Tl Rheinland-Pfalzische
Technische Universitat

P Kaiserslautern
Landau

Advanced Methods for Model-Driven Safety
Analysis and Verification

Vom Fachbereich Elektrotechnik und Informationstechnik
der Rheinland-Pfilzische Technische Universitidt Kaiserslautern-Landau
zur Verleihung des akademischen Grades

Doktor der Ingenieurswissenschaften (Dr.-Ing.)
genehmigte Dissertation von

Endri Kaja

D 386

Datum der Einreichung: 26.06.2024

Datum der miindlichen Priifung: 29.10.2024

Dekan des Fachbereichs: Prof. Dr. Daniel Gorges

Vorsitzender der Priifungskommission: Prof. Dr. Gerhard Fohler

Gutachter: Prof. Dr. Wolfgang Kunz and
Prof. Dr. Wolfgang Ecker

Abstract

The semiconductor industry is experiencing rapid growth, which is driving the need for inno-
vative development methodologies, particularly in the digital design domain. In addition to
ensuring correct behavior, designers must guarantee that the chips operate at predefined levels
of reliability when used in automotive products. Safety considerations have become an inte-
gral part of the development process following the adoption of the ISO 26262 safety standard
for automotive safety-critical systems. ISO 26262 ensures that these systems behave accord-
ing to required safety levels by mitigating the risk of hazardous malfunctions. The standard
recommends fault injection to verify and analyze safety-critical systems; however, this process
often proves to be laborious and error-prone. To combat these challenges, advanced and auto-
mated methods are required. Accordingly, this thesis automates the safety verification process,
utilizing model-driven architecture principles to enhance productivity, quality, and reliability.

The thesis proposes the generation of mixed-granularity models to represent designs, where
gate-level models represent safety-critical components and Register-Transfer Level (RTL) rep-
resents the rest of the design. The mixed-granularity model is achieved through model transfor-
mation, and formal equivalence checks are applied during this process to ensure the correctness
of the transformation. This approach also enables fault injection directly into the design, re-
ducing the overhead caused by the use of additional fault injection tools. The absence of bugs
of this process is guaranteed by equivalence check. Furthermore, the ability to inject faults
at the design level has enabled the development of a novel fault emulation framework utiliz-
ing FPGAs. This proposed framework scales well to large hardware designs and has been
successfully applied to several RISC-V based CPU subsystems with a runtime advantage over
traditional simulation-based fault injection frameworks. Moreover, an automated flow based on
formal methods has been developed that verifies the functionality of design hardening mecha-
nisms and their integration into processor designs. This flow delivers high-quality verification
results without requiring white-box design knowledge. Furthermore, the thesis introduces an
automated and efficient approach for generating Software-Based Self Tests (SBST) tailored for
RISC-V processor cores. This method involves testing processor cores through instructions,
providing a viable alternative to hardware-centric solutions. Additionally, the SBST is com-
bined with a novel Program Flow Checking (PFC) technique to achieve high fault coverage and
high fault detection rates that comply with ISO 26262 requirements. The proposed PFC is a
mixed hardware/software solution that detects faults by monitoring program flow execution.

The proposed solutions have proven to be effective in numerous industrial designs. The
achieved results demonstrate that automated approaches significantly reduce development costs
and are less susceptible to errors. Through a holistic generation flow, multiple safety verification
techniques have been explored, encompassing methods based on simulation, emulation, and
formal verification.

iii

Acknowledgements

The work conducted in this thesis was carried out at Infineon Technologies AG, Germany in col-
laboration with the EDA chair at Rheinland-Pfélzische Technische Universitidt Kaiserslautern-
Landau, Germany.

I am profoundly grateful to Prof. Dr. Wolfgang Ecker and Prof. Dr. Wolfgang Kunz for
their mentorship and for providing the opportunity to purse this doctoral work. I would also like
to thank Alexander Rath, Jiirgen Kaspar and Roland Schwenk for giving me the opportunity to
conduct my research at their departments.

First and foremost, my deepest appreciation is directed to Prof. Dr. Wolfgang Ecker, whose
guidance and support were instrumental throughout my PhD journey. This research work would
not be possible without the new ideas that were born during our discussions. I am happy to
remain in his research group and further collaborating on novel topics.

My sincerest thanks also go to Prof. Dr. Wolfgang Kunz and Prof. Dr. Dominik Stoffel for
their valuable support and insightful recommendations throughout my doctoral research. Their
continuous feedback and dedication to reviewing this thesis have been invaluable.

I would like to extend my heartfelt thanks to Dr. Keerthikumara Devarajegowda, under
whose guidance my Infineon journey started during my master’s studies. I learned a lot from
him and his continued support played a significant role in the initial stages of my doctoral
research.

I want to thank my PhD colleagues, Nicolas Gerlin and Daniela Sanchez Lopera, for all the
time we spent together discussing, planning and finalizing our research.

I wish to thank all my previous students (now colleagues), Mounika Vaddeboina, Luis Rivas,
Monideep Bora, Bihan Zhao, and Jad Al Halabi, for their contribution to this thesis. I am
indebted to Stephanie Ecker for helping me with the German summary.

I am grateful to all my other colleagues at Infineon for their assistance and encouragement,
with a special mention to Ares, Azam, Bryan, Igli, Robert, and Sebastian for their support.

The doctoral research requires not only technical support but also personal support. There-
fore, I would like to express my deepest gratitude to Merita for supporting, listening and pushing
me to finalize my PhD journey. Also, i would like to acknowledge my good friend Arbér for
his continuous motivation.

Lastly, but not least, I hold immense gratitude for my family—my brother Rajner, and my
parents Aférdita and Ilir—who have been a constant source of motivation and support through-
out every phase of my PhD journey.

Contents

Introduction
1.1 Safety-Critical Designs
1.2 Problem Statement and Challenges
1.3 Requirements e
1.4 Envisioned Approach
1.5 State-of-the-Art
1.5.1 Simulation-Based Fault Injection Techniques
1.5.2 Emulation-Based Fault Injection Techniques
1.5.3 Formal-Based Fault Injection Techniques
1.5.4 Software-Based Self Test Techniques
1.6 Thesis Overview e
1.7 Publication List

Model-driven Code Generation Techniques

2.1 Metamodeling

2.2 Metamodel-Based Code Generation

2.3 Model Transformation

2.4 Model Driven Architecture
24.1 MDA Applied to RTL Generation
2.4.2 MDA Applied to Properties Generation and 4-eyes Principle

Functional Safety

3.1 FaultConcepts e
3.1.1 FaultModeling
3.1.2 FaultTestability
3.1.3 FaultCollapsing

3.2 Automotive Safety Standard L L oL
3.2.1 Automotive Safety Integrity Level
3.22 FaultClassification
3.2.3 Hardware Fault Coverage Metrics

3.3 Standard-Compliant Safety Design
3.3.1 Safety Mechanisms based on Information Redundancy
3.3.2 Safety Mechanisms based on Spatial Redundancy

3.4 Standard-Compliant Safety Verification
3.4.1 Overview of the Fault Injection Process

vii

O N N B W

14
15
16
17

21
21
23
24
25
26
27

3.4.2 Fault Injection Attributes,
3.4.3 Fault Injection Techniques
344 Formal Verification

4 A Generic Approach for Fault Handling

4.1 The Generic Fault Handling
4.1.1 Specifications layero
4.1.2 Modellayer
4.1.3 Viewlayer

4.2 Generic Documentation of Fault Injection Campaigns
4.2.1 Overview of the Documentation Generation Framework
4.2.2 Fault Injection Documentation Generation

Fault Simulation on Mixed Granularity RTL Models
5.1 Overall Flow
5.2 Background on Model Transformation

5.3 Generation of Fine-grained Models
5.3.1 Netlist-to-ToD

5.3.2 Fine-GrainedMoD oo
5.4 Fault Injection through Model Transformation
5.4.1 Faultlnjectors
542 FaultCollapsing
5.4.3 Insertion of Faultinjectors

5.5 Equivalence Checking and Property Checking

Model-Driven FPGA-Based Fault Emulation
6.1 Overview of the Fault Emulator Architecture
6.2 FaultController s

6.2.1 FaultSequencer.
6.2.2 FaultDecoder.
6.3 Postprocessing Block o
6.4 Data Harvesting Logic
6.5 Fault Emulation Optimizations
6.5.1 Memory Optimization
6.5.2 Time Optimization v

Safety Verification of Hardened Processor Cores
7.1 Background

7.1.1 Safety Transformation Flow
7.1.2 Complete Functional Verification of Processor Cores
7.1.3 RISC-V CPU Metamodel
7.2 Overview of Safety Verification of Processor Cores
7.3 Exhaustive Processor Fault Injection
7.3.1 Verification Computation Model
7.3.2 Fault Model Definition

7.4 Formal-Based Fault Propagation Analysis

51
52
53
55
60
62
62
63

65
66
68
69
69
73
73
74
75
75
77

79
80
81
82
83
83
85
86
86
87

7.4.1 Verification Computation Model 98
7.4.2 Fault Model Definition 100

8 An Automated and Effective Approach for SBST Generation Targeting RISC-V

CPUs 101
8.1 Overview of the SBST 102
8.2 Test Pattern Generation e 103
8.2.1 DUTand Properties 104

8.2.2 Test Pattern Generation Flow 106

8.3 Program Flow Checking 107
83.1 PFChardware. 108

8.3.2 Faultdetectionflow L. 108

9 Experimental Results and Discussions 111
9.1 Fine-grained RTL Models Performance 111
9.1.1 Experimental Setup, 111

9.1.2 Performance Evaluation 112

9.13 Application 114

9.1.4 Discussions and Observations 114

9.2 Analysis and Performance of Fault Emulator 115
9.2.1 Experimental Setup 115

9.2.2 Hardware Utilization, 115

9.2.3 Performance Evaluation of the Fault Emulator 118

9.2.4 Performance Evaluation of the "On-the-Fly" Emulation Technique . . . 119

9.2.5 Emulation-based Fault Propagation Analysis 119

9.2.6 Discussions and Observations 120

9.3 Case study: Statistical-based Fault Propagation Analysis 121
9.3.1 Experimental Setup L o 121

9.3.2 CPU Workloads for Fault Propagation Analysis 121

9.3.3 Fault Propagation Analysis 122

9.4 Analysis of Processor Safety Verification. 123
9.4.1 Experimental Setup 123

9.4.2 Processor Hardening Verification 124

9.4.3 Processor Fault Propagation Analysis 125

9.4.4 Discussions and Observations 128

9.5 Analysis of the Automated SBST Generation 129
9.5.1 Experimental Setup 129

9.52 SBSTresults 129

10 Summary of Contributions 131
11 Deutsche Zusammenfassung 135

Bibliography 139

Chapter 1

Introduction

The technological breakthroughs that emerged in the mid-20th century gave birth to one of the
most influential sectors in contemporary society, namely, the semiconductor industry. These
technological advances have not only revolutionized contemporary technology but have also
laid the cornerstone for the digital era. The profound influence of the semiconductor indus-
try has enabled numerous governments to enact legislation aimed at increasing investments in
this field. According to McKinsey’s projections [10], the worldwide semiconductor industry
is expected to reach a market valuation of one trillion dollars by the year 2030. This pro-
jected growth is anticipated to impact various sectors, encompassing domains like consumer
electronics, automotive, financial services, and many others. In the present era, the majority of
electronic components are designed and engineered using a so called System-on-Chip (SoC)
design flow. The approach includes the holistic development of comprehensive systems, inte-
grating numerous components. This rapid growth necessitates the development of increasingly
complex digital design solutions. As an illustration, today’s microprocessors may comprise
billions of transistors, underlining the complex nature of these technological advancements.

30,00% 29.7%

25,00% 24,2%
« 20,00%
<
[
o
S
5 15,00%
o
>
g 10,6% 11,0%
9 10,00%
7,4% 7.1%
- I I
0,00%
<1M 1M < 10M 10M < 500M 500M < 1B 1B < 10B >10B

Gates of Logic and Datapath Excluding Memories

Figure 1.1: IC/ASIC Design Sizes [7]

In 2022, the Wilson Research Group conducted an extensive survey focusing on gate counts

within Application Specific Integrated Circuits (ASICs) [7], as depicted in Figure 1.1. Remark-
ably, the findings reveal that approximately 36% of ASIC projects exceed 10 million gates,
while approximately 7% involve ASICs with 10 billion gates or more. The research [7] study
also illustrates the increasing presence of Artificial Intelligence (Al) accelerators and RISC-V
based processors within ASICs developed in 2022. To provide a clearer perspective, it reveals
that 32% of ASICs now integrate at least one Al accelerator (a notable increase from 27% in
2020). Additionally, approximately 30% of ASICs now feature a RISC-V processor (compared
to 23% in 2020).

The rapid and exponential advancement of technologies over the past two decades encom-
passing Al accelerators, the RISC-V ecosystem, the Internet-of-Things (IoT), Cyber-Physical
Systems, Smart Systems, and numerous other innovations has propelled a complex development
process. This complex process requires not only smart and automated digital design techniques
but at the same time necessitates the application of sophisticated techniques to ensure their
correctness. Despite the advancements in semiconductor industry, the process of verification
continues to pose a significant challenge, acting as a bottleneck hindering design productiv-
ity and compressing time-to-market schedules. This challenge has been widely acknowledged
within the industry. Notably, in 2007, the number of design engineers significantly outnumbered
verification engineers (about twice as much), whereas, in 2022, approximately 15 years later,
these two groups are nearly at parity, with verification engineers holding a slight advantage in
numbers, as reported by Wilson Research Group [8] and illustrated in Figure 1.2.

12

10
4
2
0

2007 2014 2022
Mean Peak Number of Engineers on ASIC Projects

(o]

Design Projects
o

m Design Engineers m Verification Engineers

Figure 1.2: Mean Peak Number of Engineers per IC/ASIC Project [8]

This thesis aims to overcome the fundamental verification challenges, with a specific focus
on the safety-critical domain. Therefore, it seeks to provide solutions and methodologies to
enhance the reliability, accuracy, and performance of verification processes within the safety-
critical context.

1.1. SAFETY-CRITICAL DESIGNS

1.1 Safety-Critical Designs

The rise in design size, as depicted in Figure 1.1, is just a part of the increasing complexity puz-
zle. Another major factor contributing to the growing complexity in IC/ASIC design and veri-
fication is the emergence of additional layers of design prerequisites. These new requirements
go beyond design’s functionality and include elements like safety and security. The primary
focus of this thesis revolves around safety considerations, which are important in the context of
SoC design. Numerous SoCs find application in safety-critical domains, encompassing sectors
like automotive, aerospace, healthcare, financial systems, and more. In these environments,
the priority is placed on developing systems or products that prioritize safety above all else.
These specialized systems are commonly referred to as safety-critical designs, reflecting their
critical role in protecting human lives and ensuring the integrity of sensitive operations. Wilson
Research Group measures that 44% of ASIC projects have incorporated safety-critical features
into their designs [7]. These projects have adhered to different safety standards, as shown in
Figure 1.3. Particularly, ISO26262, the automotive safety standard, holds significant impor-
tance and is widely applied in various automotive-related SoCs. This standard has an important
role in shaping the techniques developed in this thesis.

DO-254 - Avionics
1SO26262 - Automotive
IEC61508 - Industrial
IEC61511 - Process Industry
IEC61513 - Nuclear
IEC60601 - Medical
EN50129 - Railway

1SO25119 - Agriculture & Forestry

MIL-STD-882 - Military

Other 1

0% 10% 20% 30% 40% 50% 60% 70%
Safety Critical Design Projects

EASIC

Figure 1.3: Safety-critical development standard used on IC/ASIC project [7]

In safety-critical designs, precautionary measures like safety mechanisms are implemented
to protect digital designs against unexpected failures that may arise from faults. These mech-
anisms serve the purpose of identifying and potentially correcting the effects of such faults.
Given the potential catastrophic consequences of a safety-critical design failure, it becomes vi-
tal to follow a careful design process, undergo thorough verification, and strictly adhere to the
relevant safety standards.

1.2. PROBLEM STATEMENT AND CHALLENGES

1.2 Problem Statement and Challenges

The increasing complexity of modern designs, coupled with stringent safety standards, creates
new challenges in ensuring the reliability of systems. According to [6], in the year 2022, just
24% of the projects were successful in the first attempt, also known as "first silicon success".
This implies that the remaining 76% of the projects required 2 or more tapeouts, resulting in
a higher cost of wafers and masks. Safety-related design flaws accounted for 5-11% of to-
tal respins [6]. Indeed, the development of robust safety verification techniques is essential
to prevent any safety-related errors to escape to the very late development phases. While the
complexity of design accounts for a significant challenge in both the design and verification
processes, it is important to note that the safety verification process is inherently cumbersome
and presents multiple challenges, aside from design complexity. ISO26262 guidelines recom-
mends fault injection as to verify safety-critical designs, yet this process is challenging and
time-intensive. Several of the challenges associated with the verification of safety-critical de-
signs encompass the following factors:

C 1: Informal Specifications

« Safety requirements and specifications are typically written in natural language or
in a non-formalized way. This leads to ambiguity, confusion and disagreements
between different engineers involved in the development process such as the concept
engineer, design engineer and verification engineer.

C 2: Human Errors

« Mistakes or flaws within the system can carry substantial safety consequences.
Given that the verification process and data analysis are typically human-driven,
the inherent potential for human error exists. This may result in overlooking errors
during the verification phase.

C 3: Changing Design Requirements

« Safety-critical designs often undergo evolving design requirements, prompting the
need for design modifications. These changes may need adjustments to the existing
verification workflows or the introduction of additional verification and analysis
steps.

C 4: Compliance to Safety Standards

« Itis a considerable challenge to adhere to various safety standards with changing re-
quirements and guidelines. Safety-critical designs encompass multiple components,
demanding a rigorous verification process to ensure compliance with the chosen
standard. The task of satisfying every requirement outlined in these standards can
be a demanding task.

C 5: Verification Requirements and Efforts

« The verification of complex safety-critical designs requires thoroughness, which can
be limited by resources and the level of expertise. Consequently, safety verification
adopts an iterative strategy, encompassing a range of techniques like analysis, simu-
lation, testing, and validation. Therefore a big challenge is faced in terms of efforts.

4

1.3. REQUIREMENTS

C 6: Limited accuracy

« Safety verification can be conducted across various levels of design abstraction.
When evaluating a safety-critical system, it is necessary to consider various levels
of abstraction, ranging from the overall requirements of the system to the detailed
aspects of its implementation, such as transistor or gate-level specifics. However,
every level of abstraction usually brings its own set of assumptions, simplifications,
and estimations, which could limit the accuracy of the verification process.

C 7: Time and Cost Constraints

« Numerous safety verification methods demand a considerable duration to complete,
primarily due to the level of design abstraction at which they are executed, resulting
in potential project deadline misses. Furthermore, the requirement for licenses and
specialized tools creates a significant obstacle in complying with the predetermined
budget.

1.3 Requirements

The automotive sector is expected to have 20% market share of the total semiconductor in-
dustry by the end of this decade [10]. Considering this impact, this thesis aims to address
the challenges encountered in safety verification, especially in the automotive domain, through
the creation of a model-driven framework designed to automatically execute safety verification
tasks. Given the complex nature of these challenges, it becomes mandatory to create a precise
and well-defined set of requirements capable of mitigating the challenges associated with safety
verification. It is imperative to adhere to the requirements listed in the following to create the
automated framework:

R 1: Formalization

« Safety verification specifications and requirements shall be clear and unambiguous.
These specifications shall be captured via formal models that define the expected
behavior of the safety verification technique.

R 2: Safety Standards Compliance

« Safety verification technique shall adhere to the relevant safety standard such as
[SO26262. According to the standard, fault injection is mandatory to evaluate
safety-critical levels and formal verification shall also be deployed to verify safety-
critical components.

R 3: Automation

« The process of safety verification shall be automated to the maximum extent possi-
ble to minimize human intervention. Automating the flow enhances the reliability,
efficiency, and effectiveness of the safety verification process, thereby reducing the
need for manual efforts.

R 4: Reusability and Adaptability

1.3. REQUIREMENTS

The safety verification flow shall be designed to be reusable and adaptable to chang-
ing design requirements. An automated flow that is well-defined can effectively
handle modifications to safety-critical designs. This includes performing an im-
pact analysis and re-verification, as needed, to ensure that the verification process
remains thorough and reliable.

R 5: Extensibility and Flexibility

The safety verification framework shall be designed to be extensible and flexible to
accommodate changing requirements and designs. This will enable a flawless inte-
gration of the verification process into existing workflows and tools. Furthermore,
this will allow for the incorporation of multiple verification techniques, including
simulation, emulation, and formal verification, to ensure the reliability and effec-
tiveness of the verification process.

R 6: Correctness

The automated safety verification framework shall be designed to be correct by con-
struction, meaning that the framework should be developed in a way that prevents
the introduction of any bugs or defects that could impact the quality of the verifica-
tion process.

R 7: Data Collection and Analysis

The safety verification framework shall provide clear procedures for the collection
and analysis of safety-related data during both verification and operation. This will
enable the identification and classification of the effects of various faults on the
design’s behavior, which is essential for ensuring a comprehensive and effective
safety verification process.

R 8: Structured Documentation

Safety verification parameters and results shall be clearly and precisely documented
in a structured manner to ensure compliance with safety standards. This structured
documentation is necessary to establish traceability and maintain transparency be-
tween the safety requirements and the corresponding verification activities.

R 9: Resource Scalability

The safety verification process shall utilize scalable resources to ensure that the ver-
ification process can adapt to dynamic changes, while also ensuring the availability
of necessary hardware and software resources. Furthermore, the safety verification
process must be designed to comply with the budget constraints of the project.

R 10: Accuracy and Reliability

The safety verification process shall be accurate, reliable, and effective on vari-
ous levels of abstraction of the system. The results obtained from the verification
process should be precise and dependable, such that risks can be identified and mit-
igated early in the development process, leading to cost reduction.

R 11: Performance

1.4. ENVISIONED APPROACH

« Safety verification shall be fast. Fast performance is crucial for ensuring an efficient
and effective safety verification process. It is further essential that safety verifi-
cation is executed during the analysis step. A high-performance verification flow
effectively addresses safety challenges while accommodating design scalability and
timing constraints, ultimately leading to improved safety results.

1.4 Envisioned Approach

Safety verification is a comprehensive process that requires strict adherence to certain safety
requirements to detect and even correct any potential faults that could jeopardize the system.
In response to the challenges presented previously, this thesis takes a proactive approach to
meet the mentioned requirements, while addressing the presented challenges. The thesis adopts
a model-driven methodology, providing automated safety verification solutions across various
verification techniques, including simulation, emulation, and formal verification. It is worth
noting that all the safety verification methods developed in this thesis align with the fault injec-
tion principles outlined in ISO26262. Figure 1.4 illustrates the envisioned approach for safety
verification that is addressed in this thesis.

Bug-free transformation
/ Equivalence "\

__ Check /
RTL Synthesis GL Transformation Mixed Granularity
Netlist RTL models
—]
Insertion of
Stimuli Fault Injectors
into the Model FIo
RTL with Fault working

i correctl
Equivalence y

Check
Bug-free Fl insertion

Injectors

Simulator/emulator
independent analysis

—_—
= Simulation/ Fault identified Automated S?-QED
[ctivation| | Emulation s Model
Self Test pp—
Fault
: Formal activation/
Fault Handling - constraint
Proof
Model
Fault o :)
Strobe Analysis > ° Fa_ult classmcathn + Fault analysis upper boungarles
L, > Statisti Failure propagation » Design hardening verification
selection | | (Statistics) analysis :
Y * Find redundancy

Figure 1.4: Envisioned approach

The proposed methodology incorporates a novel approach, leveraging mixed granularity
representation for the Design-under-Test (DUT) to streamline fault injection process. In this

7

1.4. ENVISIONED APPROACH

scheme, specific design modules targeted for fault injection are depicted at the gate-level gran-
ularity, while the rest of the design is kept in its original Register-Transfer Level (RTL) repre-
sentation, which remains suitable and accurate for fault propagation analysis. Traditionally, cre-
ating RTL design models featuring various gate-level granularity modules is a time-consuming
process and prone to errors. To mitigate these challenges, the RTL generation framework,
MetaRTL, is integrated into the fault simulation flow. The work introduced in this thesis in-
cludes an extension of the existing RTL generation flow by enabling the generation of RTL
code at gate-level granularity. MetaRTL is composed of three distinct layers. The specifica-
tions are formalized and captured through a metamodel, where the model layer, an instance of
the metamodel, describes the design independently of the target language. This formalization
via the model fulfills requirement R1.

Subsequently, synthesis is performed on the generated RTL to generate the gate-level netlist
description of the design. Through a series of transformations, the netlist is reconverted into
design models. Each input and output of the gates of the netlist remains visible in the RTL
model. Leveraging the MetaRTL framework, RTL models with gate-level granularity are gen-
erated, focusing on the component subject to fault injection, while the remainder of the design
retains its original RTL granularity. Fault injection on RTL models at gate-level granularity is
sufficiently accurate in terms of injected fault models and at the same time speeds up the fault
simulation time, thereby meeting requirements R10 and R11. The process of generating RTL
models with mixed granularity is fully automated and adaptable to different design variants,
aligning with requirements R3 and R4. Following the generation of mixed granularity RTL
models, an equivalence check is performed between the original RTL and the mixed version, an
essential step to ensure the integrity of the transformation process, thereby ensuring correctness
as outlined in requirement R6.

Subsequent stages involve the automated transformation of the mixed granularity design
model to incorporate fault injectors, enabling the injection of various fault models into the de-
sign. The RTL generation framework is employed once more to generate mixed RTL models,
including fault injectors, and a second equivalence check is performed, this time with the con-
straint that fault injectors do not introduce any faults via a wrapper. This is a necessary step
to check that model transformation has not introduced any bugs, addressing again requirement
R6.

The RTL models, now equipped with fault injectors, are compatible with various open-
source and commercial simulation tools, thus fulfilling the resource scalability requirement R9.
Moreover, this thesis introduces a novel fault emulation architecture, enhancing fault injection
performance while also providing a platform characterized by extensibility and flexibility. This
allows the designer to assess a wide range of dependability elements in the initial stages of
designs using both simulation and emulation based techniques. As a result, both requirements
RS and R11 are effectively addressed.

The development of the Fault Handling Model enables to automatically generate diverse
testbenches, each tailored to perform various fault injection campaigns, addressing again re-
quirement R3. Within this model, specific faults are activated according to the chosen fault
injection campaign, and the user can select the design strobes (signals) to be analyzed. These
testbenches are included within the simulation/emulation framework, and afterwards, a com-
prehensive analysis is performed to evaluate fault effects. During the fault analysis, structured
documentation is generated, offering comprehensive information of faults effects, thereby sat-

8

1.5. STATE-OF-THE-ART

isfying requirements R7 and RS.

Additionally, this thesis introduces a novel formal-based approach based in the S?-QED
model, employed to verify the efficacy of design hardening through various safety mechanisms.
When performing the technique, it is necessary to activate and constrain the faults according
to specifications of safety mechanism. The formal-based technique not only establishes up-
per boundaries for fault analysis but also identifies potential redundancies within the design,
addressing again requirement RS5.

Lastly, an automated Software-based Self Test (SBST) has been developed in the scope of
this thesis. The SBST takes advantage of formal methods to generate accurate test patterns
that provide a high test coverage. Furthermore, the technique is combined with Program Flow
Checking (PFC) such that the fault detection rate is aligned with different ASILs from the ISO
26262 standard. The process is fully automated and fulfills various requirements such as R1,
R2, R3, R4, RS, R10.

The combination of fault injection processes with diverse safety verification techniques
aligns with the recommendations of 1SO26262, successfully meeting requirement R2.

1.5 State-of-the-Art

Considerable research efforts have been dedicated to safety verification, with a particular em-
phasis on fault injection techniques and formal-based approaches for the verification of safety-
critical designs. This section provides an overview of state-of-the-art methodologies, starting
with simulation and emulation-driven fault-injection techniques and concluding with formal-
based methods and SBST.

1.5.1 Simulation-Based Fault Injection Techniques

Fault simulation has traditionally been conducted through two primary methods: the modifi-
cation of the RTL code or the utilization of the built-in commands provided by the simulator
[136]. Below, an overview of the most related works in this field is provided.

Fault simulation via insertion of fault injectors

Fault simulation tools had their origins in the mid-20th century, but it was during the 1990s that
they underwent substantial advancements, particularly in fault simulation techniques and tool
capabilities. The most famous tools from this era that layed the backbone of many later fault
simulation tools can be considered MEFISTO [73] and FERRARI [85].

The fault injection process of MEFISTO involves the introduction of faults into VHDL
models through the utilization of specialized fault injectors, which function as probes or sabo-
teurs attached to VHDL signals. The fault injection campaign comprises three distinct phases:
a setup phase responsible for generating the executable model and control signals, a simulation
phase, and a data processing phase. It is important to note that this tool is exclusively applicable
to VHDL models.

FERRARI is a real-time fault injection tool designed with specific objectives. It possesses
the capability to inject both temporary and permanent faults, making it suitable for evaluating

9

1.5. STATE-OF-THE-ART

the effectiveness of concurrent error detection and correction techniques. Additionally, FER-
RARI can perform fault injection directly on object code. However, it is essential to note that
the tool’s coverage depends entirely on the chosen fault models. Furthermore, FERRARI is
limited in its ability to inject faults into support logic circuitry, such as memory access control
and clock circuitry.

A decade later, significant improvements were done to the VHDL-based fault injection tech-
niques by Baraza et al. [26, 27]. The proposed fault injection techniques encompass the capa-
bility to inject both permanent and transient fault models. Fault injection is achieved through
automated methods employing mutants and saboteurs within the VFIT tool. This tool reduces
the temporal overhead in a large scale compared to the older tools. While this approach offers
significant advantages in terms of controllability and observability, it is worth noting that it is
confined to injecting faults exclusively at the RTL, which corresponds to VHDL code represen-
tations.

Differentiation from related work: The simulation-based fault injection technique pre-
sented in this thesis shares certain similarities with prior works, particularly in the aspect
of inserting fault injectors into the design. However, this thesis introduces a novel model-based
methodology for inserting fault injectors into the design, all without the need for direct modifi-
cations to the RTL representation. Additionally, the entire flow of this thesis is characterized by
full automation and is not constrained to VHDL and at the same time provides fault injection
on RTL models at gate-level granularity, representing a notable differentiation from previous
methodologies.

Fault simulation via modification of the simulator tool

Many state of the art fault injection methodologies involve direct modifications to the simulator.
These modifications include alterations to the simulator’s internal architecture, enabling the
injection of a diverse range of fault models.

Lee et al. [95] introduce a fault injection method known as SystemC Kernel-based Fault In-
jection (SyFI). This method involves the modification of the SystemC simulator kernel to enable
the injection of various fault models at the SystemC level, which describes the hardware com-
ponents. SyFI’s operation is divided into three distinct phases: setup, execution, and analysis.
The authors of this study applied their approach to inject both permanent and transient faults
into a processor core based on the MIPS architecture, showcasing its adaptability to different
system configurations and fault types.

Ferrareto et al. [61] introduce an automated, non-intrusive fault injection framework that
relies on QEMU, an emulator designed for various microprocessor architectures. This frame-
work facilitates the injection of faults into the processor by modifying data structures within
QEMU to replicate the fault’s behavior. It accommodates various fault types, including stuck-at
faults, timing faults, and bit-flips, and has been tested on both x86 and ARM processors. Al-
though this approach offers a rapid simulation workflow for CPU designs, further assessments
and evaluations are required to provide a comprehensive understanding of its capabilities.

A methodology for injecting faults into microarchitectural simulators is introduced by [84].
The authors have extended the MARSS and Gem5 simulators to include fault injection capa-
bilities, referred to as MaFIN and GeFIN, respectively. They have implemented a Fault Mask
Generator capable of generating random fault masks for different fault types, including bit-

10

1.5. STATE-OF-THE-ART

flips, permanent, and intermittent faults. An Injection Campaign Controller is responsible for
processing these masks and sending injection requests to the Injector Dispatcher, a module
that directly interfaces with the simulators. Experimental evaluations were conducted on both
x86 and ARM processors. Similarly, GemFI[108] modifies the Gem5 simulator by introducing
additional functionalities to threads to enable the modification of signal run-values.

Differentiation from related work: In contrast to the approach presented in this thesis,
prior research primarily emphasizes the modifications of the simulator’s internal structure.
However, these approaches are restricted to processor fault injection and have certain accu-
racy limitations in comparison to cycle-accurate fault injection. The fault injection technique
introduced in this thesis is not bound to processor fault injection, and at the same time offers
great accuracy by conducting fault injection on RTL models with gate-level granularity.

Fault simulation on mixed abstraction levels

Concurrent fault simulation on mixed abstraction levels has been researched since the 1980s.
Several research works have explored concurrent simulation techniques that combine gate-level
and RTL fault simulation. [63] and [97] introduce such techniques, showcasing significant
runtime improvements.

Several works, including those by authors in [70, 44, 126], have presented RTL fault model-
ing techniques that utilize a gate-level representation of the design. The objective of these RTL
fault modeling approaches is to create a fault list for the design that accurately represents the
stuck-at fault models found at the gate-level. These techniques aim to enhance fault simulation
runtime efficiency. However, it’s essential to note that they rely on a set of assumptions and
estimations to achieve this improvement in efficiency. Espinosa et al. [58] focus on the correla-
tion between RTL and Instruction Set Simulator fault injection. This work demonstrates highly
accurate results for permanent fault models by analyzing information derived from executed
applications on a microcontroller and approximating fault manifestation probabilities.

Bagbaba et al. [25] introduce a method for the representation of gate-level Single Event
Transient (SET) faults through the utilization of multiple Single Event Upset (SEU) faults at
the RTL. This technique involves the identification of logic paths associated with each SET
within the fan-in logic of flip-flops. The aim is to acquire and subsequently reduce the sets
of flip-flops targeted for multiple SEU injections at the RTL level. To assess the impact of
these faults, a propagation analysis is conducted employing a formal approach. Experimental
outcomes demonstrate a significant reduction in fault spaces, ranging from tens to hundreds of
times.

In the scope of fault injection on Virtual Prototypes (VPs), the state of the art and challenges
are discussed in [106]. Mueller-Gritschneder et al. [105] use VPs to prepare a processor for
fault injection experimentation. The VP serves as a valuable tool to configure the CPU into
a fault injection-ready state. Following this preparation phase, the information obtained from
the VP is leveraged to initiate a comprehensive RTL simulation of the same processor where
the faults will be injected. Tabacaru [125] presents different VP-based fault injection methods
by abstracting the gate level information to VP abstraction level. The result showcase 100%
correlation between the gate level abstraction and VP. Meanwhile, Cho et al. [41] provide
a quantitative evaluation of different soft error injection techniques into VP, RTL and gate-
level. The authors have identified disparities in fault-injection outcomes among VPs and RTL

11

1.5. STATE-OF-THE-ART

and gate-level models. These discrepancies highlight that error injection techniques at higher
abstraction levels may not offer the same degree of precision and accuracy as their counterparts
at lower abstraction levels.

Differentiation from related work: Previous studies have highlighted the benefits of con-
ducting fault injection at different abstraction levels, including gate-level, RTL, and VPs. Nev-
ertheless, many of these studies are constrained to a single simulator, and specific fault models
tailored to their respective platforms. Furthermore, most of the studies do not cover all faults.
In contrast, the research in this thesis introduces a model-driven fault injection approach that
operates independently of the simulator, offering a fully automated and low-effort solution, ad-
dressing potential limitations found in previous works.

1.5.2 Emulation-Based Fault Injection Techniques

Emulation-based fault injection techniques have emerged to accelerate the fault injection pro-
cess focusing mostly on Field Programmable Gate Arrays (FPGAs)-based fault emulation. Ex-
tensive research has been conducted in this domain, and the subsequent section provides an
overview of the most related studies to the fault emulator introduced in this thesis.

Fault emulation based on FPGA reconfiguration

FPGA reconfiguration refers to the procedure of altering the FPGA’s configuration subsequent
to its initial programming [31]. Static FPGA reconfiguration involves the modification of the
FPGA'’s configuration while it is actively processing data. This entails temporarily halting its
operation, loading a new configuration, and subsequently resuming its normal functioning. On
the other hand, dynamic FPGA reconfiguration, often termed partial reconfiguration, permits
the on-the-fly modification of a specific portion of the FPGA’s configuration while the remain-
der of the FPGA design continues to operate without interruption. This approach allows for
the real-time adjustment of FPGA sections while ensuring uninterrupted functionality in other
areas of the device [9]. This FPGA feature has been utilized to inject faults into the design from
several research works.

One of the initial approaches towards fault emulation based on FPGA reconfiguration was
presented by [19] but suffered from scalability issues due to incremental synthesis that cased
large overheads for large designs. Therefore, recent reseach in this field, as described in [114],
leverage Intellectual Property (IP) cores like the AMD Xilinx [132] Soft Error Mitigation Core
to inject faults and assess the fault tolerance of designs.

Studies by [96, 65] explore fault emulation techniques leveraging partial FPGA reconfig-
uration. These research works involve the injection of faults by leveraging partial reconfigu-
ration capabilities offered by FPGAs through the Internal Configuration Access Port (ICAP).
The injection of faults is executed by the Microblaze embedded microprocessor, utilizing the
HW-ICAP processor core. These frameworks are primarily focused on the introduction of
SEU faults specifically into FPGA resources, including Look-Up Tables (LUTs), flip-flops, and
Block-RAM components.

Di Carlo et al. [52] employ dynamic partial reconfiguration of FPGA devices, focusing on
emulating SEU events within the configuration memory of Xilinx SRAM-based FPGAs. This
emulation leverages the Essential Bits technology. A specialized Fault Generator module is

12

1.5. STATE-OF-THE-ART

responsible for reading the bitstream configuration file and introducing faults into the design in
a pseudo-random manner, considering both the timing and location aspects of the faults. Zhang
et al. [135]introduce an alternative method for injecting persistent faults into FPGAs, achieved
through the modification of Block RAM (BRAM) configurations.

A fault emulation technique based on run-time reconfiguration (RTR), involving the rewrit-
ing of the FPGA’s configuration memory, is described in [16, 17]. In this method, faults are
physically induced within the FPGA to emulate faults that may occur in the system’s model.
This emulation process is composed of two distinct phases: first, faults are injected at the spec-
ified time, and then they are removed once they cease to exist. The host computer takes charge
of the prototyping board via JBits, managing tasks such as reading, analyzing, and generating
files for emulating faults. Experiments conducted with three different microcontrollers revealed
a primary limitation related to communication bottlenecks, as the host computer oversees the
run-time reconfiguration process.

Differentiation from related work: Prior studies have underscored the enhanced perfor-
mance achieved in the entire fault injection process through the utilization of FPGA-based
emulators. Contrary to this thesis, the previous studies primarily rely on vendor-specific IPs
and technologies, making them non-generic for use on diverse fault emulation platforms. Ad-
ditionally, many of these prior works would benefit from extensions to accommodate a broader
range of fault models, with particular emphasis on addressing stuck-at faults.

Fault emulation based on the insertion of fault injectors

Fault emulation through the insertion of fault injectors presents an alternative to FPGA recon-
figuration techniques and increase the controllability of the fault emulation campaigns.

Lopez-Ongil et al. [102] have introduced an autonomous fault emulation framework based
on FPGAs, designed to inject SEU faults with the assistance of a host computer. This fault
emulation framework encompasses several key components, including an emulation controller,
a fault injection module, a fault classification module, a testbench application module, an on-
board RAM, and an interface module for communication with the host computer. The fault
injection process involves the replacement of flip-flops with mutants and saboteurs, employing
various replacement techniques. Notably, experimental outcomes indicate that this system can
achieve the execution of over one million faults per second. Entrena et al. [57] extends the
framework by proposing a multilevel fault emulation technique. The design, which is target for
fault injection, is represented using two independent and identical models at both the gate-level
and RTL. This framework allows for switching between these two models during fault emula-
tion. The key advantage of this approach is that the gate-level model offers higher accuracy in
fault injection campaigns, enabling a precise assessment of error sensitivity.

Grinschgl et al. [68] introduce an emulation-based fault injection method with a particular
emphasis on automating fault injector placement. This technique involves parsing the VHDL
description of the design to extract essential signal-related data, which is then stored in Ex-
tensible Markup Language (XML) files. Through a Graphical User Interface (GUI), the user
selects the specific signal or port where the saboteur needs to be inserted. Subsequently, the
fault injectors are routed to the fault injection controller to apply the appropriate stimuli. Sau
et al. [115] present a versatile FPGA-based fault injection tool, known as SCHIFI, designed to
introduce soft errors within the memory hierarchy of a specified system. The approach involves

13

1.5. STATE-OF-THE-ART

the inclusion of saboteurs to selectively flip bits in the memory data where desired, and a Finite
State Machine (FSM) is employed to control and manage the injection process meticulously.

Differentiation from related work: The prior studies have showcased a great degree of con-
trollability in fault emulation campaigns, yet they are encumbered by limitations such as being
confined to a single RTL language, like VHDL, restricting fault injection solely to memory cells,
or constraining themselves to specific fault models. In contrast, the fault emulator developed in
this thesis operates without any of these aforementioned constraints.

1.5.3 Formal-Based Fault Injection Techniques

The significant drawback of fault simulation and emulation lies in its restricted fault coverage,
as it can only identify faults that have been explicitly modeled. Furthermore, the sensitization of
faults is dependent on the input stimuli, which means that certain faults may remain undetected,
posing the risk of potential design failures. Therefore, exhaustive fault injection techniques have
been developed to verify safety-critical designs.

Seshia et al. [120] have introduced a soft error resilience technique that utilizes exhaustive
fault injection. This fault injection technique is supplementary to an existing functional verifica-
tion process. It involves precomputing a comprehensive list of all design latches and translates
the SEU formalism into n FSMs, where n corresponds to the number of latches. Initially, a
single run of a formal verification tool is executed to assess the design’s functional correctness
under fault-free conditions. Subsequently, n tool runs are conducted, with one injection target-
ing each latch per run. If a run fails, it signifies that the corresponding latch requires protection
against faults; otherwise, it does not. In a similar context, Krautz et al. [91] have described a
formal fault injection technique that evaluates the efficacy of fault-tolerant designs by conduct-
ing exhaustive fault injection on fortified designs and quantifying their fault coverage.

Sauer et al. [116, 117] have introduced a SAT-based Automatic Test Pattern Generation
(ATPG) methodology, which provides exhaustive tests for detecting delay faults through sensi-
tizing all paths within the design. Diverging from alternative methods, such as the identification
of k-longest testable paths [112], the authors consider both upper and lower path length limits,
resulting in an extensive set of tests encompassing all sensitizable paths. In line with [33] and
[107], the objective of these approaches is to enhance fault coverage by employing multiple
test patterns. Conversely, Lingappan et al. [100] generate test patterns at the RTL level itself,
achieving substantial fault coverage.

In [23] and [46], the authors employ a combination of fault simulation, ATPG, and formal
techniques to enhance the reliability of fault analysis. Initially, the ATPG tool is employed to
generate the test pattern. Subsequently, fault simulation is executed to validate the design’s
functionality under fault conditions. Formal techniques come into play for the identification of
untestable and uncovered faults. Finally, the results stemming from formal methods and fault
simulation (augmented by ATPG) are subjected to a comparative analysis.

In the study by Fujita et al. [15], the authors introduce an ATPG methodology specifically
designed for sequential designs. Their approach initiates by extracting a FSM coupled with a
datapath model from the RTL code to acquire output and polynomial functions. This method-
ology includes two distinct fault types, namely bit failure and condition failure, which are sub-
sequently modeled. The process proceeds with a propagation and justification phase similar
to time frame expansion. Ultimately, the high-level test pattern is converted into a gate-level

14

1.5. STATE-OF-THE-ART

pattern, and fault simulation is performed on a variety of benchmark circuits.

