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Abstract

For a general local completeness criterion for algebras on an infinite universe
A we need to know all locally maximal clones on A as well the increasing
chains of proper local clones whose union is locally complete. The clones in
question are all of the form Pol p where p is a finitary relation on A and Pol p
is the set of all operations on A preserving p. The predecessor paper Local
completeness I left the following 5 sets of relations on A to be sorted out:
the locally bounded graphs, diagraphs and reflexive digraphs of diameter
2, a set of ternary relations and the pivotal set of all totally reflexive and
symmetric relations. We present partial results for each of the 5 types. For
graphs they relate to largest infinite cliques and digraphs are restricted to
the acyclic ones which either have arctransitive endomorphisms or a certain
vanishing-interval property. We restrict the last type to two kinds of relations
termed strongly homogeneous and protective and we find many instances of
the increasing chains of proper local clones mentioned earlier.

Key words: Local completeness, locally maximal clone, preservation of
relations
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1 Introduction and preliminaries

1.1 The paper is devoted to the search for a general local completeness cri-
terion for universal algebras on a given infinite universe A. Such a criterion
is provided by a cofinal subset of the poset of local clones distinct from the
greatest clone Q4 of all finitary operations on A. A ”small” cofinal set con-
sists of all locally maximal (also called precomplete or preprimal) clones as
well as certain towers, (increasing chains of local clones whose union is locally
complete).

The paper starts off where [R-Sc 84] ended - namely with 5 types of relations
on A listed below - and proceeds by an elimination based on relational con-
structions. A pivotal part is the elimination in the set T" of totally reflexive
and totally symmetric relations on A which is likely to produce most of local
clones and towers. In §7 a variant of the ideas from [Ro 65,70] leads to a
reduction of T' to the set of relations called strongly homogeneous and pro-
tective (Definition 7.10). Among the remaining 4 types three are provided
by the locally bounded graphs, reflexive digraphs of diameter 2 and graphs
(883-5). The last type consists of nontrivial ternary relations on A of the
form o U {aab: a,b € A} where o C o3 (see 6.1). The last 4 types have no
analogue in the finite case.

We have been able to produce only very partial results. For graphs they re-
late to largest infinite cliques (i.e. complete subgraphs) and yield 2/4 graphs
p on A with locally maximal clones Pol p (of operations compatible with p).
For digraphs we narrow the search to strict order-like digraphs of two kinds.
The digraphs of the first kind have arc-transitive endomorphisms. We show



that for unbounded chains < with arc-transitive endomorphisms the clone
Pol (<) is locally maximal; e.g. this happens for @ or IR with the natural
order. The digraphs of the second kind have a certain vanishing property for
intervals. For the reflexive digraphs and the ternary relations we only have
very preliminary results.

Perhaps the relevance of locally maximal clones and towers should be ad-
dressed. The knowledge of large clones would be of interest because it would
allow a certain classification of universal algebras and of some of their basic
properties. However, presently there is little hope to gain such knowledge
and so local clones could be seen as a reasonable substitute. The local clones
on A are exactly the clones determined by sets of finitary relations on A (1.3).
Now most compatible relations used explicitely in today’s universal algebra,
like subalgebras, congruences, tolerances and endomorphisms, are finitary -
even often at most binary - leading to the relevancy of local clones. Another
reason for the study of large local clones is the fact that some properties of
finite maximal clones, like the McKenzie-Gumm theorem, extend to locally
maximal clones. Locally maximal clones and towers would also fit well to
the large literature on local clones and algebras.

The existential properties of relations on infinite sets arising naturally in this
context are less effective than they are on finite universes where eventually
one runs out of space. Also relations behave differently on infinite sets than
they do on finite sets; e.g. recall the well-known Erdos’ result that ”almost
all” graphs on a countably infinite vertex set are pairwise isomorphic; a fact,
however, of little use to us because we may need exactly the "few” excep-
tional graphs.

While most of the locally maximal clones from [R-Sc 82, R-Sz 84] were re-
lated to present universal algebra, the 5 types studied in this paper seem to
be located to be outside the realm of today’s interests.

It could as well turn out that our task is hopeless but still it would be help-
full to restrict the 5 types as much as possible. From our point of view the
relational methodology should be exploited as far as possible. One of the
purposes of this paper is to draw attention to the 5 types and we present our
very preliminary results with the hope that they might provide the initial
push for further research. Of course, it could turn out that several of the
results may lead in blind alleys.

We obtained most of the results some time ago and for the above reasons
we decided to publish them in spite of their admitted shortcomings and
unfinished nature. We have strived to make the presentation reasonably self-
contained.

The partial financial support provided to the first author by the University
of Kaiserslautern and an NSERC Canada grant as well the hospitality shown



to him by the Mathematics Department during his 1998 one month stay in
Kaiserslautern are gratefully acknowledged.

1.2 We briefly outline the background, terminology and notations. Let A be
an infinite universe. For a positive integer n denote by Ogl) the set of n-ary
operations (or functions) on A; i.e. of the maps f : A" — A. For example
0" contains the i-th n-ary operation e} defined by setting el (a1, ..., a,) = a;
for all aq,...,a, € A. Set O4 := .-, (’)Ef) and for X C O4 and n > 0 set

XM .= Xn (’)54”) . A subset C of Oy is a clone on A if it is composition
closed and contains all projections (for a more elegant, precise but less intu-
itive definition see [Ma 66]); equivalently, clones on A are the sets of term
operations of universal algebras on A. Denote by L4 the set of all clones on
A. The poset L4 := (L;C) is an algebraic lattice whose greatest element is
the clone 04 and NF is the meet of a family F' of clones. For X C O4 the
least clone (in the complete lattice £4) containing X is the clone generated
by X.

1.3 The local closure Loc on Oy is defined as follows. Let X C O4 . Then
f e Ogl) belongs to Loc X if for each finite subset F' of A there exists
g € X™ (depending upon f and F) such that f [ F =g | F (here f | F
denotes the restriction of f to F’; i.e., the map from F™ to A defined by
(f I F)(a,...,an) = f (a1, ...,a,) for all ai, ...,a, € F'). Such an operation f
can be thought off as assembled from the restrictions of operations from X
to finite subsets of A; equivalently, somebody with a tunnel vision, allowing
him to view only finite parts of A”, could not discern whether f € X or
not. A clone C' is local if LocC = C.

To justify the definition of a local clone we need the following concept. For a
positive integer h a subset p of A" is an h-ary relation on A. Here the h-tuples
from A" are written as a;...ay, instead of the usual (ay, ..., ay) ; moreover, we
do not view p as a predicate and hence do not perceive p as a map from A" into

the truth values {T, F'} or {+, —} as it is customary in logics. Denote by ’R,Ef)

the set of h-ary relations on A (i.e. RXZ) =P (A")) and set R4 == Up, R%).
We say that f € Ogl) preserves p € ’RXL) if p is a subuniverse of (A4; f)* (=
the h-th power of the universal algebra with a single operation f); explicitly
f preserves p if for every hxn matrix M whose columns are all in p the values
of f on the rows of M form an h-tuple from p. For example, if h = 2 and p is
an equivalence relation on A, then f preserves p iff p is a congruence of (A; f).
Preservation is also known under several other names, like compatibility etc.
Set
Polp:={f € ng) : f preserves p,n € IN}

and for all R C Ry also set Pol R := [ .z Polp. (This standard notation
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should not be confused with the one used for the set of polynomials of an
algebra.)

The following is well known (see e.g. [Rom 77, R-Sc 82] and easy to prove:
A clone C on A is local if and only if C = Pol R for some R C Ry4. (This
in fact characterizes the Galois-closed subsets of @4 in the Galois connection
induced by the relation ” f preserves p” between O4 and R 4.)

1.4 We turn to the Galois closed subsets of R 4 generated by a single relation
p in the above Galois connection. We say that o € R4 dominates p € R4 if
Pol p C Polo.

Denote by [p] the set of all 0 € R4 that dominate p (i.e. [p] = InvPolp
in the standard notation). It is known that [p] is closed under arbitrary
intersections. For relations p and o on A write p = o if p dominates o and
o dominates p.

How to decide whether o dominates p? To verify directly that Pol p C Polo
one needs some knowledge about the operations preserving p and this is often
time consuming if not outright hard. We describe another way. For p > 1 a
p-ary resolvent of an h-ary relation p on A is

o:={f(1)..f(p): f€Hom(y,p)} (1.1)

where v is an h-ary relation on a set I containing {1, ...,p} and Hom (v, p)
denotes the set of relational homomorphisms from 7 to p; i.e. of f: I — A
such that

i1...0p € 7= f(i1) ...f (in) € p. (1.2)
We denote o by v n, p and call v the auziliary relation of the resolvent.

Example. Let p be a binary relation on A and
pop:={zy:zu,uy € p for some u}. (1.3)

Set [ := {1,2,3} and v := {13,23}. Then 7 ny p = pop. Thisis a
prototype for resolvents and reveals the existential character of (1.1) which
is due to the fact that for all i € I\ {1, ..., p} the value f (i) exists but does
not appear explicitly in 0. We shall often define resolvents in a form similar
to (1.3). It is not difficult to prove that every resolvent of p dominates p; in
fact, domination is determined by resolvents. To make this more precise we
need two concepts. First an h-ary relation p on A is repetition-free if for all
1 <@ < j < h there exists ay...a, € p with a; # a;. It is well known and easy
to check that a systematically repeated coordinate in all h-tuples from p can
be removed without affecting Pol p and so without loss of %enerality we may
assume p to be repetition-free. Next recall that R C Rff is directed if for
all p,p’ € R there exists p” € R containing p U p/. The union of a directed

4



set R is a directed union. A basic result from [R-Sz 84] can be formulated as
follows. A p-ary repetition-free relation o on A dominates a relation p on A
if and only if o 1s the directed union of a set of p-ary resolvents of p. This
result is sometimes expressed in terms of predicates, 3 and the equality = but
for effective use the rational form (1.1) seems to be more appropriate than a
logic one. To show Pol p C Pol o the whole trick is to find suitable relations
v in (1.1) and therein actually lies the whole difficulty in domination.

