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Abstract

Knowledge on transport properties of fluids is important for the design of many indus-

trial processes in chemical and mechanical engineering, but experimental data are often

scarce. Therefore, reliable models for predicting transport properties are required. In

the present thesis, two ways for modeling transport properties were explored, which

both stem from the field of molecular thermodynamics: Molecular dynamics (MD) sim-

ulations and entropy scaling. In both fields, various open questions were addressed: A

comprehensive database on MD simulation data of the viscosity, thermal conductivity,

and self-diffusion coefficient of the Lennard-Jones fluid was established. The assess-

ment of the data yields, among others, insights in the reproducibility of the simulation

of transport properties. Moreover, the results obtained from different force fields for

the transport properties of a set of lubricants at very high pressures were compared,

with the aim of identifying force fields that are suitable for modeling lubricants. By

extending an online force field database to transferable force fields, their application in

molecular simulations was facilitated. Furthermore, detailed studies of the heat transfer

across solid-liquid interfaces on the nanoscopic level were carried out by non-equilibrium

molecular dynamics (NEMD) simulations. In contrast to MD simulations, entropy scal-

ing provides an analytical theory for modeling transport properties based on equations of

state (EOS). The reliability of the underlying EOS model is crucial for the application of

entropy scaling. Therefore, new EOS models were parameterized for alcohols and their

extrapolation ability was tested. This was done based on high-pressure density data

measured in this work. A new entropy scaling framework was developed that covers the

entire fluid region. The framework was successfully applied for modeling the viscosity,

the thermal conductivity, and the self-diffusion coefficient of different fluids in a wide

range of states based on few experimental data. The excellent extrapolation behavior

of the method is demonstrated. The approach was also extended to modeling diffusion

coefficients in mixtures. This enables, for the first time, the prediction of self-diffusion

coefficients and mutual diffusion coefficients in binary mixtures in a consistent way.





Kurzfassung XI

Kurzfassung

Kenntnisse über die Transporteigenschaften von Fluiden sind für die Entwicklung vie-

ler industrieller Prozesse in der chemischen Industrie und im Maschinenbau wichtig. Es

liegen allerdings oft nur wenige experimentelle Daten vor. Daher werden zuverlässige

Modelle zur Vorhersage von Transporteigenschaften benötigt. In der vorliegenden Ar-

beit wurden zwei Modellierungsansätze für Transporteigenschaften aus dem Bereich der

molekularen Thermodynamik untersucht: Molekulardynamik (MD)-Simulationen und

Entropieskalierung. In beiden Bereichen wurden verschiedene offene Fragen behandelt:

Es wurde eine umfassende Datenbank mit MD-Simulationsdaten für die Transportei-

genschaften des Lennard-Jones-Modellfluids erstellt. Die Auswertung der Daten liefert

u.a. Erkenntnisse über die Reproduzierbarkeit der Simulation von Transporteigenschaf-

ten. Darüber hinaus wurden die Ergebnisse verschiedener Kraftfelder für die Transpor-

teigenschaften einiger Schmierstoffe bei sehr hohen Drücken verglichen, um geeignete

Kraftfelder zur Modellierung von Schmierstoffen zu ermitteln. Durch die Erweiterung

einer Online-Kraftfelddatenbank auf übertragbare Kraftfelder wurde deren Anwendung

in MD-Simulationen erleichtert. Darüber hinaus wurde mittels Nicht-Gleichgewichts-

MD Simulationen der Wärmeübergang an Fest-Flüssig-Grenzflächen auf nanoskopischer

Ebene untersucht. Im Gegensatz zu MD-Simulationen bietet die Entropieskalierung eine

analytische Methode zur Modellierung von Transporteigenschaften auf der Grundlage

von Zustandsgleichungen. Die Zuverlässigkeit der zugrundeliegenden Zustandsgleichung

ist für die Anwendung der Entropieskalierung von entscheidender Bedeutung. Daher

wurden neue Zustandsgleichungs-Modelle für Alkohole parametrisiert und deren Extra-

polationsfähigkeit getestet. Dies erfolgte auf der Grundlage von Hochdruck-Dichtedaten,

die im Rahmen dieser Arbeit gemessen wurden. Es wurde ein neues Rahmenwerk zur

Anwendung der Entropieskalierung entwickelt, das den gesamten fluiden Zustandsbe-

reich abdeckt. Das Rahmenwerk wurde erfolgreich zur Modellierung der Viskosität, der

