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A B S T R A C T   

Flexible Job Shop Scheduling (FJSSP) is a challenging optimization problem with multiple conflicting objectives 
used to model and compute real-world process scheduling tasks. In order for a manufacturing system to remain 
competitive, it is necessary to compute such optimization problems quickly and efficiently. The limitations of 
conventional optimization methods frequently stem from a delicate balance between solution quality and 
computation time. Consequently, a pressing need for solution algorithms arises that can effectively transcend 
these limitations. This paper presents a novel Quantum Annealing-based solving algorithm (QASA) for 
computing FJSSP, leveraging the power of Quantum Annealing combined with classical techniques. The pro
posed approach aims to optimize a multi-criterial FJSSP considering makespan, total workload, and job priority 
simultaneously. QASA employs a Hamiltonian formulation with Lagrange parameters to integrate the problem’s 
constraints and objectives. By assigning appropriate weights to the objectives, the method allows the prioriti
zation of certain objectives over others. To handle the computational complexity of large FJSSP instances, the 
problem is decomposed into smaller subproblems, and a decision logic based on bottleneck factors is employed to 
select critical jobs for computation combined with variable pruning techniques. To evaluate the effectiveness of 
the proposed approach, experiments are conducted on benchmark problems, considering makespan, total 
workload, and priority objectives. Therefore, QASA combining tabu search, simulated annealing, and Quantum 
Annealing is used for efficient computation and is compared with a classical solving algorithm (CSA) combining 
tabu search and simulated annealing. The results demonstrate that QASA outperforms CSA in terms of solution 
quality, as measured by set coverage and hypervolume ratio metrics. Furthermore, computational efficiency 
analysis reveals that QASA achieves superior Pareto solutions compared to the classical approach, with a 
reasonable increase in computation time.   

1. Introduction and motivation 

Production planning and control (PPC) is an essential function in 
manufacturing systems that involves managing the manufacturing and 
assembly processes through scheduling, capacity planning, and control 
of the production process. The primary objectives of PPC are to achieve 
on-time production and delivery, consistent capacity utilization, short 
lead times, low inventory, and high flexibility. These objectives are 
crucial to the economic viability of manufacturing systems, and efficient 
PPC is critical to achieving them [1]. However, the current global crises 
have resulted in significant market changes for manufacturing 

companies, necessitating effective approaches to manage these in
fluences. These influences can manifest in changes in customer demands 
or sudden disturbances in supply chains. As the intensity and speed of 
these influences are unpredictable, approaches to manage them are 
required to ensure the economic viability of manufacturing system op
erations. Process scheduling is a crucial component of PPC that is 
responsible for scheduling and sequencing jobs in a manufacturing 
system [2]. The main task is to assign jobs to the various functional units 
such as machines or assembly stations according to the objectives of the 
manufacturing system [3]. However, the optimal assignment is complex 
due to numerous constraints, objectives, and possibilities, forming a 
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challenging optimization problem known as the job shop scheduling 
problem (JSSP). This means that efficient and rapid optimization in 
response to the previously described unforeseen events is necessary, but 
challenging, especially for large job volumes. Due to the lengthy 
computation periods of traditional approaches such as exact methods or 
several heuristics, quick and effective optimization in reaction to 
unanticipated occurrences is inhibited, impeding the flexibility and 
responsiveness of the production system [4]. Thus, there is a need for 
computational methods that can provide efficient solutions to a 
multi-criterial JSSP in a short time frame. 

In the field of algorithm research, meta heuristics are therefore 
increasingly used to solve such complex problems in a time-efficient 
manner [5]. Not only in the area of JSSP but also in wide areas of 
optimization. For example, Shaukat et. al maximize the life cycle and 
efficiency of a reactor core using a genetic algorithm coupled with 
monte carlo methods and achieve good results under a reasonable 
computational effort [6]. In addition, Lodewijks et. al minimize the total 
costs and energy consumption of the design of an airport baggage 
handling transport system using several particle swarm optimization 
algorithms. The results show that their algorithms can reduce CO 2 
emission and costs within a short amount of time [7]. Moreover, such 
metaheuristics are used for many other optimization problems, such as 
the parameter estimation of solar cells [8]. Nevertheless, as problem 
sizes grow larger, metaheuristics are increasingly challenged by longer 
computation times and diminished solution quality. Consequently, the 
pursuit of more efficient algorithms in many research fields such as the 
JSSP remains a pressing and open area of research. 

Recent research has highlighted the potential of Quantum Annealing 
(QA) in addressing this gap, as it can provide results within seconds for 
various intricate optimization problems [9,10]. QA is a computational 
approach that aims to discover the energy-minimum states of an opti
mization problem by utilizing quantum mechanical effects, such as su
perposition, entanglement, and tunneling, rather than merely 
simulating them, as done in simulated annealing [11]. Therefore, QA 
can enable the computation of solutions to combinatorial optimization 
problems efficiently, which may not be possible with other algorithms 
[12]. Previous studies have suggested that QA can offer rapid and 
effective solutions for flexible JSSPs (FJSSP), which are an extension of 
classical JSSPs where machines can be flexibly assigned to operations 
[13]. However, while the mono-criterial objective of this approach may 
be suitable for some applications, it can limit its applicability to 
real-world process scheduling in manufacturing systems. To address this 
limitation, an enhanced QA-based algorithm is developed for solving 
FJSSP that incorporates multicriterial problem formulations and an 
improved iterative approach to expedite computation time and achieve 
better solutions using bottleneck factors. The proposed approach is 
tested with a variety of objectives, including makespan, workload 
minimization, and priority, as combinations of two objectives and one 
multi-objective configuration with all three objectives. To evaluate the 
effectiveness of the proposed approach, a comparison is made with a 
simulated annealing algorithm for global search combined with a tabu 
search for local optimization. The comparison is conducted using 
modified MK problems from Brandimarte as benchmarks [14]. These 
MK problems include several FJSSPs with varying of jobs, processing 
times, and machines. 

