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Abstract

In this paper severely ill-posed problems are studied which are
represented in the form of linear operator equations with infinitely
smoothing operators but with solutions having only a finite smooth-
ness. It is well known, that the combination of Morozov’s discrepancy
principle and a finite dimensional version of the ordinary Tikhonov
regularization is not always optimal because of its saturation prop-
erty. Here it is shown, that this combination is always order-optimal
in the case of severely ill-posed problems.

1 Introduction

In this paper we consider the problem of finding an approximate solution to
a linear ill-posed problem represented in the form of an operator equation

Ax =y, (1)

where instead of y noisy data ys; are available with ||y — y;|| < 6 and A is a
linear compact injective operator between Hilbert spaces X and Y. Usually
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(1) is called a severely ill-posed problem if its solution £y = A 'y has a finite
”smoothness” in some sense, but A is an infinitely smoothing operator. More
precisely, xy belongs to some subspace V' continuously embedded in X, and
the singular values of the canonical embedding operator Jy from V into X
tend to zero with polynomial rate, while the singular values {0} }$; of the
operator A tend to zero exponentially. Following [5], [10] in such a situation
it is natural to assume that

ry € MES(A) = {z: 2 = In?(A°4) o, o] < p) 2)

for some p > py, p > 0, where the operator function In"?(A*A4)~! is well
defined via spectral decomposition

A*A = Z 0',% (\Ifk, ) ‘IJk

k=1

of the operator A*A, i.e.

InP (A*A) " v = Z In? 0.2 (U, v) ¥y
k=1

Here (-, -) denotes an inner product in X. Moreover, without loss of generality,
we assume that |A|| <0 <e /?ie oy <O0<e V2 k=1,2,...

From [5], [10] it follows, in particular, that the order of the best possible error
for identifying zy from ys under the assumption (2) is In™? %. The methods,
proposed in [5], [10] for obtaining this optimal error, use the information
about the structure of the source set M (A) . For example in [10] a special
variant of the method of generalized Tikhonov regularization has been de-
rived which is optimal on the set M)°6(A). In this method an approximation
x4 for xy is determined from the minimization problem

| Az — ys||* + cb” | In? (A*A) aE”2 — min

where ¢ is some constant. On the other hand, in practice one often does
not know the exact value of smoothness index p or some reasonable limits



for it. Moreover, it is worth noting that the above variant of Tikhonov
regularization is more complicated than ordinary Tikhonov regularization,
where the functional

L(z) = Az — ysl* + alz]*, a >0,

is minimized in X. But the main difficulty in applying the ordinary Tikhonov
regularization occurs in the choice of the regularizing parameter o without
any a priori smoothness information about the exact solution. Such a pos-
teriori methods of choosing a have been developed for the case of finitely
smoothing operators A when (1) is not a severely ill-posed problem, and

zo € Range (A*A)? . (3)

It is well known, in this case the best possible error of the ordinary Tikhonov
regularization is O (6%/2) and it can not be improved by enlarging the smooth-
ness index p in (3). Occasionally it is referred to as a saturation effect of the
ordinary method of Tikhonov regularization. But on accout of the forego-
ing results [5], [10], the order of the accuracy O (6*?) can not be reached for
problems (1), (2). Therefore, it is natural to expect that the above mentioned
saturation effect will not reveal itself for severely ill-posed problems. In this
paper we prove that such is indeed the case. More precisely, we show that the
combination of some finite-dimensional version of ordinary Tikhonov regu-
larization with Morozov’s discrepancy principle of an a posteriori parameter
selection is order optimal for the sets (2) with any p > py.

