75,1	7,9	1,6	0,2	24,6	91,3	4
	93,3	11,4	93,3	11,4	33,6	5,6	35,5	5,8	69,8	69,0	6,1	1,7	0,3	32,8	87,3	
	92,2	10,6	92,2	10,6	33,4	4,7	33,6	4,9	75,5	74,2	7,0	1,7	0,2	24,1	89,0	=
									0	0						9
-----	-------	------	-------------	------------------	-----------	----------------	-----------	----------------	-------------	-------------	------	---------	---------	-------------------	---------------	---
	V_u	и	$V_{u,max}$	u _{max}	$l_{d,L}$	S _L	$l_{d,R}$	S _R	φ_L	φ_R	l/s	s/d_s	s/d_s	$N_{u,\parallel}$	$V_{u,\perp}$	
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[-]	[-]	[-]	[kN]	[kN]	
	110,7	12,9	104,9	18,8	52,1	11,4	52,0	11,5	72,2	72,3	4,6	2,6	0,6	33,8	105,4	
IO	112,0	14,2	91,6	29,0	54,8	17,4	54,8	17,5	64,4	64,6	3,1	2,7	0,9	48,2	101,1	
10	101,5	17,0	85,0	32,0	55,9	18,8	55,7	19,0	63,1	62,7	3,0	2,8	0,9	46,2	90,4	
	107,6	14,6	102,6	17,6	53,7	10,1	53,4	10,2	74,5	74,3	5,3	2,7	0,5	28,9	103,7	
	131,6	8,4	131,6	8,4	37,8	3,4	38,2	3,4	81,7	81,8	11,2	1,9	0,2	18,9	130,3	2
14	129,1	9,4	129,1	9,4	39,1	4,0	39,4	4,1	81,4	80,9	9,6	2,0	0,2	19,9	127,5	
	124,4	11,2	124,4	11,2	43,2	5,2	43,7	5,2	79,2	79,9	8,4	2,2	0,3	22,6	122,3	
	124,0	11,0	124,0	11,0	40,9	4,8	41,0	4,8	79,3	79,7	8,5	2,0	0,2	22,6	121,9	
	123,2	10,8	123,2	10,8	48,8	5,5	48,0	5,4	79,9	80,8	8,9	2,4	0,3	20,7	121,4	6
10	125,7	11,6	125,7	11,6	47,2	5,6	48,2	5,8	80,2	80,0	8,4	2,4	0,3	21,6	123,8	
12	122,5	10,8	122,5	10,8	46,3	4,5	46,7	4,7	82,1	81,8	10,2	2,3	0,2	17,1	121,3	
	123,8	10,6	123,8	10,6	46,1	4,9	46,9	5,2	81,6	80,8	9,2	2,3	0,3	19,0	122,3	
	130,2	9,5	130,2	9,5	43,7	4,3	44,2	4,5	81,6	80,4	10,0	2,2	0,2	20,4	128,6	
IЛ	124,0	9,5	124,0	9,5	43,6	4,3	43,6	4,4	81,2	81,4	10,1	2,2	0,2	18,8	122,6	-
-14	125,0	9,1	125,0	9,1	40,1	3,9	41,1	4,2	81,7	79,7	10,1	2,0	0,2	20,1	123,4	
	124,8	9,0	124,8	9,0	41,2	3,9	43,8	4,1	82,3	81,9	10,6	2,1	0,2	17,1	123,6	=

