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Abstract

A multiscale method is introduced using spherical (vector) wavelets for the computation of
the earth’s magnetic field within source regions of ionospheric and magnetospheric currents.
The considerations are essentially based on two geomathematical keystones, namely (i) the
Mie representation of solenoidal vector fields in terms of toroidal and poloidal parts and
(ii) the Helmholtz decomposition of spherical (tangential) vector fields. Vector wavelets are
shown to provide adequate tools for multiscale geomagnetic modelling in form of a mul-
tiresolution analysis, thereby completely circumventing the numerical obstacles caused by
vector spherical harmonics. The applicability and efficiency of the multiresolution technique
is tested with real satellite data.
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1 Introduction

The near—earth magnetic field is due to three sources: (i) the core field, generated by geodynamic
processes in the earth’s core, (ii) the crustal field, mainly due to permanently magnetized rocks
in the earth’s crust, and (iii) the external field, generated by ionospheric and magnetospheric
current systems. Modelling of the components of the geomagnetic field is of paramount impor-
tance for several applications. For example, naval and aeroplane navigation systems as well as
spacecraft attitude control make excessive use of modern geomagnetic field models, exploration
techniques rely on geomagnetic information to steer drilling heads for bore holes. In physics,
applications include studies of the earth’s structure and dynamics, calculation of radiation belts
and cosmic particle orbits, investigations of solar—terrestrial interrelationships, etc. All these
applications depend seriously on the geomagnetic reference field under consideration.

To a first approximation the International Geomagnetic Reference Field (IGRF) in terms of
spherical harmonics is a frequently used geophysical model. This approach, basically introduced
by C.F. Gauss (1836) and therefore named Gauss representation, however, assumes the near—
earth magnetic field to be curlfree, which in connection with Maxwell’s equations means that
no electric current densities must be present at the place where the observations are taken. As
far as earth-bound or low-atmosphere modelling is performed this assumption is certainly true,
since the sources of the geomagnetic field, i.e. the electric current densities, are located within the
earth’s body as well as in the ionosphere and magnetosphere. In other words, the geomagnetic
field ‘in the space between’ may be simply understood to be a gradient field. Conventionally,
the potential is developed by means of outer and inner harmonic representations, reflecting the
external and internal parts of the magnetic field corresponding to the field sources (see, for
example, Backus et al. (1996), Langel (1987)). In particular, reconstruction by outer and inner
harmonics remains an important technique whenever attempts of separate main field modelling,
i.e. core and crustal field modelling are of interest. But also other mathematical techniques of
main field modelling have been introduced. For example, in analogy to the approach in earth’s
gravitational potential determination (cf. Freeden (1981)), spline concepts of main field mod-
elling have been proposed by Shure et al. (1982). Spline approxzimation, however, requires solving
a square system of equations with dimension equal to the number of data. Thus the normal
equation matrix will generally be a full marix, reflecting the particular status of decorrelation
guaranteed by the a priori chosen kernel function (in statistical nomenclature called covariance
function). This problem causes numerical difficulties with the presently available large data sets.
To some extend, indeed, the difficulties may be overcome by several techniques (for example, fast
summation, panel clustering (see e.g. Freeden et al. (1999))), but the numerical obstacles are the
main reasons why approximation methods based on (single scale) spline procedures could not
keep pace with the increasing flow of observational information. The serious drawback of spline
interpolation and/or spline smoothing of geomagnetic data is that it only provides a single scale
modelling by use of a (fixed) kernel (covariance) function. In conclusion, there is no efficient
transition from global to local modelling by only using one kernel (covariance) function with
(fixed) space/frequency localization property.

For future work, however, large innovations have to be made in geomagnetic modelling from
satellite data. The reasons for this statement are of physical and numerical nature:

Physical constraints: Satellite missions (like MAGSAT or CHAMP) collect their data within the



ionosphere that is a source region of the geomagnetic field. Consequently, satellite data of low
orbiting satellites do not meet the prerequisites for the Gauss representation. The magnetic field,
measured by satellites in the ionosphere, is no longer a gradient field. In fact, it also contains
magnetic contributions from current densities on the satellite’s track. But this means that new
vectorial methods, not based on the existence of a scalar potential, must be derived in close
orientation on a (quasi—static) formulation of Maxwell’s equations (in the form of pre-Maxwell’s
equations). Well-known from the literature (cf. Backus et al. (1996) and the references therein)
is the resolution of the magnetic field by means of the so—called Mie representation, i.e. the
splitting into poloidal and toroidal parts. The poloidal fields are due to tangential current
densities below and above the satellite’s track, whereas the toroidal fields are created by radial
currents which are crossing the satellite’s orbit. Those radial currents and the resulting magnetic
effects are more and more subject of recent research (see, for example, Olsen and Pfitzer (1974),
Richmond (1974), Stern (1976), Iijima and Potemra (1978), Kisabeth (1979), Kosik (1984),
Langel and Estes (1985), Donovan (1993), Langel et al. (1996), Lithr et al. (1996), Olsen
(1997), Engels and Olsen (1998)). In our approach geomagnetic modelling of the magnetic field
on (spherical) satellite orbits becomes available by combining the Mie representation with the
Helmholtz decomposition theorem of the theory of vector fields on the sphere.