1.1 Finite-dimensional approximations

Any numerical realization of the Tikhonov regularization scheme requires
to carry out all computations with a finite-dimensional approximation A,
instead of A. Usually, the variation problem I,(X) — min is replaced by the
finite-dimensional analogue

Ian(2) := [ Az — ysl* + allz]|” — min,,

where A, is some finite-dimensional approximation with rank (A,) = n. The
computation of the approximation xfw for zo = A~y requires in this case
to solve the linear operator equation



ar + Ay Apx = Arys (4)

It is easy to see that xi’n € Range(A}) and can be expressed in the form

n
6 f— . .
xa,n - E :LL‘]\I}] ’
j=1

where {W;}7_, is some basis of Range (A}, . If

An =) ay®; (Ty,1)

ij=1
where {®;}7, is a basis of Range(4,), and the matrix A ={a;}},_, is
known, then (4) is equivalent to the following system of linear algebraic
equations for determining 7 = {z;}7_, :
af + ATOAVT =,

where

b={b; = Zaij < @iy ys >
i=1
U= {(\pia\pj)};fjﬂ , &= {< o, (I)j >}?,j:1 )

and < -,- > denotes an inner product in Y.

Keeping in mind that the singular values of the operator A involved in a
severely ill-posed problem (1) tend to zero exponentially it is no restriction
of the generality to assume that A, is chosen in such a way that for some
q€(0,1)

|4~ Au|| < ¢, B> 0. (5)

The following examples serve to illustrate this assumption.
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Example 1 Satellite gravity gradiometry problem.

If we assume a spherical surface of the earth €2, as well as the satellite orbit
Qpyy 7o > 11, Q. = {u € R |u| =r;}, i =1,2, then one of the problems
arising in satellite gradiometry can be formulated as an equation (1) with
the operator

Az(u) = — / ;—é ((%;’"g 2@, (), ueQ, . (6)

4mry u— v

71

For more details we refer the reader to [3], [9]. Let {Y,x, m = 0,1,..,k =
1,2,...,2m + 1} be a set of spherical harmonics Lo-orthonormalized with
respect to the unit sphere in R3. Then, as in [3] we can rewrite A in the form
of a singular-value decomposition

2m+1

Zam > V2w (i) |
j=1
where
o= (2) m+ 1) (42537,
2

i 1 .
v )](w) =—Yn; (ﬂ) ,we, ,i1=1,2,

i

(Vo) = [ Vie))aon ).

Qry

Forn = (m + 1)2 consider a finite-dimensional approximation A, = AQ),,, where



is the orthogonal projector on the corresponding spherical harmonic space,
rank (A,) = rank(Q,,) = (m + 1)? Now, as in [7], one can show that

T1 \/ﬁ
A - A < en (—) |
T2

where c is a constant independent of n. Thus, in the case under consideration
the assumption (5) is fulfilled with g = % and some ¢ € (%, 1) . By the way,

in satellite gradiometry one assumes usually that the exact solution xq of (1),
(6) is an element of the spherical Sobolev space

oo 2041

Moo= (e L) IR =33 (0 2 1. <o)

for some index s > 0. On the other hand, for the singular values {o,} of the
operator (6) the following relation is valid: Ino;? < (¢+ 1) . Then there are
some constants cq, ca > 0 such that for any f € H,

ci || fll, < [ (A" A) 7 f[| < e 11,

It means that any element of H, belongs to source set (2) with p = s.
Example 2 Integral equations with analytic kernels.

Many inverse problem from applications give rise to integral equations of the
first kind

Az(t) == /a (t,7) z(T)dT = y(t) (7)

where the kernel a(t, 7) is an analytic with respect to ¢, 7.

A typical example of such a severely ill-posed problem is the Fujita equation
having the form (7) with a(t,7) = Te;; where ¢ is some constant, and oc-
curing in the theory of a sedlmentatlon (ilﬁ.USIOIl equilibrium in a centrifuge

