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Abstract

Algorithmic differentiation (AD) is a set of techniques to “differentiate computer pro-
grams”: Given a primal program that evaluates some mathematical function, AD allows
to evaluate the derivative function. Unlike numerical difference quotients, algorithmic
derivatives are accurate up to machine precision and, in the “reverse mode”, can be formed
with respect to a large number of input variables in one stroke. When combined with
gradient-based optimization algorithms, AD is therefore a powerful tool to optimize en-
gineering designs or learn weights of neural networks, besides many other applications.
Up to date, most implementations of AD access the primal program via its source code,
which they require to be available and written in a limited set of programming languages,
typically not supporting the full language standards without manual user intervention.

In this dissertation, we present the novel AD tool Derivgrind that interacts with the
machine code of the compiled primal program. Implemented in the Valgrind framework
for dynamic binary instrumentation, Derivgrind augments portions of machine code with
AD logic just in time before they potentially execute on the processor.

Specifically, Derivgrind’s forward-mode AD logic keeps track of a floating-point “dot
value” for every floating-point number appearing during the execution of the primal pro-
gram. These dot values store the derivatives with respect to a single input variable, and
are computed alongside, using elementary differentiation rules. Derivgrind also imple-
ments reverse-mode AD, by inserting AD logic that tags all floating-point numbers with
identifiers, and uses them to record the real-arithmetic evaluation graph on a datastruc-
ture called the “tape”.

Besides our extensive suite of regression tests and a simple numerical solver for Burgers’
partial differential equation, we have tested Derivgrind on three larger software projects:
the Python interpreter CPython, the spreadsheet software LibreOffice Calc, and the
medical imaging application GATE based on the Monte-Carlo particle physics simulator
Geant4. We are not aware of any successful previous attemps to compute algorithmic
derivatives of these programs. With Derivgrind, only a few lines of code needed to be
changed to accomplish that.

As a price for its versatility, Derivgrind slows down the primal program by a larger
factor than many source-code-based tools. In addition, the issue of “bit-tricks” is more
pronounced on the machine code level: If the primal program performs real-arithmetic
operations in too obscure ways, Derivgrind cannot recognize their arithmetic meaning
and may compute wrong derivatives. We have included a detailed discussion of various
bit-trick mechanisms; in practical terms, nearly all of them are academic or originate from
highly optimized math libraries. As long as differentiating those are avoided, Derivgrind
is applicable to an unprecedentedly wide range of cross-language or partially closed-source
software with little manual efforts.
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1. Introduction

1.1. Background

1.1.a. Algorithmic Differentiation. Algorithmic differentiation (AD) is a set of tech-
niques to “differentiate computer programs”. When a computer program reads and writes
real numbers, typically using digital floating-point formats, and computes the outputs
from the inputs by a sequence of elementary arithmetic operations like +, ·, √ , | · |, and
sin, it defines a function in the mathematical sense. As long as each of these elemen-
tary steps is differentiable, the chain rule of differential calculus allows to conclude that
their composition is differentiable, and to calculate partial derivatives from elementary
differentiation rules.75,189

1.1.b. Applications of AD. Though the key insight behind AD is thus simple, it has
become a powerful tool indispensible for many applications. As a derivative with a large
absolute value indicates that small perturbations of the input can lead to large changes
in the output, they are useful for, e. g., sensitivity analysis and uncertainty quantifica-
tion. As the gradient points into the direction of steepest ascend, many applications are
related to continuous optimization, i. e., the identification of local minima or maxima of
computer-implemented functions.

Better known as backpropagation, the reverse mode of AD has been implemented in
machine learning (ML) frameworks like PyTorch146 and TensorFlow1, in order to evaluate
gradients of the training error of ML models with respect to model parameters, such as
weights in an artificial neural network; “learning” means minimizing the training error.

Various implementations of algorithmic derivatives in computational fluid dynamics
codes11,28,31,119,131,156,171,176 have served to improve aerodynamical objectives such as
lift or drag, by proposing optimal airfoil shapes11,33,35,122 or optimal flow actuation134,
besides many other industrial applications. It should be noted that in most of these
studies, AD capabilities were integrated into an existing simulation code rather than
rewriting it from scratch.

Many more studies have been reported in other application domains as diverse as
ice sheet modelling127, thermodynamics76, molecular dynamics186,187, inverse render-
ing114,180, and quantitative finance2,81.

Typically, AD-driven optimization studies allow for a logical split between

• the primal program implementing the objective function; it might have first been
created without AD in mind;

• an AD tool, which has to interact with the primal program in order to identify the
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1. Introduction

elementary real-arithmetic steps it performs, in order to combine this information
with elementary analytic differentiation rules to provide derivatives; and

• an optimization framework, which orchestrates the evaluation of the objective value
and its derivatives at selected sets of inputs, and uses the results to steer the
objective function towards a minimum or maximum.

1.1.c. Design Goals of AD Tools. There is a variety of AD tools in active use today, fol-
lowing different approaches on how to interact with the primal code and how to combine
this information with the elementary differentiation rules.1,27,29,79,91,123,128,158,163,179,184

Each AD tool finds its individual balance between conflicting goals like

• correctness of the computed derivatives,

• performance, usually in terms of increased run-time and memory consumption of
the differentiated program compared to the primal program,

• scope of supported programs, in terms of requirements concerning access to the
source code and build system of the program, supported programming languages,
and supported parallel execution environments,

• support for advanced AD workflows like user-specified custom derivatives for certain
subroutines,

• technical complexity of the AD tool, and

• the amount of experience and effort required from a user who wishes to apply AD
to an existing computer program.

1.1.d. Most classical AD tools rely on source code. Most AD tools interact with
the primal program through its source code, either by parsing it themselves (e. g. AD-
IFOR27,29, TAPENADE79); by hooking into an existing compiler toolchain building
the primal program (e. g. Clad179, Enzyme128); as part of a runtime environment for
a domain-specific language (e. g. Futhark163); or by means of programming language
features like operator overloading (e. g. ADOL-C184, CoDiPack158, the autograd123 tool
used by PyTorch146, or the internal tool of TensorFlow1), typically after some modifica-
tion of the source code by the user. All of these approaches limit the scope of programs
supported by the AD tool without major rewriting, making it difficult to apply AD to
cross-language or partially closed-source software projects. To our knowledge, the AD
tool Enzyme has the widest scope available so far: It can differentiate source code in any
programming languages for which there is a front-end in the LLVM compiler structure
(e. g. C, C++, Fortran, Rust, Julia). But, for instance, we are not aware of any AD tool
immediately applicable to mixed Python-C++ programs.

To our knowledge, there has only been one published attempt to perform AD on the
level of machine code so far: Gendler, Naumann and Christianson69 have reported on the
proof-of-concept prototype adac, which implements forward-mode AD by transforming
the assembly code of the primal program.

12



1.2. This Dissertation

1.2. This Dissertation

1.2.1. Research Goals

All programming languages eventually translate to machine code instructions executing
on the processor. Thus, an AD tool operating on the machine code rather than the
source code of the primal program can be expected to be applicable to a wider scope of
programs, including cross-language and partially closed-source software.69 Furthermore,
with the reduced amount of required interaction with the source code of the primal
program, applying a machine-code-based AD tool might be easier and quicker. In short,
a robust and production-ready machine-code-based AD tool is likely to find a balance
of the goals of Paragraph 1.1.c that is complementary to source-code-based AD tools,
which might be preferable in some situations. The primary goal of this thesis is to provide
the community with such a tool, along with a detailed analysis of its performance with
respect to all of the goals of Paragraph 1.1.c for several large software projects.

Besides its application potential, machine-code-based AD is also interesting from a
fundamental research perspective, as it faces a different set of challenges than source-
code-based AD. Specifically, many real-arithmetic operations can be implemented in
machine code by other means than the corresponding floating-point instructions, like a
negative number being computed by a flip of the sign bit, without violating any language
standard. Our second, sideline, research goal is therefore to get a practical overview of
such bit-tricks, i. e. how they work, where they appear in relevant software projects, and
how they can be detected.

1.2.2. Contributions

In this PhD project, we have created Derivgrind, a robust machine-code-based AD tool
implementing both forward- and reverse-mode AD on the x86-64 Linux platform. Deriv-
grind employs the dynamic binary instrumentation (DBI) framework Valgrind 139,168 to
insert differentiation logic into the machine code of the primal program while it executes.
Naturally, in many cases, small portions of the source code of the primal program must
still be accessible in order to identify the input and output variables. But as long as the
intermediate real-arithmetic operations are performed by the same Linux process and
comply with a few mild technical requirements related to the aforementioned bit-tricks,
it does not matter from which and whose compilers or interpreters these instructions
originate.

One of our validation examples demonstrates the versatility of machine-code-based AD
in a very visual way: Derivgrind can differentiate the spreadsheet software LibreOffice
Calc while it evaluates simple expressions entered by the user via the graphical user
interface. The software repository of LibreOffice Calc contains a substantial amount of
C++, Java and Python code, and the program was installed on the test system as a binary
package by a standard software package manager. As Calc’s add-on mechanism allows
to access the relevant AD inputs and outputs from macro code supplied by the user at
run-time, access to the source code of Calc was not required at all.

13



1. Introduction

To demonstrate that Derivgrind is applicable to real-world scientific computing soft-
ware, we provide derivatives in medical imaging and calorimetry setups based on the
particle physics simulator Geant410,12,13 with only a few modified lines of code.

While performing these and a few other tests, we assembled a list of the mechanisms
and occurrences of bit-tricks that we encountered. For the most important types of bit-
tricks, we proposed and implemented ways to detect and handle them correctly. For the
more obscure types of bit-tricks, however, this would either imply unreasonably high effort
or be entirely impossible, as there are sometimes multiple meaningful ways to interpret
a single sequence of machine code instructions as an (almost everywhere) differentiable
real-arithmetic function. As a pragmatic alternative, we provide a “bit-trick finder” tool
that can heuristically detect, and roughly localize, many types of bit-tricks.

1.2.3. Structure

1.2.3.a. Part I: Introduction. We use the first part of this thesis to introduce the
“building blocks” of machine-code-based AD, starting with an overview on the key state-
ments and methods concerning derivatives and algorithmic differentiation in Chapter 2.
Chapter 3 is an introduction to the x86-64 instruction set architecture with an emphasis
on the floating-point representation of real numbers, arithmetic operations, and elemen-
tary functions. In Chapter 4, we give an overview on DBI frameworks and tools and take
a detailed look at the Valgrind framework.

1.2.3.b. Part II: Assembling the Novel AD Tool Derivgrind. In the second part of
this thesis, we use these “building blocks” to assemble the novel AD tool Derivgrind. We
start with the forward mode in Chapter 5, focusing on the technical aspects because the
forward-mode AD logic in itself is simple. In Chapter 6, we enable reverse-mode AD by
adding tape-recording capabilities to our tool. Chapter 7 deals with a heuristic to detect
and approximately localize many types of bit-tricks in the primal program.

While the forward-mode, tape-recording, and bit-trick-finding logic differ in many
details, their overall structure is similar, as all three of them utilize a particular type of
shadow data, process it in a similar way, and define so-called monitor commands, client
requests and math wrappers. Readers are invited to go through Chapters 5 and 6 in
parallel.

1.2.3.c. Part III: Evaluation of Derivgrind. We have extensively tested Derivgrind with
respect to the design goals listed in Paragraph 1.1.c. The validation Chapter 8 intro-
duces our regression test suite, which checks the correctness of the computed derivatives
for many small sample client programs. Additionally, two applications to complex client
programs performing simple arithmetic operations, CPython and LibreOffice Calc, are
presented. In the performance Chapter 9, we measure the run-time and memory com-
plexity of Derivgrind, and compare it with the AD tool CoDiPack, using a benchmark
based on Burgers’ partial differential equation. In Chapter 10, we give more context on
the interdisciplinary project in which Derivgrind was developed.
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We close the third part with an application of Derivgrind to complex software per-
forming complex arithmetic: In Section 10.3, as a technical feasibility study, we compute
derivatives in a medical imaging setup provided by the Bergen pCT collaboration14 using
the program GATE100 based on the particle physics simulator Geant410,12,13. Finally,
in Section 10.4, we analyse the mathematical challenges of applying AD to this kind of
stochastic codes for a simple calorimetry setup, first using the more compact simulation
toolkit G4HepEm142 and then going back to Geant4 again.

1.2.3.d. Conclusion and Appendices. Chapter 11 summarizes this work and discusses
possible future research directions. Appendix A gives more background on the rare setups
in this thesis where Derivgrind did not provide correct derivatives due to unsupported
bit-tricks. Some relevant but long code snippets have been collected in Appendix B.

1.2.4. Code

The source code of the Derivgrind package is available at

https://github.com/SciCompKL/derivgrind.

Most of our changes and additions to the Valgrind framework have been released under
the GNU General Public License version 2 or later. A few small portions of the package,
including client request headers and wrappers that might end up being included in a
client program, have been released under permissive licenses.

Furthermore, the code of the shadow memory tool used by Derivgrind is available at

https://github.com/SciCompKL/flexible-shadow

under the MIT license.

1.2.5. Prior Publications

We have previously published major results of this work in preprints or journal pub-
lications; some parts with major similarities in logical structure or wording, when we
considered those optimal. The following list gives an overview about the relevant publi-
cations and preprints, leaving out talks.

• We have published the idea of leveraging dynamic binary instrumentation and Val-
grind to implement forward-mode AD in the paper Forward-Mode Automatic Dif-
ferentiation of Compiled Programs 4 together with Johannes Blühdorn, Max Sage-
baum, and Nicolas R. Gauger. This paper gives an introduction to the relevant
prerequisites (Section 2.3.1, Paragraph 3.1.a), describes the instrumentation, user
interface and math wrappers (Chapter 5), and reports on our regression and per-
formance tests (Sections 8.1, 8.2 and 9.2). Figures 5.5, 9.1 and 9.2 have been cited
from the paper.
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• In the paper Reverse-Mode Automatic Differentiation of Compiled Programs 5 by
the same authors, we add reverse-mode capabilities (Section 2.4.1) to the Derivgrind
package (Chapter 6), and measure its performance (Section 9.3). Figures 6.3 and 9.3
to 9.5 have been adapted from this work.

• The preprint Derivatives in Proton CT 3 and the subsequent journal article Explo-
ration of Differentiability in a Proton Computed Tomography Simulation Frame-
work 6 assess the potential of AD for optimization and uncertainty quantification in
a medical imaging setup; this work has been adapted into Sections 10.1.3 and 10.2,
and Figures 2.1, 2.2 and 10.2 to 10.4 have been cited or adapted from it.

• We have contributed the section Automatic Differentiation of GATE/Geant4 to
the paper Progress in End-to-End Optimization of Particle Physics Instruments
with Differentiable Programming 7, where we apply Derivgrind to the Monte-Carlo
particle simulation toolkit Geant4 in order to demonstrate that Derivgrind can solve
this technical challenge. We repeat the methodology and results in Section 10.3,
with Figures 10.5 and 10.6 cited from the paper.

• In the paper Optimization Using Pathwise Algorithmic Derivatives of Electromag-
netic Shower Simulations 8 with Mihály Novák, Vassil Vassilev, Nicolas R. Gauger,
Lukas Heinrich, Michael Kagan, and David Lange, we have assessed mathematical
challenges related to applying AD to a particle simulation in high-energy physics;
our results have been summarized in Section 10.4, using Figures 10.8 to 10.12 from
the paper.
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2. Algorithmic Differentiation

2.1. Real Analysis Recap: Derivatives

2.1.a. Definition. Let U ⊂ Rn be an open subset of Rn; i. e., for every element x∗ ∈ U
there is a δ > 0 such that the entire ball {x ∈ Rn : ∥x− x∗∥ < δ} of radius δ around x∗

is contained in U .
Let f : U → Rm be a (mathematical) function, x∗ ∈ U , and L : Rn → Rm be a

linear map. We say that f is differentiable at x∗ with derivative L if the affine-linear
approximation error

r : U → Rm

x 7→ f(x)− f(x∗)− L(x− x∗) (2.1)

becomes so small around x∗ that

∥r(x)∥
∥x− x∗∥ → 0 for x→ x∗, x ̸= x∗. (2.2)

The choice of the norm ∥ · ∥ is irrelevant here, as for any pair of norms on Rn, one is
bounded by a constant multiple of the other. Differentiability of f at x∗ implies continuity
of f at x∗, i. e., f(x)→ f(x∗) for x→ x∗.

If derivatives exist, they are unique. To prove this, suppose that f is differentiable at
x∗ with derivatives L1 and L2, and that L1v, L2v ∈ Rm differ in their j-th component
for some v ∈ Rn. Obviously, v ̸= 0, as the contrary would imply L1v = 0 = L2v. By
(2.2), the j-th components of

f(x)− f(x∗)− L1(x− x∗)
∥x− x∗∥ and

f(x)− f(x∗)− L2(x− x∗)
∥x− x∗∥

go to 0 for x → x∗, x ̸= x∗. Forming the difference and choosing x = x∗ + αv, which is
contained in U for any sufficiently small α > 0 because U is open, we obtain that

−L1(αv)j + L2(αv)j
∥αv∥ → 0 (2.3)

for α → 0, α > 0. As the left side, expressed as −(L1v)j+(L2v)j
∥v∥ , is independent of α and

not zero, this leads to a contradiction. □
Thus, L is unique and we may call it “the” derivative of f at x∗, and denote it as

f ′(x∗). The representation of this linear map as a matrix in Rm×n is called Jacobian
matrix. In the following, we do not distinguish between linear maps and their matrix
representations with respect to standard bases.
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Figure 2.1: Gradient descent finds the global minimizer for the smooth convex function
in (a), if a suitable step-size is chosen. Jumps as in (b), or noise as in (c),
may however cause trouble. Adapted from Aehle et al.6

2.1.b. Usage. By the above definition of differentiability, knowing f ′(x∗) gives us a
sense of “how f looks like around x∗”: Namely, it can be approximated by its first-order
Taylor expansion, which is the affine-linear function

Rn → Rm

x 7→ f(x∗) + f ′(x∗) · (x− x∗). (2.4)

This fact is exploited by gradient-based numerical optimization algorithms like the gra-
dient descent algorithm, which attempts to find a minimizer of a scalar-valued function
f : Rn → R by iteratively improving a “candidate minimizer” x∗, adding a multiple of
−f ′(x∗)T in each step because that is the direction in which (2.4) decreases most steeply.
Gradient descent converges to a local and/or global minimizer under sufficiently strong
conditions on f ; it should be clear that jumps or noise, as shown in Figure 2.1, may
diminish the value of derivative information even if f is differentiable almost everywhere.

Gradient-based optimization algorithms form the “back-end” of many engineering de-
sign optimization, parameter fitting, and machine learning applications. We consider
them to be the main reason why tools to differentiate computer programs are important.

2.1.c. Computation. Derivatives of many elementary mathematical operations and
functions are well-known as differentiation rules. For example,

• for all λ1, λ2 ∈ R, the linearity of differentiation tells us that the derivative of

f : R2 → R(
x1

x2

)
7→ (λ1x1 + λ2x2) (2.5)

is f ′
(x∗

1
x∗
2

)
= (λ1, λ2),

• the product rule states that the derivative of

f : R2 → R(
x1

x2

)
7→ (x1 · x2) (2.6)
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2.1. Real Analysis Recap: Derivatives

is f ′
(x∗

1
x∗
2

)
= (x∗2, x

∗
1), and

• the derivative of the natural logarithm

f = ln : R>0 → R

is f ′(x∗) = 1
x∗ .

For mathematical expressions composed from elementary operations and functions,
the derivative can be formed using the chain rule: For open sets U ⊂ Rn and V ⊂ Rm,
and functions f : U → V and g : V → Rℓ differentiable in x∗ ∈ U and f(x∗) ∈ V ,
respectively, the composition

g ◦ f : U → Rℓ

x 7→ g(f(x))

is differentiable in x∗ with (g ◦ f)′(x∗) = g′(f(x∗)) · f ′(x∗).
To prove this, we have to show that

∥g(f(x))− g(f(x∗))− g′(f(x∗)) · f ′(x∗) · (x− x∗)∥
∥x− x∗∥ → 0 for x→ x∗, x ̸= x∗. (2.7)

Denoting the affine-linear approximation error (2.1) of f at x∗ by r, we may rewrite
f ′(x∗) · (x − x∗) as (f(x) − f(x∗) − r(x)) in the numerator. The term r(x) may be left
out, because

∥g′(f(x∗)) · r(x)∥
∥x− x∗∥ ≤ ∥g′(f(x∗))∥ · ∥r(x)∥∥x− x∗∥ → 0, (2.8)

where ∥g′(f(x∗))∥ denotes the operator norm (maximal scaling factor) of g′(f(x∗)), which
is a finite constant. So instead of (2.7), it suffices to show that

∥g(f(x))− g(f(x∗))− g′(f(x∗)) · (f(x)− f(x∗))∥
∥x− x∗∥ → 0 for x→ x∗, x ̸= x∗. (2.9)

As this is trivially satisfied for those sequence elements x that satisfy f(x) = f(x∗), we
may in the following assume that f(x) ̸= f(x∗). The differentiability of f additionally
ensures that

∥f(x)− f(x∗)∥ = ∥f ′(x∗) · (x−x∗)+ r(x)∥ ≤
(
∥f ′(x∗)∥+ ∥r(x)∥

∥x− x∗∥

)
· ∥x−x∗∥. (2.10)

As the first factor on the right hand side is bounded, we may replace the denominator
∥x− x∗∥ in (2.9) by ∥f(x)− f(x∗)∥ and obtain

∥g(f(x))− g(f(x∗))− g′(f(x∗)) · (f(x)− f(x∗))∥
∥f(x)− f(x∗)∥ → 0 for x→ x∗, f(x) ̸= f(x∗)

(2.11)
as a sufficient condition. This statement follows from the differentiability of g and the
continuity of f , completing the proof. □
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2. Algorithmic Differentiation

2.1.d. Numerical Approximation. In the case of n = m = 1, i. e. f : R → R, (2.2)
simplifies to the statement that the derivative L = f ′(x∗) is the limit of the difference
quotient,

f(x)− f(x∗)
x− x∗

→ L for x→ x∗, x ̸= x∗. (2.12)

Numerically, the value of the difference quotient for some value x = x∗+h or x = x∗−h,
with a small h > 0, can be used as an approximation of the derivative. For twice
continuously differentiable functions, the numerical error of this approximation, called
truncation error, is at most proportional to h for h → 0. For three-times continuously
differentiable functions, the truncation error of the central difference quotient

f(x∗ + h)− f(x∗ − h)

2 · h (2.13)

is at most proportional to h2 for h→ 0.
While smaller choices of h reduce the truncation error, they increase the condition

number of the difference quotients. Often, the function f can only be evaluated with
a small error or uncertainty, e. g. because f includes making physical measurements or
computations in floating-point arithmetic. In this case, h cannot be chosen arbitrarily
small, because the two terms in the numerator of (2.13) have about the same magnitude,
so taking their difference reduces the number of significant digits.

If m > 1 but n = 1, the difference quotients in (2.12) and (2.13), now composed of
vector operations, approximate the derivative L ∈ Rm×1 with only two evaluations of f .
If n > 1, the difference quotients must be formed with respect to n separate directions.
Thus, the number of operations needed to approximate L scales proportionally with the
number n of inputs.

2.2. Computer Programs as Mathematical Functions

According to the chain rule, it is possible to assemble the derivative of an arbitrarily
complicated mathematical function from the derivatives of the involved elementary op-
erations. This task can be carried out by hand, with the help of a computer algebra
system, or by the algorithmic differentiation (AD) techniques that we will explain in the
following sections. First, however, let us describe the way in which the mathematical
function is represented in the context of AD.

2.2.a. Primal Program. AD evaluates derivatives of mathematical functions imple-
mented by computer code, which we refer to as the primal program. At this point,
the term “program” should be understood in a wide sense, and may refer to interpreted
scripts, source code of executables or software libraries, or the respective binary build
artifacts.

2.2.b. Input and Output. Primal programs can read and write digital approximations
of real numbers, encoded e. g. as decimal strings or in a binary floating-point format,
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2.2. Computer Programs as Mathematical Functions

Listing 2.1: A simple differentiable function, given by its source code in the programming
language C.

#include <stdio.h>
#include <math.h>

double f(double x1, double x2):
printf("some side effect")
double tmp = x1 * 3.14 + sin(x2);
if(x2>x1){

return tmp * x2;
} else {

return x2 - 1.0;
}

}

through function call interfaces, standard and file input/output streams, and other mech-
anisms. Unlike “pure” mathematical functions, the execution of a primal program may
have side effects such as modifying an internal state or cache file used by the primal
program.

2.2.c. Programs as Sequences of Real-Arithmetic Steps. No matter how complex
the functionality of a computer programs is, it computes real-number outputs from real-
number inputs by a sequence of simple, elementary, real-arithmetic processing steps

alhs = ϕ(a1, . . . , ak), (2.14)

such as copy operations, basic real-arithmetic operations (+, −, ·, /), and math functions
(| · |,

√
, sin, exp, . . . ). Assuming at this point that it is possible to extract this

sequence of real-arithmetic steps, we have turned the primal program into a mathematical
function f .

The set of real-arithmetic functions eligible to appear as a ϕ on the right-hand side
of (2.14) can vary, but typically they are all differentiable “almost everywhere” across
their respective domains. Heuristically, we will “almost surely” not hit operand values
where elementary operations are not differentiable, and can thus conclude by the chain
rule that the composition f : Rn → Rm is differentiable for “most” inputs to the primal
program. See Paragraph 2.2.e below for a hint to a more formal perspective.

For example, the C code in Listing 2.1 computes the return value by means of a scaling
operation and an evaluation of the sine function, followed by an addition, eventually
followed by a multiplication if the second argument is larger than the first argument.
Otherwise, a different sequence of operations applies. The sequence of performed real-
arithmetic steps (2.14) may depend on the input value x∗ where the derivative is to be
evaluated.

Integer arithmetic, comparisons, boolean logic, and control flow constructs like function
calls, conditional branches and loops are ignored here. While those may affect which
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2. Algorithmic Differentiation

Listing 2.2: This function behaves like an identity function on floating-point inputs. How-
ever, it is nearly impossible for an AD tool to recognize this.

#include <stdio.h>

double f(double x):
double y;
char str [100];
sprintf(str , "%.80e", x);
sscanf(str , "%lf", &y);
return y;

}

sequence of real-arithmetic calculations is performed, for any particular set of inputs x∗,
it is only these real-arithmetic calculations that determine the AD derivative at x∗.

Note that our assumption made above, that any processing of floating-point data,
from the real inputs to the real outputs, can be divided into elementary steps with
obvious real-arithmetic meaning, is not always guaranteed. For instance, the code in
Listing 2.2 converts the input argument into a decimal string, and parses this string
into a floating-point number to obtain the return value; automatically recognizing this
as a real-arithmetic identity would be very hard. Later in this thesis (Section 3.3.5
and Paragraph 7.5.a), we will even encounter an example for computer code that has
two different interpretations as a real-arithmetic step, with different derivatives; let us
postpone the proper analysis of such “bit-tricks” to Section 3.3.

2.2.d. Digression: Derivatives of Numerical Algorithms. While the pure mathemati-
cal theory of a real-world process may be smooth, numerical software often only computes
approximations. Even if the error of the computed value is small, the error of the deriva-
tives may be large.70 The example in Figure 2.2, cited from Aehle et al.3, demonstrates
this for an iterative solver of a polynomial equation of degree 3: Starting from any initial
value in the appropriate range, the solver computes a good approximation of the real
root; but as the approximation is noisy, its derivative with respect to the initial value is
sometimes much larger than 0.

When a subprocedure of f is known to solve a mathematically simple numerical prob-
lem, it often makes sense to use analytic derivatives for this subprocedure instead of
calculating a “black-box” derivative of the numerical algorithm. This has been worked
out, e. g., for the solution of a linear system,60 the non-degenerate dominating eigenvalue
and eigenvector of a diagonalizable matrix,195 and the limit of a fixed-point iteration
(where this is known as reverse accumulation).42 There is a nice overview article about
AD “pitfalls” by Hückelheim et al.85

Of course, implementation details and possible benefits depend on the specific numer-
ical algorithm, and on its context in the primal program. For the scope of this thesis, we
will not use any higher-level information on the algorithm composed by the sequence of
elementary real-arithmetic operations (2.14).
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Figure 2.2: While the damped Newton scheme x(k+1) = x(k)−αg(x(k))/g′(x(k)) converges
to the single real solution of g(x) = x3−2x+2, the derivative of the converged
solution with respect to the initial solution x(0) is far from 0. Here, α = 0.1
and the solver was stopped as soon as |g(x(k))| < 10−11. Cited from Aehle et
al.3

2.2.e. Digression: PAP Functions. The heuristic argument that if elementary op-
erations ϕ1, ϕ2 are differentiable almost everywhere (in the sense that there is only a
measure-zero set of counterexamples), then the composition ϕ2 ◦ ϕ1 is differentiable al-
most everywhere, has an obvious flaw: ϕ1 may take a constant value, at which ϕ2 is
not differentiable, on a set with positive measure. To formalize the key insight that oc-
casional jumps or kinks of some elementary functions do not prevent us from assigning
meaningful derivatives, Lee et al.111 have introduced the concept of functions that are
piecewise analytic under analytic partition (PAP). Many elementary functions are PAP
functions, and compositions of PAP functions are PAP functions. Every PAP function
has a set of intensional derivatives, which are PAP functions again and agree with the
standard derivatives almost everywhere.

2.2.f. Next Sections. Implementations of AD tools need to answer two crucial ques-
tions:

• Which types of primal programs (Paragraph 2.2.a) can be handled by the AD tool,
and how does the AD tool find out about the sequence of real-arithmetic steps
like (2.14)? In Sections 2.5 to 2.7, we give an overview on the different mechanisms
reported in the literature to access the primal program.

• Once we know which real-arithmetic steps a program performs, how can we combine
this information with the elementary differentiation rules and the chain rule to
compute derivatives? We summarize the forward and reverse modes of AD in
Sections 2.3 and 2.4.

As part of our general overview, we will have a few specific looks at the AD tools Tape-
nade79, CoDiPack158, Enzyme128 and Clad179. These tools, and many others, are well-
established, excellent choices, and power numerous fruitful applications of AD. It is in
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2. Algorithmic Differentiation

the nature of things that in a thesis concerned with a novel approach to a problem, spe-
cial attention is given to weaknesses in the existing successful approaches. Whenever we
do so, our purpose is to work out some specific problems of source-code-based AD that
machine-code-based AD can solve, and to contextualize the results of our equally critical
and “picky” assessment of our novel machine-code-based AD tool Derivgrind.

2.3. Forward-Mode AD: Propagation of Dot Values

Let us assume that we already know the real-arithmetic steps (2.14) performed by the
primal program; mechanisms to obtain this information will be discussed in Sections 2.5
to 2.7. The forward and reverse mode of AD are two ways of using the chain rule to
assemble the elementary derivatives into the derivative of the primal program. This
section is about the (easier) forward mode, and the next Section 2.4 is about the reverse
mode.

2.3.1. Basic Procedure

Let us first consider the case of a single AD input x. For every number a appearing in
one of the real-arithmetic steps of the primal program, the forward mode of AD keeps
track of a dot or tangent value ȧ that stores its partial derivative ∂a

∂x with respect to the
single input x. Initially, ẋ is seeded with a value of 1, and all other dot values (e. g. those
of global variables or constants) are initialized with 0. Then, every real-arithmetic step
like (2.14) is matched by an update

ȧlhs =
∂ϕ

∂a1
(a1, . . . , ak) · ȧ1 + · · ·+

∂ϕ

∂ak
(a1, . . . , ak) · ȧk (2.15)

according to the chain rule. This update uses the differentiation rule for the operation ϕ
to compute ȧlhs from ȧ1, . . . , ȧk. For instance, a multiplication alhs = a1 · a2 leads to an
update ȧlhs = ȧ1 · a2 + a1 · ȧ2 of the dot value of the product, and alhs = sin(a1) has to
be accompanied by ȧlhs = cos(a1) · ȧ1.

After the last real-arithmetic step and the associated forward-mode AD logic (2.15)
have been performed, the derivatives of all of the AD outputs with respect to the single
AD input x can be read from their respective dot values.

2.3.2. Multiple Inputs

In advanced use cases with multiple AD inputs x1, . . . , xn, their dot values can be seeded
with ẋ1 = ν1, . . . , ẋn = νn in the beginning. As both differentiation and the updates
according to (2.15) are linear, the dot value ȧ of a value a then represents

ȧ = ν1 ·
∂a

∂x1
+ · · ·+ νn ·

∂a

∂xn
. (2.16)

This fact allows to compute a single directional derivative with the same computational
effort as a partial derivative with respect to a single AD input. This is sometimes called
jacobian-vector product (JVP).
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2.4. Reverse-Mode AD: Backpropagation of Bar Values

If partial derivatives with respect to multiple AD inputs are sought, these can be
computed separately, each of them as in the case with a single AD input. Alternatively,
in vector-mode forward-mode AD, ȧ is a vector containing the partial derivatives with
respect to all AD inputs, and (2.15) is applied in each component. Both approaches can
be combined. Either way, the computational effort is proportional to the number of AD
inputs.

2.3.3. Asymptotical Performance

Already at this abstract stage, we can make asymptotic estimations about how the run-
time and memory performance of the differentiated program relates to the performance
of the primal program. Forward-mode AD with a single AD input needs to store one
additional real value ȧ for every real value a appearing in the primal program. If a
large share of the program’s memory is devoted to floating-point data, the memory
consumption can therefore be expected to scale by a factor of 2.

Regarding the run-time, one additional real-arithmetic step (2.15) needs to be per-
formed for every real-arithmetic step (2.14) in the primal program, and for every AD
input. Therefore, the run-time scales at most by the number of inputs times a fac-
tor independent of the primal program. This factor depends on details of the AD tool
implementation and the computing system, such as

• how fast (2.15) can be evaluated compared to (2.14), for all of the possible elemen-
tary real-arithmetic steps (which form a finite set);

• how much time is needed by the AD tool to identify the real-arithmetic statements
like (2.14), and to form (2.15) — often, this happens statically and does not incur
any slow-down at run-time; and

• how much the inserted logic (2.14) obstructs performance optimizations of the com-
piler (e. g., use of vector registers) and the processor (e. g., pipelining and caching).

While the forward-mode run-time scales proportionally with the number of AD inputs,
it does not explicitly depend on the number of AD outputs; this is the same asymptotic
run-time behaviour as with difference quotients (Paragraph 2.1.d). In the context of
gradient-based optimization (Paragraph 2.1.b) with a single AD output given by the
objective value, and a possibly large number of parameters treated as AD inputs, the
other way round would be much better. Fortunately, there is a reverse mode of AD that
we will take a look at next.

2.4. Reverse-Mode AD: Backpropagation of Bar Values

2.4.1. Basic Procedure

Let us first consider the case of a single AD output y. In this case, reverse-mode AD
matches every real-arithmetic value a appearing in the evaluation of the primal program
by an adjoint or bar variable ā. In ā, the partial derivative ∂y

∂a of y with respect to a
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is accumulated. Initially, ȳ is seeded with a value of 1, and all other bar values (e. g.
constants, global variables, AD inputs, and intermediate results) are initialized with 0.
Then, all real-arithmetic steps like (2.14) are taken into account in the reverse order of
execution compared to the primal program, updating

āi+=
∂ϕ

∂ai
(a1, . . . , ak) · ālhs for i = 1, . . . , k, and (2.17)

ālhs = 0. (2.18)

The increment in (2.17) reflects that the derivative of the output variable y with respect
to the value of ai before the step differs from the derivative with respect to the value of ai
after the step by the additional implicit dependency of y on ai via alhs. Equation (2.18)
refers to the fact that the overwritten value of alhs before the assignment has no influence
on the output variable y.

After the update (2.17), (2.18) has been performed for all real-arithmetic steps, the
derivatives of the single AD output y with respect to all of the AD inputs can be read
from their respective bar values.

2.4.2. Multiple Outputs

The case of multiple AD outputs in the reverse pass is analogous to the case of multiple
AD inputs in forward-mode AD (Section 2.3.2), with swapped roles of AD inputs and
outputs.

In advanced use cases for multiple output variables y1, . . . , ym, their bar values can
be seeded with ȳ1 = µ1, . . . , ȳm = µm. Then, the bar value ā of a value a accumulates

ā = µ1 ·
∂y1
∂a

+ · · ·+ µm ·
∂ym
∂a

, (2.19)

allowing to compute a single gradient of a linear combination of output values with
the same computational effort as for a single output value. This is sometimes called
vector-jacobian product (VJP).

If separate gradients of multiple AD outputs are sought, they can be computed by
individual reverse passes, by a single vector-mode reverse pass, or a combination of
both approaches. In either case, the computational effort scales with the number of AD
outputs.

2.4.3. Forward and Reverse Pass

In forward-mode AD, the dot value propagation logic (2.15) can be performed alongside
the original statements like (2.14). In contrast, the reverse-mode updates (2.17) and
(2.18) have to be applied to the statements in reverse order, compared to the order in
which they are performed by the primal program. Reversing the control flow is not
trivial:

• At the beginning of the reverse-mode AD computation, the partial derivatives of
the last statement are needed to perform the update (2.17). In general, they depend
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on the final state of the primal program, so the primal program must be run to the
end beforehand.

• Next, the partial derivatives of the second-to-last statement are needed for (2.17).
In general, they depend on the second-to-final state of the primal program, which
is not available any more once the primal program has been run to the end. A
naive approach to obtain the second-to-final state could thus be to run the primal
program another time, until the second-to-last statement.

• But then, the same problem occurs with the third-to-last statement, and so on.

Asymptotically, such a recompute-all approach squares the number of real-arithmetic
statements to be executed, which is clearly not efficient. Reverse-mode AD is usually
implemented with a run-time proportional to the run-time of the primal program, by
running a forward pass before the reverse pass procedure of Section 2.4.1. In the forward
pass, the primal program is run with additional AD logic that records information re-
quired to make the reverse pass efficient. This forward-pass data structure is often called
tape, stack or cache, and is mainly accessed in a last-in-first-out fashion. We discuss two
common approaches to the forward pass in Sections 2.4.4 and 2.4.5.

2.4.4. Source-Rewriting Approach

Listing 2.3 gives an example of how the AD tool Tapenade79 performs the forward and
reverse passes. The primal program is defined by the function f, which repeatedly mul-
tiplies the argument u by the argument v until it becomes larger than 100, and then
returns u. Tapenade generates source code of a function f_b that takes three additional
parameters ub, vb and fb. The caller of this function has to pass the bar value of the
return value of f in fb, and pointers to the bar values of u and v in ub and vb, respec-
tively. Then, f_b sets these bar values to fb · ∂f∂u and fb · ∂f∂v , respectively, similar to the
terms on the right hand side of (2.17).

The while loop in the code of f_b belongs to the forward pass; Tapenade has aug-
mented the primal code (blue) with

• a statement that pushes the intermediate value u to the stack every time before it
is overwritten (dark green), and

• statements that count the number of iterations, and push this number onto the
stack as well (light green).

In the reverse pass code created by Tapenade (yellow), a for loop with the same number
of iterations contains the bar value updates (2.17), (2.18) of the primal statement x = x*y
in its loop body. To see this, rewrite the primal statement as

uold = u, then (2.20)
unew = uold · v, then (2.21)

u = unew (2.22)
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Listing 2.3: The code on the right was produced from the code on the left using the
reverse mode of the source-rewriting AD tool Tapenade 3.16. Tapenade aug-
mented the primal code (blue) with iteration counting (light green), storing
of intermediate values (dark green) and the reverse pass (yellow).

double f(double u, double v){
while(u <100){

u = u*v;
}
return u;

}

#include <adStack.h>

void f_b(double u, double *ub , double←↩
v, double *vb , double fb) {
double f;
int adCount;
int i;
adCount = 0;
while(u < 100) {

pushReal8(u);
u = u*v;
adCount = adCount + 1;

}
pushInteger4(adCount);
*ub = fb;
*vb = 0.0;
popInteger4 (& adCount);
for (i = 1; i < adCount +1; ++i) {

popReal8 (&u);
*vb = *vb + u*(*ub);
*ub = v*(*ub);

}
}
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with temporary variables uold, unew that are used nowhere else. The respective bar value
updates in reverse order read

ūnew+=
∂ūnew

∂ūnew
· ū = ū (2.23)

ū = 0, then (2.24)

ūold+=
∂(uold · v)

∂uold
· ūnew = v · ūnew (2.25)

v̄+=
∂(uold · v)

∂v
· ūnew = uold · ūnew (2.26)

ūnew = 0, then (2.27)

ū+=
∂ū
∂ū
· ūold = ūold, (2.28)

ūold = 0, (2.29)

Given the fact that ūold and ūnew are zero before evaluating (2.23)–(2.29), and are dis-
carded afterwards, we can shorten this block to

ūnew = ū (2.30)
ūold = v · ūnew (2.31)
v̄+= uold · ūnew (2.32)
ū = ūold. (2.33)

This can be simplified to

v̄+= uold · ū (2.34)
ū = v · ū, (2.35)

which is what the body of the for loop generated by Tapenade in Listing 2.3 computes.
The forward and reverse passes need not be clearly separated in the differentiated code.

In fact, they do not even need to run one after another: When we add the code for the
function g in the left box of Listing 2.4 and ask Tapenade for its derivative, Tapenade
additionally emits the code in the right box of Listing 2.4 (plus a function f_c with the
same semantic as f). In each of the two calls to f_b, a forward pass with pushes onto the
stack is followed by a reverse pass with evaluations of (2.17) taking data from the stack.

Besides Tapenade, other AD tools with a source-rewriting forward pass include En-
zyme128 and Clad179.

2.4.5. Tape-Recording Approach

As an alternative to parsing the source code and transforming control flow constructs,
a tape-recording forward pass records the entire stream of real-arithmetic statements on
the forward-pass data structure called the tape. To this end, the primal program is
augmented with the following index handling and tape recording logic.
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Listing 2.4: The code on the right was produced from the code on the left using the
reverse mode of the source transformation AD tool Tapenade. This example
shows that the forward and reverse pass can be intertwined.

double f(double u, double v){
while(u <100){

u = u*v;
}
return u;

}

double g(double u1, double u2←↩
, double v1, double v2){

return f(u1 ,v1) + f(u2,v2);
}

void g_b(double u1, double *u1b , ←↩
double u2, double *u2b , double v1←↩
, double *

v1b , double v2 , double *v2b , ←↩
double gb) {

double result1;
double result1b;
double result2;
double result2b;
double g;
result1b = gb;
result2b = gb;
*u2b = 0.0;
*v2b = 0.0;
f_b(u2, u2b , v2 , v2b , result2b);
*u1b = 0.0;
*v1b = 0.0;
f_b(u1, u1b , v1 , v1b , result1b);

}

2.4.5.a. Index Handling. The index handling logic keeps track of an index of every
number a, in order to identify it; in absence of a naming convention in the AD community,
we will denote the index as â in this thesis. Typically, indices are chosen from the set
{0, 1, 2, . . . } of non-negative integers. A default index like 0 may be reserved for passive
real numbers, which do not depend on any AD input. When a number is declared as
an AD input, or when it appears as the left hand side of a statement like (2.14) that
has at least one active variable on the right hand side, it is active and receives a new
index. New indices can simply be assigned consecutively (1, 2, . . . ) by a linear index
management strategy. Alternatively, if it is possible to track when an index is not used
anymore because (all copies of) the corresponding variable disappeared, a reuse index
management 159 strategy can reassign the index later on. Reusing indices saves space for
the bar variables and makes it less likely that indices overflow a 32-bit integer. Either way,
at any point of time, indices must uniquely identify a single node in the real-arithmetic
evaluation tree; i. e., different numbers (in the sense of different variables, not values)
shall be assigned different indices. Mere copies of a number may be allowed to carry the
same index (copy optimization).

2.4.5.b. Tape Recording. For every statement (2.14) performed in the forward pass
with at least one active operand, the tape recording logic stores information on the tape
that allows to efficiently perform (2.17) and (2.18) later in the reverse pass.

