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In the field of quantum information science and technology, the representation and visualization of quantum
states and related processes are essential for both research and education. In this context, a focus lies especially
on ensembles of few qubits. There exist many powerful representations for single-qubit and multiqubit systems,
such as the famous Bloch sphere and generalizations. Here, we utilize the dimensional circle notation as a
representation of such ensembles, adapting the so-called circle notation of qubits and the idea of representing the
n-particle system in an n-dimensional space. We show that the mathematical conditions for separability lead to
symmetry conditions of the quantum state visualized, offering a new perspective on entanglement in few-qubit
systems and therefore on various quantum algorithms. In this way, dimensional notations promise significant
potential for conveying nontrivial quantum entanglement properties and processes in few-qubit systems to a
broader audience, and could enhance understanding of these concepts as a bridge between intuitive quantum
insight and formal mathematical descriptions.
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I. INTRODUCTION

Genuine quantum properties are hard to visualize and
hence to intuitively understand. Powerful visualizations of
simple two-level, single-particle systems such as the Bloch
vector representation of the density matrix have been de-
veloped to represent properties and dynamics in various
situations beyond the mathematical description. Due to the ex-
traordinary mathematical complexity of multiqubit systems,
representing many-body correlations for even two- or few-
qubit systems comes along with many challenges.

Geometric representations of pure multiqubit states and
entanglement were previously addressed from the perspective
of the mathematical fields of topology and geometry [1–4].
Other representations include the Majorana representation
depicting multiqubit states on a Bloch sphere [5] or, alterna-
tively, the use of separate Bloch spheres for the nonentangled
part of the system and the entangled part [6,7]. Another pos-
sibility is the generalization of the Bloch sphere to a Bloch
hypersphere [8]. Also, the product operator formalism can
be used to visualize the underlying processes in multidimen-
sional NMR spectroscopy [9,10]. Lastly, a haptic model of
entanglement based on knot theory has been proposed [11].

In all of these works, entanglement is geometrically rep-
resented. However, they are difficult to generalize to more
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than two- or three-qubit systems. In addition, the profound
mathematical background in, e.g., topology or advanced ge-
ometry often needed to understand these models adds multiple
layers of complexity. These are, however, often unnecessary in
the context of quantum computing algorithms [12]. To solve
the latter challenge, various two-qubit visualizations are used
for educational purposes [13,14] and also in the context of
quantum games [15–17].

For more general applications, one needs to go beyond
two- or three-qubit systems. Here, graphical languages like
the ZX, ZW, or ZH calculi, which can be seen as abstractions
of circuit diagrams, are commonly used to visualize quantum
states and algorithms [18–21]. Their abstractness can be an
advantage, e.g., for efficiently showing gate identities and the
different possible entanglement properties of multiqubit sys-
tems [19]. At the same time, they require an already existing
understanding of the often complex underlying concepts and
processes. To acquire this understanding, explicit visualiza-
tions are necessary. One possibility is the use of generalized
Wigner functions, the so-called DROPS representation, to
represent systems of few qubits [22], usable even beyond
three-qubit systems [23]. This operator-based choice of ba-
sis lays focus on quantum correlations and is also useful to
describe time evolution of multiqubit systems [24].

Compared to this, the so-called circle notation [25] makes
use of the computational (0,1) basis. The aim of this visualiza-
tion is to minimize the reluctance of learners towards quantum
notations and linear algebra formalities, and instead highlight
the basic ideas and mechanisms of quantum algorithms ex-
plicitly. In this notation, complex numbers are represented
graphically by visualizing their magnitude as a filled area in
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a circle, and their phase as gauge in the circle. A drawback
of this visualization is that the action of gate operations on
the multiqubit registers is not intuitive but rather has to be
memorized. Furthermore, entanglement remains hidden.

Another idea is to represent qubit systems in space, as-
signing every qubit an axis. This is akin to the idea from
classical computer science to represent n-bit systems in n-
dimensional hypercubes for the development of classical error
correction codes such as the Hamming code [26–28]. For
quantum states, this is referred to in Sec. 17 of Ref. [3] for
the purpose of showing different types (W, D, GHZ, . . .) of
entangled states as various combinations of vertices on the
(hyper)cube. So-called color codes [29] utilize topological
ideas and the representation of qubit systems in lattices, hy-
percubes, or hypercubelike systems, where, sometimes, qubits
are represented as colored axes in space [30–32]. Here, unitary
operations are shown as operators that act along the axis of
the corresponding qubit. For educative purposes, qubits and
unitary operations are also represented as axes in space and
along these axes in Ref. [33] where the coefficients of the
(computational) basis states are visualized as colored squares,
constituting the so-called cube notation. The interactive tool
[34] incorporates this dimensional approach with different
kinds of ways of visualizing amplitudes (state bar plot, Q
sphere, state cube, and phase disk state cube).

Here, we show that such explicit visualizations enable a
visual criterion for entanglement. Entanglement is utilized in
many quantum algorithms such as the well-known quantum
teleportation algorithm or quantum error correction code, and
it is instructive to think about entanglement properties of
few-qubit systems throughout these processes. We also show
that in four- and five-qubit systems, we can modularize the
dimensional approach, assigning only specific qubits to axes
in space and by doing so, highlighting specific entanglement
properties and unitary operations in complex four- and five-
qubit algorithms such as quantum error correction code. For
these purposes, we utilize the circle notation [25] and intro-
duce dimensionality [3,26–28,33]. We call this representation
dimensional circle notation (DCN).

DCN and other such notations consider the well-known
theory of learning and problem solving with multiple exter-
nal representations (MERs) [35,36], which aims to support
learners’ understanding by focusing not only on symbolic-
mathematical or text-based representations (e.g., formulas
or written text), but also on visual-graphical representations
(e.g., pictures and diagrams). In addition, as we show in this
work, they provide a new perspective on separability of pure
multiqubit states. Therefore, we see its relevance as a bridge
between single-particle visualization and mathematical many-
body descriptions to build intuition for few-body quantum
correlations.

This paper is structured as follows. First, in Sec. II, the
circle notation is introduced. It is followed by the introduction
of entanglement in two-qubit systems in Sec. III. Examples
in three-qubit systems using DCN are presented in Sec. IV.
Then, general separability criteria derived using DCN are
given in Sec. V. We conclude in Sec. VI, illustrate further
extensions of DCN, such as visualization of quantum algo-
rithms in four- and five-qubit systems, introduce an interactive
DCN web tool, and discuss further possible applications of

FIG. 1. A qubit in the state |ψ〉 = √
2/3|0〉 + 1/

√
3eiπ/2|1〉 in

circle notation [25]. The outer circles represent the basis states |0〉
and |1〉. The radii of the inner circles represent the absolute value of
the corresponding coefficients. The radius of the blue circle is

√
2/3

and the radius of the green circle 1/
√

3. The blue area is double the
size of the green area, showing that measuring would, on average,
yield the result 0 twice as often as 1. The angles of the lines in
respect to a vertical line represent the phases of the corresponding
coefficients. Here, the angle of the line of the coefficient 1/

√
3eiπ/2

of the basis state |1〉 is horizontal and facing left, representing the
phase π/2.

visualizing entanglement properties of few-particle quantum
systems.