[6],[11]. Other examples of equations (7) with analytic kernels can be found
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in [1],[2], where a conditional stability estimates could be proved, provided an
a priori smoothness information about the solution was known. Moreover, in
[1] Tikhonov regularization for such integral equations was studied, but the
corresponding minimization problem involved the norm of the first deriva-
tive and the regularizing parameter was equal to §2. As a finite-dimensional
approximation for the operator A from (7) one can take an integral operator
A,, with degenerate kernel
n
an(t,7) =) alti, t;)i(1)4(7),
ij=1

where t; = cos? %7@ j = 1,2,...,n, are the zeros of Tschebyscheff poly-
nomial of degree n corresponding to the interval [0,1], and ¢;(u) are the
fundamental polynomials of degree n — 1 for the pointwise Lagrange inter-
polation at {t;}, i.e. a,(ti,t;) = alti,t;), 4,5 =1,2,...,n.
By analogy with the case of one variable functions, the behaviour of an an-
alytic kernel a(t,7) can be characterized by the growth of its derivatives in
the following way:

‘ak%(t, 7)

Storl | S PR, K 0=0,1,2,..., t,7 € [0,1], (8)
T

where the constant r, depends on a only. Consider the operators
Ln,l[f(': T)] = Z f(tla T)Ez(t)v Ln,?[f(t: )] = Z f(ta t])ZJ(T)
i=1 j=1

Using the well-known estimation of the remainder for the polynomial inter-
polation carried out on the zeros of the Tschebyscheff polynomial we have

_ om

767 = Loaly o) < @) e [ ZHED)
— o" ,

70.7) gl < (o)™ e [PHE)

Now we observe that

a(t’ 7_) - a’n(t’ T) = (a’(t’ 7—) - Ln,l[a’('1 T)]) + (CL(t, T) - Ln,2[a’(t> )])
— (a(t,7) = Lnala(-, 7)] = Lagla(t, ) — Luga(:, -)]))-
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Moreover, from (8)-(10) we obtain

max{la (t,7) = Lna[a(, 7)]l, [a(t, 7) — Lnzla(t, ]I} < rg2i™™",

|a(t, 7) = Lna[a(:, 7)] — Lngla(t, ) —nLn,1[a(-, <
< (220 1p)) L max ‘g—"n[a(t, T) = > alt;, 7)4(t)]| =

0<t,7< =
— (92n—1,1\—1 9™al(t,T d"a(-,T
= (2""'n!) max % — Ly, [%} <

< (2" 'n!)? max | 5 | =57

t,T
Then

o [M] ‘ < p2n92-in
— a -

Thus, if r, € (0,4) then in the considered case the assumption (5) is fulfilled
with 3 =1 and some ¢ € (%, 1).

2 A Posteriori parameter choice.

Following [8], we shall consider Morozov’s discrepancy principle in a form
tailored to the finite-dimensional version of the ordinary Tikhonov regular-
ization.

Let a finite-dimensional approximation A,, be chosen such that

JA = Aull < 5p! (11)

From (5) it follows that for this purpose it will suffice to take rank (A,) =
n ~ lns %.
We will choose the regularization parameter o out of the finite ordered set

Ap(d) ={a:a=a, =ah™ m=0,1,..., a € (6*,a), h € (0,1)}.

Namely, we will compute mimm = (I + A% A,) ' A%ys by solving



amx + Ay Ay = Arys, m=0,1,2, ...,

until

HAnac‘s — y,;H < dyd (12)

Qm,n

where dy > £4-341 and without loss of generality we assume that ||ys|| > dod.
As we will see in the following this choice strategy insures the best possible
order of accuracy O (In"” §) on the source set (2) without any information
about p.

Lemma 1 Let ||A|| < 0 < e /2 and zp = A™'y € MI8(A). If z, =
(aI + A*A)~LA*y then for sufficiently small a € (0,e2P)
Azo — gl < 07 py/aln? L

Proof. Using the spectral decomposition of the operator A*A we have

1/2

x 2
Az, — y|| = {Z [;+— hfpa,;?} |(\Ilk,v)|2} L one (0,0 . (13)

k=1

Consider the two functions: g, (A) = z23zIn? A%, X € (0,0] and g(t) =
tIn"P#? ¢t € [#7, 00). Simple calculations show that ¢'(t) = 2 (Int — p) In"P~' £2,
So, g(t) monotonically decreases in t € (1,eP) and increases in t € [eP, 00).
Using this simple fact we prove now that for any A € (0, 8] and for sufficiently

small o € (0,e %)

