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Abstract

This paper deals with the characterization of microscopically heterogeneous, but

macroscopically homogeneous spatial structures. A new method is presented which is

strictly based on integral-geometric formulae such as Crofton's intersection formulae

and Hadwiger's recursive de�nition of the Euler number. The corresponding algorithms

have clear advantages over other techniques. As an example of application we consider

the analysis of spatial digital images produced by means of Computer Assisted Tomo-

graphy.

1 Introduction

Consider a component � of a microstructure which is modeled as a macroscopically homo-

geneous random set, i.e. the distribution of � is assumed to be invariant with respect to

translations. The homogeneity of � allows us to introduce so-called basic geometric charac-

teristics: the volume density, the surface density, the speci�c integral of mean curvature, and

the speci�c integral of total curvature. These quantities play a central role in the quantita-

tive characterization of structures components. Up to multiplicative constants, the geometric

characteristics are the densities of the random Minkowski measures de�ned for a homoge-

neous random set, and the list of the four geometric characteristics is complete in some sense

(cf. Hadwiger's characterization theorem, see e.g. Schneider, 1993, pp. 210f). Procedures for

estimating the geometric characteristics are based on Crofton formulae, see Schneider (1993,

p. 235), as well as a modi�cation of Hadwiger's recursive de�nition of the Euler number, see

Ohser & Nagel (1996) and Nagel et al. (1999).

In recent years, a generalized geometric characterization based on the local volume density,

local surface density, and local curvature densities was suggested for the geometric treat-

ment of porous and heterogeneous media in physics, see Hilfer (1991, 1992, 1996). These

1Freiberg University of Mining and Technology, Institute of Computer Science, D-09596 Freiberg, Ger-

many
2Institute of Industrial Mathematics, Erwin-Schr�odinger-Stra�e, D-67663 Kaiserslautern, Germany
3Institute for Computer Applications, University of Stuttgart, Pfa�enwaldring 27, D-70569 Stuttgart,

Germany, and Institute of Physics, University of Mainz, D-55099 Mainz, Germany

1



geometric characteristics can be readily incorporated into the mean �eld approximation for

the microscopic boundary value problems describing transport phenomena in these media. It

seems that the resulting parameter-free predictions are in good agreement with experiment,

see Widjajakusuma et al. (1999).

We assume that the component � is observed in a cuboidal lattice of points, i.e. we consider

spatial digital images of the microstructure to be investigated. The discrete version of a

(random) set forms a (random) binary digital image. Depending on whether a lattice point is

in � or in its complementary set, this point is assigned the Boolean values 1 or 0, respectively.

The selection can be performed by thresholding brightness values to separate the �-phase

from the background.

For the purpose of application in image analysis, the integrals that occur in the Crofton

formulae and Hadwiger's recursive de�nition are discretized in such a way that \measure-

ment" of the geometric characteristics can be performed by simple \counting" of elements

in a digital image where the elements are voxels or neighborhood con�gurations of voxels.

In other words, the observation of the structure in a point lattice implies a corresponding

discretization of the integral-geometric formulae. The method which will be used is very

close to ordinary repeated trapezoidal quadrature rule known from numerical mathematics.

A very powerful technique of image processing is �ltering of digital images. However, �lter-

ing can also be applied in the image analysis. The statistical estimation of the geometric

characteristics suggested in the following includes linear �ltering of the binary image as a

basic tool. It consists of three steps:

1. Filtering of the binary image which yields a grey-tone image (the \labeling of neigh-

borhood con�gurations" in the binary image),

2. generating the vector of absolute frequencies of neighborhood con�gurations (the \in-

tegration step"), and

3. estimating the geometric characteristics from the absolute frequencies of con�gurations

(the \analysis step").

By means of �ltering, each neighborhood con�guration in a binary image is assigned an

integer. Thus, the result of the �ltering is an image of integer valued voxels, also referred

to as a \grey-tone image". The generation of the absolute frequencies of con�gurations can

be understood as a discretized analog of the integration occurring in the integral geometric

formulae, and the vector of absolute frequencies carries the \complete information" of the

image about the geometric characteristics; it can be used as the data base of statistical esti-

mation. Since the neighborhood con�gurations are represented by \grey-tones", the vector of

absolute frequencies of the neighborhood con�guration in the binary image is nothing other

than the vector of the absolute frequencies of grey-tones in the �ltered image. (This vector

will also be referred to as the grey-tone histogram.)
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2 The Continuous Case: Integral-geometric Formulae

Firstly, we review some integral-geometric formulae widely used in image analysis. We con-

sider a set X of the 3-dimensional space that belongs to the convex ring, i.e. X is a �nite

union of compact convex sets. Set X can be understood as a particle of a microstructure;

functionals of X are commonly referred to as particle parameters. We are interested in the

Minkowski functionals of X which are up to multiplicative constants the volume V (X), the

surface area S(X), the integral of the mean curvature M(X), and the Euler number �3(X),

also referred to as the connectivity number. We remark that K(X) = 4��3(X) is the integral

of the total curvature of X.

Let Ex denote a plane in space depending on the parameter x 2 IR
3. We introduce spherical

polar coordinates x = (r; !) where ! represents the normal direction of the plane and r is

the distance of the plane from the origin. It is convenient to identify the direction ! = (#; ')

to be a point on the positive half sphere where r 2 IR represents the intersection point of

the plane E with a straight line orthogonal to E and passing through the origin; de�ne

Er;! := E
�r;�! for r < 0. The intersection X \Er;! of a spatial object X and the plane Er;!

is said to be a 2-dimensional section or a planar section of the object X.

A straight line e in the 3-dimensional space can be characterized by the Euler angles (�; #; ')

and its distance r from the origin or, alternatively, by the direction ! = (#; ') 2 
 describing

the direction of the straight line in the space and the point y = (r; �) 2 IR
2 that represents

the intersection point of e with a plane E0;! orthogonal to e. Thus, we write e = er;�;#;'

or, equivalently e = ey;! for a parametric representation of a straight line in 3-dimensional

space; er;�;#;' := e
�r;��;#;' for r < 0. The intersection X \ ey;! is said to be a 1-dimensional

section or a linear section of X. Since X is not necessarily a convex set a linear section of

X can consist of a family of chords.

