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Abstract

Problem specifications for classical planners based on a STRIPS-like representation
typically consist of an initial situation and a partially defined goal state. Hierarchical
planning approaches, e.g., Hierarchical Task Network (HTN) Planning, have not only
richer representations for actions but also for the representation of planning problems.
The latter are defined by giving an initial state and an initial task network in which the
goals can be ordered with respect to each other. However, studies with a specification
of the domain of process planning for the plan-space planner CAPLAN (an extension of
SNLP) have shown that even without hierarchical domain representation typical proper-
ties called goal orderings can be identified in this domain that allow more efficient and
correct case retrieval strategies for the case-based planner CAPLAN/CBC.

Motivated by that, this report describes an extension of the classical problem spec-
ifications for plan-space planners like SNLP and descendants. These extended problem
specifications allow to define a partial order on the planning goals which can interpreted
as an order in which the solution plan should achieve the goals. These goal ordering
can theoretically and empirically be shown to improve planning performance not only
for case-based but also for generative planning. As a second but different way we show
how goal orderings can be used to address the control problem of partial order planners.
These improvements can be best understood with a refinement of Barrett’s and Weld’s
extended taxonomy of subgoal collections.
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1 Introduction

Problem specifications for planners traditionally consist of an initial situation and the goals
that have to be achieved. Classical planners as well as newer ones with STRIPS-like (Fikes
and Nilsson, 1971) representation of situations and actions in most cases use this way to
describe planning problems.

Hierarchical planning approaches, in particular, Hierarchical Task Network (HTN) (Erol,
1995; Erol et al., 1996) use extended representations for domains, problems, and plans.!
The effect of this can be summarized by the fact that the HTN language is strictly more
expressive than the STRIPS language (Erol et al., 1994): the domain writer has strictly
more possibilities to represent elements of a planning domain and he can code more knowledge
about domains and problems. HTN planning starts with a problem specification consisting of
an initial state and an initial task network (instead of unordered goals). The initial HTN, that
can be compared with the initial plan in partial-order planning, captures more information
than the initial situation and the goals. In the initial HTN the goals of the problem are
represented as so-called complexr tasks and these tasks can be ordered with respect to each
other. The initial task network then is refined gradually by the planner. Operators in the
HTN approach refine complex tasks into more primitive ones. Primitive tasks are comparable
to actions in partial-order planning. The solution to an HTN planning problem is a refinement
of the initial task network in which we have only primitive tasks. This solution will achieve
the goals in accordance with the ordering of the complex tasks in the initial task network.

Motivated by this possibility to represent additional knowledge about a planning problem
and its solutions we describe a similar extension for the non-hierarchical planning algorithm
SNLP (McAllester and Rosenblitt, 1991) which is implemented in the system CAPLAN (We-
berskirch, 1995). The basic idea is to extend the standard problem specifications consisting
of the initial situation and the goals by adding information about the order in which goals
have to be achieved in a solution plan. The orderings, called goal orderings, are thought
as additional knowledge that should help the planning system to find a solution. One in-
terpretation of goal orderings is the same as in HTN planning when two initial tasks are
ordered with respect to each other. This allows to take profit from ordering information for a
certain problem without having to do planning with an hierarchical planner which also needs
a hierarchical domain specification. Goal orderings may come from different sources: similar
to the HTN approach, the user that formulates planning problems can give this additional
knowledge or domain-dependent or domain-independent mechanisms may compute such goal
orderings based on a problem specification.

Previous work in the area of case-based planning has shown that it is an important enhance-
ment if there is additional information about goal orderings. In CAPLAN/CBC such goal
orderings lead to significantly improved indexing and retrieval mechanisms for the case base
(Munioz-Avila and Weberskirch, 1996a; Mufioz-Avila, 1998). This work also demonstrates
that in the domain of process planning we can identify such goal orderings based on geomet-
rical analysis. The resulting goal orderings will apply to all solutions of the problem. More
generally, in domains where the subgoals of a problem typically have a lot of interactions,
these goal orderings have shown more accurate ways to handle the problem of case retrieval.

There is another aspect that is concerned by this report. Controlling a partial-order planner
is a big challenge in generative planning even after all these years of research. SNLP does not

'Older HTN-like planners like SIPE (Wilkins, 1988) or O-Plan (Currie and Tate, 1991) also offer such
extended representational possibilities but typical concepts of HTN planning and their relation to partial-
order planning is formalized less clear there.
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say anything about a good control strategy (i.e., goal selection and operator selection) for a
plan-space planner, but there has been a lot of work in that area and several control strategies
have been developed that show good performance in many situations. A good overview and
comparison can be found in (Pollack et al., 1997). Most popular ones are DSep (Peot and
Smith, 1993), LCFR (Joslin and Pollack, 1994), ZLIFO (Gerevini and Schubert, 1996) which
are also available for CAPLAN in form of control plug-ins called control components.

With respect to goal orderings three important questions come up now:

1. Can a generative planner take profit from goal orderings similar to the case-based
planner CAPLAN/CBC?

2. How can such a goal ordering < be used to make the planner work more efficiently in
term of the size of the search space? Can we define a control strategy based on <g?

3. Where does <g come from? How can goal orderings be computed automatically?

In this report, we will concentrate on giving an answer to the first two questions.? In fact, not
only case-based planning but also generative planning can be improved significantly using
the additional knowledge about goal orderings. The planner CAPLAN on which the case-
based planning system CAPLAN/CBC is based implements mechanisms for defining extended
problem specifications and for improving generative planning performance. The improvement
is achieved by two different starting-points: goal orderings are translated into ordering con-
straints between plan steps, and they are used to define a goal selection strategy for the plan-
ner. The work reported here is fully implemented in the CAPLAN system and is available from
the author or the CAPLAN homepage at http://wwwagr.informatik.uni-k1.de/"caplan.

The next pages are organized as follows: Section 2 summarizes all notations and concepts that
are important for describing the improvements of the SNLP-like planner CAPLAN. Section 3
defines the key extension of problem specifications by goal orderings. Section 4 shows why
planning can be expected to be more efficient and how this can be implemented based on an
SNLP-like planning algorithm. Section 5 empirically proves the gain of efficiency in various
domains. Finally, some conclusions about this work and future work are made.

2 Notations

This section is intended to give an overview of notations and concepts that are important for
the following sections. CAPLAN is an SNLP-like planner that implements these concepts.
We will give a short review of the representation of domains, planning problems and plans.

2.1 Representation of Planning Domains

CAPLAN uses a STRIPS-like (Fikes and Nilsson, 1971) representation for planning domains.
Domains typically consist of specifications of types, predicates and operators.

Predicates and types define the main language elements that can be used in the definition
of atomic operations and situations in the world. Predicates define the possible sentences
for the definition of preconditions, effects and situations. Only sets of literals (positive or
negative atomic sentences) are allowed in these definitions. The explicit representation of

2The third question will be tackled in near future in some other report or paper.
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types are one of the major differences between SNLP and CAPLAN (Weberskirch, 1995;
Weberskirch and Mufioz-Avila, 1997). Types can be organized in hierarchies with single or
multiple inheritance. The current version of CAPLAN (v2.15) allows types to occur in three
places:

e they are used in operator specifications in form of type constraints,

e all predicates allow to specify a type for each argument (argument types), which is
interpreted as an implicit type constraint wherever the predicate is used,® and

o all objects of problems and situations are declared to be instances of a certain type.

Operator specifications contain all typical information for STRIPS-like planning, e.g., pre-
conditions and effects. Preconditions and effects are positive or negative literals. These
specifications are used to instantiate plan steps each of which represents an action that can
be executed in the world. Other details have been described earlier in (Weberskirch, 1995).

2.2 Standard Problem Specifications

Problem specifications for planners based on the STRIPS paradigm traditionally consist of
a description of the initial situation in the world and of the planning goals, i.e., a partial
description of the goal situation.

Definition 1 (Problem Specification) A problem specification (I,G) consists of a speci-
fication of the initial state I and of the planning goals G.

As stated in Section 2.1, I and G both are sets of literals. Because of the Closed-World
Assumption I typically contains only positive literals.

The goal of a planning process is to find a solution plan for a planning problem. This is a
sequence of actions meeting the following condition:

Definition 2 (Solution) A solution to a planning problem (I,G) is a (totally ordered)
sequence of actions (plan steps), which when executed from the initial state I, results in a
world state in which all goals G are satisfied.

Different classical planning paradigms can be characterized by the means and representations
to find solutions for a planning problem, e.g., the requirements and properties of the plan
representation (see (Kambhampati et al., 1995; Srivastava and Kambhampati, 1998)).

2.3 Plan Representation

CAPLAN is a partial-order planner that is based on the SNLP algorithm (McAllester and
Rosenblitt, 1991; Barrett and Weld, 1994). It searches in the space of plans to find a solution
plan for a given problem. An introduction to these ideas can also be found in (Weld, 1994).

3This is an extension with respect to the version reported in (Weberskirch and Mufioz-Avila, 1997). Tt can
be understood as a way to simplify the definition of domains with type constraints in operators specifications
because less type constraints have to be defined explicitly.
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2.3.1 Partial Plan and Initial Plan

Plans are the basic structure on which plan-space planners work. They represent sequences
of actions in the planning world. Actions are called plan steps, sequences of actions are plans.

Definition 3 (Partial Plan) A partial plan (S,0, B) consists of a set S of plan steps, a
set O of ordering constraints between plan steps, and a set B of variable binding constraints
over variables occurring in plans steps.

The transitive closure over the set of ordering constraints O induces a partial order <o on the
plan steps. This implies transitivity and irreflexivity of <. Binding constraints occur during
planning as new operator might add new variables. CAPLAN uses codesignation constraints
(Chapman, 1987) and type constraints (Weberskirch, 1995; Weberskirch and Munoz-Avila,
1997) to restrict the set of consistent bindings of such variables. It does not depend on ground
instances of operators.

In partial-order planners that are based on the principle of refining partial plans (Kamb-
hampati et al., 1995), a problem (I, Q) is represented as a so-called initial plan or null plan
(Weld, 1994). It consists of two plan steps, sp and se. So precedes all other plan steps, has
no preconditions and its effects are the elements of the initial situation I, sy, is preceded by
all other operators, has no effects and its preconditions are the planning goals G.

2.3.2 Plan Consistency

For the definition and implementation of the basic planning algorithm, the notion of plan
consistency is important as CAPLAN always refines a consistent plan into another consistent
plan using the typical plan modification operators of SNLP (Kambhampati et al., 1995):
simple establishment, step addition, and threat resolutions operators. It backtracks chrono-
logically if the plan is not a solution and no consistent refinement (i.e., a refinement that
leads to a consistent plan) can be found.

Definition 4 (Plan Consistency) A partial plan (S, O, B) is said to be consistent if the
following conditions hold:

o Ordering consistency: sg is the first, so is the last step, irreflexivity holds, and the
orderings must not contain cycles, i.e.,
-Vs€S i85 <08Ns=<0 S0 N(s<058) and
-Vs,te S,s#t:if s <ot thent <p s cannot be true.

e Binding consistency: The set of binding constraints B is consistent.*

Consistency is tested each time a plan refinement operator has been applied and only con-
sistent plans are considered for further refinement.

2.3.3 Solution Plan

The goal of the planning process is to find a solution plan, i.e., a plan satisfying the solution
criterion (Definition 2). The planning process starts with the initial plan which is to be
refined until a solution is found. SNLP defines two conditions for a solution plan:

“The problem of deciding whether a set of binding constraints B is consistent is not examined here in more
detail. The rest of this reports assumes the existence of a mechanism to test constraint consistency.
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Definition 5 (SNLP Solution) A plan (S, O, B) is considered to be a solution to a plan-
ning problem prb = (I,G) by SNLP if it is consistent and complete. solutions(prbd) denotes
the set of all solutions obtained by SNLP for the problem prb.

The required completeness of plans is defined such that a partial plan (S,0, B) is said
to be complete (McAllester and Rosenblitt, 1991) for a planning problem (I, G) if every
topological sort of it is a solution to (I, G) as given by Definition 2. For the implementation
of this completeness criterion the structure of a partial plan is extended by some bookkeeping
to make it become operational. SNLP uses the concept of causal links to represent causal
dependencies between plan steps. Interactions between plan steps are called threats (see
(McAllester and Rosenblitt, 1991)).

Throughout the following pages we will use the following notation:

e s; — pQ@s; denotes a causal link between steps s; and s; to establish p@s; (precondition
p of step s;). It implies the ordering s; <o s; and s; is called the establisher of pQs;
(short: establisher(p@Qs;) = s;). If no causal link exists for a precondition p, it is called
an open goal. Initially, the preconditions of s, are open goals.

o A threat between a plan step s; and a causal link is denoted as s; <*(s; = p@s;).

Now we can give an operational definition of a complete plan that is implemented in the
SNLP planning algorithm:

Definition 6 (Complete Plan) A partial plan (S, O, B) is said to be complete for a plan-
ning problem (I,G) if for every precondition p of a plan step s, there exists a causal link
s’ — pQ@s and all threats to such causal links are resolved.

This also gives an operational criterion for SNLP to find a solution plan which is implemented
in the SNLP algorithm and descendants like CAPLAN: the algorithms tries to create a
causal link for every precondition of a plan step. (McAllester and Rosenblitt, 1991; Barrett
and Weld, 1994) described the base algorithm, (Kambhampati et al., 1995; Kambhampati
et al., 1998) presented a kind of abstraction unifying partial-order, state-space and HTN plan
refinements in one algorithm.

3 Extending Standard Problem Specifications

After the last section summarized notations and concepts used in partial-order planning based
on SNLP, this section now will describe one extension of these concepts that is implemented
in the planner CAPLAN. CAPLAN allows what we call extended problem specifications,
i.e., problem specifications that contain some more information than the standard problem
specifications of traditional planners with STRIPS-like specification languages.

Extended problem specifications have already been mentioned earlier (Weberskirch, 1995;
Munoz-Avila and Hillen, 1995; Mufioz-Avila and Weberskirch, 1996a). In the case-based
planning system CAPLAN/CBC, which is based on the planner CAPLAN, this extension
plays a key role for being able to build an indexing structure for a case base that allows a
more accurate and efficient retrieval of cases. Here we will especially focus on the advantages
of extended problem specifications for pure generative planning with CAPLAN.

5Tf it is necessary to refer to elements of additional bookkeeping we will use the notation (S, 0, B, L) for a
plan (SNLP plan). It extends a normal plan by a set L of causal links. However, in most cases we will simply
write (S, O, B) if we speak about plans but as far as CAPLAN is concerned we always mean SNLP plans.
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3.1 Extended Problem Specifications

Section 2.2 defined the standard way of specifying a planning problem in planning that is
based on the STRIPS formalism. The only information that is given besides an specification
of the planning domain (see Section 2.1) is an initial situation of the world and a set of goals
that have to be achieved. CAPLAN extends this by allowing to specify orderings between
planning goals, called goal orderings.

Definition 7 (Extended Problem Specification) Given a problem (I,G) then the triple
(I,G,<g) is called an extended problem description. <q is a set of ordering constraints
between goals from G, called goal orderings, and they induce a (partial) order on the set of
planning goals G. If goals g;,g; are ordered, we write g; < gj.G

This definition declares the basic syntax of extended problem specifications as used by CA-
PLAN. Now we have to define the semantics. The additional goal orderings are thought as
extra information that should help to find a solution more quickly (if < # (). If we consider
the typical differences between plan-space and state-space planning there are two possible
interpretations of goal orderings that have not been distinguished explicitly in literature until
now. Goal orderings can be interpreted as an order

e in which goals are achieved in any plan that is considered to be a solution, or

o in which the planner should process goals during a planning episode.

In this and the next section we will concentrate on the first one, which leads to the so-called
ordered establisher condition that is implemented in CAPLAN. This idea has also been
subject of previous planning research. For example, (Irani and Cheng, 1987; Cheng and Irani,
1989) already developed a definition of subgoal ordering constraints that is motivated by the
first interpretation. The second interpretation addresses the control problem of partial-order
planning can also be found in literature, for example (Korf, 1987; Drummond and Currie,
1989; Barrett and Weld, 1994). We will investigate it later.

3.1.1 The Ordered Establisher Condition

A basic idea is that the existence of goal orderings has effects on the notion of consistency
of a plan for CAPLAN (not for SNLP). Goal orderings put additional constraints on a plan
with respect to the ordering of establishers of goals occurring in goal orderings (called ordered
goals). The following definition makes these additional constraints concrete as they lead to
a more restricted notion of plan consistency.

