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Many inverse problems in science and engineering have their mathematical formu-
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Abstract

A class of regularization methods using unbounded regularizing operators
is considered for obtaining stable approximate solutions for ill-posed operator
equations. With an a posteriori as well as an priori parameter choice strat-
egy, it is shown that the method yields optimal order. Error estimates have
also been obtained under stronger assumptions on the the generalized solu-
tion. The results of the paper unify and simplify many of the results available
in the literature. For example, the optimal results of the paper includes, as
particular cases for Tikhonov regularization, the main result of Mair (1994)
with an a priori parameter choice and a result of Nair (1999) with an a pos-
teriori parameter choice. Thus the observations of Mair (1994) on Tikhonov
regularization of ill-posed problems involving finitely and infinitely smooth-
ing operators is applicable to various other regularization procedures as well.
Subsequent results on error estimates include, as special cases, an optimal
result of Vainikko (1987) and also recent results of Tautenhahn (1996) in the
setting Hilbert scales.

Introduction and Preliminaries

lation as an operator equation

where T': X — Y is a bounded linear operator between Hilbert spaces X and Y
with its range R(T) not closed in Y (cf. [2], [5], [3]). It is well known that if R(T) is
not closed, then equation (1.1) or the problem of solving (1.1) is ill-posed (cf. [4]).
A prototype of an ill-posed equation is the Fredholm integral equation of the first
kind,

Tx =y

/k(s,t)x(t) dt = y(s), a<s<b,

with a non-degenerate kernel k(-,-) € L?([a,b] x [a,b]) and X =Y = L?[a, b].



For ill-posed equations one normally looks for a least residual norm (LRN) so-
lution, as the solution may not exist. By an LRN solution we mean an element z
in the set

Sy={z e X :||Tzo—y| <|Tu—-1yl, Yue X}.

Of course, an LRN solution also may not exist, unless y € R(T) + R(T)* (c.f. [4]).
If T is not injective, then one has to specify conditions to single out a particular
type of LRN solution. In applications one often looks for a unique element £ € S,ND
such that
|L2]| < ||Lzl|, V= eS,ND,

where D is the domain of an unbounded operator L : D C X — Z from X to
another Hilbert space Z.
Now the question is the existence of such z and also its stability under pertur-

bation of the data y. To deal with such issues we adopt the following formalism.
Let
L:D(L)CX—>Z

be a densily defined closed linear operator from the Hilbert space X to another
Hilbert space Z such that

IT||* + |L2||* > yllz]*, V2 € D, (1.2)

for some v > 0. Observe that, the above condition is satisfied, if for example L is
bounded below, which is the case for many of the differential operators. In such
case, the range of L is seen to be a closed subspace of Z.

Under the above assumption on L, it is known (see e.g. [12]) that the map

(u,v) = (u,v) := (Tu, Tv) + (Lu, Lv), V(u,v) € D x D,

is a complete inner product on D with corresponding norm

1/2
lello = (1T |l” + | Lall*) ", = € D(L).
Let
X() = D(L) with <', ')0,

and let
TO = T|X0,

the rstriction of T to the Hilbert space Xy. Note that

[Toxll = [T2] < llzllo, Vz e Xo,



so that Tp : Xo — Y is a bounded linear operator with ||Tp|| < 1. Let D} be the
domain of the Moore-Penrose generalized inverse of Ty, i.e.,

D} = R(Ty) + R(T)*.
It is known (see e.g. [12]) that, for y € Df = R(T,) + R(Tp)*,
z:= T(;ry
is the unique element in S, N D such that
|ILz|| < ||Lz|, Yz € S,ND.

Here the notation A' is for the Moore-Penrose generalized inverse of A (c.f. [4]).

It can be seen, by using the denseness of D in X, that if range of T" is not closed
in Y, then range of Tj is also not closed in Y. Hence the generalized problem of
determining & = TJ y is also ill-posed whenever the range of 7" is not closed. In such
situations regularization methods are employed for obtaining stable approximations
for z.

Recall that, by a regularization we mean a family {R,},>0 of bounded linear
operators from X to Y together with a parameter choice strategy

a(+-): (0,00) xY = X
such that for § € Y with ||y — || < J, we must have
a(0,y) -0 as 0 —0,

and
Ra((;,g)g —z as o0—0.

