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Abstract

A general approach to the construction of discrete equilibrium dis-

tributions is presented. Such distribution functions can be used to set

up Kinetic Schemes as well as Lattice Boltzmann methods. The general

principles are also applied to the construction of Chapman Enskog dis-

tributions which are used in Kinetic Schemes for compressible Navier

Stokes equations.

1 Introduction

In many technical applications, the simulation of gas or liquid ows is a central

issue. Especially, for the prediction of compressible gas ows, Kinetic Schemes

have proved to be very robust and exible. Recently, the Lattice Boltzmann

Method, which is also based on the Kinetic Theory of gases, has become pop-

ular for the simulation of incompressible ows. The basic ingredient in both

schemes is the equilibrium distribution function which describes the velocity

distribution of the microscopic constituents of the gas or liquid at thermal

equilibrium in terms of a few macroscopic state variables. In this article, a

general approach to the construction of discrete equilibrium distributions is

presented.

To describe the physical processes involved in a gas ow, there are two basic

models: in a macroscopic approach, the gas is considered as a continuum

which is completely described by space densities of mass �, momentum �u and

energy ��. The evolution of these quantities is governed by the system of Euler
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equations

@�

@t
+ div(�u) = 0;

@(�u)

@t
+ div(�u
 u+ �TI) = 0;

@(��)

@t
+ div(�(�+ T )u) = 0:

(1)

The temperature T is related to u; � and the space dimension d by

� =
1

2
juj2 + d

2
T:

A second approach takes the particle structure of the gas into account. Here,

the basic quantity is the particle distribution functions f(x; v) which describes

the density of particles at x with velocity v. The time evolution of the particle

distribution function is governed by the Boltzmann equation

@f

@t
+ v � rxf = Q(f):(2)

The left hand side of (2) describes the undisturbed movements of particles

according to their velocities v (free ow). Collisions disturb this free ow by

changing the velocities of the particles. This particle mixing in phase space

manifests itself in (2) as a nonlinear source term Q(f), the collision operator.

Although these two descriptions seem to be quite di�erent, there is a link

between them. First, the macroscopic quantities are available in the more

general microscopic picture. The space densities of mass, momentum and

energy are just the velocity averages of the particle mass, momentum and

energy densities. If h�i denotes integration with respect to v, then

hfi = �; hvfi = �u;

�
1

2
jvj2f

�
= ��:

The evolution of these quantities can then be obtained by integrating (2) over

v after multiplication with 1; v; 1
2
jvj2. We �nd

@�

@t
+ div(�u) = hQi ;

@(�u)

@t
+ div hv 
 vfi = hvQi ;

@(��)

@t
+ div

�
1

2
jvj2vf

�
=

�
1

2
jvj2Q

�
:

(3)
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Since collisions are assumed to conserve mass, momentum and energy, we have

hQi = 0; hvQi = 0;

�
1

2
jvj2Q

�
= 0

so that the evolution equations are quite close to the Euler system (1). It

turns out, that in the case of dense gases, the two systems even coincide which

establishes the link between microscopic and macroscopic model.

In a dense gas, collisions are dominant and in the limit of in�nite collision fre-

quency (the so called hydrodynamical limit), the particle distribution function

attains the special form of a Maxwellian

M(v) =
�

(2�T )
d

2

exp

�
�jv � uj2

2T

�
; v 2 R

d
:(4)

This velocity distribution is well known as the one of a gas in (local) thermal

equilibrium. Hence, the Maxwellian is also called equilibrium distribution. If

f has the form (4), then the uxes which are undetermined in (3) can be

calculated

hv 
 vMi = �u
 u+ �TI;

�
1

2
jvj2vM

�
= �(� + T )u:

Kinetic Schemes use the relation between the two approaches to obtain a nu-

merical method for Euler equations. Of course, solving the complicated Boltz-

mann equation in a limit where the nonlinear collision term becomes important

is numerically too expensive. The idea is therefore to use only the new repre-

sentation of the Euler system

*0@ 1

v
1
2
jvj2

1
A�@f

@t
+ v � rxf

�+
= 0; f =M:(5)

A �rst possibility to approximately solve (5) is to consider the auxiliary prob-

lem

@f

@t
+ v � rxf = 0; f j

t=0 =M:

The solution of this free transport problem is easily found

f(x; v; t) = f(x� vt; v; 0):
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Clearly, the solution satis�es

*0
@ 1

v
1
2
jvj2

1
A�@f

@t
+ v � rxf

�+
= 0:

However, the constraint f = M is only enforced initially. With increasing

time, the violation of the constraint leads to an increasing error. By stopping

the evolution after a small time step 4t and restarting it with a Maxwellian

(that has the same �; u; �{moments as the solution of the just �nished free ow

step), the error can be kept of order 4t, giving rise to a �rst order method for

the Euler equations. Such schemes have been considered in [13, 14, 9, 2, 4].