A \0-dimensional section" is obtained when intersecting the setX with a set fxg that consists

only of the point x 2 IR
3. If the point x is covered by the set X then X \ fxg = fxg and,

otherwise, this intersection is empty, X \ fxg = ;.

By means of Crofton's formulae, the functionals of a 3-dimensional set X are expressed in

terms of the functionals de�ned for lower-dimensional sections. For a 2-dimensional section,

let A, L2, and �
2 denote the area, the boundary length, and the planar Euler-number,

respectively. Notice that C = 2��2 is the integral of curvature. (The upper index is used to

indicate the dimension of the section where the measurement takes place.) A linear section

of the set X can consist of a family of chords; L and �1 are their total length and the chord

number, respectively. Finally, we introduce the Euler number �0 of a 0-dimensional section

as �0(X \ fxg) = 1 if x 2 X, and �
0(X \ fxg) = 0 otherwise. A survey of the Crofton

formulae is given in Table 1.

Consider now a pair of parallel section planes Er;! and Er+�;! having the distance �. We

give formulae which link the Euler number of a spatial set to functionals of section pro�les

observed in pairs of parallel sections. Denote Yr = (X \Er;!)�(r;!) the section pro�les shifted

(or projected) onto the plane E0;! where X
�(�;!) means the translation of X by �(�; !) 2

IR
3. The sets Yr and Yr+� are assigned to the section pro�les ofX obtained by the intersection
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d = 3 d = 2 d = 1 d = 0

V (X) =
R
A(X \ Er;!) dr =

R
L(X \ ey;!) dy =

R
�(X \ fxg) dx

S(X) = 4
�

RR
L(X \ Er;!) dr �(d!) = 4

RR
�(X \ ey;!) dy �(d!)

M(X) = 2�
RR
�(X \ Er;!) dr �(d!)

K(X)

Table 1: Survey of the functionals de�ned for 3-dimensional sets. The measure � is the

normalized Haar measure on the unit sphere, �(
) = 1. By means of Crofton's formulae,

these functionals are represented by their counterparts de�ned on lower dimensional spaces.

Notice that K(X) = 4� �(X). The innermost integrals are over the orthogonal spaces of

E0;! and e0;!, respectively, and the outer integrals are over the unit sphere 
 in IR
3. The

innermost integral }V (!) :=
R
�(X \ ey;!)dy is the speci�c total projection of �.

with the planes Er;! and Er+�;!; both sets are subsets of the same plane E0;!, and operations

like union or intersection of them are well-de�ned. Consider a d-dimensional set X belonging

to the convex ring. Under certain regularity assumptions made for the set X, Hadwiger's

recursive de�nition of the Euler number can be rewritten as

�
d(X) =

1

�

Z h
�
d�1 (Yr [ Yr+�)� �

d�1 (Yr)
i
dr (1)

and, equivalently,

�
d(X) =

1

�

Z h
�
d�1 (Yr)� �

d�1 (Yr \ Yr+�)
i
dr; (2)

see Ohser & Nagel (1996) and Nagel et al. (1999), where the integrals are over the orthogonal

space of the d � 1-dimensional hyperplane Er;!. By means of these recursive formulae, the

Euler number �d de�ned on d-dimensional space can be expressed in terms of the Euler

number de�ned on lower-dimensional spaces.

3 Spatial Images and Their Analysis

Turn now to homogeneous structures. Instead of a bounded deterministic set X we will

consider a sample of an unbounded random set � which is observed in a bounded spatial

window W . We assume that � is homogeneous (i.e. is distribution is invariant with respect

to translations). Then it is convenient to estimate the densities of the functionals introduced

in the previous section. Our choice for the notation is the same as suggested by the early

school of stereology: VV denotes the volume density of �, SV is the surface density, and MV

and KV are the densities of the two curvature measures.

Spatial images of microstructures can be produced by Computer Assisted Tomography (CT

scans) and similar techniques using for example X-ray scattering, magnetic resonance, or

isotope emission, see Russ (1992, Chapter 7) and Pan et al. (1998). Another technique of
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formation of 3-dimensional images is by means of an interference confocal scanning micro-

scope under ultrashort pulsed beam illumination, see Gu (1998). One can choose between

various types of discretizations of 3-dimensional structures depending on the choice of the

spatial lattice where we observe the structure. Examples are the cuboidal lattice, the cubic

face centered lattice, and the body centered cubic lattice. Further ideas for spatial lattices

which might be useful in image analysis could be taken from crystallography. However, de-

pending on the preferred scanning technique, it is common to use cuboidal lattices, see Fig.

2a, where the unit cell forms a cuboid of edge-lengths �1, �2, and �3. The edge lengths of

the unit cell are referred to as the lattice distances in the x-, y-, and z-direction, respectively.

Their inverses 1=�1; 1=�2, and 1=�3 are said to be the lateral resolution with respect to

the x-, y-, and z-direction, respectively. The lattice is assumed to be dense, i.e. the lattice

distances may be small with respect to the elongation of the objects or features occurring in

the �-phase.

Figure 1: Microstructure of natural sandstone, a) Berea sandstone, b) a weakly consoli-

dated sandstone. In this �gure the rock matrix is shown transparent while the pore space

is opaque. The 3-dimensional data were obtained by computerized microtomography. The

lateral resolution was uniform over all directions; � = 10�m for a) and � = 30�m for b).

The determination of the geometric characteristics of these porous media is a prerequisite

for studying transport properties such as 
uid 
ow or sound propagation in oil reservoirs,

aquifers or other materials, see Biswal et al. (1998).