Definition 8 (Plan Consistency modulo <) Given a problem (I,G,<¢g), a partial plan
(S,0, B) is said to be consistent modulo < if the following conditions hold:

e (S,0,B) is a consistent plan as given by Definition 4

5Throughout the report we treat < as an transitive, irreflexive, binary relation and use it as follows: (1) if
we write (g;, g;) €< then we mean the explicit ordering relation between two goals; (2) g; <¢ g; says that the
two goals are ordered; (3) <g is transitive, i.e., if we define a certain ordering as <g¢= {91 <a 92, 92 <c g3}
also g1 <¢ g3 holds.
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e Ordered establisher condition: The establishers of ordered goals are ordered in the
same way as the goals, i.e., Vg;,9; € G : g; <g g; = establisher(g;) <o establisher(g;)

Figure 1 illustrates the important second condition of this definition. If there are two goals
g1, 9o for which a goal ordering g1 < g2 is specified, the ordered establisher condition says
that the plan steps that establish these two goals, s; and so, must be ordered in the same
way, s1 <o s2- This means that the ordering between goals is translated into an ordering
between plan steps. A simple consequence is that consistency modulo <¢ is more restrictive
than normal consistency.

% o
Problem: . established by,

(1, {9192}, {91 <G 92}) —>

Figure 1: Additional Ordering Constraints because of Goal Orderings

As SNLP allows to identify the unique establisher for each goal in a certain solution plan
(completeness of solutions, Definition 5 and 6), we can identify the set of ordering restrictions
between plan steps which is induced by a goal ordering by the ordered establisher condition.

Definition 9 (Establisher Ordering) Given a problem (I,G,<g) and a solution plan
P = (S,0,B) that is consistent modulo <g. Then the establisher ordering induced
by <g, estabOrd(<qg,P) C<0, is defined as the unique set of plan step orderings that are
induced for <g in P by the ordered establisher condition:

Vgi,9; € G : gi <g g; = (establisher(g;), establisher(g;)) € estabOrd(<q, P)

Having these definitions we can state the consequences of goal orderings with an extended
solution criterion as it is used in CAPLAN:

Definition 10 (Solution modulo <g) Given a problem prb = (I,G,<g), then a plan
(S,0,B) is considered to be a solution modulo <g if it is consistent modulo <g and
complete. The notation solutionsc apian(prd) is used for the set of all solutions modulo <g
for a problem prb.

The difference between SNLP and CAPLAN with respect to extended problem specifications
is now clear: CAPLAN only considers a plan to be a solution if it doesn’t violate any of the
additional ordering constraints imposed by the given goal orderings.

A new class of plans. In terms of (Kambhampati et al., 1996) that will also be referred
to in other sections, the definition of plan consistency modulo < formalizes a new class of
plans. Kambhampati categorizes the plans produced by SNLP to be elastic protected plans
because key properties of plans created by SNLP are the partial order on plan steps, the
fact that causal dependencies are recorded by causal links (alias IPCs) and protected against
interacting steps.

The solution criterion of CAPLAN when using the ordered establisher condition (Defini-
tion 10) describes a new subclass of plans, the class of elastic protected <:-consistent
plans, which the planner CAPLAN is capable to create using goal orderings.
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3.1.2 Comparison with Initial HTNs

The introduction motivated goal orderings and extended problem specifications by drawing
comparisons with HTN planning where we have an initial task network being part of a
problem specification (input task network, see (Erol, 1995)). Tasks in an initial task network
are equivalent to goals of a standard problem specification as used in CAPLAN. As goals
are not represented in partially ordered plans in a similar way as tasks in HTNs they are
mapped to plan steps by the definition of plan consistency modulo <g. Here we want to
explain the differences between ordered tasks in a an input task network and ordered goals
in an extended problem specification (I, G, <) in more detail.

(a) initial task network (b) goal orderings
establisher(G1)

TR ?

<E5 oo o

Figure 2: Difference between HTN planning and goal orderings of CAPLAN

Figure 2.(a) shows an initial task network for a problem with two tasks 77,75, where T7 is or-
dered before T5. This is comparable to the initial knowledge that a goal G; must be achieved
before a goal Go for the non-hierarchical planner CAPLAN (Figure 2.(b)). But there is a
difference: an ordering between two tasks 77, 7% forces all steps in further decompositions of
T to be ordered before all steps of decompositions of Ty. A goal ordering G; <g G2 of CA-
PLAN is less restrictive because it only forces the establishers of the two goals to be ordered,
but it doesn’t say anything about the ordering of other steps that result from establishing
preconditions of those establishers. These steps might for example still be interleaved.

3.2 Types of Goal Orderings

The definitions of plan consistency modulo <g states the effect of goal orderings on plan
consistency for CAPLAN, but it does not say anything about which goal orderings are to
be given for certain problem (I, G) or which types of them exist. It only says that, if goal
orderings are given, the ordered establisher condition will affect what is considered to be a
valid solution. Here we will look at different types of goal orderings in more detail.

3.2.1 Necessary and Possible Goal Orderings

With respect to the ordered establisher condition of Section 3.1.1 we distinguish between
orderings that do not exclude solutions from the search space (called necessary goal orderings
because they are true in all solutions) and orderings that have effects on the set of possible
solutions that can be found by the planner (we call them possible goal orderings, because
they are not valid for all solutions).

Definition 11 (Necessary Goal Orderings) Given a problem (I,G), then a set of goal
orderings <q 1is called a necessary goal ordering, written as necessary((I,G),<qg), if it
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search space
and three solutions

Figure 3: Effective search space for different types of goal orderings: (a) necessary goal
orderings, (b) possible ordering w.r.t. P;, (c¢) impossible goal orderings

satisfies the condition
solutionscapian((I, G, <g)) = solutions((I,G)).

Definition 12 (Possible Goal Orderings) Given a problem (I,G) and a solution plan
P, then a set of goal orderings <g s called a possible goal ordering w.r.t. P, written as
possible((I,G), P,<q), if it satisfies the condition

P € solutionscapian((I,G,<g)) C solutions((I, Q)).

Definition 13 (Impossible Goal Orderings) Given a problem (I,G), then a set of goal
orderings < is called impossible goal ordering, written as impossible((I,G),<g), if it
satisfies the condition

solutionscapian((I, G, <g)) = 0 # solutions((I,R))

These definitions allow to categorize a goal ordering < that is given by (I,G,<g): it is
either a necessary, a possible or an impossible ordering. Figure 3 illustrates this by showing
the characteristic difference of the search space:”

o Necessary orderings: These orderings naturally follow from each solution plan that
can be found by SNLP for (I,G), i.e., there exists no solution plan that violates the
ordering restrictions (Figure 3.(a)). So, the set of solutions doesn’t change when using
the necessary orderings, but the search space can be expected to get smaller.

e Possible orderings: Possible orderings define a certain preference to be used in search-
ing for a solution plan. We can call them useful for finding at least that particular so-
lution (Figure 3.(b)) as they reduce the search space to a part that at least will contain
that solution. Such orderings typically will be given by a user.

e Impossible orderings: If a preference is too restrictive the set of solutions for CA-
PLAN becomes empty (Figure 3.(c)). Such orderings can be characterized to induce
establisher orderings that are inconsistent with the plan step orderings of any solution.

For CAPLAN the distinction between these types of goal orderings is not important from an
implementation point of view. They are treated in the same way as given by Definition 8.

"Figure 3 shows the search space for a problem with three solutions P, P2, Ps as a triangle and how it
can be reduced with goal orderings. The path from Py, the initial plan, to a P; is indicated by a line and
represents the process of refining partial plans until the solution is found.
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Nevertheless, the distinction helps to understand the effects of using them. It makes no sense
for CAPLAN to use impossible orderings for planning as defined by the ordered establisher
condition;in practice, CAPLAN allows to recognize a special case of impossible orderings,
i.e., sets of goal orderings containing cycles, and does not start planning at all in that case.
Below we will however show, that impossible orderings as defined above also might be useful
for other purposes than the ordered establisher condition. We will speak about possible
orderings mainly in case these orderings reduce the set of possible solution plans, but still
are not impossible orderings.

3.2.2 Extracting Goal Orderings A-Posteriori

Until now we only have a definition of what is considered to be a necessary or possible goal
ordering but not at least a theoretical way to compute them.

Imagine the following steps to extract goal orderings a-posteriori for a problem (I, G):

1. Let the planner find an SNLP solution P € solutions((I,G)) for the problem (I,G),
i.e., without using any goal orderings.

2. Extract the goal orderings a-posteriori from the obtained solution P = (S, 0, B), i.e.,
look for ordering relations between establishers of top-level goals g;@sq, in plan P (an
algorithm is specified in Figure 4).

extractOrderings((S,0,B), (I,G))

orderings:={}
for each g1 € G do
for each go € G—{g:1} do
if establisher(gi1) <o establisher(gz) then
orderings:=orderings U {g1 <g g2}
endif

done

done
return orderings

Figure 4: Algorithm for the extraction of goal orderings. Notice, that <o is the order on the
plan steps S induced by O.

The algorithm extractOrderings computes the maximal set of possible goal orderings to
obtain a certain solution plan P. It infers goal orderings from the plan step orderings found
in a solution. This is the maximal amount of information that can be provided with goal
orderings for a problem. In general, these orderings are only possible orderings because there
can exist different solutions from which different sets of goal orderings can be extracted. But
each set of orderings is maximal w.r.t. the plan they were extracted from.

Definition 14 (Maximal Possible Orderings) Given a problem (I,G), then a goal or-
dering <q 1is called the mazimal set of possible goal orderings w.r.t. a solution P = (S, 0, B),
written as <g= maxPossible((I,G),P), if the following condition is satisfied:

Vgi,g; € G : establisher(g;) <o establisher(g;) = g; <a g;

Notice, that mazPossible((I,G), P) always contains all orderings of the transitive closure
because it is based on the order <o between plan steps. Notice further the difference to the
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(a) Solution plan P (b) Solution plan P’

Figure 5: Maximal possible orderings w.r.t. different solutions P, P’ for a problem (I, G), each
goal g; is established by the corresponding plan step s; or si. (a) mazPossible((I,G),P) =
{1 <@ g2}, (b) mazPossible((I,G),P") ={g1 <g 92,91 <¢ g3 D mazPossible((I,G), P)}

ordered establisher condition (Definition 8), which forces orderings in a <g-consistent plan
because of goal orderings. Here we have the opposite direction: orderings between establishers
define the elements of maxzPossible((I,G), P). This set is the maximal set of goal orderings
such that the SNLP solution P can also found by CAPLAN. It still might happen that a
superset of mazPossible((I,G), P) allows to find a different solution plan P’ # P (Figure 5
gives a simple example). Further, the following is easy to see: if <= mazPossible((I,G), P)
and <C<' then we have either 3P’ : P' € solution((I,G), <) or impossible((I,G), <').

There are a number of other relations between necessary /possible goal orderings and maximal
sets of possible goal orderings.

Lemma 1 Given a problem prb = (I,G) then for any goal ordering < the following state-
ments are true:

1. mazPossible(prb, P) is unique for prb and P
2. VP € solutions(prb) : possible(prb, <q, P) = (<qC maxPossible(prb, P))

3. YP € solutions(prb) : necessary(prb, <g) = (<qC mazPossible(prb, P))

Proof: See Appendix B.1, page 53.

Goal orderings and case-based planning: A-posteriori orderings also play a consid-
erable role in the case-based extension of CAPLAN, where these orderings are important
for indexing a case. Cases for CAPLAN/CBC, i.e., a problem (I,G), a solution P, and
some information about causal dependencies and justifications of the solution (Mufioz-Avila
and Weberskirch, 1996a), are indexed based on the maximal set of possible goal orderings,
maxzPossible((I,G), P), as determined by the algorithm shown in Figure 4 (see (Mufioz-
Avila, 1998) for details).

3.2.3 Maximal Set of Necessary Goal Orderings

Definition 14 introduced the notion of the unique set of maximal possible orderings for a
certain solution. With respect to the more interesting necessary goal orderings a similar
formation of a concept can be made, because necessary orderings are true in all solutions of
a problem and naturally allow to distinguish a maximal set of necessary orderings based on
the notion of maximal possible orderings.
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Definition 15 (Maximal Necessary Orderings) Given a problem (I,G) and the solu-
tion plans solutions((I,G)) = {Py,---, P, },% then we have
mazNecessary((1, Q) = Nicqu,... ky mazPossible((I, G), ;).

It is obvious that we have necessary((I,G),<qg) for <g= mazNecessary((I,G)) because
each ordering from the intersection of the maximal possible orderings for each solution is
true in all solutions (this is the requirement for necessary orderings). Further, the set
mazxNecessary((I,G)) is unique as the intersection of sets is unique. It is also worthy
of note that the maximal necessary orderings can be empty.?

Unfortunately, Definition 15 is an non-operational definition of how to compute necessary
orderings and we have to look for ways to get these orderings (or a subset of them) without
having to compute every possible solution plan. One method that is based on Operator
Graphs (Smith and Peot, 1993) will be documented in near future. Here we show how we
can increase planning performance if we know about some goal orderings for a planning
problem.

3.2.4 Properties and Examples

Now we will state some properties that clarify the relation between the different sets of goals
orderings.

Lemma 2 Given a problem (I,G) in a certain domain, then the following statements about
any goal ordering <g are true:

1. (a) necessary((I,G),<q) = (<gC mazNecessary((I,G)))
(b) impossible((I,G),<qg) = (VP € solutions((I,G)) :
mazPossible((I,G), P) C<g V(3gj <a 9i : gi < gj € mazxPossible((I,G), P)))

2. (a) There can exist more than one possible goal ordering for a fized P.
(b) If P,P' € solutions((I,Q)) are two different solutions, we might have a <G such
that possible((I,G),<q, P) and possible((I,G),<q,P') are true.

3. If P,P' are two different solutions for (I, Q)
(a) maxNecessary((I,G)) C maxPossible((I,G), P) N maxPossible((I,G), P")
(b) we might have mazPossible((I,G), P) # mazPossible((I,G), P').

Proof: See Appendix B.1, page 53.

In summary, Figure 6 illustrates graphically the spectrum of possibilities that can occur
with goal orderings of different types: On the left side it shows the necessary ordering
mazNecessary((I,G)) and subsets of it, which are independent of a certain solution plan.
On the right side we have possible orderings, which focus on a certain solution plan, e.g., there
might be two solution plans P and P’. The maximal sets are the sets of orderings on the right

8This set of solutions is finite if simple establishment is preferred to step addition in the planning algorithm,
because then SNLP only generates minimal plans. Minimal plans are complete plans which have no complete
subplans (Kambhampati, 1995).

9This is a typical effect in domains in which all actions are reversible, for example, the logistics trans-
portation domain — we might have several solutions to a problem with completely different possible goal
orderings.
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Figure 6: Types of goal orderings and their relations

side (which are not subset of some other set of orderings). For each solution plan P we have ex-
actly one such maximal set, but these maximal sets do not need to be different for different so-
lution plans. Figure 6 shows the case that maxPossible((I, G), P) # maxzPossible((I,G), P')
for two solutions P, P'.

Necessary orderings seem to be most interesting because they apply to all solutions that
can be found, i.e, they won’t change the set of solutions. In particular, this is important
if orderings are computed automatically and they are not intended to focus on a particular
kind of solution plan. On the other hand, if a user gives orderings while defining a planning
problem, he might think of a certain solution meeting this orderings, but maybe he doesn’t
know whether his orderings are necessary orderings. In both cases we can expect that the
additional knowledge about ordering restrictions will help to find the solution faster because
the search space gets smaller.

Example: Let us illustrate the definitions using the artificial domain ©,D™S! (Barrett
and Weld, 1994) (see Appendix A.2 for details about the typical operators and problems).
The only solution for a problem of size n is a plan with a linear sequence of steps sg,
Ay, AL, -+ AS, s00. So we have

mazNecessary((I,G)) = {Ga <¢ Gili=1.n, Gi <a Git1li=1.n-1}-

All subsets of this set are necessary orderings. Here, the maximal set of necessary goal or-
derings always orders all goals totally, so, maxNecessary((I,G)) = mazPossible((I,G), P)
for P being the solution plan for (I,G).

{Gi <¢ Gali=1.n} is an example of an impossible goal ordering in this domain because there
exists no solution meeting this condition.