In the Jacobian taping approach, the indices âlhs, â1, . . . , âk, and the values of the
partial derivatives ∂ϕ

∂a1
(a1, . . . , ak), . . . , ∂ϕ

∂ak
(a1, . . . , ak) are stored on the tape.158

In the primal value taping approach, the indices âlhs, â1, . . . , âk, the values of alhs and
of any passive ai, and a handle to a function to evaluate ∂ϕ

∂a1
, . . . , ∂ϕ

∂ak
are stored on the
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2.4. Reverse-Mode AD: Backpropagation of Bar Values

tape.157

The Jacobian taping approach seems easier to implement, and the primal value taping
approach can save tape space if many statements have many arguments. For either
approach, the index of the left hand side may be omitted if it can be reconstructed
otherwise, e. g. from the position of the data on the tape.

2.4.5.c. Alternative Implementation of the Forward Mode. Besides the reverse-mode
updates (2.17) and (2.18), the information on the tape can also be used to propagate dot
values according to (2.15). When forward-mode derivatives are sought for many inputs
as in Section 2.3.2, it might save run-time to record a tape once, and then evaluate it
the corresponding number of times (possibly in a vector-mode fashion), compared to a
repeated application of the forward mode, as the active real-arithmetic statements only
contribute to a part of the run-time of the primal program.73

2.4.6. Asymptotical Performance

The run-time of the forward and reverse pass of reverse-mode AD with a single output
variable is at most proportional to the run-time of the primal program, though the pro-
portionality constants are usually higher than for forward-mode AD with a single input
variable. The fact that the reverse-mode run-time is proportional to the number of AD
outputs and constant in the number of AD inputs (Section 2.4.2), opposite to the forward
mode (Section 2.3.2), makes reverse-mode AD much better suited for optimization prob-
lems with a single objective function value (AD output) depending on many parameters
(AD inputs).

However, a price for the better run-time asymptotics has to be paid in terms of memory
consumption of the forward-pass data structure. Especially for tape-recording forward
passes (Section 2.4.5), the tape size is proportional to the number of active real-arithmetic
statements, and can thus be expected to scale with the run-time of the primal program.
Thus, limits on the amount of available memory translate to limits on the run-time of
the primal program, if no further strategies to reduce tape size, such as those listed in
the following, are applied.

Checkpoints 46,133 of the program state, taken at a few points of time during program
execution, allow to record parts of the tape only shortly before they are needed for the
reverse pass. Preaccumulation 11,178 replaces sections of a Jacobian tape by an equivalent
multiplication with a local Jacobian; this saves space when the numbers of local inputs
and outputs of the section are small. More complex AD workflows that respect the
mathematical structure of the primal program, as introduced in Paragraph 2.2.d, usually
also save tape space.

2.4.7. Comment on the Names

Throughout this section, we have used the terms source-rewriting and tape-recording
for the two different approaches concerning which data is stored in the forward pass
to allow for an efficient reverse pass. In the literature, authors sometimes prefer the
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terms source-transformation and operator-overloading, respectively. In this dissertation,
we have reserved these terms for naming different mechanism to interact with the pri-
mal program in order to obtain knowledge on the real-arithmetic statements, in order
to implement the forward mode, and either source-rewriting or tape-recording forward
passes for reverse-mode AD. We review these mechanism next in Sections 2.5 to 2.7.
Let us already state here that operator-overloading reverse-mode AD tools usually have
a tape-recording forward pass. Source-transformation and compiler-based reverse-mode
AD tools usually have a source-rewriting forward pass, although a tape-recording forward
pass would also be possible.

2.5. Operator Overloading

2.5.1. New Floating-Point Type

A common feature of object-oriented programming languages is that new data types
can be defined, specifying the data fields they contain and the methods they provide.
Operator-overloading AD tools define a new type that should be used in the primal
program instead of the built-in floating-point types. The new type stores a floating-
point value and AD meta-data. It defines real-arithmetic operators and math functions
that operate as expected on the value, and additionally perform (forward- or reverse-
mode) AD logic. Listing 2.5 gives an idea of how a C++ type with additional dot-value
propagation logic could look like.

As the example shows, C++ allows to re-define the methods operator+, operator*,
. . . that are called for operators like + or *; this is also possible in Python where they are
called __add__, __mul__, . . . . In addition, C++ allows to define methods with existing
function names when they have a distinctive signature, e. g. taking arguments of the new
type; this allows to overload math functions like sin as well. Next to these, it makes
sense to overload arithmetic assignment operators like *=, comparison operators like <
and >=, type traits like std::numeric_limits, the operators << (with output streams)
and >> (with input streams), etc.

2.5.2. “Automatic” except for the type exchange?

The closer the interface of the AD type resembles the interface of the built-in floating-
point types, the easier it becomes to integrate AD into an existing codebase in a black-box
fashion. Ideally, we would like the user to only have to do the following two things.

2.5.2.a. Automatic changes across the entire code. With statically typed languages
like C++, the user has to exchange the floating-point type everywhere in the source code.
This can be done automatically with an utility program like sed. Additionally, it might
be necessary to add an #include (C++), import (Python) or similar statement in the
beginning of each file, which can also be automated.
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Listing 2.5: Prototypical operator-overloading forward-mode AD tool for C++. The type
ad_number has a member variable for the value of the number, and overloads
real-arithmetic operations and functions so that they are performed on the
value. Additionally, an ad_number stores AD meta-data (here: dot values)
and the overloads perform AD logic (here: propagation of dot values).

// ad_number.h
#include <math . h>

struct ad_number {
double value ;
double dot_value ;

ad_number ( double v ) : value (v ) , dot_value ( 0 . 0 ) {}
ad_number ( ) : value ( 0 . 0 ) , dot_value ( 0 . 0 ) {}

} ;

inline ad_number operator+(ad_number a , ad_number b ){
ad_number result (a . value + b . value ) ;
result . dot_value = a . dot_value + b . dot_value ;
return result ;

}

inline ad_number operator ∗( ad_number a , ad_number b ){
ad_number result (a . value ∗ b . value ) ;
result . dot_value = a . dot_value ∗ b . value

+ a . value ∗ b . dot_value ;
return result ;

}

inline ad_number sin ( ad_number a ){
ad_number result ( sin (a . value ) ) ;
result . dot_value = cos (a . value ) ∗ a . dot_value ;
return result ;

}

/* ... define further operations ... */
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Listing 2.6: C++ program differentiated using the prototypical operator-overloading
forward-mode tool in Listing 2.5. Apart from the type exchange, we in-
serted code to include the AD tool (gray), declare AD inputs (light red), and
declare AD outputs (dark red).

#include "ad_number.h"
#include <iostream >
#include <math.h>

ad_number func ( ad_number a ){
return a ∗ a + sin (a ) ;

}

int main ( ){
ad_number a ;
a . value = 4 . 0 ;
a . dot_value = 1 . 0 ;
ad_number b = func (a ) ;
std : : cout

<< "b = " << b . value << std : : endl
<< "db/da= " << b . dot_value << std : : endl ;

}

2.5.2.b. Manual changes at specific locations only. Besides, the user has to edit the
code to mark the AD inputs and outputs, possibly trigger the recording and derivative
computation, and to utilize the derivatives. Examples for this are shown in Listing 2.6
for the prototypical forward-mode tool (Listing 2.5), and in Listing 2.7 for the reverse
mode of the operator-overloading AD tool CoDiPack158. Clearly, these changes cannot
be performed automatically, as the user provides information by adding these statements.
However, the effort required by this manual intervention should roughly scale with the
number of AD inputs and outputs rather than with the total size of the codebase.

In practice, additional manual modifications can be required for several reasons such
as the following.

2.5.2.c. Type Exchange Mistakes. Exchanging the floating-point types is not as trivial
as it sounds. When the strings long double, double and float are substituted by an
AD type specifier in all C++ source and header files, this might damage e. g. string literals,
names of #include’d files such as the standard library headers float.h and cfloat, or
names of variables, functions, macros or types in external, non-differentiated libraries,
like std::hexfloat in the standard library header ios. When multiple floating-point
types are mapped to a single AD type, legal overloads for these types might become illegal
function redefinitions. Listing 2.8 demonstrates that floating-point literals may need to
be converted to the AD type as well. Header files provided by the AD tool to declare the
AD type must be included before the first use of the AD type in all translation units;
simply prepending every file that contains source code with such an include statement
can lead to bugs if some of these files are not included in the global scope.
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Listing 2.7: C++ program differentiated using the reverse mode of the operator-
overloading tool CoDiPack version 2.1.0. We inserted code to include the
AD tool (gray), declare AD inputs (light red) and AD outputs (dark red)
during the forward pass, control the tape recording (green) and perform a
reverse pass (yellow).

#include "codi.hpp"
#include <iostream >
#include <math.h>

using Real = codi : : RealReverse ;

Real func ( Real a ){
return a ∗ a + sin (a ) ;

}

int main ( ){
auto& tape = Real : : getTape ( ) ;
tape . setActive ( ) ;
Real a = 4 . 0 ;
tape . registerInput (a ) ;
Real b = func (a ) ;
tape . registerOutput (b ) ;
tape . setPassive ( ) ;
b . setGradient ( 1 . 0 ) ;
tape . evaluate ( ) ;
std : : cout

<< "b = " << b << std : : endl
<< "db/da= " << a . getGradient ( ) << std : : endl ;

}
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Listing 2.8: C++ program where a simple type exchange leads to a compiler error. The
function template f requires two arguments of the same type, so the floating-
point literal would need to be converted to ad_number like the first argument.

1 #include "ad_number.h"
2
3 template<typename T>
4 T f (T a , T b ){
5 return a+b ;
6 }
7
8 int main ( ){
9 ad_number a = 1 ;

10 f (a , 1 . 0 ) ;
11 }

test . cpp : In function ‘ int main ( ) ’ :
test . cpp : 1 0 : 4 : error : no matching function for call to ‘ f ( ad_number&, ←↩

double ) ’
10 | f (a , 1 . 0 ) ;

| ~^~~~~~~~
test . cpp : 4 : 3 : note : candidate : ‘ template<class T> T f (T , T ) ’

4 | T f (T a , T b ) {
| ^

test . cpp : 4 : 3 : note : template argument deduction/substitution failed :
test . cpp : 1 0 : 4 : note : deduced conflicting types for parameter ‘ T ’ ( ‘←↩

ad_number ’ and ‘ double ’ )
10 | f (a , 1 . 0 ) ;

| ~^~~~~~~~
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2.5.2.d. External Libraries. Calls to functions from external libraries break if the type
of an argument changes. If the library call does not contribute to the differentiable
evaluation tree, like dumping data into files or printf-like logging, it suffices to extract
the floating-point value from the AD type for the library function call. This extraction
could be accomplished automatically at some places of the code if the AD type defines an
implicit cast to double, but this comes with its own set of problems (see Paragraph 2.5.2.f
below). In any case, the compiler will not use implicit casts if a pointer to an AD type
array needs to be converted to a pointer to a double array, a non-const reference to an
AD type variable is to be converted to double&, when AD type arguments are passed to
printf, etc.

If the library call contributes to the differentiable evaluation tree, then either the
type exchange has to be applied to the library as well, or the library functions must be
wrapped to ensure correct AD handling. For instance, if a parallel program uses the
Message Passing Interface (MPI) to communicate floating-point data between processes,
the MPI library needs to be wrapped by the AD tool.

2.5.2.e. Type Conversions. Listing 2.8 demonstrates that a simple type exchange can
break templated code due to the lack of type conversions during template argument
deduction. Another potential problem related to type conversions is that C++ does not
implicitly perform more than one user-defined type conversion at a time. For example,
the C++ code in Listing 2.9 can be compiled with g++ -c without problems; note that the
double literal 3.14 can be passed as a C<double> argument of do_something because
the converting constructor is implicitly called. But when the type number is changed
from double to ad_number, the program is ill-formed because the converting constructor
from double to ad_number must be called in addition to the converting constructor from
ad_number to C<ad_number>. The error message of GCC 11.4.0 is shown in Listing 2.9,
along with the analogous error message when CoDiPack’s codi::RealForward type is
used.

2.5.2.f. Benefits and Issues of Implicit Casts to int/double. A related issue comes
up with respect to integer casts and C++’s ternary ?: operator. An AD type D typically
supports implicit casts double→ D so literals of type double, int etc. can be used mostly
in the same way as before (with exceptions like Listings 2.8 and 2.9). To give D a behavior
as close to double as possible, one could also think of defining an implicit cast D→ int, so
assignments from D to integers work. By the latter cast and the implicit conversion int→
double, it becomes possible to convert D → double. But then, the second and third
operand of a conditional operator expression like true ? (D)1.0 : 2.0 can be converted
to one another, which makes the program ill-formed;94 naturally, as it is not clear whether
the type of the conditional expression should be D or double. This may look very specific,
but it was one of the issues that we faced while trying to apply operator-overloading
AD to the high-energy-physics simulation package G4HepEm142/HepEmShow141 (see
Section 10.4), which frequently uses assignments to integers for rounding, as well as the
?: operator.
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Listing 2.9: When the type number is changed from the built-in double to the user-defined
AD type ad_number of Listing 2.5, or CoDiPack’s codi::RealForward type,
this valid C++ program becomes ill-formed. GCC 11.4.0 produces the error
messages shown below. An implicit conversion from the double literal 3.14
to C<ad_number> or C<codi::RealForward> is not possible, because it would
require two user-defined conversion operations.

1 #include "ad_number.h"
2 using number = double ; // replacing double -> ad_number gives compiler error
3
4 template<typename T>
5 struct C {
6 T x ;
7 C ( ) {}
8 C ( T x ) : x ( x ) {}
9 } ;

10 void do_something (C<number> c ) {}
11
12 int main ( ){
13 do_something ( 3 . 1 4 ) ;
14 }

example . cpp : In function ‘ int main ( ) ’ :
example . cpp : 1 3 : 1 6 : error : could not convert ‘ 3 .1400000000000001 e+0’ from ‘ double←↩

’ to ‘ C<ad_number>’
13 | do_something ( 3 . 1 4 ) ;

| ^~~~
| |
| double

example . cpp : In function ‘ int main ( ) ’ :
example . cpp : 1 3 : 1 6 : error : could not convert ‘ 3 .1400000000000001 e+0’ from ‘ double←↩

’ to ‘ C<codi : : ActiveType<codi : : ForwardEvaluation<double , double> > >’
13 | do_something ( 3 . 1 4 ) ;

| ^~~~
| |
| double
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Listing 2.10: Changing the type number from double to CoDiPack’s codi::RealForward
type affects the behavior of this program, printing f called twice instead
of once. This is because overloads of the && operator do not use short-circuit
evaluation (Paragraph 2.5.2.g).

#include "codi.hpp"
#include <iostream>

using number = double ; // replacing double -> codi:: RealForward changes output

number f ( number x ){
std : : cout << "f called\n" ;
return x ;

}

int main ( ){
number a=0, b=1;
f ( a ) && f ( b ) ;

}

Listing 2.11: A simple type exchange from double to ad_number (see Listing 2.5) in this
C++ function is not sufficient to obtain correct derivatives.

double func ( double a ){
unsigned long long∗ p = ( unsigned long long∗)&a ;
∗p ^= 0x8000000000000000ul ;
return a ;

}

Apart from such specific types of issues, having a cast D → double also creates the
more abstract danger that C++ resolves other incompatibilities between D and double by
using this cast, and thus discarding AD information, at unexpected locations.

2.5.2.g. Other Differences in the Standard. The C++ standards94–97 sometimes make
other subtle distinctions between built-in and class types. For instance, the built-in
logical operators && and || in C++ do not evaluate their second argument if the first
argument already determines the result (i. e. if it is false for &&, or true in ||), which
is called short-circuit evaluation. Their overloads, however, lose this property, as shown
in Listing 2.10.

As a different example, the template std::complex<T> from the standard header
<complex> implements complex floating-point arithmetic if the type T is float, double,
or long double, but its behavior is unspecified if T is any other type, such as an AD
type. Concerning type traits like

std::is_arithmetic<T>, std::is_floating_point<T>, std::is_class<T>,

their whole point is to behave differently if T is e. g. double vs. an AD class type.
Some more examples have been collected by Hück et al.88
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2.5.2.h. Assumptions in the Primal Program. If the primal program has hard-coded
assumptions on the size or internal structure of the floating-point type, these may be
violated by a type exchange. For instance, for common implementations of the pro-
gramming language C, the function in Listing 2.11 returns the negative of its argument:
The ^= operator is used to apply a bitwise logical “exclusive-or” to the argument, and
the other operand 0x80. . .0 contains a single 1-bit at the position where the sign of a
double is usually stored, thus flipping the sign. As a side note, the binary represen-
tation of floating-point numbers is unspecified in C and implementation-defined in C++

according to the respective standards,92–97 but the most popular choice is the IEEE-754
formats90 discussed in Section 3.1 where the previous statement is true. After a naive
type exchange that replaces every occurrence of double with the ad_number type defined
in Listing 2.5, the function would flip the sign of the value but leave the sign of the
dot_value untouched. The same happens with CoDiPack’s RealForward type. If we
had decided in Listing 2.5 to store the dot_value before the value, the former would be
negated but the latter would remain constant.

2.5.3. Available Tools

In our perception, operator overloading is the most popular mechanism to discover and
augment floating-point operations. Just naming a few operator-overloading AD tools,
ADOL-C184 and CoDiPack158 are applicable to C++ codes; an example for using the
reverse mode of CoDiPack is shown in Listing 2.7. The autograd tool123 used by Py-
Torch146, and the internal AD tool of TensorFlow1, provide derivatives of calculations
made by Python code and have operator-overloading-type front-ends. Their main inten-
tion is to provide derivatives through neural networks, but see Listing 2.12 for a more
generic example.

2.6. Source Transformation

Source transformation AD tools like TAPENADE79 and ADIFOR27,29 parse the source
code of the primal program to learn about the real-arithmetic operations it performs,
and emit new source with additional AD logic. For forward-mode AD, source trans-
formation tools may simply insert the dot-value-propagating AD logic in the respective
programming language; Listing 2.13 shows an example of this. In the same style, source
transformation tools could insert forward-pass logic for a tape-recording reverse mode into
the code; however, Tapenade follows the source-rewriting approach. See Section 2.4.4 for
a detailed example of the code produced by Tapenade.

When applied to the function in Listing 2.11, which negates a number by flipping the
sign bit (in many implementations of C but outside of the language standard), Tapenade
does not see a differentiable dependency. This behaviour is justified, as Tapenade has
no control about the floating-point representation used by the compiler, and therefore
cannot even know what kind of real arithmetic is performed here. If correct handling
of this bit-trick were desired, we presume that it would be possible to implement it in
Tapenade. If the other operand to the bit-wise operation is not statically defined (i. e. as a
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Listing 2.12: Program differentiated in reverse mode AD with PyTorch146 (top) and Ten-
sorFlow1 (bottom).

import torch

def func (a ) :
return a∗a + torch . sin (a )

a = torch . tensor ( 2 . ,
requires_grad=True )

b = func (a )

b . backward ( )
print ("b =" , b . item ( ) )
print ("db/da=" , a . grad )
# alternative:
# torch.autograd.grad(b, [a])

import tensorflow as tf

def func (a ) :
return a∗a + tf . math . sin (a )

a = tf . Variable ( 2 . )
with tf . GradientTape ( ) as tape :

b = func (a )

print ("b =" , b )
print ("db/da=" , tape . gradient (b , a ) )

Listing 2.13: The code on the right was produced from the code on the left using the
forward mode of the source transformation AD tool Tapenade 3.16.

double f(double u, double v){
while(u <100){

u = u*v;
}
return u;

}

double f_d(double u, double ud , ←↩
double v, double vd, double *f←↩
) {
while(u < 100) {

ud = v*ud + u*vd;
u = u*v;

}
*f = u;
return ud;

}
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literal 0x80. . .0 in the code) but rather acquires its value at run-time (e. g. a non-constant
global variable initialized at run-time), source-rewriting tools cannot discover them at
compile-time and would need to insert run-time checks. We pay attention to this detail
here in order to indicate that bit-tricks (as in Listing 2.11 and later in Section 3.3), which
are only partially supported by Derivgrind, can also be a problem for source-code-based
AD tools if they appear on the source code level (which can happen in practice, e. g. in
Geant4, as outlined in Paragraph 10.3.e).

Tapenade can differentiate primal programs written in Fortran 77, Fortran 95, and
C. As source-transformation AD tools have to parse the entire control flow structure of
the primal program, supporting languages with a more complex syntax, such as C++,
is considered difficult. Several source-rewriting AD tools have solved this problem by
making use of existing compiler infrastructure, as we will see in the next Section 2.7.

2.7. Compiler-Based Tools

AD logic can also be added during compilation of the primal program. To give a brief
overview here, we will look at the two AD tools Clad179 and Enzyme128, which both use
the LLVM compiler infrastructure110,117 but operate at different stages of the compila-
tion process. Clad is a plugin for the Clang C/C++ compiler front-end, operating on its
internal representation of the source code in the form of an abstract syntax tree (AST).
Enzyme128 operates like an optimization pass on the LLVM internal representation (IR)
produced by LLVM front-ends. As LLVM has front-ends for various programming lan-
guages (such as C, C++, Julia, Rust, . . . ), Enzyme can be considered the most cross-
language tool so far. Even graphics processing unit (GPU) kernels can be differentiated
with Enzyme.129

Clad has an option to output the differentiated code as C++ source code, which we
use in Listing 2.14 for the same function as our reverse-mode Tapenade example in
Listing 2.3, obtaining structurally similar differentiated code.

Enzyme handles the “negation by flipping the sign bit” trick in Listing 2.11 correctly.
When the operand 0x80. . .0 is stored in a non-constant global variable, it cannot handle
it any more (and gives an error message), as generally anticipated for source-rewriting
tools in the previous Section 2.6.

In the reverse mode, at the moment, both Clad and Enzyme struggle with global
variables: For the code shown in Listing 2.15, they both compute a derivative of zero.
Enzyme requires that global variables are explicitly annotated in the LLVM IR.

2.8. Novel Approach: Machine-Code-Based Tool

The source transformation (Section 2.6), operator overloading (Section 2.5) and compiler-
based (Section 2.7) approaches operate from an increasing distance to the source code of
the primal program: While source transformation tools parse the source code, operator
overloading tools (ideally) require only a simple type exchange, and compiler-based tools
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Listing 2.14: The code on the bottom was produced from the code on the top using the re-
verse mode of the compiler-based source-rewriting AD tool Clad. Compare
with the Tapenade output in Listing 2.3.

#include "clad/Differentiator/Differentiator.h"

double f(double u, double v){
while(u <100){

u = u*v;
}
return u;

}

int main() {
auto df = clad:: gradient(f, "u,v");
df.dump();

}

void f_grad(double u, double v, clad::array_ref <double > _d_u , clad::←↩
array_ref <double > _d_v) {
unsigned long _t0;
clad::tape <double > _t1 = {};
_t0 = 0;
while (u < 100)

{
_t0 ++;
clad::push(_t1 , u);
u = u * v;

}
goto _label0;

_label0:
* _d_u += 1;
while (_t0)

{
{

{
u = clad::pop(_t1);
double _r_d0 = * _d_u;
* _d_u += _r_d0 * v;
* _d_v += u * _r_d0;
* _d_u -= _r_d0;
* _d_u;

}
}
_t0 --;

}
}
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Listing 2.15: Without further manual adaptations, functions involving global variables
are not properly differentiated by Clad (top) and Enzyme (bottom). Both
AD tools compute a zero value for the derivative which should be 6.0.

#include <iostream >
#include "clad/Differentiator/Differentiator.h"

double g;

double f(double u){
g = u;
return g*g;

}

int main() {
auto df = clad:: gradient(f, "u");
double du=0;
df.execute(3, &du);
std::cout << du << std::endl;

}

#include <iostream >

double g;

double f(double u){
g = u;
return g*g;

}

extern double __enzyme_autodiff(void*, double);

int main(int argc , char* argv []) {
std::cout << __enzyme_autodiff ((void*)f, 3.0) << std::endl;

}
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only access internal compiler representations of the code. The Enzyme tool does not
even require source code of static libraries, if they contain LLVM IR bitcode.

In this dissertation, we continue this journey away from the source code. Our AD
tool Derivgrind employs a dynamic binary instrumentation framework (see Chapter 4)
to insert AD logic into the machine code (Chapter 3) of the primal program just before
it executes on the processor. In Sections 2.8.1 and 2.8.2, we give an abstract overview of
the chances and limitations of machine-code-based AD, based on the competing design
goals listed in Paragraph 1.1.c.

2.8.1. Advantages of Machine-Code-Based AD

2.8.1.a. Scope of Supported Primal Programs. Machine-code-based AD supports
cross-language and, to some extent, partially closed-source codebases.

A large variety of programming languages exist to write computer programs, and
a single computer program may have many components written in different languages.
When a single source-code-based AD tool is to be applied to an existing codebase, it must
support all languages from which contributions to the real-arithmetic evaluation tree are
made. Given the huge differences that exist among popular programming languages,
creating a common AD tool for all of them can be considered practically impossible,
and it would be better to invest the effort of combining multiple AD tools, which likely
requires manual adaptations of interfaces in the codebase.

Enzyme supports a larger variety of programming languages, by relying on the LLVM
front-ends that translate these programming languages into the common LLVM IR lan-
guage. However, the eventual common language, into which all programming languages
finally translate, is the machine code executing on the processor. Machine-code-based
AD can operate on machine code originating from a wild mixture of obscure programming
languages in the same way as it operates on a compiled C++ program.69

Sometimes, software is only distributed in compiled form without the source code.
If software projects use closed-source components for real arithmetic with relevance for
the derivative, source-code-based AD is not an option any more. Enzyme can deal with
closed-source static libraries if they include their LLVM IR. For machine-code-based AD,
it does not make a difference whether the source code of intermediate real-arithmetic
calculations is available or not. (Only if things go wrong, having the source code is good
for debugging, and potentially required to fix bit-tricks, as discussed below.)

While machine-code-based AD can thus insert AD logic into a much wider range of
programs than source-code-based AD tools, there are limits when it comes to how AD
inputs and outputs are identified. The most common way for that is to refer to the source
code by a file name, line number and variable name; naturally, even machine-code-based
AD tools need some kind of access to the source code to make use of such specifications.
The scope of supported primal programs is further limited by the fact that it is at least
very difficult (and likely impossible) to comprehensively cover all possible “bit-tricks”
similar to Listings 2.2 and 2.11. Finally, software licenses may impose legal constraints
on whether certain primal programs may be disassembled and modified.
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2.8.1.b. Simple Integration of AD into Primal Code. The source transformation and
operator overloading approaches create or modify basically every section of the source
code that contributes to the real-arithmetic evaluation tree; this is mostly automatic, but
not entirely. In contrast, machine-code-based AD does not require any interaction with
the source code and build system, except for what is needed to identify AD inputs and
outputs, and to identify and fix any bit-tricks. It may thus reduce the amount of effort
required from the AD tool user to differentiate a given primal program in a “black-box”
fashion.

2.8.2. Limitations of Machine-Code-Based AD

2.8.2.a. Correctness in View of Bit-Tricks. With Listing 2.11, we have outlined one
example for the fact that on the level of bits and bytes, real-arithmetic operations can
sometimes be represented with integer-arithmetic or bitwise logical operations. List-
ing 2.2 shows another construct that AD tools will likely not recognize as relevant for
the derivative computation. In Section 3.3, we list a few more examples of such bit-
tricks, though they are not systematically understood. As AD depends on the full real-
arithmetic evaluation tree, AD tools might give wrong results for primal programs using
bit-tricks that are not recognized and handled correctly by the AD tool.

As far as bit-tricks can be explicitly implemented in the source code of the primal
program, both source-code and machine-code-based AD tools have to deal with them.
Source code and language standards may however provide more information than pure
machine code, so it might be harder for machine-code-based AD tools to recognize bit-
tricks. Additionally, bit-tricks introduced by the compiler, e. g. because of performance
reasons, can become a problem solely for machine-code-based tools. Part of this thesis
is to assess how much of a limitation this is in practice.

2.8.2.b. Applicability of Advanced AD Workflows. Knowledge on, and access to,
the internal structure of the primal program is required in order to apply advanced AD
techniques to reduce the tape size (Section 2.4.6) or to respect the mathematical structure
of numerical algorithms (Paragraph 2.2.d). As the main use cases of machine-code-based
AD evolve around enabling AD in exploratory or complex setups rather than improving
AD performance, there has been no need to make advanced AD workflows available in
Derivgrind so far.

2.8.2.c. Performance. Compilers are very good at producing performant machine code
that makes efficient use of the processor. As code optimization passes can be run after
source-code-based tools, the resulting machine code is usually performant. Retrospec-
tively inserting AD logic into optimized machine code, on the other hand, is likely to
destroy any performance optimizations.

For our novel tool Derivgrind, we have measured a much larger AD slow-down than
for CoDiPack (Chapter 9). Derivgrind relies on the Valgrind framework to interact with
the primal program; most other tools implemented in the Valgrind framework serve
debugging, profiling, or security purposes. These are usually not performance-critical,
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and performance has been a subordinate objective during the development of Derivgrind,
too. Thus, there might be potential for better performance in machine-code-based AD.
For now, reduced performance is a price that we are happy to pay in exchange for
universal applicability requiring little manual efforts.
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The goal of this thesis is to apply algorithmic differentiation (Chapter 2) to compiled
computer programs. In this chapter, we will therefore explore a bit of the low-level
internals of computer software, focussing on how software performs real arithmetic.

The set R of real numbers is uncountable, but a digital computer can only assume a
finite number of states. Thus, real numbers cannot be accurately represented in a com-
puter. Instead, floating-point formats define approximative representions of real numbers
as digital data, and we review the most important of these formats in Section 3.1.

As the core component of a computer, a processor (also called central processing unit,
CPU ) can transfer data between its registers and main memory, and perform a set of
integer-arithmetic, floating-point-arithmetic, logic, and possibly more specialised opera-
tions on the data. All these actions are directed by machine-code instructions read from
memory, according to the von Neumann model.182 An instruction set architecture (ISA)
is a comprehensive description of how a CPU behaves functionally, including the set of
machine-code instructions, their binary encoding and semantic meaning. A single ISA
can be implemented in hardware in a variety of ways; these are called microarchitectures,
and can differ in their internal design and, e. g., the resulting performance characteristics.
ISAs can also be implemented by emulator software. ISAs have often been extended over
time to accomodate technological advancements.

At the time of writing this thesis (November 2023), a large majority of the top 500
most powerful computing clusters are based on processors from the x86-64 family of ISAs
(besides graphics processing unit (GPU) accelerators omitted in this thesis), and all of
them run an operating system based on the Linux kernel. In the perception of the author,
this platform is also the most common target of scientific computing software, and it is
thus the platform that this dissertation is focused on. In Section 3.2, we have a closer
look at a selection of short snippets of assembly code compiled for x86-64 Linux systems,
to understand how compiled programs look like, and to introduce important instructions
and concepts.

Floating-point arithmetic can be performed by instructions other than the semantically
correct floating-point instruction. As AD relies on a complete knowledge of the real-
arithmetic evaluation tree of a program, it is mandatory to be aware of such “bit-tricks”,
and we list a variety of them in Section 3.3. Throughout the remainder of this thesis, we
will come back to the examples presented in this section.

3.1. Floating-Point Formats

While there is a canonical way of using blocks of several bytes to represent integers,
early-day computer software used various formats to represent real numbers as digital
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Figure 3.1: Structure of IEEE-754 binary floating-point formats: Sign bit (red), exponent
bits (green) with bias (gray number, value determined by the standard), and
mantissa/significand (blue) with implicit leading digit 1 (gray) and decimal
point. The figure illustrates the rarely used binary16 format; see Para-
graphs 3.1.a to 3.1.c for details on binary64 and binary32.

data. Basically three binary floating-point formats are still in widespread use today
and directly supported by state-of-the-art ISAs. The IEEE 754 standard90, published in
1985 and revised in 2008 and 2019, specifies the binary floating-point interchange formats
binary32 (before 2008: single) and binary64 (before 2008: double) as described in the
following, and illustrated in Figure 3.1.

3.1.a. 64-Bit Precision, Normal Case. In the 8-byte format binary64,

• the most significant bit stores the sign, 0 indicating a positive and 1 indicating a
negative number,

• the 11 next-most significant bits store the integer exponent in a biased fashion,
meaning that 0b00. . .01 and 0b11. . .10 represent the lowest and highest possible
exponents −1022 and 1023, respectively, and

• the remaining 52 lower-significant bits store the significand (also called mantissa),
apart from its implicit leading digit 1.

Thus, 0bb63b62 . . . b1b0 represents the real number

(−1)b63 ·
(
1 · 2E + b51 · 2E−1 + b50 · 2E−2 + · · ·+ b0 · 2E−52

)
(3.1)

with E = b62 · 210 + b61 · 29 + · · ·+ b52 · 20 − 1023

if E ̸= −1023, 1024. The value of the bias 1023 is specified in the IEEE-754 standard.

3.1.b. 64-Bit Precision, Sub-Normal, Infinite and Not-Numbers. In the case E =
−1023 of all-zero exponent bits, a different formula

(−1)b63 ·
(
b51 · 2E + b50 · 2E−1 + · · ·+ b0 · 2E−51

)
(3.2)

without an implicit leading digit 1 applies, to represent sub-normal numbers close to
zero, with reduced accuracy. In particular, a 64-bit 0x00. . .00 is interpreted as +0.0.
The case E = 1024 of all-one exponent bits is used to represent infinite numbers if all
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significand bits are set to zero, with the sign bit distinguishing between +∞ and −∞.
When there are non-zero significand bits, the binary data represents not-numbers (NaNs)
which might arise from, e. g., (±0)/(±0), (±0) · (±∞), ∞−∞,

√
a and ln a for a < 0,

or operations with NaN operands.

3.1.c. 32-Bit Precision. The 4-byte format binary32 is defined in an analogous fashion
with 8 exponent and 23 significand bits (apart from the leading 1), and exponents ranging
from −126 to 127.

Besides binary32, binary64, and other floating-point formats, and floating-point
arithmetic operations applicable to these, IEEE 754 also specifies rounding modes and
exceptions.

3.1.d. Rounding Modes. When the infinitely precise result of an arithmetic operation
cannot be represented the target floating-point format, it can be approximated in either
of the following IEEE 754 rounding modes:

• roundTiesToEven, choosing the closest number and resolving ties in such a way
that the last binary digit becomes 0,

• roundTiesToAway, choosing the closest number and resolving ties in favor of a
larger absolute value,

• roundTowardPositive, choosing the closest number that is not less,

• roundTowardNegative, choosing the closest number that is not greater,

• roundTowardZero, choosing the closest number whose absolute value is not greater.

3.1.e. Exceptions. Floating-point operations typically raise an invalid operation ex-
ception if the result would be NaN. The division by zero exception is also raised when
computing the logarithm of zero. Furthermore, there are exceptions raised when an
overflow or underflow occurs or when the result has to be rounded (inexact).

3.1.f. 80-Bit Precision. Besides the IEEE-754 binary64 and binary32 formats, the
10-byte x87 double extended precision format is somewhat widespread. First implemented
in the Intel 8087 coprocessor announced in 1980 and still used by x86-64 CPUs nowadays,
it uses 15 exponent and 64 significand bits, including the explicit leading digit.145

3.1.g. Implementation of Floating-Point Operations. In the overview on the x86-64
ISA in the next Section 3.2, we will encounter floating-point registers and instructions.
These instructions expect floating-point data to be represented in one of these three
floating-point formats, and are typically implemented by dedicated circuitry. Yet there
are more ways to digitally represent, and operate on, real numbers, which we discuss in
Section 3.3.
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3.2. The X86-64 Architecture and the Linux Kernel

This section gives an overview on the x86-64 ISAs with a particular focus on its floating-
point extensions, as well as some higher-level concepts on a conventional GNU/Linux
system. We have put a particular emphasis on instructions and concepts required to
understand the later parts of this thesis, and present them through a sequence of assembly
code snippets. See the specifications15,125 for detailed and comprehensive information,
and textbooks147,172 for structured bottom-up introductions.

3.2.1. Assembly Code Basics

3.2.1.a. Instructions. Machine code for x86-64 processors is a sequence of binary en-
coded instructions of variable length. An instruction typically starts with an opcode
that specifies the operation to be performed. One or several prefixes may precede the
opcode and modify the operation. Subsequently, operands identify either the value or
the memory location of the data, by constants or by register contents. The number of
operands and the possible combinations of these addressing modes may depend on the
operation. Binary machine code is usually represented by textual assembly language eas-
ier to read for humans. For example, assembly language replaces (prefixed) opcodes like
f3 0f 1e fa by textual mnemonics like endbr64.

3.2.1.b. Generation of the Snippets. We will walk through a sequence of snippets
of assembly code following the AT&T syntax, produced by the C compiler gcc from
the GNU Compiler Collection (GCC) in version 11.3.0 with the flags -S (compile to
assembly), -O3 (optimize the code) and -march=skylake (specifies the target processor)
on a Linux system, unless indicated otherwise. The snippets shown here are contiguous
pieces of the compiler output, except that labels and directives have been removed when
they were irrelevant for the demonstration.

3.2.1.c. Relation to Machine Code Running on the CPU. Before the assembly code
can execute on the CPU, it is

1. translated to machine code, also called object code at this stage, by an assembler,

2. transformed and combined with other pieces of object code by a linker, to create
an executable or library,

3. which undergoes another set of transformations when loaded into the main memory
by a loader at the start-up or during the run-time of a program.

While the forward-mode AD prototype by Gendler et al.69 operates on the assembly
code (i. e. acts before these transformations take place), our AD tool Derivgrind inserts
AD logic into the machine code just before it has a chance to execute on the CPU (i. e.
after these transformations). The transformations affect e. g. hard-coded references in
the machine code and may even change instructions (e. g. with link-time optimization).
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Nevertheless, assembly code is a good approximation of the code that will run on the
CPU, which is why we use it for our examples.

3.2.1.d. Calling Conventions. The concept of calling functions, methods, subroutines
etc. might, at first, seem like a characteristic of higher-level programming languages like
C. However, this concept is actually rooted in the machine code level: The instruction
pointer register RIP of the processor stores the memory location of the next instruction
to be executed, and storing another address by means of a jump or call instruction can
realize a function call. Calling conventions specify the details of the “contract” between
caller and callee, including

• the layout of a call stack that stores the return address and local variables of the
callee, and how the work of growing the stack is distributed between caller and
callee;

• how and in which order function parameters and return values are passed, e. g. on
the call stack or in registers; and

• which registers must be preserved, and which may be overwritten, by the callee.

Linux systems on x86-64 stick to the System V ABI125 calling convention.

3.2.1.e. Example for a Function Call. In our first snippet in Listing 3.1, the C
code on the left side declares functions f and g, but only defines g, so the compiler
only produces assembly code for g. The directive .text tells the assembler that what
follows belongs to the text segment, i. e. the executable instructions part of the object
file. The label g: instructs the assembler to remember the present code location (i. e.
the location of the endbr64 instruction), so it can be referred to from elsewhere, e. g.
for function calls; the symbol g will also be visible in later linking stages because of the
.globl directive. We have removed most of the directives in the following unless they are
required to understand the assembly code or to infer the corresponding bytes of object
code produced by the assembler.

The code of g starts with an endbr64 instruction; this instruction does nothing but
indicate a valid jump target address for Intel’s Control-Flow Enforcement Technology
(CET, 2016).169 The following instructions manipulate the content of several registers.
Operands starting with a dollar sign indicate integer literals, and operands starting with
a percent sign indicate the content of register. The x86-64 architecture features sixteen
general-purpose 64-bit registers RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, R8, R9,
. . . , R15. The RSP pointer is generally used as a pointer to the top of the call stack,
on which local variables and return addresses are stored. The call instruction performs
several actions: It pushes the address of the next instruction, inferred from the special-
purpose register RIP, to the stack, and it writes to RIP to perform the jump. The
jump target address is not known at this stage, but it will be edited in the process of
linking the program and loading it into memory, so that when execution reaches the call
instruction, it points to code for f (in general).
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Listing 3.1: Machine code of a function call with integer arguments.

long f(long a, long b,
long c, long d);

long g(){
return f( -10 , -20 ,30 ,40)+50;

}

.text

.p2align 4

.globl g

.type g, @function
g:

endbr64
subq $8, %rsp
movl $40 , %ecx
movl $30 , %edx
movq $-20, %rsi
movq $-10, %rdi
call f@PLT
addq $50 , %rax
addq $8, %rsp
ret

Listing 3.2: Pointer-type function arguments and indirect addressing.

void f(long long* ptr){
*ptr += 100;

}

f:
endbr64
addq $100 , (%rdi)
ret

Opposite to the call instruction, ret pops a return address from the stack and jumps
there. The subq and addq instructions applied to RSP, performing a 64-bit integer
subtraction or addition, let the stack grow and shrink by eight bytes, respectively.

The first movl instruction in Listing 3.1 copies a 32-bit value 40 into the ECX register,
which is the lower 32-bit half of the RCX register. The two movl and two movq instructions
comply with the System V ABI mandate that integer- and pointer-type arguments are,
from left to right, passed in the registers RDI, RSI, RDX, RCX, . . . . The values 30 and
40 fit into the lower 32-bit half of a 64-bit signed integer, which is why a 32-bit copy via
movl into the lower 32-bit halves EDX and ECX of the 64-bit registers RDX and RCX
is sufficient, respectively. For the values -10 and -20, the full 64-bit literal is copied into
RDI and RSI, respectively. Integer return arguments are passed in RAX, which is why
addq adds 50 to that register.

3.2.1.f. Addressing Modes. Listing 3.2 is an example for function arguments of pointer
type, and it illustrates that a single x86-64 instruction can load data from memory,
process it, and store it, all at once — register names in brackets, like (%rdi), identify
the memory location at the address stored in the register. Listing 3.3 illustrates the full
complexity of this addressing mode: -16(%rdi,%rsi,8) refers to the memory location
given by a pointer in RDI, plus 8 bytes times the content of RSI, minus 16 bytes.

The address calculation hardware can be “misused” for regular integer addition, as
illustrated in Listing 3.4 where the leaq instruction loads the memory address identified
by the first operand into the register specified by the second operand.

Listing 3.5 is an example for the related RIP-relative addressing mode that enables
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Listing 3.3: More complex indirect addressing.

void f(long long* arr ,
unsigned long i){

arr[i-2] += 100;
}

f:
endbr64
addq $100 , -16(%rdi ,%rsi ,8)
ret

Listing 3.4: 64-bit integer addition realized by a “load effective address” instruction leaq
by GCC 11.3.0.

long long f(long long a,
long long b){

return a+b;
}

f:
endbr64
leaq (%rdi ,%rsi), %rax
ret

position-independent code, as explained in the following. The .quad directive places a
four-byte value in the data segment of the object file (as requested by the .data directive)
and its location is labelled flipmask. While it would be possible for the assembler to use
a hard-coded address as the first operand of movq in the object file, doing so would imply
that whenever the code is moved to a different address, these hard-coded addresses would
need to be adjusted. Instead, the assembler determines the code position of flipmask
relative to the movq instruction and stores this difference in the machine code. When the
movq instruction with RIP-relative addressing executes, the difference can be added to
the instruction pointer RIP to obtain the address of flipmask no matter which memory
address the machine code has been loaded to.

3.2.2. Floating-Point Instructions

Regarding floating-point data and arithmetic, x86-64 provides two main sets of registers
and instructions, namely, x87 and SSE.

3.2.2.a. X87. The x87 floating point unit (FPU) is the older system and was originally
implemented by a separate Intel 8087 coprocessor sitting besides the 32-bit x86 CPU,
and later became part of the main CPU circuitry. It has eight 80-bit registers, which

Listing 3.5: RIP-relative addressing.

unsigned long flipmask = 123456 ul;
void f(unsigned long* a){

*a ^= flipmask;
}

.text
f:

endbr64
movq flipmask(%rip), %rax
xorq %rax , (%rdi)
ret

.data
flipmask:

.quad 123456
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Listing 3.6: Floating point arithmetics via x87 instructions and registers.

void f(long double a,
long double b,
long double* c){

*c = a*b;
}

f:
endbr64
fldt 8(%rsp)
fldt 24( %rsp)
fmulp %st , %st(1)
fstpt (%rdi)
ret

can provide a higher floating-point precision than binary64. GCC uses x87’s 80-bit type
to implement the C type long double. Listing 3.6 shows that function arguments of
this type are passed on the call stack: The first fldt instruction loads ten bytes from
the memory address in RSP plus 8 bytes, and the second fldt loads ten bytes from the
address 16 bytes higher (while only 10 bytes are required to store a number in the x87
format, 6 bytes of padding are inserted to align them to addresses divisible by 16 bytes).
The eight x87 registers are organized like a stack, meaning that the two floating-point
numbers have been loaded into the x87 registers ST(0) and ST(1), and the fmulp removes
them and pushes their product to ST(0). From there, fstpt stores it at the memory
address indicated by the pointer-type argument c, passed in RDI.