Let a spatial lattice L be given by a sequence fxijk; i = 0; : : : ; n1; j = 0; : : : ; n2; k =

0; : : : ; n3g of points xijk = (i�1; j�2; k�3), see Figure 3a. The spatial window W forms

the cuboid [0; n1�1] � [0; n2�2] � [0; n3�3] consisting of n := n1n2n3 cuboidal cells. As

components of the spatial lattice we will consider vertices, edges, and faces of the cells, and

the cells of the lattice itself. The cell [0;�1] � [0;�2] � [0;�3] is said to be the unit cell of
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the lattice; its vertices are denoted as shown in Figure 3a.
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Figure 2: a) A cuboidal lattice L of 5� 5� 5 voxels, b) a cell of the lattice. The ordinary

cuboidal lattice of uniform lattice distance is the most usual one applied in discretization

of spatial microstructures.

The binary image � \ L can be understood as a matrix B = (bijk) of the components

bijk = 1�(xijk) where 1�(x) is the indicator function of �. A component bijk of the binary

image is said to be a voxel. Surroundings of voxels form image components of higher order,

and as the most simple surrounding we consider the 2� 2� 2-neighborhood con�gurations.

The 2� 2� 2-neighborhood con�guration of the voxel bijk corresponds to the cell assigned

to the lattice point xijk. This neighborhood con�guration is assumed to consist of the eight

voxels bijk; bi+1;jk, bi;j+1;k, bi+1;j+1;k, bij;k+1, bi+1;j;k+1, bi;j+1;k+1, and bi+1;j+1;k+1.

3.1 Detection of Neighborhood Con�gurations

A very simple detection (or coding) of the neighborhood con�guration in a binary image

can be performed by linear �ltering which can be understood as the convolution of the

binary image B with a given �lter mask F ; the result is the grey-tone image G = B � F .

Since we are interested in the 2� 2 � 2-neighborhood con�gurations, we take a �lter mask

F1 consisting of eight coe�cients fijk, and if the coe�cients are chosen as powers of 2,

fijk = 2i+2j+4k; i; j; k = 0; 1; see also Figure 3b, then the components gijk of the grey-tone

image G are given by

gijk = bijk + 2 bi+1;j;k + 4 bi;j+1;k + 8 bi+1;j+1;k

+ 16 bi;j;k+1 + 32 bi+1;j;k+1 + 64 bi;j+1;k+1 + 128 bi+1;j+1;k+1:
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for i = 0; : : : ; n1 � 1, j = 0; : : : ; n2 � 1, and k = 0; : : : ; n3 � 1. An example is given in

Figure 3c. The integer gijk can be understood as the coding of the 2 � 2� 2-neighborhood

con�guration of the voxel bijk. Notice that the function B 7! B �F1 is a one-to-one mapping.

000 100

010 110
�� ��

001 101

011 111
�� ��

a)
1 2

4 8
�
�

�
�

16 32

64 128
�
�

�
�

b) �
��

�
��

�
��

�
��

e e

e e

e e

e e

u

u

u

u
c)

Figure 3: a) The notation used for the vertices of the unit cell, b) spatial representation

of the �lter mask F1, c) an example con�guration of a 2�2�2-neighborhood con�guration

associated with the grey-tone value g = 99. The full discs � are assigned to the voxels

covered by � whereas the circles � are the voxels that hit the complementary phase �c.

Because of the size of the �lter mask F1, the grey-tone image G has 8 bits per voxel. The

linear �ltering is free of edge e�ects if it is restricted to the reduced window W1 = [0; (n1 �

1)�1]� [0; (n2 � 1)�2]� [0; (n3 � 1)�3].

The linear �ltering of binary images described above is not original since this kind of coding is

used quite often in mathematical morphology. Its use in image processing was �rst suggested

by the Centre de Morphologie Math�ematique of the �Ecole Nationale Sup�erieure des Mines

de Paris, see Serra (1969).

3.2 The Absolute Frequencies of Con�gurations

The absolute frequencies of 2� 2� 2-neighborhood con�guration hk in the binary image B

can be obtained by simply counting the voxels in G which have the grey-tone value g. Let �

be Kronecker's delta, i.e. �`(g) = 1 for g = `, and �`(g) = 0 otherwise. Then

h` =
n1�1X
i=0

n2�1X
j=0

n3�1X
j=0

�`(gijk); ` = 0; : : : ; 255:

The function ghist computes the grey-tone histogram from a given binary image having

n = n1n2n3 unit cells. It involves linear �ltering as well as the generation of the vector h

where an explicit computation of the grey-tone image G is avoided. The algorithm is of order

O(n); it is linear in the image size.

#include<math.h>

#include<malloc.h>

long int *ghist3(int *n, int ***bin_image)

/* given a 3-dimensional binary image bin_image of size n[0..2],
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the grey-tone histogram h[0..255] of the convolved image is returned

*/

{ int i, j, k;

int l;

long int *h;

h=(long *)malloc(256*sizeof(long));

for(l=0;l<256;l++) h[l]=0L;

for(i=0;i<n[0]-1;i++)

for(j=0;j<n[1]-1;j++)

{ l=bin_image[i][j][0]+(bin_image[i+1][j][0]<<1)

+(bin_image[i][j+1][0]<<2)+(bin_image[i+1][j+1][0]<<3);

for(k=0;k<n[2]-1;k++)

{ l+=(bin_image[i][j][k+1]<<4)+(bin_image[i+1][j][k+1]<<5)

+(bin_image[i][j+1][k+1]<<6)+(bin_image[i+1][j+1][k+1]<<7);

h[l]++; l>>=4;

}

}

return(h);

}

The vector h = (hk) comprises the data for a basic statistical analysis of the �-phase. For

example, the total sum of the h` is simply the cell number n of the lattice, n =
P
h`, and

thus the volume of the reduced window is obtained from

V (W1) = �1�2�3

255X
`=0

h`:

Furthermore, from the condensed information about the binary image represented by the

vector h, one can estimate the geometric characteristics VV ; SV ; MV , and KV as described

below.