Differentiation from related work: In contrast to the approach introduced in this thesis,
the previously mentioned techniques do not adhere to a model-driven workflow. Instead, they
rely on design-specific white-box information, which may require a high manual effort when
transitioning to a different design architecture. Furthermore, for approach presented in this
thesis, there is no requirement for test pattern generation; instead, a formal tool issues specific
instructions to identify faults. Notably, the technique proposed in this thesis can be applied
both; before and after the design undergoes hardening processes.

1.5.4 Software-Based Self Test Techniques

Design-for-Test (DFT) infrastructures often result in significant overhead in terms of area and
performance, which has led to the emergence of various low-cost alternatives, such as SBST
techniques. These SBST techniques focus on CPU-based designs and are advantageous in their
ability to provide acceptable fault coverage with minimal penalties, while also providing at-
speed testing capabilities. In the following sections, the related approaches are described that
are most relevant to the SBST technique developed in this thesis.

Chen et al. [39, 40] propose an SBST methodology that utilizes a software tester directly
embedded in the CPU memory to perform structural testing. The tester generates pseudo-
random patterns that can be easily modified to achieve a higher fault coverage due to software
flexibility. The technique initially generates structural test patterns for the components of the
CPU rather than considering the entire CPU, and then utilizes instructions at the processor level
to test these specific components. Consequently, the random pattern generation is combined
with a structural analysis of the components to achieve a high fault coverage. In contrast to
random patterns, Paschalis et al. [110] presented a deterministic methodology for SBST. The
authors considered the functional modules of the processor datapath and generated test routines
by utilizing existing arithmetic operations. In the case of multiplier-accumulator testing, the
test routines were generated based on repetitive patterns. The authors demonstrated that the
same test routine of repetitive patterns can achieve high fault coverage for any standard array
multiplier.

Kranitis et al. [90] propose a high-level SBST methodology to test embedded processors
with the main objective of achieving a high structural fault coverage with low test development
cost. The authors adopted a divide-and-conquer approach by developing component-based
tests. The test development process is based on the processor’s instruction set architecture
(ISA) and divided into three main phases. Firstly, the identification of processor components
and operations takes place. Secondly, similar processor components and operations are classi-
fied. Finally, test routines are developed by reusing a test library that focuses on the processor’s
ISA. The methodology was applied to two different RISC-based processors, achieving high
fault coverage of 95% and 92%, respectively. While most SBST methodologies focus on the
programmer-visible components of processors, such as the Arithmetic-Logic Unit (ALU), Gi-
zopoulos et al. [66] shifted their attention to testing the pipelining logic of the processors,
such as forwarding logic. This methodology extends existing SBST approaches by incorpo-
rating extra test patterns to target hazard detection mechanisms, forwarding mechanisms, and
address-related components.

Riefert et al. [113] and Faller et al. [60] employ formal methods to generate test programs

15

1.6. THESIS OVERVIEW

for mid-sized processors. To check the design’s structural testability, a SAT-solver was uti-
lized. Additionally, the Bounded Model Checking (BMC) approach, using Craig Interpolation
prover (CIP) [94], was employed to check the design’s functional testability and generate test
sequences. Furthermore, Riefert et al. [113] introduced a Validity Checker Module (VCM) that
provides a set of functional constraints for the SBST generation. The VCM is a circuit specified
using a Hardware Description Language (HDL) and it is combined with the DUT, embedding
functional test constraints on the DUT itself. Faller et al. [60] extended the VCM to enable its
reusability for various processor families. These methodologies were proven to achieve high
fault coverage and improve the testability of the designs.

A more comprehensive and a detailed description of various SBST state-of-the-art method-
ologies can be found at [111].

Differentiation from related work: The SBST methodology developed in this thesis dis-
tinguishes itself from related works by introducing a fully automated approach that follows a
structural model-driven strategy, thereby eliminating the need for manual effort and extensive
knowledge of the processor, as required in [90, 66, 39, 40]. Like the SBST methodologies pre-
sented in [113, 60, 90, 110], the proposed approach is deterministic, which ensures that the test
effectiveness does not depend on the quality of pseudo-random generated tests. The method-
ologies presented by Riefert at al. [113] and Faller et al. [60] are the most similar to the
SBST methodology that is developed in this thesis. However, there are some distinct differences
between the methodologies. Specifically, in [113, 60], the SBST constraints are expressed us-
ing HDL and embedded in the design, while the proposed methodology uses property-based
constraints when generating test patterns, resulting in a reduced hardware footprint. Addition-
ally, most of the existing methodologies only allow memory content observation after the test
program execution, thus enabling fault detection only in the later stage. Conversely, the PFC
module used in this thesis enables on-the-fly fault detection, meaning that the fault is immedi-
ately detected once it propagates to the selected outputs, without the need for external memory
units.

1.6 Thesis Overview

This thesis contributes to the goal of advancing safety verification techniques within the context
of complex safety-critical digital designs. The thesis includes in the following nine chapters and
the organizational structure of these chapters is outlined as follows:

Chapter 2 offers a comprehensive overview of existing model-driven code generation tech-
niques. This chapter introduces key concepts related to metamodeling and model transforma-
tion. The chapter concludes with the definition of the Model-driven Architecture (MDA) and
its practical applications in RTL and properties generation.

Chapter 3 serves as an important foundation for this thesis, providing in-depth insights into
functional safety. It describes fundamental fault concepts, delves into common safety standards,
and illustrates the principles of safety design and verification in alignment with these standards.

Chapter 4 presents a generic approach to fault handling, encompassing two primary parts.
The first part describes the model-based fault handling framework, offering a range of algo-
rithms for fault handling. The second part provides an exhaustive exploration of the documen-
tation generation framework.

16

1.7. PUBLICATION LIST

Chapter 5 discusses the fault simulation process applied to mixed granularity models. It
offers a comprehensive description of the entire flow, covering aspects such as model transfor-
mation. The chapter also includes illustrative snapshots of the generated code and concludes
with the verification of the flow itself, accomplished through equivalence checking and property
checking.

Chapter 6 introduces the novel architecture of the model-driven fault emulation framework
in detail. It provides a comprehensive explanation of the hardware components constituting the
architecture, all of which facilitate the fault emulation process.

Chapter 7 presents a detailed description of the safety verification technique applied to
hardened processor cores. This technique draws from the S>-QED verification model and is
automatically generated via the MetaProp property generation framework. Additionally, this
chapter provides a description of a formal-based fault propagation analysis.

Chapter 8 provides a detailed description of the SBST generation technique, which has
been combined with the PFC approach. The chapter starts with the explanation of the test
pattern generation procedure employing formal methods, followed by an a short description on
how fault simulation is utilized for the purposes of validation and fault dropping. Afterwards,
the chapter describes the PFC implementation and displays how it is employed to detect faults.

Chapter 9 presents results and offers a demonstration of the applicability and effectiveness
of the proposed safety verification techniques. It encompasses various parts, including the
effectiveness of fault simulation on mixed granularity models, the performance enhancements
realized through the fault emulator, statistical fault propagation analysis applied to different
RISC-V variants, the verification of hardened processors, and the effectiveness of the automated
SBST methodology.

Chapter 10 concludes this thesis, providing a summary of the main contributions and in-
sights gained from this research.

1.7 Publication List

A large part of this thesis, including the developed techniques as well as the snippets of related
work, has already been published in the publications listed chronologically as follows:

1. V. B. BAVACHE, Z. HAN, H. HARTLIEB, E. KAJA, K. DEVARAJEGOWDA AND W.
ECKER, Automated SoC Hardening with Model Transformation. In /7th Biennial Baltic
Electronics Conference (BEC), Tallinn, Estonia, 2020, pp. 1-6, (see also [30]).

2. E. KAJA, N. O. LEON, M. WERNER, B. ANDREI-TABACARU, K. DEVARAJEGOWDA
AND W. ECKER, Extending Verilator to Enable Fault Simulation. In MBMYV 2021; 24th
Workshop, online, 2021, pp. 1-6, (see also [83]).

3. E. KAJA, N. GERLIN, M. VADDEBOINA, L. RIVAS, S. PREBECK, Z. HAN, K. DE-
VARAJEGOWDA, AND W. ECKER Towards Fault Simulation at Mixed Register-Transfer
/ Gate-Level Models. In IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), Athens, Greece, 2021, pp. 1-6, (see also
[79]) .

4. K. DEVARAJEGOWDA, E. KAJA, S. PREBECK AND W. ECKER, ISA Modeling with
Trace Notation for Context Free Property Generation. In 58th ACM/IEEE Design Au-
tomation Conference (DAC), San Francisco, CA, USA, 2021, pp. 619-624, (see also

17

1.7. PUBLICATION LIST

10.

11.

12.

13.

14.

15.

[47]).

E. KAJA, N. GERLIN, M. BORA, K. DEVARAJEGOWDA, D. STOFFEL, W. KUNZ AND
W. ECKER, MetaFS: Model-driven Fault Simulation Framework. In IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
Austin, TX, USA, 2022, pp. 1-4, (see also [74]).

E. KAJA, N. GERLIN, M. BORA, G. RUTSCH, K. DEVARAJEGOWDA, D. STOFFEL,
W. KuNz AND W. ECKER, Fast and Accurate Model-Driven FPGA-based System-
Level Fault Emulation. In IFIP/IEEE 30th International Conference on Very Large Scale
Integration (VLSI-SoC), Patras, Greece, 2022, pp. 1-6, (see also [76])

N. GERLIN, E. KAJA, M. BORA, K. DEVARAJEGOWDA, D. STOFFEL, W. KUNZ AND
W. ECKER, Design of a Tightly-Coupled RISC-V Physical Memory Protection Unit for
Online Error Detection. In IFIP/IEEE 30th International Conference on Very Large Scale
Integration (VLSI-SoC), Patras, Greece, 2022, pp. 1-6, (see also [64]).

. E. KAJA, N. GERLIN, D. STOFFEL, W. KUNZ AND W. ECKER, Automated Thread

Evaluation of Various RISC-V Alternatives using Random Instruction Generators. In
proceedings of the Design and Verification Conference and Exhibition (DVCon), San
Jose, California, United States, 2023, (see also [78]).

N. GERLIN, E. KAJA, F. VARGAS, L. LU, A. BREITENREITER, J. CHEN, M. UL-
BRICHT, M. GOMEZ, A. TAHIRAGA, S. PREBECK, E. JENTZSCH, M. KRSTIC AND W.
ECKER, Bits, Flips and RISCs. In 26th International Symposium on Design and Diag-
nostics of Electronic Circuits and Systems (DDECS), Tallinn, Estonia, 2023, pp. 140-149,
(see also [64]).

M. VADDEBOINA, E. KAJA, A. YILMAZER, S. PREBECK AND W. ECKER, Parallel
Golomb-Rice Decoder with 8-bit Unary Decoding for Weight Compression in TinyML
Applications. In 26th Euromicro Conference Series on Digital System Design (DSD),
Durres, Albania, 2023, pp. 1-6, (see also [129]).

E. KAJA, N. GERLIN, R. KUNZELMANN, K. DEVARAJEGOWDA AND W. ECKER,
Modelling Peripheral Designs using FSM-like Notation for Complete Property Set Gen-
eration. In IEEE 16th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip, Singapore, 2023, pp. 508-515, (see also [77]).

E. KAJA, N. GERLIN, U. YUN, J. AL HALABI, S. PREBECK, D. STOFFEL, W. KUNZ
AND W. ECKER, A Statistical and Model-Driven Approach for Comprehensive Fault
Propagation Analysis of RISC-V Variants. In proceedings of the Design and Verification
Conference and Exhibition (DVCon), San Jose, California, United States, 2024.

E. KAJA, N. GERLIN, B. ZHAO, D. SANCHEZ LOPERA, J. AL HALABI, A. SHER
KHAN, S. PREBECK, D. STOFFEL, W. KUNZ AND W. ECKER, An Automated Ex-
haustive Fault Analysis Technique guided by Processor Formal Verification Methods. In
25th International Symposium on Quality Electronic Design, San Francisco, California,
United States, 2024, pp. 1-8, (see also [81]).

D. SANCHEZ LOPERA, R. KUNZELMANN, E. KAJA AND W. ECKER, Fake Timer: An
Engine for Accurate Timing Estimation in Register Transfer Level Designs. In 25¢th In-
ternational Symposium on Quality Electronic Design, San Francisco, California, United
States, 2024, pp. 1-8, (see also [101]).

M. VADDEBOINA, E. KAJA, A. YILMAZER, U. GHOSH AND W. ECKER, PaGoRi:A
Scalable Parallel Golomb-Rice Decoder. In 27th International Symposium on Design &

18

16.

17.

1.7. PUBLICATION LIST

Diagnostics of Electronic Circuits & Systems (DDECS), Kielce, Poland, 2024, pp. 67-72,
(see also [130]).

E. KAJA, N. GERLIN, J. AL HALABI, A. TAHIRAGA, S. PREBECK, D. STOFFEL, W.
KUNZ AND W. ECKER, An Automated and Effective Approach for SBST Generation
Targeting RISC-V CPUs. In IEEE International Symposium on Defect and Fault Tol-
erance in VLSI and Nanotechnology Systems (DFT), Oxford, United Kingdom, 2024,
[ACCEPTED] .

E. KAJA, N. GERLIN, A. TAHIRAGA, J. AL HALABI, S. PREBECK, D. STOFFEL,
W. KuNz AND W. ECKER, Special Session: A mixed simulation-, emulation-, and
formal-based fault analysis methodology for RISC-V. In IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Oxford,
United Kingdom, 2024, [ACCEPTED] .

19

1.7. PUBLICATION LIST

20

Chapter 2

Model-driven Code Generation
Techniques

Throughout the years, models have been utilized in various technical disciplines, such as engi-
neering, mathematics and science. A model is a formal mathematical construct that represents
the system’s characteristics, structure and behaviour. The famous statistician George E.P. Box
stated that "all models are wrong, but some are useful" [35]. It is practically infeasible to
accurately model systems due to the complexity, uncertainty and randomness of the reality.
Nevertheless, models have proven themselves to be useful approximations that simplify the
formalization, characterization, abstraction and visualization of the system.

In software engineering domain, models are considered as centric artifacts during the soft-
ware development process. This concept is widely known as Model Driven Engineering (MDE).
MDE promotes and facilitates the reuse of the models, thus enabling the automation of repet-
itive tasks. By using models as blueprints, engineers can streamline their development flow
and generate code from models, thus reducing the semantic gap between abstract requirements
and final target code. As a result, productivity is enhanced while shortening development time.
Furthermore, MDE enables early system verification and validation, allowing developers to find
potential errors/problems before the actual implementation by simulating, analyzing and testing
models.

MDE-based approaches encompass a range of techniques including metamodeling, model
transformation and code generation. The aforementioned techniques are prevalent in safety
verification and analysis methods developed in this thesis, therefore this chapter gives a general
description of the fundamental concepts for reason of self-containment. In the following, a
basic explanation of metamodeling concepts is given. The chapter concludes with MDA and its
applications.

2.1 Metamodeling

Metamodeling is an essential element in MDE that provides means to define the structure,
semantics and the relationships of the models. Metamodels establish the guidelines and con-
straints that model artifacts must follow, ensuring their adherence to predefined rules and en-
abling their organization and classification [54]. By employing metamodeling, MDE enhances
the generation of executable code from models utilizing formalized specifications, hence, im-

21

2.1. METAMODELING

proving the efficiency and effectiveness of the development process. The term "meta” means
"after" or "beyond" implying that metamodeling literally represents modeling models. In con-
trast to a model, a metamodel serves as an abstract depiction or representation of the model
itself [67]. As a result, there is a hierarchical relation between the system (e.g., hardware cir-
cuit), model and metamodel, i.e., the system is an instance of the model, and the model is an
instance of the metamodel. Figure 2.1 displays this hierarchical relation by selecting Unified
Modeling Language (UML) class diagrams to represent the metamodel, as they offer the capa-
bility to encompass attributes and establish relationships at both the class and instance levels
through logical connections such as aggregation, composition, association.

i MetaBlinker
; Name: string[1]

rootNode

—> Metamodel I[l..*]

I Counter
i Name: string[1]
! MaxValue: int[1]

Instance of

MetaBlinker_instance
Name: simple_blinker

rootNode

4

— Model l

Counter

Name: simple_counter
MaxValue: 15

Instance of

— Circuit J QI QFHI QFHI Qf

Figure 2.1: Hierarchy between a circuit, a model and a metamodel

The metamodel (right side of Figure 2.1) models a simple hardware blinker by utilizing
only two UML classes. The root node is called MetaBlinker and has only Name as an attribute
of type string. Generally, all attributes have a type (e.g., string, int, float) and a multiplicity
value that defines the number of attribute instances. MetaBlinker has a composition relation to
the class Counter with a multiplicity of 1..*, meaning that one to many Counter instances can
be associated with MetaBlinker. The Counter class has its own attributes such as Name and
MaxValue that simply determine the properties of a counter circuit.

As a next step, the model instance is created that complies with metamodel rules and defi-
nitions. An illustrative example of the instance is depicted in the figure, showcasing a straight-

22

2.2. METAMODEL-BASED CODE GENERATION

forward blinker system featuring a single counter. The maximum count value for this counter
is set at 15. Finally, the model instance, which represents the actual circuit, is presented. The
figure illustrates the design of the counter, consisting of four interconnected JK flip-flops. This
configuration enables the counter to count up to a maximum value of 15.

Clearly, each instance complies with the constraints set by the higher layer of the hierarchy.
Specifically, the model instance adheres to the requirements outlined by the metamodel, while
the circuit itself adheres to the specifications established by the model.

2.2 Metamodel-Based Code Generation

Metamodeling finds a wide usage both in the hardware and software engineering domains be-
cause it enables code generation frameworks to automatically produce the intended code arti-
facts in a decoupled manner from specific languages or platforms. Also, metamodeling offers
a high degree of flexibility since only metamodel modifications are required to enable new fea-
tures of code generation. The numerous listed benefits offer a great potential to increase the
productivity and reduce the overall Time-to-Market.

Following the metamodeling principles, an Infineon in-house framework, known as Meta-
gen, is widely utilized to increase the design productivity, enhance design quality, and reduce
turnaround time [55]. Additionally, metamodel-based code generators have increased the pro-
ductivity of single design steps by a factor of 20x and implementations of chips by a factor of
3x [55].

The generation flow of the Metagen framework is displayed in Figure 2.2. The centric ele-
ment of the framework is the metamodel that captures system’s requirements and specifications.

Metamodel

1

model Template
engine

a _ View

5| writer

Figure 2.2: Metagen Framework

glue
code

D
w reader

2poo

API

As described earlier, the metamodeling concepts facilitate the framework’s capability to
read and write models conforming to their predefined metamodel. As can be seen in the figure,
the metamodel is defined via UML class diagrams. Accordingly, a Python-based infrastructure
is generated based on the metamodel definitions, i.e., the generated Application Program Inter-
faces (APIs) provide various methods adhering to metamodel objects, their properties and the
relation between them. These API methods allow to create, read and modify the model.

23

2.3. MODEL TRANSFORMATION

Initially, the user utilizes a GUI tool provided by the framework to create model instances
(specifications). Subsequently, an auto-generated reader leverages the framework’s API to gen-
erate the model by extracting and interpreting the specifications. These specifications can be
presented in various document formats, including XLS, XML, or other formalisms. The glue
code is manually written in Python that enhances the reader and enables further customizations
to the model. Clearly, the created model provides data needed by the generators in a struc-
tured way. In the subsequent stage, the code generator is employed to transform the model into
code. The code generator may be a template engine (as depicted in the figure) or an standalone
program writing to a file targeting a specific code structure. The template engine allows to ef-
ficiently mix code pieces, generate pragmas and to produce the desired final code according to
the data provided in the model by using Mako templates. Additionally, writer templates (built-
in or manually written) utilize the API to access the model and facilitate the generation of code
according to a predefined format. Lastly, the View is generated. A view is an ASCII text which
represents e.g., XML documents, C Code (Programs), VHDL, Verilog or similar formalisms.

Relevance to this thesis

The metamodel-based code generation framework provides numerous advantages, with a key
benefit being its ability to generate code in a structured manner. This thesis extensively utilizes
Metagen to establish a versatile and adaptable approach for managing various fault injection
campaigns, requiring minimal manual efforts.

2.3 Model Transformation

Model transformations are a key element in MDE that allows for the manipulation and refine-
ment of repetitive tasks in an automated manner. The Object Management Group (OMG) [5]
defines model transformation as the process of converting one or multiple models, i.e., source
models, to one output model, i.e., target model, of the same system. There are three types
of model transformation widely used in MDE: Model-to-Model (M2M), Model-to-Artifact
(M2A), and Artifact-to-Model (A2M), where artifact refers to general textual artifacts such
as code or documentation.

Generally, M2M transformation is defined at different levels such as metamodel, model,
and instance. This definition is given by Koch [87] as following: At the metamodel level,
a transformation involves specifying certain types of source models that are converted into a
different type of target models; at the model level, a transformation entails identifying specific
model elements that will be transformed based on predefined rules; at the instance level, a
transformation involves identifying specific objects within the model that will be transformed
in a particular manner.

A high level view of model transformation flow is presented in Figure 2.3. Transformation
rules or mappings are established to define how elements, relationships, and properties from the
source model are converted into the target model. The transformation engine adheres to these
rules and maps the source model to the target model. Usually, these transformations primarily
follow a vertical orientation by refining a view or model from a higher level of abstraction to a
lower level, incorporating more detailed information and implementation specifics.

24

2.4. MODEL DRIVEN ARCHITECTURE

instance of —» Metamodel [«—— instance of

Source Transformation Target
[+ use — — use |
Metamodel rules Metamodel
f f f
instance of conforms to instance of
Source ’ Transformation ~ Target
model engine model

Figure 2.3: Model transformation flow [37]

Relevance to this thesis

This thesis extensively employs a Model-to-Model (M2M) transformation to equip the original
design model with fault injection capabilities. The utilization of M2M transformation greatly
automates the process and promotes reusability, significantly reducing manual efforts and min-
imizing the risk of human errors.

2.4 Model Driven Architecture

MDA is a specialized subset of the broader MDE concept. MDA focuses on providing a struc-
tured framework for system development that revolves around the use of models and emphasizes
platform independence. In contrast, MDE encompasses a wider array of modeling techniques
and tools that can be applied throughout different stages of the system development lifecycle.

Spec '
A 4

Ay
CIM
" \
PIM PM
L I 4

O
'

Figure 2.4: MDA principles in Y-Chart [4]
MDA, a concept defined by OMG [5], partitions the system into three consecutive layers.

25

2.4. MODEL DRIVEN ARCHITECTURE

The Y-chart in Figure 2.4 illustrates the stack of these layers. The MDA approach consists of
the following layers [45]:

« Computation Independent Model (CIM) represents the design specifications. This top-
level model, while comprehensive, does not contain specific implementation details or
architectural information.

« Platform Independent Model (PIM) follows the top-level design specifications and de-
fines both the implementation and architecture of the system. However, it conceals the
details related to the specific usage of the concrete platform.

« Platform Specific Model (PSM), commonly referred to as a view model, closely resem-
bles the generated code. It is the model that exhibits the highest level of correspondence
to the final code artifacts.

« Platform Model (PM) gathers information from the PIM and is responsible for defining
the specific platform that will be utilized for the system implementation. This model
connects the abstract representation in the PIM and the concrete platform to be employed.
PM is considered at the same level as PSM.

These layers help transforming high-level diagrams and models into executable code and
act as a bridge between the system concept and the final implementation. Due to the clear
advantages, the combination of MDA concepts with Metagen helps to overcome challenges of
developing code generators and closing the semantic gap between the specifications/require-
ments and the final generated system. The following subsections provide an overview of RTL
and Properties Generation, both adhering to the principles of MDA.

2.4.1 MDA Applied to RTL Generation

MDA principles are exploited by Ecker et al. [118, 53] to create a model-driven framework,
namely MetaRTL, that generates RTL from specifications in a structured way. The main idea
of MetaRTL is to encourage the design-centric development of RTL and to let the generator
backend handle the simulation aspects of the design. The RTL generation flow is illustrated in
Figure 2.5. Similarly to MDA, the flow consists of three layers such as Model-of-Things (MoT),
Model-of-Design (MoD), and Model-of-View (MoV) and each layer contains its own model.

MetaSpec MetaRTL MetaView
A A A
(AYA A\
| |
= = < Views
o o o
S = 2
Soecificat ‘ = Model-of- 3 Model-of- E Model-of- || VHDL
pecification @ X D f) i pul Verilo
Things £ Design = View = g
o (MoT) ay | (MoD) 2N (MoV) H
| |
behavior/ language Formatted code
microarchitecture mapping generation

Figure 2.5: RTL generation flow

At first, the process involves a reader translating informal specifications into formal models
using the topmost layer, known as the specifications layer. This layer corresponds to the CIM

26

2.4. MODEL DRIVEN ARCHITECTURE

layer in the MDA Y-chart. The resulting specification model, also known as MoT, establishes
the scope of features (things), their properties and their relationship to the desired functionality.

Once the design specifications have been formalized, the subsequent step involves defining
design microarchitecture through design model layer, which corresponds to MDA PIM layer.
The MoT is transformed into the design model, known as MoD, via Template-of-Design (ToD).
ToD is a domain-specific language (DSL) implemented in Python, which serves as a blueprint
for constructing the MoD. The MoD itself is an instance of MetaRTL, a metamodel that en-
compasses various features of digital designs, such as ports and gates. Since the design model
is independent of target language and technology semantics, the designer can focus solely on
the design michroarchitecture, thus neglecting simulation semantics or synthesis artifacts [53].
Additionally, both generated APIs and manually extended APIs are available to facilitate a
user-friendly design description.

The final layer, MoV, corresponds to PSM. MoV is the layer that is closest to the target
code and is responsible for mapping the design model into different view models. This process
enables the generation of the design in a preferred HDL with various coding styles. The cur-
rently supported HDLs are VHDL and Verilog, and the generated HDL code can be targeted for
implementation on an ASIC or on an FPGA.

Relevance to this thesis

The RTL generation framework is extensively used to generate designs with fault injection ca-
pabilities effortlessly, thus enabling tool-agnostic fault simulation and emulation. Additionally,
the existing framework is further enhanced to generate designs of mixed granularities. The
detailed description is given in Chapter 5.

2.4.2 MDA Applied to Properties Generation and 4-eyes Principle

In addition to the RTL generation framework, MDA principles are adopted to generate struc-
tured formal verification properties. Devarajegowda et al. [48, 49] introduce a model-driven
framework to generate properties called MetaProp that follows a three-layered structured ap-
proach, similar to the the RTL generation flow. The main purpose of Metaprop is to overcome
major challenges for property generation such as informal specifications, grey-box approach
and 4-eyes principle. Figure 2.6 provides a visual representation of the property generation
flow (at the bottom of the figure), which complements the RTL generation flow (at the top of
the figure).

The figure illustrates that both flows begin with the same set of formalized specifications
model, MoT. Once MoT is established, a series of transformations take place independently
in both flows. Template-of-Property (ToP) is a DSL (similar to ToD) coded in Python that
transforms MoT into a less abstract model, namely Model-of-Properties (MoP). Additionally,
ToPs are utilized to generate the property models for any supported micro-architecture.

The MoP is an instance of the MetaProp metamodel. This metamodel outlines how the
property’s structure is described in the MoP. The metamodel focuses on creating an abstract
temporal trace, e.g., via temporal semantics, which captures the behavior of a sequential design
over a specific time interval. With this concept in mind, the metamodel is defined to facilitate
the creation and representation of properties within the formal verification framework [49].

27

2.4. MODEL DRIVEN ARCHITECTURE

MetaRTL MetaView

e 2 R
N * Generation
(
= S Views
MetaSpec § g
) ®
S%%%' Model-of- | |5 | |Model-of- | |=|c=>| VvHOL I
Design % View J Verilog
(MoD) a (MoV) =
P
[0]
QD
Specification a
= s Views
P o
=1 i
o 73
o
Model-of- E Model-of- m(=>| S II
Properties 8 View py ITL
=} =
(MoP) 2 (MoV) g
Y Y /
MetaPROP MetaView Property
g%%% g%l Generation

Figure 2.6: Property generation flow obeying 4-eyes principle

Lastly, the MoV layer generates various view models. The currently supported code lan-
guages are Interval Temporal Logic (ITL) and SystemVerilog Assertions (SVA). A comprehen-
sive and detailed description of the property generation framework can be found at [47].

4-eyes principle

The adherence to the 4-eyes principle is a crucial requirement for both RTL and property gen-
eration flows. This principle serves to minimize the occurrence of errors and to prevent any
bugs from going undetected due to inherent flaws in the generation flows. As an example, the
verification step may not identify the bugs within the generation flow, since both the RTL and
properties carry incorrect logic. To ensure its effectiveness, it is essential to separate the verifi-
cation development process from the design implementation. To achieve this objective for both
generation flows, a Binding mechanism has been developed, which allows for the provision of
necessary design details specifically required for property automation. This mechanism ensures
that the design verification flow remains isolated and separate from the intricate design imple-
mentation details [50]. The principle is also illustrated in Figure 2.6, where a clear distinction
of property and generation flow is depicted.

Relevance to this thesis

Baudry et al. [28] states that: "If a fault occurs during a transformation process, it has the
potential to introduce an error or fault in the resulting transformed model. If left undetected
and unaddressed, this fault can propagate to subsequent models in the development process. As
the fault continues to propagate, it becomes increasingly challenging to detect and isolate the
source of the error". In this thesis, model transformation plays a significant role in incorporat-

28

2.4. MODEL DRIVEN ARCHITECTURE

ing fault injectors into the design model. Therefore, it is crucial to ensure the verification of the
fault injectors’ intended functionality. Additionally, it is important to verify that these transfor-
mations do not compromise the original functionality of the design when faults are disabled.
To meet these requirements, the property generation framework offers a high level of flexibility
while minimizing the need for manual intervention. Moreover, the framework is widely used to
verify hardened processor cores. Further details regarding its application will be presented in
the subsequent chapters.

29

2.4. MODEL DRIVEN ARCHITECTURE

30

Chapter 3

Functional Safety

A system is defined by Avizienis et al. [24] as "an entity that interacts with other entities, i.e.,
other systems, including hardware, software, humans, and the physical world with its natural
phenomena". The system has a purpose and it must deliver its intended functionality without
any deviation from the specifications. Naturally, a simple question arises: How trustworthy
is the system? To answer this question, system engineers have come up with the concept of
dependability that constitutes of the following attributes [24]:

« availability: "readiness for correct service ".
reliability: "continuity of correct service" .
safety: "absence of catastrophic consequences on the user(s) and the environment".
integrity: "absence of improper system alterations".

« maintainability: "ability to undergo modifications and repairs".

As today’s systems grow in size and complexity, their dependability is becoming more vul-
nerable to threat factors such as faults, failures and errors. A fault is an abnormal physical
condition that occurs on the system. An error is a manifestation of a fault and causes a devi-
ation of the system from the expected behavior. Lastly, a failure is the observable deviation
caused by the error(s). These threats can have catastrophic consequences such as endangering
human life, thus rigorous and stringent verification and validation techniques are required to
asses the system dependability. Time to Failure (TTF) is one of the most important metrics of
dependability which evaluates the period of time between system’s operation start and the oc-
currence of a failure, e.g., if a failure is observed six months after the system started operating
then the TTF is six months. Mean Time to Failure (MTTF) is calculated by averaging the time
between multiple failures in a device while Failure in Time (FIT) represents a failure in one
billion (10%) hours [11]. The FIT rate of a system having n components is calculated as [11]:

n
FITrat €system — Z FITr atecomponent; (3.1)
i=0
This thesis focuses on evaluating the threat factors on safety and reliability attributes of the
system’s dependability.
Definition 1 [Reliability]:
Reliability R(¢) is defined as the probability that no failures occur on a system during time
interval (0,¢], i.e., the probability that the system is still functioning without any failures at time
t [11]. Assuming a set of Ny similar devices, R(t) is the subset of devices N, from Ny that do

31

3.1. FAULT CONCEPTS

not experience failures after time 7. Mathematically this relation can be expressed as following
when considering N(t) as the subset that encounter failures during (0,#] [11]:

_Ne _ No—Np(t) _ Ny(0)

k(1) N, N, N,
N N N

Definition 2 [Safety]:

Safety is defined as the probability that a system functions in a correct manner or fails in a "safe"
mode [11]. The main difference between safety and reliability is the "fail-stop" and "fail-fix"
behavior of safe systems, i.e., the safe system will either fix the fault or stop operating after a
fault occurs such that its effects are avoided or preventing further damages.

=1 — P(Failure) (3.2)

In this chapter, the main concepts regarding faults are outlined. These fundamental concepts
contribute to the most common safety verification technique such as fault injection. Next, the
prevalent automotive safety standards are described. The chapter concludes with safety design
and verification techniques adhering to these standards.

3.1 Fault Concepts

Around two decades ago, the scaling of technology nodes approximating their limits propelled
dependability to gain a lot of traction as a major design challenge by multiple researchers [71].
The continuous scaling facilitates various factors to compromise design’s reliability by intro-
ducing faults. Faults are categorized into two main classes: systematic faults and random faults.

Systematic faults are caused by human error during the design, manufacturing or verification
processes. These kind of faults manifest as design flaws, process variations and verification
gaps. Systematic faults are consistent and predictable, therefore a thorough, rigid and robust
design/verification process can mitigate the fault effects. The 4-eyes principle (described in
Chapter 2) should be employed to identify and address systematic faults effectively.

Random faults are typically caused by external factors and occur sporadically in the design.
These kind of faults appear randomly and unpredictably at different parts of designs that can
lead to serious failures in the design behavior. Various design and verification practices are
required to ensure the reliability and safety of the design in the presence of random faults, such
as fault correction/detection and fault injection.

Due to the above reasons, it is necessary to develop various concepts regarding faults in
order to abstract the effect of the physical failures (faults) and at the same time to ease the
verification process. In the following, a brief overview is given on different fault concepts such
as fault modeling, fault testability and fault fault collapsing.

3.1.1 Fault Modeling

A fault model represents the physical fault on a particular abstraction level in order to reduce
the complexity for analysis purposes. This thesis focuses only on applicable fault models on
the circuit level (RTL and/or gate-level) and omits the models on transistor level or higher
abstraction levels. The dominant fault models are categorized as permanent, intermittent, and
transient.

32

3.1. FAULT CONCEPTS

Permanent faults

Permanent faults (hard errors) persist on the design for the full duration of its operation and
manifest as stuck-at, bridging, or timing faults. Stuck-at faults tie the signal’s value to a per-
manent logic value: stuck-at-1 (short circuit) and stuck-at-0 (open circuit) while bridging faults
represent circuit shorts between two or more nearby wires in a region of the design. Mean-
while, timing faults manifest as a delay of the correct calculation of output values. Permanent
faults emerge as a result of manufacturing variations [71], electro-migration [71], temperature
[71], aging [71], processing defects, and others. Moreover, even a small magnitude of Random
Dopant Flunctuations can largely affect the behavior of the ever-shrinking MOSFET transistor
cells [22], [71].

Intermittent faults

Intermittent faults occur occasionally on unstable designs due to process variations and man-
ufacturing residuals, and, often precede permanent faults [43]. These kind of faults appear
repeatedly at the same location [43], e.g., an occasionally short circuit. Often, the faults occur
in bursts during irregular intervals [43].

Transient faults

Transient faults (soft errors), commonly known as Single Event Effects (SEEs), appear only for
a temporary period and manifest as a bit-flip in a logic gate or a memory cell. "Left unchal-
lenged, soft errors have the potential for inducing the highest failure rate of all other reliability
mechanisms combined" as stated by Baumann et al. [29]. Nevertheless, combinational cells
are very resilient to these kind of faults [99] due to masking effects. By far the highest impact
is observed in memories/flip-flops. Alpha particles (radioactive decay in the device package)
[29] and/or cosmic rays [29], [122] can create an electron-hole pair in the bulk substrate of the
MOSFET, thus temporarily reversing its logic value. In contrast to permanent faults, soft errors
are fixable, e.g., by re-writing the memory cell.

3.1.2 Fault Testability

A fault does not necessarily mean that it will have detrimental consequences on a design’s
behavior. The most common technique to measure the fault impact is fault testing, 1.e., applying
appropriate input test sequences to measure the effect of a specific fault into the Primary Outputs
(POs) of the design. In the following, the fundamental concepts regarding testing [14] are
described:

« Fault Sensitization : a fault location is sensitized if the test sequence alters the logical
value of the particular location in the presence of the fault, e.g., a stuck-at-1 fault is
sensitized when the test drives a logical 0’ to the particular location.

« Fault Propagation: occurs when the fault affects further locations other than the initial
one, i.e., propagates through a design’s path.

« Fault Observability: if the fault effect has propagated to the POs of the design, then the
fault is deemed to be observable.

33

3.1. FAULT CONCEPTS

« Fault Controllability: ability to set certain logical values at design’s signals, i.e., making
a fault observable by setting appropriate input stimuli.

« Fault Testability: the capability to control and observe the fault through a suitable test

pattern.

As described above, adequate test patterns are a prerequisite to make a fault observable.
ATPG has become the prevalent structural test methodology to test the correctness of digital
designs. ATPGs try to generate compact test patterns that are able to detect all faults, but con-
sidering the design complexity there are cases where the ATPG fails to find a proper pattern due
to long runtimes (NP-complete problem) or design redundancy. Deriving from the foremen-
tioned problem, functional tests are utilized to test large-sized processor-subsystem designs
where a structural test is not feasible. A functional test is represented by a piece of software
code embedded into the memories that attempts to sensitize as many faults as possible.

3.1.3 Fault Collapsing

In theory, for m applicable fault models and for / possible fault locations, the total fault set is
m X l. The fault collapsing technique decreases the total number of faults in a digital design to
speed-up and improve the fault testing methodologies. Structural fault collapsing considers only
the topology of the design while functional fault collapsing utilizes design’s behavior properties
[127]. The later considers the behavior of the design in the presence of a fault, i.e., two faults are
equivalent if they produce the exact same functional behavior, e.g., identical POs in presence of
the faults.

Structurally, fault collapsing is achieved by exploiting the concepts of fault equivalence and
fault dominance. A fault F; dominates another fault F; when all the test patterns that detect F;
will also detect F;. If a fault dominates another fault, then the faults are called equivalent, thus,
only one of them needs to be considered during test pattern generation [127].

Inputs Output
(O]
E o ¢ 9o o9 o o9 o 4 2
L L 3 | & & & & ®& & & @ 8
= %] 0 0] " %] %] 0 2 2
© ~ ~ ~ ~ ~ ~ ~ ~ -~ -~
r = < S~ o o o > > 0O O
| 0O 0 0|0 0, 0 0, O O (1,70,/1, 0 (1,
4 Y o [[R T B (I
I, | AND 0 0 1|1 1 1 '1r1 0 !1'f1rl1 0 1!
1 o 1 o|o0 ;0 1,0 0 o0 ;1/0l;2 0 1|
| OR—O o [[I T ("
3 0 1 11 '1r 1 '1r 1 0 111111110 11
1 1 1 1
1 0 o0o|0 ;0 0,01 0 ;102! 0 ;1]
1 | 1 1 [1| 1 1
1 0 11 :11 11110 11|:1.:11 0 11,
1 | 1 1 1 1 | 1
1 1 o0of1 0 1 00 1 ;1/;0!/1! 0 |1
1 1 1 1 I 1
1 1 1|1 11, 1 11, 1 1 11,11,:11, 0 11,

Figure 3.1: Example of a fault matrix
As an example, let us assume the circuit shown in the left side of Figure 3.1. There are

34

3.2. AUTOMOTIVE SAFETY STANDARD

in total five fault locations (I;, I, I3, Y, O) and ten different faults when stuck-at (sa) fault
model is taken into account. The truth table of the circuit is shown in the right side of Figure
3.1 while fault models are considered. It is clear that that two sets of faults are functionally
equivalent such as Ij/sa-0, I»/sa-0, Y/sa-0 (marked with red lines) as well as Ip/sa-1, Y/sa-1,
Of/sa-1 (marked with blue lines). Therefore, only one fault per set should be considered (e.g.,
Y/sa-0 and O/sa-1) instead of three and hence the total fault set is reduced into only six faults.

3.2 Automotive Safety Standard

Electronic designs constantly interact with humans in their daily life. The random nature of the
faults in digital designs can have detrimental consequences for humans, e.g., financial losses,
security breaches, or even life-threatening risks. To deal with the unpredictable and undesir-
able failures, it is essential to have a standardization across different domains of safety-critical
systems. Standards create a common uniform, stable and reliable framework/environment that
all its users need to adhere to. IEC 61508 [2] is the international functional safety standard
of electronic designs that defines the overall requirements, specifications, rules and constrains
of safety-critical designs, their verification and validation. One of the notable features of IEC
61508 is its safety lifecycle approach, which outlines safety management stages throughout
the system’s lifespan. Safety lifecycle is categorized into five primary stages [3]: (i) Overall
safety scope definition, (ii) Hazard and risk analysis, (iii) Planning and realisation, (iv) Op-
eration, maintenance and repair, (v) Decommissioning or disposal. The automotive industry
have adopted IEC 61508 including its principles and created the automotive safety standard
1S0O26262 [12]. 1SO26262 defines functional safety as "absence of unreasonable risk due to
hazards caused by malfunctioning behavior of electrical/electronic systems" [12]. In this thesis,
[S0O26262 serves as a guiding directive for the developed methodologies and a brief description
is given next.

3.2.1 Automotive Safety Integrity Level

Automotive Safety Integrity Level (ASIL) is a risk classification system from ISO26262 stan-
dard. ASIL uses a four-level categorization system denoting each level with letters A, B, C,
and D, where A represents the lowest risk and D the highest risk. As an example, the breaking
system of the car would be classified as highest risk ASIL-D, while the the sound system would
be classified as low-risk ASIL-A. The classification is determined by the process of Hazard
Analysis and Risk Assessment (HARA). This process identifies and categorizes all hazards and
dangerous events that could undermine the required safety goals. The safety goals represent
the necessary requirements that an automotive item/component must meet to operate safely and
without endangering the vehicle.

HARA identifies and determines the hazards using the impact factors such as severity, prob-
ability of exposure and controllability during a failure which are shown in Figure 3.2. Each im-
pact factor is distinguished in different classes, i.e., SO-S4 for severity, EO-E4 for probability of
exposure and CO-C4 for controllability in case of an failure. An event with the lowest severity
level SO could be an light incident, e.g., a car scratch while an accident with another card would
be classified as S3. An EO probability represents a highly unlikely event and an E4 probability

35

3.2. AUTOMOTIVE SAFETY STANDARD

Class | Description
SO No injuries
. S1 Light and moderate injuries

Severity - — -
S2 Severe and life-threatening injuries (survival probable)
S3 Life-threatening injuries (survival uncertain), fatal injuries
EO Incredible
E1l Very low probabili

Probability of y low probability

exposure to a E2 Low probability

failure E3 Medium probability
E4 High probability
Cco Controllable in general

_Controllablllty C1 Simply controllable

in case of a

failure c2 Normally controllable
C3 Difficult to control or uncontrollable

Figure 3.2: HARA impact factors classes [12]

represents the most probable event, e.g car breaking. An example for high controllability CO
could be the fuel level and a low controllability C3 could be failure of the airbag.

After HARA categorization, ASILs are determined by combining all the impact factors to-
gether as shown in Figure 3.3. As can be seen from the matrix illustrated in the figure, ASIL
classification (A, B, C, D) is done according to the combination of impact factors. A compo-
nent that in presence of a hazardous event has a severity S3, an exposure probability E4 and a
controllability C3 is classified as an ASIL D component. Additionally, some configurations of
severity, probability and controllability are attributed to quality management (QM) due to not

posing a threat to the automotive vehicle.