3.3 Goal Orderings and Serializability

The concept of serializability (Korf, 1987; Barrett and Weld, 1994) has been studied to
examine how complicated a planning domain is for a planner that is able to create plans
of a certain class of plans (Kambhampati et al., 1996). Serializability is a criterion among
many possible others that characterizes a domain by looking at interactions between different
subgoals in that domain and counting the number of ways the subgoals can be selected
for successfully solving the problem without too much backtracking. Based on this idea
collections of subgoals in a domain can be categorized to be independent, trivially serial-
izable, laboriously serializable, or nonserializable collections (Korf, 1987; Barrett and Weld,
1994). The classes of independent and trivially serializable subgoal collections are often
understood as synonyms for easy to solve subgoal collection, the others as difficult to solve.
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Unfortunately, we will later see that this is too simple. Further, this criterion is a very hard
one and many interesting domains can, for example, be shown to be not trivially serializable.

Related to the concept of serializability, we will show some limitations of its expressiveness
and we will further refine the extended taxonomy of subgoal collections as presented in
(Barrett and Weld, 1993; Barrett and Weld, 1994). We define an extended criterion that is
based on goal orderings, but that is weaker than trivial serializability. We will explain how
it fits in the taxonomy, how it can be used to improve planning and what are the relations
to necessary and possible goal orderings.

3.3.1 Trivial Serializability

We will first summarize some basic definitions around the concept of serializability as pre-
sented in (Kambhampati et al., 1996). Consider a plan that solves some planning goal g;
and suppose there is an additional planning goal g» to be solved. A question that arises is
whether that plan could be extended to solve both goals.!?

Definition 16 (Serial Extensibility) Given a class P of plans, a plan P in P achieving
a goal g1 is serially extensible with respect to a second goal go if there is a refinement of
P in P achieving both, g, and go.

This definition does not say that the plan achieving ¢g; and go must be found without any
backtracking at all, nor does it say that it is easy to find the plan for g; or for both goals.
But it says that backtracking must not revise any refinement that has been made to find
plan P. So, if a plan P is given for g; and we know that it is serially extensible the amount
of backtracking is limited to the inference steps needed to solve go. The planner only has to
solve the problem of combining the plan P with a solution for goal go (knowing that there
exists one) but it does not have to figure out whether a plan for both goals exists that is
based on P.

Serial extensibility can be extended to a set of goals. The next step is to generalize it by
looking at all plans for a certain set of goals instead of only one plan. If all plans achieving a
certain goal g; are serially extensible to a plan for two goals g1, g2, then (g1,¢g2) is a suitable
order to process the goals regardless of which plan for g; is selected by the planner. Further
generalized to a set of goals the planner then can be sure that it is possible to find a plan
for all goals if it already found a plan for a subset of them and selects goals in this order.
In the following definitions we examine permutations m of the goals G = {g1,-- -, gn}, where
7 is a bijective mapping 7 : [1---n] — [1---n] that orders the goals in a certain way. A
permutation on G is denoted as (gr(1),""*,9r(n))- For some permutations on a given set of
goals we might have the following property.

Definition 17 (Serialization Order) Given a class P of plans and a set of goals, g1,-- -,
gn, @ permutation w of these goals is said to be a serialization order if every plan in P
for solving gr(1) can be serially extended to g () (modulo the class P) and the resulting plan
can be serially extended to gr3) (modulo the class P) and so on.

OFollowing (Kambhampati et al., 1996) in the definitions we speak about classes of plans rather that the
planning algorithms that are capable of creating such classes of plans. For CAPLAN as for SNLP we have the
class of elastic protected plans that can be created by the algorithm. If CAPLAN uses the ordered establisher
condition it create the subclass of elastic protected <g-consistent plans (Section 3.1.1).
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Unfortunately, serial extensibility is not a commutative property (Barrett and Weld, 1994;
Kambhampati et al., 1996), so it makes a difference how many of the permutations on a set
of goals are a serialization order. The easiest case is given if every permutation on a set of
goals is a serialization order.

Definition 18 (Trivial Serializability) A set of goals, g1,---,gn, is said to be trivially
serializable, if any permutation of these goals is a serialization order (modulo the class P).
A problem is trivially serializable if this is true for its goals. Similar, a domain is trivially
serializable if all problems are trivially serializable.

This means that it doesn’t matter in which order the planner works on the goals, it will
always be possible to extend the partial solution found so far for the next goal. This is a nice
but hard restriction and many domains can be shown not to be trivially serializable, even
for planners that are characterized to be able to create the class of elastic protected plans
(Kambhampati et al., 1996) like SNLP. Examples are the artificial domains ©,, D™S* (Barrett
and Weld, 1994) or the Workpiece domain of CAPLAN and CAPLAN/CBC (Muhoz-Avila
and Weberskirch, 1996b; Mufioz-Avila, 1998) and many others.

3.3.2 Limited Expressiveness of Serializability

Serializability allows to classify a domain or a problem to be, for example, trivially serial-
izable. But if a permutation of goals is a serialization order (trivial serializability requires
all permutations to be a serialization order) this does not imply that it is easy to find a
solution in all cases we use this permutation. Serial extensibility only limits the amount of
backtracking to the refinements that are necessary to extend a given subplan. Nevertheless,
finding an extension (also the extension of the initial plan that solves the first goal) might
still be difficult because of other reasons than the fact that we have to extend a given subplan
for an new goal. So, if it is easy to solve an arbitrary goal, ’a problem is trivially serializable’
does allow to conclude that the collection of goals is easy to solve. If some individual goal is
difficult to solve, a problem can be difficult and also trivially serializable!

Let us look at a simple example. Imagine a problem prb = (I, G) with goals G = g1,...,9n
which is not trivially serializable, because the permutations 7 in which 7(2) < n(1), i.e., go
is selected before gi, are not a serialization order, all other permutations are a serialization
order. Figure 7 shows one permutation for each case: it is easy to solve go after g; is solved
(Figure 7.(a)) but the opposite order is difficult because of exponential costs of backtracking
(Figure 7.(b)). We can extend this domain by one new goal g* and one simple new action:
{g1,92} A* {g*}.}' In this extended domain the problem prb can be reformulated to prb’ =
(I,G") with G = g*, g3, ...,9, and it is easy to see solving prb is almost the same as solving
prb’. Surprisingly, prb’ is trivially serializable, because serial extensibility disregards the
complications of solving ¢* and goal g* is easy to solve on top-level because there exists only
the one action A* (Figure 7.(c)). The complications emerge from the preconditions of A*
and they are the same for which problem prb is not trivially serializable.

We can conclude that it does not make sense to characterize a domain by looking some
problems but that it is important to look at all possible problems or at the characteristic
problems covering all. If we have a permutation 7 on a set of goals G = g1,...,gn, We can
only say that G is comparable easy if all g; are easy and 7 is a serialization order. If at least
one goal is difficult to solve, the fact that 7 is a serialization order allows to conclude that no

""Notation: {preconditions} operator name {effects}
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Figure 7: Limited Expressiveness of Serializability. Each area is a measure for the amount
of planning effort to find a subplan for a certain goal.

new difficulty emerges because of having to solve the set of goals. If 7 is not a serialization
order, then an additional difficulty is caused just by the fact that a set of goals is to be solved.

The Problem of Goal Subsumption. We found another criterion that might be true in
a certain domain that allows to show that the expressiveness of the concept of serializability
decreases. For that purpose, we need the notion of subsumption between goals.

Definition 19 (Subsumption of Goals) Given a problem (I,G) in a certain domain and
goals gi,g; € G then the goal g; subsumes goal g;, written as g; > g;, if every solution plan
achieving g; also achieves g;,g;, i.e.,

VP : P € solutions((I,{g:})) = P € solutions((I,{gi,g;}))

It is easy to see that, if we have g; > g; then (g;, g;) is always a serialization order. But, this
does not say anything about how easy it is to find a plan for g; nor does it say anything
about how easy it is to find the plan solving both goals. This means, if g; > g; is true the it
is only helpful to know whether (g;, g;) is a serialization order.

Summary. It is not correct to use the term trivial serializability simply as a synonym for
easy to solve because the concept of serializability does nothing else than saying whether the
combination of goals can be responsible for making a problem difficult to solve. If a problem
is trivially serializable, this means that the combination of the goals of that problem does not
cause an additional kind of difficulty that is not encountered if we only look at the individual
goals. Similar, if a problem is laboriously serializable, exactly the problem of combining
the solutions for the goals causes a new difficulty regardless of whether individual goals are
difficult or not. We gave a simple example: it shows how a problem that is not trivially
serializable can be converted into a problem that is trivially serializable simply by adding a
new goal and a new operator which moves all complications away from the top-level goals to
the preconditions of the new action.

Thus, we should always speak about all problems or the most difficult problems of a domain
and be aware that serializability only concerns the question of new complications caused by
trying to find a plan for several goals.
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3.3.3 <g-Constrained Trivial Serializability

As said above, trivial serializability puts hard constraints on a domain or problem by requiring
all permutations of the goals to be a serialization order. The idea new is to weaken the
condition of trivial serializability using goal orderings. Similar to serializability this weakened
concept characterizes the difficulty of a domain, a problem, or a set of goals relative to the
individual goals under the assumption that certain goal orderings are known. This leads to a
second way to interpret goal orderings (already mentioned in Section 3.1) where we consider
only those permutations of the goals that are an extension of <g.

Definition 20 (<-Consistent Permutation) A permutation = on a set of goals, g1, - -,
gn partially ordered by <g, is said to be <g-consistent if Vg;,9; : gi <g g; = 7(1) < 7(j)

If two goals are ordered then a <-consistent permutation will preserve this ordering. As the
permutations represent orders in which the planner can select the goals, g; will be selected
before g; in this case. Now we can extend the criterion of trivial serializability to consider
only those permutations that are <g-consistent.

Definition 21 (<-Constrained Trivial Serializability) A set of goals, g1, -+, gn, par-
tially ordered by <g s said to be <g-constrained trivially serializable, if any <g-con-
sistent permutation of these goals is a serialization order (modulo the class P).

Notice, we have to check less permutations for <g-constrained trivial serializability than for
trivial serializability, if <g# 0. So, trivial serializability is a harder criterion than <g-con-
strained trivial serializability and we have the property that, if a set of goals is trivially
serializable, it is also <g-constrained trivially serializable (Mufioz-Avila and Weberskirch,
1996b). The opposite direction does not hold.

The restrictions with respect to expressiveness as illustrated in Section 3.3.2 also apply to
this new criterion. So, it formalizes the fact that the combination of goals that are processed
in an order consistent with < does not cause a new difficulty for the planner compared to
solving individual goals.

3.3.4 Refined Taxonomy of Subgoal Collections

The notion of <g-consistent trivial serializability allows to refine the extended hierarchy
of subgoal collections as given by (Barrett and Weld, 1993), where we have a distinction
between independent, trivially serializable, laboriously serializable and nonserializable col-
lections. Barrett & Weld’s main contribution lies in the refinement of the class of serializable
subgoals (Korf, 1987) into trivially serializable and laboriously serializable subgoals. These
can be seen as formalizing the borderline between subgoal collections that are easy to solve
(in terms of serializability) for a planner capable of creating a certain class of plans and those
that are difficult (in terms of serializability) because of exponential costs of backtracking on
a small but significant number of subgoal orderings (which in average dominate the planning
time).

We add the class of <g-constrained trivially serializable subgoal collections to this taxon-
omy as shown in Figure 8. This new class contains all trivially serializable collections and,
additionally, some of the laboriously serializable collections. Laboriously serializable subgoal
collections are separated into two subclasses, one of those collections for which a <g exists
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such that the collection is <g-constrained trivially serializable and one of those for which no
such < exists.

3.3.5 <-Consistent Goal Selection Strategy

The notions of <g-consistent permutations of goals and <g-constrained trivial serializability
motivate a second way to use goal orderings that is also implemented in CAPLAN besides
forcing the establisher to be ordered accordingly: if we have a goal ordering <¢, we use it
to address the control problem of goal selection and determine an order in which goals are
selected during the planning process such that we have a <g-consistent permutation of the
goals. For example, if g; <g g; holds then CAPLAN will select goal g; before goal g;, thus
creating a subplan achieving g; before extending it to achieve g; also.'? We will call this
a <g-consistent goal selection strategy. Section 4.2.2 will explain in detail why this can be
expected to reduce the size of the explored part of search space.

We claim that, if a domain or at least a certain problem is <g-constrained trivially serial-
izable but not trivially serializable, performance improvements of using goals orderings should
be observable because <g-constrained trivially serializable problems are for CAPLAN like
trivially serializable problems for SNLP. Further, the definition of <g-constrained trivial
serializability states a property of a collection of goals on a certain class of plans, e.g., the
class of plans produced by SNLP. If we here use the new class of elastic protected <g-con-
sistent plans, which the planner CAPLAN is capable to create, we have a combination of the
ordered establisher condition and the <g-consistent goal selection strategy. However, the
next section will show that a combination of the ordered establisher condition and a <g-con-
sistent goal selection strategy not always means that the same < should be used for both
purposes, i.e., ordering establishers and goal selection, but that this is a domain-dependent
property that the same can be used for both.

3.3.6 Relations to Necessary or Possible Goal Orderings

Section 3.2.1 distinguished between necessary and possible goal orderings; both are based
on the ordered establisher condition that translates goal orderings into plan step orderings.
We emphasized that necessary goal orderings are of special interest because they do not
exclude any solutions for the planner. Section 3.3.3 and Section 3.3.5 proposed a second

2This assumes a LIFO strategy for adding/selecting new goals for open preconditions of plan steps.
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way to understand goal orderings as a means of providing direct guidance for the planner by
specifying in which order goals should be processed by the planner.

At first glance one could think that knowing about the necessary goal orderings is the key
information that makes it easy to solve a problem. Unfortunately, this is not true. Knowing
about necessary goal ordering is, of course, a big advantage, but it is neither enough nor
necessary to be able to guarantee that a problem is <g-constrained trivially serializable
in a certain domain. The following Lemmas and their proofs give examples for the best
and the worst cases with respect to the relation of necessary or possible goal orderings and
< g-consistent trivial serializability.

Lemma 3 Given a problem (I,G) and a goal ordering <q, if < 1is equal to the set maz-
Necessary((I,Q)) or even mazPossible((I,G), P) for a certain solution P then the problem
does not need to be <g-constrained trivially serializable.

In other words: even the maximal amount of information that can be specified using necessary
or possible goal orderings does not always guarantee that the problem moves to the class of
easy problems (in terms of serializability) for CAPLAN.

Proof: See Appendix B.1, page 54.

This result is in some sense discouraging but it helps a lot to understand the different amounts
of performance improvements that can be obtained by using goal orderings (see Section 5). It
shows that it is possible to find a domain (we gave a simple example in the proof of Lemma, 3)
where necessary or possible goal orderings will never make things become easier in terms of
serializability. This observation will be further generalized below.

But there is another, more positive and encouraging relation between necessary goal orderings
and the property of <g-constrained trivial serializability that can be stated for a domain:

Lemma 4 Given a problem (I,G,<g), if the problem is <g-constrained trivially serializable
but not trivially serializable, then mazxNecessary((I,G)) C<q does not necessarily hold.

In other words: we do not always need to know all necessary goal orderings to make a
problem that is not trivially serializable (i.e., not easy for SNLP) become <g-constrained
trivially serializable (i.e., easy for CAPLAN).

Proof: See Appendix B.1, page 54.

The proof shows that the main difficulty of the artificial domain ©,,D™S" already mentioned
in Section 3.2.4 is to solve G, first. If this is guaranteed by goal orderings and a <g-con-
sistent goal selection strategy, then the domain is as easy for CAPLAN as the simpler version
D™S! is. But there is no need to know the maximal set of necessary goal orderings.

3.3.7 Generalization of Extended Problem Specifications

The results of Lemma 3 and 4 can be explained in a more general way. So far, they show
extreme examples for the relation of necessary or possible goal ordering and their use for goal
selection. This lets us suspect that using goal orderings as defined by the ordered establisher
condition and for a <g-consistent goal selection strategy are two different ideas. In particular,
it is a property of the domain whether a goal ordering that leads to improvements with the
ordered establisher condition also is an improvement when used in the context of a <g-con-
sistent goal selection strategy.
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Theorem 1 Given an arbitrary problem (I,G) in a certain domain that is not trivially
serializable, then it is a domain-specific property whether a necessary or possible goal ordering
<g also leads to performance improvements when using it in a <g-consistent goal selection
strategy.