The following paper is structured as follows: Section 2 will highlight 
the state-of-the-art approaches of job shop scheduling (Subsection 2.1) 
and the basic principles of QA (Subsection 2.2). After presenting the 
research gap in Section 3, the methodology of the QA-based planning 
approach is described in Subsection 4.1 and Subsection 4.2, followed by 
the application scenarios (Subsection 4.3) that build the basis for the 
following investigations. Subsection 4.4 presents the mathematical 
formulation of the optimization model and all individual objectives 
followed by the multi-objective analysis and comparison with state-of- 
the-art algorithms in Subsection 4.5. The paper concludes with an 
outlook and summary. 

2. State-of-the-art 

2.1. Job shop scheduling approaches 

Job shop scheduling (JSS) is an optimization problem from opera
tions research and a widely used modeling technique for process 
scheduling tasks in manufacturing. There are many different types of 
problem formulations for JSSP. A distinction is made depending on the 
constraints and the object of consideration. The classical JSSP aims to 
allocate a set of given jobs, consisting of successive operations, to the 
machines of the manufacturing system under consideration of process
ing times in order to fulfill certain objectives [3]. Thereby, objectives 
can be grouped into time-based, job-number-based, cost-based, rev
enue-based, and energy- and environment-based criteria. The most 
widely used objective is the time-based objective makespan, i.e., the 
completion time of all jobs, to minimize the lead times of jobs in the 
manufacturing system. Moreover, several criteria can be considered 
individually or in combination as a multi-objective approach. In addi
tion, constraints are considered to map the manufacturing system’s 
conditions to the problem formulation [15]. Common constraints are a 
procedure constraint for the consideration of specified process se
quences, an overlapping constraint to avoid multiple uses of a machine, 
and a processing constraint, which ensures that started operations are 
not interrupted and start multiple times [16]. Moreover, assumptions 
are made. Among others, these include the availability of machines all 
the time without consideration of failures and maintenance, jobs 
without priorities and due dates, neglection of transport and set-up 
times, and predetermined assignments of operations to exactly one 
machine [15]. However, since these assumptions and limitations lead to 
less accurate models of reality, different types of JSSPs are used to better 
represent real-world conditions by neglecting some assumptions. Flex
ible job shop scheduling (FJSSP) assumes that some machines can 
perform the same tasks and that operations can be variably assigned. 
This is associated with machine-dependent processing times and is used 
to ensure a more practical optimization [16]. Moreover, in dynamic job 
shop scheduling (DJSSP), time-based events such as machine failures 
and probabilistic job arrivals are considered [17]. Depending on the type 
of JSSP as well as the objectives, the problem complexity and the re
quirements for the planning algorithms differ. However, one charac
teristic that all types of JSSP have in common is the NP-hardness of the 
problem formulation [18]. In other words, finding an optimal solution 
for this problem takes a non-polynomial amount of time in relation to 
the problem size. As a result, it can be very time-consuming to obtain 
optimal solutions for medium-sized problems and almost impossible for 
large problem instances. The results of Brucker et al. show these effects 
by using a branch and bound algorithm for computing various problem 
instances of JSSP [19]. Consequently, approximation methods are used 
to compute solutions efficiently for larger optimization problems. 

Approximation methods are categorized into constructive methods, 
artificial intelligence methods, local search algorithms, and meta- 
heuristics [4]. In order to solve various JSSP the optimization algo
rithms are used solely or in combination to exploit the specific advan
tages of the optimization methods. The different methods are thereby 
adapted according to the considered problem sizes and modeling tech
niques. Chakraborty et al. utilize a simulated annealing approach to 
calculate classical JSSP but acknowledge its limitations. To effectively 
tackle larger problem sizes, they suggest combining their approach with 
local search algorithms [20]. Furthermore, Zhang et al. employ a genetic 
algorithm to solve FJSSP but also acknowledge the aforementioned 
challenges [21]. Li et al. propose a solution for computing larger FJSSPs 
by combining a genetic algorithm with tabu search. Their approach 
demonstrates both scalability and high-quality results for well-known 
benchmark problems. However, the authors caution that multi-criteria 
considerations must be taken into account to satisfy the demands of a 
manufacturing environment [22]. However, adopting a multi-criteria 
approach results in a larger solution space, thereby increasing the 
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problem size and the computational complexity required to obtain good 
solutions. Moreover, alternative evaluation methods are necessary to 
compare results. For instance, Caldeira et al. propose the discrete jaya 
algorithm for multi-objective FJSSP, which minimizes the objectives 
makespan, total workload, and critical workload [23]. To compare the 
results, performance metrics such as set coverage and hypervolume ratio 
are used. The approach generates solutions with diversity and conver
gence to the reference Pareto front. However, attaining benchmark so
lutions of comparable quality is associated with increasing computation 
times and a time-based termination criterion. Thus, the solution space is 
restricted and limits the algorithm in finding optimal solutions. In real 
applications, this would directly influence the performance indicators of 
a manufacturing system and thus the profits achieved. Another approach 
proposed by Gao et al. demonstrates that by considering makespan and 
the mean of earliness and tardiness in a multi-objective FJSSP, the MK 
benchmark problems of Brandimarte can be solved with fast computa
tion times [24]. The results indicate that solutions can be found quickly 
and thus has a positive influence on the responsiveness of the 
manufacturing system. However, it is important to acknowledge that the 
suggested approach can only identify a restricted number of Pareto 
points in specific problem instances, thereby restricting the discovery of 
optimal solutions. As a result, tackling real-world applications with 
multiple objectives and complex problem instances can be challenging, 
particularly when working with weighted objectives. Therefore, there is 
a pressing need for computation methods that can deliver high-quality 
solutions while also achieving fast computation times. This is where 
QA can potentially offer a solution. 

