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Summary

The past decade has witnessed the rise of several intelligent systems fueled by the large-scale
adoption of data-driven techniques. However, due to the inherent black-box nature of data-
driven techniques, intelligent systems tend to have relatively complex designs. At times, even
the designers of these systems struggle to comprehend them fully. Consequently, it is not
surprising that the failures of intelligent systems are commonplace.

To deploy intelligent systems for widespread use, it is crucial for humans to place signifi-
cant trust in them. Towards the goal of developing trust, in this thesis, we focus on techniques
that are targeted towards (i) explaining the behavior of systems in a human-interpretable
manner, and (ii) facilitating their verification through formal methods.

Our primary intent is to explain and formalize the temporal behavior of systems. To
represent temporal behavior, we exploit formalisms that originate from formal language
theory, such as temporal logic and finite automata. Such formalisms are considered to be easy-
to-understand and, at the same time, are formal enough to unambiguously express temporal
behavior. Consequently, both formalisms have had numerous applications: as specifications
for formal verification, as interpretable descriptions for Explainable AI, etc.

Our approach to formalizing temporal behavior involves the automated learning of tempo-
ral properties, considering system executions as input data. By varying different aspects of the
input data and the formalism used for expressing temporal properties, we formulate several
learning problems suited to diverse practical scenarios. We consider learning in the presence
of noise, from only positive data, etc. Moreover, we consider well-known temporal logics
such as Linear Temporal Logic (LTL), Metric Temporal Logic (MTL), Property Specification
Language (PSL), etc. and finite automata such as Deterministic Finite Automata (DFAs).

We study various aspects of the considered learning problems. Most importantly, we
design efficient algorithms to tackle the learning problems. Our algorithms rely on popular
techniques such as satisfiability problems, combinatorial search, decision-tree learning, etc. A
crucial feature of our algorithms is that they have guarantees (e.g., termination, soundness,
completeness, etc.) that are validated through formal proofs. Moreover, we investigate
associated decision problems and present complexity results, providing further insights into
the learning problems. We implement all algorithms in user-friendly and open-source tools and
test them on a wide range of synthetic and real-world benchmarks. Through our experiments,
we successfully learned meaningful temporal properties in a number of scenarios.
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Zusammenfassung

Das vergangene Jahrzehnt hat das Aufkommen mehrerer intelligenter Systeme erlebt, die
durch die umfassende Anwendung datengetriebener Techniken angetrieben wurden. Auf-
grund der inhärenten Black-Box-Natur dieser Techniken neigen intelligente Systeme dazu,
relativ komplexe Designs zu haben. Manchmal haben selbst die Designer dieser Systeme
Schwierigkeiten, sie vollständig zu verstehen. Folglich ist es nicht überraschend, dass Fehler
bei intelligenten Systemen alltäglich sind.

Um intelligente Systeme für den weit verbreiteten Einsatz bereitzustellen, ist es entschei-
dend, dass Menschen ihnen signifikantes Vertrauen entgegenbringen. Im Streben nach Ver-
trauensbildung konzentrieren wir uns in dieser Arbeit auf Techniken, die darauf abzielen, (i)
das Verhalten von Systemen auf eine für Menschen interpretierbare Weise zu erklären und (ii)
deren Überprüfung durch formale Methoden zu erleichtern.

Unsere Hauptabsicht besteht darin, das temporale Verhalten von Systemen zu erklären
und zu formalisieren. Um temporales Verhalten darzustellen, nutzen wir Formalismen, die
aus der formalen Sprachtheorie stammen, wie temporale Logik und endliche Automaten.
Solche Formalismen gelten als leicht verständlich und sind gleichzeitig formal genug, um
temporales Verhalten eindeutig auszudrücken. Folglich haben beide Formalismen zahlreiche
Anwendungen, beispielsweise als Spezifikationen für formale Verifikation, als interpretierbare
Beschreibungen für Explainable AI, etc.

Unser Ansatz zur Formalisierung des temporalen Verhaltens beinhaltet das automatisierte
Lernen von temporalen Eigenschaften, wobei Systemausführungen als Eingabedaten betrachtet
werden. Durch Variation verschiedener Aspekte der Eingabedaten und des Formalismus
zur Darstellung temporaler Eigenschaften formulieren wir mehrere Lernprobleme, die für
verschiedene praktische Szenarien geeignet sind. Wir betrachten das Lernen aus nur positiven
Daten usw. Darüber hinaus berücksichtigen wir bekannte temporale Logiken wie Linear
Temporal Logic (LTL), Metric Temporal Logic (MTL), Property Specification Language
(PSL), etc. und endliche Automaten wie Deterministic Finite Automata (DFAs).

Wir untersuchen verschiedene Aspekte der betrachteten Lernprobleme. Am wichtigsten
ist, dass wir effiziente Algorithmen entwerfen, um die Lernprobleme zu bewältigen. Unsere
Algorithmen stützen sich auf beliebte deduktive Techniken wie Erfüllbarkeitsprobleme, kom-
binatorische Suche, Entscheidungsbaum-Lernen, etc. Ein entscheidendes Merkmal unserer
Algorithmen ist, dass sie Garantien, Beendigung, Solidität, Vollständigkeit, usw. haben,
die durch formale Beweise validiert werden. Darüber hinaus untersuchen wir zugehörige
Entscheidungsprobleme und präsentieren Komplexitätsergebnisse, die weitere Einblicke in
die Lernprobleme bieten. Wir implementieren alle Algorithmen in benutzerfreundliche Open-
Source-Tools und testen sie an einer Vielzahl synthetischer und realer Benchmarks. Durch
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unsere Experimente konnten wir in zahlreichen Szenarien sinnvolle temporale Eigenschaften
erfolgreich erlernen.
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Chapter 1

Introduction

Over the past decade, technological development has witnessed an unparalleled surge in
the integration of automation in software systems. One of the major driving forces behind
this surge has been the adoption of data-driven techniques, or what is popularly known as
Artificial Intelligence (AI), in system design. With the proliferation of AI, we are able to
design “intelligent” systems that are capable of achieving feats once unimaginable. Examples
of such systems include autonomous vehicles [65], human-like chat assistants [220], and robot
workers in household and industrial applications [4], to name only a few.

The ability of intelligent systems to perform complex tasks often necessitates a rather
complex design. Often, even the designers of such systems cannot fully comprehend their
inner workings. This, typically, is an artifact of the nature of the majority of data-driven
algorithms: they are difficult to explain or interpret but easy to implement [73, 162]. Systems
developed using such algorithms are often treated as “black-boxes”.

Despite not being aware of their functioning, intelligent systems are deployed to perform
complex tasks solely based on their performance in a limited number of scenarios. As a
consequence, news of failures of such systems is commonplace. Road accidents caused by
autonomous vehicles [64, 156], manipulative remarks made by chat assistants [216], and
robots injuring factory workers [194] are all examples of such failures.

Thus, to deploy intelligent systems in widespread usage, especially in safety-critical
applications, it is crucial for us to place significant trust in them. Towards the goal of
developing trust, in this thesis, we design several techniques that are targeted towards:

1. explaining the behavior of systems in a human-interpretable manner, and

2. facilitating the verification of systems using formal methods.

Our main focus in this thesis is to explain and formalize the temporal behavior of systems.
This choice is driven by the observation that numerous systems, especially cyber-physical
systems such as autonomous vehicles, avionics systems, etc., display complex temporal
dynamics involving several parameters of both the system and its environment. A better
understanding of the temporal patterns and trends of such systems yields insights into tasks
such as ensuring safe future behavior, designing effective controllers, enabling strategic
planning, and more.

To formally represent temporal behavior, we exploit formalisms that originate from formal
language theory, such as temporal logic and finite state automata. Such formalisms are
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(a) Office-like environment (b) Positive example where the
agent is able to collect coffee

(c) Negative examples where the agent is
unable to collect coffee

FIGURE 1.1: An office-like environment where an autonomous agent is
deployed to collect coffee. The environment consists of several doors (which

may or may not be open) to reach the coffee machine.

mathematically rigorous and are able to express temporal properties unambiguously. At the
same time, they are considered human-interpretable and employed as simple descriptions
of complex systems. Consequently, both the formalisms have had numerous applications:
as specifications for formal verification [179, 14] and reactive synthesis [181, 84], as task
descriptions in motion planning [81, 99] and reinforcement learning [46, 128], as interpretable
descriptions for Explainable AI [169, 47], etc.

To illustrate an interpretable temporal property, let us consider a prototypical scenario
from motion planning where an autonomous agent is deployed to deliver coffee. Figure 1.1a
illustrates the office-like environment where we consider the agent to be deployed. The
environment includes a room with a coffee machine and four doors d1, d2, d3, and d4. Let
us assume that the doors d1 and d2 may not be open sometimes (in which case, they are
marked with a lock symbol), while doors d3 and d4 are always open. The agent is free to move
through the open doors. We now consider a few executions of the agent in this environment.
Figure 1.1b demonstrates a positive execution, where the agent was able to collect coffee via
doors d1 and d2. Figure 1.1c illustrates two negative executions, where the agent was not able
to collect coffee since it got stuck after finding doors d1 or d2 closed.

Based on the executions, one can deduce a possible explanation for why the agent was not
able to collect coffee on certain occasions as the formula:

φ1 := F((¬d1 ∨ ¬d2)→ GX(¬coffee)).

The above formula, expressed in a popular temporal logic Linear Temporal Logic (LTL),
simply says the following:

“if the agent eventually finds d1 or d2 to be closed,

then it never collects coffee later”.

Along with boolean operators, φ1 uses standard temporal modalities G (stands for glob-

ally), F (stands for finally), and X (stands for next). Such temporal modalities can be used
in combination to represent several temporal relations such as always, never, eventually,
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next, later, etc. In this case, φ1, through a combination of boolean and temporal operators,
succinctly and unambiguously explains why the agent failed in its task.

Also, based on the executions, observe that the agent tries to use the path via doors d1 and
d2, while there is an alternate, albeit longer, path via doors d3 and d4. To help the agent find
this path, one can use another LTL formula:

φ2 := F((¬d1 ∨ ¬d2)→ F(d3 ∧ F d4)),

which says the following:

“if the agent eventually finds d1 or d2 to be closed,

then it must eventually find d3 followed by d4 to be open”.

By formally verifying whether the system satisfies φ2, one can ensure better performance of
the agent.

To systematically deduce such temporal properties, we devise techniques that automatically
learn (or infer) them by relying on observed data. The data we consider consists of observed
executions of the system being studied. By varying the type of input data and the formalism
used for expressing temporal properties, we formulate various learning problem settings that
arise in practical scenarios. We consider learning in the presence of noise, from only positive
data, based on infinite executions, based on finite executions, and so on. As formalisms,
we rely on well-known temporal logics such as Linear Temporal Logic (LTL) [179], Metric
Temporal Logic (MTL) [141], Signal Temporal Logic (STL) [157], Property Specification
Language (PSL) [79] and, sometimes, finite state automata such as Deterministic Finite
Automata (DFAs) [183].

Temporal logics and finite state machines have a variety of applications, and many of them
require automated learning. However, each application comes with its unique requirements
and thus demands the learning process to be tailored accordingly. This thesis will focus on
two significant application domains: Explainable AI and Formal Verification. We formulate
our learning problems by accommodating the nuances of these two domains. We now briefly
introduce the domains and how our techniques fit into these domains.

Interpretable Descriptions for Explainable AI

Explainable AI (XAI) [162] is a rapidly growing field with a major focus on explaining
black-box systems. One of the challenge areas in XAI is to explain the temporal behavior of
(cyber-physical or software) systems using interpretable descriptions. Formally, based on XAI
terminology, the task is to infer model-agnostic explanations (that is, explanations not specific
to any model) of local temporal behavior (that is, behavior relating to a specific scenario).

In the past, most works that fit in this setting focused on learning finite state automata for
a concise description of the behaviors (see Neider [167] and López et al. [151] for a summary).
In contrast, our techniques are designed primarily for learning small formulas in temporal
logic. Temporal logics have an inherent resemblance to natural language, and it is often easy to
generate natural language descriptions for small formulas [55]. Thus, from an interpretability
perspective, learning formulas in temporal logic have started gaining traction.
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Unlike many approaches in XAI, our learning techniques provide theoretical guarantees
on the explanations based on the input data, validated through formal proofs. Moreover, they
are designed for practical situations such as noise in the input data (Chapter 4) and lack of
negative examples (Chapter 6). Further, we explore means to scale the learning process to suit
real-world AI applications (Chapter 3).

A distinctive feature of our techniques in the XAI domain is that the input data typically
consists of finite executions. This is because, in many AI applications, systems usually
terminate after a finite duration [100]. As a result, we employ variants of temporal logic—such
as LTLf—which are adaptations of the traditional ones to reason about finite executions.

Formal Specifications for Verification

Formal verification is a rigorous method of verifying systems against formal specifications
by mathematically analyzing their behavior. However, there is an often overlooked catch
with formal verification: manually designing correct specifications that express the desired
requirements precisely is a tedious and error-prone task. Thus, one of the biggest challenges
in formal verification has been the design of functional and correct specifications [31]. To alle-
viate this serious challenge, there have been concentrated efforts to automatically synthesize
specifications from system executions [52, 144, 127].

Our learning techniques are also useful in generating specifications in temporal logic. We
explore techniques to incorporate the intuition of the system designer (Chapter 5). Further, we
consider learning specifications in temporal logics that have industrial applications such as
PSL (Chapter 7) and continuous-time logics such as MTL (Chapter 8). Our contributions for
learning specifications enhance the existing work for LTL [169] and STL [22].

A distinctive feature of our techniques in the verification domain is that the input data
typically consists of infinite executions. This is because formal verification was originally
developed to verify (non-terminating) reactive systems that produce infinite executions. In
this domain, we mostly employ traditional variants of temporal logics designed for infinite
executions.

Despite the differences in the application domains, we will present all the techniques in a
unified manner in the thesis. Wherever possible, we will mention how to adapt the techniques
to suit to the other domain.

1.1 Outline of the Chapters

We now briefly summarize the contents of each chapter of this thesis.

Chapter 2: Basics of Learning Temporal Properties. In this chapter, we will set up the
notation and introduce the main concepts to be used throughout the thesis.

Chapter 3: Scaling the Learning Process via Combinatorial Search. In this chapter, we
will consider the classical LTL learning problem, where the goal is to learn a concise
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LTL formula from positive and negative examples. To this end, we will devise a scalable
algorithm that searches through fragments of LTL via efficient combinatorial search.

Chapter 4: Learning in the presence of Noise. Since noise is ubiquitous in real-world data,
in this chapter, we will consider the problem of learning LTL and STL formulas when
the input data contains noise. We will present learning algorithms that are robust to
noise by allowing formulas that tolerate a bounded amount of misclassifications.

Chapter 5: Incorporating Intuition as Specification Sketches. Often, designers have a high-
level intuition of the desired property for their system. In this chapter, we will formalize
such intuition as a sketch and consider the problem of learning LTL formulas based on a
sketch. We will investigate results that indicate when a sketch proves useful and devise
algorithms for incorporating sketches in the learning process.

Chapter 6: Learning from Positive Examples Only. Negative examples are hard to ob-
serve or design in many safety-critical applications. Thus, in this chapter, we will
consider the problem of learning LTL formulas and DFAs from positive examples only.
We will argue why learning from positive examples is typically an ill-posed problem
and propose some effective means to learn meaningful models in this setting.

Chapter 7: Learning Properties in Property Specification Language. In this chapter, we
will consider the problem of learning temporal properties in PSL, a formalism that
augments LTL with regular expressions and is consequently more expressive than LTL.
We will adapt existing learning techniques for LTL to work for PSL.

Chapter 8: Learning Properties in Continuous-Time Logics. Many applications related
to cyber-physical systems heavily rely on the continuous time-logic MTL. Thus, in
this chapter, we will consider the problem of learning temporal properties in MTL. We
will devise some learning techniques specifically designed to be useful for verification
purposes.

Chapter 9: Conclusion and Future Works. In this final chapter, we will summarize the
contributions of the thesis in both Explainable AI and Formal Verification. We will also
discuss ideas and insights that will provide directions for future work.

1.2 List of Publications

The content of the PhD thesis is based on the following original published research:

1. “Learning Interpretable Models in the Property Specification Language.”, with Dana
Fisman and Daniel Neider, In the 29th International Joint Conference on Artificial
Intelligence, IJCAI 2020 [195].

2. “Learning Linear Temporal Properties from Noisy Data: A MaxSAT-Based Approach.”,
with Jean-Raphaël Gaglione, Daniel Neider, Ufuk Topcu, and Zhe Xu, In Automated



Chapter 1. Introduction 6

Technology for Verification and Analysis - 19th International Symposium, ATVA
2021 [93].

3. “MaxSAT-based temporal logic inference from noisy data.”, with Jean-Raphaël Gaglione,
Daniel Neider, Ufuk Topcu, and Zhe Xu, In Innovations in Systems and Software
Engineering, ISSE 2022 [94].

4. “Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic”,
with Ritam Raha, Nathanaël Fijalkow and Daniel Neider, In Tools and Algorithms for
the Construction and Analysis of Systems - 28th International Conference, TACAS
2022 [187].

5. “Learning Interpretable Temporal Properties from Positive Examples Only”, with Jean-
Raphaël Gaglione, Nasim Baharisangari, Daniel Neider, Zhe Xu and Ufuk Topcu, In
the 37th AAAI Conference on Artificial Intelligence, AAAI 2023 [196].

6. “Specification Sketching for Linear Temporal Logic”, with Simon Lutz and Daniel
Neider, In Automated Technology for Verification and Analysis - 21st International
Symposium, ATVA 2023 [155].

7. “Scarlet: Scalable Anytime Algorithms for Learning Fragments of Linear Temporal
Logic”, with Ritam Raha, Nathanaël Fijalkow and Daniel Neider, In the Journal of
Open Source Software, JOSS 2023 [188].

8. “Synthesizing Efficiently Monitorable Formulas in Metric Temporal Logic”, with Ritam
Raha, Nathanaël Fijalkow, Daniel Neider and Guillermo A. Perez, In Verification,
Model Checking, and Abstract Interpretation - 25th International Conference, VMCAI
2024 [190].

All the publications are the result of collaborations with many great researchers. Hence,
throughout the thesis, I will describe the results using the first-person plural (for instance, ‘we’
instead of ‘I’, ‘our’ instead of ‘my’, etc.).

During my PhD, I also contributed to other projects related to explainability and verifica-
tion of neural networks [33, 19, 134, 132, 133, 230]. While I provide references for interested
readers, I have not included these in the thesis to maintain a focused discussion on learning of
temporal properties.
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Chapter 2

Basics of Learning Temporal
Properties

In this chapter, we will introduce the background knowledge required to understand the
technical contributions of the thesis. We first familiarize the readers with the necessary
concepts from formal language theory and mathematical logic.

2.1 Words, Traces, and Languages

Let N = {0, 1, 2, 3, . . . } be the set of natural numbers, R be the set of real numbers, and
B = {0, 1} be the set of Boolean numbers.

2.1.1 Words.

Unless specified otherwise, in this thesis, we model system executions as words over an
alphabet consisting of relevant system events. Formally, an alphabet Σ is a non-empty, finite
set whose elements are called symbols.

A finite word over Σ is a finite sequence u = a0 . . . an where ai ∈ Σ, i ∈ {0, . . . , n}. The
empty word ε is the empty sequence. The length |u| of a finite word u is the number of its
symbols (note that |ε| = 0). We define u[i] = ai where i ∈ {0, . . . , n} to be the symbol at
position i. Moreover, we define u[i, j) = ai . . . aj−1 where i, j ∈ {0, . . . , n + 1} to be the
finite infix of u starting from position i up to (and excluding) position j (note that u[i, i) = ε).
The set of all finite words over Σ is denoted by Σ∗, and the set of non-empty finite words over
Σ is denoted by Σ+ = Σ∗ \ {ε}.

An infinite word over Σ is an infinite sequence α = a0a1 . . ., where ai ∈ Σ, i ∈N. The
set of all infinite words over Σ is denoted by Σω. The infinite word uω = uuu . . . where
u ∈ Σ+ is called the infinite repetition of u. Moreover, an infinite word α is said to be
ultimately periodic if it is of the form α = uvω, where u and v are finite words such that
u ∈ Σ∗ and v ∈ Σ+. We define the length of an ultimately periodic word uvω as the sum
|u|+ |v| of the length of the finite words u and v.

Analogous to finite words, we define α[i] = ai to be the symbol at position i and
α[i, j) = ai . . . aj−1 to be the finite infix of α starting from position i up to (and excluding)
position j, where i, j ∈N. Additionally, we define α[i, ∞) = aiai+1 . . ., where i ∈N, to be
the infinite suffix of α starting from position i.
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2.1.2 Traces.

We represent relevant events of the underlying system using a finite set P of atomic propo-

sitions. Further, we formalize the system executions involving the relevant events as traces.
Formally, a trace is a word over the alphabet Σ = 2P consisting of all possible subsets of P .
A trace can be either finite or infinite, depending on whether the execution is finite or infinite.
Formally, a finite trace is an element of the set (2P )∗, while an infinite trace is an element of
the set (2P )ω.

2.1.3 Languages.

A language is a set of words over an alphabet Σ. Specifically, a language of finite words is a
subset of Σ∗, while a language of infinite words is a subset of Σω. For all languages L1, L2,
we allow the standard set operations such as union L1 ∪ L2, intersection L1 ∩ L2, complement
Lc

1, and set difference L1 \ L2 and so on, and the standard set relations such as subset L1 ⊆ L2,
proper subset L1 ⊂ L2, and so on.

For any model of computation M, the language L(M) of M is the set of words that M
allows or accepts. The expressive power of a class of models is the set of languages that the
class can capture. Formally, the expressive power of a classM is defined as L(M) = {L ⊆
Σ∗ | L = L(M) for some M ∈ M}.

2.2 Formal Logic

2.2.1 Propositional Boolean Logic.

Several learning techniques described in this thesis rely on satisfiability problems—the mathe-
matical basis for which is propositional Boolean logic or simply propositional logic. Propo-
sitional logic is built upon a finite set XB of propositional variables. These variables take
Boolean values B = {0, 1} (0 represents false and 1 represents true).

Mathematically, formulas in propositional logic—denoted by capital Greek letters—are
defined inductively as follows:

Φ := x ∈ XB | ¬Φ | Φ1 ∨Φ2, (2.1)

where ¬ denotes the negation operator and ∨ the disjunction operator. As syntactic sugar, we
include the following formulas in propositional logic: true := x ∨ ¬x, false := ¬(x ∨ ¬x),
Φ1 ∧Φ2 := ¬(¬Φ1 ∨ ¬Φ2), Φ1 → Φ2 := ¬Φ1 ∨Φ2 and Φ1 ↔ Φ2 := (¬Φ1 ∨Φ2) ∧
(¬Φ1 ∨Φ2), where ∧ denotes the conjunction operator,→ the implication operator and↔
the equivalence operator.

An assignment in propositional logic is a mapping v : XB 7→ {0, 1}, which assigns
propositional variables to Boolean values. Based on an assignment v, we define the semantics
of propositional logic using a valuation function V(Φ, v). This function is defined inductively
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as follows:

V(x, v) = v(x) (2.2)

V(¬Φ, v) = 1−V(Φ, v), (2.3)

V(Φ1 ∨Φ2, v) = max{V(Φ1, v), V(Φ2, v)}. (2.4)

In the case that V(Φ, v) = 1, we say that v satisfies Φ and call v a model or satisfying

assignment Φ. Moreover, a propositional formula Φ is said to be satisfiable if there exists a
model v of Φ.

The satisfiability problem of propositional logic, abbreviated as SAT, is the problem
of determining whether a propositional formula is satisfiable or not. The SAT problem is
well-known to be an NP-complete problem. Despite that, due to its relevance in practical
applications, there have been concentrated efforts to solve SAT effectively, as evidenced
by annual SAT competitions [16]. Present-day tools designed for handling SAT—referred
to as SAT solvers—implement optimized decision procedures that are capable of checking
satisfiability propositional formulas with millions of variables [163, 57, 18]. In fact, virtually
all SAT solvers can even return a model for a given satisfiable formula.

2.2.2 First-order Logic of Reals.

Some learning techniques in this thesis rely on a specific fragment of first-order logic—linear
real arithmetic (LRA)—which we introduce now. This logic, in contrast to propositional logic,
is built upon a set XR of variables that take values in R. In addition to variables, formulas in
LRA rely on real-valued constants, functions {+, ·}, and predicates {≤,<,=,>,≥}.

To define formulas in LRA, we first introduce terms, which are defined inductively as
follows:

t := c ∈ R | x ∈ XR | c · t| t1 + t2, (2.5)

where + denotes the addition operator and · the multiplication operator. Based on standard
convention, we drop the multiplication operator while writing terms. Some examples of terms
are 5, x, and 3x + 2y.

Atomic formulas combine terms by applying predicates. Precisely, atomic formulas are
of the form t1 ◦ t2 where t1 and t2 are terms and ◦ ∈ {≤,<,=,>,≥} a predicate. Some
examples of atomic formulas are x = 5, 3x + 2y > 5, and 3x + 2y ≤ 5x. Formula in

LRA—also denoted by capital Greek letters1— are defined inductively as follows:

Φ := A | ¬Φ | Φ1 ∨Φ1, (2.6)

where A denotes atomic formulas. Analogous to propositional logic, we add standard syntactic
sugar: Φ1 ∧Φ2, Φ1 → Φ2, and Φ1 ↔ Φ2.

1To avoid notational clutter, we reuse some notations for both propositional and first-order formulas; we
explicitly specify which logic while using them.
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Similar to propositional logic, an assignment in LRA is a mapping v : XR → R, which
assigns variables to real values. We can easily lift an assignment v to terms inductively as:
v(c) = c, v(c · t) = v(c) · v(t), and v(t1 + t2) = v(t1) + v(t2). Based on an assignment v,
we define the semantics of LRA using a valuation function V(Φ, v), defined inductively as
follows:

V(t1 ◦ t2, v) = 1{v(t1) ◦ v(t2)} where ◦ ∈ {≤,<,=,>,≥} (2.7)

V(¬Φ, v) = 1−V(Φ, v) (2.8)

V(Φ1 ∨Φ2, v) = max{V(Φ1, v), V(Φ2, v)} (2.9)

where 1{R} is 1 if the relation R holds, otherwise 0. Similar to propositional logic, if
V(Φ, v) = 1, we say that v satisfies Φ and v is a model for Φ. Also, a formula Φ is
satisfiable if there exists a model for it.

The satisfiability problem for formulas in Linear Real Arithmetic (LRA) is of immense
practical significance. Consequently, SAT solvers are frequently enhanced with optimized
decision procedures for Satisfiability Modulo Theories (SMT) [142]. This augmentation
enables checking satisfiability of formulas not only in LRA but also in various other (typically
quantifier-free) fragments of first-order logic, also known as theories.

2.2.3 Linear Temporal Logic.

We now introduce the most commonly used temporal logic in this thesis—Linear Temporal
Logic (LTL). Linear Temporal Logic (LTL) is a logic that enables reasoning about sequences
of events by extending propositional logic with temporal modalities.

Syntax. Given a finite set P of propositions, formulas in LTL—denoted by small Greek
letters—are defined inductively as:

φ := p ∈ P | ¬φ | φ1 ∨ φ2 | X φ | φ1 U φ2, (2.10)

where X denotes the next operator and U the until operator. As syntactic sugar, we al-
low formulas used in propositional logic such as true, false, φ1 ∧ φ2, and φ1→ φ2. Ad-
ditionally, we include formulas based on temporal operators F (Finally) operator and G

(Globally) operators, defined as follows: F φ := trueU φ and G φ := ¬ F¬φ. We define
Λ = {¬,∨,∧,→,X,F,G,U} to be the set of all operators, ΛU = {¬,X,F,G} to be the set
of unary operators and ΛB = {∨,∧,→,U} to be the set of binary operators. We also define
the set of all LTL formulas as FLTL.

We define the set subf (φ) of subformulas of an LTL formula φ inductively as follows:

subf (p) = {p} (2.11)

subf (◦φ) = {◦φ} ∪ subf (φ) for ◦ ∈ ΛU (2.12)

subf (φ1 ◦ φ2) = {φ1 ◦ φ2} ∪ subf (φ1) ∪ subf (φ2) for ◦ ∈ ΛB. (2.13)
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FIGURE 2.1: Representations of LTL formula φ = (pUG q) ∨ X(G q)

As an example, the set of subformulas for φ = (pUG q)∨X(G q) is subf (φ) = {(pUG q)∨
X(G q), (pUG q),X(G q),G q, p, q}. We define the size |φ| of a formula φ as the number
|subf (φ)| of its subformulas. For instance, the size of φ = (pUG q) ∨ X(G q) is 6.

We often view LTL (and other temporal logic) formulas using their syntax DAG represen-
tation. A syntax DAG is a syntax tree in which common subformulas are merged. Figure 2.1
illustrates the syntax tree (Figure 2.1a) and the syntax DAG (Figure 2.1b) representations of
the formula φ = (pUG q) ∨ X(G q). Following the definition of syntax DAGs, the number
of nodes in the syntax DAG of an LTL formula coincides with its size.

LTL is typically interpreted over traces. The exact interpretation of LTL depends on
whether the traces are finite or infinite. Several of our learning techniques can handle both
interpretations, and hence, we introduce them both. To distinguish between the interpretations,
LTL over finite traces is often written as LTLf while LTL over infinite traces is simply written
as LTL.

Infinite semantics. The semantics of LTL over infinite traces [180] is defined using a
satisfaction relation denoted by |=. For an infinite trace u, a timepoint t ∈ N and an LTL
formula φ, the relation u, t |= φ denotes that u satisfies φ at timepoint t or, alternatively, φ

holds on u at timepoint t. It is defined inductively as follows:

u, t |= p if and only if p ∈ u[t] (2.14)

u, t |= ¬φ if and only if u, t ̸|= φ (2.15)

u, t |= φ1 ∨ φ2 if and only if u, t |= φ1 or u, t |= φ2 (2.16)

u, t |= X φ if and only if u, t + 1 |= φ (2.17)

u, t |= φ1 U φ2 if and only if for some t ≤ t′ : u, t′ |= φ2

and for all t ≤ t′′ < t : u, t′′ |= φ1. (2.18)

In the case that u, 0 |= φ, we simply write u |= φ and say that u satisfies φ, or alternatively,
φ holds on u.

Finite semantics. The semantics of LTL over finite traces [67] is defined using a satisfaction
relation denoted by |=f. For a finite trace u, a timepoint t < |u| ∈N and an LTLf formula φ,
the relation u, t |=f φ denotes that u satisfies φ at timepoint t or, alternatively, φ holds on u
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at timepoint t. The definition of |=f differs from that of |= only for the temporal operators,
which we describe below.

u, t |=f X φ if and only if t < |u| and u, t + 1 |= φ (2.19)

u, t |=f φ1 U φ2 if and only if for some t ≤ t′ < |u| : u, t′ |= φ2

and for all t ≤ t′′ < t′ : u, t′′ |= φ1. (2.20)

Similar to the infinite case, if u, 0 |=f φ, we write u |= φ and say that u satisfies φ, or
alternatively, φ holds on u.

Finally, we define the language of a formula φ as the set of traces that satisfies φ. Formally,
for an LTL formula φ, it is defined as L(φ) = {u ∈ (2P )ω | u |= φ}, and for an LTLf

formula, it is defined as L(φ) = {u ∈ (2P )∗ | u |=f φ}.

2.3 Finite State Automata

While typically finite state automata are defined over (general) words, in this thesis, we define
automata over traces to unify the notation with temporal logic.

2.3.1 Automata over finite traces.

A non-deterministic finite automaton (NFA) is a tuple A = (Q, 2P , ∆, QI , F) where Q is a
finite set of states, 2P the alphabet, QI ⊆ Q the set of initial states, F ⊆ Q the set of final
states, and ∆ ⊆ Q× Σ×Q the transition relation.

Given a trace u = a0 . . . an ∈ (2P )∗, a run ρ of an NFA A on u is a sequence of
states and symbols q0a0q1 · · · qnanqn+1, such that q0 ∈ QI and for each t ∈ {0, · · · , n},
(qt, at, qt+1) ∈ ∆. An NFA A is said to accept a trace u if some run of A on u ends in
a final state, that is, a state in F. The language of an NFA A is defined as L(A) = {u ∈
(2P )∗ | A accepts u}.

A deterministic finite automaton (DFA) is an NFA in which for each state q ∈ Q and
symbol a ∈ 2P , there is exactly one state q′ ∈ Q with a transition (q, a, q′) ∈ ∆. Thus, for
each trace u, the run ρ of a DFA A on u is unique.

The language of an NFA (or an DFA)A is defined as L(A) = {u ∈ (2P )∗ | A accepts u}.
It is well-known that the expressive power of DFAs and NFAs are the same [202]. Further, the
expressive power of DFAs/NFAs is strictly more than that of LTLf [67].

2.3.2 Automata over infinite traces.

A non-deterministic Büchi automaton (NBA) is a tuple A = (Q, 2P , ∆, QI , F) that is syntac-
tically identical to an NFA.

In contrast to NFAs, NBAs accept infinite traces, and thus, a run of an NBA is an infinite
sequence. Formally, given an infinite trace u = a0a1 . . . ∈ (2P )ω, a run ρ of an NBA A on u
is a infinite sequence of states and symbols q0a0q1a1q2 · · · , such that q0 ∈ QI and for t ∈N,
(qt, at, qt+1) ∈ ∆. The set inf (ρ) is the set of states that appear infinitely often in a run ρ. An
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NFAA is said to accept a trace u if there is some run ρ ofA on u in which a final state occurs
infinitely often, that is, inf (ρ) ∩ F ̸= ∅.

A deterministic Büchi automaton (DBA) is an NBA in which for each state q ∈ Q and
symbol a ∈ 2P , there is exactly one state q′ ∈ Q with a transition (q, a, q′) ∈ ∆. Also, for
each trace u, the run ρ of a DBA A on u is unique.

The language of an NBA (or an DBA)A is defined as L(A) = {u ∈ (2P )ω | A accepts u}.
It is known that the expressive power of NBAs is strictly more than that of LTL [210, 91] and
DBAs [209]. The expressive powers of LTL and DBAs are incomparable.

2.4 Background on Learning Temporal Properties

The learning problems that we consider in the thesis can be broadly classified as passive
learning. Passive learning, stated generally, is the following: given labeled input data, the
goal is to find a concise model2 that fits the data. The input data will usually consist of traces
with their labels indicating whether the traces are accepted (that is, positive) or rejected (that
is, negative) by the prospective model.

For passive learning, the models of computation that have been of primary focus in the
past are finite automata. There is, in fact, a vast literature on learning algorithms for finite
automata with significant tool support [184, 35, 165]. Most of the works have focussed on
deterministic finite automata (DFAs) [30, 174, 108, 116] and non-deterministic finite automata
(NFAs) [68, 62] for finite words, and Büchi automata [32] for infinite words (see Neider [167]
and López et al. [151] for extensive related work).

2.4.1 Comparison to Automata Learning

While we discuss a few algorithms for learning automata, the primary focus of this thesis
will be on learning formulas in temporal logics. We believe that learning temporal logic
substantially complements the existing work on learning automata in the general area of
passive learning. To bolster this fact, we first highlight the differences in general properties
of temporal logic and automata as models of computation. We then argue why it might be
beneficial to develop learning algorithms for temporal logic if the application prefers temporal
logic.

Function. Temporal logics and finite automata, on a conceptual level, serve different purposes.
Temporal logics are considered to be declarative models for expressing temporal
properties: one typically formalizes the intuitive understanding of a property as a
temporal logic formula. In fact, temporal logics were developed with the intention
of formalizing the temporal aspects of natural language unambiguously (see Goranko
et al. [105] for a summary). Finite automata, on the other hand, are considered to be
operational models for expressing temporal properties: one typically represents all
possible behaviors allowed by a property as a compact state machine. Finite automata

2The considered models, typically, have a natural notion of size
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exploit techniques, such as using loops within states, to concisely capture all possible
behaviors.

Interpretability. Before we dive into details about interpretability, we emphasize that it is a
highly subjective issue. Interpretability often depends on the familiarity and expertise of
a user with the particular model at hand. To our knowledge, there is no well-established
measure that can compare the interpretability of temporal logics and finite automata.
One could possibly conduct psychological studies with human users to view their
perception of the models. However, such studies are beyond the scope of this thesis.
Nevertheless, we present certain evidence that demonstrates the resemblance of temporal
logic to natural language (which may or may not be a proper notion of interpretability)
as compared to finite automata.

First, we consider some LTLf formulas3 that are commonly used in practice. For
these formulas, we wrote a possible compact natural language (NL) translation and
constructed their equivalent minimal DFAs. We present all the results in Figure 2.2. We
ensured that the equivalent DFAs are minimal using the tool LTLf2DFA [89].

From the NL translations in Figure 2.2, we observe that it is often possible to translate
LTLf formulas into English by directly replacing an LTL operator with a word (or
combination of words) that resembles its function. For instance, one can replace Boolean
operators ∨, ∧, ¬, and→ with ‘or’, ‘and’, ‘does not’, and ‘if-then’, respectively. One
can translate temporal operators G, F, and U with ‘always’ (or ‘never’ if a negation
appears), ‘eventually’, and ‘until,’ respectively. While the NL translations can become
complex and ambiguous as the formulas become large (and involve nesting of operators),
they can still provide some insights into the meaning of the formula.

From the equivalent DFAs in Figure 2.2, we observe that for formulas in Figures 2.2a,
2.2b, and 2.2c, which are rather small, one could view the equivalent DFAs to be similar
to their NL translations. For formulas in Figures 2.2d, 2.2e, 2.2f and 2.2g, which
are larger than the previous formulas, the equivalent DFAs may seem complex as the
DFAs consist of multiple states and transitions serving different roles. The formula
in Figure 2.2h, despite being larger than all the considered formulas, has a compact
equivalent DFA. This DFA exploits several loops to concisely represent the possible
behaviors of the LTLf formula, making it appear significantly different from its NL
translation.

Due to the resemblance of NL and temporal logic, plethora of tools have been designed
to translate temporal logic to natural language and vice-versa. Early works [85, 172,
98, 102] translated NL to temporal logic formulas by efficiently parsing English sen-
tences. As data-driven techniques became pervasive, several neural-network based
techniques [173, 110, 55] started relying on human-labeled NL-formula pairs. Cur-
rently, many works [61, 177, 150, 90] are utilizing the impressive understanding of

3The LTLf formulas are based on common LTL patterns [77] that use at most two propositions.
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natural language by Large Language Models (LLMs) to further boost the translation
capabilities.

In contrast, to the best of our knowledge, there are no such tools that directly translate
finite automata to natural language. Finite automata are better employed as useful tools
in natural language processing (NLP) (follow the FSMNLP conferences [217]).

Succinctness. Some properties when represented in temporal logic are more succinct (in
terms of size) than they are when expressed as finite automata. It is known that
the LTLf formulas can be double-exponentially more succinct than their equivalent
DFAs [100] and LTL formulas can be exponentially more succinct than their equivalent
NBAs [143]. For instance, a simple LTLf formula that admits a large DFA is the formula
φ(n) := G(p→ Xn(q)) which roughly translates to “always, if p holds, n time-steps
later q holds”. While φ(n) is of size O(n), one can show that the equivalent minimal
DFA Aφ(n) is of size at least O(2n), since intuitively Aφ(n) needs states to represent
all possible 2n behaviors in n time-steps.

As we see above, temporal logics and finite automata are distinct formalisms, each having
their unique characteristics and applicative nuances. We now argue that if the application
demands formulas in temporal logic, then it is more convenient to use an algorithm that learns
temporal logic instead of the standard automata learning algorithms. This is primarily because
learning automata and then converting them to their equivalent temporal logic formulas is
often either not possible or results in large formulas. We expand on these reasons below.

Expressivity. The expressive powers of finite automata and temporal logics are often very
different. DFAs/NFAs (respectively, NBAs) are more expressive that LTLf (respectively,
LTL) [67, 91, 210]. Continuous-time logics (such as MTL and STL) are often not
known to have automata models that have the same expressive power as them.

We, however, note that there are some well-formed (formally, counter-free) finite
automata with certain syntactic restrictions that have the same expressive power as
LTL\LTLf and can be used to learn formulas [48]. However, such automata models
are by no means common in the automata learning literature. Thus, we can say that
automata obtained through standard automata learning may not have an equivalent
representation in the desired temporal logic.

Shape and size. Even if one could learn automata that can be converted to temporal logic
formulas, it may not yield small formulas. For instance, converting a counter-free
DFA—which belongs to a subclass of DFAs that have the same expressive power as
LTLf—has a double exponential blow-up in size [221]. Also, such conversions often
lead to formulas of a specific syntactic structure, which may not be always desirable. In
fact, several questions about the shape and size of the converted temporal logic formulas
are still open [34]. Thus, a priori, it is not clear whether converting automata to temporal
logic formulas would result in small and easy-to-understand formulas.
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(a) G(¬p): p never holds.
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(b) F(p): p holds eventually.
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(c) G(p): p always holds.
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(d) F(q) → (¬pU q): If q holds eventually,
then p does not hold until q holds.
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q2 q3
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q

¬p ∧ ¬q
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(e) F(q)→ (pU q): If q holds eventually, then
p holds until q holds.
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p ∧ q

p ∧ q
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p
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(f) G(q→ G(¬p)): Always, if q holds, then p
never holds.

q0

q1
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¬q

p ∧ q

¬p ∧ q

p

¬p

true

(g) G(q → G(p)): Always, if q holds, then p
always holds.

q0 q1

¬p ∨ q

p ∧ ¬q

¬q

q

(h) G((¬p∨F(p∧ F(q))): Always, either p does not hold
or if p holds then q holds eventually.

FIGURE 2.2: Commonly used LTLf formulas along with a compact natural
language (NL) translation and equivalent minimal DFAs. We present the
equivalent DFAs as subfigures, while the LTLf formulas, along with their NL

translations, are in the subcaptions.
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Again, there are some syntactically restricted automata which have similar shape and
size as their temporal logic equivalent; for instance, counter-free alternating finite au-
tomata (AFA) has same size as its LTLf equivalent. However, such automata models are
not typical in automata learning and often specifically used for learning formulas [48].

Overall, we posit that the learning algorithms for temporal logic complement existing
research in automata learning, thereby enhancing the general area of passive learning.
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Chapter 3

Scaling the Learning Process via
Combinatorial Search.

In this chapter, we consider the standard passive learning problem for LTLf, which asks to
infer explainable models in the form of an LTLf formula from system executions. Specifically,
given a sample S of system executions partitioned into two finite sets of positive and negative
examples, the goal is to learn a concise LTLf formula φ which satisfies all the positive
examples and none of the negative examples. In that case, we say the formula φ is consistent

with the given sample. Based on machine learning terminology, the formula φ can be thought
of as a perfect classifier (that is, a classifier with full accuracy) of the sample S . Since we
search for a perfect classifier, this setting is also often known as exact learning. We refer to
Section 3.1 for further details on the problem.

As also described in Chapter 1, this learning problem for LTLf has significant applications
in the domains of Explainable AI and Formal verification including specification mining [145],
fault detection [37], etc. (see Camacho et al. [47] for a comprehensive list of applications).
As a result, in recent years, several approaches have been proposed for learning LTL\LTLf

formulas. Some approaches leverage SAT (or SMT) solving, utilizing either the syntax-DAG
representation of LTL\LTLf [169, 193, 8] or the alternating automata-based representation of
LTLf [47]. Some other approaches exploit Bayesian inference [135, 200], although restricted
to learning certain LTL templates. Further, recent approaches exploit deep learning based on
various neural-network architectures such as GNNs [153], RNNs [88], etc.; they have strong
empirical performance, but are unable to guarantee perfect classification.

Existing approaches for exact learning1 do not scale beyond formulas of size 10, making
them hard to deploy for industrial cases. A second serious limitation is that they often exhaust
computational resources without returning any results. Indeed, theoretical studies [83, 39,
159] have shown that learning minimal LTL\LTLf formulas (for many of its subclasses) is
NP-hard, explaining the difficulties found in practice.

To address both issues, we design an algorithm that exploits two features: approximation

and anytime. By approximation, we mean that (i) our algorithm does not always produce a
minimal formula, although it does produce a formula that is consistent with the input sample

1When this research was done, existing works for exact learning relied predominately on constraint solving [169,
193, 47]. Some subsequent works [124, 97] explored other approaches.
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and (ii) it targets a strict fragment of LTLf, which does not contain the Until operator (nor its
dual Release operator).