Numerical requirements: The remaining question is how to computationally obtain in terms
of suitable trial functions (fields) the Mie representation for a given set of vectorial satellite
data. The uncertainty principle (confer the scalar theory by Freeden and Windheuser (1997),
Freeden (1998) and their generalization to the vector case by Beth (1999)) provides an adequate
tool for the classification of (spherical restrictions of) poloidal and toroidal vector fields by
determining a trade off between two ‘spreads’, one for the position (space) and the other for the
momentum (frequency). The main statement is that sharp localization in space and in frequency
are mutually exclusive. The varieties of space/frequency localization (cf. Freeden (1999)) can
be illustrated by considering different poloidal and toroidal trial fields on the sphere being
suitable for constructive approximation. Vector (spherical) harmonics show an ideal frequency
localization, but no space localization. The spectrum (of band-limited and non band-limited)
kernel (covariance) functions known from vectorial spline theory (cf. Freeden and Gervens (1991)
, Freeden et al. (1998)) shows all intermediate cases of space/frequency localization. But in view
of the amount of space/frequency localization it is also worth distinguishing bandlimited from
non-bandlimited kernels. As a matter of fact, it turns out that non—-bandlimited kernels show a
much stronger space localization than their comparable band-limited counterparts. Finally, the
Dirac kernels show ideal space localization, but no frequency localization. Thus they provide
the final stage in the spatial resolution of the magnetic field by trial functions. In conclusion,
vector harmonics and Dirac kernels are ‘extreme trial functions’ for purposes of geomathematical
modelling.

The classification of trial fields by the uncertainty principle for approximating the Mie represen-
tation from discrete vectorial data, therefore, leads us to the following philosophy of constructive
approximation (cf. Freeden (1999)): It is canonical to start the approximation of the geomag-
netic field with non-space localizing and ideally frequency localizing vector spherical harmonics
to determine a trend approximation, i.e. the long wavelength contribution. For the intermediate
cases between long and short wavelength approximation we have to continue with appropri-
ately balanced space/frequency (bandlimited) kernel functions. Finally, non-bandlimited kernel
functions have to come into play to analyse seriously space localizing, i.e. short wavelengh phe-



nomena.

The essential feature of wavelets as presented in this paper is their ability to realize multiscale
approximations of the magnetic field in form of a multiresolution analysis. By using a math-
ematically well-structured sequence of more and more kernel (covariance) functions reflecting
the various levels of space/frequency localization, the reference space, i.e. the space of square—
integrable vector fields is decomposed into a nested sequence of approximating subspaces (scale
spaces) representing the different stages of decorrelation. In doing so wavelets are used as phys-
ically motivated mathematical means for breaking up a complicated vector field such as the
near—earth magnetic field into many simple pieces of different scales and positions. This multi-
scale approach allows tree algorithms and compression of data (which is impossible in the case
of non-space localizing vector harmonics). The particular efficiency of wavelets is caused by
the property that only a few wavelet coeflicients in the wavelet table are needed in areas where
the magnetic field is ‘smooth’, while stronger resolution of a complicated pattern is settled by a
zooming—in capability using more and more space—localizing wavelets. Fuast computation becomes
available in form of pyramid schemata. This enables numerical evaluation for large data sets
such as real satellite data sets.

The outline of the paper is as follows: Chapter 2 presents a brief description of the physical
framework. Chapter 3 is concerned with the Mie representation. Chapter 4 demonstrates its
application to the geomagnetic field. Chapter 5 recapitulates the Helmholtz theorem for spherical
vector fields. The definition of vector spherical harmonics is given in Chapter 6. Chapter 7 deals
with kernel functions (briefly called kernels) in the (reference) space of square-integrable vector
fields on the sphere. In Chapter 9, the approximation of spherical vector fields is guaranteed
by an approximate convolution identity in terms of vectorial scaling functions. This assumes
the adequate formulation of convolutions (in Chapter 8). Next, in Chapter 10, we define vector
wavelets on the sphere. A characterization of their main properties is presented. Some examples
of bandlimited and non-bandlimited wavelets are listed in Chapter 11. Graphical illustrations
are given for the non-bandlimited Abel-Poisson wavelet and the bandlimited Shannon and CUP
wavelet. Finally, the separation of poloidal and toroidal geomagnetic field components from
MAGSAT data via vectorial multiresolution analysis is shown using bandlimited CUP—wavelets
(in Chapter 12).

2 Physical Framework

We start our considerations with a short note on notation: The standard notation in this paper
is such that capital letters F', G, etc. denote scalar functions. Vector fields are represented by
lower-case letters f, g, etc.

As is well-known, macroscopic electrodynamics is the theoretical basis for dealing with the
subject of geomagnetism. The fundamental equations governing that branch are Maxwell’s
equations for polarizable media. Neglecting the influence of Maxwell’s displacement current
density (cf. Backus et al. (1996)), results in two major advantages. First, the equations decouple
completely and - as far as the magnetic field is concerned - it suffices to look at the static



equations (i.e. the pre-Maxwell equations)

Vb =0, (1)

where b (in classical geophysical notation usually denoted by é) is the magnetic induction, i.e.
the magnetic field, and pg is the vacuum permeability, ug = 47 - 1077VsA 'm~'. Note that the
electric current density j is of zero divergence, i.e.

V.j=0. (3)
This fact will be of significant importance later on.

