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Summary. The Kallianpur-Robbins law describes the long term asymptotic behaviour of the
distribution of the occupation measure of a Brownian motion in the plane. In this paper we show
that this behaviour can be seen at every typical Brownian path by choosing either a random
time or a random scale according to the logarithmic laws of order three. We also prove a ratio
ergodic theorem for small scales outside an exceptional set of vanishing logarithmic density of
order three.
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1 Introduction and statement of the main theorems

Since the discovery of pathwise, or almost sure, central limit theorems independently by Fisher
(1987, 1990), Brosamler (1988) and Schatte (1988) there has been a great deal of interest in
strong versions of the classical theorems on limit laws associated with stochastic processes.
Interesting further progress on this subject can be found, for example, in the papers of Berkes
and Dehling (1993), Fahrner and Stadtmiiller (1998), Ibragimov and Lifshits (1998), Berkes,
Csaki and Csorgé (1999) or the survey of Berkes (1998).

The basic idea of these pathwise limit theorems is the following: There is a classical theorem
describing the limit of the laws of random variables depending on a stochastic process with
respect to the distribution of the process. The corresponding pathwise law describes, for almost
every sample of the process, the limit of the laws of the random variables with respect to a
random time parameter, which is typically chosen according to the parametrized family

1 t ds
{@/1 5{5}?’”1}

of laws, which we call the logarithmic laws of order two as they are associated with the order
two logarithmic averages of Hardy and Riesz. A closely related idea are limit theorems for time
averages taken with respect to the logarithmic laws, the so-called logarithmic averages. They
have been studied for a long time, an early example can be found in Erdés and Hunt (1953).

The Kallianpur-Robbins law for linear Brownian motion provides a simple example of a limit law
that allows a pathwise version of this kind: Look at a linear Brownian motion {B;}:>o started
at the origin and denote by ¢ the Lebesgue measure. We define the occupation measure p[t] as
the random measure given by

plt](A) =€{s € [0,t] : Bs € A} for A C R Borel.

Writing d(;) for the Dirac measure concentrated at z allows us to describe the distribution of
a random variable X on a probability space (2, A, P) as f5{X(w)} dP(w) and most of the time
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we omit the w. The classical Kallianpur-Robbins law, proved first by Kallianpur and Robbins
(1953), states that, for the Wiener measure W,

2 o0 2 /e
T _ “ —a?/2
w th_f&/(s{@;]}dw_\/;/o Ofau0y € da,

where w — lim denotes weak convergence of distributions on the Polish space M (R) of locally
finite Borel measures on the real line, see Section 2 for measure theoretic preliminaries. The
following pathwise version of this theorem for random times chosen with respect to the second
order logarithmic laws can be proved easily exploiting the existence of the local time process
and using its scaling property and the ergodic theorem, see Section 3.

Theorem 1.1 (Random time Kallianpur-Robbins law for linear Brownian motion)
W-almost surely, the distributions

1 00
w — lim 1 ) @:Ug/ 5{a.g}e_”2/2da,
t—oo logt [y { uls] } s T Jo
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and for all bounded A C R Borel and k > 1, the moments

converge.

It is the principal aim of this paper to prove pathwise Kallianpur Robbins laws for the case of
a planar Brownian motion, where no local time process is available and the scaling properties
of Brownian motion are more difficult to exploit. In fact, it turns out that in order to prove a
random time Kallianpur-Robbins law for planar Brownian motion we have to choose the random
time according to a logarithmic law of higher order.

Writing log(”) and exp(™ for the n-th iterate of the logarithm or exponential, we can define,
following again Hardy and Riesz, for every n > 1, the logarithmic laws of order n as

1 /t ds
—_— Ofs [— Y W for t > exp(”_l)(O).
log™ (1) Jexprn o) 1222 1og ) (5)

Note that this definition allows us to build a hierarchy of theorems: the limit law for the random
times with respect to the order n logarithmic law implies analogous limit laws for random times
with respect to all higher order logarithmic laws, but not conversely, see Fisher (1990). Limit
laws for averages with respect to logarithmic laws of higher order were studied, for example, by
Brosamler (1973), Féldes (1992) or Marcus and Rosen (1995).

Let {B;}s>0 be a planar Brownian motion started at the origin. For every ¢ > 0 the occupation
measure u[t] is the random measure on the path of the Brownian motion defined by

ult](A) = ¢{s € [0,t] : Bs € A} for A C R* Borel.



The classical two-dimensional Kallianpur-Robbins law, also due to Kallianpur and Robbins
(1953), states that, for the Wiener measure W2,

. 2 ~ Y —a
w_tlggo/(s{ ult] }dW _/0 o{%-ﬁ}e da,

log \/E

where 2 is Lebesgue measure in the plane and w — lim denotes the weak convergence of distri-
butions on the Polish space M(R?) of locally finite Borel measures on the plane with the vague
topology.

In order to get a pathwise version of this theorem for a randomly chosen time we look at a fized
Brownian path and study the distribution of the measure u[t] with respect to a random choice
of the time parameter ¢ picked according to the logarithmic laws of order three.

Theorem 1.2 (Random time Kallianpur-Robbins law for planar Brownian motion)
W2-almost surely, the distributions

. 1 i ds e —a
'w—tlggo loglogt/e 5{ M[i‘]/g} s logs _/0 5{%'["}6 da,

log

and for all bounded A C R? Borel and k > 1, the moments

Ul ds A
tlggologlogt/e <log\/§> slogs_k'{ T }

converge.

The proof of Theorem 1.2 is based on an approximation of the occupation measure up to time ¢
by weighted occupation measures. The moments of these weighted occupation measures can be
calculated explicitly and the statement of Theorem 1.2 can be derived from analogous statements
about the random choice of a weighting parameter. The case of first moments in Theorem 1.2
was proved before by Brosamler (1973) with a different method.

It is natural to ask whether a pathwise Kallianpur Robbins law can also be formulated for the
random choice of a scale instead of time parameter. To motivate this question further we recall
the scaling invariance of Brownian motion,

/5{{]35}520} dW? = /5{{\/WBN}SZO} dW? for all r > 0.

By the scaling invariance the measure v[r] given by
v[r](A) =t{s € [0,1] : B; € rA}

satisfies

Y 2 _ 2
/O{#[t]}dw _/5{t~u[1/\/f]} dW= .