The x87 instruction set even comprises instructions fsin, fcos, fptan to evaluate
trigonometric functions, f2xm1 for exponentiation and fyl2x for the logarithm. These
instructions could be used to implement the respective functions of the C standard library
header math.h, unless an implementation in software is preferred. In our work, we
did not encounter e. g. fsin in actual compiler output or library code. Some of these
instructions were found to sometimes having been implemented with bad accuracy.47,57

Today, software implementations are preferred; see e. g. Listing A.7 in Appendix A.3.
The special-purpose x87 control word register (FCW) carries rounding control and

precision control bits to select a rounding mode and floating-point format, and several
exception mask bits that control how the processor reacts to floating-point exceptions,
e. g. by signaling them through exception flags in the x87 status word register (FSW).
FSW also contains the top-of-stack pointer, indicating which of the x87 data registers
is ST(0). The tag word register (FTW) reflects which data registers are full (and also
distinguishes between valid, zero and special content). Additionally, the x87 non-data
processor state comprises pointers to the last non-control x87 instruction and memory
operand, and a representation of its opcode.

3.2.2.b. SSE. After x87, further technological progress in x86 floating-point processing
went in the direction of parallel single-instruction-multiple-data (SIMD) vector opera-
tions. The Streaming SIMD Extensions (SSE, 1999, later extended multiple times) in-
troduce eight independent 128-bit registers XMM0, . . . , XMM7; the analogous extension
to x86-64 introduces sixteen 128-bit registers XMM0, . . . , XMM15. The Advanced Vec-
tor Extension (AVX, 2008) widens these to 256-bit registers YMM0, . . . YMM7/YMM15.
AVX-512 (2013) doubles the number of vector registers, and widens them to 512-bit reg-
isters ZMM0, . . . , ZMM31. The media extension control and status register (MXCSR)
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Listing 3.7: Floating point arithmetics via SSE/AVX instructions and registers.

void f(double a,
double b,
double* c){

*c = a*b;
}

f:
endbr64
vmulsd %xmm1 , %xmm0 , %xmm0
vmovsd %xmm0 , (%rdi)
ret

Listing 3.8: Parallel copy and multiplication of eight binary64 floating-point numbers
using AVX-512 instructions. Obtaining this output required a modified
target architecture flag -march=skylake-avx512 and an additional flag
-mprefer-vector-width=512.

void f(double const* restrict a,
double const* restrict b,
double* restrict c){

for(int i=0; i<8; i++){
c[i] = a[i]*b[i];

}
}

f:
endbr64
vmovupd (%rdi), %zmm0
vmulpd (%rsi), %zmm0 , %zmm0
vmovupd %zmm0 , (%rdx)
vzeroupper
ret

carries floating-point rounding control bits as well as exception masks and flags.
Listing 3.7 shows that binary64 arguments are passed in the SSE registers XMM0

and XMM1, and that the AVX instructions vmulsd and vmovsd are used to multi-
ply and copy them. Listing 3.8, compiled for an AVX512-capable target architecture
(-march=skylake-avx512) with an additional flag -mprefer-vector-width=512, illus-
trates the AVX-512 instructions vmovupd and vmulpd copying and multiplying eight
binary64 numbers with a single instruction.

GCC uses the vector registers to copy a single binary32 from one memory location to
another, see Listing 3.9. As this is just a type-agnostic data transfer, loading a 32-bit
integer into a general-purpose register and storing it from there, as shown in Listing 3.10,
would have the same functional effect.

The vector registers can also be used for integer arithmetic and bitwise logical SIMD
operations, as illustrated in Listing 3.11 (compiled with the AVX-512 flags again): The
vmovdqu16 instruction loads the first SIMD vector into ZMM0 and the vpsubw instruction
performs the subtraction. The vpbroadcastw instruction initializes all thirty-two 16-bit
components of ZMM1 with the read-only 16-bit integer 1234 identified via RIP-relative
addressing, and vporq performs the bitwise logical “or”. vzeroupper zeroes the bits of

Listing 3.9: GCC copied a single binary32 via the vector registers.

void f(float* dest , float* src){
*dest = *src;

}

f:
endbr64
vmovss (%rsi), %xmm0
vmovss %xmm0 , (%rdi)
ret
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Listing 3.10: If the source code says so, GCC would copy a single binary32 via type-
agnostic data transfer instructions.

void f(float* dest , float* src){
*(int*)dest = *(int*)src;

}

f:
endbr64
movl (%rsi), %eax
movl %eax , (%rdi)
ret

Listing 3.11: Parallel copy, subtraction, and bitwise logical “or” operations applied to
thirty-two 16-bit signed integers using AVX-512 instructions. Obtaining
this output required the same flags as in Listing 3.8.

void f(short const* restrict a,
short const* restrict b,
short* restrict c){

for(int i=0; i<32; i++){
c[i] = (a[i]-b[i]) | 1234;

}
}

f:
endbr64
vmovdqu16 (%rdi), %zmm0
vpbroadcastw .LC1(%rip), %zmm1
vpsubw (%rsi), %zmm0 , %zmm0
vporq %zmm1 , %zmm0 , %zmm0
vmovdqu16 %zmm0 , (%rdx)
vzeroupper
ret

.section .rodata.cst2 , ←↩
"aM",@progbits ,2

.LC1:
.value 1234

the YMM and ZMM registers that do not overlap with XMM registers; inserting it seems
to have performance reasons.

3.2.3. Further Instructions

3.2.3.a. Conditional Branches. Branch statements and loops in high-level languages
can be realized with conditional branch instructions. In Listing 3.12, after XMM1 has
been zeroed by applying a bitwise logical “exclusive or” to itself, the vcomisd instruction
compares it with the function argument a in XMM0. Specifically, vcomisd compares
the two lowest-lane binary64 components and sets specific bits in the special-purpose
EFLAGS register. Depending on these bits, ja either proceeds to the next instruction
that doubles XMM0 by adding it to itself, or jumps to the label .L8 in order to add 2.0
(which has a binary64 representation of 4000 0000 0000 0000, and the integer value of
the higher-significant 32 bits of this is 1073741824).

3.2.3.b. Atomic Instructions and Multi-Threading. Modern computers contain mul-
tiple processors (also called cores) with separate registers, but shared access to memory.
In multi-threaded programs, several cores intentionally work on shared data. It is often
necessary to coordinate access to shared data, in order to avoid data races where the
result of a computation depends on the otherwise unpredictable order of these accesses.
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Listing 3.12: C if statement realized with a conditional branch instruction by GCC.

double f(double a){
if (a<0){

return 2+a;
} else {

return 2*a;
}

}

.text
f:

endbr64
vxorpd %xmm1 , %xmm1 , %xmm1
vcomisd %xmm0 , %xmm1
ja .L8
vaddsd %xmm0 , %xmm0 , %xmm0
ret

.L8:
vaddsd .LC1(%rip), %xmm0 , %xmm0
ret

.section .rodata.cst8 , ←↩
"aM",@progbits ,8

.LC1:
.long 0
.long 1073741824

For example, let us assume that two threads T1 and T2 try to increment a shared variable
a by 1.0 and 2.0, respectively, by

1. loading a thread-local copy of the shared state a,

2. incrementing their thread-local copy of a, and

3. writing the result back to the shared state a.

Then, it could happen that they both read the original value of a in step (1), later step (3)
of T1 writes a + 1.0, and finally step (3) of T2 overwrites this with a + 2.0, so the final
result is a + 2.0 and the contribution of T1 is lost. If threads are scheduled differently,
the result might as well be a+ 1.0, a+ 3.0, or even some other value depending on how
exactly everything is implemented.

The x86-64 ISA offers compare-and-exchange (also called compare-and-swap, CAS)
instructions like cmpxchgq to facilitate thread-safe updates of a shared state stored at
a memory address addr. This instruction moves the second operand into RAX, and
if this did not change RAX, subsequently moves the first into the second operand. If
the second operand refers to a memory address addr, the lock prefix ensures that these
operations happen atomically ; i. e., the processor running the lock cmpxchgq instruction
has exclusive access to the memory at addr while completing the entire instruction.

The cmpxchgq instruction also updates the EFLAGS register according to the result
of the comparison. Alternatively, whether a CAS was successful or not can be checked
by comparing the value of RAX after the CAS instruction with the previously read value
of the shared state.

Listing 3.13 shows how GCC uses a CAS instruction. The C code specifies an atomic
addition of a shared binary64 variable at addr with 2.0 in the OpenMP multithreading
API. The machine code
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Listing 3.13: Compare-and-swap instruction used by GCC for an atomic update of a
shared state in a multi-threaded OpenMP environment. Compiled with an
additional GCC flag -fopenmp.

#include <omp.h>

void f(double* addr){
#pragma omp atomic
*addr += 2.;

}

.text
f:

endbr64
movq (%rdi), %rdx
vmovsd .LC0(%rip), %xmm0

.L2:
vmovq %rdx , %xmm2
vaddsd %xmm2 , %xmm0 , %xmm1
movq %rdx , %rax
vmovq %xmm1 , %rcx
lock cmpxchgq %rcx , (%rdi)
jne .L3
ret

.L3:
movq %rax , %rdx
jmp .L2

.section .rodata.cst8 , ←↩
"aM",@progbits ,8

.LC0:
.long 0
.long 1073741824

1. loads the present value of the shared state at addr (which, as a function argument
of pointer type, is passed in RDI), into RDX, and 2.0 into XMM0 (yellow);

2. copies RDX into RAX and computes *addr+ 2.0 into RCX (red);

3. performs a CAS, writing RCX to *addr if *addr still matches with the value in
RAX (blue); and

4. returns if the CAS succeeded (with jne checking the zero flag in FLAGS), and
otherwise repeats from step (2) with the new value of *addr copied into RDX
(gray).

This ensures that no matter how the threads are scheduled, the result will always
be (almost) the same. As e. g. floating-point addition is not associative, the binary
representation of the result might still depend on the order of operations, but the floating-
point value should not change much and this is not considered a data race.

3.2.4. System Calls: Interaction with the Operating System

With conditional and unconditional jumps, data transfer, integer arithmetic, floating-
point arithmetic, and logical instructions, we have seen all types of instructions necessary
for data processing in a narrow sense. However, we remain to discuss how programs
can start threads, allocate memory, and interact with the “outside world” e. g. through
standard, file and network I/O. This work focuses on machine code compiled in order to
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Listing 3.14: An x86-64 Linux assembly “Hello World” program adapted from Toal175. It
can be compiled with GCC using the flag -nostartfiles.

.data
s:

.string "Hello World!\n"

.text

.globl _start
_start:

movq $1, %rax # syscall ID 1 (= sys_write)
movq $1, %rdi # output file descriptor stdout (= 1)
leaq s(%rip), %rsi # pointer to output data
movq $13 , %rdx # size of output data (13 bytes)
syscall # call write(1,s,13)

movq $60 , %rax # syscall ID 60 (= sys_exit)
movq $0, %rdi # exit status 0 (= OK)
syscall # call exit (0)

execute in a userspace process under the Linux operating system kernel. In most cases,
userspace interaction with the “outside world” is, in fact, interaction with the kernel,
which in turn accesses the appropriate storage media, network interfaces etc. Processors
have a protection ring mechanism that allows such accesses only to kernel code running
in a high privilege level called kernel mode or ring 0, while userspace processes run in
user mode or ring 3.

3.2.4.a. System Calls. Userspace programs thus interact with the kernel by means
of system calls (syscalls), which are interrupts or specific instructions that raise the
privilege level and jump into code of the kernel. The “calling conventions” of system calls
are specific to the kernel; the implementation of the C standard library wraps system
calls as normal functions that userspace programs can call in a portable way. But of
course, it is possible to make system calls directly from assembly code. As a simple
example, the “Hello World” program for x86-64 assembly under Linux in Listing 3.14,
adapted from Toal175, performs two syscalls to Linux on x86-64. In both cases, the
syscall instruction is used after parameters have been placed in RAX, RDI, RSI, RDX.
For the first syscall write, RAX holds the syscall ID 1, RDI contains the file descriptor
used for writing, which is 1 for standard output, RSI contains a pointer to the output
data, and RDX contains the number of bytes to be written. A second syscall exit with
syscall ID 60 in RAX and the exit status 0 (success) in RDI terminates the process.

3.2.4.b. Relevance to Real Arithmetic. Floating-point data can thus, apart from being
stored in the program’s data section (Listing 3.12) or being produced by instructions,
enter the memory of a program through syscalls. For instance, libraries implementing
the message passing interface (MPI) provide a convenient way to transmit floating-point
arrays between processes in a distributed-memory parallel environment.
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3.2.5. Shared Libraries

We have already used the term software library to refer to collections of pre-defined
functions that can be used by different programs. On modern systems, (dynamic) shared
libraries are located and linked either during program startup, or at run-time. Later in
this thesis, we will encounter shared libraries of the two following sorts.

3.2.5.a. The C Standard Library. The C programming language defines a standard
library with basic functionality required by many programs, like heap management (e. g.
malloc and free), input/output functions (e. g. printf, fscanf), copy functions (e. g.
memcpy, memmove), string functions (e. g. strlen, strcat) and math functions (e. g. exp,
log, sin). The GNU implementation of the C standard library is called glibc. For
historical reasons, math functions are contained in a shared library file libm.so separate
from libc.so.

3.2.5.b. Add-On Mechanisms. Userspace programs can locate and dynamically load
shared libraries at run-time. This allows to implement an “add-on mechanism”, by which
a user can make additional code available to a running program. For instance, Python-C
modules are shared objects loaded at run-time by the Python interpreter; we continue
on this topic in Section 8.2.

3.2.6. Virtual Memory

All memory addresses handled by userspace programs are virtual addresses. For each
process, the kernel keeps track of a page table that defines the mapping of the virtual
address space of the process onto physical memory addresses. This way, different user-
space processes can use the same (virtual) address space for their code, data and stack,
without interfering with each other. Likewise, it is possible to map different virtual ad-
dresses of different processes to a single physical memory page – this allows, e. g., to
have a single copy of the non-writable parts (e. g. text sections) of the C standard library
(Paragraph 3.2.5.a) and other libraries in physical memory, rather than loading one copy
for each process. Listing 3.15 shows how a process can use the mmap system call to acquire
two different pointers to the same portion of physical memory.

The memory management unit (MMU) is a component of the processor hardware
that reads the page table and automatically translates virtual into physical addresses for
every access to main memory. When the userspace program attempts to access a virtual
address that is not mapped, the MMU raises a page fault interrupt, giving control to the
kernel. “Innocent” page faults like the first write to freshly allocated memory, or access
to data that the kernel has swapped to disk and that need to be reloaded, are resolved
by the kernel and are functionally transparent to the userspace process. However, if the
kernel determines that the userspace program attempted an invalid memory access, it
sends a segmentation violation signal to the process.
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Listing 3.15: Compiled with GCC using glibc on x86-64 Linux, this program acquires two
pointers x, y to the same physical memory address. It therefore prints 42
even though x and y are different virtual addresses and there is no write to
*y.

#define _GNU_SOURCE
#include <sys/mman.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
int main(){

int fd = memfd_create("" ,0);
ftruncate(fd ,0x1000);
volatile int* x = (int*)mmap(NULL ,0x1000 ,PROT_READ|←↩

PROT_WRITE ,MAP_SHARED ,fd ,0);
volatile const int* y = (int*)mmap(NULL ,0x1000 ,PROT_READ ,←↩

MAP_PRIVATE ,fd ,0);
*x = 42;
printf("%d\n", *y);

}

3.3. “Bit-Tricks”: Alternative Ways to Perform Real
Arithmetic

In computational science and engineering, the standard way of storing real numbers as
digital data is by the three floating-point formats discussed in Section 3.1, and real-
arithmetic operations are almost always applied via the respective x87 and/or SSE in-
structions (Section 3.2.2). In this section, we have a look at alternative ways to perform
real arithmetic. Depending on the application scenario, such “bit-tricks” may be employed
to improve performance (because they might need less CPU cycles or work on multiple
numbers in parallel), because they offer a specific decimal or higher binary accuracy, or
just to confuse people.

3.3.1. Alternative Floating-Point Formats

IEEE 754 specifies further floating-point formats besides binary32 and binary64, includ-
ing decimal formats decimal32, decimal64, decimal128. Their advantage over binary
floating-point formats lies in their well-defined decimal accuracy. They are rare in scien-
tific computing software where this kind of accuracy is not required, but according to the
literature, business and financial applications frequently rely on decimal formats.44,185

With the new types _Decimal32, _Decimal64, _Decimal128 proposed for the C 23 stan-
dard,98 decimal floating-point arithmetic will become a language feature in C. Several
ISAs have added hardware support for decimal formats, with z/Architecture announcing
it in 2007,53,89 PowerPC in 2007 as well,166 and SPARC64X around 2013.66,198 On archi-
tectures without hardware support like x86-64 and x86, decimal floating-point arithmetic
must be implemented in software, using code that operates on decimal floating-point data
e. g. in an integer arithmetic and bitwise logical fashion; see Listing 3.16 for an example.
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Listing 3.16: GCC uses a software implementation of decimal floating-point arithmetic,
calling the function __bid_adddd3 in libgcc.so. The type _Decimal64 is
proposed in the current draft of the C 23 revision, and already supported
as a GNU extension.

_Decimal64 f(_Decimal64 a,
_Decimal64 b){

return a + b;
}

f:
endbr64
subq $8, %rsp
call __bid_adddd3@PLT
addq $8, %rsp
ret

Of course, such an “emulated FPU” can always be used, even for binary32 and
binary64 data, instead of the suitable floating-point instructions.

Related to that, the GNU Multiple Precision Floating-Point Reliable Library (MPFR)61

defines many non-standard floating-point formats, offering e. g. arbitrarily high floating-
point precision. To make them usable, the MPFR implements the corresponding elemen-
tary real-arithmetic operations and math functions. When the MPFR or an emulated
FPU is employed in the primal program, what runs on the CPU are these implementa-
tions. Their underlying real-arithmetic meaning is by no means obvious on the machine
code level.

3.3.2. Manipulation of the Sign Bit

According to equation (3.1), the absolute value of a binary64 (and also binary32 or x87
extended precision) floating-point number can be formed by simply setting the sign bit
to 0. This can be achieved by applying a bitwise logical “and” operation to the floating-
point representation and a 64-bit (or 32-bit or 80-bit) constant 0b01. . .11. Listing 3.17
demonstrates that GCC routinely uses this “trick” to compute absolute values without
using any floating-point instruction. Note that the 64-bit constant 0b01. . .1 is composed
from a 32-bit 0b1. . .1 in the lower half and a 32-bit 0b01. . .1 in the upper half, and
zero-padded into a 128-bit operand.

Similarly, the negative value of a floating-point number can be computed by a bitwise
logical “exclusive or” with 0b10. . .0, and the negative absolute value can be computed by
a bitwise logical “or” with 0b10. . .0.

When both operands of an “exclusive or” or “or” are 0b10. . .0, it is not clear which
operand represents the real number (if any). As a floating-point operand, 0b10. . .0
represents −0.0 according to equation (3.1), so computing the negative of −0.0 can lead
to such an ambiguous use of the “exclusive or” instruction. With the “and” operation,
there is no ambiguity because if 0b01. . .11 were read as a binary64 or binary32, it would
represent NaN.
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Listing 3.17: GCC 11.2.0 may use a 128-bit logical “and” to set the sign bit of a binary64
to zero, in order to compute the absolute value. We have inserted comments
into the assembly code to indicate the bitwise representations of the four
32-bit constants.

#include <math.h>
double f(double x) {

return fabs(x);
}

f:
endbr64
andpd .LC0(%rip), %xmm0
ret

; ...
.LC0:

.long -1 ; 0b11..11

.long 2147483647 ; 0b01..11

.long 0 ; 0b00..00

.long 0 ; 0b00..00

Listing 3.18: Clang 14.0.0 may use logical operations in a masking pattern to select one
of two floating-point numbers.

double f(double a){
if (a<0){

return 2+a;
} else {

return 2*a;
}

}

.section .rodata.cst8 , ←↩
"aM",@progbits ,8

.LCPI0_0:
.quad 0x4000000000000000

.text
f:

xorpd %xmm1 , %xmm1
movapd %xmm0 , %xmm2
cmpltsd %xmm1 , %xmm2
movsd .LCPI0_0(%rip), %xmm1
andpd %xmm2 , %xmm1
andnpd %xmm0 , %xmm2
orpd %xmm1 , %xmm2
addsd %xmm2 , %xmm0
retq

3.3.3. Masking

When we compile Listing 3.12 with Clang for the target -march=nehalem, we obtain the
assembly code in Listing 3.18. Note that it uses masking instead of a conditional jump:
The cmpltsd instruction compares XMM1 (zeroed by the xorpd instruction and thus
representing +0.0) and XMM2 (initialized with a which has been passed in XMM0), and
sets XMM2 to either 0xff. . .ff if a < 0, or 0x00. . .00 otherwise. The subsequent “and”,
“and-not” and “or” instructions use this mask in a masking expression

(mask and value_if_true) or ((not mask) and value_if_false) (3.3)

to select either the constant 2.0 copied from .LCPI0_0, or the value a copied from XMM0,
respectively, into XMM2. From there it is added into XMM0, so the function returns
a+ 2 or a+ a = 2a.
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Listing 3.19: Possible implementation of the frexp function of math.h for normal num-
bers, applying bitwise logical and shift instructions to the binary64 argu-
ment.

typedef unsigned long long ull;
ull const E_mask

= (0 b11111111111ul << 52);
ull const E_value

= (0 b01111111110ul << 52);

double f(double arg , int* exp){
ull arg_ul = *(ull *)& arg;
*exp = (arg_ul & E_mask) >> 52;
*exp -= 1022;
ull result

= (arg_ul & ~E_mask) | E_value;
return *( double *)& result;

}

f:
endbr64
vmovq %xmm0 , %rdx
shrq $52 , %rdx
andl $2047 , %edx
subl $1022 , %edx
movl %edx , (%rdi)
vmovq %xmm0 , %rax
movabsq $ -9218868437227405313 , ←↩

%rdx
andq %rdx , %rax
movabsq $4602678819172646912 , ←↩

%rdx
orq %rdx , %rax
vmovq %rax , %xmm0
ret

3.3.4. Manipulation of the Exponent Bits

3.3.4.a. Overwriting. The masking expression (3.3) can also be used to overwrite the
exponent bit field, e. g. in order to implement the frexp function from the C header
math.h. Except for corner cases, frexp takes a binary64 arg and a pointer exp to
an integer as arguments, assigns a signed integer −k to *exp such that b = 2k · arg
satisfies 1

2 ≤ |b| < 1, and returns b. This real-arithmetic operation can be implemented
as in Listing 3.19 without any floating-point operations, extracting k from the eleven
exponent bits of the binary64, and overwriting them with 0b01111111110, which lets
E = −1 in (3.1). The code in Listing 3.19 has been inspired from code of the VDT
math library154 used in the Geant4 software; see Appendix A.1 for details. The idea is
illustrated in Figure 3.2a.

3.3.4.b. Integer Addition. The “reverse” operation ldexp, which multiplies a floating-
point argument with a power 2k for a given integer argument k, can likewise be imple-
mented by an integer addition of k to the exponent bits. Listing 3.20 illustrates this
with the binary32 variant ldexpf, for which the integer arguments must be shifted by
23 bits to the left so it becomes aligned with the eleven exponent bits. Note that the
code does not work correctly in corner cases like subnormal numbers. We observed this
kind of bit-trick in a SIMD version of ldexpf used by NumPy78 v1.19.5, with the code
in Listing A.5 in Appendix A.2. NumPy calls this function in the implementation of
the exponential function for a binary32 SIMD vector in Listing A.3, where initially a
multiple k · ln 2 is subtracted from the argument to map it into a suitable range for an
approximating rational function, and the result is scaled by 2k to account for this range
reduction. See Appendix A.2 for details.
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(a) Overwriting of exponent bits,
Paragraph 3.3.4.a.
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(b) Complicated binary identity,
Section 3.3.6.
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(c) Using floating-point errors for rounding, Section 3.3.5.

Figure 3.2: Illustrations of a few bit-tricks from Section 3.3.

Listing 3.20: Possible implementation of the ldexpf function of math.h for normal num-
bers, applying integer addition and shift instructions to the binary32 argu-
ment. This is just a simple sketch; the code does not work in some corner
cases.

unsigned int float_to_int(float x){
return *( unsigned int *)&x;

}
float int_to_float(unsigned int x){

return *(float *)&x;
}
float f(float arg , int exp){

return int_to_float(
float_to_int(arg) + (exp <<23)

);
}

f:
endbr64
sall $23 , %edi
vmovd %xmm0 , %eax
addl %edi , %eax
vmovd %eax , %xmm0
ret
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3.3.5. Exploiting Floating-Point Inaccuracies for Rounding

For a binary64 number x in the range between 252 ≤ |x| < 253, the exponent E in
formula (3.1) is 52. Thus, the least-significant bit b0 of the significand controls the binary
digit 2E−52 = 1. Therefore within the above range for x, the real numbers representable
in the binary64 floating-point format are precisely the integral numbers. This fact can
be exploited to implement a rounding operation for a binary64 y with |y| < 251, as
follows.

In a first step, T = 1.5 · 252 is added to y. As 252 < |T + y| < 253, storing the
sum as a binary64 rounds it to an integral number, obeying the present rounding mode
(Paragraph 3.1.d). In a second step, T is subtracted again from the result of (T + x).
This does not introduce any more floating-point errors, so we end up with the value of y
rounded to an integral number. Figure 3.2c illustrates this bit-trick using the binary16
format.

Unlike the previously presented bit-tricks, this one uses floating-point instructions.
However, the intended arithmetic effect comes from inaccuracies of the specific binary
representation used to store (T+x), rather than the semantic of addition and subtraction
in terms of infinitely precise arithmetic.

Depending on the possible range of x, other constants between 252 and 253 may be used
for T instead of 1.5 · 252, and the subtraction step may be split into multiple operations
scattered around in the machine code. It would therefore be extremely hard to spot
this kind of bit-trick in all of its possible variations. And even if it were detected, it
would remain unclear whether the intention behind the code is to perform a rounding
operation, as it might as well just be a badly conditioned coincidental pair of an addition
and subtraction that together incur a large floating-point error.

The glibc math library makes frequent use of this kind of bit-trick, e. g. for range
reduction or to compute an index into a lookup table, see Appendix A.3. Also, GCC
may use it to implement the math function rint, as we show in Listing 3.21. Note that in
this example, we specified the target architecture x86-64 and not skylake, where GCC
uses a dedicated vroundsd instruction instead, and that also the -O3 optimization level
is important as unoptimized builds (-O0) use a call to the math library function rint as
expected.

Finally, the previous NumPy expf example in Listing A.3 contains the rounding bit-
trick as well.

3.3.6. Instruction Sequences Composing a Binary Identity

For the purpose of encoding, encryption or compression, computer programs may subject
binary data to sequences of instructions that temporarily modify it, but restore the
original values in the end. For example,

• Listing 2.2 converts a floating-point number to a string representation and back;

• Listing 3.22 shows a binary identity employed by GCC to copy data for an OpenMP
atomic update on x86; and
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Listing 3.21: GCC 11.4.0 with -O3 and -march=x86-64 uses floating-point inaccuracies to
implement calls to the rounding function rint, as outlined in Section 3.3.5.
.LC0 is a binary64 representation of 252 and .LC1 is 0x7f. . .ff. The andpd
instruction calculates the absolute value of the function argument (Sec-
tion 3.3.2). jbe jumps right to the end of the function if the absolute value
compares larger or equal to 252 with ucomisd, because then no rounding is
necessary. Otherwise, 252 in XMM3 is first added (addsd) and then sub-
tracted (subsd); the bitwise logical andnpd and orpd instructions are in
place to preserve the sign.

#include <math.h>

double f(double x){
return rint(x);

}

f:
endbr64
movsd .LC1(%rip), %xmm2
movsd .LC0(%rip), %xmm3
movapd %xmm0 , %xmm1
andpd %xmm2 , %xmm1
ucomisd %xmm1 , %xmm3
jbe .L2
addsd %xmm3 , %xmm1
andnpd %xmm0 , %xmm2
subsd %xmm3 , %xmm1
orpd %xmm2 , %xmm1
movapd %xmm1 , %xmm0

.L2:
ret

• a hard-to-spot binary identity can also appear when different virtual addresses
point to the same physical memory address, as in Listing 3.15.

When the binary data comprises representations of real numbers, correct AD handling
requires to recognize the identity in order to keep their AD information.

3.3.7. How to Avoid Creating Bit-Tricks

As outlined in this section, bit-tricks can perform real arithmetic in ways that are very
difficult to recognize. We should therefore remark on practical options to avoid inserting
them into a compiled program.

We may anticipate from Section 8.1 that while popular compilers like GCC or Clang
do use sign bit manipulations (Section 3.3.2) and masking expressions selecting entire
numbers (Section 3.3.3), it is very rare that they use other bit-tricks by themselves;
though that happened as well in Listing 3.21, where it could be avoided with -O0, and in
Listing 3.22, where it can be avoided e. g. by not using OpenMP. Most of our examples
in this section, however, arise from high-performance math library source code that
explicitly operates on floating-point data in a binary way. Such code patterns should
be replaced by the appropriate floating-point operations and when they occur in library
functions, there are at least three options:

• Maybe it is possible to configure the library in a way that turns off these kinds of
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Listing 3.22: GCC 11.2 on godbolt.org72 with flags -fopenmp -m32 -O3 -march=pentium
compiling Listing 3.13, using a bit-trick to copy a binary64. The argument
addr is passed at 4(%esp) according to the x86 Linux calling conventions118;
after the first three instructions have decreased ESP by 4 + 4 + 28 = 36
bytes, addr is copied from 40(%esp) to ESI. The binary64 number *addr
is then copied to %esp with the combination of a fildq and a fistpq in-
struction, highlighted in blue. The fildq instruction loads the 64-bit signed
integer operand as an 80-bit floating-point number into ST(0), and fistpq
performs the reverse store operation. Chaining fildq and fistpq in this
way has the effect of movq (%esi) (%esp) (if this were a well-formed in-
struction), because the 80-bit type with 64 significand bits plus a sign bit
can accurately represent 64-bit integers.
Additionally, the check whether the CAS was successful is highlighted in
yellow. To this end, the value of *addr just before the CAS (stored in EAX
and EDX after the CAS) is compared to the local copy that was incre-
mented by 2.0 (at the top of the stack, (%esp)), by means of bitwise logical
“exclusive-or” operations and an “or” operation. These bitwise operations
affect the zero flag, which controls the conditional jump instruction jne.

f:
pushl %esi
pushl %ebx
subl $28 , %esp
movl 40( %esp), %esi
fildq (%esi)
fistpq (%esp)

.L2:
fldl (%esp)
fadds .LC0
movl (%esp), %eax
movl 4(%esp), %edx
fstpl 8(%esp)
movl 8(%esp), %ebx
movl 12( %esp), %ecx
lock cmpxchg8b (%esi)
movl (%esp), %ebx
movl 4(%esp), %ecx
xorl %eax , %ebx
xorl %edx , %ecx
orl %ebx , %ecx
jne .L3
addl $28 , %esp
popl %ebx
popl %esi
ret

.L3:
movl %eax , (%esp)
movl %edx , 4(%esp)
jmp .L2

.LC0:
.long 1073741824
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optimizations. This option works, e. g., for the bit-tricks in NumPy’s exponential
function (see Paragraph A.2.d).

• If the source code of the library is accessible and it is not too much work, one might
also modify the source code to eliminate bit-tricks; this is what we did in Geant4’s
G4Log.hh header (Paragraph 10.3.e).

• One can try to recognize calls to library functions by their symbol names, and
reroute them to wrapper functions. We use this solution to work around bit-tricks
in the C math library (Section 5.5).

• Otherwise, one should try to find alternatives to the library.

3.4. Summary

Automatic differentiation, as outlined in Chapter 2, is based on the full knowledge of the
real-arithmetic expression tree evaluated by the primal program. It is therefore critical
to recognize all the real-arithmetic calculations performed by the primal program. There
are three widespread floating-point formats, and the x86-64 and x86 ISAs have spe-
cific instruction subsets for floating-point arithmetic. Besides floating-point instructions,
type-agnostic copy operations are relevant for AD because they can copy floating-point
data. In Chapter 4, we describe the practical aspects of recognizing (the execution of)
these instructions in the primal program.

We have outlined several further ways how real arithmetic can be “hidden” in a portion
of machine code, e. g. by bitwise manipulation of the sign or exponent bits, by software
emulation of a floating-point unit, or by exploiting the limited floating-point accuracy for
rounding operations. We lack a systematic understanding of all of the possible bit-tricks.
This would be a fundamental obstacle if we sought to create a truly universal AD tool that
could even handle hand-written assembly code of a determined counterexample-maker.

However, we take a more practical perspective. Derivgrind currently supports manip-
ulations of the sign bit (Section 3.3.2), masking expressions for entire floating-point rep-
resentations (Section 3.3.3), and whatever happens inside the C math library functions.
Apart from this, we assume that the primal program does not use any other bit-trick.
For users, this mainly means that in the source code of the primal program including
libraries, real-arithmetic operations should always be performed by the corresponding
language constructs. Next to this, disabling OpenMP is a good idea and in rare cases,
unoptimized builds might be required. Thus, we believe that our assumption is only a
minor limitation regarding the productive use of AD for compiled programs.
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4.1. Dynamic Binary Instrumentation Frameworks and Tools

As illustrated in Section 3.2, compiled computer programs on x86-64 Linux systems
are very complex “data structures”. The goal of this work is to find out about the
real-arithmetic operations performed by a program, and to insert the appropriate AD
logic; specifically, either forward-mode logic propagating dot values (Section 2.3), index-
handling and tape-recording logic (Section 2.4.5), or logic implementing a bit-trick de-
tection heuristic.

4.1.1. Interacting with Machine Code

Possible ways to insert the AD logic into the binary machine code of the primal program
may comprise

• static binary instrumentation, operating on the machine code of the build artifacts
(executable and user library files) without running the code, similar to the forward-
mode prototype adac by Gendler et al.69 (operating on the assembly level); or

• dynamic binary instrumentation (DBI), operating on the machine code of the pro-
gram after it has been loaded into memory, and shortly before it executes.135

• Alternatively, a “differentiated CPU” or “differentiated CPU emulator” might run
machine code and perform AD logic alongside. Schoder164 used an FPGA to run a
RISC-V core with additional circuitry performing forward-mode AD logic. Related
but concerned with a different kind of extra logic, Jurczyk et al.103,104 used the
instrumentation API of the Bochs emulator to detect kernel race conditions and
memory disclosures.

The operator-overloading, source-transformation and compiler-based approaches (Sec-
tions 2.5 to 2.7) taken by source-code based AD tools, when applied to compiled lan-
guages, have a similar effect as the static instrumentation approach. When programs
grow or change at run-time by dynamic loading of shared libraries, self-modification,
or the generation of new machine code, the static approach has no chance to adapt.
Conversely, dynamic instrumentation can access the entire userspace machine code of a
process, including dynamically linked or loaded user and system libraries and on-the-fly-
generated code, at every point of time while it executes; only kernel code is typically not
accessible. This amount of universality is suitable for almost all purposes, and it is the
approach we take in the following. A differentiated CPU or emulator would be even more
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universal because it can see all instructions performed on the CPU, by all processes and
by the kernel.

4.1.2. Dynamic Binary Instrumentation

This thesis is concerned with the DBI approach to insert AD logic. Its implementation
from scratch would, at least, involve the following difficult and error-prone tasks:

• Handling the ELF files of the primal program executable and all dynamically linked
or loaded libraries; the dynamic loader of the system might potentially be used
for this, but this is not straightforward; also, we might want to have access to
information present in the executable and library files but not in the loaded machine
code, such as debug symbols;

• repeatedly disassembling portions of the binary machine code when we know at
which bytes instructions start;

• adding AD logic, making sure that its use of registers and memory does not interfere
with the primal instructions;

• as this stretches the code, adapting any references like RIP-relative addresses;

• making sure to never lose control about which instructions will execute – e. g., jump
instructions leaving the instrumented code portion must be redirected back to the
DBI infrastructure, which has to instrument the code at the jump target first;

• running this instrumented code; and,

• in parallel, providing suitable interfaces for the user of the tool.

Fortunately, a lot of this work has already been done by authors of DBI frameworks like
Valgrind139,168, PIN120 and DynamoRIO37,38. These frameworks take over many of the
above tasks, so the author of a DBI tool can focus on the core logic and functionalities
of their tool. All these frameworks have in common that they provide a “base” or “core”
system that can load and run userspace machine code of a client program without ever
losing control, and they offer an API for “tools” to manipulate the code, intercept function
calls, register callbacks for various types of events, and/or interact with the user. Many
of such DBI tools have been created and reported in the literature; we give an overview
on the various application domains of DBI in the next section 4.1.3.

4.1.3. Overview on Dynamic Binary Instrumentation Tools

4.1.3.a. Memory Error Detectors. Valgrind’s default tool Memcheck 167 and Dyna-
moRIO’s Dr. Memory 36 are memory checkers. For each byte of virtual memory, they
monitor whether it can be legally accessed by the client program (valid-address bit).
For each bit of data in virtual memory and registers, they monitor whether it has been
properly initialized (in the sense that it does not depend on the content of uninitialized
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memory; valid-value bit). The instrumentation inserted by these tools updates the valid-
address and valid-value metadata, and reports warnings if the client program performs
invalid memory accesses or if the outside behavior of the program depends on the con-
tent of uninitialized memory. Memory checkers need to intercept and instrument calls
to memory allocation routines, and can report related errors like double frees or memory
leaks.

4.1.3.b. Other Memory-Related Tools. Cudagrind 21 extends Valgrind’s Memcheck
tool with wrapper functions to include data transfers with accelerator devices like GPUs
via CUDA drivers into memory error checking. Annelid 136 tracks memory ranges for
pointers, in order to diagnose memory accesses outside proper bounds.

Taint analysis tools like TaintCheck 140, Flayer 52 and Taintgrind 108 implemented in
Valgrind, and TaintTrace 41 implemented in DynamoRIO, use metadata with a similar
behaviour as Memcheck’s valid-value bits to monitor whether data depends on unsan-
itized input from an untrusted user. A warning is triggered when such data controls
“dangerous” operations, e. g. if jumps are performed using tainted target addresses.

4.1.3.c. Thread Error Detectors. The Valgrind tools DRD and Helgrind can be used to
debug threading errors like data races and the possibility of deadlocks. To this end, they
record the order of memory accesses and intercept calls to popular threading libraries,
mainly the POSIX threading (pthreads) primitives.

4.1.3.d. Profilers. Heap profilers like Valgrind’s Massif tool, and cache and branch
prediction profilers like Valgrind’s Cachegrind and Callgrind 188, can be used to analyze
the performance of the client program.

4.1.3.e. Miscellaneous Tools.

• Valgrind’s Redux tracing tool137 records the full computational history of a client
program by storing every value-producing operation that it performs.

• FITIn 80, implemented in Valgrind, injects bit-errors to evaluate software-implemented
hardware fault tolerance mechanisms.

• The pmemcheck 106 and Persistent Memory Analysis Tool (PMAT) 101, both imple-
mented in Valgrind, check the crash consistency of persistent memory applications.

4.1.3.f. Tools Related to Real Arithmetic. A few Valgrind tools put a particular
emphasis on instrumenting floating-point instructions, for purposes associated to the
mathematical field of numerical analysis:

• FpDebug 24 keeps track of the value of floating-point numbers in an arbitrary-
precision floating-point type of the MPFR library61, in order to identify floating-
point accuracy problems. To our understanding, the present version instruments
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only a small subset of the x86-64 floating-point instructions, does not intercept
calls to the C math library, and is not aware of any bit-tricks listed in Section 3.3.

• Herbgrind 160 shadows floating-point numbers with arbitrary-precision MPFR num-
bers as well. Additionally, to facilitate the identification of root causes of numerical
errors, it applies a taint analysis to track error propagation, and attempts to record
symbolic arithmetic expressions of parts of the client program. Herbgrind inter-
cepts calls to the C math library and recognizes the bit-tricks related to the sign
bit (Section 3.3.2).

• Verrou 58,67,68,74 lets the user choose an “real-arithmetic back-end” that replaces the
original floating-point operations performed on the x87 or SSE floating-point unit,
and functions in the C math library. The following back-ends are available:

– Deterministic Rounding, fixing one of the IEEE-754 rounding modes (Para-
graph 3.1.d), or a “round to farthest” mode maximizing the round-off error;

– Random Rounding, i. e. deciding stochastically whether to round towards pos-
itive or negative, either equiprobably or in such a way that the expected
outcome matches the value before rounding;

– Reduced Precision, applying binary32 rounding to binary64 numbers.

4.2. Instrumentation with Valgrind and VEX

We have implemented the machine-code-based AD tool Derivgrind using the Valgrind
DBI framework. In this section, we give an overview on the relevant Valgrind internals.

4.2.1. Instrumentation Workflow

After invoking

valgrind --tool=⟨tool⟩ ⟨tool options⟩ ⟨client executable⟩ ⟨arguments for client⟩
(4.1)

the Valgrind core starts to read portions of the machine code of the client program,
which consists of the client executable as well as dynamically linked or loaded libraries,
and translates them into an object-oriented intermediate representation called VEX. The
selected Valgrind tool registers a function with the signature

IRSB* tool_instrument ( VgCallbackClosure* closure ,
IRSB* sb_in ,
const VexGuestLayout* layout , const VexGuestExtents* vge ,
const VexArchInfo* archinfo_host ,
IRType gWordTy , IRType hWordTy )

(4.2)

During what one might call “instrumentation phases”, the Valgrind core invokes this
function for portions of VEX code called superblocks. Superblocks are represented as
instances of the C type IRSB. The instrumentation function receives the original su-
perblock through the argument sb_in, and returns a pointer to the instrumented VEX
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Figure 4.1: The Valgrind instrumentation workflow.

Listing 4.1: Example of the textual representation of a VEX IR superblock, from the
documentation of Valgrind168. Every line represents a statement. We have
emphasized parameters and VEX expressions.

------ IMark(0x24F275, 7, 0) ------
t3 = GET:I32(0) # get %eax, a 32-bit integer
t2 = GET:I32(12) # get %ebx, a 32-bit integer
t1 = Add32(t3,t2) # addl
PUT(0) = t1 # put %eax

superblock, constructed using an object-oriented API. For technical reasons, Valgrind
tools must not use the C standard library; Valgrind offers replacements for a substantial
subset of C standard library functions.168

During what one might call “run phases”, the instrumented VEX code is executed.
From the perspective of the tool, it suffices to imagine that Valgrind simulates a synthetic
CPU that interprets the instrumented VEX code, although in fact, Valgrind translates
it into machine code and jumps to the generated code.

Valgrind switches between instrumentation and run phases in a just-in-time fashion.
The instrumented superblocks are cached, so ideally, the run-time of the instrumented
program is dominated by the execution of instrumented code during run phases and not
by the translation and instrumentation procedures during instrumentation phases.

In the following sections, we have a closer look at the VEX language and execution
model. More details on VEX can, of course, be found in the documentation of Valgrind.
Though VEX is a binary format with an object-oriented C API, we use Valgrind’s textual
representation to display it in this thesis. Listing 4.1 shows a VEX superblock that could
correspond to a addl %eax, %ebx instruction; this example was taken from the Valgrind
documentation168.

