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Abstract. Two possible substitutes of the Fourier transform in geopo-
tential determination are windowed Fourier transform (WFT') and wavelet
transform (W'T). In this paper we introduce harmonic WF'T and W'l and
show how it can be used to give information about the geopotential simul-
taneously in the space domain and the frequency (angular momentum)
domain. The counterparts of the inverse Fourier transform are derived,
which allow us to reconstruct the geopotential from its WE'T' and W'T', re-
spectively. Moreover, we derive a necessary and sufficient condition that
an otherwise arbitrary function of space and frequency has to satisfy to
be the WFT or WT of a potential. Finally, least—squares approximation
and minimum norm (i.e. least—energy) representation, which will play
a particular role in geodetic applications of both WFT and WT, are
discussed in more detail.



1 Introduction

The spectral representation of a geopotential U such as the earth’s external
gravitational potential by means of outer harmonics is essential to solving many
problems in today‘s physical geodesy. In future research, however, Fourier ex-
pansions

U=3 Y [0 ai) dety) o)

(dw denotes the suface element) in tems of outer harmonics
{Hn;(55)} PR

will not be the most natural or useful way of representing a harmonic function
such as the earths gravitational potential. In order to explain this in more detail
we think of the earth’s gravitational potential as a signal in which the spectrum
evolves over space in significant way. We imagine that at each point on the
sphere A around the origin with radius «. The potential refers to a certain
combination of frequencies, and that in dependence of the mass distribution
inside the earth, these frequencies are constantly changing. This space—evolution
of the frequencies is not reflected in the Fourier transform in terms of non-space
localizing outer harmonics, at least not directly.

In theory, a member U of the Sobolev space Hg (of harmonic functions in
the outer space Aey of the sphere A with square-integrable restrictions on A)
can be reconstructed from its Fourier transform, i.e. the ‘amplitude spactrum’

(G ATICTD) P S

i=1,.. 2041
with
(U 5 (2, g, = [ V() s(0i9) data)
A

but the Fourier transform contains information about the frequencies of the
potential over all positions instead of showing how the frequencies vary in space.

This paper will present two methods of achieving a space-dependent fre-
quency analysis in geopotential determination which we refer to as the windowed
Fourier transform and the wavelet transform. Essential tool is the concept of a
harmonic scaling function p € (0, 00). Roughly speaking, a scaling function is a

kernel @E)Z) D Aext X Aext = R of the form

_ oo In41
O @ y) = 3 (pp(m)* Y Hujloiz) Hnj(aiy)

converging (in Hg-sense) to the ‘Dirac—kernel’ § as p — 0. As is well-known,
the Dirac kernel is given by

co 2n+1

Iz, y) = Z Z Hy, j(a;2)Hy (a5 y)

n=0 j=1



In conclusion, {¢,(n)}n=0,1,.. essentially is a sequence satisfying

lim wp(n) =1
p>0

for all n = 0,1,.... According to this construction principle, {455,2)}, p € (0, 00),
constitutes an approximate convolution identity, i.e. the convolution integral

(@)« Ux) = /qsgf)(m,y)U(y) dw(y), o € Ao,
A

formally converges to

V@@ V)@ = [0V o), 2 €T
A

as p tends to 0. Therefore, if U 1s a potential of class Hg, then

B3y, # Tim U7 = U =0, (1)

p>0

where the convolution of the potential U against the kernel @22) is defined by

o240 = [ @00 () dsly).

The windowed Fourier transform and the wavelet transform are two—parameter
representations of a one-parameter (spatial) potential in Hy. This indicates the
existence of some redendancy in the both transforms which in turn gives rise to
establish the promised least—squares approximation property.

The windowed Fourier transform (WFT) can be formulated as a technique
known as ’short—space Fourier transform‘. This transform works by first dividing
a potential (signal) into short consecutive (space) segments and then computing
the Fourier coefficients of each segment. The windowed Fourier transform is
a space—frequency localization technique in that it determines the frequencies
associated with small space portions of the potential. The windowed Fourier
segments are constructed by shifting in space and modulating in frequency the
‘window kernel” @, given by

[e%) 2n+1
Bp(,y) =Y @p(n) Y Hojla;a)Hnj(aiy),  (2,9) € Aexr X Acs -
n=0 Jj=1

Note that

Phi,(x,y) = (Phi, x Phi,)(z,y) = /Phip(a:,z)Phip(z,y) dw(z)



for all (z,y) € Aext X Aext. One again, the way of describing the windowed
Fourier transform (i.e. the ’short—space Fourier transform®) is as follows: Let U
be a potential of class Hg. Assume that

(PO 0.0) = [ U@ Has(ai0) doto)
A
(n,j) e NN =A{(k,l) | k=0,1,..51=1,...,2n+ 1}). &, with p arbitrary,
but fixed is a space window (‘cutoff kernel), i.e. ¢, generates an approximate
convolution identity {5255,2)} in the sense of (??51). Chopping up the potential
amounts to multiplying U by the kernel &,, i.e. U(y)P,(z,y) with 2 € Aex,
y € A, where the fixed value p determines the length of the window (i.a., the
‘cutoff cap’) on the sphere A. The Fourier coefficients of the product in terms of

outer harmonics {Hy, ;(a; ) are then given by

} Pirasi e
/U(Z‘/)@P(‘an)Hn,j(QEy) dw(y), (n,j) EN, € Aex .
A

In other words, we have defined the Ho—inner product of U with a discrete set of
‘shifts® and ‘modulations’ of U. The windowed Fourier transform is the operator

(WFT)g,, which is defined for potentials U € #o by

WFT)a,0,3:0) = (20 00) " [ 02,0, 0) o sta:0) doto)

for (n,j) € Nand z € Aoyt (djp(]) is a normalization constant). If &, is concen-
trated in space at a point # € A, then (WFT)g,(n, j; ) gives information of U
at position z € A and frequency (n, j) € N. The potential U € H, is completely
characterized by the values of (WFT)g,(n,j;x) and can be recovered via the
reconstruction formula

/9 N 2n41
0= (000) S [, 0)m 5518, 7) o) oo

n=0 j=1 A

in the || - ||z, —sense.

Obviously, (GT)g,, p converts a potential U of one spatial variable into a
function of two variables z € A. and (n,j) € N without changing its total
energy, 1.e.:

oo 2n+1

10, =32 3 [ |(wFT)a, @) iin)] doto)

n=0 j=1 %
= U.Pp () H (25D g wrxamm)
But, as we shall see in this paper, the space G = (WFT)g,(Ho) of all windowed

Fourier transforms is a proper subspace of the space Hq(N x Aext) of all (two-
parameter) functions G : (n,j;z) — G(n,j;z), (n,j) € N, £ € Aex, such




that G(n,j;-) € Hq for all (n,j) € N and ||G||H0(NX?) < oo (this simply
means that G is a subspace of 7-[0(./\/ X E) but not equal to the latter). Thus
being a member of 'Ho(./\/ X Aext) 18 a necessary but not sufficient condition
for G € G (note that the extra condition that is both necessary and sufficient
is called consistency condition). The essential meaning of G = (WFT)s,Ho
in the framework of HO(N X E) can be described by the following least—
squares property: Suppose we want a potential with certain properties in both
space and frequency. In other words, we look for a potential U € #Hg such that
(WFT)s,(U)(n, j;z) is closest to H(n, j; ), (n,j) € N, 2 € Acxs in the “Ho(N x
Aext)—metric’, where H € 7-[0(./\/' X Aext) is given. Our investigations will show
that the solutions to the least—squares problem is provided by the function Ug
given by

» _ co 2n+41
U= (220) S [ H0 g0 dewtnglar) @)
n=0 j=1 ‘A

which indeed is the unique potential in Hg that minimizes the "Ho(./\/ X Aext )~
error’:

1H = (WFT)a,(Un )3, o s (3)
= it | = (WFT)a, ()l e

Moreover, if H € G, then (2) reduces to the reconstruction formula. In the con-
text of oversampling a signal this means that the tendency for correcting errors
is expressed in the least-squares property of the windowed Fourier transform.
Although the oversampling of a potential (signal) might seem inefficient, such
redundancy has certain advantages: it can detect and correct errors, which is
impossible when only minimal information is given. Although the shape of the
window may vary depending on the space width p the uncertainty principle (cf.
[6,7,10]) gives a restriction in space and frequency. This relation is optimal (cf.
[7)] when @, is a Gaussian, in which case the windowed Fourier transform is
called the Gabor transform (cf. [14]).

An essential problem with the windowed Fourier transform is that it poorly
resolves phenomena of spatial extension shorter than the a priori chosen (fixed)
window. Moreover, shortening the window to increase spatial resolution can re-
sult in unacceptable increases in computational effort.

The wavelet transform acts as a space and frequency localization operator
in the following way. Roughly speaking, if {@E,Q)}, p € (0,00), is a harmonic
scaling function and p is a small positive value, then @E;”(y, ), y € A, is highly
concentrated about the point y. Moreover, as p tends to 400, 455,2)(31, -) becomes
more and more frequency localized. Correspondingly, the uncertainty principle
states that the space localization of @22) (y, -) becomes more and more decreasing.
In conclusion, the products y + 455,2)(13, YU (y), y € A, € Aexs, for each fixed
value p, display information in U € H, at various levels of spatial resolution or



frequency bands. In conclusion, as p approaches 400, the convolution integrals

@;2) *U=0,xP,«U = /@p(-,z)/lﬁp(z,y)U(y) dw(y) dw(z)

b

= /@;2>(~,y)U(y) dw(y)

A

display coarser, lower—frequency features. As p approaches 0, the integrals give
sharper and sharper spatial resolution. In other words, like a windowed Fourier
transform, the convolution integrals can measure the space—frequency variations
of spectral components, but they have a different space—frequency resolution.
Each scale—space approximation @E}) *U =0,+xP,xU of a potential U € H,
must be made directly by computing the relevant convolution integrals. In doing

so, however, it 1s efficient to use information from the approximation @;2) * U

within the computation of @(p%) * U with (p' < p). In fact the construction of
wavelets begins by a multiresolution analysis, i.e. a completely recursive method
which is therefore ideal for computation. In this context we observe that

| [o2twrw dwm
R A

o

— f/wp(.,z)/wp(z,y)U(y) dw(y) dw(z)

A

tends to U € Hg as R tends to 0 provided that

[e's) 2n+1
Lﬁlg?)(:p,y) = Z (1/)p(n))2 Z Hy jlog2)Hy (o),  (2,Y) € Aext X Aext -
n=0 j=1
is given such that
(o (m)? = = (pp(n))’ (4)
pN = pdp Ppllt

forn=0,1,...and all p € (0, 00). Conventionally, the family {#,}, p € (0, 00),
is called a (scale continuous) wavelet. The wavelet transform WT : Hy —

Ho((0,00) X Aext) is defined by

—

(WT)O)(p: 2) = (Fy(2, ), V), = (% U)(2)
= [ W0 dut)

In other words, the wavelet transform is defined as the Hg—inner product of
U € Ho with a set of ‘shifts’ and ‘dilations’ of U. From the Parseval identity in



terms of outer harmonics it follows that
2 dp 2
(@ (- y), Uy, " dw(y) = (U,U)y, -
A 0

i.e. WT converts a potential U of one variable into a function of two variables
x € Aext and p € (0,00). Tt follows that the continuous wavelet transform WT
is invertible on Hy, i.e.