If the Maxwellian is approximated by a sum of point measures (numerical

particles), then solving the transport problems just amounts to moving the

particles according to their velocities. If the point approximation is repeated

after the Maxwellian reconstruction at the end of the time step, we obtain a

particle scheme for the Euler system [18, 16].

Another possibility to approximate (5) is to discretize the di�erential operators

@=@t and v �rx directly. An upwind discretization of v �rx, for example, gives

rise to an upwind scheme for Euler equations. Integration of (5) over space-

cells of a �nite volume grid leads to Kinetic Schemes in �nite volume form

[5, 11].

It has been noted in [15, 10, 6, 12, 9] that the constraint f = M can be

relaxed. Indeed, for (5) to be a representation of the Euler system (1), we

can replace M by some other function M , provided the relevant v-moments

coincide. More precisely, we need

hMi = �

hviMi = �ui

hvivjMi = �uiuj + �T�ij�
1

2
jvj2viM

�
= (� + T )�ui

(6)

(To �nd such a function amounts to solving a reduced moment problem.) In

[15], a �rst example of a discrete function M has been presented whose sup-

port is concentrated in a small number of velocities. Recently, such distribution

functions have been investigated at length in the framework of Lattice Boltz-

mann Methods [1, 17, 19, 20]. For Kinetic Schemes in particle formulation,

discrete distribution functions are useful since they do not require an addi-

tional discretization in the velocity variable. In any case, the evaluation of

velocity integrals is simpli�ed which can be helpful, if the discretization of (5)
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splits the domain of integration in subsets, over which the classical Maxwellian

is di�cult to integrate in closed form.

We remark, that Kinetic Schemes can be used for any system of equations

which can be written in the form (5). For example, the isentropic Euler sys-

tem allows the same treatment. Here, we just have to �nd some equilibrium

distribution M such that

hMi = �

hviMi = �ui

hvivjMi = �uiuj + p(�)�ij

(7)

where p(�) is the pressure law of the gas. In this case, the relevant moment

functions are (1; v) only.

Similarly, we can apply the method to compressible Navier Stokes equations.

The derivation of suitable distribution functions for that case (Chapman En-

skog distribution) is given in Section 5.

To consider problems like (6) and (7) simultaneously, we slightly generalize

our considerations. First, we introduce some notation for the relevant velocity

moments.

 
(0)(v) = 1

 
(1)

i
(v) = vi

 
(2)(v) =

1

2
jvj2

 
(3)

ij
(v) = vivj �

jvj2
d
�ij

 
(4)

i
(v) =

1

2
jvj2vi

Problems (6) and (7) can then be reformulated as follows: �nd a (generalized)

function M : Rd 7! R such that

 
(k)
M
�
= �

(k)
; k = 0; : : : ; kmax(8)

with kmax = 4 in (6) and kmax = 3 in (7). The values �(k) are the moments

�; �u; ��, the traceless part of the momentum ux and the energy ux. Of

course, in the isentropic case, the energy variable � is not independent of � and

u. We have the relation

� =
1

2

�
juj2 + d

p(�)

�

�
:

where d is the space dimension.
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2 Construction of discrete equilibrium distri-

butions

In general, a reduced moment problem like (8) admits in�nitely many solutions.

By assuming that M is an discrete equilibrium distribution we reduce the

number of possible solutions. More precisely, we want to �nd a solution M of

the structure

M(v) =

mX
i=1

Mi�(v � vi):

Here, � is the Dirac delta distribution, vi are vectors in R
d and Mi � 0 are

nonnegative weights. In Section 4 we will see, that it is natural to assume the

additional structure

M(v) = !(v)M�(v)(9)

where ! is a polynomial which depends on the parameters �; u; T and M�(v)

is a discrete distribution supported on the velocities vi, i.e.