4.2.2. Synthetic CPU

As VEX IR strives for hardware independence, its execution model is built around a syn-
thetic CPU. The synthetic CPU has access to memory using the same virtual addresses
as the client program. Registers of the synthetic CPU are specified by a byte offset into
a separate block of memory called the guest state; a selection of mappings from x86-64
registers to byte offsets is shown in Table 4.1. In addition, VEX IR provides temporaries
to store intermediate values for the scope of the current superblock. Temporaries are
specified by a non-negative integer index and can be assigned only once per superblock.
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Table 4.1: Mapping from x86-64 registers to byte offsets in the VEX guest state. The
eight 80-bit registers ST(0), . . . , ST(7) are represented in the guest state by
eight 64-bit segments at the offsets 776, 784, . . . , 832, using circular indexing.
The total size of the x86-64 guest state is 928 bytes for Valgrind version 3.18.1.

RAX RCX RDX RBX RSP RBP RSI RDI RIP YMM0 YMM1

16 24 32 40 48 56 64 72 184 224 256

4.2.3. VEX Statements

Listing 4.1 is the textual representation of a VEX superblock (IRSB) from the Valgrind
documentation. Each superblocks contains a list of VEX statements (IRStmt), repre-
sented by separate lines in the textual representation. A statement represents an action
with side effects, such as writing to a memory address, a register or a temporary. For
example, the three lines of the form t⟨index ⟩ = ⟨. . . ⟩ in Listing 4.1 represent writes to
temporaries. Further kinds of statements include jumps as well as CAS statements and
dirty calls (see below); Table 4.2 lists most types of VEX statements. In the end of each
superblock, the address of the next instruction is stored separately, and indicated in the
textual representation with a register write to RIP followed by the jump type.

4.2.3.a. CAS statements. As outlined in Paragraph 3.2.3.b, CAS instructions on x86-
64 perform a comparison and affect the EFLAGS register, and perform copy operations
conditional to the outcome of the comparison, in an atomic step. Valgrind uses the CAS
statement in VEX to implement the core of this mechanism, but the full VEX equivalent
to a lock cmpxchgq instruction is composed of more than that, as shown in Listing 4.2.
In particular, the effect on the EFLAGS register is modelled in VEX by writing the
operands to a specific region of the guest state (at byte offsets from 144 inclusive to 176
exclusive). To access flags, VEX code performs a CCall (explained later in Table 4.4) to
amd64g_calculate_condition.

4.2.3.b. Dirty calls. Dirty call statements allow to run arbitrary code from VEX.
Valgrind uses dirty calls to represent instructions in the client program that have no
equivalent in VEX, such as the rdtsc instruction on x86-64 that reads the time-stamp
counter into processor registers, or certain instructions related to the 80-bit x87 floating-
point format (Paragraph 4.2.5.a). A dirty call statement *stmt can be identified by its
name string

stmt->Ist.Dirty.details->cee->name. (4.3)

Table 4.3 lists some dirty calls that we have encountered on x86 and x86-64 client pro-
grams.
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Table 4.2: Overview on types of VEX statements (Section 4.2.3). Some statement types
depend on VEX expressions (Section 4.2.4) and/or ⟨parameters⟩.

Textual representation Effect

t⟨i⟩ = x Store x in a temporary with index i.

PUT(⟨j⟩) = x Store x in the register with byte offset j in the guest
state.

PUTI(⟨base⟩:⟨n⟩x⟨type⟩)[ix,
⟨bias⟩] = x

Store x in the register at base+((ix+bias) mod n)·
s, where s is the size of type (circular indexing).

STle(address) = x Store x in memory at the address addr, using the
little-endian storage order.

if (guard) STle(address) = x Store x in memory, if a boolean expression guard
evaluates to true.

t⟨i⟩ = if (guard)
⟨conv⟩(LDle(address)) else
alt

If guard evaluates to true, assign t⟨i⟩ with data
from a memory address after some possible widen-
ing according to conv. Otherwise, assign t⟨i⟩ with
alt.

t⟨old⟩ = CASle(addr :: expd
-> new)

Compare-and-swap, loading addr into temporary
t⟨old⟩, and replacing data at addr by new if it
matches expd; see Paragraph 4.2.3.a.

t⟨i⟩ = DIRTY guard :::
⟨name⟩{⟨addr⟩}(arg1, arg2,
. . . )
or
DIRTY guard :::
⟨name⟩{⟨addr⟩}(arg1, arg2,
. . . )

Dirty call to a function name in the Valgrind or
tool code at addr, with potential side effects. Ta-
ble 4.3 lists a few examples. Arguments are ob-
tained by evaluating arg1, arg2 etc., and a return
value can be stored in t⟨i⟩. Beyond what is shown
here, the VEX statement may specify side effects,
certain calling convention details, and details useful
for the Valgrind Memcheck tool.

------ IMark(. . . ) ------ Meta information.

if (guard) goto {⟨jump kind⟩}
⟨target⟩

Conditional jump; represents e. g. call/return in-
structions, system calls, or instructions triggering
the execution of an interrupt service routine.
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Listing 4.2: Part of the Valgrind output for an OpenMP-parallel program with the Val-
grind flags listed in Section 4.2.6. It shows how a lock cmpxchgq instruction
(Paragraph 3.2.3.b, Listing 3.13) is translated to VEX IR.

0x496770C: lock cmpxchgq %r9 ,(%rdx)

------ IMark(0x496770C , 5, 0) ------
t7 = GET:I64 (32)
t2 = GET:I64 (88)
t1 = GET:I64 (16)
t3 = CASle(t7::t1->t2)
PUT (144) = 0x8:I64
PUT (152) = t1
PUT (160) = t3
PUT (168) = 0x0:I64
t6 = 64to1(amd64g_calculate_condition[mcx=0x13←↩

]{0 x5814c4a0 }(0x4:I64 ,GET:I64 (144) ,GET:I64←↩
(152),GET:I64 (160) ,GET:I64 (168)):I64)

t5 = ITE(t6 ,t1 ,t3)
PUT (16) = t5
PUT (184) = 0x4967711:I64

Table 4.3: Some dirty calls encountered by us when applying Valgrind to x86 and x86-64
client programs.

Name (4.3) Actions

With potential real-arithmetic effect:

x86g_dirtyhelper_loadF80le,
amd64g_dirtyhelper_loadF80le

Loads 80-bit extended precision double from mem-
ory, converts it to binary64 and stores it in the
return temporary. Used to represent the fldt in-
struction (see Paragraph 3.2.2.a).

x86g_dirtyhelper_storeF80le,
amd64g_dirtyhelper_storeF80le

Converts binary64 to 80-bit extended precision
double and stores it in memory. Used to represent
the fstpt instruction (see Paragraph 3.2.2.a).

No real-arithmetic significance expected:

amd64g_dirtyhelper_FLDENV,
amd64g_dirtyhelper_FSTENV

Loads or stores x87 non-data processor state (see
Paragraph 3.2.2.a).

amd64g_dirtyhelper_PCMPxSTRx Used to represent SSE 4.2 string instructions.

x86g_dirtyhelper_CPUID_sse0,
x86g_dirtyhelper_CPUID_sse3,
amd64g_dirtyhelper_CPUID_avx2,
etc.

Used to represent cpuid instruction, places infor-
mation on the CPU manufacturer and capabilities
in certain registers.

x86g_dirtyhelper_RDTSC,
amd64g_dirtyhelper_RDTSC

Stores time-stamp counter in the return temporary.
Used to represent the rdtsc instruction.

80



4.2. Instrumentation with Valgrind and VEX

Table 4.4: Overview of types of VEX expressions (Section 4.2.4). Some expression types
depend on other VEX expressions and/or ⟨parameters⟩.

Textual representation Value

t⟨i⟩ Read from a temporary with index i.

GET:⟨type⟩(⟨j⟩) Read data of specified type from the register with
byte offset j in the guest state.

GETI(⟨base⟩:⟨n⟩x⟨type⟩)[ix,
⟨bias⟩]

Read from the register at base+((ix+bias) mod n)·
s, where s is the size of type (circular indexing).

LDle:⟨type⟩(address) Read from memory at the given address, in little-
endian storage order.

⟨op⟩(q1, q2, . . . )
Operation with one to four arguments, see Ta-
bles 4.5 and 4.6 for examples.

⟨literal⟩:⟨type⟩
or
⟨type⟩{⟨literal⟩}

Constant value.

ITE(condition, q1, q2) If-then-else construct, selecting either q1 or q2 de-
pending on condition.

⟨name⟩{⟨addr⟩}(arg1, arg2,
. . . ):type

“CCall” to a function name in the Valgrind or tool
code at addr, without any side effects. Arguments
are obtained by evaluating arg1, arg2 etc., and the
CCall expression evaluates to the return value. Be-
yond what is shown here, the VEX expression may
specify calling convention details and details useful
for the Valgrind Memcheck tool.

4.2.4. VEX Expressions

Some of the properties of a statement, such as the index of a temporary of a write, or the
pointer and signature of a C function for a dirty statement, are defined with a constant
(e. g. of integer or pointer type). In Listing 4.1 and Table 4.2, we have marked such
parameters in red.

However, most data such as memory addresses, byte offsets of a register, conditions,
or inputs to the dirty call, are assigned with a VEX expression (IRExpr), which are
evaluated every time the containing statement executes on the virtual CPU. Table 4.4
gives an overview on the different types of expressions. We have marked expressions with
blue frames in Listing 4.1 and Tables 4.2 and 4.4.

Properties of expressions are, again, specified either by parameters or by VEX expres-
sions. The first two of the three temporary-write statements in Listing 4.1 acquire the
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Table 4.5: Overview of types of VEX expressions summarized as operations in Table 4.4.
Continued in Table 4.6.

Textual representation Value

Scalar floating-point arithmetic
AddF64(rm,q1,q2) Addition of binary64s q1, q2, using the rounding

mode rm.
MulF32(rm,q1,q2) Multiplication of binary32s q1, q2, using the round-

ing mode rm.
MAddF64(rm,q1,q2,q3) Fused multiply-add, computing q1 · q2 + q3.

SIMD floating-point arithmetic
Mul32Fx8(rm,q1,q2) Component-wise multiplication of eight binary32s

in the two V256 operands, using the rounding mode
rm.

Lowest-lane-only SIMD floating-point arithmetic
Mul32F0x4(q1,q2) Maps the V128 operands (q10, q11, q12, q13) and

(q20, q21, q22, q23), with four binary32 components
each, to (q10 · q20, q11, q12, q13).

Floating-point conversions
F64toF32(rm,q) Convert binary64 q to binary32, using the round-

ing mode rm.
F64toF32(q) Convert binary32 q to binary64.

Binary reinterpretation
ReinterpI64asF64(q) Change VEX type from I64 to F64, keeping the

bitwise data.
ReinterpF64asI64(q) Change VEX type from F64 to I64, keeping the

bitwise data.

SIMD (un)packing
64x4toV256(q3,q2,q1,q0) Pack four I64 arguments into a V256 SIMD vector

(q0, q1, q2, q3).
V256to64_2(q) Extract the I64 component q2 from a V256 SIMD

vector (q0, q1, q2, q2).
64HIto32(q) Extract the high I32 half of an I64 q.
32to1(q) Extract the least-significant bit of the I32 q.
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Table 4.6: Continuation of Table 4.5.

Textual representation Value

Bitwise logical operations
And64(q1,q2) Bitwise logical “and” of 64-bit integers q1, q2.

Bit-Shifts
Shl64(q, n) Bit-shift of an I64 q by n positions toward the more

significant bits, initializing the least significant bit
by zero.

Shr32(q, n) Bit-shift of an I32 q by n positions toward the less
significant bits, initializing the most significant bit
by zero.

Sar32(q, n) Bit-shift of an I32 q by n positions toward the less
significant bits, keeping the most significant bit.

Integer arithmetic
Add64(q1,q2) Addition of 64-bit integers q1, q2.

Comparisons
CmpF64(q1,q2) The I32 value is 0x00 if q1 > q2, 0x01 if q1 < q2,

0x40 if q1 = q2, 0x45 if unordered.
CmpLT64S(q1,q2) True if the signed I64 arguments compare as q1 <

q2, false otherwise.

Miscallaneous
SinF64(rm,q) Computes sin(q) using the rounding mode rm.
RSqrtEst5GoodF64(q) “Reciprocal square root estimate, 5 good bits” 168

MulD64(rm,q1,q2) Decimal floating-point multiplication of D64s q1, q2
SHA512(q,n) Hash instruction
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Listing 4.3: Simple C program to determine whether binary64 or the 80-bit x87 type is
used for long double arithmetic.

#include <stdio.h>

int main (){
long double volatile x = 1.0l;
x += 0x1.0p-53;
if( x == 1.0l ){

printf("x==1, low accuracy\n");
} else {

printf("x!=1, high accuracy\n");
}

}

value to be written by an GET expression, whose type I32 and byte offsets 0 and 12 are
constant parameters. The right hand side of the third temporary-write statement is a
binary operation expression. Its two operands are temporary-read expressions, and the
index of the accessed temporary is specified by parameters 3 and 2, respectively. Finally,
the right hand side of the register-write statement is a temporary-read expression as well.

While expressions can be deeply nested, Valgrind only presents flattened superblocks
to the instrumentation function (4.2).

4.2.5. Types

Expressions have statically deducible types (IRType), such as I8, I16, . . . , I128 for
integers of different sizes; F32 and F64 for the IEEE 754 floating-point formats binary32
and binary64; as well as V128, V256 for SIMD data. In statements and expressions
accessing memory or the guest state, the number of bytes written or read is determined
by the type. Temporaries keep a value of any size, can be assigned once per superblock,
and are typed as well. Valgrind performs static type checks on the instrumented VEX
code.

There is no general guarantee, however, that the VEX type reflects the “actual” type
of data. For instance, when floating-point data is copied around by loading and storing
it using an integer type of the same size, as in Listing 3.10, Valgrind would most likely
assign an integer type to these data.

4.2.5.a. 80-Bit Type. Note that there is no 80-bit x87 floating-point type in VEX.
Valgrind represents the 80-bit registers ST(0), . . . , ST(7) by 64-bit sections in the guest
state, translates 80-bit floating-point instructions to 64-bit floating-point VEX opera-
tions, and emits dirty calls from Table 4.3 to represent the fldt and fstpt instructions
that expose the 80-bit format to memory. Thus, the program in Listing 4.3 prints x!=0
when run natively, but x==0 when run under any Valgrind tool.

4.2.5.b. 512-Bit Type. Currently, Valgrind does not support AVX512 instructions with
their 512-bit registers, but there are efforts to add such support.181 As a simple test, we
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can create a main function that calls the function f of Listing 3.8, compiling main with
-march=skylake and thus no AVX-512, and linking it with the object file for f compiled
with AVX-512 support. Natively, the program runs fine on a CPU that supports (the
relevant subset of) AVX-512. However, Valgrind 3.18.1, with any tool, prints an error
message

unhandled instruction bytes: 0x62 0xF1 0xFD 0x48 ←↩
0x10 0x7 0x62 0xF1 0xFD 0x48

and raises an illegal instruction signal. Note that the first six bytes encode the AVX-512
vmovupd instruction in Listing 3.8.

4.2.6. Example

When Valgrind is invoked with --trace-flags=11111111 and --trace-notbelow=0, it
prints a lot of information on each instrumented portion of machine code, including
the VEX statements emitted for each machine code instruction, and the entire VEX
superblocks before and after instrumentation.

For the assembly language “Hello World” program in Listing 3.14, Valgrind emits one
superblock each for either of the two system calls (including the preceding initializations
of registers). The lines with white background in Listing 4.4 are the textual representation
of the VEX superblock related to the first system call, before instrumentation. We may
compare the byte offsets with Table 4.1.

The lines with grey background in Listing 4.4 were added by Valgrind’s Memcheck
tool (Paragraph 4.1.3.a). For each write to a register at byte offset i in the guest state,
Memcheck inserts a zero write of the same size to the byte offset (i+mgs), where mgs =
928 is the total size of the guest state on x86-64 (Table 4.1). Memcheck utilizes these
(previously unused) “shadow registers” to keep track of the valid-value bits for the data
in the “original registers”.

4.3. Advanced Valgrind Features

4.3.1. Monitor Commands

Valgrind’s monitor commands mechanism enables the user to interact with Valgrind while
Valgrind executes the instrumented client program.

4.3.1.a. Mechanism. When Valgrind is started with the command-line argument
--vgdb-error=0, it activates its built-in “gdbserver” and waits for a connection from
a debugger, instead of executing the instrumented client program right away. The user
can initiate such a connection e. g. from a GNU Debugger (GDB) session with GDB’s
target remote command. In addition to regular debugger commands like setting break-
points, stepping, and inspecting memory, the user can then send monitor commands to
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Listing 4.4: VEX superblock for the write system call in Listing 3.14, before instrumen-
tation (lines with white background) and after instrumentation with Mem-
check (all lines). Instruction mark statements have been stripped.

PUT (944) = 0x0:I64
PUT (16) = 0x1:I64
PUT (1000) = 0x0:I64
PUT (72) = 0x1:I64
PUT (992) = 0x0:I64
PUT (64) = 0x402000:I64
PUT (960) = 0x0:I64
PUT (32) = 0xD:I64
PUT (952) = 0x0:I64
PUT (24) = 0x40101E:I64
t1 = CmpNEZ64 (0x0:I64)
DIRTY t1 RdFX -gst(48,8) RdFX -gst (184 ,8) ::: ←↩

MC_(helperc_value_check8_fail_no_o ){0 x58010760 }()
PUT (184) = 0x40101E:I64; exit -Sys_syscall

Valgrind from the debugger; these commands are passed as a string req to functions in
the Valgrind core and tool with the signature

Bool handle_gdb_monitor_command(ThreadId tid, HChar* req).

4.3.1.b. Examples. Valgrind itself defines a few monitor commands, allowing the in-
teractive user to e. g. inspect its internal data structures and status. The Memcheck tool
has monitor commands to inspect and modify the addressability and validity bits, and
to perform a leak check. As an additional example, the Helgrind tool (Paragraph 4.1.3.c)
allows to list all locks and view the access history for any memory address. We will
discuss the monitor commands defined by our novel Valgrind tool in Paragraphs 5.4.1.a,
6.5.1.a and 7.3.a.

4.3.1.c. Prerequisites. To allow effective use of the debugger, the client program should
contain debug symbols and have been compiled with most optimizations turned off. For
the GCC and Clang compilers, this requires the compiler flags -g and -O0 (or -Og),
respectively.

Debug symbols associate machine code instructions with lines of source code, which
is helpful when users want to set a breakpoint at a particular line in order to issue a
monitor command when execution reaches this line. Likewise, debug symbols allow to
find addresses of variables using their variable names from the source code, and may
provide additional information on classes, translation units etc.

Unoptimized builds avoid inlining functions, optimizing out variables, reordering in-
structions and so on. They are thus more aligned with the mental picture of a human
reading the source code.
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4.3.2. Client Requests

Valgrind’s client requests are a “trapdoor mechanism” 168, enabling the instrumented
client program to interact with the instrumenting Valgrind core and tool. In contrast to
interactively typing monitor commands into a debugger, the user inserts code into the
client program that triggers pre-defined actions whenever it executes.

4.3.2.a. Mechanism. In order to specify a client request, the client program has to as-
semble a data structure, namely, an array of six unsigned 64-bit integers (32 bit on x86).
The first entry determines the type of the client request, and the remaining entries trans-
port possible parameters. To perform the request, the client program loads the address
of the array into RAX, and then execute a specific sequence of machine code instructions
highlighted in Listing 4.5. On a normal x86-64 CPU, this instruction sequence has no
effect on memory and registers: First the 64-bit register RDI undergoes a rotation (rolq)
by 3 + 13 + 61 + 51 = 128 bits, and then the content of RBX is exchanged (xchgq) with
itself. When the client is running under Valgrind, however, the pattern is recognized in
the instrumentation phase and a special VEX jump statement is emitted instead. In the
execution phase, this VEX jump statement leads to a call to client request handlers in
the Valgrind core and tool with the signature

Bool handle_client_request(ThreadId tid, UWord* arg, UWord* ret)

where arg is a pointer to the array, and ret allows the handler to return information to
the client program via the register RDX.

4.3.2.b. Client Request Macros. It is easy to make a client request from an editable
C/C++ source, because Valgrind provides header files with preprocessor macros that set
up the array describing the client request, and add the specific instruction sequence
into the compiled program using the asm syntax. Listing 4.5 shows the assembly code
produced for the client request macro VALGRIND_STACK_REGISTER. Before the marked
instruction sequence, the stack is enlarged by 88 bytes (subq). This space is used for the
array describing the client request, which stores the client request ID 5377 in 16(%rsp)
and the five parameters 200, 3000, 0 (default), 0 (default) and 0 (default) in the following
addresses. The address of the array is loaded into RAX (with leaq). Valgrind calls
the client request handler when a normal CPU would execute the marked instruction
sequence. Afterwards, the return value of the client request is copied from RDX to the
function integer return value register RAX.

4.3.2.c. Examples. Table 4.7 lists examples for client requests provided by the Valgrind
core and tools. We will discuss the client requests defined by our novel Valgrind tool in
Paragraphs 5.4.1.b, 6.5.1.b and 7.3.b.

4.3.3. Function Wrapping

By Valgrind’s function wrapping feature, Valgrind tools can have the Valgrind core inter-
cept calls to functions from dynamic libraries, and provide wrappers to which these calls
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Listing 4.5: A client request macro in C code, and the assembly code that it expands
and compiles to. The special instruction sequence, which indicates a client
request to the Valgrind core, has been marked.

#include <valgrind/valgrind.h>

unsigned int f(){
return VALGRIND_STACK_REGISTER←↩

(200 ,3000);
}

f:
endbr64
subq $88 , %rsp
movq %fs:40 , %rax
movq %rax , 72( %rsp)
xorl %eax , %eax
xorl %edx , %edx
movq $5377 , 16( %rsp)
leaq 16( %rsp), %rax
movq $200 , 24( %rsp)
movq $3000 , 32( %rsp)
movq $0, 40( %rsp)
movq $0, 48( %rsp)
movq $0, 56( %rsp)
rolq $3, %rdi
rolq $13 , %rdi
rolq $61 , %rdi
rolq $51 , %rdi
xchgq %rbx ,%rbx
movq %rdx , 8(%rsp)
movq 8(%rsp), %rax
movq 72( %rsp), %rdx
subq %fs:40 , %rdx
jne .L5
addq $88 , %rsp
ret

.L5:
call __stack_chk_fail@PLT
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Table 4.7: Examples for client request macros defined by the Valgrind core and tools.

Valgrind core:
VALGRIND_STACK_REGISTER Used as an example here, but flagged as un-

reliable in the documentation.
RUNNING_ON_VALGRIND Returns 0 if running natively, 1 if running

under Valgrind, and larger numbers if run-
ning under nested Valgrind layers.

Memcheck:
VALGRIND_MAKE_MEM_NOACCESS Writes valid-address bits.
VALGRIND_MAKE_MEM_UNDEFINED Writes valid-value bits.
VALGRIND_MAKE_MEM_DEFINED Writes valid-value bits.
VALGRIND_CHECK_MEM_IS_ADDRESSABLE Reads valid-address bits and prints error

message if not addressable.
VALGRIND_CHECK_MEM_IS_DEFINED Reads valid-value bits and prints error mes-

sage if undefined.

Helgrind:
ANNOTATE_HAPPENS_BEFORE,
ANNOTATE_HAPPENS_AFTER

Can be used to mark thread synchronization
constructs that Helgrind does not recognize
by itself.

should be rerouted. Listing 4.6 cites an example of such a wrapper from the Valgrind
manual168, which prints the argument and return values of every call to the wrapped
function foo. The wrapped function has to be specified by its symbol name and, if de-
sired, the “soname” field of the dynamic library that defines it (here, NONE specifies no
“soname” field). The macro I_WRAP_SONAME_FNNAME_ZU encodes these names in the func-
tion name of the wrapper. The wrapper must be loaded along with the client program;
this can be accomplished without changes to the client executable or libraries, by putting
the wrapper into a shared object whose path is in the environment variable LD_PRELOAD.

The wrapper function may use standard library functions and client requests, as it is
instrumented and executed on the virtual CPU just like the client program.

As the example in Listing 4.6 shows, it is possible to call the original function, obtained
via VALGRIND_GET_ORIG_FN, from the wrapper function. The macro CALL_FN_W_WW, de-
fined in valgrind.h and reproduced in Listing B.2, expands to extended asm syntax that
models a function call according to the appropriate calling conventions: Among other
things, it enlarges the stack and moves the two arguments to the registers RDI and RSI,
in line with what we saw in Listing 3.1. However, instead of a jump or call instruction, it
executes a pattern of four rolq and one xchgq instruction, similar to the client request
pattern in Listing 4.5. This pattern is recognized by the Valgrind core, and translated
into a special VEX jump statement which is not subject to redirection by the function
wrapping mechanism.
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Listing 4.6: Example code for a wrapper of the function foo, cited from the Valgrind
manual168.

#include <stdio.h>
#include "valgrind.h"
int I_WRAP_SONAME_FNNAME_ZU(NONE ,foo)( int x, int y )
{

int result;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
printf("foo's wrapper: args %d %d\n", x, y);
CALL_FN_W_WW(result , fn, x,y);
printf("foo's wrapper: result %d\n", result);
return result;

}

More details can be found in Appendix B.2. Note that CALL_FN_W_WW specifically
implements a call to a function with two 64-bit integer arguments and a 64-bit integer
return value. Our tool will need to wrap functions with binary64, binary32, or 80-bit x87
floating-point arguments and return values. As these signatures were not yet supported
by the Valgrind framework, we added suitable macro definitions to Derivgrind’s version
of valgrind.h.

4.4. Shadow Memory

Many DBI tools keep track of shadow data that stores meta-information about every
piece of “original” data handled by the client program. For instance, memory checkers
(Paragraph 4.1.3.a) match every byte of data with a valid-value byte (Section 4.2.6).
Similarly, taint checkers (Paragraph 4.1.3.b) monitor the boolean information whether
data depends on unsafe user input. Our Valgrind tool for algorithmic differentiation will
need to store up to two bytes of shadow data for every byte of original data. This section
describes how we obtain space for the shadow data.

4.4.a. Shadow Registers. In the VEX superblocks created from the client program’s
machine code and presented to a Valgrind tool for instrumentation, registers of the real
CPU map to well-defined byte offsets in the guest state. On x86-64, part of the mapping
is shown in Table 4.1, and in total mgs = 928 bytes of the guest state are used (in
Valgrind 3.18.1, which does not support AVX-512 registers so far). However, the guest
state of Valgrind’s virtual CPU is actually three times as large. Thus, Valgrind tools
may use registers at byte offsets j+mgs and j+2mgs to store up to two bytes of shadow
data per byte of original data at byte offset j. In Section 4.2.6, we saw that Memcheck
indeed uses one layer of shadow registers by shifting byte offsets by mgs.

4.4.b. Shadow Temporaries. Each VEX superblock also has an exclusive upper bound
mtmp for the indices of temporaries. The number of available temporaries is compara-
tively large, so typically the temporaries i + mtmp and i + 2mtmp can be used to store
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shadow data for the data in temporary i. We observed two kinds of error messages in
rare cases where this led to problems:

• “VEX temporary storage exhausted. Increase N_{TEMPORARY,PERMANENT}_BYTES
and recompile”: This problem disappeared after increasing the two constants in
the source code of Valgrind.

• “Assertion ‘instrs_in->arr_used <= 15000’ failed”: When this problem shows up
(as e. g. in Paragraph 8.2.e), it can be fixed by supplying an additional argument

--vex-guest-max-insns=10

(or an even smaller number) to the valgrind call (4.1).

4.4.c. Shadow Memory. For memory, the analogous “index shifting” approach would
mean that shadow data is stored at memory locations with fixed offsets from the memory
address of the original data. Note that glibc’s malloc, and thus most Linux userspace
processes, mainly use the mmap system call to allocate memory. mmap requests the kernel
to map sections of the virtual address space of the process to physical memory (Sec-
tion 3.2.6). While processes can suggest a start address of the new mapping in the
virtual address space, the kernel is free to assign other areas of the virtual address space.
Thus, DBI tools cannot reliably allocate shadow memory at a particular virtual address,
but this would be necessary for a simple address-shifting approach.

A much more robust approach is to resort to shadow memory tools 45,138 in order to keep
track of shadow data for the memory used by the client program. A shadow memory tool
acts like an associative array that maps memory addresses to the corresponding shadow
data.

4.4.d. Implementation of Shadow Memory. A popular way of implementing shadow
memory138 uses a data structure similar to multilevel page tables for virtual memory
(Section 3.2.6) and related to prefix trees (tries). This is illustrated in Figure 4.2. When
virtual addresses have a length of k = k1 + · · · + kn bits (here: n = 3, k1 = 3, k2 = 2,
k3 = 2) and the shadow data for one address has a size of N bytes, the shadow data for
a given virtual address (here: 0x1010010) is looked up as follows.

• A single primary map (indicated in red) stores 2k1 (here: 23 = 8) pointers (indicated
by empty and filled circles). The highest-significant k1 bits of the virtual address
(here: 101) are used as an index (here: 5) to retrieve a pointer to . . .

• . . . a secondary map (indicated in blue), which stores 2k2 (here: 22 = 4) pointers
(indicated by empty and filled circles). The next-most-significant k2 bits of the
virtual address (here: 00) are used as an index (here: 0) to retrieve a pointer to . . .

• . . . (more maps might follow, but there are none in this example) . . .
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Figure 4.2: Shadow memory implementation using a two-level page table, with a primary
map resolving the most-significant three bits of an address, and secondary
maps resolving two more bits. Leaves store shadow data, indicated by (empty
or filled) black squares, for four consecutive addresses each. The marked black
square is the shadow data for the address 0x1010010.

• . . . a leaf (or page; indicated in gray), which stores 2kn (here: 22 = 4) shadow
objects (indicated by empty and filled black squares), occupying N bytes each.
The least-significant kn bits of the virtual address (here: 10) are used as an index
(here: 2) to retrieve the shadow data (indicated by the black vertical arrow) for the
given virtual address.

The internal data structures of the shadow memory tool, like the above maps and leaves,
are stored in virtual memory, possibly next to the data for which they provide shadow
storage. In the end of each lookup, the shadow memory tools might give access to the
shadow data either via getter and setter functions, or by returning the memory address.
Note that while technically possible, there is normally no reason for the user of a shadow
memory tool (like a Valgrind tool) to have it shadow its own internal datastructures.

All maps except for the primary map, and all leaves, are lazily allocated when there is a
write operation in their respective address range of the shadow memory. Pointers in maps
are initialized with null pointers when the respective child map or leaf has not yet been
allocated (indicated by empty circles in Figure 4.2). Entries of a leaf are initialized with a
default shadow data value specified by the user of the tool (indicated by empty squares).
When a null pointer is encountered while trying to read from the shadow memory (as
it would happen for the address 0x0011010 in Figure 4.2), the default shadow value (or
a constant reference to a static default leaf) is returned. If the original data is not too
fragmented, this ensures that the total memory consumption of the shadow memory tool
is about proportional to the amount of original data, with a factor not much worse than
N .
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4.4.e. Choice and Design of a Shadow Memory Tool. In the beginning, our Valgrind
tool relied on an existing shadow memory tool by Cronburg45, which was easy to integrate
and could be configured to use the custom memory allocation functions of Valgrind – this
is important because Valgrind tool code must not depend on the C standard library. Later
on, we developed and integrated a novel shadow memory tool that has been taylored for
our application in the following ways.

• The tool by Cronburg45 provided access to shadow data only via getter and setter
functions. This is an inefficient interface when the shadow data at multiple con-
secutive addresses is frequently accessed together, because the page tables must be
traversed repeatedly for every single address. Our shadow memory implementation
returns pointers to the shadow data in the leaf, so unless the access crosses a leaf
boundary, only a single look-up is performed.

• We required a more flexible choice of the number N of shadow bytes per original
byte than what the tool by Cronburg45 offered.

• For 64-bit addresses, the primary map of the tool by Cronburg45 occupied 4GB.
Initializing it usually takes more than a second; also, 4GB was already above
the tight memory constraints of our continuous integration (CI) environment. The
initial memory consumption can be massively reduced by moderately increasing the
number of shadow map levels and reducing the numbers of address bits resolved
by each of these levels. Our shadow memory implementation makes such a choice
very easy at the compile time of the Valgrind tool using it.

4.5. Limitations

Valgrind is a robust and versatile framework for dynamic binary instrumentation and
we use it to insert automatic differentiation logic into compiled programs. Besides the
limitations of machine-code-based AD in general, as outlined in Section 3.3, users have
to keep DBI- and Valgrind-specific limitations in mind. We discuss the technical aspects
in Section 4.5.1 and sketch the legal aspects in Section 4.5.2.

4.5.1. Technical Limitations

4.5.1.a. Performance Degradation. “Heavyweight” Valgrind tools, which add instru-
mentation of a complexity comparable to the original code and involve shadow memory,
are known to incur a significant run-time slow-down of the client program.139,168 The
run-time typically scales by factors ranging from 10 to 100, depending on the tool and
the client program; for the Memcheck tool with an optimized shadow memory handling, a
mean slow-down factor of 22 has been reported.139 Performance is only one out of multi-
ple design goals of AD tools (Paragraph 1.1.c), and low performance is usually acceptable
for exploratory studies, or even in production if there is no alternative.
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Figure 4.3: The program env prints all environment variables to standard output. As we
can see, Valgrind (system installation of version 3.18.1 on Ubuntu 22.04.3)
modifies the environment of the client program; e. g., two shared libraries are
added to LD_PRELOAD.

4.5.1.b. Incomplete Transparency to the Client Program. Apart from running slower,
client programs should execute in the functionally same way under DBI tools as they
do on a CPU; except, of course, for places where the user intervened explicitly, e. g. by
inserting a client request. However, even disabling client requests, function wrapping etc.
will not make the actions of the DBI tool fully transparent to client programs if they pay
close attention. The cybersecurity community has identified a wide variety of evasion
techniques by which malware can discover that it runs under a DBI framework, e. g. with
the purpose of obstructing analyses by changing its behavior.59 For example, the client
program can scan the entire virtual address space for artifacts of a DBI framework, search
for clues in the environment variables (Figure 4.3), look for additional file descriptors
(Figure 4.4), measure whether its run-time or memory performance has degraded, or
employ one of the technical limitations listed further down. See Bruening et al.39 for a
variety of other transparency issues and possible solutions in the context of DynamoRIO.

We believe that “adversarial” client programs are a specialty of cybersecurity research,
and that most software from other scientific or industrial domains is not specifically
designed to cause trouble under DBI frameworks.

4.5.1.c. Floating-Point Accuracy. As outlined in Paragraph 4.2.5.a, Valgrind replaces
80-bit by 64-bit floating-point arithmetic. In most cases, the reduced floating-point
accuracy will have a minor effect on the output values computed by the program, if at all.
However, Listing 4.3 demonstrates that in principle, a small change in an intermediate
result can flip the outcome of a floating-point comparison, which might subsequently
alter the entire control flow of the program, leading to a completely different output.
We believe that this scenario is rather hypothetical for the class of client programs that
AD is typically applied to, because if the value and/or derivative of a function is very
sensitive with respect to the input, its derivatives likely have little value for applications
anyway.

4.5.1.d. Unrecognized Instructions. As furthermore outlined in Paragraph 4.2.5.b,
Valgrind cannot translate AVX-512 instructions into VEX IR at the moment. Until such
support is added, the Valgrind framework cannot instrument client programs involving
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Figure 4.4: The program ls is used to show the contents of the directory /proc/self/fd
on the pseudo-filesystem proc, which contains the open file descriptors of
the process that accesses it. Normally, these are the standard input, output
and error streams (here, connected to the pseudo-terminal /dev/pts/4) and
any other file descriptors opened (here, the fd directory whose contents ls
shows). When running under Valgrind (system installation of version 3.18.1
on Ubuntu 22.04.3), the client program sees additional file descriptors.

these instructions. AVX instructions are supported on x86-64 but not on x86. Also,
3DNow! instructions are not supported by Valgrind according to the manual,168 but
they are deprecated and very rarely used anyhow.

4.5.1.e. Only userspace code is instrumented. Valgrind instruments the entire user-
space code including system libraries. Valgrind tools can therefore observe and manip-
ulate the entire interaction between the userspace code and the operating system, e. g.
via system calls (Section 3.2.4). However, this wrapping must be implemented as part
of the Valgrind tool, as Valgrind cannot instrument the operating system kernel. This is
why, e. g., special care is needed to use Valgrind-Memcheck for MPI-parallel programs.
We cannot expect that the entire system call API is perfectly wrapped by the Valgrind
core and/or tool.

For example, when we replace the constant 42 in Listing 3.15 by some undefined
variable and run the code under Valgrind-Memcheck, no warning message is produced,
indicating that our installation of Valgrind-Memcheck (version 3.18.1) is not aware of the
dependency between *x and *y created using the mmap system call.

4.5.2. Legal Limitations

Most jurisdictions around the world have developed a concept of intellectual property
(IP): Rights related to “intellectual goods” such as inventions, artwork and trademarks
can be owned, and within certain extents, the owner decides how these goods may be
used.194 Software, both in the form of source code and machine code, is mainly protected
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by copyright law in a very similar fashion as literary and artistic creations;25,191 some-
times, patent law, which protects technical inventions, can also be relevant.54,170 Users of
software must respect the rights of the owners of the software, who may prohibit certain
ways of dealing with their software that would be possible from the technical side. This
section summarize a layman’s perspective on such legal limitations; we are not lawyers
and this is no legal advice.

4.5.2.a. Licenses. Generally, it is not allowed (or at least legally risky) to run, modify,
or distribute software without the permission of the copyright owner. Typically, users
obtain a license granting them a subset of these rights under certain conditions. For
instance, many licenses disclaim any warranties and liabilities of the granting party.
Proprietary licenses formulate a rather narrow set of rights. In contrast, licenses in the
open-source world base the receiving party’s rights on one of the following ideas:

• Permissive licenses, like the MIT or BSD-style licenses, basically allow any kind of
use, modification and distribution of the software, with minor provisions concerning
proper attribution and conservation of copyright notices.

• Copyleft licenses, like the GNU General Public License (GPL)62,63 in version 2
or 3, permit use and modification. Furthermore, for software received in compiled
form, it grants the right to obtain the source code. However, distribution is only
allowed under similar license terms, and this copyleft clause also “infects” derived
and combined works. The main goal behind this license construct is to ban the
use of GPL-licensed software in software distributed under proprietary licenses, in
order to give a competitive advantage to open-source software projects and to keep
them from becoming proprietary in the future.

• Weak copyleft licenses, like the GNU Lesser General Public License (LGPL)64,65,
work similarly to copyleft licenses, but do not “infect” other parts in combined
works; this allows their use in proprietary projects, and still helps to keep them
from becoming proprietary.

When DBI tools are applied to a client program, the user must simultaneously comply
with the license terms of the DBI framework, the DBI tool, and the client program.

4.5.2.b. Restrictions by the DBI Framework/Tool. Valgrind is available under the
GPLv2 license. Valgrind tools are closely linked with the Valgrind framework, meaning
that they must be distributed under the terms of the GPLv2 as well. A lot of code in
the Valgrind distribution, and our changes and additions to implement the Derivgrind
AD tool, are actually licensed under the GPLv2 “or any later version”.

Valgrind’s GPL license does not prohibit the application of Valgrind to proprietarily
licensed client programs. Even if the machine code produced by Valgrind were considered
a derived work – which it is not in the somewhat similar case of software built by GCC
–, the instrumented machine code only exists temporarily in the main memory of the
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user’s computer and is not distributed. Thus, the restrictions on distribution imposed
by the GPL after any potential copyleft infection would be anyhow irrelevant.

There is one exception to the previous statements: Valgrind’s client request macros
are statically compiled into the client program. For this reason, Valgrind’s client re-
quest headers have been separately licensed under a permissive BSD-style license, so
generally, they can be freely included without major licensing implications.168 Likewise,
Derivgrind’s client request headers come under a permissive MIT license.

DynamoRIO is available under a BSD license. PIN is available under proprietary
licenses; commercial users and tool developers must thus pay special attention to the
applicable terms and conditions.

4.5.2.c. Restrictions by the Client Program. DBI tools disassemble and modify por-
tions of the client program. This should be fine if the client program was obtained
under an open-source license. In the case of proprietary client programs, we recommend
to study the license terms before running them under DBI tools, to see whether these
actions are covered, and to consult a lawyer in case of doubt.
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5. Forward-Mode Automatic
Differentiation of Compiled Programs

In the first part of this dissertation, we have given an overview on algorithmic differentia-
tion (Chapter 2) and dynamic instrumentation (Chapter 4) of machine code (Chapter 3).
We will now assemble these “building blocks” into an AD tool applicable to compiled
computer programs.

This chapter is about the key ideas and aspects to consider regarding the forward
mode of AD. As outlined in Section 2.3, forward-mode AD logic stores dot values for
all real numbers handled during the execution of the program, and propagates them
alongside the real-arithmetic operations performed by the primal program. We therefore
discuss the storage format (Section 5.1), processing (Sections 5.2 and 5.3) and user access
mechanisms (Section 5.4) of dot values. The math function wrappers introduced in
Section 5.5 compensate for bit-tricks (Section 3.3) in the C math library.

Derivgrind’s recording capabilities follow similar ideas, but differ in many details, which
we elaborate on in the next Chapter 6. A third kind of instrumentation, a heuristic to
detect bit-tricks, will be presented in Chapter 7.

5.1. Shadow Data: Dot Values

As outlined in Section 4.4, the Valgrind framework and our shadow memory tool provide
a Valgrind tool with access to two shadow storage locations for each VEX temporary, reg-
ister and memory address, of the same size and type. For its forward-mode capabilities,
Derivgrind uses only one layer of shadow memory, in the following way.

5.1.a. Shadowing Policy. Whenever a set of bytes in a storage location stores parts of a
binary representation of a floating-point value a in any floating-point format, Derivgrind’s
instrumentation should make sure that the same set of bytes in the shadow location stores
the same parts of the representation of the dot value ȧ, in the same format. An example
of this is shown in Figure 5.1. When bytes in a memory location do not originate from,
and are not further used as floating-point data, the corresponding bytes in the shadow
location are unspecified.

Suppose, for instance, that a 64-bit temporary t⟨i⟩ is initialized by joining together
two floating-point representations as displayed in Figure 5.2: In the lower half, the lower
four bytes of the binary64 in Figure 5.1, and in the upper half, a binary32 constant 1.0.
Then, the lower four bytes of the shadow temporary t⟨i+mtmp⟩ should be initialized
with the lower four bytes of the binary64 representation of ȧ, and the upper four bytes
should be the dot value of a constant, 0.0 = 0x00000000.
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bytesbinary64

Figure 5.1: The dot value 1
100 = 0x3f847ae147ae147b is stored in the shadow memory

(red) over the binary64 number 0x400921fb54442d18 (blue, representing the
value π ≈ 3.14).

18 2d 44 54 00 00 80 3f

7b 14 ae 47 00 00 00 00

t〈i〉 =

t〈i+mtmp〉 =

Figure 5.2: Suppose that the four-byte temporary t⟨i⟩ is assigned with the lower four
bytes of the binary64 data in Figure 5.1 followed by a constant binary32
1.0 (0x3f800000). According to Paragraph 5.1.a, the shadow temporary
t⟨i+mtmp⟩ (red) stores the respective parts of the floating-point representa-
tions of the dot values.

5.1.b. Rationale. We arrived at this exact form of the policy from the following con-
siderations:

• A weaker form of this policy could demand that the shadow storage location stores
the dot value only for expressions of floating-point VEX types (such as F32 and
F64). However, this would lead to incorrect results when floating-point data is
transferred between memory locations in a type-agnostic fashion using integer
types, as in Listing 3.10. Moreover, for the SIMD types V128 and V256, there
is no distinction at all between integer and floating-point types.

• With SIMD registers sometimes being used to store a single floating-point value
(usually in their lowest 32-bit or 64-bit lane, as in Listing 3.7), it is obvious that the
policy should refer to sets of bytes in storage locations rather than entire storage
locations.

• Floating-point representations can be split and copied in multiple portions (e. g.
first the lower 32-bit half of a binary64, then the upper 32-bit half). This is
why the policy refers to parts of a binary representation rather than entire binary
representations.