_qlnP 1L
ga(N) <O = (14)

Indeed, if A < /& then In™” ;5 <In7” 1 and
Ja(N) <2InPAT% < ﬁln*p i
Assume now that A > \/a. If e > 6 then for A € [/a, 0], T € (e?, 5=] and



>
>

0) < 47 b =90 < 9 () = 7

For e < 6§ and X € [a,0], + € [67, ﬁ] Then keeping in mind the

behaviour of g(t), for sufficiently small o we have
9 (%) < max {0‘1 In"?6-2, \}ln_p ;}
< max{0 1L ln_p;} <6 lﬁln_pl

a

9a(N)

IN

Thus, the inequality (14) is proved. Now from (14) and (13) it follows that

o 1/2
[Azo —yll = {Z [9a (o%) (T, v)]Q} <oWaln P -]l (15)

The lemma is proved. m

Lemma 2 Assume the condition of Lemma 1. Then there exists an a=aoy, €
Ay (9) satisfying the condition (12). Moreover, there exist di,dy > 0 such
that

d16 S ||A$ak — y|| S d25
Proof. First of all we note that

l|zo|| = Hln_p (A*A)~ v” < p sup |ln P ‘ < p.
0<A<6

Moreover, for any compact operator B

B(al + B*B)”' = (ol + BB*)"' B,
(el +B*B)"!|| <a™!, |[(al + B*B)"' B*|| <
|B (ol + B*B)™* B*

\—F

As in [4], one can represent the residual as

Az, —y=A 5+Z +Z (16)
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where

21 ( (o + A7 A )IA’:L—I)(y—y(;):
= (od + ApA;) 7 (A AL — (o + AAL) (y — ys) =
=a(al + A, A7) (y — vs),

Il < af| (el + And)™ [ lly — sl <6,
Yo, = (Al + 44T A = A (al + AA,) Ay =

AA*(aI+AA*) — (o + A AT) M A A*)y
= a(al + AgAZ) L (AAT — A, AY) (o + AA®) !

Now we estimate the norm of ), using the representation

22211+12+13

where

L=o(al +AA) 7 (A=A, (A" — AY) (ol + AA) ™ Ay,

A An
L)) < LAl )| < 22

= 2.0\/_

L =a(al +A,A) A, (A" — AY) (o + AAY) ™ Ay,

||I2|| < IIA*—ﬁZI\IImoll < EHA _ An” < g

Iz =o(ad + A, A%) 7 (A — Ay) AX (ol + AAY) ™ Az .
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1Ll < af(al + 4,457 (A= A,) (A% — A*) (o + AA*) ™! Az
+ af[(al + A,AL)TH(A— Ay) A* (ol + AA*) ™ Az ||
< WAellp i pllA— Al < 552 +6

Then

DI

From Lemma 1 and (16) it follows that

4nas, — w5l < [[Aza—yll+ 95+ Lo <

<
pl 9
< 07'py/aln™P ¢ 6+mf,

and, for example, for & = 62In*” 1 we have

HAniUi,n — yJH <07 'ps+ %5 + pd ln_”% < dy9.

Taking into account that ||Ana:‘;,n — y(;H monotonically depends on « and,
moreover, for sufficiently small § and h > In" 1 the interval (4%, 6?In* 1)
contains at least one element of A (J) we conclude that there exists an o =
ar € Ap(0) satisfying (12). From (16) for this oy we have

|Azq, —y|| < HA”xgk’n — ng +6+ %(5

52
pVor —
On the other hand, from (13) and (16) it follows that

|Aza, — y|| = HAa:hak L= y” >h HAacak L= yH >
>hMAM —%H—a—%

Pm}

Qk—1,n

> h|dod - 26— &] = dis.
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Thus, we obtain the assertion of the lemma for dy = (do + % + %) , di =
h(do—35-1). m
Lemma 3 Assume the conditions of Lemma 1. If « is chosen such that

[Aza — yll < d2d

then

|zo — 24| < clnfp% ,

where the constant ¢ depends on dy, p and p.
To prove this lemma we use the following result by Mair [5].