U :!!(WT)(U)(p;y)Wp(-,y)— dw(y)

in the sense of || - ||2,-
In terms of filtering {@;2)} and {LU,£2)}, p € (0,00), may be interpreted as low—
pass filter and band—pass filter, respectively. Correspondingly, the convolutions

operators are given by

P(U)=®,x®,xU, UEH
R,\Uy=U,xW,xU, U€H.

The Fourier coefficients read as follows:

(FT)(P,(U))(n,4) = (FT)(U)(n, j)(gp(n))”

(FT)(Ro(U))(n,5) = (FT)(U)(n,5) (1 (n))* -

These formulas provide the transition from Fourier to wavelet transform, and
vica versa.
The scale spaces V, = P,(Ho) satisfy the continuous multiresolution analysis

V, CV, CHo, 0<p <p,

{U€Ho|U €V, for some p € (0,00)}”'”%“ =H, .

Just as the windowed Fourier transform uses modulation in the space domain
to shift the ‘window’ in frequency, the wavelet transform makes use of scaling in
the space domain to scale the ‘window’ in frequency.

Since all scales p are used, the reconstruction is highly redundant. Of course,
the redundancy leads us to a question which is of particular importance in data
analysis:

— Given an arbitrary H € H((0,00) X Aext), how can we know whether H €
(WT)(U) for some potential U € Hg.

In analogy to the case of windowed Fourier transform the answer to the question
amounts to finding the range of the wavelet transform WT : Ho — Ho((0, 00) x
Aext), 1.e. the subspace

W = (WT)(Ho) C Ho((0,00) X Aeys).



The tendency for correcting errors by use of the wavelet transform is again
expressed in the least—squares approximation property:

Let H be an arbitrary element of #((0, 00) X Aext). Then the unique function
Un € Hg which satisfies the property

IH = (W) (Ur) o ((0,00)xem) = 06 I = WT)U) 00,000 x 7o)

is given by

Uy = ZA/H(p; OLACE) dw(y)df ~

(WT)(Ug) is indeed the orthogonal projection of H onto W.

The layout of the paper is as follows: Chapter 2 presents the basic material
about outer harmonics to be needed for our harmonic variants of both windowed
Fourier transform and wavelet transform. Chapter 3 deals with the Sobolev space
structure of Hg, while Chapter 4 gives the definition of product kernels in Hy.
Central for our considerations is the notation of harmonic scaling functions which
will be discussed in Chapter 5 in mathematically rigorous way. The windowed
Fourier transform will be introduced in Chapter 6, least—squares approximation
will be shown to be an essential property. Chapter 7 is concerned with the
scale continuous wavelet transform and its least—squares approximation property.
Chapter 8 shows what happens in scale—discrete wavelet analysis. Chapter 9 lists
a collection of wavelets which are of particular significance for data analysis.
Finally, a variant of fully discrete wavelet transform is illustrated by use of
approximation integration rules.

2 Preliminaries

We begin with some basic facts to be needed for our introduction of harmonic
windowed Fourier and wavelet theory.

2.1 Regular Surfaces

X C R3is called a regular surface if it satisfies the following properties:

X divides three-dimensional Euclidean space R? into the bounded region
Yint (inner space) and the unbounded region Xyt (outer space) defined by
Yext = RS\Zint; int = Xing U L.

— Xint contains the origin 0.

— XY is a closed and compact surface free of double points.

— X has a continuously differentiable normal field v (pointing into the outer
space Yext).

Examples are sphere, ellipsoid, spheroid, and (actual) earth’s surface.



Given a regular surface X' then there exists a positive constant a such that

a < o™ = inf |z| < sup |z| = o2, (5)
zeX T rex™

A (resp. X"} denotes the sphere around the origin with radius a (resp. o'™f).
Aint (resp. Aext) denotes the inner (resp. outer) space of the sphere A. Corre-
spondingly, ¥inf (resp. Yint) is the inner (resp. outer) space of X", Obviously,

int ext

Eext C Einf C Aext .

ext

Bild

The set
S(r)={zeRe=y+rv(y),ye ¥}

generates a parallel surface which is exterior to X for 7 > 0 and interior for
7 < 0. For sufficiently small |7| the regularity of ¥ implies the regularity of
X(7), and the normal to one parallel surface is a normal to the other (cf., e.g.,
[?]). Furthermore it is easily seen that

inf_|z+4+rv(z)— (y+ov(y)|=|r— 0ol
ryeX

provided that |7, |o| are sufficiently small.
In what follows we use the following abbreviation:

Ug(az) = lsl_rg U+ sv(z)), € X, UeC(Zuxt) -
>0

2.2 Outer Harmonics

Let {Yo;}, n =0,1,..,7 =1,...,2n + 1 be an £?-orthonormal system of
(surface) spherical harmonics, i.e.,

/ Yn’j(Z)Yk’l(l‘)dw(l‘) = 5n,k5j,l .
|z]=1

Then the system {H, j(a;:)},n=0,1,...,7=1,...,2n 4+ 1 of "outer harmon-
1cs” | defined by

1 o\ x S
Hn,j(a;m) = E <m> Yn,j <m> , & € Aext

satisfies the following conditions:



— Hy, j(a;-) is of class C/(eo >(Aext)
- H, j(a; ) satisfies the Laplace equation Ay H, j(z) =0, 2 € Acxt
Hn,( ) |A—_Y7J
— [ Hy j(e;2)Hg (o 2)dw(z) = 8, 165,

A

The addition theorem of outer harmonics (cf., e.g., [?]) reads as follows

2n+1 ¢ n+1
2n +1 < e ) < xr oy )
Hyjlasz)Hy jlay) = —— | —— Pol 7o
2 Hnstesaing(oin) = o \ Gy BNy
for all (z,y) € Aext X Aexs, where P, is the Legendre polynomial of degree n.

Harm,,
n:

ext) denotes the space of all outer harmonics of non-negative order

Harm,, (Aey) = spanj=1, _ont1(Hy j(a;-)).
It is well-known that dim(Harm, (Aext)) = 2n + 1. We set

Harmg,  m(Aext) = Span n=o...m (Hp ().

L2n41
Of course,
Harmg, _ m(Aext) @Harmn ext)
(in the sense of || - ||z2(4)) so that
dim(Harmo, _m(Aext)) = D _ (20 + 1) = (m +1)°.
n=0

For brevity, we let Harmg, . m(5) = Harmg,  m(Aext)|z whenever = is a subset
Of Aext
The kernel Ky
armpq

(H)(’ ) t Aext X Aext — C defined by

,,,,,

m 9 n+1 x y
K P | = . L
XHarmu AAAAA m ext) Z: <|I||J|> " <|I| |y|>

is the reproducing kernel of the space Harmg . (Aext) with respect to (-, ~)52(A).
Observing the recursion relation for Legendre polynomials

(n4+1)(Pag1(t) = Pa(t))—n(Pn(t) — Paci1(t)) = 2n4+1)(t—=1)P,(2), t € [-1,+1]
we find for (z,y) € A x A

v hd y
[\Harmu ..... m(m)(:r’y) (m . m - ]>
m+ 1 <P < vy ) < r oy >>
= —F S T N W] .
4o |z |yl =] 1yl

Later on the last identity turns out to be a useful formula in numerical calcula-
tion.




2.3 Fourier Approximation by Outer Harmonics
Pot(XYext) denotes the space of all U : Yy — C with the following properties:

— U is a member of class C(Q)(Zext)
— U is harmonic in Y, 1.e. U satisfies the Laplace equation

AU =0 in Xy,
— U satisfies the regularity condition at infinity
(@) = 01, [(VT)(@)] = O(1]~2) la] = oo .
Forq=0,1,...welet
Pot® (Teyt) = Pot (Zext) N CD (Tis) -

From the maximum/minimum principle of potential theory (see e.g. [17,19]) we
know that

sup |U(z)| < sup |Uf(2)|, U € Pot(®) (Zext)
TE€Xext reX

Moreover, using arguments of the theory of integral equations (cf. [3]) we have
1/2

sup |U(x)| < Dg2(X) /|U§(T)|2dw(1‘) , Ue Pot(o)(ﬂext), (6)
reK
by

where Dg2 is a positive constant (dependent on X) and K is a subset of Xy
with dist(K, X) > 0.

In our nomenclature the classical formulation of the Dirichlet boundary-value
problem of the Laplace equation, 1.e. the representation of a harmonic function
corresponding to continuous boundary values on ¥ reads as follows:

Ezterior Dirichlet Problem (EDP): Given F € C(X), find a member U €
Pot(o)(Zext) such that U; =F.

We recall those results of the solution theory of Dirichlets problem (cf. [17])
that are of interest for our purposes below:

EDP 1s well-posed in the sense that its solution exists, is unique, and depends
continuously on the boundary values. We have

C(2)=DE = {UU € PotV(T 1)}

so that H
pE T = £2(:).
From [3,4,9] we know that

(Illc(=)
C(x)=D% = span_n=o.... (Hnj(a;)E)

=1,...,2n41



Moreover,

il Il 2
() =DF T = span_azor . (Hajlas)F) 7 (8)

=1,...,2n+41 ’

Eq. (8) equivalently means that the space £2(X) is the completion of the set
span a=o1... (H, j(a;-)E) ofallfinite linear combinations of functions H, ;(a; )%
=1 2n+1 ; ;

cees

with r:eépect to the || - [ z2(z)~topology.

2.4 Outer Harmonic Fourier Expansions on Regular Surfaces

In order to make use of (8) the last identity in constructive approximation we

have to orthonormalize the system {H, ;(a;-)} n=01,... (for example, by virtue
; =1 1

of the well-known Gram—Schmidt process) with r_es,-p-’ect to the ||-|| z2(z)—topology
obtaining a system

Loy

with the following properties (cf. [4]):

(i) each K ; is the unique solution of the boundary-value problem K3 ; C

Pot(o)(Zext) corresponding to the boundary data

(K )t =H; n=01,...;7=1,...2n+1,

n,ga

(ii) {H;,j}j;ﬂ:lv“ defined by H} ;

1,...,2n41

system in the Hilbert space (£*(X)(:,-)z2(x)) (obtainable by £?(X)-ortho-
normalization from {H, j(a; )5 1}).