• Using the same floating-point format for the value and the dot value is a practical
choice. It would be possible to store binary64 dot values for binary32 values
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using two shadow memory layers; actually, our recording-mode shadow data policy,
described in Paragraph 6.1.b, succeeds in keeping track of 64-bit indices for 32-
bit floating-point numbers this way. Here, we prefer a simple solution and store
binary32 dot values for binary32 values.

5.1.c. Default Dot Values. Note that the type of global variables and constants in
the data and bss sections of a program is not known a priori. Our policy mandates that
for variables and constants of floating-point type, their shadow is a floating-point zero of
the same type. This can be easily achieved by setting the default value of uninitialized
shadow memory to a bitwise zero, which represents +0.0 in the binary32 and binary64
formats as well as in the x87 extended precision format.

5.1.d. Summary of the Instrumentation. In the following Sections 5.2 and 5.3, we
describe the forward-mode, i. e., dot-value-propagating AD logic that Derivgrind inserts
into the VEX code of the client program. It updates the shadow temporaries, registers
and memory in such a way that their content always complies with the shadowing policy
(Paragraph 5.1.a). The instrumentation is based on the following two main facts:

• The instrumentation of data transfers between two storage locations can simply
transfer the corresponding shadow data between the two respective shadow storage
locations.

• The instrumentation of real-arithmetic operations computes the dot value of the
result from the values and dot values of the operands, according to the appropriate
differentiation rules.

5.2. Instrumentation of Statements

5.2.1. General Case

In front of all types of VEX statements with relevance to AD, except for CAS statements,
the Derivgrind tool inserts dot-value-propagating statements. Examples of dot-value-
propagating statements are shown in Table 5.1, partially repeating information from
Table 4.2 for the convenience of the reader. We further discuss two special cases in
Sections 5.2.2 and 5.2.3 below. When a statement involves an expression p that can
evaluate to a representation of a real number, the dot-value-propagating statement may
involve the dot-value-propagating expression ṗ that evaluates to the representation of the
dot value, and is constructed as described in the next Section 5.3. Sometimes, forming
the dot-value-propagating expressions requires to insert additional VEX statements in
front.

5.2.2. Compare-and-Swap Statements and Multi-Threading

AD of multi-threaded code, mostly via OpenMP, has been successfully implemented in
multiple source-code-based AD tools.30,32,40,84,130 However, Derivgrind does not fully
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Table 5.1: Augmentation of VEX statements with forward-mode AD logic.

VEX statement Additional VEX statements for forward-
mode AD

Store x in a temporary with index i. Store ẋ in the shadow temporary.
t⟨i⟩ = x t⟨i+mtmp⟩ = ẋ

Store x in the register with byte offset j in
the guest state.

Store ẋ in the shadow register.

PUT(⟨j⟩) = x PUT(⟨j +mgs⟩) = ẋ

Store x in memory.
STle(address) = x

Store ẋ in shadow memory. Implemented
as a dirty call to access the shadow memory
from VEX.

Store x in memory, if a condition is satis-
fied.
if (guard) STle(address) = x

Store ẋ in shadow memory, subject to the
same condition. Implemented as a dirty
call.

Compare-and-swap, loading addr into tem-
porary t⟨old⟩, and replacing data at addr
by new if it matches expd.

CAS statements are replaced as discussed
in Section 5.2.2.

t⟨old⟩ = CASle(addr :: expd -> new)

Dirty call, invoking a Valgrind function
with side effects.

The augmentation depends on the dirty
call, see details in Section 5.2.3.

Meta information. Not relevant for AD.
------ IMark(. . .) ------

Conditional jump. Not relevant for AD.
if (guard) goto {⟨jump kind⟩} ⟨target⟩
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support multi-threading, for the reasons described in the following.

5.2.2.a. Valgrind and Multi-Threading. The Valgrind framework supports multi-
threaded client programs, but has an internal lock that only allows one thread to run at
a time. Thus, a multi-threaded variant of a client program will generally not finish faster
than a serial variant when run under Valgrind. Nevertheless, support for multi-threaded
client programs can be considered an asset, because it allows users to apply Valgrind
tools without worrying about e. g. OpenMP constructs in the code.

However, we should note that high-level multi-threading constructs are generally much
easier to spot on the source code level than in VEX. For example, the OpenMP #pragma omp atomic
construct compiles to a sequence of instructions as shown in Listing 3.13, which them-
selves may translate to multiple VEX statements as shown in Listing 4.2. One of these
VEX statements is a CAS statement, but other statements, such as a comparison to
check if the CAS was successful, are equally important.

5.2.2.b. Derivgrind instruments the CAS itself. For the correct forward-mode AD
handling of CAS statements, it is important to realize that the shared state of the forward-
AD-augmented program consists of both the value of the shared state in the original
program (i. e. *addr in Listing 3.13), and its dot value in the corresponding shadow
location. Due to their AD augmentation, threads will always update both, but it can
happen that an update leaves either the value or the dot value unchanged. To determine
whether the shared state has changed, it is therefore mandatory to compare both the
present value at addr with the expected value, and the corresponding dot values.

For this reason, we replace a CAS instruction by a construct that first performs the two
comparisons, and only if they both succeed, writes to memory and to shadow memory. It
is not a problem for Derivgrind that this construct is non-atomic, because Valgrind runs
only one thread at a time and prevents context switches in the middle of an instrumented
instruction.

5.2.2.c. Derivgrind cannot robustly instrument the check whether a CAS was suc-
cessful. Aside from the CAS statement, Listing 4.2 contains another comparison by
means of the amd64g_calculate_condition CCall. Without further care, this function
would determine equality only based on values, not taking dot values into account. We
discuss wrapping of VEX expressions in the next Section 5.3, but can already note here
that it is not a good idea to modify generic checks for floating-point equality. Doing so
would, for example, also affect statements like if(x==0.0), which should be true if the
value of x is zero even if the dot value is not.

And even if one managed to modify only those amd64g_calculate_condition CCalls
which originate from translating lock cmpxchgq and related instructions to VEX, it
would not be a full solution. Other compiler versions or flags may insert a separate
comparison to decide whether the CAS was successful. We have seen one example for
this in Listing 3.22 (lines highlighted in yellow), using bitwise logical operations for the
comparison (note that they also affect the zero flag controlling the conditional jump
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instruction jne). It is hard to recognize, in an automatic fashion, that a comparison
is performed there. Additionally, it would be hard to find out that, semantically, this
comparison checks if a shared state has been modified and must thus also take dot values
into account.

As a consequence, Derivgrind’s AD logic may introduce data races into multi-threaded
client programs.

5.2.3. Dirty Call Statements

For the dirty calls converting between binary64 and the 80-bit x87 floating-point type
(see Table 4.3), Derivgrind inserts dirty calls that perform the analogous operation on
the shadow data, to comply with our policy to use the same floating-point format for
values and dot values (Section 5.1).

As far as we observed it, all the other dirty calls in Table 4.3 can hardly be part of a
floating-point calculation and therefore do not require any specific AD logic. For dirty
calls that write to an output temporary, the respective shadow temporary is assigned
with a value of zero, so it is defined in case it is later read from.

5.3. Instrumentation of Expressions

Many of the dot-value-propagating statements in Table 5.1 and Sections 5.2.2 and 5.2.3
involve a dot-value-propagating expression ṗ computing the dot value of the expression
p. Derivgrind forms dot-value-propagating expressions according to Table 5.2. Table 5.3
gives more details for the important subclass of expressions that perform an operation.
Information from Tables 4.4 to 4.6 is partially repeated here for the convenience of the
reader.

5.3.1. Bitwise Logical Operations

Among the variety of bit-tricks listed in Section 3.3, Derivgrind supports manipulations
of the sign bit (Section 3.3.2) and masking of complete floating-point representations
(Section 3.3.3) for aligned floating-point representations. To this end, Derivgrind instru-
ments VEX expressions for the bitwise logical “and”, “or” and “exclusive-or” operations.
For example, the dot-value-propagating expression for a bitwise “or” works in the follow-
ing way:

(a) First, operands of type V128 and V256 are split into I64 blocks. For simplicity, I32
operands are zero-padded into I64 blocks as well. In the following, we refer to the
I64 operands as p and q, and to their dot values as ṗ and q̇.

(b) If p is equal to the 64-bit constant 0b10. . .0 and ṗ is equal to 0b0. . .0, Derivgrind
assumes that this expression computes the negative absolute value of q. Thus, the
dot value of the expression is −q̇ if q > 0, and q̇ otherwise.
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Table 5.2: VEX expressions, and construction of the corresponding dot-value-
propagating expressions.

Expression p Dot-value-propagating expression ṗ

Read from a temporary with index i. Read from the shadow temporary.
t⟨i⟩ t⟨i+mtmp⟩
Read data of specified type from the regis-
ter with byte offset j in the guest state.

Read data of the same type from the
shadow register.

GET:⟨type⟩(⟨j⟩) GET:⟨type⟩(⟨j +mgs⟩)
Read from memory.
LDle:⟨type⟩(address)

Read from shadow memory, expecting data
of the same type. Implemented as a dirty
call.

Operation with one to four arguments, see
Table 5.3 for examples.

See Table 5.3.

⟨op⟩(q1, q2, . . . )

Constant value. Constant value zero of the same type.
⟨literal⟩:⟨type⟩ or ⟨type⟩{⟨literal⟩} 0x0:⟨type⟩ or ⟨type⟩{0x0}
If-then-else construct, selecting either a or
b depending on condition.

If-then-else construct with same condition
on dot-value-propagating operands.

ITE(condition, q1, q2) ITE(condition, q̇1, q̇2)

CCall to Valgrind function without side ef-
fects.

Until now, we only encountered cases with-
out relevance to AD.
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(c) Otherwise, if p and ṗ are both equal to the 64-bit constant 0b0. . .0, Derivgrind
assumes that this expression belongs to a masking operation like (3.3) that selects
q. Thus, the dot value of the expression is q̇.

(d) Otherwise, the checks (b), (c) are performed with swapped roles of p and q.

(e) If none of the previous cases applied, analogous checks to (b), (c) and (d) are
performed separately on both 32-bit halves of p and q. In either half, if no supported
bit-trick is recognized, the dot value of the expression is a 32-bit 0b0. . .0.

In steps (b) and (c), the dot value ṗ is compared to zero because apart from appearing
as non-floating-point operands to compute the negative absolute value or perform a
masking patterns, 0b10. . .0 and 0b0. . .0 can also represent valid real numbers −0.0 and
+0.0, respectively. If p represents a real number (thus likely with ṗ ̸= 0.0) and q is the
constant 0b10. . .0 or 0b00. . .0 used to perform a bit-trick on p (thus likely q̇ = 0b0. . .0),
we must not confuse the roles of p and q, and vice versa.

Dot-value-propagating expressions for bitwise “and” and “exclusive-or” operations are
formed in a very similar fashion. For the bitwise “and”, confusing the non-floating-point
operand with the floating-point operand in (b) and (c) is hardly possible because p
is compared with 0b01. . .1 and 0b1. . .1, respectively, which both represent NaN. The
bitwise “exclusive-or” does not appear in the masking pattern. It can be used to create
a zero value (by applying the “exclusive-or” of a value with itself), but in this case, the
default dot value of 0b0. . .0 is correct.

Sign bit manipulations and masking patterns outside of aligned 32-bit and 64-bit
blocks, and all the other bit-tricks presented in Section 3.3, are not supported by this
approach of wrapping bitwise logical operations.

5.3.2. Unhandled Expressions

From the large number of operations available in VEX (from which only a selection is
shown in Tables 4.5 and 4.6), we only handle those that we consider necessary and that
we suspect to be covered by our unit tests. For instance, the VEX operation SinF64
corresponding to the x87 instruction fsin is not handled at the time of writing this
sentence because apparently, modern compilers and libraries do not use this instruction
to compute the sine function. For unhandled operations, Derivgrind assumes a zero
derivative, and optionally outputs warning messages according to the optional Derivgrind
argument --warn-unwrapped=⟨warnlevel⟩:

• With yes or all, Derivgrind prints information about all statements containing
unhandled expressions.

• With default or if the argument is not set, Derivgrind warns about statements
that contain unhandled expressions that have a floating-point return type and at
least one operand of floating-point type.

• With no or none, Derivgrind does not print warning messages about unhandled
expressions.
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Table 5.3: VEX IR expressions performing an operation, and the corresponding dot-
value-propagating expressions. The placeholder rm represents an expression
for the rounding mode, for which a dot-value-propagating expression is never
required.

Expression p Dot-value-propagating expression ṗ

Scalar floating-point arithmetic, e. g. addi-
tion of binary64s,

Application of the differentiation rule.

AddF64(rm,q1,q2) AddF64(rm,q̇1,q̇2)
or multiplication of binary32s,
MulF32(rm,q1,q2) AddF32(rm,MulF32(rm,q̇1,q2),

MulF32(rm,q1,q̇2))

SIMD floating-point arithmetic, e. g. mul-
tiplication of eight binary32s.

Component-wise application of the differ-
entiation rule.

Mul32Fx8(rm,q1,q2) Add32Fx8(rm,Mul32Fx8(rm,q̇1,q2),
Mul32Fx8(rm,q1,q̇2))

Lowest-lane-only SIMD floating-point
arithmetic, e. g. mapping the operands
(q10, q11, q12, q13) and (q20, q21, q22, q23) to
(q10 · q20, q11, q12, q13).

Formal application of the differentia-
tion rule with lowest-lane-only operations,
taking care to be correct outside the
lowest lane also. E. g. for (q̇10q20 +
q10q̇20, q̇11, q̇12, q̇13),

Mul32F0x4(q1,q2) Add32F0x4(Mul32F0x4(q̇1,q2),
Mul32F0x4(q1,q̇2))

Floating-point conversions, e. g. Analogous application to the dot values.
F64toF32(rm,q) F64toF32(rm,q̇)

Binary reinterpretation of floating-point
representations as integers and vice versa,
e. g.

Analogous application to the dot values.

ReinterpI64asF64(q) ReinterpI64asF64(q̇)

SIMD (un)packing, e. g. Analogous application to the dot values.
64x4toV256(q3,q2,q1,q0) 64x4toV256(q̇3,q̇2,q̇1,q̇0)

Bitwise logical operations, e. g. Handling according to Section 5.3.1.
And64(q1,q2) (Represented by a CCall.)

Integer arithmetic, e. g. Not relevant for AD.
Add64(q1,q2) 0x0:I64

Comparisons, e. g. Not relevant for AD.
CmpF64(q1,q2) 0x0:I32
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Table 5.4: Forward-mode monitor commands defined by Derivgrind.

get ⟨addr⟩
fget ⟨addr⟩
lget ⟨addr⟩

Print the dot value of the binary64, binary32, or 80-bit x87
number at the memory address addr.

set ⟨addr⟩ ⟨val⟩
fset ⟨addr⟩ ⟨val⟩
lset ⟨addr⟩ ⟨val⟩

Set the dot value of the binary64, binary32, or 80-bit x87
number at the memory address addr to the specified value
val.

5.4. Identifying Input and Output Variables

In Sections 5.2 and 5.3, we have described the forward-mode AD instrumentation that
propagates the dot values in the shadow storage (Section 5.1) alongside the execution of
the client program. The dynamic binary instrumentation tool Derivgrind only operates
on VEX code, which the Valgrind framework produces from the machine code of the
compiled client program only. Thus, until this point, there is no recourse to any source
code of the client program.

However, some knowledge on the internal structure of the client program is required in
order to identify AD input and output variables; and this information must be passed to
Derivgrind in order to seed or read their dot values. In this section, we describe several
mechanisms to specify these variables to Derivgrind.

5.4.1. Variables Specified by Line Number and Name in the Source Code

First, let us suppose that the Derivgrind user intends to specify variables by references
to file names, line numbers and variable names in the source code of the client program.
In this case, Derivgrind naturally needs access to those parts of the source code, or
debugging symbols generated from it.

5.4.1.a. Monitor Command Interface. As further detailed in Section 4.3.1, the user
can interact with a Valgrind session running an instrumented client program, by interac-
tively typing monitor commands into a connected debugger session. Table 5.4 lists the
monitor commands defined by Derivgrind to give the user access to the shadow memory,
and hence the dot value of any variable. Figure 5.3 displays the result of a Valgrind-GDB
session for the client program in Listing 5.1. The C code has been compiled with the
GCC flags -g and -O0, so the debugger can find the appropriate lines and addresses.

5.4.1.b. Client Request Interface. As further detailed in Section 4.3.2, the user can
also insert specific instruction sequences into the client program, to invoke client requests
every time they are executed. Table 5.5 lists the forward-mode client requests provided
by Derivgrind; similar to the monitor commands, the first two of them allow to access the
shadow memory storing the dot value of any variable in the client program. Listing 5.2
shows how the client requests and an output statement for the derivative are inserted into
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Listing 5.1: C program simple.c. Figure 5.3 demonstrates how the monitor commands
interface can be used to seed ẋ and read ẏ. As an alternative, Listing 5.2
shows insertions that use the client request interface.

1 #include <stdio.h>
2
3 int main(){
4 double x;
5 float y;
6 scanf("%lf", &x);
7 y = x*x*x;
8 printf("result: %f\n", y);
9 }

Figure 5.3: GDB session (left) connected to a Derivgrind session (right) differentiating
the code in Listing 5.1. The user accesses the dot values ẋ and ẏ via monitor
commands in the GDB session. The client program has been compiled with
debugging symbols (-g) and optimizations turned off (-O0).
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Table 5.5: Forward-mode client request macros defined by Derivgrind.

DG_SET_DOTVALUE(⟨valaddr⟩, ⟨dotvaladdr⟩, ⟨size⟩)
Invoked with pointers to variables *⟨valaddr⟩ and
*⟨dotvaladdr⟩ of the same floating-point format, and the
size of the format in bytes. Seeds the dot value of *⟨valaddr⟩
with the present value of *⟨dotvaladdr⟩. The dot value of
*⟨dotvaladdr⟩ is ignored.

DG_GET_DOTVALUE(⟨valaddr⟩, ⟨dotvaladdr⟩, ⟨size⟩)
Same arguments as DG_SET_DOTVALUE; copies the dot value
of *⟨valaddr⟩ into *⟨dotvaladdr⟩, and leaves the dot value of
*⟨dotvaladdr⟩ unspecified.

DG_GET_MODE Evaluates to 'd' if the client is running under the forward
mode of Derivgrind, 'b' for the reverse mode (Chapter 6) and
't' for the bit-trick finding mode (Chapter 7).

DG_DISABLE(⟨plus⟩, ⟨minus⟩)
Increments an internal thread-local counter
dg_disable[threadID] of Derivgrind by (⟨plus⟩ − ⟨minus⟩),
and returns the previous value of the counter.

Figure 5.4: Derivgrind session differentiating the code in Listing 5.2.

the source code of the client program, and Figure 5.4 shows the output in a Derivgrind
session. Additional client requests DG_GET_MODE and DG_DISABLE have been implemented
for internal use in the math wrappers, as outlined in Section 5.5.

5.4.2. Variables Specified as Arguments of Compiled Functions

In contrast to Section 5.4.1, the client code could also be available as a library function
with a known signature that comprises all input and output arguments. In this case, the
user can apply Derivgrind to a small “library caller” client program stub that seeds the
dot values of the input variables, calls the library function, and reads and outputs the
dot values of the output variables. This procedure does not require access to the source
code of the client code library.

We will use this approach in Section 5.5 to study the black-box derivatives of mathe-
matical functions in the glibc math library, and in Section 6.5.2 to provide an interface
between Derivgrind and machine learning frameworks.
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Listing 5.2: Insertion of client request macros into the C program simple.c of Listing 5.1.
When run under Derivgrind, the modified client program accesses the dot
values ẋ and ẏ via client requests, and prints ẏ to standard output, as shown
in Figure 5.4.

#include <stdio.h>
+ #include <valgrind/derivgrind.h>

int main(){
double x;
float y;
scanf("%lf", &x);

+ double const x_d = 1.0;
+ DG_SET_DOTVALUE (&x, &x_d , sizeof(double));

y = x*x*x;
printf("result: %f\n", y);

+ float y_d;
+ DG_GET_DOTVALUE (&y, &y_d , sizeof(float));
+ printf("derivative: %lf\n", y_d);

}

5.4.3. Variables Accessible by an Add-On Mechanism

The client programs CPython and LibreOffice Calc, to which we will apply Derivgrind in
Sections 8.2 and 8.3, feature an “add-on mechanism”. During the run-time of the program,
this mechanism enables to user to make the program load and run user-supplied code
with (partial) access to its data. The “injected” add-on code can contain client requests,
and if the AD input and output variables can be exposed to it, no modification of the
source code of the client program is necessary at all.

5.5. Math Function Wrappers

The C standard library provides basic maths functions such as power and square root, the
trigonometric and hyperbolic functions and their inverses, exponentiation and logarithm.
While some of them could be realized by hardware instructions like fsin and fcos,
implementations of the standard library are free to perform an approximation algorithm
entirely in software, and glibc does so.

Figure 5.5 shows the forward-mode automatic derivatives of the glibc version 2.35 math
library’s implementation of sin and log, using the components of Derivgrind presented
so far. They agree with the analytic derivatives cos(x) and 1/x only inside the intervals
[−0.126, 0.126] and [0.9375, 1.0646972656 . . . ], respectively, and are zero outside. We
further analyzed the case of sin in glibc version 2.35, with the following findings:

• For |x| < 2−26 and 2−26 ≤ |x| < 0.126, sin(x) is computed using the Taylor poly-
nomials of degree 1 or 11, respectively. Derivgrind thus computes the derivatives
of these polynomials, which equal the Taylor polynomials of degree 0 or 10 to the
cosine function, and are therefore good approximations for the analytical derivative
in the respective intervals.
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Figure 5.5: The black-box algorithmic derivative of glibc’s implementation of sin and
log agrees with the analytic derivatives of the mathematical functions sin,
log only in parts of their domains.

• For 0.126 ≤ |x| < 0.855 . . . , the algorithm in glibc is based on a trigonometric
formula

sin(xtab + xrem) = sin(xtab) cos(xrem) + cos(xtab) sin(xrem)

after writing x as xtab + xrem with a multiple xtab of 2−7 and a small remainder
xrem. The purpose of this decomposition is to read the sine and cosine of xtab
from a lookup table, and to use a Taylor series for xrem. While the correct decom-
position of ẋ would be ẋtab = 0 and ẋrem = ẋ, Derivgrind erroneously computes
ẋtab = ẋ and ẋrem = 0, because glibc performs the decomposition by adding and
subtracting a big constant, relying on a bit-trick related to floating-point errors as
described in Section 3.3.5. We provide more details and a closer look at the code
in Appendix A.3.

• For 0.855 . . . ≤ |x| < 2.426 . . . , the implementation of cos is invoked with a modi-
fied value, basically using the same lookup-table based approach.

• For 2.426 . . . < |x| < 1.054 . . . · 108, the previously mentioned methods are used
for a shifted argument y = x − k · π2 ∈ [−π

4 ,
π
4 ]. As glibc again computes the

integral factor k by a tricky exploitation of floating-point errors as described in
Section 3.3.5, Derivgrind erroneously finds k̇ = ẋ · 2π and ẏ = 0.

To summarize, the glibc 2.35 implementation of sin relies on unsupported bit-tricks.
This kind of problem should be expected in many functions of a highly performance-
optimized math library. We solve it using Valgrind’s function wrapping feature (Sec-
tion 4.3.3) to intercept and redirect calls to many math.h functions. In a first version
shown in Listing 5.3 and extended in the next chapters, our wrapper

(a) evaluates the original function from libm.so to obtain the return value,
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Listing 5.3: Valgrind function wrapper for the function sin from libm.so*. Derivgrind’s
forward mode employs a wrapper of this kind to propagate dot values ac-
cording to the analytical differentiation rule for sin, instead of a black-box
differentiation of the numerical approximation algorithm. The wrapper is
further developed in Listings 6.2 and 7.1.

#include "valgrind.h"
#include "derivgrind.h"
#include <math.h>
#include <stdbool.h>

__attribute__ (( optimize("O0")))
double I_WRAP_SONAME_FNNAME_ZU(libmZdsoZa , sin) (double x) {

OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
bool already_disabled = DG_DISABLE (1,0) !=0;
double ret;
CALL_FN_D_D(ret , fn, x); /* ←(a) */
double ret_d = ret;
if(! already_disabled) {

if(DG_GET_MODE =='d'){ /* forward mode */
double x_d;
DG_GET_DOTVALUE (&x, &x_d , 8); /* ←(b) */
double ret_d = (cos(x)) * x_d; /* ←(c) */
DG_SET_DOTVALUE (&ret , &ret_d , 8); /* ←(d) */
DG_DISABLE (0,1);

} /* will add code for the recording pass and bit -trick finder ←↩
modes */

} else {
DG_DISABLE (0,1);

}
return ret;

}

/* ... wrappers for other math.h functions ... */

(b) uses a client request to obtain the dot value of the argument,

(c) evaluates the partial derivative and uses it to compute the dot value of the return
value according to (2.15), and

(d) uses a client request to set the dot value of the return value.

The macro CALL_FN_D_D allows to call the original function in libm.so with the sig-
nature double sin(double) in step (a). We have created this macro and added it
to Derivgrind’s version of valgrind.h, adapting the analogous macro CALL_FN_W_W for
functions with integer arguments and return values; see Appendix B.2 for more details.

The call to the original libm.so in step (a) is instrumented by Derivgrind, but the
resulting dot value in ret, which might have been subject to unsupported bit-tricks, is
overwritten by the client request in step (d). If the partial derivatives in step (c) involve
math functions, Valgrind redirects them again to their wrappers. Without further care,
the sin wrapper would call the cos wrapper, which would in turn call the sin wrapper,
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which would call the cos wrapper again, and so on, leading to an infinite recursion. To
prevent this, Derivgrind keeps a thread-local internal integer dg_disable[threadID].
The counter is supposed to be zero most of the time while the client program is running.
When the client program calls a wrapped math function, the first DG_DISABLE client re-
quest in Listing 5.3 increments the counter by 1 and returns zero (according to Table 5.5),
so already_disabled is false and the wrapper will evaluate the partial derivative. If this
involves another call to a wrapped math function, such as to cos in the wrapper for sin,
the first DG_DISABLE request of this nested call returns 1, so it does not make another
math library call itself. Each call to a math function will lead to a second DG_DISABLE
request in the end to decrement the counter by 1.

On the implementation side, we use a Python script to generate function wrapper code
like Listing 5.3 for most math.h functions.

The function wrapping approach comes with limitations. When compiler optimizations
are turned on, GCC sometimes “inlines” a bit-trick instead of inserting a call to the math
library, as shown in Listings 3.17 and 3.21. Naturally, the function wrapping mechanism
does not become active in this case. Likewise, if a client program implements numerical
approximations of mathematical functions on its own and uses different function names
or inlining, AD tools based on machine code can hardly recognize these, and thus fall
back to black-box differentiation. We will see examples of this in Paragraph 8.2.d and
Appendix A.2 for binary32 math functions in the NumPy library, and in Appendix A.1
with the G4Log function in the particle simulation framework Geant4.

And the other way round, if a client program reuses math.h function names in a
shared object libm.so* with a different semantic or signature, the function wrapping
mechanism will still assume the math.h semantic and signature, which might lead to
unexpected behaviour.
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In the previous Chapter 5, we have presented Derivgrind as a forward-mode AD tool
applicable to compiled programs. Implemented in the Valgrind framework for dynamic
binary instrumentation, Derivgrind instruments VEX code representing the client pro-
gram with AD logic. Specifically, Derivgrind’s forward-mode AD logic keeps track of
dot values for all floating-point numbers handled by the client program. Derivgrind’s
monitor commands and client requests, as described so far, provide access to these dot
values to the interactive user and the client program, respectively. Math wrappers use
analytic differentiation rules to properly propagate dot values through functions in the
C math library despite its many bit-tricks.

In this chapter, we describe another set of instrumentation, monitor commands, client
requests and math wrappers available in Derivgrind, suitable for reverse-mode AD. More
specifically, Derivgrind is capable of performing a tape-recording forward pass (Sec-
tion 2.4.5) with linear index management and Jacobian taping while the compiled client
program executes, and a separate tape evaluator program will be used for the reverse
pass. There is a lot of structural similarity to the previous Chapter 5, and as the instru-
mentation is much more complex, we will take a slightly higher-level perspective in this
chapter.

Specifically, Derivgrind’s forward-pass AD logic assigns and keeps track of indices for
all floating-point numbers handled by the client program, and records indices and partial
derivatives for the relevant real-arithmetic steps performed by the client program. We
specify the way of storing indices in Section 6.1, and the tape layout in Section 6.2; these
specifications are implemented by the instrumentation described in Sections 6.3 and 6.4.
Section 6.5 lists additional monitor commands and client requests that give access to
these identifiers, and Section 6.6 extends the math wrappers of Derivgrind to record
analytic derivatives for functions in the C math library.

After the recording has finished, the tape file can be used by a separate tape evalua-
tor program, described in Section 6.7, to compute reverse-mode automatic derivatives.
Additionally, the tape evaluator offers an alternative way to compute forward-mode au-
tomatic derivatives using the procedure in Paragraph 2.4.5.c. This is why we avoid the
term “reverse-mode instrumentation” in the remainder of this chapter, and prefer the
more precise terms forward/recording pass or index-handling and tape-recording instru-
mentation.
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6.1. Shadow Data: Identifiers

Derivgrind’s index-handling and tape-recording instrumentation assigns a 64-bit integer
index â to each real number a appearing in the client program.

6.1.a. Choice of Index Management. The default index of passive numbers is 0.
Active numbers are consecutively assigned the indices 1, 2, 3, . . . , in the order in which
they are declared as AD inputs or computed by real-arithmetic statements. To cover
some corner case details,

• the assigned indices shall increase monotonically and unnecessarily large gaps should
be avoided, but it is acceptable to reserve identifiers for internal use by the AD
tool;

• if several scalar arithmetic operations are applied at the same time, e. g. by SIMD
operations, the order in which indices are assigned to the scalar components of the
result is unspecified; and

• we allow mere copies of a floating-point number to share its index; this makes the
AD instrumentation of data moves very easy.

In the nomenclature of Paragraph 2.4.5.a, this approach is known as linear index man-
agement with copy optimization 159.

6.1.b. Shadowing Policy. Similar to the dot value in the forward mode (Section 5.1),
the index â of a floating-point number a is held in shadow storage locations of the same
size and type as the temporary, register, or memory location storing a. For the recording
pass however, two layers of these shadow locations are required, because we need to be
able to store a 64-bit index even if the floating-point number occupies only 32 bit. They
are named upper and lower layer, and used in the following way.

Whenever a storage location contains the entire binary representation of a floating-
point value a in any floating-point format, which occupies at least four bytes, Derivgrind’s
index handling instrumentation shall make sure that the lowest four bytes in the upper
and lower shadow locations store the upper and lower 32-bit halves âhigh and âlow of the
index â, respectively. Beyond the lowest four bytes, the content of the shadow location
is unspecified. This is illustrated in Figure 6.1.

This rule shall generalize to parts of floating-point representations (e. g., individual
bytes extracted from a binary64), and to storage locations only partially filled with such
(e. g., a 256-bit SIMD vector containing a binary32 and 224 unused bits), in the obvious
way: If a byte belongs to a floating-point representation of a number a, the corresponding
bytes in the upper and lower shadow locations shall store the respective bytes of âhigh

and âlow, respectively. This is illustrated in Figure 6.2.
When bytes in a memory location do not originate from, and are not further used as

floating-point data, the corresponding bytes in the upper and lower shadow locations are
unspecified.
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Figure 6.1: The 64-bit index 0x00000abc12345678 is stored in the lowest four bytes of the
two shadow locations (red) over the binary64 number 0x400921fb54442d18
(blue, representing the value π ≈ 3.14). The remaining four bytes of either
shadow memory location are unspecified (indicated by red stars).

44 54 fb 21

00 00 ∗ ∗

34 12 ∗ ∗

t⟨i⟩ =

t⟨i+ 2mtmp⟩ =

t⟨i+mtmp⟩ =

Figure 6.2: Suppose that the four-byte temporary t⟨i⟩ is assigned with the middle four
bytes of the binary64 variable in Figure 6.1. According to Paragraph 6.1.b,
the two shadow temporaries (red) store the respective parts of the shadow
data in Figure 6.1.

In particular, the default content of uninitialized shadow memory should be zero, so
global variables and constants are automatically considered to be passive variables at
first.

6.1.c. Rationale. We arrived at this exact form of the policy from the following con-
siderations:

• We cannot follow a reuse index management approach (Paragraph 2.4.5.a) because
at the moment, we have no robust and efficient means to recognize when the last
copy of a variable disappears.

• As a consequence, we cannot guarantee that a 32-bit index space is sufficient:
Roughly estimating that the client program performs one elementary real-arithmetic
step per CPU clock cycle and the clock frequency is 1GHz, the index would overflow
232 − 1 ≈ 4.29 · 109 after recording about four seconds’ worth of primal run-time.

• However, a 48-bit index space should suffice. As discussed below in Section 6.2, at
least 16B of tape space are allocated for every index, so if there was an overflow of
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a 48-bit unsigned integer, the tape would already occupy at least 4096TB, likely
overflowing realistic storage systems. Yet, we decided to use 64-bit indices to
simplify the implementation.

• The provisions for incomplete parts of binary representations, which might make
up only part of a memory location, have the same background as in the forward
mode (Paragraph 5.1.b): Binary representations may be temporarily splitted e. g.
for copy operations, and may fill only a component of a SIMD vector.

• One could treat the 64- and 80-bit floating-point types differently from the 32-bit
type, filling the entire 64-bit index into one of the shadow layers instead of splitting
it into halves. Also, four-byte index halves might as well be aligned differently, e. g.
to the upper end of the floating-point number. All of these alternatives have no
obvious advantage.

6.1.d. Summary of the Instrumentation. The index-handling and tape-recording AD
logic, implemented in Sections 6.3 and 6.4, updates the shadow locations according to
Paragraphs 6.1.a and 6.1.b, and records a tape according to the format described in
Section 6.2. The instrumentation is based on the following two main facts:

• For any source and target locations of a data transfer operation, the respective two
layers of shadow storage contain the entire AD information about the stored data,
in a universal and translation-invariant format. Thus, the inserted AD logic simply
moves the content of both shadow layers in exactly the same way as the original
data. This type-agnostic rule is analogous to the forward mode (Paragraph 5.1.d).

• If a real-arithmetic operation like min or max returns a copy of one of its operands,
the previous rule applies. If, otherwise, a new real number is computed, the in-
strumentation should assign a new index, and record its relation to the indices of
the operands on the tape. Details on the layout of the tape are shared in the next
Section 6.2.

6.2. Layout of the Tape

6.2.a. Tape Layout. Derivgrind’s index-handling and tape-recording logic produces
a Jacobian tape (see Paragraph 2.4.5.b). The tape is organized as a sequence of 32-
byte blocks, each of which is made up of two 64-bit unsigned integers followed by two
binary64s. The idea is that the i-th block stores all the necessary information about the
statement (2.14) in which the number with index i was computed: The integers store
the indices of up to two operands on the right-hand side, and the binary64s store the
respective partial derivatives. Formally, the following policy applies.

• If the index i was assigned to an AD input or is the default index 0, the i-th block
stores two 8-byte indices 0 and two binary64s 0.0.
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• If the index i was assigned to the result alhs of a binary real-arithmetic step alhs =
ϕ(a1, a2), the i-th block stores the 8-byte indices â1 and â2, as well as the partial
derivatives ∂ϕ

∂a1
(a1, a2), ∂ϕ

∂a2
(a1, a2) as 8-byte binary64s.

• If the index i was assigned to the result alhs of an unary real-arithmetic step alhs =
ϕ(a1), the i-th block stores the 8-byte index â1 along with the 8-byte index 0, and
the partial derivative ∂ϕ

∂1
(a1) along with the partial derivative 0.0 as binary64s.

• If the index i was assigned to the result alhs of a ternary real-arithmetic step
alhs = ϕ(a1, a2, a3), Derivgrind’s index handling logic makes sure that the index
(i− 1) is reserved for internal use. The (i− 1)-th block stores the indices â1 and â2
and the partial derivatives ∂ϕ

∂a1
(a1, a2, a3) and ∂ϕ

∂a2
(a1, a2, a3). The i-th block stores

the indices â3 and (i− 1) and the partial derivatives ∂ϕ
∂a3

(a1, a2, a3) and 1.0.

• In VEX, there are no real-arithmetic steps with more than three operands relevant
for AD.

• If the index i was otherwise internally used by the index-handling and tape-recording
logic, the content of the i-th block is unspecified.

Figure 6.3 displays the state of the tape and the index files after two variables x1 = 3,
x2 = −4 were declared as AD inputs, then multiplied, and the result was declared as an
AD output.

6.2.b. Rationale. The above tape layout was selected due to the following considera-
tions.

• In our setup, Jacobian taping is much easier to implement than primal value taping
(Paragraph 2.4.5.b), which requires more complex data structures to record handles
that indicate operations, passive constants, etc.

• As discussed in Paragraph 6.1.c, the set of 48-bit integers is large enough to elim-
inate the risk of index overflows in any setup with a realistic tape size, because
the partial derivatives in each block occupy at least 16B. Even though the index
handling logic uses 64-bit indices, it would be possible to record only the least-
significant 48 bit on the tape. Such a change of the above layout would reduce the
tape size of each block from 32B to 28B (saving 12.5%), at the cost of a more
complex implementation.

• Instead of fixing the number of index-derivative pairs per block to two, one could
start a block with the two-bit information whether zero, one, two or three of these
pairs follow. These two bits could be placed in the most-significant 16 bit of the
first index (i. e. those beyond the previously mentioned 48 bit) of each block, with
a special arrangement for blocks with zero pairs. Again, such a change would
moderately reduce the tape size while making the tape layout much more complex.
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00000000 00000000 00000000 00000000
0.0 0.0

00000000 00000000 00000000 00000000
0.0 0.0

00000000 00000000 00000000 00000000
0.0 0.0

00000000 00000001 00000000 00000002
−4.0 3.0

00000000 00000003 00000000 00000000
1.0 0.0

00000000 00000000
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Figure 6.3: Tape and index files after declaring two variables x1 = 3, x2 = −4 as AD
inputs, multiplying them, and declaring the result y = x1 · x2 as an AD
output. Each of the five tape blocks stores two indices (as 8-byte unsigned
integers) and two partial derivatives (as 8-byte binary64s, denoted here as
decimal floating-point numbers).

6.3. Instrumentation of Statements

6.3.a. Recap from the Forward Mode. Implemented in the Valgrind framework for
dynamic binary instrumentation, Derivgrind inserts the AD logic into VEX superblocks
presented by the Valgrind core. In the forward mode (Chapter 5), statements with
relevance to AD were prepended with dot-value-propagating statements, as outlined in
Section 5.2 and Table 5.1. Basically, dot-value-propagating statements copy shadow
data where the primal statement copies data, and may involve dot-value-propagating
expressions ṗ for expressions p in the primal statement. The expression ṗ is formed
according to analytic differentiation rules as detailed in Section 5.3 and Tables 5.2 and 5.3,
so when p evaluates to floating-point data, ṗ evaluates to the respective dot values.

6.3.b. Recording-Pass Instrumentation. Analogous to the forward mode, additional
index-handling and tape-recording statements are inserted in front of each primal VEX
statement (except for CAS statements, see Paragraph 6.3.c). Basically, index-handling
and tape-recording statements copy indices whenever the primal statement copies a value,
as shown in Table 6.1. When a primal statement contains an expression p, the index-
handling and tape-recording statement can involve index-handling and tape-recording
expressions p̂low, p̂high. These evaluate to the content of the lower and upper shadow
layers associated with the value of p, respectively, according to the shadowing policy from
Paragraph 6.1.b. We discuss the construction of p̂low and p̂high in the next Section 6.4.
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Table 6.1: Augmentation of VEX statements with index-handling and tape-recording AD
logic. The structure of differentiated statements is largely analogous to the
forward mode (Table 5.1), just with two shadow layers instead of one.

VEX statement Additional VEX statements for the record-
ing pass

Store p in a temporary with index i. Store p̂ in the shadow temporaries.
t⟨i⟩ = p t⟨i+mtmp⟩ = p̂low

t⟨i+ 2mtmp⟩ = p̂high

Store p in the register with byte offset j in
the guest state.

Store p̂ in the shadow registers.

PUT(⟨j⟩) = p PUT(⟨j +mgs⟩) = p̂low

PUT(⟨j + 2mgs⟩) = p̂high

Store p in memory.
STle(address) = p

Store p̂ in shadow memory. Implemented
as a dirty call to access the shadow memory
from VEX.

Store p in memory, if a condition is satis-
fied.
if (guard) STle(address) = p

Store p̂ in shadow memory, subject to the
same condition. Implemented as a dirty
call.

Compare-and-swap, loading addr into tem-
porary t⟨old⟩, and replacing data at addr
by new if it matches expd.

CAS statements are replaced as discussed
in Paragraph 6.3.c.

t⟨old⟩ = CASle(addr :: expd -> new)

Dirty call, invoking a Valgrind function
with side effects.

The augmentation depends on the dirty
call, see details in Paragraph 6.3.d.

Meta information. Not relevant for AD.
------ IMark(. . .) ------

Conditional jump. Not relevant for AD.
if (guard) goto {⟨jump kind⟩} ⟨target⟩
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6.3.c. Compare-And-Swap Statements. Paragraph 6.3.b comes with the same excep-
tion for CAS statements as in the forward mode (Section 5.2.2): They are replaced by an
equivalent (but non-atomic) sequence of copy operations depending on a check whether
a shared state has been modified, and this shared state includes a few bytes in memory
as well as the respective bytes in either layer of the shadow memory. For the same reason
as in the forward mode (Section 5.2.2), this is not sufficient to support multi-threading.

6.3.d. Dirty Call Statements. As Derivgrind’s representation of an index â is inde-
pendent of the floating-point format used to store a (Paragraph 6.1.b), the dirty calls
converting between binary64 and the 80-bit x87 floating-point type are instrumented by
mere copy operations on the respective shadow data. As in the forward mode, the other
dirty calls (see Table 4.3) are not instrumented except that the shadows of their output
temporaries are zeroed.

6.4. Instrumentation of Expressions

6.4.a. Data Transfer Expressions. Many of the index-handling and tape-recording
statements in Table 6.1 and Paragraphs 6.3.c and 6.3.d involve index-handling and tape-
recording expressions p̂low, p̂high, which represent the 32-bit halves of the 64-bit index
assigned to the result of an expression p in the original statement. Table 6.2 shows how
Derivgrind constructs p̂low, p̂high for expressions that basically transfer data; the shadow
data is moved alongside, similar to the forward mode.

6.4.b. Operations. Concerning expressions that perform operations (Tables 4.5 and 4.6),
Derivgrind’s recording-pass instrumentation handles precisely the same set of operations
as the forward-mode instrumentation. However, the index-handling and tape-recording
instrumentation is much more complex than the dot-value-propagating instrumentation
in Table 5.3: While computing the dot value does not introduce side effects and is there-
fore implemented in VEX by a pure dot-value-propagating expression, pushing a block to
the tape is a side effect and therefore requires one or multiple separate VEX statements
to be added in front of the primal and index-handling and tape-recording statements.

6.4.c. Operation Handling Example: Div32Fx8. As an generic example, we illustrate
the index-handling and tape-recording instrumentation of the operation Div32Fx8(q, s)
with expressions q, s. This expression evaluates to the componentwise floating-point
quotient in all eight binary32 components of the V256 operands that q and s evaluate
to.

For each component i = 0, . . . , 7, Derivgrind’s recording-pass expression handling will
insert a dirty call statement into the instrumented VEX superblock. The dirty call takes
six expressions as arguments, four of which extract the components

q̂lowi , q̂
high
i , ŝlowi , ŝ

high
i (6.1)
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Table 6.2: Construction of index-handling and tape-recording expressions.

Expression p Index-handling and tape-recording expres-
sions p̂low, p̂high

Read from a temporary with index i. Read from the shadow temporary.
t⟨i⟩ t⟨i+mtmp⟩, t⟨i+ 2mtmp⟩
Read data of specified type from the regis-
ter with byte offset j in the guest state.

Read data of the same type from the
shadow register.