By anytime, we mean that our algorithm keeps finding better and better solutions the
longer it runs; in other words, it works by refining solutions. As we will see in the experiments,
due to the anytime feature, our algorithm may yield some good albeit non-optimal formula
even if it times out.

Our algorithm combines two ingredients:

• Searching for directed-LTL formulas: we define a space-efficient dynamic programming
algorithm for enumerating formulas from a subclass of LTLf that we call directed-LTL.

• Combining directed-LTL formulas: we construct two algorithms for combining formulas
using Boolean operators. The first is an off-the-shelf decision tree algorithm, and the
second is a new greedy algorithm called Boolean subset cover.

The two ingredients yield two subprocedures: the first one finds directed-LTL formulas of
increasing size, which are then fed to the second procedure in charge of combining them into
a consistent formula. This yields an anytime algorithm as both subprocedures can output
consistent formulas even with a low computational budget and refine them over time; we refer
to Section 3.2 for an overview of the algorithm.

To illustrate the subprocedures, we consider a simple scenario from motion planning.
Consider an autonomous agent that is deployed to collect wastebin contents from an office
and then empty them in a trash container. The environment, let us say, consists of an office o,
a hallway h, a container c and a wet area w. We now consider a sample of executions of the
agent consisting of the following traces:

u1 = {h}{h}{h}{h}{o}{h}{c}{h}
v1 = {h}{h}{h}{h}{h}{c}{h}{o}{h}{h}

Based on the agent’s performance, the trace u1 is positive, while the trace v1 is negative.
Observe that in v1 the agent visits the trash container c before collecting the waste from
the office o, which could be a reason why v1 is negative. Thus, the LTLf formula φ1 :=
F(o∧ FX c), which simply fixes the order in which the office o and the container c are visited,
is consistent with the above sample. Here, as usual, F-operator stands for finally and X for
next.

The formula φ1 is a so-called directed-LTL formula. The first procedure enumerates such
directed-LTL formulas of increasing size; we refer to Section 3.3 for the details for this step.
The directed-LTL formula F(o∧ FX c) has a small size and, hence, will be generated early
on.

Let us now assume that there are two more negative traces in the sample:

v2 = {h}{h}{h}{h}{h}{o}{w}{c}{h}{h}{h}
v3 = {h}{h}{h}{h}{h}{w}{o}{w}{c}{w}{w}
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Observe that in these two traces, the agent visits the wet area w, which could be a reason why
they are negative. Thus, an LTLf formula φ2 := G(¬w), which simply says that the wet area
must never be visited, can explain why u1 is positive while v2 and v3 are not is. As usual, here
G stands for globally.

The formula φ2 is a (dual) directed-LTL formula, and the first procedure can detect it
early on during its search. Now observe that if the sample has u1 as positive, and v1, v2 and
v3 as negative, neither φ1 nor φ2 individually is consistent with the sample. This is because,
φ1 satisfies v2 and v3, while φ2 satisfies v1.

However, the boolean combination φ1 ∧ φ2 works. Towards this, the second procedure
obtains φ1 and φ2 from the first procedure and constructs possible Boolean combinations of
them; we refer to Section 3.4 for the details of this step.

We implement our algorithm, with its two subprocedures, in an open-source software—
SCARLET [188]. We conduct experiments comparing the performance of SCARLET against
two state-of-the-art tools for learning temporal properties [169, 8]. Further, we test its
scalability on large samples and also the benefits of the anytime feature. We refer to Section 3.6
for the details of the experiments and Section 3.7 for a final discussion.

3.1 Problem Formulation

As input, we consider a sample S = (P, N) of finite traces from (2P )∗, partitioned into a set
P of positive examples and a set N of negative, such that P ∩ N = ∅.

We say an LTLf formula φ is consistent with a sample S = (P, N) if u |=f φ for all
positive examples u ∈ P and u ̸|=f φ for all negative examples u ∈ N. When the sample is
clear from the context, we simply say φ is consistent.

The problem we consider is the following:

Problem 1. Given a sample S = (P, N), learn a minimal LTLf formula that is consistent

with S .

As mentioned before, we consider an approximate version of the above problem. Specif-
ically, we learn concise formulas in a certain subclass of LTLf, helping us to alleviate the
theoretical difficulties in learning arbitrary LTLf formulas [83].

To make our search easier, throughout this chapter, we fix LTLf to be in its negation
normal form (NNF), where the ¬-operator appears only before a proposition; NNF for LTLf

is a syntactic restriction that is known not to affect the expressive power. Moreover, we rely
on two fragments of LTLf: LTLf(F, X), which includes only F and X as temporal operators,
and LTLf(G, X) which includes only G and X as temporal operators. We consider both the
fragments to have all Boolean operators.

3.2 High-level Overview of the Algorithm

Before the overview of our learning algorithm, let us consider the fundamental steps behind
any exact learning algorithm for LTLf. Typically, one searches through all LTLf formulas,
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fixing an order on their size, and simultaneously checks whether any of the formulas is
consistent with our sample. Checking whether an LTLf formula is consistent can be done
using standard methods (such as dynamic programming [158], bit vector operations [20], etc.).
However, the major drawback of this idea is that we have to search through all LTLf formulas,
which is hard as the number of LTLf formulas grows very quickly2.

To tackle this issue, instead of the entire LTLf fragment, our algorithm (as outlined
in Algorithm 1) performs an iterative search through a subclass of LTLf, which we call
directed-LTL (Line 4). We also devise an efficient enumeration technique based on dynamic
programming that can (i) generate these directed-LTL formulas in a particular “size order”
(note, not the usual size of LTLf formulas), and (ii) also, evaluate these formulas over the
traces in the sample.

The size order has a trivial (and large) upper-bound since there always exists a large LTLf

formula that is consistent with any given sample. This large formula intuitively enumerates the
differences between the positive and negative traces [169]. Formally, it is

∨
u∈P

∧
v∈N φu,v,

where φu,v is a formula that uses X operator and propositions to specify the difference between
the positive trace u and the negative trace v.

To include more than just directed-LTL formulas, we generate and search through the
Boolean combinations of the most promising directed-LTL formulas (Line 11). Note that the
subclass of LTLf that our algorithm searches through ultimately does not include formulas
with U operator.

Algorithm 1 Overview of our algorithm

1: B← ∅
2: ψ← ∅: {stores the best formula found}
3: for all s in increasing “size order” do
4: D ← all directed-LTL formulas of parameter s
5: for all φ ∈ D do
6: if φ is consistent and smaller than ψ then
7: ψ← φ
8: end if
9: end for

10: B← B ∪ D
11: B← Boolean combinations of the promising formulas in B
12: for all φ ∈ B do
13: if φ is consistent and smaller than ψ then
14: ψ← φ
15: end if
16: end for
17: end for
18: return ψ

During the search for formulas, our algorithm searches for smaller consistent formulas (if
any, found at an earlier step) at each iteration. In fact, as a heuristic, once a consistent formula
is found, we only search through formulas that are smaller than the found consistent formula.

2The number of LTLf formulas of size k is asymptotically equivalent to
√

14·7k

2
√

πk3
[87]
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Such a heuristic, along with aiding the search for minimal formulas, also reduces the search
space significantly.

Anytime feature. The anytime feature of our algorithm is also a consequence of storing
the smallest formula seen so far (Line 7 and 14). Once we find a consistent formula, we can
output it and continue the search for smaller, consistent formulas.

3.3 Directed LTL

The first insight of our algorithm is the definition of directed-LTL; we often use the shorthand
dLTL for directed-LTL.

A partial symbol is a conjunction of positive or negative atomic propositions. We write
s = p0 ∧ p2 ∧ ¬p1 for the partial symbol specifying that p0 and p2 hold and p1 does not.
The definition of a symbol satisfying a partial symbol is natural: for instance, the symbol

{p0, p2, p4} satisfies s. The width of a partial symbol is the number of atomic propositions it
uses.

We now define the syntax of directed-LTL as follows:

φ = Xn s | FXn s | Xn(s ∧ φ) | FXn(s ∧ φ),

where s is a partial symbol, n ∈ {0, 1, · · · } and Xn φ is a shorthand for X . . .X︸ ︷︷ ︸
n times

φ.

As an example, the dLTL formula

F((p ∧ q) ∧ FX2 ¬p)

reads: there exists a timepoint satisfying p ∧ q, and at least two timepoints later, there exists
a timepoint satisfying ¬p. The intuition behind the term “directed” is that a dLTL formula
fixes the order in which the partial symbols occur. A non-dLTL formula is F p ∧ F q: there
is no order between p and q. Note that dLTL only uses the X and F operators as well as
conjunctions and atomic propositions.

Generating directed formulas. Let us consider the following problem: given the sample S ,
we want to generate all dLTL formulas together with a list of traces in S that they satisfy. Our
first technical contribution and key to the scalability of our approach is an efficient solution to
this problem based on dynamic programming.

Let us define a natural order in which we want to generate dLTL formulas. They have two
parameters: length, which is the number of partial symbols in the dLTL formula, and width,
which is the maximum of the widths of the partial symbols in the dLTL formula. We combine
these two parameters as the pair (length, width) and consider the following order on them:

(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . .
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(We note that in practice, slightly more complicated orders on pairs are useful since we want
to increase the length more often than the width.) Our enumeration algorithm works by
generating dLTL formulas of a given pair of parameters from the sample in a recursive fashion.
Assuming that we already generated all dLTL formulas for the pair of parameters (ℓ, w), we
define two procedures, one for generating the dLTL formulas for the parameters (ℓ+ 1, w),
and the other one for (ℓ, w + 1).

When we generate the dLTL formulas, we also keep track of which traces in the sample
they satisfy by exploiting a dynamic programming table called LASTPOS. We define it is as
follows, where φ is a dLTL formula and u a trace in S :

LASTPOS(φ, u) = {t ∈ {0, . . . , |u| − 1} | u[0, t + 1) |= φ} .

This table stores the timepoints t in trace u such that dLTL formula φ satisfies prefixes
u[0, t + 1) The main benefit of LASTPOS is that it meshes well with dLTL formulas: it is
algorithmically easy to compute them recursively on the structure of dLTL formulas. Moreover,
one can exploit LASTPOS to check whether a dLTL formula φ is consistent: LASTPOS(φ, u)
must be non-empty for positive traces and empty for negative traces.

A useful idea is to change the representation of the set of traces in S , by precomputing the
lookup table INDEX defined as follows, where u is a trace in S , s a partial symbol, and t in
{0, . . . , |u|}:

INDEX(u, s, t) =
{

t′ ∈ {t, . . . , |u|} | u[t′] |= s
}

.

This table stores the timepoints t′ ≥ t in the trace u where the partial formula s holds. It can
be precomputed in linear time from S , and makes the dynamic programming algorithm easier
to formulate.

Having defined the important ingredients, we now present the pseudocode (Algorithm 2)
for both increasing the length and width of a formula. For the length increase algorithm, we
define two extension operators ∧=k and ∧≥k that “extend” the length of a dLTL formula φ

by including a partial symbol s in the formula. Precisely, the operator s ∧=k φ replaces the
rightmost partial symbol s′ in φ with (s′ ∧ Xk s), while s ∧≥k φ replaces s′ with (s′ ∧ FXk s).
For instance, c ∧=2 X(a ∧X b) = X(a ∧X(b ∧X2 c)) and c ∧≥2 X(a ∧X b) = X(a ∧X(b ∧
FX2 c)).

For the width increase algorithm, we say that two dLTL formulas are compatible if they
are equal except for partial symbols. For two compatible formulas, we define a pointwise-and

(∧· ) operator that takes the conjunction of the corresponding partial symbols at the same
timepoints. For instance, X(a ∧ X b) ∧· X(b ∧ X c) = X((a ∧ b) ∧ X(b ∧ c)).

The actual implementation of the algorithm refines certain parts of the sub-procedures.
We provide some such examples here.

• In Line 3, instead of considering all partial symbols, we restrict to those appearing in at
least one positive trace.

• In Line 13, some computations for φ≥j can be made redundant; a finer data structure
factorizes the computations.
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FIGURE 3.1: The Boolean subset cover problem: the formulas φ1, φ2, and
φ3 satisfy the words encircled in the corresponding area; in this case (φ1 ∧

φ2) ∨ φ3 is a consistent formula.

• In Line 25, using a refined data structure, we only enumerate compatible dLTL formulas.

Lemma 1. Given a sample S , Algorithm 2 generates all dLTL formulas from S and correctly

computes the tables LASTPOS.

This lemma can be proved using an induction on the natural order in which the dLTL
formulas are searched.

The dual point of view. We use the same algorithm to produce formulas in a dual fragment
to dLTL, which uses the X and G operators, the last predicate, as well as disjunctions and
atomic propositions. The only difference is that we swap the positive and negative traces in
the sample; that is, we consider the sample to be S ′ = (N, P). We obtain a dLTL formula
from S ′ and apply its negation as shown below:

¬X φ = last∨X¬φ ; ¬ F φ = G¬φ ; ¬(φ1 ∧ φ2) = ¬φ1 ∨ ¬φ2.

3.4 Boolean Combination of Formulas

As explained in the previous section, we can efficiently generate dLTL formulas and dual
dLTL formulas. We now explain how to form a Boolean combination of these formulas in
order to construct consistent formulas, as illustrated in the beginning of the chapter.

Let us consider the following subproblem: given a set of formulas, does there exist a
Boolean combination of some of the formulas that is a consistent formula? We call this the
Boolean subset cover problem, which is illustrated in Figure 3.1. In this example, we have
three formulas φ1, φ2, and φ3, each satisfying subsets of u1, u2, u3, v1, v2, v3 as represented in
the drawing. Inspecting the three subsets reveals that (φ1 ∧ φ2) ∨ φ3 is a consistent formula.

The Boolean subset cover problem is a generalization of the well-known and extensively
studied subset cover problem, where we are given S1, . . . , Sm subsets of {1, . . . , n}, and the
goal is to find a subset I of {1, . . . , m} such that

⋃
i∈I Si covers all of {1, . . . , n} – such a

set I is called a cover. Indeed, it corresponds to the case where all formulas satisfy none
of the negative traces: in that case, conjunctions are not useful, and we can ignore the
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Algorithm 2 Generation of dLTL formulas for the traces in S
1: procedure SEARCH DLTL FORMULAS – LENGTH INCREASE(ℓ, w)
2: for all dLTL formulas φ of length ℓ and width w do
3: for all partial symbols s of width at most w do
4: for all u ∈ S do
5: I = LASTPOS(φ, u)
6: for all t1 ∈ I do
7: J = INDEX(u, s, t1)
8: for all t2 ∈ J do
9: φ=t2 ← s ∧=(t2−t1) φ

10: add t2 to LASTPOS(φ=t2 , u)
11: end for
12: for all t1 ≤ t3 ≤ max(J) do
13: φ≥t3 ← s ∧≥(t2−t1+1) φ
14: add J ∩ {t3, . . . , |u|} to LASTPOS(φ≥t3 , u)
15: end for
16: end for
17: end for
18: end for
19: end for
20: end procedure
21:

22: procedure SEARCH DLTL FORMULAS – WIDTH INCREASE(ℓ, w)
23: for all dLTL formulas φ of length ℓ and width w do
24: for all dLTL formulas φ′ of length ℓ and width 1 do
25: if φ and φ′ are compatible then
26: φ′′ ← φ ∧· φ′

27: for all u ∈ S do
28: LASTPOS(φ′′, u)← LASTPOS(φ, u) ∩ LASTPOS(φ′, u)
29: end for
30: end if
31: end for
32: end for
33: end procedure

negative traces. The subset cover problem is known to be NP-complete. However, there
exists a polynomial-time log(n)-approximation algorithm called the greedy algorithm: it is
guaranteed to construct a cover that is at most log(n) times larger than the minimum cover.
This approximation ratio is optimal in the following sense [70]: there is no polynomial time
(1− o(1)) log(n)-approximation algorithm for subset cover unless P = NP. Informally, the
greedy algorithm for the subset cover problem does the following: it iteratively constructs
a cover I by sequentially adding the most “promising” subset to I, which is the subset Si

maximizing how many more elements of {1, . . . , n} are covered by adding i to I.

Greedy Approximation. We introduce an extension of the greedy algorithm to the Boolean
subset cover problem. The first ingredient is a scoring function. This function helps us in
gathering the formulas that are promising. There are many possibilities for such scoring
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functions. We consider the following function:

scon(φ) = | {u ∈ P | u |= φ} |+ | {u ∈ N | u ̸|= φ} |,

which assigns a score based on how close the formula is to being consistent. We also consider
another function

ssize(φ) =
| {u ∈ P | u |= φ} |+ | {u ∈ N | u ̸|= φ} |√

|φ|+ 1
,

which assigns a score taking into account also how large the formula is. We found empirical
success with the later score, in the sense that we were able to obtain a concise Boolean
combination of formulas. The operation

√·+ 1 in the denominator helped us factor in the
importance of size over being consistent.

The pseudocode is given in Algorithm 3. The algorithm maintains a set B of formulas,
which, initially, is the set of formulas given as input. It adds new formulas to B until a
consistent formula is found. We rely on a parameter K that tracks how many promising

formulas we like to consider in the sub-procedure (in the implementation, K was set to 5). At
each point in time, the algorithm chooses the K formulas φ1, . . . , φK with the highest score
in B and constructs all disjunctions and conjunctions of φi with formulas in B. For each i,
we keep the disjunction or conjunction with a maximal score and add this formula to B if it
has a higher score than φi. We repeat this procedure until we find a consistent formula or no
formula is added to B. An important optimization is to keep an upper bound on the size of a
consistent formula, which we use to cut off computations that cannot lead to smaller formulas
in the greedy algorithm for the Boolean subset cover problem.

Algorithm 3 Greedy algorithm for the Boolean subset cover problem
Input: u1, . . . , un, v1, . . . , vn, and a set F of formulas

1: Set K < |F|
2: procedure GREEDY(F)
3: choose the K formulas φ1, . . . , φK in F with the highest score
4: for all ψ ∈ F do
5: for all 1 ≤ i ≤ K do
6: construct ψ ∧ φi and ψ ∨ φi
7: compute their scores
8: if one of the two formulas is consistent then
9: return the consistent formula

10: end if
11: end for
12: let θ be the formula with the highest score computed using ψ
13: if θ has higher score than ψ then
14: add θ to F
15: end if
16: end for
17: end procedure
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Decision Tree Learning. Another natural approach to the Boolean subset cover problem is
to use decision trees. This approach is rather straightforward: we consider the set F of dLTL
formulas obtained from the first sub-procedure as the primitives (or features) for decision tree
learning. We then follow any standard decision tree learning algorithm [182] (such as ID3,
C4.5, CART) to find a decision tree that perfectly classifies the sample. The LTLf formula
corresponding to the decision tree can be obtained in a standard manner [169].

We experimented with both approaches and found that the greedy algorithm is both faster
and yields smaller formulas. We do not report on these experiments because the formulas
obtained using decision tree learning are always larger than the greedy approach and, therefore,
less useful for practical purposes. Let us, however, remark that using decision trees we get
the theoretical guarantee that the algorithm always terminates with a consistent formula, as
explained in Theorem 2.

3.5 Theoretical Guarantees

We present a result that shows the relevance of the subclass directed-LTL and their Boolean
combinations.

Theorem 1. Every formula of LTLf(F,X) is equivalent to a Boolean combination of dLTL

formulas. Equivalently, every formula of LTLf(G,X) is equivalent to a Boolean combination

of dual dLTL formulas.

In other words, this theorem says that the expressive power of LTLf(F,X) and LTLf(G,X)
is the same as the Boolean combination of directed-LTL and dual directed-LTL, respectively.

To get an insight behind the proof of Theorem 1, let us consider the formula F p ∧ F q,
which is not directed. This formula is equivalent to F(p∧ F q)∨ F(q∧ F p), which is obtained
by the Boolean combination of dLTL formulas F(p ∧ F q) and F(q ∧ F p). Here, we simply
rewrite the first formula using a disjunction over the possible orderings of p and q. The formal
proof generalizes this rewriting idea, which we present now.

For the proof, we denote the Boolean combination of directed-LTLformulas as dLTL(∧,∨).
We begin with a lemma necessary to prove the above theorem.

Lemma 2. Let ∆1, ∆2 be two dLTL formulas. Then, ∆1 ∧ ∆2 can be written as a disjunction

of formulas in dLTL.

Proof of Lemma 2. To prove the lemma, we use induction over the structure of ∆1 ∧ ∆2 to
show that it can be written as a disjunction of dLTL formulas. As induction hypothesis, we
consider all formulas ∆′1 ∧ ∆′2, where at least one of ∆′1 and ∆′2 is structurally smaller than ∆1

and ∆2 respectively, can be written as a disjunction of dLTL formulas.
The base case of the induction is when either ∆1 or ∆2 is a partial symbol. In this case,

∆1 ∧ ∆2 is itself a dLTL formula by definition of dLTL formulas.
The induction step proceeds via case analysis on the possible root operators of the formulas

∆1 and ∆2
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• Case: either ∆1 or ∆2 is of the form s ∧ ∆ for some partial symbol s. Without loss of
generality, let us say ∆1 = s∧∆. In this case, ∆1 ∧∆2 = (s∧∆)∧∆2 = s∧ (∆∧∆2).
By hypothesis, ∆ ∧ ∆2 =

∨
i Γi for some Γi in dLTL. Thus, ∆1 ∧ ∆2 = s ∧ ∨i Γi =∨

i(s ∧ Γi), which is a disjunction of dLTL formulas.

• Case: ∆1 is of the form X δ1 and ∆2 is of the form X δ2. In this case, ∆1 ∧ ∆2 =

X(δ1 ∧ δ2). By hypothesis, δ1 ∧ δ2 =
∨

i γi for some γi’s in dLTL. Thus, ∆1 ∧ ∆2 =

X(
∨

i γi) =
∨

i Xγi, which is a disjunction of dLTL formulas.

• Case: ∆1 is of the form X δ1 and ∆2 is of the form F δ2. In this case, ∆1 ∧ ∆2 = X δ1 ∧
F δ2 = (X δ1 ∧ δ2) ∨ (X δ1 ∧ FX δ2) = (X δ1 ∧ δ2) ∨ X(δ1 ∧ F δ2). By hypothesis,
both formulas (X δ1 ∧ δ2) and (δ1 ∧ F δ2) can be written as a disjunction of dLTL
formulas. Thus, ∆1 ∧ ∆2 can also be written as a disjunction of dLTL formulas

• Case: ∆1 is of the form F δ1 and ∆2 is of the form F δ2. In this case, ∆1 ∧ ∆2 =

F δ1 ∧ F δ2 = F(δ1 ∧ F δ2) ∨ F(δ2 ∧ F δ1). By hypothesis, both formulas δ1∧ F δ2 and
δ2 ∧ F δ1 can be written as a disjunction of dLTL formulas. Thus, ∆1 ∧ ∆2 can also be
written as a disjunction of dLTL formulas.

Proof of Theorem 1. We prove the first statement of the theorem since the second statement
follows analogously. This proof proceeds via induction on the structure of formulas φ

in LTLf(F,X). As the induction hypothesis, we consider that all formulas φ′ which are
structurally smaller than φ can be expressed in dLTL(∧,∨).

As the base case of the induction, we observe that formulas p for all p ∈ P , are dLTL
formulas and thus, in dLTL(∧,∨).

For the induction step, we perform a case analysis based on the root operator of φ.

• Case φ = φ1 ∨ φ2 or φ = φ1 ∧ φ2: By hypothesis, φ1 is in dLTL(∧,∨) and φ2 is
in dLTL(∧,∨). Now, φ is in dLTL(∧,∨) since dLTL(∧,∨) is closed under positive
boolean combinations.

• Case φ = X φ1: By hypothesis, φ1 ∈ dLTL(∧,∨) and thus φ1 =
∨

j(
∧

i ∆i). Now,
φ = X(

∨
j(
∧

i ∆i)) =
∨

j(X(
∧

i ∆i)) =
∨

j(
∧

i X∆i) =
∨

i
∧

i ∆′i (X∆i is a dLTL
formula). Thus, φ is in dLTL(∧,∨).

• Case φ = F φ1: By hypothesis, φ1 ∈ dLTL(∧,∨) and thus φ1 =
∨

j(
∧

i ∆i). Now
φ = F φ1 =

∨
j(F(

∧
i ∆i)). Using lemma 2, we can re-write

∧
i ∆i as

∨
i Γi for some

Γi’s in dLTL. As a result, φ =
∨

j
∨

i F(Γi). Thus, φ is in dLTL(∧,∨).

We can now state the theoretical guarantees3 for our overall algorithm.

Theorem 2. Given a sample S , Algorithm 1 has the following guarantees:

3Termination and soundness hold for both greedy approximation and decision tree learning as Sub-procedure 3.
Completeness holds only for decision-tree learning as Sub-procedure 3.
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Termination: it always terminates;

Soundness: if it returns a formula, then the formula is consistent with S; and

Completeness: when decision tree learning is used as Sub-procedure 3, it always returns a

consistent formula.

Proof. For termination, we highlight that there exists a large LTLf formula, say of size B,
consistent with the given sample S . There are only finitely many dLTL formulas and their
Boolean combinations that are possible of size at most B. As a result, our algorithm searches
through the formulas smaller than B and, thus, terminates.

For soundness, we rely on Lemma 1 to ensure that during the enumeration of dLTL formu-
las in sub-procedure 2, the tables LASTPOS are calculated correctly. We check whether a dLTL
formula is consistent based on LASTPOS and, thus, must be correct. In the subprocedure 3.4,
the greedy algorithm also exploits LASTPOS to check whether the Boolean combination of
formulas is consistent. Also, standard decision tree learning algorithms always terminate
when perfect classification is achieved which, in this case, means that the corresponding LTLf

formula is consistent.
For completeness, we show that if decision tree learning is used in sub-procedure 2, the

algorithm can find a consistent formula, albeit large. To show this, we first observe that
the formula φu,v that distinguishes between a positive trace u and negative trace v using X

operators and propositions (see third paragraph, Section 3.2) is a dLTL formula. Thus, for
any positive trace u and negative trace v, there exists a dLTL formula that can distinguish
them. Based on the property of (TDIDT) decision tree learning algorithms, when any pair of
positive and negative examples can be classified by some feature, as is the case here, perfect
classification can be achieved. Thus, the corresponding LTLf formula must be consistent with
the sample.

3.6 Experimental Evaluation

In this section, we answer the following research questions to assess the performance of our
overall learning algorithm.

RQ1: How effective are we in learning concise LTLf formulas from samples?

RQ2: How much scalability do we achieve through our algorithm?

RQ3: What do we gain from the anytime feature of our algorithm?

Experimental Setup. To answer the questions above, we have implemented a prototype
of our algorithm in Python 3 in a tool named SCARLET4 (SCalable Anytime algoRithm for
LEarning lTl). We run SCARLET on several benchmarks generated synthetically from LTLf

formulas used in practice. To answer each research question precisely, we choose different
sets of LTLf formulas. We discuss them in detail in the corresponding sections.

4https://github.com/rajarshi008/Scarlet

https://github.com/rajarshi008/Scarlet
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However, note that we did not include any formulas with U-operator, since SCARLET is
not designed to find such formulas. It is possible that if a sample requires an LTLf formula with
U-operator, SCARLET can not find the formula. Nevertheless, SCARLET covers a significant
subclass of LTLf (as shown in Theorem 1).

To assess the performance of SCARLET, we compare it against two state-of-the-art tools
for learning temporal logic formulas from examples:

1. FLIE5, developed by Neider et al. [169], infers minimal LTLf formulas using a learning
algorithm that is based on constraint solving (SAT solving).

2. SYSLITE6, developed by Arif et al. [8], originally infers minimal past-time LTLf

formulas using an enumerative algorithm implemented in a tool called CVC4SY [192].
For our comparisons, we use a version of SYSLITE that we modified (which we refer
to as SYSLITEL) to infer LTLf formulas rather than past-time LTLf formulas. Our
modifications include changes to the syntactic constraints generated by SYSLITEL as
well as changing the semantics from past-time LTLf to ordinary LTL.

To obtain a fair comparison against SCARLET, in both the tools, we disabled the U-operator.
This is because if we allow U-operator, this will only make the tools slower since they will
have to search through all formulas containing U.

All the experiments are conducted on a single core of a Debian machine with Intel Xeon
E7-8857 CPU (at 3 GHz) using up to 6 GB of RAM. We set the timeout to be 900 s for all
experiments. We include scripts to reproduce all experimental results in a publicly available
artifact [191].

TABLE 3.1: Common LTLf formulas used in practice

Absence: G(¬p), G(q→G(¬p))

Existence: F(p), G(¬p) ∨ F(p ∧ F(q))

Universality: G(p), G(q→G(p))

Disjunction of
patterns:

G(¬p) ∨ F(p ∧ F(q)
∨G(¬s) ∨ F(r ∧ F(s)),

F(r) ∨ F(p) ∨ F(q)

Sample generation. To provide a comparison among the learning tools, we follow the
literature [169] and use synthetic benchmarks generated from real-world LTLf formulas. For
benchmark generation, earlier works rely on a fairly naive generation method. In this method,
starting from a formula φ, a sample is generated by randomly drawing traces and categorizing
them into positive and negative examples depending on the satisfaction with respect to φ. This
method, however, often results in samples that can be separated by formulas much smaller
than φ. Moreover, it often requires a prohibitively large amount of time to generate samples

5https://github.com/ivan-gavran/samples2LTL
6https://github.com/CLC-UIowa/SySLite

https://github.com/ivan-gavran/samples2LTL
https://github.com/CLC-UIowa/SySLite
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(for instance, for G p, where almost all traces satisfy a formula) and, hence, often does not
terminate in a reasonable time.

To alleviate the issues in the existing method, we have designed a novel generation method
for the quick generation of large samples. The outline of the generation algorithm is presented
in Algorithm 4. The crux of the algorithm is to convert the LTLf formula φ into its equivalent
DFA Aφ and then extract random traces from the DFA to obtain a sample of desired length
and size.

To convert φ into its equivalent DFA Aφ (Line 2), we rely on a python tool LTLf2DFA7.
Essentially, this tool converts φ into its equivalent formula in First-order Logic and then
obtains a minimal DFA from the formula using a tool named MONA [115].

For extracting random traces from the DFA (Line 4 and 8), we use a procedure suggested
by Bernardi et al. [27]. The procedure involves generating traces by choosing symbols that
have a higher probability of leading to an accepting state. This requires assigning appropriate
probabilities to the transitions of the DFA. In this step, we add our modifications to the
procedure. The main idea is that we adjust the probabilities of the transitions appropriately to
ensure that we obtain distinct traces in each iteration.

Algorithm 4 Sample generation algorithm
Input: Formula φ, length l, number of positive traces nP, number of negative traces
nN

1: P← {}, N ← {}
2: Aφ ← convert2DFA(φ)
3: for 1 · · · nP do
4: u← random accepted trace of length l from Aφ.
5: P← P ∪ {u}
6: end for
7: for 1 · · · nN do
8: u← random accepted trace of length l from Ac

φ.
9: N ← N ∪ {u}

10: end for
11: return S = (P, N)

Unlike existing sample generation methods, our method does not create random traces
and try to classify them as positive or negative. This results in a much faster generation of
large and better quality samples.

3.6.1 RQ1: Performance Comparison

To address our first research question, we have compared all three tools on a synthetic
benchmark suite generated from eight LTLf formulas. These formulas originate from a study
by Dwyer et al. [75], who have collected a comprehensive set of LTLf formulas arising in
real-world applications (see Table 3.1 for an excerpt). The selected LTLf formulas have, in
fact, also been used by FLIE for generating its benchmarks. While FLIE also considered

7https://github.com/whitemech/ltlf2DFA
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FIGURE 3.2: Comparison of SCARLET, FLIE and SYSLITEL on synthetic
benchmarks. In Figure 3.2a, all times are in seconds, and ‘TO’ indicates
timeouts. The size of the bubbles in the figure indicates the number of

samples for each data point.

formulas with U-operator, we did not consider them for generating our benchmarks due to
reasons mentioned in the experimental setup.

Our benchmark suite consists of a total of 256 samples (32 for each of the eight LTLf

formulas) generated using our generation method. The number of traces in the samples ranges
from 50 to 2 000, while the length of traces ranges from 8 to 15.

Figure 3.2a presents the runtime comparison of FLIE, SYSLITEL and SCARLET on all
256 samples. From the scatter plots, we observe that SCARLET ran faster than FLIE on
all samples. Likewise, SCARLET was faster than SYSLITEL on all but eight (out of 256)
samples. SCARLET timed out on only 13 samples, while FLIE and SYSLITEL timed out on
85 and 36, respectively (see Figure 3.2b).

The good performance of SCARLET can be attributed to its efficient formula search
technique. In particular, SCARLET only considers formulas that have a high potential of being
a consistent formula since it extracts directed-LTL formulas from the sample itself. FLIE and
SYSLITEL, on the other hand, search through arbitrary formulas (in order of increasing size),
each time checking if the current one separates the sample.

Figure 3.2c presents the comparison of the size of the formulas inferred by each tool. On
170 out of the 256 samples, all tools terminated and returned an LTLf formula with size at most
7. In 150 out of these 170 samples, SCARLET, FLIE, and SYSLITEL inferred formulas of
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FIGURE 3.3: Comparison of SCARLET, FLIE and SYSLITEL on existing
benchmarks. In Figure 3.3a, all times are in seconds and ‘TO’ indicates
timeouts. The size of bubbles indicate the number of samples for each

datapoint.

equal size, while on the remaining 20 samples, SCARLET inferred formulas that were larger.
The latter observation indicates that SCARLET misses certain small, consistent formulas, in
particular, the ones that are not a Boolean combination of dLTL formulas.

However, it is important to highlight that the formulas learned by SCARLET are, in most
cases, not significantly larger than those learned by FLIE and SYSLITEL. This can be seen
from the fact that the average size of formulas inferred by SCARLET (on benchmarks in which
none of the tools timed out) is 3.21, while the average size of formulas inferred by FLIE and
SYSLITEL is 3.07.

To ensure that SCARLET performs well, not only in our generated benchmarks, we
compared the performance of the tools on the benchmark suite8 [92]. The benchmark suite
has been generated using a fairly naive generation method from the same set of LTLf formulas
listed in Table 3.1. We introduced this benchmark suite while working on noisy data, which
we discuss in the next chapter.

Figure 3.3a represents the runtime comparison of FLIE, SYSLITEL and SCARLET on
98 samples from the existing benchmark. From the scatter plots, we observe that SCARLET
runs much faster than FLIE on all samples and than SYSLITEL on all but two samples. Also,

8https://github.com/cryhot/samples2LTL
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SCARLET timed out only on three samples while SYSLITEL timed out on six samples and
FLIE timed out on 15 samples.

Figure 3.3b presents the comparison of formula size inferred by each tool. On 84 out of 98
samples, where none of the tools timed out, we observe that on 65 samples, SCARLET inferred
formula size equal to the one inferred by SYSLITEL and FLIE. Further, in the samples where
SCARLET learns larger formulas than other tools, the size gap is not significant. This is
evident from the fact that the average formula size learned by SCARLET is 4.13, which is
slightly higher than that by FLIE and SYSLITEL, 3.84.

Overall, SCARLET displayed significant speed-up over both FLIE and SYSLITEL while
learning a formula similar in size, answering question RQ1 in the positive.

3.6.2 RQ2: Scalability

To address the second research question, we investigate the scalability of SCARLET in two
dimensions: the size of the sample and the size of the formula from which the samples are
generated.

Scalability with respect to the size of the samples. For demonstrating the scalability with
respect to the size of the samples, we consider two formulas φcov = F(a1)∧F(a2)∧F(a3) and
φseq = F(a1 ∧F(a2 ∧F a3)), both of which appear commonly in robotic motion planning [81].
While the formula φcov describes the property that a robot eventually visits (or covers) three
regions a1, a2, and a3 in arbitrary order, the formula φseq describes that the robot has to visit
the regions in the specific order a1a2a3.

We have generated two sets of benchmarks for both formulas, for which we varied the
number of traces and their length, respectively. More precisely, the first benchmark set
contains 90 samples of an increasing number of traces (5 samples for each number), ranging
from 200 to 100 000, each consisting of traces of fixed length 10. On the other hand, the
second benchmark set contains 90 samples of 200 traces, containing traces from length 10 to
length 50.

Figure 3.4a shows the average runtime results of SCARLET, FLIE, and SYSLITEL on
the first benchmark set. We observe that SCARLET substantially outperformed the other two
tools on all samples. This is because both φcov and φseq are of size eight and inferring formulas
of such size is computationally challenging for FLIE and SYSLITEL. In particular, FLIE
and SYSLITEL need to search through all formulas of size upto eight to infer the formulas,
while, SCARLET, due to its efficient search order (using length and width of a formula), infers
them faster.

From Figure 3.4a, we further observe a significant difference between the run times of
SCARLET on samples generated from formula φcov and from formula φseq. This is evident
from the fact that SCARLET failed to infer formulas for samples of φseq starting at a size of
6 000, while it could infer formulas for samples of φcov up to a size of 50 000. Such a result
is again due to the search order used by SCARLET: while φcov is a Boolean combination of
dLTL formulas of length 1 and width 1, φseq is a dLTL formula of length 3 and width 1.
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Figure 3.4b depicts the results we obtained by running all the second benchmark set with
varying trace lengths. Some trends we observe here are similar to the ones we observe in the
first benchmark set. For instance, SCARLET performs better on the samples from φcov than it
does on samples from φseq. The reason for this remains similar: it is easier to find a formula
that is a Boolean combination of length 1, width 1 dLTL formulas, compared to dLTL formula
of length 3 and width 1.

Contrary to the results on the first benchmark set, we observe that the increase of runtime
with the length of the sample is quadratic. This explains why on samples from φseq on large
lengths such as 50, SCARLET faces time-out. However, for samples from φcov, SCARLET
displays the ability to scale way beyond length 50.

Scalability with respect to the size of the formula. To demonstrate the scalability with
respect to the size of the formula used to generate samples, we have extended φcov and
φseq to families of formulas (φn

cov)n∈N\{0} with φn
cov = F(a1) ∧ F(a2) ∧ . . . ∧ F(an) and

(φn
seq)n∈N\{0} with φn

seq = F(a1 ∧ F(a2 ∧ F(. . . ∧ F an))), respectively. This family of
formulas describes properties similar to that of φcov and φseq, but the number of regions is
parameterized by n ∈ N \ {0}. We consider formulas from the two families by varying n
from 2 to 5 to generate a benchmark suite consisting of samples (5 samples for each formula)
having 200 traces of length 10.

Figure 3.4c shows the average run time comparison of the tools for samples from increasing
formula sizes. We observe a trend similar to Figure 3.4a: SCARLET performs better than
the other two tools and infers formulas of the family φn

cov faster than that of φn
seq. However,

contrary to the near linear increase of the runtime with the number of traces, we notice an
almost exponential increase of the runtime with the formula size.

Overall, our experiments show better scalability with respect to sample and formula size
compared to the other tools, answering RQ2 in the positive.
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3.6.3 RQ3: Anytime feature

To answer RQ3, we list two advantages of the anytime feature of our algorithm. We demon-
strate these advantages by showing evidence from the runs of SCARLET on benchmarks used
in RQ1 and RQ2.

First, in the instance of a timeout, our algorithm may find a “concise” consistent formula
while the other tools will not. In our experiments, we observed that for all benchmarks used in
RQ1 and RQ2, SCARLET obtained a formula even when it timed out. In fact, in the samples
from φ5

cov used in RQ2, SCARLET (see Figure 3.4c) obtained the exact original formula, that
too within one second (0.7 seconds in average), although timed out later. The timeout was
because SCARLET continued to search for smaller formulas even after finding the original
formula.

Second, our algorithm can actually output the final formula earlier than its termination.
This is evident from the fact that, for the 243 samples in RQ1 where SCARLET does not time
out, the average time required to find the final formula is 10.8 seconds, while the average
termination time is 25.17 seconds. Thus, there is a chance that even if one stops the algorithm
earlier than its termination, one can still obtain the final formula.

Our observations from the experiments clearly indicate the advantages of anytime feature
to obtain a concise consistent formula and thus, answering RQ3 in the positive.

3.7 Conclusion

We have proposed a scalable approach for learning LTLf formulas from examples, fleshing it
out in an approximation anytime algorithm. We have shown in experiments that our algorithm
outperforms existing tools in two ways: it scales to larger formulas and input samples, and
even when it timeouts, it often outputs a consistent formula.

Our algorithm targets a strict fragment of LTLf, restricting its expressivity in two aspects:
it does not include the U-operator, and we cannot nest the F and G operators. Moreover, the
approach is designed to cater to LTLf and not LTL. Extending it to LTL would require novel
techniques to extract dLTL formulas from infinite traces. We leave such extensions to our
algorithm as future work.

An important open question concerns the theoretical guarantees offered by the greedy
algorithm for the Boolean subset cover problem. It extends a well-known algorithm for
the classic subset cover problem, and this restriction has been proved to yield an optimal
log(n)-approximation. Do we have similar guarantees in our more general setting?
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Chapter 4

Learning in the Presence of Noise

In this chapter, we consider the problem of learning temporal logic formulas when the input
data can be potentially noisy. Noise is omnipresent in real-world data; it can arise from,
for instance, imperfections in sensors, disturbances in the environment, unintended user
intervention, etc. Similar to the last chapter, we consider the input data to be a sample S of
system executions partitioned into two finite sets of positive and negative examples. However,
since the data maybe noisy, it is possible some of the examples are wrongly labeled, either as
positive or as negative.

Since noise in data is common in cyber-physical systems (CPS) applications, along with
LTLf, in this chapter, we study the learning problem for Signal Temporal Logic (STL) [157].
STL is essentially an extension of LTL that reasons about signals that are real-valued finite or
infinite time series, typically appearing in CPS applications. In STL, one augments temporal
operators with intervals of time to express real-time properties. For instance, using the STL
formula G[0,60](speed < 30∧ angle < 60), one can describe the property “for the first 60
seconds, the speed of the vehicle should be less than 30 km/h, and the steering angle should
be less than 60◦”.

The task of learning temporal logic formulas consistent with data has been studied exten-
sively for both LTL\LTLf and STL [137, 37, 169, 48, 135]. Most of the existing works that
are able to handle noise [137, 37, 135] typically search for formulas that arise from certain
handcrafted templates. Such an approach has several drawbacks. First, handcrafting templates
may not be a straightforward task: it requires adequate knowledge about the underlying system.
Second, by restricting its structure, one potentially increases the size of the learned formula.
This makes the formulas difficult to comprehend and also amplifies the computation efforts
required to find a formula.

Nevertheless, there are approaches [169, 48] that avoid the use of templates. These
approaches reduce the learning problem to satisfiability problems in propositional logic and
use highly optimized constraint solvers to systematically search for solutions. This results in
exact algorithms that can learn formulas perfectly classifying the input data. However, such
exact algorithms suffer from the limitation that they are susceptible to failure in the presence
of noise. In particular, trying to learn a formula that perfectly classifies a noisy sample often
results in a complex formula, hampering interpretability.
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To alleviate the limitation of the earlier approaches1, in this chapter, we present two novel
algorithmic frameworks for learning temporal logic formulas from a sample consisting of
positive and negative examples. Based on these frameworks, we devise algorithms for learning
formulas in both LTLf and STL. While our presented algorithms learn temporal logic formulas
over finite horizon, they can be seamlessly extended to also learn formulas over infinite horizon
with minor modifications, which we explicitly mention in the respective sections.

The general goal of our algorithms is to learn a concise (and thus, interpretable) formula
that achieves a low loss on the sample, where loss l(S , φ) refers to the fraction of examples in
the sample S that the learned formula φ misclassified. The precise problem solved by our
algorithms is the following: given a sample S partitioned into a set of positive and a set of
negative examples, and a threshold κ, find a minimal formula φ that has l(S , φ) ≤ κ.

Our algorithmic frameworks derive ideas from the SAT-based learning algorithms intro-
duced by Neider et al. [169]. Our first framework reduces the problem of learning a formula to
problems in maximum satisfiability. Roughly speaking, in this framework, we first encode the
learning problem using formulas having appropriate weights assigned to various clauses. We
then search for such assignments to the formulas that maximize the total weight of the satisfied
clauses. Finally, using an assignment that maximizes the weights of the satisfied clauses, we
construct an appropriate formula minimizing loss in a straightforward manner. We refer to
Sections 4.1 and 4.2 for the details of the first framework for LTLf and STL, respectively.