(K;,j); is a complete orthonormal

Let U be the uniquely determined solution of the boundary—value problem EDP:
Uepot® (T), U=F

Then, in accordance with our construction (cf. [Frd]), the £?(X)—convergence of
the orthogonal expansion

N 2n+41
Z <F’ H:;J)EZ(E) H:L,j (9)
n=0 j=1
to the function F' (in || - ||z2(x)—sense) implies ordinary pointwise convergence of
the sum
N 2n+41
Z (F’ H;j)ﬁ(z) I{;:J (10)
n=0 j=1

to the potential U as N — oo for every point z € K with K C Yex and
dist(K,X) > p > 0. For every compact subset K C Yo the convergence is
uniform. More explicitly,

N
lim F—Z. (F,H;;J)H(E)H;;J =0 (11)



implies

N 241
li F Hy * K. = 12
R W LR U
provided that K C Xey; is a set with dist(K, X) > p > 0.

Truncated orthogonal (Fourier) expansions (11), (12) have the following least—
squares property

N 2n+41
0 =22 > (U Hy ) oy Hisllenm)
n=0 j=1
- inf U = Vileas
Ve spanN (Kn])

i.e. the problem of finding a linear combination in span n=o,..~ (K} ;), which
j=1,...,2n+41 W

is minimal in the £2(X)-norm, is solved by the orthogonal projection of U on
the span n=o...~v (H; ;). More explicitly, we have

j=1,...,2n+1

2
2n

N 2n+1
—Z (U 5} ) gag sy Hr s
N 2n+1

= (U,U)cxx ZZUH* 5 -

In particular, for U € Pot(o)(Aext) with Uj =F,

N 2n41
Aim || F = D> (FoHu (@) pag 4y Hng (a5 =0 (13)
n=0 j=1 L':2(A)
implies
N 2n41
Nlim sup |U(z Z Z F,Hy ;( )Lz( )H jlsz)| =0 (14)
_mozEEex: n=0 j=1

Eq. (13) indicates the conventional approach to modelling the earth‘s gravita-
tional potential in (today‘s spherical) geodesy. (Particularly important spherical
outer harmonic models are GRIM4 (cf. [22]), OSU9LA (cf. [21]) and EGM96
(cf. [18)). Non—spherical outer harmonic models (11), (12) corresponding to the
actual earth‘s surface ¥ (which today may be supposed to be known from GPS)
are a challenge for future (low—wavelength) approximation.



3 Sobolev Spaces

Let {A,}nen, be a complex sequence. The sequence {A,}nen, is called {B,}-
summable if |A,| # 0 for all n and the sum

> 2n 4+ 1|B,|?
E({Bn}’ {An}) - 4ra? |A |2
n=0 n

is finite. A {1}-summable sequence is simply called summable, i.e.

. on+1 1
— Ara® A7

T4} =2 ({1}, {A.}) =

3.1 Definition

For a given sequence {A,} with |A,| # 0 for all n, consider the linear space

E=E({An}, Aext) C Pot(®)(Aoy) of all potentials U of the form

oo 2n+1
U= (U Hagl05)) pagy (5) (15)
n=0 j=1
with
(U, Hoj(05)) goay (U Hi (05 )) ) = /U(y)Hn,j(a;y)dw(y)
A
satisfying
oo 2n+1 9
Z Z |4,)% (T, Hn,j(a;-))LE(A)| < 00.
n=0 j=1

From the Cauchy-Schwarz inequality it follows that

oo 2n+1

Z Z (U, Hn (e '))gz(A) (V, Hy (e '))zz(A) (16)
n=0 j=1

oo 2n+1 1/2 oo 2n+41 /2
<D0 D AP (U Hag(@5)) o D> Aal® (ViHuj(a5)) eaga)

n=0 j=1 n=0 j=1

for all U, V € £. In other words, the left hand side of (16) is finite whenever each
member of the right hand side is finite. Therefore we are able to impose on £ an
inner product (-, ')H({An}'m) by letting

oo 2n+1

(v, V)H({An};Am) = Z Z |A4n]? (U, Hy j(e; '))gz(A) (V. Hn j(a; '))cz(A)

n=0 j=1

The associated norm is given by || - H?-L({An}'m) =./( ')H({An}'m)'




Definition 1. Let {A,} be a real sequence such that |A,| # 0 for all n. Then
the Sobolev space H (more accurately: H({An}; Aext)) is the completion of €
under the norm || - ||7-L({An};— :

ext)

5 R vy
H({An}; Aext) = E{AnY}; Aext) H{An) o)
H equipped with the inner product (-, .)H({An}Am) is a Hilbert space.

From the Cauchy-Schwarz inequality it follows that (U, V)’H({l}-m) exists if
UeH{An}; Aext) and V € H({A;l},Aext). Moreover,

(U V) ayza | S WUgany iz IV lgaryam-

Hence, (-, ')’{-t({An};H) defines a duality of H({An}; Aext) and H({A;1}; Aext)-

For brevity, we let

o (To) = H({(n +1/2)°}; For)
for each real value of s. In particular,
HO(Aext) =H ({1} ;Aext) .

Remark 1. In what follows we simply write Ho (instead of Ho(Aext)) when con-
fusion is not likely to arise.

3.2 Sobolev Lemma

If we associate to U the series (15) it is of fundamental importance to know
when the series (15) converges uniformly on Aey;. The answer is provided by the
following lemma.

Lemma 1. (Sobolev) Let the sequence {A,} be { B, }-summable with (|B,| # 0
for all n). Then each U € H({An}; Aext) corresponds to a potential of class
POt(O)(AeXt).

Proof. For each sufficiently large N, we have

N
Y BaAy Haj(a;2) An By (U, Hy j(050)) 224y
n=0
< DB { AUy 1B21 a0y A0
This proves Lemma 1. O

By similar arguments we obtain the following results (cf. [5,6])

Lemma 2. If U € H;(Aext), s > k+ 1, then U corresponds to a potential of
class Pot(k)(Aext).



Furthermore, we have (cf. [6,11])
Lemma 3. Suppose that U is of class Hy(Aext), s > [[] + 1. Then

N 2n+1
sup (VIU) () — Z Z U, Hy (o)), £2(4) (VlHn’j) (a; )
TEAext n=0 j=1
< CN[l | Aext)

holds for all positive integers N (with V! = 3[l]/(3m1)l1(31‘2)12 (0x3)"=, 1;: non-
negative integers, Iy + Iy + Iz = [l]), where C' is a positive constant independent
of U.

3.3 Outer Harmonic Fourier Expansions in Hg

The outer harmonic Fourier transform FT : U w (FT)(U), U € Hog, is defined
by

(FT)Y(U)(n,j5) = (U, Hn ;( 7-[ _/U a; ) dw(z) .

The Fourier transform FT' forms a mapping from H into the space Hq(N) of
sequences {V (1, j) }(n jyenx with V(n,j) = (V, Hn j(a; )., V € Ho, satisfying

oo 2n+41
Yo W HP= "> Vm ) <o .
(ﬂ,j)EN n=0 j=1

Any potential U € Hq is characterized by its ’amplitude spectrum’

{(U, Ha a5 ))ao )
More explicitly, for U,V € Hq,

N 2n+41
Jim 0 =37 7 (Vi Ho a3 Do oo )| =0
n=0 j=1

Ho
we have U = V (in sense of || - ||#,). In addition, for U € Hg,

N 2n41
R CED DD DG ERIMEES) I
n= J:

implies

N 2n41
i, sup U () ZZ (U, Ha (03 )y, Hajlaia)| =0

for all K C A,z with dist(F, A) > 0.



4 Product Kernels

Of particular importance for our considerations below are product kernels of the
form

[e%) 2n+1

K(z,y) = Z k(n) Z Hy j(a;2)Hp j(esy), (2,Y) € Aext X Aext,  (17)
n=0 j=1

where (n) are real numbers for n = 0,1,.... Notice that K(z,y) = K(y, z).

By virtue of the addition theorem (see e.g. [7,20]) the product kernel K may be
rewritten as follows:

N 2n 41 o? \"* r oy T«
K = Pl — =], , Aext X Aext -
e = L0 () () e e

The sequence {K"(n)}n=01, ., with
K"n)=«k(n), n=0,1,...

is called the symbol of the product kernel K.
A product kernel K of the form (17) is called an Ho-kernel if {(K"(n))~1}
is summable, 1.e.
o 2n + 1

P ([\"A (n))2 < 00 .

n=0
Let K be an Hg-kernel. Suppose that U is of class #y. Then we understand the
convolution of U and K to be the function of class Hy given by

(U K)(x)=(U,K(,2)u, = /U(y)K(y, z)dw(y), =€ Aext.
A

Obviously, U x K is a member of class Hg. Furthermore, we have
(U K)"(n,j)=UMNn,j)K"(n), n=0,1,...,5=1,....2n+1.
If L is another Hg-kernel, then L % K is defined by

(LxK)(z,y) = /L(z,y)K(z, z)dw(z), (,y) € Aext X Aext.
A

It is readily seen that
(Lx K)"(n) = L"(n)K"(n), n=0,1,....

We usually write K(2) = K % K to indicate the convolution of a kernel with itself.
K(®) is said to be the iterated kernel of K. Obviously,

(K®)" (n) = (K" (n))*
forn=0,1,...



4.1 Ho—kernel Fourier Expansions on Regular Surfaces

Let K be an Hg-kernel. Then the following results are known (cf. [3,5,6,9]):

(EDP) Let {2 }x=12, . be acountable dense system of points 2 on £. Then

{I'les)

C(X) = DY = spang=12, (K(,zx)t)

and

— "0
'CQ(Z) = ’D;‘” ”LE(E) = Spang=172,. (I{(, Ik);)ll ||L2(2).

For purposes of constructive approximation we again have to orthonormalize
the system {K (-, 2x)},_; ,  with respect to the || - |[z2(z)~topology obtaining
a system

{Kity=12, C Pot® (Te)

with the following properties:

(1) each K} is the unique solution of the boundary—value problem K; C Pot (%) (Zext)
corresponding to the boundary data (K;)§ = Ly, k=1,2,. ..,

(i) {Lf}r=1,2,.. defined by ([\",j)} = Lg is a complete L:Z(Z)—orthonormal Sys-
tem in (,C2(E), (-, ')52(2))~

Given U € Pot(o)(Eext) with U; = F, then

N
J\;ln’l F—Z(F, LZ)LZ(E)LZ =0
oo k=1 £2(%)
implies

N

. * ol

lim sup |U(z)— Z(F, Li)ee o) K (z)| =0

N—ooo €T onr Ee1

for all subsets K C X.. with dist(F, ) > 0.