4 Volume and Volume Density

The volume of � restricted to the window W is usually estimated by the sum of the volumes

of those cells for which the (000)-vertices hit � and the other ones are arbitrary (covered by

� or its complement �c). The codes of these con�gurations are odd, and hence, the sum of

the h` is taken over odd index `,

bV (� \W1) = �1�2�3#

 
�� ��

�� ��

u

!
= �1�2�3

127X
`=0

h2`+1;

where #() denotes the cardinal number of con�gurations in the binary image. The full disc

� indicates that the (000)-vertex hits � whereas a vacant vertex means that this vertex is

covered either by � or by its complement �c.
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From the Crofton formula for the volume, it is immediately clear that bV (� \W1) converges

to the true value V (� \W1) as the volume of the unit cell converges to 0, �1�2�3 ! 0

(and n1n2n3 !1). Furthermore, since � is assumed to be homogeneous (i.e. the probability

measure of � is invariant with respect to Euclidean motion), the estimator

cVV =

P127
`=0 h2`+1P255
`=0 h`

(3)

is unbiased for the volume density.

Now we introduce some binary bitwise Boolean operators which are useful to present expres-

sions for estimators of the geometric characteristics. Let ` ^ �, ` _ �, and :� denote the

bitwise \and", the bitwise \or", and the bitwise \not", respectively, of the integers ` and �.

The meaning of these operators becomes clear by means of the following examples:

88 ^ 48 = 01011000b ^ 00110000b = 00010000b = 16;

88 _ 48 = 01011000b _ 00110000b = 01111000b = 120;

:88 = :01011000b = 10100111b = 167:

(\b" indicates that the integer is given by its binary representation.) These Boolean operators

are equivalent to the single-character operators &, j, and �, respectively, known from the

programming language C. It should be noted that the result of the bitwise \not" depends

on the number of bits. Furthermore, we remark that the algebraic relationships �`(` _ �) =

��(` ^ �) and �`(` ^ :�) = �0(` ^ �) are valid for any unsigned integers ` and �.

By means of this notation Eq. (3) can be rewritten as

cVV =
1

n

255X
`=0

h` �`(` _ 1) =
1

n

255X
`=0

h` [1� �`(` ^ :1)] =
1

n

255X
`=0

h` [1� �0(` ^ 1)]:

The last equation is the basis of the function volfrac which returns an unbiased estimate

of the volume fraction when the vector h is input.

double volfrac(long int *h)

/* returns an estimate of the volume fraction V_V from the vector h[0..255]

of absolute frequencies of neighborhood configurations of a binary image

*/

{ int i, j, k, l;

long int iVol=0L, iVol1=0L;

for(l=0;l<256;l++){ iVol+=h[l]; if(l==l|1) iVol1+=h[l];}

return((double)iVol1/(double)iVol);

}

Of course, this seems to be a quite complicated estimator for such a simple quantity as the

volume fraction. However, the description of this method is very instructive for understanding

the method of statistical estimation for other geometric characteristics as well.
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5 The Speci�c Surface Area

The estimation of the speci�c surface area (which is also referred to as the surface density) is

based on the Crofton formula for 1-dimensional sections. For the purpose of application, the

edges and the spatial diagonals of the cells are considered to be a system of test segments.

In the unit cell, there are 13 segments which correspond to di�erent directions of space:

3 edges, 6 diagonals of the faces, and the 4 spatial diagonals of the cuboid. A survey is

given in Table 2. We introduce polar coordinates (r�; !�): r� and !� = (#� ; '�) are the

length and direction of the �-th segment, respectively, and �ij :=
q
(�i)2 + (�j)2 and

�123 :=
q
(�1)2 + (�2)2 + (�3)2 are the lengths of the diagonals of the ij-face and the

lengths of the spatial diagonals, respectively.

Test segments � #� '� r� �0;� �1;�

Cube edges 0 �=2 0 �1 1 2

1 �=2 �=2 �2 1 4

2 0 0 �3 1 16

Diagonals 3 �=2 arctan �2=�1 �12 1 8

of faces 4 �=2 � � arctan �2=�1 �12 2 4

5 arctan �3=�1 0 �13 1 32

6 arctan �3=�1 � �13 2 16

7 arctan �3=�2 �=2 �23 1 64

8 arctan �3=�2 3�=2 �23 4 16

Spatial 9 arctan �3=�12 arctan �2=�1 �123 1 128

diagonals 10 arctan �3=�12 � � arctan �2=�1 �123 2 64

11 arctan �3=�12 2� � arctan �2=�1 �123 4 32

12 arctan �3=�12 � + arctan �2=�1 �123 8 16

Table 2: The directions !� = (#� ; '�), the lengths r� , and the coe�cients �0;� , �1;� of

the �lter mask F1. The directions !� are points on the positive half-sphere. Estimates

of }V (!�) for the points !� = �!��13; � = 13; : : : ; 25, on the negative half-sphere are

obtained from (4) when exchanging �0;� and �1;� but leaving the distances unchanged,

r� = r��13; � = 13; : : : ; 25.

For example, the segment � = 9 formed by the diagonal between the (000)-vertex and the

(111)-vertex is of length r9 = �123, and hence, in our lattice the total length of segments

corresponding to the direction !9 = (#9; '9) is equal to n�123. Consider now the area of the

total projection }9 of � \W with respect to the direction !9. An estimator of }9(� \W ) is

obtained from the cardinal number of cells which hit the boundary of �; the (000)-vertices

of these cells hit � whereas the (111)-vertices hit the complementary set �c. Thus, we get

c
}9(� \W ) =

�1�2�3

�123

#

 
�� ��

�� ��

u

e!
:

Notice that the ratio �1�2�3=�123 is the area of the unit cell of the planar point lattice
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obtained by the intersection of the segments of direction !9 and a plane perpendicular to

these segments. The density of }9 { the area of the total projection per unit volume }V (!9)

{ can be estimated using d}V (!9) =
c
}9(� \W )=V (W ),

d}V (!9) =
1

n�123

255X
`=0

h` �`(` _ 1)[1� �`(` _ 128)] =
1

n�123

255X
`=0

h` �`(` _ 1) �0(` ^ 128):

For an arbitrary discrete direction !�, this estimator is of the form

d}V (!�) =
1

n r�

255X
`=0

h` �`(` _ �0;�) �0(` ^ �1;�); � = 0; : : : ; 25 (4)

where �0;� and �1;� are coe�cients of the �lter mask F1. A survey on the quantities used

in this estimator is given in Table 2. The estimator (4) is unbiased if � is almost surely

morphologically open as well as morphologically closed with respect to a segment of length

r� and direction !�. Otherwise, if � is almost surely a locally �nite union of compact convex

sets then it is asymptotically unbiased as r� ! 0. Notice that the lateral resolution of the

lattice along the test lines is 1=r�; it is not uniform over all directions.