M
�(v) =

mX
i=1

M
�

i
�(v � vi):(10)

One can think of M� as an approximation of the normalized Maxwellian

M�(v) =
�

(2�)
d

2

exp

�
�jvj

2

2

�
:(11)

In fact, to present the main idea, we will �rst derive an equilibrium distribution

of the form

M(v) = !(v)M�(v)(12)

and come back to the discretization in velocity later. Plugging (12) into (8)

we end up with the problem to determine the polynomial ! such that

 
(k)
!M�

�
= �

(k)
; k = 0; : : : ; kmax:(13)
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The general approach which we take to solve (13) is based on orthogonal

polynomials P (k) given by

P
(0)(v) = 1

P
(1)
i
(v) = vi

P
(2)(v) = jvj2 � d

P
(3)
ij
(v) = vivj �

jvj2
d
�ij

P
(4)
i
(v) = (jvj2 � (d+ 2))vi

(14)

These polynomials are orthogonal in the senseD
P

(i)
�
P

(j)

�
M�

E
= 0; for i 6= j:(15)

(Here, � and � denote possible indices.) Moreover, we can scale the polynomials

and obtain a related set �P (k) such that

�P (k)

P
(k)M�

�
= 1; k = 0; 2D

�P
(k)
i
P

(k)
j
M�

E
= �ij; k = 1; 4D

P
(3)
ij
A : �P (3)M�

E
=

1

2
(Aij + Aji)�

trA

d
�ij:

(16)

In the last relation, A is any d� d matrix and the colon denotes the following

product between matrices

A : B =

dX
i;j=1

AijBij:

To check relations (15) and (16) we just need to know the �rst few moments

of the normalized Maxwellian, which are

hM�i = 1

hviM�i = 0

hvivjM�i = �ij

hvivjvkM�i = 0

hvivjvkvlM�i = (�ij�kl + �ik�jl + �il�jk)

hvivjvkvlvmM�i = 0

jvj4vivjM�

�
= (d+ 2)(d+ 4)�ij

(17)
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Rewriting the moment problem (13) in terms of the polynomials P (k) leads to

the problem 

P

(k)
!M�

�
= 

(k)
; k = 0; : : : ; ; kmax(18)

with


(0) = �

(0)
; 

(1) = �
(1)
; 

(3) = �
(3)

and


(2) = 2�(2) � d�

(0)
; 

(4) = 2�(4) � (d+ 2)�(1):

With (15) and (16) at hand, the transformed problem (18) is now easy to solve.

We just set

! : = 
(0) �P (0) + 

(1) � �P (1) + 
(2) �P (2) + 

(3) : �P (3) + 
(4) � �P (4)(19)

or in terms of the original moments

(20) ! : = �
(0) �P (0) + �

(1) � �P (1) + (2�(2) � d

�
�
(0)) �P (2) + �

(3) : �P (3)

+ (2�(4) � (d+ 2)��(1)) � �P (4)

(In the case kmax = 3, the �P (4) terms are omitted.)

It is possible, to use this result directly to construct distributions of the form

(10). Indeed, the moment conditions (13) just involve v{polynomials up to

order omax = 6 (since deg(!) = 3 and deg (4) = 3) in the thermal case

respectively omax = 4 in isentropic situations. If we replace M� by another

distribution M
� which has the same v{moments up to order omax, we get

immediately 

 
(k)
!M

�

�
= �

(k)
; k = 0; : : : ; kmax:

To construct such a function M
�, we can use for example Gauss{Hermite

quadrature rules. It is well known, that the integration is exact for polynomials

q of degree less or equal omax, if the order N of the integration rule is su�ciently

high, i.e.

Z
R

q(s)
1p
2�

exp

�
�1

2
s
2

�
ds =

NX
i=1

�iq(si):
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In d dimensions this can be used to construct an integration rule by de�ning

nodes and weights

vi1;:::;id : = (si1 ; : : : ; sid)
T

;

�i1;:::;id : = �i1 : : : �id

ik 2 f1; : : : ; Ng:(21)

After renumbering consecutively from 1 to m = N
d, we thus get for any

polynomial Q of degree less than omax

hQM�i =
mX
i=1

M
�

i
Q(vi) = hQM�i

with

M
�(v) =

mX
i=1

M
�

i
�(v � vi)

so that M� can be replaced by M� in (12) without changing the right hand

side. This approach is pursued in [20]. It is also mentioned there, that instead

of using the tensorial structure (21) one can use a d{dimensional quadrature

rule which integrates polynomials up to order omax exactly. A disadvantage of

the approach is that, in general, the set of all integer multiples of the nodes vi
does not form a regular grid which is invariant under arbitrary vi translations.