II. CIRCLE NOTATION

We start by briefly introducing the circle notation. In an
n-qubit system, there are 2n different possible basis states
represented by 2n circles. We will work solely in the compu-
tational basis as it is commonly used in quantum computing.
Here, the basis is given by {|i〉}, i ∈ {0, 1}n, |inin−1 . . . i1〉,
which defines the n-qubit register. Any pure n-qubit state |ψ〉
can be written as a superposition of these basis states:

|ψ〉 = α0|0 . . . 0〉 + α1|0 . . . 01〉
+ α2|0 . . . 010〉 + . . . + α2n−1|1 . . . 1〉 (1)

with αi ∈ C,
∑2n−1

i=0 |αi|2 = 1. As per the convention used
here, the rightmost entry in the ket state corresponds to the
first qubit and the leftmost entry to the nth qubit. This means
that the least significant qubit in the binary system corre-
sponds to the rightmost entry. As shown in Fig. 1, the circle
notation graphically represents the magnitudes of the ampli-
tudes αi as filled inner circles with radius |αi| and their phase
ϕ of αi = eiϕ |αi| as the angle between the radial line and
a vertical line. Some important single-qubit operations (in a
single-qubit system) are shown in Fig. 11 in Appendix A.

For two qubits, the possible states are lined up as shown
in Fig. 2. In standard circle notation, one can not immedi-
ately determine whether the represented state is separable or
entangled. We refer to Ref. [25] for a precise and comprehen-
sive introduction to the circle notation, in particular, unitary

FIG. 2. The two-qubit state |ψ〉 = 1/2|00〉 + 1/
√

2e−iπ/4|01〉 −
1/

√
12|10〉 + 1/

√
6e3iπ/4|11〉 in circle notation [25]. The states are

ordered in ascending order in the binary system, where, e.g., the first
qubit represents the rightmost number i1 in a state |i2i1〉.
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FIG. 3. Visual representation of the separability of the product state |ψ〉 = (
√

3/2|0〉 − 1/2|1〉) ⊗ (1/
√

3|0〉 + √
2/

√
3e−iπ/4|1〉) =

1/2|00〉 + 1/
√

2e−iπ/4|01〉 − 1/
√

12|10〉 + 1/
√

6e3iπ/4|11〉 in DCN. Similarly to Ref. [33], Qubit #1 is attached to each of the basis states
of qubit #2 to form a two-dimensional array of basis states. The amplitudes of the combined state follow the standard Kronecker product.
The system is separable, which is shown by the green symmetry axis. The radii of the inner circles are compared in blue-gray and
the phases are compared in red. The coefficient ratio along this axis is α01/α00 = α11/α10 = √

2e−iπ/4. Along the other symmetry axis,
α10/α00 = α11/α01 = 1/3eiπ = −1/3.

operations and measurements in multiqubit systems. For cal-
culating their effect, if not memorized, operations require the
additional effort of checking each basis state in Dirac ket nota-
tion, which could reduce the advantage of this representation
in respect to the mathematical representation.

III. ENTANGLEMENT IN TWO-QUBIT SYSTEMS

In dimensional notations, instead of arranging states in a
row, every qubit is assigned to an axis in a new direction in
space. Here, in contrast to the standard circle notation, it is
enough to understand these operations in single-qubit systems
to understand them in any multiqubit system [33]. Addition-
ally, as we show in this section, such visualizations reveal
entanglement properties in two-qubit systems. For this, we
use DCN based on circle notation [25]. Figure 3 shows how
product states are formed in such a dimensional arrangement,
following the standard Kronecker product.

a. Entanglement. In the classical circle notation, see
Fig. 2, it is cumbersome to distinguish a separable state
from an entangled one. In this section, we will show how
dimensional notations allow spotting separable states in the
two-qubit case. A state |ψ〉 = α00|00〉 + α01|01〉 + α10|10〉 +
α11|11〉 is separable into |ψ〉 = (α1|0〉 + β1|1〉) ⊗ (α2|0〉 +
β2|1〉), where ⊗ is the Kronecker product, if and only if

α00α11 = α01α10 (2)

as stated in, e.g., Ref. [3]. We can represent this condition in
terms of coefficient ratios α00/α01 = α10/α11 in the case of
α01, α11 �= 0 or α10/α00 = α11/α01 in the case of α10, α11 �= 0.
In the case of more than two coefficients being 0, the system
is trivially separable. In summary, this means we can visually
not only identify entangled states, but also get a sense for
the degree and the type (phase or magnitude) of entangle-
ment by comparing the ratios of the coefficients α00/α01 =
r1eiϕ1 , α10/α11 = r2eiϕ2 in terms of the ratio of their ampli-
tudes r1/r2 and the difference of their phases ϕ1 − ϕ2. For

example, the concurrence C is a common way to measure
entanglement [37]. It is defined as C = 2|α11α00 − α10α01| =
2r1|1 − r2/r1eiϕ1−ϕ2 | for pure two-qubit states (under the as-
sumption of r1 > 0). It can be seen that the concurrence is
large for large differences in phases (|ϕ2 − ϕ1| ≈ π ) and large
or small ratios of magnitudes (r2/r1 � 1 or r2/r1 	 1). We
compare these ratios for every pair of states along the axis
of one qubit, where both of the corresponding coefficients
are nonzero. Then, we can determine whether the system is
symmetrical along that axis, apart from a (complex) ratio.
If we find symmetry, we know that the system is separable.
Figure 3 visualizes that building product states results in a sep-
arable system using this ratio characterization. Examples of
amplitude- and phase-entangled systems are shown in Fig. 4.

It is important to note that this representation of separa-
bility into single-particle states only holds if the chosen basis
states are themselves separable. We consider exclusively the
computational basis here, but in principle any separable basis
can be used.

b. Measurements. Measuring a single qubit, the state col-
lapses into a classical bit of 0 or 1. Similarly, in a terminal
measurement of n qubits the system collapses into the
classical bit string i = inin−1 . . . i1, where i ∈ {0, 1}n. The
measurement of a subset of qubits is, however, more peculiar.
In conventional circle notation, see Fig. 2, one needs to pre-
cisely identify the subset of qubits measured, by evaluation of
the corresponding register state, see Ref. [25] for more details.
In Ref. [33], measurements are shown as removal of axes. We
show partial measurement (see Fig. 5) such that all circles
along the measured qubit differing from the measured value
turn empty. Afterwards, the state simply has to be renormal-
ized. Furthermore, the probabilities of measuring 0 or 1 are
given by the sum of the areas of the inner circles of the basis
states corresponding to that value. This dimensional visualiza-
tion of quantum states shows an important property of entan-
gled states: If the state is entangled, the state after the mea-
surement will differ depending on the measurement result.
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FIG. 4. Entanglement in two-qubit systems visualized. (a) The state |ψ〉 = 1/2|00〉 + 1/
√

2e−iπ/4|01〉 − 1/
√

6|10〉 + 1/
√

12e3iπ/4|11〉.
It is entangled, because α11/α10 = 1/

√
2e−iπ/4 �= √

2e−iπ/4 = α01/α00. (b) The state |ψ〉 = 1/2|00〉 + 1/
√

2e−iπ/4|01〉 − 1/
√

12|10〉 +
1/

√
6e−3iπ/4|11〉. It is (phase) entangled, because α11/α10 = √

2eiπ/4 �= √
2e−iπ/4 = α01/α00.

|00

|10

|01

|11

Qubit #2

(b)

(a)