Probability class Controllability class

C1 Cc2 C3

E1l QM QM QM

= E2 QM QM QM

E3 QM QM A

E4 QM A B

a E1 QM QM QM
2 = E2 QM QM A
§ E3 QM A B
3 E4 A B ©
El oM oM A

s3 E2 QM A B

ES B ©

Figure 3.3: ASIL determination [12]

3.2.2 Fault Classification

A fault can affect a design behaviour in different ways. 1SO26262 presents a classification
mechanism for failures, which is determined by analyzing the causes of failures and the sys-
tem’s capacity to detect and correct them. A complete overview of the classification flow is

36

3.2. AUTOMOTIVE SAFETY STANDARD

given in Figure 3.4. The flow considers the effects of the faults on safety-critical elements and
whether they can violate the predefined safety goals during the risk assessment phase.

Failure mode

Safety-related
element

Potential to violate a
safety goal if no
safety mechanism is
present?

Potential to violate a
safety goal in

combination with

another fault?

Is there any safety
mechanism to

Is the failure mode
control failure modes detected?

of HW elements?

Is safety mechanism
preventing the
violation of safety
goal?

Is the failure mode
perceived?

(

(not considered in

Safe fault

] { Single Point Fault] { Residual Fault] { MPF, latent] { MPF, perceived] { MPF, detected]

analysis)

Figure 3.4: Fault classification system [12]

The faults are classified into six different categories as following:

Safe faults (SF): a fault is considered safe if it is not related to any safety-critical hard-
ware element or if it does not violate a safety goal of safety-critical elements even in
combination with other independent faults due to masking effects.

Single-point faults (SPF): a single point fault affects safety-critical elements and there
is no safety mechanism to either detect or correct them.

Residual faults (RF): Residual faults have a similar impact on safety-critical elements
as single-point faults. However, they specifically affect areas that should be protected by
safety mechanisms. Unfortunately, in these cases, the safety mechanisms fail to safeguard
the affected area, leading to a violation of the safety goals.

Detected multi-point fault (DMPF): detected MPF are multiple independent faults that
are detected or corrected by a safety mechanisms in a safety-critical element.

Perceived multi-point fault (PMPF): these kind of multiple independent faults are nei-
ther corrected or detected by the safety mechanism, but they are perceived by the automo-
tive user because they have an impact on the car behaviour, e.g., the driver might observe
a problem with the lights even though there is no indication by the system.

Latent multi-point fault (LMPF): a multiple point fault that is neither perceived nor
detected is considered a latent MPF.

3.2.3 Hardware Fault Coverage Metrics

[S0O26262 introduces three different metrics regarding fault coverage such as Probability Met-
ric for random Hardware Failures (PMHF), Single-Point Fault Metric (SPFM), and Latent Fault
Metric (LFM). SPFM represents the robustness against SPF and RF while reflects the robust-
ness against latent faults. These metrics can be derived from the qualitative safety analyses

37

3.3. STANDARD-COMPLIANT SAFETY DESIGN

by incorporating numerical data and enhancing the analysis. The standard provides means to
calculate the metrics as follows [12]:

PMHF = Aspr + ArF + AvpFLatent (3.3)
Y Aspr +ArF
SPFM =1—=—"—F"—- 3.4
) (3.4)
Y MvpFLatent
LFM=1-— (3.5)
YA —Aspr — ArrF
where:
= total failure rate of safety-related design elements
AspF = failure rate of SPF
ARF = failure rate of RF

MiPFLaten: = failure rate of latent MPF
These three key metrics are required for ASIL classification as illustrated in Table 3.1. For ex-
ample, as can be seen from the table, a classified ASIL-D component requires: (i) a probabilis-
tic risk quantification less than 10 FIT rate, (ii) greater than 99% fault coverage (robustness)
against SPFE, and (iii) greater than 90% coverage against LMPF. Every automotive product that
requires ISO 26262 certification must comply with the requirements outlined in the table.

Table 3.1: Fault coverage metrics for ASIL classification [12]

ASIL A ASILB | ASILC | ASILD
PMHF | <1000 FIT | <100 FIT | <100 FIT | <10 FIT
SPFM - > 90% > 97% > 99%
LFM - > 60% > 80% > 90%

3.3 Standard-Compliant Safety Design

To mitigate the adversary and severe effects of random faults, robust design systems are required
by 1SO26262 standard. Design robustness can be achieved through fault avoidance and fault
tolerance. As the term suggests, fault avoidance aims to prevent or reduce the likelihood of
faults occurrence by a careful and rigid design and verification process. In order to achieve the
required fault avoidance, engineers can deploy diverse design systems followed by a structured
verification process through stringent design/verification rules. Nevertheless, the random and
unpredictable nature of faults makes it unfeasible to ensure a 100% fault avoidance. Typically,
fault avoidance is often used in combination with fault tolerance to achieve a high level of
system reliability. Fault tolerance focuses and emphasizes detection, mitigation and recovery
from faults occurrence, Commonly, tolerance is achieved through design hardening.

Definition 3 [Design hardening]:
Design hardening is the process of protecting a digital design against unexpected behavior in
the presence of physical faults by correcting and/or detecting their effect.

38

3.3. STANDARD-COMPLIANT SAFETY DESIGN

There exist different hardware-based safety mechanisms and techniques that enable design
hardening through information redundancy, e.g., Error Detection and Correction Codes (ECC)
and through spatial redundancy approaches. System requirements, e.g., area and fault tolerance,
and performance constraints determine which is the best mechanism to use for specific use
cases. In the following, a brief overview of the common safety mechanisms is given.

3.3.1 Safety Mechanisms based on Information Redundancy
Error Correction Codes

ECCs are safety mechanisms widely utilized to protect memory elements against single and
multiple bit errors. ECCs implement algorithms that can detect and/or correct differences be-
tween a received signal value and its expected value. The main feature of ECC designs is adding
extra redundant bits to the original signal (data). The simplest error detection mechanisms con-
sist of parity codes, i.e., memory elements are extended by an extra parity bit detecting single
errors. The parity bit is relatively simple to calculate with low overhead, but these kind of codes
can only detect errors.

Typically in complex and safety-critical designs, an ECC consists of an encoder and a de-
coder. Encoder contains mathematical coding algorithms, e.g., Convolution Codes and Linear
Block Codes, to calculate the redundant bits. When the data is received/read, the decoder ap-
plies similar algorithms to check whether the data is corrupted due to the errors. Well-known
ECCs comprise Hamming codes, Reed-Solomon codes, Bose-Chaudhuri-Hocquenghem (BCH)
codes and Low-Density Parity-Check (LDPC) codes. Various ECC schemes exist and they are
classified by the number of errors they can detect/correct such as Single Error Correction (SEC),
Single Error Detection (SED), Single Error Correction and Detection (SEC-DED), Double Er-
ror Correction and Triple Error Detection (DEC-TED) etc..

Figure 3.5 shows a SEC-DED Hamming code based ECC that protects 16-bit data written
to a register. The ECC encoder uses the Hamming algorithm to calculate the check bits width.
The width can be obtained by solving the following Hamming Bound inequation [38]:

24
>2% (3.6)

d—1 '
Z 2 9
k=0 k!(g—k)!

where w is the encoder input width, g is encoder output width (cw_in) and d is the Hamming
distance. Hamming distance is a metric that specifies how many bits can be corrected and
detected, and for a SEC-DED algorithm, the distance is 3. By solving Equation 3.6 for d=3,
output width is equal to 21. As a result, only 5 check bits (cb) are required since check bits
width is calculated by n — k.

The register stores 21 bit input data that is read by the decoder. The decoder calculates an
expected value and compares it with the received data value. If only a single bit error is detected,
the decoder is able to correct it and raise the "err_1" flag. When 2 bit errors are detected, the
"err_2" flag is raised but the data remains corrupted. In general, most of ECC blocks follow the
same principles as the explained SEC-DED and more information can be found on the available
literature.

39

3.3. STANDARD-COMPLIANT SAFETY DESIGN

async_rst
[15:0]

data_in ow in ==l ata_out
data_in EnEc(c:Jier [2(;0] Register Decoder o)
[15:0] cb i —err 1
[4:0]
—err_2
en |/
sync_rst
clk

Figure 3.5: SEC-DED ECC block

Cyclic Redundancy Check

Cyclic Redundancy Check (CRC) codes are error detection codes mostly used in memory or
data transmission systems. Similarly to ECCs, CRC adds redundant bit, also known as check-
sum, to the original input data via an encoder. CRC requires a fixed generator polynomial P(x)
and a polynomial division is performed between P(x) (divisor) and the input data (divident).
The remainder of division, i.e., checksum is appended to the original input data. On the decoder
side, the same polynomial division is performed using an identical P(x). The new calculated
checksum from the decoder is compared with the received checksum and if any mismatch is
detected, an error is detected. In general, CRC codes have a lower overhead compared to ECCs
but offer only error detection without correction.

3.3.2 Safety Mechanisms based on Spatial Redundancy

Spatial redundant safety mechanisms are a classical approach to increase fault tolerance by
duplicating or triplicating the critical parts of the design. Commonly, redundant systems are
called lockstep systems. Due to their fault-tolerance benefits, Lockstep is widely utilized in
many industrial safety-critical designs such as AURIX ™32-bit microcontrollers [1].

The typical implementations of Lockstep are Double Module Redundancy (DMR) and
Triple Module Redundancy (TMR). All the mechanisms work similarly, i.e., identical redun-
dant modules run in parallel and their outputs are compared. Nevertheless, there are differences
in terms or area and fault tolerance capacity, thus system trade-offs are required to fulfill re-
quirement constraints. Figure 3.6 represents a high level block description of DMR (left side)
and TMR(right side). As can be seen from the figure, the main difference between them is
the number of redundant modules, i.e., TMR consists of three identical modules while DMR
requires only two modules, thus TMR requires more area.

Let us consider DMR functionality first. Both the identical modules are running in parallel
and same inputs are fed to them ensuring that the same data is being processed. The system
outputs are connected to one of the modules output lines while the comparator compares the
outputs of the modules to check for their consistency. If there is a mismatch, an error flag is
raised indicating one or more potential fault(s) in one of the modules. As a result, DMR offers
error detection capabilities but no error correction. On the other side, TMR enables both error
detection and correction. A vofer mechanism compares the outputs of the three modules and if
the outputs differ, the error flag is raised. Additionally, the voter calculates the majority output,
i.e., the output that is identical by two out of three modules. The system output is connected to

40

3.4. STANDARD-COMPLIANT SAFETY VERIFICATION

voter’s calculated output, resulting in an corrected error. However, if two modules are faulty,
TMR would proceed with a faulty output.

in =4 Module 1 out in 1 Module 1
— L
— out
Comparator |[—> err —] Module 2 Voter
) ! —err
= Module 2 f— — Module 3
a) DMR b) TMR

Figure 3.6: DMR and TMR

A comprehensive description of various fault tolerant architectures is given by Sorin [123].

3.4 Standard-Compliant Safety Verification

Safety mechanisms provide means to protect against random and hazardous faults, nevertheless,
stringent verification and validation techniques are required to evaluate the system’s robustness
and reliability. 1SO26262 recommends fault injection to verify system’s dependability with a
high degree of confidence. Fault injection is defined as the deliberate introduction of controlled
faults into the system and by observing its behavior in the presence of injected faults [20].
The main goal is to asses the system’s ability to detect, correct and recover from faults during
controlled experiments. Fault injection methods utilize various predefined fault models during
the experiments, e.g., permanent or transient faults. The fault injection experiments include
three major steps: (i) injection according to desired fault models, (ii) monitoring and analysis,
(ii1) evaluation of the results. Each of these steps should adhere to ISO26262 requirements to
achieve the intended certification, e.g., desired ASIL. This section gives a general overview
of the fault injection process, fault injection attributes and a description of the available fault
injection techniques and tools.

3.4.1 Overview of the Fault Injection Process

Figure 3.7 illustrates a complete overview of the fault injection process. The design that is a
subject to fault injection is depicted as DUT. Similarly to the traditional verification methods,
a stimulus 1is required to evaluate design’s behavior and functionality. The main function of
the stimulus is to exercise the DUT under various scenarios. This could be achieved through
functional tests or ATPG tests (as mentioned earlier in the chapter). The fault list, also known in
literature as fault library, contains all fault injection attributes such as fault type, fault location,
and fault injection time. The user can define the fault list by referring to DUT information, e.g.,
design signals’ names. The controller simply regulates and controls the fault injection process
and provides the fault list information to the fault injector. The fault injector drives and injects
various faults into the DUT complying with the fault list description. The monitor observes

41

3.4. STANDARD-COMPLIANT SAFETY VERIFICATION

design’s outputs and internal states during the process and the analyzer classifies and catego-
rizes the faults according to their effect in the design, e.g., safe fault or a failure. Typically, the
analysis is done by comparing the values of outputs and internal registers in presence of faults
with their expected non-faulty values.

N
Fault list Controller
—— J

Fault injector Monitor / Analyzer

\ 7 \ 7

|

4 N (N
Design-under-Test .
Stimulus g Evaluation / Results
L (DUT)) \)

Figure 3.7: Fault injection process

|

}

The results of a fault injection process are logged into files containing information about
their effect. In the end, the safety engineer evaluates the design’s susceptibility to various fault
scenarios and pinpoints opportunities for enhancing its fault tolerance mechanisms. During
the fault injection process there are many factors to consider which will be explained in the
following.

3.4.2 Fault Injection Attributes

Fault injection is a prerequisite to evaluate the robustness of a system. Major factors to be con-
sidered during different fault injection campaigns are fault injection attributes. Fault injection
attributes encompass distinct characteristics or properties of injected faults during fault injec-
tion experiments. They dictate the nature and behavior of these faults, playing an important
role. The most common attributes are: (i) fault type, (ii) fault location, (iii) fault injection time,
and (1v) fault multiplicity.

Definition 4 [Fault location]:

A fault location specifies the exact signal in the design, i.e., location in the system where the
fault should be injected, e.g., registers, memories, etc.. The set of all fault locations of the
design is represented by the set F;, = {so,s1,...,5,—1} that denotes all signals of the design that
can be an object of fault location, where n represents the total number of signals. The single
fault location Fy, is an element of Fj, where i denotes the index of element such that 0 <i < n.

Definition S [Fault type]:
The fault type specifies the fault model type to be injected. The temporal fault models used in
this thesis are represented by two major distinct sets:

« permanent faults: Pr = {stuck-at-1, stuck-at-0,delay faults}

« transient faults: Tr = {bit-flip}
The set of all fault types is the set Frp = Pr U T and the particular fault type to be injected is
denoted by Frp, such that Frp, € Frp.

42

3.4. STANDARD-COMPLIANT SAFETY VERIFICATION

Definition 6 [Fault injection and release time]:

Fault injection time represents the exact time at which the fault is injected during the design’s
operation. Let 7' be the time interval during which the design is operating. Fault injection time
Fru(t;) represents the time f; during interval 7 when a fault is introduced in the design and
Fru(t,) represents the time 7, during interval 7' when a fault is removed from the design.

According to [32, 104], fault-injection methods require only these three essential attributes,
1.e., fault type, fault location and fault injection/release time to effectively inject faults into a de-
sign model. The fault space & is a three-dimensional space whose dimensions include the exact
time of occurrence and duration of the fault (when), the type or form of faults (how), and the
location of the fault within the design (where) [32], i.e., the fault space covers the combination
of the aforementioned fault injection attributes. Additionally, considering the complexity of de-
signs nowadays and strict ISO26262 requirements, another important attribute of fault injection
is fault multiplicity.

Definition 7 [Fault multiplicity]:

Fault multiplicity refers to the number of faults to consider during fault injection campaigns.
Typically, fault multiplicity is categorized into single-fault injection and multiple-faults injec-
tion. The single-fault (SF) injection represents a single fault space SF = &, i.e., involves inject-
ing only one fault at a time into a location of the DUT. SF are important for the proper evaluation
of 1SO26262 metric such as SFM. A multiple-fault (MF) injection considers a set of different
fault spaces MF = {&0,&1,...,Ep—1}, where M represents the number of faults to inject. In a
multiple fault scenario, multiple faults are injected into the DUT either simultaneously or se-
quentially, thus enabling LFM evaluation. Single fault analysis allows for the isolated study of
individual faults, uncovering their specific impacts. Conversely, multiple fault analysis offers a
holistic view, assessing the system’s overall resilience during real-world fault scenarios.

3.4.3 Fault Injection Techniques

Fault injection is a versatile process capable of targeting different system levels, addressing
both hardware and software faults. This adaptability has stimulated the development of nu-
merous fault injection techniques within academia and industry. Most common techniques
can be categorized as : (i) hardware-based fault injection, (i1) software-based fault injection,
(ii1) simulation-based fault injection, and (iv) emulation-based fault injection. Each of these
technique possesses unique characteristics and advantages, making them suitable for specific
testing scenarios aimed at evaluating distinct features of system reliability and fault tolerance.
This section provides in the following a short overview of common fault injection techniques,
highlighting their distinctive features, advantages, and limitations.

Hardware-Based Fault Injection

Hardware-based fault injection utilizes specialized test hardware tools to inject faults at a phys-
ical level of the DUT. These tools disturb the hardware by subjecting it to various environ-
mental parameters such as heavy ion radiation, electromagnetic interferences, etc. This can be
achieved by injecting voltage sags on the power rails (power supply disturbances), performing
laser fault injection, or altering the values of the circuit’s pins [136]. Hardware fault injections
are performed on actual circuit after fabrication [32], subjecting the circuit to interference to

43

3.4. STANDARD-COMPLIANT SAFETY VERIFICATION

produce faults. Both permanent and transient faults can be injected. Such tests, although time-
consuming, are faster than simulations and are often conducted just before or during production
to assess circuit reliability [32]. Hardware-implemented fault injection methods can be clas-
sified into two categories based on the types of faults and their locations [136]: (1) hardware
fault injection with contact where the injector has a direct contact with the circuit pins, and
(i1) hardware fault injection without contact where the injector has no direct contact the target
circuit.

Software-Based Fault Injection

Software-based fault injection includes injecting faults at the software level, typically in the
form of software errors by modifying the original source code to introduce faults and alter the
system’s state, i.e., to mimic the occurrence of hardware faults. Various faults can be injected,
including register and memory faults, dropped or replicated network packets, and erroneous
error conditions [32, 136]. Software fault injections focus on implementation details, addressing
program states, communication, and interactions. Simulations with faults take longer due to
capturing system operations and timing aspects accurately [32]. Software fault injections can
be non-intrusive, but timing considerations may cause disruptions. The injection mechanism
running on the same system as the software being tested can influence timing results [136].

Simulation-Based Fault Injection

Simulation-based fault injection involves modeling and simulating both the target system and
potential hardware faults. The simulation process modifies either the hardware model or the
software state of the target system, making it behave as if there were a hardware fault [89, 86].
Simulation-based fault injection techniques can be classified into two categories [89]: (i) run-
time fault injection, and (ii) compile-time fault injection. Runtime fault injection involves inject-
ing faults during the simulation or execution of the model, while compile-time fault injection
introduces faults at compile-time in the target hardware model or software executed by the tar-
get system [89]. Simulation-based fault injection offers several advantages such as there is no
risk of damaging the system under normal operation. Additionally, these techniques are more
cost-effective compared to hardware-based methods [89].

Fault simulation can be applied by: (i) modifying the circuit HDL description by adding
saboteurs and/or mutants or (ii) utilizing a special software tool typically known as fault simu-
lator. A saboteur is an additional component incorporated into the hardware design at a specific
location for fault injection purposes. Once activated, it modifies the value of one or more
signals, thereby introducing the desired fault [32]. A mutant is a specialized model that in-
cludes inactive code blocks within the regular circuit description. By injecting faults, these
code blocks can be activated, thereby altering the behavior of the logic device. Since the fault
response originates internally within the model, fault injection can be performed at various lev-
els of abstraction [136]. On the other hand, non-modifying fault simulator tools depend largely
on the application, availability and built-in commands of used tools.

44

3.4. STANDARD-COMPLIANT SAFETY VERIFICATION

Emulation-Based Fault Injection

Emulation-based fault injection techniques utilize emulation platforms, e.g., hardware proto-
typing on FPGA-based logic emulation systems. In the context of fault injection, fault emula-
tion has been proposed to overcome time limitations imposed by fault simulations [136]. This
approach involves implementing the circuit on an FPGA using classical synthesis and rout-
ing design flow. A development board connected to a host computer allows for defining fault
injection campaigns, controlling experiments, and displaying results [136]. To inject faults,
modifications may be required in the circuit description to remain synthesizable and adhere to
emulator hardware constraints. However, generating instrumented circuit descriptions for fault
injection can be time-consuming due to multiple reconfigurations. Another approach, called
run-time reconfiguration emulation-based fault injection, avoids instrumenting the circuit de-
scription by relying on FPGA’s built-in reconfiguration capabilities [18].

Comparison of different techniques

Table 3.2 and Table 3.3 display distinctions of the fault injection techniques highlighting their
characteristics, advantages and disadvantages.

Table 3.2: Characteristics of fault injection techniques [72]

Characteristics HW-based | HW-based SW-based Simulation | Emulation
+ contact - contact -based -based
Fault injection Limited set Internal Only locations | Full access | Full access
points of injection | (soft errors) accessible to HW to HW
to SW blocks blocks
Able to model Yes No No Yes Yes
permanent faults
Genericity Medium Medium Low High High
Intrusiveness of None None High None None
the experiment
Observability Low Low Low High High
Controllability High Medium High High High
Repeatability Medium Medium Medium High High
Automatization Medium Medium High High Medium
Precision High High Medium Low Low
Experiment Real Real Real Very Faster
speed time time time slow than sim.
Cost High High Low Medium Medium

45

3.4. STANDARD-COMPLIANT SAFETY VERIFICATION

Table 3.3: Summary of advantages and disadvantages of fault injection techniques [136]

Advantages Disadvantages
2| Can access locations that is hard to be o Can introduce high risk of damage for the
§ accessed by other means. injected system.
o | o High time-resolution for hardware triggering o High level of device integration, multiple-chip
§ and monitoring. hybrid circuit, and dense packaging
g o Well suited for the low-level fault models. technologies limit accessibility to injection.
T | « Not intrusive. o Low portability and observability.
o Experiments are fast. o Limited set of injection points and limited set
« No model development or validation required. of injectable faults.
o Able to model permanent faults at the pin * Requires special-purpose hardware in order to
level perform the fault injection experiments.
o e Can be targeted to applications and operating | e Limited set of injection instants.
é systems. o It cannot inject faults into locations that are
¢ | ¢ Experiments can be run in near real-time. inaccessible to software.
S | o Does not require any special-purpose o Does require a modification of the source
5 hardware; low complexity, low development code to support the fault injection.
« and low implementation cost. o Limited observability and controllability.
o No model development or validation required. | o Very difficult to model permanent faults.
o Can be expanded for new classes of faults.
o e Can support all system abstraction levels. o Large development efforts.
E o Not intrusive. o Time consuming (experiment length).
g « Full control of both fault models and injection | ¢ Model is not readily available.
k= mechanisms. e Accuracy of the results depends on the
E o Low cost computer automation; does not goodness of the model used.
A require any special-purpose hardware. o No real time faults injection possible in a
o Maximum amount of observability and prototype.
controllability. ¢ Model may not include any of the design
o Allows performing reliability assessment at faults that may be present in the real
different stages in the design process. hardware.
o Able to model both transient and permanent
faults
3 | o Injection time is more quickly compared with | e The initial VHDL/Verilog description must be
_CE simulation-based techniques. synthesizable and optimized to avoid
g o The experimentation time can be reduced by requiring a too large and costly emulator and
= implementing partially or totally the input to reduce the total running time during the
E pattern generation in the FPGA. These injection campaign.
3] patterns are already known when the circuit to | e The cost of a general hardware emulation
analyze is synthesized. system and/or the implementation complexity
of a dedicated FPGA based emulation board.

o The emulation is only used to analyze the
functional consequences of a fault.

o When using an FPGA-based development
board, the main limitation becomes the
number of I/Os of the programmable
hardware.

o Necessity of high speed communication link
between the host computer and the emulation
board

46

3.4. STANDARD-COMPLIANT SAFETY VERIFICATION

Relevance to this thesis

This section provides an overview of the automotive safety standard 1SO26262 and its focus
on dependability aspects, which include key fault concepts. Furthermore, it presents a visu-
alization of safety design and verification techniques compliant with the standard, along with
brief illustrative examples. This thesis extends the existing state of the art fault handling and
analysis by providing a low-effort automatic model-driven approach to handle and analyze dif-
ferent fault models. Additionally, novel simulation-based and emulation-based fault injection
techniques have been developed that overcome challenges of state of the art techniques. Details
will be given in the following chapters.

3.4.4 Formal Verification

[S0O26262 recommends formal and semi-formal methods to verify safety critical components to
achieve the required ASIL level. Formal verification is the common formal method for address-
ing intricate safety-verification challenges. Formal verification is defined as the application
of precise mathematical proof techniques to validate the properties of a design implementa-
tion. This approach treats the Design Under Verification (DUV) as a mathematical model,
rendering it applicable to mathematical proof methodologies. The common characteristic of
formal verification is exhaustiveness, implying the requirement to examine all possible input-
state combinations that impact a specific aspect of the design, often referred to as the Cone of
Influence (COI). A formal verification approach comprises three primary components: Proof
Methods (e.g., SAT-solving, Graph representations of Boolean functions, Finite state machine
traversal), Languages (e.g., propositional logic, temporal logic, predicate logic), and Model-
ing (e.g., Boolean network, Finite state machine). These components significantly influence
the proof duration [93]. Formal verification serves the dual purpose of verifying implemen-
tation through Equivalence Checking and verifying design’s behavior via Property Checking,
including techniques such as Model Checking.

Model Checking

Model Checking, in essence, involves evaluating whether a finite-state model representing a
system adheres to its specified behaviors using temporal logic. It accomplishes this by examin-
ing all possible future states to determine if any property violations occur [42]. To facilitate this
analysis, a model checker translates properties, often expressed in conventional syntax like Sys-
tem Verilog Assertions(SVA), into temporal logic. Two prominent formalisms are commonly
employed to describe temporal logic: Computational Tree Logic (CTL) and Linear Temporal
Logic (LTL). CTL comprises atomic formulas such as True/False, propositional operators (e.g.,
and, or), modal operators (E for "there exists a path" and A for "for all paths"), and temporal
operators (X for "next," G for "globally," F for "finally," U for "until"). CTL’s semantics are
grounded in the Kripke model, which provides the framework for assessing system behavior in
relation to its specified properties.

A Kripke model is a quintuple K = (S,S0,R,A,[) with: [93]

« S: Represents a finite set of states.

« So: Signifies a set of initial states, with Sy C S.

47

3.4. STANDARD-COMPLIANT SAFETY VERIFICATION

« R: Defines the transition relation, Sop C S x S, which encompasses all potential state tran-

sitions within the model.

« A: Encompasses a set of atomic formulas, denoted as A = {p,q,...}, each capable of

assuming either a true or false value.

« I: A — 25: A valuation function that specifies for every formula in A the set of all states

in § for which the atomic formula is valid.

A Kripke model can be conveniently derived from the FSM model of a digital circuit. Nev-
ertheless, there are some drawbacks of Model Checking. Two primary limitations include the
issue of state explosion, where the state-space grows exponentially, and its limited applicabil-
ity to circuits with substantial sequential depth. However, Symbolic Model Checking can be
effective into solving these limitations. Symbolic Model Checking employs a Boolean repre-
sentation for the finite state machine. It achieves this by substituting explicit state representation
with Boolean encoding. This strategic shift allows Symbolic Model Checking to effectively ad-
dress the state explosion problem, making it capable of handling significantly larger designs
compared to explicit state model checking. The process of transforming the state machine
through Boolean encoding is commonly referred to as state-space traversal. Symbolic model
checking often leverages proof methods such as Binary Decision Diagrams (BDD) and Satis-
fiability (SAT) to handle the symbolic representation of the model. These techniques enable
more efficient verification and analysis of complex designs, offering a potential solution to the
challenges posed by state explosion and large sequential depth in design verification [34, 36].

Bounded Model Checking

BMC combines traditional Model Checking principles with Satisfiability (SAT) solvers to en-
hance efficiency in the verification process. This technique involves the unrolling of the FSM
representation of the design in a specified number of times, denoted as k. Unrolling essentially
includes replicating identical circuit representations k times, with each roll and its subsequent
roll having a distance of 1 unit in terms of time. During this process, the only variables left un-
constrained are the inputs, outputs, and the initial state "s0," except when explicit constraints are
applied. For any value of k greater than 0, the current state input of the circuit copy is connected
to the previous copy’s state output. Property verification is translated into a SAT problem, and
the property is considered satisfied if the negation of the property fails to hold. BMC initiates
its verification from timepoint + = 0 and aims to prove the property for k clock cycles, where
0 <t < k. To ensure the proof holds for all reachable states, the choice of k must be sufficiently
large, typically equal to or greater than the sequential depth of the automaton. The sequential
depth denotes the minimum number of cycles required to reach every state within the machine
at least once. While it may not always be practical to select a very large k, BMC offers dis-
tinct advantages, especially in addressing complex verification challenges within the industry
as BMC tools tend to identify counterexamples more quickly and with reduced memory usage
[93].

Interval Property Checking (IPC) represents a specific subset of formal verification tech-
niques, sharing some similarities with BMC. However, an essential distinction between the two
methods lies in their initiation points for property verification. In BMC, the verification process
commences at the initial timepoint = 0, meaning it starts from a well-defined initial state. On
the other hand, IPC initiates property checks at a symbolic time ¢ rather than from the fixed

48

3.4. STANDARD-COMPLIANT SAFETY VERIFICATION

t = 0. This symbolic timepoint signifies that properties do not need to start from an explicit
initial state. Instead, they can initiate from any potential state that aligns with the assumptions
embedded within the property. IPC employs a similar logical framework as BMC, seeking to
verify the property over a specified duration of k clock cycles. The primary distinction is the
flexibility of the starting point: ¢ < t; <t + k, where #; represents a point within the symbolic
time interval. Similar to BMC, the verification process in IPC relies on the absence of a satisfi-
able solution for the negated property to assert its validity. This means that if there is no feasible
solution that satisfies the negation of the property, then the property is considered valid [93].

Formal Equivalence Checking

Formal Equivalence Checking (FEC) is a crucial technique employed in the implementation
phase of a design to prove the absolute equivalence of two distinct designs using mathematical
reasoning. Unlike many other verification methods, FEC substantially minimizes or even elim-
inates the need for manual intervention by Verification Engineers. FEC relies on the formal
verification tool’s capacity to process information related to the two designs under verifica-
tion. FEC can be used to compare designs into different abstraction levels, thus these designs
may be provided to the tool in various forms, including RTL descriptions or gate-level netlist
representations of the circuit.

In the scope of FEC, two prominent types are extensively employed within the industry
[119]: Combinatorial Equivalence Checking and Sequential Equivalence Checking. Combina-
torial Equivalence Checking serves as a valuable tool for comparing two distinct versions of the
same design, each existing at different levels of abstraction. In contrast, Sequential Equivalence
Checking is employed to ascertain whether two distinct models produce identical output sets for
an equivalent set of inputs across all time points. Unlike Combinatorial Equivalence Checking,
Sequential Equivalence Checking does not necessitate the internal nodes of the designs to be
structurally identical.

Relevance to this thesis

This thesis relies on the application of formal methods. FEC plays a pivotal role in verifying
the accuracy of the model transformation process. Concurrently, Property Checking serves as a
crucial tool for verifying the behavior of fault injectors introduced into the design through the
model transformation procedure. Additionally, Property Checking finds extensive application
in the domain of safety verification for processor cores.

49

3.4. STANDARD-COMPLIANT SAFETY VERIFICATION

50

Chapter 4

A Generic Approach for Fault Handling

Fault injection is necessary to evaluate the system’s robustness and asses its fault tolerance
and resilience. Through deliberate fault introduction, designers gain valuable insights into the
system’s behavior, uncovering hidden weaknesses and vulnerabilities in both the system’s de-
sign and implementation. Typically, the system undergoes various fault injection campaigns
according to the final robustness requirements. Due to the random nature of faults, commonly,
fault injection campaigns are implemented with a statistical and probabilistic approach. Ad-
ditionally, in-depth analysis of specific faults requires the application of direct and systematic
fault injection. These diverse fault injection requirements necessitate an automated and efficient
fault injection tool capable of bridging the gap between the efforts invested and the final fault
injection campaign. Typically, commercial and open-source fault injection tools are designed
to accept inputs, such as the fault list, signal strobes list, and test cases. The manual writing of
inputs for the fault injection process can be cumbersome and time-consuming, making automa-
tion of this task highly recommended. Automating the process would streamline fault injection
and improve efficiency.

The work presented in thesis provides an automated and versatile framework designed to
generate diverse fault injection campaigns and at the same time to close the gap between the
fault specifications and the fault injection process with minimal efforts. The framework pro-
vides a vendor-independent solution, thus all Verilog/SystemVerilog-based simulators/emula-
tors can be utilized. A general overview of the fault handling framework is depicted in Figure
4.1. The framework backend relies on the model-driven code generator framework, Metagen
(see Chapter 2 for more details). The fault handling framework is composed by two sub-flows
such as: (i) Fault Injection Handler, and (i1) Fault Injection Documentation.

The core element of the Fault Handler is the MetaFI metamodel (FI stands for Fault In-
jection) that specifies the type of the fault injection campaign as well as the particular output-
s/registers that should be analyzed during the campaign. At first, the process involves a reader
that reads the design model (MoD) and translates the fault list into a formal model. Once the
fault list has been formalized, the next step involves defining the fault injection features via an
intermediate model, FI-model. This model contains all the required information to perform the
fault injection campaign such as fault attributes and design strobes (signals) to analyze. Finally,
a template engine translates the model into the final Fault Handler testbench in two different
views : SystemVerilog and Verilator-based C++.

The FI-model serves as an input for the documentation generation flow MetaDOCU. Meta-

51

4.1. THE GENERIC FAULT HANDLING

DOCU is the core metamodel of the documentation generation flow and in a similar fashion
like all Metagen-based flows, MetaDOCU translates the fault injection model into structured
documentation views such as Portable Document Format (PDF).

MetaFI

|

Fault List o O model Temolate i
_/_I.. reader |2 o pine SystemVerilog /
2 6 g C++
Design J /Q\
Model
(_Model] API
API
model -
=P reader S% Template Documentation
> 3 /(T\ engine pdf

MetaDOCU Template

25E

Figure 4.1: Fault handling framework

In the subsequent sections, a comprehensive description of the Fault Handler flow, alongside
the documentation flow, is provided.

4.1 The Generic Fault Handling

The fault handler is the core element of the automated fault injection flow providing all nec-
essary means to handle all fault injection attributes and features. Similar to all Metagen-based
frameworks, the fault injection framework generates fault simulation/emulation testbenches in a
structured, parametrized and model-driven fashion. The framework is structured in three layers
(similar to MDA) such as specifications layer, model layer and view layer. This section provides
initially an overview of the fault handler framework and later explains in details its features. At

52

4.1. THE GENERIC FAULT HANDLING

the same time, it illustrates respective algorithms that are utilized to create the model. In the
end, the section provides examples of the generated testbenches according to the model.

4.1.1 Specifications layer

The integral part of the fault handler framework is the MetaFI metamodel, shown in Figure 4.2.
The metamodel describes all the necessary features that a fault injection campaign requires such
as : (1) Fault Controller, (i1) Fault List, and (ii1) Fault Analyzer. The rootnode of the metamodel
has relations to different sets of classes that are categorized according to the aforementioned

features.

<<enum>> Model

Sa0: Model

Sal: Model

BF: Model
TimingFault: Model

MetaFI
| rootNode)

1 1 1

A\ 4

<<enum>> StrobeType

Functional: StrobeType

Checker: StrobeType

Fault List <
Name: string[1]

tl._*

Fault Space
FaultLocation: string[1]
FaultinjectionTime: int[1]
FaultReleaseTime: int[1]
FaultModel: Model [1]
FaultCounter: int[1]
FaultControlSignal: string[1]

Fault Controller

A\ 4

TopModule: string[1]
RunTime: int [1]
RstOnDuration: int[1]

Fault Analyzer

Name: string[1]

t 1.*

TimingFaultActive: bool[1]

* ¢ ¢
0.1 [o.1]o.*

\ 4

ExhaustiveFaultinjection

InjectionTime: int[1]
ReleaseTime: int [1]

Group

Name: string[1]

t 1.x

Strobe

StrobeSignal: string[1]
StrobeType: StrobeType[1]

A 4

StatisticalFaultInjection

A 4

FaultsPerRun: int[1]
TotalFIRuns: int [1]
SingleEventUpset: bool[1]
TimingFault: bool[1]
ConfidenceLevel: float[0:1]
ErrorMargin: int[0:1]

DirectFaultinjection

FaultID: int[1]
FaultSignal: string[1]
FaultModel: Model[1]
InjectionTime: int[1]
ReleaseTime: int[1]

Figure 4.2: Fault handling metamodel

53

4.1. THE GENERIC FAULT HANDLING

Fault Controller

The Fault Controller encompasses a set of classes and class attributes designed to specify
the purpose of fault injection and fault models. Within the Fault Controller class, there ex-
ist three key attributes: TopModule, which denotes the top module of the RTL for conducting
fault injection; RunTime, determining the number of clock cycles for the simulation/emulation
run; RstOnDuration specifying the duration of active reset; and TimingFaultActive indicating
whether timing faults are supported. Additionally, the Simulation Controller class has a com-
position relation to three other classes: StatisticalFaultInjection, DirectFaultInjection, and Ex-
haustiveFaultInjection.The aforementioned classes constitute a comprehensive representation
of the fault campaign types commonly encountered in fault injection as following:
« Statistical Fault Injection (SFI): a design with N nodes consists of 2N possible single
stuck-at fault models. For modern designs, the number of single stuck-at is too high.
To improve the run time, fault injection employs various techniques like SFI, aiming to
mitigate the computational effort involved in fault injection. In this technique, a random
subset of faults is selected from the entire set of faults. Subsequently, the faults within
this random sample are subjected to simulation/emulation. The sample coverage, i.e.,
the ratio of detected faults to all faults in the sample, is used as an estimate of the fault
coverage in the complete fault set. As a last step, the evaluation of the margin of error
and confidence interval is calculated. StatisticalFaultInjection class of the metamodel
contains the following attributes: FaultsPerRun, indicating the number of faults to inject
in a single run, i.e., fault multiplicity; TotalFIRuns, denoting the number of independent
fault injection runs; SingleEventUpset determining whether only bit flips at memory cells
should be injected; TimingFault determining whether only timing (delay) faults should
be injected; ConfidenceLevel and ErrorMargin, representing sampling features that can
be calculated according to TotalFIRuns. A more detailed explanation will follow later.

« Direct Fault Injection (DFI): according to 1SO26262, DFI is a technique specifically
designed to assess the failure mode resulting from random errors in the functional logic
of the design and to verify the expected behavior of the intended safety mechanism. It
is important to note that DFI is not employed to evaluate the coverage or effectiveness
of the safety mechanism in terms of fault detection or mitigation. Instead, its primary
focus lies in validating the system’s response to effects of the injected fault at specific
locations, specific injection time and specific fault model. The class DirectFaultInjection
encompasses the following attributes: FaultID, listing the set of the faults to inject per
run, i.e., faults that have the same ID will be injected at the same simulation/emulation
run; FaultSignal, determining the fault location; FaultModel indicating the selected fault
model according to the enumeration class Model; Model class contains four different
fault models that can be injected such as (i) stuck-at-0 (sa0), (ii) stuck-at-1 (sal), (iii)
bit-flip (BF) and timing fault; InjectionTime and ReleaseTime, specifying the injection
and release time of the fault respectively.

« Exhaustive Fault Injection (EFI): an EFI campaign, also known as systematic fault in-
jection, involves sequentially injecting stuck-at-faults at every signal within a specific
region of interest, e.g., commonly in DFT techniques. By doing so, a set of critical bits
can be identified. These are the bits that must retain their correct state for the design to

54

4.1. THE GENERIC FAULT HANDLING

behave as intended. Systematic fault injection is instrumental in revealing vulnerabilities
and sensitivities in the design’s behavior, thereby helping to enhance its fault tolerance
and overall reliability [62]. ExhaustiveFaultInjection class contains only two attributes
that are required to specify correct timing of the faults such as: InjectionTime and Re-
leaseTime.

Fault List

The Fault List class includes the description of injected faults, i.e., the fault space. The class
exhibits a one-to-many relationship (1..*) with the Fault Space class, implying that each fault
within the Fault Space is considered for fault injection. As explained in Chapter 3, a fault
space describes all the attributes and features of the injected faults. The attributes of Fault
Space are listed as follows: FaultLocation, FaultinjectionTime, FaultReleaseTime, FaultModel,
FaultCounter, i.e., counting the injection run, and FaultControlSignal determining the signal
that control the specific fault location.

Fault Analyzer

The Fault Analyzer constitutes the section of the metamodel responsible for gathering and ex-
amining data obtained from fault injection runs. This class has a one-to-many (1..*) relationship
with the Group class. The class Group represents modules and submodules within the design,
whose outputs are intended for analysis. It establishes a one-to-many relationship (1..*) with the
Strobe class, which defines all output signals to be analyzed. The StrobeSignal attribute iden-
tifies the specific output signal. Additionally, the StrobeType attribute distinguishes the type of
output, categorizing it as either a functional strobe (representing the functional output of the
design) or a checker strobe (reflecting the output of a safety mechanism). The enumeration
class StrobeType indicates the types of the outputs.

4.1.2 Model layer

The metamodel, shown in Figure. 4.2 (see page 51) describes the attributes and features of the
common fault injection campaigns through metamodel objects, their attributes and the relation
between objects. The Model-of-Things (MoT) is an instance of the metamodel and is created
using a GUI that is provided by the underlying Metagen framework. Generally, the engineer
populates the MoT data manually. During a fault injection campaign, the engineer would need
to to manually fill all the data regarding the Fault Controller and all its related classes, i.e.,
ExhaustiveFaultInjection, StatisticalFaultInjection, DirectFaultInjection. It is not feasible to
populate Fault List and Fault Analyzer data due to the size of complex designs, i.e., thousands
or millions fault injections and thousands of signals that can be analyzed. For this reason, a
model-to-model DSL-based transformation script transforms the MoT into a less abstract in-
termediate model known as Model-of-Fault-Injection (MoFI). The MoFI is an instance of the
MetaFI metamodel and contains all the necessary information to perform the fault injection.
Fault List and Fault Analyzer are automatically populated through the transformation script
known as Template-of-Fault-Injection (ToFI). ToFI utilizes built-in Metagen APIs such as set-
ters and getters to read and set particular values to the model. The ToFI is structured into two
main blocks: (i) Fault Analyzer block, and (ii) Fault List block.

55

4.1. THE GENERIC FAULT HANDLING

In the Fault Analyzer block of ToFI, certain algorithms are utilized to read the original design
MoD, i.e., the model of the design where the fault injection will be performed. This is necessary
to get design internal signals information to set up the strobes of MoFI. Algorithm 1 displays
the procedure to read the MoD and set functional strobes and checker strobes of the MoFI.
The algorithm takes as inputs the MoD, FI MoT and information regarding implemented safety
mechanisms in the design, e.g., their names. The first step of the algorithm is to check which
components of the MoD should be selected to be analyzed as specified in the Fault Analyzer,
lines 2-4, by iterating thorough a for loop through all groups and MoD components. Each
component of the MoD is compared to the Groups attribute of the MoT and all the output ports
of the components are set as strobe signals, lines 5-6. Then a check is performed to classify the
output ports as functional or checker strobes, lines 7-10 and setting correct signals to the model.