Domain-specific means that we can find all possible relations depending on the domain. To
prove this we will enumerate the possibilities. Parts of this theorem already have been proved
above. In other words, the theorem says that, in general, necessary/possible goal orderings
and the idea of <g-consistent permutations for goal selection are two independent ideas and
that we can give examples of domains and problems where

1. a certain necessary or possible ordering < can make a problem become < g-constrained
trivially serializable (see Lemma 4),

2. no necessary or possible ordering < can make a problem become <g-constrained
trivially serializable (see Lemma 3),

3. a certain necessary or possible ordering < can make a problem become <g-constrain-
ed trivially serializable but there exists another ordering <’ that allows to find the
solution with less inferences steps than <g,

4. an impossible ordering < (one that cannot be used w.r.t. ordered establisher condition)
can also allow to find a solution when using it for a <g-consistent goal selection strategy.

Proof: The artificial domain LinkRepeat ((Veloso and Blythe, 1994), see also Appendix A.5)
is an example showing the last two points; details can be found in Appendix B.2 on page 55.

Motivated by the observations of the domain LinkRepeat we created another artificial do-
main, ©3D™S!, where the effect found in LinkRepeat is much more clear. This domain is
an example showing that a goal ordering that has been obtained by an analysis of possible
solution plans based on the ordered establisher condition should not be (mis-)interpreted as
an order for goal selection. Details can be found in Appendix A.3 and the experiments in
Section 5.3.

Generalizing extended problem specifications: This theorem has the consequence
that we have to redefine extended problem descriptions to be a 4-tuple (I, G, <., <,) where we
distinguish between goal orderings <. that are interpreted as given by the ordered establisher
condition and goal orderings <, that are used for a <,-consistent goal selection strategy. In
many domains we find that <.=<, leads to good or the best results. In such a case, even a
misinterpretation of goal orderings in terms of a goal selection strategy will work. But this
is a domain-specific property that, for example, does not hold in the domain LinkRepeat.

3.4 Summary: Effects of Goal Orderings in CAPlan

In order to benefit from goal orderings in CAPLAN it has to be defined exactly how to get a
goal ordering < for a problem (I, G) of a certain domain and it has to be guaranteed that
<g# 0. Then the planner CAPLAN might be able to solve problems of a certain domain
more efficiently because of two reasons: (1) ordered establisher condition (Section 3.1.1,
Definition 8), (2) <g-consistent goal selection strategy (Section 3.3.5).
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The first leads to a more constrained class of plans, the class of elastic protected <g-con-
sistent plans, compared to the class of plans created by SNLP. Section 4.2.1 will show in
detail why this also reduces the size of the search space. This gain of efficiency depends on
the fact that the additional orderings might automatically resolve threats in the correct way.

The second point addresses the control problem of partial-order planning by using goal or-
derings to define a goal selection strategy that makes it easy to solve a problem. Then a
domain or problem might not be trivially serializable but it might be <g-constrained trivially
serializable where <¢ is computed based on (I, G). This is a second way to gain advantage
from goal orderings as the degree of difficulty is reduced dramatically in case the difficulty
is a result of having to solve a collection of goals instead of individual goals. Unfortunately,
not in all domains we can compute or give goal orderings and there also exist domains in
which no necessary goal orderings exist that could be used to improve planning performance
without a loss of completeness when used for the ordered establisher condition.

Even if <g# (), the spectrum of possible efficiency gains with respect to serializability is
wide: A domain or problem does not need to be <g-constrained trivially serializable even
if we have maximal sets of necessary or possible orderings (see Section 3.3.6). On the other
hand, we do not always need the maximal set of necessary orderings to have significant per-
formance improvements. More general, it is a property of the domain whether a certain
necessary or possible goal ordering also can improve planning with respect to serializability.
If we know that a certain problem or domain is <g-constrained trivially serializable for a
certain mechanism to compute <g but not trivially serializable, we can however expect a
significant increase in performance (and a reduction of the size of the explored part of the
search space) by using a <g-consistent goal selection strategy.

If we compare both ways to gain advantage of goal orderings the goal selection strategy has
the potential to shift the domain from the class of laboriously serializable to the class of <¢g-
constrained trivially serializable domains for CAPLAN (not for SNLP). However, even if goal
orderings exist a domain does not need to be <g-constrained trivially serializable. On the
other hand, applying the ordered establisher condition because of necessary goal orderings,
i.e., using a planner that works on the class of elastic protected <g-consistent plans, will
always save some amount of work and improve efficiency.

4 Improving Planning Performance with Goal Orderings

How and why can <g be used to make the planner work more efficiently? We will summarize
how CAPLAN uses goal orderings and how these ideas are implemented in the CAPLAN
architecture. Then we will proof that goal orderings have positive effects in reducing the size
of the explored search space. Finally, we will examine a number of planning domains known
from literature and some variants of them; we will illustrate the characteristic difficulty and
the expected effect of goal orderings in these domains.

4.1 Implementation of Goal Orderings in CAPlan

Section 3 illustrated the idea to use goal ordering in two situations:

1. The ordered establisher condition (see Definition 8) leads to a more constrained
class of plans where ordering relations between establishers of ordered goals are required
to make a plan consistent modulo <g.
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2. A <g-consistent goal selection strategy (Section 3.3.5) addresses the problem of
goal selection in partial-order planning. It guarantees that only <g-consistent permu-
tations of the goals are considered for goal selection.

We will now explain how this is implemented in the CAPLAN architecture. The planning
algorithm of CAPLAN and its extensions with respect to SNLP already has been described
earlier (Weberskirch, 1995) and will not be revisited again. We will only summarize the
points that are important to support goal orderings and extended problem specifications.

Basically, standard problem specifications are extended by two slots for goal orderings and
there are some GUI components available in the CAPLAN system for defining such ex-
tended problem specifications. This allows the generalized form of extended problem specifi-
cations (I, G, <., <q4) (see Section 3.3.7). CAPLAN interprets the simpler variant (I, G, <¢)
as (I,G,<g,<@). More interesting is the point how goal orderings are handled by the plan-
ning algorithm itself.

4.1.1 Implementing the Ordered Establisher Condition

CAPLAN takes care of goal orderings in case it works on a top-level goal g € G of a problem
(I, G, <) for which there exists an ordering restriction, i.e., 3¢’ € G : g <g ¢’ or ¢’ <g g.
Normally, CAPLAN will select one alternative out of the so-called conflict set of a goal, i.e.,
the set of concrete plan modification operators applicable to the goal. For top-level goals
there are two alternatives: step addition and simple establishment.

As pointed out in (Weberskirch, 1995) the extended consistency test of CAPLAN (plan
consistency modulo <¢) has been reduced to a normal consistency test on an extended set
of orderings constraints in the implementation. For the goal ordering ¢ <g ¢’ CAPLAN
automatically adds the ordering constraint establisher(g) <o establisher(g') as soon as the
planner has committed to both establishing steps. This means that the plan modification
operators applicable to top-level goal, step addition and simple establishment, have been
replaced by slightly extended versions in CAPLAN which guarantee that a <g-consistent
plan is refined into another <g-consistent plan. Let g € G be the current goal and g <g ¢’
the ordering restriction. Then the two plan modification operators applicable to ordered
top-level goals are modified like that: (we only point out the differences)

e <;-consistent step addition: Like normal step addition this one adds a new plan
step Spew to the current plan. CAPLAN will also add spew <o establisher(g') if
establisher(g') exists.

e <g-consistent simple establishment: Like the normal version of simple establish-
ment, this one uses an existing plan step Seyist to establish the goal. CAPLAN will also
add Segist <o establisher(g') if establisher(g') exists.

So, the plans used by CAPLAN are always augmented by some additional ordering constraints
compared to the plans that are created by SNLP in the same situation. But this difference
between concept and implementation (see Figure 9) has the important advantage that a
plan is consistent modulo < whenever it’s augmented version as generated by the extended
plan modification operators of CAPLAN is consistent. Further, these new plan modification
operator guarantee that CAPLAN only creates plans from the class of elastic protected <g-
consistent plans.
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Figure 9: Concept and Implementation of the Ordered Establisher Condition

TMS justification for added orderings. One point about the implementation of goal
orderings has not been documented in (Weberskirch, 1995): The fact is that ordering con-
straints between establishers, that have been added to a plan by the extended plan modifi-
cation operators as described above, need a slightly different TMS justification than normal
other orderings that are added to the plan, for example, by demotion or promotion refine-
ment.

Let us recall from (Weberskirch, 1995): CAPLAN is based on REDUX (Petrie, 1992) and the
implementation of REDUX is based on a JTMS (Doyle, 1979). All elements of the plan are
represented as so-called assignments of REDUX decisions. Each decision basically represents
one instance of a plan modification operator. If the decision is valid, it has been applied to
the current plan. If the decision is valid then all its assignments are valid. This and all other
dependencies are part of the REDUX model. They are maintained and propagated using a
Truth Maintenance System (TMS) in CAPLAN. All typical justification structures have been
described earlier (Petrie, 1992; Weberskirch, 1995).

Normally, for each assignment we can determine exactly one decision and all assignments are
valid as long as their decision is valid. This gets a little more complicated when orderings (i.e.,
assignments) are added that depend on the validity of two other plan steps like orderings
that are translated from goal orderings. If we have a goal ordering g1 < g2 this will be
translated into an ordering between the establishers. Let us assume that the decision that
added establisher(gy) already exists. Then CAPLAN adds the ordering establisher(g1) <o
establisher(gs) and it will justify this assignment with the decision that added establisher(g;)
and the decision that added establisher(gs). So, the validity of the extra assignment depends
on both decisions (see Figure 10): if either the one or the other decision is rejected (e.g.,
because of backtracking or by a user modifying a solution interactively) the TMS is able to
recognize that the validity of this extra orderings also changes.

In summary, this is a second conceptual extension to the justification structure of REDUX. As
already reported in (Weberskirch, 1995, p. 32) a first modification is necessary for a correct
representation of threats in the REDUX terminology: protection goals represent the need to
resolve a threat and they also depend on two other decisions. For goal orderings a similar
extension is necessary with respect to the correct justification of the assignment representing
the additional orderings constraints. In particular, the correct TMS justification is needed
for a full integration of goal orderings in the interactive planning environment of CAPLAN
where a user can participate in the solution process.
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Figure 10: TMS justification of an ordering assignment

4.1.2 <G-Consistent Goal Selection Strategy

In (Weberskirch, 1995) we also did not document the fact that it can be very helpful for
planning performance if we use goal orderings to determine <g-consistent permutations of
the goals of a planning problem as done by a <g-consistent goal selection strategy.

CAPLAN is an agenda-driven system. It uses two agendas of open goals:

e one agenda collects open establishment goals (task agenda),

e the other collection open protection goals (meta task agenda).

The selection strategy from each agenda is determined by control plug-ins called control
components, which are the common interface in CAPLAN to define control strategies for goal
and/or operator selection. Several well known control strategies are implemented for CA-
PLAN in form of a control component, e.g., DSep (Peot and Smith, 1993), LCFR (Joslin and
Pollack, 1994), ZLIFO (Gerevini and Schubert, 1996),'® or also more sophisticated control
components like the case-based control component CbC of CAPLAN/CBC (Muioz-Avila
and Weberskirch, 1996a; Munoz-Avila, 1998).

The implementation of a <g-consistent goal selection strategy is done by ordering the task
agenda such that it always contains a <g-consistent permutation of the planning goals. A
LIFO strategy for adding/selecting goals then guarantees that the planner always starts with
the minima w.r.t. <g.

4.2 Effect on the Size of the Search Space

We claim, that when using goal orderings in the way as defined in Section 3, we will be
able to speed up planning. In this section we will prove that this claim holds. We will first
examine the effect of the ordered establisher condition. Then we will look at the effect of
using a <g-consistent goal selection strategy.

For a certain problem we will show two things:

e The ordered establisher condition has effects on the size of the search space.

13 (Pollack et al., 1997) gave a good overview and comparison of the most interesting control strategies for
partial-order planning.
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e The <-consistent goal selection strategy addresses the control problem, i.e., the nav-
igation in the search space.

In general, if we do not know about properties of a domain (e.g., whether it is <-constrained
trivially serializable), a combination of both is the most promising way to gain advantage
of the knowledge about goal orderings. However, this cannot always guarantee that the
performance is improved as we have explained in Section 3.3.7.

4.2.1 Effect of the Ordered Establisher Condition

The ordered establisher condition forces CAPLAN to consider plans to be inconsistent in
which the establishers of ordered goals are not ordered as given by Definition 8. The planning
algorithm of CAPLAN never will refine a partial plan that is not consistent modulo <. This

property can be used to show that the search space of CAPLAN differs from the search space
of SNLP.

We first have to explain what the search space is (see also (Weld, 1994)). Partial-order plan-
ning can be understood as search in a directed graph: nodes represent partial plans (including
the initial plan and the solutions) and edges denote plan refinement operators; together they
form the search space. We will also use the term inference step for the application of a plan
refinement operator. Typical refinements of partial-order planning are step addition, simple
establishment, and the threat resolution operators (Kambhampati et al., 1995). The size of
the search space can be measured by looking at the nodes and edges. If we want to compare
two search spaces, one is smaller than another one if the first one consists of less nodes, or, if
the number of nodes is the same, if the first has at least less edges between nodes. However,
the fact that the search space gets smaller does not necessarily mean that planning gets eas-
ier. In worst case, there are less plan states and/or less possible refinements connecting the
plan states, but the paths to a solution are longer than in the original search space. To get
a statement about the average case we also look at the number of inference steps to obtain
a certain solution, i.e., we check the paths from the initial plan to a certain solution.

With respect to the effect of the ordered establisher conditions on the search space of CA-
PLAN, we can state and prove the following theorem.

Theorem 2 Given a problem (I,G) and necessary goal orderings <g# 0 for that problem,
then the following conditions are true:

(a) The size of the search space of CAPLAN for finding a solution for (I,G,<q) is smaller
than the size of the search space of SNLP for finding a solution for (I,G).

(b) If solutions((I,G)) # 0, the minimal path from the initial plan to a fized solution in
the search space of CAPLAN is never longer than in the search space of SNLP, but it
can be shorter.

In other words: (a) In worst case, if the complete search space has to traversed, it is not
more difficult to plan with goal orderings than to plan without them because the search space
never grows when using goal orderings. (b) Finding a solution will never necessarily require
more inference steps with CAPLAN than with SNLP. There can even exist shorter paths in
the search space of CAPLAN. However, there is no guarantee that, given a certain goal and
operator selection strategy, that finds the shortest path in the search space of SNLP, does
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also find the shortest path in the search space of CAPLAN. We only guarantee that it is
possible to find the shortest SNLP path or a shorter one.

Proof: See Appendix B.3, page 56.

Finally, if we drop the restriction of the Theorem 2 that < is a necessary goal ordering and
allow possible orderings instead, part (a) and the proof will still be true and part (b) only
applies to the paths to the solutions P’ for which we have possible((I,G), <g, P').

4.2.2 Effect of <g-Consistent Goal Selection Strategy

The previous section has shown that adding ordering constraints as done by the <g-con-
sistent plan refinement operators implementing the ordered establisher condition reduces the
size of the search space without making it more difficult to find a solution. A similar question
is why a <-consistent goal selection strategy can make planning easier. If we interpret goal
selection in terms of the search space, it does not affect the size of the search space but it is
one factor that defines how the planner navigates through the search space. Section 3.3.5 has
already said that this should only be expected if the domain or problem is <g-constrained
trivially serializable but not trivially serializable.

Now we will explain in more detail the advantage of a <g-consistent goal selection strategy.
Let us compare the following two situations: we have two goals g1 and g2 which are ordered
by g1 <G g2- So, the permutation (g1, g2) is <g-consistent, whereas the permutation (g2, g1)
is not. What is the difference between both permutations for the planner? Let us analyze
both situations assuming that the problem is <g-constrained trivially serializable but not
trivially serializable and that the planner uses a LIFO strategy for goal addition/selection.

Permutation (g1, g2): First, g is established, establisher(g:) is added to the plan (i.e., g1
is established with a new plan step) and its preconditions are established. This results
in a subplan for the goal g;. Then establisher(gs) is added (Figure 11.(a)).

(i) After establisher(gz) is added it is parallel to establisher(gi) and the complete
subplan for g;.

(i) We can be sure that the subplan for achieving ¢g; can be serially extended to a plan
achieving both goals because the permutation is <g-consistent and the problem
is <@g-constrained trivially serializable.

Permutation (go,g1): Here, go is established first and the establisher(gs) is added to the
plan. Then establisher(g;) is added (Figure 11.(b)).