Anhang H – Einzelwerte aus der Bildanalyse

																_
	V_u	и	$V_{u,max}$	u _{max}	$l_{d,L}$	S _L	$l_{d,R}$	S _R	$arphi_L^\circ$	φ_R°	l/s	s/d_s	s/d_s	$N_{u,\parallel}$	$V_{u,\perp}$	20.
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[-]	[-]	[-]	[kN]	[kN]	
	114,0	19,1	108,6	23,6	53,7	13,9	53,9	14,1	66,5	66,4	3,8	2,7	0,7	45,5	104,5	
10	109,3	16,6	95,7	30,9	57,3	19,1	55,8	19,1	60,9	61,3	3,0	2,8	1,0	52,8	95,7	
10	113,4	18,5	110,6	50,0	66,1	31,7	66,2	31,9	48,8	48,7	2,1	3,3	1,6	74,8	85,3	
	115,9	14,5	98,7	27,8	55,1	17,3	54,3	17,6	63,4	62,2	3,1	2,7	0,9	53,0	103,1	
	146,0	15,6	146,0	15,6	48,3	7,7	47,1	7,8	68,3	69,1	6,1	2,4	0,4	53,1	136,0	
14	140,2	15,2	140,2	15,2	49,6	7,0	50,0	7,1	73,3	74,2	7,1	2,5	0,4	39,2	134,6	2
T1	129,8	14,8	129,8	14,8	43,4	7,6	43,1	7,3	68,5	70,3	5,8	2,2	0,4	45,6	121,6	
	130,2	12,9	130,2	12,9	39,8	5,7	39,9	5,8	75,5	74,9	6,9	2,0	0,3	33,2	125,9	
	114,2	18,0	96,0	32,8	59,4	19,7	60,0	19,8	60,3	61,1	3,0	3,0	1,0	55,9	99,5	Č
10	131,3	23,8	131,3	23,8	54,5	15,2	53,2	14,8	62,7	62,7	3,6	2,7	0,8	60,3	116,7	
IZ	123,6	17,2	123,6	17,2	51,6	10,2	52,9	10,4	71,4	71,8	5,1	2,6	0,5	39,0	117,3	
	133,1	20,7	133,1	20,7	51,6	12,3	52,7	12,6	66,0	65,3	4,2	2,6	0,6	54,8	121,3	=
	138,2	20,0	138,2	20,0	52,7	10,8	53,3	10,9	69,1	68,1	4,9	2,7	0,5	50,3	128,7	r C
14	131,2	17,3	131,2	17,3	49,2	9,4	48,7	9,5	70,3	70,0	5,2	2,4	0,5	44,5	123,4	
14	126,7	14,0	126,7	14,0	42,4	7,0	43,6	7,3	74,1	73,3	6,0	2,1	0,4	35,6	121,6	alar
	123,9	15,0	123,9	15,0	43,6	6,9	44,8	7,3	73,0	71,7	6,3	2,2	0,4	37,6	118,1	

Anhang H – Einzelwerte aus der Bildanalyse

																ί.
	V _u	и	V _{u,max}	u _{max}	$l_{d,L}$	S _L	$l_{d,R}$	S _R	$arphi_L^\circ$	$arphi_R^\circ$	l/s	s/d_s	s/d _s	$N_{u,\parallel}$	$V_{u,\perp}$	
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[-]	[-]	[-]	[kN]	[kN]	
	143,3	20,3	133,9	31,4	51,0	18,0	51,6	18,1	54,5	54,3	2,2	2,6	0,9	83,3	116,5	
10	145,3	22,5	128,1	35,0	55,0	16,7	55,5	16,5	60,2	63,2	2,5	2,9	0,9	68,9	128,0	
10	136,9	20,1	134,4	30,1	49,7	16,1	49,4	15,9	58,5	58,7	2,4	2,6	0,8	71,3	116,8	
	138,4	20,9	129,0	33,0	52,9	17,8	53,6	17,7	57,9	57,0	2,2	2,8	1,0	74,4	116,7	
	157,6	15,8	157,6	15,8	49,0	9,8	49,8	9,6	68,8	69,6	4,0	2,5	0,5	56,0	147,4	
14	158,1	23,2	158,1	23,2	50,1	13,3	49,5	13,1	62,1	63,4	2,9	2,5	0,7	72,3	140,6	
ľ	166,9	18,8	166,9	18,8	55,6	10,6	56,1	10,4	67,0	66,5	4,2	2,8	0,5	65,9	153,3	
	162,5	18,5	162,5	18,5	47,3	9,5	46,9	9,6	69,5	69,2	3,8	2,4	0,5	57,4	152,0	
	143,2	25,3	127,3	32,6	57,1	19,4	58,2	19,5	58,3	56,5	2,3	2,9	1,0	77,2	120,6	ì
10	143,7	34,5	139,7	41,0	64,3	26,5	62,1	25,9	46,9	47,1	1,9	3,2	1,3	98,0	105,1	
12	153,8	28,7	141,2	31,5	55,7	19,3	54,4	18,6	55,0	55,8	2,3	2,8	0,9	87,3	126,6	
	149,7	25,1	145,8	27,1	56,3	16,5	54,7	16,8	61,7	60,6	2,6	2,8	0,8	72,2	131,1	
	156,3	27,8	156,3	27,8	57,1	15,5	56,6	15,4	63,4	62,8	2,9	2,8	0,8	70,8	139,4	
14	156,5	20,9	156,5	20,9	55,2	11,8	52,4	11,7	66,2	66,3	3,6	2,7	0,6	63,0	143,2	
-14	160,3	23,4	160,3	23,4	54,6	13,2	53,9	12,9	65,5	65,6	3,3	2,7	0,7	66,3	146,0	
	149,7	23,9	149,7	23,9	53,2	15,1	53,1	15,1	62,5	62,9	2,7	2,7	0,8	68,7	133,0	