1.5 Denote by Lcy the set of local clones on A. The poset (Lca, C) is a
complete lattice that is neither algebraic nor a sublattice of £L4. For X C Oy4
the (nonindexed) universal algebra (A; X) is locally complete if Loc X = O4.
Set P :=Lca \{Oa}. A subset B of P is generic if B is cofinal in the poset
P = (P, C), i.e. if every local clone C' distinct from O4 is contained in some
clone B from B. Evidently every generic set B provides a local completeness
criterion:

Let X C Oy4. Then (A; X) is locally complete if and only if X C B for no
B e B.

Naturally we wish the generic set B to be as small as possible. Call C' € P
locally maximal if C is a maximal element of P, i.e., if C C D for no D € P.
Clearly each generic set contains all locally maximal clones. Unfortunately,
it is not true that each C' € P is contained in a locally maximal clone.

A tower is a transfinite sequence <p§ : £ <) in R4 (where ¢ is an ordinal)
such that:

(i) Pol py C Pol p; whenever 6 < § < ¢, and

(i) X := Ug <. Pol p is locally complete; i.e. Loc X = O4. The following first
example of a tower came up in [R-Sz 84], §3 Remark. Let s be a permutation
of A whose cycles are all infinite and let s° denote the graph {a s (a) : a € A}.
Then the countable sequence <(52i) 1 < w> = (5°,(s%)°,(s")°,...) is a
tower. In 7.10 and 7.12 we exhibit a large set of towers.

To resume: Our (perhaps unattainable) goal is to find all locally maximal
clones and all towers.

1.6 We conclude with some terminology and notation. Let h be a positive
integer. Denote by ¢, the h-ary relation on A consisting of all h-tuples with
some repeated coordinate; i.e., of all a;...a, € A" such that a; = a; for some
1 <i < j < h (depending on ay...ap); e.g. t17 =0, 1o ={aa:a € A}, 13 =
{aab : a,b € A} U{aba :a,be A} U{abb: a,b € A}. Set op := A"\1y. For an
equivalence relation € on {1,..., h} set

A= {aj...ap € A" 1ij € e = a; = a;}.

The relations A, are called diagonal. Let p be an h-ary relation on A. Call
p trivial if p = () or p is diagonal. It is well known that Polp = O, < p is
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trivial. Next p is totally reflexive if p O 1. For a permutation p of {1, ..., h}
set

p(p) = {ap(l)...ap(h) 1a1...ap € ,0} .
Note that p® ~ p. Call p totally symmetric if p®® = p for all permutations p
of {1,...,h}; i.e. if p is invariant under all coordinate switches. For all n > 1
denote by T,, the set of all totally reflexive and totally symmetric nontrivial

n-ary relations on A. Call p repellent if [p] is disjoint from all T,,, n = 1,2, ...
For1 <i<j<hset

pri; p = {aa; : ar...a € p}

and notice that pr;; p dominates p.

2 Chains of totally reflexive and symmetric
relations

We start with the following simple lemma.

2.1 Lemma.
Let 0 < ny <mng < ... and let p; be totally reflexive n;-ary relations on A
(1 = 1,2,...) such that for each positive integer h some Pol p;, contains an
essentially at least binary operation assuming at least h wvalues.
Then V :=J Pol p; is locally complete.

i=1
Proof. We prove that O) C LocV. Let C' C A be finite, f € O™ and
h = |f(C)|. Let n; > h, let ¢ € f(C) and let ¢ € OY be defined by
g(z) = f(z) for all z € C and g(z) := ¢ otherwise. On account of the
total reflexivity of p, and n; > h we have g € Polp, C V. This proves that
OW C LocV. Applying [R-Sc 82] 4.2 we obtain the required LocV = O. B

Let B and C be sets and a : B — C be a surjective map. For an h-ary
relation 7 on C' define:

at(r):= {(al, nap) € B (a(ay),...,a(ay)) € T} .
We have

2.2 Fact:
Let a: B — C' be surjective and let ¢ : C'— B be such that aop =idg. To
fe ng) associate f € ng) defined by setting

~

f (bla 7bn) = Qo(f (CL/ (bl) g ey O (bn)))
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for all by,...,b, € B. If f € Polr then fAE Pola ! (7).

Proof. Let X be an h x n matrix whose columns are all in o (7). Set
Y = (V) = (a (X)) . Clearly all columns of Y are in 7 and therefore

(2 (f (Y1), 0 (f (Vi) € 7 (7)

where Vi, denotes the i-th row of Y. Here ¢ (f (V; )) =
on account of the definition of f , i.e. f preserves a~! (7). N

F(Xu) (i=1,...h)

Recall that for intergers h > 1 and m > 0
T {(al,...,ah) e Ah:a; = a; for some 1 <i < j < h},
g i=A((a11y oy G1m) 5 ooy (@R1, ooy Q) = (@14, oy Qnj) € Ly, J=1,...,m}.

2.3 Corollary:
Let m be a positive integer, let o : B — A™ be surjective and let

opi=a (M), h=1,2,.... Then V ::hoL:J)1 Poly, is a locally complete clone
on B. B

Proof. Clearly ()" is totally reflexive and so is p,. It is easy to see that
Pol 43" contains an essentially binary operation f with exactly h values.

Choose ¢ : A™ — B so that o ¢ = idgm . The corresponding operation ]?
(from Fact 2.2) preserves ¢ 1. Clearly f assumes h values and thus applying
Lemma 2.1 we get the desired result. B

3 Locally bounded graphs

In this section (A;p) is a simple graph (i.e. p is a binary areflexive and
symmetric relation) which is locally bounded. This means that each finite
subset B of A has a joint or common neighbor u (i.e. {u} x B C p). We
assume that p is repellent. (see 1.6) As usual, a clique C is a complete
subgraph of p (i.e. cicy € p for all ¢1,co € C, ¢1 # ¢2). We show first that p
is covered by countable cliques.

3.1 Lemma:
Each finite clique of p, and in particular each edge of p, is contained in a
countable clique.

Proof. Let C' be an m-element clique of p. Let u be a bound of C'. Then
clearly C := {u} U C is an (m + 1)-element clique. B

For a subset B of A put Ng := {y:zy € p for all x € B}. Note that B
and Np are disjoint. The graph pg is obtained from p by deleting all edges
between B and A\Ng. Note that for |B] = 1 we have py = p and that for
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|B| > 1 the set B is an independet set of pg (i.e. biby & pg for all by, by € B).
We say that p is finitely transitive if for every positive integer n, each n-
element subset B and arbitrary aq,...,a, € A there exists ¢ € Hom (pg, p)
(see 1.4) such that ¢ (b;)) =a; (i=1,...,n). We have:(see 1.4)

3.2 Lemma:
The relation p is finitely transitive.
Proof. For a positive integer n and B = {by,...,b,} C A put

T = Toy.bn = (P (b1) ;0 (bn)) : ¢ € Hom (pg,p)}

We need the following two claims for 7 := 7, 5,. For notational simplicity
denote b; by i for alli =1,....n.

3.3 Claim 1:
The relation T s totally symmetric.

Proof of the claim. Let 7w be a permutation of {1, ...,n} and (z1, ..., x,) € 7.
Then z; = ¢ (i) (i =1,...,n) for some ¢ € Hom (pg, p). Define a selfmap ¢
of A by setting ¥ (i) := ¢ (7 (i)) for i = 1,...,n and ¢ (z) := ¢ (x) otherwise.
We claim that ¢ € Hom (pg, p). Indeed, it suffices to verify it for an edge
1z from pg. By the construction of py we can assume that ¢ € B and
x € Np. Then jx € pg for j = 1,...,n. Since ¢ € Hom (pg, p), it follows
that (1) (z) = o (7 (1)) ¢ (2) € p. Using 1 (i) = @ (7 (3)) — ey we get
the required (:Eﬂ(l), oy xﬂ(n)) € 7. This proves the claim.

In view of Claim 1 for B = {b,...,b,} we write 75 instead of 74, _p,.

3.4 Claim 2:

Let B C C C A be such that |B| =n and let |C| =n+1. If (z1,...,2,) € TB
then (x1, ..., Tp, Ty) € To.

Proof. For notational simplicity let B := {1,...,n} and C := {1,...,n + 1}.
By the definition of 75 we have x; = ¢ (i) for some ¢ € Hom (pg, p). De-
fine ¢ : A — A by setting ¢ (n+1) := ¢ (n) and ¥ (z) := ¢ (x) other-
wise. We claim that ) € Hom (pg, p). Again it is enough to check it for an
edge (n+ 1)z € pg. By the definition of p, clearly nz € pg N ps and, as
¢ € Hom (pg, p) also ¥ (n+ 1) (x) = ¢ (n) ¢ (z) € p and therefore by the
definition of 7¢ we get (z1, ..., Tn, Tn) € po. This proves the claim.

Now it suffices to prove by induction on n that 73, s, = A" for all {by, ..., b,} C
A.

(1) Let n = 1. Fix b € A. Since py; = p, we have that b = ida(b) € Ts.
Suppose 753 C A. Then the relation 74, is a proper unary relation on
A and thus 7y € T1 N [p] in contradiction to the assumption that p is
repelling. Thus 7, = A.



(2) Let B := {b1,b2} C A and let 7,3 = A. By Claim 2 we have (z,z) €
T for all x € A. By Claim 1 the relation 7 is symmetric. Next
biby = id4 (b1)id4 (b2) € T due to idg € Hom (pg,p). Thus 75 D
o == {(z,x) : x € A}. Since 75 € [p] and p is repellent, we have the
required 75 = A2,

(3) Letn>1,BC C C Awith |B|=n, |C| =n+1and 75 = A™. In view
of Claim 1 the relation 7¢ is totally symmetric. By virtue of 75 = A™
and Claim 2 we have (z1, ..., T, x,) € T¢ for all zq, ..., 2, € A. Now 7¢
being totally symmetric it is also totally reflexive. Since 7¢ € [p] and
p is repellent, we get the required 7 = A", This completes the proof
by induction and the proof of the Lemma. B

3.5

Let C denote the set of cliques of p. The set C ordered by C is obviously
closed under unions of chains and so by Zorn’s lemma each C' € C extends to
a maximal clique M. Here M is obviously maximal iff for each x € A\M we
have xm ¢ p for some m € M. Let I', denote the set of infinite cardinalities
of the cliques of p. Note that by Lemma 3.1 clearly Xy € T',..