GET:⟨type⟩(⟨j⟩) GET:⟨type⟩(⟨j +mgs⟩),
GET:⟨type⟩(⟨j + 2mgs⟩)

Read from memory.
LDle:⟨type⟩(address)

Read from shadow memory, expecting data
of the same type. Implemented as dirty
calls.

Operation with one to four arguments, see
Table 5.3 for examples.

See Paragraph 6.4.c.

⟨op⟩(q1, q2, . . . )

Constant value. Constant for the default index zero of the
same type.

⟨literal⟩:⟨type⟩ or ⟨type⟩{⟨literal⟩} 0x0:⟨type⟩ or ⟨type⟩{0x0}
If-then-else construct, selecting either a or
b depending on condition.

If-then-else construct with same condition
on differentiated operands.

ITE(condition, q1, q2) ITE(condition, q̂low1 , q̂low2 ),
ITE(condition, q̂

high
1 , q̂

high
2 )

CCall to Valgrind function without side ef-
fects.

Until now, we only encountered cases with-
out relevance to AD.
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from q̂low, q̂high, ŝlow, ŝhigh (and pad them to I64s). The other two arguments to the dirty
call are I64-reinterpretations of the partial derivatives

DivF64(rm, F64{1.0}, s′i) (6.2)

and
DivF64(rm, MulF64(rm, F64{-1.0}, q′i), MulF64(rm, s′i, s′i)), (6.3)

of DivF64(rm,q′i,s
′
i) with respect to q′i = F32toF64(qi) and s′i = F32toF64(si).

The dirty call passes the values of these six expressions to the C function

dg_bar_writeToTape_call(ULong index1Lo, ULong index1Hi,

ULong index2Lo, ULong index2Hi, ULong diff1, ULong diff2)

which is part of the Derivgrind tool. It assembles two 64-bit indices from q̂lowi , q̂
high
i and

ŝlowi , ŝ
high
i , and reinterprets the partial derivatives as doubles. If the index of at least

one of the two operands is non-zero, the tape block is written to a buffer. When the tape
buffer is full, the function flushes it into the binary tape file, using Valgrind’s C standard
library replacement functions. The position of the new block on the tape defines the
index to be returned.

If the indices of both operands are zero, i. e. there is no active operand, no block is
stored and the index zero is returned (activity analysis). The same goes if the thread-
local counter dg_disable[threadID] (see Section 5.5) is non-zero, for a reason we explain
further down in Section 6.6.

Either way, the return value (a new active index or zero) is placed in a yet unused
I64 temporary, behind the temporaries used by the VEX block before instrumentation
and their shadows (Paragraph 4.4.b). The index-handling and tape-recording expressions
p̂low and p̂high are then assembled from the respective 32-bit halves of the values of these
eight temporaries (accessed by VEX temporary read expressions t⟨. . . ⟩).

6.4.d. Operation Handling: Implementation Aspects. The C code to form dot-value-
propagating, as well as index-handling and tape-recording VEX expressions, is basically
a list of case labels and statements for the various kinds of operations in a large switch
block. There is a lot of repetition in the C code, but also certain details of individual
operations needed to be considered, e. g. related to the number of arguments, whether
there is a rounding-mode argument, which SIMD combinations (scalar type, vector size,
lowest-lane-only) exist etc. We have found it most convenient to generate the C code
with a Python script.

6.5. Identifying Input and Output Variables

6.5.1. Monitor Commands and Client Requests

As in the forward mode, Derivgrind defines monitor commands and client requests to
allow the user to define AD inputs and outputs for the recording pass.
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Table 6.3: Recording-pass monitor commands defined by Derivgrind.

index ⟨addr⟩ Print the index of the binary64, binary32, or 80-bit x87 number at
the memory address addr.

mark ⟨addr⟩ Assign a new index to the binary64, binary32, or 80-bit x87 number
at the memory address addr.

6.5.1.a. Monitor Commands. Derivgrind’s recording-pass monitor commands are
listed in Table 6.3. As the storage format of an index â is independent from the floating-
point format used to represent a real number a, the monitor commands index and mark
can be used for binary64, binary32, and 80-bit x87 numbers in the same way.

6.5.1.b. Client Requests. Derivgrind’s reverse-pass client requests are listed in Ta-
ble 6.4. Additionally, to make declarations of variables as AD inputs and outputs in the
client program very easy, we defined combined macros DG_INPUTF and DG_OUTPUTF as
follows.

The macro DG_INPUTF expands to a sequence of three of the client requests of Table 6.4
that

1. acquire a new index by pushing a zero block to the tape,

2. initialize the index of the declared AD input variable with this new index, and

3. store the new index in a text file

dg-input-indices.

The macro DG_OUTPUTF expands to a seqence of three client requests as well, which

1. read the index â of the variable declared as AD output,

2. push a block to the tape with indices â and 0, and partial derivatives 1.0 and 0.0,
and

3. store the index corresponding to this block in a text file

dg-output-indices.

Creating the additional block for a declared output variable, which represents a copy of it,
is not necessary from a technical point of view. However, it ensures that even if the same
number is declared as an AD output multiple times, the indices pushed to the output
index file are all distinct, helping to prevent bugs in tape evaluation procedures. We
colloquially refer to the combined macros DG_INPUTF and DG_OUTPUTF as client requests,
too.

Apart from helping the user to declare AD inputs and outputs, the client requests
are also used internally in the Derivgrind package: by the math function wrappers in
Section 6.6, by add-ons to CPython and LibreOffice Calc in Sections 8.2 and 8.3, and by
the interface to ML frameworks described in Section 6.5.2.
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Table 6.4: Additional client request macros defined by Derivgrind for the recording pass.
See Table 5.5 for the forward-mode macros.

DG_GET_INDEX(⟨addr⟩, ⟨iaddr⟩)
Copies the index of the binary64, binary32, or 80-bit x87 number
at addr to iaddr.

DG_SET_INDEX(⟨addr⟩, ⟨iaddr⟩)
Sets the index of the binary64, binary32, or 80-bit x87 number at
addr according to iaddr.

DG_NEW_INDEX_NOACTIVITYANALYSIS(⟨i1addr⟩, ⟨i2addr⟩, ⟨d1addr⟩, ⟨d2addr⟩,
⟨iaddr⟩, ⟨valaddr⟩)

Pushes a new block on the tape with the 64-bit unsigned integer
indices at i1addr and i2addr and the binary64 partial derivatives at
d1addr and d2addr. The index corresponding to the block is stored
at iaddr. The value of the result can be passed at valaddr, but is
irrelevant here.

DG_NEW_INDEX(⟨i1addr⟩, ⟨i2addr⟩, ⟨d1addr⟩, ⟨d2addr⟩, ⟨iaddr⟩, ⟨valaddr⟩)
Like DG_NEW_INDEX_NOACTIVITYANALYSIS, but if the indices at
i1addr and i2addr are both zero, no block is recorded and a zero
index is written to iaddr.

DG_INDEX_TO_FILE(⟨fileid⟩, ⟨iaddr⟩)
Append the index at iaddr to the file of input or output indices,
depending on fileid.

DG_DISABLE(⟨plus⟩, ⟨minus⟩) (extending the entry of Table 5.5)
Increments an internal thread-local counter dg_disable[threadID]
of Derivgrind by (⟨plus⟩ − ⟨minus⟩), and returns the previous value
of the counter. If the counter is non-zero, no blocks will be recorded
on the tape.
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Listing 6.1: External function wrappers exposing Derivgrind-differentiated compiled
functions in shared objects to the ML frameworks PyTorch and TensorFlow.

// compilation: gcc thisfile.c -shared -fPIC -o mylib.so -O3
void myfun(int param_size , char* param_buf ,

int input_count , double* input_buf ,
int output_count , double* output_buf) {

output_buf [0] = 3.14* input_buf [0]+5.0+ input_buf [1]* input_buf [2];
}

import torch
import derivgrind_torch as dg_torch
x = torch.tensor ([4.0 , -2.0 ,6.5] , dtype=torch.float64 , \

requires_grad=True)
y = dg_torch.derivgrind("mylib.so","myfun"). apply(b"",x,1)
y.backward ()
print(*x.grad.numpy ()) # -> 3.14 6.5 -2.0

import tensorflow as tf
import derivgrind_tensorflow as dg_tf
x = tf.Variable ([4.0 , -2.0 ,6.5] , dtype=tf.float64)
with tf.GradientTape () as tape:

y = dg_tf.derivgrind("mylib.so","myfun"). apply(b"",x,1)
dy_dx = tape.gradient(y,x)
print(* dy_dx.numpy ()) # -> 3.14 6.5 -2.0

6.5.2. Interface to Machine Learning Frameworks

Similar to Enzyme128, Derivgrind provides an “external function interface” to the ML
frameworks PyTorch146 and TensorFlow1 for the following use case. Suppose that the
user needs to include a custom compiled function in a ML model definition (e. g., as a
layer in a deep neural network) without reimplementing the function in the respective
ML framework.

To this end, the AD tools underlying these frameworks allow to temporarily pause the
recording of their tape, to evaluate an external function outside of the ML framework,
and to specify custom derivatives of this external function in terms of additional external
code that performs the back-propagation (2.17). Derivgrind can be used to automatically
provide the custom derivative for compiled external functions.

Listing 6.1 illustrates the basic usage of our Python modules derivgrind_torch and
derivgrind_tensorflow. In the first block, a simple external function is defined in
the C language, with a specific signature to pass three buffers for non-differentiable
parameters (e. g. hyperparameters), AD inputs (e. g. information from the previous layer
plus learnable parameters of the external function), and AD outputs (e. g. information
for the next layer). The body of this function could call any cross-language or partially
closed-source code.

The Python function apply in either Python module starts a subprocess to run Deriv-
grind on the simple library caller program in Appendix B.1, and caches the resulting tape
and index files. PyTorch’s Tensor.backward and TensorFlow’s GradientTape.gradient
functions then trigger a subprocess running the tape evaluator (see Section 6.7) on these
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files to provide the custom gradient.

6.6. Math Function Wrappers

As described in Section 5.5, black-box differentiation through the numerical approxima-
tion algorithms of the glibc math library implementation often leads to incorrect deriva-
tives in the forward mode because of bit-tricks used by these algorithms, but this can be
fixed by Valgrind’s function wrapping mechanism (Section 4.3.3). In the recording pass,
Derivgrind intercepts calls to many math.h functions in order to record a tape block with
accurate partial derivatives computed by the respective analytic differentiation rules. An
example for the sin function is shown in Listing 6.2. It has a similar structure as List-
ing 5.3, evaluating a handle fn to the original sin function first. Again, DG_DISABLE
requests are in place to prevent an infinite recursion. Additionally, a non-zero value
of dg_disable[threadID] disables the tape recording, so we do not store unnecessary
tape blocks for real-arithmetic operations performed by the math library implementa-
tion. The partial derivative is pushed to the tape with a client request. Another client
request assigns the resulting new index to the return value.

6.7. Tape Evaluation

Once the primal program running under Derivgrind, and subsequently the Valgrind pro-
cess (4.1) itself, have finished, the recording pass is over. The tape and index files

dg-tape, dg-input-indices, dg-output-indices (6.4)

are now ready for reverse- and/or forward-mode evaluation passes. To this end, the
Derivgrind package contains a separate program tape-evaluation.

6.7.1. Reverse-Mode Tape Evaluation

To specify the bar values of the AD outputs, the user has to store their textual repre-
sentations in a file dg-output-bars, in the same order in which the DG_OUTPUTF macro
was called during the recording pass. Then,

tape-evaluation ⟨path⟩ (6.5)

iterates through the tape file back-to-front and performs the bar value update (2.17).
In case the bar value ālhs of the left-hand side is zero, care is taken not to change the
bar values ā1 and ā2 of the operands even if the partial derivatives are infinite (and the
product of zero and infinity would be NaN). Performing (2.18) is not required as indices
were not reused. Only chunks of the tape file are loaded into memory, to reduce the
memory footprint compared with loading the full tape file at once. In the end, the bar
values of the input variables are written to dg-input-bars in the same order in which
DG_INPUTF was called during the recording pass.
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Listing 6.2: Extension of the Valgrind function wrapper in Listing 5.3 for the recording
pass, new code is highlighted in green. The wrapper records a tape block
with the analytical derivative, and disables the recording of the numerical
approximation algorithm in the math library implementation. The code is
further extended in Listing 7.1.

#include "valgrind.h"
#include "derivgrind.h"
#include <math.h>
#include <stdbool.h>

__attribute__ (( optimize("O0")))
double I_WRAP_SONAME_FNNAME_ZU(libmZdsoZa , sin) (double x) {

OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
bool already_disabled = DG_DISABLE (1,0) !=0;
double ret;
CALL_FN_D_D(ret , fn, x);
double ret_d = ret;
if(! already_disabled) {

if(DG_GET_MODE =='d'){ /* forward mode */
double x_d;
DG_GET_DOTVALUE (&x, &x_d , 8);
double ret_d = (cos(x)) * x_d;
DG_SET_DOTVALUE (&ret , &ret_d , 8);
DG_DISABLE (0,1);

} else if(DG_GET_MODE =='b') { /* recording pass */
unsigned long long x_i , y_i =0;
DG_GET_INDEX (&x, &x_i);
double x_pdiff , y_pdiff =0.;
x_pdiff = (cos(x));
unsigned long long ret_i;
DG_DISABLE (0,1);
DG_NEW_INDEX (&x_i ,&y_i ,&x_pdiff ,&y_pdiff ,&ret_i ,&ret_d);
DG_SET_INDEX (&ret ,& ret_i);

} /* will add code for the bit -trick finder mode */
} else {

DG_DISABLE (0,1);
}
return ret;

}

/* ... wrappers for other math.h functions ... */
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6.7.2. Forward-Mode Tape Evaluation

To perform a tape-based forward-mode evaluation according to Paragraph 2.4.5.c, the
user has to store the dot values of the AD inputs in a file dg-input-dots, in the same
order in which DG_INPUTF was called, and invoke

tape-evaluation ⟨path⟩ --forward. (6.6)

This performs (2.15) for all tape blocks front-to-back, and stores the the dot values of
the AD outputs in dg-output-dots, in the same order in which DG_OUTPUTF was called.

6.7.3. Additional Functionality

The tape evaluator program can also be invoked with the argument --print to generate a
human-readable tabular representation of the tape, as shown in Listing 8.7 in Chapter 8.
Also, there is a --stats option to output the numbers of blocks with zero, one and two
non-zero indices, respectively.
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7. Semi-Automatic Detection of
Bit-Tricks

As discussed in the previous Chapters 5 and 6, Derivgrind can insert forward-mode
or recording-pass instrumentation for all data transfers and real-arithmetic operations
that it recognizes in the VEX superblocks presented by the Valgrind core. When the
client program performs real-arithmetic operations via the corresponding floating-point
instructions on x86 or x86-64, Valgrind usually translates them into the corresponding
VEX operations, which are easy to recognize for Derivgrind. (As we noted in Table 4.3,
some data transfers using the 80-bit floating-point format are translated to dirty calls in
VEX, which are easy to spot as well.)

However, client programs can perform real arithmetic in other ways than by using the
corresponding floating-point instruction. We have listed a few of the possible “bit-trick”
mechanisms in Section 3.3. They may already be present in the source code (in the
style of Listings 3.19 and 3.20), or be introduced by the compiler for “clean” source code
(e. g. as in Listings 3.17 and 3.18). Anticipating the observations made while applying
Derivgrind to real-world software in Chapters 8 and 10, we can report that Derivgrind
genereally handles compiler-generated bit-tricks well, but numerical software sometimes
contains hard-coded bit-tricks that Derivgrind’s forward-mode and recording-pass modes
do not recognize.

In this chapter, we present a third, bit-trick-finding “mode”, which can heuristically
detect a set of bit-tricks, and give useful information to localize them in the code of the
client program.

7.1. Shadow Data: Activity and Discreteness Flags

Like the forward mode and recording pass, Derivgrind’s bit-trick-finding instrumentation
keeps track of shadow data for each piece of data handled by the primal program.

7.1.a. Shadowing Policy. The bit-trick-finder mode uses two layers of shadow storage
locations.

• The lower layer is used to store activity flags. Whenever a bit in a storage location
depends on user-declared inputs, the corresponding bit in the lower shadow layer
should be 1, otherwise it should be 0.

• The upper layer is used to store discreteness flags. Whenever a bit in a stor-
age location results from an operation that Derivgrind assumes does not produce
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floating-point data, the corresponding bit in the upper shadow layer should be 1,
otherwise it should be 0.

In particular, the default shadow data for uninitialized memory is all-zero: Globals and
constants in the client program initially do not depend on user-declared input, and
whether they are discrete or floating-point data is not known a priori.

As opposed to the forward-mode and recording-pass policies (Paragraphs 5.1.a and 6.1.b),
full compliance with this policy even in corner cases is not strictly necessary – false posi-
tives or negatives of a heuristic debugging tool are generally more acceptable than wrong
derivatives computed in production.

7.1.b. Summary of the Instrumentation. The bit-trick-finding instrumentation prop-
agates the activity and discreteness flags as follows:

• For data transfers between two storage locations, the instrumentation simply trans-
fers the activity and discreteness flags between the respective shadow storage loca-
tions.

• For data processing operations, generally, activity bits of the operands propagate
to the result in an “infectious” way: If a single activity bit of a single operand
is set, all activity bits of the output will be set, unless we know better for the
specific operation at hand. The discreteness bits of the result are all set to 0 if
the operation is recognized and handled by the forward-mode and recording-pass
instrumentations, and to 1 otherwise.

The bit-trick finder generates a warning message with a backtrace if a floating-point
operand of a recognized real-arithmetic operation has at least one active and discrete
bit. Users can then take a look at the source code of the client program to find out where
the active discrete value was produced, and this hopefully leads them to the location of
the bit-trick.

7.1.c. Rationale. We have selected this exact form of a heuristic due to the following
considerations:

• Tracking whether data is discrete or belongs to a floating-point representation looks
like the obvious thing to do. For pre-initialized memory of the program that stores
globals and constants, we do not know which parts of these data are floating-point
numbers. Also, floating-point data can be legitimately processed by non-floating-
point instructions, e. g. while writing an encrypted or compressed file (in any case,
the outcome is discrete).

The only time we can safely identify data as floating-point data is when it is used
in, or results from, a floating-point operation. This suggests that the proper choice
is to distinguish between discrete data on the one hand, and floating-point data
and “do not know” on the other hand. Hence we have a discreteness flag and not a
“floating-pointness” flag.
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• Tracking activity information is a means of reducing messages about irrelevant bit-
tricks: We expect that users run the bit-trick finder because Derivgrind computes
wrong derivatives, so they already know which variables are possible AD inputs.
They are probably not interested in bit-tricks applied to passive variables because
fixing these bit-tricks would not affect the wrong derivatives.

• In addition to the proposed forward propagation of activity flags, one could also
propagate indices (as in the recording pass) and only report bit-tricks that can
affect user-declared output variables. Implementing this would be rather complex,
especially because it would need more than two layers of shadow storage locations
and therefore make it necessary to work around the size limit of Valgrind’s guest
state (Paragraph 4.4.a).

• Valgrind’s Memcheck tool167 (Paragraph 4.1.3.a) warns about uninitialized values
when they are used in certain ways, and its warning messages show backtraces of
both the use and the origin of the uninitialized value. One could try to employ
a similar mechanism in Derivgrind’s bit-trick finder tool to hint the user to the
location of the bit-trick, and not only to the location where its result is afterwards
used by regular real arithmetic. For now, we however prefer to keep the complexity
low.

7.2. Instrumentation of Statements and Expressions

For the bit-trick-finder feature, VEX statements are instrumented with flags-propagating
statements in a very similar fashion as in the recording pass. VEX expressions in a
statement might translate to flags-propagating expressions in the flags-propagating state-
ments, which, again, look very similar to the dot-value-propagating and index-handling
and tape-recording expressions of Chapters 5 and 6, for those VEX expression types
that only transfer data. The handling of VEX operation expressions, outlined in Para-
graph 7.2.a, is however very different and will be outlined next.

7.2.a. Operations. Like the recording-pass instrumentation of VEX operations (Para-
graph 6.4.c), the bit-trick-finder instrumentation looks at recognized SIMD operations
as sequences of scalar operations on each individual component. For each floating-point
operand of a recognized scalar real-arithmetic operation, their flags-propagating expres-
sions are passed to a dirty call, which checks for bits that are both active and discrete,
and prints a user warning with a backtrace in this case. Activity bits in the operands
also affect only the activity bits of the respective component of the result.

For operations not handled in the forward mode or recording pass, a default handler
determines the activity bits of the result in an infective way fully implemented in VEX,
and the discreteness bits of the result are always 1. The C code implementing the
handling of VEX operations for the forward mode, recording pass, and bit-trick finder
instrumentations are generated from the same Python script (Paragraph 6.4.d), so it
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is easy to make sure that the three modes recognize the same set of operations as real
arithmetic.

7.2.b. Dirty calls. The bit-trick-finder treats the x87-related dirty calls (see Table 4.3)
like a recognized floating-point operation: A warning message is raised if the input has
a bit that is considered both active and discrete, the activity bits of the result depend
on the activity of the operand in an infectious fashion, and discreteness bits of the result
are set to zero. For the other dirty calls, activity bits are not propagated (for simplicity)
but the discreteness flags are set to 1.

7.2.c. CCalls. Likewise, activity bits propagate through CCalls in an infectious fashion,
and the result has all discreteness bits set to one.

7.3. Identifying Input Variables and Accessing Flags

As for the forward and reverse modes, we define monitor commands and client requests
to allow the user to access activity and discreteness flags.

7.3.a. Monitor Commands. The monitor command flagsget ⟨address⟩ ⟨size⟩ allows
the user to read activity and discreteness flags interactively from a connected debugger
session.

7.3.b. Client Requests. The client request macros

DG_GET_FLAGS(⟨addr⟩,⟨Aaddr⟩,⟨Daddr⟩,⟨size⟩)
DG_SET_FLAGS(⟨addr⟩,⟨Aaddr⟩,⟨Daddr⟩,⟨size⟩)

move activity and discreteness bits describing ⟨size⟩-many bytes at ⟨addr⟩ between the
shadow memory and the memory at ⟨Aaddr⟩ and ⟨Daddr⟩. We also define a helper macro
DG_MARK_FLOAT(⟨var⟩) that sets all activity bits of a floating-point variable var to 1, and
all discreteness bits to 0. Users can apply this macro to declare AD inputs, i. e. instead
of the forward-mode DG_SET_DOTVALUE and the recording-pass DG_INPUTF.

7.4. Math Function Wrappers

Listing 7.1 shows the final version of Derivgrind’s wrapper for the sin function in
libm.so*, built on top of Listing 6.2. In the bit-trick-finding mode, the wrapper treats
math functions like elementary real-arithmetic operations: A warning message is issued
if the floating-point operand has active and discrete bits; the result is not discrete; and
the result is all-active if any bit of the operand is active, and not-active otherwise.
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Table 7.1: Regression test results for the bit-trick finder instrumentation. Failures are
explained in Section 7.5.

Bit-trick mechanism Recognized?

frexp via incomplete masking (Paragraph 3.3.4.a) yes
Integer addition to exponent (Paragraph 3.3.4.b) yes
Rounding via floating-point inaccuracies (Section 3.3.5) no
Encryption followed by decryption (Section 3.3.6), using the yes

Twofish cipher in CBC mode in gcrypt
Compression followed by inflation (Section 3.3.6), using zlib (no)
Multi-mapped memory (Paragraph 4.5.1.e) no

As the math wrappers for the forward mode and recording pass (Sections 5.5 and 6.6)
solve all correctness problems related to unrecognized bit-tricks in the math library im-
plementation, the bit-trick-finding instrumentation suppresses warnings when the thread-
local counter dg_disable[threadID] is non-zero, i. e., in the call to the original math
function between the two macro calls DG_DISABLE(1,0) and DG_DISABLE(0,1).

7.5. Evaluation

We have implemented a few “regression tests” to systematically check the bit-trick-finder’s
response for certain bit-tricks listed in Section 3.3. An additional testcase has been
adapted from Listing 3.15, to see if writing floating-point data to a virtual address *x
and reading it from a different virtual address *y of the same portion of physical memory
is treated as a binary identity. The results of our tests are shown in Table 7.1. For a
practical use case, see Paragraph 10.3.e.

7.5.a. Why is the “rounding” bit-trick not detected? When, according to Sec-
tion 3.3.5, a large constant T is added to a floating-point number y and then imme-
diately subtracted, this appears like an ordinary sequence of real-arithmetic operations.
The bit-trick-finder instrumentation does not realize that these operations come with a
floating-point error that has intended real-arithmetic effects.

In fact, computer code that calculates y 7→ (y+T )−T can be interpreted as an almost
everywhere differentiable real-arithmetic function in two possible ways, as an identity
y 7→ y and as a rounding operation – this contradicts the most basic assumption of AD
that there is a unique way to look at a computer program as a mathematical function, as
stated in Paragraphs 1.1.a and 2.2.c. Derivgrind’s derivative computation and bit-trick
finding assume the code to represent y 7→ y, while it is actually intended as a rounding
operation.

7.5.b. What about the “compression followed by inflation” bit-trick? Whether or
not the bit-trick finding mode shows a warning message depends on the version and con-
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Listing 7.1: Complete Valgrind function wrapper for the function sin from libm.so*,
extending Listing 6.2 with the bit-trick-finder handling highlighted in green.

#include "valgrind.h"
#include "derivgrind.h"
#include <math.h>
#include <stdbool.h>

__attribute__ (( optimize("O0")))
double I_WRAP_SONAME_FNNAME_ZU(libmZdsoZa , sin) (double x) {

OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
bool already_disabled = DG_DISABLE (1,0) !=0;
double ret;
CALL_FN_D_D(ret , fn, x);
double ret_d = ret;
if(! already_disabled) {

if(DG_GET_MODE =='d'){ /* forward mode */
double x_d;
DG_GET_DOTVALUE (&x, &x_d , 8);
double ret_d = (cos(x)) * x_d;
DG_SET_DOTVALUE (&ret , &ret_d , 8);
DG_DISABLE (0,1);

} else if(DG_GET_MODE =='b') { /* recording mode */
unsigned long long x_i , y_i =0;
DG_GET_INDEX (&x, &x_i);
double x_pdiff , y_pdiff =0.;
x_pdiff = (cos(x));
unsigned long long ret_i;
DG_DISABLE (0,1);
DG_NEW_INDEX (&x_i ,&y_i ,&x_pdiff ,&y_pdiff ,&ret_i ,&ret_d);
DG_SET_INDEX (&ret ,& ret_i);

} else if(DG_GET_MODE =='t') { /* bit -trick -finding mode */
DG_DISABLE (0,1);
unsigned long long xA[2]={0 ,0} , xD[2]={0 ,0};
DG_GET_FLAGS (&x, xA , xD, 8);
dg_trick_warn_clientcode(xA, xD, 8);
if(xA [0]!=0|| xA [1]!=0) xA[0] = xA[1] = 0xfffffffffffffffful;
xD[0] = xD[1] = 0;
DG_SET_FLAGS (&ret , xA, xD, 8);

}
} else {

DG_DISABLE (0,1);
}
return ret;

}

/* ... wrappers for other math.h functions ... */
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figuration of zlib (checked with a Ubuntu installation vs. a version built from source).
If warning messages are shown, they appear in the deflate call and not in the real-
arithmetic operation performed on its output. This suggests that they are “false posi-
tives”, triggered e. g. by a bitwise logical operation that happens to look like a sign bit
manipulation (Section 3.3.2) but is actually not real-arithmetic operation, and that the
actual bit-trick is not recognized. Our hypothesis for the latter statement is that zlib’s
compression algorithm, which is called DEFLATE50 and uses LZ77201 and Huffman
coding86, mainly rearranges and duplicates bytes in the data stream. E. g., a repeated
sequence of floating-point numbers in the original data stream would be stored only once
in the compressed data stream and then duplicated during inflation. This affects deriva-
tive information but only uses data transfer operations, which are considered “safe” by
the bit-trick finding mode.

7.5.c. Why is the “multi-mapped memory” trick not detected? We keep track of
shadow data for all virtual addresses used by the primal program; access to shadow data
is made using virtual addresses (Paragraph 4.4.c). Different virtual addresses x and y
have different shadow data attached to them, even if they point to the same portion of
physical memory as in Listing 3.15. Therefore, writing into *x does not affect the activity
or discreteness bits of *y.

7.6. Alternative: Comparing Dot Values and Difference
Quotients

Before we developed the bit-trick-finder instrumentation described in the previous sec-
tions, we experimented with an extension of the forward-mode instrumentation (Chap-
ter 5). In addition to propagating dot values through all of the recognized real-arithmetic
operations, the tool would record the values and dot values of the results of (most of)
these operations. The instrumented client program is run twice, using two slightly dif-
ferent values for the single AD input. These two values should be close enough so that
the control flow and the set of performed real-arithmetic operations is exactly the same.

Then, for each real-arithmetic operation, we can compute the difference quotient (2.12)
of its results for the two input values, to approximate the derivatives of the intermediate
results with respect to the AD input. The two input values must neither be too close
nor too far apart for this to work (Paragraph 2.1.d). Then, the approximated derivative
can be compared against the two dot values.

Ideally, the dot values and the difference quotients start to differ, i. e. the relative
difference starts to significantly increase, precisely after the first unrecognized bit-trick
has been performed. In practice, we have successfully used this approach to locate a
bit-trick in the particle physics toolkit Geant410,12,13, as described in Paragraph 10.3.e.
According to our (limited) experience, it required some trial-and-error to find a suitable
perturbation of the AD input, and even then there were false positives. In contrast, the
instrumentation based on activity and discreteness flags, as described previously, detects
the bit-trick without much manual intervention.
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Having discussed the ideas and implementation details behind Derivgrind in the previous
Chapters 5 to 7, this is the first of three chapters in which we evaluate the novel AD
tool. Section 8.1 describes our extensive collection of regression tests, which we use
to check the correctness of the computed derivatives for a large number of small test
programs. Besides, we apply Derivgrind to two complex programs that evaluate simple
arithmetic expressions: The standard Python interpreter CPython in Section 8.2, and
the spreadsheet software LibreOffice Calc in Section 8.3. Chapter 9 continues with a
performance study based on a numerical solver for Burgers’ partial differential equation,
and Chapter 10 gives an overview on our applications of AD and Derivgrind to complex
simulations used in medical and high-energy physics.

8.1. Regression Tests

We have developed Derivgrind simultaneously with an extensive suite of regression tests.
The test system is a Python script that creates and runs many small client programs,
considering most of the possible combinations of

• the following arithmetic calculations to be differentiated: elementary operations,
calls to math functions, control structures, loops suitable for auto-vectorization,
and some OpenMP constructs;

• implemented in the following languages: C, C++, Fortran 90, Python;

• using the following floating-point types: binary32 (as C/C++ float, Fortran real,
Python numpy.float32), binary64 (as C/C++ double, Fortran double precision,
Python numpy.float64 and float), and the 80-bit x87 type (as C/C++ long double)

• compiling C and C++ codes with GCC or Clang compilers, and Fortran codes with
GCC; Python scripts are interpreted with the system’s python3 executable, as
described in Section 8.2.

• on either the x86 or x86-64 architecure (C, C++, Fortran), or the single one of these
architectures for which python3 was compiled (Python);

• to be run under either the forward or the recording mode of Derivgrind.
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Listing 8.1: Sample regression test, checking the correctness of Derivgrind’s forward-
mode handling of a multiplication of floats in C; reformatted.

#include <stdio.h>
#include <valgrind/derivgrind.h>

int main(){
int ret =0;
float a = 1.0;
float b = 2.0;
{

float _derivative_of_a = 3.0;
DG_SET_DOTVALUE (&a,& _derivative_of_a ,4);
float _derivative_of_b = 4.0;
DG_SET_DOTVALUE (&b,& _derivative_of_b ,4);

}
float c = a*b;
{

if(c < 1.9999 || c > 2.0001) {
printf("VALUES DISAGREE: c stored =%.9f computed =%.9f\n",

(float)2.0,c);
ret = 1;

}
float _derivative_of_c = 0.;
DG_GET_DOTVALUE (&c,& _derivative_of_c ,4);
if(_derivative_of_c < 9.9999 || _derivative_of_c > 10.0001) {

printf("DOT VALUES DISAGREE: c stored =%.9f computed =%.9f\n",
(float)10.0, _derivative_of_c);

ret = 1;
}

}
return ret;

}
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8.1.a. Forward-Mode Regression Tests. Listing 8.1 gives an example of such a client
program; the code has been reformatted for the purpose of presentation in this thesis.
This particular client program is used to verify the correctness of Derivgrind’s forward-
mode derivative for a multiplication of two floats in C. To this end, the client program

• declares input variables a and b of type float, and initializes them with values
specified in the test suite,

• uses client requests to seed their dot values with dot values specified in the test
suite,

• performs the arithmetic operation in question,

• checks the value of the result against the correct value stored in the test suite,
and prints an error message if both values differ beyond a reasonable tolerance
parameter,

• uses a client request to retrieve the dot value of the result and checks it against the
correct dot value stored in the test suite, again printing an error message if both
values differ too much, and finally

• exits, with an exit status reflecting whether there were error messages.

All forward-mode regression tests stick to this structure regardless of the programming
language; see Listing 8.2 for a Fortran, and Listing 8.8 in Section 8.2 for a Python
example. For C, C++ and Fortran tests, the test system creates an optimized build
of the client program with the usual compiler commands (gcc, g++, clang, clang++,
gfortran), and runs it under Derivgrind. For Python tests, which we explain in more
detail in Section 8.2, the test system runs python3 under Derivgrind, letting it execute a
test script like Listing 8.8. In either case, the test system uses the exit status to determine
whether the test has passed or failed.

8.1.b. Recording-Mode Regression Tests. Listing 8.3 is the recording-mode variant
of Listing 8.1. It uses client requests to declare variables as AD inputs and outputs,
and only checks the value of the result. The test system runs the client program under
Derivgrind, and then either

• creates a file with the output bar values stored in the test suite, executes the tape
evaluator in reverse mode (Section 6.7.1), and checks the input bar value file against
the expected derivatives stored in the test suite, or

• creates a file with the input dot values stored in the test suite, executes the tape
evaluator in forward mode (Section 6.7.2), and checks the output dot value file
against the expected derivatives stored in the test suite.

Again, this procedure also applies to Fortran programs and Python scripts.
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Listing 8.2: Fortran 90 version of the regression test in Listing 8.1, reformatted.

program main
use derivgrind_clientrequests
use , intrinsic :: iso_c_binding
implicit none
integer :: ret = 0
real , target :: a = 1.0d0
real , target :: b = 2.0d0
block

real , target :: derivative_of_a = 3.0d0
call dg_set_dotvalue(c_loc(a), c_loc(derivative_of_a), 4)

end block
block

real , target :: derivative_of_b = 4.0d0
call dg_set_dotvalue(c_loc(b), c_loc(derivative_of_b), 4)

end block
block

real , target :: c; c= a*b
if(c < 1.9999 d0 .or. c > 2.0001 d0) then

print *, "VALUES DISAGREE: c stored=", 2.0d0, " computed=", c
ret = 1

end if
block

real , target :: derivative_of_c = 0
call dg_get_dotvalue(c_loc(c), c_loc(derivative_of_c), 4)
if(derivative_of_c < 9.9999 d0 .or. derivative_of_c > 10.0001 d0) ←↩

then
print *, "DOT VALUES DISAGREE: c stored=", 10.0d0, " computed=", ←↩

derivative_of_c
ret = 1

end if
end block

end block
call exit(ret)
end program
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Listing 8.3: Recording-mode variant of the regression test in Listing 8.1, reformatted.

#include <stdio.h>
#include <valgrind/derivgrind.h>

int main(){
int ret =0;
float a = 1.0;
float b = 2.0;
{

DG_INPUTF(a);
DG_INPUTF(b);

}
float c = a*b;
{

if(c < 1.9999 || c > 2.0001) {
printf("VALUES DISAGREE: c stored =%.9f computed =%.9f\n" ,(float)←↩

2.0,c); ret = 1;
}
DG_OUTPUTF(c);

}
return ret;

}

8.1.c. Results. Derivgrind passes almost all of these tests. Rare failures can be unani-
mously attributed to the limitations explained in this thesis:

• Valgrind not supporting AVX on x86 (Paragraph 4.5.1.d);

• Derivgrind not supporting multi-threading (Section 5.2.2) in general, and bit-tricks
in an OpenMP implementation (Listing 3.22) in particular;

• bit-tricks in NumPy math functions on binary32 arguments in CPython on x86-64
(see Appendix A.2); and

• bit-tricks used by GCC to implement rint (Listing 3.21).

8.2. Application to CPython

8.2.a. Can Derivgrind differentiate Python scripts? Some of the regression tests in
Section 8.1 involve Python scripts. Derivgrind is of course not directly applied to Python
code; the actual client program is the Python interpreter running these scripts:

valgrind --tool=derivgrind python3 ⟨Python script⟩ ⟨arguments for Python script⟩ (8.1)

Under the hood, a reasonable Python interpreter should represent the values of Python
float variables as binary64s, and perform Python arithmetic operations through the
corresponding instructions. It is these operations of the Python interpreter that Deriv-
grind instruments.
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8.2.b. CPython. On many Linux systems in general and in our test container in par-
ticular, the default Python interpreter python3 is provided by the “Python reference
implementation” CPython. CPython is typically installed on the system by a software
package manager as a pre-compiled binary package. Thus, the source code of CPython
is generally not stored on the system. To understand how we are still able to declare AD
inputs and outputs, we have to elaborate on the Python C modules mechanism first.

8.2.c. Python C Modules. Python C modules are shared objects compliant with the
Python/C API. They can be built from a C/C++ source file with an ordinary build
toolchain plus the Python headers. The C/C++ source must define specific functions
required by the Python/C API. Wrapper generators like SWIG and pybind1199 make
this much easier.

When the Python interpreter reads a Python statement import ⟨module⟩, it searches
several directories, including those specified by the environment variable PYTHONPATH,
for pure Python modules ⟨module⟩.py and ⟨module⟩/__init__.py, but also for shared
objects with the name ⟨module⟩.so (or variants of it). If such a shared object is found,
the Python interpreter loads it at run-time, uses the Python/C API to query for the
symbols that the module would like to expose to the Python side, and the respective
Python names. Python calls to functions of the Python/C module are then dispatched
to the appropriate functions in the shared object.

As an example, core components of the NumPy package78 for scientific computing
in Python have been implemented in C and wrapped via the Python/C API. NumPy
implements the scalar Python types numpy.float32 and numpy.float64 as C floats
and doubles, and dispatches many math functions to the C math library as well. If the
Python script involves NumPy types and arithmetic, it’s the compiled C code of NumPy
that Derivgrind instruments.

We use the Python C/API to make C implementations of client requests callable from
Python. To this end, we have developed a Python C module derivgrind as a side
component of the Derivgrind package. Table 8.1 lists the Python functions defined by
the module. They dispatch to C code that contains the corresponding client request
macros.

Note that the functions set_dotvalue, inputf and mark_float do not modify the AD
meta-data of their arguments, as their C equivalents do. Python floats are immutable,
so functions cannot change the value of a float argument. Even though we would only
need to write to the shadow memory, we cannot be sure if our Python module could get
a pointer to the original binary64 storage behind the Python float, and not just a copy,
next to other problems. Therefore, the Python functions modify the AD meta-data of a
local copy and return a copy of it. Thus, they are used like this:

x = derivgrind.set_dotvalue(x, 1.0).

8.2.d. Forward-Mode Examples. In the Python script in Listing 8.4, x and y are ordi-
nary Python floats. Even if the CPython instance running the script is executed under

144



8.2. Application to CPython

Table 8.1: Python functions provided by the Python C module derivgrind.

Forward mode:
set_dotvalue(x,d) Calls DG_SET_DOTVALUE to seed a copy of x with the dot value

d, and returns a copy of this.
get_dotvalue(x) Calls DG_GET_DOTVALUE on a copy of x and returns the dot

value.

Recording pass:
inputf(x) Calls DG_INPUTF on a copy of x, and returns a copy of this.
outputf(x) Calls DG_OUTPUTF on a copy of x.

Bit-trick finder:
mark_float(x) Calls DG_MARK_FLOAT on a copy of x, and returns a copy of

this.
get_flags(x) Calls DG_GET_FLAGS on a copy of x and returns a list containing

the values of the activity and discreteness flags.

Listing 8.4: When this Python script is run by CPython interpreter executing under De-
rivgrind in the forward mode according to (8.1), it prints the correct deriva-
tive e1.0 · 10.0. Client requests to seed and read the dot values are injected
into CPython by the Python C module derivgrind, whose functions are
listed in Table 8.1.

import math
import derivgrind
x = derivgrind.set_dotvalue (1.0 ,10.0)
y = math.exp(x)
print(derivgrind.get_dotvalue(y))

Derivgrind via (8.1), print(x) gives the value 1.0 and type(x) gives <class 'float'>,
because Derivgrind’s instrumentation of the client program is (almost) transparent and
the DG_SET_DOTVALUE client request only affects Derivgrind’s data structures (setting
the dot value to 10.0) which are separate from the memory of the client program.
The dot value of y is printed as 27.18281828459045, matching the analytic derivative
∂ex

∂x · ẋ = e1.0 · 10.0.
Listing 8.5 is a variant of Listing 8.4, using the exponential function of numpy instead of

math. We observe the same behavior as for Listing 8.4. However, when numpy.float64
is replaced by numpy.float32, the dot value of y is printed as 0.0. This is because
on our test system, NumPy, rather than using the C math library, implements several
mathematical functions on binary32 arguments on its own, using bit-tricks that are not
supported by Derivgrind. See Appendix A.2 for details. This problem does not appear
when NumPy has been built for a target architecture that supports only the most basic
SSE instructions, as specified in Paragraph A.2.d.
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Listing 8.5: Variant of Listing 8.4, using the exponential function of numpy instead of
math.

import numpy
import derivgrind
x = derivgrind.set_dotvalue (1.0 ,10.0)
y = numpy.exp(numpy.float64(x))
print(derivgrind.get_dotvalue(y))

Listing 8.6: Variant of Listing 8.5 with the reverse-mode functions of the Python C mod-
ule derivgrind.

import numpy
import derivgrind
x = derivgrind.inputf (1.0)
y = numpy.exp(numpy.float64(x))
derivgrind.outputf(y)

8.2.e. Recording-Mode Examples. The Python script in Listing 8.6 uses the recording-
mode client requests to declare x as an AD input and y as an AD output. With De-
rivgrind’s recording-pass instrumentation, CPython records the tape displayed in List-
ing 8.7. The binary64 behind the Python variable x is assigned the index 1, the tape
block for index 2 is written by the math wrapper, and as always, an extra index is
allocated for every declaration of an AD output.

When numpy.float64 is replaced by numpy.float32 in Listing 8.6, Derivgrind fails
because of an internal Valgrind error related to an upper threshold on the number of
temporaries (Paragraph 4.4.b). Starting Valgrind with an additional flag

--vex-guest-max-insns=10 (8.2)

fixes this issue, letting the process run successfully and record a tape with 27 blocks.
However, the index of y is zero and thus any tape evaluation returns a zero derivative.
As in the previous Paragraph 8.2.d, building NumPy with only the basic SSE instructions
fixes the problem.

8.2.f. Regression Tests. Coming back to the integration of Python tests into the
regression test suite, the Python script in Listing 8.8 is analogous to the C program in
Listing 8.1, using functions of the Python C module derivgrind.so instead of the client
request macros. Also, for the tests that involve NumPy types, variables are replaced by
arrays of 16 elements, so operators and math functions are vectorized.