Anhang H – Einzelwerte aus der Bildanalyse

	V _u	и	V _{u,max}	u _{max}	$l_{d,L}$	S _L	$l_{d,R}$	S _R	$arphi_L^\circ$	$arphi_R^\circ$	l/s	s/d _s	s/d _s	$N_{u,\parallel}$	$V_{u,\perp}$
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[°]	[°]	[-]	[-]	[-]	[kN]	[kN]
M8	19,7	5,4	19,7	5,4	16,6	2,5	16,5	2,5	76,4	75,3	6,6	2,1	0,3	4,8	19,1
8.8 b = 40	19,3	5,6	19,3	5,6	16,9	2,5	17,5	2,6	78,2	76,9	6,6	2,2	0,3	4,2	18,9
14 I4	19,1	5,1	19,1	5,1	15,1	2,4	15,7	2,4	76,1	75,9	6,4	1,9	0,3	4,6	18,5
M8	19,6	6,6	19,6	6,6	15,8	3,0	16,4	3,0	67,9	68,2	5,3	2,0	0,4	7,3	18,2
А4/70 H = 40	20,0	8,7	20,0	8,7	17,8	4,5	17,8	4,5	60,9	60,4	3,9	2,2	0,6	9,8	17,4
II = 40 I4	19,5	9,4	19,5	9,4	17,5	5,2	18,6	5,3	59,2	58,9	3,4	2,3	0,7	10,0	16,8
M20	111,1	14,3	110,1	15,4	45,8	9,2	45,9	9,3	72,2	71,4	5,0	2,3	0,5	34,7	105,5
8.8 H = 40	121,3	11,2	119,9	12,1	45,5	6,4	45,8	6,3	77,7	78,1	7,2	2,3	0,3	25,4	118,6
14 14	122,7	12,3	122,0	13,1	44,5	6,9	44,8	6,9	75,5	76,3	6,4	2,2	0,3	29,9	119,0
M20	114,6	19,5	113,1	23,4	47,4	14,2	46,1	14,3	66,2	65,7	3,3	2,3	0,7	46,7	104,7
A4/70	120,2	18,9	117,7	21,5	46,1	13,0	47,0	13,4	64,3	63,6	3,5	2,3	0,7	52,8	108,0
11 = 40 14	126,2	15,4	126,2	15,4	42,2	8,6	42,5	8,4	68,4	69,7	5,0	2,1	0,4	45,2	117,9

Tab. H10:Bildanalyse: Einzelwerte der Versuchsserien mit reduzierten Einbindetiefen – statisch

Anhang H – Einzelwerte aus der Bildanalyse

310

G.3H.2 Seismische Querzugversuche in gerissenem Beton

Alle folgenden Einzelwerte der seismischen Querzugversuche wurden rechnerisch nach den im Kapitel 5.6 für Gewindestäbe der Güte 8.8 und A4/70 hergeleiteten Gleichungen ermittelt.