5 Harmonic Scaling Functions

The wavelet approach presented now is an extension of ideas developed 1n spher-
ical theory (cf. [7,12,13]). Starting point is a ” continuous version ¢ of a symbol”
{®"(n)}n=0,1,... associated to an ”Hg-kernel”

& 9 41 o2 \" D a Y
0] = ( P(— = ' Aext X Aoyt - (1
0= 2 o) () P o o0 € T T 19

le.,



5.1 Scaling Function

Definition 2. A piecewise continuous function v : [0,00) — R is called admis-

sible, of

Z( sup |'y(:13)|) < +oo . (19)

z€[n,n+1)

n=0

Lemma 4. Let v : [0,00) = R be piecewise continuous. Furthermore, assume
that there exists € > 0 such that

Nty =079, t— o0 . (20)
Then v is admussible.

Proof. As 21) s bounded as ¢ — oo, we are able to introduce

t 1 e
1
M = sup ‘ '_y(l_)a (< 400) .
te(0,00) |
Hence
o 2
(o <t>|)
n=0 z€[n, n+1)
o 2
t
=3 s [
n=0 \#Eln,n+1) t
o 2
=M - sup t7!7F
;(ze[n n+1) )
=03 () < o
This shows Lemma 4. O

Note that, on the other hand, the function v given by

_ [ (tlogt)~ ' forz > 1
V(t)_{ 1 for0<t<1

is admissible, as

w(t)ﬁ—‘ ] ‘ ]

tlogt 12’
if z > e. However, v does not satisfy (?7). Assume that there exists a value
¢ > 0, such that

() =0(7"7)



as t — 00. Then there exists M € R, such that

t
‘ 1) | oy
t—l—a —
for all t € (0, 00). In particular,
-1
‘(tlogt) <M
{—1-¢ —

for all t > 1. But
liirril(t log?)~! = 400,
t?l
whereas
limt~'—¢ =1 .

t—st
t>1

This is a contradiction. (cf. Beth). Hence, the implication of Lemma 4 is not
true in the opposite direction.

An immediate consequence of Definition 2 is that a kernel & with ¢"(n) =
y1(n) for n = 0,1,... where 4, is admissible, is an Hg—kernel. Using an admis-
sible generator v we can define a dilated generator v, : Hq(0, 00) = R by

Yo(t) = Dpmi(t) = 11(pt), te€(0,00)

(cf. [12)).

We are now able to verify to the admissibility for dilated functions.

Lemma 5. Let v, : (0,00) = R be admissible and p € (0,1) be a given number.
Then the dilated function 7y, is admissible.

Proof. We use the denotations [-] and |-] for rounding real numbers: [¢]| :=
max{n € Z | n <t}, [t] = min{n € Z | n > t}, where t € R. We obtain

N

sup (71 (pt))’
n=0 t€[n,n+1)

N

= Z sup (71(s))?
n=03€lpn,p(n+1))

sup ((s))? (21)
n=os€llen],[p(n+1)1)

( sup (m (.9))2 + sup (11 (x;))Q)
o \s€llen],[pn]) s€[[pn],[p(n+1)])

As 0 < p < 1, every interval in the last line is either empty or has the form
[p,p+ 1),where p € N. But some intervals can accur several times. There are at

||M2

IA
2

n



most [%] + 1 equal intervals of the kind [|pn], [pn]), as [pn] = |pm](n, m € N)
implies

pn=p+a, pm=p+/p,
where p = |pn| € N and a, 8 € [0, 1). Without loss of generality we assume that
a < B,1.e.n < m. Thus,

implies

Analogously, we see that there are at most [+] 4+ 1 equal intervals of the form

[[pn], [p(n + 1)])- '

Furthermore, the largest values that we obtain for s in [19] are the intervals
[[PN],[pN1) and [[pNT], [p(N +1)1), where [p(N +1)] = [pN +p] < [pN]+1.
Hence, we obtain

N

sup (v (pt))?
n—0TE[n,n+1)

it (IH141) s Gits)?

p=0 p P€lp.p+1[

IA

_lr o0
§2-<—+1>- sup  (71(t))? < 400 .
I ;te[nyn“)( (1),

This proves Lemma 5.

Lemma 6. Let~y; : (0,00) — R be admissible and p € (1, 00) be a given number.
Then the dilated function 7y, is admissible.

Proof. Note that

[pn + pl < [[pn] +[p]] = [pn] + [p] < lpn] + 1+ [p] < |pn] + [p] + 2.
We obtain for an arbitrary but fixed number N € N

N

sup  (vi(s))?
nep S€lpn,p(n+1))
N
< sup  (n(s))?
n=0 3E[|_pn_] [p”‘l'p])

sZ( sup (@) +. sup (71(8))2)

s€[lpn],[pn]+1) s€llpn]+Lol+1,Lon]+r]+2)



o2 sup (71(5))?

0 m=0 sE[Lan-I-m,l_pn_]-{-m-l—l)

lel+1 / N
) (Z sup )(71(8))2>

m=0 n:OSE[Lan+m7Lp”J+m+1

N [le]+1

3

Let us keep m fixed for a moment. We see that
len] +m = |pv]+m; n,veN;
is equivalent to

pn=p+a«
pv=p+f; p=|pn] €N; a,fel0,1) .

Hence,

_pta_ptBta-p
p p

Asa—f € (=1,1) and p > 1, we see that « — § = 0 and consequently n = v

must hold. Thus, for fixed m, the intervals used are disjoint. Consequently, we
obtain

a—f

=v+

n

N

sup (m (.9))2
n=0 s€[pn,p(n+1))

Jol+1 [pN]+m

< sup  (71(s))°
DD D

Lel+1 [pN]+[p]+1

<> ;% sup  (m(s))”

m=0 s€lk,k+1)

Sﬂm+?%§:%$a5%@D?

Hence, 7, is admissible, as required. O

Definition 3. An admissible function ¢ : [0,00) = R is called Ho-generator of
the kernel @ : Aeyy X Aext — R given by (18) if ®"(n) = ¢(n) foralln =0,1,....

From Definition 3.1 it is clear that @ is an Hp-kernel provided that ¢ is an
admissible generator of @.

For an admissible generator ¢ = 1 in the above sense we now introduce the
functions ¢, : [0,00) = R by letting

ep(t) = Dppi1(t) = p1(pt) = w(pt), t € [0, 00), (22)



for p € (0, 00). Tt is easily seen that each function ¢,, p € (0, 00), defined by (21)
n 1

is an Ho-generator of the kernel @, via @’p\ (n) = ¢pp(n), n =0,1,.... But this

enables us to write &, = D,®;. Note that
Dppr = D@y = Dpp®y .

D, is called dilation operator of level p. We are also able to introduce the inverse
of D, denoted by D,-1, p € (0,00). To be more specific,

S o+ 1 a2 \" z oy
D, (x =D 1P(x = (15/\ -1 Pl — =
o) = Do) = 3 550 () =1 T

n=

(z,y) € Aext X Aext, whenever @ is an Ho-kernel of the form (18) with " (n) =
e(n),n=0,1,...

We now introduce those Ho-generators which define scaling functions.

Definition 4. An admissible function 1 : [0,00] — R is called Hq-generator of
a scaling function if it satisfies the following properties: (i) p1 is monotonically
decreasing on [0,00), (1) @1 is continuous at 0 with value ¢1(0) = 1.

Indeed, if o1 satisfies the assumptions of an Hg-generator of a scaling func-
tion, then ¢ and its dilates ¢, generate the scaling function {®,}, @, € Ho,
p € (0,00) via @) (n) = p,(n). Tt is easily seen that @1 (t) > 0 for all # € [0, c0).
Furthermore, for each ¢ € [0, 00), we find
lim g, (1) = lim @1(pt) = ¢1(0) = 1,

p—0
p>0 p>0

since ¢ is continuous at 0. Moreover, the monotonicity of ¢1 on [0,00) and
the definition of ¢, imply the monotonicity of the sequence {p,(t)} for each
t€10,00).

Our considerations now enable us to verify an approrimate convolution iden-
tity.

Theorem 1. Let ¢1 be a generator of a scaling function {®@,},p € (0,00). Then

lim ||U — @, +®, % Ully, = 0
p—0

p>0

holds for every U € Hy.
Proof. Observing the Parseval identity we obtain

- 1/2
U~y 5@, % Ullae, = (Zu — (o)) (U, Hir (o ~>)%|2)

n=0

Letting p tend to 0 we obtain the desired result. O



6 Windowed Fourier Transform

We begin with the definition of the windowed Fourier transform.

Definition 5. For arbitrary but fired p € (0,00), let ¢, be a member of a scal-
ing function {®@,}. Assume that U is of class Ho. Then the windowed Fourier
transform is defined by

(WFT)g, (U)(n, s ) = (6&(1)) " (U0, ) o j(05))

for (n,j) € J and & € Acxt, where <15£,2)(1) is a normalization constant given by

. 2n+1
4ra’

35 (1) = (pp(m)* . (23)

n=0

The windowed Fourier transform converts a potential U € Hg of one space—
variable into a potential (W FT)g,(U)(n, j;z) of the two variables (n,j) € J
and € Aey. The windowed Fourier transform is generated by the ‘y—shift
operator’ Sy and the (n, j)-modulation operator M, ; defined by

Sy i bp(x,7) = Sydp(z, ") = dp(2,y),  (2,y) € Acxt X Aexs
Mﬂ,j :(ZSP( a')HMn,J(bp( ) ¢( ) ( ,'),(n,])EN, IEE,

respectively. In other words,
: @ 1)) "
(WFT)s, (U)(n, i) = (6(1) " (U, My jSutp(, Ny, » U € Ho.

6.1 Reconstruction Formula

Denote by Ho(N x Aext) the space of all functions G : N X Aexy — R such that
G(n,j;) € Ho for all (n,j) € N and

co 2n+1
Yo G055, = > D IG5 )5, < oo
(n.j)eN n=0 j=1

On the space Ho(N X Aext) we are able to impose an inner product (-, ')?{U(Nxm)
corresponding to the norm

1/2
oo 2n+1

1G] gy ey = | 32 S 16,45 ),

n=0 j=1

This enables us to formulate the following theorem.



Theorem 2. Let U be of class Ho. The Gabor transform forms a mapping from
the space Ho into Ho(N X Aext), i.c. (WFT)g, : Ho — Ho(N X Aext), and we

have

co 2n+41

. 2
1013 =Y D WD)y, (n, ;)3

n=0 j=1
e ICR R ER T CTD | W app—
Proof. The Parseval indentity of the theory of outer harmonics shows us that

co It
/Z Z |(WFT)s,(U)(n,j, 33)|2 dw(z)

‘A n=0 j=

- (cpg,?)u))_l/ </A|U(y)|2|¢p(l‘;y)lz dMI)) duw(y) -

Now we observe that, for y € A,

[ sl dote) = 8D(0.0) =001)
But this yields the desired result. O

Theorem 2 is equivalent to the statement that any potential U € Hy can be
recovered by its Gabor expansion

—1 2 o 2ntl
CRE /GT (). 3:0), - 3) dio(y) s (05

(relative to the Ho—kernel @,). To be more specific, we have

7= (@0) X [(@Ta 01051218 ) dele) o)

in the sense of ||-||3,. In particular, for every subset K C Aex; with dist(K, A) >
0, the convergence is uniform.