(i) The permutation (g2,g1) is not <g-consistent. This means that there exists at
least one possibility for refinements to establish go that lead to a plan that is not
serially extensible to a plan for both goals.

(ii) After establisher(gy) is added it is parallel to establisher(ge) and the complete
subplan for g». But if the planner has chosen a subplan for g, that is not serially
extensible, there will occur at least one threat ¢ between some causal link from the
subplan for go and either establisher(gy) or another step that is added to achieve
the preconditions of establisher(g;), or in the opposite direction, a threat caused
by a step of the subplan for go. This threat ¢ is not resolvable, so the planner
has to backtrack. This is exactly one reason (there might be more) for which this
permutation is not <g-consistent.

LSA-Report LSA-98-02E, Centre for Learning Systems and Applications, Kaiserslautern



(@ subplan for gl (serially extensible) (b) subplan for g2 (NOT serially extensible)

Figure 11: Extending a subplan for both permutations. est(gl) and est(g2) are the estab-
lishers of goals g1 and go.

Comparison. The explanation of the possible consequences of both permutations shows,
that with the <g-consistent goal selection strategy the planner will always be able to solve
the two goals without having to backtrack over decisions for achieving g; and it preconditions.
This is an effect of the fact that each possible subplan is serially extensible. On the other
hand, with the non-<g-consistent permutation the planner has two subproblems and solves
go first, but there must be more than one alternative for a subplan solving g, and at least
one subplan exists that cannot be serially extended to a solution. In that case, the planner
has to perform backtracking and revise parts of the solution of the goal go. For n goals we
have in worst case the exponential cost of backtracking over all decisions for a subplan solving
g1, +,9; when trying to extend it for the next goal g;1.

Figure 12 illustrates this for three goals. If subplans are serially extensible the planner spends
a certain amount of planning effort to solve g;, then it can concentrate on go and extend
the subplan, after that it plans for gs. If the subplan for g; is not serially extensible, the
planner has to backtrack when it tries to solve go with respect to the plan found for g;. The
same might happen if it starts planning for g3. The size of the area for a certain goal in
Figure 12 symbolizes the increasing effort to solve the next goal and the need to backtrack
over decisions that were made for previous goals.

9 9, Y

serialy extensible
subplans

\J

goal selection

not serially extensible
subplans

Figure 12: Planning effort if subplans are serially extensible or not

If the problem is not <g-constrained trivially serializable the <g-consistent goal selection
strategy is nothing more than a heuristic that might help to find the solution faster. The
reason is, that here even the right goal selection order might produce plans that cannot be
serially extended to solve all goals. Then the planner has to backtrack although it selected
the goals in the right order unless the planner always selects the right operator for each goal.

CAPLAN always uses <g-consistent permutations of the goals for goal selection so this will
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guarantee that no obviously wrong ordering of ordered goals for goal selection can occur. But
as we cannot know for all domains whether they are <g-constrained trivially serializable and
how to get <@, we only might profit from a <g-consistent goal selection strategy and there
is no guarantee that the performance will increase.

Section 3.3.2 has also shown that it might not help much to know the properties of a problem
w.r.t. serializability as this only looks at the difficulties that are caused simply by the fact
that a set of goals has to be solved. Further, there are domains in which planning problems
have to be given as (I, G, <e, <,) with <.#<, in order to improve performance when using
goal orderings for a goal selection strategy.

4.2.3 Combination of Ordered Establishers and <;-Consistent Goal Selection

So far, we explained the possible advantages of the ordered establisher condition and of the
< g-consistent goal selection strategy independent from each other. We now will look at the
advantages of combining both.

If we have g1 <@ go for two goals, the establishers of both are ordered by CAPLAN with
establisher(g1) <o establisher(gs) (see Figure 13 in comparison with Figure 11.(a)). This
means that in any case the planner does not have to find the right ordering relation between
those two establishers. As an effect of the <g-consistent goal selection strategy (and the
LIFO strategy for goal addition/selection) the subplan for ¢g; is completed before the planner
adds establisher(g,).

subplan for g1 (might be serially extensible)

= _7

Figure 13: Combination of <g-consistent goal selection and ordered establishers

Under the assumption that a domain is not trivially serializable, we can distinguish two
situations:

e If the problem is <g-constrained trivially serializable we can expect the biggest per-
formance improvement because: (1) <-constrained trivially serializable means that
the subplan for g; can always be extended to a subplan for both goals; (2) the order-
ing establisher(g1) <o establisher(gs) guarantees that the planner cannot select the
wrong ordering between the establishers. Each refinement producing such an order-
ing, establisher(gs) <o establisher(gi), is inconsistent for CAPLAN and will never be
considered.

e If the problem is not <g-constrained trivially serializable the <g-consistent goal se-
lection strategy is only a heuristic that does not prevent the planner from choosing
the wrong subplan for g, i.e., one that is not serially extensible to a plan for both
goals. But CAPLAN also adds the ordering constraint between the establishers of both
goals, thus, correctly constraining the plan compared with the situation without the
goal orderings. This can, in the best case, reduce the set of alternatives for subsequent
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planning decisions so that the need for backtracking is recognized in less inference steps
(no matter whether the subplan for g; is serially extensible or not). In the worst case,
this does not change anything for the planner.

This argumentation leads to the following conclusion:

The combination of the addition of orderings between establisher based on a
necessary goal ordering < and the <g-consistent goal selection strategy in av-
erage reduces the number of mistakes the planner can make without reducing the
solution space.

The reason for that can be summarized as follows: the ordered establisher condition always
reduces the size of the search space whereas the <-consistent goal selection strategy typically
can help in case the domain is <g-constrained trivially serializable but not trivially serial-
izable and such a <¢g is given. As already explained in Section 3.3.7, we cannot expect
that the same goal ordering is useful for both purposes, ordering establishers and defining a
goal selection strategy. The proof of Theorem 1 also has shown that there exist domains (in
particular, LinkRepeat or ©3D™S!) where the number of inference steps differs dramatically
between different goal selection orders and that a <g-consistent goal selection strategy not
always must lead to the minimal number of inference steps. In both domains, the best goal
selection strategy is defined by an impossible ordering in terms of the ordered establisher
condition.

4.3 Characteristic Difficulties of Domains and Goal Orderings

We will now illustrate the expected effect of goal orderings in some example domains which
differ in their degree of difficulty. Typically, subsumption of goals (a goal is achieved as a side
effect of achieving another one) or interactions between plan steps can cause simplifications
or complications and they are the main reasons for goal orderings. Section 3.3.2 already
emphasized that subsumption of goals reduces the expressiveness of serializability. In do-
mains with goal subsumption serializability is not the best, sometimes not a suitable way to
characterize the difficulty. We observed that domains might be difficult or simple for various
reasons and we characterized some of these reasons. Many domains known from literature
combine several or all of these elementary difficulties but it helps a lot to understand why a
domain is difficult if we can identify such difficulties.

We will concentrate on difficulties produced by interactions. The difficulty of a domain can
be characterized by at least two factors: (1) interactions between establishers of planning
goals, (2) selection of the right establisher from several possibilities. The first factor can
be found in many mouldings: in general, we might have threats between the establishers of
different goals and other goals or preconditions, which force the establishers to be ordered.
We identified one special case which we called the resource allocation problem. Here the
interactions model the allocation and release of a resource. That seems to create the most
complicated domains. In all cases we will investigate the possible effects of goal orderings
and we will give example domains from literature with this difficulty.

4.3.1 The Establisher Ordering Problem

A general type of difficulty in a STRIPS-like planning domain — interactions between the
plan steps — is present in every non-trivial domain, in which goals are not independent. With
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respect to goal orderings and their use in the ordered establisher condition (see Definition 8)
the subset of threats produced by establishers of top-level goals are important and allow to
define a general difficulty of a domain.

The Establisher Ordering Problem is the difficulty that is characterized by the
situation that, even if we select the correct plan steps achieving the goals of a
planning problem these establishers interact — at least one deletes another goal
or preconditions of the establisher of an other goal.

The consequence of these interactions is that the establishers need to be ordered with respect
to each other in a certain way so that all threat are resolved. The artificial domains D™ S
or D™S? (Barrett and Weld, 1994) are examples of domains illustrating the difficulty of
the establisher ordering problem. However, as reported and proved by Barrett and Weld,
these domains are comparable easy for SNLP and can be shown to be trivially serializable.!*
Although goal orderings help to increase the performance of the planner here (see empirical
results in Section 5), the amount of improvement is not very well-developed and it can only
be explained with the ordered establisher condition:

e The <g-consistent goal selection strategy has no positive effect because the threat
resolution problem can be solved by SNLP without backtracking and independent of a
certain goal selection strategy.'®

e The ordered establisher condition is responsible for improvements because each extra
ordering constraints can resolve one threat without letting a choice for the planner.

Barrett and Weld also gave an example of a domain that is more difficult, D™S?*, although
the main difficulty can also be characterized to be an establisher ordering problem. D™$§2%*
is laboriously serializable, even for SNLP. Here we can show that there exist typical goal
orderings for each problem which make it <g-constrained trivially serializable, i.e., (in terms
of serializability) easy for CAPLAN. This means that goal orderings help to improve perfor-
mance in domains which are difficult because of establisher ordering problems, especially, if
the domain is not trivially serializable.

4.3.2 The Operator Selection Problem

Domains get more complicated if the number of possibilities how a goal can be established
is greater than one. This is a typical situation encountered in most real planning domains.

We speak about an Operator Selection Problem (see also (Barrett and Weld,
1994)) if there are multiple (n) establishers for a goal but only some of them will
work in an overall solution.

The artificial domain ©,D™S"' (Barrett and Weld, 1994) is an example of a domain that
has explicitly been constructed based on the D™S™ versions to add the difficulty of an
operator selection problem. In fact, this domain is laboriously serializable for SNLP and

“The main objective of (Barrett and Weld, 1994) was to investigate the different performance of three
planning algorithms in various domains and it has shown some advantages of plan-space over state-space
planning approaches.

15 A <g-consistent goal selection strategy may only causes a little computational overhead for the planner.
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the operator selection problem is responsible for that. Nevertheless, if goal orderings <g=
mazxNecessary((I,G)) of a problem are known, it can be shown that the domain is <g-con-
strained trivial serializability.'® Here, the <g-consistent goal selection strategy solves the
main difficulty because it forces the planner to use a permutation of the goals in which it
is easy to find the right establisher. The ordered establisher condition also improves the
performance because it addresses the establisher ordering subproblem which is the same as
in the D™S' domains.

The operator selection problem can be investigated separated from the establisher ordering
problem in ©,D%S! (see Appendix A.2). The difficulty of both domains is almost the same
because ©,D°S' is also not trivially serializable, but we can also find a necessary goal
ordering < such that it is <g-constrained trivially serializable.

4.3.3 Resource Allocation Problems

The Workpiece domain of CAPLAN and CAPLAN/CBC (Munoz-Avila and Weberskirch,
1996a; Munoz-Avila, 1998) is laboriously serializable but there also exists a goal ordering
<@ such that problems in that domain are <g-constrained trivially serializable.!” But this
domain is difficult for additional reason compared to ©,,D™S": the operators HoldTool and
MakeToolHolderFree (Munoz-Avila and Weberskirch, 1996b) encode what we call a resource
allocation subproblem. Here, the operators concerning the tool holder never act as establishers
of top-level goals but they are needed to achieve some of the preconditions of establishers of
top-level goals.

We can find a similar difficulty in the simpler artificial domain ART-1D-RD (Kambhampati,
1994) (see Appendix A.4 for the definition). This domain encodes the allocation and release of
resources (like the tool holder of the lathe machine in the workpiece domain). This makes the
domain significant more difficult that the simpler version ART-1D.'® The main difficulty is
not caused by interacting steps achieving the goals (i.e., an establisher ordering problem) but
by the steps having to allocate resources while achieving the goals (i.e., a resource allocation
problem). Giving goal orderings does not really address the resource allocation problem.

Characterization. It is not straightforward to give a definition that exactly describes all
situations in which we have a resource allocation problem encoded in preconditions and effects
of actions. We can, however, give some properties that can be found in certain domains which
allow to conclude that we have one.

STRIPS-like representations only have a single way to represent a resource: the state of
the resource allocation is encoded by certain predicates which also appears in preconditions
and effects of actions. The simplest case is that we have a predicate like res-released() and
some operators have the preconditions +res-released() and the effect -res-released(), others
do the opposite. If we don’t want to have negated preconditions we can use an equivalent
representation with two predicates res-released() and res-allocated() instead (as, for example,
done in the in the domain ART-1D-RD, see below). We can observe that such resource
predicates have the property that they are frequently achieved and again destroyed during
the execution of a plan (high-frequency condition, (Kambhampati et al., 1995)).

18The proof of a Lemma in Section 3.3.6 has shown that even a certain subset of the maximal necessary
goal orderings is enough.

"For this domain there exists a goal ordering < that reflects geometrical relations between different
processing areas of a workpiece. This goal ordering can be computed for every problem (I, G) by a domain-
specific geometrical reasoner. It has been shown, that the domain is <g-constrained trivially serializable for
this <g (Mufoz-Avila and Weberskirch, 1996b).

8 ART-1D is just another name for D'S' which is trivially serializable (Barrett and Weld, 1994).

LSA-Report LSA-98-02E, Centre for Learning Systems and Applications, Kaiserslautern



There are a lot of variants how to model even a simple case of resource allocation. We might
have an ezplicit modeling by actions doing nothing else than the allocation and/or release
of the resource, or, resource allocation can be modeled by certain additional preconditions
and effects of other actions (implicit modeling). We can also have mixed versions where
allocation is modeled explicit but release is modeled implicit. This is the reason why it is
so difficult to give a comprehensive definition of resource allocation. We will not distinguish
these alternative representations here in more detail although we suspect that the way how
resource allocation is modeled can have influence on the resulting planning performance.
However, experiments show that domains in which we find the difficulty of resource allocation
(no matter how it is represented) tend to be harder for planners than domains without this
difficulty. This also leads to approaches where planning and scheduling tasks of a planning
problem are handled in separated phases and by different algorithms (e.g., see (Bergmann
and Kott, 1998)).

Goal orderings and resource allocation. In many cases goal orderings only accidentally
solve a resource problem which occurs in combination with another problem. Let us examine
this by having a closer look at ART-1D-RD and the variant ART-0D-RD which exclusively

focuses on the resource allocation problem.

ART-1D-RD: We can summarize the following facts about this domain: (1) problems of
size n have exactly one solution, (2) the domain is laboriously serializable, (3) with
<= maxzNecessary((I1,G)) # ) a problem is <g-constrained trivially serializable.
This looks similar to ©,D™S!. Both are laboriously serializable (although individual
goals are easy to solve) and there exists < such that it is <g-constrained trivially
serializable. However, the characteristic difficulties are different: ART-1D-RD is com-
bination of an establisher ordering problem and an resource allocation problem (not
an operator selection problem). We found that the establisher ordering problem is
comparably easy in both domains (this can be seen by the fact that ART-1D/D™S!
is trivially serializable and individual goals are easy to solve) but neither the operator
selection problem nor the resource allocation problem. This becomes clearer if we look
at simplified variant.

ART-0D-RD: We constructed a variant of ART-1D-RD by eliminating that part of that is
responsible for the establisher ordering problem (for the definition see Appendix A.4).
At first glance, the variant looks easier because less threats will occur. Appearances
are deceptivel ART-0D-RD also is not trivially serializable and each problem has a
lot of solutions but not a single necessary goal ordering exists for any problem. The
domain can be interpreted to model a resource allocation process: one half of the actions
(implicitly) allocates the resource, the other half (implicitly) releases it; no two such
actions must be parallel. The consequence is that it is not possible to find a necessary
ordering < such the domain is <g-constrained trivially serializable. Of course, there
are a lot of possible goal orderings for each solution plan and a problem becomes easy
if such orderings are known.

Conclusion. The only difficulty of ART-0D-RD is a resource allocation problem which forces
the establishers of the goals not to be parallel. This difficulty can only be tackled by possible
goal orderings. But whenever we use possible goal orderings the planner gets incomplete by
definition. This domain shows that goal orderings that are used for the ordered establisher
condition don’t allow to formulate necessary restrictions on all solutions, e.g, actions of ART-
0D-RD must not be parallel. With goal orderings you can enumerate the possible restrictions
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and a set of atomic orderings means that the conjunction of these restrictions has to be true
in a solution.