	V _u	и	V _{u,max}	u _{max}	l_d	<i>S</i>	$arphi_{ ext{int}}^{\circ}$	l/s	l/d _s	s/d _s	$N_{u,\parallel}$	$V_{u,\perp}$
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[°]	[-]	[-]	[-]	[kN]	[kN]
	-	-	-	-	_	-	-	-	_	-	-	_
10	-	I		-		-	_	_	I	-	-	I
/70	19	9,9	18,8	10,3	18,7	4,8	64,7	4	2,4	0,6	8,2	17,2
40	15,7	19,7	15,7	19,6	_	11	-	-	_	-	-	_
4	14,3	15,8	13,2	20,8	20,7	9,9	51,8	2,1	2,6	1,24	8,8	11,2
	18,9	9,1	18,5	11,5	20,9	7,5	63	2,9	2,7	0,93	8,6	16,8
	15,7	15,4	12,8	15,4	18,2	6,3	56,9	3	2,3	0,78	8,6	13,2
	8,4	8,9	Ι	_	Ι	_	_	_	Ι	_	_	Ι
18	19,4	11	19,4	11	18,7	6	59	3,2	2,4	0,75	10	16,6
/70 70	20,2	9,7	20,2	9,7	18,2	5,1	60,4	3,6	2,3	0,64	10	17,6
4	17,8	8,4	17,8	8,4	19,5	4,2	66,7	4,8	2,5	0,52	7,1	16,4
	18,2	9,8	18,2	9,8	17,4	5,5	63,8	3,2	2,2	0,68	8,1	16,4
	21	9,1	21	9	17,8	5,2	61	3,5	2,3	0,65	10,2	18,4

Tab. H11:Berechnete Einzelwerte der Versuchsserie M8 A4/70 – seismisch

	V_u	и	V _{u,max}	u _{max}	l_1	<i>S</i> ₁	$arphi_{\square}^{\circ}$	l/s	l/d _s	s/d _s	$N_{u,\parallel}$	$V_{u,\perp}$
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[°]	[-]	[-]	[-]	[kN]	[kN]
N/0	17,7	7,4	17,7	7,4	18,7	3	77	6,3	2,4	0,38	4	17,2
8.8	17,4	7,5	17,4	7,4	19,2	3,5	74,2	5,5	2,4	0,44	4,8	16,7
H = 40	16,1	5,3	15,8	5,6	17,1	2,2	79,8	7,9	2,2	0,28	2,9	15,9
14	16,9	8,1	15,3	8,8	17,7	4	70,2	4,5	2,3	0,5	5,8	15,9
	16,7	5,4	16,7	5,4	16,1	2,7	77,4	6,2	2,1	0,33	3,7	16,3
N/O	17,2	6,9	17,2	6,9	21,2	2,9	76,3	7,4	2,7	0,37	4,1	16,7
8.8	17,4	5,9	17,4	5,9	19,5	2,8	77,5	7,2	2,5	0,35	3,8	16,9
H = 70	10	13,1	-	-	I	-	I	-	-	-	-	_
14	16,3	7	16,3	7	17,3	3,7	72,6	4,8	2,2	0,46	4,9	15,6
	17,6	6,9	17,6	6,8	17	3,3	71,3	5,3	2,2	0,41	5,7	16,7

Tab. H12:Berechnete Einzelwerte der Versuchsserie M8 8.8 – seismisch

	V _u	u	V _{u,max}	u _{max}	l_1	<i>s</i> ₁	$arphi_{\square}^{\circ}$	l/s	l/d_s	s/d _s	$N_{u,\parallel}$	$V_{u,\perp}$
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[°]	[-]	[-]	[-]	[kN]	[kN]
	103	26,2	101,4	29,3	48,4	17,2	60,4	2,9	2,5	0,86	51	89,5
M20	109,1	18,3	103,5	24,8	45,5	15	59,9	3,1	2,3	0,75	54,8	94,3
A4/70	108,1	29	108,1	29	46,2	16,8	59,1	2,8	2,4	0,84	55,6	92,7
H = 100	101,2	25,5	96,6	33	49,3	19,3	56,7	2,6	2,5	0,97	55,7	84,5
14	100,1	15,7	94,9	32,1	51	21,4	55,8	2,4	2,6	1,07	56,4	82,7
	110,1	19,4	106	22,9	44,2	14,6	62,1	3,1	2,3	0,73	51,6	97,3
	108,4	20,4	94,6	30,8	53,7	19,6	56,3	2,8	2,7	0,98	60,2	90,2
	95,3	24,3	85,8	27,3	59,6	19,5	61,7	2,8	2,7	0,98	45,3	83,9
1400	-	-	_	_	_	-	_	_	-	_	-	_
M20 A4/70	123,6	18,1	123,6	18,1	46,7	8,3	74,2	5,7	2,4	0,42	33,9	118,8
H = 120	116,9	20	112,7	25,1	48,2	15,3	61,9	3,2	2,5	0,77	55,2	103
14	102,8	23,3	96	28,6	42,9	18,8	54,9	2,3	2,2	0,94	59,2	84,1
	_	_	_	_	_	_	_	_	_	_	_	_
	115,4	28,4	115,4	28,4	49,2	19,4	54,9	2,6	2,5	0,97	66,4	94,4