Earlier concepts in geomagnetic modelling assume that the geomagnetic data are solely collected
within a spherical shell €2, ;) around the origin — with inner radius p and outer radius o —
between the earth’s surface and the ionosphere so that the current density j can be neglected.
This results in VA b =0, Vb =0 which implies that there exists a scalar potential U in €,
such that b= —VU and AU =0 in €2, ;). In order to model the magnetic field b the potential
is expanded into a Fourier series of (scalar) spherical harmonics (multipole expansion), and the
expansion coefficients are chosen such that the gradient of the potential fits — in the sense of
a least—square metric — the given vectorial data as good as possible. This method, which is
known as Gauss representation, has been used and constantly improved for more than 150 years
now, so that profound numerical and theoretical techniques are existent (see e.g. Langel et al.
(1996) for up to date results).

With modern satellite missions like CHAMP, however, the situation changes. The data are
acquired within the ionosphere, where 5 = 0 is no longer a valid assumption in the pre-Maxwell
equations. All over the magneto- and ionosphere various current systems are present and their
corresponding magnetic fields contribute to the geomagnetic one. The most important iono-
spheric current systems are the so-called equatorial electro jet (EEJ) as well as the so-called
field aligned currents. Due to the intense solar radiation on the earth’s dayside (i.e. the hemi-
sphere directed to the sun) the electric conductivity of the ionosphere is increased and tidal
forces, due to solar heating as well as solar and lunar attraction, can drive large current sys-
tems. In connection with polarization effects in the ionospheric plasma the geomagnetic field
produces an enhanced hall conductivity (Cowling Effect) in the vicinity of the geomagnetic
equator. This increased conductivity results in an amplified current system - the EEJ - flowing
roughly along the magnetic equator. As regards our later considerations it is worth mentioning
that the EEJ, though mainly tangential, also provides a notable radial current density. Currents
flowing along the geomagnetic field lines - the field aligned currents - are caused by magneto-
spheric and ionospheric coupling or imbalances of Sq-current systems (see e.g. Olsen (1997) and
the references therein). In the polar regions field aligned currents flow onto or away from the
earth’s body, thus contributing large radial current densities confined to these areas. The EEJ
and the field aligned currents are of importance for modern day ionospheric satellite missions,
since the corresponding magnetic effects cannot be modelled via the Gauss representation. With
the current density not being negligible anymore, the existence of a scalar magnetic potential
can no longer be guaranteed.



3 Mie Representation

Backus (1986), Backus et al. (1998) describe a more general mathematical theory for the
decomposition of vector fields into so-called poloidal and toroidal parts. This so-called Mie-
representation can be applied to geomagnetic vector data from magnetic source regions and
will turn out to be a generalization of the Gauss representation. In what follows we will briefly
introduce the Mie representation.

For later use we define the operator A given by A, = z A V,, € R}, The Mie representation
deals with the decomposition of solenoidal vector fields. A vector field v defined on €, ),
0 <p<o<T1< o0, is called solenoidal if, for every closed surface S being entirely in Q, -, the
surface integral | 4 ¥ - vds vanishes (v is the normal on S pointing into the exterior of the inner
space of S). Note that if v is solenoidal in €2(, ), then V- v = 0 in €, ), whereas the converse
is — in general — wrong (cf. Backus et al. (1996)). From Eq. (1) we deduce that the geomagnetic
field is divergence free in the whole space R* and, therefore, (by means of Gauss’ theorem) is
solenoidal in R3. Hence, the application of the Mie representation to the geomagnetic field is
justified.

A vector field ¢ is called toroidal in €, ;) if there is a scalar field @ such that ¢ = AQ in Q, .
Q is called the foroidal scalar. A vector field p is called poloidal in §2(, ;) if there is a scalar field
P such that p =V A AP in Q, ;). P is called the poloidal scalar.

The Mie representation theorems (cf. Backus et al. (1996)) now read as follows:

(i) Let Q(, ) be a spherical shell with 0 < p < o <7 < co. Furthermore, let v be a solenoidal
vector field in Q(, ;) Then there exist unique scalar fields P, () in €2(, ) such that

Q(x)dwr(z) = [ P(z)dwr(z) =0, 1€ (p,7),
Q Q,

and
v=VAAP+ AQ

in Q7).

(ii) Suppose that v is a solenoidal vector field in a spherical shell , -y with 0 < p < o < o0,
then there exist a unique poloidal field p and a unique toroidal field t such that v = p + ¢ holds
true in €2, .

Consequently the Mie representation is unique, and whatever technique is used to obtain this
decomposition it is clear that the corresponding poloidal and toroidal fields are uniquely deter-
mined. These results are the basis for our further considerations.



4 Application to the Geomagnetic Field

Let b be a vector field solenoidal in Q, ;) with the Mie representation
bIV/\APb+AQb=pb+tb (4)

where P, and @) are sufficiently often differentiable in €, ;). Moreover, let j be a vector field
in the spherical shell ), -y satisfying the equations V - j = 0 and

VAb=Xj, XeR\{0}. (5)

Combining (4) and (5) a straightforward calculation leads to j = 3 (V AAQ, — A(AR)) in
Q(p,r)- But this just shows that j is also solenoidal, and we have j = VAAP;—AQ; in Q(, ;),where
the poloidal and toroidal scalars P; and @);, respectively, are given by

1

IDj = XQba (6)
Qs = {AP, (7)

Hence, by determining the Mie scalars of b (e.g. the magnetic field) we also determine the Mie
scalars of j (e.g. the electric current density j). Furthermore, with some additional mathematical
effort it can be deduced (cf. Backus et al. (1996)) that for the solenoidal vector field j (and
for any other solenoidal vector field) in €2, ;) its radial projection is only connected with its
poloidal field scalar P; via the identity

psT

T . ) 1
= J(T) = Jraa(T) = (AIDJ) (z), =€

|| ||

(with r € (p,7)). In spherical formulation using polar coordinates z = r€, r = |z|, £ = z/|z|,
r € (p,7), we are therefore confronted with the differential equation