(c)

p(0)=|α00|
2+|α01|

2=3/4

p(1)=|α10|
2+|α11|

2=1/4

|00 |01

|10 |11

Qubit #1

0

0

1

1

|00

|10

|01

|11

Qubit #1

Qubit #2

Qubit #2

0

0

1

1

|00

|10

|01

|11

0

0

1

1
Qubit #1

|10 |11

1

⋅0

⋅0

π0

FIG. 5. Entanglement in a two-qubit quantum system in the context of measurement. (a) The initial state |ψ〉 = 1/2|00〉 +
1/

√
2e−iπ/4|01〉 + 1/

√
6|10〉 + 1/

√
12e3iπ/4|11〉 of the system. The state is entangled as can be seen, e.g., when comparing the phase

differences from top to bottom along the red axis. The phases differ by a factor π , meaning that the possible resulting states of the measurement
will differ by a relative phase π . Comparing the areas of the inner circles, one can see that measuring 0 is more likely than measuring 1. In fact,
p(0) = (1/2)2 + (1/

√
2)2 = 3/4 and p(1) = 1/4. (b) The state of the system after measuring 0. All circles where qubit #2 is 1 are cleared and

the system is renormalized. (c) The state of the system after measuring 1. After measurement, the entanglement is destroyed as can be seen in
both (b) and (c) with the ratio 0 along the green axis.
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c. Unitary operations. Examples of unitary operations in
single-qubit systems are shown in Fig. 11 in Appendix A
as in Ref. [25]. Having understood them and in order to
generalize from single-qubit systems to multiqubit systems in
circle notation, one still needs to memorize not only the effects
of single-qubit operations but instead all possible actions of
single-qubit gates on all possible qubits. The dimensional ar-
rangement eliminates this drawback. Single-qubit gates need
only to be applied alongside the axis of the qubit considered.
Thus, the visualization of single-qubit operations within two-
qubit systems is transferable from the one-qubit case. This,
importantly, still holds for larger-qubit systems as we show in
the following sections. A comparison of DCN with the stan-
dard circle notation is shown in Fig. 6 for the Pauli X1 and X2

gates. Note that local unitary operations leave the ratio charac-
terization of separable states intact, i.e., we can not entangle
a nonentangled system locally and vice-versa, in agreement
with the no-communication theorem [38]. Two-qubit opera-
tions also work geometrically in dimensional notations and,
again, avoid the necessity of memorizing multiple operations
of, e.g., controlled gates where the target and control qubits
are swapped.

The CNOT gate applies a NOT (X) gate to the target
qubit if the control qubit has value 1. This has a geometric
explanation: the CNOT gate swaps all states where the control
qubit is 1 along the axis of the target qubit. The CNOT gate is
a multiqubit gate that can change entanglement properties of
the system.

The SWAP gate exchanges two qubits in the system, which
is equivalent to swapping the corresponding two-qubit axes,
while entanglement properties of the system are conserved.
This gate can be decomposed into three CNOT gates, which is
relevant in practice, e.g., because existing quantum computer
hardware can often only make use of CNOT gates for qubit
interactions. Figure 7 shows how this decomposition can be
visualized geometrically. The conservation of entanglement
properties is apparent in dimensional notations, because swap-
ping axes does not change which ratios of coefficients are
present in the system.

In Appendix C, we provide additional DCN examples for
CNOT12 = (H2 ⊗ H1)CNOT21(H2 ⊗ H1) as an example of a
phase kickback swapping the role of target and control qubit,
see Fig. 12. We also show the Deutsch algorithm, which is
often considered as an example of quantum parallelism and a
(albeit nonpractical) use case of phase kickback, see Fig. 13.
The representation of the Deutsch algorithm in DCN shows
that although a CNOT gate is present, no entanglement has
been created. Therefore the algorithm can be realized classi-
cally, which has been shown in classical optical systems [39].
Again, we expect dimensional approaches to be more intuitive
than nondimensional approaches.

IV. ENTANGLEMENT IN THREE-QUBIT SYSTEMS

We now shift from two-qubit systems to three-qubit sys-
tems and explore the advances of dimensional notations in
respect to standard circle notation. Similarly to the transfer
from one-qubit systems to two-qubit systems, dimensional
operations in three-qubit systems are transferable from the

one- or two-qubit cases. Still, the additional qubit leads to a
few key differences that we will explain in the following.

a. (Partial) separability and entanglement. To distinguish
separable states from entangled states, we apply a similar
procedure taken from the two-qubit case to determine whether
a three-qubit system is separable. The two key differences are

(1) In order to compare the ratios of coefficients, we look
for symmetry planes instead of axes. This way, we compare
the ratios of the top coefficients with the bottom coeffi-
cients, left with right or front with back (see Corollary 4,
Appendix B). This is shown in Fig. 8.

(2) We can differentiate between partial and full separabil-
ity and compare along two planes. If the ratios are the same
along only one plane, we have an entangled two-qubit system
that the third qubit, represented by the axis perpendicular to
this symmetry plane, is independent of (Fig. 8 is an example
of such a state). If and only if the ratios are the same along
two planes, they are also the same along the third plane and
we have a fully separable system.

b. Quantum teleportation. Quantum teleportation has
been at the heart of quantum technologies for many years,
allowing the transfer of quantum information between two
parties over arbitrary distances when an EPR pair is shared
between them. It has multiple applications in quantum com-
munication [40] and quantum computation [41,42] and is
therefore an essential part of quantum information process-
ing [43]. Because it incorporates many fundamental concepts
of quantum information science and technology such as en-
tanglement, unitary operations, and measurements, quantum
teleportation is a suitable example of how dimensional no-
tations could enhance understanding of quantum algorithms
in general [33]. In particular, the protocol utilizes three-qubit
entanglement, which, as we show, can be visualized in dimen-
sional notations, offering a visual perspective on entanglement
within the protocol.

Quantum teleportation works as follows: A pair of entan-
gled qubits #2 and #3 in the state |φ+〉32 = 1/

√
2(|00〉 + |11〉)

is prepared. Qubit #3 is sent to Bob and qubit #2 to Alice.
Alice also has qubit #1 in the state |ψ1〉, which she does not
necessarily need to know and that she wants to teleport to Bob.

During quantum teleportation, the information of qubit #1
is transferred to qubit #3. In dimensional notations, this has
geometric meaning (see Fig. 9): Because of the equivalence of
an axis with a qubit, transferring information from one qubit
to another is the same as transferring information from one
axis to another. This can be done using the unitary operations
CNOT12 and H1. These operations only act on qubit #1 and
#2, i.e., along the axis of qubit #1 and #2. In practice, this
means that Alice does not need physical access to qubit #3.
Note that this transfer of information is only possible because
qubit #2 and qubit #3 are entangled. To achieve her goal, Alice
first applies a CNOT gate with qubit #1 as control and qubit
#2 as target, fully entangling the system (see Fig. 9). She then
applies a Hadamard gate to qubit #1.