Tab. H13:Berechnete Einzelwerte der Versuchsserie M20 A4/70 – seismisch

	V _u	u	V _{u,max}	u _{max}	l_1	<i>S</i> ₁	$arphi_{\square}^{\circ}$	l/s	l/d _s	s/d _s	$N_{u,\parallel}$	$V_{u,\perp}$
	[kN]	[mm]	kN]	[mm]	[mm]	[mm]	[°]	[-]	[-]	[-]	[kN]	[kN]
	101,4	12,7	95,7	14,9	43,7	8,3	72,1	5,3	2,2	0,42	31,3	96,4
M20	104,3	10,5	97,8	12,7	43,7	7,2	71,7	6,2	2,2	0,36	32,9	99
8.8	103,6	12,2	102,2	14,2	46	8,5	72,3	5,5	2,3	0,43	31,7	98,6
H = 100	102,4	12,6	100,6	13,6	44,8	7,9	74,5	5,7	2,3	0,4	27,5	98,6
14	104,3	10,9	99,8	12,4	44,8	7,8	66	5,8	2,3	0,39	42,5	95,3
	101,7	14,4	79,2	22,2	44,6	11,8	64,5	3,8	2,3	0,59	43,8	91,8
	107,2	10,1	107,2	10	41,7	4,3	80,7	9,8	2,1	0,22	17,5	105,8
	103,3	11,3	103,3	11,3	41,2	6,8	75,2	6,2	2,1	0,34	26,5	99,8
M20	_	_	_	_	_	_	_	_	_	_	_	_
8.8 H = 120	113,9	8,8	113,9	8,8	42,5	4,4	81,1	9,8	2,2	0,22	17,8	112,5
14	114,2	10,1	114,2	10,1	43,5	4,5	81	9,8	2,2	0,23	18,1	112,7
	99	12,9	72	25,3	49,4	15,6	64,1	3,2	2,5	0,78	43,3	89
	119,5	11,1	116,6	12,2	43,9	6,5	77,1	6,9	2,2	0,33	26,9	116,5

Tab. H14:Berechnete Einzelwerte der Versuchsserie M20 8.8 – seismisch

314

Anhang I – Zeichnungen

Abb. I1: Dehnkörper Klein – seismische Querzugversuche

Abb. I2: Risskeilplatte - TU Kaiserslautern - statische Querzugversuche

Abb. I3: KKW-Betonprüfkörper – statische Zugversuche

Abb. I4: Dehnkörper groß – seismische Querzugversuche (Bestandsversuche)