The first framework constructs a series of monolithic formulas to encode the learning
problem and is, thus, often inefficient for learning larger formulas. Our second framework
solves the learning problem by dividing the problem into smaller subproblems based on a
decision tree learning algorithm. Instead of finding formulas that achieve a loss of less than κ

in one step, we exploit algorithms from the first framework to learn small formulas in LTLf or
STL for each decision node in the tree. We refer to Section 4.3 for the details of this decision
tree-based algorithmic framework.

We have implemented a prototype of our algorithms in a publicly available tool. We
have also verified the efficacy of our tool on synthetic as well as real-world data. From our
observations, we conclude that our algorithms are effective in learning concise LTLf and
STL formulas, particularly from the samples that contain noise. We refer to Section 4.4 for
the discussion on both the implementation and its performance on synthetic and real-world
examples. Finally, we conclude and provide direction for future works in Section 4.5.

Related Work

The most prominent works in the area of LTL learning are the works by Neider et al. [169]
(which is the basis of this work) and Camacho et al. [48]. Both of these works exploit SAT-
based methods. While Neider et al. [169] uses a syntax DAG representation of LTL for the
SAT formulation, Camacho et al. [48] use alternating finite automata (AFA). However, both
works suffer from failure when the input sample consists of noise.

1When this research was done, existing works that handle noisy data relied predominately on formula tem-
plates [137, 37, 135]. Some subsequent works [153, 88] explored other neural-network based approaches, which
do not provide theoretical guarantees.



Chapter 4. Learning in the Presence of Noise 40

The work by Kim et al. [135] is a prominent work that can learn LTL formulas from noisy
samples. They exploit the Bayesian inference problem for learning satisfactory LTL formulas
from noisy data. They, however, rely on templates for the learned LTL formulas that are often
undesirable.

The work of Bombara et al. [37] is one of the first works in the learning Signal Temporal
Logic (STL) formulas. Their algorithm also relies on decision trees for learning STL classifiers.
While their algorithm can, in fact, learn STL formulas with arbitrary misclassification error on
the data, the STL formulas used for the nodes of the decision trees come from a predefined
set. Another notable work is by Mohammadinejad et al. [160], who present an algorithm for
searching STL formulas using enumerative search. They exploit STL grammar to iteratively
generate all STL formulas of a particular size. Further, they employ strategies to eliminate
equivalent formulas by checking the semantics of STL on the sample. Our work, in contrast,
relies on constraint solvers to search for formulas and thus, will benefit from any advancement
in solver technologies. There are several other works in the general area of STL mining [121,
127]. The problem setting of such works is different from ours. In particular, these works aim
at extracting STL patterns from data which necessarily need not separate two classes of trace.

In general, the problem of learning temporal logic has been in the spotlight for a number of
years. Clear evidence of the fact is the variety of temporal logics for which the learning problem
has been looked at—Past Time Linear Temporal Logic (PLTL) [8], Property Specification
Language (PSL) [195], Interval Temporal Logic [42] and several others [223, 224, 225].

4.1 Learning minimal LTL from Noise

We discuss the details of the first algorithmic framework that relies on maximum satisfiability
for learning LTLf formulas, robust to noisy data. Towards this, we formally introduce the
details of the problem and the prerequisites for solving it.

4.1.1 Problem Formulation

The input data for this problem is the standard for passive learning: a sample S = (P, N) of
finite traces from (2P )∗, partitioned into a set P of positive examples and a set N of negative,
such that P ∩ N = ∅. We denote the number of traces in a sample S by ∥S∥ = |P|+ |N|
(note, this is different from the size |S|, which counts the total number of symbols appearing
in S).

We now define a loss function which, intuitively, evaluates how “well” an LTLf formula
φ classifies a sample. For this, we exploit a functional view on the semantics of LTLf. In
particular, we rely on the valuation function V(φ, u), which is defined as follows: V(φ, u) = 1
if u |=f φ, otherwise 0.

While there are numerous ways of defining loss (e.g., quadratic loss function, regret, etc.),
we use the following natural definition:

l(S , φ) =
∑u∈P(1−V(φ, u)) + ∑u∈N V(φ, u)

∥S∥ , (4.1)
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which calculates the fraction of traces in S which the LTLf formula φ misclassified.
Having defined the setting, we now formally describe the problem we solve:

Problem 2. Given a sample S = (P, N) and threshold κ ∈ [0, 1], learn an LTLf formula φ

such that l(S , φ) ≤ κ.

Intuitively, the margin on the achieved loss κ allows for a bounded fraction of the traces to
be considered as noise.

The above problem, generally speaking, is trivial if no constraint is imposed on the size of
the output formula since one can always find a large LTLf formula with zero loss on a given
sample, as indicated by the following remark.

Remark 1. Given sample S , there exists an LTLf formula φ such that l(S , φ) = 0.

One can construct such a formula by enumerating the differences in the positive and
negative traces; formally, it is

∨
u∈P

∧
v∈N φu,v, where φu,v is a formula that uses X operator

and propositions to specify the difference between u and v. Such a formula, however, is large
in size (of the order of O(|P| · |N| ·maxu∈P∪N |u|)) and it does not help towards the goal of
learning a concise description of the data.

In the next section, we present an algorithm to learn minimal LTLf formulas based on
maximum satisfiability, which is our first algorithmic framework.

4.1.2 MaxSAT-based Algorithm

Our solution to Problem 2 relies on MaxSAT solvers, which we introduce next.

MaxSAT MaxSAT is an extension of the SAT problem, which asks to find an assignment
that maximizes the number of satisfied clauses in a given propositional formula provided
in CNF. For our problem, we rely on a more general variant of MaxSAT, known as Partial
Weighted MaxSAT. In this variant, a weight function w : C 7→ R∪ {∞} assigns a weight to
every clause in the set of clauses C of a propositional formula. The problem is to then find a
valuation v that maximizes ΣCi∈Cw(Ci) ·V(Ci, v).

While the MaxSAT problem and its variants can be solved using dedicated solvers,
standard SMT solvers like Z3 [164] are also able to handle such problems. According to
terminology derived from the theory behind such solvers, clauses Ci for which w(Ci) = ∞
are termed as hard constraints, while clauses Ci for which w(Ci) < ∞ are termed as soft

constraints. Given a propositional formula with weights assigned to clauses, MaxSAT solvers
try to find a valuation that satisfies all the hard constraints and maximizes the total weight of
the soft constraints that can be satisfied.

Given that we are using MaxSAT solvers that possess the capability of handling Partial
Weighted MaxSAT problems, we can solve a stronger version of Problem 2. In this stronger
version, the loss based on which we search for LTLf formulas takes the following form:

wl(S , φ, Ω) = ∑
u∈P

Ω(u) · (1−V(φ, u)) + ∑
u∈N

Ω(u) ·V(φ, u), (4.2)
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Algorithm 5 Learning algorithm based on maximum satisfiability
Input: Sample S , weight-function Ω, Threshold κ

1: n← 0
2: while sum of weights of soft constraints ≥ 1− κ do
3: n← n + 1
4: Construct formula ΦSn = ΦLTL

n ∧Φsem
n ∧Φcon

n
5: Assign weights to soft constraints Φcon

n in ΦSn :
w(yu

1,0) = Ω(u) for u ∈ P, and w(¬yu
1,0) = Ω(u) for u ∈ N

6: Find assignment v using MaxSAT solver
7: end while
8: return φv

∨

U X

p G

q

1

2 3

4 5

6

FIGURE 4.1: Syntax DAG and identifiers of the formula (pUG q) ∨ X(G q)

where Ω is a function that assigns a positive real-valued weight to each u in the sample in such
a way that ∑u∈P∪N Ω(u) = 1. Observe that by considering Ω(u) = 1/|S| for all traces in the
sample, we have exactly wl(S , φ, Ω) = l(S , φ) which is used in Problem 2. In this section,
we will solve the stronger version since not only does it enable us to solve Problem 2 but
also makes our algorithmic framework versatile enough to assist the decision trees learning
algorithm, described in Section 4.3.

For solving this problem, we devise an algorithm based on ideas from the exact learning
algorithm of Neider et al. [169]. Following their algorithm, we translate the problem of
learning LTLf formulas into problems in Partial Weighted MaxSAT and then use an optimized
MaxSAT solver to find a solution. More precisely, we construct a propositional formula ΦSn
and assign weights to its clauses in such a way that an assignment v that satisfies all the hard
constraints of ΦSn has the following two properties:

1. it contains sufficient information to extract an LTLf formula φv of size n, and

2. the sum of weights of the soft constraints satisfied by it is equal to 1−wl(S , φv, Ω).

To obtain a complete algorithm, we increase the value of n (starting from 1) until we find
an assignment v of ΦSn that satisfies the hard constraints and ensures that the sum of weights
of the soft constraints is greater than 1− κ. The termination of this algorithm is guaranteed
by the existence of an LTLf formula with zero loss on the sample (see Remark 1).

On a technical level, the formula ΦSn in Algorithm 5 is the conjunction

ΦSn = ΦLTL
n ∧Φsem

n ∧Φcon
n , (4.3)
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where ΦLTL
n encodes the structure of the prospective LTLf formula φ of size n, Φsem

n ensures
that the semantics of LTLf is used to interpret φ on the traces in S , and Φcon

n tracks whether φ

is consistent with S . We now explain each of the conjuncts in greater detail.

Structural Constraints. For designing the formula ΦLTL
n , we rely on the canonical syntax

DAG representation of LTLf formulas (see Section 2.2.3). To uniquely identify the nodes in
a syntax DAG, we assign identifiers {1, . . . , n} in such a way that the root node is always
indicated by 1 and every node has an identifier smaller than that of its children if it has any.
An example of identifiers of a syntax DAG is shown in Figure 4.1. We denote the subformula
rooted at Node i as φ[i].

To encode the structure of a syntax DAG using propositional logic, we introduce the
following propositional variables: (i) xi,λ for i ∈ {1, · · · , n} and λ ∈ Λ, and (ii) li,j and ri,j

for i ∈ {1, · · · , n− 1} and j ∈ {i + 1, · · · , n}. The variable xi,λ encodes that Node i is
labeled by operator λ (includes propositional variables). The variable li,j (respectively, ri,j)
encodes that the left (respectively, the right) child of Node i is Node j. Based on the meaning
of the variables, we must have x1,∧, l1,2, and r1,3 to be true in order to obtain a syntax DAG
(similar to the one in Figure 4.1) where Node 1 is labeled with ∧, has the left child to be
Node 2, and the right child to be Node 3.

We now introduce constraints on the variables to ensure that they encode a valid syntax
DAG. Towards this, we impose the following constraints:[ ∧

1≤i≤n

∨
λ∈Λ

xi,λ

]
∧
[ ∧

1≤i≤n

∧
λ ̸=λ′∈Λ

¬xi,λ ∨ ¬xi,λ′
]

(4.4)

[
∧

1≤i<n

∨
i<j≤n

li,j] ∧ [
∧

1≤i<n

∧
i<j≤j′≤n

¬li,j ∨ ¬li,j′ ] (4.5)

[
∧

1≤i<n

∨
i<j≤n

ri,j] ∧ [
∧

1≤i<n

∧
i<j≤j′≤n

¬ri,j ∨ ¬li,j′ ] (4.6)

∨
p∈P

xn,p (4.7)

Formula 4.4 ensures that each node of the syntax DAG has a unique label. Similarly, Formu-
las 4.5 and 4.6 ensure that each node of a syntax DAG has a unique left and a unique right
child, respectively. Finally, Formula 4.7 ensures that Node n is labeled by a proposition.

Observe that from a valuation v satisfying ΦLTL
n one can extract a unique syntax DAG

describing an LTLf formula φv as follows: label Node i of the syntax DAG with the unique λ

for which v(xi,λ) = 1; assign Node n to be the root node, and assign edges from a node to its
children based on the values of li,j and ri,j.

Semantic Constraints. Towards the definition of the formula Φsem
n , we define propositional

formulas Φu
n for each trace u that tracks the semantics of the prospective LTLf formula on u.

These formulas are built using variables yu
i,t for i ∈ {1, . . . , n} and t ∈ {0, . . . , |u| − 1}. The

variable yu
i,t corresponds to the satisfaction value V(φ[i], u[t, |u|)) of φ[i] on u at timepoint t.
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Again, to make sure that these variables have the desired meaning, we impose constraints
based on the semantics of the LTLf operators.

∧
1≤i≤n

∧
p∈P

xi,p →
[ ∧

0≤t<|u|

yu
i,t if p ∈ u[t]

¬yu
i,t if p ̸∈ u[t]

]
(4.8)

∧
1≤i≤n
i<j≤n

xi,¬ ∧ li,j →
[ ∧

0≤t<|u|

[
yu

i,t ↔ ¬yu
j,t

]]
(4.9)

∧
1≤i≤n

i<j,j′≤n

xi,∨ ∧ li,j ∧ ri,j′ →
[ ∧

0≤t<|u|

[
yu

i,t ↔ yu
j,t ∨ yu

j′,t

]]
(4.10)

∧
1≤i≤n
i<j≤n

xi,X ∧ li,j →
[ ∧

0≤t<|u|−1

[
yu

i,t ↔ yu
j,t+1

]
∧ ¬yu

i,|u|−1

]
(4.11)

∧
1≤i≤n

i<j,j′≤n

xi,U ∧ li,j ∧ ri,j′ →
[ ∧

0≤t<|u|

[
yu

i,t ↔
∨

t≤t′<|u|

[
yu

j′,t′ ∧
∧

t≤t′′<t′
yu

j,t′′

]]
(4.12)

Formula 4.8 implements the semantics of propositions and states that if Node i is labeled with
p ∈ P , then yu

i,t is set to 1 if and only if p ∈ u[i]. Formulas 4.9 and 4.10 implement the
semantics of negation and disjunction, respectively: if Node i is labeled with ¬ and Node j is
its left child, then yu

i,t equals the negation of yu
j,t; on the other hand, if Node i is labeled with

∨, Node j is its left child, and Node j′ is its right child, then yu
i,t equals the disjunction of yu

j,t

and yu
j′,t. Formula 4.11 implements the semantics of the X-operator and states that if Node i

is labeled with X and its left child is Node j, then yu
i,t equals yu

j,t+1. Finally, Formula 4.12
implements the semantics of the U-operator; it states that if Node i is labeled with U, its left
child is Node j, and its right child is Node j′, then yu

i,t is set to 1 if and only if there exists a
timepoint t′ for which yu

j′,t′ is set to 1 and for all timepoints t lying between t and t′, yu
j,t is set

to 1. The formula Φn
u is the conjunction of all such semantic constraints.

The above constraints are similar to the ones proposed by Neider and Gavran, except that
they have been adapted to comply with the semantics of LTLf. We make an important remark
here: if we use the same constraints as provided by Neider and Gavran, then the approach
works seamlessly for LTL (over infinite traces).

We now define Φsem
n as follows:

Φsem
n :=

∧
u∈P∪N

Φn
u, (4.13)

which is simply the conjunction of the semantic constraints Φu
n for each trace u in S .

Consistency Constraints. We define Φcon
n to be the following:

Φcon
n =

∧
u∈P

yu
1,0 ∧

∧
u∈N

¬yu
1,0 (4.14)
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This constraint ensures that the positive traces in P must satisfy the prospective LTLf formula,
while the negative traces in N must not.

Weight assignment. For assigning weights to the clauses of ΦSn , we first convert the formu-
las ΦLTL

n and Φsem
n into CNF. Towards this, we simply exploit the Tseitin transformation [212],

which converts a formula into an equivalent formula in CNF whose size is linear in the size of
the original formula.

We now assign weights to constraints starting with the hard constraints as follows:
w(ΦLTL

n ) = ∞ and w(Φsem
n ) = ∞, meaning w(Φu

n) = ∞ for all traces u ∈ P ∪ N. Here,
w(Φ) = ω is a shorthand to denote w(Ci) = ω for all clauses Ci in Φ, where ω ∈ R. The
constraint ΦLTL

n is hard since that ensures that the syntax DAG we obtain from ΦLTL
n is of a

valid LTLf formula. The constraint Φsem
n is also hard since it ensure that we rely on the proper

LTLf semantics to interpret the prospective formula on the traces in S .
The soft constraints are the ones that enforce correct classification, that is, Φcon

n , and we
assign weights to them as follows: w(yu

1,0) = Ω(u) for all u ∈ P and w(¬yu
1,0) = Ω(u) for

all u ∈ N. Recall that Ω refers to the function assigning weights to the traces.
To prove the correctness of our learning algorithm, we first ensure that the formula ΦSn

along with the weight assigned to its clauses serves our purpose.

Lemma 3. Let S be a sample, Ω the weight function, n ∈N \ {0} and ΦSn the formula with

the associated weights as defined above. Then,

1. the hard constraints are satisfiable; and

2. if v is an assignment that satisfies the hard constraints and maximizes the sum of the

weight of the satisfied soft constraints, then φv is an LTLf formula of size n, such that

wl(S , φv, Ω) ≤ wl(S , φ, Ω) for all LTLf formulas φ of size n.

Proof. The hard constraints of ΦSn are ΦLTL
n and Φsem

n . Now, ΦLTL
n is satisfiable since there

always exists a valid LTLf formula of size n. As a result, using the syntax DAG of a LTLf

formula of size n, we can find an assignment to the variables of ΦLTL
n that makes it satisfiable.

Next, the formula Φsem
n consists of the constraints Φn

u and each of them simply track the
valuation of the prospective formula on traces u in S . One can easily find an assignment of
the variables of Φn

u using the semantics of LTLf.
For proving the second part, let us assume v to be an assignment that satisfies the hard

constraints. We now claim that the sum of the weights of the satisfied soft constraints is
equal to 1−wl(S, φv, Ω). If we prove this, then we have the following: if v is an assignment
that maximizes the weight of the satisfied soft constraints, then this directly implies that φv

minimizes the wl function. To avoid notational clutter, we rely on a function u that labels
traces: b(u) = 1 if u ∈ P, 0 if u ∈ N. We now have the following:

wl(S, φv, Ω) = ∑
V(φv,u) ̸=b(u)

Ω(u) = ∑ Ω(u)− ∑
V(φv,u)=b(u)

Ω(u)

= 1− ∑
V(φv,u)=b(u)

Ω(u) = 1− ∑
v(yu

1,0)=b(u)
Ω(u)
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All the summations in the above equation are over all traces u ∈ P ∪ N in the sample.
Moreover, the quantity ∑v(yu

1,0)=b Ω(u), appearing in the final line, refers to sum of the
weights of the satisfied soft constraints, since the constraints in which v(yu

1,0) = b(u) are the
ones that are satisfied.

The termination and the correctness of Algorithm 5, which is established using the
following theorem, is a consequence of Lemma 3.

Theorem 3. Given a sample S and threshold κ ∈ R, Algorithm 5 terminates and learns an

LTLf formula φ that has wl(S , φ, Ω) ≤ κ and is the minimal in size among all LTLf formulas

that have wl(S , φ, Ω) ≤ κ.

Proof. The termination of Algorithm 5 is guaranteed by the fact that there always exists an
LTLf formula φ for which wl(φ, S, Ω) = 0 as indicated by Remark 1. Second, the fact that φ

has wl(φ, S, Ω) ≤ κ is a consequence of Lemma 3. Finally, the minimality of the formula is
a consequence of the fact that Algorithm 5 searches for an LTLf formula in increasing order
of size.

4.2 Learning Minimal STL from Noise

In this section, we formally introduce the learning problem for STL and the necessary
ingredients. We then discuss how to adapt the first framework to learn STL formulas; in
particular, focussing on the differences between this algorithm and the one in the previous
section, Section 4.1.

Signals. A signal is a time series that indicates the evolution of system features over time.
Unlike traces, features assume real values in signals. Thus, formally, a signal is defined as
a function u : T → Rm, which assigns values to m system features over a time domain T.
In this chapter, we assume the time domain T = {0, · · · , n} ⊂ N to be discrete and finite.
Moreover, given a signal u and t ∈ T, we use u[t] to denote the value of u at timepoint t, and
uj[t] to denote the value of its jth feature. Since we use discrete time, we can define the length
of a signal by |u| = |T|. Finally, we denote the set of all signals by (Rm)∗.

Signal Temporal Logic. Signal Temporal Logic (STL) is an extension of LTLf defined over
signals [10, 157], which branches out LTLf in two directions: it employs temporal operators
defined over time intervals, and it is interpreted over signals [44]. Formulas in STL—denoted
by small Greek letters—are defined inductively by:

φ := π | ¬φ | φ ∨ φ | φUI φ

Here, π is a predicate of the form fπ(x1, . . . , xm) ≥ θ where fπ : Rm → R is a function
over the features, and θ ∈ R is a predicate threshold. I is a time interval of the form
I := [a, b), with 0 ≤ a < b two integers. The extended set of all operators is defined as
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Λ = {¬,∨,∧,→,UI ,FI ,GI} ∪ {π, · · · }, where UI is parameterized with [a, b), and each
π is parameterized with θ.

We interpret STL over finite signals, that is, signals that only last for a finite duration. For
a finite signal u, a timepoint t ∈N and an STL formula φ, we define the semantics u, t |= φ

inductively as follows:

u, t |=f π if and only if fπ(u[t]) ≥ θ

u, t |=f ¬φ if and only if u, t ̸|=f φ

u, t |=f φ1 ∨ φ2 if and only if u, t |=f φ1 or u, t |=f φ2

u, t |=f φ1 U[a,b) φ2 if and only if for some t + a ≤ t′ < min(t + b, |u|) : u, t′ |= φ2

and for all t ≤ t′′ < t′ : u, t′′ |= φ1.

If u, 0 |= φ, we simply write u |= φ and say that u satisfies φ, or alternatively, φ holds on
u. We again exploit the functional view on the semantics of STL using the valuation function
V, whose definition mirrors that of LTLf.

4.2.1 Problem Formulation

As input, we have a sample S = (P, N) of finite signals from (Rm)∗, partitioned into a set P
of positive examples and a set N of negative, such that P ∩ N = ∅. Additionally, we have a
finite set of predicate templates Π. The predicate template provides a means for guessing the
prospective atoms for the STL formulas. In this problem, we assume the templates in Π must
have the function fπ(·) specified, while the predicate threshold θ may remain unspecified.

We state the problem of learning an STL formula from noisy data as follows:

Problem 3. Given a sample S = (P, N) of finite signals and a set of predicate templates Π,

learn a minimal STL formula φ using templates from Π such that l(S , φ) ≤ κ.

Unlike Problem 2, the existence of a solution to Problem 3 is not always guaranteed. This
is because the existence of an STL formula with zero loss depends on the input predicate
templates. Thus, in order to guarantee the existence of a solution, we restrict the predicate
templates to have a specific structure. In particular, we propose the following set of templates:
Π = {uj ≥ θ | 1 ≤ j ≤ m}. Note that such a restriction is required only for the theoretical
guarantees. Our algorithm„ in fact„ works for any arbitrary set of templates if there exists an
appropriate STL formula using them.

The restriction discussed provides us with the following guarantee:

Remark 2. Given sample S and predicate templates Π = {uj ≥ θ | 1 ≤ j ≤ m}, there exist

an STL formula φ using templates from Π such that l(S , φ) = 0.

We briefly discuss how to construct the (large) STL formula with predicate templates
Π = {uj ≥ θ | 1 ≤ j ≤ m}. Similar to the formula from Remark 1, the formula here is∨

u∈P
∧

v∈N φu,v, where φu,v is an STL formula that distinguishes between positive signal u
and negative signal v. We construct these formulas φu,v as F[t,t+1) uj ≥ uj[t]+vj[t]

2 , where t is
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the time-point and j is the coordinate where u and v differ. Here, we assume uj[t] > vj[t]; if
uj[t] < vj[t] we can simply include a negation in the predicate of φu,v.

4.2.2 MaxSMT-based Algorithm

Our solution to the learning problem relies on MaxSMT solvers, which we will introduce
next.

MaxSMT. Unlike SAT, SMT deals with the satisfiability of first-order formulas over back-
ground theories (see Section 2.2.2). Similar to MaxSAT, MaxSMT is the problem of finding
assignments that maximize the number of satisfiable clauses [199]. The formal problem
definition remains the same as in the case of MaxSAT. For our algorithm, we will exploit the
Partial Weighted MaxSMT for the theory of Linear Real Arithmetic (LRA). Standard SMT
solvers like Z3 [164] can handle such problems.

The algorithm for learning STL formulas follows the same framework as that for LTLf

formulas. However, the syntax and semantics of STL being different from LTLf, we modify
the certain conjuncts of the propositional formula ΦSn . In particular, the structural constraint
ΦSTL

n , additionally, encodes the time intervals I for temporal operators UI and the value of the
predicate thresholds θ for the predicates. The semantic constraints Φsem

n change to ensure that
proper semantics of STL is used.

Structural Constraints. To include the features of STL in the structure of the syntax DAG,
we introduce the following additional variables: ai ∈N and bi ∈N for i ∈ {1, . . . , n}, and
θi ∈ R for i ∈ {1, . . . , n}. The variable ai (respectively, bi) encodes the lower (respectively,
the upper) bound of the interval I of a temporal operator (that is, one of UI , FI or GI) labeled
at Node i. The variable θi encodes the value of the threshold when a predicate template from
Π is labeled at Node i.

In addition to the constraints specified in Section 4.1, ΦSTL
n has constraints 0 ≤ ai < bi

for i ∈ {1, · · · , n}. By imposing these structural constraints, one can ensure that, from a
valuation v of ΦSTL

n , one can extract a unique STL formula φv. In addition to the operators,
the valuation v uniquely assigns an interval [ai, bi) and a parameter θi at Node i if it is labeled
with a temporal operator and a predicate template, respectively.

Semantic Constraints. We now define Φu
n, which tracks the satisfaction of the prospective

STL formula on a signal u in S , as follows:

∧
1≤i≤n

∧
π∈Π

xi,π→
[ ∧

0≤t<|u|
yu

i,t↔ fπ(u[t]) ≥ θi

]
(4.15)∧

1≤i≤n
1≤j<i

xi,¬ ∧ li,j→
[ ∧

0≤t<|u|

[
yu

i,t↔¬yu
j,t

]]
(4.16)
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∧
1≤i≤n

1≤j,j′<i

xi,∨ ∧ li,j ∧ ri,j′→
[ ∧

0≤t<|u|

[
yu

i,t↔ yu
j,t ∨ yu

j′,t

]]
(4.17)∧

1≤i≤n
1≤j,j′<i

xi,UI ∧ li,j ∧ ri,j′→
[ ∧

0≤t<|u|

[
yu

i,t↔

∨
t≤t′<|u|

[
[t + ai ≤ t′ < min(t + bi, |u|)] ∧ yu

j′,t′ ∧
∧

t≤t′′<t′
[t + ai ≤ t < t′]→ yu

j,t′′

]]]
(4.18)

The constraints above are similar to the corresponding semantic constraints for LTLf. While
Formula 4.18 also similarly implements the semantics of UI , it differs from Formula 4.12
slightly: it ensures that the timepoints follow the prospective time interval I of a temporal
operator. Also, the definition of Φsem

n is same as in Formula 4.13.

Consistency Constraints. The consistency constraints Φcon
n remains identical as in For-

mula 4.14.

Weight assignment The assignment of weights remains the same as in LTLf. In particular,
the hard constraints are w(ΦSTL

n ) and w(Φsem
n ). The soft constraints are the ones that enforce

correct classification: w(yu
1,0) = Ω(u) for all u ∈ P and w(¬yu

1,0) = Ω(u) for all u ∈ N.
The correctness of the algorithm adapted to learn STL formulas follows from the correct-

ness of the formula ΦSn .

Theorem 4. Given a sample S , predicates template Π as indicated in Remark 2 and threshold

κ ∈ R, the MaxSMT-based STL learning algorithm terminates and outputs an STL formula φ

that has wl(S , φ, Ω) ≤ κ and is minimal in size among all STL formulas that have predicates

in Π and wl(S , φ, Ω) ≤ κ.

The proof of the above theorem follows the same reasoning as that of Theorem 3.

4.3 Learning Decision Trees over Formulas

In this section, we present our second algorithmic framework for learning temporal logic
formulas. While learning using such a framework does not guarantee minimal formulas, on
the bright side, we obtain decision trees over temporal logic formulas that are structured and
interpretable objects. The framework works identically for learning LTLf and STL formulas,
and thus, in this section, we only describe the algorithm for learning LTLf formulas.

Decision Trees over LTLf formulas A decision tree over LTLf formulas is a tree-like
structure where all nodes of the tree are labeled by LTLf formulas. While the leaf nodes of a
decision tree are labeled by either true or false, the inner nodes are labeled by (non-trivial)
LTLf formulas, which represent decisions to predict the class of a trace. Each inner node leads
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φ1

φ2 true

true false

FIGURE 4.2: A decision tree over LTLf formulas

to two subtrees connected by edges, where the left edge is represented with a solid edge and
the right edge with a dashed one. Figure 4.2 depicts a decision tree over LTLf formulas.

A decision tree T over LTLf formula corresponds to an LTLf formula φt :=
∨

ρ∈Π
∧

φ∈ρ φ′,
where Π is the set of paths that originate in the root node and end in a leaf node labeled by
true and φ′ = φ if it appears before a solid edge in ρ ∈ Π, otherwise φ′ = ¬φ. For the
decision tree in Figure 4.2, the equivalent LTLf formula is (φ1 ∧ φ2) ∨ ¬φ1.

For evaluating a decision tree T on a trace u, we use the valuation V(φT, u) of the
equivalent LTLf formula φ on u. We can, in fact, extend the valuation function and loss
function for LTLf formulas to decision trees as V(T, u) = V(φT, u) and l(T, φ) = l(S , φ).

4.3.1 Decision-Tree Learning

Our decision tree learning algorithm shares similarities with the class of decision tree learning
algorithms known as Top-Down Induction of Decision Trees (TDIDT) [182]. Popular decision
tree learning algorithms such as ID3, C4.5, CART are all part of the TDIDT algorithm family.
In such algorithms, decision trees are constructed in a top-down fashion by finding suitable
features (i.e., predicates over the attributes) of the data to partition it and then applying the
same method inductively to the individual partitions.

Algorithm 6 outlines our approach to learning a decision tree over LTLf formulas. In our
algorithm, we first check the stopping criterion (Line 1) that is responsible for the termination
of the algorithm. If the stopping criterion is met, we return a leaf node. We discuss the exact
stopping criterion used in our algorithm in Section 4.3.3.

If the stopping criterion fails, we search for an appropriate LTLf formula φ using Algo-
rithm 5 for the current node of the decision tree. Our search for φ is based on a score function,
and we learn the minimal one that achieves a score greater than a user-defined minimum score

µ on the sample. The choice of the score function and parameter µ is a crucial aspect of the
algorithm, and we discuss more about this in Section 4.3.2.

Having learned formula φ, next we split the sample into two sub-samples S1 and S2 with
respect to φ: S1 consists of the traces in {u ∈ P ∪ N | V(φ, u) = 1}, while S2 consists of
the traces in {u ∈ P ∪ N | V(φ, u) = 0}. In both S1 and S2, the label of the traces, that is,
whether the traces are positive or negative, remains the same as in the sample S . The final
step is to recursively apply the decision tree learning on each of the sub-samples S1 and S2

(Line 6) to obtain trees T1 and T2, respectively. The decision tree returned is a tree with root
node φ and subtrees T1 and T2.
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Algorithm 6 Decision tree learning algorithm
Input: Sample S , Minimum score value µ, Threshold κ
Parameter: Stopping criterion stop, Score function s

1: if stop(S , κ) then
2: return leaf (S)
3: else
4: Learn minimal formula φ with s(S , φ) ≥ µ using Algorithm 5
5: Split S into S1, S2 using φ
6: Learn trees T1, T2 by recursively applying algorithm to S1 and S2
7: return decision tree with root node φ and subtrees T1, T2
8: end if

4.3.2 LTL Formulas for Decision Nodes

Ideally, we aim to learn LTLf formulas at each decision node that, in addition to being small,
also ensure that the resulting sub-samples after a split are as “homogenous” as possible. In
simpler words, we want the sub-samples obtained after a split to predominantly consist of
traces with similar labels (that is, positive or negative). More homogenous splits result in
early termination of the algorithm, resulting in small decision trees. To achieve this, one can
simply learn a minimal LTLf formula that perfectly classifies (that is, consistent with) the
sample. While in principle, this solves our problem, in practice, learning an LTLf formula
that perfectly classifies a sample is a computationally expensive process [169]. Moreover, it
results in a trivial decision tree consisting of a single decision node. Thus, to avoid that, we
wish to learn concise LTLf formulas that classify most traces correctly on the given sample.

To mechanize the search for concise LTLf formulas for the splits, we measure the quality
of an LTLf formula using a score function. In our algorithm, we use this function to learn a
minimal LTLf formula having a score greater than a user-defined threshold µ. The parameter
µ regulates the trade-off between the height of the tree and the size of the LTLf formulas
in the decision nodes of a tree. While all TDIDT algorithms involve certain metrics (e.g.,
Gini impurity, entropy) to measure the efficacy of a feature to perform a split, these metrics
are based on non-linear operations on the fraction of examples of each class in a sample.
Searching LTLf formulas, however, based on such metrics, cannot be handled using a MaxSAT
framework.

A natural choice for the score function is the following:

sl(S , φ) = 1− l(S , φ), (4.19)

which relies on the loss function. A formula φ with sl(S , φ) ≥ µ is a formula with l(S , φ) ≤
1− µ. Thus, for learning LTLf formulas with score greater than µ, we invoke Algorithm 5 to
produce a minimal LTLf formula φ with l(S , φ) ≤ 1− µ. Note that, for this score, one must
choose the µ to be smaller than 1− κ, or else one will end up with a trivial decision tree with
a single decision node.

While sl as the metric seems to be an obvious choice, it often results in a problem that
we refer to as empty splits. Precisely, the problem of empty splits occurs when one of the



Chapter 4. Learning in the Presence of Noise 52

sub-samples, i.e., either S1 or S2 becomes empty. Empty splits lead to an unbounded recursion
branch of the learning algorithm since using the best LTLf formula (with respect to sl) does
not produce any meaningful splits. This problem is more prominent in samples which are
skewed, meaning, it consists of traces of mostly one label. For instance, consider a sample
S with one positive traces u and 99 negative traces v1, v2, · · · , v99; for this sample, if one
searches for an LTLf formula with µ = 0.9, false is a minimal formula. This formula, however,
results in empty splits since S1 is empty.

To address this problem, we use a score that relies on wl from Equation 4.2 with a weight
function Ωr defined as follows:

Ωr(u) =

 0.5
|P| for u ∈ P,
0.5
|N| for u ∈ N

(4.20)

Intuitively, the above Ωr function normalizes the weight provided to traces based on the
number of traces with a certain label.

Our choice of score function based on the above Ωr function is the following:

sr(S , φ) = max{wl(S , φ, Ωr), 1−wl(S , φ, Ωr)}. (4.21)

Using such a score, we also avoid having asymmetric splits. We say a split is asymmetric
when the fraction of positive traces in S1 is greater than or equal to 0.5. Choosing the score to
be 1−wl(S , φ, Ωr) always leads to asymmetric splits, since several positive traces need to
end up in S1 to minimize wl(S , φ, Ωr).

Now, to find an LTLf formula based on sr, we need to invoke Algorithm 5 twice with
κ = 1− µ; once with the original sample S = (P, N) and once with the sample S = (N, P)
with positives and negatives swapped. One then chooses the formula with a better split from
the two invocations of Algorithm 5.

While any score function that avoids the problem of empty and asymmetric splits is
sufficient for our learning algorithm, we have used sr as a score function in our experiments.
We show that if we learn an LTLf formula φ such that sr(S , φ) > 0.5, we never encounter
empty splits using the following lemma.

Lemma 4. Given a sample S and an LTLf formula φ, if sr(S , φ) > 0.5, there exists traces

u1, u2 in S such that V(u1, φ) = 1 and V(u2, φ) = 0.

Proof. Towards contradiction, let us assume without loss of generality that for all u in S and
formula φ with sr(S, φ) > 0.5, we have V(u, φ) = 1. We can compute wl(S , φ, Ωr) as
follows:

wl(S , φ, Ωr) = ∑
u∈P

Ωr(u) · (1−V(φ, u)) + ∑
u∈N

Ωr(u) ·V(φ, u)

= ∑
u∈P

0.5
|P| · (1− 1) + ∑

u∈N

0.5
|N| · 1 = 0.5
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Now, sr(S , φ) = max{wl(S , φ, Ωr), 1−wl(S , φ, Ωr)} = 0.5. This violates our assumption
of sr(S , φ) > 0.5.

4.3.3 Stopping Criterion

The stopping criterion is essential for the termination of the algorithm. Towards the definition
of the stopping criterion, we rely on two quantities: p1(S) = |P|

∥S∥ , p2(S) = |N|
∥S∥ .

We now define the stopping criterion as follows:

stop(S) =

true if p1(S) ≤ κ or p2(S) ≤ κ,

false otherwise.
(4.22)

Intuitively, the stopping criterion ensures that the algorithm terminates when the fraction of
positive traces or fraction of negative traces in a resulting sample is less or equal to κ. When
the stopping criterion holds, the algorithm halts and returns a leaf node labeled by leaf (S)
where leaf is defined as follows:

leaf (S) =

false if p1(S) ≤ κ,

true if p2(S) ≤ κ.
(4.23)

The following theorem ensures the correctness and termination of Algorithm 6.

Theorem 5. Given a sample S and a threshold κ ∈ [0, 1], Algorithm 6 terminates and returns

a decision tree over LTLf formula T such that l(S , T) ≤ κ.

Proof. For termination, first observe that at each decision node, we can always infer an LTLf

formula φ for which sr(S, φ) ≥ µ, for any value of µ. This is because there always exists
an LTLf formula φ that produces perfect classification, and for this, sr(S, φ) = 1. Second,
observe that whenever a split is made during the learning algorithm, sub-samples S1 and S2

are both non-empty due to Lemma 4. This implies that the algorithm terminates since a sample
can be only split finitely many times.

To ensure the decision tree T achieves a l(S, T) ≤ κ, we use induction over the structure
of the decision tree. If T is leaf node true or false, then l(S, T) ≤ κ using the stopping
criteria. Now, say that T is a decision tree with root φ and subtrees T1 and T2, meaning
φT = (φ ∧ φT1) ∨ (¬φ ∧ φT2). Also, say that the sub-samples produced by φ are S1 and S2.
By induction hypothesis, we can say that l(S1, T1) ≤ κ and l(S2, T2) ≤ κ. Now, it is easy to
observe that l(S1, (φ ∧ φT1)) ≤ κ and l(S2, (¬φ ∧ φT2)) ≤ κ, since φ satisfies all traces in
S1 and ¬φ does not satisfy any trace in S2. We, thus, have l(S, T) = l(S1 ⊎ S2, (φ ∧ φT1) ∨
(¬φ ∧ φT2)) ≤ κ.

4.4 Experimental Evaluation

In this section, we present the implementation and the experimental results of this work.
We split the section into results for learning LTLf in Section 4.4.1 and for learning STL in
Section 4.4.2.



Chapter 4. Learning in the Presence of Noise 54

TABLE 4.1: LTLf patterns used for generation of samples

Absence Existence Universality

G(¬p0) F(p0) G(p0)
F(p1)→(¬p0 U p1) G(¬p0) ∨ F(p0 ∧ F(p1)) F(p1)→(p0 U p1)
G(p1→G(¬p0)) G(p0 ∧ (¬p1→(¬p1 U(p2 ∧ ¬p1)))) G(p1→G(p0))

Disjunction of common patterns
F(p0) ∨ F(p1) ∨ F(p2))

G(¬p0) ∨ F(p0 ∧ F(p1)) ∨ G(¬p3) ∨ F(p2 ∧ (F p3))
G(p0 ∧ (¬p1 → (¬p1 U(p2 ∧ (¬p1))))) ∨ G(p3 ∧ (¬p4 → (¬p4 U(p5 ∧ (¬p4)))))

4.4.1 RQ1: Performance Gain in LTL learning

In this section, we evaluate the performance of our proposed algorithms for LTLf and compare
them to the SAT-based learning algorithms by Neider and Gavran [169]. Specifically, we
compare the following four algorithms:

1. SAT-flie: the SAT-based learning algorithms introduced by Neider and Gavran (Algo-
rithm 1 from [169]),

2. MaxSAT-flie: our MaxSAT-based algorithm (Algorithm 5),

3. SAT-DT: the decision tree-based learning algorithm introduced by Neider and Gavran
(Algorithm 2 from [169])2 and

4. MaxSAT-DT: our decision tree learning algorithm (Algorithm 6).

We implement our learning algorithms in a Python tool3 using Microsoft Z3 [164].
For the comparisons, we rely on synthetic data: we generate samples based on common

LTLf patterns that can be found in practice [76]; Table 4.1 lists the set of the LTLf formulas
used. For our first benchmark set, we generate 148 samples with the generation method
proposed by Neider and Gavran [169]. The size of the generated samples ranges between 12
and 1000, consisting of traces of lengths up to 15. For our second benchmark set, we modify
the first benchmark set: we introduce 5% noise in each sample by randomly inverting the
labels of up to 5% of the traces. We call the first benchmark set as the benchmark without
noise, while the second one as the benchmark with 5% noise.

We evaluate the performance of all the algorithms on both benchmark sets with a timeout
of 900 seconds for each run. All experiments ran on a Debian machine with Intel Xeon
E7-8857 CPU at 3GHz using up to 6GB of RAM.

Table 4.2 presents the summary of all the experimental results. Notice that we experiment
with different values of the parameters κ and µ to study their impact on the algorithms. We
now discuss the results in detail.

We first compare MaxSAT-flie (proposed in this chapter) and SAT-flie (proposed in [169]).
Figure 4.3 presents the detailed comparison of runtimes of SAT-flie and MaxSAT-flie for

2We adapted SAT-DT to learn decision trees with a similar stopping criteria as ours.
3https://github.com/cryhot/samples2LTL

https://github.com/cryhot/samples2LTL
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TABLE 4.2: Summary of all the tested algorithms – comparison of numbers
of timeouts, runtimes in seconds, learned formula sizes

Benchmark without noise Benchmark with 5% noise

Algorithm Timeouts Avg. time Avg. size Timeouts Avg. time Avg. size

SAT-flie 36/148 293.31 3.76 124/148 780.51 5.96
MaxSAT-flie(κ = 0.001) 47/148 357.26 3.47 130/148 801.03 4.89
MaxSAT-flie(κ = 0.05) 27/148 218.46 2.86 87/148 548.65 2.95
MaxSAT-flie(κ = 0.1) 26/148 211.81 2.59 40/148 275.97 2.54
SAT-DT(κ = 0.05) 51/148 342.35 5.92 127/148 786.16 9.62
MaxSAT-DT(κ = 0.05, µ = 0.8) 23/148 174.58 6.77 85/148 543.50 7.05
MaxSAT-DT(κ = 0.05, µ = 0.6) 7/148 74.97 30.91 38/148 281.60 56.55

different values of κ. In the figure, along with the comparison of the absolute runtime in
seconds, we present the ratio of the runtime of MaxSAT-flie over SAT-flie.

We observe that, with κ = 0.001, MaxSAT-flie performs worse than SAT-flie. This is due
to the fact that a MaxSAT problem is computationally more difficult to solve than a SAT
problem [111]. For exact learning of an LTLf formula, the SAT problem suffices, and thus,
SAT-flie performs better than MaxSAT-flie. For greater values of κ, MaxSAT-flie performs
better than SAT-flie, especially on the benchmark with noise.

Next, we compared the size of the LTLf formula learned by MaxSAT-flie and SAT-flie.
Figure 4.3b presents the comparison of size for κ = 0.10. By design, the size of the formula
by MaxSAT-flie is less than or equal to that of by SAT-flie, as confirmed by the figure.

Finally, we noticed that when the size of the formula learned by MaxSAT-flie is smaller
than SAT-flie, there was runtime gain. This typically happened when we considered the
benchmark with noise. However, if the size of the formulas is similar, as it often happened in
the benchmark without noise, the runtime of MaxSAT-flie and SAT-flie were similar; hence,
the median ratio of the runtime was often equal to 1, as shown in Figure 4.3b.

We now compare the two algorithms proposed in this chapter: did MaxSAT-DT perform
any better than MaxSAT-flie? To be able to compare the size of decision trees to LTLf formulas,
we measure the size of a tree t in terms of the formula size φt that this tree encodes.