After obtaining such a regularization method, the next concern would be to see

whether the error ||Z — Z,|| is optimal order in the sense of the best possible mazimal
error E(M,0) defined by

E(M,6) = i%fsup{||x — Rv||:z € M and v € Y with ||[Tz —v| < (5}.

Here M is some preassigned source—like set, and the infimimum is taken over all
algorithms R : Y — X. If M is a convex and balanced subset, then it is proved in
[10] that

e(M,0) < E(M,6) < 2¢e(M,9),



where
e(M,0) =sup{||z|| : x € M, ||Tz|| < d}. (1.3)

Thus the attempt is to show that
1 = Zall < c e(M, ),

for some constant ¢ > 0. A standard source-like set which has been considered in
the literature is
M,={x€ D :|Lx| <p}, p>0. (1.4)

Clearly, this set is convex and balanced.

The regularization procedure considered in the next section is the same as the
one in Hanke [6]. But, we give a different, apparantly simpler, motivation for its
introduction. Optimality results under the assumption that the generalized solution
belongs to M, are proved in Section 3, under apriori and a posteriori parameter
choice strategies. Error estimates under additional smoothness assumptions on the
generalized solution are derived in Section 4. The results of this section, in partic-
ular include the optimal result obtained by Vainikko [16]. These results have been
effectively used in unifying the results availablle in the setting of Hilbert scales (c.f.
Tautenhahn [14]) and the classical results (c.f. [4], [8], [16]).

2 The Regularization

Our idea is to decompose the generalized solution T into two parts xy and Zy, with
xo being stable under perturbation, and then apply a regularization method to
approximate Z. For this purpose first we assume that

e R(L)is closed in Z.

Let us introduce a few notation. Let Ly be the operator L considered as from
Xy into Z, i.e.,
L0!X0—>Z, L()l':L.'L', V.TEXO
It is seen, by the definition of ||-||o, that Ly is a bounded linear operator with || Lg|| <
1. More over, since R(L) is closed, R(Lg) is also closed so that the generalized inverse

L} of Ly is continuous. Now let
A=TyL.

Clearly A: Z — Y is a continuous linear operator, and it has the property (see [3]
for a proof) that

At = (noLd)" = Loty
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In particular, for y € D(T),
Aty = Loz = Li.

By projection theorem, we can write & as
i=uxz0+4 with zy€ N(Lg), #o€ N(Lo)".
Since LI)LO is the orthogonal projection onto the space N(Lg)*, we have
Zo = LiLoz = Li(Aly).

We show that x, is stable under perturbation in y. For this purpose we consider the
operator R
Ty := T0|N(L0)a

the restriction of 7p to the null space N(Lg) of the operator Ly. Using (1.2) it can
be seen that Ty : N(Lg) — Y is injective and its range is closed in Z. In particular
TJ is continuous.

PROPOSITION 2.1 X
To = TJ?J-

Proof.
It is enough to show that o R
TJT()IL'O = T(;ky
For this, let u € N(Lg). Then we have
<T()U, y) = <T()U, y> = <T0U’a P0y> = <T0U’7 T0j>a

where Py : Y — Y is the orthogonal projection onto R(7p). Thus for every u €
N(Lo), R
(Tou, y) = (Tou, Tozo + Too)-

But
<T0U,T0530> = (U,530>0 =0,

for every u € N(Ly), since £y € N(Lq)*. Hence we have
(T()u, y> = <T()U, T()JT()),

showing tht o R
TgToxo = T;y



By the above proposition,
#=mo+ & = Ty + Li(ATy), (2.1)

where zy = TJ y is stable under perturbation in y. The above representation mo-
tivates us to use a regularization procedure for approximating A'y, and thereby
giving a regularization for the original problem. For this we use a well-known class
of regularization method (c.f. e.g., Groetsch [4], Louis [8]), namely

Ro = go(A"A) A", a >0,

where {g, : @ > 0} is a family of piecewise continuous functions defined on [0, || A||?]
satisfying the following :
(i) There exists 3y > %, and for every 8 € [0, f] there exists ¢z > 0 such that

sup |)\ﬁ[1 - Aa(N)]| < cﬂo/j.
0<AL||T|2

(ii) For every p € [0, 1], there exists d,, > 0 such that

sup | Mgo(N)| < djat
0<A<|IT2

From these properties of {ga }a>0, using spectral theory, we obtain the following
inequalities for 0 < < 3, 0< p<1,0<v<f—1and 0 <w < L