A regular structure of the nodes, however, greatly simpli�es the application of

the discrete equilibrium distribution for example in LBE{type applications.

In a more general approach we therefore relax the condition that the moments

of the normalized Maxwellian M� are matched by those of M� exactly up to

the relevant order omax. Instead, we assume that M� has a moment structure

which is su�ciently close to that ofM� to allow a construction of polynomials

similar to P (k) given in (14). It turns out that the symmetry ofM� is important

to ensure that the odd moments in (17) vanish. Secondly, isotropy is another

important ingredient which manifests itself in the Kronecker delta structures

of the even moments in (17). However, the leading constants in the even

moments are not really relevant so that we can slightly relax (17) by requiring

only

hM�i = �

hviM�i = 0

hvivjM�i = �ij

hvivjvkM�i = 0

hvivjvkvlM�i = � (�ij�kl + �ik�jl + �il�jk)

hvivjvkvlvmM�i = 0

jvj4vivjM�

�
= �ij

(22)
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with �; �;  being positive and

 > ((d+ 2)�)
2
:(23)

By comparison with (8), we see that for the special case M� =M� we have

� = 1; � = 1;  = (d+ 2)(d+ 4)

so that (23) holds. Again, we can show with the help of (22) that the polyno-

mials

P
(0)(v) = 1

P
(1)

i
(v) = vi

P
(2)(v) = jvj2 � d

�

P
(3)

ij
(v) = vivj �

jvj2
d
�ij

P
(4)
i
(v) = (jvj2 � (d+ 2)�)vi

(24)

satisfy (15) with M� in place of M�. To get conditions (16), we have to scale

the polynomials P (k) according to

�P (k) =
1

l(k)
P

(k)
; k = 0; : : : ; kmax

where the scaling factors l(k) are given by

l
(0) = �

l
(1)
i

= 1

l
(2) = d(d+ 2)� � d

2

�

l
(3)
ij

= 2�

l
(4)

i
=  �

�
(d+ 2)�

�2
Finally, to solve 


 
(k)
!M

�

�
= �

(k)
; k = 0; : : : ; kmax

we set up the polynomial ! as in (20)

! : = �
(0) �P (0) + �

(1) � �P (1) + (2�(2) � d

�
�
(0)) �P (2) + �

(3) : �P (3)

+ (2�(4) � (d+ 2)��(1)) � �P (4)

10



In the case kmax = 3 the last term is removed. If we evaluate (20) for the

isentropic case (problem (7)), we get

! = � �P (0) + �u � �P (1) + (�juj2 + d(p(�)� �=�)) �P (2)

+ (�u
 u� 1

d
�juj2I) : �P (3)

:

Since �P (3) is trace free, we have I : �P (3) = 0. Moreover, �juj2 = �u
 u : I, so

that

! = � �P (0) + �u � �P (1) + d(p(�)� �=�) �P (2) + �u
 u : ( �P (3) + �P (2)
I):

For the special, isothermal pressure law p(�) = �=�, the polynomial! simpli�es

further to

! = �
�
�P (0) + u � �P (1) + u
 u : ( �P (3) + �P (2)

I)
�
; p(�) =

�

�
:(25)

Finally, we mention the case where � and � are related by �� = 1. Then, the

scaling coe�cient l(2) satis�es

l
(2) = d(d+ 2)� � d

2

�
= 2d� = l

(3)
d:

Thus,

�P (3)(v) + �P (2)(v)I =
1

2�

�
v 
 v � jvj2

d
I +

1

d

�
jvj2 � d

�

��
=

1

2�
(v 
 v � �I)

which leads to the �nal structure

! = �

�
� + u � v + 1

2�
(u � v)2 � 1

2
juj2

�
; �� = 1; p(�) = ��:(26)

3 Standard examples of equilibrium distribu-

tions

3.1 The D2Q9{model

Our �rst example is the D2Q9{model which is based on nine velocities in two

dimensions. To de�ne the normalized distributionM�(v) =
P8

i=0M
�

i
�(v�vi),
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we set for any � > 0

v0 = 0;

vi =
p
3�
�
cos

�
(i� 1)

�

2

�
; sin

�
(i� 1)

�

2

��
T

i = 1; : : : ; 4;

vi =
p
6�

�
cos

��
i� 9

2

�
�

2

�
; sin

��
i� 9

2

�
�

2

��
T

i = 5; : : : ; 8;

with weights

M
�

0 =
4

9�
; M

�

i
=

1

9�
; i = 1; : : : ; 4; M

�

i
=

1

36�
; i = 5; : : : ; 8:

Calculating the velocity moments of M� we �nd the structure (22) with

� =
1

�
; � = �;  = 18�2

so that (23) is satis�ed because

18�2 =  >
�
(d+ 2)�

�2
= 16�2:

Consequently, the construction of the equilibrium distribution can be applied

both in the thermal and the isentropic case. To show that the approach leads to

standard LBE{distributions, we consider the isothermal case p(�) = �=� = ��.