2.2. Quantum Annealing 

QA is a quantum computing technique that leverages quantum me
chanics to speed up solving combinatorial optimization problems [25]. 
QA can be used to find the minimum energy state of an optimization 
problem, which necessitates formulating the problem as an energy 
minimization problem. To represent an optimization problem as an 
energy minimization problem which can be computed by QA, for 
example, the notation as Hamilton function can be used. The Hamilton 
formulation maps an energy value to each state of an optimization 
problem and is characterized by binary variables xi, xj and correspond
ing scalar weights Qii, Qij (Eq. (1)). 

H =
∑

i
Qiixi +

∑

i<j
Qijxixj (1) 

Solving the Hamilton function requires mapping it onto the quantum 
processing unit which is a common requirement for any quantum al
gorithm that uses qubits. This mapping process is known as embedding 
and can be a challenge for quantum annealers due to the need for 
additional qubits and longer embedding times. 

As the first company to develop and commercialize the QA system, D- 
Wave1 has achieved exponential growth in qubit number from D-Wave 
One in 2011 with 128 qubits to the current D-Wave Advantage with 
5640 qubits [26]. Moreover, it has developed various embedding tech
niques to optimize the minor embedding process. To save the com
plexities, auto embedding generates automatic mapping corresponding 
to different problems that can be used for simple problems and also 
cause long embedding times during changeable problems throughout 
the computation. Fixed embedding is a mapping strategy where the 
qubits and connections on the quantum chip are pre-mapped to the 
problem being solved, and the mapping remains fixed throughout the 
computation. Therefore, fixed embedding offers faster embedding times 
and may be more suitable for complex, large-scale problems. However, 

it may require more qubits and may not be as flexible as auto embed
ding. External embedding is another approach for mapping optimization 
problems onto the quantum annealer. In this strategy, an external solver 
or algorithm is employed to find the minor embedding of a problem, 
allowing for greater customization and flexibility in the embedding 
process. By utilizing specialized algorithms tailored for specific problem 
types or applying decomposition methods, external embedding can 
potentially result in more efficient embeddings and improved perfor
mance [27]. 

Despite the limitations in addressing extensive problems directly on 
the quantum processing unit (QPU) due to qubit constraints, a variety of 
hybrid solvers that integrate classical algorithms with QA can be used to 
address large-scale challenges. Furthermore, the open-source libraries 
for QA facilitate the specification of personalized hybrid workflows 
through the selection of diverse classical algorithms and embedding 
technologies, thus providing increased adaptability and customization. 
Owing to its ability to resolve intricate optimization issues, QA has 
found applications across various industry sectors such as finance 
[28–30], energy [31,32], transportation [33–35] and manufacturing [9, 
10]. In the context of JSSP, numerous investigations of QA have been 
conducted. Venturelli et al.’s proposed approach has demonstrated the 
feasibility of QA solving JSSP [36]. However, it must be noted that the 
problems under consideration are simplified small problem sizes where 
many boundary conditions of the real scenario have been neglected that 
are a long way from practical application. Despite, the potential of 
quantum-based methods for computation has been highlighted by 
Denkena et al., who employed a digital annealer to compute larger in
stances of the FJSSP [37]. The outcomes reveal not only the capability to 
handle larger problems but also offer advantages in terms of computa
tion time and achieved solution quality. Nevertheless, since a digital 
annealer solely simulates the quantum mechanical effects of a quantum 
annealer, it is plausible to assume that utilizing a real quantum annealer 
could lead to better results. 

3. Research gap 

Besides the previously mentioned application fields, recent de
velopments enable the utilization of QA for a multi-criterial JSSP. To 
showcase the capabilities of QA in solving large-scale problems, previ
ous studies have applied various hybrid solvers to address single- 
objective FJSSP of differing sizes, confirming QA’s computational ad
vantages over conventional methods [13,38]. However, most real-world 
planning problems require the consideration of multiple objectives. In 
order to make QA usable for such real-world applications, multi-criteria 
objectives have to be investigated. For multi-objective optimization 
problems, quantum-based algorithms have also been developed and 
shown to outperform classical algorithms [39]. However, the full po
tential of quantum algorithms for multi-objective optimization cannot 
be fully exploited if there are not implemented on the corresponding 
quantum hardware. Therefore, it is important to investigate whether 
these assumptions can be confirmed. For this reason, QA-based algo
rithms need to be developed that allow realistic objective combinations 
to be transferred to the FJSSP and computed, thus paving the way for QA 
to be used in real application scenarios. 

4. Multi-objective flexible job shop scheduling using Quantum 
Annealing 

4.1. Framework 

In general, a model formulation is needed to optimize the allocation 
of jobs to the machines of a manufacturing system to fulfill certain ob
jectives. Therefore, building a FJSSP in the proposed framework is the 
prerequisite. Fig. 1 depicts a generalized approach for computing multi- 
objective FJSSP using QA. The initial step involves converting the ma
chines M and jobs Jof a manufacturing system into binary variables 

1 Naming of specific companies is done solely for the sake of completeness 
and does not necessarily imply an endorsement of the named companies nor 
that the products are necessarily the best for the purpose. 
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during pre-processing. These variables serve as the foundation for 
formulating mathematical constraints and objectives. Next, binary 
quadratic model (BQM) formulations for each constraint and objective 
are established by linking the variables with corresponding weights 
through analytical methods considering properties such as processing 
times. The Hamiltonian function is then formed by combining individual 
objective functions with scalar weighting factors (Lagrange parameters). 
The Lagrange parameters’ values are determined based on the priorities 
of each objective, with constraints usually weighted higher than objec
tive functions. Finally, the Hamiltonian function is embedded onto the 
quantum hardware and solved using QA-based algorithms. The resulting 
solution can be evaluated using performance metrics and visualization 
techniques. 