This allows a different view of the Kallianpur-Robbins law: Instead of the long term behaviour
we can also study the local behaviour of the occupation measure at the origin and the Kallianpur
Robbins law now reads

w— i 2 [T —a
w 17}118/5{ ] }dW—/O 5{%'52}6 da . (1)

2 log(1/7)

It is interesting to observe that, although this statement is completely equivalent to the
Kallianpur-Robbins law in the classical formulation, it is impossible to derive a random scale Kal-
lianpur Robbins law from the random time Kallianpur-Robbins law: The pathwise Kallianpur-
Robbins law is a statement about the process {u[s]/log+/s)}s>e, which has a different distri-
bution from the process {s - v[1/+/s]/log+/s}s>.. However, a pathwise Kallianpur-Robbins law
for random scales, which is completely indep;,ndent of Theorem 1.2, can be formulated and
proved by means of an entirely different method. We again look at a fixed typical path of planar
Brownian motion and now we study the distribution of the measure v[r] with a random choice
of the scale parameter 1/r with respect to a logarithmic law of order three.

Theorem 1.3 (Random scale Kallianpur-Robbins law for planar Brownian motion)
W2-almost surely, all distributions

w — lim _ /1/65 o /CO ) e~ "da (2)
elo loglog(1/e) o { el oh wlog(1/r) — Jo “H32}" T

r2 log(1/7)

and for all bounded A C R* Borel with {*(0A) =0 and k > 1, the moments

, 1 e ulr](A) Nk dr ((A)1k
Eﬁim/s (rﬂog(l/r)) rlog(l/r):k!{ T }

converge.

It is unclear whether one can remove the assumption ¢2(9A) = 0 from the theorem. A weaker
result of this kind can be found in Mérters (1998), where it was shown that, W2-almost surely,

w — lim ! /1/6 ) dr = /OO dr e da (3)
10 loglog(1/e) J. {UT[T]IE)JZ’E;J,/IT)))} r log(1/7) : {a} )

where B(0,r) denotes the open ball of radius r. Compared to Theorem 1.3 this statement is
weaker mainly because of the restriction to a rotationally symmetric situation. In the random
time case such a restriction would not be a problem: The ratio ergodic theorem of Maruyama
and Tanaka (1959) states that

lim — = - W2 almost surely,

for A, B C R? bounded Borel sets with ¢*(B) > 0. But no such statement holds for the small
scale limit. In order to close the gap between (3) and (2) we prove a ratio ergodic theorem for
small scales which holds in logarithmic density of order three. This is also interesting in its own
right.



Theorem 1.4 (Ratio ergodic theorem for small scales) For all bounded (*-continuity
Borel sets A, B C R? with (*(B) > 0, W?-almost surely there is a set N C (0, 00) such that

1 1/e dr
im— [ e — =
im loglog(l/s)/s N e — 0

and )
i AT (A)  #(A
o y[r](B)  (*(B
TN

The proofs of Theorems 1.3 and 1.4 are based on a generalization of a method of Ray (1963).
Ray showed that the occupation measure of small balls can be approximated by means of the
number of inward crossings of small annuli performed by the Brownian motion before it leaves
the unit ball. We generalize this approach and approximate the occupation measure of small
sets (of arbitrary shape) by means of these crossing numbers. Our theorems can then be derived
from easy statements about the behaviour of the crossing numbers. A similar technique was
used by Le Gall (1987) to study the exact Hausdorff function of the set of multiple points of a
planar Brownian motion.

The random scale Kallianpur-Robbins law can also be motivated from the point of view of
fractal geometry. The study of limits of local enlargements of fractal measures with respect to
a deterministic or random scale parameter is a common theme in fractal geometry and I briefly
explain how the above result fits into the framework of tangent measure distributions. This
concept and the related notion of average densities were studied, for example, in Bandt (1992),

Bedford and Fisher (1992), Falconer (1997), Graf (1995) or Morters and Preiss (1998).

Suppose € M(RY) is any measure on R? and ¢ a gauge function, i.e. a monotonically
increasing function with ¢(0) = 0. Define, for every 2z € R? and s > 0, the measure Pe,s DY
pz,s(A) = p(z 4+ sA). The set

Tany(p,z) ={v :v = nh_)rgo zft’:‘) for t, — 0} C M(RY
is the set of p-tangent measures of p at 2, which was introduced by Preiss, for a survey see
Falconer (1997). With the appropriate choice of the gauge function ¢ the ¢-tangent measures
at x describe, roughly speaking, the scenery of y in small neighbourhoods of z. As the set of
tangent measures is often quite big, it is natural to look for canonical probability distributions
on this set. If, for some n > 2,

1 l/exp("’_l)(O) ds
P=w-1lim —/ 8 5 . .
=40 log™=1 (1/e) J. {5} 2 T2 10eD (1/5)

exists, it defines a probability measure on Tang(u,z), which is called the @-tangent measure
distribution of order n of p at x.

In the case of the occupation measure p[l1] of a planar Brownian motion we have pu[l]os =
v[s] and hence the random scale Kallianpur-Robbins law states that, for ¢(t) = #?log(1/t),
W2-almost surely, the ¢-tangent measure distribution of u[1] at the origin exists and is equal to
the distribution of a standard exponential multiple of planar Lebesgue measure. Using the idea
of Palm distributions as in Mérters (1998), Section 3, this statement can be extended easily to
the statement of the following theorem.



Theorem 1.5 Let jp = u[T] be the occupation measure of a planar Brownian motion run for a
finite time interval of arbitrary length T > 0 and define the gauge function o(t) = t? log(1/t).
Then, W?-almost surely, the o—tangent measure distribution of order three of u exvists at pi—
almost every x and is equal to the distribution of a random constant multiple of planar Lebesgue
measure. The constant is gamma distributed with parameter two, which is the distribution of the
sum of two independent standard exponentially distributed random variables. More explicitly,

w — lim / di / ) ae % da.
=10 log |loge| log5| 2t Tlog(1/t) (a2}

Note that there is no random scale analogy to the pathwise Kallianpur-Robbins law for linear
Brownian motion because almost surely lim,_,o = vl — . L(0,1), where L(0,¢) is the local time
at the origin, see Chapter VI in Revuz and Yor (1994)

This paper is organized as follows. In Section 2 we collect some measure theoretic preliminaries
and in Section 3 we give a proof of the pathwise Kallianpur-Robbins law in the linear case,
which is based on the ergodic theorem. In the following two sections we deal with the case
of planar Brownian motion, in Section 4 we prove the random time Kallianpur-Robbins law
and in Section 5 we prove the ratio ergodic theorem for small scales and the random scale
Kallianpur Robbins law. In Section 6 we briefly indicate why corresponding results fail to hold
for logarithmic averages of order two. We finish the paper with a selection of brief remarks.