8.2.g. Summary. With the example of CPython, we have demonstrated that Derivgrind
can be applied to large programs that were compiled elsewhere and installed as a binary
package, without any source code at hand. Insertions into the source code of CPython
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Listing 8.7: Derivgrind tape recorded for CPython running Listing 8.6.

|------------------|------------------|------------------|
| 0 | 0 | 0 |
| dummy | 0.000000e+00 | 0.000000e+00 |
|------------------|------------------|------------------|
| 1 | 0 | 0 |
| input | 0.000000e+00 | 0.000000e+00 |
|------------------|------------------|------------------|
| 2 | 1 | 0 |
| | 2.718282e+00 | 0.000000e+00 |
|------------------|------------------|------------------|
| 3 | 2 | 0 |
| output | 1.000000e+00 | 0.000000e+00 |
|------------------|------------------|------------------|

Listing 8.8: Python version of the regression test in Listing 8.1. As regression tests based
on NumPy types use vectorized operations and perform every initialization
and check 16 times, the script has been shortened at the marked locations.

import numpy as np
import derivgrind as dg
ret = 0
a = np.empty (16,dtype=np.float32)
b = np.empty (16,dtype=np.float32)
a[0] = 1.0
a[1] = 1.0
. . .
a[15] = 1.0
b[0] = 2.0
. . .
a[0] = dg.set_dotvalue(a[0], 3.0)
. . .
b[0] = dg.set_dotvalue(b[0], 4.0)
. . .
c = a * b
derivative_of_c = np.empty(16,dtype=np.float32)
if c[0] < 1.9999 or c[0] > 2.0001:

print("VALUES DISAGREE: c[0] stored=", 2.0, "computed=", c[0])
ret = 1

. . .
derivative_of_c [0] = dg.get_dotvalue(c[0])
if derivative_of_c [0] < 9.9999 or derivative_of_c [0] > 10.0001:

print("DOT VALUES DISAGREE: c[0] stored=", 10.0, "computed=", ←↩
derivative_of_c [0])

ret = 1
. . .
exit(ret)

147



8. Validation

Table 8.2: LibreOffice Calc macros defined by Listing B.4.

Forward mode:
SetDotValue Seeds the numerical value of the current cell with the dot value

of the right neighbor cell.
GetDotValue Overwrites the right neighbor cell with the dot value of the

current cell.

Recording pass:
InputF Marks the numerical value of the current cell as an AD input

variable.
OutputF Marks the numerical value of the current cell as an AD output

variable.

are not necessary because CPython exposes Python variables to user-supplied C code
at runtime. In a small number of cases, the computed derivative is incorrect because of
unsupported bit-tricks in a library (NumPy) used by the program; identifying and fixing
the issue requires access to the source code of the library.

8.3. Application to LibreOffice Calc

In Section 8.2, we have applied Derivgrind to a Python interpreter, which performed
floating-point arithmetic as specified by a Python script. This way we validated Deriv-
grind for a large program, without requiring access to its source code. In this section,
we push this idea further, with another “calculator” that can be considered even more
complex and also allows for nice visual demonstrations: We apply Derivgrind to the
spreadsheet program LibreOffice Calc 56,115, which performs floating-point arithmetic as
specified by formulas entered into a graphical user interface (GUI).

LibreOffice Calc is a component of the free and open-source office suite LibreOffice,
and was installed in version 7.3.7.2 on a Ubuntu 22.04 system via the apt-get package
manager along with a few LibreOffice development and debugging symbol packages.

8.3.a. LibreOffice Calc Macros. Similar to the Python C module mechanism of
CPython, LibreOffice Calc provides the user with capabilities to load and execute user-
supplied code. To this end, LibreOffice Calc macros can be written in either the StarOf-
fice Basic language, or in Python. Python macros seem to be executed by the same
process that performs Calc’s floating-point arithmetic, and are thus a suitable location
to make client request, using the Python C module derivgrind.so presented in the
previous Section 8.2.

8.3.b. Procedure. The user has to copy the Python file in Listing B.4 into one of the
macro search directories of LibreOffice Calc. The file defines the four Python Calc macros
listed in Table 8.2; see Appendix B.3 for details of the implementation. The Python code
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Figure 8.1: LibreOffice Calc macro selector dialog.

imports the Python C module derivgrind, so a directory containing derivgrind.so
must be included in the environment variable PYTHONPATH. Similar to (8.1), the user
runs LibreOffice Calc under Derivgrind via

valgrind --tool=derivgrind [–record=⟨path⟩]

/usr/lib/libreoffice/program/soffice.bin --calc (8.3)

in either the forward or recording mode. Here, soffice.bin is the executable that is
finally started as a child process. It is possible to put the libreoffice script instead,
if an additional argument --trace-children=yes is supplied to Valgrind. As soon as
the LibreOffice Calc GUI is ready, the user can type in values and formulas, and run the
appropriate two of the four client request macros via the Run Macro. . . dialog shown in
Figure 8.1.
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Figure 8.2: Forward-mode derivative of LibreOffice Calc.

8.3.c. Results. We have validated the forward- and reverse-mode derivatives of Libre-
Office Calc evaluating some simple expressions like EXP(B3), SIN(B3) and SQRT(TAN(B3)),
where the cell B3 contains the value 1.0 and the dot value 10.0 (in forward mode), or has
been declared as an AD input (in recording mode).

As an example for the forward mode and the expression EXP(B3), Figure 8.2 shows
the computed dot value ∂ EXP(B3)

∂ B3 · Ḃ3.
Listing 8.9 shows extracts of the tape recorded by Derivgrind while LibreOffice Calc

evaluated EXP(B3). The dependency of the output variable with respect to the input
variable is given by a chain of blocks with the same partial derivatives as in the tape
recorded for CPython (Listing 8.7). Derivgrind recorded many more blocks for Libre-
Office Calc, which indicates that Calc performs many additional arithmetic operations
whose operands depend on the input variable, but whose results have no effect on the
output variable. The first of these blocks stem from a function doubleToString in
LibreOffice’s System Abstraction Layer (SAL) for platform-independent strings, which
contains, e. g., calls to the C math function log10 and floating-point divisions.
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Listing 8.9: Extracts of the Derivgrind tape recorded for LibreOffice Calc evaluating
EXP(B3), where the content of cell B3 has been declared as an AD input.

|------------------|------------------|------------------|
| 0 | 0 | 0 |
| dummy | 0.000000e+00 | 0.000000e+00 |
|------------------|------------------|------------------|
| 1 | 0 | 0 |
| input | 0.000000e+00 | 0.000000e+00 |
|------------------|------------------|------------------|
| 2 | 1 | 0 |
| | 2.718282e+00 | 0.000000e+00 |
|------------------|------------------|------------------|
| 3 | 2 | 0 |
| | 1.597680e-01 | 0.000000e+00 |
|------------------|------------------|------------------|
...
|------------------|------------------|------------------|
| 365 | 2 | 0 |
| output | 1.000000e+00 | 0.000000e+00 |
|------------------|------------------|------------------|
...
|------------------|------------------|------------------|
| 5a4 | 5a3 | 0 |
| | 1.000000e+01 | 9.590451e-01 |
|------------------|------------------|------------------|
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9. Performance

Putting universal applicability without a lot of manual intervention before performance,
Derivgrind prioritizes the design goals for AD tools (Paragraph 1.1.c) in a way that is
different from most of the existing source-code-based AD tools. Nevertheless, in this
chapter, we quantify and compare run-time and memory performance characteristics of
Derivgrind using a numerical benchmark.

After introducing the benchmark in Section 9.1, we separately study the performance
in the forward mode (Section 9.2) and with the recording pass (Section 9.3), comparing
to native execution without AD and to the operator-overloading AD tool CoDiPack158.

9.1. Benchmark

9.1.a. Primal Program. We adapt our benchmark primal program from previous stud-
ies on the performance of CoDiPack157–159 and its add-on OpDiLib32. The C++ code
approximately solves the two-dimensional coupled Burgers’ partial differential equation
(PDE)19,26,200

∂u

∂t
(t, x, y) + u(t, x, y) · ∂u

∂x
(t, x, y) + v(t, x, y) · ∂u

∂y
(t, x, y)

=
1

R
·
(
∂2u

∂x2
(t, x, y) +

∂2u

∂y2
(t, x, y)

)
, (9.1)

∂v

∂t
(t, x, y) + u(t, x, y) · ∂v

∂x
(t, x, y) + v(t, x, y) · ∂v

∂y
(t, x, y)

=
1

R
·
(
∂2v

∂x2
(t, x, y) +

∂2v

∂y2
(t, x, y)

)
, (9.2)

for functions u, v : [0, T ]× [0, 1]2 → R, subject to initial conditions

u(0, x, y) = u0(x, y) (9.3)
v(0, x, y) = v0(x, y) (9.4)

for all (x, y) in [0, 1]2, and boundary conditions

u(t, x, y) =
x+ y − 2xt

1− 2t2
(9.5)

v(t, x, y) =
x− y − 2yt

1− 2t2
(9.6)
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for all t > 0 and (x, y) on the boundary of [0, 1]2. Intuitively, (9.1) and (9.2) describe the
evolution of “densities” u and v on a two-dimensional domain [0, 1]2 in time. The rate
∂w
∂t (t, x, y) of change of either density w at a particular point (x, y) at time t is given as
a combination of two effects:

• “Convection” of the density w = u, v according to a velocity field
(
u
v

)
contributes a

change rate of

−
(
u

v

)
·
(
∂w/∂x

∂w/∂y

)
, (9.7)

whose negative appears on the left hand side of (9.1) and (9.2).

• “Diffusion”: Intuitively, an uneven density distribution w leads to a diffusive flux
proportional to

(∂w/∂x
∂w/∂y

)
with a negative proportionality factor − 1

R . This flux field
accumulates density according to the negative divergence,

− ∂

∂x

(
− 1

R

∂w

∂x

)
− ∂

∂y

(
− 1

R

∂w

∂y

)

which shows up as a source term on the right hand side of (9.1), (9.2).

In the numerical solver, u and v are discretized in space and time. I. e., values u
(k)
i,j , v(k)i,j

of these functions on a two-dimensional rectangular grid {
(
i·∆x
j·∆x

)
: i, j = 0, . . . , 1

∆x} are
stored to approximate u, v for particular points in time k ·∆t, k = 0, . . . , T

∆t . To translate
the partial differential equations (9.1) and (9.2) to the discretized versions of w = u, v,
derivatives are approximated by difference quotients:

w
(k+1)
i,j − w

(k)
i,j

∆t

+ u
(k)
i,j ·





w
(k)
i,j −w

(k)
i−1,j

∆x , if u(k)i,j ≥ 0
w

(k)
i+1,j−w

(k)
i,j

∆x , otherwise



+ v

(k)
i,j ·





w
(k)
i,j −w

(k)
i,j−1

∆x , if v(k)i,j ≥ 0
w

(k)
i,j+1−w

(k)
i,j

∆x , otherwise





=
1

R
·
w

(k)
i−1,j + w

(k)
i+1,j + w

(k)
i,j−1 + w

(k)
i,j+1 − 4w

(k)
i,j

∆x2
. (9.8)

Note that for the spatial derivatives in the convection terms, either a forward or backward
difference quotient is used, depending on the sign of the convective flow. Intuitively,
such an upwind scheme ensures that “upstream” and not “downstream” data is taken into
account to compute the future evolution of u and v at each point;113 this is important and
careless choices can easily lead to unphysical solutions. The diffusion term is discretized
with second-order central difference quotients.

Values at k = 0 are determined from the initial conditions (9.3), (9.4), and are then
successively obtained for larger k by solving the linear equation (9.8) for w

(k+1)
i,j . Thus,

the numerical solver only uses the four basic arithmetic operations addition, subtraction,
division and multiplication, with the possibility for autovectorization. In the end, we
compute the sum of the Euclidean norms of the vectors (u

(k)
ij ) and (v

(k)
ij ) after the final

timestep k = T
∆t . This way, also a square root appears in the function to be differentiated.
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Listing 9.1: Implementation of the update (9.8) in the Burgers’ benchmark. u and v store
all the entries u

(k)
i,j and v

(k)
i,j in a flat one-dimensional vector; the values of u

and v at (i, j), (i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1) are accessible in u
and v at index, index_xp, index_xm, index_yp, index_ym. The function is
called two times per time step, with w_t being either u or v; the function
computes the respective field in the next time step into w_tp. The constant
props.dTbyDX is ∆t

∆x and props.dTbyDX2 is ∆t
∆x2 .

The code has been provided by Max Sagebaum.

inline void updateField(Number *w_tp , const Number *w_t , const Number *←↩
u, const Number *v, const Settings& props) {

// w_t + u*w_x + v*w_y = 1/R(w_xx + w_yy);
Number velX;
Number velY;
Number vis;
for (size_t j = props.innerStart; j < props.innerEnd; ++j) {

for (size_t i = props.innerStart; i < props.innerEnd; ++i) {
size_t index = i + j * props.gridSize;
size_t index_xp = index + 1;
size_t index_xm = index - 1;
size_t index_yp = index + props.gridSize;
size_t index_ym = index - props.gridSize;

if (u[index] >= 0.0) {
velX = u[index] * (w_t[index] - w_t[index_xm ]);

} else {
velX = u[index] * ( w_t[index_xp] - w_t[index]);

}
if (v[index] >= 0.0) {

velY = v[index] * (w_t[index] - w_t[index_ym ]);
} else {

velY = v[index] * (w_t[index_yp] - w_t[index]);
}

vis = w_t[index_xp] + w_t[index_xm] + w_t[index_yp] + w_t[←↩
index_ym] - 4.0 * w_t[index ];

w_tp[index] = w_t[index] - props.dTbyDX * (velX + velY) + props.←↩
oneOverR * props.dTbyDX2 * vis;

}
}

}
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9.1.b. System Setup. Generally, we consider 23 = 8 setups, using the GCC 10.2.1
(g++) and Clang 11.0.1 (clang++) compilers, for the x86-64 (no flag) and x86 (-m32)
ISA, with full (-O3) and without (-O0) compiler optimizations. The client program was
compiled and executed on an exclusive 64-bit Intel Xeon Gold 6126 processor at 2.6GHz
in the Elwetritsch cluster at the University of Kaiserslautern-Landau, with a sufficient
amount of main memory. For the recording-pass measurements, the tape file was placed
in the ramdisk directory /dev/shm.

9.1.c. Measurement Details. Our time measurements refer to the difference in the
system time retrieved by the client program right before and after solving the PDE, if
not noted otherwise. This way, we exclude the constant-time startup and finalization
of Derivgrind and the shadow memory tool from the time measurement. Averages were
taken over 100 (-O3) or 10 (-O0) measurements in the forward mode, and 25 (-O3) or 5
(-O0) measurements in the reverse mode.

Our memory measurements refer to the maximum resident set size (RSS) reported by
the GNU time command, if not noted otherwise.

9.2. Forward Mode

In the forward mode, we use AD to differentiate the output with respect to a value added
to all components of the initial state, i. e. the sum of the derivatives with respect to all
u
(0)
i,j and v

(0)
i,j .

9.2.a. Run-Time Performance. Figure 9.1 displays the effect of Derivgrind’s forward
mode on the run-time of the PDE solver. Each marker in the plots represents a problem
instance with an nx × nx grid and nt time steps, for nx = 100, 120, . . . , 500 and nt =
100, 200, . . . , 500. The plots show that Derivgrind slows down the PDE solver by a factor
that is essentially independent from nx and nt, and varies between 30 and 75. The best
factor of about 30 is reached for the practically most relevant case of an optimized build
on x86-64. As Derivgrind’s instrumentations of the various VEX constructs differ in
complexity, and probably offer a different amount of opportunities for optimizations by
the Valgrind core, it is natural that the slow-down factor depends on the “mixture” of
instructions produced by the compiler.

For comparison, when running the benchmark with CoDiPack’s forward mode, the
largest slow-down factor measured by us on the setups with -O3 is approximately 3.3.

9.2.b. Main Memory Performance. Figure 9.2 displays the effect of Derivgrind on the
required memory. We consider problem instances on an nx × nx grid and nt = 4 time
steps, for nx = 200, 400, . . . , 5000, as the memory consumption hardly depends on nt. As
the plot shows, Derivgrind doubles the memory consumption, in addition to a constant
reservation of about 4.1GB on x86-64 and 20MB on x86 for the default configuration
of the shadow memory tool. On x86-64, the shadow memory tool needs much more
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Figure 9.1: Derivgrind’s effect on the run-time of the Burgers benchmark.
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Figure 9.2: Derivgrind’s effect on the maximum resident set size of the Burgers bench-
mark.

memory for its internal data structures (Paragraph 4.4.d); changing their layout, the
constant allocation can be brought below 0.1GB with a minor run-time penalty.

Compiling the program with Clang instead of GCC, and/or disabling optimizations
(-O0), has no significant effect on the required memory.

9.3. Reverse Mode

In the reverse mode, we declare all components u
(0)
i,j and v

(0)
i,j of the initial state as AD

inputs.

9.3.a. Run-Time of the Tape Recording Figure 9.3 displays the effect of Derivgrind’s
recording-pass instrumentation on the run-time, each marker representing a problem
instance with nx = 100, 120, . . . , 400 and nt = 100, 200, 300, 400.
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Figure 9.3: Effect of Derivgrind’s recording-pass instrumentation on the run-time of the
Burgers benchmark.
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Figure 9.4: Effect of Derivgrind’s recording-pass instrumentation on the maximum resi-
dent set size of the Burgers benchmark, in a setup using GCC and -O3. RAM
or disk space occupied by the tape file is not included here.

Asymptotically, Derivgrind scales the run-time of the client program by a proportion-
ality factor of about 180 for optimized and 110 for unoptimized builds.

9.3.b. Memory Complexity of the Tape Recording, Excluding Tape Figure 9.4 dis-
plays Derivgrind’s scaling of the memory consumption in terms of maximum RSS. The
RSS adds up allocations made by the client code, the Valgrind core, and the Derivgrind
tool including the shadow memory tool and the tape buffer, but excludes any RAM space
required to store the tape file on the ramdisk. We considered problem instances with
nx = 200, 400, . . . , 5000 and nt = 4. Only the results for GCC with -O3 are shown, as
changing to Clang and/or -O0 had only minor effects.

The slope of 3 is consistent with the fact that two bytes of shadow memory are allo-
cated for every byte of memory that the client uses. The instance-independent constant
allocation of about 4.1GB on x86-64 is mainly occupied by the shadow memory tool.
Configuring it differently, we can decrease the constant allocation to below 0.1GB, at
the price of slightly increasing the run-time.
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Figure 9.5: Tape sizes and reverse tape evaluation run-times for Derivgrind and CoDi-
Pack, plotted against the native run-time of the client program built with
GCC and -O3.

9.3.c. Tape Size The left part of Figure 9.5 shows that the ratio between the sizes
of the tapes recorded by Derivgrind and CoDiPack, for one run of the Burgers’ PDE
benchmark compiled with GCC and -O3, is around 2.44 across all problem instances.
Likewise, the numbers of pairs of non-zero indices and partial derivatives on the respective
tapes consistently follow a ratio close to 1.66. The dominant part of the PDE solver’s real
arithmetic are four C++ statements in the body of a nested loop, which Derivgrind and
CoDiPack represent with 448B vs. 184B of tape space (448B184B = 2.43 . . .) and 25 vs. 15
pairs of non-zero indices and partial derivatives (2515 = 1.66 . . .), respectively. CoDiPack
needs less tape space and less pairs because it can make use of expression templates,
and allows for a more flexible tape layout. The ratios could be even larger if the right-
hand sides in the C++ code were more complex. On the other hand, this result also tells
us that Derivgrind does not record a significant amount of unnecessary operations on
x86-64. These observations are also made with the Clang compiler and/or -O0.

9.3.d. Run-Time of the Tape Evaluation As the reverse tape evaluation procedure
is simple and unrelated to the machine code of the client program, we can expect its
run-time performance to catch up with the state of the art, in which the run-time is
memory bandwidth bound.32,177 The right side of Figure 9.5 compares the reverse tape
evaluation run-times of Derivgrind and CoDiPack for the same set of problem instances
considered in the recording-pass run-time measurements. We observe that Derivgrind’s
tape evaluation procedure, taking about 2.8 times longer than CoDiPack’s, is not much
worse given that the tape is 2.4 times longer.

The Burgers’ benchmark case has a high proportion of floating-point operations involv-
ing active variables. In codes that perform more non-floating-point or passive operations,
we expect a smaller tape size to be recorded per second of native run-time. Then, the
ratio between the reverse tape evaluation run-time and the native run-time drops below
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the value of 34 found in Figure 9.5. When the full AD workflow involves a single tape
recording but many tape evaluations, as discussed in Paragraph 2.4.5.c, this lower factor
dominates the full AD run-time.

9.3.e. Performance Study on x86 On x86, we observed much higher run-time scaling
factors up to about 1500 and similar memory scaling factors of about 3. The preceding
statements about tape length and correctness apply to small problem instances on x86 as
well. We could not test large instances because CoDiPack stores the tape in the memory
of the client process, which is limited to about 3GB on x86.
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Physics

Our motivation to build a machine-code-based AD tool has its roots in fruitful discus-
sions with medical and particle physicists. AD has proven effective for the training of
machine learning models22 and for numerical optimization tasks in computational fluid
dynamics11 and various other application domains – yet, a lot of effort is still needed to
make AD well-known and accessible as a standard tool for engineering design processes
across many industries, such as, for instance, medical and particle physics. Along with
colleagues in the MODE collaboration23,51 sharing the vision to enable gradient-based
optimization in the design of particle physics detectors and for physics analyses, we de-
veloped the idea of differentiating a complex particle transport code like Geant410,12,13,
which has over one million lines of C++ code. As our overviews on different source-code-
based AD tools has shown in Sections 2.5.2, 2.6 and 2.7, source-code-based AD tools are
typically not “automatic” for the entire C++ language standard. Therefore, applying a
source-code-based AD tool to complex scientific code, developed for years without AD
in mind, can turn out time-consuming; exploratory studies tend to be uneconomical.
Feeling the need for an AD tool that requires as little integration efforts as possible, we
started to think about ways to perform AD on the machine code level and eventually
developed Derivgrind.

In this chapter, we apply Derivgrind to the GATE software for numerical simulations
in medical imaging and radiotherapy 100 and to a simple calorimeter simulation similar
to Geant4’s TestEm3 example. Both applications are based on the Geant4 toolkit for the
simulation of the passage of particles through matter.10,12,13

We give some context on the medical imaging setup in Section 10.1, and analyze three
sub-steps for numeric differentiability in Section 10.2 – while this is not strictly necessary
to understand the applications of Derivgrind, we would like to give a broader overview
on differentiability aspects in proton computed tomography and on the overall scientific
environment in which this thesis was written, and present a few less polished results of
our work.

In Section 10.3, we describe the application of Derivgrind to GATE. The simplified
medical imaging setup features a considerably complex geometry, but we only simulate a
single incoming particle with the goal to validate derivatives of some hit coordinates with
respect to the energy of the incoming particle. This way, we demonstrate that Derivgrind
can be used to solve the technical challenge of applying AD to Geant4.

In practice, Geant4 simulations are conducted for a large number of particles, and
the actual output is given, e. g., by statistics of the respective Geant4 outputs. This
introduces mathematical challenges that need to be tackled before the derivatives can
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be used for design optimization. Our work in that regard is summarized in Section 10.4,
closing with an application of Derivgrind to a setup tightly related to Geant4’s TestEm3
calorimetry example.

10.1. Introduction to Proton Computed Tomography

10.1.1. Computed Tomography

10.1.1.a. X-ray CT. Computed tomography (CT) is a medical and industrial imaging
modality that provides a three-dimensional image of the distribution of X-ray absorption
rate (radiodensity) in the scanned object. In medical diagnosis, CT images convey in-
formation because the radiodensity, expressed in terms of Hounsfield units, varies across
different tissue types and materials. Conventional CT scanners send many X-ray “beams”
through the object, at various positions and in various directions, and measure the re-
spective attenuations. For every beam, its attenuation is the cumulative effect of the
radiodensities along the beam, leading to a linear relation between the (logarithmic)
attenuation and the radiodensities of the voxels of the CT image. With many beams
and thus many linearly independent equations, it is possible to reconstruct the unknown
radiodensities from the measured attenuations. Since its inception in the 1970s,83 CT
has quickly become widely available to patients, with around 250 CT examinations per
1000 people in the US every year.143

10.1.1.b. Proton CT. List-mode proton CT (pCT) follows a similar idea, but relies on
individual energetic protons instead of X-ray beams, which have different ways of inter-
action with matter. Regarding the matter of the detector, this means that the particle
detectors used in proton CT scanner prototypes use different technologies; we describe
one possible prototype in Section 10.1.3. Regarding the matter of the scanned object,
pCT measures a different property than the radiodensity, namely, the relative stopping
power (RSP). In addition to losing kinetic energy according to the RSP, protons are
scattered significantly, so besides the proton positions and energy losses, their directions
must be measured behind the scanned object. Furthermore, the number of individual
protons required for pCT is usually way higher than the number of distinct beams used
in X-ray CT. Though pCT was already proposed by Cormack43 in 1963, developments
are still in a prototyping stage.49,55,87,102,124,126,132,148,155,161,162 We are engaged in pCT
research through the Bergen pCT collaboration14.

Interest in this novel imaging technology is based on the fact that the RSP distribution
in a body region, which can only be estimated from X-ray CT Hounsfield units but is
measured directly by pCT, is required for proton radiotherapy treatment planning. After
a digression on this innovative form of cancer treatment in Section 10.1.2, we give more
details on the hardware and software setup in Section 10.1.3.
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10.1. Introduction to Proton Computed Tomography

Figure 10.1: Depth-dose curve for X-ray photon and proton beams, reproduced from
Leeman et al.112 Unlike photons, proton beams yield a concentrated dose
deposition at a certain depth in the tissue. Choosing a range of initial
energies, the Bragg peaks can be spread out to cover the entire tumor region.

10.1.2. Proton Therapy

10.1.2.a. Cancer. Cancer is a group of diseases with the defining feature that abnor-
mal cells grow uncontrollably beyond their usual boundaries, invading adjacent tissue
and possibly spreading to other parts of the body; eventually, they account for one in
three premature deaths world-wide in 2018.193 The major treatment options attempt to
eliminate cancer cells from the body, by means of

• medication “poisoning” cancer cells in chemotherapy, or enhancing the patient’s
immune rejection of tumor-associated antigens82 in immunotherapy,

• surgery, i. e. mechanical removal of tissue containing cancer cells, and

• ionizing radiation that damages the DNA and thus causes cell death.107

10.1.2.b. Proton Therapy. Out of these options, in the following we focus on radiation
therapy with external beams of energetic charged particles like protons or heavy ions.
Figure 10.1, reproduced from Leeman et al.112, qualitatively shows the dose distributed
by a proton beam with a fixed initial energy suited for radiotherapy, depending on the
distance that the proton has travelled in water. Most of the dose is concentrated around
the bragg peak in some particular depth. X-ray beams, in contrast, deposit their energy
in a more continuous way shortly after entering the body. The energy loss of protons
in other materials, such as body tissue, looks similar to Figure 10.1. The depth of the
Bragg peak is related to the beam energy and the RSP of the material along the path.

More and more hadron treatment facilities are constructed on a world-wide scale. It is
primarily the existence of the Bragg peak what makes hadron therapy such a promising
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Figure 10.2: Schematic figure of the scanning process with the DTC of the Bergen pCT
collaboration, cited from Aehle et al.3,6

alternative to conventional X-ray radiotherapy: The dose concentration offers a chance
to reduce the dose deposited in the surrounding healthy tissue.43,190 Many clinical stud-
ies have demonstrated the effectiveness of proton therapy for the treatment of various
cancers.16,20,116,199

10.1.2.c. Where does Proton CT come in? As a consequence of the dose concentration
in the Bragg peak, it is of critical importance to select the right beam energy such that
the Bragg peak is located in the correct depth. Treatment planning thus relies on an
accurate three-dimensional RSP image of the patient. In the state of the art, the RSP
is approximated based on single- or dual-energy X-ray CT images; as Hounsfield units
and RSP are related to different properties of matter, this indirect approach comes with
an uncertainty of up to 3%144,192,197 while a direct measurement has been shown to be
more accurate.48,196

10.1.3. Hardware and Software Setups for Proton CT

10.1.3.a. Detector Hardware. The pCT scanning system designed by the Bergen pCT
collaboration14 is based on a high-granularity digital tracking calorimeter (DTC) sen-
sor that consists of two tracking and 41 calorimeter layers of 108 ALPIDE (ALICE
pixel detector) chips9 each. After traversing the patient, energetic protons will activate
pixel clusters around their tracks in each layer until they are stopped, as shown in Fig-
ure 10.2. While many prototypes reported in the literature use an additional pair of front
trackers,55,87,126,132,161,162 the DTC setup infers the positions and directions of entering
protons from the beam delivery monitoring system.
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10.1.3.b. Detector Simulation. In the development phase and for design optimization
studies, the collaboration uses a computer simulation of the DTC instead of the real
hardware. At its core, the GATE software100 based on the Geant4 toolkit10,12,13 is used
for a Monte-Carlo (MC) simulation of the interactions of individual protons with the
phantom and the detector. GATE outputs the exact coordinates and energy depositions
of hits of the protons in the layers of the DTC. In a post-processing step, this data
is converted to the information which ALPIDE pixels have been activated during each
detector read-out cycle.

10.1.3.c. Track Reconstruction. Such layer-wise binary activation images from hun-
dreds of protons per read-out cycle, either produced by the real hardware or a simulation,
are used to reconstruct the protons’ paths and ranges through the detector, and thus their
residual direction and energy after leaving the patient. First, neighbouring activated pix-
els are grouped into clusters per layer and read-out cycle. The proton’s coordinate is
given by the cluster’s center of mass and its energy deposition is related to the size of
the cluster.150,174 In the tracking step, a track-following procedure173 attempts to match
clusters in neighbouring layers if they likely belong to the same particle trajectory, as in-
dicated by a minimal angular deflection in each layer.152,153 The energy of the proton can
be estimated from the energy depositions per layer by a fit of the Bragg-Kleeman equa-
tion of Bortfeld;34,151 the energy loss is usually expressed in terms of the water-equivalent
pathlength (WEPL) that would cause the same energy loss on average.

10.1.3.d. Tomographic Reconstruction. Based on this data from various beam po-
sitions and directions, a model-based iterative reconstruction (MBIR) tomography algo-
rithm like ART, DROP149 or least-squares conjugate gradient (LSCG) can be used to
reconstruct the three-dimensional RSP image of the patient. Mathematically speak-
ing, these algorithms basically perform the task of approximatively solving a (typically
overdetermined) linear system of equations Ax = b where

• x ∈ Rnvoxels is the vector of RSP values to be determined,

• b ∈ Rnprotons is the vector of measured or simulated proton energy losses in terms
of WEPL, and

• A ∈ Rnprotons×nvoxels is the matrix whose entry Ai,j represents how much the energy
loss of proton track i is affected by the RSP in voxel j (i. e. something like an
intersection length).

10.2. Differentiability in a Proton CT Software Pipeline

A long-term research goal of MODE is to optimize particle detectors; in the context of
pCT, this means to select a detector geometry and beam parameters, as well as algorith-
mic parameters in the tracking and reconstruction procedures, in a way to maximize an
objective function based on image quality, accuracy, and deposited dose.
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Figure 10.3: Dependency of the reconstructed RSP at a particular voxel on the WEPL
of a particular track.

In Aehle et al.3,6, as a preparation to possible future applications of AD to substeps
of the pCT pipeline, we have numerically analyzed for three of them whether they are
differentiable, by observing how single output variables react when single input variables
are perturbed. Our results are summarized in the following.

10.2.a. Differentiability of the Tomographic Reconstruction. As we stated above in
Paragraph 10.1.3.d, mathematically speaking, MBIR algorithms solve a linear system
Ax = b. We now look separately at derivatives of x with respect to b and A.

Differentiating components of x as AD outputs with respect to components of b as AD
inputs can be done analytically: E. g. in the forward mode, ẋ can be determined from ḃ
by solving Aẋ = ḃ. Exploiting structures like this is advisable for performance reasons,
to reduce the tape size in the reverse mode, and also to improve numerical accuracy,
as outlined in Paragraph 2.2.d. The performance aspect is particularly relevant in this
example, as the reconstruction normally runs on a GPU, where AD is technically more
difficult to implement, and unoptimized black-box reverse-mode AD hardly exploits the
GPU performance.129 Figure 10.3 illustrates the accuracy aspect for our proton CT
reconstruction code: When one entry of b is changed slightly, an entry of x found by the
LSCG solver can change a lot.

Differentiating x with respect to components of A is a different story, as the linearity
argument does not apply. One of our experiments showed that when a proton track
position is perturbed, the reconstructed RSP is a piecewise differentiable function, but the
gradients do not reflect the large-scale behaviour very well for a standard configuration
of the reconstruction algorithm. As Figure 10.4 shows, this has to do with rounding
operations used in the code to determine which voxels were traversed by which proton
path in a yes-or-no-fashion, and gets better when a smoother, distance-based “fuzzy
voxels” approach is used to compute A from the proton positions and directions.

10.2.b. Differentiability of the Track Reconstruction. The clustering and tracking
subprocedure operates a lot on discrete data like pixel activation images, assignments to
clusters and matchings between clusters. Effectively, it is part of a sequence of steps that
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Figure 10.4: Dependency of a reconstructed RSP value on a coordinate of a single pro-
ton track, for multiple numbers of DROP iterations and 250 000 simulated
proton histories; see Aehle et al.3,6 for details. Vertical lines indicate where
the set of traversed voxels changes. Entries of the system matrix A were
determined by a discrete incidence-based approach in the top plot, and a
smoother distance-based approach in the bottom plot.
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Figure 10.5: Graph of the function that we apply AD to, from Aehle et al.7

first convert continuous Geant4 output to discrete detector data, and then convert those
back to continous data of proton paths. Further research might replace this sequence of
steps by a differentiable model that simply passes the floating-point information through,
possibly adding some errors.

10.2.c. Differentiability of the Detector Simulation. For the MC simulation with
GATE/Geant4, we have analyzed how the energy depositions and certain position co-
ordinates of a single proton in the first and second tracking layer depend on the beam
energy x ≈ 230MeV. The seed of the pseudo random number generator (RNG) used by
the MC simulation has been fixed (correlated sampling121).

It has previously been observed, with a more complex setup, that GATE, in version 9.1,
produced different simulation outputs across multiple runs even when the seed was fixed.
This kind of non-determinism is clearly a bug, and needed to be addressed in order
to be able to use the word “function” and attempt to differentiate it. With Valgrind’s
memory checking tool Memcheck (see Paragraph 4.1.3.a), we discovered several locations
in the code where the control flow depended on the value of uninitialized variables. After
our fixes had been applied in version 9.2, GATE behaved deterministically. Figure 10.5
shows plots of a position coordinate computed by GATE version 9.2, indicating that the
dependency has jumps but is differentiable in between.

As these jumps look unphysical, we further analyzed two of them, with a methodology
and observations described in the following. With GDB, we have set a breakpoint in the
RNG code and supplied GDB commands so that whenever the breakpoint was encoun-
tered, GDB printed a backtrace. After masking numbers and pointers, we obtained a
record of the control flow at locations where random numbers are relevant. We created
such a record for four different values of the input x, two on either side of the discon-
tinuity, which were so close to the discontinuity that the records matched for values of
x on the same side. For values of x on different sides of the discontinuity, the records
started to differ at some point because, as we determined next, a comparison between
two almost equal floating-point numbers had different outcomes.

Such a local deviation of the control flow can lead to a different number of RNG calls
being made. As a consequence, the subsequent program execution sees a shifted, and
thus entirely different, sequence of random numbers. This has nearly the same effect as
choosing a different random seed from the beginning, and obviously leads to a different
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output value. Using the words of Baeten et al.18, the MC simulation decorrelates easily.
This suggest that the discontinuities are, at least in part, an artifact of the way how

the RNG is used. One idea to reduce the number of jumps is therefore to re-seed the
RNG at well-defined locations, using a random sequence of seeds generated beforehand;
however, we have not tested this. In fact, numerical experiments on a simpler detector
setup suggest that the jumps are not a problem for AD (Section 10.4).

Between the jumps, the dependency of the position coordinates on the beam energy
seems to be differentiable. As the Geant4 toolkit is widely used in particle and medical
physics, making derivatives of Geant4 available could have a significant impact for these
communities. However, both technical and mathematical challenges are to be expected
when differentiating Geant4. In the next Section 10.3, we apply Derivgrind to Geant4
in order to demonstrate that the technical challenge is not a fundamental blocker. We
further comment on our work regarding the mathematical challenges in Section 10.4.

10.3. Applying Derivgrind to GATE and Geant4

10.3.a. Technical Challenges. Geant4 is a huge codebase with over one million lines of
C++ code. As source-code-based AD tools are typically not fully automatic for the entire
language standard, Geant4’s size and complexity can turn seemingly little restrictions
into a massive amount of work required before being able to obtain algorithmic deriva-
tives. Furthermore, the resulting changes are unlikely to be quickly merged back into the
mainline version of Geant4, leading to time-consuming maintenance. This is different for
machine-code-based AD tools like Derivgrind, as we show in this section (adapted from
Aehle et al.7) using the setup described next.

10.3.b. Setup. We consider a setup related to the pCT scanning process in Sec-
tion 10.1.3, provided by the Bergen pCT collaboration: A single proton from a beam
source with beam energy x passes through a digital model of a human head and enters
the DTC, where it hits a number of tracking layers until it is stopped. The first compo-
nent of the coordinate vector of the hits in the first two tracking layers shall be called
f1(x) and f2(x). The graphs of f1(x), f2(x) for x running from 229.6MeV to 300.4MeV,
plotted in Figure 10.5, look piecewise differentiable.

10.3.c. Numerical Derivatives. Markers in Figure 10.6 show the central difference
quotient

fi(x0+h)−fi(x0−h)
2h (10.1)

around x0 = 230MeV for various values of h. Mathematically, this difference quo-
tient converges to the derivative ∂fi

∂x (x0) in the limit h → 0 (as already stated in Para-
graph 2.1.d). On a computer however, floating-point inaccuracies become large for small
h; note that the output values are only stored in binary32 precision by GATE. For h
larger than about 0.02MeV, the difference quotient (10.1) is entirely off, because fpos,1
and fpos,2 have a jump near 229.98MeV.
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Figure 10.6: Central difference quotients fi(x0+h)−fi(x0−h)
2h (blue and brown markers)

around x0 = 230MeV, and the derivative computed with Derivgrind (dashed
line) after changing G4Log to log. Cited from Aehle et al.7

10.3.d. Insertion of Client-Request Macros. Listings 10.1 and 10.2 show our inser-
tions of forward- and recording-mode client requests, respectively, into the source code
of GATE. We have slightly refactored the source code beforehand for the purpose of
presentation. In the first code block of either listing, GATE reads the energy x from the
configuration file and sets the respective property of the beam source object; the inserted
code seeds this AD input (forward mode) or declares it as an AD input (recording mode).
The second code block is run whenever a particle hits a layer, to assemble output data
of GATE. We have inserted code that extracts the first coordinate of the hit position,
and reads the dot value of this AD output variable (forward mode) or declares it as an
AD output variable (recording mode).

Additionally, the header derivgrind.h must be included in the two modified source
files, and only they need to be recompiled.

10.3.e. Bit-Trick in Geant4. GATE’s intermediate calculations involve Geant4, and
Geant4 defines and uses an alternative math function G4Log to numerically approximate
the natural logarithm log z for z ∈ R, using an approximation algorithm adapted from
the VDT math library154. The implementation of this algorithm uses a bit-trick which
Derivgrind does not support; more details can be found in Appendix A.1.

We were first hinted to the existence of a bit-trick in Geant4 by the fact that forward-
mode algorithmic derivatives were not matching numerical derivatives. We then localized
and identified the bit-trick in the code by comparing dot values with numerical deriva-
tives after each recognized real-arithmetic operation (Section 7.6). The bit-trick-finding
heuristic that we finally implemented in Chapter 7, based on discreteness and activity
bits, points at G4Log right with its first warning message.

We eliminated the bit-trick by replacing G4Log by a call to the standard C log function.

10.3.f. Results. Running GATE under Derivgrind reproduces the original output of
GATE, interleaved with additional output from Derivgrind. In the forward mode, the
output also contains the sought derivatives. In the reverse mode, the derivatives are
obtained with the tape evaluator from the tape file and input/output index files, as
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Listing 10.1: Insertions into the source code of GATE for forward-mode differentiation.
They seed the input variable (beam energy), and print the dot value of the
output variables (hit positions). Additionally, the header derivgrind.h
must be included.

if (command == pEnergyCmd) {
double energy = pEnergyCmd ->GetNewDoubleValue(newValue );

+ double one = 1.0;
+ DG_SET_DOTVALUE (&energy ,&one ,sizeof(double ));

pSourcePencilBeam ->SetEnergy(energy );
}

if (m_rootHitFlag) m_treeHit ->Fill ();
+ float pos = *(float *)( m_treeHit ->GetBranch("posX")->GetAddress ());
+ float pos_d;
+ DG_GET_DOTVALUE (&pos ,&pos_d ,sizeof(float ));
+ std::cout << "pos_d=" << pos_d << "\n";

Listing 10.2: Insertions into the source code of GATE for reverse-mode differentiation.
They declare the input variable (beam energy) and output variables (hit
positions). Additionally, the header derivgrind.h must be included.

if (command == pEnergyCmd) {
double energy = pEnergyCmd ->GetNewDoubleValue(newValue );

+ DG_INPUTF(energy );
pSourcePencilBeam ->SetEnergy(energy );

}

if (m_rootHitFlag) m_treeHit ->Fill ();
+ float pos = *(float *)( m_treeHit ->GetBranch("posX")->GetAddress ());
+ DG_OUTPUTF(pos)

171



10. Derivatives in Medical and Particle Physics

Table 10.1: Numerical and automatic derivatives of f1 and f2 at x0 = 230MeV.

Differentiation method
approximation of ∂fi

∂x in mm
MeV

i = 1 i = 2

Central difference quotient
. . . for h = 0.01MeV −0.0812531 −0.130463
. . . for h = 0.005MeV −0.0811577 −0.130272
. . . for h = 0.001MeV −0.0815392 −0.131130
Derivgrind, original Geant4
. . . forward mode −0.0685116 −0.113841
. . . reverse mode −1.72 · 108 5.36 · 1013

Derivgrind, G4Log ⇝ log
. . . forward mode −0.0813391 −0.130524
. . . reverse mode −0.0813391 −0.130524

usual.
Table 10.1 lists the computed derivatives. Without removing the bit-trick related to

G4Log, the forward-mode automatic derivatives deviate from the difference quotients by
about 15%, while the reverse-mode derivatives are completely off. With this fix, the
automatic derivatives computed by Derivgrind’s forward and reverse mode agree, and
we indicated them by horizontal lines in Figure 10.6. As these lines are surrounded
from both sides by the markers indicating difference quotients, the automatic derivatives
are either entirely correct, or at least their deviation from the true derivative is small
compared to the inherent variance of difference quotients.

The run-time, measured for a release-mode build with the GNU time command on an
exclusive 2.6GHz Intel Xeon Gold 6126 node at the University of Kaiserslautern-Landau,
goes up from around 12 s in native execution to 13min in the forward mode, which is a
factor of 65. Derivgrind’s recording takes about 24min, corresponding to a factor of 120,
to record a tape of 25MB whose reverse evaluation takes about 0.05 s.

10.4. Outlook: Mathematical Challenges

As shown in Section 10.3, Derivgrind greatly simplifies the technical challenge of inte-
grating AD into Geant4. In addition, mathematical challenges have to be dealt with
before algorithmic derivatives can be used, e. g., for gradient-based design optimization.
In this section, we collect our results in that regard; see Aehle et al.8 for more details.

10.4.a. Local and large-scale slopes. The function to be differentiated, as shown in
Figure 10.5, is piecewise differentiable: When the AD inputs change, the output of the
MC simulation evolves both in a differentiable way and via jumps. The same is true for
any objective function computed from the output. In the easiest case, a MC simulation
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x

f(x)

(a) Differentiable evolution dominates,
jumps cancelling out on the large
scale.

x

f(x)

(b) Jumps dominate, differentiable
evolution cancelling out.

x

f(x)

(c) Mixture of differentiable evolution
and jumps.

x

f(x)

(d) Differentiable evolution and jumps
working against each other, jumps
dominating.

Figure 10.7: When many function like the one shown in Figure 10.5 are averaged, the
large-scale behaviour of the mean (dashed) might be dominated by the dif-
ferentiable evolution as in (a), or by the jumps as in (b). The large-scale
behaviour could also be a “convex combination” of both as in (c), or result
from differentiable evolution and jumps working against each other as in (d)
.

is run many times (with different seeds), and results are averaged in order to estimate
an expected value of some output variable; e. g., an expected energy deposition in a layer
of a calorimeter. When AD comes into the game, users would likely be interested in the
derivative of such an (estimated) expected value.