4.2. Mathematical formulation 

Foundation of the proposed approach is a FJSSP determined through 
a number of given jobs J = {j1,…, jA} and a number of given machines M 
= {m1, …, mB}. Each job i ∈ J is presented through a predefined 
sequence of operations Oi = {oi1,…, oiC} and has a priority pri ∈ PR 
which determines its urgency. An operation oij can at least be processed 
on one machine mkϵMij ⊆ M within a corresponding processing time 
pijk ∈ P = {p111,…,pACB}. For the model formulation a discrete timeline 
T = {0,…,Tmax} is defined in which all jobs must be scheduled. To 
determine the starting time t of each operation oij ∈ Oi binary variables 
are used. A variable xijkt ∈ X is equal to 1 if operation oij starts at time t 
and is processed on machine mk. Otherwise, the variable is equal to 
0 (Eq. (2)) [13]. 

xijkt =

{
1 : oij starts at time t on machine mk
0 : otherwise (2) 

In the FJSSP, three constraints are considered. The processing 
constraint c1 causes each operation to be assigned to exactly one machine 
and starting at only one specific time step (Eq. (3)). With the procedure 
constraint c2 the compliance of the predefined sequence of operations is 
ensured (Eq. (4)). An overlapping constraint c3 ensures no multiple 
occupation of a machine by two different operations at the same time 
(Eqs. (5)–(7)) [13]. 

c1 = H4 =
∑

i∈J

∑

oij∈Oi

(

1 −
∑

t∈T

∑

mk∈M
xijkt

)2

(3)  

c2 = H5 =
∑

i∈J

∑

oij ,oij′∈Oi
j<j′

∑

t′− t<pijk

(mk ,m′
k)∈Mij×Mij

xijkt⋅xij′k′t′ (4)  

c3 = H6 =
∑

mk∈Mij∩M
i′ j′

∑

(oij ,oi′ j′ )∈Oi×O
i′

(i,i′,t,t′)∈G∪H

xijkt ⋅xi′ j′ kt′ (5)  

where 

G =
{
(i, i′, t, t′) : i, i′ ∈ J, i ∕= i′, t, t′ ∈ T, 0 ≤ t − t′ < pi′j′k

}
(6)  

H =
{
(i, i′, t, t′) : i, i′ ∈ J, i ∕= i′, t, t′ ∈ T, 0 ≤ t′ − t < pijk

}
(7) 

The constraints are represented as penalty functions using binary 
variables within a Hamiltonian. When a constraint is violated, the cor
responding penalty function increases the energy value of the Hamil
tonian. In principle, the consideration of further constraints is 
conceivable, e.g., including constraints related to machine unavailabil
ity, which would restrict start times to specific machine-allocated time 
slots. However, since these additional constraints are not taken into 
account in the current approach, it is established that the mentioned 
constraints are sufficient for the generation of valid results. The pro
posed approach encompasses multiple objectives, each of which holds 
significant relevance in the context of industrial planning. The primary 
objective is to minimize the makespan, which inherently contributes to 
the reduction of lead times in real-world operations. (Eqs. (8) and (9)). 
For implementation, any operation with a completion time exceeding 
the minimum predecessor time is subjected to a penalty. This minimum 
predecessor time is calculated by summing the minimum processing 
times of the preceding operations [13]. 

f1 = H1 =
∑

i∈J

∑

oij∈Oi

mk∈Moij

t∈T

xijkt •
(
t + pijk − Poij

)

(8)  

where 

Poij =
∑

j′<j

min
m′

k∈M
ij′
pij′k′ (9) 

The second objective function strives to minimize the total workload 
across all machines, leading to greater flexibility in job scheduling 
within real industrial companies. In this case, solutions that lead to 

Fig. 1. General framework for QA-based job shop scheduling.  
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longer durations of machine occupation are penalized. In order to do so, 
each binary variable is combined with the corresponding workload in a 
penalty function, so that low workloads are preferred. The workload is 
determined through the processing times on the machines (Eq. (10)). 

f2 = H2 =
∑

i∈J

∑

oij∈Oi

∑

mk∈Mij

∑

t∈T
xijkt •

(

pijk − min
m

k′∈Mij
pijk′

)

(10) 

The third objective leads to an allocation of jobs according to a pri
ority. Within an industrial context, such prioritization has the potential 
to expedite the processing of urgent orders, potentially resulting in 
reduced penalty costs and enhanced customer loyalty. Jobs with high 
priority have to be processed before jobs with lower priority if they 
compete for the occupancy of a machine at a certain time. To formulate 
this as a penalty function, an approach similar to the makespan objective 
is used where completion times that exceed the minimum predecessor 
time are penalized. In addition, a priority value is multiplied with the 
weight according to priority of the job (Eqs. (11) and (12)). 

f3 = H3 =
∑

i∈J

∑

oij∈Oi
mk∈Mij

xijkt •
(
t+ pijk − Poij

)
• pri (11)  

where 

Poij =
∑

j′<j

min
m

k′ ∈M
ij′
pij′k′ (12) 

The constraints and objectives are combined in a Hamiltonian with 
corresponding non-negative Lagrange parameters α,β,γ,δ,ε,ζ. In this way 
a BQM is created (Eq. (13)). 

H = α • H1 + β • H2 + γ • H3 + δ • H4 + ε • H5 + ζH6 (13) 

The Lagrange parameters determine the influence of the corre
sponding Hamilton term. This means that constraints usually have to be 
weighted higher than objectives in order not to obtain infeasible solu
tions. Furthermore, not all objectives have to be considered at the same 
time. Individual objectives can be neglected by setting the correspond
ing Lagrange parameter to zero. Thus, it is possible to consider all three 
objectives simultaneously or only two objectives together as well as a 
single objective function. 

4.3. Iterative approach 

The complexity of most multi-objective planning problems requires 
to limit their size to fit the limited capacity of quantum annealers. One 
approach is to break down the problem into smaller subproblems that 
can be computed iteratively. This involves analyzing only a specific 
number of operations Os of a subset of jobs Js at a time instead of the 
entire set. The outcomes of these subproblems are then combined to 
produce an overall result. However, to execute this strategy, a decision 
logic is needed to determine which job combinations should be allocated 
first. Bottleneck factors form the basis of this logic, enabling the selec
tion of the most critical jobs for computation. In the context of the multi- 
objective FJSSP, the bottleneck factor for each job i in each loop, 
denoted as δ(loop)

i (Eq. (14), is conceived as the square root of the sum of 
the squared values of individual bottleneck factors corresponding to 
each considered objective, with each factor appropriately weighted. 