Wärmeleitfähigkeit und des Selbstdiffusionskoeffizienten verschiedener Fluide in einem

breiten Zustandsbereich angewandt. Zudem wurde das gute Extrapolationsverhalten der

Methode gezeigt. Der Ansatz wurde auch auf die Modellierung von Diffusionskoeffizien-

ten in Mischungen erweitert. Dies ermöglicht erstmals eine konsistente Vorhersage der

Selbst- und Transportdiffusionskoeffizienten in binären Mischungen.
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1 Introduction

Transport phenomena like viscous momentum transport, heat transfer, and mass diffu-

sion occur in most natural and technical processes. They always act in a way, that the

system undergoes a transition in which it approaches an equilibrium state by transferring

momentum, heat, and mass. In technical applications, transport phenomena are often

crucial for the functionality and efficiency of a process [1–4]. For example, the lubri-

cant and its properties determine the friction in a tribological system [5]. In separation

processes and reactors, the diffusion is often the limiting factor [1]. In microelectronic

devices, the heat transfer is highly important [6]. Reliable modeling of the transport

phenomena is therefore crucial in many applications. It enables the development of

efficient processes and machines with a lower energy consumption.

Transport phenomena are described mathematically by transport equations, which con-

nect a flux to a corresponding gradient. The proportionality coefficient between the

flux and the gradient is called transport property, a substance-specific property, which

depends on the thermodynamic state. The viscosity relates the momentum flux with the

velocity gradient (Newton’s law of viscosity), the thermal conductivity relates the heat

flux to the temperature gradient (Fourier ’s law), and the diffusion coefficient relates

the mass flux to either the gradient of the chemical potential (Maxwell-Stefan equation)

or the concentration gradient (Fick’s law). These transport equations and their corre-

sponding transport coefficients form the basis of many simulation methods used to model

and design industrial processes, like computational fluid dynamics (CFD) simulations

or rate-based process simulations. For solving the transport equations, information on

the transport properties is a prerequisite.

As experimental data of transport properties are often not available for the substance

and thermodynamic state of interest, modeling transport properties is an important

task [7–11]. For the prediction of transport properties at extreme conditions where

experiments cannot be conducted, physical models with a robust extrapolation behavior

are required [12]. This includes, for example, the thermophysical properties of lubricants

at extremely high pressure (p > 1 GPa), as it occurs in the narrow contact zone of

bearings [2]. Also for diffusion coefficients in mixtures, the availability of data is very

limited due to large number of systems and the complexity of experiments [13].
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Molecular dynamics (MD) simulations and molecular-based equations of state (EOS)

in combination with entropy scaling are sound physical routes for predicting transport

properties. In MD simulations, many-particle systems are described based on Newton’s

equations of motion and underlying models for the interaction between the particles

(i.e. molecules), the so-called force fields [14, 15]. From the numerical solution of the

equations, thermodynamic and transport properties can be calculated [16]. Often, trans-

ferable force fields are used in MD simulations. They are modular force fields allowing

to build up molecules – in contrast to component-specific force fields which are only

applicable for a specific substance. Transferable force fields enable the simulation of

substances, for which no experimental data are available. Besides substance proper-

ties, MD simulations also enable the simulation of nanoscopic processes, which allows

investigating transport phenomena on the nanoscale [17–21].

In contrast to the computationally expensive MD simulations, molecular-based EOS

provide analytical models which enable the calculation of all (static) thermodynamic

properties [22, 23]. In combination with entropy scaling, also transport properties can

be modeled [24]. Entropy scaling makes use of the observation that transport prop-

erties, when properly scaled, can often be described by a monovariate function of the

configurational entropy [25, 26]. The configurational entropy is taken from an EOS in

entropy scaling models.

Both concepts – MD simulations and entropy scaling – are used in this work for modeling

transport properties and phenomena. The first part (Chapters 2 - 5) focuses on MD

simulations and the second part (Chapters 6 - 8) on molecular-based EOS and entropy

scaling.

The Lennard-Jones fluid [27] is a simple model fluid often used in molecular thermo-

dynamics for the development of new theories and techniques [28–32]. In Chapter 2,

literature data on the shear viscosity, thermal conductivity, and self-diffusion coefficient

of the Lennard-Jones fluid sampled by molecular dynamics simulations are reviewed

and critically assessed. The transport property literature data were complemented by

new simulation data from this work. The accuracy of the data was assessed with two

methods: (i) An outlier detection method based on entropy scaling and (ii) an as-

sessment based on the Chapman-Enskog theory for low densities. Among others, the

study provides information on the reproducibility of MD simulation results of transport

properties.