This also allows to understand the various difficulties of the workpiece domain. Here we
have a combination of at least the three difficulties. The establisher ordering problem and
the operator selection problem can be tackled by giving necessary goal orderings, not so the
resource allocation problem. We tested a modified version of the workpiece domain in which
the planner did not have to find the correct sequence of resource allocations. Here we found
that the planning performance increases significantly when goal orderings are given compared
to the performance when no goal orderings were given. The combination of several difficulty
is the real source that make some domains difficult.

4.3.4 Summary: Domains and Difficulties

We summarized the critical difficulty of various domains known from literature and mentioned
above in Table 1. For each domain or a set of domains the table shows the characteristic
difficulties which are responsible for a certain degree of difficulty. As most domains are
combinations of such difficulties we also list secondary difficulties which, however, do not
change the overall difficulty significantly. This classification works well for artificial domain
because they are in most cases explicitly constructed to show a certain difficulty. More
realistic domains, e.g., the Workpiece domain (Mufioz-Avila and Weberskirch, 1996b), the
FlatTyre domain (Russell, 1992), or the Logistics Transportation domain (Veloso, 1994) are
a combination of all difficulties. In some we even can find, for example, multiple different
resource allocation problems encoded.

| Domain | Characteristic difficulties | Secondary | Subsumption |
D™S!, D™S?, || Establisher ordering problem: threats | — —
D™ S+ between establishers of different goals
0,DYs! Operator selection problem: Multiple | — —
(n) establishers for most of the goals, only
one correct
©,D™mS, Operator selection problem Establisher —
02pms? ordering
ART-0D-RD Resource allocation problem: actions | — —
model the allocation of a resource that can-
not be used by several consumers in paral-
lel.
ART-1D-RD Resource allocation problem Establisher —
ordering
Link-Repeat Resource allocation — 9i > 9jlj<i
Link-Chain Operator selection Establisher 9 > 9ilj<iz1
ordering
Workpiece Combination of: Operator selection , Re- | Establisher between
source allocation ordering some goals
FlatTyre Combination Establisher between
ordering some goals
Blocksworld, Combination Establisher —
Transportation ordering

Table 1: Characteristic difficulties of some planning domains

Table 2 summarizes the gain of efficiency when using goal orderings in terms of the classifi-
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cation using the refined taxonomy of subgoal collections. Nearly all domains are laboriously
serializable for SNLP. It further shows whether a set of necessary or possible goal orderings
can be used to make this domain <g-constrained trivially serializable for CAPLAN. It also
shows in which domain we have the property that the goal orderings following from solution
plans (necessary or possible orderings) can also be used to gain advantage in a <g-consistent

goal selection strategy. Not in all domains this is clear at the moment.

Domain SNLP CAPLAN: <g-constrain- | (I,G, <., <q)
ed trivially serializable
D™St D™S? trivially serializable <g=10 <e=<,q
DmS§% laboriously serializable necessary((I,G),<g) <e=<q
0,DYs! laboriously serializable necessary((I,G), <g) <e=<a
0,DmS! laboriously serializable necessary((I,G),<ga) <e=<,
0Zpmst laboriously serializable necessary((I,G),<g) <e#<<!
ART-0D-RD laboriously serializable possible((I,G), <, P) <e=<q
ART-1D-RD laboriously serializable necessary((I,G),<gq) <e=<,
Link-Repeat laboriously serializable — <#<!
Link-Chain laboriously serializable necessary((I,G),<g) <e=<,
Workpiece laboriously serializable <g#0
FlatTyre laboriously serializable necessary((I,G), <) <e=<4 (7)
Blocksworld, laboriously serializable possible((I,G), <g, P)
Transportation

Table 2: Possible effects of goal orderings in some planning domains

5 Empirical Evaluation

This section reports results of an empirical evaluation conducted with CAPLAN in order to
validate the theoretical results of the previous sections. In CAPLAN all ideas presented in this
report can be found implemented. We investigated the possible performance improvements of
using extended problem descriptions (I, G, <) with knowledge about goal orderings as done
in CAPLAN over standard problem description (I, G) without any other problem-specific
or domain-specific knowledge. We concentrated on <g being necessary goal orderings or
subsets of that. Only some experiments use possible or impossible goal orderings. In some
domains we performed tests with two different goal orderings, i.e., with problems of the form
(I,G,<e,<q) as explained in Section 3.3.5.

For the experiments we selected well known artificial domains already mentioned in previ-
ous sections: D™S? D™S% ©,D™S! (Barrett and Weld, 1994), Link-Repeat, Link-Chain
(Veloso and Blythe, 1994), ART-1D-RD (Kambhampati, 1994) and some new artificial do-
mains focusing on certain special difficulties. Finally, some experiments were performed with
the workpiece domain (Mufioz-Avila and Weberskirch, 1996b; Mufioz-Avila, 1998) and the
FlatTyre domain (Russell, 1992). Both can be seen as domains combining the difficulties of
several of the artificial domains (see Section 4.3.3). We conducted the experiments using well
known control strategies like DSep, LCFR, ZLIFO and some with random goal selection.

As explained before, goal orderings are used for two purposes in CAPLAN: (1) ordered
establisher condition (Section 3.1.1, Definition 8), (2) <g-consistent goal selection strategy
(Section 3.3.5). Both can be responsible for better performance of CAPLAN when using goal
orderings, but the extent of improvement depends on properties of the domain.
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We organized the experiments as follows:'® each experiment concentrates on domains having
a certain degree of difficulty in common. In all domains we conducted tests and compared
four cases, where planning had to be done (a) without goal orderings, (b) with the ordered
establisher condition, (c) with <g-consistent goal selection strategy, (d) both. The general
setup of all experiments was such that the planner had to solve each problem 30 or more
times and we measured the average time per problem and the average number of inference
steps within some reasonable maximal time limit varying between 30s and 50s. To be sure
that the order in which the goals are defined in the planning problem has no effect on the
results, we added the goals using random permutations.?®

5.1 Experiment 1: Trivially Serializable Domains

The first experiment examines the effect of goal orderings in a domain that is trivially serial-
izable and in which we only have the difficulty of an establisher ordering problem. Sec-
tion 4.3.1 has shown that we cannot gain advantage of the <-consistent goal selection
strategy in that case. But the ordered establisher condition, which allows CAPLAN to search
in a more restricted class of plans, will lead to a smaller search space.
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Figure 14: Total planning time and number of inference steps in the D'5? domain

Figure 14 show the average planning time and the average number of inference steps with
an increasing number of goals in the artificial domain D'S2. A <g-consistent goal selection
strategy decreases performance as it only creates computational overhead when sorting the
goal in a certain way. On the other hand, the values for the ordered establisher condition and
both are nearly the same, so in this domain the combination of both is nevertheless very good.
This can be explained by the fact that ordering establishers as done by the ordered establisher
condition is exactly the right thing to do in case of an establisher ordering problem. Also
a random goal selection strategy or ZLIFO combined with the ordered establisher condition
produce nearly the same results. ZLIFO cannot be better because if performs more time
consuming tests when selecting a goal that SNLP or random goal selection. For domain
D™S? the results are qualitatively the same but the times are a little higher as there are
more threats to resolve (not shown here).

9 All experiments were performed with CAPlan v2.15 on a Pentium II/266 PC under Windows NT 4.0.
20This can be configured in CAPLAN by setting the flag ’Shuffle finish’ to on.
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5.2 Experiment 2: Laboriously Serializable Domains

The second experiment focuses on more difficult domains in which at least a part of the
overall difficulty can be explained by the fact that the combination of several goals causes an
additional difficulty for the planner.

5.2.1 Difficulty: Establisher Ordering Problem

The first test was performed in domain D™S?* that is laboriously serializable only because
of an establisher ordering problem. But we can find necessary goal orderings which make it
<-constrained trivially serializable for CAPLAN.
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Figure 15: Total planning time and number of inference steps in the D™S%* domain

Figure 15 shows that using goal orderings to order establishers improves the planning time
and the number of inference steps, but the improvement is much bigger when using the nec-
essary goal ordering for goal selection. The improvement by the <g-consistent goal selection
strategy is very clear in this domain.

5.2.2 Difliculty: Operator Selection Problem

Although the characteristic difficulty of the domain @ D'S! is not the same a for the domain
D™S?* (see Section 4.3.2), both are not trivially serializable and the experiments (Figure 16)
show results very similar to the ones for D™S?*. The right goal selection strategy is the key
information for solving the problems.

We ran the same problems in ©,D°S! in which we don’t have an establisher ordering problem
(see Section 4.3.2) and found similar results (Figure 17). This shows that the operator
selection problem in Oy transformed domains dominates the establisher ordering problem.

In both domains we also tested whether it always is the best to have as much (necessary)
goal ordering as possible. The answer is no (see also Lemma 4 on page 22). There is a
trade-off between the number of additional orderings to be used by the ordered establisher
condition and the extra effort created by them when searching the plan. For goal selection
the same is not observed because they are used just once when the goals are added to the
agenda of goals. We performed a test in ©,D'S? with using goal orderings for both purposes
but where we only give the minimal set of necessary goal orderings such that the problems
still are <g-constrained trivially serializable. We get almost the same times per problem
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Figure 16: Total planning time and number of inference steps in the ©,D'S! domain
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Figure 17: Total planning time and number of inference steps in the ©,D%S! domain

but the numbers of inferences steps per problem might be higher. This indicates that less
orderings improve the average time per inference step and sometimes also the overall time.
But the difference is very small. If we use the same set of orderings ©,D'S! we get a better
performance (average time per problem) that in the first four test shown in Figure 17. The
reason is that the first four tests use a possible ordering, which focuses on one special solution
plan. The reduced set, however, is a necessary ordering in this domain which makes it much
easier to find one of the many possible solutions.

5.2.3 Difficulty: Resource Allocation Problem

The difficulty of resource allocation seems to create the hardest class of domains. Figure 18
shows, however, that the right goal selection strategy is the key information that makes
problems become easy. For ART-1D-RD a goal selection strategy using the maximal set of
necessary orderings takes away the difficult task of finding a sequence of resource allocations.
The fact that this optimal ordering is a necessary ordering is produced by the additional
establisher ordering problem also encoded in ART-1D-RD because it is based on D'S?.

If we take away the establisher ordering problem as done in ART-0D-RD we can observe that
problems get much easier even for SNLP without any additional help (Figure 19). This can
be explained by the fact that each problems has much more than only one correct solution in
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Figure 18: Total planning time and number of inference steps in the ART-1D-RD domain
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Figure 19: Total planning time and number of inference steps in the ART-0D-RD domain

ART-0D-RD. The test used the same set of goal orderings as in ART-1D-RD which, however,
is only a possible goal ordering for problems in ART-0D-RD. This explains why using goal
orderings for the ordered establisher condition does decrease performance.

These results indicate that a good control strategy is more important than the knowledge
about necessary or possible goal orderings, especially, if the main difficulty of the domain is a
resource allocation problem. In case such a resource allocation problem is combined with an-
other difficulty, e.g., an establisher ordering problem, the relative performance improvements
of using goal orderings is much bigger.

5.3 Experiment 3: A Single Goal Ordering Is Not Always Enough

In Section 3.3.7 we realized that there are domains in which we need different goal orderings
to be used as defined by the ordered establisher condition and for defining a goal selection
strategy. We mentioned two artificial domains in which we find this phenomenon, LinkRepeat
(see Appendix A.5) and ©3D™S! (see Appendix A.3).

Link-Repeat: As explained in the proof of Theorem 1, the use of maximal necessary goal
orderings for a goal selection strategy in this domain produces a larger search space than not
using goal ordering at all. This can also be observed in our experiments (Figure 20). Using
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Figure 20: Total planning time and number of inference steps in the LinkRepeat domain
with necessary goal orderings

the same ordering to order establishers still improves performances, but the combination with
the goal selection strategy based on the same ordering partially ruins this improvement. The
best results are achieved if we use the generalized version of extended problem specifications,
(I,G, <e, <q), with two different goal orderings: <.= {(gi,gi—1)|vi} for ordering establishers
and the reverse ordering <,= {(gi_1, gi)|vi} for the goal selection strategy. This effect however
becomes visible only for larger problems with more than 5 goals (Figure 20).

©3D™S!: The ©2 transformation of domains has been designed to make the effect observed
in LinkRepeat more clear. Surprisingly, only a very little modification is necessary to achieve
this objective by reusing Barrett and Weld’s ©,, transformation (Barrett and Weld, 1994).
The difficulty of ©2 transformed D™S' domains is the nearly the same than the difficulty the
©,, transformation, in particular, both domains are laboriously serializable. We will illustrate
this in more detail with some experiments in ©3D!'S!. In the experiments we compare the
performance (planning time and number of inference steps) for a set of typical problems
of size 2 to 8 (see also Appendix A.3) with the same general setup as described above.
We solved such sets of problems and compared the performance with different sets of goal
orderings being used for different purposes. We tested the problem sets with combinations
of the following goal orderings:

<= {(Gi-1, Gi)|i=2..n} with necessary(prb,<)) in D™S! and all ©,,/02 variants,
<'={(Gq,G;)|vi} with necessary(prb,<)) in ©,, variants but impossible(prb, <)) in ©2,

<"={(G;,G4)|vi} the same vice versa.

With these basic sets of orderings, we tested the problems (I, G, <, <,) with three combi-
nations of goal orderings:
(a) <e=<4=<, (b) <c=<,=<U<", () <e=< U< <,=<u<

Table 3 shows the results of this series of experiments when using no goal ordering, when
using goal orderings only as defined by the ordered establisher condition (OEC), when using
goal ordering only for defining a goal selection strategy (GSS), or when using goal order-
ings for both (OEC+GSS). Unlike ©®,D'S!, in ©3D'S! the maximal necessary orderings,
combination (b), produces the worst goal ordering w.r.t. a <g-consistent goal selection strat-
egy although it is still the optimal one w.r.t. the ordered establisher condition. But the

LSA-Report LSA-98-02E, Centre for Learning Systems and Applications, Kaiserslautern



Goal orderings /usage of none OEC GSS OEC+GSS
goal orderings

none 1105 (94) — — —

set (a) — 840 (71) 366 (55) 328 (38)
set (b) — 1017 (71) | 1076 (140) | 646 (61)
set (¢) — 1057 (70) | 329 (50) 230 (22)

Table 3: Results for ©3D™S! domain. The values show the average time in ms for the
complete problem set and all iterations, the values in parentheses are the average numbers
of inference steps.

ordered establisher condition only solves the secondary difficulty of the domain which does
not dominate the performance. Even the subset <, combination (a), solving only the es-
tablisher ordering problem of D™S' produces better results. The optimal strategy is to use
combination (c). Surprisingly, the latter is also an impossible ordering.

5.4 Experiment 4: A-Posteriori Goal Orderings

In another experiment we extracted maximal possible orderings from solution plans and tried
to solve the problem with this maximal possible goal orderings. Figure 21 show such results
that were performed in the LinkChain (see Appendix A.5 for the definition) which also has
been designed to be hard to solve for causal-link planners.

2500

T T

Without goal orderings —+—

With ordered establishers ---x---

With ordered agenda ---%---
With both -2

T T

Without goal orderings —+—

With ordered establishers ---x---

With ordered agenda ---*---
With both &

2000

1500

Average Time (ms)

1000

Number of inference steps

500

a

5 5
Number of Goals Number of Goals

Figure 21: Total planning time and number of inference steps in the LinkChain domain with
maximal possible goal orderings

5.5 Experiment 5: Non-Artificial Domains

Finally, we performed some experiments in two non-artificial domains, the Workpiece domain
(Munioz-Avila and Weberskirch, 1996b; Munoz-Avila, 1998) and the FlatTyre domain (Rus-
sell, 1992). In both we selected some representative problems and compared the problem
solving time with goal orderings and without goal orderings.

Workpiece domain: We selected problems with 2 to 10 goals. The overall result was that
goal orderings helped to reduce the problem solving time to about 70% to 80% of the
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problem solving time without goal orderings.