When Alice now measures qubit #1 and qubit #2, the four
possible measurement outcomes 00, 01, 10, and 11 lie on the
two-dimensional (2D) plane spanned by qubit #1 and qubit #2.
The resulting state of qubit #3 depends on the measurement
result. Alice sends the result to Bob who applies an X and/or
a Z gate if needed so that his qubit #3 is in the state that
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(b)
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0

0
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Qubit #2

Qubit #1

0

0

1

1

Qubit #2

|00

|10

|01

|11

|00

|00

|10

|10

|01

|01

|11

|11

|00 |10|01 |11

|00

|10

|01

|11

X1

X1

⋅√2

⋅√2

⋅√2

⋅√2

⋅1/√2

-π/4

-π/4

-π/4

-π/4

π/4

π/4
⋅1/√2

FIG. 6. (a) Visualization of an example of the conservation of entanglement properties under single-qubit unitary operations. X1 and X2

gate acting dimensionally on the two-qubit state |ψ〉 = 1/2|00〉 + 1/
√

2e−iπ/4|01〉 − 1/
√

12|10〉 + 1/
√

6e3iπ/4|11〉, similarly to Ref. [33]. The
X1 gate acts on all states along the axis of qubit #1, swapping the coefficients of |00〉 and |01〉 as well as the coefficients of |10〉 and |11〉. The
outcome of the X1 operation is the state |ψ〉 = 1/

√
2e−iπ/4|00〉 + 1/2|01〉 + 1/

√
6e3iπ/4|10〉 − 1/

√
12|11〉. Similarly, the X2 gate acts on all

states along the axis of qubit #2, swapping the coefficients of |00〉 and |10〉 as well as |01〉 and |11〉. The outcome of the X2 operation is the state
|ψ〉 = −1/

√
12|00〉 + 1/

√
6e3iπ/4|01〉 + 1/2|10〉 + 1/

√
2e−iπ/4|11〉. In both cases, due to the unitary operations being local, the separability

of the system is retained as is shown by the green symmetry axes. (b) The same operations in standard circle notation for comparison [25].
Here, separability and its retention is not as easily visible.
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|00
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FIG. 7. The SWAP gate as an example of a multiqubit gate that retains separability of the system, implemented as three CNOT gates on the
two-qubit state |ψ〉 = 1/2|00〉 + 1/

√
2e−iπ/4|01〉 − 1/

√
12|10〉 + 1/

√
6e3iπ/4|11〉. The corresponding quantum circuits are displayed at the

top. The relation CNOT12CNOT21CNOT12 = SWAP can be geometrically explained by swapping the states along the two axes step by step.
The final state |ψ〉 = 1/2|00〉 − 1/

√
12e−iπ/4|01〉 + 1/

√
2e−iπ/4|10〉 + 1/

√
6e3iπ/4|11〉 is shown on the right-hand side. Note that it is visually

apparent that both states are separable [see Fig. 4(a)], which the SWAP gate does not change, but a single CNOT gate would entangle the
system.

qubit #1 previously was in. This last step is shown in Fig. 14,
Appendix C.

Qubit #1

Qubit #2
|000

|010

Qubit #3

|011

|100

|110 |111

|101

|110

|001

⋅1/√2e-iπ/4

↯

FIG. 8. The partially separable state |ψ〉 = 1/
√

2|000〉 + 1/√
6e−iπ/4|001〉 − 1/2|110〉 + 1/2

√
3e3iπ/4|111〉 = (

√
2/

√
3|00〉 −

1/
√

3|11〉) ⊗ (
√

3/2|0〉 + 1/2e−iπ/4|1〉). The green symmetry plane
shows that qubit #1 can be separated from the system as the ratio
1/

√
2e−iπ/4 can be applied to go from left to right. However, the

system is not fully separable because there is no symmetry along the
axis of qubit #2, i.e., there is no such ratio and the red plane is not a
symmetry plane. Similarly, there is no symmetry along the axis of
qubit #3.

V. ENTANGLEMENT IN MULTIQUBIT SYSTEMS

We now generalize the visualization of entanglement prop-
erties to multiqubit systems beyond three qubits. While
determining whether a given mixed state is separable is, in
general, a (strongly) NP-hard problem [44,45], separability of
pure states is well understood within the density matrix for-
malism [46,47]. However, as quantum computing algorithms
tend to be discussed quite explicitly [12], it can be tedious
to refer back to the density matrix formalism while working
out a given quantum algorithm, just to show the entanglement
properties of the system at any given moment. We argue that
it would be beneficial to be able to see entanglement even
when working without the density matrix formalism. In the
ideal case, the system containing all qubits that are part of the
algorithm is a pure state. Lemma 1 gives a necessary criterion
for separability of a given pure state in the computational basis
[48,49].

Lemma 1 (necessary criterion for separability). Let
|ψN 〉 = ∑N−1

i=0 ci|i〉 ∈ HN be a N = PQ-separable pure state
and r0 ∈ [0, Q − 1], k0 ∈ [0, P − 1]. Then, for all r ∈ [0, Q −
1] and k ∈ [0, P − 1]: ck0Q+r0 ckQ+r = ck0Q+rckQ+r0 .

We provide an alternative proof in Appendix B. In fact,
this criterion can be adjusted to be sufficient by specifying
the first nonzero coefficient ci0 with i0 = k0Q + r0 to examine
PQ separability [48]. The criterion given in Ref. [48] only
considers states where ckQ+r = 0 for all r < r0 (see Corollary
2, Appendix B). In fact, in DCN, one can see that states
where ckQ+r �= 0 for some r < r0 (even if k > k0), are not
separable, because symmetry is absent in these states. This
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FIG. 9. Entanglement utilization in the central part of the quantum teleportation algorithm. Qubit #1 starts in the arbitrary state |ψ〉1 =√
2/3|0〉 + 1/

√
3e−iπ/4|1〉. Qubits #2 and #3 start in the bell state |ψ+〉32 = 1/

√
2(|00〉 + |11〉). The product state is partially separable (the

same as the state in Fig. 8), shown by the green symmetry plane. The information that is initially stored in qubit #1 (blue), which is independent
of the other two qubits is transferred to qubit #3 (yellow) using only unitary operations on qubit #1 and #2, i.e., operations only along the axes
of qubits #1 and #2 in two steps. Step 1: Swap states on the right-hand side (where qubit #1 is 1) along the axis of qubit #2 using a CNOT
gate with control qubit #1 and target qubit #2. This destroys the symmetry along the axis of qubit #1 and the system is now fully entangled,
hence the red plane is shown. In fact, one can see that entangling qubit #1 with qubit #2 also entangled qubit #3 with qubit #1 by transfer
of entanglement. Step 2: Split states along axis of qubit #1 using a Hadamard gate on qubit #1. The application of the Hadamard gate does
not change the entanglement properties of the system as it is a local unitary operation. The corresponding quantum circuit is displayed in the
middle.

is shown in Fig. 10, where 2-4 separability is examined for
the state |ψ〉 = 1√

6
(|1〉 + |2〉 − |3〉 + |4〉) + 1

2
√

3
(e−iπ/2|5〉 +

eiπ/2|7〉) in DCN. As can be seen in DCN, this state is not 2-4
separable, even though c1c7 = c3c5, because of the absence of
symmetry in regard to qubit #3. Therefore, it can be seen in
dimensional notations that the generalization of the criterion
given in Ref. [48] is the following:

Theorem 1 (PQ separability of pure states). Let |ψN 〉 =∑N−1
i=0 ci|i〉 be a pure state where for some i0 = k0Q + r0 ∈

[0, N − 1], αi0 �= 0, and ∀i < i0, αi = 0. Then, |ψ〉 is N = PQ
separable if and only if for all k ∈ [k0 + 1, P − 1] and r ∈
[0, Q − 1]: ck0Q+r0 ckQ+r = ck0Q+rckQ+r0 .