For real fluids, the quality of predictions by MD simulations primarily depends on the

applied force field. In Chapter 3, a systematic comparison of classical transferable force

fields for the prediction of the density, the viscosity, and the self-diffusion coefficient

is presented. Nine transferable force fields were applied for simulating three linear

and two branched alkanes at extreme conditions with pressures up to 400 MPa – as
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they are encountered in tribological applications. The force fields were evaluated using

experimental data. Besides the accuracy of the force fields, their computationally costs

were taken into account.

Additionally, an online database for transferable force fields was created, cf. Chapter 4.

For this purpose, a generalized data scheme and data format for transferable force

fields was developed. The tools supplied with the database also support the building

of component-specific force fields which can be readily applied in MD simulations. The

online database includes eight different force fields: OPLS-UA [33], OPLS-AA [34],

COMPASS [35], CHARMM [36], GROMOS, TraPPE [37], Potoff [38], and TAMie [39].

The download of ready-to-use input files for different simulation engines enables easy

workflow integration.

In Chapter 5, results from non-equilibrium molecular dynamics (NEMD) simulations

are presented in which the heat transfer across solid-fluid interfaces on the nanoscale

was investigated. The studied system consists of a fluid confined between two parallel

atomistic walls. Both the fluid and the solid were modeled with the Lennard-Jones

truncated and shifted (LJTS) potential. The heat transfer resistance across the solid-

liquid interface, also called Kapitza resistance, was quantified by the Kapitza length and

different influencing parameters were varied in the simulations. Based on the simulation

results, a correlation for the Kapitza length was developed. A dimensionless number is

introduced, the Kapitza interface number Ki, which describes the Kapitza resistance

in the stagnant fluid and is zero in the absence of the Kapitza effect. The results from

Chapter 5 can be used to describe heat transfer in cases in which the Kapitza resistance

plays a role, or simply to assess whether the Kapitza resistance plays a role in a given

system.

Molecular-based EOS are the basis for the application of entropy scaling. A reliable

prediction of the configurational entropy by the EOS is required, especially at extreme

conditions. Therefore, a set of EOS models for long-chain alcohols was developed in

Chapter 6. Since data at high pressure is scarce, experiments were carried out with a

vibrating-tube densimeter. The density of five 1-alcohols was measured at pressures up

to 120 MPa and temperatures between 298.15 K and 423.15 K. The new data were used

in combination with vapor-liquid equilibrium (VLE) data to parameterize new EOS

models of the studied substances using four molecular-based EOS, namely PC-SAFT

[40], SAFT-VR Mie [41], soft SAFT [42], and CPA [43]. The extrapolation behavior

of the EOS models was assessed by means of Brown’s characteristic curves and by

considering the model predictions for metastable states.

In Chapter 7, a new entropy scaling framework for modeling transport properties is

presented. It can be applied for modeling the viscosity, the thermal conductivity, and

the self-diffusion coefficient. The framework was formulated in a general way such that
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it can be coupled with any EOS. It is demonstrated that the framework, when coupled

to a suitable molecular-based EOS, provides not only good descriptions of existing data

but also reasonable predictions in a wide range of states covering the liquid, gaseous,

supercritical, and metastable region. The universal parameters of the model were fitted

to MD simulation data of the Lennard-Jones fluid. This procedure provides inherently

a robust form of the basic scaling function. Thereby, only few data points are required

for the determination of the component-specific model parameters. The applicability

of the framework is demonstrated for model fluids as well as for a wide variety of real

substances including non-polar, polar, and associating pure fluids and mixtures.

In Chapter 8, the entropy scaling approach is extended to diffusion coefficients of mix-

tures. This is the first time that entropy scaling is applied to these important mixture

properties. The new method yields results for the self-diffusion coefficients, Maxwell-

Stefan diffusion coefficients, and Fickian diffusion coefficients in binary mixtures. The

diffusion coefficients in the mixture are described consistently and in a fully predictive

way – also for strongly non-ideal mixtures and for all fluid states. The new methodology

is based on the monovariate scaling behavior of infinite dilution diffusion coefficients.