First, we remark that the estimates of }V (!`) have an original meaning in the description of

anisotropy of �. Furthermore, from these estimates one obtains an estimate of the speci�c

surface area SV using

dSV = 4
25X
�=0

c� d}V (!�): (5)

The coe�cients c� are positive weights satisfying
P
c� = 1. The accuracy of estimation is

a question of the choice of the weights c� which depend on the underlying quadrature rule.

Given a direction !�; the weight c� depends on the distances between !� and its neighboring

directions. One can determine the weights as follows: Divide the unit sphere 
 into the

Voronoi cells with respect to the set of directions f!�; � = 0; : : : ; 25g. Then the obvious

choice for c� is the relative area of the corresponding Voronoi cell, 4�c� = \the area of

the �-th Voronoi cell". Clearly, c�+13 = c�. In particular, if the unit cell is a cube (i.e.

�1 = �2 = �3) then c� = 0:045 778 for � = 0; 1; 2, c� = 0:036 981 for � = 3; : : : ; 8, and

c� = 0:035 196 for � = 9; : : : ; 12. These weights have been chosen in the function specsurf.

Thus, the function specsurf returns \accurate" values for the speci�c surface area SV only

in these cases when the lattice distance is uniform (�1 = �2 = �3) or when the component

� is isotropic (i.e. its probability is assumed to be invariant with respect to rotations).

Assume a uniform lattice spacing. Because the �neness of discretization of the directions

does not depend on the lattice distances, the estimator (5) is normally biased for anisotropic

� even as �123 ! 0. However, if isotropy of � can be assumed then it is asymptotically

unbiased as �123 ! 0, cf. also the discussion in Serra (1982, pp. 220f) and Sandau & Hahn

(1993).
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#include<math.h>

double specsurf(long int *gh, double *Delta)

/* returns the specific surface area S_V from the gray-tone histogram gh[0..255],

the grid spacing Delta[0..2] is input

*/

{ int kl[13][2]= {{1,2}, {1,4}, {1,16}, {1,8}, {2,4}, {1,32}, {2,16},

{1,64}, {4,16}, {1,128}, {2,64}, {4,32}, {8,16}};

double c[13]={0.045778, 0.045778, 0.045778, 0.036981, 0.036981, 0.036981,

0.036981, 0.036981, 0.036981, 0.035196, 0.035196, 0.035196, 0.035196};

double S_V=0.0;

int l, ny;

long iVil=0L;

double r[13];

r[0]=Delta[0]; r[1]=Delta[1]; r[2]=Delta[2];

r[3]=r[4]=sqrt(Delta[0]*Delta[0]+Delta[1]*Delta[1]);

r[5]=r[6]=sqrt(Delta[0]*Delta[0]+Delta[2]*Delta[2]);

r[7]=r[8]=sqrt(Delta[1]*Delta[1]+Delta[2]*Delta[2]);

r[9]=r[10]=r[11]=r[12]=sqrt(Delta[0]*Delta[0]+Delta[1]*Delta[1]+Delta[2]*Delta[2]);

for(l=0; l<256; l++)

{ iVol+=gh[l];

for(ny=0; ny<13; ny++)

S_V+=gh[l]*c[ny]/r[ny]*((l==(l|kl[ny][0]))*(0==(l&kl[ny][1]))

+(l==(l|kl[ny][1]))*(0==(l&kl[ny][0])));

}

return 4.0*S_V/(double)iVol;

}

6 The Speci�c Integral of Mean Curvature

From the Crofton formula for the integral of mean curvature, it immediately follows that the

determination of the integral of mean curvature in 3-dimensional space reduces to measure-

ment in 2-dimensional section planes through the specimen. In the cuboidal lattice, there are

13 planes associated with di�erent normal directions and hitting three or four vertices of the

cells. The corresponding planar section pro�les of the unit cell form rectangles or triangles.

Examples are shown in Figure 4, and a survey of all section pro�les is given in Table 3.

In the section planes corresponding to the normal directions !�; � = 0; : : : ; 8, the vertices

and edges of the section pro�les form a (planar) graph of rectangular cells; for � = 9; : : : ; 12

the vertices and edges of the section pro�les form a triangular graph.

Let �2(!�) denote the Euler number corresponding to the normal direction !� of a section

plane that hits three or four vertices of a cell. The planar Euler number �2(!�) can be

estimated by a simple counting of neighborhood con�gurations. For example, for � = 6,
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Figure 4: Examples of planar section pro�les of the unit cell: a) the rectangle parallel

to the xy-plane, b) a rectangular section pro�le of the unit cell, c) two triangular section

pro�les of the unit cell pertaining the same normal direction. The vertices and edges of these

triangular section pro�les of all lattice cells form planar graphs of the type \hexagonal-I",

see Serra (1982, p. 174).

Euler's relation implies that

c
�2(!6) = #

 
�� ��

�� ��

u

!
�#

 
�� ��

�� ��

u
u

!
�#

 
�� ��

�� ��u

u

!
+#

 
�� ��

�� ��

u
u

u
u !

see Ohser et al. (1998). One can easily verify that this formula reduces to

c
�2(!6) = #

 
�� ��

�� ��

u

e

e

e !
�#

 
�� ��

�� ��

u
u

u
e !

+#

 
�� ��

�� ��

u
e

e
u !