7 (€ jraa(re)) = (A"F;) (r§), (8)

where A* denotes the Beltrami operator on the sphere ,, r € (p, 7). Since j is solenoidal we
know that [, jrad(ré) dwr(rf) =0 and [, Pj(rf) dw,(rf) = 0. But this suffices to uniquely
solve the Beltrami differential equation (8) (see e.g. Freeden et al. (1998)), and we get

Py(r9) = [ G(A%r& ) raatrn) di(r), 7€ €0,
Qr
with G(A*;-,-) being the Green function with respect to the Beltrami differential operator A*

(cf. Freeden and Gervens (1991)). Using (6) we can connect j.oq4 with the toroidal scalar of b
as follows:

Qp(ré) = X ; G (A% 7€, mn) Tiraa(rn)dw,(rn), 1€ € Q) .

This means that if the solenoidal vector fields b and j are connected via (5), then on each sphere
Q, with 0 < r < 7 the toroidal field t; is solely due to the radial projection of j.



Let now A = pg. Then the above considerations imply the following statements:

(i) Let b and j, respectively, be the magnetic field and the electric current density in a spherical
shell Q(, ). If no current crosses the sphere (. with r € (p,7), that is if the radial current
density jrqq4 vanishes on €2,, then the magnetic field b on €2, is purely poloidal.

(ii) Let b and 7, respectively, be the magnetic field and the electric current density in a spherical

shell Q, 7). If 7 =0 in €, 1), then the magnetic field in {2, ;) is purely poloidal.

The latter result shows that the Mie representation is a generalization of the Gauss method. If we
use geomagnetic data from regions with negligible current densities, the corresponding magnetic
vector field can equivalently be represented as a poloidal or a gradient field. If, however, the
current density is notable, the Gauss representation looses its validity and the corresponding
magnetic field consists of a poloidal as well as a toroidal part.

Our results show that the toroidal magnetic field is solely due to radial current densities at the
place of the measurements. Consequently, vector data from ionospheric satellite missions should
show significant toroidal fields near the polar regions (due to field aligned currents) and along
the geomagnetic equator (resulting from the EEJ).

There remains the question of how to extract the restrictions of poloidal and toroidal parts
to a sphere from a given set of vectorial data. Olsen (1997) suggests a technique based on
a spherical harmonic expansion of the toroidal and poloidal scalars. In accordance with the
uncertainty principle we, however, suggest the use of kernel functions, since this method can be
applied directly to given vectorial data without making the detour using scalar functions. In
what follows, we briefly summarize the necessary theoretical background and show how the Mie
representation and the kernel functions on the sphere can be connected in adequate manner.
Observe that, by virtue of the isomorphism Q4 3 £ — r€ € )., we can assume vector fields
f:9Q, >R r € (p,7) to be defined on the unit sphere Q(= Q) by f(z) = f(rf),z =r, € € Q,
r € (p, 7). For the sake of simplicity, we therefore restrict all our activities to the unit sphere (.

5 The Helmholtz Theorem

For a given vector field f = Q — R3, the field fror : € = fror(€) = (€- £(€))E, € € Q is called the
normal part of f, while fion : €= fran(§) = f(&) — frnor(§), £ € Q is called the tangential part of

f. A vector field f is called tangential (resp. normal), if f(&) = fian(€) (vesp. f(&) = fror(€))
for all £ € Q.

The study of vector fields on the sphere can be greatly simplified in terms of the following op-
erators: V* (surface gradient), L* (surface curl gradient), V*- (surface divergence), L*- (surface
curl), and A* (Beltrami operator). Their representation in terms of polar coordinates and their
role in integral formulas on the sphere are extensively discussed in Freeden et al. (1998). By
use of these operators any vector field f € c(l)(Q) admits the ‘Helmholtz decomposition’

f(é) = fnor(g) + ftan(f)a £e, (9)



where

fror®) = fO©), €eq,
fran(€) = PO+ (), €€,

and f(€)- FO(E) = 0,4 = 2,3, Vi- FO (&) = Vi fran(€), VE-(FP(E)AE) =0, VE-FO(€) = 0,
Vi (fOE) AE) = Vi (£(€) AE). Due to Backus et al. (1996) there exist uniquely determined
functions F; € C?(Q), i = 2,3 satisfying

/ Fi(€)dw(€) =0,  i=23,

such that

FAE = ViR, €€,
FOE) = LiF3(€) =EAViF3(E) €. (10)

Freeden and Gervens (1991) give the explicit representation of F;, i = 2,3, in terms of Green’s
function with respect to the Beltrami operator A*, namely

Fye) = - / G (A6 m) V- (f(n) — (1 F(m)n) dew(i),
Q

Fy6) = - / G (A% ) V- (A F()) duw(n).
Q

Using the operators O : ¢(D(Q) — C0(Q), i = 1,2, 3, defined by
ofe) = ¢ £,
0P f(&) = —Vi-(£(&) — (€ F(9)8),
O f(©) = Vi-(EAF9),
we are able to rewrite the decomposition formula as follows:
0@ = (08570)¢
10 = =i [ 6% O fdsta)

Q
O = -1 / G (A*;¢,1) OD) f(n) du(n).
Q

Corresponding to the operators O() we introduce operators o) : C(Q) — ¢(9(Q), i =1,2,3,
by setting

VR = F(e),
oV F(E) = ViF(©),
o )F(€) = LiF() =EAVEF(E) .