Figure 4.5 presents a comparison of the runtime ratio as well as the formula size ratio of
these two algorithms, on both benchmark sets. We observe that the runtime is generally lower
for MaxSAT-DT than for MaxSAT-flie. However, MaxSAT-DT tends to learn formulas larger
than that by MaxSAT-flie. This tradeoff between runtime and formula size is more pronounced
for lower values of µ.

Regarding SAT-DT (proposed in [169]), we observe a large number of timeouts, especially
when evaluated on the benchmark with noise.

4.4.2 RQ2: Performance Comparison for STL learning

In this section, we evaluate the performance of our proposed algorithms when adapted to
learning STL formulas: we compare the performance of MaxSAT-DT and MaxSAT-flie for
learning STL. We implement both learning algorithms in a C++ tool using Microsoft Z3 [164].
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FIGURE 4.3: Comparison of (absolute and ratio of) runtimes of SAT-flie and
MaxSAT-flie on all benchmark sets

In this case, our benchmark set consists of samples with traces generated by policies
learned from reinforcement learning (RL) using model-based reinforcement learning (MBRL)
algorithm [166]. These traces describe a Pusher-robot that interacts with a ball and a wall. The
system consists of seven features in total: two Boolean features with corresponding predicates
of the form uj = θ for j ∈ {1, 2} (for example, u1 = 1 when the ball is in contact with the
robot) and five continuous features with corresponding predicates of the form uj > θ for
j ∈ {3, · · · , 7} (for example, u4 represents the total upper arm movement of the Pusher-robot).
We note that this system is hybrid, but we simply consider Boolean features as continuous
features.

The benchmark has a total of four samples, each of them corresponding to an identified
strategy of the Pusher-robot, that we like to describe using an STL formula. Each sample
contains 300 traces: 150 positive traces from the current strategy, and 150 negative traces
from the other three strategies. We set a timeout of 900s on each run.
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FIGURE 4.4: Learned LTLf formula size comparison of SAT-flie and MaxSAT-
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number of iterations in Algorithm 5, that is, to a learned STL formula of a

certain size, with a misclassification rate lower than or equal to κ.
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Figure 4.6 shows the runtime of MaxSAT-flie for different numbers of iteration in Al-
gorithm 5, presented by misclassification rate. For example, on the strategy 3 sample, we
could learn the formula F[1,3) s0 = 0 of size 2 with a misclassification rate of 19.33% (any
κ ∈ [0.1933, 0.3333) would have the same effect), with a runtime of 37 seconds. On the
same sample, with some additional time beyond our timeout (2200 seconds instead of 900
seconds), we could learn an interesting STL formula (s5 > 0.003)U[1,3)(s0 = 0) of size 3
with a misclassification rate of 15.67%.

We run MaxSAT-DT on each of the four samples, with results depicted in Figure 4.7.
MaxSAT-DT could produce STL formulas perfectly classifying each sample, i.e., with κ = 0,
where MaxSAT-flie timed out for the same κ. Increasing the hyper-parameter µ produces better
quality splits of the sample: this way, the number of nodes in the decision tree is reduced,
but the runtime is increased. We observe that the runtime of MaxSAT-DT increases in the
shape of a step function shape when µ increases. This is similar to increase in the runtime of
MaxSAT-flie with the decrease in κ decreases: for example, the strategy 2 sample times out
abruptly with µ > 0.67 because one of the decision tree nodes now requires an STL formula
of larger size in order to satisfy the criteria.

4.5 Conclusion

We developed two novel algorithms for learning LTLf/STL formulas from a set of labeled
traces/signals, allowing misclassifications. Moreover, we demonstrated that our algorithms
are efficient in learning formulas, especially from noisy data, and can be used to interpret
AI-generated data. As a part of future work, we would like to apply our MaxSAT-based
approach for learning models in other formalisms such as PSL and MTL, and perform an
extensive evaluation of the algorithms.
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Chapter 5

Incorporating Intuition as
Specification sketches

In this chapter, we study the problem of learning LTL formulas by incorporating expert
knowledge of formal methods practitioners. As we discussed in Chapter 1, verification
through formal methods has had several success stories in numerous domains such as in
communication systems [82, 152], railway transportations [12, 13], aerospace [95, 60],
operating systems [215, 136], etc.

There is, however, an essential and often overlooked catch with formal verification.
Virtually all verification techniques assume that the specification required for the verification
process is available in a suitable format, is functionally correct, and expresses precisely
the properties the engineers had in mind. Formalizing system requirements is notoriously
difficult and error-prone [198, 176, 197, 41]. Even worse, the training effort required to reach
proficiency with specification languages can be disproportionate to the expected benefits [63],
and the use of, for instance, temporal logics require a level of sophistication that many users
might never develop [119, 107].

To aid the process of formalizing specifications, in this chapter, we introduce an approach—
specification sketching—for writing formal specifications based on knowledge of engineer-
s/practitioners about the underlying system. Our new paradigm is inspired by recent advances
in automated program synthesis [204, 205]. It allows engineers to express their high-level
insights about a system in terms of a partial specification, named specification sketch, where
parts that are difficult or error-prone to formalize can be left out. To single out their desired
specification, we rely on a sample of system execution, partitioned into positive and negative
examples. Based on this sample, a so-called sketching algorithm fills in the missing low-level
details to obtain a complete specification.

To demonstrate how our paradigm works, let us consider a simple scenario. Imagine that
an engineer wishes to formalize the following request-response property P: every request
p has to be answered eventually by a response q. This property can be expressed in LTL
as G(p → XF q) using usual temporal operators F, G, and X. However, for the sake of
this example, assume that the engineer is unsure of how exactly to formalize P. In such
a situation, our sketching paradigm allows them to express their high-level insights in the
form of a sketch, say G(p → ?), where the question mark indicates the missing part of the
specification. Additionally, they can provide a sample of example infinite executions of the
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system: (i) a positive trace {p}{q}{p}{q}{p}{q} · · · , in which every request is answered
by a response in the next timepoint, and (ii) a negative trace {p}{q}{p}{p}{p} · · · , in
which there are infinitely many requests that are not answered by a response. Our sketching
algorithm then computes a substitution for the question mark such that the completed LTL
formula is consistent with the sample (e.g., ? := XF q). In this example, the engineer left out
an entire temporal formula in the sketch. However, our paradigm also allows one to leave
out Boolean and temporal operators. For instance, one could also provide ?(p→ XF p) as a
sketch, where the question mark now indicates a missing unary operator (G in our example).

While the concept of specification sketching can be conceived for a wide range of speci-
fication languages, in this chapter, we mainly focus on Linear Temporal Logic (LTL) [179].
LTL is the de facto temporal logic in formal methods, being popular both in academia and in
industry [120, 213, 86, 95]. Moreover, LTL is well-understood and enjoys good algorithmic
properties [59, 179]. Note that we rely on the variant of LTL for infinite traces since it is more
prevalent in the verification community.

The problem of specification sketching for LTL, or LTL sketching in short, is the following:
given a sample S partitioned into a set of positive and a set of negative examples and an LTL
sketch φ?, complete φ? to obtain a concise LTL formula φ that is consistent with S . In contrast
to the standard (passive) LTL learning, the LTL sketching problem may not always have a
solution: there are sketches for which there are no substitutions that make them consistent
with the sample. We expand on why this is the case and other details of the LTL sketching
problem in Section 5.1.

Next, we show that, while a solution may not exist for the LTL sketching problem, the
problem of checking whether a solution exists is in NP. Moreover, we develop an effective
decision procedure that reduces the original question to a satisfiability problem in propositional
logic. This reduction permits us to apply highly-optimized, off-the-shelf SAT solvers to check
whether a consistent substitution exists. We also describe a procedure to fix a sketch in case
no substitution exists. We refer to details of the complexity result and the corresponding
procedures related to existence of solution in Section 5.2.

We then develop two sketching algorithms for LTL. Following Occam’s razor principle,
both algorithms are biased towards finding “small” (concise) substitutions for the question
marks in a sketch. The rationale behind this choice is that small formulas are arguably easier
for engineers to understand and, thus, can be safely deployed in practice.

By exploiting the decision procedure of Section 5.2 as a sub-routine, our first algorithm
transforms the sketching problem into several passive LTL learning tasks. This transformation
allows us to apply a diverse array of algorithms for LTL passive learning, which have been
proposed during the last ten years [169, 48, 193]. In addition, our algorithm immediately
benefits from any advances in this field of research.

While the first algorithm builds on top of existing work and, hence, is easy to use, we
observed that it tends to produce non-optimal substitutions for the unspecified parts of a
sketch. Our second algorithm tackles this by searching for substitutions of increasing size
using a SAT-based approach that is inspired by Neider et al. [169]. We formally prove that
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this algorithm can, in fact, produce small substitutions (if they exist). We expand more on the
algorithms in Section 5.3.

Finally, we present an experimental evaluation of our algorithms using a prototype imple-
mentation LTL-Sketcher. We demonstrate that our algorithms are effective in completing
sketches with different types of missing information. Further, we compare LTL-Sketcher
against two state-of-the-art specification mining tools for LTL. From the comparison, we
demonstrate that LTL-Sketcher’s ability to complete missing temporal formulas and
temporal operators enables it to complete more specifications. Moreover, we observe that
providing high-level insights as a sketch reduces the number of examples required to derive the
correct specification. We present all of the experimental results in Section 5.4. We conclude
in Section 5.5 with a discussion on future work.

Related Work.

Specification sketching can be seen as a form of specification mining [5]. In this area, the
general idea of allowing partial specifications is not entirely new, but it has not yet been
investigated as generally as in this work. For instance, a closely related setting is the one in
which so-called templates are used to mine temporal specifications from system executions.
In this context, a template is a partial formula similar to a sketch. Unlike a sketch, however, a
template is typically completed with a single atomic proposition or a simple, usually Boolean
formula (e.g., a restricted Boolean combination of atomic propositions). A prime example
of this approach is Texada [144, 146], a specification miner for LTLf formula. Texada takes
a template (property type in their terminology) and a set of system executions as input and
completes the template with atomic propositions such that the resulting LTL formula satisfies
all system executions. In contrast to Texada, our paradigm assists engineers in completing
more complex temporal formulas in their specifications, thus alleviating an even larger burden
off an engineer. Another example in this setting is the concept of temporal logic queries,
introduced by Chan [52] for CTL, and later developed by Bruns and Godefroid [43] for a wide
range of temporal logics. However, unlike our paradigm, temporal logic queries allow only a
single placeholder in their template that can be filled with only atomic propositions.

Various other techniques operate in settings where the templates are even more restricted.
For example, Li et al. [147] mine LTL specification based on templates from the GR(1)-
fragment of LTL (e.g., GF?, G(?1 → X?2), etc.), while Shah et al. [200] mine LTL formulas
that are conjunctions of the set of common temporal properties identified by Dwyer et al. [77].
In addition, Kim et al. [135] consider a set of interpretable LTL templates, widely used in the
development of software systems, to obtain LTL formulas robust to noise in the input data. In
the context of CTL, on the other hand, Wasylkowski et al. [219] mine specifications using
templates of the form AF?, AG(?1 → F?2), etc. However, all the approaches above complete
the templates only with atomic propositions (and their negations in some cases).

Another setting is where general (and complex) temporal specifications are learned from
system executions without any information about the structure of the specification. This
is what we often describe in this thesis as the passive learning problem for LTL. The most
notable work in this setting is by Neider et al. [169], who learn LTL formulas using a SAT



Chapter 5. Incorporating Intuition as Specification sketches 63

?2

U ?1

?0 G

q

FIGURE 5.1: An LTL sketch

solver and by Camacho et al. [48], who propose SAT-based learning for LTLf formulas via
alternating finite automata representations. Also, we present an approach for learning formulas
in fragments of LTLf without the U-operator in Chapter 3. We present many other passive
learning approaches (for, for instance, PSL in Chapter 7 and MTL in Chapter 8) in this thesis
that fall into this setting. However, all of these works are “unguided” in that none of them
exploit insights about the structure of the specification to aid the learning/mining process.

Finally, it is worth mentioning that LTL sketching can also be seen as a particular case of
syntax-guided synthesis (SyGuS), where syntactic constraints on the resulting formulas are
expressed in terms of a context-free grammar. An example of a syntax-guided approach is
SySLite [8], a CVC4-based tool for learning Past-time LTL over finite executions. However, to
the best of our knowledge, we are unaware of any SyGuS engine that can infer specifications
in LTL over infinite (that is, ultimately-periodic) system executions.

5.1 Problem Formulation

Since the problem of LTL sketching relies heavily on LTL sketches, we begin with formalizing
them first.

5.1.1 LTL Sketch.

An LTL sketch is an incomplete LTL formula in which parts that are difficult to formalize
can be left out. The left-out parts are represented using placeholders, denoted by ?’s. An
example of an LTL sketch can be seen in Figure 5.1. We comment on the superscripts on the
placeholders in the figure shortly.

Formally, an LTL sketch φ? is simply an LTL formula whose syntax is augmented with
placeholders. The placeholders we allow can be of three types: placeholders of arity zero
referred to as Type-0 placeholders, that replace missing LTL formulas; placeholders of arity
one referred to as Type-1 placeholders, that replace missing unary operators; and placeholders
of arity two referred to as Type-2 placeholders, that replace missing binary operators. In
Figure 5.1 (and throughout the paper), Type-i placeholders are represented using ?i.

Given (possibly empty) sets Π0, Π1 and Π2 consisting of Type-0, Type-1 and Type-2
placeholders, respectively, we define LTL sketches inductively as follows:

• each element of P ∪Π0 is an LTL sketch; and
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• if φ?
1 and φ?

2 are LTL sketches, ◦ φ?
1 is an LTL sketch for ◦ ∈ ΛU ∪ Π1 and so is

φ?
1 ◦ φ?

2 for ◦ ∈ ΛB ∪Π2.

Note that an LTL sketch in which Π0 = Π1 = Π2 = ∅ is simply an LTL formula. Further,
let Πφ? = Π0 ∪Π1 ∪Π2 denote the set of all placeholders in a sketch φ?. For the sketch in
Figure 5.1, Πφ? = {?0, ?1, ?2}. For brevity, in the rest of the paper, we refer to an LTL sketch
as a sketch.

The placeholders are abstract symbols that apriori do not have any meaning. To assign
meaning to a sketch, we need to substitute all Type-0 placeholders with LTL formulas, all
Type-1 placeholders with unary operators, and all Type-2 placeholders with binary operators.
We do this using a so-called substitution function (or substitution for short).

Formally, a substitution function s maps placeholders and operators present in a sketch to
LTL operators and LTL formulas in such a way that:

s(?) ∈ FLTL if ? ∈ Π0,

s(?) ∈ ΛU if ? ∈ Π1,

s(?) ∈ ΛB if ? ∈ Π2,

s(λ) = λ if λ ∈ Λ.

Recall that FLTL denotes the set of all LTL formulas.
Moreover, a substitution s is said to be complete for a sketch φ? if s is defined for every

element in Λ ∪Πφ? in φ?. For example, a possible complete substitution s for the sketch φ?

in Figure 5.1 can be s(?0) = p, s(?1) = F, s(?2) = ∨, and s(λ) = λ for λ ∈ Λ.
A complete substitution s can be applied to a sketch φ? to obtain an LTL formula. To

make this precise, we define a function fs, which is defined recursively on the structure of φ?

as follows:

fs(φ?
1 ?2 φ?

2) = fs(φ?
1) ◦ fs(φ?

2), where ◦ = s(?2),

fs(?1φ?) = ◦ fs(φ?), where ◦ = s(?1),

fs(?0) = s(?0),

fs(φ?) = φ? if Πφ? = ∅.

For the complete substitution s for φ? defined in the last paragraph we get fs(φ?) =

(pUG q) ∨ (F(G q)).

5.1.2 The Sketching Problem

While there can be many ways to complete a sketch, we direct our search based on a sample
S = (P, N) of infinite traces from (2P )ω, partitioned into a set P of positive examples and a
set N of negative examples, such that P ∩ N = ∅. As infinite traces, we specifically consider
ultimately periodic traces, that is, traces of the form uvω where u ∈ (2P )∗ and v ∈ (2P )+.
Ultimately period traces are known to be sufficient in order to uniquely characterize ω-regular
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languages [45] (and thus, LTL formulas). In this case, we define size of a sample to be
|S| = ∑uvω∈P∪N |uv|.

Similar to previous chapters, we say that an LTL formula φ is consistent with a sample
S = (P, N) if uvω |= φ for all positive examples uvω ∈ P and uvω ̸|= φ for all negative
examples uvω ∈ N.

We now state the central problem of the paper.

Problem 4 (LTL sketching). Given a sample S = (P, N) and an LTL sketch φ?, find a

complete substitution s for φ? such that fs(φ?) is consistent with S .

Unlike the passive LTL learning problem, a solution to the LTL sketching problem does not
always exist. This can be illustrated using the following simple example. Consider the sample
S consisting of a single positive trace α = {p}{q}ω and a single negative trace β = {q}ω

and the sketch G(?0). For this sample and sketch, there does not exist any substitution that
leads to an LTL formula consistent with the sample. Towards contradiction, let us assume
that there exists an LTL formula G(φ) that is consistent with S , meaning, α |= G(φ) and
β ̸|= G(φ). Based on the semantics of the G-operator, also α[1, ∞) |= G(φ). On the other
hand, since β = α[1, ∞), α[1, ∞) ̸|= G(φ).

Since, for a given sample and LTL sketch, there might not exist any complete substitution,
a naive enumeration-like algorithm to search over all substitutions may not terminate. To show
that one can indeed design a terminating sketching algorithm, in the next section, we prove
the decidability of LTL sketching.

5.2 Existence of a Complete Sketch

To devise a terminating algorithm for the LTL sketching problem, we first introduce the related
decision problem, which is the following:

Problem 5 (LTL sketch existence). Given a sample S = (P, N) and an LTL sketch φ?, does

there exist a complete substitution s for φ? such that fs(φ?) is consistent with S .

In what follows, we prove that this problem is indeed decidable and belongs to the
complexity class NP. Thereafter, we devise a decision procedure for the problem by exploiting
the satisfiability (SAT) problem.

5.2.1 Decidability Result

For the decidability result, we begin by introducing some concepts as a preparation. Let us
first observe the following key property of ultimately periodic traces.

Observation 1. Let uvω ∈ (2P )ω and φ be an LTL formula. Then, uvω[|u| + t1] =

uvω[|u|+ t2] for t2 ≡ t1 mod |v|. Thus, uvω[|u|+ t1, ∞) |= φ if and only if uvω[|u|+
t2, ∞) |= φ.

This observation indicates that, for a trace uvω, there exists only a finite number of distinct
suffixes of uvω, all of which originate in the initial uv portion of uvω. Let us then define
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0 1 2

p 1 1 0

q 1 0 1

X q 0 1 1

p ∨ X q 1 1 1

FIGURE 5.2: Table Tψ
α for ψ = p ∨ X q and α = {p, q}{p}{q}ω

suf (uvω) = {uvω[t, ∞) | 0 ≤ t < |uv|} as the set of all (possibly) distinct suffixes of uvω.
Moreover, let

suf (S) =
⋃

uvω∈(P∪N)

suf (uvω)

be the set of suffixes of all traces in S .
Observation 1 also indicates that, to determine the evaluation of an LTL formula φ on an

ultimately periodic trace uvω, it is sufficient to determine its evaluation on the initial |uv|
suffixes of uvω.

Thus, for a compact representation of the evaluation of φ on uvω, we introduce a table
notation Tφ

uvω . Mathematically speaking, a table Tφ
uvω is a |φ| × |uv| matrix that consists of

the satisfaction of all the subformulas φ′ of φ on the suffixes of uvω. We define the entries of
this matrix as:

Tφ
uvω [φ′, t] =

1 if uvω[t, ∞) |= φ′,

0 if uvω[t, ∞) ̸|= φ′,

for all subformulas φ′ of φ and 0 ≤ t < |uv|.
Based on the above definition of the table Tφ

uvω , we identify three properties of these tables,
which form the main building blocks of the decidability proof (that is, proof of Theorem 6), as
we see later.

The first property, or as we call it, the Semantic property, is that various rows of the table
are related to each other in a way that reflects the semantics of LTL. To explain this further,
we use Tφ

uvω [φ′, ·] to represent the row of Tφ
uvω corresponding to subformula φ′.

We first demonstrate the Semantic property on an example. Consider the formula ψ =

p ∨ X q and the trace α = {p, q}{p}{q}ω. The table Tψ
α is illustrated in Figure 5.2. From

the figure, one can see that the row Tψ
α [p ∨ X q, ·] corresponds to the bitwise-OR of the rows

Tψ
α [p, ·] and Tψ

α [X q, ·], reflecting the semantics of the ∨-operator that combines formulas p
and X q.

To define these semantic relations between the rows, we must uniquely identify the
subformula that corresponds to each row. As a result, we assign unique identifiers i ∈
{1, . . . , n} to each node of the syntax DAG of φ, and we denote the subformula rooted at
Node i using φ[i]. For assigning identifiers, we follow the same strategy as we did in the
previous chapter, Section 4.1: the root node has identifier 1, and every node has an identifier
smaller than its children (that is, if it has any). One can also analogously assign identifiers to
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syntax DAGs of sketches. We additionally rely on the function ℓ : {1, . . . , n} 7→ Λ that maps
the identifiers to the corresponding operators in the syntax DAG.

We now describe the set of equations that formalize the relation between the rows. How
a row Tφ

uvω [φ[i], ·] relates to the others depends on the operator ℓ(i) in the root node of φ[i].
For instance, if ℓ(i) = p for some proposition p, then we have the following relation:

Tφ
uvω [φ[i], t] =

1 if p ∈ uvω[t]

0 otherwise
(5.1)

If, on the other hand, ℓ(i) is a unary-operator and Node j is the left child of Node i, we
have the following relations:

if ℓ(i) = ¬ : Tφ
uvω [φ[i], t] = 1− Tφ

uvω [φ[j], t] for 0 ≤ t < |uv| (5.2)

if ℓ(i) = X : Tφ
uvω [φ[i], t] =

Tφ
uvω [φ[j], t + 1] for 0 ≤ t < |uv| − 1

Tφ
uvω [φ[j], |u|] for t = |uv| − 1

(5.3)

The first equation simply follows from the semantics of ¬-operator, while the second one
follows the semantics of X-operator. To implement the semantics of X-operator in the
periodic part of uvω, the second equation exploits Observation 1 and determines the entry
Tφ

uvω [φ[i], |uv| − 1] using the evaluation of φ[j] at uvω[|u|, ∞), that is, the start of the periodic
part.

If ℓ(i) is a binary operator, and Node j and Node j′ are the left and right children of Node i,
respectively, then we have the following relations:

if ℓ(i) = ∨ : Tφ
uvω [φ[i], t] = Tφ

uvω [φ[j], t] ∨ Tφ
uvω [φ[j′], t] for 0 ≤ t < |uv| (5.4)

if ℓ(i) = U : Tφ
uvω [φ[i], t] = (5.5)

∨
t≤t′′<|uv|

[
Tφ

uvω [φ[j′], t′′] ∧∧t≤t′<t′′ T
φ
uvω [φ[j], t′]

]
for 0 ≤ t < |u|∨

|u|≤t′′<|uv|
[

Tφ
uvω [φ[j′], t′′] ∧∧t′∈t↬u,vt′′ T

φ
uvω [φ[j], t′]

]
for |u| ≤ t < |uv|

The first equation above follows from the semantics of ∨-operator. The second equation
follows from the semantics of U-operator and consists of two cases: the first case provides
the relation for entries t ∈ {0, · · · , |u| − 1} in the initial part u; the second case covers the
entries t ∈ {|u|, · · · , |uv| − 1} in the periodic part of uvω. Thereby, the second case uses
Observation 1 to “loop back” into the periodic part using the set t ↬u,v t′′ defined as:

t ↬u,v t′′ =

{t, · · · , t′′ − 1} if t < t′′;

{|u|, · · · , t′′ − 1, t, · · · , |uv| − 1} otherwise.

Next, we describe the second property, the Consistency property. This property ensures
that Tφ

uvω [φ, 0] = 1 if and only if uvω satisfies φ. Thus, for an LTL formula φ consistent with
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S , we have the following relation:

Tφ
uvω [φ, 0] = 1 for all uvω ∈ P, and Tφ

uvω [φ, 0] = 0 for all uvω ∈ N (5.6)

The final property we observe is called the Suffix property. This property originates from
the fact that LTL, being a future-time logic, has the same evaluation on equal suffixes, that is,
for all u1vω

1 [t, ∞) = u2vω
2 [t
′, ∞), u1vω

1 [t, ∞ |= φ if and only if u2vω
2 [t
′, ∞ |= φ. Formally,

we state the property as follows:

Tφ
u1vω

1
[φ, t] = Tφ

u2vω
2
[φ, t′] for all u1vω

1 [t, ∞) = u2vω
2 [t
′, ∞) (5.7)

This property becomes significant later, especially for constructing LTL formulas to substitute
Type-0 placeholders.

With the prerequisites set up, we now proceed to describe an NP algorithm for deciding
the LTL sketch existence problem. For an easy presentation of the algorithm, we consider
the simple (but crucial) case where the only missing information in φ? is a single Type-0
placeholder. While one might assume that non-deterministically guessing a substitution for
the placeholder should suffice; it does not. This is because, apriori, the size of the LTL formula
required to substitute the Type-0 placeholder is not known.

Thus, in our NP algorithm, instead of guessing substitutions, we guess the entries of
the table Tφ?

uvω for each uvω in S . Note that the tables have a finite dimension, precisely
|φ?| × |uv|, for each trace uvω. Thus, the overall process of simply guessing the table entries
can be done in time O(poly(|φ?|, |S|)).

After guessing the table entries, we must verify that the guessed tables satisfy the three
properties, Semantic, Consistency, and Suffix, discussed earlier in this section. It is easy to
verify that checking the first two properties for the tables requires time O(poly(|φ?|, |uv|))
(that is, polynomial in |φ?| and |uv|) for each uvω in S . For checking the Suffix property,
one must identify the equal suffixes in suf (S). This can be also done in time O(poly(|S|)),
simply by unrolling the periodic part of the suffixes to a fixed length. This is formalized in the
following lemma, which, intuitively, states that two traces are equal if they are equal only on a
finite portion b of size poly(|u1|, |u2|, |v1|, |v2|).
Lemma 5. u1vω

1 [t, ∞) = u2vω
2 [t
′, ∞) if and only if u1vω

1 [t, t + b) = u2vω
2 [t
′, t′ + b), where

b = max(|u1[t, |u1|)|, |u2[t′, |u2|)|) + lcm(|v1|, |v2|).
Proof. For the forward direction, consider u1vω

1 [t, ∞) = u2vω
2 [t
′, ∞). Clearly, all prefixes

of u1vω
1 [t, ∞) and u2vω

2 [t
′, ∞) are equal, that is, u1vω

1 [t, t + b) = u2vω
2 [t
′, t′ + b) for all

b ∈N.
For the other direction, we consider

u1vω
1 [t, t+ b) = u2vω

2 [t
′, t′+ b), for b = max(|u1[t, |u1|)|, |u2[t′, |u2|)|)+ lcm(|v1|, |v2|).

Also, without loss of generality, let us assume that |u1[t, |u1|)| ≥ |u2[t′, |u2|)|. To avoid
clutter of notation, we denote µ = |u1[t, |u1|)| and ν = lcm(|v1|, |v2|). Thus, in this case,
b = µ + ν.
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The proof, now, is based on two main observations. First, we begin with the simple
observation:

u1vω
1 [t, t + µ) = u2vω

2 [t
′, t′ + µ); and

u1vω
1 [t + µ, t + b) = u2vω

2 [t
′ + µ, t′ + b)

Second, we have that

(u1vω
1 [t + µ, t + b))ω = vω

1 ; and

(u2vω
2 [t
′ + µ, t′ + b))ω = (vω

2 [t
′ + µ, t′ + µ + |v2|))ω

The above observation is due to the fact that u1vω
1 [t + µ, t + b) = vκ

1 for κ = ν/|v1| and
u2vω

2 [t
′ + µ, t′ + b) = (vω

2 [t
′ + µ, t′ + µ + |v2|))κ for κ = ν/|v2|.

Now, combining the two observations, we have the following:

u1vω
1 = u1vω

1 [t, t + µ) · (u1vω
1 [t + µ, t + b))ω

= u2vω
2 [t
′, t′ + µ) · (u2vω

2 [t
′ + µ, t′ + b))ω

= u2[t′, |u2|) · u2vω
2 [|u2|, t′ + µ) · (vω

2 [t
′ + µ, t′ + µ + |v2|))ω

= u2vω
2

The NP algorithm based on guessing tables naturally extends to multiple Type-0 place-
holder. The following lemma now asserts that if the guessed tables satisfy the three properties,
then one can find a suitable complete LTL formula.

Lemma 6. Let S = (P, N) be a sample and φ? be a sketch with only Type-0 placeholders.

Then, the following holds: there exists tables Tφ?

uvω (that is, |φ?| × |uv| matrices with {0, 1}
entries) for each uvω ∈ P ∪ N that satisfy the Semantic, Consistency, and Suffix properties if

and only if there exists a substitution s such that LTL formula fs(φ?) is consistent with S .

Proof. For simplicity, we again consider that φ? consists of only one Type-0 placeholder ?0.
The proof can be seamlessly extended to multiple Type-0 placeholders.

For the forward direction, we show the existence of the substitution s by explicit construc-
tion of an LTL formula for ?0. Towards this, we first construct a sample S ′ = (P′, N′) as
follows:

P′ = {uvω[t, ∞) ∈ suf (S) | Tφ?

uvω [?0, t] = 1, uvω ∈ P ∪ N, 0 ≤ t < |uv|}
N′ = {uvω[t, ∞) ∈ suf (S) | Tφ?

uvω [?0, t] = 0, uvω ∈ P ∪ N, 0 ≤ t < |uv|}.

Since the tables satisfy the Suffix property, we have that P′ ∩ N′ = ∅. We can now construct
the generic LTL formula ψ consistent with S ′ using the LTL learning problem [169]. We
claim that this formula ψ can be substituted in ?0 to obtain a consistent LTL formula.



Chapter 5. Incorporating Intuition as Specification sketches 70

Towards this, we first prove that T fs(φ?)
uvω [ψ, ·] = Tφ?

uvω [?, ·] for all uvω ∈ P ∪ N. To
prove this, we exploit two simple observations. First, using the definition of tables, we have
T fs(φ?)

uvω [ψ, t] = 1 if and only if uvω[t, ∞) |= ψ for each uvω[t, ∞) ∈ suf (S). Second, since
ψ is consistent with S ′, we know Tφ?

uvω [?, t] = 1 if and only if uvω[t, ∞)) |= ψ. Together, we
have T fs(φ?)

uvω [ψ, t] = Tφ?

uvω [?, t].
Next, we prove that T fs(φ?)

uvω [ fs(φ?)[i], ·] = Tφ?

uvω [φ?[i], ·] for each 0 ≤ i < |φ?| and
trace uvω ∈ P ∪ N. (Note that we denote the same nodes in fs(φ?) and φ? using the same
identifiers.) Towards contradiction, we assume that there exists some uvω ∈ P ∪ N and some
0 ≤ i < |φ?| and such that T fs(φ?)

uvω [ fs(φ?)[i], ·] ̸= Tφ?

uvω [φ?[i], ·]. Let i∗ be the maximum row
for which the tables become unequal. The proof, in general, will proceed via a case analysis on
the operator ℓ(i∗) labeled in Node i∗. However, since for proof is similar for all the operators,
we assume ℓ(i) = ¬ and Node j∗ is the left child of Node i∗. Recall that j∗ > i∗ based on our
assignment of identifiers. Further, based on the Semantic property, T fs(φ?)

uvω [ fs(φ?)[i∗], t] =
1− T fs(φ?)

uvω [ fs(φ?)[j∗], t] and Tφ?

uvω [φ?[i∗], ·] = 1− Tφ?

uvω [φ?[j∗], ·] for each 0 ≤ t ≤ |uv|
(Equation 5.2). This implies that T fs(φ?)

uvω [ fs(φ?)[j∗], ·] ̸= Tφ?

uvω [φ?[j∗], ·], contradicting the
maximality of i∗.

Finally, observe that T fs(φ?)
uvω [ fs(φ?), ·] = Tφ?

uvω [φ?, ·]. As a consequence, since tables Tφ?

uvω

satisfy the Consistency property, so do tables T fs(φ?)
uvω . This implies that fs(φ?) is consistent

with S .
For the other direction, we construct tables Tφ?

uvω based on the tables T fs(φ?)
uvω . In particular,

we have Tφ?

uvω [φ?[i], ·] = T fs(φ?)
uvω [ fs(φ?)[i], ·] for each 0 ≤ i < |φ?| and uvω ∈ P∪ N. Since

tables T fs(φ?)
uvω satisfy the Semantic, the Consistency and the Suffix properties, so does the

tables Tφ?

uvω .

With this, we conclude the NP algorithm for the case where φ? only has Type-0 placehold-
ers. We can easily extend the algorithm to the case where φ? consists of Type-1 and Type-2
placeholders. In particular, we first guess the operators to be substituted for the Type-1 and
Type-2 placeholders and substitute them. We then obtain a sketch consisting of only Type-0
placeholders. We now apply our algorithm that relies on guessing tables, as described above.

Theorem 6. The LTL sketch existence problem is in NP.

We make an important remark here: the above result also holds for LTLf, given that the
sample consists of finite traces. The proof goes through almost identically. The only difference
is in the definition of the Semantic property of Tφ?

u ; it simply needs to be modified to the
semantics of LTLf on finite traces.

Moreover, we conjecture that the complexity lower-bound of LTL sketch existence is NP-
hard based on the NP-hardness of LTL learning for certain fragments of LTL [83]. However,
we leave the exact lower-bound of the problem for future work.

5.2.2 SAT-based Decision Procedure

Based on the NP algorithm described above, we now devise a decision procedure to decide the
LTL sketch existence problem. The decision procedure relies upon reducing the existence of
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tables Tφ
uvω satisfying the three properties discussed in Section 5.2.1 to a satisfiability (SAT)

problem.
This reduction relies on a symbolic encoding of the entries of the tables. To this end,

we introduce propositional variables yu,v
i,t for each i ∈ {1, . . . , n}, t ∈ {0, . . . , |uv| − 1},

and uvω ∈ P ∪ N. A variable yu,v
i,t encodes the entry Tφ

uvω [φ[i], t]. Further, we encode the
operators to be substituted for the Type-1 and Type-2 placeholders in φ? using the following
variables: (i) xi,λ for each Node i where ℓ(i) is a Type-1 placeholder and each λ ∈ ΛU; and
(ii) xi,λ for each Node i where ℓ(i) is a Type-2 placeholder and each λ ∈ ΛB.

We now impose constraints on the introduced variables to ensure that the prospective
tables satisfy the three properties necessary for inferring a consistent LTL formula. We achieve
this by constructing a propositional formula Φφ?,S . This formula ensures that variables yu,v

i,t

encode appropriate tables and using Lemma 6, its satisfiability ensures the existence of a
suitable substitution for φ?.

Internally,

Φφ?,S := Φ1,2
? ∧Φsem ∧Φcon ∧Φsuf (5.8)

is a conjunction of four formulas. The first conjunct Φ1,2
? ensures that the Type-1 and

Type-2 placeholders are substituted by appropriate operators. The conjuncts Φsem, Φcon

and Φsuf ensure that the variables yu,v
i,t encode entries of tables that satisfy the Semantic

property (Equations 5.2, 5.3, 5.4 and 5.5), the Consistency property (Equation 5.6) and the
Suffix property (Equation 5.7), respectively. In the remainder of the section, we describe the
construction of each of the four formulas.

We begin by introducing the constraints required for Φ1,2
? . For each Node i labeled with a

Type-1 placeholder (that is, ℓ(i) ∈ Π1), we design the following constraint:[ ∨
λ∈ΛU

xi,λ

]
∧
[ ∧

λ ̸=λ′∈ΛU

¬xi,λ ∨ ¬xi,λ′
]
, (5.9)

which ensures that the Type-1 placeholders are substituted with a unique unary operator. For
Type-2 placeholders, we have the exact same constraint except that the operators range from
the set of binary operators ΛB. We now construct Φ1,2

? simply by taking a conjunction of all
such constraints for the nodes labeled with Type-1 and Type-2 placeholders.

Next, we define Φsem as the conjunction
∧

uvω∈P∪N Φu,v, where Φu,v denotes a formula
that ensures that the variables yu,v

i,t satisfy the semantic relations for the trace uvω. In the
formula Φu,v, for each Node i labeled with X-operator (that is, ℓ(i) = X) and having Node j
as its left child, we have the following constraint:[ ∧

0≤t<|uv|−1

[
yu,v

i,t ↔ yu,v
j,t+1

]]
∧
[
yu,v

i,|uv|−1 ↔ yu,v
j,|u|

]
(5.10)

This constraint ensures that the variables yu,v
i,t satisfy Equation 5.3 for the trace uvω. For nodes

labeled with other operators, we construct similar constraints based on their corresponding se-
mantic relations. If the nodes are labeled with Type-1 or Type-2 placeholders, we additionally
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rely on variables xi,λ to determine the operator λ to be substituted in Node i. Based on the
operator label λ, we devise appropriate semantic constraints. Finally, we construct Φu,v as the
conjunction of all such semantic constraints.

We construct the following constraint to ensure Equation 5.6 is satisfied for the prospective
tables:

Φcon := [
∧

uvω∈P

yu,v
1,0 ] ∧ [

∧
uvω∈N

¬yu,v
1,0 ] (5.11)

Finally, for Φsuf , we have the following constraint for each Node i labeled with a Type-0
placeholder (that is, ℓ(i) ∈ Π0):

∧
u1vω

1 [t,∞)=u2vω
2 [t′,∞)∈suf (S)

[
yu1,v1

i,t ↔ yu2,v2
j,t′

]
, (5.12)

which ensures that Equation 5.7 is satisfied for the prospective tables.
Overall, we construct a formula Φφ?,S that ranges over O(n + nm) variables and is of

size O(n + nm3 + m2), where n = |φ?| and m = |S|. We conclude this section by stating
the correctness of Φφ?,S .

Theorem 7. Let S be a sample, φ? a sketch, and Φφ?,S the formula as defined above. Then,

Φφ?,S is satisfiable if and only if there exists a complete substitution s such that fs(φ?) is

consistent with S .

Proof. For the forward direction, based on a model V of Φφ?,S , we construct a complete
substitution s such that fs(φ?) is consistent with S . First, due to constraints like Formula 5.9,
we can substitute any Type-1 or Type-2 placeholder, say at Node i, with the unique operator λ

for which V(xi,λ) = 1. Second, we construct substitutions for Type-0 placeholders by relying
on tables Tφ?

uvω that we construct from V as follows: Tφ?

uvω [φ?[i], uvw[t, ∞)] = V(yu,v
i,t ) for

each uvω ∈ P∪ N and i ∈ {1, . . . , n}. Due to Formulas 5.10, 5.11, and 5.12, the constructed
tables Tφ?

uvω satisfy the Semantic, Consistency, and Suffix properties. As a result, one can now
explicitly construct substitutions for Type-0 placeholders based on tables Tφ?

uvω , exploiting
Lemma 6.

For the other direction, we construct a satisfying assignment v using the substitution
function s and tables T fs(φ)

uvω for uvω ∈ P ∪ N. First, we assign V(xi,λ) = 1 if and only if
s(?) = λ for a Node i labeled with a Type-1 or Type-2 placeholder ?. Second, we assign
V(yu,v

i,t ) = T fs(φ)
uvω [ fs(φ?)[i], t] for each uvω ∈ P ∪ N and 0 ≤ t ≤ |uv|. This assignment V

satisfies Φ1,2
? , since we obtain V from the syntax DAG of a valid LTL formula. Further, this

assignment satisfies Φsem, Φcon and Φsuf because the tables satisfy Semantic, Consistency
and Suffix properties, respectively, on which the constraints are based. Overall, V is a model
for Φφ?,S .

5.2.3 Fixing an Incorrect Sketch

If a complete substitution does not exist for a sketch, then there must have been an error while
formulating the sketch. One potential cause of the error could be that the system engineer
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incorrectly specified the operators in the sketch due to the lack of expertise in temporal logic.
For instance, continuing the example from Section 5.1.2, if the sketch were F(?0) instead of
G(?0), then there is a possible completion F(p), which holds on α = {p}{q}ω but not on
β = {q}ω. In this example, the engineer may have confused the temporal operators G and F.

We now describe some procedures to suggest corrections to the sketch, in case there are no
complete substitutions. Such procedures must be executed after the decision procedure based
on Φφ?,S . In particular, they must be executed only after Φφ?,S turns out to be unsatisfiable
since there is a high likelihood of an error in this case.

We first describe a naive procedure: we first generate a new sketch φ?
empty from φ? by

replacing all LTL operators with placeholders; in particular, we replace all unary operators
with Type-1 placeholders and all binary operators with Type-2 placeholders. This sketch
φ?

empty only retains the syntactic structure of the original sketch φ?.

One can then apply the decision procedure based on the formula Φφ?
empty,S to check whether

φ?
empty admits a possible substitution. If Φφ?

empty,S is satisfiable, one can generate a new sketch
φ?

new using a model v: one substitutes each newly introduced Type-1 or Type-2 placeholder,
say at Node i, with the unique operator λ for which v(xi,λ) = 1.

While the above simple procedure could suggest a new sketch φ?
new that admits a possible

substitution, it is possible that φ?
new is rather different from φ?. This is because the intermediate

sketch φ?
empty, on which the procedure relies, retains only the syntactic structure of φ? and none

of the existing LTL operators. One could manually design φ?
empty to retain specific operators

from φ?. However, this requires manual intervention, which could be time-consuming, error-
prone, etc.

To suggest corrections to φ? without much manual intervention, we suggest an improve-
ment over the above procedure. In this procedure, we rely on the maximum satisfiability
(MaxSAT) problem, introduced in the previous chapter, Section 4.1.2. We use Φφ?

empty,S as a
hard constraint. As a soft constraint, we have the following:

Φφ?
:=

∧
1≤i≤n

ℓ(i)∈ΛU∪ΛB

xi,ℓ(i) (5.13)

As weights to the soft constraints, we set w(xi,ℓ(i)) = 1 for each Node i that is labeled with
a unary or binary operator in φ?. Such soft constraints ensure that the new sketch φ?

new is
structurally as close as possible to the original sketch φ?.

The correctness of the procedures described here is due to the correctness of the encoding
Φφ?

empty,S , which follows directly from Theorem 7.

5.3 Algorithms to complete an LTL sketch

We now describe two novel algorithms for solving the LTL sketching problem, which aim at
searching for concise LTL formulas from sketches, as alluded to in the introduction. Thus,
our first algorithm relies on existing techniques to learn minimal LTL formulas. Our second
algorithm, alternatively, searches for formulas of increasing size based on constraint solving.
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5.3.1 Algorithm based on LTL learning

This algorithm, which we refer to as Algo1, builds upon the decision procedure for checking
the existence of a complete substitution presented in Section 5.2.2. In particular, it relies
on Φφ?,S from the decision procedure to construct substitutions for placeholders of a sketch.
While it is straightforward to substitute Type-1 and Type-2 placeholders, the algorithm relies
on the classic LTL learning problem to substitute Type-0 placeholders. The pseudocode of the
algorithm is sketched in Algorithm 7.

Algorithm 7 Algorithm based on LTL learning
Input: Sample S , Sketch φ?

1: Construct Φφ?,S = Φ1,2
? ∧Φsem ∧Φcon ∧Φsuf

2: if Φφ?,S is not satisfiable then
3: return LTL formula does not exist
4: end if
5: Substitute Type-1 and Type-2 placeholders in φ? using V
6: for every i such that ℓ(i) ∈ Π0 do
7: Construct Si = (Pi, Ni)
8: φi ← Learn(Si)
9: Substitute Node i with φi in φ?

10: end for
11: return φ?

The first step of the algorithm is to construct Φφ?,S from the given sample (Line 1) and
sketch, as described in Section 5.2.2. If Φφ?,S is unsatisfiable, the algorithm straight-away
returns that no solution exists, as established by Theorem 7. (In this case, one can use
procedures from Section 5.2.3 to fix the sketch.) If satisfiable, we use a model v of Φφ?,S

(obtained from any off-the-shelf SAT solver) to complete φ?, the details of which we describe
next.

Given a model V of Φφ?,S , one can substitute the Type-1 and Type-2 placeholders in φ?

(Line 5) as follows: for each Node i where ℓ(i) is a Type-1 and Type-2 placeholders, assign
s(ℓ(i)) = λ, where λ is the unique operator for which V(xi,λ) = 1.