Note: A shorter paper on the present subject is to appear in Probability theory related fields.

Acknowledgement: I would like to thank H. v.Weizsicker for many helpful discussions on the
subject of this paper.

2 Some preliminaries

In this section we collect some measure theoretic preliminaries, a reference for these facts is
Kallenberg (1983). By M (R?) we denote the set of all measures on the Borel o-algebra of the
Euclidean space R? that are finite on bounded sets, in other words the set of locally finite Borel
measures. We equip M(Rd) with the vague topology, this is the smallest topology, which makes
the functionals v — [ fdv, f continuous with compact support, continuous. Then the mapping
v — v(A) is upper semicontinuous if A is open and lower semicontinuous if A is compact. The
vague topology makes M (Rd) a separable space and may also be generated by a complete metric.
In other words, M(R?) is a Polish space.

A set M C M(R?) is precompact if and only if the set {u(K) : pu € M} is bounded for
all compact sets K C R% We equip M(R?) with the Borel o-algebra coming from the weak
topology. For probability distributions P, on M(R? we now have the usual notion of weak
convergence, namely w — lim,_, o, P, = P if and only if

lim /F(,u) dP,(u) = /F(,u) dP(u) for all F: M(R? — R continuous, bounded.

n—oo

As a particular consequence of the weak convergence of P, to P we note that, for all bounded
continuity sets A C R? of J vdP(v), we have, in the sense of weak convergence of probability
measures on R,

o= Jim / Oucayy dbn(p) = / Oucayy dP(p) -
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An important criterion for the existence of weakly convergent subsequences in a sequence (FP,)
of probability measures is provided by the classical theorem of Prohorov.

Lemma 2.1 Suppose P is a family of probability measures on a Polish space X, then every
sequence in P has a weakly convergent subsequence if and only if the family P is uniformly tight,
i.e. for every § > 0 there is a compact C' C X such that P(C) > 1 -4 for all P € P.

In order to take advantage of this theorem we need the following simple tightness criterion for
families of probability distributions on M (R?). We denote by A the countable collection of all
open or closed cubes with rational vertices in R

Lemma 2.2 Suppose {P,},>1 is a sequence of probability measures on M(RY such that, for
all closed cubes A € A,

hm limsup P,{v(A) > M} =0. (4)

M—oo pnoao

Then the family {P, :n > 1} is uniformly tight.

Proof. Let {Ay, Ay, As, ...} be an enumeration of the close cubes A € A. By (4) we can find for
every integer k and 6 > 0, an M (k,d) > 0 such that

P {v(Ay) > M(k,8)} < 627% | for all .

Hence

Pu{v(A) < M(k,6) , for all k} > 16 for all n.

This set is precompact in M(R?) and hence the family is uniformly tight. [ ]

We now get a sufficiently strong technical tool to deal with the convergence of random measures.

Lemma 2.3 Let {P}4~0 be a family of probability measures on M(RY) and P a probability
measure on M(R?). Suppose that, for all A € A, v(0A) =0 for P-almost every v and, for all
rational Ky, ... ,Km > 0 and all {Ay, ..., An} C A,

7fli)r(r)lo/exp ( Z/@ v ) dP(v) = /exp ( - ;K}Z'V(AZ')) dP(v),
then w — lim;_yo Py = P.

Proof. We first use Lemma 2.2 to show that every sequence {Pn}n21 with P, = P, for some
t, — oo is uniformly tight. Namely, if A € A is closed then, by Lévy’s continuity theorem,
J 3(andPu(v) = [ 84,(4yydP and hence

limsup P,{v(A) > M} < P{v(A) > M} —0, as M — cc.

n—oo



By Lemma 2.1 and the tightness it suffices show that every limit point P of {P,}n>1 coincides
with P. If {A;,..., A} C A are open cubes, the mapping v — exp ( - > kiv(Ay)) is lower
semicontinuous and hence

/exp ( - ﬁ: /<;ﬂ/(A¢)> dP(v) = nli_)n;()/exp ( - imy(illi)) dP,(v)

\%
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For every € > 0 we pick closed cubes Bj;, concentric with A; but slightly larger, such that

/exp ( - imy(&)) dP(v) > /exp ( — inw(AQ) dP(v) —¢.

Using now upper semicontinuity we infer that

/exp ( - ;mu(Ai)) dP(v) < nh_}rgo exp ( — ;Hﬂ/(&)) dP,(v) + ¢
/exp ( -
/exp ( -

The continuity of the Laplace transform ensures that all finite dimensional marginal distributions
of P and P coincide, i.e., for all open cubes Aq,..., A, € A,

/5{»<A1),...,V(Am)}dp(”) :/5{V(A1),...,V(Am)}dP(V)-

As the system of all open cubes in A is closed under finite intersections and is a base of the
topology on R?, this implies that P = P. [ |
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IiZ'I/(AZ')) dP(v) +¢.
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3 The random time Kallianpur-Robbins law for linear Brownian
motion

The proof relies heavily on the W-almost sure existence of the local time process

t((—=r,r
L(0,1) ty M)
r—0 r
at the origin of the linear Brownian motion. Recall the fact that the Brownian motion is invariant

and ergodic with respect to rescaling {B;} — {4/1/5 B}, see for example Fisher (1987), and
that the process {L(0,5)}s>0 has the same distribution as the process {maxo<i<s Bi}s>o, see



Chapter VI in Revuz and Yor (1994). By means of the ergodic theorem we infer that, W-almost
surely, for every xk > 0,

t

. 1 L(0, )\ ds
tlggologt lexp(—n NG >_

:/exp(—nL(O,l)) dW . (5)

S

The ratio ergodic theorem, see Chapter X in Revuz and Yor (1994), states that for every Borel
set A

sll>r1(r)10 lz[fg)ff)) = ((A) , W-almost surely. (6)
Hence, W-almost surely, for every finite family Aq,..., A, of rational intervals in R and every
tuple (K1,...,ky) of positive reals, we infer from (5)

tlggo @ ltexp ( - im&\/{?ﬂ) ? = /exp ( - if%f(/li) - L(0, 1)) dW .

Thus, by Lemma 2.3, we infer that, W-almost surely,

. 1 t ds
w— lim ——

Finally, the distribution of L(0, 1) is known from the classical Kallianpur-Robbins law, as

2 [ 2
c T N BT _ |~ —-z?/2
/O{L(O*l)} AW = 11—%/0{ M[ll(—m)} AW = lim / 5{ u[t](\—[l,l)} aW = \/;/0 Ozye de.
T 2Vt

2

The analogous argument gives convergence of the moments and thus Theorem 1.1 follows.