3.6 Corollary
Let v € T',. Then to each finite subset F' of A there exists a clique C' of
of size 7y such that F x C C p and |C| =~ — |F]|.

Proof. Let E be a clique of p with |E| = . Choose B C F so that
|B| = n :=|F| and put E' := FE\B. Note that F' C N and that the graph
pp is obtained from p by deleting edges between B and A\ Np. Since E’ is
disjoint from B, no edges between the elements of E’ have been deleted and so
E' is a clique of pg as well. Moreover B x E' C pg. Now by Lemma 3.2 there
is ¢ € Hom (pg, p) such that ¢ (B) = F. Clearly ¢ carries the clique E’ onto
the clique C' := ¢ (E’) of the same size and ' X C = ¢ (B) x ¢ (E') C p. 1

3.7

We give a sufficient condition for a resolvent 7 of p (see 1.4) to be either
trivial or satisfy 7 = p (i.e. PolT = Polp). It can be verified that without
loss of generality 7 has the following form.

Let n be a positive integer, N := {1,...,n} and G = (V, o) a graph such that
V O N. We say that

7:={(e(1),...,0(n)) : ¢ € Hom (o, p)} (3.1)

belongs to G. We show that for G with a ”small” chromatic number either
T~ por 1 = A" As usual, an equivalence relation on V is chromatic



if all its blocks are independent in GG. This approach is motivated by the
fact that due to areflexivity for each f € Hom (o, p) the kernel ker f :=
{vv' € VZ: f(v) = f (v')} is a chromatic equivalence relation on V. We start
with the following technical lemma.

3.8 Lemma

Let G = (V,0) be a graph with a chromatic equivalence relation & with x
blocks such that N :={1,...n} CV and ij €< i=j forall i,j € N. If
x € I', then 7 defined by (3.1) belongs to the subgraph of G induced by N.

Proof. Put ¢/ := 0 N N? and
pi={(z1,...,x,) € A" : zyx; € p for all ij € o'} .

Since o’ C o, it is easy to see that 7 € p. For the converse, let (x4, ..., 2,) € p.
Let X denote the set whose elements are 1, ..., z,. By Corollary 3.6 there
exists a clique C' of cardinality x such that X xC C p. Let {B; : ¢ € I} be the
set of the blocks of ¢ where N C [ and i € B; fori =1,...,n. Put J := T\ N.
Since |J| = ¥, there is a bijection ¢ : J — C. Define ¢ : V. — A as follows:
Let ¢ € I and v € B;. Fori € J put ¢ (v) := ¢ (i) and put ¢ (v) := z;
otherwise. We verify that ¢y € Hom (o, p). Suppose to the contrary that
there is uv € o such that ¢ (u) ¥ (v) ¢ p. As C' is a clique of p, the inclusion
X x C C pholds and u € B;, v € By for distinct 4,7 € I, we have 1,7’ € N.
Then uv € ¢’ and ¢ (u) ¥ (v) = x;xy € p contrary to our assumption. Thus
¥ € Hom (o, p), hence (z1,...,2,) € 7 and p C 7. Thus g = 7 and 7 belongs
to the subgraph of G induced by N. R

Now we have:

3.9 Proposition.

Let G = (V,0) be a graph with a chromatic equivalence relation & with x
blocks where N := {1,...,n} meets n blocks of ¢ and let T belong to G (i.e.
is defined by (3.1). If x € ', then

(i) ij € cNN* = pry; 7 = p,
(i) ij ¢ o N N2, i%j:>prij7':A2,

(iii) 7~ p, whenever o N N? # () and 7 = A™ otherwise.

Proof. By Lemma 3.8 the relation 7 belongs to the graph (NN, ¢’) where
o' = o N N2 To prove (i) let ij € o' and let v := pr;;7. We have v =
{¢ ()¢ (j): ¢ € Hom (¢',p)} C p due to ij € o’. For the converse let ¢;c; €
p. By Lemma 3.1 the edge c;c; is contained in a countably infinite clique
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C and so we can choose elements ¢, € C for ¢ € {1,...,n} \ {7,j} so that
ckem € plorall 1 £k, m = n, k# m. Clearly (cy,...,c,) € 7 and so ¢;c; € v
proving p C v. Together v = p and p = pr;; 7.

To prove (ii) let ij ¢ o', i # j and a,a’ be arbitrary elements of A. According
to Corollary 3.6 the set {a, a’} is included in an n-element clique C of (A, p).
Define ¢ : N — C so that ¢ (i) := a, ¢(j) := o while ¢ (k) # ¢ (¢) for all
1<k</t<n,{kt}#{ij} Ttis easy to see that f € Hom (¢, p) and so
(a,a’) = (¢ (i), (j)) € pry; 7. This proves (ii).

Finally (iii) follows from (i) and (ii). B

As usual the chromatic number x of a graph G is the least cardinality of the
set of blocks of a chromatic equivalence relation of G. We have:

3.10 Lemma
Let an n-ary non-trivial relation T belong to G = (V, o). Then

(i) the chromatic number x of G satisfies x < min{|im f| : f € Hom (o, p)};
in particular, x < |A],

(i) If |im f| € T', for some f € Hom (o, p), then either 7 = A™ or 7 = p.

Proof. (i) Let f € Hom (o, p). Clearly ker f determines a chromatic de-
composition ¢ of V' with [im f| blocks. To prove (ii) let |im f| € I', for some
f € Hom (o, p). From (i) clearly follows x € I',.

Fix a chromatic equivalence relation n on V' with y blocks. We can subdivide
the blocks of 7 so that N meets n blocks of the resulting equivalence relation
. Here € has at most x + N blocks where clearly x + N € I',. Now (ii)
follows from Proposition 3.9. &

Now we can settle the case o := |A| € T',. We say that p is clique coherent
if to every finite subset F of A there exists a clique C' of size « := | A| such
that F' x C C p.

3.11 Proposition
If p is clique coherent, then Pol p is a locally mazximal clone.

Proof. Clearly o € TI',. Let an n-ary nondiagonal relation 7 on A be
the directed union of a family {7,:¢ € L} of resolvents of p. Set M :=
{ij:1<i<j<n}and for each £ € L set

Ky:={ij € M :pr,te=p}.

Clearly no 7, = A™ and so by Proposition 3.9 each K, is nonvoid. If the set
K := Nger Ky is nonempty then for ij € K clearly pr;; 7 = p; hence 7 = p

11



and we are done. Thus assume that for every ij € M there exists {;; € L
such that pr;; 74, = A% In the directed family {7, : £ € L} there exists k € L
such that 7 2 UyjenTs,;- Now pry; 74 = A? for all ij € M. According to
Proposition 3.9 the resolvent 7, equals A™; thus 7 O 7 also equals A™ and
T is diagonal, contrary to our assumption. B

It is easy to construct examples of such graphs.

3.12 Example

Let a clique C' of p satisfy |C| = a and let (A\C) x C C p (i.e. p is contained
in the complement of a graph with « isolated vertices). Then p is clique
coherent and so Pol p is locally maximal. Clearly there are 2* such graphs.
A particular instance is the complete graph K4 = (A,#). The fact that
Pol(#) is locally maximal (and a partial description of Pol (#)) is in [R-Sz
84].

Notice how much the infinite case differs from the finite one. For A finite
it is known (folklore) and [Po 76] that Pol (#) is the essentially unary clone
generated by the set of all permutations of A; all the clones containing Pol (#)
are known [H-R 94] and Pol (#) is far from being a maximal clone.

3.13 Remarks

1. In Example 3.12 we had a single clique C of size a. More generally,
we may have a family {Cy : £ € L} of cliques of p of cardinality « such
that

A = Uy, Cy and \ﬂfeFCf\ =«

for all finite ' C A.
2. Let |A] = o and (A,p) a graph. Then the clone Polp is locally

maximal if and only if p is clique coherent.

For the graphs that are not clique coherent we look at some n-ary relations
belonging to G = (A, p) and derive some symmetries of p.

3.14
We say that a finite subset X = {x1, ..., 2, } of A is a transitivity base of p if

A" ={(¢ (1) ..., (2n)) : ¢ € Endp} .

(where Endp = Hom (p, p)). We say that p is end-transitive if {a} is a
transitivity base of p for each a € A. A pair X := {1,292} C A is strong for
p if there are ¢, (, 7 € End p such that

Y (21) =¥ (22),((21) = 7 (22) # 7 (21) = ((2)

12



- Fig. 1 -

Note that for a strong pair we have (z1,z9) & p (as ¥ (z1) = ¢ (z2)) and if
o (y;) =x;  (i=1,2) for some ¢ € End p, then {y1, 92} is a strong pair as
well.

3.15 Proposition
The graph p is end-transitive and each strong pair of p is a transitivity base.

Proof. Let a € A and put v := {p (a) : ¢ € End p}. Clearly v is a unary
relation from [p] and a € 7 in view of id4 € End p. Since p is repellent, we
have the required v = A.

Let {z1,22} be strong. Put A\ := {(¢(z1),p(x2)): ¢ € Endp}. Clearly
X € [p]. Put a := 1 (x1). Since p is end-transitive, for every b € A we have
¢ (a) = b for some ¢ € Endp. Thus (b,0) = (¢ (¢¥(x1)),¢ (¥ (x2))) € A
proving that A is reflexive. Put ¢ := ((x1) and d := ((z2). From the
definition of A it follows that (¢,d) € X and also (d,c) = (7 (x1), 7 (x2)) € \.
Form p := AN A", Clearly p € [p] is a reflexive and symmetric relation
distinct from ts := {(a,a) : a € A}. Taking into account that p is repellent
we get u = A% i.e. {z1,75} is a transitivity base. B

The concept of a strong pair may be extended. Inductively we define a finite
subset X = {x1,...,2,} with n > 2 to be strong if for all 1 £ j < n the set
X\ {z;} is strong and for all 1 < 4,j < n with 7 # j there is ¢ € End p such
that ¢ (x¢) =z, forall 1 S0 < n, £ # j and ¢ (z;) = ;.