FlatTyre domain: We tested the typical problem of that domain, fixit, which consists
of eight goals and is solved by a plan containing 19 actions. We created a copy of
this problem, fixit-ord, and added a set of eight orderings between these goals which
is a necessary orderings and compared the solution time and the number of inference
steps. Another variant,fixit-x-ord was created by adding two more (intermediate)
goals and also six more goal orderings. The results can be found in Table 4. The show
that the problem solving time is improved and also the number of inference steps. On
the other hand we see, that although we have much less inference steps for the last
problem, the time per inference step is increased because of the additional orderings in

the plan.
Problem | Time (ms) | Inference steps
fixit 4462 114
fixit-ord 4434 82
fixit-x-ord 4102 68

Table 4: Results for FlatTyre domain

In both domains we have to take into account that we have a combination of all characteristic
difficulties. In particular, we find several resource allocation problems in the Workpiece
domain. This make both domains significantly more difficult that artificial domains which
focus on one difficulty. Additionally, we typically have variables and objects which are used in
nearly every operator and have to be propagated by the planner. This increases the average
time per inference step in these domains.
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6 Conclusion

In this report we investigated the problem of using goal orderings for a partial-order, plan-
space planner. We presented two ways how planners based on the SNLP algorithm (McAllester
and Rosenblitt, 1991) might use goal orderings. Both can be found implemented in the plan-
ner CAPLAN:

1. The ordered establisher condition (see Section 3.1.1) leads to the notion of neces-
sary, possible, and impossible orderings, and to the class of elastic protected <g-con-
sistent plans in which goal orderings are translated into orderings between establishers
of goals.

2. A <g-consistent goal selection strategy (Section 3.3.5) addresses the control prob-
lem of goal selection and guarantees that only <g-consistent permutations of the goals
are considered for goal selection.

Basically, the ideas to use goal orderings in that way have been mentioned in literature
separately before. For example, Cheng and Irani gave a definition of goal orderings that is
comparable with the first one (Cheng and Irani, 1989), while others define goal orderings as
the problem of deciding on which goal to work next (Drummond and Currie, 1989). However,
until now both mechanisms have not been explicitly distinguished as two completely different
ideas, in particular, for plan-space planners. It is also a common wisdom that using goal
orderings can improve planning performance. But suprisingly, most of research about the
use and the automatic computation of goal orderings can be found in the area state-space
planner (Minton, 1988; Ryu and Irani, 1992; Etzioni, 1993a; Etzioni, 1993b).

We have now shown that both interpretations of goal orderings can be very different for
plan-space planners based on SNLP. Basically, this is a consequence of the fact that there
is no necessary relation between the order in which goals are processed and the ordering in
which they are achieved in a plan. Ordering establishers addresses the problem of reducing
the size of the search space while a <g-consistent goal selection strategy addresses the control
problem of planning. We proved that the ordered establisher condition effectively reduces
the size of the search space while a <g-consistent goal selection strategy only addresses the
problem of navigating in search space.

If we compare both ways to gain advantage of goal orderings the goal selection strategy
has the potential to shift the problems from the class of laboriously serializable to the class
of problems that are as easy for CAPLAN as trivially serializable problems for SNLP. We
introduced the notion of <g-constrained trivial serializability which allows to classify prob-
lems/domains to be comparably easy (<g-constrained trivially serializable) for CAPLAN.
This class contains all trivially serializable problems/domains. Additionally, those labori-
ously serializable problems are included for which we find a goal ordering < such that
all <g-consistent permutations of the goals are serialization orders. In that context we also
pointed out that serializability is not meaningful enough to characterize a domain or problem
as eagsy or difficult. But it allows to judge whether problems with collections of subgoals can
be significantly more difficult to solve than the individual goals. We have also shown that
is is a property of the domain whether a necessary or possible goal orderings that represent
conditions that are valid in all or at least some solution plans might also be useful for defining
a goal selection strategy. This is one of the most important results of this report. In worst
case, we need totally different goal orderings that are then used for ordering establishers and
for defining the goal selection strategy.
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Finally, we searched for sources of goal orderings in various domain. In particular, in artificial
domains we identified three characteristic difficulties that are responsible for the number of
existing goal orderings:

e the establisher ordering problem,
e the operator selection problem, and

e the resource allocation problem.

We gave examples of domains in which such characteristic difficulties can be found separately
and how such elementary difficulties are typically combined in more realistic planning do-
mains. All theoretical results have also been validated in a large number of experiments that
have been performed during a period of several months.

Acknowledgement

We would like to thank Jochem Hiillen for his very helpful comments and discussions on
earlier versions of this report.

References
Barrett, A. and Weld, D. (1993). Characterizing subgoal interactions for planning. In Proceedings of
IJCAI-93, pages 1388-1393.

Barrett, A. and Weld, D. (1994). Partial-order planning: Evaluating possible efficiency gains. Artificial
Intelligence, 67(1):71-112.

Bergmann, R. and Kott, A., editors (1998). Integrating Planning, Scheduling and Execution in Dy-
namic and Uncertain Environments, AAAI Technical Report WS-98-02. AAAI Press.

Chapman, D. (1987). Planning for conjunctive goals. Artificial Intelligence, 32:333-377.

Cheng, J. and Irani, K. (1989). Ordering problem subgoals. In Proceedings of IJCAI-89, pages
931-936.

Currie, K. and Tate, A. (1991). O-plan: The open planning architecture. Artificial Intelligence,
52(1):49-86.

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence, 12(3):231-272.

Drummond, M. and Currie, K. (1989). Goal ordering in partially ordered plans. In Proceedings of
IJCAI-89, pages 960-965.

Erol, K. (1995). Hierarchical Task Network Planning: Formalization, Analysis, and Implementation.
PhD thesis, University of Maryland.

Erol, K., Hendler, J., and Nau, D. (1994). Htn planning: Complexity and expressivity. In Proceedings
of AAAI-94, pages 1123-1128.

Erol, K., Hendler, J., and Nau, D. (1996). Complexity results for hierarchical task-network planning.
Annals of Mathematics and Artificial Intelligence, 18:69-93.

Etzioni, O. (1993a). Acquiring search-control knowledge via static analysis. Artificial Intelligence,
62:255-301.

Etzioni, O. (1993b). A structural theory of explanation-based learning. Artificial Intelligence, 60:93—
139.

LSA-Report LSA-98-02E, Centre for Learning Systems and Applications, Kaiserslautern



Fikes, R. and Nilsson, N. (1971). Strips: A new approach to the application of theorem proving in
problem solving. Artificial Intelligence, 2:189-208.

Gerevini, A. and Schubert, L. (1996). Accelerating partial-order planners: Some techniques for
effective search control and pruning. Journal of Artificial Intelligence Research, 5:95-137.

Irani, K. and Cheng, J. (1987). Subgoal ordering and goal augmentation for heuristic problem solving.
In Proceedings of IJCAI-87, pages 1018-1024.

Joslin, D. and Pollack, M. (1994). Least-cost flaw repair: A plan refinement strategy for partial-order
planning. In Proceedings of AAAI-94, pages 1004-1009.

Kambhampati, S. (1994). Multi-contributor causal structures for planning: A formalization and
evaluation. Artificial Intelligence, 69:235-278.

Kambhampati, S. (1995). Admissible pruning strategies based on plan minimality for plan-space
planning. In Proceedings of IJCAI-95.

Kambhampati, S., Ihrig, L., and Srivastava, B. (1996). A candidate set based analysis of subgoal
interactions in conjunctive goal planning. In Proceedings of the 3rd Intern. Conf. on AI Planning
Systems (AIPS-96), pages 125-133.

Kambhampati, S., Knoblock, C., and Yang, Q. (1995). Planning as refinement search: A unified
framework for evaluating design tradeoffs in partial order planning. Artificial Intelligence, 76:167—
238.

Kambhampati, S., Mali, A., and Srivastava, B. (1998). Hybrid planning for partially hierarchical
domains. In Proceedings of AAAI-98.

Korf, R. (1987). Planning as search: A quantitative approach. Artificial Intelligence, 33:65-88.

McAllester, D. and Rosenblitt, D. (1991). Systematic nonlinear planning. In Proceedings of AAAI-91,
pages 634-639.

Minton, S. (1988). Learning Search Control Knowledge: An Explanation-Based Approach. Kluwer
Academic Publishers, Boston.

Mufioz-Avila, H. (1998). Integrating Twofold Case Retrieval and Complete Decision Replay in CA-
Plan/CbC. PhD thesis, University of Kaiserslautern.

Mufioz-Avila, H. and Hiillen, J. (1995). Retrieving relevant cases by using goal dependencies. In
Veloso, M. and Aamodt, A., editors, Case-Based Reasoning Research and Development, Proc. of
the 1st Intern. Conference (ICCBR-95), number 1010 in LNAI. Springer.

Muiioz-Avila, H. and Weberskirch, F. (1996a). Planning for manufacturing workpieces by storing,
indexing and replaying planning decisions. In Proceedings of the 8rd Intern. Conf. on AI Planning
Systems (AIPS-96).

Mufioz-Avila, H. and Weberskirch, F. (1996b). A specification of the domain of process planning:
Properties, problems and solutions. Technical Report LSA-96-10E, Centre for Learning Systems
and Applications, University of Kaiserslautern, Germany.

Peot, M. and Smith, D. (1993). Threat-removal strategies for partial-order planning. In Proceedings
of AAAI-938, pages 492-499.

Petrie, C. (1992). Constrained decision revision. In Proceedings of AAAI-92, pages 393—400.

Pollack, M., Joslin, D., and Paolucci, M. (1997). Flaw selection strategies for partial-order planning.
Journal of Artificial Intelligence Research, 6:223—262.

Russell, S. (1992). Efficient memory-bounded search methods. In Neumann, B., editor, Proceedings
of the 10th Europ. Conf. on Artificial Intelligence (ECAI-92), pages 1-5.

Ryu, K. and Irani, K. (1992). Learning from goal interactions in planning: Goal stack analysis and
generalization. In Proceedings of AAAI-92, pages 401-407.

LSA-Report LSA-98-02E, Centre for Learning Systems and Applications, Kaiserslautern



Smith, D. and Peot, M. (1993). Postponing threats in partial-order planning. In Proceedings of
AAAI-93, pages 500-506.

Srivastava, B. and Kambhampati, S. (1998). Synthesizing customized planners from specifications.
Journal of Artificial Intelligence Research, 8:98-128.

Veloso, M. (1994). Planning and learning by analogical reasoning. Number 886 in Lecture Notes in
Artificial Intelligence. Springer Verlag.

Veloso, M. and Blythe, J. (1994). Linkability: Examining causal link commitments in partial-order
planning. In Proceedings of the 2nd Intern. Conf. on AI Planning Systems (AIPS-94), pages
13-19.

Weberskirch, F. (1995). Combining SNLP-like planning and dependency-maintenance. Technical
Report LSA-95-10E, Centre for Learning Systems and Applications, University of Kaiserslautern,
Germany.

Weberskirch, F. and Mufioz-Avila, H. (1997). Advantages of types in partial-order planning. In
Miiller, M., Schumann, O., and Schumann, S., editors, Beitrige zum 11. Workshop ’Planen und
Konfigurieren’ (PuK-97), number FR-1997-001 in FORWISS-REPORT. FORWISS.

Weld, D. (1994). An introduction to least commitment planning. AI Magazine, 15(4):27-61.

Wilkins, D. (1988). Practical Planning - Extending the classical AI Planning Paradigm. Morgan
Kaufmann.

LSA-Report LSA-98-02E, Centre for Learning Systems and Applications, Kaiserslautern



A Domain Specifications

This section gives details of the definition of several artificial domain used throughout this
report. Most of the domains can be found in literature but it is advantageous to give an
overview of the definitions as some of them are needed in detail.

When we describe a domain, we will list the possible predicates that occur in a domain only in
case this is not straightforward. The most interesting part is the definition of the operators.
We use the notation

{preconditions} operator name {effects}

for the description of an operator. Positive and negative effects (ADD/DELETE lists) are
distinguished by adding a sign: +P or simply P is a positive literal, —P is a negative
literal. The same is true for preconditions as CAPLAN also allows positive and negative
preconditions. If necessary, we will also define a typical problem, the possible solutions, and
the maximal set of necessary goal orderings.

A.1 Dm™SL, D™S2, DmS2*

These domains where originally presented in (Barrett and Weld, 1994). A typical problem
(I,QG) of size n is given by I = {I,...,I,} and G = {G4,...,Gp}. The domains differ only
in the operators that are available.

D™S': All operators are of the form {I;} A; {+Gi;—1I;|j<;}. There exists one solution to
such a problem; it consists of a totally ordered sequence of A1, As, ..., A,.

D™S?: This domains consists of two levels of operators for each goal G; which are needed
to achieve the goal: {Iz} All {+R;_Ij|j<i}a {IDZ} A% {+Gi;_Ij|Vja_Pj|j<i}- There
exists one solution to such a problem; it consists of a totally ordered sequence of
AL AL . AL A2 A2, A2,

D™S?*: Here we have slight modification w.r.t. D™S?, which makes the domain signifi-
cant more difficult. There is an additional goal G, and one action that achieves it.
We have the following operators: {I;} Al {+P;—Pj|j<i}, {P} A% {+Gi; —Pj|j<i},
{I,} A, {+G.;—TLilvi,—Pilvi}.2* A typical problems of size n here has also G, as
a goal, i.e.,, G = {Gy,...,Gp,G,}, and shows the typical difficulty of this domain.
Again, there exists one solution consisting of a totally ordered sequence of actions
Al .. AL AL AL A2 A2 A2

In these domains we therefore have necessary goal orderings of the form G, 1 <g G; for
i=2,...,n. In D™S% we additionally have G, <g g; fori =1,...,n.

A.2 0©O,-Variants of D™S! Domains: ©,D™S!, ©,D°S!

These domains where also originally presented in (Barrett and Weld, 1994). The ©,, trans-
formation of a domain adds the difficulty of an operator selection problem (see Section 4.3.2)
to the base domain, because only one alternative of n is correct in an overall solution. All
problems with the additional goal G, are significant more difficulty. A typical (difficult)
problem (I, G) of size n is given by I = {I1,...,I, Py, Pg} and G = {G1,...,Gp,Ga}-

*'Notice, the main difference to D™S” is that the effect —Pj|j<; occurs in actions of both levels, A; and
A2
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©,D™S!: The definition of the operators is as follows:

(Ii, P} AY {+Gi;—Ijlj<i}, {Ii, Ps} A? {+Gi;—I;|;<i}  and
{} Aa {+Ga; _Pﬂa _Gi‘Vi}

There exists exactly one solution to such a typical problem and it consists of a totally
ordered sequence of actions A,, A%, ---, A%.

©,D%S': We also used a variant which differs only by the fact that there are not interactions
between the actions A{* or Aiﬂ :

{I;, P} A2 {+G;}, {I;, Ps} A’ {+G;} and
{} Aq {+Go; —P3,—Gilvi}

Here, there a many solutions, all start with A, which is followed by all the A$ steps
which do not need to be ordered with respect to each other.

In ©,D™S! we have mazxNecessary((I,G)) = {Go <¢ Gili=1.n,Gi <¢ Git1li=1.m—1}, in
©,DS? it is a subset because of the missing establisher ordering problem, {Gy, <g Gili=1.n}-

A.3 ©2-Variants of DS’ Domains

Here we will define a new variant of the D™S' domains which is very closely related to the
domains create by the so-called ©,, transformation (see Appendix A.2). The domain named
©3D™S! is a variant of ©oD™S'. There is one more operator which, however, does not cause
an additional problem for an SNLP planner. But this domain has a very different property
with respect to the computation and usage of goal orderings because the optimal goal ordering
w.r.t. a <g-consistent goal selection strategy is different from the optimal ordering w.r.t. the
ordered establisher condition.

The definition of the operators A$* and Af is the same as in @, D™S'. But instead of a single
A, there are two actions, AL and A2, that are necessary for achieving the goal G,. The
definition of these two operators is as follows:

{}’ Aé {+Xa§ —Pg, _Gi|\1i}a {+Xa} Agz {+Ga§ _Paa _Pﬂa _Ii|Vi}

This domain uses the same typical problems as ©,D™S' and there also exists exactly one
solution to a problem. It consists of a totally ordered sequence of actions AL, A, ..., A% A2,

©,D™S! eipmst

Figure 22: Solution plan for problem of size n in ©,D™S! and ©2D™S!
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The interesting point is that in each plan the goal G, effectively is achieved after all goals
G; are achieved. Figure 22 shows the different solution plans for a problem of size n in
©5D™S! and @%Dmsl. It follows that the ordering G; <o G, is a necessary ordering in
©3D™S! but an impossible ordering in ©2D™S'. On the other hand, G, <o Gj; is an
impossible ordering in ©3D™S! but a necessary ordering in ©,D™S!. Nevertheless, the best
goal selection strategy must select G, first, in particular, the maximal necessary ordering of
a ©3D™S! problem is the optimal ordering for a goal selection strategy in both domains.