Then it is not difficult to show that for F € C®)(Q)
09 (oWF () =0,  j#i
Moreover, for ¢ = 7, we get

oW (6WF(©) = F©),
0? (PF() = -A:F(@),
09 (o¥F()) = -ALF() .

Taking into account the uniqueness of both the Mie and the Helmholtz representation on a
sphere, it is obvious that oé?’) F5 in (10) and hence in (9) is equal to the toroidal part in (4). We
will see that our techniques allow us to separate the poloidal and toroidal part of the geomagnetic
field b in a natural way, which is an important feature for satellite missions like CHAMP. Since
the poloidal and toroidal part of b are linked to the Mie scalars of the present currents via the
pre-Maxwell equations, it is also possible to to recover these currents themselves.

6 Vector Spherical Harmonics

We now turn to the definition of basis systems suitable for the representations of vector fields.
Let 12(Q2) and £2(€2), respectively, be the space of all square-integrable vector and scalar fields
on the unit sphere Q. {V,;},n € Ny,l = 1,...,2n + 1, be a system of £?(2)-orthonormal
(scalar) spherical harmonics. As is well-known, every scalar field F € £2(2) can be written as
Fourier expansion

oo 2n+1

F = Z Z FMNn,1) Yoy, (11)

n=0 [=1
where the Fourier coefficients of F' are given by F"(n,l) = [, F(£) Yy, (€) dw(£). We define for
. N
i = 1,2,3 a system of vector spherical harmonics of type i by yg’)l(f) = (psf)) 2 og)Yn,l(f),

with £ € Q,n=0;,0;+1,..., I =1,... ,2n+ 1, where uﬁ) =1fori=1, usf) =n(n+1) for
1 =2,3, 0 =0 and 0 = 03 = 1. The factor usf) is needed as a normalization factor, whereas
the distinction of 0; and 09,03 is made since there exist constant radial fields but no constant
tangential fields.

The system of all vector spherical harmonics of type 1,2 and 3 together is an orthonormal, com-
plete system in the reference space [?(€2), such that every function f € [?(£2) can be represented
by its Fourier series

oo 2n+1

=33 3 99, (12)

=1 n=0; I=1

10



where the Fourier coefficients are given by
(@) _
19 = (1) ey = [ 103856 aute).

The separation of the basis system into vector spherical harmonics of type 1,2 and 3 is essential,
since it permits us to recover a function according to the Helmholtz theorem and, hence, in
accordance with the restrictions of the poloidal and toroidal part of the Mie representation to the
sphere. However, the uncertainty priciple tells us that for the constructive part we should not use
the vector harmonics, since these functions are suitable only for long—wavelength approximation.
Moreover, from a computational point of view, any implementation of vector spherical harmonics
requires the use of a particular coordinate system and leads to strong oscillations for higher
degrees. Instead, we propose a different type of basis functions in the following section, namely
(rotation—invariant) kernel functions. Nevertheless it should be kept in mind that [2(Q) is
canonically split into three subspaces:

o0

l(Qi)(Q) = @ span {y l}, i=1,2,3 .
n=0; =1,...,2n+1
so that [?((2) is the orthogonal direct sum of 1(21), lé) and 1(23). For more details concerning scalar,
vector and tensorial spherical harmonics the reader is referred to Freeden et al. (1998).

7 [12(Q)-Kernel Functions

Consider now a special case of the Fourier series (12), where we choose f,") 0 = = k™(n) Yn(n) for
i € {1,2,3} fixed, n € Q arbitrary but also fixed and where {k"(n)}, n € N is a sequence of real
numbers satisfying

[e.e]

Z 2n—|—1|k,\( )‘ < oo

n=0;

Then we call the function
oo 2n+1

KO =3 S kN0 Yaum) y(6) (13)

n=0; I=1

an [?(2)-kernel function (briefly /2(Q)-kernel). All of our following approximation techniques are
based on kernels of the kind (13). Before we show how to do constructive approximation with
these kernels we mention some properties of these kernels that are important from a numerical
point of view. Firstly, /2(£2)-kernels are easily computable. We find

oo 2n+1 1 .
K = 3 3 K0 Yuum) (19) 7 o’Yuu(©
n=0; I=1
. oo 2n+1 1
= o0 3 S et (1) vt
n=0; =1

= o Y 2 iy (49) T Pt

n=0;

11



where P, is the Legendre polynomial of degree n. In analogy to the Legendre polynomials we

introduce Legendre vectors pg ) by

pUEn) = EP(En) (14)
pP(En) = (nn+1)"" (n—(€-n)€) PhE-n) (15)
PPEn) = (nn+1)"" (EAn)PLE ). (16)

Using these vectors we finally arrive at

KO e =Y P k) (W) ) a7
n=0;

Hence, in order to evaluate the kernel (13) we have to evaluate the series (17). For series in terms
of (14), (15) and (16) there exist fast and stable one-dimensional recursive algorithms, (see e.g.
Deufelhard (1975)). Furthermore, from (17), we conclude that these kernels, although defined
via vector spherical harmonics, do not require any particular coordinate system such that the
poles are no exceptional points. Moreover, the uncertainty principle (cf. Freeden (1999), Beth
(1999)) informs us that the varieties of the intensity of space/frequency localization on the sphere
Q can also be illustrated formally by considering the sequence {k”(n)} of the kernel functions.
By choosing k" (n) = 8, we formally obtain a vector spherical harmonic of degree [, i.e. a vector
field with ideal frequency localization, but no space localization. On the other hand, if we set
k™(n) = 1 for all n we obtain the kernel which is the Dirac functional in l(QZ.)(Q). Bandlimited
kernels satisfy k" (n) = 0 for all n > N for some integer N. Non-bandlimited kernels satisfy
k™(n) # 0 for an infinite number of integers n. Assuming the property lim, ,o, k"(n) = 0 it
follows from the uncertainty principle that the slower the sequence {k(n)} converges to zero,
the lower is the frequency localization, and the higher is the space localization.