The Type-0 placeholders, however, are more challenging to substitute. This is because
they represent entire LTL formulas. Towards substituting Type-0 placeholders (Line 7), for
every Node i for which ℓ(i) is a Type-0 placeholder (that is, ℓ(i) ∈ Π0), we first construct a
sample Si = (Pi, Ni) as

Pi = {uvω[t, ∞) ∈ suf (S) | V(yu,v
i,t ) = 1}, and (5.14)

Ni = {uvω[t, ∞) ∈ suf (S) | V(yu,v
i,t ) = 0}. (5.15)

We now learn a minimal LTL formula φi consistent with the sample Si (using some LTL

learning algorithm [169, 193, 187]) for substituting ℓ(i). Intuitively, such formulas φi ensure
that the tables Tφ

uvω of φ obtained by completing φ? satisfy the Semantic, Consistency and
Suffix properties described in Section 5.2.1.

We now establish the correctness of the algorithm using the following theorem:
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Theorem 8. Given sketch φ? and sample S , Algo1 completes φ? to output an LTL formula

that is consistent with S if such a formula exists, otherwise returns no such formula exists.

Observe that this algorithm constructs new samples for each Type-0 placeholder, each of
which have size O(|suf (S)|) = O(|S|2). This poses a challenge to the scalability of this
algorithm. Furthermore, the new samples are not optimized to produce the minimal possible
substitutions. Our next algorithm improves both the runtime and the size of the inferred
specification.

5.3.2 Algorithm based on incremental SAT solving

We now describe an algorithm, abbreviated as Algo2, that reduces LTL sketching to a series
of SAT solving problems, inspired by the SAT-based algorithm of Neider et al. [169]. The
pseudocode of the algorithm is sketched in Algorithm 8.

Similar to Neider et al. [169], given a sample S and a number n ∈N \ {0}, the crux of
this algorithm is to construct a propositional formula Ψφ?,S

n , of size poly(|φ?|, |S|) to search
for the desired formula. The formula Ψφ?,S

n we construct has the following properties:

1. Ψφ?,S
n is satisfiable if and only if one can complete φ? to obtain an LTL formula of size

at most n that is consistent with S ; and

2. using a model v of Ψφ?,S
n , one can complete φ? to construct a consistent LTL formula

of size at most n.

Algorithm 8 Algorithm based on incremental SAT solving (Section 5.3.2)
Input: Sample S , Sketch φ?

1: Construct Φφ?,S := Φ1,2
? ∧Φsem ∧Φcon ∧Φsuf

2: if Φφ?,S is not satisfiable then
3: return LTL formula does not exist
4: end if
5: n← |φ?| − 1
6: repeat
7: n← n + 1
8: Construct Ψφ?,S

n := Φ1,2
? ∧ Φ̃sem ∧Φcon ∧Φ0

?,n

9: until Ψφ?,S
n is satisfiable (say with model v)

10: Construct φ? using v
11: return φ?

However, in contrast to the algorithms by Neider and Gavran, we first solve Φφ?,S

(discussed in Section 5.2.2) to determine the existence of a complete substitution. (If Φφ?,S

is unsatisfiable, one can use the procedures from Section 5.2.3 to fix the sketch.) If and
only if Φφ?,S is satisfiable, our algorithm checks the satisfiability of Ψφ?,S

n for increasing
values of n (starting from |φ?| − 1) to search for an LTL formula of size at most n that has
the same syntactic structure as φ?. We construct the resulting LTL formula by substituting
the placeholders in φ? based on a model V of the formula Ψφ?,S

n , similar to what we do in
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Algo1. The termination of this algorithm is guaranteed by the decision procedure encoded
by Φφ?,S . The procedure ensures that we search for a solution only if there exists a complete
and consistent LTL formula, to begin with. Moreover, the properties of Ψφ?,S

n ensure that we
find the suitable LTL formula if there exists one.

On a technical level, the formula Ψφ?,S
n is obtained by modifying certain parts of the

formula Φφ?,S . Precisely, Ψφ?,S
n := Φ1,2

? ∧ Φ̃sem ∧Φcon ∧Φ0
?,n and it introduces two mod-

ifications in Φφ?,S : a new formula Φ0
?,n replaces Φsuf ; and Φ̃sem adds more constraints to

Φsem. The formula Φ0
?,n encodes the structure of LTL formulas that substitute the Type-0

placeholders. Φ̃sem, again as in Φsem, ensures that the variables yu,v
i,t encode table entries

Tφ
uvω [φ[i], t] that satisfy equations (that is, Equations 5.1 to 5.5, etc.) describing the Semantic

property. We now briefly describe the constraints for the newly introduced formulas.
The formula Φ0

?,n relies on an additional set of variables: (i) xi,λ for each Node i where
ℓ(i) is a Type-0 placeholder or i ∈ {|φ?| + 1, . . . , n}, and each λ ∈ Λ ; and (ii) li,j and
ri,j for each Node i where ℓ(i) is a Type-0 placeholder or i ∈ {|φ?|+ 1, . . . , n}, and each
j ∈ {max(i, |φ?|), . . . , n}. The variable xi,λ, again, encodes that Node i is labeled with λ.
The variables li,j (respectively, ri,j) encode that the left (respectively, the right) child of Node i
is Node j. Together the new variables encode the structure of the prospective LTL formulas
for Type-0 placeholders.

We now impose constraints, similar to Formula 5.9, on the variables xi,λ to ensure each
node is labeled by a unique LTL operator from Λ. Further, we impose constraints to ensure that
each Node i has unique left and right children. Finally, we construct Φ0

?,n as the conjunction
of all such structural constraints.

The formula Φ̃sem also relies on new variables yu,v
i,t for each Node i labeled with a Type-0

variables or i ∈ {|φ?|+ 1, . . . , n}, each t ∈ {0, . . . , |uv| − 1} and each uvω in S . Now, we
construct semantic constraints such as:[

xi,X ∧ li,j
]
→

∧
0≤t<|uv|−1

[
yu,v

i,t ↔ yu,v
j,t+1

]
∧
[
yu,v

i,|uv|−1 ↔ yu,v
j,|u|

]
, (5.16)

that ensures that the yu,v
i,t variables encode entries of table that satisfy Equation 5.3. We

construct Φ̃sem as the conjunction of Φsem and the new semantic constraints.
We establish the correctness guarantees using the following theorem:

Theorem 9. Given sketch φ? and sample S , Algo2 completes φ? to output an LTL formula

that is consistent with S if such a formula exists, otherwise returns no such formula exists.

Algo2 searches for substitutions of Type-0 placeholders of increasing size and, thus, is
able to find small substitutions for the sketch. However, it may not always find a minimal
consistent LTL formula because a minimal formula may require the parts of the substitution
to share subformulas from the existing sketch.

To demonstrate this, consider the sketch F(?0) ∨ FG p and the sample consisting of one
positive trace {}{p}ω and one negative trace {}ω. For this input, a possible output by Algo2
is the formula F p ∨ FG p, which is of size 5. However, the minimal consistent formula
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FG p∨ FG p is of size 4. In this example, substituting ?0 with G p produces a smaller formula
than substituting it with p, since G p allows more sharing of subformulas.

While Algo2 may not always return a minimal formula, we can provide an upper bound
on its size, thus ensuring its conciseness. To compute this bound, we define the syntax size
|φ|s of a formula φ to be the number of operators and propositions appearing in φ. Typically,
the syntax size |φ|s is larger than the (DAG) size |φ|, since it counts all the operators and
propositions, including the repeating ones. For instance, for φ = FG q ∨ FG q, |φ|s = 7,
while |φ| = 4.

We now state the guarantee on the size of the formula returned by Algo2 in the following
theorem. Intuitively, the theorem states the size |φ| of the formula that Algo2 returns is
bounded by the syntax size |φ∗|s of the minimal (DAG size) solution φ∗.

Theorem 10. For a given sample S and sketch φ?, let φ∗ be a minimal formula that is

consistent with S and can be obtained by completing φ?. Then, Algo2 returns a formula φ

that is consistent with S , can be obtained by completing φ? and has size |φ| ≤ |φ∗|s.

Proof. Towards contradiction, we assume that the LTL formula φ returned by Algo2 has
size |φ| > |φ∗|s. Now, based on the property of Ψφ?,S

n (see first paragraph of Section 5.3.2),
Ψφ?,S

n is satisfiable for n = |φ∗|s. This is because there exists a consistent LTL formula of
size at most n = |φ∗|s, φ∗ itself. Thus, Algo2, due to its incremental search, should have
returned φ∗, contradicting our assumption.

5.4 Experimental Evaluation

In this section, we design experiments to answer the following research questions:

RQ1: Which of the two presented sketching algorithms is more effective?

RQ2: How do our algorithms compare against other specification mining tools for LTL?

To answer these questions, we have implemented a prototype of our algorithms in
Python3, named LTL-Sketcher1. In LTL-Sketcher, we additionally implement
two heuristics to improve the runtime of our algorithms, both of which are directed toward
optimizing the SAT encoding used in the algorithms. We briefly mention the idea behind the
heuristics.

The first heuristic is inspired by the SAT encoding used in Bounded Model Checking [29].
The encoding exploits a succinct description of the semantics of LTL using expansion laws [14].
Exemplarily, the expansion law for the U-operator is φUψ = ψ ∨ (φ ∧ X(φUψ)), which
relies on checking satisfaction in the next position using X-operator. Using the LTL expansion
laws reduces the number of variables required in Φsem.

In the second heuristic, we create variables yu,v
i,t only for the distinct suffixes uvω in S .

This is sufficient because LTL formulas have the same evaluation on equal suffixes (which
is also the basis for Equation 5.7). Hence, if two traces share a suffix, we can create the

1The code can be found in https://github.com/rajarshi008/LTLSketcher

https://github.com/rajarshi008/LTLSketcher
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FIGURE 5.3: Comparison of Algo1 and Algo2 with respect to runtime (in
seconds) and the size of inferred formulas. The points below the diagonal
are where Algo2 performs better. In Figure 5.3a, “TO” denotes timeouts. In

Figure 5.3b, the size of a bubble is proportional to the number of cases.

variables encoding the semantics only once, reducing the total number of variables. Also, in
this heuristic, the constraint Φsuf imposing the Suffix property becomes unnecessary.

Benchmarks. For evaluating our algorithms, following the literature in LTL learning, we
rely on benchmarks generated synthetically using common LTL formulas used in practice [77].
We choose the same nine formulas also chosen by Neider and Gavran [169] for generating
their benchmarks. We, however, deviate from their method of generating benchmarks. This is
because, as observed by Raha et al. [187], their method, being fairly naive, consumes more
time and often does not generate adequately different trajectories from a chosen LTL formula.
We, in contrast, design a novel method of generating samples based on random sampling
of traces from Büchi automata [28] constructed from the LTL formulas (using Spot [74]).
Overall, we generate 18 samples for each of the nine formulas (that is, 162 samples in total),
with the number of examples varying from 20 to 800 and the length of traces varying from
4 to 16. We conduct all the experiments on a single core of an Intel Xeon E7-8857 CPU (at
3 GHz) using upto 6 GB of RAM.

5.4.1 RQ1: Comparison of Sketching algorithms

To answer RQ1, we compare Algo1 (from Section 5.3.1) and Algo2 (from Section 5.3.2)
based on their running times and the size of formula inferred. For this comparison, as sketches,
we remove parts (upto 50% in size) of each formula to construct two kinds of sketches: one
with only Type-1 or Type-2 placeholders and one with only Type-0 placeholders. All the
chosen formulas and their corresponding sketches are presented in Table 5.1. We now run the
algorithms on the 18 samples and two sketches generated from each of the nine formulas with
a timeout of 900 secs.

We depict the runtime comparisons in Figure 5.3a. We observe that while both the algo-
rithms have comparable runtime on sketches with only Type-1 or Type-2 placeholders, Algo1
performs significantly worse on sketches with only Type-0 placeholders with 134 timeouts.



Chapter 5. Incorporating Intuition as Specification sketches 79

TABLE 5.1: Sketches considered in RQ1

Original Formula Type-0 sketch Type-1-2 sketch

F(p) F(?0) ?1(p)
G(p) G(?0) ?1(p)

G(¬(p)) G(¬(?0)) ?1(¬(p))
F(q)→(¬pU q) ?0→(¬pU q) ?1(q)→(¬p?2q)
F(q)→(pU q) ?0→(¬pU q) ?1(q)→(p?2q)
G(q→G(p)) G(q→?0) ?1

1(q→?1
2(p))

G(q→G(¬p)) G(q→?0) ?1
1(q→?2

1(¬p))
G(¬p) ∨ F(p ∧ F(q))) ?0 ∨ F(p ∧ F(q))) G(¬p?1

2 F(p?2
2 F(q)))

G(p ∧ (¬q→(¬qU(r ∧ ¬q)))) G(p ∧ (¬q→(¬qU?0))) G(p ∧ (¬q?2
1(¬q?2

2(r ∧ ¬q))))

TABLE 5.2: Formulas and their corresponding sketches considered for com-
parison against Texada in RQ2

Formula full sketch medium sketch small sketch

F(q)→(¬pU q) F(?0
1)→(¬?0

2 U?0
3) F(?0

1)→?0
2 ?0

1

F(q)→(pU q) F(?0
1)→(?0

2 U?0
3) F(?0

1)→?0
2 ?0

1

G(q→G(¬p)) G(?0
1→G(¬?0

2)) G(?0
1→?0

2) ?0
1

G(¬p ∨ F(p ∧ F(q))) G(¬?0
1 ∨ F(?0

2 ∧ F(?0
3))) G(¬?0

1∨?0
2) ?0

1

G(p ∧ (¬q→(¬qU(r ∧ ¬q)))) G(?0
1 ∧ (¬?0

2→(¬?0
3 U(?

0
4 ∧ ¬?0

5)))) G(?0
1 ∧ (¬?0

2→?0
3)) ?0

1

G(q→G(p)) G(?0
1→G(?0

2)) G(?0
1→?0

2) ?0
1

We also depict the comparison of formula size in Figure 5.3b. We notice that Algo2 returns
smaller formulas than Algo1 in many cases. The reason Algo1 performs slow and returns
large formulas is that it solves LTL learning on potentially large intermediate samples for
sketches with Type-0 placeholders. Thus, we answer RQ1 in favor of Algo2.

5.4.2 RQ2: Comparison against LTL mining tools.

To address RQ2, we compared LTL-Sketcher against two prominent approaches for
mining specifications in LTL. The first approach completes user-defined templates with
(Boolean combinations of) atomic propositions. For this approach, we select the popular LTL
miner Texada [144]. The second approach learns LTL formulas of minimal size without
syntactic constraints. For this approach, we choose Flie [169] as a prototypical example of
this class of algorithms.

The setting of Texada differs from ours in that it permits positive examples only, and
these examples have to be finite traces. Thus, in order to have a fair comparison, we make
minor modifications to our SAT encoding (specifically to the X-operator) to handle finite
traces. Furthermore, our tool does not require one to provide negative examples and, hence,
can immediately be applied.

To compare Texada and LTL-Sketcher, we considered six of the nine formulas used
in RQ1, dropping the smallest three (see Table 5.2). For each formula, we created ten samples
with only positive, finite traces by truncating ultimately periodic and ensuring consistency with
the formula. Also, we created three sketches for each formula, retaining different amounts



Chapter 5. Incorporating Intuition as Specification sketches 80

full medium small

0

5

10

Sketch Size

N
um

be
ro

fS
uc

ce
ss

es
F(q)→(¬pU q)

LTL-Sketcher Texada

full medium small
Sketch Size

F(q)→(pU q)

full medium small
Sketch Size

G(q→G(¬p))

full medium small

0

5

10

Sketch Size

N
um

be
ro

fS
uc

ce
ss

es

G(¬p ∨ F(p ∧ F(q)))

full medium small
Sketch Size

G(p ∧ (¬q→(¬qU(r ∧ ¬q))))

full medium small
Sketch Size

G(q→G(p))

FIGURE 5.4: Number of successes by Texada and LTL-Sketcher for
completing sketches of different LTL formulas (indicated in the chart titles).

of information: in a full sketch, we only replaced each atomic proposition with a different
Type-0 placeholder; in a medium sketch, we replaced a larger subformula containing at least
one temporal operator; and in a small sketch, we replaced the formula with a single Type-0
placeholder. As an example, from formula F(q)→(¬pU q), we constructed the full sketch
F(?0

1)→(¬?0
2 U?0

3), the medium sketch F(?0
1)→?0

2 and the small sketch ?0
1. All the chosen

formulas and their corresponding sketches are presented in Table 5.2.
We ran Texada and LTL-Sketcher on each of these sketches and all corresponding

samples and counted the cases in which the tools could provide a substitution. The results
are shown in Figure 5.4. We notice that Texada found substitutions for the full sketches in
most cases. However, when we removed more structural information from the specifications
(that is, medium and small sketches), Texada was rarely able to complete a sketch. By
contrast, LTL-Sketcher provided a substitution in every benchmark. The reason is that
Texada’s strategy of exclusively searching for atomic propositions is only feasible if the
user can provide a detailed template where all temporal operators are specified. Our tool,
in contrast, alleviates the burden of writing complex temporal operators and, thus, is more
flexible.

To compare Flie and LTL-Sketcher, we estimated how many examples are required
to infer the desired specification. For this experiment, we used the same set of nine LTL
formulas and sketches with varying amounts of missing information. To calculate the number
of examples required, we designed a counterexample-guided strategy to compute a minimal
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Algorithm 9 Minimal Sample generation algorithm
Input: Desired formula φ, Sketch φ?

1: P← ∅, N ← ∅
2: φ′ ← true
3: while φ′ ̸≡ φ (semantic equivalence) do
4: if φ ̸⊆ φ′ then
5: Generate one of the shortest u such that u |= φ ∧ ¬φ′

6: P← P ∪ {u}
7: φ′ ← Algo2 with inputs (S = (P, N), φ?)
8: else
9: Generate one of the shortest u such that u |= φ′ ∧ ¬φ

10: N ← N ∪ {u}
11: φ′ ← Algo2 with inputs (S = (P, N), φ?)
12: end if
13: end while
14:

15: return S = (P, N)
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FIGURE 5.5: Comparison against Flie in terms of the average sample sizes
required to recover the original formula for RQ2. In each chart, the original
formula is indicated in the chart title, the sample size for Flie is indicated
using the bar with the trivial sketch ?0, while the one for LTL-Sketcher is

indicated using the other bar.

sample required for both tools to obtain the desired formula from a sketch of it. In this strategy,
if a tool does not return the desired formula with the current sample, we add one of the shortest
counterexamples to the sample that helps eliminate the current solution formula. We continue
this process and end up with a minimal sample of both tools for each sketch. The exact
algorithm used is sketched in Algorithm 9.

Figure 5.5 presents the average size of minimal samples (over ten runs) required to recover
the desired formulas from their sketches. We observed that Flie required more examples
than LTL-Sketcher to single out the correct specifications in all the cases. This asserted the
fact that providing high-level insights as a sketch reduces the number of examples required to
derive the desired specification. Thus, to answer RQ2, the ability to handle sketches provides
LTL-Sketcher an edge over existing LTL mining tools.
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5.5 Conclusion

In this work, we introduce LTL sketching—a novel way of writing formal specifications in
LTL. The key idea is that a user can write a partial specification, that is, a sketch, which is
then completed based on given examples of desired and undesired system behavior. We have
shown that the sketching problem is in NP, presented two SAT-based sketching algorithms
and some heuristics to improve their performance. Our experimental evaluation has shown
that our algorithms can effectively complete sketches consisting of different types of missing
information. Further, the ability to handle sketches provides our algorithms an edge over
existing LTL mining approaches.

A natural direction for future work is to lift the idea of specification sketching to other
specification languages, such as Signal Temporal Logic (STL) [157], the Property Specification
Language (PSL) [79], or even visual specifications, such as UML (high-level) message
sequence charts [112]. Moreover, we intend to extend the notion of sketching beyond the use
of examples (e.g., by allowing the engineer to constrain placeholders using simple logical
formulas or regular expressions).
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Chapter 6

Learning from Positive Examples Only

In this chapter, we consider the input data for passive learning to be different from what we
have seen so far; we consider only positive examples. This setting is motivated by the fact that
negative examples are hard to observe in many scenarios, especially in safety-critical domains.
Obtaining negative examples from systems such as medical equipments and self-driving cars
can be unrealistic and may involve, for instance, harming patients and hitting pedestrians,
respectively. Also, it is possible that one has access only to a black-box implementation of the
system from which one can extract only its possible (that is, positive) executions.

Due to the relevance of learning from positive examples, we study the problem for two
fundamental models of computation: deterministic finite automata (DFAs) [183]; and linear
temporal logic (LTL) [179]. As we explained in Chapter 1, both models have a wide range of
applications due to their useful algorithmic properties and interpretable structures.

Most works on learning DFAs and LTLf (for that matter, other automata and logics)
have primarily focused on the standard passive learning problem, which asks to learn from
a sample partitioned into positives and negatives. This problem is also known as the binary

classification problem since one searches for models that classify between two classes of
examples.

In spite of being relevant, the problem of learning concise DFAs and LTLf formulas from
only positive examples, that is, the corresponding one class classification (OCC) problem, has
garnered little attention. The primary reason, we believe, is that, like most OCC problems,
this problem is an ill-posed one. Specifically, a concise model that classifies all the positive
examples correctly is the trivial model that classifies all examples as positive. This corresponds
to a single state DFA or, in LTL, the formula true. These models, unfortunately, convey no
insights about the underlying system.

To ensure a well-defined problem, Avellaneda et al. [11], who study the OCC problem for
DFAs, propose the use of the (accepted) language of a model as a regularizer. Searching for
a model that has minimal language, however, results in one that classifies exactly the given
examples as positive. To avoid this overfitting, they additionally impose an upper bound on
the size of the model. Thus, the OCC problem that they state is the following: given a set P of
positive traces and a size bound n, learn a DFA that (i) classifies traces in P correctly, (ii) has
size at most n, and (iii) is language minimal. For language comparison, the order chosen is set
inclusion.
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To solve this OCC problem, Avellaneda et al. [11] then propose a counterexample-guided

algorithm. This algorithm relies on generating suitable negative examples (that is, counterex-
amples) iteratively to guide the learning process. Since only the negative examples dictate
the algorithm, in many iterations of their algorithm, the learned DFAs do not have a language
smaller (in terms of inclusion) than the previous hypothesis DFAs. This results in searching
through several unnecessary DFAs.

To alleviate this drawback, our first contribution is a symbolic algorithm for solving the
OCC problem for DFA. Our algorithm converts the search for a language minimal DFA
symbolically to a series of satisfiability problems in Boolean propositional logic, eliminating
the need for counterexamples. The key novelty is an efficient encoding of the language
inclusion check for DFAs in a propositional formula, which is polynomial in the size of the
DFAs. We then exploit an off-the-shelf SAT solver to check the satisfiability of the generated
propositional formulas and, thereafter, construct a suitable DFA. We expand on this algorithm
in Section 6.1.

We then present two novel algorithms for solving the OCC problem for formulas in LTLf.
While our algorithms extend smoothly to traditional LTL (over infinite traces), our focus here
is on LTLf due to its numerous applications in AI [100]. Also, LTLf being a strict subclass of
DFAs, the learning algorithms for DFAs cannot be applied directly to learn LTLf formulas.

Our first algorithm for LTLf is a semi-symbolic algorithm, which combines ideas from both
the symbolic and the counterexample-guided approaches. Roughly, this algorithm exploits
negative examples to overcome the theoretical difficulties of symbolically encoding language
inclusion for LTLf; LTLf inclusion check is known to be inherently harder than that for
DFAs [203]. Our second algorithm is simply a counterexample-guided algorithm that relies
solely on the generation of negative examples for learning. We refer to Section 6.2 for details
of both algorithms.

To further study the presented algorithms, we empirically evaluate them in several case
studies. We demonstrate that our symbolic algorithm solves the OCC problem for DFA in
fewer (approximately one-tenth) iterations and runtime comparable to the counterexample-
guided algorithm, skipping thousands of counterexample generations. Further, we demonstrate
that our semi-symbolic algorithm solves the OCC problem for LTLf (in average) thrice as
fast as the counterexample-guided algorithm. We present all of our experimental results in
Section 6.3 and end with a discussion in Section 6.4.

Related Work.

The OCC problem described here belongs to the body of works labeled as passive learn-
ing [103]. As we discussed already in Chapter 2, the most popular problem in passive learning
is the binary classification problem for DFAs [30, 108, 116] and LTL\LTLf formulas [169, 48,
187].

The OCC problem of learning formal models from positive examples was first studied
by Gold [104]. This work showed that the exact identification (in the limit) of certain models
(which include DFAs and LTL\LTLf formulas) from positive examples is not possible. Thereby,
works have mostly focussed on models that are learnable easily from positive examples, such as
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pattern languages [6], stochastic finite state machines [50], and hidden Markov Models [207].
None of these works considered learning DFAs or LTL formulas, mainly due to the lack of a
meaningful regularizer.

Recently, Avellaneda et al. [11] proposed the use of language minimality as a regularizer
and, thereafter, developed an effective algorithm for learning DFAs. While their algorithm
cannot overcome the theoretical difficulties shown by Gold [104], they still produce a DFA
that is a concise description of the positive examples. We significantly improve their algorithm
for learning DFAs by relying on a novel encoding of language minimality using propositional
logic. We additionally expanded their algorithm to LTLf.

For temporal logics, there are a few works that consider the OCC problem. Notably, Ehlers
et al. [78] proposed a learning algorithm for a fragment of LTL that permits a representation
known as universally very-weak automata (UVWs). However, since their algorithm relies
on UVWs, which have strictly less expressive power than LTL, it cannot be extended to full
LTL. Further, there are works on learning LTL [56] and STL [126] formulas from trajectories
of high-dimensional systems. These works based their learning on the assumption that the
underlying system optimizes some cost functions. Our method, in contrast, is based on the
natural notion of language minimality to find tight descriptions without any assumptions on
the system. There are some other works that consider the OCC problem for logics similar to
temporal logic [227, 226, 206].

A problem similar to our OCC problem is studied in the context of inverse reinforcement
learning (IRL) to learn temporal rewards for RL agents from (positive) demonstrations. For
instance, Kasenberg et al. [130] learn concise LTL formulas that can distinguish between
the provided demonstrations from random executions of the system. To generate the random
executions, they relied on a Markov Decision Process (MDP) implementation of the underlying
system. Our regularizers, in contrast, assume the underlying system to be a black-box and
need no access to its internal mechanisms. Vazquez-Chanlatte et al. [214] also learn LTL-like
formulas from demonstrations. Their search required a pre-computation of the lattice of
formulas induced by the subset order, which can be a bottleneck for scaling to full LTL.
Recently, Hasanbeig et al. [113] devised an algorithm to infer automaton for describing
high-level objectives of RL agents. Unlike ours, their algorithm relied on user-defined hyper-
parameters to regulate the degree of generalization of the inferred automaton.

6.1 Learning DFA from Positive Examples

In this section, we formally introduce the OCC problem for DFAs and our symbolic algorithm
for learning DFAs from positive examples.

We first describe the learning setting. The OCC problem relies on a set of positive
examples, which we represent using a finite set P ⊂ (2P )∗ of finite traces. Additionally, the
problem requires a bound n to restrict the size of the learned DFA. The role of this size bound
is two-fold: (i) it ensures that the learned DFA does not overfit P; and (ii) using a suitable
bound, one can enforce the learned DFAs to be concise and, thus, interpretable.
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Finally, we define a DFAA to be an n-description of P if P ⊆ L(A) and |A| ≤ n. When
P is clear from the context, we simply say A is an n-description.

We can now state the OCC problem for DFAs:

Problem 6 (OCC problem for DFAs). Given a set P of positive traces and a size bound n,

learn a DFA A such that:

1. A is an n-description; and

2. for every DFA A′ that is an n-description, L(A′) ̸⊂ L(A).

Intuitively, the above problem asks to search for a DFA that is an n-description and has
minimal language. Note that several such DFAs can exist since the language inclusion order
is a partial order on the languages of DFA. We, here, are interested in learning only one such
DFA, leaving the problem of learning all such DFAs as interesting future work.

6.1.1 The Symbolic Algorithm

We now present our algorithm for solving Problem 6. Its underlying idea is to reduce the
search for an appropriate DFA to a series of satisfiability checks of propositional formulas.
Each satisfiable propositional formula enables us to construct a guess, or a so-called hypothesis

DFA A. In each step, using the hypothesis A, we construct a propositional formula ΨA to
search for the next hypothesis A′ with a language smaller (in the inclusion order) than the
current one. The properties of the propositional formula ΨA we construct are:

1. ΨA is satisfiable if and only if there exists a DFA A′ that is an n-description and
L(A′) ⊂ L(A); and

2. based on a model v of ΨA, one can construct a prospective DFA A′.

Based on the main ingredient ΨA, we design our learning algorithm as sketched in
Algorithm 10. Our algorithm initializes the hypothesis DFA A to be A∗, the one-state DFA
that accepts all traces in (2P )∗. Observe thatA∗ is trivially an n-description, since P ⊂ (2P )∗

and |A∗| = 1. The algorithm then iteratively exploits ΨA to construct the next hypothesis
DFAs until ΨA becomes unsatisfiable. Once this happens, we terminate and return the current
hypothesis A as the solution. This algorithm is guaranteed to terminate and produce an
optimal result. We formally state the guarantees later in this section after diving into the
details of the main ingredient ΨA.

To achieve its aforementioned properties, we define ΨA as follows:

ΨA := ΨDFA ∧ΨP ∧Ψ⊆A ∧Ψ ̸⊇A (6.1)

The first conjunct ΨDFA ensures that the propositional variables we will use encode a valid DFA
A′. The second conjunct ΨP ensures that A′ accepts all positive traces. The third conjunct
Ψ⊆A ensures that L(A′) is a subset of L(A). The final conjunct Ψ ̸⊇A ensures that L(A′)
is not a superset of L(A). Together, conjuncts Ψ⊆A and Ψ ̸⊇A ensure that L(A′) is a proper
subset of L(A). In what follows, we detail the construction of each conjunct.
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Algorithm 10 Symbolic Algorithm for Learning DFA
Input: Positive traces P, bound n

1: A ← A∗, ΨA := ΨDFA ∧ΨP

2: while ΨA is satisfiable (with model v) do
3: A ← DFA constructed from v
4: ΨA := ΨDFA ∧ΨP ∧Ψ⊆A ∧Ψ ̸⊇A

5: end while
6: return A

To encode the hypothesis DFA A′ = (Q′, 2P , δ′, q′I , F′) symbolically, following Heule
et al. [116], we rely on the propositional variables: (i) dp,a,q where p, q ∈ {1, . . . , n} and
a ∈ 2P ; and (ii) fq where q ∈ {1, . . . , n}. The variables dp,a,q and fq encode the transition
function δ′ and the final states F′, respectively, of A′. Mathematically speaking, if dp,a,q is set
to true, then δ′(p, a) = q and if fq is set to true, then q ∈ F′. To streamline notation, we here
identify the states Q′ using the set {1, . . . , n} and the initial state q′I using the numeral 1.

Now, to ensure that the introduced variables encode a valid DFA, ΨDFA asserts the following
constraint:

∧
1≤p≤n

∧
a∈2P

[ ∨
1≤q≤n

dp,a,q ∧
∧

1≤q ̸=q′≤n

[
¬dp,a,q ∨ ¬dp,a,q′

]]
(6.2)

The above constraint simply ensures that A′ has a deterministic transition function.
Based on a model v of the variables dp,a,q and fq, we can simply construct A′. We set

δ′(p, a) to be the unique state q for which v(dp,a,q) = 1 and q ∈ F′ if v( fq) = 1.
Next, to construct conjunct ΨP, we introduce variables xu,q where u ∈ Pref (P) and

q ∈ {1, . . . , n}, which track the run of A′ on all traces in Pref (P) = {u ∈ (2P )∗ | uv ∈
P for some v ∈ (2P )∗}, the set of prefixes of all traces in P. Precisely, if xu,q is set to true,
then there is a run of A′ on u ending in the state q, that is, A′ : q′I

u−→ q; we use the shorthand
A : q1

u−→ q2 to express that there is a run of A on u from q1 to q2.
Using the introduced variables, ΨP ensures that the traces in P are accepted by imposing

the following constraints:

xε,1 ∧
∧

2≤q≤n
¬xε,q (6.3)

∧
ua∈Pref (P)

∧
1≤p,q≤n

[xu,p ∧ dp,a,q]→ xua,q (6.4)

∧
u∈P

∧
1≤q≤n

xu,q→ fq (6.5)

Formula 6.3 ensures that any run of A′ must start in the initial state q′I (which we identify as
1). Formula 6.4 ensures that the runs of A′ must adhere to the transition function. Finally,
Formula 6.5 ensures that the runs of A′ on every positive trace u ∈ P ends in a final state and,
hence, is accepted.

For the third conjunct Ψ⊆A, we must track the synchronized runs of the current hypothesis
A and the next hypothesis A′ to compare their behavior on all traces in (2P )∗. To this end,
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we introduce auxiliary variables, yAq,q′ where q, q′ ∈ {1, · · · , n}. Precisely, yAq,q′ is set to true,

if there exists a trace u ∈ (2P )∗ such that there are runs A : qI
u−→ q and A′ : q′I

u−→ q′.
To ensure L(A′) ⊆ L(A), Ψ⊆A imposes the following constraints:

yA1,1 (6.6)∧
1≤p′,q′≤n

∧
q=δ(p,a)

∧
a∈2P

[[
yAp,p′ ∧ dp′,a,q′

]
→ yAq,q′

]
(6.7)

∧
1≤p′≤n

∧
p ̸∈F

[
yAp,p′ → ¬ fp′

]
(6.8)

Formula 6.6 ensures that any synchronized runs ofA andA′ must start in the respective initial
states. Formula 6.7 ensures that the synchronized runs must adhere to the respective transition
functions of the DFAs. Formula 6.8 ensures that if a synchronized run ends in a non-final state
in A, it must also end in a non-final state in A′, hence forcing L(A′) ⊆ L(A).

For constructing the final conjunct Ψ ̸⊃A, the variables we use rely on the following result:

Lemma 7. Let A, A′ be DFAs such that |A| = |A′| = n and L(A′) ⊂ L(A). Also, let

K = n2. Then, there exists a trace u ∈ (2P )∗ such that |u| ≤ K and u ∈ L(A) \ L(A′).
This result provides an upper bound to the length of a trace that can distinguish between

DFAs A and A′. The proof of the above lemma relies on a simple pumping argument on the
cross product A×A′ of size at most K = n2.

Based on this result, we introduce variables zi,q,q′ where i ∈ {1, . . . , n2} and q, q′ ∈
{1, . . . , n} to track the synchronized run of A and A′ on a trace of length at most K = n2.
Precisely, if zi,q,q′ is set to true, then there exists a trace u of length i with the runs A : qI

u−→ q
and A′ : q′I

u−→ q′.
Now, Ψ ̸⊇A imposes the following constraints:

z0,1,1 (6.9)∧
1≤i≤n2

[ ∨
1≤q,q′≤n

zi,q,q′ ∧
[ ∧

1≤p ̸=q≤n
1≤p′ ̸=q′≤n

¬zi,p,p′ ∨ ¬zi,q,q′
]]

(6.10)

∧
1≤p,q≤n

1≤p′,q′≤n

[[
zi,p,p′ ∧ zi+1,q,q′

]
→

∨
a∈2P where

q=δ(p,a)

dp′,a,q′
]

(6.11)

∨
1≤i≤n2

∨
q∈F

1≤q′≤n

[
zi,q,q′ ∧ ¬ fq′

]
(6.12)

Formula 6.9 ensures that there exists a trace of length 0, that is, ε, on which the synchronized
run ends in the respective initial states of the DFAs A and A′. Formula 6.10 ensures that the
synchronized run ends in unique states in the DFAs. Formula 6.11 ensures that the synchro-
nized run adheres to the respective transition functions of the DFAs. Finally, Formula 6.12
ensures that there is a trace of length ≤ n2 on which the synchronized run ends in a final state
in A but not in A′, ensuring L(A) ̸⊆ L(A′).

We now assert the correctness of the propositional formula ΨA that we constructed above:
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Theorem 11. Let ΨA be as defined above. Then, we have the following:

1. If ΨA is satisfiable, then there exists a DFA A′ that is an n-description and L(A′) ⊂
L(A).

2. If there exists a DFA A′ that is an n-description and L(A′) ⊂ L(A), then ΨA is

satisfiable.

To prove the above theorem, we propose intermediate claims, all of which we prove first.
For the proofs, we assume A = (Q, 2P , δ, qI , F) to be the current hypothesis, v to be a model
of ΨA, and A′ = (Q′, 2P , δ′, q′I , F′) to be the DFA constructed from the model v of ΨA.

Claim 1. For all u ∈ Pref (P), A′ : q′I
u−→ q implies v(xu,q) = 1.

Proof. We prove the claim using induction on the length |u| of the trace u.

Base case: Let u = ε. Based on the definition of runs, A′ : q′I
ε−→ q implies q = q′I . Also,

using Formula 6.3, we have v(xε,q) = 1 if and only if q = q′I (note q′I is indicated using
numeral 1). Combining these two facts proves the claim for the base case.

Induction step: As induction hypothesis, let A′ : qI
′ u−→ q implies v(xu,q) = 1 for all traces

u ∈ Pref (P) of length ≤ k. Now, consider the run A′ : q′I
u−→ q a−→ q′ for some

ua ∈ Pref (P). For this run, based on the induction hypothesis and the construction of
A′, we have v(xu,q) = 1 and v(dp,a,q) = 1. Now, using Formula 6.4, v(xu,q) = 1 and
v(dp,a,q) = 1 implies v(xua,q) = 1, thus, proving the claim.

Claim 2. For all u ∈ (2P )∗, A : qI
u−→ q and A′ : q′I

u−→ q′ imply v(yAq,q′) = 1.

Proof. We prove this using induction of the length |u| of the trace u.

Base case: Let u = ε. Based on the definition of runs, A : qI
ε−→ q, A′ : q′I

ε−→ q′ implies
q = qI and q′ = q′I . Also, using Formula 6.6, q = qI and q′ = q′I imply v(yAq,q′) = 1
(note qI and q′I are both indicated using numeral 1). Combining these two facts proves
the claim for the base case.

Induction step: As induction hypothesis, let A : qI
u−→ q and A′ : q′I

u−→ q′ imply v(yAq,q′) =

1 for all traces u ∈ (2P )∗ of length ≤ k. Now, consider the runs A : qI
u−→ p a−→ q and

A′ : qI
′ u−→ p′ a−→ q′ for some trace ua ∈ (2P )∗. For these runs, based on the induction

hypothesis and the construction of A′, we have v(yAp,p′) = 1 and v(dp′,a,q′) = 1. Now,
using Formula 6.7, we can say that v(yAp,p′) = 1 and v(dp′,a,q′) = 1 imply v(yAq,q′) = 1
(where q = δ(p, a)), thus, proving the claim.

Claim 3. v(zi,q,q′) = 1 implies there exists u ∈ (2P )i with runs A : qI
u−→ q and A′ : q′I

u−→
q′.

Proof. We prove this using induction on the parameter i.
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Base case: Let i = 0. Based on the Formulas 6.9 and 6.10, v(z0,q,q′) = 1 implies q = qI

and q = q′I . Now, there always exists a trace of length 0, that is, u = ε, for which
A : qI

ε−→ q and A′ : q′I
ε−→ q′ proving the claim for the base case.

Induction step: As induction hypothesis, let v(zk,p,p′) = 1 and thus, let u be a trace of length
k such that A : qI

u−→ p and A′ : q′I
u−→ p′. Now, assume v(zk+1,q,q′) = 1. Based on

Formula 6.11, for some a ∈ 2P such that q = δ(p, a), v(dp′,a,q′) = 1. Thus, on the
trace ua, there are runs A : qI

u−→ p a−→ q and A′ : q′I
u−→ p′ a−→ q′, proving the claim.

We are now ready to prove Theorem 11, that is, the correctness of the encoding ΨA.

Proof of Theorem 11. For the first statement in Theorem 11, consider that ΨA is satisfiable
with a model v and A′ is the DFA constructed using the model v. First, DFA constructed with
model v trivially has size |A′| ≤ n. Second, using Claim 1, A′ : q′I

u−→ q implies v(xu,q) = 1
for all u ∈ P. Now, based on Formula 6.5, v(xu,q) = 1 implies v( fq) = 1 for all u ∈ P. As
a result, for each u ∈ P, its run A′ : q′I

u−→ q must end in a final state q ∈ F′ in A′. Thus, A′
accepts all positive traces and, hence, is an n-description.

Next, using Claim 2, A : qI
u−→ q and A′ : q′I

u−→ q′ imply v(yAq,q′) = 1 for all traces
u ∈ (2P )∗. Thus, based on Formula 6.8, if q ̸∈ F, then q′ ̸∈ F, implying L(A′) ⊆ L(A).

Finally, using Claim 3, v(zi,q,q′) = 1 implies that there exists u ∈ (2P )i with runs
A : qI

u−→ q and A′ : q′I
u−→ q′. Now, based on Formula 6.12, there exists some i ≤ n2,

q ∈ F and q′ in A′ such that v(zi,q,q′) = 1 and v( fq′) = 0. Combining this fact with Claim 3,
we deduce that there exists u ∈ (2P )∗ with length ≤ n2 with run A : qI

u−→ q ending in
final state q ∈ F and run A′ : q′I

u−→ q′ not ending in a final state q′ ∈ F′. This shows that
L(A) ̸= L(A′). We thus prove the first statement, which claims A to be an n-description
and L(A′) ⊂ L(A).

For the second statement in Theorem 11, based on a suitable DFA A′, we construct an
assignment v for all the introduced propositional variables. First, we set v(dp,a,q) = 1 if
δ′(p, a) = q and v( fq) = 1 if q ∈ F′. Since δ′ is a deterministic function, v satisfies the
Formula 6.2. Similarly, we set v(xu,q) = 1 if A′ : q′I

u−→ q for some u ∈ Pref (P). It is a
simple exercise to check that v satisfies Formulas 6.3 to 6.5. Next, we set v(yAq,q′) = 1 if there

are runs A : qI
u−→ q and A′ : q′I

u−→ q′ on some trace u ∈ (2P )∗. Algorithmically, we set
v(yAq,q′) = 1 if states q and q′ can be reached in the synchronized run of A and A′ on some
trace (which is typically computed using a breadth-first search on the product DFA). It is easy
to see that such an assignment v satisfies Formulas 6.6 to 6.8. Finally, we set assignment
to zi,q,q′ exploiting a trace u which permits runs A : qI

u−→ q and A′ : q′I
u−→ q′, where q is

in F but q′ not in F′. In particular, we set v(zi,q,q′) = 1 for i = |u′| and A : qI
u′−→ q and

A′ : q′I
u′−→ q′ for all prefixes u′ of u. Such an assignment encodes a synchronized run of the

DFAs A and A′ on trace u that ends in a final state in A, but not in A′. Thus, v satisfies
Formulas 6.9 to 6.12.
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Theorem 12. Given positive traces P and a size bound n, Algorithm 10 always terminates

and learns a DFA A that is an n-description and for every DFA A′ that is an n-description,

L(A′) ̸⊂ L(A).

Proof. For termination, observe there are finitely many n-descriptions for a given bound n,
and in each iteration, Algorithm 10 finds a new n-description. Thus, after a finite number of
iterations, the algorithm will have exhaustively searched through all possible n-descriptions.

For correctness, first observe that, by design, the algorithm terminates when ΨA is
unsatisfiable. Now, based on the properties of ΨA established in Theorem 11, if ΨA is
unsatisfiable for some DFA A, then there are no n-description DFA A′ for which L(A′) ⊂
L(A), thus, proving the correctness of the algorithm.

6.2 Learning LTL formulas from Positive Examples

We now switch our focus to algorithms for learning LTLf formulas. The OCC problem for
LTLf formulas, similar to Problem 6, relies upon a set of positive traces P ⊂ (2P )∗ and a size
upper bound n.

Moreover, an LTLf formula φ is an n-description of P if, for all u ∈ P, u |=f φ, and
|φ| ≤ n. Again, when P is clear from the context, we simply use n-description . Also, in this
section, an n-description refers only to an LTLf formula.