[(A*A)°[I — A" Ago(A* AN < sup  [M[1=Aga(V]] < o, (2.2)

0T
JA(A* AT — A*Aga(A* A < sup  [NF2[1 = Aga(V)]| < ¢, 107F5,  (2.3)
0<A<| 7|2 ’
[(A*A)go(A*A)| < sup  [Mga(N)] < dyat™, (2.4)
o<

A(ATA g (A*A)|| < sup | NTag (V)| <d, . ia¥ 2. (2.5)

w+t

0<A<| |72 2

We assume that the data y is known only approximately, say y with

for some known error level 6 > 0. Then the regularized solution corrsponding to the
data y and ¢ are defined as

To = To + Liga(A*A) Ay (2.6)

6



and
Fo = Fo + Liga (A" A) A" (2.7)

respectively, where zy = TJ y and Ty = TJ 7.

Remarks.

The regularized solutions (2.6) and (2.7) can be defined with out R(L) being
closed. The assumption that R(L) is closed was made only to guarantee the stability
of zy under perturbation in .

It should be mentioned that the above regularization (2.6) has been considered
by Hanke [6]. But the approach adopted by us to motivate the definition of the
regularization, seems to be much simpler than that in [6]. We looked into two
orthogonal components of z, and motivated the definition of =, and Z,, whereas
Hanke [6] considered orthogonal decomposition of DS into three parts, and then
show that the element to which z, converges is of the form (2.1).

3 Order Optimality

Our concern now is to choose the regularization parameter « in such a way that
& — Zall < ¢ e(M,, )

for some constant ¢ > 0, where M, and e(M,, 0) are as in (1.4) and (1.3) respectively.
From the representations (2.1), (2.6) and (2.7) of Z, x, and Z,, we obtain the

relations
L( — x4) = LoLi[I — go(A*A)A* A]Aly,

Lo — ) = LoL} go(A*A)A* (y — §),
T (& — 24) = A[l — go(A*A)A* A]Aly,

3.
3.
3.
(20 — Fa) = AA"g(AA7)(y — 7). 3,

(3.1)
(3.2)
(3.3)
(3.4)
PROPOSITION 3.1 Let cg and d,, be as in the definition of {ga}a>0. Then

(1) IL(2 — za)l| < col L2,

(ii) |L(Ta = Za)ll < dijp s,

(1ii) |T(& — o)l < 12/l L],

(iv) T (20 —Za)ll < did.



Proof.
Since LOL(T) : Z — Z is the orthogonal projection onto R(Lg) and since A'y = Lz,
the results follow from (3.1)—(3.4) by making use of (2.2)—(2.5).
O

3.1 Results under an a priori parameter choice

THEOREM 3.2 [ 3 € M, and a = (2)’, then

p

1
— (@ —%,) €M, and ||Z—Z,| < K e(M,,0),

N

where k = max{co +d1, c1 + di}.

Proof.
If # € M, and o = (§/p)®, then by Proposition 3.1, we have

I1L(% = Zo) || < [L(Z = za)[| + |1 L(7a — Za)l| < cop + dij2p < 2k p,
and
1T(2 = Za)|| < T(2 = za)|| + 1T (20 — Ta)l| < c1y20+di 6 < 25 6.

Hence the result follows from the definition of M, and e(M,, ).

3.2 Result under an a posteriori parameter choice

Now we obtain the optimal result under a Morozov’s—type discrepancy principle.
Suppose that the regularization parameter is chosen such that the the Morozov’s—
type discrepancy principle

’7'15 S ||Tﬂ~7a — g” S 7—2(5 (35)
is satisfied for some fixed 71, 79 with 71 > ¢.
Lemma 3.3 Suppose « is chosen according to (3.5). Then

(11 —¢0)0 < ||Tzo — y|| < (72 + ¢o)0.



Proof.