8 Convolutions

One of our main scopes is the recovery of vector fields, in particular the geomagnetic field,
from given discrete vectorial data. For our [?(Q)-kernel based methods we need two types of
convolutions. Our treatment will be brief (for details confer Bayer et al. (1998), a different
convolution approach is indicated in Freeden et al. (1998) which will not be discussed here):

(i) the convolution of an I%(Q)-kernel k@ against a vector-valued function f € 1?(Q) is defined
by

KD« )(E) = /Q KO (0, €) - f(n) dwo(n) (18)
o 2n+1

= Y Y Fm) v,  ceq

n=0; I=1
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(ii) the convolution of an I*(Q)-kernel k) against a scalar-valued function F € L£2() is defined

as
KD« F)() = / KO (€,m) F(n) dw(n) (19)
Q
oo 2n+1
= 3 SR PNy, geQ.
n=0; (=1

Let now A() and k@ be two 1?(Q)-kernels. Combining (i) and (ii) we obtain the convolution of
R % k@) against a vector-valued function f € 12(Q) defined by

oo 2n+1
(D% kD5 1)) = 3 ST K ) Nm) £ 506 ceq. (20)
n=0; I=1

As we recognize, Eq. (20) yields a filtered version of f (9). More explicitly, the Fourier coefficients
are filtered by the factor k" (n) h"(n) for each n = 0;,0; + 1,.... This observation leads to the
notion of a multiresolution analysis (MRA) in terms of scaling functions and wavelets.

9 The Scaling Function

We turn now to the constructive part of this paper. Most of the underlying ideas can be found
in Freeden and Windheuser (1997) and Freeden and Schreiner (1998), for more applications to
vectorial problems the reader should consult Freeden et al. (1998) and Bayer et al. (1998). Let

), [0,00) = R, i =1,2,3 be three functions satisfying the following conditions:
(1) (p((f) is monotonically decreasing,

(ii) (p(()i) is piecewise continuous in (0, 00) and continuous at 0,

(i) ¢y’ (0) =1,

(iv) Lo, 2ol (n)]? < oo

n=0;

(1)

Then ¢’ is called the generator of the scale discrete scaling function of type 7, which is defined
as

oo 2n+1 ] )
m =3 S o) y€) Yagln), (&) €92 i=1,23. (21)
n=0; =1

The dilates of the generator of the scaling functions are defined by

Dl (z) = 9\ (z) = o} (279x), i =1,2,3,

13



and accordingly we set the dilated scaling function

oo 2n+1

Dol n) =0 Em =D > P y©) Yulm), Em e, jez. (22

n=0; I=1
Eq. (22) is well defined, since we have

o0
2n+1, @4 9
Z?VPJ- (n)|* < oo,

n=0;

provided that condition (iv) imposed on <p(()i) holds (for details see Freeden and Schreiner (1998)).

We turn now to a central result of our method: Let f = f(U 4+ ) 4+ f3) € 12(Q) and let @(()i) be
a scale discrete scaling function as in (21). Then () can be approximated by filtered versions
of itself as follows:

lim (180 %80« f = fOlp@) =0,  i=1,23. (23)

This is why the sequence {<I>(i) }, J € Nis also called an approzimate convolution identity in 1(2 )Q

i=1,2,3. Eq. (23) means that for each J € N we get an approximation (I>( ) 4 f of f®
and that these approximations become arbitrarily exact (in the 12()-sense) as J —> 0o. Now we

pack all possible J-level approximations together in so-called scale spaces Vgi). More precisely,
for every f € 12(Q)) we define the operator Py) by Py) (f) = @9) * @9) * f, and accordingly we

set VW = (P (f) | f € 12(Q)}, for i = 1,2,3.

The dilation operator D; is constructed in such a way that the corresponding scale spaces are
nested, (cf. Bayer et al. (1998)) i.e. they satisfy
VWe..cvP eyl ic...cl?@), i=123,

In other words, a space corresponding to some resolution contains all the information about the
space at a lower resolution. Moreover, we have

< Iz
(%) _ 72 L
U 12 =15(Q), =123,

which is just another way of stating Eq. (23). In short, for every level J € N we obtain an

approximation of f (9) that improves with increasing J and we speak of PJ(i)( f) as a single scale
ezpansion of f®. The multiresolution is based on filtering in the frequency space. Several
construction principles can be found in the literature (for details see Freeden et al. (1998) and
the references therein).

10 Wavelets

Next we introduce (scale discrete) wavelets. Although the principle of a multiresolution analysis
by means of the scaling function yields an approximation sequence of increasing accuracy it is
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desirable to have a more structured approach that permits statements about the ‘gaps’, i.e. the
detail information between two successive scale spaces. This structure is obtained by the use of
wavelets. Since the construction of such wavelets is extensively treated in the literature (for a
summary of the material see Freeden et al. (1998)), we keep our treatment brief. The idea is
to split a J-level approximation into smaller building blocks. In our context this is once more

(i

done in the frequency space. Let, therefore, @0) be a scale discrete scaling function as before.