We have:

3.16 Proposition
Every strong set X 1is a transitivity base.

Proof. By induction on n > 2. By Proposition 3.15 it holds for n = 2. Let
the statement hold for n — 1 = 2 and let X = {z1,...,x,} be strong. Put
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A= {(¢(z1),...,p(x,)) : ¢ € End p}. We show that A is totally reflexive.
Let 1 £4 < j < n and ¥ the endomorphism from the definition of strongness.
By assumption X\ {z;} is strong. In view of the induction hypothesis
X\ {z;} is a transitivity base; i.e., for arbitrary yi,...,Y;-1, Yj+1, s Un € A
we have ¢ (x) =yo ({ =1,...,n, £ # j) for some ¢ € End p. It is immediate
from ¢ oy € Endp, that yi..y;—1%¥Yj+1,...,yn € A. This proves that A is
totally reflexive. As X\ € [p] and p is repellent we get the required A = A™. &

4 Reflexive locally bounded diagraphs of di-
ameter 2

In this section p always means a binary, reflexive, antisymmetric and locally
bounded relation such that p? = pop = A? and p is repellent. For simplicity
we use both a — b and b < a to denote (a,b) € p, similarly both a - b
and b « a for (a,b) ¢ p and finally a || b for a - b - a. The condition
pop = A% means that each arca — b is on an oriented 3-cycle (Fig. 2a) while
two vertices a,b with a || b are the opposite vertices of an oriented 4-cycle
(Fig. 2b).
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- Fig 2a,b -

The fact that @ — b means b — u — a for some u ¢ {a,b} implies that p is
the union of oriented 3-cycles. Let € denote the set of positive integers. We
need the following technical fact:

4.1 Fact

Let X be a reflexive and antisymmetric relation on a set I with INY = {1,2}
and let

o2 = {f(1) £ (2): f € Hom (A, )} (4.1)
Then

(i) If oy is symmetric and oy D p, then oy = A%
(ii) Suppose that X also satisfies
lreds2xe N rled&sx2e N

for all x € I. For n > 2 put I, := 1 U{3,...,n} and extend X to a
binary relation A\, on I, by setting for all x € I and j =3,...,n

xj € Ay if z1 € A\, jr € My if 1z € A
If o9 = A? then

0w i= {f (1) f (n) : f € Hom (A, p)} = A"
for all n=3,4, ....

Proof.

(i) Since o2 € [p], 02 2 p D 19 and p is repellent, we have oy = A?.

(i) By induction on n > 1. By assumption o5 = A% Suppose n > 2
and 0, 1 = A" . Let aq,...,a,_1 € A. We show that a;...a,, 10,1 € 0,.
Since 0,_1 = A"!, there is f € Hom (\,_1,p) such that f (i) = a; for
i=1,...,n—1. Extend f to g : I, — A by setting g (n) := a,_1. It suffices
to show that g € Hom (A, p). Indeed, let nj € A, for some j € I,. There
is nothing to prove if j = n. Thus let j € I. Then (n—1)j € A\, 1 and
sog(n)g(j) =an1f(j) = f(n—1)f(j) € \n. The same argument applies
to j,n and so g € Hom (), p). From the construction of A, it follows that
0, is totally symmetric and so o, is totally reflexive. As o, € [p] and p is
repellent, we have o, = A”. R

4.2 Lemma
For all x1,x9 € A there exist u; — v; such that for i = 1,2,

Ty — Uy — X3y — Vy — X4, Uy — U3_; (42)

(see Fig. 3)
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- Fig. 3 -

Proof. Denote by o the set of all z12o € A? satisfying (4.2) for some
U1, Ug, v1,v9 € A. Clearly oy is reflexive and symmetric and so by Fact 4.1
(i) it suffices to show p C oy. Let 1,29 € A, ©1 # 5 and 7 — x9. Then
To — w — x1 for some w € A. Setting vs := x1, u; := x5 and v; = ug := w
we have

L1 — Ty = Ul =T W=V —T1, Tg — W =Ug — X1 — L1 = Vg — X9,
v = W— W =1U2, Vg =T1 — T2 =U, Ul = T — W = Vq,
U = W — 1 = V3
and so p C 9. By Fact 4.1 (i) we have 0y = A% W

4.3 Proposition
FEvery finite subset B of A has a lower bound { and an upper bound u such
that { — u.

Proof. Put

o9 :={x1x9 : L — z; — u (i = 1,2) for some { — u}
Clearly o9 is symmetric. To show p C o, consider z; — z5. Setting [ =
1, U= X9 we get 129 € 0. Now we apply Fact 4.2. &

For z,y € 4 = {0, ..., 3} denote by z+y the element of 4 congruent mod 4 to
x+y.
4.4 Lemma
The relation
€= {uous 1 u; = v; — U — ui, v — v (1=0,...,3)

for some uy, ..., u3, v, ...,v3 € A} (43)
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equals either 1y or A2
(see Fig. 4)

Vo

~Tig 4 -

Proof. The relation £ is reflexive because p is. Assume that £ D te. Since
¢ € [p] and p is repellent, to show & = A? it suffices to prove the symmetry
of £. Let ugus € £ and let wuq,us, vg,...,v3 be the corresponding elements
from (4.3). Due to the cyclic (mod4) nature of the conditions in (4.3), the
sequence ug, ug, Ug, U1, Vo, U3, Vo, V1 also satisfies the conditions of (4.3) and so
usug € €. M

We have a variant of the preceding lemma.
4.5 Lemma
The relation

¢ = {uoug 1 u; = v; = ;1 —u; (0 =0,...,3), v1 — V2, V3 — V)
for some ug, ..., us, vo, ..., v3 }

(4.4)

equals either 1y or A? (The situation is depicted on Fig. 5).
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Proof. As in the proof of the preceding lemma, it suffices to show the

symmetry of ¢. Let ugus € ¢ and let uq,us, vy, ..., v3 be the corresponding
elements from (4.4). Then wus, us, ug, u1, va, v3, Vg, v1 also satisfy (4.4) proving
the required usug € ¢. H

We know that each arc x; — xo with 27 # 2o is on an oriented 3-cycle
r1 — Ty — u — x1. We show that either such w is unique or we have the
analogue of Proposition 4.4 with u — [.

18



4.6 Proposition
FEither

(i) each arc x — y with © # y is on a unique oriented 3-cycle, or

(ii) to each finite B C A there exists u — [ so that {l} x B C p and
B x {u} Cp.

Proof. Put
o9 :={r129: 1 = 2; > u — 1 (i = 1,2) for some u,l}.

Clearly o9 is a reflexive and symmetric binary relation. If o = 15 we have
the case (i); otherwise o3 = A? and we may apply Fact 4.1(ii).

In 4.7 - 4.9 we investigate the case (i). Let (i) hold. Then to every x — y
there exists a unique ¢,, € A such that y — ¢,, — z (notice that ¢,, =z
on account of the antisymmetry and reflexivity of p).

4.7 Lemma
If (i) holds and uy, ...,uz € A satisfy ug # us and

Uy — Uz — Uy — U — U, (4.5)

then for some 0 <i < 3

quiui;l - quprlul °

Proof. For ¢ = 0,...,3 set v; := PCuju, - |- Suppose to the contrary that

1
vg — V3 — v — w3 — vg. Then wugus belongs to the relation & defined in
. ! !
(4.3). Here ugug ¢ t2 and from Lemma 4.5 we obtain £ = A%, Choose uy — s
. ! I . ! I . ! 7 ! !
VVllth 3 %IUQ. Sflnce ugus € A* = £, there exist uj, ug, vy, ey U3 such that
Ugy - Us, Vg, .., Vg Satisfy the condition of (4.3). In particular, uy = ¢ s /. It
. 0
is easy to check that
! ! !’ !
Vo = gpullug = Ug, v = gpu;ull = Up-
! I 7 7 ! ’ . .
Now v, — v; means u, — u,. However, u, — u, and this contradicts the
antisymmetry of p. B

4.8 Lemma
Let (i) hold and let some wuy, ...,ug € A satisfy

U 7é 'LLQ, Ug — U3 — Uy — U] — Uo, (46)
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SOUQul - SD’I_Lg’ILQ? SOUOug - SOuluo' (47)
Then to every a — b, a # b there exists ¢ € A, a # ¢ # b such that

a— C— ba Qpac - b7 a— Sacb (48)
O —_——
(I)ac a C b ¢cb

- Fig. 6 -

Proof. Clearly ugus belongs to the relation ¢ defined by (4.4). By Lemma
4.6 then ¢ = A% Let a — b, a # b be arbitrary. Clearly ab € A? = ¢ and
so there exist uz) = a, uy,uy = b, ug, vg, e vé € A satisfying the conditions
from (4.4). Set d := ¢,. Then u; = d and v, = Pulnd = Pda = b. By

the same token v, = Puled = Poa = G- Set ¢ := uy. Clearly a — ¢ — b,

Uy
oo = Vg — 1y = band a = v — vy = p,. Thus (4.8) holds. It remains
to show a # ¢ # b. First suppose to the contrary that a = c¢. Then v, =
Putul, = Pab = d. Now u; — v; means d — a while v; — vy means a — d. By
antisymmetry a = d and hence a = b. This contradiction shows a # c. Next
suppose to the contrary that ¢ = b. Then v; = Pul ol = Pab = d and vy — v
means d — b. From d = ¢,, also b — d; hence again by antisymmetry d = b

and a = b. This contradiction shows ¢ # b. B

4.9 Corollary
The conclusion of Lemma 4.8 holds provided (i) holds and there exist ag, ag, aq €

A such that

ay — Qg — Gy, Ay — Gg, Ay F Aa,

a’4 - Soaga(ﬂ §0a4a2 - a’O

(see Fig. 7)
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- Fig. 7 -

Proof. Set
Uy ‘= A4, U = g0a4a07 Uy 1= Qg, U3 = Q9.

Then (4.6) hold. For (4.7) it suffices to notice that
Souzm = Qoaoul = Qy4, QOU3U2 = Soagaoa (puoug = §0a4a27 Souluo - §0u1a4 = Qy, [ |

4.10 Lemma

Let the binary relation p on A consist of all ugus for which there exist
Uy, ..., Us, Us, ..., wy such that

Uy — Up — ... — Uy — Uy, Uy = Ug, U3 — U1, Uy — Us (4.9)

Then either p = 1o or p = A%(see Fig. 8).
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- Fig. 8 -

1

Proof. It suffices to show the symmetry of p. Let uy, ..., ur satisfy (4.9). A
direct check shows that ug, ..., u7, g, ..., uz satisfies (4.9) as well. B

4.11 Lemma

Suppose p satisfies (i) in Proposition 4.6. Then to each finite B C A there
exist lo, Iy, u1,us € A such that

ly =11 — ug — ug, Iy — ug — lp — g

and {l;} x B C p, B x{u;} Cp (i=1.2) (see Fig. 9).
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- Fig. 9 -

Proof. Consider

09 1= {ZIZl,ZEQZli—)LEj — Uy (’L,j,ke {1,2}), l2—>ll — U] — U9,
l1 — ug — ly — uy for some Iy, Iy, uq, us}.