We state the OCC problem for LTLf formulas as follows:

Problem 7 (OCC problem for LTLf formulas). Given a set P of positive traces and a size

bound n, learn an LTLf formula φ such that:

1. φ is an n-description; and

2. for every LTLf formula φ′ that is an n-description, φ′ ̸→ φ or φ→ φ′.

Intuitively, the above problem searches for an LTLf formula φ that is an n-description
and holds on a minimal set of traces. The combination φ′ ̸→ φ or φ → φ′ expresses that
L(φ′) ̸⊂ L(φ). Once again, like Problem 6, there can be several solution LTLf formulas for
the above problem, but we are interested in learning exactly one.

6.2.1 The Semi-Symbolic Algorithm

Our semi-symbolic, in contrast to the symbolic algorithm in Algorithm 10, does not solely
depend on the current hypothesis, an LTLf formula φ. In addition, it relies on a set N of
negative examples accumulated during the algorithm. Concretely, Φφ,N has the properties
that:

1. Φφ,N is satisfiable if and only if there exists an LTLf formula φ′ that is an n-description,
does not hold on any u ∈ N, and φ ̸→ φ′; and

2. based on a model v of Φφ,N , one can construct a prospective LTLf formula φ′.
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Algorithm 11 Semi-symbolic Algorithm for learning LTLf formula
Input: Positive traces P, bound n

1: N ← ∅
2: φ← true, Φφ,N := ΦLTL ∧ΦP

3: while Φφ,N is satisfiable (with model v) do
4: φ′ ← LTL formula constructed from v
5: if φ′ → φ then
6: Update φ to φ′

7: else
8: Add u to N, where u |= φ′ ∧ ¬φ
9: end if

10: Φφ,N := ΦLTL ∧ΦP ∧ΦN ∧Φ ̸←φ

11: end while
12: return φ

The semi-symbolic algorithm, outlined in Algorithm 11, follows a paradigm similar to the
one illustrated in Algorithm 10. However, unlike the previous algorithm, the next hypothesis
φ′ derived from a model of Φφ,N may not always satisfy the relation φ′ → φ. In other words,
the condition L(φ′) ⊆ L(φ) may not hold.

In such cases, we generate a trace, denoted as u, that satisfies φ′ but not φ, specifically
u ∈ L(φ′) \ L(φ). We then add u to the set N of negative examples. This aids us in
eliminating φ′ from the search space in subsequent iterations. We generate negative traces by
constructing DFAs from the LTLf formulas [231] and subsequently performing a breadth-first
search over them.

It is also possible that the current hypothesis φ′ satisfies the relation φ′ → φ, that is,
L(φ′) ⊆ L(φ) holds. In this case, we simply update our current hypothesis as φ′ and continue
the algorithm until Φφ,N is unsatisfiable.

We now focus on the construction of Φφ,N , which admits various differences from that of
ΨA. It is defined as follows:

Φφ,N := ΦLTL ∧ΦP ∧ΦN ∧Φ ̸←φ. (6.13)

The first conjunct ΦLTL ensures that the new hypothesis φ′ is a valid LTLf formula. The
second conjunct ΦP ensures that φ′ holds on all positive traces, while the third conjunct ΦN

ensures that it does not hold on any negative traces. The final conjunct Φ ̸←φ ensures that
φ ̸→ φ′; that is, L(φ) ̸⊆ L(φ′).

Similar to the previous chapters (Chapters 4 and 5), all of our conjuncts rely on the syntax

DAG as canonical syntactic representation for LTLf. In fact, to encode a valid syntax DAG for
hypothesis φ′, ΦLTL relies on the same set of propositional variables xi,λ, li,j and ri,j where
i ∈ {1, . . . , n}, j ∈ {i + 1, . . . , n} and λ ∈ Λ that were used in the previous chapters. Also,
the constraints imposed on the variables remain the same as in Formulas 4.4 to 4.7.

To define ΦP and ΦN , we rely on the propositional formula Φu for each trace u in P ∪ N,
which tracks the semantics of φ′ on u. Similar to Section 4.1.2, these formulas are constructed
using variables yu

i,t where i ∈ {1, . . . , n} and t ∈ {0, . . . , |u| − 1}. The variable yu
i,t indicates
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whether φ′[i] holds on u at timepoint t.
To ensure the intended meaning of variables yu

i,t, Φu is a conjunction of Formulas 4.8
to 4.12 from Chapter 4. We then have ΦP :=

∧
u∈P Φu ∧ yu

1,0 to ensure that φ′ holds on
positive traces and ΦN :=

∧
u∈N Φu ∧ ¬yu

1,0 to ensure φ′ does not hold on negative traces.
Next, to construct Φ ̸←φ, we symbolically encode a trace w that distinguishes formulas φ

and φ′. We bound the length of the symbolic trace by a time horizon K = 22n+1
. The choice

of K is derived from Lemma 7 and the fact that the size of the equivalent DFA for an LTLf

formula can be at most doubly exponential [101].
Our encoding of a symbolic trace w relies on variables pt,a where t ∈ {0, . . . , K− 1} and

a ∈ 2P ∪ {ε}. If pt,a is set to true, then w[t] = a. To ensure that the variables pt,a encode
their desired meaning, we generate a formula Φtrace that consists of the following constraint:

∧
0≤t<K

[ ∨
a∈2P∪{ε}

pt,a ∧
∧

a ̸=a′∈2P∪{ε}

[
¬pt,a ∨ ¬pt,a′

]]
(6.14)

The above constraint ensures that, in the symbolic trace w, each timepoint 0 ≤ t < K has a
unique symbol from 2P ∪ {ε}.

Further, to track whether φ and φ′ hold on w, we have variables zw,φ
i,t and zw,φ′

i,t where
i ∈ {1, . . . , n}, and t ∈ {0, . . . , K− 1}. These variables are similar to yu

i,t, in the sense that,

zw,φ
i,t (respectively, zw,φ′

i,t ) is set to true, if φ[i] (respectively, φ′[i]) holds on the symbolic trace
w at timepoint t.

To ensure desired meaning of zw,φ′

i,t , we construct Φw,φ′ similar to that of Φu. We list these
constraints in Φw,φ′ as follows:

∧
1≤i≤n

∧
a∈2P

xi,a →
[ ∧

0≤t<K

zw,φ′

i,t ↔ pt,a

]
(6.15)

∧
1≤i≤n

i<j,j′≤n

xi,∨ ∧ li,j ∧ ri,j′ →
[ ∧

0≤t<K

[
zw,φ′

i,t ↔ zw,φ′

j,t ∨ zw,φ′

j′,t

]]
(6.16)

∧
1≤i≤n
i<j≤n

xi,X ∧ li,j →
[ ∧

0≤t<K−1

zw,φ′

i,t ↔ zw,φ′

j,t+1

]
∧ ¬zw,φ′

j,K−1 (6.17)

∧
1≤i≤n

i<j,j′≤n

xi,U ∧ li,j ∧ ri,j′ →
[ ∧

0≤t<K

[
zw,φ′

i,t ↔
∨

t≤t′<K

[
zw,φ′

j′,t′ ∧
∧

t≤τ<t′
zw,φ′

j,τ

]]
(6.18)

Clearly, the above constraints are identical to the Formulas 4.8 to 4.12 on variables yu
i,t.

We construct Φw,φ on variables zw,φ
i,t using constraints similar to those above, Formu-

las 6.15 to 6.18. The only difference is that, in contrast to φ′, the hypothesis φ is already
known. Thus, one can directly exploit the syntax DAG of φ in Φw,φ instead of using a
symbolic encoding.

Finally, we define Φ ̸←φ as follows:

Φ ̸←φ := Φtrace ∧
[
Φw,φ ∧ zw,φ

1,0

]
∧
[
Φw,φ′ ∧ ¬zw,φ′

1,0

]
.
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Intuitively, the above conjunction ensures that there exists a trace on which φ holds and φ′

does not.
We now prove the correctness of the encoding Φφ,N described using the constraints above.

Theorem 13. Let Φφ,N be as defined above. Then, we have the following:

1. If Φφ,N is satisfiable, then there exists an LTL formula φ′ that is an n-description, φ′

does not hold on u ∈ N and φ ̸→ φ′.

2. If there exists a LTL formula φ′ that is an n-description, φ′ does not hold on u ∈ N
and φ ̸→ φ′, then Φφ,N is satisfiable.

To prove this theorem, we rely on intermediate claims. In the claims, v is a model of
Φφ,N , φ′ is the LTL formula constructed from v and φ is the current hypothesis LTL formula.

Claim 4. For all u ∈ P ∪ N, v(yu
i,t) = 1 if and only if u[t, |u|) |= φ′[i].

The proof proceeds via structural induction over φ′[i]. We reuse the variables yu
i,t and the

constraints Φu from Neider et al. [169] and, thus, the proof directly follows from the existing
proof (it can be found in the appendix of the paper [170]).

Claim 5. v(zw,φ′

i,t ) = 1 (resp. v(zw,φ
i,t ) = 1) if and only for a trace w, w[t, K) |= φ′ (resp.

w[t, K) |= φ |= φ).

The proof again proceeds via a structural induction on φ′ (similar to the previous one).
We are now ready to prove Theorem 13, i.e., the correctness of ΩN,D.

Proof of Theorem 13. For the first statement, consider that Φφ,N is satisfiable with a model
v and φ′ is the LTL formula constructed using the model v. First, using Claim 4, we have
that v(yu

1,t) = 1 if and only if u[t, |u|) |= φ′. Based on the construction of ΦP and ΦN , we
observe that v(yu

1,0) = 1 for all traces u ∈ P and v(yu
1,0) = 0 for all traces u ∈ N. Thus,

combining the two above observations, we conclude u |= φ′ for u ∈ P and u ̸|= φ′ for
u ∈ N and hence, φ′ is an n-description.

Next, using Claim 5 and the construction of Φ ̸←φ, we conclude that there exists a trace w
on which φ holds and φ′ does not. Thus, in total, we obtain φ′ to be an n-description which
does not hold on u ∈ N and φ ̸→ φ′

For the second statement, based on a suitable hypothesis φ′, we construct an assignment v
for all the introduced propositional variables. First, we set v(xi,λ) = 1 if Node i is labeled
with operator λ and v(li,j) = 1 (respectively, v(ri,j) = 1) if the left (respectively, the right)
child of Node i is Node j. Since φ′ is a valid LTL formula, it is clear that the structural
constraints will be satisfied by v. Similarly, we set v(yu

i,t) = 1 if and only if u[t, |u|) |= φ′[i]
for u ∈ P ∪ N and t ∈ [|w|]. This satisfies the structural constraints, as shown in prior
work [170]. Next, we set v(zφ

w,t) = 1 and v(zφ′,n
w,t ) = 0 for a trace w for which w |= φ and

w ̸|= φ′. Similar to the other semantic constraints, one can see that v satisfies Φ ̸←φ.

We now prove the overall termination and correctness of Algorithm 11.
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Theorem 14. Given positive traces P and size bound n, Algorithm 11 terminates and learns an

LTLf formula φ that is an n-description and for every LTLf formulas φ′ that is an n-description,

φ′ ̸→ φ or φ→ φ′.

Proof. For termination, first observe that Algorithm 11 there are only finitely many LTL
formulas that are n-descriptions because of the size bound n. We now show that our algorithm
(in the worst case) exhaustively searches through all n-descriptions.

To address this, let us assume that the algorithm identifies the same hypothesis in iterations
k and l (say k < l) within its while loop. For clarity, let us denote the hypothesis produced in
iteration k as φk. We will now present our argument through a case analysis.

First, consider the scenario where the condition φ′ → φ (refer to Line 6) holds in all
iterations between k and l. In this case, it follows that φl → φk and φk ̸→ φl . Consequently,
this implies φl ̸= φk, thereby contradicting our initial assumption.

Now, consider the other case where, in at least one iteration between k and l, the else
condition φ′ ̸→ φ (refer to Line 8) holds. In this case, a trace u on which φk holds is added to
the set N of negative traces. As φl must not hold on this negative trace u, it once again leads
to the conclusion that φl ̸= φk, contradicting our initial assumption.

For the correctness of the learned LTL formula φ, we again rely on a contradiction. Let us
assume the existence of an LTL formula φ that is an n-description and satisfies the relations
φ→ φ and φ ̸→ φ, meaning L(φ) ⊂ L(φ).

It is crucial to note that the algorithm terminates when Φφ,N becomes unsatisfiable.
Drawing on the properties of Φφ,N , as outlined in Theorem 13, if Φφ,N is unsatisfiable for
a given LTL formula φ and set N of negative traces, then any LTL formula φ′ that is an
n-description must either hold in one of the traces in N or satisfy φ→ φ′.

If φ→ φ holds, the assumption φ ̸→ φ is contradicted. Alternatively, if φ holds in one of
the negative traces, the assumption φ→ φ is contradicted. Thus, we establish the correctness
of the learned formula φ.

6.2.2 The Counterexample-guided Algorithm

We now design a counterexample-guided algorithm to solve Problem 7. In contrast to the
symbolic (or semi-symbolic) algorithm, this algorithm does not guide the search based on
propositional formulas built out of the hypothesis LTLf formula. Instead, this algorithm relies
entirely on two sets: a set N of negative traces and a set of discarded LTLf formulas D. Based
on these two sets, we design a propositional formula ΩN,D that has the properties that:

1. ΩN,D is satisfiable if and only if there exists an LTLf formula φ that is an n-description,
does not hold on w ∈ N, and is not one of the formulas in D; and

2. based on a model v of ΩN,D, one can construct such an LTLf formula φ′.

Being a counterexample-guided algorithm, the construction of the sets N and D forms the
crux of the algorithm. In each iteration, these sets are updated based on the relation between
the hypothesis φ and the current guess φ′ derived from a model of ΩN,D. There are exactly
three relevant cases, which we discuss briefly.
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Algorithm 12 CEG Algorithm for LTLf formulas
Input: Positive traces P, bound n

1: N ← ∅, D ← ∅
2: φ← true, ΩN,D := ΦLTL ∧ΦP

3: while ΩN,D is satisfiable (with model v) do
4: φ′ ← φv

5: if φ′ ↔ φ then
6: Add φ′ to D
7: else
8: if φ′ → φ then
9: Add u to N, where u |= ¬φ ∧ φ′

10: φ← φ′

11: else
12: Add u to N, where u |= ¬φ′ ∧ φ
13: end if
14: end if
15: ΩN,D := ΦLTL ∧ΦP ∧ΦN ∧ΦD

16: end while
17: return φ

• First, φ′ ↔ φ, i.e., φ′ and φ hold on the exact same set of traces. In this case, the
algorithm discards φ′, due to its equivalence to φ, by adding it to D.

• Second, φ′ → φ and φ ̸→ φ′, i.e., φ′ holds on a proper subset of the set of traces on
which φ hold. In this case, our algorithm generates a trace that satisfies φ and not φ′,
which it adds to N to eliminate φ.

• Third, φ′ ̸← φ, i.e., φ′ does not hold on a subset of the set of traces on which φ hold.
In this case, our algorithm generates a trace w that satisfies φ′ and not φ, which it adds
to N to eliminate φ′.

By handling the cases mentioned above, we obtain an algorithm (sketched in Algorithm 12)
with guarantees (formalized in Theorem 14) exactly the same as the semi-symbolic algorithm
in Section 6.2.1.

6.3 Experimental Evaluation

To evaluate the performance of our algorithms, we consider the following research questions
in this section:

RQ1: What is the performance gain for learning DFAs compared to existing work?

RQ2: Which of the presented LTLf learning algorithms demonstrate better performance?

RQ3: Can our LTLf learning algorithms produce useful formulas?



Chapter 6. Learning from Positive Examples Only 97

We address the above research questions by implementing all the algorithms in Python 31.
For constraint solving, we rely on PySAT [125] for the DFA learning algorithm, and clingo [96]2

for the LTLf learning algorithms.
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FIGURE 6.1: Comparison of SYMDFA and CEGDFA in terms of the runtime
and the number of iterations of the main loop.

In addition, we implemented two existing heuristics following Avellaneda et al. [11] for
all the algorithms. First, in every algorithm, we learned models in an incremental manner:
we started by learning DFAs (respectively, LTLf formulas) of size one and then increased the
size by one. We repeated the process until bound n. This heuristic guarantees that the learned
model is small in size.

Second, we used a subset of positive traces P′ ⊆ P that starts as an empty set. At each
iteration of the algorithm, if the language of the learned model does not contain some traces
from P, we then extended P′ with a trace from P \ P′, preferably the shortest one. This
heuristic helped when dealing with large input samples because it used as few traces as
possible from the positive examples P.

Also, we imposed a restriction on the semi-symbolic algorithm for learning LTLf, Algo-
rithm 11. We fixed the time horizon K to a natural number instead of the double exponential
theoretical upper bound of 22n+1

. Using this heuristic means that the semi-symbolic algorithm
does not solve Problem 7 in its full generality, but we demonstrate that we produced good
enough formulas in practice.

Overall, we ran all the experiments using 8 GiB of RAM and two CPU cores with clock
speed of 3.6 GHz.

6.3.1 RQ1: Performance Gain in Learning DFAs

To address RQ1, we compare the performance of our symbolic algorithm SYMDFA for learning
DFAs, Algorithm 10, against the counterexample-guided algorithm CEGDFA by Avellaneda

1The code can be found online at https://github.com/cryhot/samp2symb/tree/paper/
posdata

2We use an equivalent ASP [17] based encoding for optimization.

https://github.com/cryhot/samp2symb/tree/paper/posdata
https://github.com/cryhot/samp2symb/tree/paper/posdata
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time for three LTL ground truth formulas.

et al. [11].
For this research question, we considered a set of 28 random DFAs of size 2 to 10 generated

using AALpy [165]. Using each random DFA, we generated samples of 1000 positive traces
of lengths 1 to 10. We ran algorithms CEGDFA and SYMDFA with a timeout TO = 1000s, and
for n up to 10.

Figure 6.1 shows a comparison between the performance of SYMDFA and CEGDFA in terms
of the learning time and the number of iterations required in the main loop. On the left plot, the
average ratio of the number of iterations is 0.14, which, in fact, shows that SYMDFA required
noticeably less number of iterations compared to CEGDFA. On the right plot, the average
ratio of the inference time is 1.09, which shows that the inference of the two algorithms
is comparable, and yet SYMDFA is computationally less expensive since it requires fewer
iterations.

6.3.2 RQ2: Performance Comparison for LTL Learning

To answer RQ2, we evaluated the performance of the proposed semi-symbolic algorithm
S-SYMLTL, Algorithm 11, and the counterexample-guided algorithm CEGLTL, Algorithm 12.

For this research question, we generated samples (of only positive examples) based on
12 common LTL patterns (same as the ones from Table 4.1). For each sample from these 12
ground truth LTLf formulas, we generated 10000 positive traces of length 10. We ran CEGLTL
and S-SYMLTL on the generated samples by setting the maximum formula size n = 10 and a
timeout of TO = 1000s. For S-SYMLTL, we additionally set the time horizon K = 8.

Figure 6.2 represents a comparison between the mentioned algorithms in terms of learning
time for the ground truth LTLf formulas ψ1 = G(p), ψ2 = G(q→(G(¬p))), and ψ3 =

G(¬p) ∨ F(p ∧ F(q)). On average, S-SYMLTL ran 173.9% faster than CEGLTL for all the 12
samples. Our results showed that the LTLf formulas φ inferred by S-SYMLTL were more or
equally specific than the ground truth LTLf formulas ψ (that is, φ→ ψ) for five out of the 12
samples, while the LTLf formulas φ′ inferred by CEGLTL were equally or more specific than
the ground truth LTLf formulas ψ (that is, φ′ → ψ) for three out of the 12 samples.
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FIGURE 6.3: Comparison of S-SYMLTL and CEGLTL in terms of the runtime
for three clusters of traces taken from a UAV.

6.3.3 RQ3: Learning LTL from Trajectories of an Aerial Vehicle

To answer RQ3, we ran S-SYMLTL and CEGLTL on trajectories of a simulated unmanned
aerial vehicle (UAV). As input, we considered three samples of the trajectories. These samples
were obtained by clustering 10000 traces demonstrated by the UAV into three bundles using
the k-means clustering approach. For running the algorithms, we set n = 10, K = 8, and a
timeout of TO = 3600s.

We now present some interesting formulas obtained by the algorithms. These formulas
were based on several propositions that describe various attributes of a UAV. We here mention
only the relevant propositions along with their meaning: x0 indicates the desired target is
reached, x1 indicates the UAV is gliding (as opposed to thrusting), x2 indicates there is a
change in yaw angle, x3 indicates there is a change in roll angle, and x4 indicates the battery
is low.

Using the above propositions, we found the following formulas:

F x1→G x1 : either the UAV always glides, or it never glides;

G(x2→ x3) : a change in yaw angle is always accompanied by a change in roll angle;

G((F x0)→ x0) : if the UAV can eventually reach the target, then it is in the target;

G(x4→G x4) : if the battery is low, then its stays low.

We also provide possible natural language descriptions of the formulas.
We also compared the runtime of CEGLTL and S-SYMLTL for the three samples; we present

the results in Figure 6.3. Our results showed that, on average, S-SYMLTL is 260.73% faster
than CEGLTL.

6.4 Conclusion

We presented novel algorithms for learning DFAs and LTLf formulas from positive examples
only. Our algorithms rely on conciseness and language minimality as regularizers to learn
meaningful models. We demonstrated the efficacy of our algorithms in three case studies.
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A natural direction of future work is to lift our techniques to tackle learning from positive
examples for other finite state machines (for instance, non-deterministic finite automata) and
more expressive temporal logics (for instance, Property Specification Language).
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Chapter 7

Learning Properties in the Property
Specification Language

As we have seen in the earlier chapters, the temporal logic of primary focus has been Linear
Temporal Logic (LTL). This choice has been rightfully driven by several theoretical advantages
of LTL (for instance, easy translation to finite automata, simple model-checking, etc.), as well
as concise, variable-free syntax and intuitive semantics.

However, one of the major downsides of LTL is its limited expressive power as compared
to other temporal logics. As a consequence, many properties that arise naturally cannot
be expressed in LTL; for instance, an event happening at every n-th point in time. The
class of properties that can be expressed in LTL corresponds exactly to that of star-free ω-
languages [222], which excludes—among others—all properties involving modulo counting.

To overcome this limitation, the Property Specification Language (PSL) has been proposed,
which has since been adopted by IEEE as an industrial standard for expressing temporal
properties [123]. Although PSL is an extension of LTL and, hence, shares many of its
beneficial properties, PSL differs from LTL in three important aspects:

1. The expressive power of PSL exceeds that of LTL: it is as expressive as the full class
of regular ω-languages [9]. In particular, properties involving modulo counting—as
mentioned above—can easily be expressed in PSL.

2. PSL integrates easy-to-understand regular expressions in its syntax.

3. When learning from example traces, formulas, when expressed in PSL, can be arbitrarily
more succinct than those expressed in LTL (see Lemma 8).

We believe that these three properties make PSL particularly well-suited as an interpretable
description language. We refer to Section 7.1 for a detailed description of PSL.

The main focus of this chapter is an algorithm for learning formulas in PSL. Following
earlier works on SAT-based algorithms for learning LTL\LTLf formulas, the precise learning
problem our algorithm solves is as follows: given a sample S consisting of two finite sets of
positive and negative examples, learn a PSL formula φ that is consistent with S .

Although we cannot expect algorithms that learn consistent formulas to scale as well as
statistical methods that allow for misclassifications (for instance, the one by Kim et al. [135]),
being able to learn an exact model describing the given data is essential in a multitude of
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applications, including few-shot learning, debugging of software systems, and many situations
in which the observed data is without noise. We refer the reader to Neider et al. [169] and
Camacho et al. [48] for more examples where learning consistent formulas is important.

To be as general and succinct as possible, we here assume examples to be infinite, ulti-
mately periodic traces (that is, traces of the form uvω, where u, v are finite traces and vω is
the infinite repetition of v) and focus on the core fragment of PSL. However, our algorithm
can easily be adapted to learn from finite traces and extends smoothly to other future-time
temporal operators of PSL. We expand on the learning problem in Section 7.2.

Our learning algorithm builds on top of the work by Neider et al. [169] for learning LTL
formulas. Its key idea is to reduce the learning task to a series of constraint satisfaction
problems in propositional logic and use a highly optimized SAT solver to search for a solution.
By design, our algorithm infers a minimal PSL formula that is consistent with the examples,
which is a particularly valuable property in our setting: we seek to learn human-interpretable
formulas, and the size of the learned formula is a crucial metric for their interpretability (since
larger formulas are generally harder to understand than smaller ones).

One key difference from LTL is that PSL extensively utilizes regular expressions. As
a result, the learning algorithm presented in this chapter required innovation to effectively
incorporate the learning of minimal regular expressions. This algorithm for learning regular
expressions constitutes a contribution of independent interest and finds applications, particu-
larly in natural language processing [23]. We refer to Section 7.3 for the technical description
of the algorithms.

We empirically evaluate a prototype of our PSL learning algorithm on benchmarks that
reflect typical patterns of both LTL and PSL formulas used in practice. The evaluation shows
that our algorithm can infer informative PSL formulas and that these formulas are often more
succinct than pure LTL formulas learned from the same examples. Moreover, the runtime of
our prototype is comparable to the state-of-the-art tool for learning LTL formulas by Neider
et al. [169]. We present the experimental results in Section 7.4 and end with a final discussion
in Section 7.5.

Related Works

Learning of temporal properties has recently attracted increasing attention. The literature in
this area can be broadly structured along three dimensions.

The first dimension is the type of logic used to express models. Examples include
learning of models expressed in Signal Temporal Logic (STL) [138], in Linear Temporal
Logic (LTL) [48, 193, 169] and branching time logics, such as Computational Tree Logic
(CTL) [218]. To the best of our knowledge, we are the first to consider the learning of PSL or
equally expressive logic.

The second dimension is whether the learning algorithm requires the user to provide
templates. Examples of algorithms that require templates are the works of [147] and [145],
whereas the algorithms for LTL mentioned above do not require templates. Providing templates
is often a challenging task as it requires the user to have a good understanding of the data. By
contrast, our algorithm can learn arbitrary formulas without any assistance from the user.
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The third dimension distinguishes between algorithms that learn an exact model and those
that learn an approximate one. The learning algorithm we devise in this paper is exact (that is,
it learns models that describe the data perfectly; due to our minimality constraint, however,
these models generalize the data rather than overfit it). On the other hand, there also exists
work that uses statistical methods to derive approximate formulas from noisy data [135].

This work is built upon the SAT-based learning algorithm by [169]. In fact, constraint
solving is often used in learning problems. The perhaps most prominent examples are passive
automata learning [116, 168] and counterexample-guided inductive synthesis [3].

7.1 Preliminaries

It is well-known that LTL cannot express natural properties such as modulo counting. To
alleviate this serious restriction, the Property Specification Language (PSL) has been developed
(for instance, see Eisner et al. [79]), which makes extensive use of regular expressions. The
remainder of this section introduces regular expressions and PSL in detail.

7.1.1 Regular Expressions

To simplify the definition of PSL, we define regular expressions in a slightly non-standard way.
Firstly, we use propositional formulas rather than symbols of an alphabet as atomic expressions.
For example, for P = {p, q}, the formula p ∨ q represents the set {{p}, {q}, {p, q}} of
symbols from 2P , whereas p ∧ ¬q represents the singleton set {{p}}. Secondly, we take an
operational view of regular expressions in terms of a matching relation rather than the classical
view as generators of regular languages.

Regular expressions are inductively constructed as follows, where the first grammar
describes the construction of atomic expressions, while the second grammar describes the
construction of general regular expressions:

ξ ::= p ∈ P | ¬ξ | ξ ∨ ξ

ρ ::= ε | ξ | ρ + ρ | ρ ◦ ρ | ρ∗

As usual, the regular operator + stands for choice, ◦ stands for concatenation, and ∗ for finite
repetition (Kleene star). As syntactic sugar, we also allow the Boolean operators ∧,→, and
↔ in atomic expressions.

Let us first give atomic expressions a meaning. To this end, we assign to each atomic
expression ξ a set [[ξ]] ⊆ 2P of symbols in the following way:

[[p]] = {a ∈ 2P | p ∈ a};
[[¬ξ]] = 2P \ [[ξ]];

[[ξ1 ∨ ξ2]] = [[ξ1]] ∪ [[ξ2]].

To define the semantics of regular expressions, we introduce a matching relation ⊢, which
formalizes when an infix u[t1, t2) of a finite trace u ∈ (2P )∗ matches a regular expression.
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Formally, the matching relation is defined as follows:

u[t1, t2) ⊢ ε if and only if t1 = t2;

u[t1, t2) ⊢ ξ if and only if t2 = t1 + 1 and u[t1] ∈ [[ξ]];

u[t1, t2) ⊢ ρ1 + ρ2 if and only if u[t1, t2) ⊢ ρ1 or u[t1, t2) ⊢ ρ2;

u[t1, t2) ⊢ ρ1 ◦ ρ2 if and only if for some t1 ≤ t ≤ t2 : u[t1, t) ⊢ ρ1 and u[t, t2) ⊢ ρ2;

u[t1, t2) ⊢ ρ∗ if and only if t1 = t2 or for some t1 + 1 ≤ t ≤ t2 :

u[t1, t) ⊢ ρ and u[t, t2) ⊢ ρ∗.

Note that this definition applies to finite infixes u[t1, t2) of infinite traces u ∈ (2P )ω as well.

7.1.2 Property Specification Language

In this chapter, we consider the core fragment of the Property Specification Language [79],
which we here abbreviate as PSL for the sake of brevity. This fragment extends LTL with a
so-called triggers operator ρ 7→ φ where ρ is a regular expression and φ is a PSL formula.
Intuitively, a trace u ∈ (2P )ω satisfies the PSL formula ρ 7→ φ if φ holds every time the
regular expression ρ matches on a finite prefix of u. To define the semantics of the triggers
operator formally, we extend the satisfaction relation of LTL as follows:

u |= ρ 7→ φ if and only if for all t ∈N \ {0} : u[0, t) ⊢ ρ implies u[t− 1, ∞) |= φ.

Finally, we define the size |φ| of a PSL formula φ to be the number of its unique subformulas
and subexpressions.

PSL is a popular specification language in industrial applications, having been standardized
by IEEE [123]. It is as expressive as ω-regular languages [9] (that is, languages accepted by
nondeterministic Büchi automata) and, hence, exceeds the expressive power of LTL [222]. A
simple property that cannot be expressed in LTL is that a proposition p holds at every second
point in time, which can be expressed in PSL as (true ◦ true)∗ 7→ p.

7.2 Problem Formulation

In this section, we formally define the learning problem studied in this chapter. Similar to
Chapter 5, we consider the input to be a sample S = (P, N) of infinite traces from (2P )ω,
partitioned into a set P of positive examples and a set N of negative examples, such that
P ∩ N = ∅. As infinite traces, we specifically consider ultimately periodic traces, that is,
traces of the form uvω where u ∈ (2P )∗ and v ∈ (2P )+. Ultimately periodic traces are
known to be sufficient in order to uniquely characterize ω-regular languages [45] (and thus,
PSL formulas).

Similar to LTL, we say that a PSL formula φ is consistent with a sample S = (P, N)

if uvω |= φ for all positive examples uvω ∈ P and uvω ̸|= φ for all negative examples
uvω ∈ N.
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We can now state the learning problem as follows:

Problem 8. Given a sample S = (P, N), learn a minimal PSL formula that is consistent with

S

Since LTL forms a subclass of PSL, one can easily construct a large PSL formula∨
u∈P

∧
v∈N φu,v for the above problem, where φu,v is simply an LTL formula that distin-

guishes u and v using a sequence of X-operators and appropriate propositions. However,
enumerating all differences of a sample is clearly of little help towards the goal of learning a
descriptive model. We require small formulas since they are easier for humans to interpret
than large ones. Also, small formulas tend to provide better generalization for a given sample.

Before we explain our learning algorithm in detail, let us show that models expressed
in PSL can be arbitrarily more succinct than those expressed in LTL, which follows from
Theorem 4.1 of Wolper [222].

Lemma 8. Let n ∈ N and Sn = (Pn, Nn) over P = {p} with Pn = {{p}2n{}{p}ω}
and Nn = {{p}2n+1{}{p}ω}. Then (p ◦ p)∗ 7→ X p is a PSL formula (of constant size)

consistent with Sn, whereas every LTL formula that is consistent with Sn has size greater or

equal to 2n.

7.3 SAT-based Learning Algorithm

The idea underlying our algorithm is to reduce the construction of a minimally consistent
PSL formula to a constraint satisfaction problem in propositional logic and to use a highly
optimized SAT solver to search for a solution. More precisely, given a sample S and size n,
we rely on a propositional formula ΦSn that has the following properties:

1. there exists a PSL formula of size n ∈N \ {0} that is consistent with S if and only if
ΦSn is satisfiable; and

2. given a model v of ΦSn , we can extract a PSL formula φv of size n that is consistent
with S .

By incrementing n (starting from 1) until ΦSn becomes satisfiable, we obtain an effective
learning algorithm for models expressed in PSL, as shown in Algorithm 13. Note that the
termination of this algorithm follows from the existence of a trivial solution (see Section 7.2).
Moreover, its correctness follows from Properties 1 and 2 of ΦSn .

Roughly speaking, the formula ΦSn is the conjunction

ΦSn := ΦPSL
n ∧Φsem

n ∧Φcon
n , (7.1)

where Φstr
n encodes the structure of the prospective PSL formula φ, Φsem

n enforces that φ is
interpreted on the traces in S using the proper semantics of PSL and Φcon

n ensures that φ is
consistent. In the remainder of this section, we describe both Φstr

n and Φcst
n in detail.
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Algorithm 13 SAT-based learning algorithm for PSL
Input: Sample S

1: n← 0
2: while ΦSn is satisfiable (say with model V) do
3: n← n + 1
4: Construct ΦSn and check its satisfiability
5: end while
6: construct φV

7: return φV

7→

◦ X

p q

1

2 3

4 5

FIGURE 7.1: Syntax DAG of the PSL formula (p ◦ q) 7→ X q along with its
identifiers

Structural Constraints The formula Φstr
n relies on syntax DAGs as a canonical syntactic

representation of PSL formulas. Syntax DAGs of PSL formulas are similar to that of LTL
formulas (see Section 2.2.3). Figure 7.1 illustrates a syntax DAG along with the identifiers we
use to identify the nodes of the syntax DAG.

Towards the definition of Φstr
n , we also rely on ΛR = {¬,∨,+, ◦, ∗} ∪ P , the set of

operators and propositions that can appear in regular expressions and ΛP = ΛR ∪ {X,U, 7→},
the set of all PSL operators and propositions.

We encode the syntax DAG of a PSL formula using the following propositional variables:
(i) xi,λ where i ∈ {1, . . . , n} and λ ∈ ΛP (ii) li,j and ri,j where i ∈ {1, . . . , n − 1} and
j ∈ {i + 1, . . . , n}. Intuitively, the variables xi,λ encode the labeling of a syntax DAG in
the sense that if xi,λ is set to true, then Node i is labeled by λ. Similarly, the variables li,j
(respectively, ri,j) encode the left (respectively, the right) child of Node i. By convention, we
ignore the variables ri,j (respectively, ri,j and li,j) if Node i is labeled with an unary operator
(respectively, an proposition).

To enforce that these variables encode the syntax DAG of a PSL formula, we construct
Φstr

n using constraints similar to what we used for LTL. In particular, we employ Formulas 4.4
through 4.7, as defined in Chapter 4, by modifying the operator set to be ΛP.

Additionally, we ensure that the labeling of the syntax DAG respects the type of the
operators. In particular, we assign the following constraints to assign a valid ordering between
the different types of operators.

∧
λ∈{+,∗,◦}

∧
1≤i<n

i<j,j′≤n

[xi,λ ∧ li,j ∧ ri,j′ ]→
[ ∨

λ′∈ΛR

xj,λ′ ∧
∨

λ′∈ΛR

xj′,λ′
]

(7.2)

∧
λ∈{X,U,¬,∨}

∧
1≤i<n

i<j,j′≤n

[xi,λ ∧ li,j ∧ ri,j′ ]→
[ ∨

λ′∈ΛP

xj,λ′ ∧
∨

λ′∈ΛP

xj′,λ′
]

(7.3)
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∧
1≤i<n

i<j,j′≤n

[xi, 7→ ∧ li,j ∧ ri,j′ ]→
[ ∨

λ′∈ΛR

xj,λ′ ∧
∨

λ′∈ΛP

xj′,λ′
]

(7.4)

Formulas 7.2, 7.3 and 7.4 ensure the ordering required for regular expression operators,
LTL operators, and the triggers operator, respectively. One noteworthy observation is that
Formula 7.4 for the triggers operator ensures that it combines a regular expression operator
and a PSL operator.

Φstr
n is the conjunction of all constraints discussed above. One can construct a syntax DAG

from a model V of Φstr
n in a straightforward manner: label Node i with the unique λ ∈ ΛP

such that V(xi,λ) = 1, designate Node 1 as the root, and arrange the nodes as described
uniquely by V(li,j) and V(ri,j).

Semantic Constraints. We exploit a simple observation about PSL to construct the proposi-
tional formula Φn.

Observation 2. Let uvω ∈ (2P )ω and φ be a PSL formula. Then, uvω[|u| + t1, ∞) =

uvω[|u|+ t2, ∞) for t2 ≡ t1 mod |v|. Thus, uvω[|u|+ t1, ∞) |= φ if and only if uvω[|u|+
t2, ∞) |= φ.

This observation is similar to one made for LTL in Chapter 5, Observation 1. (In fact, the
above observation holds for any future-time temporal logic.) Intuitively, it states that there
exists only a finite number of distinct infinite suffixes of a trace uvω; and one can determine
whether an infinite trace uvω satisfies a PSL formula based only on its finite prefix uv.

For a simple illustration of Observation 2, consider the formula X φ, and suppose that we
want to determine whether uvω[|uv| − 1, ∞) |= X φ holds; in other words, we like to check
the satisfaction of X φ at the end of the prefix uv. Then, Observation 2 allows us to reduce
this question to checking whether uvω[|u|, ∞) |= φ holds, instead of the original semantics
of the X-operator, which depends on whether uvω[|uv|, ∞) |= φ is satisfied.

For reasoning about matchings of regular expressions, however, it is not enough to
just consider the prefix uv. For instance, consider the ultimately periodic trace uvω =

{}{p}({})ω and the PSL formula φ := (true ◦ true)∗ 7→ p (stating that p is true at every
second position). By just considering the prefix uv = {}{p}{}, it seems that uvω |= φ.
However, unrolling the repeating part v = {} once more, resulting in the prefix uvv =

{}{p}{}{}, immediately shows that uvω ̸|= φ.
Similar to Observation 2, the next lemma provides a bound b ∈ N on the amount of

unrolling required to gather enough information to determine the satisfaction of a triggers
operator. This bound depends on the number n of nodes of the syntax DAG and the function
Mu,v : N→N defined by

Mu,v(t) =

t if t < |uv|; and

|u|+ ((t− |u|)%|v|) if t ≥ |uv|,
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where a % b is the remainder of the division a
b . Intuitively, Mu,v maps a timepoint t in the

trace uvω to an appropriate timepoint within the prefix uv. The lemma uses finite automata as
representations of regular expressions to derive the bound.

Lemma 9. Let uvω ∈ (2P )ω, ψ = ρ 7→ φ with |ψ| = n, and b = 2n + 1. Then,

uvω[t, ∞) |= ψ if and only if for all t′ ≤ |u|+ b|v|, uvω[t, t′) ⊢ ρ implies uvω[Mu,v(t′ −
1), ∞) |= φ.

Note an important property of Lemma 9: reasoning about regular expressions and the
triggers operator 7→ requires us to consider the prefix uvb, while the prefix uv is sufficient for
reasoning about the remaining PSL operators.

We now prove the above lemma, which relies on a series of intermediate results. Since the
triggers operator ρ 7→ φ uses regular expression ρ, as the first step, we reason about the length
of the prefix of uvω that matches ρ. To this end, we prove a more general result Lemma 10,
which reason about the length of prefix uvω[t1, t2) of any infinite trace uvω[t1, ∞), where
0 ≤ t1 ≤ |u|.

For the proof of Lemma 10, we exploit the equivalence between regular expression and
non-deterministic finite automaton (NFA) [211] and use NFA Aρ as a representation of ρ. In
particular, for formulating the bounds in the lemma, we rely on the size m = |Aρ| of the
smallest equivalent NFA for |ρ|. In order to obtain the bounds using the size |ρ| of the regular
expression, we can exploit relations between the size of a regular expression and its equivalent
NFA, such as |Aρ| = O(2|ρ|) (see Gruber et al. [109] for tighter bounds).

Lemma 10. Let uvω[t1, t2) ⊢ ρ for some t1, t2 ∈ N, where t1 ≤ |u|. Then, there exists

t ∈N, t ≤ |u|+ m|v| such that uvω[t1, t) ⊢ ρ and t ≡ t2 mod |v|.

Proof. If t2 ≤ |u| + m|v|, we are done since we simply take t = t2. However, if t2 >

|u|+ m|v|, finding the suitable t is slightly more involved, which we describe next.
The first observation we make is that, since uvω[t1, t2) ⊢ ρ, there is an accepting run R of

the NFA Aρ (of size m) for ρ on uvω[t1, t2). Figure 7.2 provides a pictorial depiction of R
(the first run). Notice that the portion of the run on vω[0, t2) has a length greater than m|v|.
We consider this portion of the run to be a sequence of the tuples (state, index) (representing
automaton configuration), where state refers to the current state of Aρ and index refers to
the timepoint in v which will be read next. Now, due to the pigeonhole principle, if this
run is longer than m|v|, then there exists a tuple, say (q, τ), which repeats during the run.
Interestingly, the run from the first occurrence of (q, τ) to the second, which we refer to as Rc,
forms a cycle in Aρ. In other traces, Aρ reaches the same configuration after the run Rc.

Now, based upon the above observation, we create another accepting run R′ of Aρ, but,
on a smaller prefix uvω[t1, t′), with t′ < t2 (the second run in Figure 7.2). R′ is quite similar
to R, except that, we skip over Rc and simply follow the run after Rc starting from the first
occurrence of (q, τ) itself. R′ is also a valid run, which is smaller than R by the length of Rc.
Moreover, notice that the length of R is a multiple of |v|, which implies that t′ ≡ t mod |v|.
Now, if t′ ≤ |u|+ m|v|, we have found the desired t. However, if that is not the case, we
repeat the same process of removing the cycle from the newly generated runs until the length
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length of run: m|v|

t1 t2

t′

u v v v v v v v v v v v v · · ·

(q0, 0) (q, τ) (q, τ) (q f , τf )

Rc
R

R′(q0, 0) (q, τ) (q f , τf )

FIGURE 7.2: Removal of cycle Rc from run R of Aρ on uvω to create a new
run R′. Here, (q, τ) is the configuration that repeats, (q f , τf ) is the accepting

configuration.

of the prefix is less than |u|+ m|v|. Note that this process terminates since we begin with a
prefix of finite length.

We now use Lemma 10 to prove Lemma 11, which provides us an upper bound b = m + 1
on the number of unrollings required.

Lemma 11. Let b = m + 1. Then, we have uvω[t, ∞) |= ρ 7→ φ where 0 ≤ t ≤ |uv| − 1 if

and only if for all t′ < |u|+ b|v|, uvω[t, t′) ⊢ ρ implies uvω[t′ − 1, ∞) |= φ.

Proof. The forward direction of the theorem follows from the semantics of the triggers
operator.

The other direction is a direct consequence of Lemma 10. An additional |v| term appears
in the bound b because here t could range between 0 and |uv| − 1 in contrast to Lemma 10.
When t > |u|, similar argument as in Lemma 10 works just by considering u = v.

For the proof of Lemma 9, we exploit Lemma 11 along with Observation 2 to construct
the function Mu,v.

We now return to constructing the semantic constraints in Φsem
n . Towards its definition,

we construct for each ultimately periodic trace uvω in S a propositional formula Φu,v
n that

tracks the satisfaction of the prospective PSL formula on uvω. Each of these formulas is built
using auxiliary variables: (i) yu,v

i,t where i ∈ {1, . . . , n} and t ∈ {0, . . . , |uv| − 1}; and (ii)
zu,v

i,t,t′ where i ∈ {1, . . . , n} and t ≤ t′ ∈ {0, . . . , |uvb| − 1} (b = 2n + 1 as in Lemma 9).
The variable yu,v

i,t is set to true if and only if uvω[t, ∞) satisfies the PSL formula φ[i] (that
is, if that node is labeled with a PSL operator); similarly, zu,v

i,t,t′ is set to true if and only if
uvω[t, t′) matches the regular expression φ[i] (that is, if that node is labeled with a regular
expression operator). Observe that we have to create both the variables yu,v

i,t and zu,v
i,t,t′ for each

node since the type of a node (whether it roots a PSL formula or a regular expression) is
determined dynamically during SAT solving.