Moreover, let zp(()i), 7,5(@ :[0,00) = R, i = 1,2, 3 satisfy the following conditions:

(1) w(()i),zz(()i) are piecewise continuous in [0, 0o),

(i) > 2L ()2 < oo | z 20411500 ()12 < oo,

n=0; n=0;

(i) 50 @ @) = (69(D) ~ (vP @) . = e0,00).

Then zpo , 0 ) define the scale discrete mother wavelet of type i \I/(()) and its dual \I/(Z) by

oo 2n+1

ven = Y03 9P yOO Yauln),  (€m) € 92, (24)
n=0

. o0 2ln+11

¥En = Y3 Q)OO Yaum), (€ n) e 02 (25)
n=0 [=1

As before the dilation operator D; can be applied to the mother wavelet and its dual, such that
we obtain a dilated version at all levels J € N:

' oo 2n+41
\P(()Z)(ga’r’) = Z Z w nl(’rl) §mn €, (26)
n=0
o N 00 2ln+11
DI (&m) = =3 39 )You(m),  &meQ. (27)
n=0 [=1

To have a notation consistent with existing wavelet techniques we introduce the rotation operator
(that replaces the shift operator in standard Euclidean theory of wavelets). Performing the
rotation after the dilation we can write wavelets at all scales and positions as dilated and
rotated versions of one mother wavelet by

v(em = W) = (RD) (), (6m) €92,
TPEn) = Tieln) = (ReD;I)(m),  (6m) €02

We are now in a position to define the spherical vector wavelet transform of a vector field by

W)y (i) = (= ) = | 90 (€m) - £(6) do(® (28)
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forjeNypeQandi=1,2,3.

The central result for the application of wavelets is the following inversion formula, that tells us
(4) ( ) (

how to reconstruct a vector field from its wavelet transform: Let therefore ®;’, ¥, ¥ ) be as
before. Then, for any f = f) + f@ 4 76 ¢ 12(Q), the reconstruction formula reads as follows

19 = 2«8l s+ [ WD) B doto (29)
=0

IO S TR
j=0

The single scale expansion in terms of scaling functions known from Chapter 9 can now be
written as a multiscale expansion by

J—1
P x 0P s f =0l x0) « f+ 3 I w0l f (30)
§=0

The scaling function at any scale can be replaced by the scaling function at a lower scale and the
corresponding wavelets at all intermediate scales. This is the reason why we speak of wavelets
as “building blocks”. Instead of computing a new single scale expansion to improve our approx-
imation we only add the information that is really “new”, i.e. the detail information between
two subsequent scale spaces. This new information is contained in the wavelet transform. Anal-

ogously to the scale spaces V](-i) (2)

and the corresponding operators PJ we now define detail spaces
WJ(-i) and operators Rg-i) by

RO(f) =000 x5, fei?@),

and W {R(Z (f)| f €12()}. The scale and detail spaces allow similar statements as in (30),
ie. We can dlsplay a scale space as the sum of a scale space at a lower level and all intermediate
detail spaces:

Vi — i) +ZW M<J. (31)

We mention that the sum in (31) is in general neither direct nor orthogonal. It can be made
orthogonal, though, if we wish to construct so-called Shannon wavelets.

11 Examples

We give now a more concrete description of our mother wavelet and its dual. We restrict
ourselves to so-called P-wavelets here, but other strategies exist and have been implemented,
such as so-called M-, D- or S-wavelets (cf. Freeden and Windheuser (1997), Freeden (1999)).
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Let <,0(()i) be the generator of a scale discrete scaling function (21) for i € {1,2,3}. Then we

choose

P = (@) - ()" ze oo, (32
9 (@) = \/ (¢P@)" - (e@)", = € 10.00). (33)

The P-wavelet and its dual coincide, and it is obvious that the conditions (i) — (iii) in Section
10 are fulfilled. We distinguish two large classes of wavelets and scaling functions, namely
bandlimited and non-bandlimited kernels. We already mentioned that bandlimited means that
the series (24) and (25) are finite, i.e. the generators qp(()’), 15(()2) have compact support. Without
loss of generality we require that this finite support is the interval [0, 1]. As examples we give the
(non-bandlimited) Abel-Poisson P-wavelet and the bandlimited Shannon and CUP P-wavelets.
Note that we chose to plot the tangential kernels (i = 2,3) only. The i = 3 component is the
one that can be identified with the toroidal part of the geomagnetic field. It is clearly visible
that the significant support of the wavelets decreases with increasing scale, which is a feature
typical for wavelets. This property allows a zooming-in on small-scale features of the observed
field (e.g. the geomagnetic field).

The Abel-Poisson wavelet: Here we have (p(()z) (£) = r® with some fixed 7 € (0,1) and the
generators of the wavelet and its dual are computed according to (32) and (33). Figure 1 shows
the Abel-Poisson wavelets at scales 2 and 3, where we chose r = 1/e.

The Shannon wavelet: This is the simplest conceivable choice of bandlimited wavelets: We set

@, |1 z €[0,1)
o (@) = { 0, else

Because of the sharp cutting in the frequency domain we obtain orthogonal detail spaces with
no redundance. However, this leads to strong oscillations in the space domain, as can be seen
in Figure 2, which may cause serious difficulties for computational purposes.