Clearly o5 is symmetric and so we only need to prove p C gy. Let x; — 5.
By Proposition 4.6(ii) there are us — I3 so that Iy — x; — ug (i = 1,2) . Now
it suffices to set [; := x1 and u; := x5 to obtain x1x9 € o5. Applying Fact 4
we get the required result. ®

5 Locally bounded digraphs

In this section we study locally bounded digraphs p. Here p is a digraph if it
is areflexive and asymmetric; i.e., pNp~' =0 = pN1p. As usual, we assume
that

(i) p is repellent.
It will be convenient to assume that we cannot go over to one of the
cases studied in §3-4. More precisely, we assume that [p] contains

(ii) no nonempty graph (an areflexive and symmetric relation) and

(iii) no nontrivial reflexive and antisymmetric binary relation.
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Nonempty binary relations satisfying the above conditions (i)-(iii) will be
termed paraorders and we reserve the symbol < for paraorders (writing
both z < y or y > x instead of zy €<).

We start with the following;:

5.1 Fact
If < is a paraorder, then each nontrivial binary o € [K] is also a paraorder.

Proof. Suppose 7 := {z:zz € 0} # . Since 7 € [K] and < is repellent,
we have 7 = A, i.e. o is reflexive. Put A := o0 No~!. Then X\ € [0] is
reflexive, symmetric and A C o C A? and taking into account that < is
repellent we get A\ = 15 i.e. ¢ is antisymmetric. Now ¢ being nontrivial we
have a contradiction to (iii) and so 7 = ). If A := oMo' # () we get a graph
in [<]. Thus by (iii) we get c N~ = (). Clearly o € [<] inherits the other
paraorder properties from <. B

We recall a fact from [R-Sz 84] Lemma 3.5.

5.2 Fact
A nontrivial binary relation p satisfying (i)-(iii) from 5.1 is locally bounded.

We can improve the local bounds of a paraorder.

5.3 Lemma
In a paraorder < every finite subset B of A has a lower bound | and an
upper bound u such that | < u.

Proof. Put
On i={x1..20 1 | K 1, ..., 2, K u for some | < u}.

Let z1,2z9 € A. By Fact 5.2 the set {z1,22} has an upper bound u, i.e.
x1 € u > xo. Similarly the set {z1, o, u} has a lower bound [, i.e. z125 € 02
proving o, = A?. Using the fact that < is repellent, it is easy to prove by
induction that o, = A”. R

We use Lemma 5.3 to prove the existence of infinite chains. A chain C is a
subset of A such that < NC? is a total (or linear) strict order (i.e. < NC?
is transitive and ¢; < ¢ or ¢g < ¢ for all ¢1,c0 € C, ¢1 # ¢3). A chain
{ci |i e Z} with ¢; < ¢ iff i < j is of type Z (or w* + w).

5.4 Lemma
Every a € A is on a chain of type 7.

Proof. By induction on n =2 0 we construct a chain {a_,,...,a,}. Put
ap := a. Suppose n > 0 and we have constructed a chain C = {a;_, ..., a1}
with a1_, < ... < a,,_1. By Lemma 5.3 the set C' has a lower bound a_,, and
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an upper bound a,, such that a_, < a,. Clearly {a_,, ..., a,} is the required
chain. B

Recall that a<-endomorphism is a selfmap f of A such that f (a) < f (D)
whenever a < b (equivalently, f € Pol <). We have:

5.5 Lemma
The set End < is transitive (in the monoid (O(l); o,idA)).

Proof. Fix a € A and put 7 := {f(a): f € End <}. In view of ids €
End <, we have a € 7 and so 7 = A; i.e., for each b € A we have f (a) =0
for some f € End <. 1

We say that < is rigid at a € A if for all f, g € End < we have f = g when-
ever f(z) = g(z) for all z € A\ {a}. We show that via <-endomorphisms
each vertex may be replaced by any finite set. (This may be considered as
vertex splitting.) For a,b € A and ¢ : A\ {a} — A define ¢, : A — A by
Ya (@) :=b and @, (x) := ¢ (x) otherwise. We have:

5.6 Lemma

Let < be not rigid at a € A. Then to each finite subset B of A there
exists a map ¢ : A\ {a} — A such that for each b € B the map ¢, is a
< -endomorphism.

Proof. Suppose IPNA = (. For n > 0 put A, := (A\ {a}) UN where N :=
{1,...,n}. Define a binary relation < on A, as follows. For z,y € A\ {a}
andie Npwtz <yifz <y, r<iiffzr <aandi <z ifa < x (ie. ais
blown up to N). Put

o ={f(1)...f(n): f € Hom (<, <)}.

Clearly o0, € [K] is totally symmetric. Given the structure of < it is
enough to show that o, = A™ for all n > 0. For n = 1 we have 0, =
{f(a): f € End <} (as 1 just replaces a) and from Lemma 5.5 the required
o1 = A. Consider n = 2. The assumption that < is not rigid at a guarantees
that 09 O 9. Clearly 09 D 15 due to 07 = A. As < is repellent, we have
oy = A% Suppose n > 2 and 0,,_; = A""L. Then o, is totally reflexive. For
n > 2 the total reflexivity of ¢, implies o, = A™. R

5.7 Lemma

Let C be a chain in < and a a lower set (upper) bound of C such that <
is not rigid at a. Then for each finite subset B of A the set of lower (upper)
bounds of B contains a copy of C.

Proof. According to Lemma 5.6 for each b € B the <-endomorphism ¢,
carries C' onto a <-chain ¢ (C') which is a copy of C. Suppose a is an upper
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bound for C. Then a ¢ C and a > ¢ for all ¢ € C shows b = ¢, (a) >
Yaw(c) = ¢ (c) for all ¢ € C. This is true for all b € B and so ¢ (C) is in
the set of lower bounds of B. The proof for a a lower bound of B is quite
similar. H

5.8 Lemma
Let (V,<) be a strict (i.e. areflexive) nonempty order, let v,v" € V, v # 0/,
and let g,¢' € H :== Hom (<, <)

(i) if vv' € kerg then for each x € A we have that h(v) = h (V') = z for
some h € H,

(i) if vo' € kerg\kerg' then for all z,2’ € A we have that h(v) =
x, h(v') =2 for some h € H.

Proof. (i) Let vv’ € ker g. Set
a:={h(v):h(v)=h (") for some h € H}.

Clearly g (v) € a € [<], whence a = A and (i) holds.
(ii) Let vv’ € ker ¢\ ker ¢’. Form

B:={h(v)h(¥):heH}.

In view of (i) clearly 8 D t5. As ¢’ (v) # ¢' (v), clearly B D t3. From the
assumptions (i)-(iii) from 5.1 we obtain 3 = A? and (ii). B

The existence of chains of type Z in < (Lemma 5.4) raises the question
whether there are cycles in <. As usual, a cycle of length | of < is a

sequence a4 K ... < q < a7 and < is termed acyclic if it has no cycles of
finite length. We prove that < is acyclic. First we show:

5.9 Lemma
A paraorder has no cycle of length 28 (k=2,3,...).

Proof. Suppose < has a cycle of length 2% and let k be the least integer for
which this holds. Let a; < ... < aqex < a1. In view that < is asymmetric,
we have k£ > 1. Put

o= {r122 1 11 K Up K ... K U1 K Ty K Ugi—149 K ... K Uk K X1
for some wuy, ..., Ugk—1, Ugk—19, ..Uk € A}.

It is almost immediate that o is symmetric and that ajaqx—1 € 0. The relation
o is also areflexive because 17 < uy K ... K ug-1 < x7 would yield a cycle
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of length 2%°! in contradiction to the minimality of k. Thus ¢ € [<] is a
nonempty graph in contradiction to the definition of a paraorder. B

Now we can prove:

5.10 Theorem
Every paraorder is acyclic.

Proof. Assume that < has a cycle a; < ... € q; < ay. Set x1 < x5 if there
are ug, ...,u; € A such that

T LT KL uz L LKLy L 2 (5.1)

In view of a; < ao the relation < is a nonempty subrelation of < . Now
< € [«] and Fact 5.1 show that < is a paraorder. We show that each pair
x1 < X9 is on a cycle of length [ of <. Indeed, if z; < x5 then (5.1) holds
for some uq,...,u; € A. It follows that =1 < x9 < uz < ... < w; < xy;
i.e., T1,T9,us,...,u; is a cycle of length | of <. Now let 2 > [ and put
m = 2F — [. By Lemma 5.4 the paraorder < contains a chain of type Z
and therefore there are by < ... < byio such that by < bpi0. We know
that b1 < b2 is on a cycle by < bpio < v3 < ... < v; < by of length [ of
<. Together by < ... < bypia < v3 < ... < v form a cycle of < of length
m+1+41—1=2%in contradiction to Lemma 5.9. &

Recall that the product of binary relations p and ¢ on A is
poo :={r1xy: U € p, ury € 0 for some u € A}.

Next pt is defined inductively by p! := p, pt! == plop (i=1,2,..) and

the transitive hull tr p of p is the relation |J p°. In view of Theorem 5.10
i=1

the relation tr < is always a strict order (i.e. areflexive and transitive). The

problem is that tr < need not belong to [<]. (If the system {<*: i =1,2,...}

is directed, then tr < belongs to [<].) We have:

5.11 Definition
For a fixed a < b define a binary relation <4 on A by setting z <, y if
x = f(a) and y = f (b) for some endomorphism f of < .

The proof of the following lemma is routine.