In line with the AD theory (Chapter 2) and also as we checked in the previous Sec-
tion 10.3 for a single MC iteration, AD computes the local derivative of the differentiable
evolution, and is not concerned with the large-scale evolution including nearby jumps.
When many graphs like Figure 10.5 are averaged, there are two basic ways how they
could combine:

• The large-scale behaviour of the mean could be dominated by the differentiable
evolution, with jumps creating some noise but largely cancelling out, as illustrated
in Figure 10.7a. In this case, the algorithmic derivative of the mean, i. e. the local
slope that we can compute with AD, would be close to the derivative of the large-
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scale behaviour of the mean, i. e. the slope that we are interested in.

• Opposite to this, the differentiable evolution could cancel out and the large-scale
change of mean energy deposition could result solely from the jumps, e. g. as illus-
trated in Figure 10.7b. In this case, the algorithmic derivative of the mean would
be close to zero, and thus unable to reflect the large-scale slope.

Of course, one might also observe a mixture of these two ways as in Figure 10.7c. There
are even worse combinations like a mean differentiable evolution completely opposite
to the large-scale trend but jumps overcompensating for it, as in Figure 10.7d. In the
latter example, the algorithmic derivative of the mean would be negative even though
the large-scale slope would be positive.

10.4.b. Derivatives of expected values vs. expected pathwise derivatives. To put
these thoughts into stochastic terms, let us add an argument ω of a probability space Ω
to the function f representing a single run of the Monte-Carlo iteration:

f : R× Ω→ R (10.2)
(x, ω) 7→ f(x, ω).

If AD is used without special attention to randomness, it treats random variables
much like constants, and computes the pathwise derivative ∂

∂xf(x, ω), which itself is a
random variable. Computing the mean of many realization of that random variable is
an estimator for its expected value

Eω

[
∂f

∂x
(x, ω)

]
. (10.3)

What we want to compute, though, is the derivative of the expected value of f ,

∂

∂x
[Eωf(x, ω)] , (10.4)

as those would be required for e. g. an optimization of Eωf(x, ω), or of an objective
function depending on it. Equality of (10.3) and (10.4) holds e. g. under the assumption
that ∂

∂xf(x, ω) exists for all x and ω and is uniformly bounded by an integrable random
variable L(ω), see Voss183. On the other hand, it is easy to construct counter-examples
if jumps are allowed.17 As even simple particle transport simulators contain jumps,105

we cannot expect that (10.3) and (10.4) are equal. In other words, means of pathwise
derivatives are only a biased estimator of (10.4). Techniques like the reparametriza-
tion trick 109, the likelihood ratio or score function method71,165, and the stochastic AD
method by Arya et al.17 have been proposed to create unbiased estimators even when
there are jumps; however, to our knowledge, they all come with assumptions and are not
generally applicable to arbitrary code.
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10.4.c. Test Setup. We therefore first took a look at how much (10.3) and (10.4)
actually differ for a simple Geant4-like high energy physics (HEP) simulation. Nearly
equally important, we had to see how large the variance of pathwise algorithmic deriva-
tives would be – the larger it is, the more samples are required to make their mean a
reliable estimate of their expected value (10.3).

Specifically, we have studied these questions for a Monte-Carlo simulation of elec-
tromagnetic showers in a simple sampling calorimeter with 50 pairs of an absorber layer
made from lead tungstate and a gap layer filled with liquid argon,8 similar to the TestEm3
example of Geant4. The simulation was conducted using the toolkit G4HepEm142 and
the application HepEmShow141, which model all the relevant electromagnetic physics
processes but consider only a very simple geometric setup. Pathwise derivatives have
been computed using the AD tool CoDiPack158 after first experiments with Derivgrind
have shown promising results.

10.4.d. With all physics processes, noisy algorithmic derivatives. Figure 10.8 shows
the average pathwise derivatives of the energy deposition in the fifty calorimeter layers
with respect to the energy of the incoming primary particles (blue). For comparison,
difference quotients approximating (10.4) are shown (black). In Figure 10.8a, we see
that without any changes to G4HepEm/HepEmShow beyond what is needed to integrate
CoDiPack, the pathwise derivatives have an extremely large variance. Thus, we cannot
approximate (10.3) with a computationally feasible number N of simulated events.

10.4.e. After disabling multiple scattering, good agreement. When one particular
physics process called multiple scattering (MSC) is deactivated, the variance of the path-
wise derivatives is greatly reduced, and their expected value (10.3) comes quite close to
the actual derivative (10.4) approximated with a central difference quotient, as shown in
Figure 10.8b.

To see what the difference is, we can look at plots that show the mean energy deposi-
tion in one particular layer as a function of the primary energy, varying around 10GeV
(analogous to Figure 10.5). While the energy deposition computed with and without
MSC (and another process called energy loss fluctuations included for the purpose of
presentation) look very similar on a large scale plot in Figure 10.9, the zoomed plot in
Figure 10.10 shows a clear qualitative difference: With MSC (and fluctuations) the func-
tion is very noisy, while without, it is piecewise differentiable and the slope of the line
segments approximately match the large-scale derivative visible from Figure 10.9, similar
to Figure 10.7a.

Coming back to Figure 10.8, to confirm our results, we produced Figure 10.8c with
much more events and a much smaller interval for the difference quotients, to reduce
stochastic and numerical errors. A deviation between (10.3) and (10.4) of about 5% in
the central layers remains. This is much less than we expected in the beginning.

Similar statements hold for the derivatives of the energy deposition with respect to
the geometrical thicknesses of the absorber and gap layers of the sampling calorimeter,
as shown in Figure 10.11.
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(a) Default configuration of G4HepEm with all physics processes, 24M events.
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(b) All physics processes except for multiple scattering, 24M events. Difference
quotients over 9.9. . . 10.1GeV.
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(c) 864 M events and smaller interval 9.995. . . 10.005GeV for the difference quo-
tient.

Figure 10.8: Algorithmic derivative of the edep in the calorimeter layers with respect to
the primary energy e.
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Figure 10.9: Dependency of the simulated mean energy deposition in layer 17 on the pri-
mary energy e. For every point in this plot, N = 100 events were simulated
using the same random seed. Figure 10.10 zooms into this plot to see if
these “noisy” functions are differentiable and if their derivatives match the
large-scale slope of 0.025.

10.4.0.0.1. Using derivatives for optimization. As the derivative (10.4) is not a phys-
ical measurement but merely a tool to steer the gradient-based optimization algorithm
into good descent directions, the bias of 5%, in addition to stochastic errors, modelling
errors, and errors due to disabling multiple scattering, can be perfectly acceptable. To
demonstrate this, we have used our mean pathwise derivative estimator to minimize a
simple loss function in order to reconstruct the primary energy e and the absorber thick-
ness a from a given energy deposition distribution in the fifty calorimeter layers. With
fixed step-sizes of 1 for e and 10−7mm2MeV−2 for a (accounting for their different units
and orders of magnitude), and 1 k event simulated in each step for 350 steps, the stochas-
tic gradient descent optimizer robustly converges from an initial solution e(0) = 22GeV
and a(0) = 3mm to the correct minimizer, as shown in Figure 10.12.

10.4.0.0.2. Outlook: Going back to Geant4. We have also taken already a few steps
to bring these encouraging results, obtained for the G4HepEm/HepEmShow package,
to the scale of Geant4. Specifically, we used Derivgrind to evaluate derivatives of a
Geant4 simulation of the same calorimeter geometry, available in the examples directory
of G4HepEm, using either

• the G4HepEm toolkit to model electromagnetic physics in Geant4, with MSC dis-
abled; or, in a second step,

• the native Geant4 electromagnetic processes except for MSC.

It was more or less straightforward to compute these derivatives with Derivgrind. Fig-
ure 10.13 shows that they reproduce our findings from G4HepEm/HepEmShow; the high
variance comes from the fact that we averaged over much less events (64 000 instead
of millions), given that Derivgrind does not target high-performance AD computations.
Thus, neither the more general and more complex geometry handling of Geant4, nor the
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Figure 10.10: Zoom into figure 10.9, showing the mean energy deposition in layer 17 plot-
ted over a much smaller range of the primary energy e. Again, each point
represents a HepEmShow simulation of N = 100 events, always using the
same random seed. The energy deposition computed with the full set of
physics processes still appears noisy (top). With multiple scattering and
energy loss fluctuations disabled, however, the averaged energy deposition
is a piecewise differentiable function of the primary energy, and its deriva-
tive (i. e. the slope of the segments) approximately matches the large-scale
slope observed in Figure 10.9.
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Figure 10.11: Algorithmic derivative of the energy deposition with respect to the absorber
thickness a (left) and gap thickness g (right).
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Figure 10.12: Reconstruction of the values of primary energy and absorber thickness
that lead to a given energy deposition profile in a sampling calorimeter,
using the (stochastic) gradient descent optimizer with pathwise algorithmic
derivatives of the shower simulation. All 16 computed trajectories robustly
converge to the correct minimizer.
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Figure 10.13: Derivgrind derivatives of energy depositions computed by Geant4, using
the G4HepEm physics (red) or native electromagnetic physics list (green),
both with MSC disabled. Only 64 000 events have been simulated for this
exploratory study, which is why the variance is comparatively large. The
results seem to approximate the algorithmic (blue) and numeric deriva-
tives (black) of the HepEmShow/G4HepEm package already shown in Fig-
ure 10.8c.

different implementation of the electromagnetic processes in Geant4, introduce mathe-
matical problems for AD. Our exploratory study with Derivgrind thus motivates and
justifies investments in bringing source-code-based AD into Geant4.
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11.1. Summary

In this dissertation, we have developed the machine-code-based AD tool Derivgrind.
Starting with an introduction to algorithmic differentiation (Chapter 2) and dynamic
binary instrumentation (Chapter 4) of machine code (Chapter 3), we have developed the
key ideas and steps to leverage the Valgrind framework to augment compiled software
with AD logic for the forward mode (Chapter 5), for tape recording passes enabling the
reverse mode of AD (Chapter 6), and for the heuristic detection of bit-tricks (Chapter 7).

We have validated Derivgrind’s results for many small test programs, the Python in-
terpreter CPython and the spreadsheet program LibreOffice Calc (Chapter 8), as well as
for medical imaging and high-energy physics software based on the Monte-Carlo particle
simulation toolkit Geant4 (Chapter 10). This wide variety of tests demonstrate that
machine-code-based AD can provide accurate derivatives for complex, cross-language
and possibly partially closed-source software projects, and that only little manual efforts
are usually required for the AD setup. Among the wide spectrum of available AD im-
plementations, Derivgrind is therefore well-suited for exploratory studies of AD in new
application domains and for productive use in setups where source-code-based AD is not
yet feasible.

In general, machine-code-based AD is more prone than source-code based AD to
silently computing wrong derivatives due to bit-tricks in the program to be differen-
tiated (Section 3.3). With Derivgrind, we observed that this was only a mild limitation
for most of the aforementioned application examples, and we also provide a heuristic bit-
trick-finder instrumentation. It remains to be seen how much future machine-code-based
AD tools are able to improve Derivgrind’s run-time performance, which could not catch
up with source-code-based AD tools in our performance measurements (Chapter 9).

Nevertheless, already today, Derivgrind has powered exploratory studies of AD in
high-energy physics that would not have been possible without it.

11.2. Outlook

There is a lot more to be discovered about machine-code-based AD, and we would like
to highlight the following directions as particularly interesting for further research and
development.

11.2.a. More Applications. While Derivgrind has been applied to a variety of open-
source software projects in this thesis, it would be interesting to see how well it performs
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in an industrial context with proprietary software. Such studies might add more bit-tricks
to our list in Section 3.3.

11.2.b. More AD Features. This thesis follows a single way of implementing forward-
and reverse-mode AD, respectively. Depending on the application, it might be worthwhile
to implement more advanced AD features, like more efficient tape layouts, preaccumula-
tion, or higher-order derivatives.

11.2.c. More Platforms. Derivgrind supports the x86-64 Linux platform, including
vector extensions up to AVX2. Also, a lot of 32-bit x86 Linux is supported. The Valgrind
framework is able to run on a few more instruction set architectures such as ARM64 and
ppc64, and there is some work going on regarding RISC-V. It may be interesting to test
Derivgrind on these platforms and to add any missing support. In particular, this would
allow to find out about the prevalence and types of bit-tricks in compiled programs on
platforms other than x86-64.

11.2.d. Other Applications for Dynamic Binary Instrumentation of Floating-Point
Calculations. While DBI tools are typically used for type-agnostic purposes like de-
bugging, profiling or security reseach, a few DBI tools listed in Paragraph 4.1.3.f allow
to analyze and improve the accuracy of floating-point calculations. Besides this well-
established purpose and our new AD instrumentation, we can imagine other interesting
types of analyses of floating-point calculations in computer programs.

For example, in parallel programs, non-deterministic thread or process scheduling can
affect the order in which real-arithmetic operations are performed. As floating-point
arithmetic is not associative, this might result in non-deterministic floating-point errors.
A DBI tool could be developed to check that in several runs of the client program,
evaluations are always algebraically equivalent. One idea for that would be to shadow
the basic real-arithmetic operations by equivalents in a finite field Fpk , where they can
be implemented in an exact fashion.

11.2.e. Better Performance. We paid attention to performance while developing De-
rivgrind, but it has not been our main objective. It would be interesting to see if the
performance can be improved, e. g. by using other DBI frameworks.

11.2.f. Static Binary Instrumentation. As a dynamic binary instrumentation tool,
Derivgrind operates on the machine code shortly before it has a chance to execute on
the CPU; the differentiated machine code only exists in RAM. One may instead try a
static instrumentation approach, similar to the proof-of-concept forward-mode AD tool
prototype adac by Gendler et al.69, to produce a differentiated executable file. Intuitively,
static instrumentation can operate on the entire program at once, which may allow to
switch from a tape-recording to a source-rewriting reverse mode (Section 2.4.4), and
enable more code optimizations. On the other hand, static instrumentation does not have
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access to run-time information and may struggle with dynamic loading, self-modifying
code etc. Last but not least, different tooling would be required.

11.2.g. Differentiation at Even Lower Levels. As mentioned in Section 4.1.1, besides
dynamic (and static) binary instrumentation, another approach to differentiate machine
code is to design differentiated hardware, as done by Schoder,164 or to implement differ-
entiated emulators. These approaches would allow to differentiate through kernel code as
well, so the content of files could be declared as AD input or output and MPI parallelism
on a single host would be naturally supported as well.
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A. Bit-Tricks in Well-Known Software
Packages

A.1. Natural Logarithm in Geant4

Geant4 implements functions G4LogConsts::getMantExponent and G4Log that behave
similarly to the math.h functions frexp and log, respectively.
frexp scales a floating-point number by an integer power of two such that it ends

up between 1
2 and 1 (or −1

2 and −1). getMantExponent achieves this by the bit-trick
described in Paragraph 3.3.4.a, overwriting the eleven exponent bits by 0b01111111110
as shown in Listing A.1.

To give a few more details on the implementation of G4Log in Listing A.2, note that
it is based on a rational function approximation

1.02× 10−4 · x5 + 0.497 · x4 + 4.71 · x3 + 14.5 · x2 + 17.9 · x+ 7.71

x5 + 11.3 · x4 + 45.2 · x3 + 83.0 · x2 + 71.2 · x+ 23.1
· x3 − x2

2 + x (A.1)

for ln(1 + x); coefficients in equation (A.1) have been rounded for the purpose of pre-
sentation. As the approximation is good in a neighborhood of x = 0 only, the argument
x is first mapped between

√
1
2 and

√
2. To this end, getMantExponent is followed by a

conditional multiplication with two if the result is less or equal to SQRTH =
√

1
2 . See List-

ing A.2 for details. The functions get_log_px and get_log_qx evaluate the numerator
and denominator of the big fraction in (A.1).

A.2. Math Functions for 32-Bit Numbers in NumPy

On our test system, NumPy (in version 1.19.5) implements a few math functions on its
own for 32-bit components of SIMD vectors. In this section, we provide a more detailed
analysis of our observations reported in Paragraph 8.2.d about the exp function.

A.2.a. Implementation of exp. Listing A.3 is an extract from the template for a code
generation tool producing the source code of NumPy version 1.19.5. Symbols enclosed
by @ signs are replaced by the code generation tool before compilation. The snippet
highlights that NumPy uses a rational function approximation, and, like Geant4’s G4Log
in Appendix A.1, maps the argument into an interval where the approximation is most
accurate. To that end, for each component, the code rounds the product of the ar-
gument with log2e = 1

ln 2 to an integer k, using a bit-trick (Paragraph A.2.b), and
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Listing A.1: Implementation of an alternative frexp function getMantExponent, copied
from G4Log.hh in Geant4 tag v11.0.0. The two helper functions were copied
from the same file.

inline G4double getMantExponent(const G4double x, G4double& fe)
{

uint64_t n = dp2uint64(x);

// Shift to the right up to the beginning of the exponent.
// Then with a mask , cut off the sign bit
uint64_t le = (n >> 52);

// chop the head of the number: an int contains more than 11 bits (32)
int32_t e =

le; // This is important since sums on uint64_t do not vectorise
fe = e - 1023;

// This puts to 11 zeroes the exponent
n &= 0x800FFFFFFFFFFFFFULL;
// build a mask which is 0.5, i.e. an exponent equal to 1022
// which means *2, see the above +1.
const uint64_t p05 = 0x3FE0000000000000ULL; // dp2uint64 (0.5);
n |= p05;

return uint642dp(n);
}
// helper functions:
inline uint64_t dp2uint64(G4double x)
{

ieee754 tmp;
tmp.d = x;
return tmp.ll;

}
inline G4double uint642dp(uint64_t ll)
{

ieee754 tmp;
tmp.ll = ll;
return tmp.d;

}
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Listing A.2: Implementation of an alternative natural logarithm function G4Log, copied
from G4Log.hh in Geant4 tag v11.0.0.

inline G4double G4Log(G4double x)
{

const G4double original_x = x;

/* separate mantissa from exponent */
G4double fe;
x = G4LogConsts :: getMantExponent(x, fe);

// blending
x > G4LogConsts ::SQRTH ? fe += 1. : x += x;
x -= 1.0;

/* rational form */
G4double px = G4LogConsts :: get_log_px(x);

// for the final formula
const G4double x2 = x * x;
px *= x;
px *= x2;

const G4double qx = G4LogConsts :: get_log_qx(x);

G4double res = px / qx;

res -= fe * 2.121944400546905827679e-4;
res -= 0.5 * x2;

res = x + res;
res += fe * 0.693359375;

if(original_x > G4LogConsts :: LOG_UPPER_LIMIT)
res = std:: numeric_limits <G4double >:: infinity ();

if(original_x < G4LogConsts :: LOG_LOWER_LIMIT) // THIS IS NAN!
res = -std:: numeric_limits <G4double >:: quiet_NaN ();

return res;
}
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@isa@_range_reduction in Listing A.4 subtracts k · ln 2 from the argument; note that
codyw_c1, codyw_c2 and zeros_f sum up to (− ln 2). Correspondingly, in the end the
result is scaled by 2k, using @isa@_scalef_ps from Listing A.5 which contains another
bit-trick as described further down in Paragraph A.2.c.

A.2.b. Rounding bit-trick. As highlighted in Listing A.3, the rounding is done by
adding and subtracting cvt_magic = 1.5 · 223, explointing floating-point inaccuracies as
described in Section 3.3.5.

A.2.c. Bit-trick for ldexp. NumPy’s fma_scalef_ps, called from Listing A.3 and
shown in Listing A.5, is a SIMD version of the ldexpf function that takes a binary32
argument arg and an integer argument exp, and returns arg · 2exp. The code uses the
bit-trick described in Paragraph 3.3.4.b, as explained in the following. We focus on
the else branch, which deals with arguments that are normal numbers. The intrinsic
function _mm256_slli_epi32 normally resolves to an AVX2 instruction that performs
a bitshift to the left on each 32-bit SIMD component. As binary32 has 23 signifi-
cand bits, this aligns the integer exponent with the binary32 exponent bits in each
32-bit SIMD component. The _mm256_add_epi32 intrinsic performs an integer addi-
tion, and _mm256_castps_si256 and _mm256_castsi256_ps cast between integer and
floating-point types.

A.2.d. Eliminating bit-tricks via build configuation. When NumPy is configured with
--cpu-baseline="SSE" and --cpu-dispatch="SSE" to turn off AVX2 instructions, a
different codepath without unsupported bit-tricks is used to compute the exponential
function, as already reported in Paragraph 8.2.d.

A.3. Rounding via Floating-Point Inaccuracies in the GLIBC
Math Library

The function reduce_sincos in Listing A.6, copied from the GLIBC source file

sysdeps/ieee754/dbl-64/s_sin.c

at version glibc-2.35, is used to shift the argument of sin into the interval between −π
4

and π
4 by adding a multiple of π

2 . The constant hpinv and toint is 1.5 · 252. Adding
toint, and subtracting it right away, introduces floating-point inaccuracies that round
a number to the next integer, as discussed in Section 3.3.5. mp1 and mp2 add up to π

2 ,
so y basically contains the reduced argument. The remainder of the function improves
accuracy, but the changes are minimal as pp3 is about −4.98 × 10−17 and pp4 is about
−1.90× 10−25.

The actual __sin function in Listing A.7 distinguishes several cases depending on the
magnitude of the argument. The above reduce_sincos function is used between 2.42
and 1.05 × 108. Between 2−26 and 0.855, the look-up table based approach of do_sin
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Listing A.3: Partial implementation of a SIMD function behaving like expf on each 32-
bit component of a SIMD vector, adapted from simd.inc.src in NumPy
version v1.19.5. The use of a bit-trick for rounding (Paragraph A.2.b) is
highlighted.

static NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ void
@ISA@_exp_FLOAT(npy_float * op,

npy_float * ip,
const npy_intp array_size ,
const npy_intp steps)

{

/* ... load constants , stride , number of lanes , ... */

while (num_remaining_elements > 0) {

/* ... load x, identify very small and large components ...*/

quadrant = _mm@vsize@_mul_ps(x, log2e);

/* round to nearest */
quadrant = _mm@vsize@_add_ps(quadrant , cvt_magic);
quadrant = _mm@vsize@_sub_ps(quadrant , cvt_magic);

/* Cody -Waite's range reduction algorithm */
x = @isa@_range_reduction(x, quadrant , codyw_c1 , codyw_c2 , ←↩

zeros_f);

num_poly = @fmadd@(exp_p5 , x, exp_p4);
num_poly = @fmadd@(num_poly , x, exp_p3);
num_poly = @fmadd@(num_poly , x, exp_p2);
num_poly = @fmadd@(num_poly , x, exp_p1);
num_poly = @fmadd@(num_poly , x, exp_p0);
denom_poly = @fmadd@(exp_q2 , x, exp_q1);
denom_poly = @fmadd@(denom_poly , x, exp_q0);
poly = _mm@vsize@_div_ps(num_poly , denom_poly);

/*
* compute val = poly * 2^ quadrant; which is same as adding the
* exponent of quadrant to the exponent of poly. quadrant is an←↩

int ,
* so extracting exponent is simply extracting 8 bits.
*/

poly = @isa@_scalef_ps(poly , quadrant);

/* ... mask results for small and large arguments with 0 and ←↩
inf ,

* respectively , and store poly ... */
}

if (@mask_to_int@(overflow_mask)) {
npy_set_floatstatus_overflow ();

}
}
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Listing A.4: SIMD implementation of Cody-Waite’s range reduction algorithm, copied
from simd.inc.src in NumPy version v1.19.5. The function computes x+
y · (c1+ c2+ c3).

static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ @vtype@
@isa@_range_reduction(@vtype@ x, @vtype@ y, @vtype@ c1, @vtype@ c2, ←↩

@vtype@ c3)
{

@vtype@ reduced_x = @fmadd@(y, c1 , x);
reduced_x = @fmadd@(y, c2 , reduced_x);
reduced_x = @fmadd@(y, c3 , reduced_x);
return reduced_x;

}

Listing A.5: Implementation of a SIMD function behaving like ldexpf on each 32-bit
component of a 256-bit SIMD vector, copied from simd.inc.src in NumPy
version v1.19.5. The highlighted lines perform an integer addition to the
exponent bits (Paragraph 3.3.4.b).

static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX2 __m256
fma_scalef_ps(__m256 poly , __m256 quadrant)
{

/*
* Handle denormals (which occur when quadrant <= -125):
* 1) This function computes poly *(2^ quad) by adding the exponent of
poly to quad
* 2) When quad <= -125, the output is a denormal and the above logic
breaks down
* 3) To handle such cases , we split quadrant: -125 + (quadrant + 125)
* 4) poly *(2^ -125) is computed the usual way
* 5) 2^(quad -125) can be computed by: 2 << abs(quad -125)
* 6) The final div operation generates the denormal
*/
__m256 minquadrant = _mm256_set1_ps ( -125.0f);
__m256 denormal_mask = _mm256_cmp_ps(quadrant , minquadrant , _CMP_LE_OQ);
if (_mm256_movemask_ps(denormal_mask) != 0x0000) {

__m256 quad_diff = _mm256_sub_ps(quadrant , minquadrant);
quad_diff = _mm256_sub_ps(_mm256_setzero_ps (), quad_diff);
quad_diff = _mm256_blendv_ps(_mm256_setzero_ps (), quad_diff , ←↩

denormal_mask);
__m256i two_power_diff = _mm256_sllv_epi32(

_mm256_set1_epi32 (1), _mm256_cvtps_epi32(←↩
quad_diff));

quadrant = _mm256_max_ps(quadrant , minquadrant); //keep quadrant >= -126
__m256i exponent = _mm256_slli_epi32(_mm256_cvtps_epi32(quadrant), 23);
poly = _mm256_castsi256_ps(

_mm256_add_epi32(
_mm256_castps_si256(poly), exponent));

__m256 denorm_poly = _mm256_div_ps(poly , _mm256_cvtepi32_ps(←↩
two_power_diff));

return _mm256_blendv_ps(poly , denorm_poly , denormal_mask);
}
else {

__m256i exponent = _mm256_slli_epi32(_mm256_cvtps_epi32(quadrant), 23);
poly = _mm256_castsi256_ps(

_mm256_add_epi32(
_mm256_castps_si256(poly), exponent));

return poly;
}

}
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Listing A.6: Range reduction function in the GLIBC math library. The code has been
copied from sysdeps/ieee754/dbl-64/s_sin.c in version glibc-2.35.

/* Reduce range of x to within PI/2 with abs (x) < 105414350. The high part
is written to *a, the low part to *da. Range reduction is accurate to 136
bits so that when x is large and *a very close to zero , all 53 bits of *a
are correct. */

static __always_inline int4
reduce_sincos (double x, double *a, double *da)
{

mynumber v;

double t = (x * hpinv + toint );
double xn = t - toint;
v.x = t;
double y = (x - xn * mp1) - xn * mp2;
int4 n = v.i[LOW_HALF] & 3;

double b, db, t1, t2;
t1 = xn * pp3;
t2 = y - t1;
db = (y - t2) - t1;

t1 = xn * pp4;
b = t2 - t1;
db += (t2 - b) - t1;

*a = b;
*da = db;
return n;

}

in Listing A.8 is used. In this function, the constant big = 1.5 · 245 is added to the
argument, rounding it to an integer multiple u.x of 2−7. In the following, we refer to the
argument of the sine function as x, to its closest integer multiple of 2−7 as xtab and to the
difference as xrem = x− xtab. SINCOS_TABLE_LOOKUP uses the last-significant bits of u.x
as indices into a look-up table, reading sn = sin(xtab), cs = cos(xtab) and further small
terms ssn and ccs. Furthermore, the code finds s = sin(xrem) and c = 1− cos(xrem) via
Taylor expansions. The return values combines these results, mainly according to the
trigonometric formula

sin(x) = sin(xtab + xrem) = sin(xtab) cos(xrem) + cos(xtab) sin(xrem),

plus some numerical adjustments using ssn and ccs and a proper choice of the sign.
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Listing A.7: Sine function in the GLIBC math library. The code has been copied from
sysdeps/ieee754/dbl-64/s_sin.c in version glibc-2.35.

/* ***************************************************************** */
/* An ultimate sin routine. Given an IEEE double machine number x */
/* it computes the rounded value of sin(x). */
/* ***************************************************************** */
#ifndef IN_SINCOS
double
SECTION
__sin (double x)
{

double t, a, da;
mynumber u;
int4 k, m, n;
double retval = 0;

SET_RESTORE_ROUND_53BIT (FE_TONEAREST );

u.x = x;
m = u.i[HIGH_HALF ];
k = 0x7fffffff & m; /* no sign */
if (k < 0x3e500000) /* if x->0 =>sin(x)=x */

{
math_check_force_underflow (x);
retval = x;

}
/* --------------------------- 2^-26<|x|< 0.855469---------------------- */

else if (k < 0x3feb6000)
{

/* Max ULP is 0.548. */
retval = do_sin (x, 0);

} /* else if (k < 0x3feb6000) */

/* ----------------------- 0.855469 <|x| <2.426265 ----------------------*/
else if (k < 0x400368fd)

{
t = hp0 - fabs (x);
/* Max ULP is 0.51. */
retval = copysign (do_cos (t, hp1), x);

} /* else if (k < 0x400368fd) */

/* -------------------------- 2.426265 <|x|< 105414350 ----------------------*/
else if (k < 0x419921FB)

{
n = reduce_sincos (x, &a, &da);
retval = do_sincos (a, da , n);

} /* else if (k < 0x419921FB ) */

/* --------------------105414350 <|x| <2^1024------------------------------*/
else if (k < 0x7ff00000)

{
n = __branred (x, &a, &da);
retval = do_sincos (a, da , n);

}
/* --------------------- |x| > 2^1024 ----------------------------------*/

else
{

if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
__set_errno (EDOM);

retval = x / x;
}

return retval;
}
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Listing A.8: Sine function in the GLIBC math library. The code has been copied from
sysdeps/ieee754/dbl-64/s_sin.c in version glibc-2.35.

/* Given a number partitioned into X and DX , this function computes the sine of
the number by combining the sin and cos of X (as computed by a variation of
the Taylor series) with the values looked up from the sin/cos table to get
the result. */

static __always_inline double
do_sin (double x, double dx)
{

double xold = x;
/* Max ULP is 0.501 if |x| < 0.126, otherwise ULP is 0.518. */
if (fabs (x) < 0.126)

return TAYLOR_SIN (x * x, x, dx);

mynumber u;

if (x <= 0)
dx = -dx;

u.x = big + fabs (x);
x = fabs (x) - (u.x - big);

double xx, s, sn, ssn , c, cs , ccs , cor;
xx = x * x;
s = x + (dx + x * xx * (sn3 + xx * sn5));
c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
SINCOS_TABLE_LOOKUP (u, sn, ssn , cs, ccs);
cor = (ssn + s * ccs - sn * c) + cs * s;
return copysign (sn + cor , xold);

}
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B.1. Library Caller Details

AD inputs and outputs are not necessarily specified by variable names and line numbers
in the source code. This section deals with the case of a compiled function in a shared
object with a known signature that comprises all AD inputs and outputs. Specifically,
we assume that the signature is

void ⟨functionname⟩ (int, char*, int, ⟨fptype⟩ const*, int, ⟨fptype⟩ *) (B.1)

with fptype denoting either double or float. The three pairs of an integer and a pointer
specify three buffers: The first buffer contains parameters, i. e. data irrelevant for AD,
and the second and third buffer contain AD inputs and outputs, respectively.

Our ML framework wrappers (Section 6.5.2) allow to embed functions with this sig-
nature into the AD workflow of PyTorch146 and TensorFlow1. They make use of the
library caller program shown in Listing B.1. When it is started via

derivgrind-library-caller ⟨library.so⟩ ⟨functionname⟩ ⟨fptype⟩
⟨nParam⟩ ⟨nInput⟩ ⟨nOutput⟩ ⟨path⟩, (B.2)

it dynamically loads the specified library (with dlopen) and retrieves a pointer to the
specified function (with dlsym). The three buffers are allocated according to the specified
size nParam and counts nInput and nOutput, and the parameters and AD input buffer
are initialized with the content of the files dg-libcaller-params, dg-libcaller-inputs
in the specified path. After declaring the AD inputs with the client request macro
DG_INPUTF, the specified function is called. Finally, the AD outputs are declared with
DG_OUTPUTF, and their values are written to the file dg-libcaller-outputs in the spec-
ified path.

If the signature of a function in a shared object is different from (B.1), the code in
Listing B.1 would need to be adapted.

B.2. Function Wrapping Details

B.2.a. Some Valgrind Internals. As outlined in Section 4.3.3, in order to call the
unwrapped function from the respective function wrapper, a macro like CALL_FN_W_WW has
to be used as shown in Listing 4.6. Listing B.2 reproduces the definition of this macro for
the x86-64 ISA in the file valgrind.h of Valgrind version 3.18.1. VALGRIND_ALIGN_STACK
aligns RSP to a multiple of 8 bytes, which is undone by VALGRIND_RESTORE_STACK.
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Listing B.1: Client program to record the execution of a function of a shared library.

#include <iostream >
#include <fstream >
#include <cstdio >
#include <dlfcn.h>
#include "derivgrind.h"

template <typename fptype >
int main_fp(int argc , char* argv []){

// load library and symbol
void* loaded_lib = dlopen(argv[1], RTLD_NOW);
if(! loaded_lib){

std::cerr << "Error loading shared object '" << argv [1] << " ':\n" << dlerror () << std::endl;
exit(EXIT_FAILURE);

}
using fptr = void (*)(int ,char*,int ,fptype const*,int , fptype *);
fptr loaded_fun = (fptr)dlsym(loaded_lib , argv [2]);
if(! loaded_fun){

std::cerr << "Error loading symbol '" << argv [2] <<" ':\n" << dlerror () << std::endl;
exit(EXIT_FAILURE);

}

// sizes of non -differentiable parameters , differentiable inputs , differentiable outputs
long long param_size , input_count , output_count;
try { // parse from command -line arguments

param_size = std:: stoll(argv [4]);
input_count = std::stoll(argv [5]);
output_count = std:: stoll(argv [6]);

} catch (std:: invalid_argument const& ex) {
std::cerr << "Invalid argument :\n" << ex.what() << std::endl;
exit(EXIT_FAILURE);

} catch (std:: out_of_range const& ex) {
std::cerr << "Argument out of range:\n" << ex.what() << std::endl;
exit(EXIT_FAILURE);

}

// buffers for non -diff parameters , diff inputs , diff outputs
char* param_buf;
fptype *input_buf , *output_buf;

// read content from files
std:: string path = argv [7];
std:: ifstream param_file(path+"/dg-libcaller -params", std::ios:: binary);
std:: ifstream input_file(path+"/dg-libcaller -inputs", std::ios:: binary);

param_buf = new char[param_size +1]; // +1 to avoid allocations of length zero
input_buf = new fptype[input_count +1];
output_buf = new fptype[output_count +1];
if(! param_buf || !input_buf || !output_buf){

std::cerr << "Failure to allocate buffers." << std::endl;
exit(EXIT_FAILURE);

}

param_file.read((char*)param_buf , param_size);
input_file.read((char*)input_buf , input_count*sizeof(fptype));

// register inputs
for(unsigned long long i=0; i<input_count; i++){

DG_INPUTF(input_buf[i]);
}
// call the function
loaded_fun(param_size , param_buf , input_count , input_buf , output_count , output_buf);
// register outputs
for(unsigned long long i=0; i<output_count; i++){

DG_OUTPUTF(output_buf[i]);
}

// write binary output
std:: ofstream output_file(path+"/dg-libcaller -outputs", std::ios:: binary);
output_file.write ((char*)output_buf , sizeof(fptype)*output_count);

return 0;
}

int main(int argc , char* argv []){
if(argc <4){

std::cerr << "Error: Bad number of arguments." << std::endl;
exit(EXIT_FAILURE);

}
if(argv [3][0]== 'd') return main_fp <double >(argc ,argv);
else if(argv [3][0]== 'f') return main_fp <float >(argc ,argv);
else {

std::cerr << "Error: Bad floating point type specification '" << argv [3] << "'" << std::endl;
exit(EXIT_FAILURE);

}
}
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Listing B.2: Definition of the macro CALL_FN_W_WW for the x86-64 ISA in the file
valgrind.h of Valgrind version 3.18.1.

#define CALL_FN_W_WW(lval , orig , arg1 ,arg2) \
do { \

volatile OrigFn _orig = (orig); \
volatile unsigned long _argvec [3]; \
volatile unsigned long _res; \
_argvec [0] = (unsigned long)_orig.nraddr; \
_argvec [1] = (unsigned long)(arg1); \
_argvec [2] = (unsigned long)(arg2); \
__asm__ volatile( \

VALGRIND_CFI_PROLOGUE \
VALGRIND_ALIGN_STACK \
"subq $128 ,%% rsp\n\t" \
"movq 16(%% rax), %%rsi\n\t" \
"movq 8(%% rax), %%rdi\n\t" \
"movq (%% rax), %%rax\n\t" /* target ->%rax */ \
VALGRIND_CALL_NOREDIR_RAX \
VALGRIND_RESTORE_STACK \
VALGRIND_CFI_EPILOGUE \
: /*out*/ "=a" (_res) \
: /*in*/ "a" (& _argvec [0]) __FRAME_POINTER \
: /*trash */ "cc", "memory", __CALLER_SAVED_REGS , "r14", "r15" \

); \
lval = (__typeof__(lval)) _res; \

} while (0)

VALGRIND_CALL_NOREDIR_RAX expands to a special sequence of four rolq and one xchgq
instruction similar to the one emitted for client requests (Listing 4.5). It has no effect
on a normal x86-64 processor, but translates into VEX code that jumps to the address
in RAX without interference from the function wrapping mechanism.

The jump target address and the two integer arguments are stored in the array _argvec
defined in the C code; the specification "a" (&_argvec[0]) in the input operands list
of the __asm__ syntax makes the compiler initialize RAX with the array address. Thus,
the first two movq statements copy the two integer arguments into the registers RDI
and RSI, where they belong according to the System-V ABI calling convention (see also
Listing 3.1). After the call, the return value of integer type in RAX is made available in
the C code via the "=a" (_res) output operand.

The macro __CALLER_SAVED_REGS expands to a list of registers that the original func-
tion may modify according to the calling conventions. In the clobber list of the extended
__asm__ syntax, it makes the compiler aware that the assembly code may change them.

B.2.b. Extensions of the Valgrind Framework. Derivgrind uses Valgrind’s function
wrapping mechanism to redirect calls to C math functions. Most of them map a single
argument of type double, float or long double to a return value of the same type. The
functions atan2/atan2f/atan2l, fmod/fmodf/fmodl, and pow/powf/powl take a second
floating-point argument, frexp/frexpf/frexpl take a second argument of type int*,
and ldexp/ldexpf/ldexpl take a second argument of type int.

Therefore, we have added the respective equivalents to CALL_FN_W_WW to valgrind.h.
For example, Listing B.3 shows the definition of the macro CALL_FN_D_D to call the
original function with a single argument of type double: This argument is stored in
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Listing B.3: Definition of the macro CALL_FN_D_D for the x86-64 ISA, adapted from ex-
isting functions like CALL_FN_W_WW in Listing B.2 and added to Derivgrind’s
modified valgrind.h.

#define CALL_FN_FP_FP(lval , orig , outputreg , argvec_def , pushes) \
do { \

volatile OrigFn _orig = (orig); \
argvec_def \
_argvec [0] = (unsigned long)_orig.nraddr; \
__asm__ volatile( \

VALGRIND_CFI_PROLOGUE \
VALGRIND_ALIGN_STACK \
pushes \
"movq (%%rax), %%rax\n\t" /* target ->%rax */ \
VALGRIND_CALL_NOREDIR_RAX \
VALGRIND_RESTORE_STACK \
VALGRIND_CFI_EPILOGUE \
: /*out*/ outputreg (_res) \
: /*in*/ "a" (& _argvec [0]) __FRAME_POINTER \
: /*trash */ "cc", "memory", __CALLER_SAVED_REGS , "r14", "r15" \

); \
lval = *( __typeof__(lval)*)& _res; \

} while (0)

#define CALL_FN_D_D(lval , orig , arg1) \
CALL_FN_FP_FP(lval , orig , "=Yz", \
volatile unsigned long _res; \
volatile unsigned long _argvec [2]; \
_argvec [1] = *( unsigned long*)&(arg1);, \
"subq $128 ,%%rsp\n\t movsd 8(%% rax), %%xmm0\n\t" )

_argvec[1] in the C code, and subsequently accessible as 8(%rax) in the assembly code,
from where it is copied to XMM0 with a movsd instruction and made available to the C
code via the output operand specification "=Yz" (_res).

In order to be on the safe side, we have added the registers XMM1 to XMM15 to
__CALLER_SAVED_REGS.

Similar work has also been performed for the x86 function wrapping macros.

B.2.c. Math Function Wrapper Example. Listing 7.1 in Chapter 7 shows the full code
of Derivgrind’s function wrapper for the sin function in libm.so*.

B.3. LibreOffice Calc Macros for Client Requests

After placing the Python file in Listing B.4 in a LibreOffice Calc macro search directory,
four macros corresponding to the four Python functions of the same name can be selected
in Calc’s Run Macro. . . dialog (Figure 8.1). The four functions use _cellMarkedByUser,
adapted from an online tutorial77, to learn about the sheet, row and column of the table
cell that the user selected prior to running the macro. This information allows to access
the value of the table cell, and use the Python client request wrappers from Table 8.1.

198



B.3. LibreOffice Calc Macros for Client Requests

Listing B.4: LibreOffice Calc macros, written in Python, to perform client requests on be-
half of LibreOffice Calc. The code of _cellMarkedByUser has been adapted
from an online tutorial77.

import derivgrind
from com.sun.star.awt import MessageBoxButtons as MSG_BUTTONS

def _cellMarkedByUser ():
desktop = XSCRIPTCONTEXT.getDesktop ()
doc = XSCRIPTCONTEXT.getDocument ()
model = desktop.getCurrentComponent ()
sheet = model.CurrentController.ActiveSheet
selection = doc.CurrentController.getSelection ()
row = selection.getRangeAddress ().StartRow
col = selection.getRangeAddress ().StartColumn
return sheet , row , col

def _warnNoFloatingPointContent ():
toolkit = XSCRIPTCONTEXT.getComponentContext ().ServiceManager.createInstance←↩

('com.sun.star.awt.Toolkit ')
parent = toolkit.getDesktopWindow ()
mb = toolkit.createMessageBox(parent , 'infobox ', MSG_BUTTONS.BUTTONS_OK , "←↩

Error", "No floating -point content in cell ("+str(col+1)+","+str(row)+")←↩
.")

return mb.execute ()

def SetDotValue ():
sheet , row , col = _cellMarkedByUser ()
cellDot = sheet.getCellByPosition(col+1,row)
if cellDot.Type.value in ["FORMULA", "VALUE"]:

dot = cellDot.Value
cellVal = sheet.getCellByPosition(col ,row)
cellVal.Value = derivgrind.set_dotvalue(cellVal.Value , dot)

else:
_warnNoFloatingPointContent ()

return None

def GetDotValue ():
sheet , row , col = _cellMarkedByUser ()
cellVal = sheet.getCellByPosition(col ,row)
if cellVal.Type.value in ["FORMULA", "VALUE"]:

val = cellVal.Value
cellDot = sheet.getCellByPosition(col+1,row)
cellDot.Value = derivgrind.get_dotvalue(cellVal.Value)

else:
_warnNoFloatingPointContent ()

return None

def InputF ():
sheet , row , col = _cellMarkedByUser ()
cellVal = sheet.getCellByPosition(col ,row)
if cellVal.Type.value in ["FORMULA", "VALUE"]:

val = cellVal.Value
val = derivgrind.inputf(val)
cellVal.Value = val

else:
_warnNoFloatingPointContent ()

return None

def OutputF ():
sheet , row , col = _cellMarkedByUser ()
cellVal = sheet.getCellByPosition(col ,row)
if cellVal.Type.value in ["FORMULA", "VALUE"]:

val = cellVal.Value
derivgrind.outputf(val)

else:
_warnNoFloatingPointContent ()

return None

g_exportedScripts = SetDotValue ,GetDotValue ,InputF ,OutputF
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