A.4 ART-1D-RD and the Variant ART-0D-RD

These domains ART-1D-RD and ART-MD-RD variants of Barrett and Weld’s D'S! and
D™S' domains. The main difference is the presence of a resource allocation problem which
is encoded implicitly in the actions that achieve the typical goals. This encoding makes uses
of two high-frequency conditions hy, h, (Kambhampati et al., 1995) which are needed and
deleted alternately by the different actions. This can be interpreted as an resource allocation
process: actions with an odd index allocate the resource, action with even index release the
resource. This makes the domain significant more difficult. A typical problem (I, G) of size
nis given by I = {I,...,I,hs} and G = {G1,...,Gp}.

The operator are defined as follows:

ART-1D-RD: There are two classes of operators, the one needs h; and produces he, the
other does it in the opposite way.

{Iia hf} Az {+Gz, +he; _Ii—la —hf} fOI‘ 3 = 1, 3, 5, e
{Ii,he} A; {—I—Gi, +hf; —I;_ 4, —he} for i = 2,4,6,---

The typical solution for a problem of size n is the totally ordered sequence of actions
Ala e 7An'

ART-0D-RD: The only difference to ART-1D-RD here we have only interactions because
of the resource allocation problem encoded by hy, he.

{Ii, h,f} A; {+Gi, +he; —hf} for:=1,3,5,--
{IZ‘, he} AZ {+Gi, +hf; —he} for 7 = 2, 4, 6,---
A typical solution for a problem of size n is a totally ordered sequence of actions with

the restriction that an action with odd index must always be followed and preceded by
an action with even index.

A.5 Link Repeat, Link Chain

These both domains have explicitly designed to show advantages of Means-Ends-Analysis
planners like PRODIGY over causal-link planners like SNLP (Veloso and Blythe, 1994). In
both cases SNLP has more difficulties mainly because it normally prefers simple establishment
to step addition, but in both domains the ideal strategy is to work first on those goals for
which simple establishment is not possible (with is the default strategy of a MEA planner).

Link Repeat: A typical problem (I,G) ofsizenisgivenby I = {g.} and G = {g1,-- ., gn, g« }
The actions are {gs,gi—1} Ai {+gi,—9.} and {} A, {+9g.}-

A typical solution plan is a totally ordered sequence of actions like Ay, Ay, As, A, .. ..
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Link Chain: A typical problem (I,G) of size n is given by I = {g1,...,9n—1} and G =
{g1,--,9n}. The actions are {g;|vj<i} Ai {+9i,+9gjlvj<i-1, —gi-1}-
A typical solution plan is a totally ordered sequence of actions like A,,..., A1, but

there are many possible other solution plans with more than n steps. Depending on
the control strategy the minimal plan can not be guaranteed to be found.

LinkRepeat has the property that we have an extreme form of goal subsumption, g; > g;|v;j<i,
but nevertheless, this domain is quite easy as all goals are easy to achieve and at least all
problems with goal that are a combination of the goals g; are trivially serializable. The
additional goal g, destroys this property but the problems don’t get really more complicated
as g, is very easy to achieve with an action that interacts with no other action.

The typical problems of LinkChain are difficult for SNLP because each operator can achieve
nearly every goal and all goals but one are already true in the initial situation. For n goals
there are n — 1 for which SNLP first tries simple establishment, but none of them is correct
in an overall solution.
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B Proofs

B.1 Properties of Goal Orderings

Lemma 1: Properties of and maximal possible orderings (see page 14)
Proof:

1. Definition 14 says that the maximal possible orderings are inferred from the plan step
orderings between the establishers of planning goals. SNLP uses the concept of causal
links to record which step serves as the establisher of an open condition and it allows ex-
actly one establisher for any goal (unlike other approaches, e.g., TWEAK (Chapman, 1987)
or multi-contributor approaches (Kambhampati, 1994)). As we also have transitivity for
<o there exists one unique set of orderings between the establishers {establisher(g;) <o
establisher(g;)|gi,9; € G} which maps to exactly one set of maximal possible goal orderings
(Definition 14). (q.e.d.)

2. There cannot exist possible orderings that are a superset of maxPossible((I,G), P) for
some P € solutions((I,G)). To proof this, let <’ be a possible ordering w.r.t. an arbitrary P
and let us first assume <'D<= mazPossible((I,G), P). Then there must exist some (g; <’
gj) € mazPossible((I,G), P) (*). But because <’ is a possible goal ordering we have g; <’
gj = establisher(g;) <o establisher(g;) (Definition 8/10/12) and also establisher(g;) <o
establisher(g;) = g; < gj (**), which means (g; <’ g;) € mazPossible((I,G), P). This is a
contradiction with (*), and we can conclude that we must have <'= mazPossible((I,G), P).
<'C< is true for some plan P because we have that P is consistent modulo <’ because of
possible((I,G), <’ P) and P is consistent modulo < because of (**). (q.e.d.)

3. This follows from (2.) as we have the following: if necessary((I,G), <) is true, then this
implies that VP € solutions((I,G)) : possible((I,G),<g,P) (Definition 11/12). (q.e.d.)

Lemma 2: Properties of sets of goal orderings (see page 15)
Proof:

1.(a) We have to show that we cannot have necessary orderings which are supersets of the
mazNecessary((I,G)). Let <’ be a necessary ordering for problem (I, G) and let us further
assume that <'D<= mazNecessary((I,G)) holds.

Then there must exist a (g; <’ g;) & mazNecessary((I,G)) (*). Because <’ is a necessary
goal ordering we have g; <' g; = establisher(g;) <o establisher(g;) for all solution plans
of (I,G) (Definition 8/10/11) and also establisher(g;) <o establisher(g;) = ¢; < g; (**),
which means (g; <’ g;) € mazNecessary((I,G)). This is a contradiction with (*), and we
can conclude that we must have <'= mazNecessary((I,Q)). (q.e.d.)

1.(b) Let < be an impossible ordering for problem (I,G). By Definition 13 this means
solutionscapian((I,G),<) = 0, so we have VP € solutions((I,G)) : P is not consistent
modulo <. With Definition 8 we can conclude that VP : Jestablisher(g;) <o establisher(g;)
such that (g; < ;) € maxzPossible((I,G), P). This, means that maxPossible((I,G), P) C<
or that g; < g; € maxPossible((I,G), P). If we look back at Figure 5 on page 14 we find
an example: {g1 <¢ ¢2,93 <¢ ¢1} is an impossible orderings because these orderings are not
true in any solution, P or P'. The orderings are a superset of mazPossible((I,G), P) and
inconsistent with maxzPossible((I,G),P'). (q.e.d.)

2.(a) If we imagine a domain and a problem with three goals g1, g2, g3 which have to be solved
in a linear order such that no two establishers are parallel, then {g1 <g g2} or {g2 < ¢3}
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both define possible orderings.

2.(b) The same problem could have two different solutions with the same goal orderings if
there is more that one possibility for establishing one of the goals without causing interactions
with other steps. Figure 5 also shows an example for that: in both solutions P, P’ we have
the goal ordering g1 <g go-

3.(a) This is a special case subsumed by Definition 15. mazNecessary((I,G)) is the intersec-
tion of all maximal set of possible goal orderings, which always is a subset of the intersection
of two such maximal sets of possible goal orderings.

3.(b) If we imagine a domain where a problem with goals g1, g2 has two solutions, one solves
the g; first, the other solves gy first. In that case we have two totally different sets of maxi-
mal possible orderings for each solution and mazNecessary((I,G)) = 0. Figure 5 is another
example for that.

Lemma 3: Maximal sets of necessary of possible orderings are not enough to make a
problem become <g-constrained trivially serializable (see page 22).

Proof: We give an example that serves as a proof. Imagine we have a problem with two
goals, (I,G) = ({+p1,+p2}, {+91,+92}), and the domain consists of the following operators:
{+p1} Op11 {+g1,—92}, {+p1} Opr2 {+91,—9g2, —p2}, {+p2} Opz {+g2}.** There are two
possible subplans that solve goal gi: Pi; consists of Opi1, Pis consists of Opia. g2 can only
be achieved by Ops.

Now we have the following situation: Pi; can be serially extended to a plan P = Py1 + Pyejzq
that solves both, g1 and gs. For the other plan, Pjo, such a serial extension does not exist
because Op12 produces two threats that cannot be resolved. So, the plan consisting of Op1;
and Opgy is the only solution to the problem and we have mazNecessary((I,G)) = {g1 <¢
g2} = mazPossible((I,G), P) if P is the solution plan. But the problem is not <g-con-
strained trivially serializable w.r.t. this ordering because not all partial plans achieving g;
are serially extensible to a solution plan for both goals. (qg.e.d.)

Lemma 4: Even subsets of maximal sets of necessary orderings can be enough to make a
problem become <-constrained trivially serializable (see page 22)

Proof: The artificial domain ©,,D™S! (Barrett and Weld, 1994) is an example that proofs
this lemma (see Appendix A.2 for details of the domain specification): here we have for a
problem (I, G) of size n

mazNecessary((I,Q)) = {Ga <¢ Gili=1.m, Gi <G Git+1li=1.n-1}-

As there exists exactly one solution plan for each problem in this domain this is also the max-
imal set of possible orderings because mazNecessary((I,G)) already forces all establishers
of all goals to be totally ordered. But we don’t need the orderings {G; <G Gi+1|i=1.n-1} to
show that the domain is <g-constrained trivially serializable.

If we only have the orderings <g¢ = {G. <¢ Gili=1.n} C mazxNecessary((I,G)) we must
show that any <g-consistent permutation is a serialization order. This is easy to see be-
cause of one special property of the <g-consistent permutations: each such permutation 7
represents a serializable order and will have to start with Gr(;) = Go which means that
the planner will solve G,, using operator A, first (see also (Barrett and Weld, 1994)). If it
selects some other goal G;, there will always be some plan consisting of A? for that goal that
cannot be serially extended to a plan for G; and G,. Let us now pick one arbitrary goal

22Gee Appendix A for some conventions about the notation of operator specifications.

LSA-Report LSA-98-02E, Centre for Learning Systems and Applications, Kaiserslautern



Gr2) = G,k € {1,---,n}. There are two possible operators in the ©,D™S' domain, A2
and Ag , but because the plan already contains A, and the operator Aﬁ will not be successful
even if selected. So the planner will end up with Af for goal G}, and this step will be ordered
after A, when all threats are resolved. The important thing is, that the refinements for
solving G are not revised. If we now select another G (3) = G; # G, the arguments are
the same why it is ordered after A,. The interaction between G; and Gy, can also be solved
without revising the plan for G, G} because these interactions are exactly the same as in the
D™S! domain which is known to be trivially serializable (Barrett and Weld, 1994). Finally,
this can also be done for all other goals in a similar way and we always can extend the plan
that has been found for Gr(1),- -+, Gr(m) to a plan for Gy, , Grmi1)- (q-e.d.)

B.2 Relation of Ordering Establishers and Goal Selection Strategy

Theorem 1: [t is a property of the domain whether the same goal ordering can be used for
the ordered establisher condition and the <g-consistent goal selection strategy (see page 23)

Proof: In Section 3.3.7 we already explained four points which follow from the fact that pos-
sibly there is no relation between goal orderings that can be used for the ordered establisher
condition and the <g-consistent goal selection strategy.

We have to show point three and four and give an example for that situation. The artificial
domain LinkRepeat (Veloso and Blythe, 1994) shows both points (see also Appendix A.5
for the detailed definition). Here a typical problem with goals g1,---,gn,g" has a solution
with a linear sequence of the actions Ai, A*, Ag,---, A* A, A*. So, a goal ordering like
<e¢= {(9i, gi+1)|vi, (gn,g*)} is obvious w.r.t. the ordered establisher condition. Empirical
results however show that the performance decreases when this goal ordering is used for a
< g-consistent goal selection strategy. This effect can be explained as follows:

The domain LinkRepeat has been designed to show advantages of the Means-Ends-Analysis
state-space planner PRODIGY over causal-link planners like SNLP. It consists of goals g;
which have the property that the solution of a g; requires that the goals g;|;<; are already
solved because of the precondition g;_; of each action A4;, i.e., g; > gj|<i for all goals except
g*. This is the reason why we only have one possible linear order between all actions. The
characteristic problem, however, is to find the right plan step achieving the precondition
g*: there are typically several ways for simple establishment, none of which will work, and
exactly one with step addition. The MEA planner always does the right thing by focusing
on goals that are not already true in the current state. A causal-link planner typically will
prefer an increasing number of simple establishments before it finally selects step addition.
Even with a <g as defined above, for which a typical problem is <g-constrained trivially
serializable the number of necessary inference steps to solve a g; increases. The reason for
that is that the precondition ¢g*@QA; can be achieved by ¢ — 1 possible simple establishments
or by step addition, altogether ¢ alternatives and preferring simple establishment is the worst
operator selection strategy here. For n goals we have n(n — 1)/2 alternatives to establish
the goals g*@A;. The result is that the goal ordering < as defined above makes a problem
< g-constrained trivially serializable but the number of inference steps to extend the subplan
for the first k& goal to a solution for the next goal constantly increases.

On the other hand, if we look at the inverse ordering {gi+1 <@ ¢i}, which is an impossible
goal ordering (i.e., it cannot be used for planning with the ordered establisher condition),
we do not have an ordering that makes the problem <g-constrained trivially serializable but
the number of inference steps does not increase with each goal. We always have only one
simple establishment and one step addition, i.e., for n goals 2 x n alternatives. This leads to
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the situation that the impossible ordering allows to find the solution in less inference steps
(and probably less time) than the necessary goal orderings.

B.3 Search Space

Theorem 2: Reduction of the size of the search space by goal orderings (see page 28)

Proof: We have to look in detail at the search spaces of SNLP and CAPLAN for a problem
(I,G). The interesting points are the differences that are induced by the replacement of
normal step addition and simple establishment by the <g-consistent variants.

(a) The difference of the sizes of the search spaces can be proved by an examination of the
consequences of a goal ordering. We will show that some nodes of the search space of SNLP
cannot be part of the search space of CAPLAN.

Because <g# 0, there exist two ordered goals g;,g; € G with g; <g g;. The ordered estab-
lisher condition implemented by the <-consistent plan refinements operators (Section 4.1.1)
requires that the establishers of both goal are ordered. Because any solution must be complete
we can identify s; — ¢;@Qsy, and s; — ¢;@s,, which declare s;,s; to be the establishers of
i, 9;- The solution plan must further be consistent modulo <G in CAPLAN (Definition 10),
s0, 8; <o $; must hold in every solution.

If we compare both search spaces we can identify nodes (plan states) in which we find the
plan steps s;,s; and there are three possible ordering relations between both plan steps: (i)
s; and s; are parallel, (ii) s; <o sj, or (iii) s; <o si;. The search space represents the worst
case, so each of these three ordering might occur in at least one node although we know that
s; <o sj must hold in all solutions. Let us look at these cases: s; and s; are parallel in a plan
state if the final ordering is created by a threat resolution but that threat is not resolved in
that plan state, or if s; is added within the establishment of the preconditions of s; and g; is
achieved by simple establishment later. s; <o s; cannot be refined into a solution because
the ordering of the steps is incorrect.

In the search space of CAPLAN the <g-consistent plan refinements definitely never will
create a plan in which s; <o s; is not true if the refinement addresses the goals g;,g;. Re-
finements because of other goals or threats still may create other orderings like in the search
space of SNLP. There must be at least one state which results from the application of a
refinement addressing g; or g;. This is enough to conclude that the search space of CAPLAN
consists of less nodes than the search space of SNLP. (q.e.d.)

(b) The path from the initial plan to a solution represents the sequence of plan refinement
operators necessary to find the solution. We have to show that the shortest path to a certain
solution P in the search space of SNLP can be mapped to a corresponding path in the search
space of CAPLAN which has at most the same length.

The proof of (a) has already shown that there exist nodes in the search space of SNLP that
do not exist in the search space of CAPLAN. Let us look at the possible differences between
solution paths in both search spaces. We can identify three refinements that must be on
every path to a solution for SNLP if goals g;, g; are to be achieved as in (a): the refinements
adding s; and s; and either a threat resolution or a simple establishment adding s; <o s;.
In comparison, CAPLAN will never need an explicit third refinement adding the ordering
between both steps like the threat resolution because the <g-consistent refinement operator
always will add this ordering if the other establisher exists. This makes clear that we have
two or three plan refinements in SNLP for the goals but never more than two in CAPLAN.
All other refinements must be the same as in SNLP because only ordered top-level goals are
treated differently by CAPLAN. (g.e.d.)
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