We now list the constraints that establish the desired meaning of the variables zu,v
i,t,t′ .

∧
1≤i≤n

xi,ε →
[ ∧

0≤t≤t′<|uvb|
zu,v

i,t,t′ ↔ [t = t′]
]

(7.5)

∧
1≤i≤n

∧
p∈P

xi,p →
[ ∧

0≤t≤t′<|uvb|

zu,v
i,t,t′ if p ∈ uvb[t, t′)

¬zu,v
i,t,t′ if p ̸∈ uvb[t, t′)

]
(7.6)
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∧
1≤i≤n

i<j,j′≤n

xi,+ ∧ li,j ∧ ri,j′ →
[ ∧

0≤t≤t′<|uvb|

[
zu,v

i,t,t′ ↔ zu,v
j,t,t′ ∨ zu,v

j′,t,t′

]]
(7.7)

∧
1≤i≤n

i<j,j′≤n

xi,◦ ∧ li,j ∧ ri,j′ →
[ ∧

0≤t≤t′<|uvb|

[
zu,v

i,t,t′ ↔
∨

t≤t′′≤t′
zu,v

j,t,t′′ ∧ zu,v
j′,t′′,t′

]]
(7.8)

∧
1≤i≤n
i<j≤n

xi,∗ ∧ li,j →
[ ∧

0≤t≤t′<|uvb|

[
zu,v

i,t,t′ ↔ [t = t′] ∨
∨

t<t′′≤t′
zu,v

i,t,t′′ ∧ zu,v
j,t′′,t′

]]
(7.9)

The above constraints simply encode the semantics of all of the regular expression operators.
To ensure the meaning of variables yu,v

i,t , we reuse the already introduced constraints for
the Boolean and LTL operators, Formulas 4.8 to 4.12.

For the triggers operator, we impose the following constraint to relate the variables yu,v
i,k

and zu,v
i,j,k.

∧
1≤i≤n

i<j,j′≤n

[xi, 7→ ∧ li,j ∧ ri,j′ ]→
∧

0≤t<|uv|

[
yu,v

i,t ↔
∧

t≤t′<|uvb|

[
zu,v

j,t,t′ → yu,v
j′,Mu,v(t′−1)

]]
(7.10)

We now define Φsem
n :=

∧
uvω∈P∪N Φu,v

n as a conjunction of all the semantic constraints
discussed above.

Consistency Constraints. We finally define the formula Φcon
n as follows:

Φcon
n :=

∧
uvω∈P

yu,v
1,0 ∧

∧
uvω∈N

Φu,v
n ∧ ¬yu,v

1,0 ,

which enforces the consistency of the prospective formula with S .
We now assert the correctness of the encoding ΦSn using the following result.

Lemma 12. Let S = (P, N) be a sample, n ∈N \ {0}, and ΦSn be the propositional formula

defined above. Then, the following holds:

1. If there exists a PSL formula φ of size n that is consistent with S , then ΦSn is satisfiable.

2. If ΦSn is satisfiable, then there exists a PSL formula φ of size n that is consistent with S .

Proof. For proving the first statement, we use the syntax DAG of the formula φ, to formulate
an assignment V for the propositional variables in ΦSn . Towards this, we set V(xi,λ) = 1 if
and only if Node i is labeled with operator λ, and V(li,j) = 1 (respectively, V(ri,j) = 1) if
and only if the left (respectively, the right) child of Node i is Node j. It is easy to check that
such an assignment V satisfies the structural constraints Φstr

n (refer to the appendix of Neider
et al. [170] for more details). Further, we assign V(yu,v

i,t ) = 1 if and only if φ[i] is a PSL
formula and uvω[t, ∞) |= φ[i]; and V(zu,v

i,t,t′) = 1 if and only if φ[i] is a regular expression
and uvω[t, t′) ⊢ φ[i]. One can again check that such an assignment V satisfies Φsem

n . Finally,
since φ is consistent with S , V(yu,v

1,0 ) = 1 for uvω ∈ P and V(yu,v
1,0 ) = 0 for uvω ∈ N, and

thus V satisfies Φcon
n .
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For the second statement, first observe that v |= Φstr
n and, thus, we can exploit the valuation

of the variables xi,λ, li,j, and ri,j to construct the syntax DAG of a PSL formula φV . We now
need to show that φV is indeed consistent with the sample S .

To this end, we show that V(yu,v
i,t ) = 1 if and only if uvω[t, ∞) |= φV [i] for any t ∈

{0, . . . , |uv| − 1}; and also V(zu,v
i,t,t′) = 1 if and only if uvb[t, t′) ⊢ φV [i] for any t, t′ ∈

{0, . . . , |uvb| − 1}. This proof proceeds via induction on the structure of φV , similar to the
proof by Neider et al. [170].

We present the induction steps for the operators that appear only in PSL and not in LTL.

• In the case φV [i] = φV [j] + φV [j′], we have V(xi,+), V(li,j), and V(ri,j′) set to 1.
Now, based on Formula 7.7 we have the following:

V(zu,v
i,t,t′) = 1 ⇐⇒ V(zu,v

j,t,t′) = 1 or V(zu,v
j′,t,t′) = 1

⇐⇒ uvb[t, t′) ⊢ φV [j] or uvb[t, t′) ⊢ φV [j′]

⇐⇒ uvb[t, t′) ⊢ φV [j] + φV [j′].

• In the case φV [i] = φV [j] ◦ φV [j′], we have V(xi,◦), V(li,j), and V(ri,j′) all set to 1.
Thus, based on Formula 7.8, we have the following:

V(zu,v
i,t,t′) = 1

⇐⇒ for some t ≤ t′′ ≤ t′, V(zu,v
j,t,t′′) = 1 and V(yu,v

j′,t′′,t′) = 1

⇐⇒ for some t ≤ t′′ ≤ t′, uvb[t, t′′) ⊢ φV [j], and uvb[t′′, t) ⊢ φV [j′]

⇐⇒ uvb[t, t′) ⊢ φV [j] ◦ φV [j′].

• In the case φV [i] = (φV [j])∗, we have V(xi,∗) and V(li,j) set to 1. Thus, based on
Formula 7.9, we have the following:

V(zu,v
i,t,t′) = 1

⇐⇒

t = t′; or

for some t < t′′ ≤ t′, V(zu,v
j,t,t′′) = 1, and V(zu,v

i,t′′,t′) = 1

⇐⇒

t = t′; or

for some t < t′′ ≤ t′, uvb[t, t′′) ⊢ φV [j] and uvb[t′′, t′) ⊢ (φV [i])∗

⇐⇒ uvb[t, t′) ⊢ (φV [j])∗

• In the case φV [i] = φV [j] 7→ φV [j′], we have V(xi, 7→), V(li,j), and V(ri,j′) set to 1.
Thus, based on Formula 7.10 we make the following deductions:

V(yu,v
i,t ) = 1

⇐⇒ for all t ≤ t′ < |uvb|, V(zu,v
j,t,t′) = 1 implies V(yu,v

Mj′ ,u,v(t′−1)) = 1

⇐⇒ for all t ≤ t′ < |u|+ b|v|, uvb[t, t′) ⊢ φV [j] implies
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FIGURE 7.3: Comparison of Flie-PSL and Flie. The size of the bubbles
reflects the number of formulas. “TO” indicates timeouts.

uvω[Mu,v(t′ − 1), ∞) |= φ[j′]

⇐⇒ for all t ≤ t′ < |u|+ b|v|, uvb[t, t′) ⊢ φV [j] implies

uvω[t′ − 1, ∞) |= φ[j′]

⇐⇒ uvω[t, ∞) |= φV [j] 7→ φV [j′].

Theorem 15. Given a sample S , Algorithm 13 terminates and learns a minimal PSL formula

that is consistent with S .

Proof. The termination of this algorithm is guaranteed by the existence of a trivially large PSL
formula consistent with S . The correctness of ΦSn ensures that the algorithm finds a consistent
PSL formula of size n if one exists. Finally, the minimality of the formula is guaranteed by
the search for increasing size.

Corollary 15.1. Since PSL uses regular expressions in its syntax, a simple modification of

Algorithm 13 learns minimal regular expressions from (finite) samples of finite traces.
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7.4 Experimental Evaluation

We have implemented a prototype of our learning algorithm, named Flie-PSL (Formal
Language Inference Engine for PSL)1. This prototype is written in Python and uses Z3 [164]
as SAT solver.

Deviating slightly from the general algorithm presented in Section 7.3, we have imple-
mented the following improvement: instead of generating the variables yu,v

i,t and zu,v
i,t,t′ for each

node, we generate the latter variables (and their constraints) only for 0 ≤ m < n nodes and
the former variables (and their constraints) for the remaining n−m nodes. This effectively
limits the size of a regular expression in the final PSL formula to m. To obtain a complete
algorithm, we iterate over all valid values for m before increasing n.

To assess the performance of our prototype, we have compared it to an implementation of
the LTL learning algorithm Flie by Neider et al. [169].

7.4.1 RQ: Comparison to LTL Learning

To make the comparison to LTL learning as fair as possible, we have used two benchmark
suites. The first benchmark suite is taken directly from Neider et al. and contains 1217 samples,
which were generated from common LTL properties. The second benchmark suite is meant
to simulate real-world PSL use-cases and contains 390 synthetic samples, which we have
generated from PSL formulas that commonly appear in practice (for instance, (p1 ◦ p2)∗ 7→ q;
see [79] for more examples).

Our procedure to generate these samples is similar to the one by Neider et al. [169] and
proceeds as follows: first, we select a formula φ from our pool of PSL formulas; second, we
generate up to 500 ultimately periodic traces uvω with length ≤ 15; third, we partition these
traces into sets P and N depending on their satisfaction of φ. In total, the median size of the
samples in the second benchmark suite is 100 traces. All experiments were conducted on a
single core of an Intel Xeon E7-8857 V2 CPU (at 3.6 GHz) with a timeout of 1800 s.

Figure 7.3a presents the comparison of the runtime of Flie-PSL and Flie on the two
benchmark suites. In general, Flie-PSL is moderately slower than Flie and timed out
1.34 times more often (Flie-PSL timed out 38.4% and 56.2% of the times on the first
and second benchmark suite, respectively, whereas Flie timed out 24.8% and 53.6% of
the times). This came as a surprise to us because the SAT encoding in the case of PSL is
much more involved than the one for LTL. In fact, there were even 25 benchmarks on which
Flie-PSL outperformed Flie because it was able to learn smaller formulas.

Figure 7.3b presents the comparison of the sizes of the formulas learned by both tools. On
the first benchmark suite, we observe that Flie-PSL mainly produced pure LTL formulas of
the same size as Flie (a likely explanation for this is that these benchmarks have explicitly
been designed to capture LTL properties). However, on 68 benchmarks of the second suite,
Flie-PSL learned PSL formulas that used non-LTL operators and was able to recover the
exact PSL property that was used to generate the sample in 40 of the benchmarks. Overall,
Flie-PSL learned a smaller formula than Flie for 52 benchmarks.

1The code is publicly available at https://github.com/ifm-mpi/Flie-PSL

https://github.com/ifm-mpi/Flie-PSL
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7.5 Conclusion

We have developed an algorithm for learning human-interpretable models expressed in PSL
and have shown empirically that this algorithm infers interesting PSL formulas with only little
overhead as compared to learning LTL formulas.

An interesting direction for future work would be to syntactically restrict the class of
regular expressions to reduce the number b of unrolling required for the variables zu,v

i,t,t′ and,
hence, improve performance. Moreover, we plan to extend our algorithm to be able to handle
noisy data and, orthogonally, to learn models expressed as ω-regular expressions.
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Chapter 8

Learning Properties in
Continuous-time Temporal Logics

In this chapter, we study the passive learning of continuous-time logics, with a particular
emphasis on Metric Temporal Logic (MTL) [141]. MTL stands out for two main reasons: first,
it is widely used as a specification language for describing cyber-physical systems (CPS) [118,
157]; and second, it serves as a relatively straightforward continuous-time extension of Linear
Temporal Logic (LTL), retaining several advantages of LTL.

While MTL offers various semantics, such as discrete, dense-timepointwise, etc. [175], we
focus on the dense-time continuous semantics. This semantics is often considered to be more
natural and general than the counterparts [24, 15]. Moreover, due to its involved definition,
there is little work in automated learning for this semantics.1

Formal verification involving MTL properties is typically computationally demanding.
To mitigate this, in practice, lightweight techniques such as runtime verification are often
employed to ensure the correctness of CPS during execution. Runtime verification techniques
strike a balance between the rigor of formal verification and the resource efficiency of conven-
tional testing [66]. Thus, in this chapter, we tailor the passive learning problem with a focus
on its application in runtime verification.

Specifically, in runtime verification, we consider monitoring system executions against
formal specifications. Over the years, numerous monitoring techniques have been proposed
for a variety of specification languages [114, 72, 69, 21].

Virtually all monitoring techniques for MTL rely on the availability of a formal speci-
fication. However, manually writing specifications is a tedious and error-prone task, as we
have argued in Chapter 1. Formulating effective specifications for verification tasks remains a
significant challenge [31, 197].

To tackle the lack of formal specifications, there have been efforts to automatically learn
specifications from system executions. Most of the existing works have targeted specification
languages such as Linear Temporal Logic (LTL) [49, 169, 186] and Signal Temporal Logic
(STL) [10, 149, 160, 201], with few works for MTL [121, 228]. Many of the works tend
to learn specifications that are concise in size. Concise specifications are preferred over

1This work is considerably different from STL learning in Chapter 4 due to the choice of different (arguably,
more involved) semantics.
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large ones because, based on the principle of Occam’s razor, they are easier for humans to
understand, as we have argued in many of the previous chapters.

However, conciseness is not the only measure of interest for specifications, especially in
the context of online monitoring. In online monitoring, specifically in stream-based runtime
monitoring, a monitor reads an execution as a stream of data and verifies if a given specification
is invariant (that is, holds at all timepoints) in the execution. Many stream-based monitors [106,
129, 148] support MTL formulas. Typically, such monitors produce a stream of (Boolean)
verdicts with some “latency”, which depends on the lookahead of the formula. The lookahead
required for an MTL formula is often formalized as its future-reach [118, 122], which is the
amount of time required to determine its satisfaction at any timepoint.

With the aim of reducing the latency for efficient online monitoring, we focus on auto-
matically learning MTL specifications based on two regularizers, size and future-reach. As
input data, we rely on a sample S consisting of executions of a system that are observed for a
finite duration. We consider the sample to be partitioned into a set P of positive (or desirable)
executions and a set N of negative (or undesirable) executions.

We now formulate the central problem of learning MTL formulas as follows: given a
sample S = (P, N) and a future-reach bound K, learn a minimal size MTL formula φ that
(i) is globally-separating for S , in that φ holds at all timepoints in the positive executions
and does not hold at some timepoint in the negative executions, and (ii) the future-reach of φ

is smaller than K. The property of being globally-separating for S ensures that prospective
formula φ is invariant in the desirable executions and not in the undesirable executions, as is
typically preferred in specifications for online monitoring [26]. We expand on the problem
formulation in Section 8.2.

Also, interestingly, without a future-reach bound, the most concise MTL formula that
can be learned can have a large future-reach value, increasing the latency required for online
monitoring. To illustrate this, assume that we observe some simulations of an autonomous
vehicle. During the simulations, we sample executions (shown below) of the vehicle every
second for six seconds. We classify them as positive (denoted using ui’s) or negative (denoted
using vi’s) based on whether the vehicle encountered a collision or not.

0 1 2 3 4 5
u1: {p, q} {p} {q} {p, q} {p} {p}
u2: {q} {} {q} {p} {p} {p, q}
v1: {p} {q} {} {} {} {}
v2: {p} {p, q} {p} {} {p} {}

In the executions, we use p to denote that there is no obstacle within a particular unsafe
distance ahead of the vehicle and q to denote that the vehicle’s brake is triggered. Our setting
considers executions to be continuous. Thus, to ensure continuity of execution, in the above
example, if p occurs at timepoint t, we interpret it as p holding during the entire interval
[t, t + 1). We also assume that the executions last up to a final timepoint T, which is 6 for this
example. Thus, for the execution u1, p holds in the intervals [0, 2) and [3, 6).

In the sample, a minimal globally separating formula is φ1 = F[0,3] q. The formula φ1

being globally separating indicates that in all positive executions, the brake is triggered every
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three seconds (that is, within the interval [t, t + 3] for every timepoint t), irrespective of
whether there is an obstacle within the unsafe distance. The formula φ1 has size two and
a future-reach of three seconds, meaning that any online monitor requires a three second
lookahead window to check the satisfaction of φ1. There is another formula φ2 = ¬p →
F[0,1] q that is globally separating for the sample. The formula φ2 being globally-separating
indicates that in all positive executions, for every timepoint t, if an obstacle is within the
unsafe distance, then the brake is triggered within one second (that is, within the interval
[t, t + 1]). Although of size five, φ2 has a future-reach of one second and will be typically
preferred over φ1 for online monitoring in a safety-critical scenario.

For the problem of learning MTL formulas, we first study whether a solution exists. It
turns out that there are samples S and future-reach bound K for which there might not exist
any formula that is globally-separating for S and has future-reach within K. To aid in checking
whether a prospective formula exists, we identify a simple characterization of S based on the
future-reach K. Such a characterization enables us to design an NP algorithm that can decide
whether a prospective algorithm exists. Also, it provides an upper-bound, which is polynomial
in the inputs S and K, on the size of the prospective formula if one exists. We mention the
details of the existence check in Section 8.3.

To learn a prospective formula, we rely on a reduction to constraint satisfaction problems.
In particular, following other works in learning formulas [169, 195], our algorithm encodes the
problem in a series of satisfiability modulo theory (SMT) problems in Linear Real Arithmetic
(LRA). To our knowledge, we design the first SMT-based algorithm that can learn MTL
formulas of arbitrary syntactic structure. Such an SMT-based algorithm allows us to extend
our algorithm to work for other settings that are common in the learning of formulas [93, 154].

Further, we analyze the complexity of the decision version of the problem of learning MTL
formulas. While the exact complexity lower bounds are open, we show that the corresponding
decision problem is in NP. The central SMT-based algorithm with all the theoretical results is
in Section 8.4.

We also implement our algorithm using a popular SMT solver in a prototype named TEAL.
We evaluate the ability of TEAL to learn MTL formulas typically employed for monitoring
cyber-physical systems. We also empirically study the interplay between the size and future-
reach of a formula. We present all the experimental results in Section 8.5, with a final
discussion in Section 8.6.

Related works.

To our knowledge, there are only a limited number of works for learning MTL formulas.
One of them [228] infers MTL formulas as decision trees for representing task knowledge
in Reinforcement Learning. Some other works [121, 229] consider the parameter search
problem for MTL where, given a parametric MTL formula (that is, an MTL formula with
missing temporal bounds), they infer the ranges of parameters where the formula holds/does
not hold on a given system. Unlike our work, none of these works aim to learn concise MTL
specifications for monitoring tasks.
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There are, nevertheless, numerous runtime monitoring procedures for MTL [208, 15,
71, 118, 25, 54, 131, 148], clearly indicating the need for efficiently monitorable MTL
specifications. Many of them also rely on the future-reach of a specification [118, 25] or other
similar measures (for instance, horizon [71], worst-case propagation delay [131], etc.) to
quantify the efficiency of their monitoring procedure.

Interestingly, several works focus on learning formulas in STL, an extension of MTL to
reason about real-valued signals. Bartocci et al. [22] provide a comprehensive survey of the
existing works on inferring STL. Many of them [10, 139, 138] solve the parameter search for
STL, while others [37, 36] learn decision trees over STL formulas, which typically do not
result in concise formulas. There are few works [160, 171] that prioritize the conciseness of
formulas during inference. These works cannot be directly applied to solve our problem for
two main reasons. First, these works assume inputs to be piecewise-affine continuous signals.
While the above assumption is natural for learning STL formulas inference from real-valued
signals, in our setting, we must rely on the assumption that our inputs are piecewise-constant

signals, which is natural for Boolean-valued signals. Second, these works do not employ any
measure, apart from conciseness, that directly influences the efficiency of runtime monitoring.

Finally, there are works on learning formulas in other temporal logics such as Linear
Temporal Logic (LTL) [169, 193, 49, 186], Property Specification Language (PSL) [195], etc.,
which are not easily extensible to our setting.

8.1 Preliminaries

In this section, we introduce the basic notations used throughout the paper.

Signals and Prefixes. We represent continuous system executions as signals. A signal

x : R≥0 → 2P over a set of propositions P is an infinite time series that describes relevant
system events over time. A prefix of a signal x restricted to domain T = [0, T), T ∈ R≥0 is a
function xT : T→ 2P where xT(t) = x(t) for all t ∈ T.

To learn MTL formulas, we rely on finite observations that are sequences of the form
Ω = ⟨(ti, δi)⟩i≤n, n ∈ N such that (i) t0 = 0, (ii) tn < T, and (ii) for all i ≤ n, δi ⊆ P is
the set of propositions that hold at timepoint ti. To construct well-defined signal prefixes, we
approximate each observation Ω as a piecewise-constant signal prefix xΩ

T using interpolation
as: (i) for all i < n, for all t ∈ [ti, ti+1), xT(t) = δi; and (ii) for all t ∈ [tn, T), xT(t) = δn.
For brevity, we refer to signal prefixes simply as ‘prefixes’ when clear from the context.

Metric Temporal Logic. MTL is a logic formalism for specifying real-time properties of a
system. We consider the following syntax of MTL:

φ := p ∈ P | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 UI φ2 | FI φ | GI φ

where p ∈ P is a proposition, ¬ is the negation operator, ∧ and ∨ are the conjunction
and disjunction operators respectively, and UI ,FI and GI are the timed-Until, timed-Finally
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∨

∧ FI

pGI

q

FIGURE 8.1: Syntax DAG of (p ∧ GI q) ∨ (FI p)

and timed-Globally operators respectively. Here, I is a closed interval of non-negative real
numbers of the form [a, b] where 0 ≤ a ≤ b2. Note that the syntax is presented in negation

normal form, meaning that the ¬ operator can only appear before a proposition.
As a syntactic representation of an MTL formula, we rely on syntax-DAGs. A syntax-DAG

is similar to the parse tree of a formula but with shared common subformulas. We define the
size |φ| of an MTL formula φ as the number of nodes in its syntax-DAG, the same as LTL.
For instance, the size of (p ∧ GI q) ∨ (FI p) is six as its syntax-DAG has six nodes, as shown
in Figure 8.1.

As mentioned already, we follow the continuous semantics of MTL. First, we mention
the standard continuous semantics (|=) of MTL over infinite signals following the work
of Ouaknine et al. [175].

Given an infinite signal x, an MTL formula φ and a timepoint 0 ≤ t ∈ T, we define the
relation (x, t) |= φ, φ holds on x at timepoint t, as follows:

(x, t) |= p if and only if p ∈ x(t)

(x, t) |= ¬p if and only if p ̸∈ x(t)

(x, t) |= φ1 ∧ φ2 if and only if (x, t) |= φ1 and (x, t) |= φ2

(x, t) |= φ1 ∨ φ2 if and only if (x, t) |= φ1 or (x, t) |= φ2

(x, t) |= φ1 U[a,b] φ2 if and only if ∃t′ ∈ [t + a, t + b] : (x, t′) |= φ2 and

∀t′′ ∈ [t, t′] : (x, t′′) |= φ1

In case (x, 0) |= φ, we simply write x |= φ and say that x satisfies φ or x holds on φ.
The semantics of the FI and the GI operators can be derived using standard syntactic relations:
FI φ := trueUI φ and GI φ = ¬ FI φ.

While the above semantics is the standard one, our setting demands semantics of MTL
over finite prefixes such that the learned formulas will be ‘useful’ while monitoring over
infinite signals. Intuitively, we want an ‘optimistic’ semantics (|=f) of an MTL formula φ

over a prefix xT such that xT |=f φ if there exists an infinite signal extending xT that satisfies
φ. In other words, xT “carries no evidence against” the formula φ. Formally, we want the
definition of |=f to satisfy the following lemma.

2Since we infer MTL formulas with bounded lookahead, we restrict I to be bounded.
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Lemma 13. Given a prefix xT, let ext(xT) = {x | xT is a prefix of x} be the set of all infinite

extensions of xT. Then given an MTL formula φ, xT |=f φ if there exists x ∈ ext(xT) such

that x |= φ.

Towards this, we follow the idea of ‘weak semantics’ of MTL defined in [118]3 and
interpret MTL over finite prefixes. Given a prefix xT, we inductively define (xT, t) |=f φ,
that is, φ holds on x at timepoint t ∈ T, as follows:

(xT, t) |=f p if and only if p ∈ xT(t);

(xT, t) |=f ¬p if and only if p ̸∈ xT(t);

(xT, t) |=f φ1 ∧ φ2 if and only if (xT, t) |=f φ1 and (xT, t) |=f φ2;

(xT, t) |=f φ1 ∨ φ2 if and only if (xT, t) |=f φ1 or (xT, t) |=f φ2;

(xT, t) |=f φ1 U[a,b] φ2 if and only if

• ∃t′ ∈ [t + a, t + b] ∩T : (xT, t′) |=f φ2 and ∀t′′ ∈ [t, t′] : (xT, t′′) |=f φ1, or

• T ≤ t + b and ∀t′′ ∈ [t, T) : (xT, t′′) |=f φ1

(xT, t) |=f F[a,b] φ if and only if t + b ≥ T or ∃t′ ∈ [t + a, t + b] ∩T : (xT, t′) |=f φ;

(xT, t) |=f G[a,b] φ if and only if t + a ≥ T or ∀t′ ∈ [t + a, t + b] ∩T, (xT, t′) |=f φ

In case (xT, 0) |=f φ, we simply write xT |=f φ and say that xT satisfies φ or φ holds on xT.
Also, for ensuring that our semantics complies with Lemma 13, we define (xT, t) |=f φ for
all t ≥ T for any φ.

We prove that our chosen semantics satisfy the property described in Lemma 13.

Proof of Lemma 13. We, in fact, prove a stronger statement from which Lemma 13 follows:
for all t ∈ [0, T), (xT, t) |=f φ if there exists a signal x ∈ ext(xT) such that (x, t) |= φ.

The proof now proceeds via an induction on the MTL formula φ.

• For the base case, let φ = p ∈ P . Then, for all t ∈ [0, T), if there exists x ∈ ext(xT)

such that (x, t) |= p, then (xT, t) |=f p since (x, t) |= φ and thus, (xT, t) |= φ. The
same argument extends to the ¬ operator.

• Let φ = φ1 ∧ φ2. Then, for all t ∈ [0, T), if there exists x ∈ ext(xT) such that
(x, t) |= φ1 and (x, t) |= φ2. Then, (xT, t) |=f φ1 and (xT, t) |=f φ2 by induction
hypothesis. The same argument extends to the ∨ operator.

• Let φ = φ1 U[a,b] φ2 and fix a timepoint t ∈ [0, T). We have to prove if there exists a
signal x ∈ ext(xT) such that, (x, t) |= φ, then (xT, t) |=f φ. Now by definition of |=,
∃t′ ∈ [t + a, t + b] such that, (x, t′) |= φ2 and for all t′′ ∈ [t, t′], (x, t′) |= φ1. Now
there are three cases: (i) t + b < T: in this case, (xT, t) |=f φ1 U[a,b] φ2 by definition
of |=f, (ii) T ≤ t′ ≤ t + b: in this case, ∀t′′ ∈ [t, T), (xT, t′′) |=f φ1 and hence,
(xT, t′′) |=f φ, and (iii) t′ < T ≤ t + b: this case is similar to the first case.

The cases for φ = F[a,b] ψ and φ = G[a,b] ψ can be proved similarly using case analysis.
3Following Eisner et al. [80], Ho et al. [118] defined the weak semantics of MTL for the pointwise setting,

which we adapt here for the continuous setting.
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8.2 Problem Formulation

Next, we formally introduce the various aspects of the central problem of the paper.

Sample. The input data consists of a set of labeled (piecewise-constant) prefixes. Formally,
we rely on a sample S = (P, N) consisting of a set P of positive prefixes and a set N of
negative prefixes such that P ∩ N = ∅.

We say an MTL formula φ is globally-separating (G -sep, for short) for S if it satisfies
all the positive prefixes at each timepoint and does not satisfy negative prefixes at some
timepoint4. Formally, given a sample S , we define an MTL formula φ to be G -sep for S if
(i) for all xT ∈ P and for all t ∈ [0, T), (xT, t) |=f φ; and (ii) for all yT ∈ N, there exists
t ∈ [0, T) such that (yT, t) ̸|=f φ.

Future-Reach. To formalize the lookahead of an MTL formula φ, we rely on its future-reach
fr(φ), following [122, 118], which indicates how much of the future is required to determine
the satisfaction of φ. It is defined inductively as follows:

fr(p) = fr(¬p) = 0

fr(φ1 ∧ φ2) = fr(φ1 ∨ φ2) = max(fr(φ1), fr(φ2))

fr(φ1 U[a,b] φ2) = b + max(fr(φ1), fr(φ2))

fr(F[a,b] φ) = fr(G[a,b] φ) = b + fr(φ)

To highlight that fr(φ) quantifies the lookahead of φ, we observe the following lemma:

Lemma 14. Let φ be an MTL formula such that fr(φ) ≤ K for some K ∈ R≥0. Let x and

y be two signals such that x[0,K] = y[0,K]. Then, for all T ∈ R≥0, xT |=f φ if and only if

yT |=f φ.

Intuitively, the above lemma states that a formula with future-reach≤ K cannot distinguish
between two signals that are identical up to time K. We prove the lemma below.

Proof of Lemma 14. We will prove this by induction on the structure of φ. In particular, we
will prove the following:

For any K, let φ be a formula with fr(φ) ≤ K and x and y be two signals such that
x[0,K] = y[0,K]. Then, for all T ∈ R≥0, xT |=f φ if and only if yT |=f φ.

- For the base case, let φ = p. Then, p ∈ xT(0) and as x[0,K] = y[0,K], p ∈ yT(0). Hence,
yT |=f p. This can be similarly seen for the case where φ = ¬p.

- The proof for the cases where φ = φ1 ∨ φ2 or φ = φ1 ∧ φ2 can be derived easily.
- Let φ = F[a,b] φ1. Let us fix a T such that xT |=f F[a,b] φ. If b ≥ t, then yT |=f F[a,b] φ

trivially. If not, then there exists a timepoint t ∈ [a, b] such that (xT, t) |=f φ1. Now, let x′ =
x[t:] and y′ = y[t:] be the signals obtained by shifting the original signals by −t. Formally,
∀t′ ∈ R≥0, x′(t′) = x(t′ + t) and y′(t′) = y(t′ + t). Note that, x′[0,K−t] = y′

[0,K−t]. Also,

4Most stream-based monitors check if the specification holds at every timepoint [26].
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fr(φ1) = fr(φ) − b ≤ K − b ≤ K − t and x′[0,K−t] |=f φ. Then, following induction
hypothesis, y′

[0,K−t] |=f φ1 which implies that (yT, t) |=f φ1. Hence, yT |=f F[a,b] φ. The
case where φ = G[a,b] φ1 can be proved similarly.

- Let φ = φ1 U[a,b] φ2. Again, similar to above, fix a T such that xT |=f φ1 U[a,b] φ2.
Let us first assume that b ≤ T. Then, ∃t ∈ [a, b] such that (xT, t) |=f φ2 and ∀t′ ∈ [0, t],
(xT, t′) |=f φ1. Now as fr(φ1) and fr(φ2) are both ≤ K − b ≤ K − t. Hence, again using
similar methods as above, one can prove that (yT, t) |=f φ2 and ∀t′ ∈ [0, t], (yT, t′) |=f φ1.
Hence, yT |=f φ1 U[a,b] φ2.

We are now ready to formally introduce the problem of learning an MTL formula. In the
problem, we ensure that the MTL formula is efficient for monitoring by allowing the system
designer to specify a future-reach bound.

Problem 9 (LEARNMTL). Given a sample S = (P, N) and a future-reach bound K, learn

an MTL formula φ such that

1. φ is G -sep for S;

2. fr(φ) ≤ K; and

3. for every MTL formula φ′ such that φ′ is G -sep for S and fr(φ′) ≤ K, |φ| ≤ |φ′|.

Intuitively, the above optimization problem asks to learn a minimal size MTL formula that
is G -sep for the input sample and has a future-reach within the input bound. Before we dive
into the procedure for finding such an MTL formula, we first study if such an MTL formula
even exists.

8.3 Existence of a Solution

As alluded to in the introduction, for any given sample S and future-reach bound K, the
existence of a prospective formula is not always guaranteed. For an illustration, consider
the sample S with one positive prefix xT = ⟨(0, {q}), (2, {})⟩ and one negative prefix
yT = ⟨(0, {q})⟩, and domain T = [0, 4). For this sample, there is no formula φ with
fr(φ) ≤ 1 that is G -sep. To see this, assume that a prospective formula φ exists. Since
φ must be G -sep, (xT, 0) |= φ. Next, observe that, for all time-points t ∈ T, yT when
restricted to time interval [t, t + 1]∩T appears identical to xT when restricted to time interval
[0, 1] since φ has future-reach is 1 (using Lemma 14). Thus, for all time-points t ∈ T,
(yT, t) |= φ violating that φ is G -sep.

What we show now is that one can check whether a prospective formula exists by relying on
a simple characterization of the inputs S and K. Towards this, we introduce some terminology.

We define an infix of a prefix xT as the restriction of xT to a specific time interval.
Specifically, given two time-points t1 ≤ t2 < T and a prefix xT, infix x[t1,t2]

T is the function
x[t1,t2]

T : [0, t2 − t1]→ 2P such that x[t1,t2]
T (t) = xT(t + t1) for all t ∈ [0, t2 − t1].

Next, we define a characterization of a sample S based on the future-reach K, which we
term as K-infix-separable. Intuitively, we say S to be K-infix-separable if there is a K-length
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infix y[t1,t2]
T for every negative prefix yT in S that is not an infix of any positive prefix in S .

Formally, S = (P, N) is K-infix-separable if for every negative prefix yT ∈ N, there exists

an infix y[t1,t2]
T with t2 − t1 ≤ K such that y[t1,t2]

T ̸= x[t
′
1,t
′
2]

T for any infix x[t
′
1,t
′
2]

T of any positive
prefix xT ∈ P.

We now state the result that enables checking the existence of a solution to Problem 9.

Lemma 15. For a given sample S and future-reach bound K, there exists an MTL formula φ

with fr(φ) ≤ K that is G -sep for S if and only if S is K-infix-separable.

Proof. (⇒) For the forward direction, consider φ to be an MTL formula with fr(φ) ≤ K that
is G -sep for S . Since φ is G -sep, for any arbitrary negative prefix, say ȳT, there must be
a time-point, say t̄ < T, such that (ȳT, t̄) ̸|= φ. If t̄ + K < T, we show by contradiction
that the infix ȳ[t̄,t̄+K]

T is not an infix in any positive prefix. In particular, if ȳ[t̄,t̄+K]
T = x[t,t+K]

T ,
then (xT, t) ̸|= φ as φ cannot distinguish between signals that are identical up to time K
(using Lemma 14). If t̄ + K ≥ T, the semantics of MTL being weak, there is an L < K
with t̄ + L < T such that for any y ∈ ext(y[0,t̄+L]

T ), (y, t) ̸|= φ (using Lemma 13). Once
again, we show by contradiction that the infix ȳ[t̄,t̄+L]

T is not an infix in any positive prefix.
In particular, if ȳ[t̄,t̄+L]

T = x[t,t+L]
T , then for all x ∈ ext(x[0,t+L]

T ) (x, t) ̸|= φ. Also, for any
x ∈ ext(xT) (x, t) ̸|= φ, meaning (xT, t) ̸|= φ (again, using Lemma 13).

(⇐) For the other direction, consider S to be K-infix-separable. Using the definition
of K-infix-separable, for any arbitrary negative prefix, say ȳT, we have an infix ȳ[t1,t2]

T with
t2 − t1 ≤ K that is not an infix in any positive prefix. We construct a formula φȳT

that
explicitly specifies the propositions appearing in each interval of the infix ȳ[t1,t2]

T using G and
∧ operators. Observe that fr(φȳT

) ≤ K since t2 − t1 ≤ K in ȳ[t1,t2]
T . Now, the formula ¬φxT

holds at all time-points in all positive prefixes, while it does not hold at time-point t1 in ȳT.
We finally construct the prospective formula as φ =

∧
yT∈N ¬φyT

which is G -sep for S and
also, fr(φ) ≤ K.

We now describe an NP algorithm to check whether a sample S is K-infix-separable. The
crux of the algorithm is to guess, for each negative prefix yT, an infix y[t1,t2]

T with t2 − t1 ≤ K
and then check whether it is an infix of any positive prefix. The procedure of checking involves
comparing y[t1,t2]

T against the possible infixes of the positive prefixes.
To describe the checking procedure in detail, let ȳ[t1,t2]

T be an infix of the negative prefix
ȳT. Suppose we like to check whether ȳ[t1,t2]

T is an infix of the positive prefix x̄T. For this,
we check ȳ[t1,t2]

T = x̄[t,t+(t2−t1)]
T with only those infixes where the observation timepoints of

xT and yT coincide. Precisely, we check ȳ[t1,t2]
T = x̄[t,t+(t2−t1)]

T for all those infixes of x̄T

where t′′ − t = t′ − t1, t′′ and t′ being the timepoints where xT and yT have been observed,
respectively. This procedure is based on the fact that the changes in an infix occur only at
the observation timepoints. Also, this procedure requires polynomial time in the number of
observation timepoints of x̄T and ȳT. We can now perform the procedure for each positive
and negative prefix. Overall, we have the following result.

Lemma 16. Given a sample S and future-reach bound K, checking whether S is

K-infix-separable is in NP.
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Algorithm 14 Overview of our algorithm
Input: Sample S , fr-bound K

1: if S is not K-infix-separable then
2: return No prospective formula
3: end if
4: n← 0
5: while True do
6: n← n + 1
7: Construct Φn

S ,K := Φstr
n,S ,K ∧Φfr

n,S ,K ∧Φsem
n,S ,K ∧Φcon

n,S ,K
8: if Φn

S ,K is SAT then
9: Construct φv from a satisfying assignment v

10: return φv

11: end if
12: end while

8.4 An SMT-based Algorithm

Our algorithm relies on an SMT-based approach inspired by the numerous constraint
satisfaction-based approaches for learning temporal logic formulas [169, 48, 195, 8]. Roughly
speaking, our algorithm constructs a series of formulas in Linear Real Arithmetic (LRA) and
uses an optimized SMT solver to search for the desired solution. We refer to the preliminaries
of the thesis for the definition of LRA (Section 2.2.2).

Algorithm Overview. Our algorithm constructs a series of LRA formulas ⟨Φn
S ,K⟩n=1,2,...

to facilitate the search for a suitable MTL formula. The formula Φn
S ,K has the following

properties:

1. Φn
S ,K is satisfiable if and only if there exists an MTL formula φ of size n such that φ is

G -sep for S and fr(φ) ≤ K.

2. from a satisfying assignment v of Φn
S ,K, one can construct an appropriate MTL formula

φv.

In our algorithm, sketched in Algorithm 14, we first check whether S is K-infix-separable
(as described in Section 8.3) which informs us whether a prospective formula exists. We now
check the satisfiability of Φn

S ,K for increasing values of size n starting from 1. If Φn
S ,K is

satisfiable for some n, then our algorithm constructs a prospective MTL formula φv from a
satisfying assignment v returned by the SMT solver. This algorithm terminates because of
checking whether a solution exists apriori, and it returns a minimal formula because of the
iterative search through MTL formulas of increasing sizes.

The crux of our algorithm lies in the construction of the formula Φn
S ,K. Internally,

Φn
S ,K := Φstr

n,S ,K ∧Φfr
n,S ,K ∧Φsem

n,S ,K ∧Φcon
n,S ,K

is a conjunction of three subformulas, each with a distinct role. The subformula Φstr
n,S ,K

encodes the structure of the prospective MTL formula φ. The subformula Φfr
n,S ,K ensures
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that the future-reach of φ is less than or equal to K. The subformula Φsem
n,S ,K ensures that φ

is interpreted on the signals in S using the semantics of MTL. Finally, Φcon
n,S ,K ensures that

φ is G -sep for S . In what follows, we expand on the construction of each of the introduced
subformulas. We drop the subscripts n, S , and K from the subformulas when clear from the
context.

Structural Constraints. Following Neider and Gavran [169], we symbolically encode
the syntax-DAG of the prospective MTL formula using the formula Φstr. We fix a naming
convention for the nodes of the syntax-DAG of an MTL formula, similar to that of LTL (see
Section 4.1.2).

Next, to encode a syntax-DAG symbolically, we introduce the following variables5: (i)
Boolean variables xi,λ for i ∈ {1, . . . , n} and λ ∈ P ∪ {¬,∨,∧,UI ,FI ,GI}; (ii) Boolean
variables li,j and ri,j for i ∈ {1, . . . , n} and j ∈ {i + 1, . . . , n}; (iii) real variables ai and bi

for i ∈ {1, . . . , n}.
The variable xi,λ tracks the operator labeled in Node i, meaning, xi,λ is set to true if and

only if Node i is labeled with λ. The variable li,j (respectively, ri,j) tracks the left (respectively,
right) child of Node i, meaning, li,j (respectively, ri,j) is set to true if and only if the left
(respectively, right) child of Node i is Node j. Finally, the variable ai (respectively, bi) tracks
the lower (respectively, upper) bound of the interval I of a temporal operator (that is, operators
UI , FI and GI), meaning that, if ai (respectively bi) is set to a ∈ R (respectively, b ∈ R), then
the lower (respectively, upper) bound of the interval of the operator in Node i is a (respectively,
b). While we introduce variables ai and bi for each node, they become relevant only for the
nodes that are labeled with a temporal operator.

We now impose structural constraints on the introduced variables to ensure they encode
valid MTL formulas. These constraints are similar to the ones proposed by Neider and
Gavran [169] and the ones shown in Formulas 4.4 to 4.7. The subformula Φstr is a conjunction
of all the structural constraints we described. Using a satisfying assignment v of Φstr, one can
construct the syntax DAG of a unique MTL formula φv.

Future-reach Constraints. To symbolically compute the future-reach of the prospective
formula φ, we encode the inductive definition of the future-reach, as described in Section 8.2
in an LRA formula. To this end, we introduce real variables fi for i ∈ {1, . . . , n} to encode the
future-reach of the subformula φ[i]. Precisely, fi is set to f ∈ R if and only if fr(φ[i]) = f .

To ensure the desired meaning of the fi variables, we impose the following constraints:

∧
1≤i≤n

xi,p →
[

fi = 0
]
∧

∧
1≤i≤n
i<j≤n

(
xi,¬ ∧ li,j

)
→
[

fi = f j
]
∧

∧
1≤i≤n

i≤j,j′≤n

(
(xi,∨ ∨ xi,∧) ∧ li,j ∧ ri,j′

)
→
[

fi = max( f j, f ′j )
]
∧

5We include Boolean variables in our LRA formulas since Boolean variables can always be simulated using
real variables that are constrained to be either 0 or 1.
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∧
1≤i≤n
i<j≤n

(
xi,FI ∧ li,j

)
→
[

fi = f j + bi
]
∧

∧
1≤i≤n
i<j≤n

(
xi,GI ∧ li,j

)
→
[

fi = f j + bi
]

The above constraints are based on the definition of future-reach of different MTL operators,
as outlined in Section 8.2.

Finally, to enforce that the future-reach of the prospective MTL formula is within K, along
with the constraints mentioned above, we have f1 ≤ Kin Φfr.

Semantic Constraints. To symbolically check whether the prospective formula is G -sep,
we must encode the procedure of checking the satisfaction of an MTL formula into an LRA
formula. To this end, we rely on the monitoring procedure devised by Maler et al. [157] for
efficiently checking when a signal satisfies an MTL formula. Since our setting is slightly
different, we take a brief detour via the description of our adaptation of the monitoring
algorithm.