δ(loop)
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

αl(δ(loop)
i,f1

)2
+ βl(δ

(loop)
i,f2

)2
+ γl(δ

(loop)
i,f3

)2
√

(14) 

In Eq. (2), δ(loop)
i,f1 , δ(loop)

i,f2 , and δ(loop)
i,f3 

represent the bottleneck factors for 
each objective f1, f2, f3, and αl, βl, and γl denote their respective weights. 

In this paper, three objectives are considered, which are makespan, 
total workload and priority. Therefore, the corresponding bottleneck 
factors are illustrated as follows.  

• The bottleneck factor of job i for the makespan objective, δi,f1 (Eq. 
(15), is calculated by subtracting the sum of minimum processing 
times for all remaining operations O′

i′across all remaining jobs J′ from 
the minimum processing time of the remaining tasks O′

i for job i. 
This difference is then normalized by the range of total minimum 
processing times for all remaining operations across all remaining 
jobs. 

δi,f1 =

∑

oij∈O′
i

min
mk∈Mij

pijk − min
i′∈J′

∑

o
i′j′∈O′

i′

min
m

k′∈M
i′j′

pi′j′k′

max
i′∈J′

∑

o
i′j′∈O′

i′

min
m

k′∈M
i′j′

pi′j′k′ − min
i′∈J′

∑

o
i′j′∈O′

i′

min
m

k′∈M
i′j′

pi′j′k′
(15)    

• For the bottleneck factor of workload minimization, δi,f2 (Eq. (17)) is 
calculated by defining machine bottlenecks δi,mk (Eq. (16)) for each 
operation oi in job i in combination with possible machines mk. The 
machine bottlenecks indicate how many operations of all remaining 
jobs can potentially be processed on the respective machine. This 
value is set in relation to the total number of remaining operations 
and summed with a term that reflects the number of potential ma
chines of an operation. In order to calculate the bottleneck factors 
δi,f2 , the machine bottlenecks δi,mk are summarized over all operations 
of a job and normalized by dividing the maximum summarized 
machine bottlenecks over all jobs. 

δi,mk =
1
∑

mk∈Mij

1
+

∑

i∈J′

oij∈O′
i

mk∈Mij

∑

i′∈J′

o
i′j′∈O′

i′
m

k′ ∈M
i′j′mk=m

k′

1

∑

i∈J′

oij∈O′
i

1
(16)  

δi,f2 =

∑

oij∈O′
i

δi,mk

max
i′∈J′

∑

o
i′j′∈O′

i′ δi,mk

(17)    

• The bottleneck factor according to priority δi,f3 (Eq. (18)) is defined 
by the priority values of the corresponding jobs. Each bottleneck 
factor is normalized by the maximum priority value of all jobs. 

δi,f3 =
pri

max
i′∈J

(pri′)

(18) 

The adjustment of αl, βl, and γl determines the weighting of the ob
jectives, resulting in a varied selection of jobs within a computation 
loop. This adjustment directly influences the selection of jobs based on 
the specific objective at hand. In cases where only two or a single 
objective is considered, the corresponding weightings can be set to zero 
to exclude that particular objective from consideration. 

In addition to a job selection logic, several variable pruning methods 
are needed. In each loop, unfeasible solutions can be eliminated in order 
to minimize the optimization problem. Therefore, the previous defined 
predecessor time Poij is utilized which despites the minimum duration 
of the preceding operations of the current operation oij. Furthermore, a 
successor time Soij is defined (Eq. (19)). The successor time is calculated 
as the sum of the minimum processing durations of all subsequent op
erations, including the processing duration of the current operation. 
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Soij =
∑

j′≥j

min
m′

k∈Mij

pi j′k′ (19) 

By utilizing the predecessor and successor times, it becomes possible 
to establish a time range within which an operation has to be processed 
(Eq. (20)). This time range is determined based on an estimated time 
interval Tmax specified in each computation iteration. Consequently, 
variables within the BQM that fall outside this interval can be elimi
nated, effectively reducing the complexity of the optimization problem. 

T =
[
Poij ,Tmax − Soij

]
(20) 

Moreover, additional variables can be eliminated when considering 
solutions of previous computation loops. Thus, the predecessor time can 
be increased accordingly to the point in time at which the previous 
operation can start at the earliest without violating a constraint. 
Furthermore, in order to minimize the problem size for all solvers, it is 
advisable to choose a small value for the parameter Tmax. This decision 
necessitates making an estimation based on factors such as the number 
of operations in the given jobs, available machines, and their corre
sponding processing times considered in one loop. By summing up the 
processing times of operations within each job in a loop, the maximum 
processing time across all jobs can establish a lower bound for Tmax in the 
loop. Similarly, the sum of processing times across all jobs can provide 
an upper bound for Tmax. To ensure suitable values for varying problem 
sizes, Tmaxcan be incremented based on the number of operations and 
their processing durations, while being decreased with respect to the 
number of machines according to Eq. (21) with Test as a predetermined 
minimum time interval. The factor represented by a1 signifies the pro
portion of jobs within the respective loop compared to the total sum of 
all jobs (Eq. (22)), while a2 denotes the ratio of operations associated 
with potential machine assignment conflicts relative to the total number 
of machines (Eq. (23)). 

The implementation of the previous described bottleneck factors and 
variable pruning method leads to a workflow shown in Fig. 2. 