6.2 Least—squares Property

By virtue of the Cauchy—Schwarz inequality we obtain for U € H, © € Aext, and
arbitrary but fixed p € (0, c0)

(WFET)(U)(n,j;2)| < (‘15(2)(1))_1/2

(U, @p(2, ) Hn () g,

(= —1/2
< (@2M) N0l P, ) 05 e



In other words, U € Ho implies that (W FT)g,(U) € Ho(J x Aext) is bounded.
But this transform (W FT)g, is not surjective on Ho(N x Aext) (note that
Ho(N X Acxt) contains unbounded elements). Therefore

G = (WFT)s, (Fo)
is a proper subspace of Ho(N X Aext):
g g HO (N X Aext)

Hence we are led to the question of how to characterize G within the framework
of Ho(N X Aext).
For the purpose we consider the operator P: Ho(N X Aext) — G given by

oo 2n+41

(P, i) =" S /ﬂ Konjiz | p ) Hp o) doly),  (24)

where

. -1
Kp(n,jiz [ p.a;y) = (@22)(1)) f%(fv,y)Hw(a,z)%(z,y)Hp,q(a;Z) dw(2).
A
(25)
Our aim is to show that P defines a projection operator.
Lemma 7. The operator P : Ho(N X Aext) — G defined by (23), (24) is a

projection operator.

Proof. Assume that H = U= (WFT)g,(U) € G. Then we obtain

(PH)(n, j; )
- (@22)(1))_1/cpp(g;,z)Hn,j(a;z)
A
241

/H(p,q;y)@p(z,y)Hp,q(a;Z) dw(y) | dw(z)

-1/
[ U o2 (a5 d(e)
A

hence, PH = H for all H € G. O

Next, we show, that for all HL € G+ we have PH* = (. Assume therefore that
HLc gL, le. forall FF € Hg

(HJ-,(WFT)% (U))HDWH) =0 . (26)



If 2 € Aext, (n,j) € N, then it follows from (25) with the special choice

0= (#0) " 0 (e ) (o)

(@(p?)(]))_l/(ﬁp(z‘,z)Hmj(a; 2)®,(y, z) Hp g (; 2) dw(z) dw(y)

co 2p+1

_ZZ/H paq, [\ ( AV )dw()

p=0 g=1 A
= (PHJ')(TL,_};I) .
Hence it is clear that PHL = 0 for all H+ € G+

Summarizing our results we therefore obtain P(Ho(N x Aext)) = G, PGt =
P?=P.

From our investigations we are therefore able to deduce that G is character-
1zed as follows:

Lemma 8. H € G if and only if

_1/.) co 2p+1
H(n,j;r):(fﬁff Z/any, | P q;v) H (p, g5 y) dw(y) -
p=0 q:lA

(27)
In windowed Fourier theory (26) is known as consistency condition associated
with the ‘kernel’ @, (cf. [15, 16]). From the consistency conditions it follows that
not any function H € ’Ho(N X E) can be the windowed Fourier transform of a
potential U € Hg. In fact, if the consistency were not valid, then we could design
space—dependent potentials with arbitrary space-momentum propertiy and thus
violate the uncertainty principle.

It is not difficult to see that K,(n,j;y | -,-;-) € G and K,(-,-;- | p,q;y) €
G. The kemel (n,jiz | p.giy) = Kiy(n jox | pg;,v) (n.4) € N.(p.q) €
N, (z,y) € Aext X Aext, is the reproducing kernel in G.

Next we prove the following theorem.




Theorem 3. Let H be an arbitrary element of%O(TRNX Aext). Then the unique
function Uy € Ho satisfying

1H = Uil xamm) = o I1H = Ullag (g3

(with Uy = (WFT)s,(Un)) is given by

oo 2n+1

Une) = (60) N X [ i) y(e,0) det) Hoslaia) (29

n=0 j=1 %

Proof. We know that Uy is the orthogonal projection of H onto G. This proves
Theorem 2. O

Our considerations have shown that the coefficients in Ho(N € Aex:) for
reconstructing a function U € H are not unique. This can be immediately seen
from the identity

oo 2n+1

U= (455)2)(1))_1/22 > /n (T, 35) + T (0,3:) ) @, (-, ) () Fln j (05-),

n=0 j=1

where U = (WFT)s,(U) and Ut is an arbitrary member of H*.
But we are able to formulate the following result.

Theorem 4. For arbitrary F € Hq the coefficient function U = (WFT)s,(U) €
G is the ungiue element in Ho(N X Acxi) which satisfies the minimum norm
condition

WU 30w x ey = inf ([ H g v s -

HEH(N X Acxt)
wFT)Z (H)=U
( ), (H)

Proof. We know already that H = U + UL. Thus we are able to deduce that
il L A A very

= (1018, iy + 1010 (N % Tr)
> 1012,

2
I s

N X Acxt)’
as required. a

As mentioned in our introduction, the windowed Fourier transform works by first
dividing a ‘signal’ U € Hg into short consecutive segments of fixed size by use of a
‘cutoff kernel’” (window function) @, and then computing the Fourier coefficients
of each segment. In other words, the windowed Fourier transform maps local
changes of the function being represented to local changes of the coefficients in
the expansion and thereby also reduces the computational complexity. However,
there is still a defect in reconstructing a function using a sole, fixed ‘window



parameter’ p € (0, 00). In poorly resolves phenomena shorter than the window
which leads to non-optimal computational costs in many circumstances. This can
be remedied by kernels with decreasing window diameters (i.e. p — 0) exhibiting
the so—called ‘zooming-in’ property.

The meaning of Theorem 6 may be explained as follows (confer the arguments
in Euclidean wavelet theory due to [16]): Suppose we want a potential with
certain specified properties in frequency (momentum) and in space. In other
words, we are interested in a potential U € Hq such that (W FT)g,(U)(n, j;z) =
H(n,j;z), where H € Ho(N X Acxt) is given. Lemma 8 informs us that no
potential can exist unless H satisfies the consistency condition. The function
Uy introduced above is closest in thNe sence that the ‘HU(N X m)—distance’
of its windowed Fourier transform Ug to H is a minimum. Ug is called the
least-squares approrimation to the desired potential U € Hg. In the case that
H € G, Eq. (27) reduces to the reconstruction formula.

The least—squares approximation may be used to process potentials simulta-
neously in frequency and in space. More explicitly, given a potential U € Hq,
we may first compute (W FT)g,(U)(n, j; z) and then modify it in any desirable
way (such as by suppressing some frequencies and amplifying others while si-
multaneously localizing in space). Of course, the modified expression H(n,j; z)
is generally no longer the windowed Fourier transform of any (space-dependent)
potential U € H,, but its least-squares approximation Uy comes closest to being
such a potential, in the above topology.

Another essential aspect of the least—squares approximation is that even when
we do not purposefully tamper with (WFT)g,(U)(n, j;z), ‘noise’ is introduced
in it. Hence, by the position we are ready to reconstruct U € Hg, the resulting
expression H(n, j;z) will no longer belong to G. Hence, any randon change is
almost certain to take H € Ho(J X Aext) out of G. The 'reconstruction formula’
in the form (27) then automatically yields the least—squares approximation to
the original signal, given the incomplete or erroneous information at hand. This

is a kind of built—in stability of the windowed Fourier reconstruction related to
oversampling.

7 Continuous Wavelet Transform

With the definitions of (Chapter 5) in mind, we are now interested in introducing
the wavelet transform (WT). In a consistent setup scale continuous as well as
scale discrete wavelets are discussed. It turns out that the relation between
scaling function and scale continuous wavelet is characterized by a differential
equation. This assumes the piecewise differentiability of the scaling function
under consideration,

Definition 6. Let ¢1 : [0,00) be a piecewise differentiable Ho-generator of a
scaling function. Then the function 1 : [0,00) — R is said to be the Ho-



generator of the mother wavelet kernel Wy given by

. on+1 a? \"H r oy A A
v - — 5 T Pn T ) s Aex Aex s
o= 5w (i) PG e (e €T < e

if 1 1s admassible and satisfies, in addition, the differential equation

d 1/2
00 = (<5 0) = (2@ 0)
It is not difficult to show that the generator 1y and its dilates v, = D,

$y(t) = 1 (pt) = (2t (pt)gh (1)) /2 = (—p%«op(t»?)w

satisfy the following properties:
- W(O) =0 ) pE (0,00)

1/2
- Qop(t) = (f(d’v(t))w%) , te€ (0,00),p € (O’OO)’

P
- }Ji_I}l}ipp(t) =0,1t¢ (0,00),
p>00o 12
- ({(w,)(t))?ipﬂ) — 1. te(0,0),

3 B f(g ()2 < oo, pe (0,00).
P

The first condition justifies the name wavelet (i.e., ”small wave”). The last
condition is of later significance in that it essentially assures the reconstruction
formula of our scale continuous wavelet theory. The intermediate properties are
straightforward consequences of our definition of the mother wavelet kernel.

Definition 7. The family {¥,},p € (0,00) of Ho-kernels corresponding to the

mother wavelet Wy defined via Lﬁé\(n) = ¢p(n),n = 0,1,... is called a scale
continuous harmonic wavelet.

Let ¥,., be defined as follows
Uy x> Wy (2) =W, (2,y) = Sy D,V (2,-), € Aext,
where the ’y-shift operator’ S, and the ’p-dilation operator’ D, are given by

Sy : Wl(fl?, ) — Sywl(x; ) = %(x,y), (Iay) € Aext X Aexta
D, W (x,-) = D, (x,) =W,(x,-), =€ Aext,

respectively.



Definition 8. Let {¥,},p € (0,00), be a scale continuous wavelet as defined
above. Then the scale continuous harmonic wavelet transform (WT) of scale
p € (0,00) and position y € Aex is defined by

WO pi) = W0y bt = [ V(@) o) s(a)

for dlU € Hy.

Consequently, as in the case of the windowed Fourier transform, the (continu-
ous) wavelet transform converts a potential U € Hy into an expression of two
variables, namely scale and position.

7.1 Reconstruction Formula

The scale continuous wavelet transform admits an inverse on the space of func-
tions U € H satisfying (U, Ho1(o;-))n, = 0.

Theorem 5. (Reconstruction formula). Let {¥,}, p € (0,00) be a wavelet. Sup-
pose that U € Hq satisfies (U, Ho1(o; ), = 0. Then

lim U — //WT ) p,y()%pdw(y) =0.