4 The random time Kallianpur-Robbins law for planar
Brownian motion

In their elegant proof of the Kallianpur-Robbins law Darling and Kac (1957) calculate the
asymptotics at 0 of the Laplace transforms of the moments of u[t](A) in order to study the
behaviour of the distribution of p[t](A) as ¢ — oco. In a somewhat similar spirit we look at
occupation measures with respect to the whole time axis, which are discounted by means of
exponential functions. It is possible to determine the moments of these measures explicitly and
this calculation is carried out in Lemma 4.1. This is used to prove the almost sure convergence of
the moments of the weighted occupation measures with respect to a random choice of a weighting
parameter A. This result is then applied via approximation to the occupation measures up to
time ¢.

Define for every A > 0 the measure j[A] by
a[A](A) = / e_Atl{BtEA} dt for every A C R? Borel.
0

Note that throughout this paper the symbols E and Var are reserved for expectation and variance
with respect to the Wiener measure.



Lemma 4.1 For every bounded Borel set A C R? we have

o EAL)(A log(1/3_., 75)
E{nzllgéx/]l(/%}:< ) ZH glog (1/7) : +O<log(11/kk))’

as 0 < A; < ... < Ap = 0, where ' denotes the set of all permutations of (A1, ..., Ag).

Proof. For every tuple (z1,...,z;) we denote ] = 2y and 2z}, = x1 — x4 for £ > 1. With this
notation we can calculate

»{ [Ts0ni)
:/ / —an“ﬂP({B €EA,...,By € A})dty...dty

- Z/ / / [/ /Hsz ot e gy d. ..t

yer

1 —||zl|| % q —||a:,€||2
= 27-‘- (Om\k z :/ / / t/ _’Yltle 1 / v / p e_Wktke dty . ..dty dxy, .. . dx,
t1 tp—1 "k

For the innermost integral we find

- Al o0 ’
- ; ) I A

7€ Vklke 2tp (f), = e Mkl e~ te 3 = e M1 L 9K ( V27l
Tr—1 tk 0 t

where Ky is the Bessel function of imaginary argument, which satisfies, see e.g. Watson (1966),

p.183,

1 [ 2 di
Ko(z) = —/ e”'~@w — for z € R.
2 /s t

Iterating this argument we get the following exact expression

o [T} = =)y ) [] Koy 2o et ooz (1)
n=1 ~er n=1

We now use the asymptotic formula, see e.g. Watson (1966), p.80,
Ko(s) =log(1/s) +O(1) , s = 0,

to conclude

n=1 Og
_ 1 bolog(1/305-, 7)) | 1
_ F;A/AE e dmk...dm1+0<7log(1/>\k)>

k

2 log(1/3°5_, 7))
= <e A)>k [I glog(l/yn)7 +O(log(11//\k)>'
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Lemma 4.2 Let A C R? be a bounded Borel set, k,| nonnegative integers and a;,

Then, for 0 < K < A =0,
anfilnk] (A)\* (o= anfi[nN](A) )|
E{ (; log \/l/nf@) (; log \/l/nx\> }
2 N k+ i o i
- (E ETA);an)kH.k'l' ;(l—i) (ioiﬁj?) Z+O(log(11/A)>

Proof. From Lemma 4.1 we get that
N ~
anu[n)\](A))l}

N ~ k

" (Sioeviree) (S ioevirmn
15, log(1/3°4 ;) 1

i +O<log(1/A)> ’

CA) N~V

. .,

Z““) Rl Z log (1/k)*log(1/M)!
R A,

Il
TN
=

3
Il
=

k413,

as 0 < K < A — 0, where I' denotes the set of all distinct permutations of (
k413

if v; =k forall j € {n,..

Observe now that, as k <A —= 0
if v; = X for some j € {n,

log(1/k) + O(1)
) = { e 1 ot

log(1/3>2

and hence
k+1
k41 )

Z H 108’(1/2] =7

~yeTl' n=1

_ ki (;’ - 1) (toa(1/m))"

i={

" (108(1/%))' +0((05(1/))* log(1/3)'")

Therefore, for 0 < x < A = 0,
ul anfi[nk ul nfi[n (
E{<;log\/1/nﬁ) (z; log\/1/ > }
2 N + o o o\ E—i
= ()T (1) st ©lgtim)
|

™
n=1

We now use Lemma 4.2 to prove the almost sure convergence of the moments of

4[A](A)/log+/1/X with respect to a random choice of A
11



Lemma 4.3 Let A C R? be a bounded Borel set. Then, W?-almost surely, for all ay,. .., ay €
R, we have

i m/w [i:: ; l/n ]k A 102?1/» =k [525;4) ‘i%]k- (®)

n=1

Proof. We first fix aq,...,ay and look at the expectations. We use the previous lemma to see
that N N
n fi[nA](A) } [152(,4 ] k 1
E = k! a,| +0O
ey o] +0(iegi7sy)

Because

1 /1/6 1 d 1 ©

loglog(1/¢) J.  log(1/A) X log(1/A) ~ loglog(1/e)’ '

we conclude that, for some C' > 0,

m[/eE{iﬁ[&#}km:% [ i]

n=1 n=I1

I
loglog(l/s) .

Using Lemma 4.2, we get as 0 < k < A — 0, for some constant C' > 0,

i [ (S AR )
) ) 1/e plfe 2k
< (f (A) an) k(]og]og 1/5 // // £ ( k+

- T
log ) A log 1/)\ K log(]/K)

(i) Gy

Mz

Recalling from (9) that

< 1 /1/6/ d) di ___ 1
loglog(1/¢)/ J. . log(1/A) Alog(1/X) k log(1/k) ~ loglog(1/¢)

and observing that

( /1/6/1/e log(1 d) dr ‘ < 1 ) /1/6 dr
log log 1/8 . log(1 /\ log(1/A) k log(1/k) — \loglog(1/e)/ J. & log(1/k)
1

loglog(1/e)’

we conclude that, for a suitable constant C' > 0,

{m// [Z YQ; #] X logkl/x } : 1oglog<1/e> '
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By Chebyshev’s inequality, for every § > 0 and sufficiently small ¢,

W{ 1 /1/6 {i anfiln (- 4)] ) [ﬁ i . ]
log log(1/¢) J. “— log /1/nX ] A log( /) — "
< ¢ :
— 82 .loglog(1/¢)
Let £; = exp(—exp(j%)). Then, by the Borel-Cantelli lemma, W*-almost surely,

| | VISV anilnN(A]F ax e Lk
Ul v ol By o R S D S

n=1

> 25}

In particular, we get

€; N ~ L
H?f(fip 1og10g1(1/ej)/ Eni;%]w‘ /\log(Al/,\)
41
loglog(1/gj41) lim 1 /1/e [EnNzl |a,n|ﬂ[n)\](A)]k dA
i—oo loglog(1/e;)  j=oo loglog(1/ejt1) Je),, log /1/X A log(1/X)
BSR4 V8 )
i—oo loglog(1/g;) J., log /1/X Alog(1/A)
= 0.