Algorithm 1 Algorithm to set functional and checker strobes
Input: MoD, FI_MoT, safety_mechanisms
Output: functional strobes and checker strobes
1: function SET_STROBES()
2 for group in FI_MoT .Fault_Analyzer.Groups() do
3 for component in MoD.Components() do
4 if group = component then
5: for port in component.get Out Ports() do
6
7
8
9

FI_MoT.Fault_Analyzer.Groups.StrobeSignal.set(port)
if port in safety_mechanisms then
FI_MoT.Fault_Analyzer.Groups.StrobeType.set(Checker)

: else
10: FI_MoT.Fault_Analyzer.Groups.StrobeType.set(Functional)
11: end if
12: end for
13: end if
14: end for
15: end for

16: end function

The Fault List block utilizes three different algorithms to automatically populate the Fault
List according to the type of fault injection campaign, respectively EFI, SFI and DFI. This
block takes the fault list description as an input and sets the formalized fault list and fault space
accordingly.

During an EFI campaign type, both stuck-at fault models must be injected at all signals in
the fault list. Algorithm 2 illustrates the procedure to set the fault list. An internal integer cnt
(line 2) serves as a counter for injection run and two variables Fi_inj_time, and Fi_rel_time read
the fault injection and release time from the attributes of ExhaustiveFaultInjection class. A for
loop iterates through all signals of the fault list (line 5), and another for loop considers fault
models to inject (line 6). As next step, a fault space is added for every signal and fault model
(line 7), i.e., if a design has 10 signals (fault locations), then 20 independent fault spaces will
be created. Lines 8-14 simply set the respective fault space values according to the input data.

For a DFI campaign type, the fault list should include only certain fault injection features

56

4.1. THE GENERIC FAULT HANDLING

Algorithm 2 Algorithm to set fault list for an EFI campaign

Input: fault_list, FI_MoT
Output: Fault_List

1: function SET_EFI_FAULT_LIST()

2:

W ey R W

10:
11:
12:
13:
14:
15:
16:

intcnt =1
FI_inj_time = FI_MoT.Fault_Controller.ExhaustiveFaultInjection.InjectionTime()
FI_rel_time = FI_MoT.Fault_Controller.ExhaustiveFaultInjection.ReleaseTime()
for signal in fault_list do
for model in [sa0, sal] do
FI_MoT.Fault_List.addFault_Space()
FI_MoT.Fault_List.Fault_Space().setFaultLocation(signal)
FI_MoT.Fault_List.Fault_Space().setFaultInjectionTime(FI_inj_time)
FI_MoT.Fault_List.Fault_Space().setFaultInjectionTime(FI_rel_time)
FI_MoT.Fault_List.Fault_Space().setFaultModel(model)
FI_MoT.Fault_List.Fault_Space().setFaultCounter(cnt)
FI_MoT.Fault_List.Fault_Space().setFaultControlsignal(signal.control())
cnt = cnt+1
end for
end for

17: end function

Algorithm 3 Algorithm to set fault list for an DFI campaign

Input: fault_list, FI_MoT
Output: Fault_List

1: function SET_DFI_FAULT_LIST()

2:

D e A Al

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

intcnt =1

for dfi in FI_MoT.Fault_Controller.Direct FaultInjection() do
FI_ID = dfi.FaultID()
FI_location = dfi.FaultSignal()
FI_model = dfi.FaultModel()
FI_inj_time = dfi.InjectionTime()
FI_rel_time = dfi.ReleaseTime()
FI_MoT.Fault_List.addFault_Space()
FI_MoT.Fault_List.Fault_Space().setFaultLocation(FI_location)
FI_MoT.Fault_List.Fault_Space().setFaultInjectionTime(FI_inj_time)
FI_MoT.Fault_List.Fault_Space().setFaultInjectionTime(FI_rel_time)
FI_MoT.Fault_List.Fault_Space().setFaultModel(FI_model)
FI_MoT.Fault_List.Fault_Space().setFaultCounter(cnt)
FI_MoT.Fault_List.Fault_Space().setFaultControlsignal (FI_location.control())
if FI_ID # previous(FI_ID) then

cnt = cnt+1

end if

end for

20: end function

57

4.1. THE GENERIC FAULT HANDLING

according to the DirectFaultlnjection attributes. During this campaign, only a desired subset of
all faults will be injected. Algorithm 3 illustrates the procedure to set the fault list. Similarly to
the EFI campaign, an integer variable counts the injection run and then various variables store
DirectFaultInjection attributes, lines 4-8, for all DFI instances. These attributes are used to set
Fault List attributes as shown in lines 9-15. The counter is incremented only if the fault ID is
different from the previous one,lines 16-17, because similar ID faults would be injected at the
same run.

The SFI campaign is the most widely used technique complying with ISO26262 standards.
For a better understanding let us revisit the basic mathematical definitions of a SFI campaign.
Fault sampling is generally used and the accuracy of the estimated fault coverage relies on the
sample size, which represents the absolute number of faults in the sample. A larger sample size
leads to a reduced error bound in the coverage estimate. The determination of the sample size
is based on the desired accuracy level for estimating the coverage. Leveugle et al. [98] propose
methods for estimating and quantifying the error associated with statistical fault injection, pro-
viding valuable insights for confidence in the fault injection result. The main hypothesis is that
the underlying computations presume that the properties of the entire fault injection population,
i.e., specifically all potential fault models occurring at any clock cycle, conform to a normal
distribution. The process of random fault sampling ensures that each individual fault configu-
ration at a specific cycle within the initial population has an equal probability of being selected
for the sample. This is achieved by using a uniform distribution for the random selection [98].
Thus the number of » faults to inject per campaign can be calculated by [98]:

N

n:
> N=
Lt es X o i)

4.1)

where:
« N is initial population size, i.e., all possible faults to inject at every clock cycle,
« pis the standard error, i.e., standard deviation of its sampling distribution,
« e is the margin of error, and
« Z is confidence level parameter, i.e., the probability that the exact value is actually within
the error interval.
Typically N is very large, thus the equation 4.1 can be simplified by assuming N— > oo as

follows:
2

Z
n=lim f(N)=—3xpx(1-p) (4.2)

As an example, let us consider a design that has 10* fault locations and simulation will run for
10% clock cycles. N is calculated as 10'% and can be assumed as very large, i.e., . The number
of faults to inject with given error margin and confidence level is shown in Table. 4.1. As can be
seen from the table, even for very large fault injection population, only 23784 fault injections
are required to achieve 99.8% confidence of fault injection results with 1 % error margin.

Table 4.1: Total number of fault injections according to error margin and confidence level

95% confidence | 99%confidence | 99.8% confidence
z=1.96 z=2.5758 z=3.0902
e=5% n=384 n = 663 n =955
e=1% n =9581 n=16519 n = 23874

58

4.1. THE GENERIC FAULT HANDLING

Algorithm 4 Algorithm to set fault list for an SFI campaign
Input: fault_list, FI_MoT
Output: Fault_List

1: function SET_SFI_FAULT_LIST()

2: intcnt=1

int cnt_per_run = 1

sfi = FI_MoT.Fault_Controller.StatisticalFaultInjection

FI_faults_per_run = sfi.FaultsPerRun()

if sfi.hasTotalFIRuns() then
FI_sample_size = sfi.TotalFIRuns()

end if

FI_SEU = sfi.SingleEventUpset()

10: FI_Timing = sfi. TimingFault()

11: if sfi.hasConfidenceLevel() then

N R A A

12: FI_confidence_level = sfi.ConfidenceLevel()

13: end if

14: if sfi.hasErrorMargin() then

15: FI_error_margin = sfi.ErrorMargin()

16: end if

17: sample = SAMPLE_SIZE(FI_sample_size, FI_confidence_level, FI_error_margin)
18: print (FI_sample_size, FI_confidence_level, FI_error_margin)

19: while cnt < sample do

20: while cnt_per_run < FI_faults_per_run do

21: FI_MoT.Fault_List.addFault_Space()

22: FI_MoT.Fault_List.Fault_Space().setFaultLocation(random(FL_signals))
23: fault_loc = FI_MoT.Fault_List.Fault_Space().FaultLocation

24: FI_MoT.Fault_List.Fault_Space().setFaultInjectionTime(random(sim_time))
25: FI_MoT.Fault_List.Fault_Space().setFaultInjectionTime(random(sim_time))
26: if FI_SEU = True then

27: FI_MoT.Fault_List.Fault_Space().setFaultModel(BF)

28: else if FI_Timing = True then

29: FI_MoT.Fault_List.Fault_Space().setFaultModel(TimingFault)

30: else

31: FI_MoT.Fault_List.Fault_Space().setFaultModel(random(model))

32: end if

33: FI_MoT.Fault_List.Fault_Space().setFaultCounter(cnt)

34: FI_MoT.Fault_List.Fault_Space().setFaultControlsignal(fault_loc.control())
35: cnt = cnt+1

36: end while

37: end while

38: end function

Algorithm 4 illustrates the procedure to set the fault list for an SFI campaign. The automated
SFI campaigns follows the fault sampling principles by setting the necessary attributes in the
StatisticalFaultInjection class. The user has the flexibility to set only two of three fault sampling

59

4.1. THE GENERIC FAULT HANDLING

attributes, i.e., two attributes from confidence level, error margin, and the sample size (number
of faults to inject). The automated flow would calculate the remaining attribute using built-in
Python math libraries. As can be seen in the algorithm, lines 2-3 are setting some internal
counter variables, respectively to count total runs (line 2) and total injections per run (line 3).
Lines 4-16 read and stores class attributes into different variables, while line 17 calculates the
number of total injections according to equation 4.2 and line 18 prints the metrics. Line 19 is
iterating through the total sample that was previously calculated and line 20 is iterating through
the number of faults per run. Lines 21-25 are simply setting the Fault List values using built-
in random functions. Lines 26-32 set the particular fault model; if FL_SEU or FL_Timing
variables are set to true only these models will be injected, otherwise a random fault model is
injected. Lines 33-35 are similar to previous algorithms.

Using all the aforementioned algorithms, the transformation script ToFI creates the model
of fault injection, MoFI, that contains all the information to generate different views.

4.1.3 View layer

The view layer represents the final layer of the automated fault handling framework. In this
layer, the previously defined MoFI elements are mapped to a specific HDL-based language to
create a testbench to perform fault injection. As the MoFI is designed to be platform language
agnostic, they can be mapped to various languages. The current supported languages in the
generation flow are Verilog/SystemVerilog and C++.

After creating the model through the algorithms presented in the previous section, the view
layer involves automating the generation of the testbench. To accomplish this, a Mako tem-
plate was developed to convert the fault injection model’s information into the target code. An
overview of the testbench structure is depicted in Figure 4.3.

[Instantiation of the design

!

[Constrain the design to not inject any fault

!

[Run golden simulation/emulation
|

[

—'[Store selected strobes values in a log file]
strobe_values.log _I_l .

- —
[Inject faults according to selected campaign
[Run the faulty simulation/emulation]—'[Compare selected strobes]

l

[Classify faults according to their failure effect]

All faults
injected

Yes

fault_class.log | |-

——

Figure 4.3: Fault handling testbench structure

The testbench starts by instantiating the design and by configuring the environment to its
initial state. It sets the fault control signals to their default values to not inject any fault and

60

4.1. THE GENERIC FAULT HANDLING

initializes all relevant variables that are required to count the injection runs. Next, a sequential
clocked process starts that simply simulates/emulates the golden design, i.e., the design without
any injected fault, for as many clock cycles as determined in the MoFI. Then, a log-file is
generated that stores the values of the selected strobes at every clock cycle. After this process
is finished, a for loop is created that injects faults sequentially, one after the other. This loop
iterates as many times as specified in the MoFi, i.e., according to the fault injection campaign
algorithms. During each loop step, the values of the selected strobes of the MoFI are compared
to the stored values in the log-file. The comparison classifies the faults according to their effects:
(1) safe fault, i.e., the fault does not propagate and it is not detected/corrected by the safety
mechanism, (i) safe detected fault, i.e., the fault does not propagate but it is detected/corrected
by the safety mechanism, (iii) failure detected, i.e., the fault propagated but detected by the
safety mechanism, and (iv) failure undetected, i.e., the fault propagated but is not detected by
the safety mechanism. After evaluating all the injected faults per run, the environment is reset
to its initial state to prepare for the next fault evaluation. Once all the injected faults have
been processed, the final results of the fault injection campaign are recorded in the log-file.
These results include the total number of faults, the count of safe faults, safe undetected faults,
failure detected faults, and failure undetected faults. Subsequently, the golden and log-files are
closed, and the fault injection campaign concludes. Algorithm 5 displays the pseudocode of the
generated testbench.

Algorithm 5 Generated testbench pseudocode

instantiate()
initialize_variables()
no_fault()
generate_golden_log_files()
//golden run
for clock_edge do
while time_cnt < sim_time do
simulate()
store_strobes()
time_cnt = time_cnt + 1
end while
: end for
: //fault injection and fault classification
- while sim_cnt < total_sim do
for clock_edge do
while time_cnt < sim_time do
inject_faults()
compare_classify_strobes()
end while
time_cnt = time_cnt+1
end for
reset_variables()
sim_cnt = sim_cnt + 1
: end while

RN AR

[N I N T NS T (O T NS R e e e e e e
RNV RERINRERNY 2R

61

4.2. GENERIC DOCUMENTATION OF FAULT INJECTION CAMPAIGNS

As can be seen from the algorithm, lines 1-2 are required to instantiate the design and
initialize the variables. Line 3 is constraining the design to not inject any fault and line 4 is a
procedure that generates the log-fileiles to store strobes information. The first process includes
the golden run where the strobes value are stored at every clock cycle in the log-file, (lines
6-12). This process runs as long as defined in the sim_time variable that corresponds to the data
from the MoFI. After the golden run is finished, the process of fault injection starts. A loop
is executing (line 14) to make the process iterating as many times as specified in the MoFI,
i.e., the total fault injections as defined from the fault injection campaign algorithms. The
strobes are compared to the golden strobe values and the faults are classified according to their
effect (lines 15-21). After a fault injection run is finished, the variables are reset (line 22), and
the simulation count is increased (line 23). The Mako template generates the pseudocode in
Verilog/SystemVerilog and C++ language.

The model-driven fault handling framework provides a fully automated and structured so-
lution to perform various fault injection campaigns. Furthermore, it formalizes informal fault
injection specifications and at the same time provides a generic simulator/emulator independent
solution.

4.2 Generic Documentation of Fault Injection Campaigns

Documentation plays a crucial role in fault injection, serving as an essential aspect of the pro-
cess. Proper documentation involves recording all relevant details related to the fault injection
campaign, such as the types of faults injected, their locations, and the fault analysis outcomes.
In this thesis, a novel model-driven documentation generation framework has been developed
to address the need for comprehensive and structured documentation in fault injection cam-
paigns. By utilizing the underlying models, the framework efficiently captures and organizes
critical information related to fault injection experiments, including fault location, fault models,
campaign type, and other relevant data.

The documentation generation framework is generic, making it applicable for diverse doc-
ument generation needs. The framework’s versatility allows it to be effectively utilized for
generating documentation across various domains and contexts, beyond the scope of fault in-
jection alone. Nevertheless, in the following, the focus will be specifically on fault injection
documentation.

4.2.1 Overview of the Documentation Generation Framework

Similar to all model-driven frameworks, the core element of the documentation generation is
the metamodel depicted in Figure 4.4. The root node MetaDOCU has a relationship with the
Document class which itself contains only the Author attribute. The Document class has re-
lationship with two other classes such as Format and Documentltem. One of the initial steps
involves formatting the document, including aspects such as font selection and size adjustments
through Format class. Documentltem simply specifies all possible items that the generated doc-
ument can have, e.g., title that is specified through Title class. There are several document item
options (DocumentltemOpt) that can be specified through various classes such as List, Figure
and Table. Each of these classes contains different attributes to configure all document items.

62

4.2. GENERIC DOCUMENTATION OF FAULT INJECTION CAMPAIGNS

Through TextBlock class, the user can specify a new section of the document. Finally, the Tex-
tltem class simply contains the text that should be inside the TextBlock. Generally, the user can
specify different formats for each section or text item. Finally, The References class serves the
purpose of creating references to external sources within the document.

MetaDOCU

rootNode)

Document
Author: Textltem [*]

A 4
List ! Documentltem

Enu: bool0..1] = 0

0.1

Format
Size: float[1] = 12

*
[2" Font: string[1] = Arial
3 A . -
0.1 Bold: bool[1] = False
DocumentltemOpt
- TextBlock Italic: bool[1] = False
> . _
* T Underline: booﬂ[l] = False
I
A 4
Textltem
BaseClass N Table — I 0.1
. Caption: TextBlock [0..1] Item: string[1] — |
el > MathExpr: bool[0..1] = False
Row 0.1
I
* Reference | o1
Figure * Key: .strlng[l] = key
Path: [1] = insert figure path I Detail: Textltem [*]
Caption: TextBlock [0..1]

Figure 4.4: MetaDocu metamodel

After the documents specifications are captured via the metamodel, internal readers and
template generators have been developed that generate the documents into different formats
such as LaTex or Markdown.

4.2.2 Fault Injection Documentation Generation

The fault injection documentation is generated using a documentation generator that takes the
MoFTI as input. The MoFI is then transformed into a structured documentation model using a
template designed specifically for this purpose. The simplicity of the documentation generator
facilitates the development of the template. The template contains various functions to capture
different fault injection features. Initially, a function is used to set the documentation title,
document’s format and the initial document items. Then, a section is created containing the
general fault injection attributes such as information about the design, fault injection campaign
type. Lastly, a table is created that contains all the information about the injected faults.

For illustration purposes, a snippet of an example of generated fault injection documentation
is shown in Figure 4.5. The design where fault injection is performed is called sample circuit
and then the simulation duration is noted. After that, the document shows the type of the
fault injection campaign, and in the figure an EFI campaign is displayed. Next step consists
of displaying the fault injection and release time. Then, the document displays the strobes that
will be analyzed during simulation/emulation. In this case, the signals are sample_circuit_out_1
and sample_circuit_out_2. After the general information is provided, a table is created that lists

63

4.2. GENERIC DOCUMENTATION OF FAULT INJECTION CAMPAIGNS

every injected fault attributes. The first column displays the simulation count, and next all fault
injection attributes are shown such as fault location, fault injection time, fault release time and
fault model. Since an EFI campaign was selected, it can be seen from the figure that both
stuck-at fault models are injected at two signals (sig_1I and sig_2).

Fault injection is applied on: sample_circuit
Simulation duration is : 50 clock cycles

The selected type of fault injection campaign: EFI
Faults are injected starting from timepoint: 20
Faults are released at timepoint: 50

The following signals will be analyzed:

* sample_circuit.out_1

* sample_circuit.out_2

Fault injection data:

Sim count | Fault location | Injection time | Releasetime | Fault model

sig_1 20 50 sal
sig_1 20 50 sa0
sig_2 20 50 sal

mep

sig_2 20 50 sa0 /

Figure 4.5: Snippet of fault injection documentation

64

Chapter 5

Fault Simulation on Mixed Granularity
RTL Models

The increasing functional complexity and transistor density of modern electronic systems have
made them more vulnerable to both systematic and random hardware failures. Systematic fail-
ures occur during the product development cycle, while random failures happen during the
system’s field operation. In the automotive domain, where safety-critical electronic compo-
nents are used, ISO 26262, the functional safety standard, mandates thorough analysis of all
types of failures during the development process to ensure risks are below acceptable levels.
This high level of complexity requires fast and trustworthy fault injection methods. Fault sim-
ulation is the widely employed fault injection technique that offers numerous advantages. One
of its primary benefits is its cost-effectiveness compared to physical fault injection experiments
or real-world testing. By conducting fault simulations in a virtual environment, engineers can
detect and address potential faults early in the development process without the need for costly
physical prototypes. This early fault analysis helps in avoiding expensive redesigns and im-
proves overall development efficiency. Moreover, fault simulation contributes to an accelerated
development process. Engineers can perform fault simulations iteratively throughout the design
phase, allowing for faster identification of design flaws and quicker resolution of issues. This
iterative approach enables a more agile development cycle, reducing the time-to-market and
enhancing the overall product quality.

Fault simulation is a versatile technique that can be applied at various abstraction levels
of a design, including transistor level, gate-level, and RTL. However, its most common and
preferred application is at the gate-level representation of the design, as it provides accurate
fault coverage [88, 125]. Fault simulation at gate-level abstraction allows for a detailed analysis
of the behavior of individual gates and logic elements, providing precise fault modeling and
accurate fault injection. Despite the benefits of gate-level fault simulation, such as detailed
impact analysis of injected faults at the logic gates and registers, its simulation performance
is slow. Therefore, fault simulation is also commonly applied at the RTL due to its higher
performance compared to gate-level fault simulation and at the same time being less resource-
intensive. Nevertheless, RTL fault simulation suffers from a less detailed analysis because the
higher-level abstraction of RTL may not capture the same level of fine-grained details as gate-
level simulation, which could result in overlooking certain fault behaviors. Binary simulation,
i.e., 0/1 simulation, requires manipulation of certain bits to mimic the fault injection.

65

5.1. OVERALL FLOW

This thesis proposes a novel approach that performs fault simulation on mixed "coarse-
grained" granularity RTL model. The approach overcomes the challenges of both gate-level and
RTL fault simulation by combining the best of the two worlds. The fault simulation flow allows
that only the design modules that are object of fault injection are represented at "fine-grained"
gate-level granularity while the rest of the design is represented at original RTL granularity.
The proposed fault simulation drastically improves gate-level fault simulation performance and
at the same time is sufficiently accurate. The MetaRTL RTL generation flow streamlines the
entire workflow, making it highly automated and efficient.

This chapter offers a comprehensive explanation of the fault simulation flow by presenting
intricate details of all the techniques employed in the process. An overview of the proposed
approach has been previously published at [79].

5.1 Overall Flow

The proposed approach involves employing a mixed granularity representation for the DUT to
accelerate fault simulation. In this scheme, the modules targeted for fault injection are depicted
with gate-level granularity, while the remaining sections of the design maintain an RTL repre-
sentation, which is adequate for fault propagation analysis. Creating RTL design models man-
ually, featuring distinct gate-level granularity modules, is both labor-intensive and susceptible
to errors. To counter this, MetaRTL is integrated into the fault simulation approach. The work
introduced in this thesis entails an expansion of the existing RTL generation flow to encompass
the creation of RTL code at gate-level granularity.

The complete fault simulation flow is depicted in Figure 5.1. Initially, MetaRTL is utilized
to generate the design. Subsequently, the functionality of the generated RTL design is veri-
fied through functional verification, following the methodologies outlined in Chapter 2, i.e.,
MetaProp. Functional verification is required to remove systematic faults, because they could
hinder the effects of random faults. Following the functional verification, the generated RTL
design undergoes synthesis to achieve its gate-level representation. The synthesis process is
executed using a logic synthesizer, for example, Design Compiler [124] or Yosys [133]. The
transformation of RTL to its gate-level equivalent is contingent on the specific technology em-
ployed, thus it adheres to a dedicated technology library. This library includes technology cells,
each accompanied by important information encompassing aspects such as timing, power, area,
and logic expression.

An implemented Python program, denoted as the ToD Generator, is utilized for extracting
the gate-level netlist and library cell functionalities. This task is achieved through the utiliza-
tion of HDL parsers, such as the Verific parser [131], which facilitate the extraction process.
The unique functionalities associated with individual technology library cells are then mapped
automatically to corresponding components within the MoD. This mapping is complemented
by the utilization of built-in primitives, which serve to encapsulate the specific functionalities.
The MoD is an instance of the MetaRTL metamodel, and as a result, a new MoD is generated
that describes the design in the gate-level granularity (conforming to netlist) using MetaRTL
primitives. For example, an AND gate of the netlist is represented using an RTL-based AND
built-in primitive.

The next significant phase involves the process of model transformation, including the trans-

66

5.1. OVERALL FLOW

«—— Intended components for
Generated | ToD P fault injection
ToD* | Generator
- Gate level netlist :|]
= ! 3 Synthesis

v
o
=,

El
=]
=
Pyl
—
I
o
s}
o
@

A 4

v T 3
e) | R) B e WIaRREL.....c.veue., | Technology
collapsing | I Library
RTL code with

: submodule at Gate
i |level granularity/added
N saboteur:

Transform

Saboteurs

Fault list

Fault Handler
Framework

Testbench.sv

Figure 5.1: Overview of mixed-granularity fault simulation flow

formation of the generated MoD* to create a mixed-granularity model equipped with fault in-
jection capabilities. Within this context, the component designated for fault injection within
the original MoD is substituted with the analogous component from the generated MoD*. Sub-
sequently, the model transformation operation is executed on the component model, involving
the insertion of saboteurs across each component net. Moreover, to streamline the process,
fault collapsing techniques can be employed to minimize the requisite number of fault injection
locations.

This Transformed MoD* (T-MoD#*), is then leveraged for the purpose of generating the de-
sign in a hybrid RTL model, combining different granularities. To elaborate, let us consider an
instance where fault injection is to be executed solely on the Register-File of a processor. Syn-
thesis is limited exclusively to the Register-File, resulting in the generation of a distinct MoD
containing exclusive Register-File information. Subsequently, this distinct MoD is incorporated
into the original MoD of the processor, thus building a mixed MoD characterized by: (i) a gate-
level granularity for the Register-File, and (i) traditional RTL representation for the remainder
of the design. Afterwards, the model transformation procedure is implemented, and as a result
a new processor is generated integrating fault injection capabilities. As a concluding step, an
equivalence and property check is performed to compare the new generated design against the
original version, effectively verifying the absence of bugs within the transformation process.

In parallel, the T-MoD and the fault list are used as inputs from the Fault Handling frame-
work, as introduced in Chapter 4. This facilitates the generation of a customized testbench to
execute various fault injection campaigns. The testbench and the mixed-granularity RTL mod-
els are utilized together to conduct fault simulation utilizing either commercial or open-source

67

5.2. BACKGROUND ON MODEL TRANSFORMATION

RTL simulators. The resulting information from the simulations offers valuable insights into the
effects of injected faults, thus contributing to a comprehensive understanding of the system’s
fault tolerance characteristics.

5.2 Background on Model Transformation

The MoD serves as the key model in the RTL generation process and captures the design mi-
croarchitecture, regardless of the platform or technology. It consists of components, ports,
connections and literals. The components can be categorized as:

« Descriptive: design description style in the RTL generation flow,

« Behavioral: behavior description on a high level, e.g., Finite State Machines (FSMs),

« Sequential: sequential design elements, e.g., latches and flip-flops,

« Primitive: combinatorial basic logic gates, e.g., a logical OR gate.
The MoD can be considered as a tree-like data structure with the top module as its root and
the components and sub-components forming the nodes and branches. Complex designs are
typically built hierarchically, where high-level modules contain their respective sub-modules.
For example, a pipelined processor core has the processor as the top-level module, the Execute
stage as its sub-module, and the ALU as a sub-module of the Execute stage. In a similar way,
the MoD describes the hardware hierarchically and can be considered as a hierarchical port
graph [69, 56]. The formal representation of the design model enables its transformation by
adding, replacing, or deleting elements, i.e., model transformation can be referred to as graph
rewriting. Bavache et al. [30] presented the core operators to transform the MoD as following:

« Locate: locates all MoD elements that should be transformed.

« Add: adds new MoD elements to the previously located elements.

« Delete: deletes MoD elements and takes care of proper connections.

« Replace: replaces old MoD elements with new elements.

SO c i

(a) BASE (b) ADD
(c) DELETE (d) REPLACE

Figure 5.2: MoD transformation operators [30]

A visual representation of the MoD transformation operations is presented in Figure 5.2.
The initial MoD that undergoes these transformations is depicted in Figure 5.2a. In Figure
5.2b, the base MoD is subjected to a transformation, introducing two new elements. Figure
5.2c displays the removal of an element from the base MoD, while Figure 5.2d portrays the
substitution of an existing element with a new one.

68

5.3. GENERATION OF FINE-GRAINED MODELS

Throughout this thesis, these transformation operators are extensively employed within the
context of fine-grained MoD generation and the insertion of fault injectors.

5.3 Generation of Fine-grained Models

The principal objective underlying the generation of fine-grained models, specifically in the
context of mixed granularity models, is the enhancement of fault simulation performance, and
at the same time preserving a sufficient level of accurate fault coverage. This paradigmatic
approach can be characterized as a form of reverse engineering, manifesting as a sequential
transformation process: initial model generation, subsequent RTL synthesis, and eventual re-
conversion into a refined model representation (model->RTL->model). In essence, this iterative
process includes the creation of an alternative design model subsequent to the original RTL rep-
resentation, effectively shifting the design pathway from model to RTL and then reverting to
an advanced fine-granular model. The process consists of two main steps: (i) converting the
generated RTL into a ToD, and (i1) creating a fine-grained MoD . In the following the process
is explained in details.

5.3.1 Netlist-to-ToD

MetaRTL is utilized to generate the RTL from the initial specifications and then functional
verification is performed to check against functional bugs, i.e., deviations from specifications.
After this process is complete, synthesis of the RTL is performed, e.g., via Yosys synthesis
tool, and the gate-level netlist of the design RTL is generated. In a gate-level netlist, the design
is generally described using standard gate-level primitives, e.g., AND gate, OR gate, etc, and
library cells that define the behavior and characteristics of the individual gates.

A ToD generator has been developed that converts the synthesis netlist into ToD constructs.
The ToD generator is composed of two main parts: (i) library-ToD generator, (ii) netlist-ToD
generator. These two individual generators are then combined to generate a final netlist ToD.

Library-ToD generator

The initial phase of generating a netlist-Tod entails the conversion of a technology library file
into a library-ToD representation. A technology library can be conceptualized as a group of
logic gates, each equipped with distinct attributes. These libraries, distributed by semiconductor
foundries, encompass a comprehensive description of essential characteristics and operational
details of each logic cell within a semiconductor vendor’s library. A standardized technology
library consists of combinational cells (e.g., logic gates), sequential cells (e.g., flip flops), and
other cells (e.g., fillers). The Verific library parser is utilized to read and extract cell information
from the library file such as: (i) cell name, (ii) combinatioral and latch cells information, (iii)
pin information, and (iv) different attributes like pins direction, cells function etc..

A simplified version of a library cell is shown in Listing 5.1. The library contains informa-
tion regarding the cell name (line 1), the cell’s ports directions (lines 3-5), cell’s funcionality
(line 8) and the cell’s pins (line 11-13). As can be seen from the functionality and the pins,
ANZ2XO015 cell represents a two-input logical AND gate. The listing excludes other standard cell
parameters like area, leakage power etc.

69

5.3. GENERATION OF FINE-GRAINED MODELS

AN2X015: {
"dir": {
A: input,
B: input,
Z: output
}I
"func": [
(A*B)
I
"pin": |
AV
BV
Z

O 0 N O R W =

—_— e = e = e
wn kWD = O
—

Listing 5.1: Library cell example

A Mako template combined with a reader script, converts the above cell into a ToD structure
where each cell of the library corresponds to an independent ToD python class. Listing 5.2
illustrates the ToD class for the example cell of Listing 5.1. In the library-ToD, the name of
the class (line 1) corresponds to the name of the cell in the library file and then Python class
constructs are created (lines 2-3). Then, all pins and their attributes e.g., direction and size,
are defined in the lines 4-6. Each individual cell must be categorized as either a combinational
logic cell or a sequential cell (such as a register or a latch). If it is a basic combinational logic
cell, the extracted function is transformed into a dataflow expression, as illustrated in line 8.

class AN2X015 (Dataflow):
def _ init__ (self, *args, **kwargs):
super (AN2X015, self)._init__ (*args, **kwargs)
self.A InPort (ObjProps=BitVec (1))
self.B = InPort (ObjProps=BitVec (1))
self.Z OutPort ()

0 N AN N R W N =

self.Z = (self.A & self.B)

Listing 5.2: ToD of a library cell

Translation of sequential cells into the ToD consists of a few more steps. Predefined reg-
isters and latches within the MetaRTL framework are employed to translate register and latch
cells. Each pin of the register and latch cell is linked to the corresponding ports of the prede-
fined register and latch. The enable and reset pins are configured according to their retrieved
pin features, determining their respective sensitivities. Additionally, some certain gate-level
technology cells like registers and latches rely on an enable signal to trigger the fault, meaning
the fault remains inactive if the cell is not enabled. If testing patterns disregard the enable signal
of a memory cell, it could potentially lead to risky behavior within the design and impact de-
pendability analysis. To address this scenario, in this thesis, library enabled sequential cells are
transformed into simpler sequential cells. This involves connecting the input of these cells to
the output of a multiplexer, where the enable signal serves as the selection signal. For instance,
transforming an enabled D flip-flop is illustrated in Figure 5.3. Both circuits are equivalent —
the cell is written only when the enable signal is activated. By introducing saboteurs at the input

70

5.3. GENERATION OF FINE-GRAINED MODELS

of the cell, indicated in red in Figure 5.3, the cell’s value can be flipped independently of the
enable signal [75].

EN | DE- [Q Out

En FF

Clk —

Technology cell

D
In
p-Fr 2L Out
Clk—

En

MUX cell D-FF

Figure 5.3: Conversion of enabled sequential cells to simple ones [75]

A snapshot of the ToD of a sequential test cell FDIQSX010 is shown in Listing 5.3. Line
1-8 are very similar to the combinational cell definitions, i.e., cell name, class constructs and
pins attributes. Line 10 represents how the test enable activates the register input and lines
11-14 simply represent a MetaRTL Register primitive instantiation. Line 11 illustrates register
input and output definition, line 12 displays register clock connection, line 13 defines clock
sensitivity and line 14 depicts enable signal connection.

1 |class FD1QSX010 (Dataflow) :

2 def _ init__ (self, *args, **kwargs):

3 super (FD1QSX010, self)._ _init__ (*args, **kwargs)
4 self.CP = InPort (ObjProps=BitVec(1l))

5 self.D = InPort (ObjProps=BitVec(l))

6 self.Q = OutPort ()

7 self.TE = InPort (ObjProps=BitVec (1))

8 self.TI = InPort (ObjProps=BitVec(1l))

9

10 self.In = (self.D & ~self.TE) | (self.TI & self.TE)
11 reg = Register(In = self.In, Out = self.Q)

12 Clk = reg.Clk.connect (self.CP)

13 SensClk = reg.setClockSensitivity ("RisingEdge")

14 reg.En.connect (Literal (1))

Listing 5.3: ToD of a library cell

Similar procedures are repeated until all combinational and sequential cells in a library
cell are converted into their respective ToD classes. A python ToD file named lib_cells.py is
generated that is named as library ToD.

Netlist-ToD generation

A gate-level netlist provides a representation of the logical operations performed by a circuit
or design. It showcases the circuit’s structural composition using a combination of logic gates,
which includes both simple gates and complex cells sourced from the standard cell library.
Verilog RTL is converted into a netlist via a synthesis tool, e.g., Yosys. After the netlist is gen-
erated, it is translated into a netlist-ToD, in a similar fashion to the Library-ToD translation. The

71

5.3. GENERATION OF FINE-GRAINED MODELS

Verific netlist parser is utilized to read and extract netlist information such as: (i) module name,
(i1) ports name, size and direction, (iii) wires, (iv) module’s instantiations and connections, (v)
instances of the module, and (vi) function of the module.

Listing 5.4 illustrates a snippet of a netlist of an ALU component named ALU_HMINUS.
The component contains two wires (lines 2-3), three pins (lines 7-9) and two instantiated mod-
ules (lines 10-14, lines 15-19).

1 |module ALU_HWMINUS (Outp, In00, InO01l);
2 wire _000_;

3 wire _001_;

4

5 /+ rest of the code */

6

7 input [31:0] In00;
8 input [31:0] InO01;
9 output [31:0] Outp;
10 E02X010 _120_ (

11 LA(In00[0]),

12 .B(In01[0]),

13 .Z(Outpl0])

14)i

15 OR2IX010 _121_ (
16 .A(In01[01),

17 .B(In00[0]),

18 .Z(_118)

19)

20 /+ rest of the code */

Listing 5.4: Netlist example

The corresponding MetaRTL ToD of the previous netlist snippet is shown in Listing 5.5.
Initially the generated library ToD is imported (line 1) and the module’s name is converted into
the corresponding class name. This class is then established in a structural format, as depicted
in line 3. Ports, their direction and their sizes are then defined in lines 6-8. Lines 10-11 describe
how the wires are defined in the ToD via Conn() connection object. Lines 13-22 display the
instantiation of two modules comp0 and comp1 respectively. The module compO is an instance
of EO2X010 cell from the library ToD as shown in line 13. After that, all pins of the cell are
properly connected as displayed in lines 15-17. INDEX is a MetaRTL primitive that indexes
certain defined bits of signal, and as an example, in line 15 it is indexing bit 0 of In0/ input.

A similar process is utilized to convert all modules of the netlist into the ToD constructs
and in the end the instantation of all modules is performed. A python ToD file named netlist.py
is generated that is named as netlist Tod. The netlist ToD imports the generated library ToD,
and using MetaRTL framework, the MoD of the netlist is generated. The next step of the flow
consists of creating a fine-grained MoD.

import lib_cells as cells

class ALU_HWMINUS (Structure) :
def _ init__ (self, *args, **kwargs):
super (HWMINUS_004, self).__init__ (*args, **kwargs)
self.In00 = InPort (ObjProps=BitVec(32))
self.In0l = InPort (ObjProps=BitVec(32))

N O R WD =

72

5.4. FAULT INJECTION THROUGH MODEL TRANSFORMATION

8 self.Outp = OutPort (ObjProps=BitVec (32))

9

10 self. 000_ = Conn()

11 self. 001_ = Conn()

12

13 comp0 = cells.E02X010 (parent=self)

14 self.insComponent (compO0)

15 comp0.A.connect (INDEX (self.In00 , Literal(0)))
16 comp0.B.connect (INDEX (self.In0l , Literal(0)))
17 comp0.Z.connect (self.Outpl)

18 compl = cells.OR2IX010 (parent=self)

19 self.insComponent (compl)

20 compl.A.connect (INDEX (self.In0l , Literal(0)))
21 compl.B.connect (INDEX (self.In00 , Literal(0)))
22 compl.Z.connect (self._118_)

Listing 5.5: Netlist-ToD example

5.3.2 Fine-Grained MoD

The process of converting a gate-level netlist into a mixed-granularity model is essential and
involves several steps that work together. First, the netlist is translated into a MetaRTL-based
gate-level model. Then, this model is combined with the original model to create a mixed-
granularity model. Throughout this process, specific model transformation operators are used
to ensure each step is completed accurately.

To illustrate the application of these operators, consider a scenario where fault injection
campaigns are targeted at the Execute stage of a processor core. The original MoD of the
processor describes the entire processor, while the netlist MoD only covers a subcomponent
of the processor, specifically the Execute stage, at the gate-level granularity. In this situation,
the locate operator identifies and isolates the Execute stage component in the original model,
preserving its attributes such as ports, connections, and literals. Once the component has been
located, the replace operator replaces it with the corresponding component from the netlist
model, at the module level, ensuring that input and output ports are aligned. This replacement
process generates a new and refined model that describes the DUT in fine-grained gate-level
granularity, while maintaining the original format for all other elements. The end result is a
mixed-granularity model that more accurately depicts the design of the processor. A high-level
illustration of this transformation process can be observed in Figure 5.4.

5.4 Fault Injection through Model Transformation

The principal aim of the fault simulation flow developed on this thesis is to architect an auto-
mated procedure for the seamless integration of fault injector modules into mixed granularity
RTL Models. This procedure involves the construction of a specialized circuit or module ded-
icated to the injection of specific fault models, also known as fault injectors. Following this
purpose, a fault-collapsing methodology is created to systematically eliminate equivalent or re-
dundant faults. Finally, model transformation is utilized to integrate the fault injectors into the
mixed granularity models.

73

5.4. FAULT INJECTION THROUGH MODEL TRANSFORMATION

Model Fine-grained
Original MoD ‘ ‘
9 Transformation MoD

1

Netlist MoD

Figure 5.4: Creation of a fine-grained MoD

5.4.1 Fault Injectors

In the context of this thesis, saboteurs are used as fault injectors. A saboteur represents a distinct
and specialized element deliberately integrated into the design that enables altering the value
of a design signal. When the saboteur is activated, it modifies the value of designated signals
equipped with saboteurs. A dormant saboteur does not exhibit any modification to the design’s
behavior. The saboteur’s operational states, i.e., active and dormant, are governed by a control
signal. Notably, the impact of saboteurs is restricted only to the ports/connections associated
with the components of the design. This characteristic makes usage of saboteurs exclusive to
structural descriptions.

Figure 5.5 displays the fault injectors that are utilized on the fault simulation framework.
The IN signal represents the precise location for fault injection within the design. The control
signal CTRL, on the other hand, serves as the fault injector activator and selects the necessary
fault model to inject. To remain dormant, i.e., to not inject any fault such that OUT = IN,
the CTRL signal of the fault injector depicted in Figure 5.5a should have a value of '""100".
Otherwise different fault models can be injected such as: (i) stuck-at-0 when CTRL is equal to
"000", (ii) stuck-at-1 when CTRL is equal to '""X10" (X is dont’care value), and (iii) bit-flip
when CTRL is equal to ''101"'.

The fault injector displayed in Figure 5.5b extends the previous injector to inject timing
faults too. Timing faults, also known as transition-delay faults, emerge from inherent manufac-
turing defects and produce a delayed reaction within the system. In this context, specific parts
of the design compute the accurate outcome, but the response occurs at a later point in time
compared to the fault-free scenario [74, 103]. To implement this scenario, a multiplexer and a
register are added to the fault injector to delay the response by a clock cycle when the control
signal activates the timing fault. Precisely, when the least significant bit of control signal CTRL
is set to 1, Out signal’s value is similar to IN signal’s value but delayed by one clock cycle.
when the least significant bit of control signal CTRL is set to 0, fault injector behaves similar to
the saboteur presented in Figure 5.5a.

74

5.4. FAULT INJECTION THROUGH MODEL TRANSFORMATION

— il

AND AND
CTRL—4 OR cTRL—L]

[2 oR — Out
0] XOR F—OuT 1] XOR
0]

(a) (b)

Figure 5.5: Fault injectors

5.4.2 Fault Collapsing

As discussed in Chapter 3, fault collapsing offers the capability to reduce the count of faults
within a given circuit. The collapsed fault list provides advantages in processes like fault simu-
lation, fault diagnosis, test pattern generation, and similar tasks, by conserving time and compu-
tational resources [128]. In the fault simulation framework, fault collapsing is applied to reduce
the count of faults within the gate-level design.

Specifically, fault collapsing is applied on library cells by creating a fault matrix for each
cell. Then, based on the fault matrix equivalent faults are removed. The complete fault col-
lapsing process is automated. A Python script is developed that reads the library cells and
automatically generates a fault matrix for all the cells. This fault matrix is afterwards employed
in the saboteurs’ insertion process to determine the appropriate fault injection module for each
pin of the library cell.

IN —] IN —]
1| AND | 1] OR ||

CTRL o| XorR |—out CTRL‘I: o] XOrR F—ourt
() s-a-0, bf (b) s-a-1, bf

Figure 5.6: Collapsed fault injectors [79]

For example, the fault injector of Figure 5.6a can inject only stuck-at-0 and bit-flip fault
model while the fault injector of Figure 5.6b injects stuck-at-1 and bit-flip fault model. The
shorter path of the fault injectors can further improve simulation performance and provide
smaller area to keep pace with the FPGA resources.

5.4.3 Insertion of Fault injectors

The fault injectors are inserted at every connection of the fine-granular MoD through model

transformation. The transformation process is composed of three consecutive steps:
1. Location of the target component: To begin the search for the target component within
the MoD, the locate operation commences at the highest-level module, tracing through

75

5.4. FAULT INJECTION THROUGH MODEL TRANSFORMATION

the modules until the target component is found. Once found, all module details of the
library cells within the component are located and saved for future transformation stages.
This includes capturing all connections and ports associated with each library cell.