Writing
Tzo —y=[T(xea — Ta) = (y = 9]+ (TTa — 1),
we have
[Tz0 — yll < |T(za — Za) = (y = | + [|TZa — F|
and
T30 = yll 2 |1 TZa — §ll - [T (@0 — Za) — (y = F)I-
But, by (2.2),

1T (20 — Ta) = (y = Y| = [T — AA"ga(AAT)](y — §)| < cod,

so that we get
| Tzo —yl|| < (12 +co)d

and
|Txo —yll > (11 — co)d.

THEOREM 3.4 Ifz2 € M,, y=T2 and « is chosen according to (3.5), then

1
— (T —1,) € M, and |z — Zo]| < & e(Mp,(S),
K
where
C;d;
I%:maX{l-f—TQ,Co-i- 22 }
71 — Co
Proof.

By Lemma 3.3 we have
1Tza — yll = (11 — c0)0.
This, together with the estimate in Proposition 3.1 (iii) gives
(1 = €0)d < ||Tza =yl = [T (za — 2| < eyl L.
Hence

5 c1
\/&_Tl—COp




Therefore, by Proposition 3.1,

d
IL(& — Za)|| < |L(E — za)|| + | L(za — Fa)|| < ( + #) p < ip.

T — Co)

Also, we have
1T(2 = Zo)ll = ly = TZall < lly =9Il + |7 — TZa|| < (14 72)d < Fp.

From these relations, the result follows.
O

Remarks.

For the case of Tikhonov regulaization we have g,(\) = 51— For this particular
case, optimal result has been obtained by Baumeister [1], Mair [9] and Nair [13].
While results of Baumeister and Mair are based on the a priori parameter choice
a = (§/p)?, the results in Nair is based on Morozov’s discrepancy principle. It should
be mentioned that many of the important deductions for Tikhonov regularization of
ill-posed problems involving finitely and infinitely smoothing operators considered
by Mair [9] were based on his optimal result. Theorems 3.2 and 3.4 show that such
deductions are valid not only for Tikhonov regularization but also for other regular-
ization methods which include methods such as truncated singular value expansion,
semi-iterative methods, pre—conditioned conjugate gradient method (See Hanke [6]
for a discussion on these methods).

4 Error Estimates Under Additional Assumptions

In this section, we derive certain error estimates with additional smoothness require-
ments on the generalized slution Z.
Let By, cs and ¢, be as in the definition of {g,}e>0. We assume that

Lz € R((A*A)")
for some v € [0, By — %], so that there exists @ € Z such that
Li = (A*A)"4.
For 0 < v < 3 — £, the quantities

k, = max{c, +d%, Cppl + di}
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and

~ _2v ﬁ Cu—}—l T{H
Ky = max {1 + 72, (T2 + o) Feg"™ + dyyo ( 2 ) }
71— Co
will appear in our results.
PROPOSITION 4.1 The following inequalities hold :
(1) [IL(Z = z4)|| < elltfe”,
(it) ||L(za — Zo)ll < dij2 g,
(iii) | T(& = za)ll < cosrpollafa” /2,
(iv) ||T(zq — Zo)ll < did.
Proof.
The results are obtained from (3.1)—(3.4) by making use of the relations in (2.2)—

(2.5).
|

4.1 Result under an a priori parameter choice
2
THEOREM 4.2 Let 7 > 0 be such that ||4]| < 7, and let a = (g) 2+ Then
|2 = Zall < Ko e (M, 6,) = ke (My,0),

where

1

0\ >t 1 2v

6, = (- and 1= T,
T

Proof.
From the assumptions on % and «, we have

2v
2uF1 )
||'&1||O{V S T <§> ’ = 7‘21/1-{—1 523:1 — ,r]
T
and

1
o T\ 2v+1 1 20
— =4 = = TF1 )2+l =1.
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Hence by Proposition 4.1 we have

IL(Z = Za)l| < L& — 2a)|| + || L(za — Za)l
oy o
< K
and
1Tz - T)ll < 7@ = 2a)|| + 1T (20 — o)l
< cpfldllo” 4 did

s
\/a<cu+%||u||oz +d1ﬁ>
.
< Kn <_> n
T

= K,0.

4.2 Result under an posteriori parameter choice

We shall make use of the following known result. For its proof one may refer ([13],
Lemma 2.3) or ([3], relation (2.46)).