IN

Hence, for g;44 <e <¢j,

lim sup R /1/6 [Zn 1 ”n:“[”A](A)]k dA
<10 loglog(l/s) log V1/A A log(1/X)
< i 1/e [ L @nfi[n )] (A)] dX
= joeo log log 1/sj log \/7 Alog(1/4)
N ani[nA](A) * d\
+ lim su /
! Tog log Ty o | T e in | Nioe(i/M)

= k! [@Zan]

Similarly, we get

L 1 Ve ISSN aninA](A)]F dA )
e ogrogt | | log /17X | otz 2 Z] |

and hence equality (8). Finally, we observe that (8) holds W2-almost surely simultaneously
for all tuples with rational entries and thus, by approximation, W2 almost surely, for all
ai,...,any € R. |

We now go back to the study of the measures p[t], using an approximation argument. The case
k =1 of the following lemma is Brosamler’s Theorem, which was proved in Brosamler (1973)
by a different method.

13



Lemma 4.4 Let A C R? be a bounded Borel set. Then, W?-almost surely,

1 ! A d (A"
lim / #lsl(4) G £) . (10)
t—co loglogt [, [logy/s | slogs T

Proof. We look at the continuous function ¢ : [0,1] — [0,1] with g(z) = 1 if 2 > 1/e and
g(z) = 0 if 2 < 1/€?, which is linear on the interval (1/62, 1/e). We can now find, for every
n > 0, polynomials p = En 1 Pp2™ and P = EN P,z™ such that, for every 0 < z < 1,

p(z) < g(z) < P(z) <p(z)+ 1.
Observe that g(e™*) = 1if ¢ < 1/) and hence

ul1/N](4) < / 9(e™ )1, ay dt < / P(e™*) L peaydt = ZPnu [nA](
0 0
As >" P, <1+ n we may use Lemma 4.3 to conclude that, for all k,

im su _ Ve Tuft/A(A)]* dX /2(14)‘ k
1swploglog(l/ff)/s [bgﬁ] Nog(1/n) = k'[ - (1+n)] .

Similarly, we have g(e=*) = 0 if > 2/X and hence

u[2/2](A) > / 9(e™ M p,eaydt > / p(e™ )1 p,eay di = anﬂ [nAl(
0 0

Upon observing that > p, > 1 — 7, we infer that, for all £,

o eyt i
hnsqﬁ)nfm/s [10g\/7] Alog(1/A)

S S eTA PcY2N 0] R

B lawfloglog(l/f)/s [logﬁ] A log(1/X)
2 k

> k! [6(4)(1—17)] .

- s

As these inequalities hold for every 5 > 0 we conclude that, W*-almost surely,

lim m[/e[]i/ﬁ%] Alo?m = K [EQSTA)]

We finally conclude

1 ! AF d ()"
. / psl(A) Ty L GO (11)
t—co loglogt /. | log/s| slogs s
by means of a change of variable. [

From the convergence of the moments we can also pass to the distributions of u[s](A)/log+/s
by standard methods.
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Lemma 4.5 Let A CR? be a bounded Borel set. Then, W?-almost surely,

lim 1 /t(; _ds /OO ) e "da (12)
i—oo loglogt /. {M} s logs 0 {%-@(A)} )

log /s
Proof. We apply the method of moments. The limits we get in (11) are the moments of an
exponential distribution with parameter £2(A)/7. Moreover, the exponential distribution is the
only distribution with these moments, as can be checked easily by means of the criterion given
in Breiman (1968), Proposition 8.49. Therefore we get, using for example Theorem 8.48 of
Breiman, W2-almost surely,

1 t dS o]
im ———— ) = =% da 1
tllIgo log log(#) /e {T(E;]\/_(A )} s logs /0 5{%~42(A)} e “da, (13)
which finishes the proof. -

Proof of Theorem 1.2. Recall the ratio ergodic theorem in the case of planar Brownian motion,
see e.g. Chapter X of Revuz and Yor (1994) for a proof. For all bounded Borel sets A and B in
the plane with £2(B) > 0 we have, W2-almost surely,

) )
oo Wl(B) ~ E(B)

From Lemma 4.5 and the ratio ergodic theorem we get that, W2-almost surely, for every family
{Ay,..., A} C A of open or closed cubes with rational vertices,

lim / g s / s = d
im ———— — = " . e "da.
t—oo loglogt /., {Ml[:;(j%) 7.“,%2]%(/\‘}:)} s log s 0 {2e),...224m)}

The statement of the random time Kallianpur-Robbins law follows now from Lemma 2.3. [

5 The random scale Kallianpur-Robbins law for planar
Brownian motion

The random scale Kallianpur-Robbins law for planar Brownian motion will follow from the same
sources as the ratio ergodic theorem for small scales and we first concentrate on the proof of the
latter theorem. The main tool for the proof is the approximation of the occupation measure of
small sets by means of crossing numbers. To this end we introduce a random decomposition of
the time axis as in Ray (1963). Let 7 be the stopping time given by

T=inf{t >0 : |Bs > 1}.

Denote by p the occupation measure p = p[r] of the stopped Brownian motion. For the moment
we fix a number b > 0 and define a,, = e="". By N,, we denote the number of inward crossings
of the annulus with radii a,_; and @, the Brownian motion performs before it hits the sphere
of radius 1. These crossing numbers play a crucial réle in the proof. We quote the following

essential fact from Morters (1998), Section 4.
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Lemma 5.1 The distribution of {N,},> satisfies
1 1\k
W2{] n:k}:—(l——) for k>0,
n n

and, W?-almost surely,

n

. 1 1 —a
w= T}I—{lgo log n Z gé{N"/i} - /5{a} ¢ da,

=1

and, for all k > 1,

1 1 /N\k
— 0 §—<—> — k.
w n1—>r%ologn T\ 1

=1

We identify R* with the complex plane C and write B; = |By| - exp(ids) with 95 € [0,27). For
every n we define stopping times

to = 0,
tok+1 = 1nf{t > top : |Bt| > an_l},
tzk = 1nf{t > t2k_1 : |Bt| < an} .