:

A further simpli�cation arises if we add the spatial diagonal between the (100)-vertex and

the (011)-vertex (a diagonal of the section rectangle). Then the rectangular unit cell of

the planar graph under consideration is tessellated into two triangles and the last term of

the previous equation vanishes, so the Euler number for the modi�ed planar graph can be

estimated using

f
�2(!6) = #

 
�� ��

�� ��

u

e

e

e !
�#

 
�� ��

�� ��

u
u

u
e !

:

Let a6 denote the area of the rectangular cell; then the density estimator of the Euler number

is f�A(!6) = f
�2(!6)=a6 and thus

f�A(!6) =
1

n a6

"
255X
`=0

h` �`(` _ 2) �0(` ^ 8) �0(` ^ 16) �0(` ^ 64)

�

255X
`=0

h` �`(` _ 2) �`(` _ 8) �`(` _ 16) �0(` ^ 64)

#

In the general case we obtain for the rectangular section pro�les of the unit cell

f�A(!�) =
1

n a�

"
255X
`=0

h` �`(` _ �0;�) �0(` ^ �1;�) �0(` ^ �2;�) �0(` ^ �3;�)
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�

255X
`=0

h` �`(` _ �0;�) �`(` _ �1;�) �`(` _ �2;�) �0(` ^ �3;�)

#
; (6)

� = 0; : : : ; 8, where �0;� , �1;� , �2;� , and �3;� are the coe�cients of the �lter mask F1 relating

to the vertices of the rectangular section pro�les. For the triangular section pro�les

c�A(!�) =
1

n a�

"
255X
`=0

h` �`(` _ �0;�) �0(` ^ �1;�) �0(` ^ �2;�)

�

255X
`=0

h` �`(` _ �0;�+13) �`(` _ �1;�+13) �(` ^ �2;�+13)

#
; (7)

� = 9; : : : ; 12, cf. Serra (1982, p. 233). The constants used in these formulae are given in

Table 3 where A123 denotes the area of the triangles, A123 =
q
s(s��12)(s��13)(s��23)

with s = (�12 +�13 +�23)=2 (Heron formula); the constants �12 and �123 are the azimuth

angle and the zenith angle of the normal direction of the section triangles, respectively,

�12 = arccot(�2=�1) and �123 = arcsin[(�12�3)=(4A123)]. The coe�cients �0;�, �1;�, �2;� ,

and �3;� are associated with the vertices of the section polygons and the directions !� are

points on the positive half-sphere.

Test areas � #� '� a� �0;� �1;� �2;� �3;�

Faces 0 0 0 �1�2 1 2 4 8

of the cuboid 1 �=2 �=2 �1�3 1 2 16 32

2 �=2 0 �2�3 1 4 16 64

Diagonal 3 arccot�3=�2 3�=2 �3�12 1 2 64 128

rectangles 4 arccot�3=�2 �=2 �3�12 4 16 8 32

5 arccot�3=�1 � �2�13 1 32 4 128

6 arccot�3=�1 0 �2�13 2 8 16 64

7 �=2 �12 �1�23 2 4 32 64

8 �=2 � � �12 �1�23 1 16 8 128

Diagonal 9 �123 � + �12 2A123 1 64 32 {

triangles 10 �123 2� � �12 2A123 2 16 128 {

11 �123 �12 2A123 8 64 32 {

12 �123 � � �12 2A123 4 16 128 {

22 �=2 + �123 �12 2A123 2 4 128 {

23 �=2 + �123 � � �12 2A123 8 1 64 {

24 �=2 + �123 � + �12 2A123 2 4 16 {

25 �=2 + �123 2� � �12 2A123 8 1 32 {

Table 3: The directions !� = (#� ; '�), the areas a� , and coe�cients �0;� , �1;� , �2;� , �3;�
of the �lter mask F1. Notice that for � = 13; : : : ; 21 the constants can be obtained from

#� = #��13, '� = �'��13, �0;� = �3;��13, �1;� = �2;��13, �2;� = �1;��13, �3;� = �0;��13,

and a� = a��13.

We �rstly refer to the meaning of the estimates c�A(!�) in the characterization of structural
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anisotropy. Furthermore, as a discrete version of Crofton's formula one obtains from thec�A(!�) an estimator of the speci�c integral of mean curvature,

dMV = 2�
25X
�=0

c� c�A(!�) (8)

where the c� are suitable positive weights satisfying
P
c� = 1, cf. also the discussion in the

previous section. The weights used in the function specimc correspond to a uniform lattice

spacing.

#include<math.h>

double specimc(long int *gh, double *Delta)

/* returns the specific integral of mean curvature M_V from the gray-tone

histogram gh[0..255], the grid spacing Delta[0..2] is input

*/

{ int kr[9][4]={{1,2,4,8}, {1,2,16,32}, {1,4,16,64}, {1,2,64,128},

{4,16,8,32}, {1,32,4,128}, {2,8,16,64}, {2,4,32,64}, {1,16,8,128}};

int kt[8][3]={{1,64,32}, {2,16,128}, {8,64,32}, {4,16,128},

{2,4,128}, {8,1,64}, {2,4,16}, {8,1,32}};

double c[13]={0.045778, 0.045778, 0.045778, 0.036981, 0.036981, 0.036981,

0.036981, 0.036981, 0.036981, 0.035196, 0.035196, 0.035196, 0.035196};

double delta01 = sqrt(Delta[0]*Delta[0]+Delta[1]*Delta[1]);

double delta02 = sqrt(Delta[0]*Delta[0]+Delta[2]*Delta[2]);

double delta12 = sqrt(Delta[1]*Delta[1]+Delta[2]*Delta[2]);

double s=(delta01+delta02+delta12)/2;

double a[13], M_V=0.0;

int ir, l, ny;

long iVol=0L;

a[0]=Delta[0]*Delta[1]; a[1]=Delta[0]*Delta[2];

a[2]=Delta[1]*Delta[2];a[3]=a[4]=Delta[2]*delta01;

a[5]=a[6]=Delta[1]*delta02; a[7]=a[8]=Delta[0]*delta12;

a[9]=a[10]=a[11]=a[12]=2*sqrt(s*(s-delta01)*(s-delta02)*(s-delta12));

for(l=0; l<256; l++)