We provide a proof in Appendix B. Theorem 1 has alter-
native formulations that are also given in Appendix B. While
the forward implication part of the proof is given by Lemma
1, the idea of the backwards implication is finding ratios
mr such that ckQ+r = mrckQ+r0 for all k ∈ [k0 + 1, P − 1].
We therefore have Corollary 1 [49] as part of the proof of
Theorem 1.

Corollary 1 (ratio characterization of separability). Let
|ψN 〉 = ∑N−1

i=0 ci|i〉 be a pure state where for some i0 = k0Q +
r0 ∈ [0, N − 1], ci0 �= 0 and ∀i < i0, ci = 0. Then, |ψ〉 is PQ
separable if and only if there exist ratios mr ∈ C for r ∈ [r0 +
1, Q − 1] such that for all k ∈ [k0 + 1, P − 1], |ψ〉 can be

023077-8
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FIG. 10. Examination of 2-4 separability (separability in re-
gard to qubit #3) of the state |ψ〉 = 1√

6
(|1〉 + |2〉 − |3〉 + |4〉) +

1
2
√

3
(e−iπ/2|5〉 + eiπ/2|7〉) in DCN. It is visible that the state is not

separable (in particular not PQ = 2-4 separable) as the red axis is not
a symmetry axis, showing that ckQ+r = 0 for all r < r0 and all k is a
necessary condition in Corollary 1 (here, c4 = c4+0 �= 0) in the case
of c0 = 0. Applying Corollary 1 to examine PQ = 2-4 separability,
we find i0 = r0 = 1, k0 = 0. If we only checked for ck0Q+r0 ckQ+r =
ck0Q+rckQ+r0 for r = k = 1, i.e., c1c7 = c3c5, we would find that the
state is separable.

written in the form ckQ+r = mrckQ+r for r ∈ [r0 + 1, Q − 1]
and ckQ+r0 = 0 for r < r0.

These are exactly the ratios that are visible in dimensional
notations. The visual implications of this characterization of
separability can be seen throughout this paper. Figure 10
shows in DCN why ckQ+r0 = 0 for r < r0 for all k ∈ [k0 +
1, P − 1] is a necessary condition for separability. In Ap-
pendix D, Fig. 15, we show 4-4 separability in a four-qubit
system using this criterion.

FIG. 11. Single-qubit operations in circle notation [25]. The X
gate flips the coefficients of two states. The Z gate adds a +π phase
to the |1〉 state, flipping the sign of the coefficient. The Hadamard
gate splits a state into two, flipping the phase if starting at |1〉. All
these gates are self-adjoint, i.e., their own inverse.

VI. CONCLUSIONS AND FURTHER EXTENSIONS

The standard circle notation is already a useful tool for
introductory quantum computing courses, as the visualization
lowers the barrier to entry into a mathematically challenging
field. This is especially needed due to its interdisciplinarity
and the various different academical backgrounds of learn-
ers [50]. Dimensional notations have several advantages over
standard notations on a conceptual level. The dimensionality
could make the effect of measurements and unitary operations
in two- and three-qubit systems more intuitive due to a geo-
metric depiction of single qubits as parts of these systems.
As we showed in this paper, by introducing dimensionality,
one can visualize separability and entanglement due to the
ratio characterization (Corollary 1). This enables a new per-
spective on how entanglement is utilized in various quantum
algorithms and processes.

It is important to consider the conceptual limitations of
such explicit dimensional notations. First of all, larger than
six- to seven-qubit systems will be difficult to visualize due
to the exponential scaling of the number of basis states. An
important limitation of these notations is that they can not
completely replace mathematics for two reasons. First, exact
numerical amplitudes and phases are not visible, which, for
example, means that many separable states can only approx-
imately be identified as such. Second, if variables are not
displayed, one is restricted to specific examples. However,
specific examples are often enough and even needed to un-
derstand the general case by abstraction.

Following the discussed limitations, we are working on
developing an interactive web tool, which makes it possible
for everyone to visualize quantum operations in DCN. The
repositories for this project and a working beta version can be
found online [51].

We showed that 2-2n−1 separability is easily visualized in
dimensional notations, which is enough for all applications in
up to three-qubit systems and many applications beyond. In
addition, Corollary 1 can be used for, e.g., 4-4 separability
in four-qubit systems as is discussed and visualized in Ap-
pendix D. Furthermore, we show in Appendix E that we can
visualize quantum algorithms of up to at least five qubits as is
shown there for a four-qubit error detection and a five-qubit
error correction algorithm. For this, we modularize DCN,
arranging qubit systems in a variety of different ways to lay fo-
cus on specific entanglement properties and/or the geometry
of unitary operations. By doing so, we aim to enhance un-
derstanding of complex multiqubit algorithms and processes
as, for example, the five-qubit error correction algorithm that
utilizes a combination of quantum entanglement and classical
correlation.

Another possible extension is the visualization of qudit sys-
tems (qudits can be in d possible states instead of only two).
Gates and known algorithms in qudit systems are described
in Ref. [52]. Although qudits are not in the general focus of
quantum computing at the moment, it is possible that they
could be relevant sooner rather than later as there are some
recent advancements [53–55]. In this context, Corollary 1 can
be applied analogously to reveal entanglement properties of
such systems.

We conclude that dimensional notations can find educa-
tional use in introductory quantum computing and quantum
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technology courses as well as in contexts beyond education to
visualize the entanglement properties of multiqubit systems
complementary to the mathematical formalism. They provide
a new perspective on entanglement in multiqubit systems and
how it is utilized in various quantum algorithms and by doing
so, paired with the flexibility shown in Appendix E, could
enhance understanding of these algorithms in general.
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APPENDIX A: SINGLE-QUBIT OPERATIONS
IN CIRCLE NOTATION

To understand single-qubit operations in multiqubit sys-
tems in dimensional notations, it is enough to understand
these operations in single-qubit systems, which is one of
the main advantages of dimensional notations in comparison
to standard notations such as the circle notation. Figure 11
shows some important single-qubit operations in single-qubit
systems in circle notation.

APPENDIX B: SEPARABILITY CRITERIA
FOR PURE STATES

The following Lemma gives a necessary criterion for PQ
separability of any pure state [48,49]. We provide an alterna-
tive proof.

Qubit #1
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=

Quantum Circuit
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|10 |11

|00 |01

|10 |11

Qubit #1

Qubit #2

H1

|00 |01

|10|10 |11

Qubit #1

Qubit #2
|00 |01

|11

FIG. 12. Basic phase kickback, i.e., the relation CNOT12 = (H2 ⊗ H1)CNOT21(H2 ⊗ H1), shown with the initial state |ψ〉 = 1/
√

2(|00〉 −
|11〉). The change of basis into the Hadamard basis by applying Hadamard gates on all qubits makes the CNOT21 gate work like a CNOT12

gate. After application of the CNOT12 gate, the state changes from entangled to separable as indicated by the green and red axes.
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FIG. 13. The Deutsch algorithm to determine whether a function f : {0, 1} → {0, 1} is constant ( f = 0 or f = 1) or balanced ( f (x) = x
or f (x) = x ⊕ 1 where 1 ⊕ 1 = 0). The qubits are initialized to the state |10〉. After application of Hadamard gates on all qubits, the system
is in equal superposition with a phase shift on qubit #2. Then the oracle Uf defined by Uf : |x〉|y〉 → |x〉| f (x) ⊕ y〉 is applied. The two cases
where f is constant and the two cases where f is balanced only differ by a global phase, respectively. Therefore, only the cases f = 0 and
f (x) = x are shown. After application of a Hadamard gate on qubit #1, one can see that the operation Uf actually acted on qubit #1 due to
phase kickback. When measuring qubit #1, the result will be 0 when f was balanced and 1 when f was constant. At all points, the system
remains separable as shown by the green symmetry axes, showing that the Deutsch algorithm does not utilize entanglement and can, in fact,
be implemented classically as shown in Ref. [39] experimentally.