5.12 Lemma
If a << bthen a <g b and <Kgp 18 a paraorder from [<]. W

Denote by S the set of all sequences (C¢: & < A), where A is a nonzero
ordinal such that (i) Cp := <, (i) if £+ 1 < A and ¢ is nonvoid then

Cern = (Ce)ay (5:2)
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for some a C¢ b provided C¢ D Cepq and (iil) Ce= (. T for every limit
ordinal £ < A. Let (C¢: £ < A) € S. An easy transfinite induction (based
on Lemma 5.12 and the fact that [<] is closed under arbitrary intersections)
shows that a) all nonvoid ¢ are paraorders and b) T D ¢ whenever
¢ < & < A. Call a paraorder C uniform if Ty, = C for all a © b. A sequence
(Ce: € < \) € Sis called <-admissible if A is an isolated ordinal and T x_q
is either uniform or void. Call < weakly vanishing if every <-admissible
(Ce: € < \) satisfies Cy_1= 0.

5.13 Lemma

Without loss of generality we may assume that < is either uniform or weakly
vanishing.

Proof. From b) above it follows that the lengths A of sequences from S are
bounded from above and hence each sequence from S can be prolonged to an
<-admissible one. First suppose that there exists an <-admissible sequence
(Ce: € < A) with uniform T)_;. As Ty_; is a paraorder from [<], we can
replace < by [C,_1. If no such sequence exists then clearly < is vanishing. B

We introduce a variant of the construction from Definition 5.11.

5.14 Definition
For all a <« b set

la={r€eA:z>a}, |la={rcA:z<Ka}, (5.3)

Agy = (Ta)U(Lb) (5.4)
and denote by <’ the restriction of < to Ag. For z,y € A set v <C y if
x =h(a) and y = h (b) for some h € Hy, := Hom (<, <) .

5.15 Lemma

If a < b then <& is a subrelation of < such that a <5 b. If, moreover, <
is transitive then <% is transitive.

Proof. From (5.3) we see that ab € A2,. Now from (5.4) we obtain that
<*: =< is a subrelation of <*. Next a* < b follows from id4 € H. Now
assume that < is transitive. To show that <’ is also transitive let ¢ <*
d <* e. Then for some h,g € H

c=h(a), d=h(b)=g(a), e=g(b).
Define f : Agp — A by setting f (z) := g (z) for all z > a and f (z) := h (2)

otherwise. To prove that f € H let z,y € Ag, © < y. There are three
cases. 1) Let x > a. Then y > a and f(z) =g (z) < g(y) = f (y). 2) Let
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z,y ¢ T a. Then f(z) = h(z) < h(y) = f(y). 3) Thus let z ¢ T a and
a < y. Now z < b by (5.3) and so

f(z)=h(z) <h(b)=g()<gy)=f(y)
Thus f € H and so c <* e. R

The following definitions parallel those of Lemma 5.12; the difference being
that they are based on <’ rather than on <.

5.16 Definition

Call a paraorder < weakly uniform if <2 equals < for all a < b. The set &' is
defined in the same way as S except that (5.2) is replaced by Ceyq = (l:f)z.
Call (Ce: € < N) € & weakly <-admissible if X is an isolated ordinal and
Ca_1 is either weakly uniform or empty. Call < wvanishing if every weakly
<-admissible (¢ : € < \) satisfies Cy_1= 0.

The proof of the next lemma is a straight-forward adaption of the proof of
Lemma 5.15.

5.17 Lemma
Without loss of generality we may assume that < 1is either weakly uniform
or vanishing. &

Remark. Let a < b. From the definitions it follows easily that each <-
endomorphism belongs to the set H,, and so <<Z D K. From this we
deduce

uniform = weakly uniform,

vanishing =- weakly vanishing.

From Lemmas 5.13 and 5.17 and the remark we obtain:

5.18 Lemma
Without loss of generality we may assume that < is (i) uniform (ii) vanishing
or (iil) both weakly uniform and weakly vanishing.

As usual, < is dense if < is a subrelation of <?; i.e., if to each pair z; < x5
there exists u so that 1 € © < 5. We have:

5.19 Proposition
Let < be a paraorder. Then either < is not dense or the transitive hull of
< s from [K].

Proof. Suppose < C <. Then for every n > 1
<<n _ <<an o0& g <<n71 o <<2 _ <<n+1
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whence < C <2 C ... . It follows that the transitive hull < of < belongs to
[<]. We show that < is dense. If 1 < x9 then z; <™ x5 for some n = 1.
If n = 1 then for some u; we get 77 < u; < 79 by < C <2 and if n > 1
then for some uq, ..., u,_1 we have that z; < u; < ... € u,,_1 < 2. In both
cases we have the required 1 < u; < z5. B

Observe that the strict dense order < is a digraph from [<] and hence also
a paraorder.

The following lemma gives a sufficient condition for the existence of an order
in [<].

5.20 Lemma

Suppose k1 < ko < ... is an infinite sequence in IN and ¢ a selfmap of IN
such that for each i € IN and all | > ¢ (1) we have that k; = kq + ky for some
a,b > i. If there exist a,b € A satisfying a <* b for all n = 1,2, .., then
[<] contains a transitive paraorder.

Proof. For n=1,2,... set
A= {ay <y for all i > n}. (5.5)

Clearly A\, € [<] and Ay € Ay € ... . Thus A := [J, .y An is the directed
union of resolvents of < and so A € [<]. By assumption ab € A\; C X and
therefore A is nonvoid. Next A is a subrelation of the transitive hull of <« and
as such also a paraorder. To show that A is transitive let ¢ A d X\ e (meaning
cAdanddXe). Then ¢ A\, d \, e for some u,v € IN. Setting i = max (u, v)
we have ¢ \; d \; e. By (5.5) clearly ¢ <**k ¢ for all a,b > i. Now the
sequence k; < ko < ... is such that ¢ <* e for all [ > ¢ (7). This proves that
¢ Aps) € and ¢ A e. Thus A is a transitive paraorder. B

Remark. For k € IN the sequence k < 2k < ... satisfies the assumptions of
Lemma 5.20; in particular, the assumptions hold for the sequence 1 < 2 < ...

A chain order-isomorphicto 1 <2 < ... <w (to —w < ... < -2 < —1) is of
type w + 1 (of type 1+ w*).
5.21 Corollary

If < contains a chain of type w+1 or 14+ w* then [K] contains a transitive
paraorder.

5.22

An order < on A is a chain (also a linear or total order) if for all distinct
a,b € A either a < b or b < a. We consider uniform unbounded chains. It
is well known (Cantor, see e.g. [Ro 82] Theorem 2.8) that every unbounded
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dense countable chain is order isomorphic to the chain (@, <) of the rationals
(with the natural order). Another example of such chain is the set IR of the
reals. To prove that Pol (<) is locally maximal we need the following general
fact.

5.23 Proposition

Let B be a clone on A such that every finite subset F' of A satisfies (i) every
map ¢ : F — A is the restriction of some h € BY) to F and (i) there exists
g € B whose restriction to F is essential and takes at least |F| values. Then
Loc B = Q4.

Proof. Let F' C A be finite and let C' consist of the restrictions to F' of those
b € B having imb C F. By (i) clearly Og) C C. Set G :=img. It is easy
to see that there exists ¢ : G — F such that o g is essential and surjective.
Applying the well-known Slupecki criterion [S] 38] we obtain that C' = Op.

Now let f € (’)XL) be arbitrary and G an arbitrary finite subset of A. Set
F:=GUim (f [ G) (where f | G denotes the restriction of f to G). Clearly

there exists f* € Ogl) agreeing with f on G. By what has been shown above
there exists b € B™ agreeing with f* on F. Thus Loc B = 04. R

5.24 Proposition

Let < be an unbounded chain on A such that for all a < b and ¢ < d there
exists an order endomorphism ¢ satisfying ¢ (a) = ¢ and ¢ (b) = d. Then
Pol (<) is locally mazimal.

Proof. Let f € OXL)\ Pol (<) be arbitrary. Denote by B the clone generated
by {f} UPol (<). We need the following 4 claims. For notational simplicity
let 0,1 € A be arbitrary elements of A satisfying 0 < 1.

Claim 1. There exists g € B with 1 = g (0) > g (1) where g (1) € {0,1}.
Proof of the claim. As f ¢ Pol (<), there exist a; < b; (i = 1,...,n) such that

f (0,1, ceey Cl,n) Z f (bl, ceey bn) .
Since < is uniform, there exist unary g; € Pol (<) such that g; (0) = a; and
g;(1)=10b; (i=1,...,n). Define h € OS) by setting for every x € A

h(z) = f(g1(2) ;s gn (2))

Clearly h € B and h (0) > h (1). By uniformity there exists ¢ € Pol (<) such
that 1) i (h(0)) = 1and 2) i (h (1)) = 0 whenever h (0) > h (1). Now g =ioh
is the required unary operation.

Claim 2. d(0) = d (1) = 0 for some d € BW.
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Proof of the claim. Let g be the unary operation from Claim 1. It is easy to
verify that max € Pol (<) (where, as usual, max (z, y) is the greatest element
in {x,y}). For all x € A set h(z) := max (g (z),z). Clearly

h(0) =max (g (0),0) =1=max(g(1),1)=h(1).

Choose i € Pol (<) such that i (1) = 0. Then d := i o g is the required unary
operation.

Claim 3. For every finite subset {ay, ...,a,} of A there is c € BY such that
c(a) =...=c(a,) =0.

Proof of the claim. We proceed by induction on n > 0. For n = 0 set
¢ := idy4 . Suppose the statement holds for n —1 > 0 and let {ay, ...,a,} C A.
By the inductive assumption there exists ¢ € BW such that ¢ (a;) = ... =
 (ay—1) = 0. There is nothing to prove if ¢ (a,,) = 0. Thus let b := ¢ (a,) #
0. By uniformity there exists h € Pol (<) mapping {0,b} onto {0,1}. Set
¢ :=dohoc (where d is the unary operation from Claim 2). It is easy to see
that ¢(a1) = ... = ¢(an) = 0. This concludes the induction step and proves
the claim.

Claim 4. For all a,b € A with b > 0 there exists h € B® such that
h(a,0) =b and h(x,0) = 0 otherwise.

Proof. If b = 0 choose h to be the projection e3. Thus let b > 0. Since <
is uniform, there exists an <-endomorphism ¢ such that ¢ (0) = b. Define
v:A— Aby

¢ (x) forall z > 0,

x otherwise.

v(a)={
As b > 0, clearly ¢ is an <-endomorphism. Next set

b ifx=a, y=0,
h(z,y):=4¢ 0 ifx#a, y=0,
¥ (y) otherwise.