Tmax =
∑

i∈Js

oij∈Os
i

max
mk∈Mij

pijk + Test • a1 • a2 (21)  

a1 =

∑

i∈Js

oij∈Os
i

1

∑

i∈J
oij∈Oi

1
(22)  

a2 =
∑

i∈Js

oij∈Os
i

mk∈Mij

∑

i′∈Js

o
i′j′∈Os

i′
m

k′ ∈M
i′j′mk=m

k′

1

∑

i∈Js

oij∈Os
i

mk∈Mij

1
(23)  

4.4. Use case 

The workflow described above presents a method for computing the 
FJSSP using a QA-based solving algorithm (QASA). However, due to the 
larger sizes of widely used FJSSP benchmarks, relying solely on a QPU 
seems not suitable due to the limited qubits number of the current 
quantum annealers. Using only a QPU would lead to numerous iterations 
and lower solution quality, as the tiny subproblems would be computed 
without considering the entire problem. To address this challenge, 
hybrid solvers that combine classical resources and QA are employed. 
These hybrid solvers allow for the consideration of larger problem in
stances in a single iteration, resulting in better solution quality while still 
benefiting from the fast computation provided by QA. The QASA in this 
study is built using a combination of tabu search, simulated annealing, 
and a QA-based implementation with an external embedding technique 
[40]. To evaluate the approach, 10 benchmark problems from Brandi
marte et al. are utilized, with the addition of randomly assigned prior
ities to the jobs [14]. This enables the evaluation of the priority objective 
using the Brandimarte benchmark, not only considering the total 
workload and makespan. Furthermore, employing this benchmark 
simplifies future comparisons with the selected approach, as it has 
already been widely utilized as a reference point by numerous other 

Fig. 2. Iterative computation framework.  
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methodologies. To ensure meaningful results, all problem combinations 
are also computed using a classical solving algorithm (CSA) for com
parison purposes. CSA employs a simulated annealing and tabu search 
algorithm and follows the same workflow, including variable pruning 
techniques, bottleneck factor-based job selection, and identical con
straints and objective formulation. This ensures that the comparison of 
algorithmic performance remains independent of the model formulation 
or the workflow, focusing solely on the algorithms themselves. To obtain 
comprehensive results, full factorial trials are conducted by varying 
different Lagrange parameters and job subset sizes. This procedure helps 
generate different Pareto points, which are then used as a basis for 
comparison between the two approaches. The investigations are divided 
into successive stages. The initial stage involves solving a multi-criterial 
problem by considering the minimization of makespan and total work
load. In the second stage makespan minimization and priority is 
considered. In the third stage all objectives are used in combination.  
Table 1 displays a partial set of computation inputs utilized in the study 
to build the BQM. In the table, each entry represents an interval, with 
the lower bound denoting the first parameter and the upper bound 
indicating the second parameter for the corresponding value. As the 
valid input parameter ranges vary across different instances of the 
problem, this approach assists in determining appropriate parameter 
ranges based on the characteristics of each problem instance. Previous 
research findings suggest that constraints should be prioritized over 
objectives, and therefore, the value bounds are selected to be higher 
accordingly [13]. In the use case, when performing iterative computa
tion, αl, βl, and γl are set to 1 if the corresponding objective is taken into 

consideration, and to 0 otherwise. This way, all objectives are consid
ered equally when selecting job subsets, but their priority is controlled 
by the weightings in the Hamiltonians. The computations for both the 
QASA and CSA are performed on an Intel XEON_SP_6126 with 20 GB 
RAM. In addition, the D-Wave Advantage is used as the quantum 
resource in QASA. 

4.5. Multi-objective analysis with comparison 

Each solution can be characterized by the value achieved in relation 
to the respective objective, which allows the use of different metrics for 
evaluation. In this way, makespan and total workload are evaluated by 
comparison of different makespan values ef1 or total workload ef2 values. 
In order to be able to apply the same comparison criterion to f3, a cor
responding value ef3 is defined (Eq. (24)). Since earlier completion of a 
lower-priority job does not necessarily influence the early completion of 
a higher-priority job, a comparison of jobs based solely on priority is not 
appropriate. For this reason, makespan is also included in the evalua
tion. To determine ef3 , the start time of the last operation of a job toiC 

added with the processing time of chosen machine mk is set in relation to 
the makespan and multiplied by a normalized priority value. The values 
are summed up over all jobs. Thus, the goal of minimization is directly 
reflected by this factor, as jobs with high priorities and short completion 
times are weighted low, while high priorities and long completion times 
are weighted high. 

Table 1 
Computation inputs of the BQM.  

Objective Test α β γ δ ε ζ Js Os 

f1 + f2 [10,50] [0.1100.0] [0.1100.0] 0 [100,1500] [100,1500] [100,1500] [2,10] [2,10] 
f1 + f3 [10,50] [0.1100.0] 0 [0.1100.0] [100,1500] [100,1500] [100,1500] [2,10] [2,10] 
f1 + f2 + f3 [10,50] [0.1100.0] [0.1100.0] [0.1100.0] [100,1500] [100,1500] [100,1500] [2,10] [2,10]  

Table 2 
Computation results.  

Problem 
instance 

Objective QASA CSA 

C (A, B) HVR Annealing time (s) Computing time (s) C (B, A) HVR Computing time (s) 

MK01 f1 + f2 0.571 1.102 0.320±0.155 22.98±2.23 0.142 1.020 17.81±0.97 
f1 + f3 0.670 2.605 0.396±0.125 19.96±4.47 0.100 1.263 17.00±0.00 
f1 + f2 + f3 0.368 0.966 0.468±0.131 22.78±2.18 0.167 0.840 17.85±2.62 

MK02 f1 + f2 0.667 1.160 0.719±0.277 30.72±3.9 0.000 0.806 33.46±2.76 
f1 + f3 0.636 4.139 0.918±0.553 37.08±4.47 0.222 2.359 25.30±3.43 
f1 + f2 + f3 0.474 3.015 0.458±0.153 32.30±3.85 0.231 2.320 23.39±4.127 

MK03 f1 + f2 0.570 2.170 1.974±0.628 82.23±8.24 0.540 2.240 89.77±17.78 
f1 + f3 0.412 3.707 1.083±0.328 81.34±10.83 0.235 3.014 110.50±18.5 
f1 + f2 + f3 0.222 1.557 1.062±0.393 53.54±6.51 0.111 1.030 70.07±13.86 