Lemma 2. Let |ψN 〉 = ∑N−1
i=0 ci|i〉 ∈ HN be a PQ-separable

pure state and let r0 ∈ [0, Q − 1], k0 ∈ [0, P − 1]. Then,
for all r ∈ [0, Q − 1] and k ∈ [0, P − 1]: ck0Q+r0 ckQ+r =
ck0Q+rckQ+r0 .

Proof. For examination of PQ separability, we write |ψ〉 as
a matrix with P rows and Q columns:

|ψ〉 =

⎡
⎢⎢⎢⎢⎢⎣

c0 c1 . . . cQ−1

cQ cQ+1 . . . c2Q−1

...
...

. . .
...

c(P−1)·Q c(P−1)·Q+1 . . . cP·Q−1

⎤
⎥⎥⎥⎥⎥⎦

(B1)

=:

⎡
⎢⎢⎣

γ0 0 . . . γ0 Q−1

...
. . .

...

γP−1 0 . . . γP−1 Q−1

⎤
⎥⎥⎦ (B2)

with γk r = ckQ+r (do not confuse with density matrix).
|ψ〉 is separable into |ψ〉 = (

∑P−1
i=0 αi|i〉) ⊗ (

∑Q−1
j=0 β j | j〉)

if and only if we can write it as

|ψ〉 =

⎡
⎢⎢⎢⎢⎢⎣

α0β0 α0β1 . . . α0βQ−1

α1β0 α1β1 . . . α1βQ−1

...
...

. . .
...

αP−1β0 αP−1β1 . . . αP−1βQ−1

⎤
⎥⎥⎥⎥⎥⎦

. (B3)

We notice that we can draw matching diagonals in the
matrix, i.e., γk0 r0γk r = γk0 rγk r0 for all k ∈ [0, P − 1] and

r ∈ [0, Q − 1], because αk0βr0αkβr = αk0βrαkβr0 . Now, with
αkβr = crQ+k , the statement follows. �

This means we have simple criteria for entanglement: for
example, a pure state |ψ〉 ∈ HN is entangled if, for any P and
Q with N = PQ, we find k ∈ [1, P − 1] and r ∈ [1, Q − 1]
such that c0ckQ+r �= crckQ. The following Theorem adds con-
ditions such that Lemma 1 is also sufficient [48]. We provide
an alternative proof.

Theorem 2. Let |ψN 〉 = ∑N−1
i=0 ci|i〉 be a pure state where

for some i0 = k0Q + r0 ∈ [0, N − 1], αi0 �= 0, and ∀i <

i0, αi = 0. Then, |ψ〉 is N = PQ separable if and only if
for all k ∈ [k0 + 1, P − 1] and r ∈ [0, Q − 1]: ck0Q+r0 ckQ+r =
ck0Q+rckQ+r0 .

Proof. “ ⇒ “: If |ψ〉 is separable, Lemma 1 says that the
above condition has to hold.

“ ⇐ “: |ψ〉 looks like this:

|ψ〉=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 0 . . . 0

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0

0 . . . 0 γk0 r0 . . . γk0 Q−1

γk0+1 0 . . . γk0+1 r0−1 γk0+1 r0 . . . γk0+1 Q−1

...
. . .

...
...

. . .
...

γP−1 0 . . . γP−1 r0−1 γP−1 r0 . . . γP−1 Q−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B4)

with γr0 k0 �= 0. Due to the condition ck0Q+r0 ckQ+r =
ck0Q+rckQ+r0 ⇔ γk0 r0γk r = γk0 rγk r0 , also for r < r0, |ψ〉
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FIG. 14. The last steps of the quantum teleportation process: Alice measures and sends the information to Bob who then applies
single-qubit gates according to the measurement result. The corresponding quantum circuit is displayed on the left. The system starts
in the fully entangled state 2|ψ〉 = (

√
2/3|0〉 + 1/

√
3e−iπ/4|1〉)|00〉 + (

√
2/3|0〉 + 1/

√
3e3iπ/4|1〉)|01〉 + (1/

√
3e−iπ/4|0〉 + √

2/3|1〉)|10〉 +
(1/

√
3e3iπ/4|0〉 + √

2/3|1〉)|11〉 also shown in Fig. 9. Alice measures qubit #1 and #2. (a) The measurement of qubit #1 and a red plane
showing that there is not symmetry along the axis of qubit #1, i.e., it is not separable from the system. (b) The measurement of qubit #2 and,
again, a red plane indicating the inseparability from the system. (c) The combined measurement of qubit #1 and #2. Because the sum of the
areas of the inner circles is the same for all of the four possibilities, the chance of measuring any of the four values is 25%. (d) The four
possible states of qubit #3 depending on the measurement outcome. Bob has to apply an X and/or a Z gate such that qubit #3 is in the previous
state of qubit #1.

can be written as

|ψ〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 0 . . . 0

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0

0 . . . 0 γk0 r0 . . . γk0 Q−1

0 . . . 0 γk0+1 r0 . . . γk0+1 Q−1

...
. . .

...
...

. . .
...

0 . . . 0 γP−1 r0 . . . γP−1 Q−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B5)

Also, γk0 r0γk r = γk0 rγk r0 is equivalent to (i) γk r = 0 and (a)
γk0 r = 0 or (b) γk r0 = 0 (or both) or (ii) γk r = mrγk r0 with
mr = γk0 r

γk0 r0
.

Let us discuss the case (i), γk r = 0 for specific k ∈ [k0 +
1, P − 1] and r ∈ [r0, Q − 1]. In the case of (a), γk0 r = 0,
due to γk0 r0γk r = γk0 rγk r0 for all k ∈ [k0 + 1, P − 1], γk r = 0
has to hold for all k ∈ [k0 + 1, P − 1], meaning the whole
column has to be 0. In this case, with mr = 0, γk r = mrγk r0

also holds. In the other case (b), γk r0 = 0, γk r = 0 has to
hold for all k ∈ [k0 + 1, P − 1], meaning the whole row has

to be 0. In this case, γk r = mrγkr0 still holds for all k ∈
[k0 + 1, P − 1] regardless of how mr is chosen, because in this
case γk r0 , γk r = 0. In summary, in all cases, |ψ〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 0 0 . . . 0

...
. . .

...
...

...
. . .

...

0 . . . 0 0 0 . . . 0

0 . . . 0 γk0 r0 mr0+1γk0 r0 . . . mQ−1γk0 r0

0 . . . 0 γk0+1 r0 mr0+1γk0+1 r0 . . . mQ−1γk0+1 r0

...
. . .

...
...

. . .
. . .

...