It is demonstrated that the approach works reliably both for model fluids as well as for

mixtures of real substances.
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2 Database and Data Assessment of

Transport Properties of the

Lennard-Jones Fluid

2.1 Introduction

The Lennard-Jones (LJ) potential is of central importance in physical chemistry, com-

putational physics, and soft matter physics [28, 29]. It is defined as

uLJ = 4ε [(σ

r
)12

− (σ

r
)6] (1)

where r is the distance between two interacting particles and uLJ their potential energy

[27, 44, 45]. Its parameters σ and ε characterize the size of the particles and the

magnitude of the dispersive interactions, respectively. The (virtual) substance described

by the Lennard-Jones fluid [30], i.e. spherical particles interacting by the Lennard-

Jones potential, has an outstanding role. It is important for the development and

testing of new molecular simulation methods [17, 31, 32, 46], the development and

parametrization of fluid theories and models [47–52], and for studying the fundamentals

of the relations between macroscopic properties and the atomistic interactions [53–62].

The LJ substance also provides a realistic representation of simple real fluids like argon

and methane [63–65] such that results from simulations and theories can be compared

to laboratory measurements [66, 67]. Due to the importance of the simple substance

described by the Lennard-Jones potential in physical chemistry, it is often referred to

as Lennard-Jonesium and its properties are generally reported in its own unit system

[14, 30, 68, 69].

Thermophysical properties of the Lennard-Jonesium have been studied by many authors

since the first computer experiments carried out by Alder and Wainwright [70], Rahman

[71] and Metropolis et al. [72]. In a recent study [73], time-independent thermodynamic

property data of the LJ fluid were reviewed and a critically evaluated database that

contains data for homogeneous state points and the vapor-liquid equilibrium was pro-
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vided. Transport properties, i.e. time-dependent thermodynamic properties, were not

considered therein.

Transport properties, such as the shear viscosity, thermal conductivity, and self-diffusion

coefficient are important in many technical applications as well as in natural phenom-

ena [4, 8, 74–76]. Since laboratory experiments for determining transport properties

are tedious and costly, molecular simulations have become an attractive alternative to

access such data [77–83]. For brevity, the self-diffusion coefficient is also designated as

a transport property here, even though it does not directly describe transient processes,

as transport properties should, and the shear viscosity and the thermal conductivity do.

However, it is a time-dependent property that is closely related to the transport prop-

erty mutual diffusion coefficient, which is, however, only defined for mixtures, whereas

only pure fluid properties are considered in the present chapter.

The first studies for determining transport properties of the Lennard-Jones fluid were

already undertaken by Jones himself in 1924 [66] and Rahman in 1964 [71]. Jones used

predictions for the shear viscosity from the Chapman-Enskog theory for estimating the

potential parameters of argon [66]. Rahman determined for the first time a transport

coefficient, namely the self-diffusion coefficient, with molecular dynamics simulation [71].

Since then, the transport properties of Lennard-Jonesium have been studied by many

authors. However, no consolidated database is available yet and this work closes this

gap.

As in laboratory experiments, also in molecular simulation computer experiments, sys-

tematic errors can occur that compromise and obscure the results. Determining trans-

port properties of fluids by molecular simulations is a challenging task [84–86], which

can be addressed by different techniques [14, 87]. The development and improvement

of simulation techniques for determining transport coefficients is still a very active field

with open questions [84, 88, 89], which requires reliable benchmark data. The critical

assessment of literature data contributes to establishing such benchmark data. Sam-

pling transport properties is in general more complex and computationally expensive

than the simulation of time-independent thermodynamic bulk properties, such as the

internal energy or pressure at given temperature and density. The applicability of a

given simulation technique and adequate simulation settings for a given specific simula-

tion, i.e. determining a given transport property for a given force field, thermodynamic

state etc., is generally not a priori known. The corresponding choices that have to be

made may have an important influence on the simulation result and are prone to errors

[90–92]. Poor choices can lead to systematic errors. Moreover, computational aspects,

like code compilation, parallelization, and even hardware, may influence the simulation

results. In particular, simulation algorithms like the thermostat and integrator may

affect the results [93–96]. Benchmark data for transport properties are scarce. In this
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chapter, transport property data for the Lennard-Jones fluid from the literature are re-

viewed and critically evaluated. In fluid regions where data are scarce, new simulations

were carried out.