R—0
R>0 Ho
Proof. Choose an arbitrary R > 0. Then we have
// P Y)Wy (*E)Fdw(y)
A R
- U0 (e) | Tyl ) Loty)
A R \A
7 2n + 1 o? ntl r z\dp
= [ U(2) / )2<—> P, — — ) — | dw(z)
Jv 2 T B (G EREI NS
A r "=
= / U(z) (2, 2)dw(z)
A
for every & € A.y;. Now we know that lima—o U*@( = U in the sense of || -||#,-
R>0
But this is the desired result. a

In connection with (6) we obtain the following result.



Corollary 1. Under the assumptions of Theorem 5

lim sup |U(x // (WTY(U)(p; v)¥, (a;)%”dw(y) =0 .

R>0 TEXext

In other words, a constructive approximation by wavelets defined on Agy; is
found to approximate the solution of the Dirichlet boundary-value problem for
the Laplace equation on Yy .

7.2 Least—squares Property

Denote by Hg ((0, 00) X Aext) the space of all functions U : (0,00) X Aexy — R
such that U(p;-) € Ho for every p € (0,00) and

o0

/nU (i, 2 = //w (i)l o) < oo (29)

0

On the space Ho((0, 00) X Aext) we are able to impose an inner product (-, ')?{D((O o) XA
by letting

AV Do = | [ VoV (pi) do) L

= [ WG, Vo, L

for U,V € Ho((0,00) x Aext). Correspondingly,

107G Mo iy = | [ [ 10501 dot) 2
0 A

Ulp, - 227
O/II (r I

From Theorem 2 we obtain the following result telling us that the wavelet trans-
form does not change the total energy.

1/2

Lemma 9. Let {¥,}, p € (0,00), be a wavelet. Suppose that U,V are of class
Ho. Then

| [0, 0 ), o)L =WV G0



As we have seen, WT is a transform form the one—parameter space Hg into the

two—parameter space Ho((0, 00) X Aext). But the transform WT is not surjective
on Ho((0, 00) X Aext) (note that Ho((0, 00) X Aext) contains unbounded elements).
That means that

W = (WT)(Ho) (31)
is a proper subspace of Hq((0,00) X Aext):
2% g HO((O, OO) X Aext)~

Therefore, one may ask the question of how to characterize W within the frame-
work of Ho((0,00) X Aext)-

For that purpose we consider the operator

P Ho ((0,00) x Text) = W (32)

defined by
T . dp .
PU)p-y) = K(pylpy)Ulpsy) dw(y)j, pE(0,00), y € Aext, (33)
0 A

where we have introduced the kernel

K(PIQQI | piy) = /Wp’;y’(x)‘pp;y(x) dw(z) = (Wp’;y’(')awp;y('))%n

First our purpose is to verify the following lemma.

Lemma 10. The operator P : Hq((0,00) x Aexi) = W defined by (31), (32) is

a projection operator.

Proof. Assume that H = 7 = (WT)(U) € W. Then it is not difficult to see that
for x € Aext

o0

P(H)(p;x) Z//K(p;l‘Iff;y)(WT)(U)(ff;y) dw(y)%a
=U(p; z)
= (WT)(U)(z).

Consequently, P(H)(:,-) = H(-,") for all H(-,-) € W.

Next we want to show that for all HL(-,-) € Wt we have P(H*(-,-)) = 0.
For that purpose, consider an element HL(-,-) of WL. Then, for all U € Hg we
have

(H (0 WD) ) 1 0y = 0 (34)



Now, for p € (0,00) and # € Aey;, we obtain under the special choice U = ¥, ()

0= (H" (), (WT) () () 3 (0,000 T)

= [ [ 00,0 ), (W) (70 () Wy () )
r . n do

Z//K(p;xlo;y)H (75y) dw(y)—

= P(TY) (:0)

In other words, P(H*(-,-)) = 0 for all HL(-,-) € WL. Therefore we get
P (#o((0,p) % Aext)) = W,
P(W*(,-) =0,
P? = P, as desired. O
W = (WT)(Ho) is characterized as follows:
Lemma 11. H € W if and only if the “consistency condition’

H(p"y') Z//K(p’;y’lp;r)H(P;r) dw(fv)%p
0 A
1s satisfied.
Obviously,
Ky l5)eW, p €(0,00),y € Acx,
K(5-1py) eW, p €(0,00),y € Aext,

l.e.:
5y 1 py) = Koy | py)
is the (uniquely determined) reproducing kernel in W.
Summarizing our results we therefore obtain the following theorem.

Theorem 6. Let H be an arbitrary element of Ho((0,00) X Aext). Then the
unique function Ug € Ho satisfying the property

I = Uttt 0,00y x Ty = I 1 = Ullggq (0,00) <7y
1s given by

Une) = [ [ Wal) i) dotn) (35)



Theorem 6 means that Uy defined above comes closest in the sense of the
“H((0,00) x Aext)—distance’ of its wavelet transform Ug to H assumes a mini-
mum. In analogy to the windowed Fourier theory we call Up the least-squares
approzimation to the desired potential U € Hq. Of course,, for H € W, Eq. (34)
reduces to the reconstruction formula. All aspects of least—squares approxima-

tion discussed earlier for the windowed Fourier transform remain valid in the
same way. The coefficients in Ho((0,00) x Aext) for reconstructing a potential
U € Hq are not unique. This can be readily developed from the following identity

U= O/A/ (p;y) + U (p,y)) dw()d/f

where U7 = (WT)(U) is a member of W and UL is an arbitrary member of W,

But our considerations enable us to formulate the following minimum norm
representation:

Theorem 7. For arbitrary U € Hg the function U = (WT)Y(U) € W is the
unqiue element in H((0, 00) X Aext) satisfying

||U||H((0,oo)xm) = rens ((incf)m ||HI|H ((0,00) X Aext) °

(WT)=1 (H)=U

8 Scale Discrete Wavelet Transform

Until now emphasis has been put on the whole scale interval. In what follows,
however, scale discrete wavelets will be discussed. We start from a strictly de-
creasing sequence {p;}, j € Z such that lim; ;o p; = 0 and lim;_,_ p; = oo.
For reasons of simplicity, we choose p; = 277, j € Z, throughout this paper.

Definition 9. Let o = ¢, be the generator of a scaling function (as defined
above). Then the piecewise continuous function Y : [0,00) — R is said to be
the Ho-generator of the mother wavelet kernel WP (of a scale discrete harmonic
wavelet) if it is admissible and satisfies, in addition, the difference equation

2 2
(5 (1) = (¢5 (t/2))" = (g (1), t€0,00) .
For ©P resp. 1P we introduce functions gojD resp. ¢JD in the canonical way
o7 (1) = D eg (1) = 3 (277),  te[0,00),
%’D(t):DJD%():%( ), t€0,00) .

Then, each function gij, resp. wjp, j € Z is admissible. This enables us to write
wjp = Dlep_l, j € 7 whenever pl is admissible. Correspondingly, for the Ho-
kernel LDJ-D, Jj € Z, generated by wf via

(@) (n) = ¢ (n),n € No,
we let WP = Dyl jeZ.



Definition 10. The subfamily {l[/jD}, j € 7 of the space Ho generated by WP

via (WjD)A(n) = 1/)]D(n), n=20,1,... s called a scale discrete harmonic wavelet.

The generator 2 : [0,00) — R and its dilates wJD = Dle/)OD satisfy the
following properties:
v (0)=0, je7z,
W7 (1) = (e (1) = (27 (1))?, jE€Z,t€[0,00),
J
D)+ (WP 1)) = (9741 (1), JE€Z, t€]0,00) . (36)
7j=0

It is natural to apply the operator DjD directly to the mother wavelet. In
connection with the ”shifting operator” Sy, this will lead us to the definition of
the kernel ¥;.,. More explicitly, we have

vl =DpPwy, jez, (37)
and
(Sy#P) (@) =D (x) = (2,y) =W, (z,9), (2,Y) € Acxt X Acr . (38)

Putting together (36) and (37) we therefore obtain for (2,y) € Aext X Aext,

(@) <|§|2y|>n+1 7 (5 0)

Definition 11. Let the Hq-kernel WP be a mother wavelet kernel corresponding
to a scaling function ®F = ®@,,. Then, the scale discrete wavelet transform at
scale j € 7. and position y € Acxy 15 defined by

7P, (2) = (5, DPUP) i

WP W) Gsy) = (U0, (Nuay U €Ho

It should be mentioned that each scale continuous wavelet {¥,}, p € (0, 0)
implies a scale discrete wavelet {LDJ-D}, J € Z by letting

(FP)(n)? = (#P41)" (n))? = (#P)"(n))?, n € No

where
DA 2_00 An2d_p
(@P)*(n)) —p/_(%( s
DA () = i /\n2d_p1/2
URECRIPNCADIE



Note that this construction leads to a partition of unity in the following sense

[e¢) +oo 00
J@R @ = 3 (@) ) = (@B) )" + () () =

for n € N.
Our investigations now enable us to reconstruct a potential U € Hqo from its
discrete wavelet transform as follows.

Theorem 8. (Reconstruction Formula). Any potential U € Hq can be approxi-
mated by its J-level scale discrete wavelet approrimation

Ur = [(0.08,)n, @8, () + Y (WP @), (doty) (39
in the sense that

Jim U = Usliae =0 -

Proof. Let U be a member of class Ho. From (35) it follows that

[ .08),08, (et + 3 [WT)PG5)07, ()

A
D D
/(U’QSJT-Fl;y)HOQSJ-I—l;y(.)dw(y) :
A
Letting J tend to infinity the result follows easily from Theorem 1. O
As an immediate consequence we obtain

Corollary 2. Let ¥ be a regular surface. Under the assumptions of Theorem 8
we have
lim sup |U(z)—Us(z)]=0 .

T=oo TEXext

8.1 Multiresolution

Next we come to the concept of multiresolution by means of scale discrete har-
monic wavelets. For U € Hy denote by RJ-D (band-pass filters), PjD (low-pass
filters), the convolution operators given by

RY(U)=wP «wP xU, U €Mt
PP(U) =P xd? xU, U €Mt
respectively. The scale spaces V]D and the detail spaces WJD are defined by
VP = PP (H,),
WP = R} (Ho),



respectively. The collection {VJD} of all spaces VJD, j € Z1is called multiresolution
analysis of Hg.

Loosely spoken, VJD contains all j-scale smooth functions of Hy. The notion
”detail space” means that WjD contains the ”detail” information needed to go
from an approximation at resolution j to an approximation at resolution j + 1.
To be more concrete, WJD denotes the space complementary to Vjp in

Vi Vi = VP + W)

Note that
J
i+ 2 WP =V
7=0

Any potential U € Hg can be decomposed in the following way: Starting
from PP (U) we have

PPalU) = PP + Y RP(U) .

The partial reconstruction R?_H(U) is nothing else than the difference of two
”smoothings” P})_I_] (U) — PP(U) at consecutive scales
R7(U) = PP (U) = PP(U) .

Moreover, in spectral language we have

(PP(U), Ha (o ))ao = (U, Hna(a; )30 ((27)" (1), (40)
(BP(U), Hot(5 )y = (U, Hat(ai ) oy ((FP) ().