Note that N, = max{k > 0 : ty; < 7}. We define random variables M} with values in
[0,27) X [0,27) by
My = (O2p, O2p41) = (Vi Dtyyy,y) -

We have omitted the dependence of the stopping times f; and angles O on n for notational
convenience. The processes {M}'}r>1 are Markov chains and the necessary information about
the distribution of these chains is given in the following lemma.

Lemma 5.2 For every n the sequence {M['}r>1 of random variables is a stationary, ergodic
Markov chain. If hy is the distribution of the :mgle of the point in which a Brownian motion
started in an e’ hits the sphere of radius a,_y for the first time, then hg is independent of n and
the invariant distribution of {M} }r>1 is given by

1 2 2
ﬁ 0 /0 5{(90’91)} dh90 (01) d90

If g4 is the distribution of the angle of the point in which a Brownian motion started in a,_,e"

hits the sphere of radius a, for the first time, then gg is independent of n and the transition
probabilities of (M}')r>1 from (8,6,) are given by

27 2w
/0 /0 8((65,6:)y Aha, (03) dge, (02) -

Proof. This is immediate from the strong Markov property and the scaling invariance of planar
Brownian motion. [ |
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Remark. The measures hg, and gy, are the harmonic measures on dB(0,1). Denoting the
Poisson kernel for the ball B(0,1) by

1— 2
P(z,y) = ﬁ forz ¢ 9B(0,1) and y € 0B(0, 1),
they are given by
dhg, (6:) = (1/2m)P(e"e'™ 1) dfy and dgg, (82) = (1/27)P(e’e'™ | ') db, .

See, for example, Chapter II in Bass (1995).

We require some basic facts about Brownian motions conditioned to exit the ball B(0,¢") at a
certain angle. These facts are provided by well known statements from probabilistic potential
theory, see Bass (1995) for an excellent introduction.

Lemma 5.3 For every (01,0,) € [0,27) x [0,27) there is a process { X¢(61,02)}1>0 on a probab-
ility space (Q, A, P) such that

(i) if (Bt)i>o is a Brownian motion started in ', p is the first exit time of (By) from B(0, €®)
and © € [0,27) is the exit angle defined by B, = €°€'®, then the distribution of the process
{X¢(01,02) }1>0 is a conditional distribution of (B;);>o given © = 6y,

(ii) if p is the first ezit time of {X4(6:,6,)} from B(0,e"), then, for every Borel set A C B(0,1)
the function
fa(-30): [0,27) x [0,27) — [0,00)
(61, 62) - ]Ep{ 15 1A(Xt(01,02))dt}

is continuous, where Ep denotes the expectation with respect to P,

(iii) for every Borel set A in a compact subset of the open ball B(0,1) we have

1 2 2T EQ A
%/0 o fA(01,92;b) dh91(92) do, = ( )7

m

(iv) for every m > 1 and Borel set A C B(0,1) the moments Ep {( [ 14(X,(61,602)) dt)™ } are
bounded in (01, 6).

Proof. Let (61, 6;) € [0,27) x [0,27). We only have to construct the process {X;} = {X¢(61,02)}
up to the first exit time p from B(0,€"). Define the harmonic function

by = =l B(0, ¢!

(z) = e — o or z € B(0,¢€").

Let {X;}+>0 on (€2, A, P) be a Brownian motion started in Xo = et and killed upon exiting the
domain B(0,e’). Let {Fi}1>0 be a filtration for this Brownian motion with A = [J,5, F and
recall that {A(X¢x,)}+>0 is an {F;}-martingale. The h-path transform of {X,} is defined by

_ h(Xt/\p) >
Ph(M)_/M Aol dP for M € 7.
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For properties of the h-path transform we refer the reader to Bass (1995). The required process
is { X }o<i<, on the probability space (22, A, P,). Property (i) is Proposition (2.7) in Bass (1995).

To check property (ii) we look at a sequence b, 1 b and denote the first exit time from B(0, e")
by p,. Then

fa(01,02,;0) = lim/ /1{S<pn}lA(X5)dPhds
0

n—oo

o * h(Xs) 5
= hm/o /1{S<P"}1A(X5)h(ei91)dpds

n—oo

Pn -
= lim // lA(XS);;(XS) dsdP
0

s (e'fr)
. 161 h Y
= n]1_>moo/Gbn (e f y)1a(y) h(iw)l) dy

0y 1Y)
= i1 - d
/AGb(e ’y)h(elel) Y,
where G, denotes Green’s function for the domain B(0,€%). As

) 1 |eb€776 _ €_by|
16
=1 <—>
Gb(e ay) T og |6“9 — y| )

we can see that the integrand of the last expression is uniformly equicontinuous in (#y,62) for
all y € A and this implies property (7).

To check property (iii) note that

27
/ (01, 0:b) dhg, (6) = / Gl y) dy
0 A

and fo% Gb(eigl ,¥) dfy is a harmonic function inside B(0, 1), which is constant on the boundary.
Hence this function is constant and equal to its value at 0, which is 2b.

Finally, the boundedness of the moments of p follows from the inequality
Pp{p >t} < cyexp(—cat),

for positive constants ¢1, ¢z not depending on (61, 602), see Banuelos and Davis (1989). [ ]

Our aim is to approximate the occupation measure in terms of the Markov chain {N,},>1.
This is done in the following lemma, which constitutes the main ingredient of the proofs of
Theorems 1.4 and 1.3. It was proved by Ray (1963) for the special case A = B(0,1).

Lemma 5.4 Suppose A C B(0,1) is a Borel set. Then, W?-almost surely,

,u(anA) =a? N,b- [m + 0(1)] + o(nat) , as n — . (14)

m
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Proof. We fix n and let
tok41
T]? = / l{BsEanA} ds.
¢

2k

Observe that
Np,

pland) = 3T (15)

k=0

Conditional on the sequence M"™ = {M};>; the T} are independent and 7}’ has the same
distribution as a2T (O, O2x41;b), where

P
T(01,02;b):/0 Lx,(0,,0,)e4) A,

and {X¢(01,02)}+>0 is as in Lemma 5.3. Hence,

B (3207 - 14(©us0manit)-a2)) [ r7)

= 8ZEP{( (O2ky Ok 41, )‘fA(G?k’®2k+1;b))4}

P 3 B { (O Oir ) FaO, 0150}

k=1 j=k+1

% B { (1027, @214130) — 4021, 0255130)) .