In principle, transport properties can be determined with two main techniques: Equi-

librium molecular dynamics (EMD) and non-equilibrium molecular dynamics (NEMD)

simulations [14]. Transport properties cannot be determined with Monte-Carlo (MC)

simulations due to the absence of the physical property time. The sampling of transport

properties by EMD simulations is either based on the Green-Kubo formalism [97, 98]

or the Einstein [14] relations, which are closely linked [16]. The Green-Kubo relations

link the microscopic fluctuation of a specific property under equilibrium conditions to a

given macroscopic transport property (e.g. the particle velocity fluctuations are linked

to the self-diffusion coefficient) [99]. Therein, the linear response of the system to the

fluctuation is evaluated by means of the time correlation functions and the macroscopic

transport property is calculated by their integration. The Einstein relations can be

derived from the respective Green-Kubo relations by integration [14]. The reliable ap-

plication of these EMD methods requires sufficiently long simulations (such that the

time correlation functions can be determined with sufficient statistical weight and to

capture the decay to zero) and usually requires more particles than the simulation of

static bulk properties [16, 100]. A review of EMD simulation methods for determining

transport coefficients is given in Refs. [14, 16].

In contrast to EMD simulations, a gradient is applied in NEMD simulations and the

transport coefficients are calculated from the system response [99]. Hence, the transport

equations are directly evaluated for determining the corresponding linear transport coef-

ficients. There is a large variety of NEMD simulation methods for determining transport

coefficients [31, 87, 101–106]. Yet, this strategy can only be applied for the shear vis-

cosity and the thermal conductivity since the self-diffusion is not related to a transport

ansatz. A review of NEMD simulation methods can be found in Ref. 87. EMD as well

as NEMD methods differ significantly, but are similar in their complexity and require

the specification of simulation meta parameters that influence the quality of the simula-

tion results, e.g. the length of the autocorrelation function [16] or the magnitude of the

applied gradient [99]. In this chapter, transport properties of the Lennard-Jones fluid

sampled with both EMD and NEMD simulations are considered.

In the literature, also modifications of the Lennard-Jones potential are often considered,

e.g. the Lennard-Jones truncated and shifted potential (LJTS)[107, 108] and the splined

Lennard-Jones potential (sLJ) [109, 110]. Yet, these potentials do not truly describe the

LJ fluid, but only similar fluids with somewhat different properties [111, 112] and are

therefore not considered here. Similarly, the transport properties of Lennard-Jonesium

are affected by the long-range interactions and the potential cutoff. Their influence is
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two-fold: (i) The sampled transport properties themselves depend to some extent on

the attractive tail of the potential. An influence of the cutoff radius has been reported

mainly for cutoff radii smaller than 2.5σ – for larger cutoff radii, the transport properties

are reported to be not significantly dependent on the cutoff radius [113–117]. However,

some authors also call for a larger cutoff radius, e.g. a cutoff radius of 4.5σ was sug-

gested by Refs [118, 119]. (ii) The state point properties specifying the thermodynamic

condition depend on the attractive tail of the potential. A given transport property

Y is to be specified as Y = Y (a, b), where a and b describe at least two out of the

three state variables pvT . The pressure strongly depends on the tail correction. As

a consequence, also the transport properties, when required at a pair of temperature

and pressure, indirectly, but strongly depend on the tail correction [112, 120]. Also,

the size of the simulation volume, i.e. the particle number, plays an important role for

determining transport properties. Finite-size effects have been reported for all three

properties considered here [114, 118, 119, 121, 122]. To eliminate finite-size effects, an

extrapolation to the thermodynamic limit (N →∞) can be applied which requires mul-

tiple simulations for a given state point. For EMD simulations of the shear viscosity

and thermal conductivity, these finite size effects are negligible when choosing an appro-

priate number of particles (N > 1000) [119, 122]. For the self-diffusion coefficient, the

finite-size effect is more pronounced [118, 122] and analytical correction terms have been

proposed [122, 123]. Some NEMD simulation methods can also be subject to finite-size

effects [114, 121].