(Observe that �� = 1.) Since M is of the form M = !M
� with M� being a

sum of Dirac deltas, we can write

M(v) = !(v)M�(v) =

8X
i=0

!(v)M�

i
�(v � vi)

=

8X
i=0

M
�

i
!(vi)�(v � vi) =

8X
i=0

Mi�(v � vi)

withMi =M
�

i
!(vi). Using the above weightsM

�

i
and the nodes vi with � = 1,

we get with (26)

Mi = �M
�

i

�
1� 1

2
juj2 + u � vi +

1

2
(u � vi)2

�
:(27)

3.2 The hexagonal model

For the hexagonal model in two dimensions

v0 = 0;

vi =
p
�

�
cos

�
(i� 1)

�

6

�
; sin

�
(i� 1)

�

6

��
T

i = 1; : : : ; 6
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with weights

M
�

0 = �; M
�

i
=

1

3�
; i = 1; : : : ; 6

we get

� = �+
2

�
; � =

�

4
;  = �

2
:

In this case, condition (23) is violated since  = (4�)2. Consequently, the

polynomial �P (4) cannot be constructed which rules out the application of this

model in cases where the energy equation is needed. In isentropic cases, how-

ever, we only need �P (0) to �P (3). With � = 1
2
and � = 4 we get again � = � = 1

which yields the same structure of the weights Mi of the equilibrium distri-

bution as presented in (27). Of course, the factors M�

i
and the number of

velocities are di�erent.

3.3 The D3Q15{model

Similar to the D2Q9{case, we consider a model with 15 velocities in three

dimensions. To describe the discrete directions, we consider a cube of side

length 2
p
3� which is centered at the origin. Now, v0 is the center of the cube

and v1; : : : ; v6 point to the centers of the six faces. The remaining velocities

v7; : : : ; v14 point to the corners of the cube and thus have length
p
9� which isp

3 times the length of v1; : : : ; v6. As weights we choose

M
�

0 =
2

9�
; M

�

i
=

1

9�
; i = 1; : : : ; 6; M

�

i
=

1

72�
; i = 7; : : : ; 14:

The resulting constants in the moment relations (22) are

� =
1

�
; � = �;  = 33�2:

Again, relation (23) is satis�ed so that the model can be applied to thermal

cases.

4 Some remarks on the choice of velocities

In Section 2 we have considered moment problems like

h�iMi = �i; i = 1; : : : ; n; � 2 E(28)
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with moment functions �i and M � 0 of the form

M(v) =

mX
j=1

xj�(v � vj):(29)

The nodes vj 2 R
d are assumed to be �xed, so that only the coe�cients

xj � 0 have to be chosen depending on the right hand side �. In view of our

application where �i are expressions in the variables �; u; T , we remark that the

set E of possible right hand sides will in general not be at (i.e. not contained

in a proper linear subset of Rn). Inserting (29) into (28), we get

mX
j=1

�i(vj)xj = �i; xj � 0; i = 1; : : : ; n:

Neglecting the positivity condition on the coe�cients xj, this is just a linear

problem with an n�m matrix B = (�i(vj)) and right hand side �. Since E is

not at, we have to ensure that B has rank n since otherwise the image of B

is at and thus cannot contain E. This leads to the �rst observation that the

number of velocities m must be greater or equal than the number of conditions

n. A more precise criterion is obtained from the fact that rankB = n is

equivalent to the linear independence of the rows of B, i.e.

nX
i=1

�iri = 0 ) � = 0(30)

where ri is the i
th row of B

ri =
�
�i(v1); : : : ; �i(vm)

�
:

In order to give a geometrical interpretation of (30) we introduce the set of all

functions which are obtained from �1; : : : ; �n by linear combinations

� : =

(
!� =

nX
i=1

�i�i : � 2 Rn

)
:

Condition (30) can then be formulated in the following way.