{ iVol+=gh[l];

for(ny=0; ny<9; ny++)

for(ir=0; ir<4; ir++)

M_V+=(double)gh[l]*c[ny]/(4.0*a[ny])

*((l==(l|kr[ny][ir]))*(0==(l&kr[ny][(ir+1)%4]))

*(0==(l&kr[ny][(ir+2)%4]))*(0==(l&kr[ny][(ir+3)%4]))

-(l==(l|kr[ny][ir]))*(l==(l|kr[ny][(ir+1)%4]))

*(l==(l|kr[ny][(ir+2)%4]))*(0==(l&kr[ny][(ir+3)%4])));

for(ny=9; ny<13; ny++)

for(ir=0; ir<3; ir++)

M_V+=(double)gh[l]*c[ny]/(3.0*a[ny])

*((l==(l|kt[ny-9][ir]))*(0==(l&kt[ny-9][(ir+1)%3]))

*(0==(l&kt[ny-9][(ir+2)%3]))

-(l==(l|kt[ny-5][ir]))*(l==(l|kt[ny-5][(ir+1)%3]))

*(0==(l&kt[ny-5][(ir+2)%3])));

}
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return 4.0*M_PI*M_V/(double)iVol;

}

7 The Speci�c Integral of Total Curvature

An estimator of the Euler number � of � restricted to the window W can be written as the

scalar product of the vector h of absolute frequencies of 2�2�2-neighborhood con�gurations

and a vector u that consists of the integers �2; �1, 0, and 1, b�(�\W ) = hh; ui =
P255

`=0 h`u`.

The coe�cients u` of u are obtained from a threefold application of the modi�cation of

Hadwiger's recursive de�nition of the Euler number; the coe�cients are listed in the function

specenb. We remark that, basing on a graph-theoretical approach, Serra found a quite similar

formula for the Euler number, see Serra (1969) and Serra (1982, p. 204).

For the density �V of the Euler number we obtain the estimator

d�V =
hh; ui

n�1�2�3

:

This estimator is unbiased estimator if � satis�es certain regularity condition, see Nagel et

al. (1999).

#include<math.h>

double specenb(long int *h, double *Delta)

/* returns the specific Euler numver chi_V from the vector h[0..255]

of absolute freqencies, the lattice distances Delta[0..2] are input

*/

{ int i, j, l;

long int iChi=0L, iVol=0L;

int iu[256]=

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0.. 15

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, // 16.. 31

0, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0, 0, // 32.. 47

0, 0, 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 1, 0, // 48.. 63

0, 0,-1, 0, 0, 0, 0, 0,-1, 0,-1, 0, 0, 0, 0, 0, // 64.. 79

0, 0, 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 1, 0, // 80.. 95

-1, 0,-1, 0,-1, 0, 0, 0,-2, 0,-1, 0,-1, 0, 0, 0, // 96..111

0, 0, 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 1, 0, // 112..127

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 128..143

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, // 144..159

0, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0, 0, // 160..175

0, 0, 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 1, 0, // 176..191

0, 0,-1, 0, 0, 0, 0, 0,-1, 0,-1, 0, 0, 0, 0, 0, // 192..207

0, 0, 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 1, 0, // 208..223

-1, 0,-1, 0,-1, 0, 0, 0,-2, 0,-1, 0,-1, 0, 0, 0, // 224..239

0, 0, 0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 1, 0 // 240..255

};

for(l=0;l<256;l++){ iChi+=iu[l]*h[l]; iVol+=h[l];}
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return (double)iChi/((double)iVol*Delta[0]*Delta[1]*Delta[2]);

}

Because of edge e�ects, estimates of �V depend on \direction of measurement"; estimates

returned by the function specenb are assigned to the z-direction. Under some weak assump-

tions made for � the estimator d�V is unbiased. However, from a statistical point of view

estimates of �V should be averaged over \all possible directions". For this reason we also

introduce an estimator of the speci�c integral of the total curvature KV which does not have

this disadvantage.

Given a cube centered at the origin, we consider those rotations ! of the proper rotation

group which keep this cube unchanged. There are 24 rotations !� and the symmetry group

f!0; : : : ; !23g of the cube is also referred to as the octaeder group. Denoted�V (!�) the estima-
tor of �V which is assigned to the rotation !�. Then the speci�c integral of total curvature

KV can be estimated using

dKV = 4�
23X
�=0

c� d�V (!�)
where the weights c� are chosen as c� = 1=24; � = 0; : : : ; 23. One can easily see that this

estimator can be rewritten as dKV = (�=6)hh; vi=(n�1�2�3) for a suitable chosen vector v.

The simplicity of this estimator is re
ected by the very short source code of the function

specitc presented below.

#include<math.h>

double specitc(long int *h, double *Delta)

/* returns the specific integral of total curvature K_V from the vector h[0..255]

of absolute freqencies, the lattice distances Delta[0..2] are input

*/

{ int i, j, l;

long int iChi=0L, iVol=0L;