MK04 f1 + f2 0.500 1.594 0.678±0.219 29.2±3.22 0.330 1.483 38.68±4.99 
f1 + f3 0.777 1.568 0.770±0.181 31.73±3.06 0.375 3.161 42.53±5.04 
f1 + f2 + f3 0.654 1.760 0.642±0.127 32.18±3.78 0.043 0.490 33.39±3.85 

MK05 f1 + f2 0.545 1.933 1.065±0.243 50.06±2.84 0.364 1.533 54.00±6.44 
f1 + f3 0.461 3.077 0.935±0.332 37.33±5.78 0.220 2.413 65.78±3.39 
f1 + f2 + f3 0.541 1.188 0.816±0.162 54.30±5.55 0.200 0.589 57.31±5.42 

MK06 f1 + f2 0.500 2.983 1.033±0.220 70.47±4.55 0.3125 1.417 83.99±6.23 
f1 + f3 0.538 4.207 1.008±0.460 78.49±9.46 0.312 2.878 109.21±12.94 
f1 + f2 + f3 0.364 2.553 0.986±0.456 72.84±11.02 0.176 1.169 84.34±12.89 

MK07 f1 + f2 0.714 2.115 0.886±0.095 53.08±5.56 0.091 0.832 73.93±5.45 
f1 + f3 0.454 1.506 0.863±0.166 87.71±8.38 0.333 1.397 124.86±18.73 
f1 + f2 + f3 0.606 0.511 0.960±0.307 68.00±8.77 0.109 0.531 68.41±9.43 

MK08 f1 + f2 0.583 2.716 1.396±0.183 117.14±13.07 0.384 1.692 122.41±12.45 
f1 + f3 0.917 2.425 1.342±0.575 151.33±10.04 0.059 2.377 164.05±17.29 
f1 + f2 + f3 0.368 1.218 1.520±0.301 107.27±14.15 0.125 0.564 113.12±10.48 

MK09 f1 + f2 0.692 2.124 1.747±0.226 113.93±9.16 0.307 1.188 127.57±17.72 
f1 + f3 0.533 2.864 1.342±0.293 151.33±22.34 0.235 2.039 164.05±17.48 
f1 + f2 + f3 0.162 2.060 1.902±0.887 125.27±18.29 0.136 1.370 130.24±14.72 

MK10 f1 + f2 0.583 3.790 1.612±0.212 128.38±12.3 0.430 1.320 147.58±19.63 
f1 + f3 0.571 4.879 1.691±0.730 98.89±8.07 0.077 3.206 177.81±22.91 
f1 + f2 + f3 0.303 1.250 1.793±0.540 107.00±6.14 0.133 2.290 133.70±15.54  
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ef3 =
∑

i∈J

toiC + piCk

ef1
•

pri

max
i′∈J

(pri′)

(24) 

In order to evaluate multiple objectives at the same time, two 

evaluation metrics for solution quality are used. The first one is a set 
coverage metric (C-metric). This metric compares two sets of Pareto 
points (A, B) and makes statements about a superiority of a one set of 
Pareto points over the other (Eq. (25)). 

Fig. 3. Comparison of C-metric.  

Fig. 4. Comparison of Pareto points of MK09.  
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C
(

A,B
)

=
|{bϵB∃aϵA : a dominates b} |

|B|
(25) 

If C(A, B) represents the percentage of solutions in B that are domi
nated by at least one solution in A, and C(A, B) yields a higher value than 
C(B, A), then it can concluded that the solutions of algorithm A 
outperform the results of algorithm B [41]. 

In addition, hypervolume ratio (HVR) is used for comparison of 
Pareto solutions (Eq. (26)). The HVR is defined as the ratio of the 
hypervolume dominated by a set of solutions to the hypervolume of the 
entire objective space with vpf as the hypercube formed between a so
lution in the obtained Pareto front. The hypervolume is calculated by 
considering the reference point, which represents the worst achievable 
values for each objective. The HVR provides a measure of how well a set 
of solutions covers the objective space or how close it is to the optimal 
Pareto front. A higher HVR indicates a better spread and coverage of the 
objective space by the solutions, implying a higher quality set of solu
tions. Conversely, a lower HVR suggests that the solutions are more 
concentrated or do not cover the objective space well [42]. 

HVR =

volume
(
⋃PF

pf=1 vpf

)

volume
(
⋃PF′

pf′=1 vpf′

) (26) 

To evaluate the proposed approach, the computation times, along 

with the mentioned metrics, are documented. In case of QASA, an 
additional annealing time is recorded for distinctions between use of 
local resources and quantum hardware. This also creates comparability 
in terms of performance by including a time component in the evalua
tion. Therefore, the mean value of all computation times connected to a 
Pareto solution are determined for each problem instance. The pre- and 
post-processing times are neglected as they do not differ due to the same 
problem formulations as BQM workflows. To ensure fair comparisons, 
for each instance and objective, QASA and CSA are executed indepen
dently 100 times. The results of the computation are summarized in  
Table 2 and Figs. 3–6. The computing times listed in Table 2 represent 
mean values, each derived from all run times and accompanied by its 
standard deviation. 