The formulas (39) give (scale discrete) wavelet decomposition an interpretation
in terms of Fourier analysis by means of outer harmonics by explaining how the
frequency spectrum of a potential U € VJ-D is divided up between the space VjD_l
and WJ-D_ .

The multiresolution can be illustrated by the following scheme:

PP(U) PP(U) ... PP(U) PoLU) ... U
m m M M
vy c v C | R ¥ = Ho
|2 S + WP, o+ WP 4 = Ho
N> N> N> N>



8.2 Least—squares Approximation
For notational convenience, we set
N_1 =NgU{-1} .
Moreover, we let
po(n) = Yor(n), n € Mo, BP =Wy, VP = WP,
etc. Accordingly we have
RP = Ul x 0l = U WP « 0w,
Then it follows that

> (@) ) =1

n=-—1

The reconstruction formula (Theorem 3) may be rewritten as follows:
lim ||U—-Ujllg, =0, U € Ho,
J—=o00

where the J—level scale discrete wavelet approximation now reads in shorthand
notation as follows:

w—Z/M‘ 9, () duy) -

.7—_1A

As in the continuous case we can make use of the projection property in the
scale discrete case. We know already that (WT)D D Ho = Ho(No1 X Aext),
where Ho(N_1 x Aext) is the space of all functions U : (j;2) — U(j;2) with
U(j;+) € Ho for every j € N_; and

S TGIB, = /|U (i) 2 du(z) < oo .

j=-1 J_—lA

It is not hard to see that
WP = (WT)P (Ho) G Ho(No1 X Aexs).

Hence, we are able to define the projection operator PP : Ho(N_; x Aoy ) — WP

by
P Z/[\ Jaylja ) (Jay) (y)’
J==173
where
K Gl iio) = [ WR @) do(e) = 00,0000y, - ()

A

In similarity to results of the scale continuous case it can be deduced that PP is
a projection operator. Therefore we have the following characterization of WP:



Lemma 12. U(-,-) € W if and only if the consistency condition

(4;9) Z/R G5y 1 59U (G5 y) dw(y)

J—_lA

- Z (KPG3y 135U (3 )) 4,

j=-1
15 satisfied.
Summarizing our results we obtain the following theorem.

Theorem 9. Let H be an arbitrary element of Ho(N_1 X Aext). Then the unique
function F € Hq satifying the property

D
G = O Mo oo = g2 I C) = TP )t oxciom)

3 [t det

Moreover, we have Theorem ? 7. For arbitrary U € Hg the function Ue (WT)D (U) €
WP is the ungiue element in Ho(N_1 x Aext) satisfying

8.3 Fully Scale Discrete Wavelets

1s given by

||
ng

HH(N_1><Aext) HeHg(N_1 X Acxy) Il |/H(
(wr)P)y=1(H)=U

N_12X Acxt)

For j = 0,1,... let bfv_j, ¢t = 1,...,N; be the generating coefficients of the
approximate integration rules

/ Zb TF(y, ") +¢j(F), Fev,

A
corresponding to (prescribed) nodal systems {yivj, Cey yxj} C Aext such that

lim[e;(F)|=0, FeV;

1T

(i.e. the coefficients bfvj, j=1,...,N;, are supposed to be determined by an a
priori calculation using approximate mtegration interpolation, etc.

Assume that U is a potential of class Pot(® )(Aext) C Hg. Then the J-level
scale discrete wavelet approximation can be represented in fully discrete form as



follows:

Ny

U, = ZbivJU (yj“) (¢(2))D_ v, () +e <(<p(2) N

N i ,
= X 2w () () w0+ 2

j=—14i=1 Yi i

This leads us to the following result.

Theorem 10. Any potential U € Pot(Aext) can be approzimated in the form

. 5 1/2
A j=—11i=
Moreover,
hm sup Uz Z Zb Uly ( (2)>é N; ()| =0
Jiyi

j=—1i=1

for all subsets K of Aexy with dist(K, A) > 0.

Fast evaluation methods (tree algorithms and pyramid schemata) has been pre-

sented in Freeden (1999).

9 Examples

Now we are prepared to introduce some important examples of scaling functions
and corresponding wavelets. We distinguish two types of wavelets, namely non-
band-limited and band-limited wavelets. Since there are only a few conditions
for a function to be a generator of a scaling function, a large number of wavelet
examples may be listed. For the sake of brevity, however, we have to concentrate
on a few examples.

9.1 Non-band-limited Wavelets

All wavelets discussed in this subsection share the fact that their generators have
a global support.

Rational Wavelets: Rational wavelets are realized by the function ¢4 : [0, 00) =
R given by

50](t) = (1 +t)_sa te [0,00)
Indeed, ¢1(0) = 1, ¢1 is monotonously decreasing, 1 is continuously differ-
entiable on the interval [0,c0), and we have @1 (t) = O(|t|7'%), t — oo for



s = 1+e¢, &> 0. The (scale continuous) scaling function {®,},p € (0,00) is
given by

2

o+ 1 1 « nt r oy S
o) = Pn — - — ], (T, Aex XAex .
9 = D G Ty (Fm) (o) e e

It is easy to see that ¢1(t) = \/2?(1 + 75)_"”_]/2 so that the scale continuous
harmonic wavelets {¥,},p € (0,00), are obtained from 1,(n) = +/2spn(1 +
pn)~ =12 s> 1, n € Ny, whereas the scale discrete wavelets {LDJ-D}, Jj €7, are
generated by

WP )= (142797 )™ — (14 2790)72) " jeZnen, .

Exponential Wavelets. We choose ¢1(t) = e R > 0, t € [0,00). Then it
follows that ¢,(t) = e=f7* p € (0,00) and ¥, (t) = \/2ZRpe=F*, p € (0, 00).

Moreover,

D _ —277"'Rny2 _ ( —277Rny2 vz
7 = (e ) (e ) L JEZ,neENg .

9.2 Band-limited Wavelets

All wavelets discussed in this subsection are chosen in such a way that the
support of their generators is compact. As a consequence the resulting wavelets
are band-limited. A particular result is that the Shannon wavelets provides us
with an orthogonal multiresolution.

Shannon Wavelet. The generator of the Shannon scaling function is defined by

~[1fortel0,1)
ei(t) = {oforte [1,00) .

The scale continuous harmonic scaling function {@,}, p € (0, c0) is given via

_[1fornel0,p71)
#p(n) = {Oforn €lp™' ) .

A scale continuous wavelet does not make sense. However, a scale discrete wavelet
{LﬁjD}, Jj € 7, is available. More precisely,

n . +1
R

0 elsewhere.

But this means that the scale discrete multiresolution is orthogonal (i.e., Vj41 =
V; @ W; is an orthogonal sum for all j).

Modified Shannon Wavelet. The generator of the modified Shannon scaling func-
tion reads as follows

1 fort € [0,
e1(t) =< V/=Inz fort € [2,
0 fort € [1,00)

:)
1)



The scale continuous harmonic wavelets {¥,}, p € (0,00), are given by

0forne[0,1p7")

Yp(n) = q 1forne[ip~",p7")
0forn € [p~!, 00).

The scale discrete harmonic wavelets {LU]»D},j € 7, are obtainable via

0 for n € [0, QJ%)

(1= (in(2-in))?)""? forn € [271,2741 )
7P (n) = q ((In(27="n))? = (In(2-9n))2) """ for n € [27+11, 2)

—In(279"1n) forn € [27,2711)

0 for n € [27+1 00).

C(ubic) P(olynomial) Wavelet (CP-Wavelet). In order to have a higher intensity
of the smoothing effect than in the case of modified Shannon wavelets we intro-
duce a function ¢y : [0,00) = R in such a way that ¢1]j 1) coincides with the
uniquely determined cubic polynomial p = [0, 1] — [0, 1] with the properties:

p(0)=1,p(1)=0
p(0)=0,p(1)=0.
It is easy to see that these properties are fulfilled by
p(t) = (1—t)°(1+2t), te[0,1].
This leads us to a function ¢4 : [0, 00] — R given by

(=21 +2t)fort €]0,1
er(t) = {(() a )forte [1, 00).

Tt is clear that o1 is a monotonically decreasing function. The (scale continuous)
scaling function {®,}, p € (0, 00), is given by

— on)2 2on) for n -1

Scaling continuous and discrete wavelets are obtainable by obvious manipula-
tions.

10 Band-limited Runge—Walsh Wavelet Transform

Our final interest (see Theorem 5.5) is fully discrete wavelet approximation out-
side the real earths surface X' (cf. 5) by use of band-limited wavelets. The key-
stone is that when using band-limited wavelets, we do not need the wavelet
transform at all positions. It suffices to know the wavelet transform on a finite
set of linear functionals (i.e., function values or normal derivatives) for each scale
J. In other words, each J-level wavelet approximation (cf. Theorem 8) can be ex-
pressed exactly as a finite sum. The reason are approximate integration formulas
which will be discussed under the following (non-restrictive) assumptions:



(A1) The generator @f : [0,00) — R of a scale discrete scaling function satisfies
supp o =10,1] and P (1) = 0.

(A2) The generator ¢ : [0,00) — IR of the mother wavelet satisfies supp ¥ =
[0,2] and wOD(Q) =0.

Then 1t follows that

supp ¢ C [0,27],
supp v C [0,2711].

Hence, we have gof(?j) = '¢JD (27+1) = 0, j € Ny. It follows that

@ﬁy € Harm07___72j_1(2ext), (RS Eext; .7 = O; 1; BEEE)
U2, € Harm,_yiss 1 (So), ¥ € o, 5= 0,1,

10.1 Runge-Walsh Approximation

In what follows we want to show that a band-limited potential can be exactly
determined by band-limited harmonic wavelets. In conclusion, a constructive
Runge-Walsh approximation of any (non-band-limited) potential U can be estab-
lished by using exact wavelet approximation by means of band-limited wavelets.
Since the set of all finite linear combinations of harmonics when restricted to
Sexs is uniformly dense in the space Pot(o)(m), the space Hy o 1S a uni-
formly dense subset of Pot(%) (m), too. Written out in formulas this means
that

POt(O)(Eext) =H, E—H'HC(X) = span n=o,... (Hmj(a; )

| P
)l|'||c(2,:xt)
ext F=1,...,2n41 '

Text

Suppose now that there is known from a potential V' of class Pot(o)(Zext)
a set {v1,...,vm} of M values v;, i = 1,..., M corresponding to M points

x1,..., 25 in Yegr. Then an extended version of Helly’s theorem (cf. [25] ) tells
us that, corresponding to the potential V' € Pot(o)(m), there exists a member
U (i.e., a Runge-Walsh approximation) of class Hq such that Ulg_ is in an
(¢/2)- neigbourhood to V (understood in C(Zex)-topology) and U(z;) = v,
i = 1,...,M (note that we occasionally write Ug,...,00 instead of U to indi-
cate that all Harm-spaces generally contribute to U). Moreover, there exists
an element Up . m (i.e., a band-limited approximation to the Runge-Walsh
approximation) of class Harmgywm(m) such that U07~~~7m|m may be con-

sidered to be in (¢/2)-accuracy to Ulg— uniformly on Yey; and, in addition,
Us. m(xi) = U(x;) = v, i = 1,..., M. In other words, corresponding to the
potential V' € Pot(o)(Zext) there exists in g-accuracy on X a band-limited
potential in Mg, (namely Uy, m € Harmoy___ym(m)) consistent with the orig-
inal data (i.e., v; = U(x;) = Uy m(xi),i = 1,...,M). This is the reason
why we are interested below in wavelet approximations of potentials Ugy, ., of
class Harmowjm(m) uniformly on Y.t from a finite set of function values.