Lemma 4.3 If B is a bounded self adjoint operator on a Hilbert space H and 0 <
u <1, then
B x| < ||Ba|"|l]|'™*, Vz € H.

THEOREM 4.4 Suppose y = Ti. Let 7 > 0 be such that ||| < 7, and let o be
chosen according to (3.5). Then

|z — Zo|| < Rume(My,d,) = ke (Mn, J),
where

1
201 o
o, = <§> and 1= I,

T
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Proof.
First we obtain an estimate for |L(Z — Z,)|| which is different form that in
Proposition 3.1. From (3.1), we obtain

IL(& —za)l| < [[lf — A" Aga(A+ A)| L]
= [[[l - A" Aga(ATA)](A"A)" 4|
[(A*A)"[T — A Aga (A" A)]a-
Writing w = I — A*Ag,(A*A)]u, and using Lemma 4.3, we get

2v+41

Ayl = |((4°2)")

2v
2v+4+1 —2u+1

< @A)y w

w75

Now using relation (3.3) and Lemma 3.3, we have

2u+1

(A" A) = )wl| = [I(A"A)" "2 [T — A" Aga (A" A)]a|
= [[(A"A)"2[I — A" Aga(A x A)]Lz||
— |JA[] — A" Agy(A + A)|LE|
= TG -z
< (7—2 + 00)5.
Also by (2.2)
Jwl < |II = A*Aga(A"A)| |4l < coT-

Hence 2 1
| L(& — zo|| < [(12 4 ¢0)8]2+ (cor) 1.

Again by Lemma 3.3 and (2.3),

(1 —c)d < [[T(@ — =)
< [JA[L = ga(A"A) AT A]LE||
< AL — ga(A"A) AT A](A*A) |
< AL — ga(A"A)ATA](A"A)"|| |2
< cu+%a”+%r.

From this we get

1
C,.1T \ 2vt1 2
s(”—2> 572

71 — Co

e
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Hence, by Proposition 3.1 (ii),

1
CoplT \ 2wl 2
2 2041 |

. 0
||L($a - ﬂﬁa)” < dl/2ﬁ < d1/2 (7_1 .

Thus
IL(& = Za)ll < [IL(Z — za)ll + | L(za — Ta)
1
< {mrapng gy (210)7 ),
= R
Since we already know that
1T = Za)ll = lly = TZall < lly = Gl + 17 = TZall < (1 + 72)6,

we get the required result.

Remarks.

We see that Theorems 3.2 and 3.4 are special cases of Theorems 4.2 and 4.4
respectively, obtained by taking v = 0. Also we observe that if L = I, then
e(Mi,4,) <1, so that a result of Vainikko [16] is recovered.

5 Error Estimates Using Hilbert Scales

Suppose the operators T and L are related to a Hilbert scale {H,}er (cf. [7]) with
HO =X by
1Tz > cllef-a 2 € X, (5.1)

and
|| Lz|| > d||z]s, x € HyN D, (5.2)

for some a > 0,0 >0,¢c>0and d > 0.
To obtain our results we shall make use of the interpolation inequality (cf. [7])

lzlls < =Pl ™ = € H, (5.3)

where r < s <t and § = =2
As in the previous section we assume that

Li = (A*A)"4

2
for some 4 € Z and v € [0, By — %] Let us denote by &, the quantity k, if « = (%) ,
and the quantity &, if « is chosen according to (3.5).
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THEOREM 5.1 Let 7 > 0 be such that ||4|| < 7 and let o be as in Theorem 4.2

or 4.4. Then
|z — Zo|| < &1,
where
2v b
t= + :
2v+1  (a+b)(2v+1)
and ,
= (57 (2) rowwtem
™=\ pi T .
Proof.

By taking r = —a, t = b and s = 0 in the interpolation inequality (5.3), we get

b _a_
=]l < ll)|6 [lll5*,

b
r\ars [
< (|- - .
lll < (d) (c)

e (M,,5) < (2) o <§> - . (5.4)

so that, if x € M,, then

This shows that

C

Now the result follows from Theorems 4.2 and 4.4 by taking » = 7 in the estimate
(5.4).
O

Remark.
The above result unifies the cases of the known result for L = I (c.f. [16], [8],
[4]) and also the result in the setting of Hilbert scales (c.f. [14]).
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