By analyzing the results, it can be concluded that QASA consistently 
outperforms CSA in terms of the C-metric across all problem instances 
and objective configurations. In 100% of the cases, QASA achieves su
perior Pareto solutions compared to CSA. The overview of the C-metric 
comparison can be found in Fig. 3. Here the C-metrics of QASA and CSA 
over all problem instances are visualized. In addition, the solutions of 
MK09 are exemplarily shown for f1 +f2 and f1 +f3 in Fig. 4. The solutions 
are normalized with respect to the worst achieved Pareto solutions as 
reference points. Thus, in the case of f1 +f2 the dominance of QASA over 
CSA is directly apparent. Moreover, QASA outperforms CSA in terms of 
HRV in 84% of the cases. Fig. 5 provides a visualization of this com
parison. It is worth noting that differences in the metrics arise due to 

Fig. 5. Comparison of HVR metric.  
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QASA’s ability to achieve superior Pareto solutions, resulting in the 
removal of other non-dominant solutions from the Pareto front. Conse
quently, the hyper volume, which measures the distribution of Pareto 
solutions, may exhibit lower values. This effect can be observed in MK07 
and MK10 with the objective f1 + f2 + f3. In terms of computational 
efficiency, Fig. 6 presents the computing time for the approaches. For 
small problem sizes such as MK01 and MK02, CSA demonstrates better 
computing time compared to QASA. However, the difference in 
computation times is relatively small (e.g., 8,9% higher for MK02 with 
objective f1 + f2). Conversely, as problem sizes increase, QASA sur
passes CSA in terms of computation time. This holds true for all larger 
problem sizes and, overall, 84% of all problem instances. Furthermore, it 
is worth noting that the annealing times for both approaches fall within 
the range of 0.3–2.0 s across all problem sizes, indicating relatively low 
values compared to the total computation time (less than 2%). Differ
ences in computation time can also be attributed to the type of access to 
quantum hardware. While CSA solely utilizes local resources, QASA 
accesses quantum hardware via the cloud. Consequently, the total 
computing time for QASA can be divided into local computing time, 
transmission time to and from the quantum annealers, embedding time, 
and access time (actual annealing time). The variations in total 
computing time can be explained by this allocation, with the trans
mission time assumed to be nearly constant and its proportion of the 
total computing time decreasing with larger problem sizes due to higher 
processing unit demand. 

In conclusion, the comparative analysis clearly demonstrates that 
QASA outperforms CSA across various metrics such as the C-metric, 

HRV, and computational efficiency. QASA proves to be highly effective 
in finding potential Pareto solutions, allowing for the identification of 
suitable solutions based on the weighting of objectives. While CSA may 
have some advantages in terms of computing time for smaller problem 
sizes, QASA excels as problem sizes increase. As a result, QASA shows 
great potential for industrial applications, particularly in handling larger 
planning problems within short timeframes while considering multiple 
objectives. To fully explore this industrial potential, further in
vestigations are required. On the one hand it needs to be investigated 
whether the results of the study can also be extracted to large real-world 
application scenarios and on the other hand needs to be established the 
relationship between the selection of inputs (weights and solver pa
rameters) and the dependency of Pareto points since foundation of the 
investigation were full factorial trials. This will enable the customization 
of parameters to directly align with the preferences and priorities of 
specific industrial operations. Additionally, there is a need to explore 
how the proposed approach can effectively map continuous time in
tervals to discrete time intervals. Overall, with its superior performance 
and the potential for customization, QASA represents a promising 
approach for industrial use, paving the way for efficient and effective 
decision-making in complex planning scenarios. However, it is impor
tant to note that practical statements about the suitability of the results 
cannot be made at this time. One of the reasons for this limitation is the 
formulation of the model. In practical applications, continuous times, 
such as those used for due dates, are prevalent, whereas the selected use 
case exclusively considers discrete time steps. To enable practical ap
plications and provide meaningful insights, further investigations must 

Fig. 6. Comparison of computing times.  
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be conducted, and methods for discretization need to be integrated into 
the calculation model. Additionally, validation using real planning data 
from industrial partners is essential before any conclusive assessments 
can be made. However, owing to its demonstrated superior perfor
mance, there is reason to anticipate that QASA possesses the potential to 
deliver substantial value, thereby equipping organizations with the 
capability to render efficient and effective decisions when confronted 
with intricate planning challenges. 

5. Conclusion and outlook 

The outcome of process scheduling as part of the PPC has a direct 
impact on the operating costs of a manufacturing system. To minimize 
these costs, it is crucial to employ efficient planning algorithms that can 
solve complex problems while computing them within the shortest time 
intervals. However, due to the inherent complexity of such planning 
problems, heuristic planning approaches are commonly used. Never
theless, these approaches have limitations in handling highly complex 
problems. As problem complexity increases, a trade-off between solution 
quality and computation time arises. Recent studies have introduced QA 
as a potential solution for solving complex assignment problems. How
ever, these studies have been limited to small problem sizes and mono- 
criteria objectives. Consequently, they fail to meet the requirements of 
industrial applications, which demand consideration of multiple opti
mization objectives simultaneously. To address this research gap, this 
paper presents a QASA for the FJSSP. The mathematical formulation and 
framework for QASA are introduced, followed by a comparison with a 
CSA. The comparisons involve computing different problem instances 
considering various objective functions. Evaluation metrics are used to 
assess the Pareto fronts and computation time required for each algo
rithm. The results of the comparisons demonstrate that QASA out
performs CSA. QASA achieves qualitatively better results for each 
problem size, according to the C-metric in 100% of cases and according 
to HRV in 84% of cases. Additionally, QASA exhibits lower computation 
times for larger problem instances. Consequently, in the considered 
scenario, QA proves to be a suitable tool for computing FJSSP with 
multiple objectives. Furthermore, the diverse solution combinations on 
the Pareto front allow for the generation of different solutions based on 
preference, adaptable to the problem at hand. 

These research findings provide a solid foundation for potential in
dustrial applications. However, it is important to emphasize that 
establishing the relationships between parameter selection and planning 
results is crucial for the industrial use of this approach. For instance, in 
future work, deep learning methods will be employed to predict opti
mized parameter combinations based on historical planning data. 
Moreover, additional methods for variable reduction will be explored to 
handle the large number of variables for direct industrial use. Among 
other things, to adapt the approach to industrial scales. In addition, 
dynamic events will be included, as well as additional objectives such as 
minimizing tardiness. This comprehensive approach seeks to faithfully 
emulate the practical complexities and boundary conditions encoun
tered by industrial companies. Thus, this study lays the groundwork for 
the evaluation of an industrial application of QASA in the future. 
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