2. Adding fault injectors: In this step, the library cell and its connections are navigated
using the add transformation operator. These library cells can either be pure logic com-
ponents comprised of Boolean gates or they can be sequential cells such as registers or
latches. There are a few rules to follow while inserting the fault injectors such as:

« a fault injector should be inserted at every pin of a combinational cell,
« a fault injector should not be inserted at a clock pin of a sequential cell,
« a fault injector should be inserted only once at a connection signal,

« and a fault injector should be inserted only at the driver of a fan-out.

3. Replace: In the final step of fault injection insertion, all the old connections of the library
cells are replaced with new connections from the fault injectors.

Top Component 1

2 L 2 ¥
@ Connections Components (Literals > 2
1

1 = I

i = I T]
@ ! Components Literals > 3
(Literals > 4

¥

(=)

Figure 5.7: Example of inserting fault injectors into the MoD

Components

Components

The previous procedure is reiterated for all library cells within the designated component,
adhering to the specified constraints. Upon completion of this phase, each cell is equipped with
an fault injector. For illustration purposes, a basic example of an MoD with five hierarchical
levels can be used to demonstrate this concept as shown in Figure 5.7. Each component within
the MoD can be associated with ports, connections between them, sub-components, and literals
(constant values). The target of a fault injection campaign is the component highlighted in
green. As a result, all of its connections (nets) and sub-module (e.g., library cells) connections
will be transformed. For simplification, fault injectors are depicted as red circles and nets as
straight lines. As shown in the picture, all of the previous connections are replaced each with
a new connection that contains a saboteur. Each saboteur has a fault control line added as
a primary input for the top-level hierarchy, while the framework automatically propagates its
object properties. This allows for high controllability and observability for the fault injection
process.

76

5.5. EQUIVALENCE CHECKING AND PROPERTY CHECKING

5.5 Equivalence Checking and Property Checking

Fault simulation on mixed granularity RTL requires two consecutive transformation processes:
(i) transformation of the gate-level netlist into a fine-grained MoD, and (ii) transformation of
fine-grained Mod into a fine-grained MoD equipped with fault injectors. The transformations
are fully automated and utilize Metagen build-in APIs. Nevertheless, if a bug occurs during
the transformation process, it has the potential to introduce faults or errors in the resulting
transformed model [28]. To address this issue, an automated formal verification flow has been
developed as illustrated in Figure 5.8.

Generated properties from

| Metaprop ___|

MetaRTL

Fine-grained MetaRTL Fine-grained
MoD* RTL
tool FI-FV

.
Fine-grained Fine-grained
Mod* with FI RTL with FI

N~—————

Tool
Properties |—
J—

Figure 5.8: Formal verification flow of mixed granularity RTL

As previously described in this chapter, the initial step involves leveraging the MetaRTL
flow to generate the RTL that aligns with the design model MoD. Subsequently, formal veri-
fication (FV) is executed employing the generated properties generated from Metaprop. The
purpose of formal verification is to verify whether the design conforms to the specified re-
quirements, thereby avoiding scenarios in which functional bugs manifest as faults during fault
simulation.

In the primary transformation phase, the netlist is transformed into a fine-grained MoD*.
This process is facilitated through the MetaRTL flow, and to ensure the absence of bugs or
errors during this transformation, an Equivalence Check is conducted between the original RTL
and the fine-grained RTL. The Equivalence Check is carried out automatically using TCL scripts
that activate the formal tool.

Subsequently, the fine-grained MoD is equipped with fault injection capabilities by insert-
ing fault injectors. An intermediate Python reader is employed to extract information from
the intermediate fault injection model MoFI, thereby generating constraints for an Equivalence
Check between the non-faulty fine-grained RTL and its counterpart with inserted fault injec-
tors. These constraints are essential for the formal tool to restrict fault injectors to not inject

77

5.5. EQUIVALENCE CHECKING AND PROPERTY CHECKING

any faults, thereby mimicking the behavior of the original RTL. Furthermore, the Python reader
generates properties necessary for the fault injectors formal verification (FI-FV). These prop-
erties serve to verify whether the fault injectors indeed inject the intended fault models; for
instance, if a fault injector’s control signal is set to inject a stuck-at-0 fault model, the output of
the fault injector should indeed correspond to a stuck-at-0 condition.

The automated formal verification workflow provides a thorough evaluation to ensure that
there are no bugs present in the transformations. This creates a strong basis for fault simulation
on mixed-granularity models, allowing for complete confidence in the accuracy of the results.

78

Chapter 6

Model-Driven FPGA-Based Fault
Emulation

Simulation-based fault injection is widely employed to assess the effects of faults and evalu-
ate the resilience of designs. Fault simulation stands out due to its cost-effectiveness, complete
observability, and capacity to encompass various fault models without incurring additional over-
head. The fault simulation process can be realized through the introduction of saboteurs and
mutants into the gate-level/RTL code or model, or via the utilization of special simulators.
While fault simulation presents numerous advantages, it often requires prolonged runtime du-
rations to execute comprehensive fault campaigns. The fault simulation on mixed granularity
models presented in Chapter 5, aims to overcome this major runtime drawback by performing
fault simulation on mixed RTL/gate-level granularity. However, it is important to acknowledge
that even with this approach, there remain limitations associated with the overall simulation
speed, which typically operates at a few kHz.

Fault emulation techniques have emerged as an approach to facilitate fault injection cam-
paigns. These techniques improve the overall productivity by reducing the time needed for
fault injection while simultaneously maintaining the capacity to deliver thorough evaluations.
Emulation operates at significantly higher frequencies in comparison to commercial simulators,
resulting in significant accelerated fault injection runtimes and a major improvement is ob-
served while running longer input sequences. In this thesis, an automated framework for fault
emulation has been developed, which combines enhanced observability and controllability of
injected faults with notable performance improvements. A well-known limitation of emulation-
based methods for conducting fault campaigns is the insufficient availability of I/O ports. To
counter this, an innovative design architecture is presented. The proposed novel fault emulation
framework significantly reduces the manual efforts and can be scaled to emulate an entire CPU
subsystem on an FPGA with LUTs. The emulation-based fault injection framework, i.e., fault
emulation framework, builds upon the model-driven RTL generation framework, MetaRTL.
The framework is fully automated, extends and deploys the existing fault injection framework
by providing a novel architecture for fault emulation using FPGAs. The fault handling meta-
model, presented in Chapter 4, specifies the necessary architecture by describing various fault
injection campaigns. The fault emulator architecture is composed of four main components
such as: (1) Fault Controller, (ii) Design-under-Test (DUT), (iii) Postprocessing block, and (iv)
Data harvesting logic. Furthermore, the framework also incorporates an on-the-fly technique

79

6.1. OVERVIEW OF THE FAULT EMULATOR ARCHITECTURE

for the analysis of fault emulation, effectively mitigating potential FPGA memory bottlenecks.
This chapter provides a thorough description of the architecture underlying model-based
fault emulation. It commences with a holistic view of the entire architecture, followed by

detailed explanation of individual components. An outline of the proposed flow was previously
published in [76].

6.1 Overview of the Fault Emulator Architecture

The fault emulator framework serves as an extension of the preceding fault injection flow out-
lined in Chapter 5. The fault injection flow automatically inserts fault injectors into the design
model MoD and propagates fault control lines as primary inputs (PIs) of the design. The subse-
quent step involves the utilization of MetaRTL to generate the design, i.e., the DUT, equipped
with fault injectors that are added to specific components for fault injection purposes. The
fault emulator modifies the transformed MoD by adding extra components to enable automated
fault injection and analysis, as depicted in Figure 6.1. All the additional components are de-
scribed using the ToD and they are configurable adhering to the fault handling metamodel that
is detailed in Figure 4.2.

Post-Processor 1 (Data Harvesting Logic
Block C i Classificati A ti)
R omparlson N assl IFa on ggrega on Virtual 10
RAM logic logic J k logic

1

]
/ Fault Controller \
Qected components \ Fault
DUT Reset au > e |
Component 1 [— sequencer Emu Num
Component 2 [Primary Outputs Rgnt_|me
Component 3 [—] I?: ic P Inj Tlme
Component 4 [— 9 Rel Time
| Setup Time
Component 2 Fault Control lines Fault p
decoder
\ Design-under-Test j \ T J

Figure 6.1: Architecture of fault emulator [76]

The Fault Controller operates by driving the fault control lines, and setting up the injec-
tion and the release of individual faults into the DUT with precise time points. The controller
maintains a generic nature, adaptable to different fault injection campaigns as specified in the
fault handling metamodel, such as Statistical Fault Injection or Exhaustive Fault Injection. For
precise temporal fault management, the controller requires multiple parameters including emu-
lation number, runtime, injection time, release time, and setup time.

The Post-Processor component captures and preserves emulation traces, encompassing pri-
mary outputs (POs) as well as specific data from selected components. This trace data is stored

80

6.2. FAULT CONTROLLER

within the Block RAM for both the fault-free and faulty operational states. The user can des-
ignate the desired outputs for analysis through the Fault Analyzer section of the fault handling
metamodel. By comparing the traces of the chosen signals, the framework then categorizes the
faults according to their effects.

The Data Harvesting Logic component plays a pivotal roles in the system by receiving
fault classification values generated within the Post-Processor block. Subsequently, it transmits
these classification values to the Host PC for further assessment, thus ensuring a seamless and
automated flow of fault analysis from the emulation environment.

A comprehensive and detailed description of the aforementioned components follows.

6.2 Fault Controller

The central component for fault injection is the Fault Controller, which directly manipulates
the fault control lines connected to the PIs of the DUT to inject the faults. The Fault Con-
troller is created based on the information from the metamodel. Its hardware is generated using
the typical model-driven approach of MetaRTL, therefore enabling adjustable configurations
according to different fault handling parameters. Figure 6.2 displays the block schematic of
the Fault Controller. The Fault Controller module operates independently without the need for
external control inputs.

iacti : ini ti dut_active
Injection Time | Inj_time -
olden_run
Comparator I g

fault_enable
Fault Sequencer

||
U;M_' Release Time

fault control
Comparator rel_time Fault Decoder lines

emu_cnt —‘
) fl
| Setup Time Counter |M overflow

| Emulation Number Counter

time_keep

finish

X X overflow
| Emulation Time Counter | I

Fault Controller

Figure 6.2: Fault controller [76]

As can be seen from Figure 6.2, precise fault injection at specific time points is supported
by distinct time-keeping counters. Given that multiple sequential emulations are necessary for
injecting numerous faults, the Emulation Number Counter records the iteration count of each
emulation run. The Emulation Time Counter computes the clock cycles in each emulation
run, while the Setup Time Counter identifies the moment when the emulation should start, i.e.,
when the reset is deactivated. The Release Time Comparator and Injection Time Comparator
are two comparators tasked with determining the times for fault injection and release. These

81

6.2. FAULT CONTROLLER

times are defined by the fault handler model (outlined in Chapter 4) and are stored in internal
Block RAMs (BRAMs) within the FPGA-based emulator. The comparators compare the values
stored in the RAM against the Emulation Time Counter value (time_keep) and raise two flags
inj_time and rel_time whenever the required clock cycle for fault injection/release is reached.
The Fault Sequencer within the Fault Controller controls the fault injection process by reading
the data from the counters and comparators, communicating with the Fault Decoder to alter the
relevant fault control lines’ states according to the decoded fault. Additionally, a finish signal
indicates the end of the fault injection campaign accordingly by checking the overflow values
of Emulation Number Counter and Emulation Time Counter.

6.2.1 Fault Sequencer

The Fault Sequencer module, predominantly employed for time-keeping purposes, is con-
structed through the utilization of a FSM, as depicted in Figure 6.3. Initially, this module
deactivates all fault control lines and initiates a golden emulation run without any injected
faults, denoted by the golden_run signal (Figure 6.2).

linj_time

AR

wait
before
Fl

inj_time

setup_time

! setup_time Irel_time

em_time rel_time

I'em_time

Figure 6.3: Fault Sequencer FSM

During the fault injection process, DUT starts at the idle state, and it remains in this state un-
til the setup_time duration elapses. After this time is finished, the DUT goes to a wait state wait
before FI. In this state, the DUT is released from the reset state, the emulaton process initiates
and no fault is injected. The process remains within this state until the predetermined injection
time is reached, as detected by the Injection Time Comparator. Subsequently, after the inj_time
flag is activated, the process advances to FI state, triggering the assertion of fault_enable signal
to the Fault Decoder. This action results in the injection of the specific fault in question, which
is maintained until the release time is achieved, detected through the Release Time Comparator.
The remaining portion of the process unfolds in the wait after FI state, persisting until the Em-
ulation Time Counter overflows. This fault injection process concludes by transitioning back to
the idle state and waits again for the next sequence of faults. The subsequent faults are injected
in a sequential manner by traversing the same state sequence.

82

6.3. POSTPROCESSING BLOCK

6.2.2 Fault Decoder

The Fault Decoder is used to map or decode the value of the Emulation Number Counter into
appropriate values for fault control lines according to the fault handling model. Internally, it
consists of individual transcoder blocks which drive one fault control line each, as shown in
Figure 6.4.

Fault Control Line 1 |fault_control_line_1_value
Transcoder

fault_enable
Fault Control Line 2 |fault_control_line_2_value
Transcoder
emu_cnt
1
Fault Control Line 3 | fault_control_line_3_value
0
Transcoder

Eault Control Line n | fault_control_line_n_value
Transcoder

Fault Decoder

Figure 6.4: Fault Decoder

The transcoders are created with minimal effort by using built-in MetaRTL transcoder prim-
itive. The fault_enable signal, originating from the Fault Controller, controls the propaga-
tion of the incoming emu_cnt value sourced from the Emulation Number Counter towards the
transcoder modules. This process is commanded via a simple 2:1 multiplexer. The transcoder
decodes the emu_cnt value, and when its value aligns with the decoding conditions, corre-
sponding fault lines are driven. Conversely, for all other circumstances, the transcoder drives
fault-free control values as its output.

For instance, consider a scenario where it is intended to inject stuck-at-0 and stuck-at-1
faults into the DUT at the first control line. This is achieved by enabling Fault Control Line 1
during the first and second emulation runs, respectively. Consequently, the transcoder would
activate this control line whenever the emu_cnt assumes the values of 1 and 2. Typically, the
fault handling model also determines the emulation number linked to specific fault locations,
thus facilitating the creation of transcoders.

6.3 Postprocessing Block

After a fault is injected into the DUT, it is necessary to analyze its effects on the design’s behav-
ior. The Postprocessing block plays a pivotal role to analyze and classify the faults according to
their effect. A block level overview of the Postprocessor is displayed in Figure 6.5. The Block
Memory is a central element of the module and is built via a FPGA vendor-specific BRAM.
During the golden run, all POs traces are stored into the BRAM via a demultiplexing logic that

83

6.3. POSTPROCESSING BLOCK

uses golden_run signal as a select input. The same signal concurrently serves as the write_en
input for the BRAM, guaranteeing that write operations are exclusively confined to the golden
emulation phase. The BRAM Address Counter utilizes clock cycles as distinct address points
for writing data into the BRAM, e.g., POs traces for clock cycle 3 are stored in address location
0x03. It is neccessary to note that this data is written only when the DUT is active.

golden_run

POs _faulty
POs 0 = all_POs_equal
% POs_golden J—l XOR J—1{ RNOR J_L valid
write_en Block Fault Classifier
= Memory) fault_type

| BRAM Address Counter

ponents_equal

all_com

Capture &
Comparison logic

selected_components

dut_active

Postprocessor

Figure 6.5: Postprocessor [76]

The comparison mechanism is carried out by directing the extracted golden values (retrieved
from the BRAM) and the corresponding values for the fault-injected emulation through a bit-
wise XOR gate. If the POs value during the fault injection remain similar to the non-faulty
one, then an all-zero bit vector will be produced by the XOR gate; otherwise, it generates a
non-zero value. The Reduced-NOR (RNOR) gate produces a logical 1’ when all input bits are
0. The resulting output from the RNOR gate manifests as the all_POs_equal signal that is em-
ployed in fault classification. Similarly, Capture & Comparison logic module follows the same
principle and compares internal registers of selected components and generates the flag signal
all_components_equal. The registers of selected components are defined in the fault handling
model.

In the fault classification stage, the Fault Classifier module takes center stage. Its function-
ality is governed by a FSM, which takes input signals including all_POs_equal, all_regs_equal,
and other control signals. Depending from high or low states of these signals, the Fault Classi-
fier classifies faults into the various categories such as: (1) silent faults when both all_POs_equal
and all_regs_equal are high, (ii) latent faults when all_POs_equal is high but all_regs_equal is
low, and failures when both all_POs_equal and all_regs_equal are low. The outcome of this
classification is encoded in the fault_type signal. When a fault is successfully classified, the
valid signal is triggered, facilitating the storage of the classified fault value in upcoming pro-
cesses for Data harvesting logic.

84

6.4. DATA HARVESTING LOGIC

6.4 Data Harvesting Logic

In the context of fault emulation campaigns, a conventional practice involves preserving the
categorized fault values within the FPGA for the entire duration of the campaign. After the
fault injection campaign has finished, these classified values are transmitted back to the host
PC [102]. Following a similar approach, this thesis explores a strategy centered on the Xil-
inx Virtual-IO IP. Here, the results of fault classification are captured and stored within array
structures embedded within the FPGA itself. After the injection campaign concludes, these ac-
cumulated values are retrieved from the host PC. However, a noteworthy constraint within the
Virtual-10 platform pertains to the time-related overhead incurred by each read/write operation.
This overhead could extend to approximately a minute, varying from different dependencies.
To address this limitation, a mitigation strategy involves aggregating the fault classified values
into more extended bit-vectors. Subsequently, these values are retrieved in batches, thereby op-
timizing the readout process. An overview of this Data Harvesting Logic is illustrated in Figure
6.6.

!
fault_typel Right Shift & OR Transfer Register
en wr_data

2

:E‘

c

® en wr_addr

) Write Index Counter = Array Structure
valid ’—'
E» Shift Counter
L wr_en
Comparator
Data Harvesting

Figure 6.6: Data Harvesting Logic [76]

The Transfer Register is utilized to capture and store the classified fault values and its con-
tents are subsequently transferred to a unified Array Structure once the register reaches its
capacity. The Array Structure has the same bitwidth as Transfer Register (256 bits), while its
depth is determined according to the Fault Handling model. The Data Harvesting Logic takes
as input valid and fault_type signals from the PostProcessor module. A logical right shift op-
eration is performed on the fault_type value according to the Shift Counter output data. On
each new fault classification, this module increments the output shift_by with the size of each
individual fault value such that it does not overwrite the existing data. After shifting, a logical
OR is performed with the existing data of Transfer Register. The outcome of the operation is
then stored again in the register.

Upon reaching the maximum shift value as determined by the Comparator, this module
triggers the writing of the Transfer Register contents into the Array Structure by activating

85

6.5. FAULT EMULATION OPTIMIZATIONS

wr_en signal. Afterwards, the process restarts, with the Transfer Register being refilled with
new classified fault values. The Write Index Counter controls the write positions within the
Array Structure, incrementing by 1 with each overflow of the Shift Counter. By the end of the
emulation campaign, the classification details for all injected faults are stored within the Array
Structure. This data is then transferred from the FPGA to the host PC.

6.5 Fault Emulation Optimizations

The addition of configurable features to the framework requires specific alterations to the de-
sign of its components. These changes are necessary to ensure flexibility and customization
within the framework and allow for optimizations to its architecture, memory requirements,
and fault emulation duration. Further details on the adjustments made to the framework and
their implications are provided in the following subsections.

6.5.1 Memory Optimization

Generally, fault-tolerant computing systems employ the Lockstep approach [13] to execute
identical operations in parallel. The redundancy inherent in lockstep systems enables both er-
ror detection and error correction as detailed in Chapter 3. Fault emulation campaigns can run
for very long periods of time, thus creating a bottleneck of BRAM utilization. Thus, to avoid
this constraint, the original fault emulation framework (see Figure 6.1) is modified in a similar
fashion to the Lockstep approach as shown in Figure 6.7. The modified version incorporates an
additional instance of the DUT. The two DUT instances are named as: (i) Fault-Injection DUT
(FI-DUT) that is equipped with fault injectors, and (ii) Golden DUT that has no fault injectors
and produces fault-free design behavior.

.

4 . .
Post-Processor Data Harvesting Logic
c i Classificati A ti :
ompgrlson assl |_ca on ggrega on Virtual 10
logic logic J k logic

E t
POs
Selected
components / \
N\ DUT active Fault Controller
FI-DUT
|

g Fault Emu Num H—

£ sequencer :

= Runtime
Selected POs g Inj Time
components pet Rel Time

=

& Fault Setup Time
Golden DUT decoder

- :)
DUT active

Figure 6.7: "On-the-fly" fault emulation architecture [76]
This approach relies on the concurrent operation of both the Golden-DUT and the FI-DUT.

86

6.5. FAULT EMULATION OPTIMIZATIONS

Both instances are driven with identical parameters throughout each fault emulation iteration,
enabling real-time comparison of their POs and register values for classification purposes, i.e.,
comparison "on-the-fly". This novel strategy removes the necessity of a dedicated golden emu-
lation process to store fault-free values in the BRAM, as these values are acquired directly from
the Golden-DUT. This refinement optimizes the overall workflow significantly. Furthermore, a
notable benefit of this strategy is its capability to extend emulation runtimes considerably. This
advantage comes from the elimination of BRAM resource bottlenecks, as there is no necessity
to store traces within the BRAM.

6.5.2 Time Optimization

In the process of fault analysis of safety-critical systems, it is of utmost significance to observe
faults that lead to failures. Any time a failure has been detected, immediate measures must
be taken to handle the failure. Hence, in the context of fault propagation analysis, it becomes
feasible to pause the emulation precisely at the point of detection of the faults that cause failures.
This approach eliminates the need to continue the emulation until its predefined completion.
Consequently, this strategy can lead to substantial savings in terms of clock cycles, particularly
when conducting successive fault injections involving lengthy instruction sequences. To enable
this efficient approach, a signal named flush is created, connecting the Postprocessor’s Fault
Classification Logic to the Fault Controller. Consequently, the emulation corresponding to the
particular fault (that causes failure) is stopped, enabling the system to move rapidly to the next
fault.

87

6.5. FAULT EMULATION OPTIMIZATIONS

88

Chapter 7

Safety Verification of Hardened Processor
Cores

Despite the diversity of fault injection methods that have been developed over time, fault simu-
lation and emulation remain prevalent choices due to their cost-effectiveness and simplicity in
implementation. However, a notable drawback of fault simulation and emulation lies in their
constrained fault coverage, as it can only identify faults that have been explicitly modeled.
Moreover, the effectiveness of fault sensitization is dependent on the input stimuli, which might
result in certain faults remaining undetected, that can lead to potential design failures. ATPG
remains the most common technique to produce exhaustive input test patterns, encompassing
all feasible design scenarios to uncover faults. While ATPG excels in testing combinational
designs, it encounters challenges when dealing with more complex sequential designs. More-
over, there remains a difficulty in automatically deriving and applying functional constraints
for testing purposes. This challenge arises because ATPG methods predominantly focus on the
structural aspects of the circuit, primarily its gate-level representation.

[S026262 recommends formal methods for verifying the integrity of the most safety-critical
elements. In this thesis, a novel approach is introduced that combines model-driven approach
with formal techniques to systematically analyze the impact of faults in processor designs. The
process starts by utilizing the model-driven strategy to create designs with a mixed granularity.
Then, a scalable formal verification technique for processors is proposed, enabling the verifica-
tion of design hardening mechanisms and delivering fault analysis outcomes without additional
efforts.

The technique enables the verification of all error correction and detection mechanisms in
the presence of faults without any additional manual effort and without any white-box design
knowledge. The existing flow of generating mixed granularity models enables gate-level fault
modeling only on intended design components, thus reducing the complexity of formal meth-
ods.

Following the model-driven approach, the technique presented in this Chapter is entirely
automated, demanding only minimal human intervention, predominantly focused on parameter
configuration. The fault analysis process synergizes with the design generation flow, providing
valuable insights into redundant generated modules and/or sub-modules. In the subsequent
sections, first an overview of the background that enables the proposed technique is presented.
Next, the exhaustive fault injection on the processor core is described. Finally, the details of the

89

7.1. BACKGROUND

formal fault propagation analysis methodology are outlined.

7.1 Background

In this section, some fundamental techniques are visited, such as Safety Transformation Flow
and Complete-Symbolic State Quick Error Detection (C-S2QED). These revisions are included
for the sake of self-containment within this thesis.

7.1.1 Safety Transformation Flow

Model transformation is an important part of model-driven engineering due to its numerous
advantages. As detailed in preceding chapters of this thesis, model transformation has been
utilized to facilitate fault injection into the design through the insertion of fault injectors, of-
ten termed as saboteurs. The process of model transformation is further utilized for hardening
designs as well as presented by [30, 64]. ISO26262 recommends various levels of risk classifi-
cation (ASIL), thus various safety mechanisms should be used according to the safety require-
ments. Clearly, the varying nature of safety mechanisms requires large development efforts to
create safety-critical designs. To combat this issue, functional safety features are automatically
added within the MoD layer through model transformation. Safety constraints are applied to
the original MoD to obtain a transformed one with various safety mechanisms against various
faults.

The transformation strategy starts with a base MoD and reconfigures its flip-flops in accor-
dance with specified safety constraints, thereby producing a hardened MoD. The safety mech-
anisms constraints and features are defined in the Safety Transformation metamodel illustrated
in Figure 7.1. The root class is named as SafetyConstraints and has a one to many relationship
with SafetyGroup class. For each safety group, there exists a corresponding safety mechanism
defined by SafetyPattern. Currently, the support safety mechanisms include DMR, TMR, Er-
ror Detection Code (EDC) using Parity (PAR), and ECC utilizing Hamming code for SEC and
extended Hamming code for supplementary SEC-DED [64]. The ModuleName defines the top
level module of the design that is subject of hardening while Path further specifies the exact lo-
cation of the component. The designated flip-flops to harden are identified within the FlipFlop
class. When protecting specific bitfields of a flip-flop is required, these can be selected within
the BitRange class.

Once the safety constraints have been set as desired, a Python script will locate the so-called
safety groups in the base MoD and the selected flip-flops and bitfields inside them. For each
of the latter, a wrapper is created containing a copy of it with the additional safety mechanism.
The original flip-flop is then deleted and replaced by the corresponding wrapper. After every
safety constraint has been considered, the output is a hardened MoD that can be integrated into
the RTL generation flow to generate RTL code of safety-critical designs [64].

7.1.2 Complete Functional Verification of Processor Cores

In the domain of processor verification, the conventional practice has predominantly relied on
simulation-based methodologies, utilizing a mix of random and constrained simulation patterns.

90

7.1. BACKGROUND

SafetyConstraints BitRange <<enum>>Mechanism
Name: string[1] StartBit: int[1] DMR: Mechanism
EndBit: int[1] TMR: Mechanism
- EDC: Mechanism
1 ECC: Mechanism
SafetyGroup 0..*
Name: string[1] 1% FlipFlop
Path: string[1] Name: string[1]
SafetyPattern: Mechanism[1]

Figure 7.1: Safety Transformation metamodel [64]

However, a novel technique introduced by Fadiheh et al. [59] called Symbolic State Quick Error
Detection (S?’QED) has emerged for formal processor verification. This method is especially
focused at detecting hard-to-find bugs or confirming their absence.

The basis of the SZQED methodology relies on proving that every instruction functions in-
dependently from its program context. In order to accomplish this goal, the verification model
uses two identical processor cores. These cores are constrained to fetch and execute the same
instruction at an arbitrary point in time, represented as r. Moreover, the model unrolls pro-
cessor instances across a time window corresponding to the instruction’s execution duration.
For illustrative purposes, let us consider a hypothetical scenario involving a 5-stage pipelined
processor encompassing Fetch (IF), Decode (ID), Execute (EX), Memory-Access (MEM), and
Write-back (WB) stages. Figure 7.2 illustrates the conceptual framework of the verification
model designed for the aforementioned processor. This model comprises two distinct CPUs,
both of which fetch the same Instruction-Under-Verification (IUV). It is essential to note that
CPU; initiates its operation from a clean state, meaning that its pipeline is flushed. Conversely,
CPU; starts its execution from a symbolic state, thereby allowing the formal verification tool
to consider diverse scenarios of legal program contexts. It is worth noting that the S?QED
approach assumes that both CPU instances are supposed to uphold QED consistency, i.e., con-
taining matching values within their corresponding Register Files, even after the Write-Back
process. Consequently, any logic bug would lead to a state of QED inconsistency [59].

v NOP NOP NOP NOP NOP

L L L L. L L
T cPUt CPU! CPU! CPU! CPU! CPU!

T T T T T
St+1 St+2 St+3 St+a St+5

v inst, Inst, Inst, inst; inst6

L L L. L. L L

CPU? CPU? CPU2 CPU?

v3 3 V3 v3
Str1 St+2 St+3 St+4

CPU2 CPU?

t,, +1

wb wb

i tia Lex timem t

Figure 7.2: S?QED verification model for a 5-stage pipelined CPU

91

7.1. BACKGROUND

Figure 7.3 illustrates the application of a property to the S?QED model using an Interval
Temporal Logic (ITL) syntax. It’s important to note that both CPU instances fetch the same
instruction. In this scenario, CPU; initiates in a clean state, signifying that solely No-Operation
(NOP) instructions are fetched prior to the IUV. Both instances maintain a QED-consistent
state prior to the final write-back of results. The property checks that the CPUs will remain in
a QED-consistent state even after the Write-Back stage. In the event of any logic bugs, a QED
inconsistent state would consequently arise [59].

assume:
at f;: cpu2_fetched_instr() = cpul _fetched_instr();
during [fir + 1, tys): cpul_fetched_instr() = NOP;
at fyy: ged_consistent_registers();
prove:
at tys + 1: qed_consistent_registers();

Figure 7.3: S?QED property

The S>QED technique is proficient at detecting multiple instruction bugs originating from
sequences of instructions. However, it falls short in detecting single instruction bugs that could
produce similar effects on both instances, thereby not resulting in an inconsistent state. For
instance, an error in the Decoder could misinterpret an "add" instruction as a "subtract" instruc-
tion, causing both cores to exhibit analogous behavior. To overcome this drawback, Devara-
jegowda et al. introduced an enhanced version of S2QED named C-S?QED [51]. C-S2QED
offers a comprehensive solution by addressing both single and multiple instruction bugs. This
approach is based on a series of extended C-S>?QED properties, each focusing on a distinct class
of instructions, such as register-type, immediate-type, memory-type, and more. Essentially, for
each instruction class, a specific C-S?QED property is generated by making slight adjustments
to the original property and introducing additional assumptions. These modifications constrain
the instruction class at the Decode stage according to its type and ensure the CPU is prepared for
the next instruction. Additionally, an extra step is implemented to verify if the values written to
CPU,’s Register File conform to specifications, e.g., proving that the content in the destination
register aligns with the sum of the source registers’ contents for an "add" instruction. Figure
7.4 shows an example of the C-S>?QED property for immediate type instructions.

7.1.3 RISC-V CPU Metamodel

All C-S?QED properties have been generated using MetaProp and the design RTL has been
generated using MetaRTL. Considering the complexity and various features that a CPU has,
it is necessary to formalize its specifications via the metamodel. Figure 7.5 depicts the meta-
model that captures a RISC-based CPU specifications. The root class of the metamodel is
called MetaRISC and the metamodel itself is composed of four elements that describe the CPU
behavior such as [47]:
« Architectural States: A processor includes key architectural state elements like the
general-purpose register file (GPR), program counter (PC), and control and status reg-
isters (CSR). To depict these elements, a composition relationship is established from

92

7.2. OVERVIEW OF SAFETY VERIFICATION OF PROCESSOR CORES

assume:
at fip: cpu_fetched_instr() = cpul _fetched_instr();
during [t + 1, fys]: cpul_fetched_instr() = NOP;
at tp: ready_for_next_instruction();
at tp: imm_type_instr();
at tyg: qed_consistent_registers();
prove:
at tyg + 1: ged_consistent_registers();
at tys + 1: cpul _reg_value(reg_addr @ t;p) =

expected_value(funct_type @ t;p)

Figure 7.4: C-S?QED property for immediate type instructions

the root node to the ObjectProperties class. This class has distinct attributes for defin-
ing different properties of the state elements. For every architectural state element, an
ObjectProperties instance is created containing different attributes.

Instructions: This element captures the instructions and their extensions within an ISA.
This is realized through a composition connection from the root node to the Instruction
and Extension classes. Every instruction is associated with a distinct extension in the
ISA. Each instruction bears attributes like Name, Mnemonic, and an Active, denoting its
support within the microarchitecture. An instruction’s impact on the CPU’s architectural
state is outlined as a series of modifications it introduces. For each affected state element,
an Instruction instance has an associated InstructionBehavior component. To encapsulate
the activities executed by the instructions, the InstructionBehavior class is required.
Encoding Tree: This element constructs a hierarchical structure to define an instruction
word’s configuration and parameters. Through RangeNode and Opt classes, specific bit-
positions and their corresponding values are determined recursively, creating a tree to
represent the instruction word’s format. Additionally, the root node contains parameters
and their encodings that define the bit positions for operands within the instruction word.
Exceptions: This element captures the behavior of exception events in a way similar to
the instructions. Upon encountering an exception event, the processor initiates a sequence
of actions, updating state elements prior to executing a predetermined exception routine.

The metamodel serves as a key element also when performing safety verification of the
processor as detailed in the following.

7.2 Overview of Safety Verification of Processor Cores

A diverse array of hardware-based hardening methods, encompassing ECC, CRC, TMR, DMR,
Lockstep, as well as Parity codes, can be strategically integrated into designs. This integration
plays a pivotal role in protecting the integrity and reliability of safety-critical components. The
design hardening approach, as detailed above, transforms the design model by adding vari-
ous safety mechanisms. Consequently, a heightened level of effort becomes necessary for the
verification of two critical aspects:

1. The functionality of the hardening techniques: This involves confirming whether the im-

93

7.2. OVERVIEW OF SAFETY VERIFICATION OF PROCESSOR CORES

Name: string [1]

MetaRISC
Name:string[0..1]
1|EncodingRoot
1.* 11 * 1.* Progr:
Y 1
RangeNode Parameter - RegisterFile
- — Name: string [1] Instruction Exension g1
BltSeI_ecf: mt[l._. 1 1 r Name: string [1] CSR|
Description: string[0..1] N Name: stlring [9..1] Enable: bool[1]= True . 1
. . 1 [Mnemonic: string [1] InstructionWidth: int [1] SutiObject
1. 1. Description: string [0..1] Type : string [1] *
Opt ParameterEncoding Active: bool [1] Y ObjectProperties
S
| Name: string [1] 1 -
Malue[d] * |Bitselect: int [1..*] * Namelstring|]
Description: string[0..1 Size :int[1]
InstructionBehavior NumOfElements : int[1]
* - - Position : int[0..1]
Encoding Tree Name: string [0..1_] Target 1| |Interpretation : string [0..1]
Exception DataFlowExpression: [1 Description : string [0..1]
Instructions Target 1

Synchronous: bool [1]
ExceptionCode: int [1]
Description: string [0..1]
Active: bool[1]

Priority: int [0..1]

$-

ExceptionBehavior

Name: string [0..1]
DataFlowExpression: [0..1

* SubObject

Exceptions

Figure 7.5: CPU metamodel [47]

Architectural States

<«— : composition
<«—— :association
Underlined (e.g. Expression: [1])
attributes have external reference

plemented fault detection and correction mechanisms behave as intended.

2. Seamless system integration: This process requires careful examination to guarantee that
the safety mechanisms are properly integrated into the system without breaking its in-

tended

The verification process for ensuring the correct operation and proper integration of these
additional hardware modules entails an increase of effort, time, and a deep knowledge of the
intricate design details. In this thesis, an automated safety verification flow is developed that
verifies hardened processor cores as depicted in Figure 7.6. The main benefit of the flow relies
on removing the requirement for these extra verification tasks for hardened designs, resulting

functionality.

in a reduction of both time and effort.

ToP Properties

Hardened
— MoD with FI
capability

MetaRISC
[
==
-:+r-,'1
E=—ES
Instance % I— FI-S2QED model
I — Parser
t
Hardened
MoD Transform Transform
MoD
Hardening MM
I
E= .
=o' '=_ [Instance Synthesis | Netlist
E=—ET

Formal Tool

MetaRTL

Figure 7.6: Processor safety verification flow

94

Mixed RTL/GL

granularity

mCounter

Hold
Fail

7.3. EXHAUSTIVE PROCESSOR FAULT INJECTION

In the initial stage, the design model MoD is generated adhering to the MetaRISC meta-
model (see Figure 7.5), which outlines the precise specifications of the processor. Then the
Safety Transformation flow is applied to the MoD, by transforming it into a Hardened MoD
that contains various safety mechanisms protecting selected components.

Subsequently, the automated process of generating mixed granularity models is executed, as
elaborated in Chapter 5. This flow involves generating the RTL representation of the hardened
MoD, performing synthesis to produce a gate-level netlist, converting the netlist back into an
MoD, and then further transforming the MoD by incorporating fault injectors.

Within this context, a parser extracts important information from both the original MetaRISC
instance and the transformed MoD. This extracted information serves as the basis for creating
the computation model for safety verification, known as Fault-Injection S?QED (FI-S>QED).
The FI-S?QED model is specifically designed to include essential constraints for facilitating
fault injection. Concurrently, the parser identifies and extracts the precise fault model from the
fault handling metamodel instance, e.g a single fault model or a multiple fault model.

Lastly, the ToP employs the FI-S?QED verification model, and the MetaProp tool is used
to generate formal properties. The generated properties combined with the generated design
in a mixed granularity are then subjected to verification using a formal verification tool. This
verification process proves if the properties hold true or fail, thus determining whether hardened
designs conform to the specifications.

7.3 Exhaustive Processor Fault Injection

In this section, a detailed explanation of the the safety verification computation model FI-
S2QED is given including the corresponding fault model to inject.

7.3.1 Verification Computation Model

The FI-S?QED computation model is an extension of the S?QED approach, illustrated in Figure
7.2. In this model, two distinct yet identical processor cores are constrained to fetch the same
instruction. However, in the FI-S?QED model, both processors have the capability of introduc-
ing faults. However, CPU; is designated as the clean-state CPU and is constrained to remain
fault-free.

The creation of the FI-S?QED model involves a preliminary step where the processor un-
dergoes formal verification using C-S?QED. This verification ensures that any anomalies or
failures triggered by faults are not mistakenly identified as functional defects. To offer a visual
representation of the generated FI-S2QED property, refer to Figure 7.7. As illustrated in the
figure, there are additions made to the property to incorporate dependencies or constraints that
remain applicable at any time point. Specifically, CPU; is under the constraint of not introduc-
ing any faults, whereas CPU> is governed by a predefined fault model. The activation of a fault
is accomplished through the utilization of a Boolean predicate, cpu2_inject_fault, employed as
an ITL macro. This macro signifies the user-defined fault model that is to be applied. Faults
in a system can affect both data flow and control flow aspects of the program. Therefore extra
consistency checks are required on critical registers like the PC. These checks are denoted in
green within the property representation.

95

7.3. EXHAUSTIVE PROCESSOR FAULT INJECTION

dependencies:
constraint: cpul _no_fault();
constraint: cpu2_inject_fault();
assume:
at fip: cpu?_fetched_instr() = cpul_fetched_instr();
during [fix + 1,tys): cpul_fetched_instr() = NOP;
at fey: qed_consistent_PC();
at fyyg: ged_consistent_registers();
prove:
atty + 1: ged_consistent_PC();
attys + 1: ged_consistent_registers();

Figure 7.7: FI-S?QED property

To fix injected faults, an error correction mechanism should be present, thus the QED con-
sistency check should continue to hold even post-fault injection. It’s essential that the chosen
fault model aligns with the characteristics of the safety mechanisms integrated within the sys-
tem e.g., if the safety mechanism is able to detect or correct only a single fault, then a single
fault should be injected.

To illustrate the working of the property, let us consider the hardening of the ID-EX pipeline
register using SEC codes. Within this context, the formal tool has the capability to inject a fault
into the ID-EX pipeline register of CPU,. This is achieved by steering the FI_Control_lines
in accordance with the defined single fault model(cpu2_inject_fault macro). The underlying
premise is that if the safety mechanism is prone to functional and integration bugs, the impact
of faults will be visible. If no bugs are present in the hardened design, the CPU’s behavior will
align with that of a fault-free one, thus the QED consistency check will continue to hold. It is
important to note that the property’s focus is not on the specific type of hardening mechanism
employed, but rather on evaluating whether the CPU complies with the specifications even in the
presence of faults. Remarkably, only minimal "white-box" knowledge is necessary, primarily
the understanding of the number of bits to be corrected. If the hardening mechanism includes
error detection, a slight modification to the property is required. Instead of exclusively verifying
ged_consistent_registers(), the property should validate a Boolean expression: ged consistent
registers() or fault detected(). In cases where the fault has not caused any impact (whether it’s
been corrected or has remained silent), the ged consistent registers() condition would remain
valid. However, should the fault propagate to the Register File, the consistency check would fail.
Yet, if the safety mechanism successfully detects the fault (expressed via the fault detected()
macro, serving as the output of the safety mechanism), the property would still stand true. This
is due to the property’s nature of verifying a Boolean expression of "or" type.

7.3.2 Fault Model Definition

The macro cpu2_inject_fault defines certain constraints to inject a fault at CPU;. Algorithm 6
displays the pseudocode utilized to generate the macro via Metaprop.
When activated, FI_Control signals drive faults into various locations. Since these signals

96

7.3. EXHAUSTIVE PROCESSOR FAULT INJECTION

Algorithm 6 Pseudocode for defining FI-S?QED fault model

Input: FI_control_list, nr_injected_faults
Output: Fault model

10:
11:
12:
13:
14:
15:

1
2
3
4
5:
6
7
8
9

: function STABLE_FAULT_CTRL(FI_control_list)
stable fc =1
for FI ctrl in FI control_list do
stable_fc = stable_fc AND FI_ctrl = past(FI_ctrl)
return stable_fc
end for
: end function

: function CONCATENATE_FAULT_CTRLS(FI_control_list)
concatenate_list = @
for FI_Ctrl in FI_control_list do
concatenate_list.add(FI_Ctrl)
end for
return CONCAT (concatenate_list)
end function

16:

17:
18:
19:
20:

function FAULT_MODEL_INJECT(nr_injected_faults, FI_control_list)
fault_ctrls = CONCATENATE_FAULT_CTRLS(FI_control_list)
return SCOUNTONES(fault_ctrls) = nr_injected_faults

end function

21:

22:
23:
24:

function CPU2_INJECT_FAULT(nr_injected_faults, FI_control_list)
return FAULT_MODEL_INJECT() AND STABLE_FAULT_CTRL()
end function

97

7.4. FORMAL-BASED FAULT PROPAGATION ANALYSIS

are propagated as primary inputs of the design, it is easy to control the fault model for injection.
The formal tool can drive the FI_Control signals with any valid legal value at any time point
t; thus, it is essential to constrain these signals to inject only a specific fault at all time points.
For example, if the tool randomly drives the control signal to inject a stuck-at-0, it should
not change the fault type thereafter. To achieve this, the STABLE _FAULT _CTRL procedure
(lines 1-7) generates the stable_fc constraint that forces all control signals to remain stable,
meaning their value should be equal to the previous time point value (line 4). The subsequent
phase encompasses the CONCATENATE_FAULT _ CTRLS() procedure (outlined in lines 9-15).
This procedure concatenates all fault control signals by employing the CONCAT operation
(line 14). The CONCAT operation, a primitive operation of MetaProp, takes a list as input and
concatenates the corresponding signals. The FAULT _MODEL_INJECT procedure (lines 17-20)
proceeds to insert the fault(s) by manipulating specific values within the concatenated signal.
This is accomplished utilizing the COUNTONES() function, which identifies the number of bits
with a "1’ value in a signal. Line 19 introduces an assumption that controls the injection of
a predefined number of faults (denoted as nr_injected_faults). This implies that only "n" bits
within the concatenated signal will bear a ’1’ value, while the remaining bits will be set to
’0’. To illustrate, if the intention is to inject two faults, the concatenated signal will have only
two ’1’ bits, with the rest being ’0’. Consequently, the formal tool can inject a predetermined
count of faults by activating the FI_Control signals. Lastly, the concluding procedure (lines 22-
24) yields the cpu2_inject_fault macro. This macro is expressed as a boolean AND operation,
incorporating the assumptions in line 23.