The CUP-wavelet: We look for a way to preserve the band-limited character of the wavelets such
that the oscillations are at least reduced in contrast to the Shannon wavelet. One possibility is
to smooth the representation in the frequency space. We choose

i —.’132 Z T
o= { 0 e

In doing so we give up the orthogonality of the detail spaces, but we can still work with band-
limited integration techniques and the oscillations are widely supressed, (see Figure 3). The
CUP wavelets proved to be a good compromise for the numerical treatment of MAGSAT data,
as the examples in the following section show. For more details on band-limited integration see
for example Bayer et al. (1998), Freeden (1999).

In all three cases we can clearly make out the character of the kernels as surface-divergence-
free and surface-curl-free vector fields. For the applications this means that the tangential
part of a vector field can be decomposed into its poloidal and toroidal component. One more
remark concerning Figures 1, 2 and 3. Looking closely we observe that these tangential vectorial
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functions do not have their maximal absolute value at & = n but that they are zero at this
position. This is contrary to the kernel with 4 = 1 (i.e. the kernel corresponding to the normal
field) or the kernels we know from scalar theory. The reason is the structure of the Legendre
vectors (15) and (16) used in (17). The scalar part, i.e. the series in terms of the first derivatives
of the Legendre polynomials does have its maximum at & = 7. However, the vectorial part in
(15) and (16) is zero there. Thus, the maximum lies somewhere outside the position & = 7.
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0.0 0.0
1.0 1.0

2.0 2.0

-2.0 0.0 -2.0 0.0
0.0 0.2 0.4 0.0 0.2 0.4

0.6 0.6

scale j = 2: i = 2 (curl-free part) left, i = 3 (divergence-free part) right
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-2.0 0.0 2.0 -2.0 0.0 2.0
I I
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scale j = 3: i = 2 (curl-free part) left, i = 3 (divergence-free part) right

Figure 1: Abel-Poisson P-wavelet
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Figure 2: Shannon P-wavelet
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Figure 3: CUP P-wavelet

12 An Application of CUP-Wavelets to MAGSAT Data

In this section we analyse a data set derived from vectorial MAGSAT morning data that has
been contributed by Nils Olsen of the Danish Space Research Institute. The measurements are
averaged on a longitude-latitude grid with (Ay = 4°, AY = 2°) in geomagnetic coordinates. The
radial variations of the MAGSAT satellite have been neglected in the dataset and, therefore,
prior to the averaging process, the GSFC(12/83) reference potential model has been subtracted
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to avoid spurious effects. The data used results from one month of measurements, centered at
March 21, 1980.

In what follows we decompose and reconstruct the given data by CUP P-wavelets (see Chapter
10). In particular we plot the component pointing to the geographic east direction, i.e. in
geophysical language the Y-component of the toroidal part at different scales (see Figures 4 and
5). Note that the toroidal part is obtained by wavelets of type i = 3. The detail approximations
in Figures 4, 5 show large magnetic effects in the polar regions and a band-like magnetic structure
in the close vicinity of the equatorial line. The first is due to large field aligned currents in high
latitudes, while the latter is due to the radial component of the equatorial electrojet (EEJ).
Hence, both magnetic effects are caused by ionospheric and magnetospheric current systems
and can therefore not be modelled correctly by a Gaussian gradient field.

The multiscale analysis shows that these magnetic features are of small to medium scale. At
scales 7 = 0,1,2 the visible structures are spatially large and none of the above mentioned
effects can be recognized, while from scale j = 3 up to scale j = 6 the EEJ as well as the polar
contributions are predominant.
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Finally we demonstrate the data compression capability of wavelets. Since wavelets localize more
and more in space domain, for higher scales only very few wavelet coefficients are significantly
different from zero. The idea is therefore to discard most coefficients and to keep only those
greater than a prescribed threshold in order to save computing time and storage capacity. As
an example we consider the CUP wavelet as above at scale j = 5. The threshold has been set
to 3 nT which results in a compression rate of 62.06 per cent. The corresponding reconstruction
and error plot is shown in Figure 6. The maximal error was 1.4 nT, the mean quadratic error
was 0.24 nT. More numerical tests concerning multiscale computation of the geomagnetic field
has been performed in Maier (1999).

Conclusion

In theory, the Mie representation of the magnetic field can be reconstructed from its Fourier
transform i.e. the ‘amplitude spectrum’ in terms of vector harmonics representing the poloidal
and toroidal contribution, but the Fourier transform contains information about the frequencies
of the field over all positions instead of showing how the frequencies vary in space. In future
research, Fourier expansions in terms of vector harmonics will therefore not be the most natural
and useful way of representing the magnetic field. In fact, we have to think of the magnetic
field as a signal in which the amplitude spectrum evolves over space in a significant way. We
imagine that at each point in space the field refers to a certain combination of frequencies, and
that in dependence on the location of sources the contribution to the frequencies and therefore
the frequencies themselves are spatially changing. This space—evolution of the frequencies is
not reflected in the Fourier transform in terms of non—space localizing vector harmonics, at
least not directly. A method of achieving a space-dependent frequency analysis in magnetic
field modelling is the wavelet approximation as presented in this paper. The wavelet transform
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acts as a space and frequency localization operator. Numerical work can be efficiently executed
by a multiresolution analysis, i.e. a completely recursive method which is therefore ideal for
computation.
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