To show that h € Pol (<) let c < eandd < f. 1) If d # 0 # f then h(c,d) =
Y (d) < (f)="h(e, f).2)Let d =0. Then f > 0and h(¢,0) < b < (f) =
h(e, f). 3) Finally let f =0. Then d < 0 and h (¢,d) =¥ (d) < 0 < h(e,0).
This proves the claim.

Claim 5. If ay,...,a, € A are pairwise distinct and bq,...,b, € A then
h(a;))=0b; (i=1,...,n) for some h € BY,

Proof of the claim. We can choose the element 0 so that b; > 0 for all i =
1,...,n. By Claim 3 there exists ¢ € BY) such that ¢ (a;) = ... = ¢ (a,) = 0.
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By Claim 4 for i = 1, ...,n there exists h; € B® such that h; (a;,0) = b; and
h; (z,0) = 0 otherwise. The n-ary operation max,, assigns to all z1, ..., z,, € A
the greatest element of {xy,...,xz,}. It is easy to see that max, € Pol(<).
For all x € A set

h(z) :==max,, (hy (z,c(x)),....hn (x,c(2))) .
Clearly h € B(Y. Moreover, for i = 1, ...,n due to b; > 0

h(a;) = max, (hy(a;0),...,h;(a;0), ..., hy, (a;,0))
= maXy (O, ceey O,bi, O, ceey 0) = bz

This proves the claim.

The proposition now follows from Claim 5 and Proposition 5.23 (choose g =
max). W

6 The ternary relation o U A

6.1

In this section we study special ternary relations on A. Recall that Ay =
{zzy :z,y € A} and that o3 := A3\13 consists of all zyz € A3 with z # y #
z # x. We say that a ternary relation A on A is 12-; 13- and 23-symmetric if
xyz € X implies yzrz € A, zyx € X and xzy € A, respectively. We say that it
is 12-, 13- and 23-antisymmetric if for every zyz € A

YLZEA=T =Yy, 2Yyr EX=>T =2, T2y E A= 2 =1y.
In this section we study the ternary relations p = o U A5 on A such that

(1 @#Ugﬂ'g,

(i) o is 12-symmetric,

)
)

(ili) uzz,uyz € p = xyz € p,

(iv) for each finite B C A we have B? x {u} C p for some u € A,
)

(v) p is repellent.
(For (iii) see Fig. 10)
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Such a relation will be called a trilium. It was shown in [R-Sz 84] Corollary
2.5 that for the richest trilium o3 U Ajy the clone Pol (03 U Ajg) is locally
maximal.

6.2 Lemma
If p is a trilium then either (i)

UVT, ULV, UVY, UYv € p = T =Y (6.1)

or (ii) for every finite subset B of A there are u,v € A so that uvb,ubv € p
for all b € B.

Proof. For h =2,3,... put
Ap = {x1...xp s uzv, uvx; € p for some u,v € Aand all i =1,...,h}.

Clearly all A\, are totally symmetric. Moreover \; is reflexive and so Ay = 1
or Ay = A?. In the first case we get (6.1).

In the second case we have A\, = A2. This means )3 is totally reflexive, whence
A3 = A%, Continuing in this way we get A\, = A" for h = 2,3, ... . In particular
for every finite subset B of A, B = {b1, ..., by} we get b;...b, € B" C )\, which
yields the second statement. B

X
Cc
a /‘\ p Mmeans abce p
W
.0

Vv denotes the postulated triple uvw

- Fig 10 -

We say that a trilium p is strong if to arbitrary z,y € A we have zuy € p
and uyx € p for some u € A. It is strict if for all x,y,z,t € A

TYZ,Yzxr € p =T =Y = 2.
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6.3 Lemma
A trilium is either strong or strict.

Proof. Set
o :={zy : ury,uyx € p for some u} .

The relation o is reflexive because aaa € A5 C p for all a € A. 1t is clearly
symmetric and therefore trivial. Clearly o = 15 and o = A? correspond to p
strict and p strong. B

We consider strong trilia. We say that a strong trilium is a shuffle if for all
rx,y€ A
TYu, TUY, UYr € p

( see Fig. 11) holds for some u. We have:

6.4 Lemma
A strong trilium is either a shuffle or satisfies

TYZ, TZY, 2YT €E p=>T =Y = 2. (6.2)

Proof. Set
o = {zy : xyu, zuy, uyz € p for some u} .

u

_ Fig 11 -
Clearly o is reflexive and symmetric. Since p is repellent, it follows that
0 =15 or 0 = A?, whence p satisfies (6.2) or is a shuffle. B
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We say that a strong trilium is taut if it satisfies (6.2) and to arbitrary
x,y € A there are u,v € A so that

TYU, TVY, UYL, TYV € p (6.3)

_ TFig 12 -

6.5 Lemma
Let p be a trilium. Then

(i) Either p is taut or for all x,y,u,v € A
TYU, TVY, UYL, TVY € p => T =Y = U = 1, (6.4)

(ii) If p is strong and [p] contains no reflexive diagraph other than iy then
p 1s taut.

Proof. (i) It suffices to consider
o= {zy : zyu, xvy, uyx,xyv € p for some u, v} .

(ii) Suppose to the contrary that p is not taut. Set

A= {zy : xyu, zuy € p}.
Clearly A is reflexive. Taking into account that p is strong we see that to
arbitrary u,v € A, u # v there exists w € A such that wuv, wvu € p. Thus
wu € X\. Moreover, w # u (since otherwise u = v). Thus A\ D 5. Suppose
xy,yx € X. Then there are u,v € A so that

TYU, TUY, YTV, YT € P,

hence by (i) we get x = y. Thus X € [p] is antisymmetric in contradiction to
our assumption. H
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u
- Fig 13 -

A trilium p is of the first kind if for all x,y,u,,u, € A
TUYUg, YU Uy € P = T =Y.

The trilium is of the second kind if for all z,y € A there exist u,,u, € A
such that

TUyUg, YUz Uy € P.
6.6 Lemma
Each trilium is either of the first kind or of the second kind.
Proof. Set

o = {zy : TUYUy, Yuzu, € p for some ug, uy,}.
Clearly o is symmetric and reflexive (chose u, = u, := x). Since p is re-

pellent, 0 = 15 or 0 = A% and hence p is either of the first or the second
kind. ®
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7 Totally reflexive and symmetric relations

7.1 Definitions
Let again T}, denote the set of totally reflexive and totally symmetric h-ary
relations on A distinct from A" and let T =|J Tj,. Note that p € T}, is

h=2
completely determined by the family of h-element sets

o = {{:131, o zny € (A | (21,0 20) € p}

(where, as usual, [A]" is the set of h-element subsets of A). The reader may
find it more convenient to treat p € T}, in this way.

We say that B C A is p-centered if there is ¢ € A such that {c} UX € p* for
all X € [B"™" with ¢ ¢ X.

We say that p € Ty, is locally central if each finite B C A is p-centered (i.e.
[B]"=1 x {u} C p for some u) and p is homogeneous if every p—centered
B € [A]" belongs to p; i.e., by...b, € p whenever for some u we have that
by...b;_qubjiq...bp, € p for all i = 1,...,h. Thus p € T, is homogeneous iff it
is transitive; i.e., iff p is an equivalence relation on A distinct from A2. For
h = 3 see Fig. 14. Note the following absorbing property of Tj,.

- Fig 14 -
7.2 Fact Let h > 2 and p € T,. Then all l-ary relations (1 =1 < h) from
[p] are trivial. Each h-ary relation o € [p] satisfies o O p and hence is totally
reflexive; moreover [o] 0Ty, # 0.
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Proof. Let 1 <! < h and o an l-ary resolvent of p. Then p = A ~; p
where A is an h-ary relation on a set V such that V' D {1,...,1}. Let I < h.
By the total reflexivity of p each map f : V — A with |im f| < [ belongs
to Hom (A, p) and so ¢ = Al. Let | = h. For each a;...a, € p every map
f:V —={ay,...,ax} with f (i) =a; (i =1,...,h) belongs to Hom (A, p) .
Thus a;...ap, € 0 and p C ¢. Finally let A > 2 and let o be an h-ary totally
reflexive relation. For a permutation p of {1,...,h} set

U(p) = {ap(l)...ap(h) tay...ap € J} .

It is easy to see that o € [o] (in fact, Polo® = Pols). The set o is
intersection closed and so ¢ := ﬂpGSh o® (where S}, denotes the symmetric
group of all permutations of {1, ..., h}) belongs to [o]. Obviously £ D ¢, and
¢ is totally symmetric; consequently & € [0] N'T},. This proves the fact. B

7.3 Definition

Denote by S, the set of all h-ary totally symmetric relations on A and set

S = S A functor is a set {(); : j < w} of maps from T (:: U Th)
h=2

h=2
into S such that for all h > 2, 0 € Tj, and j > 0:(7.1)

() (0); € [0V Shags (i) & C (7)gy (i) (0); = AP = thsr € (o)1, (1)
We abbreviate (o), by (¢). Notice that by (ii) clearly (o) € T, U {A"}.
Similarly if (0); = A7 then from (iii) we obtain (¢),,; € Thyj1U{ AP+ ]

7.4 Example

The following is our basic example of a functor. For h > 2, 0 € T, and j > 0
let (O')j consist of all z...zp,; € A" for which there is an zj,, ;41 € A such
that x;,...z;, € o whenever h+ j+1 € {i1,....in} C{1,....;,h+j+1}. In
particular,

(0) = (0)g = {z1...0p : ®1..71uTi1..xp €0 (1 =1,...,n) for some u}
(7.2)
(i.e. (0)* consists of all o-centered X e [A]").

We verify (7.1). First (i) and (ii) follow from the definitions. For (iii) sup-
pose (O')j = AP where p :== h + j. Let x1,...,2, € A be arbitrary. Then

z1..tp € AP = (0);; whence there is 7,11 € A such that z,..x, € o
whenever p + 1 € {iy,...,ip} C {1,...,p+1}. Put y;, :==2; (i=1,...p)
and ypi1 = xp. To prove yi..yp1 € (or)].Jrl put Ypio = xpr1. Let

p+2 € {ir,..,int C{1l,...,p+2}. If {p,p+1} C {i1,...,7n} then auto-
matically we have y;,...y;, € o due to the total reflexivity of o.