int iv[256]=

{ 0, 3, 3, 0, 3, 0, -6, -3, 3, -6, 0, -3, 0, -3, -3, 0, // 0.. 15

3, 0, -6, -3, -6, -3, -3, -6,-12, -8, -8, -6, -8, -6, 0, -3, // 16.. 31

3, -6, 0, -3,-12, -8, -8, -6, -6, -3, -3, -6, -8, 0, -6, -3, // 32.. 47

0, -3, -3, 0, -8, -6, 0, -3, -8, 0, -6, -3, 0, 3, 3, 0, // 48.. 63

3, -6,-12, -8, 0, -3, -8, -6, -6, -3, -8, 0, -3, -6, -6, -3, // 64.. 79

0, -3, -8, -6, -3, 0, 0, -3, -8, 0, 0, 3, -6, -3, 3, 0, // 80.. 95

-6, -3, -8, 0, -8, 0, 0, 3, -3, 12, 0, 9, 0, 9, 3, 6, // 96..111

-3, -6, -6, -3, -6, -3, 3, 0, 0, 9, 3, 6, 3, 6, 6, 3, // 112..127

3,-12, -6, -8, -6, -8, -3, 0, 0, -8, -3, -6, -3, -6, -6, -3, // 128..143

-6, -8, -3, 0, -3, 0, 12, 9, -8, 0, 0, 3, 0, 3, 9, 6, // 144..159

0, -8, -3, -6, -8, 0, 0, 3, -3, 0, 0, -3, -6, 3, -3, 0, // 160..175

-3, -6, -6, -3, 0, 3, 9, 6, -6, 3, -3, 0, 3, 6, 6, 3, // 176..191

0, -8, -8, 0, -3, -6, 0, 3, -3, 0, -6, 3, 0, -3, -3, 0, // 192..207

-3, -6, 0, 3, -6, -3, 9, 6, -6, 3, 3, 6, -3, 0, 6, 3, // 208..223

-3, 0, -6, 3, -6, 3, 3, 6, -6, 9, -3, 6, -3, 6, 0, 3, // 224..239

0, -3, -3, 0, -3, 0, 6, 3, -3, 6, 0, 3, 0, 3, 3, 0 // 240..255
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};

for(l=0;l<256;l++){ iChi+=iv[l]*h[l]; iVol+=h[l];}

return M_PI/6.*(double)iChi/((double)iVol*Delta[0]*Delta[1]*Delta[2]);

}

8 Results and Concluding Remarks

The images shown in Figure 2 were given in form of 3-dimensional matrices. There was an

uniform lattice distance, � := �1 = �2 = �3. A survey of the results is given in Table 4.

Berea weakly consolidated

voxels 128� 128� 128 128� 128� 73

� 10�m 30�m

V (W1) 2:048mm3 31:4mm3

VV 82:2% 75:3%

SV 13:859mm�1 5:908mm�1

MV �252mm�2 �25:3mm�2

KV 2 164mm�3 �324mm�3

Table 4: A survey of the densities of the random Minkowski measures for the specimens

shown in Figures 2a and 2b. The volume fraction is that of the rock matrix � while the

volume fraction of the pore space �c is 1 � VV . Furthermore, we remark that SV (�) =

SV (�
c), MV (�) = �MV (�

c), and KV (�) = KV (�
c).

It is possible to �t a Boolean model to the rock phase: the rock phase can be described by

a locally countable union of convex bodies having random size and shape where the body

centers form a spatial Poissonian point �eld. Some of the model parameters { the point

density and the expectations of the Minkowski functionals of the typical body { can be

adapted to the measured values. When applying Miles' famous formulas

VV = 1� expf��V g;

SV = �S expf��V g;

MV =

"
2��b�

(��S)2

32

#
expf��V g;

KV =

"
4��� 2� �2S b +

(��S)3

24

#
expf��V g;

see Miles (1976), one obtains for the Berea sandstone the point density � = 1:281 � 10�7,

the mean volume V = 1:529 � 106 �m3, the mean surface area S = 1:316 � 105 �m2, and the

mean caliper diameter b = 2:720 � 102 �m. However, the computation of �, V , S, and b from

estimates of VV , SV , MV , and KV is very sensitive with respect to errors in the estimates as

well as deviations of the structure from the model assumption. For the weakly consolidated

sandstone we would obtain a negative point density �.
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The surface of � observed in a cuboidal lattice can be modeled as smoth spatial surface

which separates the set of lattice points covered by � from the complementary set of lattice

points. Modelling such a surface is a real problem which can be solved by techniques well-

known from computer graphics. Anyway, given such a smooth surface then a straightforward

algorithm for computing the surface area as well as the two curvature integrals could be based

on conventional intergration over this surface, see e.g. Cohen-Or. & Kaufman (1995).

The technique presented in this paper is quite di�erent from this approach. Due to Crofton's

intersection formulae and Hadwiger's recursive de�nition of the Euler number, we are able

to estimate the surface area and the two curvature integrals without having to localize the

surface, and hence, we do not need any model for the surface. Our technique is related to

the method of estimating the speci�c surface from the correlation function, as �rst discussed

by Debye (1957). However, our technique does not evaluate the full correlation function,

and it involves a �ltering that is normally not used when calculating correlation functions.

Furthermore, our method is faster and more e�cient. The problem reduces to the numerical

integration of functions de�ned on the unit sphere. For both approaches the accuracy of

estimation depends on the numerical accuracy of integration (i.e. it depends on the chosen

quadrature rule). However, our approach leads to algorithms which are much simpler and

more e�cient than those based on the conventional technique.

The length of the vector of absolute frequencies is equal to the total number of di�erent

con�gurations occurring in the binary image. Hence, the vector length does not depend on

the image size itself, it depends only on the size of the applied �lter mask. This is a clear

advantage over other techniques of image analysis, in particular, for large spatial images

or when data have to be accumulated from a series of images of the same specimen but of

di�erent sizes. Hence, the \analysis step" can be performed very easily and quickly, and the

algorithm for the statistical estimation of the geometric characteristics can be presented in

a well-structured form.

The size of the �lter mask F can be increased. Then, usually the angular resolution is

improved while the lateral resolution is reduced. In other words, by means of the size of the

�lter mask one can choose between high digital resolution or high directional resolution. The

errors corresponding to the lateral resolution and the directional resolution, respectively,

behave in an opposite way. The optimal size of F depends on the \regularity of the surface"

of � as well as on the \degree of anisotropy", cf. the discussion in Ohser et al. (1998).

Depending on the size of the corresponding �lter mask, the amounts of memory space for

the obtained grey-tone image as well as the grey-tone histogram can become very large.

Therefore, in the implementation of the algorithms for larger �lter masks, the explicit rep-

resentation of the grey-tone image G and the grey-tone histogram h should be avoided.
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