By Lemma 5.3(iv), for every positive integer m, Ep{T'(8;,6,;b)™} is bounded in (#;,86;) and
hence the expression above is bounded by a constant multiple of N2a%. We now apply Markov’s

inequality and get, for every € > 0,

> & na

vy

WQ{‘ é (TJ? — fa(O2,O2141,b) - a 2)

< s 35 (12~ 2@ O ta)| o} < 1

8
E'nta n-e
n k=1

Because {1} }x>1 and N, are independent conditional on { M} }r>1 we have

N,
- E{NZM"}
2 n . 2 2 n n
W{‘;(Tk—fA(®2k,®2k+],b)'an) >€‘7L(Zn M }SCT
and, together with (15), this gives
2 n & . E{Ng} aC
W ‘H(%A) -1y - ;fA(@%,@%H,b) <C- vy < 2t (16)
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using in the last step that EN? < 4. Also 7T is bounded by the first time the Brownian motion
hits the sphere of radius a,_;. The second moment of this stopping time is bounded by a
constant multiple of a? and thus we get from Markov’s inequality, for every € > 0,

" C
W13 > e -nas} < oyl (17)
By the Borel-Cantelli lemma we conclude from (16) and (17) that, W*-almost surely,
Nn
panA) :ZfA(M,?;b)-ai—l—o(nai) , a8 N — 0. (18)
k=1

To complete the proof we have to show that, for every ¢ > 0, if N, > ne and n is sufficiently
large, then

Np,

" 1 2m 2m .
;fA(Mk,b) - N, - [5/0 /0 fa(8y,04;b) dh91(02)d01]

<e-N,. (19)

Recall that ) ) )
1 4 m (A
fA (01, 02, b) dhgl (02) d01 = ( ) .

2 Jo  Jo
Due to the dependence of the Markov chain {M]'};>0 on n the proof of (19) requires a more
subtle argument than the ergodic theorem for station_ary, ergodic Markov chains. We will make
use of a large deviations principle of Stroock for Markov chains satisfying a uniformity condi-
tion, which can be found in Dembo and Zeitouni (1992), Chapter 6.3. The transition densities
7((61,02), (#3,04)) of our Markov chain, which are described in Lemma 5.2 and the following
remark, satisfy

(1+e)(1+e)
(=)=

Hence the uniformity assumption (U) is fulfilled. Also, by Lemma 5.3(it), the set {v : | [ fadv —
(2(A)b/m| > €} is closed. Hence we infer from the large deviation principle for the empirical
measure of {M] }1>1, see Theorem 6.3.8 and the following remark in Dembo and Zeitouni (1992),
that, for every ¢ > 0 there is some § > 0 depending, of course, on € > 0, such that

m((01,602), (03,04)) < [ ]2 -7 ((65,65),(65,04)) forall 6;, 8. € [0,2r).

N—=oo

N
1 1
lim sup NlogWQ{‘ﬁZfA(M]?;b) — EQ(A)b/ﬂ" > 8} < =94
k=1

Note that the probabilities above are independent of the choice of n, as the distributions of the
Markov chains {M['};>1 do not depend on n. We conclude that, for sufficiently large integers
n, denoting by [ne] the integer part of ne,

W

Ny,
N] S fa(Mpsb) - £2(A)b/7r‘ > e and N, > ne}
o k=1

00 N
< 3 W T falvgsh) - A ap/a| > <)
N=[ne] k=1
& - —d|ne 1
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Hence, by the Borel-Cantelli lemma, W2-almost surely, for all but finitely many n,

Nn A .
b)) — P2 (5 +m) *SUPg, 9, fa(by,02;6) if N, <en,
kz—;fA(G%’@%H’b) P £ | < { (= N,) it N, > en.

As this holds for every € > 0 it implies, together with (18), the required approximation (14). m

As a consequence of Lemma 5.4 and Lemma 5.3(iii) we get the following approximation.

Lemma 5.5 Letd > 0 and let A be an (*-continuity set inside a compact subset of B(0,1). Then
we can find an arbitrarily small b > 0 such that for a, = e~*" and the corresponding crossing
numbers {Ny}p,>1 there is, W2-almost surely, an integer N such that, whenever a, < r < a,_;
and n > N,
A) - N, Ny,
M_ _.52(,4)‘ <5<1+_)_
bn - a? n n
Proof. We denote by Ay the union of all open balls of radius 9 centred in A. Because A is an
(*-continuity set with £2(A) < co we can find a ¥ > 1 such that [(*(Ag) — (2(A)| < §/2. We can
find an arbitrarily small & > 0 such that rA C Ay for all 1 < r < e®. We apply Lemma 5.4 to
find, W*-almost surely, an integer N such that, for all n > N,
plagAg) T Ny oo ‘ 5( Nn>
—— — — /(A —(14+ —).
bn - a2 n (ﬂ)<2 +n
Because a Brownian motion in the plane almost surely never returns to the origin and A is
bounded we can choose N so large that p(rAyg) = v[r](Ay) for all r < ay. We conclude that,
whenever a, < r < a,_; for some n > N, then

AT x N80 N

a2
bn - a2

&-EQ(A)—I-5<1+%). (20)

n

a2
bn - a2

IA

To get the reverse estimate we look at the complement of the union of all open balls of radius 9
centred in the complement of A. Analogous arguments to above yield an arbitrarily small b > 0
such that, W2-almost surely for all sufficiently large integers n, whenever a, < r < a,_1,

v[r](A)-m _ Np N,
— > A =61+ —). 21
bn-a2 ~ n (4) ( + n ) (21)
Picking b so small that (20) and (21) both hold finishes the proof. ]

We now have the means to prove a ratio ergodic theorem for small scales in logarithmic prob-
ability of order three.

Lemma 5.6 For all bounded (?-continuity sets A, B C R? with (2(B) > 0, W?-almost surely,

_ 1 1/e Celr](A) rR(A) dr
0 TogTog(1/9) / dfo<r<i; ‘u[r](B) - EZ(B)‘ <nf rlog(1/7)

=1 for all n > 0.
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Proof. Replacing A and B, if necessary, by sA, sB for a sufficiently small s > 0, we may assume
that A, B C B(0,1/2).
Suppose that » > 0 and k > 0 are given. We can find a small § > 0 such that, whenever
|z — (2(A)] < & and |y — £*(B)| < &, then |z/y — (*(A)/¢*(B)| < 5. By Lemma 5.1 there is a
¢ > 0 such that

N

. 1 1
NI Tog N nz_; o L n>ey > 1 = K

Using Lemma 5.5 we can find b > 0 such that, W2-almost surely, there is an integer N such
that, for every n > N with N,,/n > ¢ and all r with a, <r < a,_1,

‘%—ﬁm)‘ <.