Given an MTL formula φ and a signal prefix xT, our monitoring algorithm computes the
(lexicographically) ordered set Iφ(xT) = {I1, · · · , Iη} of maximal disjoint time intervals

I1, · · · , Iη where φ holds on xT. Mathematically speaking, the following property holds for
the set Iφ(xT) we construct:

Lemma 17. Given an MTL formula φ and a prefix xT, for all t ∈ T, (xT, t) |=f φ if and only

if t ∈ I for some I ∈ Iφ(xT).

In our monitoring algorithm, we compute the set Iφ(xT) inductively on the structure
of the formula φ. To describe the induction, we use the notation I∪φ (xT) =

⋃
I∈Iφ(xT) I

to denote the union of the intervals in Iφ(xT). For the base case, we compute Ip(xT) for
every p ∈ P by accumulating the timepoints t ∈ [0, T) where (xT, t) |=f p into maximal
disjoint time intervals. In the inductive step, we exploit the relations presented in Table 8.1
for the different MTL operators. In the table, [t1, t2) ⊖ [a, b] = [t1 − b, t2 − a) ∩ T and
I c = T− I . While the table presents the computation of I∪φ (xT), we can obtain Iφ(xT) by

TABLE 8.1: The relations for inductive computation of I∪φ (xT).

I∪¬p(xT) =
(
I∪p (xT)

)c

I∪φ1∨φ2
(xT) = I∪φ1

(xT) ∪ I∪φ2
(xT)

I∪φ1∧φ2
(xT) = I∪φ1

(xT) ∩ I∪φ2
(xT)

I∪F[a,b] φ(xT) =
(⋃

I∈Iφ(xT) I ⊖ [a, b]
)
∪ [T − b, T)

I∪G[a,b] φ(xT) =
(⋃

I∈(Iφ(xT))c I ⊖ [a, b]
)c ∪ [T − a, T)

I∪φU[a,b] ψ(xT) =
⋃

Iφ∈Iφ(xT)
⋃

Iψ∈Iψ(xT)

((
(Iφ ∩ Iψ)⊖ [a, b]

)
∩ Iφ

)
∪ IT,

where IT =

{
[max(T − b, t), T), if ∃t s.t. [t, T) ∈ Iφ(xT)

∅, otherwise

simply partitioning I∪φ (xT) into maximal disjoint intervals.
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For an illustration, we consider the example from the introduction and compute Iφ2
(u1)

where u1 is the first positive prefix, φ2 = p ∨ F[0,1] q, and T = [0, 6). First, we have
Ip(u1) = {[0, 2), [3, 6)} and Iq(u1) = {[0, 1), [2, 4)}. Now, we can compute IF[0,1] q(u1) =

{[0, 4), [5, 6)} and then Ip∨F[0,1] q(u1) = {[0, 6)}. Now, we formally prove Lemma 17 that
proves the correctness of our construction of Iφ(xT) given a prefix xT.

Proof of Lemma 17. We prove both directions together by induction on the structure of the
formula φ.

For the base case, one can check that for all t ∈ [0, T), t ∈ Ip(xT) if and only if t ∈ I for
some I ∈ Iφ(xT) by construction. The proof for the ¬ operator and the boolean connectives
∧ and ∨ follow from the correctness of the construction in the work of Maler et al. [157].
Here, we provide the proof for the F[a,b] operator. The proofs for the U[a,b] and G[a,b] can be
obtained similarly.

Let φ = F[a,b] ψ. To show the forward direction, let t ∈ I for some I ∈ Iφ(xT). We
now need to prove (xT, t) |=f F[a,b] ψ. In particular, t ∈ I∪φ (xT) by definition, that is,
t ∈

(⋃
I∈Iψ(xT) I ⊖ [a, b]

)
∪ [T− b, T). There are two cases: (i) t ∈ [T− b, T): in this case,

t + b ≥ T and by definition of |=f, (xT, t) |=f φ, or (ii) t ∈
(⋃

I∈Iψ(xT) I ⊖ [a, b]
)
: Fix the

interval I′ = [t1, t2) ∈ Iψ(xT) such that, t ∈ (I′ ⊖ [a, b]). By induction hypothesis, for all
t′ ∈ I′, (xT, t′) |=f ψ. Now, t < t2 − a =⇒ t + a < t2 and t ≥ t1 − b =⇒ t + b ≥ t1.
Hence, I′ = [t1, t2) ⊃ [t + a, t + b]. Hence, ∃t′ ∈ [t + a, t + b] such that, (xT, t′) |=f ψ and
henceforth, (xT, t) |=f φ.

For the other direction, we assume that (xT, t) |=f F[a,b] ψ and prove that t ∈ I for some
I ∈ Iφ(xT). In particular, we show that t ∈ I∪φ (xT) =

(⋃
I∈Iψ(xT) I ⊖ [a, b]

)
∪ [T − b, T).

The rest of the argument follows from the fact that Iφ(xT) is obtained by taking the maximal
disjoint intervals of I∪φ (xT). Now, by definition of |=f, there are two possibilities: (i)
t + b ≥ T: then, t ∈ [T − b, T) and, hence, t ∈ I∪φ (xT), or (ii) ∃t′ ∈ [t + a, t + b]
such that, (xT, t′) |=f ψ. Now, by induction hypothesis, t′ ∈ I for some I ∈ Iψ(xT).
Let I = [t1, t2). Now, t2 − a > t′ − a ≥ t and t1 − b ≤ t′ − b ≤ t. This implies that,
t ∈ [t1 − b, t2 − a) = (I ⊖ [a, b]) which proves that, t ∈ I∪φ (xT).

In the monitoring algorithm, the number of maximal intervals required in Iφ(xT) is
upper-bounded byM = µ|φ|, where µ = max({|Ip(xT)| | p ∈ P}), as also observed
by Maler et al. [157]. The computation of this bound can also be done inductively on the
structure of φ.

Now, in the subformula Φsem, we symbolically encode the set Iφ(xT) of our prospective
MTL formula φ. To this end, we introduce variables tl

i,m,s and tr
i,m,s where i ∈ {1, . . . , n},

m ∈ {1, . . . ,M}, and s ∈ {1, . . . , |S|}, s being an identifier for the sth prefix xs
T in S . The

variables tl
i,m,s and tr

i,m,s encode the mth interval of Iφ[i](xs
T) for the subformula φ[i]. In other

words, tl
i,m,s = t1 and tr

i,m,s = t2 if and only if [t1, t2) is the mth interval of Iφ[i](xs
T).

Now, to ensure that the variables tl
i,m,s and tr

i,m,s have their desired meaning, we introduce
constraints for each operator based on the relations defined in Table 8.1. We now present these
constraints for the different MTL operators.
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For the ¬ operator, we have the following constraints:

∧
1≤i≤n
i<j≤n

xi,¬ ∧ li,j →
[ ∧

1≤s≤|S|
comps(i, j)

]
,

where, for every xs
T in S , comps(i, j) encodes that I∪φ[i](xs

T) is the complement of I∪φ[j](xs
T) .

We construct comps(i, j) as follows:

ite(tl
j,1,s = 0, (8.1)∧

1≤m≤M−1

tl
i,m,s = tr

j,m,s ∧ tr
i,m,s = tl

j,m+1,s, (8.2)

tl
i,1,s = 0∧ tr

i,1,s = tl
j,1,s∧ (8.3)∧

1≤m≤M−1

tl
i,m+1,s = tr

j,m,s ∧ tr
i,m+1,s = tl

j,m+1,s),

where ite is a syntactic sugar for the “if-then-else” construct over LRA formulas, which is
standard in many SMT solvers. Here, Condition 8.1 checks whether the left bound of the first
interval of Iφ[j](xs

T), encoded by tl
j,1,s, is 0. If that holds, as specified by Formula 8.2, the left

bound of the first interval of Iφ[i](xs
T), encoded by tl

1,i,s, will be the right bound of the first
interval of Iφ[j](xs

T), encoded tr
1,j,s and so on. If Condition 8.1 does not hold, as specified by

Formula 8.3, the left bound of the first interval of Iφ[i](xs
T) will start with 0, and so on.

As an example, for a prefix xs
T and T = [0, 7), let Iφ[j](xs

T) = {[0, 4), [6, 7)}. Then,
Formula 8.2 ensures that Iφ[i](xs

T) = {[4, 6)}6. Conversely, if Iφ[j](xs
T) = {[1, 4), [6, 7)},

then Formulas 8.3 ensures that Iφ[i](xs
T) = {[0, 1), [4, 6)}.

For the ∨ operator, we have the following constraint:

∧
1≤i≤n

i<j,j′≤n

xi,∨ ∧ li,j ∧ ri,j′ →
[ ∧

1≤s≤|S|
unions(i, j, j′)

]
,

where, for every xs
T in S , unions(i, j, j′) encodes that Iφ[i](xs

T) consists of the maximal
disjoint intervals obtained from the union of the intervals in Iφ[j](xs

T) and Iφ[j′](xs
T). We

construct unions(i, j, j′) as follows:

∧
σ∈[l,r]

∧
1≤m≤M

( ∨
1≤m′≤M

(tσ
i,m,s = tσ

j,m′,s) ∨
∨

1≤m′≤M
(tσ

i,m,s = tσ
j′,m′,s)

)
∧ (8.4)

∧
σ∈[l,r]

∧
1≤m≤M

( ∨
1≤m′≤M

(tσ
i,m,s = tσ

j,m′,s) ⇐⇒
∧

1≤m′′≤M
(tσ

j,m′,s ̸∈ Ij′,m′′,s)

)
∧ (8.5)

∧
σ∈[l,r]

∧
1≤m≤M

( ∨
1≤m′≤M

(tσ
i,m,s = tσ

j′,m′,s) ⇐⇒
∧

1≤m′′≤M
(tσ

j′,m′,s ̸∈ Ij,m′′,s)

)
, (8.6)

where Ik,m,s denotes the interval encoded by bounds tl
k,m,s and tr

k,m,s
7. Here, Formula 8.4

6|I
φ[i](xs

T)| may differ for different subformulas φ[i]; we address this at the end of this section.
7In LRA, t ̸∈ [t1, t2) can be encoded as t < t1 ∨ t ≥ t2.
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states that the left (respectively, right) bound of each interval of Iφ[i](xs
T), encoded by tl

i,m,s

(respectively, tr
i,m,s) corresponds to one of the left (respectively, right) bounds of the intervals

in Iφ[j](xs
T) or in Iφ[j′](xs

T). Then, Formula 8.5 states that for each interval I in Iφ[j](xs
T),

the left (respectively, right) bound of I should appear as the left (respectively, right) bound of
some interval in Iφ[i](xs

T) if and only if the left (respectively, right) bound of I is not included
in any of the intervals in Iφ[j′](xs

T). Formula 8.6 mimics the statement made by Formula 8.5
but for the bounds of the intervals in Iφ[j′](xs

T).
For an illustration, assume that Iφ[j](xs

T) = {[1, 4), [6, 7)} and Iφ[j′](xs
T) =

{[3, 5), [6, 7)} for a prefix xs
T and T = 7. Now, if φ[i] = φ[j] ∨ φ[j′], then Iφ[i](xs

T) =

{[1, 5), [6, 7)} based on the relation for ∨-operator in Table 8.1. Observe that all the bounds
of the intervals in Iφ[i](xs

T), that is, 1, 5, 6, and 7, are present as the bounds of the intervals
in either Iφ[j](xs

T) or Iφ[j′](xs
T). This fact is in accordance with Formula 8.4. Also, the

right bound of [1, 4) in Iφ[j](xs
T) does not appear as a bound of any intervals in Iφ[i](xs

T),
as it is included in an interval in Iφ[j′](xs

T), that is, 4 ∈ [3, 5). This is in accordance with
Formula 8.5.

Next, for the FI-operator where I is encoded using ai and bi, we have the following
constraint:

∧
1≤i≤n
i<j≤n

xi,FI ∧ li,j →
[ ∧

1≤s≤|S|
union′s(i, k, k) ∧⊖[ai ,bi ]

s (k, j)
]
.

based on the relation for the F[a,b] operator in Table 8.1. We here rely on an intermediate set of
intervals Ĩk encoded using some auxiliary variables t̃l

k,m,s and t̃r
k,m,s where m ∈ {1, . . . ,M}

and s ∈ {1, . . . , |S|}. Also, we use the formula ⊖[ai ,bi ]
s (k, j) to encode that the intervals in

Ĩk can be obtained by performing I ⊖ [a, b] to each interval I in Iφ[j](xs
T), where ai = a and

bi = b. Finally, the formula union′(i, k, k) encodes that Iφ[i](xs
T) consists of the maximal

disjoint intervals obtained from the union of the intervals in Ĩk and {[T − b, T)}.
The construction of union′(i, k, k) is similar to that of union(i, j, j′), in the sense that the

constraints involved are similar to Formulas 8.4 to 8.6. For⊖[ai ,bi ]
s (k, j), we have the following

constraint:

∧
1≤m≤M−1

[
t̃l
k,m,s = max{0,

(
tl

j,m,s − bi

)
} ∧ t̃r

k,m,s = max{0,
(

tr
j,m,s − ai

)
}
]

(8.7)

As an example, consider Iφ[j](xs
T) = {[1, 4), [6, 7)} for a prefix xs

T and T = 7. Now, if
φ[i] = F[1,4] φ[j], then first we have Ĩk = {[0, 3), [2, 6)} based on Formula 8.7 8. Next, we
have Iφ[i](xs

T) = {[0, 7)} which consists of the maximal disjoint intervals from Ĩk ∪ {[T −
4, T)} = {[0, 3), [2, 6), [3, 7)} using union′(i, k, k).

8While the intervals in Ĩk may not be disjoint, union′(i, k, k) ensures that I
φ[i](xs

T) consists of only maximal
disjoint intervals.
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For the UI operator, we have the following constraint:

∧
1≤i≤n

i<j,j′≤n

xi,UI ∧ li,j ∧ ri,j′ →
[ ∧

1≤s≤|S|
intersections(k1, j, j′) ∧⊖[ai ,bi ]

s (k2, k1)

∧cond−ints(k3, k2, j) ∧ unions(i, k3, k3)
]

Here, we introduce three intermediate set of intervals Ĩk1 , Ĩk2 and Ĩk3 encoded using auxiliary
variables t̃l

ki ,m,s and t̃r
ki ,m,s where i ∈ {1, 2, 3}, m ∈ {1, . . . ,M} and s ∈ {1, . . . , |S|}.

Similar to the constraints for the ∨ operator, we denote an interval in Ĩki as Iki ,m,s where,
Iki ,m,s = [t̃l

ki ,m,s, t̃r
ki ,m,s). Now, intersections(k1, j, j′) encodes that Ĩk1 consists of the maximal

disjoint intervals obtained from the intersection of the intervals in Iφ[j](xs
T) and Iφ[j′](xs

T).
Note that the intersection can be achieved using the unions and the comps operators based
on De Morgan’s law, A ∩ B = (Ac ∪ Bc)c. Then, ⊖[ai ,bi ]

s (k2, k1) denotes that the intervals in
Ĩ(k2) can be obtained by performing I ⊖ [a, b] to each interval in Ĩk1 using constraint 8.7.

Next, the operator cond− ints(k3, k2, j) denotes that the mth interval in Ĩ(k3) (Ik3,m,s) is
obtained by taking the intersection of the mth interval in Ĩ(k2) (Ik2,m,s) and the m′th interval
in Iφ[j](xs

T) (Ij,m′,s) such that, Ik1,m,s (Ik2,m,s = Ik1,m,s ⊖ [a, b], by construction) is a subset of
Ij,m′,s. This can be achieved by encoding cond− ints(k3, k2, j) as the following constraint:

∧
1≤m≤M

∧
1≤m′≤M

(Ik1,m,s ⊆ Ij,m′,s)→ Ik3,m,s = Ik2,m,s ∩ Ij,m′,s

Note that the subset check and the intersection of two intervals both allow simple encodings
in LRA. Finally, the formula unions(i, k3, k3) encodes that Iφ[i](xs

T) consists of the maximal
disjoint intervals obtained from the union of the intervals in Ĩk3 .

For an illustration, assume that Iφ[j](xs
T) = {[1, 3), [5, 8)} and Iφ[j′](xs

T) =

{[4, 6), [7, 9)} for a prefix xs
T and T = 9. Now, let φ[i] = φ[j]U[0,3] φ[j′]. Then,

Iφ[i](xs
T) = {[5, 8)} using the computation in Table 8.1.

Note that, following the constraint, Ĩk1 = {[5, 6), [7, 8)} after taking the intersection
of Iφ[j](xs

T) and Iφ[j′](xs
T). Then, the Minkowski minus results into the set of intervals

Ĩk2 = {[2, 6), [4, 8)} with a = 0 and b = 3. The conditional intersection of Ĩk2 and Iφ[j(xs
T)

produces the set of intervals Ĩk3 = {[5, 6), [5, 8)}. Note that this is because both the intervals
in Ĩk1 are subsets of the interval [5, 8) in Iφ[j](xs

T) and not of [1, 3), and we intersect the
intervals in Ĩk2 with only [5, 8). Finally, the operator unions on Ĩk3 results in Iφ[i](xs

T) to be
{[5, 8)} that complies with the actual semantics of the UI operator. It can be also checked
that taking a normal intersection instead of the conditional one would have wrongly resulted
in I[(xs

T)φ[i]] to be {[2, 3), [5, 8)} that depicts the intricacy in computing the satisfaction
intervals for UI as shown in Figure 3(a) in Maler et al. [157].

For the ∧-operator, we have the following constraint:

∧
1≤i≤n

i<j,j′≤n

xi,∧ ∧ li,j ∧ ri,j′ →
[ ∧

1≤s≤|S|
intersections(i, j, j′)

]
,
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This encodes the relation for ∧ operator as described in Table 8.1, that is, encoding the fact
that the set I∪φ[i](xs

T) contains maximal disjoint intervals of intersection of I∪φ[j](xs
T) and

I∪φ[j′](xs
T).

For the GI operator where I is encoded using ai, bi we have the following constraint:

∧
1≤i≤n
i<j≤n

xi,GI ∧ li,j →
[ ∧

1≤s≤|S|
union′′s (i, k′, k′) ∧ comps(k

′, k) ∧⊖[ai ,bi ]
s (k, j)

]
.

based on the relation for the G[a,b] operator in Table 8.1. Similar to the encoding of FI operator,
we rely on an intermediate set of intervals Ĩk and Ĩk′ encoded using some auxiliary variables.
Also, we use the formula ⊖[ai ,bi ]

s (k, j) to encode that the intervals in Ĩk can be obtained
by performing I ⊖ [a, b] to each interval I in Iφ[j](xs

T), where ai = a and bi = b. Then
comps(k

′, k) encodes that Ĩk′ is the complement of Ĩk. Finally, the formula union′′(i, k′, k′)
encodes that Iφ[i](xs

T) consists of the maximal disjoint intervals obtained by taking the union
of the complement of I∪φ[j](xs

T) and {[T − a, T)}.
Similar to union′ in the semantic constraints for FI operator, the construction of

union′′(i, k, k) matches that of union(i, j, j′), in that, the constraints involved are similar
to Formulas 8.4 to 8.6.

We now assert the correctness of the formulas encoding the set operations as follows:

Lemma 18. The formulas comps(i, j), unions(i, j, j′), ⊖[ai ,bi ]
s (k, j), intersections(i, j, j′)and

cond−ints(i, j, j′) correctly encode the complement, union, ⊖, intersection and conditional

intersection operations on a set of intervals, respectively

To offer a glimpse into the proof of correctness for the introduced formulas, we present
some of them here.

Lemma 19 (Correctness of unions). Let v be a satisfying assignment of unions(i, j, j′).
Then, the set Ii = {[v(tl

i,1,s), v(tr
i,1,s)), . . . , [v(tl

i,m,s), v(tr
i,m,s))} consists of the maximal

disjoint intervals of the union of Ij = {[v(tl
j,1,s), v(tr

j,1,s)), . . . , [v(tl
j,m,s), v(tr

j,m,s))} and

Ij′ = {[v(tl
j′,1,s), v(tr

j′,1,s)), . . . , [v(tl
j′,m,s), v(tr

j′,m,s))}.

Proof. For simplicity of the proof, we name v(tσ
κ,m) as τσ

κ,m for σ ∈ {l, r} and κ ∈ {i, j, j′},
and [τl

κ,m, τr
κ,m) as Γκ,m for κ ∈ {i, j, j′}. Note that we drop the identifier s representing the

prefix since the prefix is fixed throughout the proof.
For the forward direction, we show that any timepoint t ∈ Γi,m belongs to some Γj,m′ ∈ Ij

or some Γj′,m′′ ∈ Ij′ . Towards contradiction, we assume that t ̸∈ Γj,m′ for any Γj,m′ ∈ Ij and
t ̸∈ Γj′,m′′ for any Γj′,m′′ ∈ Ij′ . Now, based on Formula 8.4, both τl

i,m and τr
i,m appear in some

intervals in Ij and Ij′ as left and right bound, respectively. We consider two cases based on
where τl

i,m and τr
i,m appear. First, τl

i,m and τr
i,m both appears, w.l.o.g, in Ij. Now, let Γj,m1 and

Γj,m1+1 be such that τr
j,m1
≤ t < τl

j,m1+1. Intuitively, this means that t lies in between (and is
adjacent to) the intervals Γj,m1 and Γj,m1+1. Note that both τr

j,m1
and τl

j,m1+1 is not included
in Ii since Ii consists of maximal disjoint intervals and [τr

j,m1
, τl

j,m1+1] ⊂ Γi,m. Now, based
on Formula 8.5, τr

j,m1
and τl

j,m1+1 are included in some intervals in Ij′ . Note that if they are
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included in the same interval, then that interval also contains t, raising the contradiction to our
assumption that t ̸∈ Γj′,m′′ for any Γj′,m′′ ∈ Ij′ . Then τr

j,m1
and τl

j,m1+1 are not included in the
same interval in Ij′ . Then, there exists Γj′,m2 ∈ Ij′ and Γj′,m2+1 ∈ Ij′ such that,

τr
j,m1

< τr
j′,m2
≤ t < τl

j′,m2+1 < τl
j,m1+1

Now note that, τr
j′,m2

and τl
j′,m2+1 both are not included in any of the intervals in Ij. Now,

based on Formula 8.6, both appear in Ii. But that contradicts our assumption that t ∈ Γi,m.
For the other direction, we show that any timepoint, w.l.o.g, t ∈ Γj,m belongs to some

Γi,m′ ∈ Ij. For this, there can be three cases based on whether the bounds of Γj,m appear as
bounds in some interval Γi,m′ ∈ Ii or not.

First, assume that both τl
j,m and τr

j,m appear as bounds τl
i,m1

and τr
i,m2

in Ik as stated by
Formula 8.4. We now claim that m1 = m2 meaning that τl

i,m1
and τr

i,m2
are bounds of the

same intervals. Towards contradiction, let m1 + 1 ≤ m2. Then, τr
i,m1

belongs to the interval
Γj,m, and based on Formula 8.5, and cannot be one of the bounds of Γi,m1 . Then, we have
τl

j,m = τl
i,m1
≤ t < τr

i,m1
= τr

j,m

Second, assume that τl
j,m does not appear, while τr

j,m appears as bounds in Ik. Now,
based on Formula 8.5, τl

j,m appears in one of the intervals Γj′,m′ in Ij′ . Also, in that case,
τl

j′,m′ appears as a left bound in Ik, say Ii,m1 . We now claim that τr
i,m1

> τr
j,m. Towards

contradiction, we assume two cases. In the first case,

τl
j′,m′ = τl

i,m1
< τr

i,m1
< τl

j,m < τr
j′,m

contradicting Formula 8.5. In the second case,

τl
j′,m′ = τl

i,m1
< τl

j,m < τr
i,m1

< τr
j,m

contradicting Formula 8.6. From the two cases, we conclude τr
i,m1

> τr
j,m and hence, τl

i,m1
<

τl
j,m ≤ t < τr

j,m < τr
i,m1

. The argument in the third case is similar to those in the other two
cases and can be seen easily.

Lemma 20 (Correctness of comps). Let v be a satisfying assignment of comps(i, j). Then,

the set Ii = {[v(tl
i,1,s), v(tr

i,1,s)), . . . , [v(tl
i,m,s), v(tr

i,m,s))} consists of the maximal disjoint

intervals of the complement of Ij = {[v(tl
j,1,s), v(tr

j,1,s)), . . . , [v(tl
j,m,s), v(tr

j,m,s))}.

Proof. We reuse the naming conventions for τσ
κ,m and Γκ,m from the last proof. For the forward

direction, we show that if t ∈ Γi,m for some Γi,m ∈ Ii then t ̸∈ Γj,m′ for any Γj,m′ ∈ Ij. First,
let m = 1. Then, if τl

j,1 = 0, then Condition 8.1 gets triggered and τl
i,1 = τr

j,1 and τr
i,1 = τr

j,2.
Hence, τr

j,1 = τl
i,1 ≤ t < τr

i,1 = τl
j,2. Also, if τl

j,1 ̸= 0, then Condition 8.1 does not get
triggered and τl

i,1 = 0 and τr
i,1 = τl

j,1. Hence, 0 = τl
i,1 ≤ t < τr

i,1 = τl
j,1. For m ̸= 1, the

reasoning works similarly.
For the other direction, we show that if t ∈ Γj,m for some Γj,m ∈ Ij then t ̸∈ Γi,m′ for

any Γi,m′ ∈ Ij. The proof for this direction is almost identical to the proof for the forward
direction.
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Lemma 21 (Correctness of ⊖[ai ,bi ]
s ). Let v be a satisfying assignment of ⊖[ai ,bi ]

s (k, j).
Then, the set Ii = {[v(tl

i,1,s), v(tr
i,1,s)), . . . , [v(tl

i,m,s), v(tr
i,m,s))} consists of the

maximal disjoint intervals by applying I ⊖ [a, b] to the intervals I of Ij =

{[v(tl
j,1,s), v(tr

j,1,s)), . . . , [v(tl
j,m,s), v(tr

j,m,s))}, where v(ai) = a and v(bi) = b.

Proof. The proof of the above claim follows directly from the construction of the formula
⊖[ai ,bi ]

s (k, j).

It is worth noting that although the number of intervals in Iφ[i](xs
T) for each subformula

φ[i] is bounded by M, it may not contain the same number of intervals. For instance,
Ip(xs

T) = {[0, 1), [6, 7)} has two intervals, while, assuming T = 7, I¬p(xs
T) = {[1, 6)}

has only one interval.
To circumvent this, we introduce some variables numi,s for i ∈ {1, . . . , n} and s ∈

{1, . . . , |S|} to track of the number of intervals in Iφ[i](xs
T) for each subformula φ[i] for each

prefix xs
T. We now impose

∧
1≤i≤n,1≤m≤M[m > numi,s] → [tl

i,m,s = T ∧ tr
i,m,s = T]. This

ensures that all the unused variables tσ
i,m,s for each Node i and prefix xs

T in S are all set to T.
We also use the numi,s variables in the constraints for easier computation of Iφ[i](xs

T) for each
operator. We include this in our implementation but omit it here for a simpler presentation.

Φsem is simply the conjunction of all the semantic constraints mentioned above.

Consistency Constraints. Finally, to ensure that the prospective formula φ is G -sep for S ,
we add:

∧
xs

T∈P

[
(tl

n,1,s = 0) ∧ (tr
n,1,s = T)

]
∧
∧

xs
T∈N

[
(tl

n,1,s ̸= 0) ∨ (tr
n,1,s ̸= T)

]
.

This constraint says that Iφ[n](xs
T) = {[0, T)} for all the positive prefixes xs

T, while
Iφ[n](xs

T) ̸= {[0, T)} for any negative prefixes xs
T.

The correctness of our algorithm follows from the correctness of the inductive computation
of Iφ(xT) in Lemma 17 and its encoding using the formulas described in Lemma 18. We
state the correctness result formally as follows:

Theorem 16 (Correctness). Given a sample S and a future-reach bound K, Algorithm 14

terminates and outputs a minimal MTL formula φ such that φ is globally separating for S
and fr(φ) ≤ K, if such a formula exists.

Proof. The termination of Algorithm 14 is guaranteed by the decision procedure of checking
whether S is K-infix-separable (Section 8.3). The minimality of the learned formula is due
to the iterative search of formulas of increasing size and the correct encoding of Φn

S ,K. The
correctness of Φn

S ,K follows from the correctness of the encoding of set operations described
in Lemma 18 and the correctness of computation of the sets Iφ(xT) using Lemma 17.

Our learning algorithm solves the optimization problem LEARNMTL by constructing
formulas in LRA. We now analyze the computational hardness of LEARNMTL and, thus,
consider its corresponding decision problem LEARNMTLd: given a sample S , a future-reach
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bound K and size bound B (in unary), does there exist an MTL formula φ such that φ is G -sep
for S , fr(φ) ≤ K, and |φ| ≤ B. Following our algorithm, we can encode the LEARNMTLd

problem in an LRA formula Φ =
∨

n≤B Φn
S ,K, where Φn

S ,K is as described in Algorithm 14.
One can check that the size of Φ is O(|S||K|B3M3). Now, the fact that the satisfiability of
an LRA formula is NP-complete [58] proves the following:

Theorem 17. LEARNMTLd is in NP.

While the exact complexity lower bound for LEARNMTLd is unknown, we conjecture
that LEARNMTLd is NP-hard. Our hypothesis stems from the fact that the problem is already
NP-hard for simple fragments of LTL [83]. Note that the hardness result does not directly
extend to MTL: the complexity might be either lower or higher since the logic is a priori more
expressive. We leave the hardness result for full MTL as an open problem.

8.5 Experimental Evaluation

In this section, we answer the following research questions to assess the performance of our
algorithm for learning MTL formulas.

RQ1: Can our algorithm learn concise formulas with small future-reach?

RQ2: How does lowering the future-reach bound affect the size of the formulas?

RQ3: How does our algorithm scale for different sample sizes?

To answer the research questions above, we have implemented a prototype TEAL9 [189]
of our algorithm in Python 3 using Z3 [164] as the SMT solver. To our knowledge, TEAL is
the only tool for learning minimal MTL formulas for runtime monitoring (see related works).
In TEAL, we implement a heuristic on top of Algorithm 14. We set the maximum number
of intervalsM in sets Iφ[i](xT) to be µ + 2 where µ = max({|Ip(xT)| | p ∈ P}). This
heuristic improves the runtime of TEAL significantly since most G -sep formulas φ never
require the worst-case upper bound10 ofM = µ|φ|. To ensure that TEAL returns a correct
MTL formula with this heuristic, we implement a verifier based on the inductive computation
of Iφ(xT) from Table 8.1. In our experiments, the verifier ensured that all of the learned MTL
formulas were correct. One can fine-tune the heuristic based on the sample and the expected
MTL formulas.

As typically done in the literature of learning formulas [8, 169, 186], we evaluate TEAL
on benchmarks generated synthetically from MTL formulas. To obtain useful MTL for-
mulas, we identify a number of MTL patterns, listed in Table 8.2, commonly used for
monitoring cyber-physical systems. For instance, the time-sensitive requirement of an elec-
tronically controlled steering (ECS) system “operational checks like RAM verification must
be done every 20 secs” can be monitored globally using the bounded recurrence formula

9TEAL is available at https://github.com/ritamraha/Teal
10The operators FI , GI , ∧, and ¬ increase the number of required intervals by at most one. Only the ∨ operator

can double it in the worst-case.

https://github.com/ritamraha/Teal
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F[0,20] operational_check [140]; the requirement of an autonomous vehicle (from the
introductory example) “brake should be triggered until within 2 secs the vehicle has no
obstacle in an unsafe distance” can be monitored globally using the bounded until formula
brakeU[0,2] no_obstacle.

TABLE 8.2: Typical MTL patterns used for monitoring
cyber-physical systems

Bounded Recurrence: Globally(F[t1,t2] p)
Bounded Response: Globally(p→ F[t1,t2] q)

Bounded Invariance: Globally(p→ G[t1,t2] q)
Bounded Until: Globally(pU[t1,t2] q)

In our experiments, we construct MTL formulas from the patterns in Table 8.2 by replacing
time interval [t1, t2] with different values. Now, to generate a sample from an MTL formula
φ, we generated a set of random prefixes and then classified them into positive or negative
depending on whether φ holds at all time-points of the prefix or not. We conducted all the
experiments on a single core of an AMD EPYC 7702 64-core CPU (at 2GHz) using up to
10GB of RAM. The timeout was set to be 5400 secs for all the experiments.

8.5.1 RQ1: Recovering Concise Formulas

To address RQ1, we ran TEAL on a benchmark suite generated from nine MTL formulas
obtained from the three MTL patterns in Table 8.2 by replacing t1 with 0 and t2 with 1,2, and
3. The suite consists of 36 samples for each pattern (12 samples for each formula), with the
number of prefixes ranging from 10 to 40 and the length of prefixes (that is, the number of
sampled timepoints) ranging from 4 to 6. For each sample S , we set the future-reach bound K
to be fr(φ), where φ is the formula from which S was generated.

TABLE 8.3: Summary of the learned formulas.

Formula pattern Successful runs Timed out Avg Size Avg Time

Matched Not Matched (in sec)

Bounded Recurrence 36 0 0 2 17.5
Bounded Response 25 5 6 3.7 1860.3
Bounded Invariance 15 7 14 3.6 1397.2

Bounded Until 32 4 0 2.9 362.4

We depict the summary of the results for RQ1 in Table 8.3. For each run, we noted
the formula learned, its size, and the total time taken. We also noted whether the learned
formula matched the pattern of the original formula using which the sample was generated.
We observed that the learned formulas matched the pattern of the original formula in 87.1%
of the cases in which TEAL did not time out. This shows that the randomly generated samples
captured the behavior of the original formula rather well, enabling a fair evaluation of TEAL.
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FIGURE 8.2: Runtime change with respect to the number of prefixes and
prefix lengths

Further, we observed that the size of the learned formula is always less than or equal to
that of the original formula. This demonstrates that TEAL always finds a concise formula for
a given future-reach bound, answering RQ1 in positive.

8.5.2 RQ2: Future-Reach and Size tradeoff

To address RQ2, we investigate how the size of the learned formula changed over varying
future-reach bounds. For this, we ran TEAL on the same benchmark suite from RQ1 but, this
time, by varying the future-reach bound K from 1 to 4. We investigate the average size of the
minimal formula we get over the generated 144 samples for each future-reach bound.

We observed that for future-reach bounds K of 1, 2, 3, and 4, the average size of the
learned minimal formulas were 3.904, 3.734, 3.370, and 3.361, respectively. Thus, with an
increase in K, the average size of the minimal formula decreased. This is because an increase
in K allows a bigger search space of formulas. However, the decrease in size with the increase
in future-reach bound is not significant. This asserts the need for a future-reach bound for
learning formulas and confirms the efficacy of our algorithm.

8.5.3 RQ3: Scalability

To address RQ3, we ran TEAL on a benchmark suite generated from MTL formulas which
originate from the MTL patterns in Table 8.2, setting t1 = 0 and t1 = 2. The suite consists
of 36 samples for each formula, with the number of prefixes varying from 10 to 60 and the
length of prefixes varying from 4 to 14. We set the future-reach bound K to be two.

Figure 8.2 illustrates the runtime variation of TEAL in two cases: increasing the number
of prefixes fixing the length of them and increasing the length of prefixes fixing the number of
them. We observe that to learn a larger formula, the time required grows significantly. This
trend can be noticed in both cases.
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8.6 Conclusion

We have presented a novel SMT-based algorithm for automatically learning MTL specifications
from finite system executions. To be useful for efficient monitoring, we ensure that the learned
formulas are both concise and have low future-reach. We have shown that our algorithm can
learn concise formulas from benchmarks generated from commonly used MTL patterns.

While our algorithm is tailored to learn globally separating formulas particularly useful
for monitoring, we can adapt our algorithm easily to learn only separating formulas as in the
standard temporal logic inference setting [169, 160]. Our algorithm includes all the standard
temporal operators that are typically used in MTL. However, we believe it is possible to
improve the performance of the algorithm by omitting a temporal operator such as UI for
which the encoding can be substantially large.

From a practical point of view, an interesting future direction will be to lift our techniques
to automatically learn STL formulas for verification. A straightforward approach towards
this using the above-mentioned constraint-based methods has been explained by Raha [185].
However, for industrial use and scalability, clever heuristics and optimizations are needed to
be explored in future work.
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Chapter 9

Conclusion and Future Works

In this thesis, our goal was to study and understand the behavior of data-driven intelligent
systems. Such systems are often, by design, highly complex and their behavior is difficult for
humans to interpret. In particular, intelligent systems involving cyber-physical components,
such as autonomous vehicles, surveillance drones, warehouse robots, etc., display complex
temporal interactions involving various parameters of the system and the environment.

To explain the temporal behavior of systems, in this thesis, we investigated the problems
of automated learning of temporal properties for systems. Towards this goal, we relied on
two fundamental models that arise in formal reasoning: finite state automata and temporal

logics. Both models can be said to have existed since the inception of formal methods, and
their properties have been studied in depth. Moreover, both models have easy-to-grasp syntax
and semantics, making them suitable from an interpretability perspective.

The main learning problem addressed in this thesis was that of passive learning finite
automata and temporal logics. Historically, finite state automata were the models of primary
interest for the passive learning problem. However, in this thesis, we emphasize the signifi-
cance of extending the study to include temporal logics. We considered several variants of
passive learning, keeping practical situations in mind.

In Chapter 3, we presented methods to expedite the learning of LTLf through efficient
combinatorial search. We leveraged subclasses of LTLf that enable structured search through
potential LTLf formulas. To improve the expressive power of the subclasses, we explored their
boolean combinations via a novel greedy approximation algorithm. By incorporating several
heuristics, our algorithms were able to produce rather concise LTLf formulas approximately
10× faster than the existing approaches.

In Chapter 4, we considered a typical practical setting: learning from noisy data. Along
with LTL, we considered learning STL formulas (with discrete semantics) due to their rele-
vance in cyber-physical systems. To tolerate the noise in data, our algorithms focussed on
finding formulas that allow a bounded amount of misclassification. Our algorithms exploited
the maximum satisfiability problem and combined it with decision tree learning. With careful
tuning of the parameters, our algorithms could effectively learn formulas from noisy samples
better than existing approaches.

In Chapter 5, we considered enhancing the LTL learning process by instilling designer
knowledge as sketches. Sketches provide a simple means to express designer intuition by
leaving complex parts of a formula unspecified. We studied when a sketch can aid the learning
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process and designed a decision procedure to check it automatically. Further, we extended
existing learning algorithms to support sketches. Our sketching algorithms outperformed
existing LTL miners in handling sketches.

In Chapter 6, we considered an often neglected setting: learning from positive examples.
We showed that this problem can often be ill-posed, resulting in trivial solutions if not
formulated properly. To this end, we relied on the size and language of models as regularizers
to learn useful DFAs and LTLf formulas. We devised symbolic and counter-example guided
algorithms to solve our learning problems. Our algorithms were able to extract meaningful
descriptions in DFAs and LTLf from positive examples in several scenarios.

In Chapter 7, we explored the learning of properties in PSL, a logic that combines LTL with
regular expressions. We modified a SAT-based LTL learning approach to incorporate regular
expressions, thus extending the expressive power of our learning algorithms to ω-regular
properties.

In Chapter 8, we explored the learning of properties in the continuous-time logics MTL,
specifically focusing on continuous dense-time semantics. Our learning algorithm symboli-
cally encoded a standard monitoring procedure for continuous-time logics, enabling it to learn
several commonly used MTL formulas successfully.

Through this thesis, we lay the foundations of automatically learning temporal properties
of black-box systems. We hope that this thesis serves as an enhanced starting point for future
research in passive learning of formal models.

9.1 Future Works

In each chapter of this thesis, we already alluded to various future directions. Most of them
describe low-level technical extensions, which may be achieved by simple modifications of the
presented techniques. Here, I will list some high-level challenges that may demand detailed
investigation and have the potential to catalyze new areas of research.

9.1.1 Syntax-Guided Learning

System designers often have high-level intuition about the behavior of their systems. In
Chapter 5, we formalized such high-level intuition as a temporal logic sketch and utilized
it to learn the underlying temporal property of a system. In the future, one can consider a
generalization of this setting, in which the intuition is formalized as temporal logic grammar.
A temporal logic grammar is a set of rules that define the syntax of the prospective temporal
logic formulas. Based on the rules of a given grammar, one can learn a concise temporal
formula that is consistent with the system executions. Since a sketch can always be expressed
using grammar-based rules, a grammar provides the designer more flexibility in expressing
their intuition.

One can investigate several problems in this setting. For instance, one can consider the
following decision problem: given a sample S and a temporal logic grammar Γ, does there
exist a formula that is derivable from Γ and is consistent with S . Moreover, one also needs to
design efficient algorithms that can derive minimal formulas from a given grammar that are
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consistent with a given sample. There are some indications that techniques like SyGUS [8] can
be used to incorporate grammar in the learning process. Needless to say, the above problems
can be studied for different temporal logic formalisms such as LTL, PSL, MTL, etc.

9.1.2 Heuristics for Scalability

The scalability of the learning algorithms remains one of the major challenges in its industry
usage. An industrial application that requires identifying temporal patterns on a large scale is
that of Business Process Mining (BPM) [1]. Based on recorded event logs, a typical problem
in BPM is to identify the temporal patterns that conform with the event logs.

To express patterns appearing in event logs, formalisms such as Declare [178], RCons [51],
etc., are typically employed in BPM applications. Often, these formalisms (or their existing
mining approaches) cannot express (or learn) properties that can be expressed using temporal
logics such as LTL or PSL. Thus, one needs to develop learning techniques for different
temporal logics that can handle large amounts of event-log data.

In order to improve the scalability of the learning techniques, there are a variety of
heuristics that one can try. One can identify temporal logic grammars that are (i) suited to
the application at hand (e.g., BPM, RL, etc.) and, at the same time, (ii) allows for efficient
enumeration techniques (similar to that of directed LTL from Chapter 3). Another heuristic,
particularly relevant for learning from positive examples, is to consider regularizers that
are computationally simpler compared to that of language minimality. One could rely on
probabilistic measures that identify formulas that can distinguish the given executions from
random executions.

One can also harness the power of neural networks in the learning techniques [153, 88].
Recent works have focussed on designing neural network architectures that are able to learn
structured objects efficiently. Also, there are early signs of Large Language Models (LLMs)
understanding formal languages [61, 177, 150, 90]. Thus, exploiting hints from LLMs could
significantly expedite the learning process.

9.1.3 Learnability of Temporal Properties

While we present several algorithms for learning temporal properties in this thesis, many
theoretical results related to the learnability of temporal properties remain open. For instance,
the computational complexity of learning temporal properties is not yet well understood. One
needs to explore hardness results for the following problem: given a sample S and a size
parameter B, does there exist a formula of size ≤ B that is consistent with S? There are
preliminary results of this problem for LTL\LTLf [83, 39, 159, 40]. One can ask the same
problem for other formalisms such as PSL, MTL, and so on. Moreover, one can study how
the complexity changes in the setting of only positive examples, specification sketches and
temporal logic grammars.

Further, little is known about the number of examples that are required to adequately
learn the underlying temporal property. This is often formalized as measures such as sample
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complexity, characteristic samples, etc. [117]. One can also study a related concept, VC-
dimension [161], which will provide an indication of the capabilities of temporal logic in
classification tasks.

9.1.4 Explanation of Multi-Agent Systems

Most of the techniques in the thesis focus on explaining the behavior of individual systems.
In the future, one can consider explaining the complex interactions between several agents
organized in a multiagent system. For expressing interesting properties of multiagent systems,
temporal logics such as Alternating-time Temporal Logic (ATL) [2] and Strategy Logic [53]
are particularly well-suited. We already show that constraint-based learning algorithms can be
designed for branching-time logics such as Computation Tree Logic (CTL) and Alternating-
time Temporal Logic (ATL) [38].

9.1.5 Active Learning for Temporal Properties

One of the significant drawbacks of passive learning is its inefficiency in adapting to additional
or online data. This is where active learning, introduced by Angluin [7], excels.

In active learning, there is a learner, which is responsible for inferring the temporal
property and a teacher, which has access to the property. Through several interactions, the
teacher assists the learner in converging to the desired temporal property, providing hints such
as counterexamples based on the current hypothesis. A well-designed learner stores these
hints in an efficient data structure and utilizes them effectively in devising new hypotheses.

The only known active learner for temporal logics simply invokes passive learning for
each interaction with the teacher [48]. This naive method is, by no means, practical since the
passive learning typically ignores the knowledge about the current hypothesis while building
the new one. One could, thus, devise passive learning algorithms particularly to cater to active
learning by utilizing knowledge about the existing hypothesis.
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