Lemma 4.1 The matrix B with entries

Bij = �i(vj); i = 1; : : : ; n; j = 1; : : : ; m

has rank n if and only if the only function !� 2 � which vanishes simultane-

ously on all nodes vj is !0.
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Proof: A function !� 2 � vanishes simultaneously on all nodes if

nX
i=1

�i�i(vj) = 0; 8j = 1; : : : ; m:

which is just the left hand side in (30).

Altogether, the lemma allows us to give a necessary condition for the solvability

of (28).

Lemma 4.2 Assume E � R
n is not at. If there exists a function !� in �

with � 6= 0 which vanishes on all nodes vj, the moment problems (28) cannot

be solved with M of the form (29). In particular, this is the case if the number

of nodes is less than the number of moment conditions.

We note that in two dimensions there are eight moment conditions in the ther-

mal case. Consequently, the moment problems cannot be solved with hexago-

nal distributions since they are based on only seven velocities. Geometrically,

the polynomial P
(4)
1 given in (24) vanishes on all nodes of the hexagonal model.

Indeed, P
(4)
1 is a linear combination of  

(4)
1 and  

(1)
1 which vanishes on the cir-

cle of radius
p
(d+ 2)� and along the vertical axis. In the hexagonal model

we have (d + 2)� = � so that P
(4)
1 is zero on all nodes v1; : : : ; v6 as well as in

the origin v0.

In the next step, we assume that the necessary condition in Lemma 4.1 is

satis�ed. If, on top of that, we are in the extreme case m = n, there is

exactly one solution of the linear system Bx = �. (We remark that due to

the positivity restriction, x = B
�1
� gives rise to a solution of the moment

problem only if its components are nonnegative.) In a more general situation

we have m > n so that the solution is no longer unique. To get a functional

dependence x = x(�), however, we need a method which singles out one of the

many solutions of Bx = �. Following a standard approach, we take the vector

x which minimizes a quadratic functional Q(x) under the constraint Bx = �.

If we choose in particular

Q(x) =
1

2

mX
k=1

1

M
�

k

x
2
k
; M

�

k
> 0;

we recover exactly the situation presented in Section 2. To show this, we use

the method of Lagrange multipliers according to which the minimum of the

constrained problem minimizes the modi�ed functional

~Q(x) = Q(x)� � � (Bx� �):

15



For such a quadratic problem, the minimizer �x is uniquely de�ned by r ~Q(�x) =

0. This yields the condition

D
�1�x = B

T
�; D = diag(M�

1 ; : : : ;M
�

m
):

Plugging this into the condition B�x = �, we obtain an equation for the La-

grange multiplier �

BDB
T
� = �:(31)

Using the de�nition of B this can be transformed into

mX
j=1

�i(vj)M
�

j

nX
k=1

�k(vj)�k = �i;

or with !� : =
P

n

k=1 �k�k

�i =

mX
j=1

M
�

j
�i(vj)!�(vj) = h�i!�M�i :

with M� de�ned in (9). This shows, that the problem to determine a suitable

function !� 2 �, such that M = !�M
� satis�es the moment problem, can be

interpreted as �nding Lagrange multipliers.

At this point, we are also able to conclude that a solution � (and thus also a

function !�) exists if the condition in Lemma 4.1 is satis�ed.

Lemma 4.3 Assume rankB = n. Then (31) admits a unique solution.

Proof: Since the entries of the diagonal matrix D are positive, the square

root is well de�ned
p
D = diag

�p
M�

1 ; : : : ;

p
M�

m

�
:

With ~B = B
p
D we can rewrite the equation for �

~B ~BT
� = �:

Now, the rank of ~B is the same as the one of B since multiplying the columns

by positive numbers does not change the rank of a matrix. Consequently, also
~B has rank n. In that case it is easy to show that ~B ~BT is invertible because
�� in the kernel of ~B ~BT satis�es

0 = ��T
�
~B ~BT ��

�
=
��� ~BT ��

���2
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so that �� is also in the kernel of ~BT which is the null space.

It has to be stressed again that the unique solution given in Lemma 4.3 does

not need to satisfy the positivity restriction. To investigate this problem a

little further, we introduce the set of all admissible Lagrange multipliers

C : = f� 2 Rn : !�(vj) � 0 8j = 1; : : : ; m g :

Consequently, the moment problem is only solvable for those right hand sides

� which are contained in the image of C under the map BDBT . If C happens

to be at (i.e. contained in a linear hyper plane), also its image will be at.