2
an

Hence, upon observing that

/“” dr log(n + 1) — 1 1

—— =log(n —logn ~ —
anps T log(1/7) & & n’
we get that

1 1/e vrj(A) - dr
liminf ———— 490 1:‘7—%14‘ dp ———
e loglog(l/g)/a wfo<r< N, a2 L)< } rlog(1/)
1 1/e dr
> liminf —— tan <1<y Nyp/n > _
- 11T¢1(Jnf log log(1/¢) /5 5{@{7" tn ST < an-y for No/n > C} rlog(1/r)
1
Using the analogous argument for the set B we infer that
1 1/e v[r](B) - m dr

iminf ——— :7—£2B‘<57 1-—k.

lim fnf loglog(l/g)/a 5{7’}{0<’"< ! ‘ bN, - a2 (B)| < }rlog(l/r) s
This implies, by definition of 4, that

1 1/e v[r](A)  2(A) dr

liminf — — 5, 1:‘ - ‘< Y 19k,

STy loglog(l/e)/s wf{o<r< VIr(B) ~ 2(B)| 7} rlog(i/r) ~ "
As k > 0 was arbitrary this finishes the proof. [

In order to get the desired ratio ergodic theorem it remains to observe that convergence in
logarithmic probability of order three is equivalent to convergence in logarithmic density of
order three. More precisely, the following lemma of Fisher (1990), see also Berkes and Dehling
(1993), holds true:

Lemma 5.7 Let § > 0 and f: (0,6) — [0,00) be a locally integrable function with nonnegative
values. The following statements are equivalent:
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(i) For every n > 0,

_ 1 1/e dr
i Toglog(1/2) / 5{’”}{0 <r<dJins n} rlog(1/r) |

(ii) There is a set N C (0, 00) such that

i 1 /1/61 ") .,
40 loglog(1/e) J. N "y log(1/r)
and such that
lim f(r)=0.

=0
rgN

Proof. See Fisher (1990), Lemma 4.9. [ ]

Proof of Theorem 1.4. The statement of the ratio ergodic theorem follows directly by applying
Lemma 5.7 to the situation of Lemma 5.6. [ |

For the sake of completeness we give the proof of the random scale Kallianpur-Robbins law by
means of Lemma 5.5 directly instead of referring to (3). The convergence of the moments follows
more or less directly form Lemma 5.5 and the last statement in Lemma 5.1. Denote by A, as
before, the collection of open or closed cubes with rational vertices.

Lemma 5.8 WZ-almost surely, for all finite families {Ay,...,An} C A and all k1,. .. Ky >0,

. 1 /1/6 T[] (AY) dr 1
lim ————— exp | — Z K = — .
elo loglog(1/e) J. — r?log(1/r)| rlog(1/r) 14321, (ki/m)*(As)
Proof. 1t suffices to prove the lemma for a fixed family {A,..., A,,} C A of subsets of the open
ball B(0,1/2) and fixed K1, ..., K, > 0. Using Lemma 5.5 we get, for every > 0, an arbitrarily
small b > 0 such that, W2-almost surely, there is an integer N such that, for all n» > N and all
Upy1 <1 <y,

(o) [ ] S < el

IA
TN
=)
3
N
[\
| —— |
g
&)
o=
[\
3
_|_
=
—_
+
=

miéﬂp(_e%[imﬁgi) _n] ,Azun) (22)

k=N =1
1 aN “ | wu(rA) dt
log log(1/¢) / P ( Z [ 1og<1/r>D t - log(1/t)
1 & T 2(A;) Ny
<« 1 =2 _ i) e .
< gty 2 5o ([ S o] E @



From Lemma 5.1 we know that, for every x > 0,

1 zn:exp(—fiNk/k) 1
k T 14k

lim
n—oo log n

Hence the lower bound (22) and the upper bound (23) both converge, as n — oo to limits
which, by Lemma 5.3(iii), converge as first b — 0 and then 7 — 0 to (14+>.7, (x;/7){*(A;)) ™. m

Proof of Theorem 1.3. The first statement of the random scale Kallianpur-Robbins law follows
by means of Lemma 2.3 from Lemma 5.8 . [ |

6 On the divergence of order-two averages

We briefly comment on the necessary steps to prove the divergence of the order-two averages in
the random time case. In the random scale case this was proved in Morters (1998).

First note that, by means of Lemma 4.2, we can see that, whenever E;\;l a, = 0and Ais a
bounded Borel set, W?-almost surely,

lim # /1 (EnNzl anﬂ[n/\](A)>k @ B
el0 log(1/¢) J, (1/2) log(1/2) =
Assume now that, for some bounded Borel set A C R? with positive probability,

1 b u[s](A) ds
/ log/s s

exists. As the limit depends only on the tail behaviour of Brownian motion, the limit exists

(24)

lim
t—co logt

almost surely and is necessarily constant, say equal to C' > 0. We use (24) to reverse our
approximation step. More precisely, as in Lemma 4.4, for every 0 < n < 1, there are polynomials

ZnNzl prz™ and EnNzl P,z" with EnNzl pn = 0 and ZnNzl P, = 0 such that, for all A > 0,

N
ﬁ u[1/2](B) < ; PafilnN](B) + A[A](B)

and
1 N
T ) 2 3 pel )+ HI(B).
Thus, by (24) and our assumption

I
=10 Tog(1/2)

1 Y pN(B) dh
/1/5 (/2 log(1/N) A

As, by Lemma 4.1, the third moments

LY ANB) dp
e /1/5 (1/2) log(1/A) X
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are bounded, we can infer that

IimE

£l0 {log(ll/é:)/1 Lo d)\r =0

je (1/2)log(1/3) X

However, one can see from our moment calcualtions in Lemma 4.1, that this is not the case and
hence we have a contradiction.

7 Final remarks

e In this paper we have presented the theory from the measure theoretic viewpoint and
formulated pathwise limit theorems which hold uniformly for bounded weak functionals of
the occupation measure. An alternative, largely equivalent, viewpoint describes the limit
behaviour of integrable additive functionals. This point of view is adopted in the paper
published in Prob. Theory rel. Fields.

e An alternative approach to the random time Kallianpur-Robbins law is based on the skew-
product representaion of Brownian motion. In Mérters (1999) this approach is used to
prove a pathwise version of Spitzer’s theorem on the windings of planar Brownian motion.
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