To be more specific, our strategy is to represent Uy . m € Harmg  ym(Xext) by
a J-level approximation (U, m)s (cf. (38)) with J chosen in such a way that
my =2/t —1>m (note that U, .. coincides with (U, . p)s uniformly on

Yext in the case of orthogonal Shannon wavelets).

10.2 Integration Methods

We want to express the J-level wavelet approximation (U )7 of Uy m(my >
m) ezxactly only by use of M values vy,...,vy corresponding to the points
z1,...,xpr. To this end we observe that

/ Vo, m ()P0, (-)dw(y)|a € Harme 1(A),
A
(WT)P (Uo, .m)(j;)|a € Harmg, _ ,(A), j=0,...,J.

Moreover, it is known that whenever F,G € Harmoy___ym(A), the product FG is
of class Harmg 2., (A).

Starting point for our intensions of exact integration in Harm-spaces are
so-called fundamental systems.

Definition 12. A set {z ... 23} M = (a+1)? of M points in Aey; is called
Harmg, .. 4- fundamental system in Aeyt if the matriz

H071(a;x{v]) Hgyl(a;miw)
ﬁ ﬁ (42)
Hasasi(osal) ... I3 Haag (052))
1s reqular.
Obviously,

Hoa(asa) . LY Hapay (e 277) Hoa(as2df) - Hoa(as2})
Hop(asad) . LR Hapar (e 277) Hapasr(a2") - Hapagr (o5 23])
KHarmo ..... a(zext)(x{v[’x{v[) KHarmo ..... a(m)(l‘{v[’x%)
= : : . (43)

Kitarmo, . o5om) (B3 217) -+ K, ﬂ(m)(m%al’%)

Thus, it is clear that the regularity of the Gram matrix (42) is equivalent to
the regularity of (41), and the property of {z} ... 2%} being a Harmg __,-
fundamental system is independent of the special choice of the basis of Harmg .~
harmonics.

The existence of fundamental systems as introduced above is guaranteed
by a well-known induction procedure described in [20]. The definition of fun-
damental systems immediately leads us to the following integration rules on
Harmg, . 2,-spaces.



Lemma 13. Let {y} ... ,y¥} C A, M = (2a + 1)? define a Harmg__24-
fundamental system on A. Furthermore, suppose that Py 4, Qq, ..o € Harmg  4(A).

Then
M

(PO,M,a;QO,M,a)’Hn = ZanPO,M,a(yyjy)QO,m,a(yrjy) (44)

n=1
holds for all weights ay, ..., apy satisfying

M

z : -~ M M -
a"IXHaqu AAAAA 2a(yi ﬂyr ):/ IXHarmU

A

£t ermo. Wiy Yr ) = | e
Proof. The product Py . ,Qq, . is a member of class Harm07,,,72a(A). The for-

mula (43), in fact, is constructed in such a way that it is exact for all members
of Harmyg . 24(A). |

Lemma 14. Let {zM ... 2¥}, M = (a+1)? be a Harmg,__,-fundamental sys-
tem in the sense of Definition 12. Furthermore, suppose that Py 4 and Qo 4
are members of Harmg  q(Xext). Then

holds for all weights arf’j, Ceey aﬂj, n=20,...,a, j=1,...,2n+ 1 satisfying the
linear equations

M
Zafﬂ'Hk,i(a;xf,”) =0nxdii, k=0,...,a,i=1,...,2k+1.

r=1

Proof. Applying the Parseval identity we obtain

a 2n+1
(Po,..,a,Qo,...a) %o = Z Z (Po,.. oy He i(a; ) o (Qo,.. oy Hi i(a;-))a,
k=0 i=1
a 2k+41 a 2n+41
= > (Poas Hiil@5 o D D (Qoyyas Ho (@5 ) a0 s
k=0 i=1 n=0 j=1
a 2k+1 a 2n+1 M
=3 (Poa Hiils e D D at ¥ (Qo,as Hayl@; ) o Hi i 27)
k=0 i=1 n=0 j=1 r=1
a 2n+41

M
= > a2 (Qo, ar Ha (0 ), P, al}).

O

In order to reduce the number of integration weights in our integration rules we
formulate



Theorem 11. Under the assumptions of Lemma 1/, the integration formula

M
(PorarQo dn =3 Py, (45)

r=1

holds for all weights ay, ..., ap satisfying the linear equations

ZarKHarmo AAAAA a(If\JJ Ii\l) = Z Z (Qo,...a, Hn j(a; )3 Hn i val)’ i=1...

n=0 j=1

for » = 1,..., M. Thus, by applying Lemma 14 the integration rule (44) holds
if a1,. .., apr satisfy the linear equations (in matrix form)

Hoi(a;z?) ... Hoq(a;23f) aq (Qo,....as Ho1(; ) ne

Hapapi(;2ll) o Hosapr (@5 237) ) \am (Qo,....as Ha2a41(25 )30
Multiplication with the adjoint matrix yields the desired result. O

It should be mentioned that on the one hand side the number of integration
weights is reduced, but on the other hand side the integration weights now
depend on Qq,.. 4.

10.3 Fully Discrete Runge-Walsh-Wavelet Approximation

The results on exact integration in Harm-spaces developed in Section 5.2 now
enable us to develop a constructive version of the Runge-Walsh theorem by
means of a J-level wavelet approximation provided that the potential U we are
looking for is assumed (as proposed in our introduction) to be a member of
class 7{0|m (note that 7{0|mis a uniformly dense subset of Pot(n)(m)). Let

the generators o, ¥f : [0,00) — R satisfy the assumptions (A1), (AQ)'(‘)f the
beginning of the last section. Then we obtain from Theorem 3.12 in connection

with Lemma 5.2 and Theorem 5.4.

Theorem 12. Let {zM ... 2¥} C o, M = (m + 1)? be a Harmg -
fundamental system on Xe. Furthermore, assume that there are known the
data Uowwm(a:fw) =, 1 =1,...,M. Then, under the assumption of band-
limited wavelets, the fully discrete J-level wavelet approzimation of Uy .. m reads
as follows:
Variant a:

M J M
(U, m)a(x) =D alvg+ > > blu,

s=1 j=0s=1



holds for each ¥ € Yext, where the weights af, ..., a%, satisfy the linear equations
Z agKHarmu ..... m(H)(f"fM; Tiw) = ((155))(2)(1:, wa)) p=1,..,M,
and the weights bjl', Ce bgu, Jj=0,...,J satisfy
M
Z bgKHarmo,m,m(H)(l'fwa zy') = (l‘ij)(z)(I) 2f),i=1,..., M.
s=1
Variant b:

Mo M J M
o whale) = 38380000 () + 35BS a0, (o)
n=1 s=1 ] e

holds for each ¥ € Yoy, where the weights ?1(1)’”, .. .,&(])‘,’In, n=1,..., My satisfy
the linear equations
M
~0,n 1~ M M\ _ sD(, Mo My :_
Zas nAHarmo’m’m(Aext)(Ii y T ) - 450 (yn Oami ), i=1,.. ~;M;
s=1
the weights a{’n,...,ag";, Jj=0,...,J,n=1,..., M; satisfy
M
e M M D, M; My :
2 Kitaem,. e (e 2)) = 0P 2l i =0, M
s=1

and le', . .,bguj, Jj=0,...,J satisfy equations

M;
I M. M. - M .
P e rers (N D /[\Ham0 ..... sy (o) W5 5 @)dw (), i =1,
n=1 A
(46)
provided that {yiwj, . ,y%j} C A, Mj = (2m; +1)? , m; = 27t — 1, define

Harmg . 2m, —fundamental systems on A, j =0,...,J.

It should be pointed out that a great number of linear systems must be solved.
But if we look carefully at the linear systems we realize that we are always con-
fronted with the same coefficient matrix. Having inverted the matrix once, all
weights for numerical integration can be obtained by a matrix-vector multipli-
cation and stored elsewhere in an a priori step for computation. In addition,
it should be mentioned that the solution of the linear systems determining the
weights of the reconstruction step (45) can be avoided completely if we place
the wavelet coefficients for each detail step j = 0,...,J on a special longitude-
latitude grid on the sphere A. The corresponding set of integration weights for
reconstruction purposes is explicitly available without solving any linear system
(for more details the reader is referred to [1]).

. M;



10.4 Non-band-limited Approximation

The wavelet representations (Theorem 12) of a band-limited potential from a
given finite set of linear functionals admits a variety of applications. The list
includes the wavelet approrimation (Uo,m,m)J of the solution of the Dirichlet
problem)(EDP)

UD,...,m|E S HarmO,...7m (Zext) 1U07...7m|2 =F
under the assumption that the M boundary data
vi=Uo, m@EM)=FM),i=1,...,M

are known. According to our construction (Us,... m)s is the J-level wavelet ap-
proximation of the band-limited potential Uy, ... m which itself may be under-
stood, e.g., as the m-th truncated orthogonal expansion of the Runge-Walsh
approximation U € #H. Of course, the integration rules leading to the exact rep-
resentation of (Uy,... m)s are no longer exact when applied to Uy. But they may
be regarded still as approximate rules. In this respect it is worth mentioning that
the error between a potential U € H,(Aey), s > 1, and its m-th truncated or-
thogonal expansion in terms of Harmaharmonics can be estimated by analogous

arguments as presented in Section 2.4.

Theorem 13. Let Uy ,, be the m-th order truncation of a potential U &€
Hs(Zext), s > 1. Furthermore assume that {¥ ... 2} C Z, M = (m+1)? de-
fines a Harmg ., —fundamental system on X. Then, for any G € Harmoy___ym(Zext),

M C M
M
(U, Gy = D_arU(a})] < —— (ZI%I) U1,
r=1 r=1
where C' is a constant depending on the value s and aq,...,an are the weights

of the integration rule.

Proof. We use the triangle inequality and the fact that (U — Uy, m, G)u, = 0,
(note, that {zM . 2MYisa Harmg, _,—fundamental system). m|
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