The FI-S?QED property facilitates the injection of a specified count of faults across all
potential design locations. This features allows for a comprehensive verification of hardened
safety-critical processor cores in the presence of faults.

7.4 Formal-Based Fault Propagation Analysis

Within a digital design, potential fault locations can span from thousands to even millions.
However, it’s essential to recognize that not all faults result in failure scenarios, as certain faults
might not propagate to primary state registers or primary outputs. These particular faults are
labeled as redundant faults, as their presence does not disrupt the circuit’s behavior. For a holis-
tic assessment of all plausible faults within the design, it is necessary to create suitable input
test patterns. These patterns sensitize the faults and evaluate fault coverage. In the following, a
novel formal-based fault propagation analysis approach will be discussed. This approach stems
from the fundamental principles of the FI-S?’QED property.

7.4.1 Verification Computation Model

The primary concept behind formal-based fault propagation analysis is to produce a set of k-FI-
SZQED properties, where the value of k corresponds to the number of locations in the design
where a fault can occur. Each individual property is designed to introduce a fault at a specific
location. The principle of this approach lies in evaluating whether these properties adhere to
the FI-S2QED model’s criteria. Should any property fail to meet these criteria, it signifies that
there exists a sequential set of instructions capable of sensitizing and propagating the fault. In

98

7.4. FORMAL-BASED FAULT PROPAGATION ANALYSIS

this context, the fault is classified as detected. Given the substantial number of potential fault
locations, the process of generating these properties requires an automated approach. For this
purpose, MetaProp serves as a crucial tool, enabling the generation of these properties with
minimal effort. This involves making only minimal modifications to the original FI-S?QED
model, thus ensuring an efficient and comprehensive fault propagation analysis.

TNlustrated in Figure 7.8 are multiple FI-S?QED properties, i.e., k properties. Each individual
property is designed to introduce a fault at a distinct location within CPU~. These properties
share a common characteristic in terms of their fault injection mechanisms, differing only in
the macro, CPU2_FAULT_INJECT employed for injecting the fault. Notably, this macro’s
operation involves enabling a single FI_Control signal while simultaneously deactivating all
other fault control signals. This configuration ensures that only the specified fault is injected
while other potential fault sources remain inactive.

for (int k=1; k < total_fault_locations; k++) {
property FI-S?QEDj, is :

dependencies:

constraint: cpul _no_fault();

constraint: cpu2_inject_fault(k);
assume:

at t: cpu2_fetched_instr() = cpul _fetched_instr();

during [tz + 1, tys): cpul_fetched_instr() = NOP;

at fuy: ged_consistent_PC();

at fyyg: qed_consistent_registers();
prove:

at tyy + 1: ged_consistent_PC();

at tys + 1: qed_consistent_registers();

Figure 7.8: k-FI-S?QED properties

To elaborate, let us consider a modest-sized design featuring only 10 distinct fault loca-
tions. Employing MetaProp, a collection of 10 distinct FI-S?’QED properties is generated, de-
noted as {FI-S2QED;, FI-S2QED,, ..., FI-S2QED;o}. Each property is devised to introduce
a single fault, e.g., the FI-S?QED, property only activates FI_Control; (with the formal tool
assuming any allowed value), while concurrently imposing restrictions on all other fault con-
trol signals, forbidding them from injecting any faults: {FI_Control,=0, FI_Controlz=0, ...,
FI_Control;9=0}.

Notably, any property that results in a failure signifies that the associated fault has been de-
tected, while properties that hold imply redundant faults. This approach involves the generation
of k-FI-S>QED properties, a process similar to the one depicted in Figure 7.6, but without con-
sideration for hardened designs. This systematic approach provides a high level of confidence
in fault propagation analysis through an exhaustive functional testing approach. Furthermore, it
can be perceived as a technique for optimizing design area, effectively finding redundant design
signals and emphasizing functional redundancy over structural redundancy.

99

7.4. FORMAL-BASED FAULT PROPAGATION ANALYSIS

7.4.2 Fault Model Definition

The pseudocode outlining the definition of macro CPU2_FAULT INJECT is illustrated in Al-
gorithm 7. The CPU2_FAULT _INJECT procedure is designed to take the index k as an input
parameter. Within this procedure, all fault control signals except the one linked to the given in-
dex are deactivated (lines 3-5). The outcome of this procedure is the logical AND operation per-
formed on all the deactivated fault control signals. Clearly, the macro CPU2_FAULT_INJECT
does not constrain the corresponding FI_Control signals. This approach allows the formal tool
to inject a fault by presuming any valid value for the given control signal.

Algorithm 7 Pseudocode for defining k-FI-S?QED fault model
Input: k
Output: Fault model
1: function CPU2_FAULT_INJECT(k)
2 deactivated_fc_signals =0
3 for FI_ctrl in FI_control_list do
4 if FI_Ctrl != FI_control_list[k] then
5: deactivated_fc_signals.add (FI_Ctrl.deactivate())
6
7
8
9

end if
end for
return LAND(deactivated_fc_signals)
: end function

100

Chapter 8

An Automated and Effective Approach for
SBST Generation Targeting RISC-V CPUs

The continuous scaling and intricate manufacturing processes involved in digital designs may
lead to various faults in the Integrated Circuit (IC) output. Over the years, numerous DFT
techniques have been developed to ensure comprehensive and efficient testing of ICs during the
manufacturing process.

To enhance the testing of SoC structures, particularly those with complex processor cores,
additional test circuitry is incorporated into the design. As discussed in Chapter 7, testing se-
quential designs poses challenges for ATPG techniques. Therefore, the insertion of scan chains
becomes necessary to enable effective testing. Scan chains facilitate the transfer of test data
throughout the design, allowing for the testing of internal circuitry. By connecting internal
design registers/flip-flops via scan chains, observation and control of inaccessible internal de-
sign nodes become possible. This approach ensures that only the combinational logic between
registers/flip-flops needs testing.

Following the integration of scan chains into the design, testing is conducted using test
vectors, typically stored in Automatic Test Equipments (ATEs). Although the added circuitry
enhances testability and fault coverage, the larger size of required test vectors results in longer
test times and higher ATE costs [90]. Another prevalent DFT infrastructure is Built-in Self Test
(BIST), which incorporates a self-contained test circuit within the design. BIST techniques are
commonly categorized as Memory-BIST (MBIST) for testing memory circuits and Logic-BIST
(LBIST) for testing logical circuits.

The implementation of various DFT infrastructures introduces significant overhead in terms
of both area and performance. In response to the challenges posed by testing processor cores,
an alternative technique has emerged known as Software-based Self Test (SBST). This method
involves the testing of processor cores through instructions, providing a viable alternative to
hardware-centric solutions like BIST. Unlike hardware-based self-test, which requires the acti-
vation of the non-functional BIST mode, SBST can be conducted during the normal operational
mode of the processor without requiring design modifications or the incorporation of additional
hardware structures such as ATEs or scan chains [39]. The software program, comprising a
set of instructions, engages the processor or system, generating test patterns and analyzing the
outcomes to identify defects or faults [39].

The primary challenge encountered by most SBST approaches lies in generating adequate

101

8.1. OVERVIEW OF THE SBST

test patterns capable of exercising a wide range of faults. To address this challenge, various test
generation techniques are employed. Psarakis et al. [111] classifies different SBST techniques
into four major categories:

« Functional: These techniques rely only on the ISA without requiring extensive testing
knowledge, as demonstrated in [121, 109]. While applicable to any design, functional
SBSTs suffer from low fault coverage due to their lack of structural information.

« Structural, hierarchical with precomputed stimuli: These approaches utilize formal
verification methods to generate deterministic test patterns, as seen in [134, 113, 60].
While achieving high fault coverage, structural SBSTs based on formal methods may
encounter scalability issues with complex designs.

« Structural, hierarchical using constrained test generation: These techniques leverage
simulation-based learning to generate suitable patterns, e.g., [39]. The primary advantage
is reduced test complexity, but the quality of testing relies on the accuracy of simulation
models.

« Structural, RTL: These techniques can independently generate test programs regardless
of processor complexity, as demonstrated in [92, 90, 66]. Structural, RTL SBST is effec-
tive for testing complex processor architectures, though it requires in-depth knowledge of
the architecture and exhibits limited automation.

Clearly, all categories of SBST techniques encounter shared challenges encompassing: (i)
achieving a high fault coverage, (ii) reducing the complexity of test generation, (iii) scalabil-
ity to complex designs, and (iv) enhancing automation. This thesis introduces an automated
and efficient approach for generating SBST tailored for RISC-V processor cores, addressing
all aforementioned challenges. The proposed methodology falls within the category of Struc-
tural, hierarchical with precomputed stimuli, relying on formal verification techniques such
as assertion-based property verification. The extraction of deterministic test patterns through
formal properties results in a high fault coverage, effectively addressing challenge (i). The in-
tegration of formal verification with fault simulation reduces the number of required properties
by eliminating faults detected by the same test pattern, thus resolving challenge (ii). Moreover,
the versatility of the technique has been demonstrated through its successful application to vari-
ous components of a RISC-V CPU, establishing full scalability and overcoming challenge (iii).
Notably, the approach is fully automated, providing a solution to challenge (iv). In addition,
the SBST generation is extended with a novel PFC technique, ensuring a high fault detection
rate aligned with different ASILs from the ISO 26262 standard. Consequently, the proposed
approach not only facilitates test generation but concurrently delivers high fault detection while
maintaining full automation.

Subsequent sections of this chapter provide an overview of the SBST flow, followed by a de-
tailed explanation of the test pattern generation technique. The chapter concludes by describing
the PFC and its configuration for fault detection.

8.1 Overview of the SBST

Generally, the SBST generation is computationally expensive, tedious and prone to errors. To
combat these drawbacks, the SBST generation flow presented in this thesis, combines and uti-
lizes extensively automation frameworks such as Metagen, MetaRTL, MetaProp and MetaFI

102

8.2. TEST PATTERN GENERATION

(see previous chapters for more details on the frameworks). The SBST generation flow is com-
bined of two major tasks: (i) Test Pattern Generation and (ii) PFC.

Figure 8.1 illustrates a high level overview of the complete SBST generation flow. The flow
is composed of several steps as following:

1.

The DUT, i.e., the CPU, undergoes the fault injection transformation flow. The com-
ponent that is object to testing is kept on a gate-level granularity while the rest of the
design remains in its original RTL. During this transformation process, the fault list is
automatically generated.

After transforming the DUT in FI-DUT, a miter circuit is automatically created consisting
of the original design and the one with fault injection capabilities. A miter circuit is a
common term in verification and design domain that describes two identical designs that
are being compared while driving them with identical set of inputs.

. The next step consists of injecting faults via formal properties and checking whether the

fault has any effect on the design. The main idea is to write a single property that checks
that the outputs of the miter circuit are identical in the presence of the fault, and if they
are not identical, then a counterexample is produced by the formal tool.

A script extracts the inputs values from the counterexample thus creating a pattern which
is able to sensitize and propagate the fault to the primary outputs/registers. The pattern
is stored in a log file in a hexadecimal (hex) format. This format facilitates setting input
values in the simulation testbench.

. After creating the pattern for a single fault, fault simulation is performed for all other

faults using the same pattern as stimuli. If any other fault is sensitized and propagated
via the same pattern, then this fault is dropped and not considered anymore in the pattern
generation via the formal properties. Formal properties are applied again for the rest of
the faults until all of them have been detected by a test pattern. If some fault does not
produce any counterexample, i.e., it does not have any effect in the design, it is considered
undetectable.

As a next step, the individual test patterns are concatenated to create a complete test
program. It is necessary to note that the CPU is reset via a custom CSR instruction at
the beginning of the individual test pattern such that there is no dependencies between
different patterns.

. Two custom PFC CSR instruction, i.e., PFC Start and PFC End are added to the complete

test program. The PFC Start instruction initializes the PFC hardware module to start
hashing of the instructions and PFC End stops the hashing of instructions. The hashed
value is stored into the internal PFC CSR.

. As a last step, the value stored in the PFC CSR is compared with the expected hashed

value of the instructions which has been precomputed. If there is any mismatch, a fault
has been detected.

8.2 Test Pattern Generation

Test Pattern Generation (TPG) is one of the major tasks of the SBST generation flow. This
task is computationally expensive and time-consuming due to several steps that are required to
generate a complete pattern to test all stuck-at faults in the design. The main idea of the TPG

103

8.2. TEST PATTERN GENERATION

Transformation Transformation

Injection of Faults
via Properties

Miter
Circuit

Fault Simulation + Extraction of individual]
. Counterexample
Fault Dropping Test Patterns J

No Fault Detection JJ
—[All faults covered?] Rate

Yes

Complete Test Insertion of PFC Instructions] Fault Injection (Comparison of HW PFC value
Patterns in the Test Pattern J L with expected PFC value

Figure 8.1: SBST generation flow

presented in this thesis is using formal properties to check whether a fault affects the DUT (the
CPU), and if yes, providing the input sequence, i.e., instructions, that sensitize and propagate
fault effects in the primary outputs/registers of the design. The formal properties consider a
miter circuit and the formal tool would provide a counterexample if the designs of the miter
circuit are not equivalent in the presence of a fault. The counterexample provides the sequence
of instructions that are able to test the fault, therefore the test pattern can be extracted from the
counterexample.

8.2.1 DUT and Properties

Figure 8.2 illustrates the complete setup of the DUT and the formal properties that are used to
verify fault effects. The setup is fully automated using various generation frameworks such as
MetaRTL, MetaProp and MetaFI. Furthermore, various Tcl scripts are utilized to automate the
access of the formal tool and the execution of the properties. Initially, the DUT, i.e., the RISC-
V based CPU, is generated via MetaRTL. Clearly, the primary element of the RTL generation
flow is the RISC-V CPU metamodel that defines the CPU specifications. Some of the main
characteristics of RISC-V architecture are the extensability and customizability. Based on this
feature, a custom CSR instruction has been added that is able to reset the Register File of the
CPU. This instruction is added at the beginning of each test pattern to avoid data dependencies
between different individual test patterns, therefore each test pattern starts from a clean state.
For clarification, since the formal properties start from a reset state, the input sequence starts
from a clean CPU state too. Therefore, it is necessary to reset the Register File to concatenate
several individual test patterns. As an example, the complete pattern set (CTP) would look like
the following: CTP = {custom CSR, TPy, custom CSR, TP»,..., custom CSR, TP,, }, where n
represent the number of individual test patterns (TP).

After the CPU has been generated, it undergoes the process of the Fault Injection Transfor-
mation as explained in Chapter 5 where the desired components of CPU (defined in MetaFI

104

8.2. TEST PATTERN GENERATION

metamodel) are equipped with fault injection capabilities. A miter circuit is automatically
created that is composed of the original DUT and the DUT with fault injection capabilities
(FI-DUT).

Constraints

Property Fl
Generator l Properties |

RISCV

\%%l + custom CSR
Formal Tool Hold/Fail
MetaRTL buT

i Fault Injection
L]) FI-DUT
Transformation

Miter Circuit

Figure 8.2: Setup of the DUT and properties

At the same time, the RISC-V metamodel serves as the specification for the property gen-
eration flow. A set of functional constraints, 1.e., assume type properties, is generated for the
RISC-V CPU complying with the model specifications. These kind of constraints prohibit the
formal tool to consider illegal scenarios, e.g., illegal opcode, illegal operations etc.. Further-
more, another set of test constraints has been automatically added to the property generator to
ensure an independent SBST. The constraints are summarized as following:

« External interrupts are disabled such that the control flow is not impacted.

« Control flow instructions such as branch or jump are disabled, thus SBST is independent

of its memory location.

o The PC is constrained to increase linearly, i.e., PC+2 for compressed instructions and

PC+4 for regular instructions.

« A single fault is injected per property.

« CSR instructions are disabled except custom CSR and PFC CSR. This is done such that

the SBST does not change CSR states of the original program.

Contrary to specifying constraints via a hardware module as presented in [60], these con-
straints are expressed via assume properties. After specifying constraints, another property
of assert type is created to check the fault effect on the miter circuit. This property pseu-
docode based on SVA format is shown in Figure 8.3. This property simply checks whether
the designs are equivalent in presence of a single fault in the FI-DUT. The fault is injected via
fault_injection_macro. This macro constraints the fault control signal to inject only a single
stuck-at fault for the whole duration of the property, similarly to the macro presented in Algo-
rithm 7. If the injected fault affects the FI-DUT, then the property would fail and the formal tool
would generate a counterexample containing the instructions sequence. If the property holds,
the injected fault is undetectable, thus there exists no pattern that can test the fault.

105

8.2. TEST PATTERN GENERATION

property generate_test_pattern;
@ (posedge clock) disable iff (reset)

fault_injection_macro |— > DUT.Outputs == FI_DUT.Outputs;
endproperty

Figure 8.3: Fault Injection Property

8.2.2 Test Pattern Generation Flow

In general, it is very time-consuming to generate test patterns for several thousands of faults only
by injecting faults via formal properties. In this thesis, fault simulation and formal properties
are combined together to speed up the test pattern generation and to create a complete test
program.

Figure 8.4 displays the overall flow of combining fault simulation and formal properties to
generate the complete test program.

Inject fault in miter
circuit via properties

Property
fails?

no (
Fault undetectable]

f Extract) [Store & concatenate
__instructions from CEX J L instructions
(Perform fault

simulation of other { Complete Test Pattern]
_ faults)

. All faults in fault
Fault dropping list covered?

no

Figure 8.4: Complete Test Pattern Generation flow

Initially, the first fault in the fault list is injected via the macro in the property. A timeout
mechanism is set in the formal tool, such that if the property does not fail within a time bound-
ary, the fault is considered undetectable, i.e., the fault does not affect the design. Whenever the
property fails, i.e., the fault affects the design, a counterexample is generated by the formal tool.
The counterexample represents a input sequences, i.e., the test pattern, that can test the specific
injected fault. This counterexample is represented via a text file and the sequence is stored in a
hexadecimal format (.hex). At the same time, a testbench is generated by MetaFI framework to
inject all faults in the design as explained in Chapter 4. A Tcl script extracts the input sequence
from the counterexample file and stores it into another file named as test_pattern_file.hex and
having the custom CSR as the first instruction. Moreover, this Tcl script modifies the generated

106

8.3. PROGRAM FLOW CHECKING

testbench and set the extracted input sequences as stimuli to the CPU inputs. The simulator is
also automatically launched via another script and fault simulation is automatically performed
by injecting all other faults using the same pattern as stimuli. Anytime another fault is tested
by the same pattern, this fault is dropped and removed from the fault list. Fault dropping is a
common term in the testing domain that refers to a practice where the fault is excluded from
the test pattern generation. As a result, with the same test pattern, several faults can be de-
tected. After fault simulation of all faults is complete, the next fault on the fault list is injected
via formal properties. The next generated pattern from the counterexample is stored in the
test_pattern_file.hex file after the previous pattern, i.e., patterns are concatenated. Fault simu-
lation is performed again and the complete process is repeated until all faults have been tested.
After the process is complete, the test_pattern_file.hex file contains the complete test pattern.
An example how the complete test pattern looks like is represented visually via Figure 8.5.
The normal CPU operation is interrupted and its content flushed via NOP instructions. After
jumping to the test routine, a custom CSR that resets the Register File is fetched before each
individual pattern such there are no dependencies between patterns.

Registerfile —1

0
2aoa
cccaco§
=====

&

o
Qo o
===== & HEEREE

0
763356d2
d3
0
0
80001023

Flush Flush Flush
{exception Pattern 1 (software Pattern 2 (software
flush) flush) flushy

t
| Pipeline registers

Figure 8.5: Pattern concatenation example

(Registerfile reset) |g=—

custom instruction
(Registerfile reset)
custom instruction
(Registerfile reset)

exeption handler
custom instruction

RESET,
Normal CPU operation

8.3 Program Flow Checking

Many faults in the CPU would cause anomalies in the program execution such as incorrect
instruction order, modified instructions, illegal instructions, address misalignment of memory
type instructions etc. Program Flow Checking (PFC) is a common safety mechanism to detect
errors in the program flow [21]. The main idea behind PFC is to monitor the program execution
by inserting signatures into the program during compile-time and checking them during run-
time. The signatures are created via a hash (signature) function such as CRC. Generally, the
flow checking process consists of: (i) creating the initial signature, (ii) updating the signature
by hashing the current instruction and the previous signature according to the hash function,
and (iii) verifying the signature. The verification is done by comparing the computed signature
during the compile-time with the one computed during the run-time. If a hardware fault affects
the program, the run-time signature would be different from the compile-time, thus a fault
would be detected.

The run-time signature can be calculated via software but slows down the performance.
Therefore, in this thesis a hardware PFC module is utilized that actively computes the run-time
signature. The PFC hardware requirements are defined in the CPU metamodel and it is auto-
matically added to the CPU. The hardware module is located in the Execute stage and hashes

107

8.3. PROGRAM FLOW CHECKING

the executed instructions. The state-of-the-art PFC techniques focus solely on the instructions
signatures since the compile-time signature can be computed on the disassembly file of the
compiled code. This thesis extends the existing PFC techniques by not only comparing the
instruction signatures but also comparing signatures of ALU outputs or Register File outputs.
Since the counterexamples are generated by the formal tool, not only test pattern instructions
are accessible but also internal signals can be accessed, something that cannot be known on the
dissasembly file. These internal signals, e.g., ALU outputs or Register File outputs, are stored
into another file and the signature is computed over their values.

In the following a more detailed explanation of PFC hardware and how it is utilized to detect
faults is given.

8.3.1 PFC hardware

The PFC hardware is automatically added to the processor core and it is located at the same
pipeline stage as the respective signal whose signature is being calculated. The PFC module
utilizes a CRC function to hash the data and its features, e.g., CRC polynomial. The function is
defined in the RISC-V CPU generation framework.

Figure 8.6 displays the PFC hardware module. The PFC state register, i.e., the signature reg-
ister that stores the run-time signature, is added to the RISC-V CSR interface. The extensability
feature of RISC-V allows ISA extension, thus an extra CSR address in the custom read/write
CSR is allocated for the PFC. The PFC is enabled when pfc_start is activated and the PFC
state is initialized with the initial_state data. pfc_start control signal is high when the custom
PFC CSR instruction is executed and initial_state represents the 32-bit value in the register in
the Register File as defined by the PFC CSR instruction. Initialization immediately activates
the data stream hashing, i.e., the next data after the PFC instruction is the first one entering
the stream hash. This data is denoted by signal data_in and it represents the instruction being
executed, ALU outputs or Register File outputs, i.e., it represents the signal that is selected to
be hashed. The Hash Function, i.e., hardware-based CRC implementation, calculates the next
signature (signature_out) based on the data_in and the current value of the PFC State register.
Data stream checking is deactivated (PFC-off domain) by using a selected register as source in
the PFC instruction. Deactivation is represented by the signal pfc_end. This instruction is the
last data that enters the hash signature. The PFC State value is static from then on and can be
read.

8.3.2 Fault detection flow

The PFC hardware flow provides a fast run-time signature calculation thus enabling an efficient
fault detection. The main idea behind the fault detection flow is to compare a precomputed
signature with the one computed during run-time by the hardware. By doing so, any mismatch
between the signatures signals a detected hardware fault. Figure 8.7 illustrates the steps of the
fault detection flow using PFC. The PFC Start which is represented via the custom PFC CSR
instruction activates the PFC hardware module to start hashing of the upcoming data. The up-
coming data that will be hashed is represented by the generated test pattern instructions (see
above for the test pattern generation flow). The test pattern instructions are stored in a prede-
termined memory location and they are immediately fetched by the CPU after the custom CSR

108

8.3. PROGRAM FLOW CHECKING

signature_in
. signature_out

data_in Hash Function

A

PFC State
I CSR
initial_state .
/

/
pfc_start N
pfc._end [Enable

logic

Figure 8.6: PFC hardware module

instruction. After all test instructions have been executed, another custom PFC CSR instruction
(PFC End in the Figure 8.7) signals the PFC hardware module to stop hashing. This instruction
is the last one that enters the hash signature. The next instruction is not hashed any more and
the state of the signature is static from then on and it is stored in the PFC CSR register. This
way, the signature value can be read using a CSR read instruction.

Meanwhile, the static expected signature value is precomputed via software methods. A
python script performs hashing statically over the generated test pattern using the same CRC
polynomial as the hardware PFC module. Normally, the hardware module should produce the
identical signature if there is no fault on the design. If a fault occurs, the run-time signature
is different from the static one, resulting in a detected fault. After hashing is finished, a com-
parison is made between the signatures. The run-time signature is read via a PFC CSR read-
instruction. Finally a comparison instruction compares this value with the static precomputed
signature. Therefore, after the PFC stop instruction, two more instructions are added to the test
pattern for comparison reasons.

PEC start hashing Test Pattern PFC hashing stop Hashed value
Start Instructions End stored in PFC CSR
|

[
[
A

Precompute = _
p Compare Fault detection M
expected value | e

Figure 8.7: Fault detection via PFC

109

8.3. PROGRAM FLOW CHECKING

110

Chapter 9

Experimental Results and Discussions

This chapter presents various hardware architectures that are used as testing ground for the
techniques described previously in this thesis. Initially, the performance of the mixed granular-
ity RTL models is evaluated, and then this technique is used to perform safety analysis of two
different designs. Afterwards, the fault emulator is thouroughly analyzed and data regarding its
area, speedup and performance are analyzed. Next, different design architectures undergo vari-
ous fault injection campaigns and the results are interpreted and analyzed to provide the design
fault propagation rate for these designs. The chapter concludes with results and applications
regarding formal-based fault propagation analysis and SBST generation.

9.1 Fine-grained RTL Models Performance

9.1.1 Experimental Setup

To measure the performance of the mixed granularity models approach, a CPU subsystem was
generated using MetaRTL, as illustrated in Figure 9.1.

RISC-V CPU
Instruction Data
Memory Memory
0 on —img_
Peripherals
UART SPI PIC

Figure 9.1: RISC-V based CPU subsystem
The CPU subsystem is composed of a RISC-V based CPU that adheres to a Harvard archi-

111

9.1. FINE-GRAINED RTL MODELS PERFORMANCE

tecture, separating its Instruction Memory and Data Memory domains. The five-stage pipelined
CPU offers the versatility of supporting both synchronous and asynchronous exceptions. More-
over, the CPU is equipped with different safety mechanisms such as CRC to protect against var-
ious faults. Additionally, the subsystem includes an assembly of peripherals including UART,
SPI, and a Programmable Interrupt Controller (PIC).

The firmware is loaded into hte instruction memory. The firmware program is automati-
cally generated via the underlying firmware generation framework. During the experiments,
two different firmware programs were utilized such as: (i) Program Flow Monitoring and (ii)
Firmware Verification. The program flow monitoring can identify potential control faults aris-
ing from incorrect program flow execution. This entails checking the order in which instructions
are executed. In a similar fashion, the Firmware Verification program detects possible program
execution faults. The technique differs from Program Flow Monitoring because the applica-
tion designer takes charge of initializing variables and specifying the expected values for the
variables that require verification.

9.1.2 Performance Evaluation

The design is simulated for 10k clock cycles and the Firmware Verification program is em-
ployed. In the simulation, the CPU core is initially implemented at the gate level granularity,
while other aspects of the SoC, like peripherals and memories, are represented using traditional
RTL to reduce complexity. As discussed in Chapter 5, fault simulation campaigns may not
require complete gate level design simulation, therefore mixed-granularity versions are gener-
ated as well. The fault simulation testbenches are automatically generated utilizing the fault
handling framework. Since the techniques discussed in this thesis are not tied to a specific sim-
ulator, experiments were run on three different open-source and commercial simulation tools

To evaluate the overall simulation performance improvement, the SoC is re-simulated, this
time, instead of a full gate level simulation, only particular CPU components at the gate level
granularity are simulated such as: (i) ALU, (i) Register File, and (iii) Prefetcher. Table 9.1
displays the runtimes of running a simulation of designs for 10k cycles. The simulation was
performed on: (i) a full gate level description of the CPU, (ii) a mixed granularity CPU with
only the respective component described in gate level, and (iii) a mixed granularity CPU with
the respective component in gate level equipped with fault injectors. Three different simulators
were utilized, demonstrating the genericity of the approach. The runtime depicted in the table
aggregates elaboration, compilation, and simulation times. As can be seen in the table, a notable
performance gain is achieved through simulation of mixed-granularity RTL models. This per-
formance gain is depicted also via the charts in Figure 9.2. Figure 9.2a displays the gain when
performing simulation on mixed granularity models without fault injectors, while Figure 9.2b
illustrates the results when fault injectors are inserted into the design. As can be observed from
the charts in Figure 9.2a, the highest performance gain is achieved when utilizing commercial
simulator 1 with a gain factor of 14.2. The lowest performance gain is achieved while using
open-source simulator with a minimal gain factor of 5.53. In Figure 9.2b, it is observed that the
overall gain is lower after adding saboteurs due to the increased design area. Nevertheless, there
remains a performance gain compared to a full gate level simulation. A minimal performance
gain of 2.68 and a maximum gain of 11.42 was achieved.

112

9.1. FINE-GRAINED RTL MODELS PERFORMANCE

Table 9.1: Simulation runtime of mixed granularity models

GL component | Simulation tool Runtime (h:m:s)
Full GL CPU | Mixed CPU | Mixed-CPU with FI
Open-source tool 1:43:20 12:50 14:40
ALU Commercial tool 1 1:20:00 6:08 9:27
Commercial tool 2 9:14 1:00 1:14
Open-source tool 1:43:20 18:41 38:30
RF Commercial tool 1 1:20:00 12:15 19:33
Commercial tool 2 9:14 1:37 2:23
Open-source tool 1:43:20 11:38 16:50
Prefetcher Commercial tool 1 1:20:00 5:38 7:00
Commercial tool 2 9:14 0:57 1:09
16
14
é 12
% 10
g
E 8
g_ 14,2
% 6
E 4 8,05 9,23 8,88 9,71
5,53 571
2

o

ALU-GL RF-GL Prefetcher-GL

® Open-source simulator ® Commercial simulator 1 = Commercial simulator 2

(a) gate level model of component without fault injectors

11,42
8,88
8,46)
7,48 g0z
4,09 3,87
2,68

ALU-GL with FI RF-GL with FI Prefetcher-GL with FI

12

=
o

©

Simulation performance gain
S (<2}

N

= Open-source simulator ® Commercial simulator 1 m Commercial simulator 2

(b) gate level model of component with fault injectors

Figure 9.2: Simulation performance gain of mixed RTL models

113

9.1. FINE-GRAINED RTL MODELS PERFORMANCE

9.1.3 Application

Fault simulation on mixed granularity models was utilized to evaluate software-based safety
detection mechanisms such as: (i) Program Flow Monitoring and (ii) Firmware Verification.
The utilized CPU subsystem is identical to the one displayed in Figure 9.1. Since both of
these programs monitor and detect faults of the instruction sequences, the Prefetcher block was
selected as subject of fault injection due to its ability to control the PC register. In the Flow
Monitoring Program, a fingerprint verification module triggers a fault signal whenever the PC
value deviates from the expected value. This fault signal is closely monitored during simulation
to detect any faults by selecting it as a checker strobe in the Fault Handling metamodel. For
the DUT equipped with firmware verification, fault detection involves comparing a calculated
Fibonacci number and the received byte with their expected values.

A total of 1000 random single faults was injected at various time points into both the DUTs;
once on a full CPU on a gate level granularity and once only the Prefetcher on a gate level
granularity. The results of the fault simulation campaign are presented in Tables 9.2 and 9.3.

Table 9.2: Fault simulation of CPU-subsystem running program flow monitoring

Component Runtime | Clock | Injected | Failures | Detected
h:m:s | cycles | faults failures

GL Prefetcher | 1:15:01 9k 1k 675 221

GL CPU 4:40:04 9k 1k 675 221

Table 9.3: Fault simulation of CPU-subsystem running firmware verification

Component Runtime | Clock | Injected | Failures | Detected
h:m:s | cycles | faults failures

GL Prefetcher | 6:48:04 | 65k 1k 574 477

GL CPU 14:50:50 | 65k 1k 574 477

As can be seen from the tables, the runtime of a full gate level simulation is larger compared
to a mixed granularity simulation; up to 2.1-3.5 times slower. The Flow Monitoring DUT was
simulated for 9k clock cycles (CC) and 675 faults propagated as failures. Out of these failures,
221 were detected by the program. Meanwhile, the firmware verification DUT was simulated
for 65k clock cycles (CC) and 447 failures were detected out of a total 574 failures. Therefore,
Firmware Verification program was able to identify more faults compared to the Flow Moni-
toring Program, but this came at the cost of increased runtime, measured in hours. It is evident
that an equal number of faults are both propagated and detected for both mixed granularity
simulation and full gate level simulation, demonstrating that employing mixed granularity fault
simulation does not mask the faults.

9.1.4 Discussions and Observations

The techniques discussed in this thesis are not tied to a specific simulator, making them uni-
versally applicable to fault simulation campaigns utilizing any RTL simulator. The presented

114

9.2. ANALYSIS AND PERFORMANCE OF FAULT EMULATOR

results demonstrate a notable reduction in effort when using mixed granularity compared to full
gate level granularity simulation. However, it is worth noting that the saboteur-based fault injec-
tion technique introduces a certain level of overhead due to the increased execution of boolean
operators. Nevertheless, the effort required even with fault injectors remains significantly lower
compared to full gate level simulation without any fault injection mechanisms.

9.2 Analysis and Performance of Fault Emulator

9.2.1 Experimental Setup

The proposed fault emulation framework’s scalability, applicability, and effectiveness were
demonstrated through experimentation on a CPU subsystem, referred to as DUT, which con-
sists of a single 5-stage pipelined RISC-V CPU (IF, ID, EX, MEM, WB), as well as Instruction
Memory, Data Memory, and various peripherals including buses, UART and PIC. Fault injec-
tion was carried out on a randomly selected sequence of instructions. For experimentation, an
FPGA target implementation was utilized, specifically the Digilent™ VC707 Board in conjunc-
tion with Vivado 2020.1. The emulation ran at a fixed frequency of 20 MHz, and simulation
experiments for comparison were conducted using the Xcelium® simulator. The primary de-
velopment environment employed is a 64-bit version of Red Hat Enterprise Linux™ (RHEL)
7 and the computing infrastructure is integrated into a Load Sharing Facility (LSF) Compute
Farm. The utilized application firmware is a Pulse Width Modulation (PWM) program.

9.2.2 Hardware Utilization

Table 9.4 displays the FPGA resource utilization metrics for the DUT in its original configu-
ration, where no fault saboteurs have been introduced, and without hardware modifications to
perform fault emulation. The BRAM Primitives in use contain the compiled firmware.

Table 9.4: Original DUT resource utilization

Slice LUTs | Slice Registers | BRAM primitives
8802 6791 14

The insertion of fault injectors into the initial DUT results in additional area overhead, and
the inclusion of auxiliary hardware modules to facilitate fault emulation further contributes to
the overall area increase. Table 9.5 shows the resource utilization resulting from the insertion of
fault injectors into different components of the processor. As the fault injectors are essentially
combinatorial structures their introduction into a design primarily impacts the utilization of
Look-Up Tables (LUTs). Some slight fluctuations are also noticeable in the Slice Register
values, which can be attributed to internal optimizations conducted by the Vivado tool during
synthesis. The tabular data clearly illustrates a linear correlation between the growth of fault
control lines and the corresponding utilization of LUTs. This correlation is visually depicted in
Figure 9.3. In summary, the resource utilization exhibits a primarily linear pattern as the design
size, with injected faults, expands, and it does not experience disproportionate expansion.

115

9.2. ANALYSIS AND PERFORMANCE OF FAULT EMULATOR

Table 9.5: Resource utilization of DUT with fault injectors

Selected component Fault control | Slice Slice BRAM
for fault injection lines LUTs | Registers | Primitives
Hazard Detection Unit 63 9061 6791 14
Program Counter 109 9223 6790 14
WB stage 262 9615 6791 14
ALU result 613 10291 6796 14
Forwarding Unit 786 10519 6795 14
MEM stage 954 10708 6794 14
Program Flow Check 1051 11130 6796 14
Instruction Decoder 1865 12485 6790 14
Event Counters 1919 12667 6795 14
Prefetcher 2125 13033 6790 14
ALU 2708 14672 6796 14
Exception Unit 5008 18766 6766 14
Control & Status Registers 6371 21791 6795 14
Register File 7679 24389 6793 14
IF stage 7952 24389 6793 14
ID stage 10948 29867 6792 14
EX stage 15826 43044 6793 14
45000
40000
35000
30000
% 25000
-
b
.2 20000
N
15000
10000
5000
° 0 2000 4000 6000 8000 10000 12000 14000 16000

Number of fault control lines

Figure 9.3: Slice-LUTs utilization of DUT with varying fault control lines

As illustrated in Chapter 6, the execution of fault emulation requires the addition of essen-
tial auxiliary hardware modules, namely the Fault Controller, Postprocessing block, and Data
harvesting logic. The integration of these auxiliary modules introduces an additional layer of

116

9.2. ANALYSIS AND PERFORMANCE OF FAULT EMULATOR

resource utilization overhead. To provide a precise information of this overhead, fault emulation
campaigns were conducted on each individual stage of the processor. The emulation duration
was set at 20k clock cycles, and both stuck-at-0 and stuck-at-1 fault models were injected. Table
9.6 displays the resource utilization for the aforementioned campaigns. As can be seen, there
is a consistent rise in the count of Slice LUTs as the number of fault control lines increases.
Furthermore, the increment in Slice Registers can be attributed to the Data Harvesting Logic,
which accommodates a greater volume of data as the number of injected faults increases. Nev-
ertheless, the increase of Slice LUTs and Slice Registers resources is in accordance with the
scale of fault-injected designs, primarily adhering to a linear progression as depicted in Figure
9.3. The auxilliary hardware modules add a maximum overhead of 53% in terms of Slice-LUTs
and a maximum overhead of 65.2% in terms of Slice Registers. Notably, the count of BRAM
Primitives remains constant with an overhead of 57.1%, as the emulation duration remains uni-
form across all experimented modules. This uniformity ensures that the traces generated are of
the same length.

Table 9.6: Resource utilization of the fault emulator for various fault emulation campaigns

Selected component | Fault control | Number of Slice Slice BRAM
for fault injection lines injected faults | LUTs | Registers | Primitives
WB stage 262 493 10218 7883 22
MEM stage 954 1298 12508 9029 22
IF stage 7952 12799 37316 9179 22
ID stage 10948 16803 44387 9205 22
EX stage 15826 27616 62519 | 11222 22

70000
—e—Fault Emulator Slice-LUTs

—e—Fault Emulator Slice Registers
60000 ——puUT Slice-LUTs

DUT Slice Registers

50000

40000

30000

Resource utilization

20000

10000

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of fault control lines

Figure 9.4: Resource utilization of fault emulator for varying fault emulation campaigns

117

9.2. ANALYSIS AND PERFORMANCE OF FAULT EMULATOR

9.2.3 Performance Evaluation of the Fault Emulator

The central focus of the developed fault emulator is to reduce the runtime of fault injection
campaigns through the adoption of emulation-based methodologies. In this context, experi-
ments were conducted, encompassing both fault emulation and simulation workflows, thereby
enabling a comparative analysis. The experimental setup is identical to the one presented in
the previous subsection; experiment’s duration is 20k clock cycles and faults are injected into
individual processor stages. Table 9.7 provides comprehensive data of experimental outcomes
including both emulation and simulation techniques. As can be seen from the table, the number
of injected faults exhibits a sharp increase, which consequently leads to a notable escalation
in simulation runtime. In contrast, emulation runtime demonstrates a more consistent growth
as the design size expands and the number of injected faults increases. Notably, for smaller
fault-injected modules like the WB Stage, and to some extent, the MEM Stage, the emulation
runtime is not much different to its simulation counterpart, as illustrated graphically in Figure
9.5.

Table 9.7: Runtime values for fault emulation and simulation experiments

Selected component | Fault control | Number of | Emulation | Simulation | Performance
for fault injection lines injected runtime runtime gain
faults h:m:s h:m:s
WB stage 262 493 00:25:38 01:17:05 3.10
MEM stage 954 1298 00:35:38 | 02:25:43 4.15
IF stage 7952 12799 01:47:44 12:13:53 6.86
ID stage 10948 16803 02:09:30 | 29:25:17 9.00
EX stage 15826 27616 03:09:56 | 23:30:53 7.46
90000
80000
70000
60000
%50000
£
é 40000
30000
20000
10000
R —]] .
WB-stage MEM-stage IF-stage ID-stage EX-stage

® Emulation-based ® Simulation-based

Figure 9.5: Runtime comparisons of emulation and simulation experiments

This similarity can be attributed to the conventional design approach, where the last stage
(WB) of a pipeline is purely combinatorial. This design prevents operations from extending into

118

9.2. ANALYSIS AND PERFORMANCE OF FAULT EMULATOR

subsequent clock cycles, and as a result, simulation tools exhibit a good performance, resulting
in reduced runtime.

Another substantial portion of the emulation runtime can be attributed to the bitstream gen-
eration time. This component is predominantly governed by the internal processes of the Vivado
toolchain, thus cannot be optimized or controlled due to its IP-protected nature. The difference
between bitstream generation and the emulation itself can be as substantial as 300-fold.

9.2.4 Performance Evaluation of the '"On-the-Fly'' Emulation Technique

Chapter 6 presents a novel fault emulation technique where the comparison of the faulty and
non-faulty emulations is done in parallel, i.e., "on-the-fly". This technique reduces BRAM
utilization, thus accomodating experiments involving more extensive instruction traces. Lever-
aging this capability, the emulation time for the similar experimental setup has been extended to
100k clock cycles. Table 9.8 provides runtime data for fault emulation experiments conducted
with the "on-the-fly" technique. As observed in the table, the runtime values of emulation ex-
periment exhibit minimal changes when compared to the values provided in Table 9.7, even
with significantly extended trace lengths. Conversely, simulation values experience a larger in-
crease, particularly for larger modules such as the EX Stage. Therefore, optimal performance
gain can be attained by conducting experiments with larger designs, longer instruction traces,
and a greater number of injected faults.

Table 9.8: Runtime values for fault emulation and simulation experiments using "on-the-fly"
technique

Selected component | Fault control | Number of | Emulation | Simulation | Performance
for fault injection lines injected runtime runtime gain
faults h:m:s h:m:s

WB stage 262 493 00:27:14 | 03:51:16 8.56
MEM stage 954 1298 00:38:10 | 09:23:56 14.82

IF stage 7952 12799 02:27:50 | 42:20:56 17.28

ID stage 10948 16803 03:13:50 67:17:54 2091

EX stage 15826 27616 03:33:57 | 168:52:18 47.57

9.2.5 Emulation-based Fault Propagation Analysis

Following fault emulation of the components presented in Table 9.7, the data transmitted from
the FPGA to the Host-PC undergoes processing to generate fault classification information.
Figure provides a detailed breakdown of fault classifications for faults injected into the pipeline
stages using EFI emulation. These stages encompass various arithmetic and logical components
that impact the POs and Register File outputs. Figure 9.6 displays the fault propagation analysis
of faults injected into different pipeline stages.