If {p,p+1}N{i1,...;in}| = 1 then in view of yp11 = 7, and Ypio = Tpi1
the h-tuple y;,...y;, is one of h-tuples z;,...x;,.
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7.5 Definitions

Let {(); :j < w} be a functor and let p € T},. By a transfinite construction
we establish a sequence (pg, p;,...) of he-ary relations p, on A (where ¢ is
an ordinal) satisfying the following condition: if £ is a nonzero limit ordinal
and p, has been constructed for all ¢ < { then there exists 0 < { such that
he =hg for all 0 < ¢ < &.

Let p, := p. Suppose that ¢ is a nonzero ordinal for which the sequence
(f¢ : € <) has been constructed. Denote by 6 the least ordinal such that
he = he for all § < & < ¢ (if ¢ is isolated possibly § = ¢ — 1). Set o :=
Up<e<c pe and h := hy. Recall that (o stands for (o).

1. if o C (0) C A" set p.:= (),
2. if 0 = A" stop,
3. if 0 C A" = (o) while for some [ > 0
(o), C A (7.3)
set p; := (0); where j is the least integer £satisfying (7.3),
4. if o C (o) while (0); = A7 for all j > 0, stop.

5. if o C (o) C A", stop.

7.6 Example
Let {( ); 0 < w} be the functor from Example 7.4 and let h = 2. It is

easy to see that (p) = =p? (=pop)and so p; = p?, p, = p* etc. The
y (p) =(p)g=1p* (=pop pL=p" pa=0p

2

construction stops if some p, (: p i) is an equivalence relation on A. Suppose

(p;) = A?. By its definition (p,); consists of all (I + 2)-element subsets of A
having a joint neighbor in p; (I > 0).Thus p,, is the first (p,); C AT*?

provided such a j exists, else the construction stops. If p, = p* C A? for all
i < w then set o :=J,_,, p; and continue.

We show some basic properties of the construction.
7.7 Lemma

If h > 1 and p € T}, then

(i) The construction of the sequence {py, py,...) stops at steps 2,4, 5 or at
the least ordinal s such that {he : & < <} is an unbounded subset of N,

(il) p, € [p] N Th for all £ <<, and
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(iii) For all & < § < < we have that a) hy < he, b) Polp, C Pol pe and c)
pg C pg provided hg = he.

Proof. An easy transfinite induction (based on Definition 7.3 and the fact
that [ | is closed under both arbitrary intersections and directed unions
proves (ii) and (iii-a) and (iii-c) as well as Pol p, C Pol p,. We show that
Pol py 2 Pol pe- Indeed if hy < he then by Fact 7.2 every hg-ary o € [pg} is
trivial while if hgy = h¢ then every he-ary o € [pg} contains pg O py. In both
cases Pol py 2 Pol p.. This proves (iii-b).

To prove (i) suppose there is an ordinal 7 such that the subset

{hg : £ < 7, pe has been constructed}

of IN is unbounded (i.e. infinite). Denote by ¢ the least ordinal with this
property. It is easy to verify that then the construction stops at ¢. Thus
assume that there exists an ordinal 6 such that he = h' := hy for all £ > 6
for which p, has been constructed. By (iii-c) for each such & the sequence
(pe 10 < ¢ <€) is a strictly increasing sequence in the ordered set (T}, C).
It follows that R := {p, : ¢ > 6, p. constructed} is a subset of T;,. The chain
(R, C) is union-closed and so by Zorn’s lemma it has a maximal element o. If
o € Ty then (o) = o and the construction stops at step 5. Thus let ¢ = A",
Then the construction stops at step 2. B

We need the following statements (Towers were defined in §1.5).
A tower < pg-€ < ( > where each pg is an h¢-ary relations is arity increasing
(constant) if £ < &' < ¢ implies he < hg(he = hgr)

7.8 Proposition

For i = 1,2,... let p; be an h;-ary relation on A. If (i) hy < hy < ..., (ii)
th, C p; C AM for i = 1,2, ... and (iii) Pol p; C Polp, C ... then (py, py, ...)
1S an increasing arity tower.

Proof. First we show that Polp; C Polp,,, for all ¢ > 0. First suppose
tp; < p.Choose
ai...ap, € pi\[’hn bl---bhi € zélm\pZ (74)

and define f € OS) by setting f (a;) :=b; for all i = 1, ..., h; and f (z) := b;
otherwise. Clearly f ¢ Polp; by (7.4) while f € Polp,,; due to |im f| =
|{b1, -~-7bhi} = h, < hi+1-

Next let tp, = p1. As in the finite case one can show that Pol,, consists of the
clone generated by O and all f € O with lim f| < h;. From ¢, w1 € pin
and h; < h;y; it follows that any f € O® with lim f| = hi11 belongs to
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Polp;y1 \ Pol p;.Set C': U Pol p;. To show that LocC = Oy let f € O(n)

be arbitrary and let F' C A be finite. Set G :=1im (f | F') (where f | F is the
restriction of f to F') and denote by i the least integer such that h; > |G]|.

Fix g € G and define f* € Off) by

. | fla1,...;a,) ifaq,..,a, €F,
f* (@, an) = { g otherwise. (7.5)

Clearly im f* = G and f* [ F = f | F. Next f* € Polp, C C due to ¢, C p;.
Thus f € LocC, hence O4 C LocC C Oy shows LocC' =04. 1

7.9 Proposition
Let h > 1, let ¢ be an ordinal and let p; € Ty, for all § < (. If

§ <<= py C pg, Polpy C Polpy, (7.6)
U Pg = Ah7 (77)
£<¢

then <p§ €< §> 18 a constant arity tower.

Proof. We proceed as in the proof of the preceding proposition. By (7.6) and
(7.7) there exists the least ordinal ¢ such that G C pg- Clearly f* € Pol p;
and Loc C' = Q4 follows in the same way as in the above mentioned proof. B

The homogenous and locally central relations were defined in 7.1

7.10 Proposition

Let h > 1 and p € Ty. Then p is dominated by (1) a homogeneous relation,
(i) by a locally central relation (iii) by a constant arity tower or (iv) by an
increasing arity tower.

Proof. Let {( )jJ < w} be the functor from Example 7.4 and let (pg, p;...)

be the corresponding sequence defined in 7.5. According to Lemma 7.6 it
stops at steps 2,4,5 or at the least ordinal ¢ such that the set {he : £ <<} is
unbounded. We consider separately the four cases.

1. Suppose that for some ordinal ¢ the construction stops at step 2. Then
from Lemma 7.7 (iii) and Proposition 7.9 we obtain that <p£ €< §>
is a constant arity tower and (iii) holds.

2. Suppose that for some ordinal ¢ the construction stops at step 4. For
an h-ary relation o and j > 0 the validity of (o), = ARJ means that
every (h + j)-element subset of A is o*-centered (j = 0,1, ...); whence
o is locally central and we have (ii).
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3. Suppose that the construction stops at step 5. Then ¢ = (o) and
therefore o is homogeneous.

4. Suppose that the construction stops at the least ordinal ¢ such that
H := {h¢ : £ <<} is unbounded. Write H as {h}: i < w} where b} <
hY, < ... .For each i < w denote by ¢, the least ordinal such that
he, = h;. Now Lemma 7.7 and Proposition 7.8 show that <p£1,p£2, >
is an increasing arity tower and (iv) holds.

Remark. Proposition 7.9 shows the existence of many towers. If p is locally
central then Pol p is locally maximal [R-Sc 82]. Thus in the remainder of this
paper we can concentrate on the set Hj of all homogenous relations from T},.
Recall from Example 7.4 that Hs is the set of proper equivalence relations on
A. Since for such relations p the clone Pol p is locally maximal, we assume
h > 2.

7.11 Definition

We introduce another functor {( ), : j < w}. Let h >3, 0 € T}, j >0
and p := h + j. The relation (o), consists of all z1...z, € AP such that some
Uy, ..., up € A satisfy (i) ug,...u;, € o whenever 1 <1y < ... < i < p and (i)
foralli=1,..,pand 1 < j1 < ... < jho<Dp

LUy .. Ly o co. (78)

In particular, () := (o), consists of all z...z;, € A" such that some u;...up €
o satisfies for all 1 <1¢,j < h with ¢ # j

Ty LjUiTjq1... T, € O (7.9)

(see Fig. 14 for h = 3). Informally, we can view u; as a bodyguard of the
master z; (i =1,...,h). Every set of h bodyguards forms a coalition in the
sense of (i). A master and his bodyguard form a coalition for every choice of
h — 2 other masters.

Call a relation o € Tj, strongly homogeneous if o = (o). Thus o is strongly
homogeneous if z;...x;, € o whenever there exists uy...u;, € o satisfying
(7.9). Notice that a strongly homogeneous relation o is homogeneous. Indeed
if to x1,...,x, € A there exists u satisfying x;...z;_juz;i1...x, € o for all
i =1,..., h then it suffices to choose u...u € o.

For h > 3 a relation of o € Ty, is protective if (0); = A" for all j > 0.

7.12 Lemma
{( ); 10 < w} from Definition 7.10 is a functor.

43



Proof. We verify (7.1). Let 0 € T}, and j > 0. Clearly (0); € [0] N Spy;.
If aj...ap, € o then ay...a, € (0) because we can choose uj...up = ai...ay
and (7.9) holds on account of the total reflexivity. Finally let p := h +
J, (0) = AP and #4,...,z, € A. Then x;..2, € AP = ((r)j and so there
exist uy, ..., up satisfying the conditions (i) and (ii) from Definition 7.10. Set
Upy1 := up. It can be easily verified that 1...zp7, € (0);,,. Since (o), is
totally symmetric, we obtain (iii). B

We have an analog of Proposition 7.9.

7.13 Proposition

Every homogeneous relation p of arity at least 3 is dominated by
(i) a strongly homogeneous relation,

(ii) a protective relation,

(iii) a constant arity tower, or

(iv) an increasing arity tower.

Proof. Let (py,p;,...) be the transfinite sequence corresponding to p and
the functor from Definition 7.10. The proof is the same as the proof of
Proposition 7.9. &
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