On the other hand, E is non at by assumption, so that nonnegative solutions

to the moment problems cannot always be found in that case. Hence, we have

to make sure that dimC = n, or equivalently, that C contains some interior

point. To get this property, we assume more structure on the functions �i.

Guided by our main application where �1 � 1 is a function which is positive

on all nodes vj, we assume that there is some !�� 2 � so that !��(vj) > 0 for

all j = 1; : : : ; m. Due to the continuity of the mapping

� 7! 
(�) = (!�(v1); : : : ; !�(vm))

we conclude that 
(�) � 0 (component wise) for all � in a ball around �
�.

In particular, �� is an interior point of the convex cone C. Since BDBT is a

bijection, we can conclude that (28) is solvable at least when E is contained

in a small neighborhood of ��, the moment vector corresponding to ��

�
�

i
= h�i !�� M�i :

We collect our observations in a �nal theorem.

Theorem 4.4 Let � = (�1; : : : ; �n)
T

be a vector of real valued functions on

R
d and let E � R

n be non at. A necessary condition for the solvability of the

problems

h�Mi = �; � 2 E

with M of the form

M(v) =

mX
j=1

xj�(v � vj); xj � 0

and given vj is, that the only function !� =
P

n

i=1 �i�i which vanishes on

all nodes vj is !0. The condition is also su�cient for solvability if positivity

restrictions are neglected.
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If there is a function !�� which is strictly positive on all nodes, then the moment

problem has positive solutions in a neighborhood of the vector

�
� = h�!�� M�i ; M

�(v) =

mX
j=1

M
�

j
�(v � vj);

where M�

j
> 0 are arbitrary numbers.

5 Deriving a Chapman Enskog distribution

A simple model for Q(f) in (2) is given by the BGK collision operator

Q(f) = � 1

tR
(f �M [f ]):(32)

This model takes into account that the particle distribution function f re-

laxes towards an equilibrium distribution function M [f ] which has the same

conserved moments as f . The parameter tR > 0 is the time scale for this

relaxation process.

For simplicity, we restrict our considerations to the isentropic case, i.e. we

assume that the equilibrium distribution M [f ] in (32) satis�es the moment

conditions (7). As already mentioned, solving Boltzmann equation in the

hydrodynamical limit tR ! 0 becomes equivalent to solving Euler equations.

If we think of f being asymptotically expanded in a power series of tR, the

hydrodynamical limit implies f = M in lowest order. To get a more re�ned

picture of the situation tR � 1, we now consider the expansion

f =M � tRgtR; gtR = g0 + tRg1 + t
2
R
g2 + : : : :(33)

The basic assumption, which is characteristic for Chapman Enskog expansions,

is that the higher order contributions gi do not add to the conserved velocity

moments. In our case, this leads to the condition�
�

�u

�
=

��
1

v

�
f

�
=

��
1

v

�
M

�
:

Plugging (33) into (2) with the BGK operator (32) and solving for gtR yields

gtR =

�
@M

@t
+ v � rM

�
+ tR

�
@gtR

@t
+ v � rgtR

�
:(34)
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Taking moments and observing

�

1
v

�
gtR

�
= 0, we get

@�

@t
+ div(�u) = 0;

@

@t
(�u) + div(�u
 u) +rp(�) = tR div hv 
 v gtRi :

(35)

To determine the right hand side of the momentum equation to order tR, we

obviously need information just on g0. This information can be taken from (34)

where now terms of order tR can be neglected. Using chain rule and Einstein's

summation convention, we get

gtR =
@M

@�

�
@�

@t
+ vi

@�

@xi

�
+
@M

@uj

�
@uj

@t
+ vi

@uj

@xi

�
+O(tR):

With the help of (35), time derivatives can be replaced by space derivatives,

so that

gtR =
@M

@�

�
vi
@�

@xi
� @(�ui)

@xi

�
+
@M

@uj

�
vi
@uj

@xi
� ui

@uj

@xi
� 1

�

@p(�)

@xj

�
+O(tR):

With the classical Maxwellian in the isothermal case T0 = const, p(�) = �T0,

M =
�

(2�T0)
d

2

exp

�
�jv � uj2

2T0

�

we get

@M
@�

=
1

�
M;

@M
@uj

=
vj � uj

T0
M:

The terms involving derivatives of density now disappear since

1

�

@p(�)

@xj
=

1

�
T0

@�

@xj
:

What remains is

gtR =

�
�@ui
@xi

+
(vj � uj)(vi � ui)