Anhang J – VBA-Quellcode

```
Sub Spannungsberechnung ()
     a s
                                              'Spannungsquerschnitt
                                              'Anteil der Zugkraft
     alpha
.
                                              'Reduktionsfaktor für die Ermittlung
     av
der Schubtragfähigkeit
     ds
                                              'Stabdurchmesser
     fcc
                                              'Betonspannungen, zwischenspeichern
     fu
                                              'Zugfestigkeit
     hef
                                              'Einbindetiefe
     ld
                                              'Tiefe des unverformten Bereichs
     Mp1
                                              'Biegetragfähigkeit des
Stahlquerschnittes
     Npl
                                              'Zugtragfähigkeit des
Stahlquerschnittes
     Nw
                                              'Zugkraft, zwischenspeichern
     Ν
                                              'Zugkraft
     Ρi
                                              'Zahl PI
     sc
                                              'Betonspannungen
.
     v
                                              'gemessene Querzugkraft in gerissenem
Beton
     ν1
                                              'Querkraftanteil 1
     V_2
                                              'Querkraftanteil 2
     Vpl
                                              'Schubtragfähigkeit des
Stahlquerschnittes
    Dim a_s, fu, av, ds, Pi, hef, fcc, sc, ld, Nw, alpha, N, V, M, Npl, Vpl, Mpl,
V_1, V_2 As Double
    a s = XX
                                              'Stahlquerschnitt in mm<sup>2</sup> eingeben
    fu = XX
                                              'Zugfestigkeit in N/mm<sup>2</sup> eingeben
    ds = XX
                                              'Stabdurchmesser in mm eingeben
    av = XX
                                              'Faktor in - eingeben
    ld = XX
                                              'Tiefe des unverformten Bereichs in mm
eingeben
    hef = XX
                                              'Einbindetiefe in mm eingeben
    V = XX
                                              'Querkraft in kN eingeben
    Pi = 3.14159265358979
    Npl = a_s * fu / 1000
    Vpl = av * a_s * fu / 1000
    Mpl = a_s ^ (3 / 2) / (4 * Pi ^ (1 / 2)) * 1.7 * fu
    alpha = 0.01
                                              'Start Bedingung
    Nw = 1
                                              'Start Bedingung
    fcc = 100
                                              'Start Bedingung
    a = 8
                                              'Start Bedingung
    sc = (V - alpha * (V - 0.15 * Nw) - 0.15 * Nw) * 1000 / (a * ds)
    fcc = sc
    For i = 1 To 10
    V_1 = V - 0.15 * Nw
```

```
N = alpha * V_1
    Nw = N
    V_2 = V - 0.15 * Nw - N
    sc = (V - alpha * (V - 0.15 * Nw) - 0.15 * Nw) * 1000 / (a * ds)
   fcc = sc
    M = sc * ds * a ^ (2) / 2 - Mpl
    a = 0.75 * (Sqr(ds * (ds * fcc * (hef + ld) ^ 2 - 10.667 * Mpl) * fcc) - ds *
fcc * (hef - 0.333 * ld)) / (ds * fcc)
    Next
Do Until 1 > Round(M / (Mpl * Sqr(1 - (V_2 / Vpl) ^ 2) * (1 - (Nw / (Npl * Sqr(1 -
(V_2 / Vpl) ^ 2))) ^ 2)), 2)
    alpha = alpha + 0.0001
    For i = 1 To 10
    V_1 = V - 0.15 * Nw
   N = alpha * V_1
   Nw = N
    V_2 = V - 0.15 * Nw - N
    sc = (V - alpha * (V - 0.15 * Nw) - 0.15 * Nw) * 1000 / (a * ds)
   fcc = sc
    M = (sc * ds * a ^ 2) / 2 - Mpl
    a = 0.75 * (Sqr(ds * (ds * fcc * (hef + ld) ^ 2 - 10.667 * Mpl) * fcc) - ds *
fcc * (hef - 0.333 * ld)) / (ds * fcc)
    Next
    Loop
    Debug.Print N
    Debug.Print Round(M / (Mpl * Sqr(1 - (V_2 / Vpl) ^ 2) * (1 - (Nw / (Npl *
Sqr(1 - (V_2 / Vpl) ^ 2))) ^ 2)), 2)
End Sub
```

Lebenslauf

Persönliche Daten

Name	Nikolai Sklarov
Geburtsjahr	1988
Staatsangehörigkeit	deutsch

Berufliche Laufbahn

2022-heute	Projektingenieur, TOGE Dübel GmbH & Co. KG in Nürnberg
2017–2021	Wissenschaftlicher Mitarbeiter, Technische Universität Kaiserslautern
2015–2017	Projektingenieur, Ingenieurgruppe Bauen in Karlsruhe
2012–2013	Projektingenieur, Ingenieurbüro für Bauwesen Dr. Martin Haas in Karlsruhe

Ausbildung

2014–2015	Abschluss Ma Vertiefungsric Karlsruhe – T	aster of Engir chtung "Ko echnik und V	neering onstruk Virtsch	im Stu tiver aft	diengang Ingenieur	Bauing bau",	jenieurwesen, Hochschule
2010–2014	Abschluss Bauingenieur	Bachelor wesen, Hoch	of Ischule	Engir Karlsr	eering uhe – Tec	im hnik ur	Studiengang nd Wirtschaft
2009 –2010	Allgemeine G	irundausbildu	ıng bei	der Bu	ndeswehr	, Germ	ersheim
2009	Abiturabschlu	iss, Allgemei	ne Hoc	hschul	reife, Gött	ingen	