Theorem [5]. Let the operators A and B be such that for all x € Range (B*B)
[ () e ) < 14

where [iy 4 is the spectral measure of B*B and ¢(s) = sexp ( s 2?) If for
some u € X ||Au|| < e and ||Bu|| <1 then

Jull <10 & (14 o(1)) -
Proof of Lemma 3. We put u = p~' (z9 — 7,) . Then using the spectral

decomposition of A*A we have

o0
u=p " e @ In"?o;? (U, v) Uy
k=1

If
B= Z“*"kl P o2 (T, ) Uy,
then it is easy to see that
[e.e]
1Bul” = p 23 (Wh,0) = p 2o < 1.
k=1
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Moreover, for such B

/(p (%) /\d,u':c,:c(/\) = i ©p ((ﬁa% In"? gk—z)Q> (%@% In? 016—2)2 (U, x)Q =

Now we are in the position to apply the above mentioned result of Mair [5].
Keeping in mind that

[ Aul| = p~" [|Azo — Azal| = p7" |Aza — yll < dop™'d
we conclude that

ull = p~" |20 — zaf| <In7P ((é%) (1+o0(1) <cln?i.

|

The lemma is proved.

3 The main result

Theorem. Let ||A|| < 0 < e /? and o = Ay € MF%(A). If n and
a = oy, € Ay(5) are chosen according to (11),(12) then

[ -p1
on - xam,nH < ¢yln 3

where the constant cy depends on p,p, 0, h,dy.
Proof. First of all we note that

]

Qm,n

")

AUm,n

Toamm — T

H.T() — X

< 1170 = Zap |+ [ = T [ + |
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where 2, , = (] + A} A, )"t Ay If o = a, satisfies (12) then by virtue
of Lemma 2

di6 < ||Az,,, —y|| < dod (17)

and from Lemma 3 we obtain

|To — Ta, || < cIn™? .

Moreover, the same steps as in the proof of Lemma 2 lead to the estimates

|

)

Qm,n

= |[(emI+ALA) ™" AL (y-ys)|| < 5 f—

|Zan-Tama| = |[(mI+ALA ) o (A%-A2) + A (Ap-A) A (am I +AAYY A:J:OH
<hL+D

xam,n_

I = o [|(am] + A3 An) " (A7 = A7) (] + AAY) T Az < 722l <
L = || (aml + AL A,) AL (A — A) A* (] + AAY) Axg| <

4
voam
_90
2V am

Summarizing these estimates we have

ng — 2 H <cln?; (18)

2\/—

If the parameter choice strategy (12) gives us «,, such that «,, > 4, for
example, then from (18) it follows

H:ro—:r H <eln™Pi43V5<n™l (19)
On the other hand, if o, < ¢ then Lemma 1 and (17) lead to the inequality

6 < [|Aza,, —yll <07 pyfamIn P L <07 py /o In P}

It means that

J P 1y Pl
Zom S n s,

and (18) again leads to (19). The theorem is proved. m
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Thus, we have shown that the a posteriori parameter choice strategy (12)
insures the best possible order of accuracy on the source set (2).

Remark. Our Theorem describes an asymptotic behavior of the accuracy
of ordinary Till<hon0v regularization for 6 — 0. In this case it is natural to
assume that 2 < In™? %. On the other hand, if p is sufficiently large, then

one can find an interval (dy, 8;) C (0, 1) such that for § € (Jp, ;) In™? 5 < 52,
that is the accuracy that can be reached for solving (1),(2) is estimated for

d € (60,61) as O (6%) . It means that for noise level § belonging to (o, ;)

inverse problem (1),(2) is not in fact severely ill-posed, because it can be
solved at least with a power rate of accuracy regarding .
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