A significant observation across all three cases is the predominant classification as Safe
faults. This phenomenon can be attributed to the firmware employed in the emulation, which
serves as an application firmware with limited capacity to sensitize specific paths in the design.
Consequently, the fault effects do not propagate to the POs. However, certain stages contain

119

9.2. ANALYSIS AND PERFORMANCE OF FAULT EMULATOR

EX

MEM

WB

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

m Silent faults ® Latent Faults = Failures

Figure 9.6: Emulation-based fault propagation analysis of different pipeline stages

modules crucial to the execution flow, either directly or indirectly. As a result, faults injected
into these vital modules tend to manifest their effects on the POs. Notably, the PC computation
logic in the IG Stage demonstrates a higher percentage of Failures and Latent faults compared
to the other stages. Additionally, the ID Stage contains the Register File, which receives nu-
merous computation outputs during execution, leading to a higher proportion of Latent faults
compared to the EX Stage. The increased prevalence of Failures and Latent faults within the
MEM Stage can be rationalized by its relatively smaller size, resulting in a reduced number of
faults within its verification scope. In contrast, the WB Stage, characterized by its purely combi-
natorial nature, consistently prevents the propagation of fault effects, resulting in a predominant
classification as Silent faults.

9.2.6 Discussions and Observations

The architectural framework introduces a manageable linear overhead to the overall hardware
resource utilization, showcasing its ability to scale effectively when applied to a complete CPU
subsystem. Furthermore, the emulation framework delivered noteworthy performance enhance-
ments when operating at significantly higher frequencies than conventional commercial simu-
lators. It is worth emphasizing that the generation of the bitstream constituted the most time-
consuming phase of the emulation campaign, whereas the actual fault emulation process took
only a matter of seconds. Moreover, it is essential to highlight that the performance gains
exhibited a positive correlation with longer emulation durations. Consequently, the proposed
emulation-based approach proves to be particularly well-suited for executing larger instruction
sequences.

120

9.3. CASE STUDY: STATISTICAL-BASED FAULT PROPAGATION ANALYSIS

9.3 Case study: Statistical-based Fault Propagation Analysis

9.3.1 Experimental Setup

Two distinct RISC-V-based CPU subsystems were created using MetaRTL. A 2-stage pipelined
CPU and a 5-stage pipelined CPU were included as DUTs, along with components such as
RV32-IMC CPU, Instruction Memory, Data Memory, Instruction and Data Bus, and Peripher-
als. The specification of the CPUs was defined using the RISC-V metamodel (see Figure 7.5),
which allowed for the generation of different RISC-V variants by adjusting parameters like
supported instructions and extensions. Specific components like the ALU, Instruction Decoder,
and Branch Control Unit were targeted for fault injection experiments to achieve SFI. These
components were described at a gate level granularity, while the rest of the DUT remained at
the original RTL granularity. Random fault models were injected at random locations during
random simulation times, as SFI is applicable to random faults. The quantity of faults to inject
was automatically determined by the framework based on the desired level of confidence and
error margin, as shown in Table 4.1. The only inputs required from the user were the simulation
duration, level of confidence, and error margin.

9.3.2 CPU Workloads for Fault Propagation Analysis

To analyze fault propagation, four different benchmarks were carefully chosen to simulate real-
istic fault scenarios. These benchmarks cover a variety of computational domains and provide
a comprehensive assessment of the system’s behavior under different conditions. Each bench-
mark was specifically selected for its relevance and specific characteristics. The first bench-
mark used is the well-known Dhrystone benchmark, initially created by Reinhold P. Weicker in
1984. Dhrystone is often used as a synthetic benchmark to evaluate the performance of integer
programming in a system. Although it is relatively simple by today’s standards, its enduring
popularity and the high percentage of control flow operations it involves make it an exciting
workload for fault propagation analysis. Dhrystone is included in this study due to its ongoing
importance. The other three benchmarks incorporated into the study are cryptographic algo-
rithms serving unique roles in fault propagation analysis. These benchmarks - SHA-256, MDS5,
and CRC-32 - represent cryptographic hash functions and checksum algorithms. They were
selected from the Embench suite, a collection of C benchmarks consisting of 22 real-world
applications commonly used in deeply embedded systems. These cryptographic algorithms
were chosen due to their widespread use and the significant security implications associated
with faulty behaviors. As these algorithms play a critical role in ensuring data integrity and
confidentiality, their inclusion in the analysis is essential. These algorithms present unique
challenges in terms of fault tolerance and error propagation, making them valuable additions to
the suite of benchmarks for fault analysis.

All the benchmarks in the study were compiled using GCC 11.1 at an optimization level of
-O3. Additionally, the newlib 4.1.0 library was configured with an optimization level of -O2
and garbage collection.

121

= ALU-type

= Load-type

= Store-type
Branch-type
Jump-type

(a) Dhrystone instruction statistics

9.3. CASE STUDY: STATISTICAL-BASED FAULT PROPAGATION ANALYSIS

= ALU-type

u L oad-type

= Store-type
Branch-type
Jump-type

(b) SHA-256 instruction statistics

= ALU-type

= Load-type

= Store-type
Branch-type
Jump-type

= ALU-type

= Load-type

= Store-type
Branch-type
Jump-type

(c) MDS instruction statistics (d) CRC-32 instruction statistics

Figure 9.7: Instruction statistics for different benchmarks

9.3.3 Fault Propagation Analysis

Figures 9.8-9.11 depict the fault propagation rate, which refers to the proportion of faults that
propagate to the primary outputs of the CPU, during the execution of SFI on the three men-
tioned components. The SFI process was carried out with a 5% error margin and three varying
confidence rates: 95% (with 384 injected faults), 99% (with 663 injected faults), and 99.8%
(with 955 injected faults). The simulation was conducted over a total of 37868 clock cycles.

Table 9.9 shows the total number of fault locations for each of the three components, namely
the ALU, Decoder, and Branch Control Unit. As observed from the table, the ALU of the 5-
stage CPU exhibits 8.1% more fault locations compared to the 2-stage CPU, while there is only
a slight increase in the number of locations for the 5-stage CPU Decoder. Conversely, there is
no change in the number of locations for the Branch Control Unit.

Table 9.9: Total number of fault locations

Component 2-stage pipelined CPU | 5-stage pipelined CPU
ALU 5376 5812
Decoder 3504 3514
Branch Control Unit 754 754

The results from Figures 9.8-9.11 demonstrate that even though the confidence level of SFI
campaigns for each component varies, the fault propagation rates consistently stay within the
5% acceptable error margin. This confirms the efficiency of the method employed. Notably,
there is a slightly higher fault propagation rate (ranging from 5-10%) observed in the 2-stage

122

9.4. ANALYSIS OF PROCESSOR SAFETY VERIFICATION

pipelined CPU compared to other benchmarks. This difference is due to the design’s smaller
area, which lacks additional logic to prevent numerous faults like the 5-stage pipeline CPU.
Among all components, the 2-stage pipelined CPU running the Dhrystone benchmark has the
highest failure rate, while the 5-stage pipelined CPU running the MDS5 benchmark has the low-
est failure rate. The decoder component is the most susceptible to failures, requiring protective
measures. On the other hand, the branch control unit is the least vulnerable to faults since it
relies on specific instructions like branch and jump types to activate faults. Nevertheless, the
results show that the fault propagation rate depends on the workload, indicating its dependence
on the firmware executed by the CPU.

55% 55%
50% 50%
45% 45%
» 40% © 40%
S 359 S 359
c c
2 30% 2 30%
© ©
& 25% & 25%
o Q
2 20% 2 20%
5 15% 5 15%
[©
L 10% % 10%
5% 5%
% 0%
ALU Decoder BCU ALU Decoder BCU
m99.8% confidence ®99% confidence ®95% confidence m99.8% confidence m99% confidence m 95% confidence
(a) Fault injection on 2-stage pipelined (b) Fault injection on 5-stage pipelined

Figure 9.8: fault propagation rates using Dhrystone benchmark as firmware

55% 55%
50% 50%
45% 45%
o 40% o 4%
S 35% © 35%
c c
S 30% 2 30%
© ©
2 25% 2 25%
Q. Q
2 20% S 20%
5 15% 5 15%
© ©
L 10% Y 10%
5% 5%
0% 0%
ALU Decoder BCU ALU Decoder BCU
m99.8% confidence ®99% confidence ® 95% confidence m99.8% confidence ®99% confidence ®95% confidence
(a) Fault injection on 2-stage pipelined (b) Fault injection on 5-stage pipelined

Figure 9.9: fault propagation rates using SHA-256 benchmark as firmware

9.4 Analysis of Processor Safety Verification

9.4.1 Experimental Setup

The scalability, applicability, and efficacy of the processor safety verification (outlined in Chap-
ter 7) have been demonstrated through experimentation on two distinct variants of 5-stage

123

9.4. ANALYSIS OF PROCESSOR SAFETY VERIFICATION

55% 55%
50% 50%
45% 45%
o 0% o 40%
S 35% S 35%
c c
S 30% 2 30%
© ©
& 25% 2 25%
Q o
2 20% 2 20%
5 15% 5 15%
© [+
% 10% Y 10%
5% 5%
0% 0%
ALU Decoder BCU ALU Decoder BCU
m99.8% confidence ®99% confidence ® 95% confidence m99.8% confidence ®99% confidence ®95% confidence
(a) Fault injection on 2-stage pipelined (b) Fault injection on 5-stage pipelined

Figure 9.10: fault propagation rates using MD5 benchmark as firmware

55% 55%
50% 50%
45% 45%
o 40% o 40%
S 35% S 35%
c f =4
S 30% £ 30%
© ©
& 25% & 25%
Q Q.
S 20% 2 20%
5 15% 5 15%
[©
& 10% % 10%
5% 5%
0% 0%
ALU Decoder BCU ALU Decoder BCU
m99.8% confidence m99% confidence m95% confidence m99.8% confidence ®99% confidence ®95% confidence
(a) Fault injection on 2-stage pipelined (b) Fault injection on 5-stage pipelined

Figure 9.11: fault propagation rates using CRC-32 benchmark as firmware

pipelined RISC-V processor cores: RV32IMC and RV32IMCZicsr. These processors are gen-
erated utilizing MetaRTL and incorporate key features such as a Harvard architecture, a 32-bit
ALU, an in-order fetch unit, and a configurable multiply unit. It’s worth noting that one of
these variants had previously been implemented in an industrial System-on-Chip (SoC). As our
formal tool, OneSpin 360 DV-Verify® by SiemensEDA was employed, operating on an 11th
Gen Intel® Core™ i7-1185G7 @3.0GHz processor with 32 GB of RAM.

9.4.2 Processor Hardening Verification

Chapter 3 describes various techniques for hardening designs to mitigate the impact of faults.
For the experiments, configurable TMR and SEC/SED ECC techniques were utilized due to
their capacity to detect and correct faults. The workflow illustrated in Figure 7.6 was followed
to harden the design and introduce fault injection capabilities. To verify the described safety
mechanisms, FI-S2QED was employed for a hardened RISC-V (RV32IMC) processor core.
Multiple components within the CPU, including the Register File, ALU, and pipeline registers,
underwent hardening. Two experiments were conducted on the hardened processor: one with
ECC and another with TMR applied. Each experiment was validated with a single property,

124

9.4. ANALYSIS OF PROCESSOR SAFETY VERIFICATION

which was limited to inject a single fault model (the formal tool was capable of injecting the
fault at all feasible design locations). The outcomes of these experiments have been presented
in Table 9.10.

As evident from the table, two bugs were identified in the hardened CPU utilizing ECC.
Upon thorough examination and debugging, it was determined that these anomalies were at-
tributed to incorrect interconnections of clock and reset signals within sequential components,
resulting in integration-related issues. Notably, the runtime for property failures was brief, last-
ing less than 30 seconds. In contrast, the employment of TMR revealed no bugs, and all injected
faults were successfully corrected.

Following the successful fixing of the bugs, all injected faults were effectively corrected by
the inherent mechanisms. Subsequently, a deliberate process of manually introducing faults into
both TMR and ECC designs was undertaken. Notably, none of the safety mechanisms proved
capable of correcting these manually injected faults, leading to the failure of FI-S?’QED in
both scenarios. It’s noteworthy that the manual effort needed during this process was minimal,
with the majority of the time allocated to configuring model data and addressing the debugging
outcomes.

Table 9.10: CPU hardening verification results

Mechanism #properties | #faults injected | #bugs | Fail time
ECC 1 1 2 <30s
TMR 1 1 - -
ECC 1 1 1 <30s
+ bugs inserted

TMR 1 1 1 <30s
+ bugs inserted

9.4.3 Processor Fault Propagation Analysis

In Chapter 7, the utilization of formal verification for the exhaustive analysis of fault propaga-
tion using k-FI-S?’QED was discussed. In the application of this technique, an in-depth fault
propagation analysis was performed on eight distinct components, encompassing the ALU,
Hazard Detection Unit (HDU), Decoder, Forwarding unit, Register File, and pipeline registers.
These analyses were carried out on two variations of RISC-V CPUs such as RV32IMC and
RV32IMCZicsr. Moreover, for the purpose of establishing a foundation for comparison, fault
analysis was also conducted using simulation- and ATPG-based techniques.

Formal-Based Analysis

Table 9.11 and Table 9.12 provide an illustration of the fault coverage related to processor com-
ponents when applying the k-FI-S?QED method. In the tables, DF denotes detected faults,
RF indicates redundant faults, CEX length [min, max] signifies the minimum and maximum
number of instructions required for fault propagation (e.g., some properties require only 1 in-
struction to detect the fault, while others may require up to 5), and Fail time presents the shortest

125

9.4. ANALYSIS OF PROCESSOR SAFETY VERIFICATION

and longest runtimes of individual properties for fault detection (excluding holding properties).
The tables reveal that faults injected into the ALU, HDU, Register File, ID-EX, EX-MEM, and
MEM-WB registers propagate to both CPU states and primary outputs for both the RV32IMC
and RV32IMCZicsr variants. The fault coverage of the Forwarding Unit remains consistent in
both variants, due to design redundancy that remains independent of the Zicsr extension. How-
ever, the number of faults in the Decoder differs between the two variants due to the additional
decoding logic introduced by the Zicsr extension. Notably, an increase in fault coverage is
observed for the ID-EX register due to faults injected into the CSR address lines, which subse-
quently determine the correct value of the CSR register to be written to the register file a few

cycles later.

Table 9.11: RV32IMC fault propagation analysis

Component # total | DF (%) | RF (%) CEX length Fail time (s)
faults [min, max] instructions | [min,max]|
ALU 2689 100 0 [1,5] [20,120]
HDU 63 100 0 [1,5] [20,90]
Decoder 1681 77.98 22.02 [1,5] [23,70]
Forwarding unit 786 91.86 8.14 [1,5] [24,92]
Register File 1514 100 0 [1,5] [20,120]
ID-EX register 694 93.5 6.5 [1,5] [24,260]
EX-MEM register 199 100 0 [1,5] [29,62]
MEM-WB register | 308 100 0 [1,5] [23,42]
Table 9.12: RV32IMCZicsr fault propagation analysis
Component # total | DF (%) | RF (%) CEX length Fail time (s)
faults [min, max] instructions | [min,max]
ALU 2689 100 0 [1,5] [20,120]
HDU 63 100 0 [1,5] [20,90]
Decoder 1790 | 75.14 24.86 [1,5] [20,70]
Forwarding unit 786 91.86 8.14 [1,5] [32,338]
Register File 1514 100 0 [1,5] [20,120]
ID-EX register 710 97.75 2.25 [1,5] [31,830]
EX-MEM register 199 100 0 [1,5] [29,62]
MEM-WSB register | 308 100 0 [1,5] [23,42]

Simulation-Based fault propagation analysis

In the analysis of faults within the RV32IMCZicsr processor components, fault simulation with
a random pattern approach was employed. This involved the use of a RISC-V Instruction Gen-
erator, responsible for generating random instructions to serve as test stimuli for the analysis.
For test purposes, the Instruction Generator constrained the instructions to comply with the

126

9.4. ANALYSIS OF PROCESSOR SAFETY VERIFICATION

RV32IMCZicsr ISA and processor starts in a clean state. Figure 9.12 presents the fault cover-
age of processor components when exposed to varying test input lengths, specifically 100, 150,
200, 250, and 300 instructions. As depicted in the figure, the fault coverage for all components
is notably lower in comparison to the exhaustive technique.

ALU -@- Forwarding Unit -8- Hazard detection unit =@=Decoder
-8-Reg ID-EX -8-Reg EX-MEM ®- Reg Mem-WB ®- Register File
100
90
80 *
—
< 70
w °
0] o o
P v .
w
>
o}
s}
I_
-}
2
<
L

30

20
100 150 200 250 300

Figure 9.12: Simulation-based fault propagation analysis

In the case of the pipeline registers, the fault coverage remains relatively consistent across
different test lengths. Conversely, a consistent rise in fault coverage is evident for the Decoder
and Register File. This can be attributed to the larger test inputs encompassing a greater num-
ber of instructions, consequently activating more faults within the Decoder and Register File.
Notably, achieving fault sensitization for these components necessitates specific instructions.
For instance, the initial 100 instructions may lack certain instruction classes, potentially failing
to sensitize particular faults associated with the Decoder’s branch instruction decoding. There-
fore, longer test sequences accommodate a broader range of instruction classes, enabling more
registers to be read/written and enhancing fault coverage accordingly.

ATPG-Based fault propagation analysis

Prior to testing, scan chain insertion was performed using Design Compiler®by Synopsys,
with Tessent®by Siemens EDA serving as the testing tool. Table 9.13 provides a compre-
hensive overview of all fault propagation analysis results obtained through ATPG. It is impor-
tant to highlight that some effort was invested in constraining the inputs to comply with the
RVC32IMC ISA. This involved the removal of illegal instructions that could potentially yield
incorrect fault coverage results.

The testing tool classifies the faults as follows:

127

9.4. ANALYSIS OF PROCESSOR SAFETY VERIFICATION

Table 9.13: ATPG-based fault propagation analysis

Component % DS | % TI | % BL | % RE | % AU
ALU 9736 | 1.76 | 0.88 - -
HDU 97.52 | 2.48 - - -
Decoder 77779 | 9.41 | 5.16 | 2.11 5.53
Forwarding unit 89.59 | 1.92 | 032 | 8.17 -
Register File 78.36 | 1.7 13.3 - 6.64
ID-EX register 80.6 | 0.6 8.2 - 10.6
EX-MEM register | 86.7 1 8.2 - 4.1
MEM-WB register | 86.7 | 0.7 8.4 - 4.2

« DS: Detected faults identified through simulation.

o TI: Tied faults, where the fault value remains constant.

« BL: Blocked faults, indicating that the fault path is obstructed by tied logic.

« RE: Redundant faults, signifying undetectable faults due to inherent redundancy.

« AU: ATPG untestable faults, which are faults deemed untestable due to input (pin) con-
straints or restricted chain depth

During the comparative analysis of fault propagation, the ATPG approach was employed
to evaluate the percentage of faults classified as redundant or detectable. The results demon-
strate that the formal-based approach yields precise results, aligning closely with those obtained
through the ATPG-based technique for combinational designs. However, it’s important to note
that the formal technique does not account for tied or blocked logic due to its functional nature.
The Forwarding Unit exhibits identical redundancy between the two techniques, while some
discrepancies emerge for the Decoder. This disparity arises from the challenge of introduc-
ing functional constraints into ATPG, which entails assuming specific behaviors at particular
timepoints. As a consequence, the introduction of ATPG constraints results in some faults be-
ing categorized as AU, whereas the Decoder’s comparison logic classifies these same faults as
TI or BL. Nevertheless, it’s noteworthy that certain faults in sequential components cannot be
analyzed using ATPG, primarily due to faults within the scan chain itself.

9.4.4 Discussions and Observations

This research highlights the effectiveness of the formal-based safety verification method in de-
tecting functional bugs in design hardening mechanisms, without requiring in-depth white-box
design knowledge. Additionally, the formal-based fault propagation analysis technique pro-
vides accurate results, making it a good alternative to simulation-based methods and similar
to the ATPG-based approach for combinational designs. This technique also avoids the prob-
lem of fault coverage loss in sequential designs since it does not require scan chain insertion.
Overall, this method is a helpful addition to the RTL generation process as it provides essential
information on the generated design’s redundancy.

128

9.5. ANALYSIS OF THE AUTOMATED SBST GENERATION

9.5 Analysis of the Automated SBST Generation

9.5.1 Experimental Setup

Chapter 8 described the automated flow of generating SBST targetting RISC-V processor cores.
The SBST flow was further enhanced with the the fault detection mechanism, namely PFC. To
analyze the effectiveness of the methodology, various components of a RV32IMC RISC-V
CPU were tested. The components include combinational components such as ALU, HDU,
and Decoder, plus sequential components such as Register File and the pipeline register MEM-
WB. OneSpin 360 DV-Verify® by SiemensEDA was employed as a formal tool to generate
counterexamples, operating on an 11th Gen Intel® Core™ i7-1185G7 @3.0GHz processor
with 32 GB of RAM. Fault simulation is performed via the Xcelium® simulator. The primary
development environment employed is a 64-bit version of RHEL 7.

9.5.2 SBST results

Table 9.14 displays the statistics of the SBST including the number of faults, the number of
patterns, the number of program instructions, the fault coverage (FC), the PFC fault detection
rate (FDR) and the total test generation time.

Table 9.14: SBST results on RV32IMC RISC-V CPU

Results
Component | # Faults | # Patterns | # Instructions | FC(%) | PFC FDR(%) | Generation
time (h)

HDU 111 19 266 91.89 100 0.61
ALU 4732 313 4382 97.63 100 40.5
Register File | 11747 492 6888 96.86 100 13.6
Decoder 3224 104 1456 76.3 92.19 38.87
MEM-WB 410 10 140 54.8 100 8.5

HDU testing

The HDU has 111 identified faults. The testing process created 19 different patterns and used
them to successfully detect 104 (FC 91.89%) of these faults in approximately 0.61 hours. The
other faults did not show any failure example within the allotted time frame and were therefore
classified as undetectable. Upon closer examination, these faults were deemed untestable. For
example, a stuck-at-0 fault cannot be tested on a signal that is tied to a low signal.

ALU testing

The flows generated 313 patterns which identified 4620 faults over the course of approximately
13.6 hours. However, 112 faults could not be detected within the 2-minute limit set for each test.
This resulted in a fault coverage of 97.63%. The PFC successfully detected all the faults that
occurred because it was connected to the ALU’s outputs. It effectively monitored all the results
by hashing them and this value was then compared to a predetermined fault-free reference value.

129

9.5. ANALYSIS OF THE AUTOMATED SBST GENERATION

Register File testing

The Register File, a significant sequential part of the system, has 11747 identified faults. To de-
tect these faults, the SBST created 492 patterns that successfully identified 11379 of them over
a period of around 40.5 hours. Within the allotted 5-minute timeframe for each test in Onespin,
368 faults could not be detected and were therefore considered unresolved. This results in a
fault detection rate of 96.87%. It is important to note that the component’s outputs outputs were
utilized as strobes. This particular design decision was influenced by the fact that the Register
File is prone to a substantial quantity of faults. Many of these faults are potentially functionally
undetectable, which, if not managed properly, could result in excessively prolonged test gener-
ation times. The approach for finding these faults included using two PFCs that analyzed the
Register File outputs which effectively caught all the errors.

Decoder testing

The decoder contains 3224 faults. According to the experimental findings in Table 9.11 the
Decoder has around 22.02% redundant faults which was a result of a flaw in the generation
framework. Given this fault redundancy, a longer generation time was anticipated because the
system is designed to spend the entire timeout period trying to detect each undetectable fault.
Therefore 710 faults would be undetectable. With the detection process set to a two-minute
timeout for each fault, the system would spend roughly 23.7 hours attempting to identify these
undetectable faults. The total time taken for fault generation was about 39 hours, suggesting
that the process could be made more efficient. The fault coverage remained stable at 76.3%.
The PFC managed to identify about 92.19% of the faults. The remaining 7.8% of the faults are
unlikely to affect the CPU’s output because they do not influence the Register File or the ALU.

MEM-WB testing

The MEM-WB pipeline register, a compact sequential component, contains approximately 410
faults. In an effort to test for 225 of these faults, which are functional in nature, the system
produced 10 test patterns. This testing process took a total of 8.5 hours. Furthermore, the ALU
PFC proved to be highly effective while detecting all the functional faults.

130

Chapter 10

Summary of Contributions

This thesis introduced a set of innovative solutions that address many challenges in the domain
of safety verification. The effectiveness and applicability of these proposed solutions along
with their key findings have been previously published in several scientific conferences [30, 79,
74,76, 64, 78, 80, 82]. Furthermore, all of the introduced solutions adhere to the principles of
Model-Driven Architecture and are fully automated. The practical value of these techniques has
been demonstrated through their successful application to a number of industrial designs within
Infineon Technologies AG. A short summary of the contributions is presented in the following.

In this thesis, a generic framework for fault injection handling has been developed based
on the in-house generation framework Metagen. A key challenge in the execution of fault
injection campaigns lies in the manual efforts required for the setup and provision of input for
the fault injection environment. The framework addresses this challenge by fully automating
the fault injection process, thereby bridging the gap between specifications and the injection
process [74]. As with other Metagen-based frameworks, the core element of this framework is
the metamodel, named MetaFI. This metamodel is responsible for defining all fault injection
attributes, including fault lists, injection campaign types, and fault analysis elements. The
framework generates fault injection testbenches in two distinct views, namely SystemVerilog
and Verilator-based C++, thus allowing for the utilization of both commercial and open-source
tools. Additionally, a generic documentation generation flow, MetaDOCU, has been developed
within the scope of this thesis. One of the primary functions of MetaDOCU is to translate
all fault injection attributes into structured documentation views, such as Portable Document
Format (PDF).

Fault injection campaigns employ various techniques, including hardware-based, software-
based, simulation-based, and emulation-based methods, each with its own advantages and
drawbacks. Among these, simulation-based fault injection is commonly used due to its cost-
effectiveness. This thesis proposes an approach to fault simulation, utilizing mixed granularity
models [79]. Specifically, design components subject to fault injection are represented at a fine-
grained gate-level granularity, while the remainder of the design is represented in its original
RTL form. This approach contributes to the state-of-the-art techniques by improving the over-
all fault simulation performance while maintaining sufficient accuracy by injecting faults at the
gate-level representation. To achieve this, the RTL generation framework, MetaRTL, and its
features are heavily utilized. In this approach, the gate-level netlist of the design is transformed
into the MetaRTL-based Model-of-Design (MoD), creating a gate-level MoD. Subsequently,

131

a series of model transformations are applied, combining the gate-level MoD with the origi-
nal MoD to form a mixed-granularity MoD. Fault injectors are then inserted into the MoD to
enable fault injection. The MetaRTL flow is again utilized to generate the design on a mixed-
granularity fashion, after which an equivalence check is performed between the original RTL
design and the mixed-granularity version, formally proving that the transformation process does
not introduce any bugs.

Another major contribution of this thesis is a novel and fully automated fault emulation
framework [76]. The framework enhances observability and controllability of injected faults
while improving the performance of the fault injection process. Emulation-based approaches
for conducting fault campaigns face the well-known limitation of insufficient I/O ports. To
combat this issue, a novel design architecture is proposed, which significantly reduces manual
efforts and enables the emulation of an entire CPU subsystem. The fault emulation framework,
built upon the model-driven RTL generation framework, MetaRTL, provides a new architec-
ture for fault emulation using FPGAs. The fault handling framework, specifies the necessary
architecture and outlines various fault injection campaigns. The fault emulator architecture con-
sists of four main components: the Fault Controller, the Design-under-Test, the Postprocessing
Block, and the Data Harvesting Logic. The Fault Controller manages the fault injection cam-
paign; the Postprocessing Block captures emulation traces, stores design’s outputs value within
a Block RAM and classifies faults according to their effect; the Data Harvesting Logic transmits
the classified faults to the Host PC for further analysis. Additionally, the framework includes
an on-the-fly analysis technique for fault emulation deriving from Lockstep principles, which
effectively manages FPGA memory bottlenecks.

A key contribution of the thesis is the combination of the model-driven approach with formal
techniques to analyze the impact of the faults in processor designs. This technique enables the
verification of design hardening mechanisms such as ECC, TMR, DMR and delivers fault anal-
ysis outcomes without the need for additional manual effort or white-box design knowledge.
The technique is capable of verifying all error correction and detection mechanisms in the pres-
ence of faults, thereby reducing the complexity of formal methods. The approach extends the
complete processor verification technique Symbolic State Quick Error Detection (S2QED) by
enabling fault injection via properties. The computation model for safety verification know as
Fault Injection S?QED (FI-S?QED) verifies the functionality of the hardening techniques and
their integration into the design. The principle of this technique is to add extra constraints in the
property that inject a single fault into the design. The property should prove that the functional
behavior of the design does not change even in the presence of a fault because it should be fixed
by the hardening mechanisms.

The final contribution of this thesis is the development of an efficient and automated method-
ology for generating customized Software-Based Self Test (SBST) for RISC-V processors. The
proposed methodology makes use of formal verification techniques, specifically assertion-based
property verification, to extract deterministic test patterns, leading to a high fault coverage.
Through the integration of formal verification with fault simulation, the number of necessary
properties is reduced by eliminating faults detected by the same test pattern, also known as fault
dropping. Additionally, the SBST generation is enhanced with a novel Program Flow Checking
(PFC) technique that guarantees a high fault detection rate that aligns with various ASILs from
the ISO 26262 standard. Consequently, this approach simplifies the generation of tests while
also providing high fault detection capabilities, all while maintaining full automation.

132

The concepts and techniques highlighted in this thesis have proven their applicability and
effectiveness through a series of experiments conducted on a variety of RISC-V based industrial
designs, as elaborated in Chapter 9. The simulation on mixed-granularity models yielded a sig-
nificant performance increase compared to a full gate-level simulation. The simulation-based
fault injection technique was expanded to analyze fault propagation across different RISC-V
processor variants using several benchmark tests. Performance enhancements were further ob-
served in fault injection campaigns due to the application of the fault emulator, providing a
performance gain factor of up to 47.57 times. The hardening verification technique discovered
integration bugs of these mechanisms in the processor cores and at the same time provided valu-
able information about design redundancy through a comprehensive fault propagation analysis.
Lastly, the SBST technique combined with PFC was implemented to generate test patterns for
multiple components of the RISC-V processor. The automated SBST achieved a very high
fault coverage without increasing the design area as it removes the need for Design-for-Test
infrastructures.

To summarize, the scientific contributions delivered by this thesis can be listed as follows:

« A generic fault handling framework streamlines and automates fault injection campaigns
by autonomously defining all their associated attributes.

« A novel automated framework that enables fault simulation on mixed-granularity models
enhances the performance of fault simulation, and at the same time is sufficiently accurate
for gate-level fault modelling.

« Fault injection is enabled by inserting fault injectors into the design model, achieved
via model transformation. Additionally, the framework integrates an automated formal
equivalence check to validate the correctness of this transformation.

« A novel and scalable fault emulator architecture has been introduced that increases fault
injection performance significantly.

« A formal-based technique can detect all bugs of design hardening mechanisms while
simultaneously verifying their correct integration within the design.

« The integration of automated SBST with the PFC provides a low-cost and effective test
solution compared to many Design-for-Test techniques. Importantly, this technique aligns
with the 1ISO26262 ASIL standards regarding fault detection rates.

« All the novel solutions introduced in this thesis are fully automated, adhering to MDE
principles. Moreover, their practicality and efficiency have been validated through imple-
mentation on multiple industrial designs.

Future work

In future, hardware-based and software-based fault injection techniques shall be investigated.
A comparative analysis with the techniques introduced in this thesis would provide a broader
understanding of their relative performance and potential merit. Additionally, the application
of fault emulation and simulation should be expanded to analyze non-core design structures.
Furthermore, the applicability of the SBST technique should be explored beyond processors
that utilize the RISC-V Instruction Set Architecture (ISA). These studies would potentially
offer notable insights into the adaptability of SBST across different processor architectures,
thereby enhancing its overall application in the field of fault detection.

133

134

Chapter 11

Deutsche Zusammenfassung

Die Halbleiterindustrie erlebt ein schnelles Wachstum, welches den Bedarf an innovativen En-
twicklungsmethoden, insbesondere im Bereich des digitalen Designs, erhoht. Trotz der kon-
tinuierlichen Fortschritte im Halbleiterbereich bleibt die Gewihrleistung eines korrekten und
zuverldssigen Verhaltens eine groBe Herausforderung, die die Effizienz des Designs beein-
trachtigt und zu ldngeren Projektfristen fiithrt. Neben der Sicherstellung des korrekten Verhal-
tens miissen die Entwickler auch gewihrleisten, dass die Chips bei der Verwendung in Auto-
mobilprodukten mit einem vordefinierten Zuverldssigkeitsgrad arbeiten. Folglich hat die Kom-
plexitit des Designs und der Verifizierung von anwendungsspezifischen integrierten Schaltun-
gen (ASICs) aufgrund von Sicherheitsiiberlegungen zugenommen, die nach der Verabschiedung
der Sicherheitsnorm ISO 26262 fiir sicherheitskritische Systeme im Automobil ein integraler
Bestandteil des Entwicklungsprozesses geworden sind. ISO 26262 stellt sicher, dass sich diese
Systeme geméll den geforderten Sicherheitsniveaus verhalten, indem das Risiko gefédhrlicher
Fehlfunktionen gemindert wird. Die Norm empfiehlt die Fehlerinjektion, um sicherheitskri-
tische Systeme zu iiberpriifen und zu analysieren; dieser Prozess erweist sich jedoch oft als
mithsam und fehleranfillig. Um diese Herausforderungen zu bewiltigen, sind fortschrittliche
und automatisierte Methoden erforderlich. Dementsprechend automatisiert diese Arbeit den
Prozess der Sicherheitsiiberpriifung und nutzt die Prinzipien der modellgesteuerten Architek-
tur, um die Produktivitidt, Qualitdt und Zuverldssigkeit zu verbessern.

Kommerzielle und Open-Source-Tools zur Fehlerinjektion sind in der Regel so konzipiert,
dass sie Eingaben wie die Fehlerliste, die Liste der Signalstroboskope und Testfélle akzep-
tieren. Das manuelle Schreiben von Eingaben fiir den Fehlerinjektionsprozess kann miithsam
und zeitaufwiéndig sein, so dass eine Automatisierung dieser Aufgabe sehr empfehlenswert
ist. Eine Automatisierung des Prozesses wiirde die Fehlerinjektion rationalisieren und die Ef-
fizienz verbessern. Die in dieser Ausarbeitung vorgestellte Arbeit bietet ein automatisiertes und
vielseitiges Framework, das entwickelt wurde, um verschiedene Fehlerinjektionskampagnen zu
erstellen und gleichzeitig die Liicke zwischen den Fehlerspezifikationen und dem Fehlerinjek-
tionsprozess mit minimalem Aufwand zu schlieBen. Das Framework bietet eine herstellerun-
abhingige Losung, so dass alle Verilog/SystemVerilog-basierten Simulatoren/Emulatoren ver-
wendet werden konnen. Das Backend des Frameworks basiert auf dem modellgesteuerten
Codegenerator-Framework Metagen. Das Framework fiir die Fehlerbehandlung besteht aus
zwei Teilabldaufen wie Fault Injection Handler und Fault Injection Documentation. Das Ker-
nelement des Fault Handlers ist das MetaFI Metamodell, das alle Fehlerinjektionsattributes

135

spezifiziert, und das Kernelement der Fault Injection Documentation ist das MetaDOCU Meta-
modell, das alle Attribute fiir die Dokumentationsgenerierung spezifiziert.

In dieser Arbeit wird ein neuartiger Ansatz vorgeschlagen, der die Fehlersimulation auf
einem gemischten RTL-Modell mit "grobkorniger" Granularitit durchfiihrt. Der Ansatz iiber-
windet die Herausforderungen der Gate-Level- und RTL-Fehlersimulation, indem er das Beste
aus beiden Welten kombiniert. Der Ablauf der Fehlersimulation ermoglicht es, dass nur die De-
signmodule, die Gegenstand der Fehlerinjektion sind, mit "feinkorniger" Gate-Level Granular-
itdt dargestellt werden, wihrend der Rest des Designs mit der urspriinglichen RTL-Granularitéit
dargestellt wird. Das Modell mit gemischter Granularitit wird durch Modelltransformation er-
reicht. Wihrend dieses Prozesses werden formale Aquivalenzpriifungen durchgefiihrt, um die
Korrektheit der Transformation zu gewéhrleisten. Dieser Ansatz ermoglicht auch die Fehlerin-
jektion direkt in das Design, wodurch der Overhead, der Einsatz zusétzlicher Tools zur Fehler-
injektion verursacht wurde, reduziert wird. Die Abwesenheit von Fehlern in diesem Prozess
wird durch die Aquivalenzpriifung garantiert. Die vorgeschlagene Fehlersimulation verbessert
die Leistung der Fehlersimulation auf Gatterebene drastisch und ist gleichzeitig ausreichend
genau. Der MetaRTL-RTL-Generierungsfluss rationalisiert den gesamten Arbeitsablauf und
macht ihn hochgradig automatisiert und effizient.

Fehleremulationstechniken haben sich als ein Ansatz zur Erleichterung von Fehlerinjek-
tionskampagnen herauskristallisiert. Diese Techniken verbessern die Gesamtproduktivitét, in-
dem sie den Zeitaufwand fiir die Fehlerinjektion reduzieren und gleichzeitig die Kapazitit
fiir griindliche Auswertungen aufrechterhalten. Die Emulation arbeitet im Vergleich zu kom-
merziellen Simulatoren mit deutlich hoheren Frequenzen, was zu einer signifikanten Beschle-
unigung der Laufzeiten fiir die Fehlerinjektion fiihrt, wobei eine wesentliche Verbesserung bei
der Ausfiihrung lingerer Eingabesequenzen zu beobachten ist. In dieser Arbeit wurde ein au-
tomatisiertes Framework fiir die Emulation von Fehlern entwickelt, das verbesserte Beobacht-
barkeit und Kontrollierbarkeit von injizierten Fehlern mit Leistungsverbesserungen kombiniert.
Eine bekannte Einschrinkung emulationsbasierter Methoden zur Durchfiihrung von Fehlerkam-
pagnen liegt in der unzureichenden Verfiigbarkeit von I/O-Ports. Um dem entgegenzuwirken,
wird eine innovative Designarchitektur vorgestellt. Das vorgeschlagene neuartige Fehleremu-
lations Framework reduziert den manuellen Aufwand erheblich und kann skaliert werden, um
ein ganzes CPU-Subsystem auf einem FPGA mit LUTs zu emulieren. Das emulationsbasierte
Framework zur Fehlerinjektion, d.h. das Fault Emulation Framework, baut auf dem modellges-
teuerten RTL-Generierungsframework MetaRTL auf. Das Framework ist vollstandig automa-
tisiert, erweitert das bestehende Fault Injection Framework und setzt es ein, indem es eine
neuartige Architektur fiir die Fehleremulation mit FPGAs bereitstellt. Das vorgestellte Meta-
modell zur Fehlerbehandlung spezifiziert die notwendige Architektur durch die Beschreibung
verschiedener Fehlerinjektionskampagnen.

[SO26262 empfiehlt formale Methoden zur Verifizierung der Integritéit der sicherheitskri-
tischsten Elemente. In dieser Arbeit wird ein neuartiger Ansatz vorgestellt, der einen modell-
getriebenen Ansatz mit formalen Techniken kombiniert, um die Auswirkungen von Fehlern in
Prozessordesigns systematisch zu analysieren. Der Prozess beginnt mit der Nutzung der mod-
ellgetriebenen Strategie zur Erstellung von Designs mit gemischter Granularitit. AnschlieBend
wird eine formale Verifikationstechnik fiir Prozessoren vorgeschlagen, die die Verifikation von
Design-Hardening-Mechanismen ermoglicht und ohne zusitzlichen Aufwand Ergebnisse der
Fehleranalyse liefert. Die Technik ermdoglicht die Verifikation aller Fehlerkorrektur- und -

136

erkennungsmechanismen in Gegenwart von Fehlern ohne zusitzlichen manuellen Aufwand
und ohne White-Box-Design-Wissen. Der bestehende Fluss der Generierung von Modellen
mit gemischter Granularitit ermoglicht die Modellierung von Fehlern auf Gatterebene nur fiir
die vorgesehenen Designkomponenten, wodurch die Komplexitit formaler Methoden reduziert
wird. Der Ansatz der Fehlerfortpflanzungsanalyse leitet funktionale Designeinschrinkungen
ab und erreicht eine vergleichbare oder bessere Fehlerabdeckung im Vergleich zu ATPG- oder
simulationsbasierten Methoden, und bei gleichzeitiger Beibehaltung der Fehlermodellierung
auf Gatterebene. Bemerkenswert ist, dass diese Technik sogar ATPG-untestbare Fehler klas-
sifiziert, die von Einschrinkungen abgeleitet sind. Dem modellbasierten Ansatz folgend, ist
die in dieser Arbeit vorgestellte Technik vollstindig automatisiert und erfordert nur minimale
menschliche Eingriffe, die sich hauptsédchlich auf die Parameterkonfiguration konzentrieren.
Der Prozess der Fehleranalyse arbeitet synergetisch mit der Designgenerierung zusammen und
liefert wertvolle Erkenntnisse iiber redundant generierte Module und/oder Untermodule.

Wie bereits erwihnt, erfordert ein effektives Testen die Einfithrung zusétzlicher Mechanis-
men wie z.B. Scan-Ketten. Scan-Ketten erleichtern die Ubertragung von Testdaten durch das
gesamte Design und ermdéglichen so das Testen interner Schaltkreise. Durch die Verbindung
von internen Designregistern/Flip-Flops iiber Scan-Ketten wird die Beobachtung und Kontrolle
von unzuginglichen internen Designknoten moglich. Dieser Ansatz stellt sicher, dass nur die
kombinatorische Logik zwischen Registern/Flip-Flops getestet werden muss. Nach der Integra-
tion von Scan-Ketten in das Design wird das Testen mit Hilfe von Testvektoren durchgefiihrt,
die typischerweise in automatischen Testeinrichtungen (ATEs) gespeichert sind. Eine weitere
weit verbreitete DFT-Infrastruktur ist der eingebaute Selbsttest (BIST), bei dem eine eigen-
standige Testschaltung in das Design integriert wird. BIST-Techniken werden iiblicherweise
als Memory-BIST (MBIST) zum Testen von Speicherschaltungen und Logic-BIST (LBIST)
zum Testen von logischen Schaltungen kategorisiert. Die Implementierung verschiedener DFT-
Infrastrukturen fiihrt zu einem erheblichen Overhead in Bezug auf den Bereich und die Leis-
tung. Als Reaktion auf die Herausforderungen beim Testen von Prozessorkernen hat sich eine
alternative Technik entwickelt, die als Software-basierter Selbsttest (SBST) bekannt ist. Diese
Methode beinhaltet das Testen von Prozessorkernen durch Befehle und bietet eine praktikable
Alternative zu hardwarezentrierten Losungen wie BIST. Im Gegensatz zu hardwarebasierten
Selbsttests, die die Aktivierung des nicht-funktionalen BIST-Modus erfordern, kann SBST
wihrend des normalen Betriebsmodus des Prozessors durchgefiihrt werden, ohne dass De-
signidnderungen oder der Einbau zusitzlicher Hardwarestrukturen erforderlich sind. In dieser
Arbeit wird ein automatisierter und effizienter Ansatz zur Erstellung von SBST fiir RISC-V
Prozessorkerne vorgestellt, der alle oben genannten Herausforderungen adressiert. Die Ex-
traktion von deterministischen Testmustern durch formale Eigenschaften fiihrt zu einer hohen
Fehlerabdeckung, wodurch die Herausforderung, eine hohe Fehlerabdeckung zu erreichen, ef-
fektiv angegangen wird. Die Integration der formalen Verifikation mit der Fehlersimulation
reduziert die Anzahl der erforderlichen Eigenschaften, indem Fehler, die durch dasselbe Test-
muster erkannt werden, eliminiert werden, wodurch die Komplexitét der Testerstellung ver-
ringert wird. Dariiber hinaus wurde die Vielseitigkeit der Technik durch die erfolgreiche An-
wendung auf verschiedene Komponenten einer RISC-V-CPU demonstriert, wodurch die voll-
standige Skalierbarkeit nachgewiesen und die Herausforderung der Skalierbarkeit auf gro3en
Designs iiberwunden wurde. Beachtenswerterweise ist der Ansatz vollstindig automatisiert.
Dariiber hinaus wird die SBST-Generierung um eine neuartige PFC-Technik erweitert, die

137

eine hohe Fehlererkennungsrate gewihrleistet, die auf verschiedene ASILs des ISO 26262-
Standards abgestimmt ist. Folglich erleichtert der vorgeschlagene Ansatz nicht nur die Tester-
stellung, sondern liefert gleichzeitig eine hohe Fehlererkennung bei voller Automatisierung.