T0

@uj

@xi

�
M+O(tR):

The lowest order can be written in compact notation

g0 =

�
(v � u)
 (v � u)

T0
� I

�
: SM
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where I is the identity matrix and

Sij =
1

2

�
@ui

@xj
+
@uj

@xi

�
:

To complete equations (35), we �nally calculate the second order moments of

g0 which we denote

� : = tR hv 
 vgt0i :
With the change of variables w = (v � u)=

p
T0 we obtain

� = �tRT0 h(w + u)
 (w + u)(w 
 w � I) : SM�i
whereM� is the normalized Maxwellian (11). Using polynomials (14), we �nd

w 
 w � I = P
(3) +

1

d
P

(2)
I:(36)

Due to orthogonality relations (15), only the quadratic part w 
 w in (w +

u)
 (w + u) contributes

� = �tRT0

�
w 
 w

�
P

(3) +
1

d
P

(2)
I

�
: SM�

�
:

Using (36) again, orthogonality properties and (16) we get

� = � tRT0

��
P

(3) +
1

d
P

(2)
I + I

��
P

(3) +
1

d
P

(2)
I

�
: SM�

�

= � tRT0

�

P

(3)
P

(3) : SM�

�
+
trS

d



P

(2)
P

(2)M�

�
I

�

= � tRT0

�
2

�
S � trS

d
I

�
+ 2(trS)I

�

= � tRT0

�
2S + 2

d� 1

d
(trS)I

�
:

Introducing the kinematic viscosity parameter � = tRT0, the viscous stress

tensor � = 2��S and the coe�cient � = 2�� d�1
d

we have the result

� = � + � div u I:

Consequently, up to �rst order in tR, the moments of f satisfy the compressible

Navier Stokes equation

@�

@t
+ div(�u) = 0;

@

@t
(�u) + div(�u
 u) +rp(�) = div � +r(� div u):

(37)
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More explicitly, the viscous term in the ith momentum equation is

�
@

@xj

�
�

�
@ui

@xj
+
@ui

@xj

��
+

@

@xi

�
�
@uj

@xj

�
; i = 1; : : : ; d:

Based on similar arguments, the system (37) has been derived in [8]. Our

construction also yields a distribution function which is related to equations

(37). It is called Chapman-Enskog distribution

FCE(v) =M(v)� tR g0(v)

=

�
1� tR

�
(v � u)
 (v � u)

T0
� I

�
: S

�
M(v):

We note, that (37) can be written in the form*0
@ 1

v
1
2
jvj2

1
A�@f

@t
+ v � rxf

�+
= 0; f = FCE:

which enables us to apply Kinetic Schemes to the compressible Navier Stokes

system. In order to construct a discrete distribution FCE with similar proper-

ties, we proceed along the lines of Section 2, i.e. we require that FCE has the

same �rst v{moments as FCE. This leads to the problem

hMi = �;

hvMi = �u;

hv 
 vMi = �u
 u+ p(�)I � � � � div uI:

(38)

Again, this moment problem is of the form (8), so that we can use the general

solution constructed in Section 2. Similar to (25) (just replace �u 
 u by

�u
 u� � � � div uI), the polynomial ! in the representation FCE = !M
� is

given by

! = � �P (0) + �u � �P (1) + d(p(�)� �=�) �P (2)

+ (�u
 u� � � � div uI) : ( �P (3) + �P (2)
I):

For the special case p(�) = �=�, the structure is again simpli�ed a little more

! = � �P (0) + �u � �P (1) + (�u
 u� � � � div uI) : ( �P (3) + �P (2)
I):

If, in addition �� = 1, we �nd in accordance to (26)

! = �

�
� + u � v + 1

2�
(u � v)2 � 1

2
juj2

��
�
v 
 v : S � �

�
d� 1

�d
jvj2 � d

�
div u

�
:
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For the D2Q9 model with � = 1, we get

! = �

�
1 + u � v + 1

2
(u � v)2 � 1

2
juj2 � �v 
 v : S � �

�
1

2
jvj2 � 2

�
div u

�
:

6 Conclusions

The construction of Kinetic Schemes for Euler or Navier Stokes equations leads

to a class of reduced moment problems. In this article, we have presented a

general approach how to solve these problems with distribution functions of

discrete type. A necessary condition for solvability has been derived which

connects the pattern of the discrete velocities with the structure of the mo-

ment functions. Finally, the approach has been applied to the construction of

discrete Chapman Enskog distributions.
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