0 . . . 0 γP−1 r0 mr0+1γP−1 r0 . . . mQ−1γP−1 r0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B6)

Writing separable states in the form of Eq. (B6) is the central
idea of the ratio characterization that, as we show in this paper,
can be visualized in dimensional notations.
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|0010 |0011

|0111

|0101
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|1000

|1010

|1100

|1110

|1101Qubit #1

Qubit #2

Qubit #3

Qubit #4

|1111

|0000

|1011

|0110

|0100

m1

m1

m2

m2

m2

m2

m3/m2

m3/m2

m1

m1

|1001

m3/m2

m3/m2

FIG. 15. Examination the 4-4-separable state |ψ〉 = 1/3(|0000〉 − |0010〉 + e−iπ/2|0011〉 + |0100〉 − |0110〉 + e−iπ/2|0111〉 + |1100〉 −
|1110〉 + e−iπ/2|1111〉) = 1/3(|00〉 + |01〉 + |11〉) ⊗ (|00〉 − |10〉 + eiπ/2|11〉) in DCN with Corollary 1. We find 4-4 separability with m1 = 0,
m2 = −1 and m3/m2 = eiπ/2. Note that we can use m2 �= 0 to not need to look at the diagonal of m3. Also note that there is no symmetry plane
(as they would have to be applied to both cubes or between the cubes for separability of qubit #4), i.e., no single qubit can be separate from the
system (Corollary 4).

FIG. 16. Four-qubit quantum error detection code as demonstrated experimentally in Ref. [57], here in the case of a Hadamard error.
The system is initialized to the state |ψ〉 = 1/

√
2(|0〉 + |1〉) ⊗ |0〉 ⊗ 1/

√
2(|00〉 + |11〉) where qubit #1 and #2 are entangled and qubit #4 is

brought into the Hadamard basis |+〉 = 1/
√

2(|0〉 + |1〉) in order to detect a phase flip. First, an error ε1 is applied, in this case a Hadamard error
H1 corresponding to half of a bit flip and half a phase flip on qubit #1. Then, the bit flip error is encoded onto qubit #3 via the CNOT13CNOT23

operation, entangling qubit #3 with qubit #1 and #2. Afterwards, the operation CNOT41CNOT42 that can be seen as a 180◦ rotation of the cube
corresponding to qubit #4 being in the state 1 in the plane spanned by qubit #1 and #2, fully (phase) entangling the system. The Hadamard
gate then turns this phase entanglement into a magnitude entanglement in terms of qubit #3 and #4. In the end, qubit #4 will be found in the
state 1 if a phase flip has occurred while qubit #3 will be found in the state 1 when a bit flip has occurred. In this case of a Hadamard error, the
error detection algorithm will always find that there was some error, as qubit #3 and #4 are anticorrelated as can be seen in DCN.
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We now choose αk = 0 for all k < k0 and βr = 0 for
all r < r0, αk0 = γk0 r0 and βr0 = 1. Additionally, we choose
βr = mr for all r ∈ [r0 + 1, Q − 1] and αk = γk r0 for all k ∈
[k0 + 1, P − 1]. Then, |ψ〉 can be written in the same form as
Eq. (B3). �

Note that this means that Lemma 1 is also a sufficient
criterion if c0 �= 0. The following is another alternative for-
mulation of Theorem 1, requiring the terms where r < r0 all
to be 0.

Corollary 2. Let |ψN 〉 = ∑N−1
i=0 ci|i〉 be a pure state where

for some i0 = k0Q + r0 ∈ [0, N − 1], αi0 �= 0, and ∀i <

i0, αi = 0. Then, |ψ〉 is N = PQ separable if and only if for all
k ∈ [k0 + 1, P − 1] and r ∈ [r0 + 1, Q − 1]: ck0Q+r0 ckQ+r =
ck0Q+rckQ+r0 and for all r < r0, ckQ+r = 0.

Proof. Analogous to proof of Theorem 1 where one starts
with |ψ〉 in the form of Eq. (B5). �

Alternatively, Lemma 1 can be reformulated exchanging c0

with some nonzero ci0 to be sufficient.
Corollary 3. Let |ψN 〉 = ∑N−1

i=0 ci|i〉 be a pure state and let
i1 = k1Q + r1 ∈ [0, N − 1] with ci1 �= 0. Then, |ψ〉 is N =
PQ separable if and only if for all k ∈ [0, P − 1] and r ∈
[0, Q − 1]: ci1 ckQ+r = ck1Q+rckQ+r1 .

Proof. “⇒” is given by Lemma 1.
“⇐”: Let ci0 be the first nonzero coefficient of |ψ〉 (i0 �

i1). We can then write |ψ〉 as in Eq. (B5). Analogous to the
proof of Theorem 1, we can then write |ψ〉 in the form of
Eq. (B6). �

The following ratio characterization of separability is used
throughout this paper to visualize entanglement. It is part of
the proof of Theorem 1. The following can be used as a special
case of Corollary 1 to separate single qubits from systems
(after renumbering).

Corollary 4 (2-2n−1 separability). Let α, β, ci ∈ C. An
n-qubit state |ψ〉 = ∑2n−1

i=0 ci|i〉 is 2-2n−1 separable into

|ψ〉 = (α|0〉 + β|1〉) ⊗ ∑2n−1−1
i=0 c′

i|i〉 if and only if for all i ∈
{0, . . . , 2n−1 − 1} either ci = 0 or there exists ratios mi ∈ C
such that c2n−1+i = mici.

Proof. Analogous to proof of Theorem 1. �
In dimensional notations, Corollary 4 visually translates

to looking at this exact ratio condition along the axes of
one qubit to determine whether that qubit is separable from
the system. Other use cases of Corollary 1 are higher-
order cases of separability in larger than three-qubit systems.
We provide the example of visualizing 4-4 separability in
Appendix D.

APPENDIX C: MULTIQUBIT GATES AND ALGORITHMS
IN TWO-QUBIT SYSTEMS

Phase kickback is an inherently quantum concept and an
essential part of quantum computing. The main idea is that
by local basis transformation, operations with a control and
a target qubit are inverted such that the roles of control and
target qubit are swapped. This happens because the control

Qubit #1

|0 |1

Qubit #2

Qubit #3

|00

|01

|11

|10

=

Qubit #1

Qubit #2
|000

|010

Qubit #3

|011

|100

|110 |111

|101

|001

Qubit #1

Qubit #1

Qubit #2

Qubit #2

|000

|010

Qubit #3

Qubit #3

|011

|100

|110 |111

|101

|001

CNOT CNOT

Qubit #1

Qubit #2
|000

|010

Qubit #3

|011

|100

|110 |111

|101

|001

X  Error

X Error

X Error

No Error

|ψ?

|0

|0

Quantum Circuit

|110

|001

FIG. 17. The initial step of error correcting the (arbitrary) state |ψ〉1 = √
2/

√
3|0〉 + 1/

√
3e−iπ/4|1〉 using four additional qubits. First,

qubit #1 is entangled with qubit #2 and #3 in a GHZ-similar state |ψ〉 = √
2/

√
3|000〉 + 1/

√
3e−iπ/4|111〉 with two CNOT gates. The system

is fully entangled as can be seen by the lack of symmetry indicated by the red planes. Then, a bit flip error is applied. Here, three possible
bit flip errors are shown (lilac = bit flip error on qubit #1, orange = bit flip error on qubit #2, and green = bit flip error on qubit #3) as well
as the case of no bit flip errors in gray-blue. We assume that only one bit flip error occurs at the same time. The bit flip errors do not change
entanglement properties of the system.
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qubit inherits the phase of the target qubit while the target
qubit is unchanged. This has applications in, e.g., so-called or-
acle functions that are part of many quantum algorithms—the
controlled gates are applied to a set of auxiliary qubits in the
Hadamard basis, such that the logical qubits are changed [56].