Fazit

In dieser Arbeit wurde eine Reihe innovativer Losungen vorgestellt, die viele Herausforderun-
gen im Bereich der Sicherheitsiiberpriifung angehen. Die Effektivitdt und Anwendbarkeit dieser
vorgeschlagenen Losungen sowie ihre wichtigsten Ergebnisse wurden bereits in mehreren wis-
senschaftlichen Konferenzen veroffentlicht. Alle vorgestellten Losungen folgen den Prinzip-
ien der modellgetriebenen Architektur und sind vollstindig automatisiert. Der praktische Wert
dieser Techniken wurde durch ihre erfolgreiche Anwendung auf eine Reihe von industriellen
Designs innerhalb Infineon Technologies AG demonstriert.

138

Bibliography

[1] Aurix™ 32-bit microcontrollers for automotive and n-
dustrial applications. https://www.infineon.com/dgdl/
Infineon-TriCore_Family_BR-ProductBrochure-v01l_00-EN.pdf?fileld=
5546d4625d5945ed015dc81£47b436¢7. Accessed: 2023-07-21.

[2] Functional safety of electrical/electronic/programmable electronic safety-related sys-
tems. https://webstore.iec.ch/preview/info_iec61508-1%7Bed2.0%7Db.pdf.
Accessed: 2023-07-21.

[3] An introduction to the safety standard iec 61508. http://homepages.cs.ncl.ac.uk/
felix.redmill/publications/4B.IEC%2061508%20Intro.pdf. Accessed: 2023-
07-21.

[4] Mda-y-chart. https://research.linagora.com/pages/viewpage.action?
pageId=3639295. Accessed: 2023-07-14.

[5] Omg group. https://www.omg.org/. Accessed: 2023-07-14.

[6] Part 12: The 2022 wilson research group functional verification study.
https://blogs.sw.siemens.com/verificationhorizons/2023/01/09/

part-12-the-2020-wilson-research-group-functional-verification-study-2/.
Accessed: 2023-09-13.

[7] Part 7: The 2022 wilson research group functional verification study.
https://blogs.sw.siemens.com/verificationhorizons/2022/11/28/
part-7-the-2022-wilson-research-group-functional-verification-study/.
Accessed: 2023-09-13.

[8] Part 8: The 2022 wilson research group functional verification study.
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/
part-8-the-2022-wilson-research-group-functional-verification-study/.
Accessed: 2023-09-13.

[9] Partial reconfiguration. https://www.intel.com/content/www/us/en/
software/programmable/quartus-prime/partial-reconfiguration.html#:~:
text=Partial%20reconfiguration%20 (PR)%20allows%20you, FPGA%20design%
20continues%20to%20function. Accessed: 2023-09-18.

139

https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-ProductBrochure-v01_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-ProductBrochure-v01_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-ProductBrochure-v01_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
https://webstore.iec.ch/preview/info_iec61508-1%7Bed2.0%7Db.pdf
http://homepages.cs.ncl.ac.uk/felix.redmill/publications/4B.IEC%2061508%20Intro.pdf
http://homepages.cs.ncl.ac.uk/felix.redmill/publications/4B.IEC%2061508%20Intro.pdf
https://research.linagora.com/pages/viewpage.action?pageId=3639295
https://research.linagora.com/pages/viewpage.action?pageId=3639295
https://www.omg.org/
https://blogs.sw.siemens.com/verificationhorizons/2023/01/09/part-12-the-2020-wilson-research-group-functional-verification-study-2/
https://blogs.sw.siemens.com/verificationhorizons/2023/01/09/part-12-the-2020-wilson-research-group-functional-verification-study-2/
https://blogs.sw.siemens.com/verificationhorizons/2022/11/28/part-7-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/11/28/part-7-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/partial-reconfiguration.html#:~:text=Partial%20reconfiguration%20(PR)%20allows%20you,FPGA%20design%20continues%20to%20function.
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/partial-reconfiguration.html#:~:text=Partial%20reconfiguration%20(PR)%20allows%20you,FPGA%20design%20continues%20to%20function.
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/partial-reconfiguration.html#:~:text=Partial%20reconfiguration%20(PR)%20allows%20you,FPGA%20design%20continues%20to%20function.
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/partial-reconfiguration.html#:~:text=Partial%20reconfiguration%20(PR)%20allows%20you,FPGA%20design%20continues%20to%20function.

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

The semiconductor decade: A trillion-dollar industry. https:
//www.mckinsey.com/industries/semiconductors/our-insights/
the-semiconductor-decade-a-trillion-dollar-industry. Accessed: 2023-09-
13.

Chapter 1 - introduction. In Architecture Design for Soft Errors, S. Mukherjee, Ed.
Morgan Kaufmann, Burlington, 2008, pp. 1-41.

ISO 26262: Road vehicles - functional safety. International Organization for Standard-
ization, 2018.

ABATE, F., STERPONE, L., LISBOA, C. A., CARRO, L., AND VIOLANTE, M. New
techniques for improving the performance of the lockstep architecture for sees mitigation
in fpga embedded processors. [EEE Transactions on Nuclear Science 56, 4 (2009),
1992-2000.

ABRAMOVICI, M., BREUER, M. A., AND FRIEDMAN, A. D. Design for Testability.
1990, pp. 343-419.

ALIZADEH, B., AND FUJITA, M. Guided gate-level atpg for sequential circuits using
a high-level test generation approach. In 2010 15th Asia and South Pacific Design Au-
tomation Conference (ASP-DAC) (2010), pp. 425-430.

ANDRES, D., Ru1z, J., GIL, D., AND GIL-VICENTE, P. Fades: A fault emulation tool
for fast dependability assessment. pp. 221 — 228.

ANDRES, D., Ruiz, J., GIL, D., AND GIL-VICENTE, P. Fault emulation for depend-

ability evaluation of vlsi systems. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on 16 (05 2008), 422 — 431.

ANTONI, L., LEVEUGLE, R., AND FEHER, B. Using run-time reconfiguration for fault

injection in hardware prototypes. In Proceedings IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems (2000), pp. 405-413.

ANTONI, L., LEVEUGLE, R., AND FEHER, B. Using run-time reconfiguration for fault

injection. Instrumentation and Measurement, IEEE Transactions on 52 (11 2003), 1468
— 1473.

ARLAT, J., CROUZET, Y., AND LAPRIE, J.-C. Fault injection for dependability val-
idation of fault-tolerant computing systems. In [1989] The Nineteenth International
Symposium on Fault-Tolerant Computing. Digest of Papers (1989), pp. 348-355.

ARORA, D., RAVI, S., RAGHUNATHAN, A., AND JHA, N. K. Hardware-assisted run-

time monitoring for secure program execution on embedded processors. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 14, 12 (2006), 1295-1308.

ASENOV, A. Random dopant induced threshold voltage lowering and fluctuations in
sub-0.1 /spl mu/m mosfet’s: A 3-d "atomistic" simulation study. IEEE Transactions on
Electron Devices 45, 12 (1998), 2505-2513.

140

https://www.mckinsey.com/industries/semiconductors/our-insights/the-semiconductor-decade-a-trillion-dollar-industry
https://www.mckinsey.com/industries/semiconductors/our-insights/the-semiconductor-decade-a-trillion-dollar-industry
https://www.mckinsey.com/industries/semiconductors/our-insights/the-semiconductor-decade-a-trillion-dollar-industry

[23]

[27]

BIBLIOGRAPHY

AUGUSTO DA SILVA, F., BAGBABA, A. C., HAMDIOUI, S., AND SAUER, C. Combin-
ing fault analysis technologies for 15026262 functional safety verification. In 2019 IEEE
28th Asian Test Symposium (ATS) (2019), pp. 129-1295.

AVIZIENIS, A., LAPRIE, J.-C., RANDELL, B., AND LANDWEHR, C. Basic concepts
and taxonomy of dependable and secure computing. /[EEE Transactions on Dependable
and Secure Computing 1, 1 (2004), 11-33.

BAGBABA, A. C., JENIHHIN, M., UBAR, R., AND SAUER, C. Representing gate-level
set faults by multiple seu faults at rtl. In 2020 IEEE 26th International Symposium on
On-Line Testing and Robust System Design (IOLTS) (2020), pp. 1-6.

BARAZA, J., GRACIA, J., GIL, D., AND GIL, P. Improvement of fault injection tech-
niques based on vhdl code modification. In Tenth IEEFE International High-Level Design
Validation and Test Workshop, 2005. (2005), pp. 19-26.

BARAZA, J.-C., GRACIA, J., BLANC, S., GIL, D., AND GIL, P.-J. Enhancement of
fault injection techniques based on the modification of vhdl code. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 16, 6 (2008), 693—706.

BAUDRY, B., GHOSH, S., FLEUREY, F., FRANCE, R., LE TRAON, Y., AND MOTTU,
J.-M. Barriers to systematic model transformation testing. Commun. ACM 53, 6 (jun
2010), 139-143.

BAUMANN, R. Radiation-induced soft errors in advanced semiconductor technologies.
IEEE Transactions on Device and Materials Reliability 5, 3 (2005), 305-316.

BAVACHE, V. B., HAN, Z., HARTLIEB, H., KAJA, E., DEVARAJEGOWDA, K., AND
ECKER, W. Automated soc hardening with model transformation. In 2020 17th Biennial
Baltic Electronics Conference (BEC) (2020), pp. 1-6.

BAYAR, S., AND YURDAKUL, A. Dynamic partial self-reconfiguration on spartan-iii
fpgas via a parallel configuration access port (pcap).

BENSO, A., AND PRINETTO, P. Fault Injection Techniques and Tools for Embedded Sys-
tems Reliability Evaluation, 1st ed. Springer Publishing Company, Incorporated, 2010.

BENWARE, B., SCHUERMYER, C., TAMARAPALLI, N., TsAIl, K.-H., RAN-
GANATHAN, S., MADGE, R., RAJSKI, J., AND KRISHNAMURTHY, P. Impact of
multiple-detect test patterns on product quality. In International Test Conference, 2003.
Proceedings. ITC 2003. (2003), vol. 1, pp. 1031-1040.

BIERE, A., CIMATTI, A., CLARKE, E. M., FUIJITA, M., AND ZHU, Y. Symbolic model
checking using sat procedures instead of bdds. In Proceedings 1999 Design Automation
Conference (Cat. No. 99CH36361) (1999), pp. 317-320.

Box, G., AND DRAPER, N. Empirical model-building and response surfaces. wiley
series in probability and mathematical statistics.

141

BIBLIOGRAPHY

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

BURCH, J. R., CLARKE, E. M., MCMILLAN, K. L., DIiLL, D. L., AND HWANG, L. J.
Symbolic model checking: 10/sup 20/ states and beyond. In [1990] Proceedings. Fifth
Annual IEEE Symposium on Logic in Computer Science (1990), pp. 428-439.

BEZIVIN, J. In search of a basic principle for model driven engineering. Novatica/Up-
grade 5 (01 2004).

CHASE, D. Class of algorithms for decoding block codes with channel measurement
information. IEEE Transactions on Information Theory 18, 1 (1972), 170-182.

CHEN, L., AND DEY, S. Software-based self-testing methodology for processor cores.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 3
(2001), 369-380.

CHEN, L., RAVI, S., RAGHUNATHAN, A., AND DEY, S. A scalable software-based
self-test methodology for programmable processors. In Proceedings 2003. Design Au-
tomation Conference (IEEE Cat. No.03CH37451) (2003), pp. 548-553.

CHO, H., MIRKHANI, S., CHER, C.-Y., ABRAHAM, J. A., AND MITRA, S. Quantita-
tive evaluation of soft error injection techniques for robust system design. In 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC) (2013), pp. 1-10.

CLARKE, E. M., EMERSON, E. A., AND SIFAKIS, J. Model checking: Algorithmic
verification and debugging. Commun. ACM 52, 11 (Nov 2009), 74-84.

CONSTANTINESCU, C. Trends and challenges in vlsi circuit reliability. IEEE Micro 23,
4 (2003), 14-19.

CORNO, F., CUMANI, G., SONZA REORDA, M., AND SQUILLERO, G. An rt-level fault
model with high gate level correlation. In Proceedings IEEE International High-Level
Design Validation and Test Workshop (Cat. No.PR00786) (2000), pp. 3-8.

CoSTA, D., NOBREGA, L., AND NUNES, N. An mda approach for generating web in-

terfaces with uml concurtasktrees and canonical abstract prototypes. vol. 4385, pp. 137-
152.

DA SILVA, F. A., CAGRI BAGBABA, A., HAMDIOUI, S., AND SAUER, C. An au-
tomated formal-based approach for reducing undetected faults in iso 26262 hardware
compliant designs. In 2021 IEEE International Test Conference (ITC) (2021), pp. 329-
333.

DEVARAJEGOWDA, K. Model-based Generation of Assertions for Pre-silicon Verifica-
tion. doctoralthesis, Technische Universitit Kaiserslautern, 2021.

DEVARAJEGOWDA, K., AND ECKER, W. Meta-model based automation of properties
for pre-silicon verification. In 2018 IFIP/IEEE International Conference on Very Large
Scale Integration (VLSI-SoC) (2018), pp. 231-236.

142

[49]

[52]

[54]

[55]

[56]

[57]

[60]

BIBLIOGRAPHY

DEVARAJEGOWDA, K., AND ECKER, W. Meta-model based automation of properties
for pre-silicon verification. In 2018 IFIP/IEEE International Conference on Very Large
Scale Integration (VLSI-SoC) (2018), pp. 231-236.

DEVARAJEGOWDA, K., ECKER, W., AND KUNZ, W. How to keep 4-eyes principle in
a design and property generation flow. In MBMV 2019; 22nd Workshop - Methods and
Description Languages for Modelling and Verification of Circuits and Systems (2019),

pp. 1-6.

DEVARAJEGOWDA, K., FADIHEH, M. R., SINGH, E., BARRETT, C., MITRA, S.,
ECKER, W., STOFFEL, D., AND KUNZz, W. Gap-free processor verification by s2qed

and property generation. In 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE) (2020), pp. 526-531.

D1 CARLO, S., PRINETTO, P., ROLFO, D., AND TROTTA, P. A fault injection method-

ology and infrastructure for fast single event upsets emulation on xilinx sram-based fp-
gas. pp. 159-164.

ECKER, W., AND SCHREINER, J. Introducing model-of-things (mot) and model-of-
design (mod) for simpler and more efficient hardware generators. In 2016 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC) (2016), pp. 1-6.

ECKER, W., AND SCHREINER, J. Metamodeling and Code Generation in the Springer
Science+Business Media Dordrecht. 01 2016, pp. 1-41.

ECKER, W., VELTEN, M., ZAFARI, L., AND GOYAL, A. The metamodeling approach
to system level synthesis. pp. 1-2.

ENE, N. C., FERNANDEZ, M., AND PINAUD, B. Attributed hierarchical port graphs
and applications. CoRR abs/1802.06492 (2018), 2—19.

ENTRENA, L., GARCIA-VALDERAS, M., FERNANDEZ CARDENAL, R., LINDOSO, A.,
PORTELA-GARCIA, M., AND ONGIL, C. Soft error sensitivity evaluation of micropro-
cessors by multilevel emulation-based fault injection. IEEE Transactions on Computers
61 (03 2012), 313-322.

EspPINOSA, J., HERNANDEZ, C., ABELLA, J., DE ANDRES, D., AND Ruiz, J. C.
Analysis and rtl correlation of instruction set simulators for automotive microcontroller
robustness verification. In 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC) (2015), pp. 1-6.

FADIHEH, M. R., URDAHL, J., NUTHAKKI, S. S., MITRA, S., BARRETT, C., STOF-
FEL, D., AND KUNZ, W. Symbolic quick error detection using symbolic initial state
for pre-silicon verification. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE) (2018), pp. 55-60.

FALLER, T., DELIGIANNIS, N. I., SCHWORER, M., REORDA, M. S., AND BECKER,
B. Constraint-based automatic sbst generation for risc-v processor families. In 2023
IEEE European Test Symposium (ETS) (2023), pp. 1-6.

143

BIBLIOGRAPHY

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

FERRARETTO, D., AND PRAVADELLI, G. Efficient fault injection in gemu. In 2015
16th Latin-American Test Symposium (LATS) (2015), pp. 1-6.

FiBicH, C., HORAUER, M., AND OBERMAISSER, R. Device- and temperature depen-
dency of systematic fault injection results in artix-7 and ice40 fpgas. In 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE) (2021), pp. 1600-1605.

GAlI S., MONTESSORO, P., AND SOMENZI, F. Mozart: a concurrent multilevel simu-

lator. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
7,9 (1988), 1005-1016.

GERLIN, N., KAJA, E., VARGAS, F., LU, L., BREITENREITER, A., CHEN, J., UL-
BRICHT, M., GOMEZ, M., TAHIRAGA, A., PREBECK, S., JENTZSCH, E., KRSTIC,
M., AND ECKER, W. Bits, flips and riscs. In 2023 26th International Symposium on De-
sign and Diagnostics of Electronic Circuits and Systems (DDECS) (2023), pp. 140-149.

GHAFFARI, F., SAHRAOUI, F., BENKHELIFA, M., GRANADO, B., KACOU, M., AND
ROMAIN, O. Fast sram-fpga fault injection platform based on dynamic partial reconfig-
uration. vol. 2015.

Gi1zorpoULOS, D., PSARAKIS, M., HATZIMIHAIL, M., MANIATAKOS, M.,
PASCHALIS, A., RAGHUNATHAN, A., AND RAVI, S. Systematic software-based self-
test for pipelined processors. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 16, 11 (2008), 1441-1453.

GONZALEZ-PEREZ, C., AND HENDERSON-SELLERS, B. Modelling software develop-

ment methodologies: A conceptual foundation. Journal of Systems and Software 80, 11
(2007), 1778-1796.

GRINSCHGL, J., KRIEG, A., STEGER, C., WEISs, R., BoCK, H., AND HAID, J.
Automatic saboteur placement for emulation-based multi-bit fault injection. In 6¢h In-
ternational Workshop on Reconfigurable Communication-Centric Systems-on-Chip (Re-

CoSoC) (2011), pp. 1-8.

HAN, Z., WANG, D., RUTSCH, G., L1, B., PREBECK, S. S., LOPERA, D. S., DE-
VARAJEGOWDA, K., AND ECKER, W. Aspect-oriented design automation with model
transformation. In 2021 IFIP/IEEE 29th International Conference on Very Large Scale
Integration (VLSI-SoC) (2021), pp. 1-6.

HAYNE, R., AND JOHNSON, B. Behavioral fault modeling in a vhdl synthesis envi-
ronment. In Proceedings 17th IEEE VLSI Test Symposium (Cat. No.PR0O0146) (1999),
pp. 333-340.

HENKEL, J., BAUER, L., DUTT, N., GUPTA, P., NASSIF, S., SHAFIQUE, M.,
TAHOORI, M., AND WEHN, N. Reliable on-chip systems in the nano-era: Lessons
learnt and future trends. In 2013 50th ACM/EDAC/IEEE Design Automation Conference
(DAC) (2013), pp. 1-10.

144

[72]

[73]

[74]

[75]

[76]

[77]

[78]

BIBLIOGRAPHY

HSUEH, M.-C., TsAI, T., AND IYER, R. Fault injection techniques and tools. Computer
30, 4 (1997), 75-82.

JENN, E., ARLAT, J., RIMEN, M., OHLSSON, J., AND KARLSSON, J. Fault injection
into vhdl models: the mefisto tool. In Proceedings of IEEE 24th International Symposium
on Fault- Tolerant Computing (1994), pp. 66-75.

KAJA, E., GERLIN, N., BORA, M., DEVARAJEGOWDA, K., STOFFEL, D., KUNZ, W.,
AND ECKER, W. Metafs: Model-driven fault simulation framework. In 2022 IEEE

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT) (2022), pp. 1-4.

KAJA, E., GERLIN, N., BORA, M., DEVARAJEGOWDA, K., STOFFEL, D., KUNZ, W.,
AND ECKER, W. Metafs: Model-driven fault simulation framework. In 2022 IEEE

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT) (2022), pp. 1-4.

KAJA, E., GERLIN, N., BORA, M., RUTSCH, G., DEVARAJEGOWDA, K., STOFFEL,
D., Kunz, W., AND ECKER, W. Fast and accurate model-driven fpga-based system-
level fault emulation. In 2022 IFIP/IEEE 30th International Conference on Very Large
Scale Integration (VLSI-SoC) (2022), pp. 1-6.

KAIJA, E., GERLIN, N., KUNZELMANN, R., DEVARAJEGOWDA, K., AND ECKER, W.
Modelling peripheral designs using fsm-like notation for complete property set genera-
tion. In 2023 IEEE 16th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC) (2023), pp. 508-515.

KAJA, E., GERLIN, N., STOFFEL, D., KUNZ, W., AND ECKER, W. Automated thread
evaluation of various risc-v alternatives using random instruction generators. In Proceed-
ings of the Design and Verification Conference and Exhibition (DVCon) (2023).

KaJA, E., GERLIN, N., VADDEBOINA, M., RivAsS, L., PREBECK, S., HAN, Z., DE-
VARAJEGOWDA, K., AND ECKER, W. Towards fault simulation at mixed register-
transfer/gate-level models. In 2021 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT) (2021), pp. 1-6.

KAJA, E., GERLIN, N., YUN, U., AL HALABI, J., PREBECK, S., STOFFEL, D.,
KUNz, W., AND ECKER, W. A statistical and model-driven approach for comprehensive
fault propagation analysis of risc-v variants. In Proceedings of the Design and Verifica-
tion Conference and Exhibition (DVCon) (2024).

KajJA, E., GERLIN, N., ZHAO, B., LOPERA, D. S., HALABI, J. A., KHAN, A. S.,
PREBECK, S., STOFFEL, D., KUNZ, W., AND ECKER, W. An automated exhaustive
fault analysis technique guided by processor formal verification methods. In 2024 25th
International Symposium on Quality Electronic Design (ISQED) (2024), pp. 1-8.

KajA, E., GERLIN, N., ZHAO, B., SANCHEZ LOPERA, D., AL HALABI, J.,
SHER AzAM, K., , PREBECK, S., STOFFEL, D., KUNZ, W., AND ECKER, W. An

145

BIBLIOGRAPHY

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

automated exhaustive fault analysis technique guided by processor formal verification
methodss. In 25th International Symposium on Quality Electronic Design (2024).

KAJA, E., LEON, N. O., WERNER, M., ANDREI-TABACARU, B., DEVARAJEGOWDA,
K., AND ECKER, W. Extending verilator to enable fault simulation. In MBMYV 2021;
24th Workshop (2021), pp. 1-6.

KALIORAKIS, M., TSELONIS, S., CHATZIDIMITRIOU, A., FOUTRIS, N., AND GI-
zoPOULOS, D. Differential fault injection on microarchitectural simulators. In 2015
IEEE International Symposium on Workload Characterization (2015), pp. 172-182.

KANAWATI, G., KANAWATI, N., AND ABRAHAM, J. Ferrari: a flexible software-based

fault and error injection system. IEEE Transactions on Computers 44, 2 (1995), 248—
260.

KANAWATI, G., KANAWATI, N., AND ABRAHAM, J. Ferrari: a flexible software-based
fault and error injection system. IEEE Transactions on Computers 44, 2 (1995), 248—
260.

KocH, N. Transformation techniques in the model-driven development process of uwe.
In Workshop Proceedings of the Sixth International Conference on Web Engineering
(New York, NY, USA, 2006), ICWE 06, Association for Computing Machinery, p. 3—es.

KOCHTE, M., ZOELLIN, C., BARANOWSKI, R., IMHOF, M., WUNDERLICH, H.-J.,
HatAaMI, N., DI CARLO, S., AND PRINETTO, P. Efficient simulation of structural
faults for the reliability evaluation at system-level. pp. 3-8.

KooLI, M., AND DI NATALE, G. A survey on simulation-based fault injection tools for
complex systems. In 2014 9th IEEE International Conference on Design & Technology
of Integrated Systems in Nanoscale Era (DTIS) (2014), pp. 1-6.

KRANITIS, N., PASCHALIS, A., GIZOPOULOS, D., AND XENOULIS, G. Software-

based self-testing of embedded processors. [IEEE Transactions on Computers 54, 4
(2005), 461-475.

KrAUTZ, U., PFLANZ, M., JACOBI, C., TAST, H., WEBER, K., AND VIERHAUS,
H. Evaluating coverage of error detection logic for soft errors using formal methods.
In Proceedings of the Design Automation & Test in Europe Conference (2006), vol. 1,

pp. 1-6.

KRsSTIC, A., LAI, W.-C., CHENG, K.-T., CHEN, L., AND DEY, S. Embedded
software-based self-test for programmable core-based designs. IEEE Design & Test of
Computers 19, 4 (2002), 18-27.

Kunz, W. Verification of digital systems. University lecture, Oct - Feb 2017-2018.
[Lecture notes - VDS, from Prof. Wolfgang Kunz at TU Kaiserslautern].

KUPFERSCHMID, S., LEWIS, M., SCHUBERT, T., AND BECKER, B. Incremental pre-
processing methods for use in bmc. Formal Methods in System Design 39 (10 2011),
185-204.

146

[95]

[96]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

BIBLIOGRAPHY

LEE, D., AND NA, J. A novel simulation fault injection method for dependability anal-
ysis. IEEE Design & Test of Computers 26, 6 (2009), 50-61.

LEGAT, U., BIASIZZO, A., AND NOVAK, F. Automated seu fault emulation using partial
fpga reconfiguration. In 13th IEEE Symposium on Design and Diagnostics of Electronic
Circuits and Systems (2010), pp. 24-27.

LENTZ, K., AND HOMER, J. Handling behavioral components in multi-level concurrent
fault simulation. In Proceedings 33rd Annual Simulation Symposium (SS 2000) (2000),
pp. 149-156.

LEVEUGLE, R., CALVEZ, A., MAISTRI, P., AND VANHAUWAERT, P. Statistical fault
injection: Quantified error and confidence. In 2009 Design, Automation & Test in Europe
Conference & Exhibition (2009), pp. 502-506.

LIDEN, P., DAHLGREN, P., JOHANSSON, R., AND KARLSSON, J. On latching proba-
bility of particle induced transients in combinational networks. In Proceedings of IEEE
24th International Symposium on Fault- Tolerant Computing (1994), pp. 340-349.

LINGAPPAN, L., AND JHA, N. K. Satisfiability-based automatic test program generation
and design for testability for microprocessors. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 15, 5 (2007), 518-530.

LOPERA, D. S., KUNZELMANN, R. N., KAJA, E., AND ECKER, W. Fake timer: An
engine for accurate timing estimation in register transfer level designs. In 2024 25th
International Symposium on Quality Electronic Design (ISQED) (2024), pp. 1-8.

LOPEZ-ONGIL, C., GARCIA-VALDERAS, M., PORTELA-GARCIA, M., AND EN-
TRENA, L. Autonomous fault emulation: A new fpga-based acceleration system for
hardness evaluation. IEEE Transactions on Nuclear Science 54, 1 (2007), 252-261.

LUONG, G., AND WALKER, D. Test generation for global delay faults. In Proceedings
International Test Conference 1996. Test and Design Validity (1996), pp. 433-442.

MAIER, P. R., KLEEBERGER, V. B., MULLER-GRITSCHNEDER, D., AND SCHLICHT-
MANN, U. Embedded software reliability testing by unit-level fault injection. In 2016
21st Asia and South Pacific Design Automation Conference (ASP-DAC) (2016), pp. 410—
416.

MUELLER-GRITSCHNEDER, D., GREIM, M., AND SCHLICHTMANN, U. Safety eval-
uation based on virtual prototypes: Fault injection with multi-level processor models. In
2016 International Symposium on Integrated Circuits (ISIC) (2016), pp. 1-2.

OETJENS, J.-H., BANNOW, N., BECKER, M., BRINGMANN, O., BURGER, A.,
CHAARI, M., CHAKRABORTY, S., DRECHSLER, R., ECKER, W., GRUTTNER, K.,
KRUSE, T., KUuzNIK, C., LE, H. M., MAUDERER, A., MULLER, W., MULLER-
GRITSCHNEDER, D., POPPEN, F., POST, H., REITER, S., ROSENSTIEL, W., ROTH,
S., SCHLICHTMANN, U., VON SCHWERIN, A., TABACARU, B.-A., AND VIEHL, A.
Safety evaluation of automotive electronics using virtual prototypes: State of the art and

147

BIBLIOGRAPHY

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

research challenges. In 2014 51st ACM/EDAC/IEEE Design Automation Conference
(DAC) (2014), pp. 1-6.

PANDEY, S., LIAO, Z., NANDI, S., GUPTA, S., NATARAJAN, S., SINHA, A., SINGH,
A., AND CHATTERJEE, A. Sat-atpg generated multi-pattern scan tests for cell internal
defects: Coverage analysis for resistive opens and shorts. In 2020 IEEE International
Test Conference (ITC) (2020), pp. 1-10.

PARASYRIS, K., TZIANTZOULIS, G., ANTONOPOULOS, C. D., AND BELLAS, N.
Gemfi: A fault injection tool for studying the behavior of applications on unreliable
substrates. In 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (2014), pp. 622—-629.

PARVATHALA, P., MANEPARAMBIL, K., AND LINDSAY, W. Frits - a microprocessor

functional bist method. In Proceedings. International Test Conference (2002), pp. 590-
598.

PASCHALIS, A., GIZOPOULOS, D., KRANITIS, N., PSARAKIS, M., AND ZORIAN, Y.
Deterministic software-based self-testing of embedded processor cores. In Proceedings
Design, Automation and Test in Europe. Conference and Exhibition 2001 (2001), pp. 92—
96.

PSARAKIS, M., GIZzOPOULOS, D., SANCHEZ, E., AND SONZA REORDA, M. Micro-
processor software-based self-testing. IEEE Design & Test of Computers 27, 3 (2010),
4-19.

Qru, W., AND WALKER, D. An efficient algorithm for finding the k longest testable

paths through each gate in a combinational circuit. In International Test Conference,
2003. Proceedings. ITC 2003. (2003), vol. 1, pp. 592-601.

RIEFERT, A., CANTORO, R., SAUER, M., SONZA REORDA, M., AND BECKER, B. A
flexible framework for the automatic generation of sbst programs. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 24, 10 (2016), 3055-3066.

RUANO, O., GARCIA-HERRERO, F., ARANDA, L., SANCHEZ-MACIAN, A., RO-
DRIGUEZ, L., AND MAESTRO, J. A. Fault injection emulation for systems in fpgas:
Tools, techniques and methodology, a tutorial. Sensors 21 (02 2021), 1392.

SAU, S., KooLl, M., DI NATALE, G., BosSIO, A., AND CHAKRABARTI, A. Schifi:
Scalable and flexible high performance fpga-based fault injector. In 2016 Conference on
Design of Circuits and Integrated Systems (DCIS) (2016), pp. 1-4.

SAUER, M., CZUTRO, A., SCHUBERT, T., HILLEBRECHT, S., POLIAN, I., AND
BECKER, B. Sat-based analysis of sensitisable paths. In /4th IEEE International Sym-
posium on Design and Diagnostics of Electronic Circuits and Systems (2011), pp. 93-98.

SAUER, M., KM, Y. M., SEOMUN, J., Kim, H.-O., Do, K.-T., CHoI, J. Y., KIM,
K. S., MITRA, S., AND BECKER, B. Early-life-failure detection using sat-based atpg.
In 2013 IEEE International Test Conference (ITC) (2013), pp. 1-10.

148

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

BIBLIOGRAPHY

SCHREINER, J., FINDENIGY, R., AND ECKER, W. Design centric modeling of digital
hardware. In 2016 IEEE International High Level Design Validation and Test Workshop
(HLDVT) (2016), pp. 46-52.

SELIGMAN, E., SCHUBERT, T., AND KUMAR, M. V. A. K. Formal Verification, An
Essential Toolkit For Modern VLSI Design. Morgan Kaufmann Publishers, 2015.

SESHIA, S. A., L1, W., AND MITRA, S. Verification-guided soft error resilience. In
2007 Design, Automation & Test in Europe Conference & Exhibition (2007), pp. 1-6.

SHEN, J., AND ABRAHAM, J. Native mode functional test generation for processors
with applications to self test and design validation. In Proceedings International Test
Conference 1998 (IEEE Cat. No.98CH36270) (1998), pp. 990-999.

SHIVAKUMAR, P., KISTLER, M., KECKLER, S., BURGER, D., AND ALVISI, L. Mod-
eling the effect of technology trends on the soft error rate of combinational logic. In
Proceedings International Conference on Dependable Systems and Networks (2002),
pp- 389-398.

SORIN, D. Fault Tolerant Computer Architecture. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2009.

SYNOPSYS. VC Formal Apps. https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/dc-ultra.html. [On-

line: Accessed on 07.August.2023].

TABACARU, B.-A. On Fault-Effect Analysis at the Virtual-Prototype Abstraction Level.
https://mediatum.ub.tum.de/doc/1471529/1471529.pdf, 12 2019. [Online: Ac-
cessed on 6.August.2023].

THAKER, P., AGRAWAL, V., AND ZAGHLOUL, M. A test evaluation technique for vlsi
circuits using register-transfer level fault modeling. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 22, 8 (2003), 1104—-1113.

UBAR, R., JURIMAGI, L., ORASSON, E., AND RAIK, J. Fault collapsing in digital
circuits using fast fault dominance and equivalence analysis with ssbdds. In IEEE/IFIP
International Conference on Very Large Scale Integration of System-on-Chip (2015).

UBAR, R., JURIMAGI, L., ORASSON, E., AND RAIK, J. Fault collapsing in digi-

tal circuits using fast fault dominance and equivalence analysis with ssbdds. vol. 483,
pp. 23-45.

VADDEBOINA, M., KAJA, E., YILMAYER, A., PREBECK, S., AND ECKER, W. Parallel
golomb-rice decoder with 8-bit unary decoding for weight compression in tinyml appli-
cations. In 2023 26th Euromicro Conference on Digital System Design (DSD) (2023),
pp. 227-234.

VADDEBOINA, M., KAJA, E., YILMAZER, A., GHOSH, U., AND ECKER, W. Pagori:a
scalable parallel golomb-rice decoder. In 2024 27th International Symposium on Design
& Diagnostics of Electronic Circuits & Systems (DDECS) (2024), pp. 67-72.

149

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://mediatum.ub.tum.de/doc/1471529/1471529.pdf

BIBLIOGRAPHY

[131] VERIFIC. Verific. https://www.verific.com/.

[132] XILINX. Xilinx. https://www.xilinx.com/products/silicon-devices/fpga.
html.

[133] YOSYS. Yosys. https://yosyshg.net/yosys/.

[134] ZHANG, Y., REZINE, A., ELES, P., AND PENG, Z. Automatic test program generation
for out-of-order superscalar processors. In 2012 IEEE 2 1st Asian Test Symposium (2012),
pp- 338-343.

[135] ZHANG, Y., ZHANG, F., YANG, B., XU, G., SHAO, B., ZHAO, X., AND REN, K.
Persistent fault injection in fpga via bram modification. pp. 1-6.

[136] ZIADE, H., AYOUBI, R., AND VELAZCO, R. A survey on fault injection techniques.
Int. Arab J. Inf. Technol. 1 (01 2004), 171-186.

150

https://www.verific.com/
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://yosyshq.net/yosys/

Endri Kaja Email: endrikajal1996@gmail.com
https://www.linkedin.com/in/endri-kaja/

Education
Rheinland-Pfilzische Technische Universitat Kaiserslautern, Germany
Doctoral Candidate - Electrical and Computer Engineering Sep 2020 - June 2024
Focuses: Verification of Digital Systems, Safety Verification, Formal Verification, 1ISO26262
Technische Universitat Kaiserslautern Kaiserslautern, Germany
Master of Science - Embedded Systems; GPA: 1.1/1.0 (with distinction) Oct 2017 - June 2020
Focuses: Verification of Digital Systems, Computer Architecture, Digital Design, High Level Synthesis and Logic synthesis, Robust Design
Systems
Polytechnic University of Tirana Tirana, Albania
Bachelor of Science - Electronic Engineering; GPA: 8.8/10 Oct 2014 - June 2017

Focuses: Advanced mathematics and physics, fundamentals of programming and electronics

Work Experience

Infineon Technologies AG Munich, Germany
Senior Verification and Test Engineer - Reusable on chip testing Feb 2024 - Currently

o Development of downloadable tests: Firmware development to test various components in a System-on-Chip.

Infineon Technologies AG Munich, Germany
Doctoral Candidate - Advanced methods for model-driven safety analysis and verification Sep 2020 - Jan 2024
o Automated fault injection environment development: Developed a model-based fault injection flow on a mixed

RTL/Gate-level representation of the design.

o FPGA-based fault emulation framework development: Developed an automated fault emulation framework based
on saboteur fault injection technique.

o Formal verification of RISC-V based processors: Created and developed automated processor verification
techniques based on C-S2QED ISA Modeling with Trace Notation for Context Free Property Generation.

o Safety verification of RISC-V based processors: Automated Statistical Fault Injection on multiple processor variants.
Moreover, | applied formal-based fault injection techniques to the processor.

o Automated Formal Verification of various design hardening techniques: Formal verification of ECCs, DMR, TMR.

Infineon Technologies AG Munich, Germany

Master Thesis - Verification of Nested Exception Handler for RISC-V Based Processors Nov 2019 - June 2020

o Automated Formal Verification of a peripheral nested Interrupt Controller: Generation of properties guided by an
FSM-based property generator framework. Completeness checking via OneSpin Gap-Free verification tool.

o Automated Formal Verification of a nested Exception Handler: Developed properties to verify the behavior of the
processor in presence of synchronous and asynchronous exceptions.

Infineon Technologies AG Munich, Germany
Internship - Design and Verification of different peripherals May 2019 - Oct 2019
o Design and Verification of a configurable ECC: Design and Formal Properties generation of a configurable SEC/DED
ECC.
o Design and Verification of a configurable CRC: Design and Formal Properties generation of a configurable CRC.

o Formal Verification of a UART peripheral: Generated properties to verify the transmitter and the receiver of a UART
peripheral.

o Formal Verification of an AHB to APB bus bridge: Generated properties to verify the behavior of the bridge guided by
an FSM-based property generator.

Academic Experience and Projects

» Research assistant: Developed multiple scripts to extract binary descriptions of the compiled C-code.

« Verification of Digital Systems Lab: Introduction to SVA/ITL and Verification of multiple designs. Introduction to
Completeness Checking and to TIDAL.

+ Embedded Systems Lab: Developed and deployed a System-on-Chip on a FPGA-based platform.

mailto:endrikaja1996@gmail.com
https://www.linkedin.com/in/endri-kaja-65b0bb1a3/
https://ieeexplore.ieee.org/document/9586264

Technical Skills Summary

EDA Tools: Onespin, Xcelium, JasperGold , Design Compiler, Tessent, Xilinx
Programming: |TL/SVA/Verilog, Python, C++
Software Skills: Unix, Git, Tcl, UML

Soft Skills Summary

Public speaking: Speaker in multiple conferences such as MBMV-21, DFTS-21, VLSI-SOC-22, DFTS-22, DVCON-US-23.
Leadership: Supervised and advised multiple intern and master thesis students.

Problem-solving: Published multiple novel ideas regarding EDA topics.

Teamwork: Part of a research team focusing on EDA topics.

Time-management: Delivered and published my research according to the predefined deadlines.

	Introduction
	Safety-Critical Designs
	Problem Statement and Challenges
	Requirements
	Envisioned Approach
	State-of-the-Art
	Simulation-Based Fault Injection Techniques
	Emulation-Based Fault Injection Techniques
	Formal-Based Fault Injection Techniques
	Software-Based Self Test Techniques

	Thesis Overview
	Publication List

	Model-driven Code Generation Techniques
	Metamodeling
	Metamodel-Based Code Generation
	Model Transformation
	Model Driven Architecture
	MDA Applied to RTL Generation
	MDA Applied to Properties Generation and 4-eyes Principle

	Functional Safety
	Fault Concepts
	Fault Modeling
	Fault Testability
	Fault Collapsing

	Automotive Safety Standard
	Automotive Safety Integrity Level
	Fault Classification
	Hardware Fault Coverage Metrics

	Standard-Compliant Safety Design
	Safety Mechanisms based on Information Redundancy
	Safety Mechanisms based on Spatial Redundancy

	Standard-Compliant Safety Verification
	Overview of the Fault Injection Process
	Fault Injection Attributes
	Fault Injection Techniques
	Formal Verification

	A Generic Approach for Fault Handling
	The Generic Fault Handling
	Specifications layer
	Model layer
	View layer

	Generic Documentation of Fault Injection Campaigns
	Overview of the Documentation Generation Framework
	Fault Injection Documentation Generation

	Fault Simulation on Mixed Granularity RTL Models
	Overall Flow
	Background on Model Transformation
	Generation of Fine-grained Models
	Netlist-to-ToD
	Fine-Grained MoD

	Fault Injection through Model Transformation
	Fault Injectors
	Fault Collapsing
	Insertion of Fault injectors

	Equivalence Checking and Property Checking

	Model-Driven FPGA-Based Fault Emulation
	Overview of the Fault Emulator Architecture
	Fault Controller
	Fault Sequencer
	Fault Decoder

	Postprocessing Block
	Data Harvesting Logic
	Fault Emulation Optimizations
	Memory Optimization
	Time Optimization

	Safety Verification of Hardened Processor Cores
	Background
	Safety Transformation Flow
	Complete Functional Verification of Processor Cores
	RISC-V CPU Metamodel

	Overview of Safety Verification of Processor Cores
	Exhaustive Processor Fault Injection
	Verification Computation Model
	Fault Model Definition

	Formal-Based Fault Propagation Analysis
	Verification Computation Model
	Fault Model Definition

	An Automated and Effective Approach for SBST Generation Targeting RISC-V CPUs
	Overview of the SBST
	Test Pattern Generation
	DUT and Properties
	Test Pattern Generation Flow

	Program Flow Checking
	PFC hardware
	Fault detection flow

	 Experimental Results and Discussions
	Fine-grained RTL Models Performance
	Experimental Setup
	Performance Evaluation
	Application
	Discussions and Observations

	Analysis and Performance of Fault Emulator
	Experimental Setup
	Hardware Utilization
	Performance Evaluation of the Fault Emulator
	Performance Evaluation of the "On-the-Fly" Emulation Technique
	Emulation-based Fault Propagation Analysis
	Discussions and Observations

	Case study: Statistical-based Fault Propagation Analysis
	Experimental Setup
	CPU Workloads for Fault Propagation Analysis
	Fault Propagation Analysis

	Analysis of Processor Safety Verification
	Experimental Setup
	Processor Hardening Verification
	Processor Fault Propagation Analysis
	Discussions and Observations

	Analysis of the Automated SBST Generation
	Experimental Setup
	SBST results

	Summary of Contributions
	Deutsche Zusammenfassung
	Bibliography
	Insert from: "latest_cv_endri.pdf"
	Education
	Work Experience
	Academic Experience and Projects
	Technical Skills Summary
	Soft Skills Summary