Figure 12 shows the most basic example of a phase kickback
and Fig. 13 shows a use case of this: the Deutsch algorithm.

Figure 14 shows the last step of the quantum telepor-
tation algorithm. The system is fully entangled before the
measurement.

Qubit #1

Qubit #2

Qubit #3

Qubit #4

Qubit #5

Introduce Ancilla Qubits #4 and #5, "flatten out" cube 

|00000

Qubits #3,#2 and #1 written as |#3#2#1

Anzilla Qubit #4

Anzilla Qubit #5
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|000 |001 |010 |011 |100 |101 |110 |111

|10001
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|01000

|11000 |11001
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|00010

|10010 |10011
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|01010

|11010 |11011
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|00100
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|00101

|01100

|11100 |11101
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|01110

|11110 |11111

|01111

Transfer Syndrome: CNOT35CNOT34CNOT15CNOT24
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Anzilla Qubit #5
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|10001
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|01000

|11000 |11001

|01001

|00010

|10010 |10011

|00011
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|11010 |11011
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|01100
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|00110
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|110 |111
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Quantum Circuit

|ψ
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|0

FIG. 18. The transfer syndrome step of error correcting the state |ψ〉1 = √
2/

√
3|0〉 + 1/

√
3e−iπ/4|1〉 using four additional qubits visual-

ized in modular DCN. We start in the final state |ψ〉 of Fig. 17, flatten out the cube to standard circle notation and introduce the anzilla qubits
#4 and #5, arranging the system in modular DCN. The CNOT24 and CNOT34 gates encode an X2 error onto anzilla qubit #4 and the CNOT35

and CNOT15 gates encode an X1 error onto anzilla qubit #5 while an interesting and desirable byproduct of these operations is that an X3 error
is encoded on both anzilla qubits.
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APPENDIX D: VISUALIZING 4-4 SEPARABILITY
IN FOUR-QUBIT SYSTEMS

Let |ψ〉 = ∑15
i=0 ci|i〉 be a pure four-qubit state. 2-8 sep-

arability is easily examined in this system using Corollary
4, which states that we can apply two planes to the two
hypercubes or a plane between the hypercubes and look for
a ratio along these planes in order to examine separability
characteristics. To examine 4-4 separability, we write |ψ〉 as

|ψ〉 =

⎡
⎢⎢⎢⎣

c0000 c0001 c0010 c0011

c0100 c0101 c0110 c0111

c1000 c1001 c1010 c1011

c1100 c1101 c1110 c1111

⎤
⎥⎥⎥⎦. (D1)

Let c0000 �= 0. Then, Corollary 1 states that |ψ〉 is 4-4
separable if and only if it can be written as

|ψ〉 =

⎡
⎢⎢⎢⎣

c0000 m1c0000 m2c0000 m3c0000

c0100 m1c0100 m2c0100 m3c0100

c1000 m1c1000 m2c1000 m3c1000

c1100 m1c1100 m2c1100 m3c1100

⎤
⎥⎥⎥⎦. (D2)

This is visualized in Fig. 15. If c0000 = 0, then cxy00 = 0 has
to hold for the state to be separable (similarly in the case of
c0001 = 0: cxy01 = 0, see the condition in Corollary 2). Then,
we only need to account for two ratios, e.g., going down and
going left in both cubes.

In principle, it is possible to go beyond 4-4 separability, to
4-8 separability in five-qubit systems (for this, do the same
thing as in Fig. 15 in two cubes) or even 8-8 separability in
six-qubit systems (in this case, one would need to account for
seven different ratios and each in seven different directions).
These very complex entanglement properties are less and less
easily spotted, but the process remains the same.

APPENDIX E: MODULAR DCN IN FOUR- AND
FIVE-QUBIT SYSTEMS

In this section, we give examples on how to represent qubit
ensembles of four and five qubits in various ways. There are
multiple ways to represent four-qubit systems (systems with
16 basis states) in three-dimensional space (and, on paper,
then in two dimensions). One natural possibility is a projec-
tion of a four-dimensional hypercube into three dimensions.

FIG. 19. The last step of error correcting the state |ψ〉1 = √
2/

√
3|0〉 + 1/

√
3e−iπ/4|1〉 visualized in modular DCN. We start by transform-

ing the depiction of the last state |ψ〉 in Fig. 18 to a four-cube system where the cubes are represented in space depending on anzilla qubit #4
and #5. Here, we can see that the three different kinds of bit flip errors correspond to three different configurations of anzilla qubits #4 and
#5. Now, CNOT gates are applied to correct these errors. The subsystem of qubit #1, #2, and #3 is classically correlated with the subsystem of
qubit #4 and #5, but interestingly, they are not entangled even after application of the CNOT gates (Fig. 18). Now, the CNOT51 gate corrects
the X1 error, the CNOT42 gate corrects the X2 error and the CCNOT453 gate corrects the X3 error. Lastly, the CCNOT452 and CCNOT451 gates
are needed to counteract the unwanted effects of the first two CNOT gates in the case of an X3 error. Qubit #4 and #5 are still not entangled
with the system. However, the entanglement between qubits #1, #2, and #3 is preserved. Now we can see that in all four cases, qubit #1 is in
the desired state |ψ〉1. Qubit #4 and #5 can now be measured to see whether a bit flip error has occurred and which one.
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This retains the geometric depiction of entanglement that is
presented in this paper. For the ratio characterization of sep-
arability, eight pairs of coefficients have to be compared for
each qubit in order to check for separability of that qubit from
the system.

In quantum settings, decoherence is a common factor to
consider. Quantum error correction can counteract the effects
of decoherence. Classical error correction is often thought
of in terms of hypercubes [26–28]. In fact, similar ideas
exist for quantum error correction as seen in hypercubes or
hypercubelike lattices [30,32]. Therefore, it makes sense to
apply DCN to quantum error detection and correction. Here,
we show the four-qubit error detection code demonstrated
experimentally in Ref. [57] in Fig. 16 in a hypercube. Note
that for a code to also correct the detected error, it needs five
qubits to function [58]. This five-qubit algorithm functions
by entangling three qubits into a GHZ state, and then uses
two anzilla qubits to correct the error. Interestingly, it can
be seen in modular DCN that this algorithm does not utilize
quantum entanglement between the two subsystems qubit #1,
#2, and #3 and the anzilla qubits qubit #4 and #5. Because

the state of the system of the first three qubits depends on
which error occurred, which qubit #4 and #5 depend on,
it can be seen as a classical correlation between the two
subsystems.

Another possibility is to represent the system using a mix-
ture of circle notation and DCN that we call modular DCN.
We can have two or more qubits on every axis and assign
only specific qubits to their own axis. We can then check,
again via ratio characterization, separability from the system
of the qubits that have their own axis. The five-qubit error
correction code that is shown in, e.g., Ref. [59] is visualized
in Fig. 17 (simple three-qubit encoding process and three
possible single-qubit flip errors), Fig. 18 (transfer syndrome
and error correction in modular 2×2×8 DCN), and Fig. 19
(the last step of error correction in a four-cube system). DCN
is flexible as we can arrange qubit ensembles in modular
DCN in a variety of different ways to lay focus on specific
multipartite entanglement properties and/or in a way such
that the visualized unitary operations remain geometrically
intuitive with the aim of enhancing understanding of complex
multiqubit algorithms.
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