Transport properties of simple fluids at low densities ρ → 0 can be described with the

Chapman-Enskog theory [75], which is rigorously derived from statistical mechanics and

is based on a statistical consideration of particle collisions [124]. For a simple fluid with

soft repulsive and dispersive interactions, the so-called collision integrals of the fluid are

required for applying Chapman-Enskog theory. This approach is practically exact for

very simple fluids, such as the hard sphere fluid [124, 125]. For the LJ fluid, highly

accurate collision integrals are available [126] and the Chapman-Enskog theory can be

applied for the transport properties at ρ → 0 with high accuracy. For dense states, no

rigorous analytical model is available today. Yet, different liquid state theories have been

developed for modeling transport properties at high density fluid states [7, 25, 26, 127],

e.g. friction theory or entropy scaling. The latter must be coupled with a model for

the entropy of the fluid, which is usually an equation of state (EOS). [52, 128–134].

Thereby, entropy scaling exploits that the transport properties, when properly scaled,

are a largely monovariate function of the configurational entropy. These two theoretical

frameworks, i.e. Chapman-Enskog theory and entropy scaling, were used as a tool in

this chapter for evaluating the accuracy of transport property data of the Lennard-Jones

fluid. For the database on the (time-independent) properties of the Lennard-Jones fluid
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[73], different consistency and outlier detection tests were applied. For detecting outliers

in homogeneous state regions, the scatter of data points in the neighborhood of a given

data point was considered in Ref. 73. The underlying algorithm (MoDOD – model

distance-based outlier detection) rests on a model of the considered property as a base

line [135]. Yet, this method uses the model only indirectly as a reference such that

the outlier detection does not depend on the accuracy of the model itself (details are

given below). In this chapter, the MoDOD method was applied for critically evaluating

the transport property data of the LJ fluid. As a model, the entropy scaling approach

from Ref. 52 in combination with the Kolafa-Nezbeda EOS [136] was used. Moreover,

outliers were identified based on the deviations to the Chapman-Enskog theory at low

densities.

Only fluid state points, i.e. gaseous, liquid and supercritical, were considered in this

chapter. The established database contains 17,286 data points (including outliers) from

a total of 102 references. New simulations were carried out in a wide fluid state range

to complement the data in regions where information was only sparsely available.

The chapter is organized as follows: The database is presented in the first part including

the references and statistics. In the second part, the data quality of the database is

assessed. Finally, conclusions are drawn.

2.2 Database of Transport Properties of the

Lennard-Jones Fluid

Table 1 gives an overview of the LJ fluid database for the shear viscosity, thermal

conductivity, and self-diffusion coefficient including the reference, the year of publication,

the number of data points, and the temperature range.

Table 1: Overview of the database of the shear viscosity, thermal conductivity, and self-
diffusion coefficient of the Lennard-Jones fluid. The columns indicate (from
left to right): Reference, year of publication, temperature range, and number
of data points (with the number of outliers in parenthesis). The entries are
sorted chronologically for each transport property.

Authors Year T /εk−1
B #

Shear viscosity

Gosling et al. [137] 1973 0.94 - 1.16 3 (0)

Levesque et al. [138] 1973 0.72 - 0.72 1 (1)

Continued on next page
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Authors Year T /εk−1
B #

Ashurst and Hoover [139] 1975 0.67 - 29.7 51 (4)

Heyes et al. [140] 1980 0.72 - 0.72 4 (0)

Hoover et al. [141] 1980 0.72 - 0.73 9 (0)

Singer et al. [142] 1980 0.7 - 0.99 12 (0)

Fincham and Heyes [143] 1983 0.71 - 2.7 11 (1)

Heyes [144] 1983 0.68 - 4.58 52 (18)

Michels and Trappeniers [145] 1985 1.3 - 10.0 36 (25)

Schoen and Hoheisel [146] 1985 0.68 - 4.42 14 (0)

Evans and Morriss [147] 1987 0.72 - 0.72 1 (0)

Heyes [148] 1987 1.46 - 1.46 16 (0)

Levesque and Verlet [149] 1987 0.72 - 2.74 3 (0)

Erpenbeck [150, 151] 1988 0.72 - 0.72 1 (0)

Hammonds and Heyes [152] 1988 0.72 - 10.0 51 (1)

Heyes [153] 1988 0.72 - 12.3 210 (5)

Vogelsang et al. [154] 1988 0.74 - 3.56 14 (1)

Evans et al. [155] 1989 0.72 - 0.72 1 (0)

Borgelt et al. [156] 1990 0.66 - 2.71 46 (10)

Heyes and Powles [157] 1990 0.72 - 6.0 26 (3)

Ferrario et al. [158] 1991 0.72 - 0.72 1 (0)

Moon et al. [159] 1991 0.79 - 0.79 2 (0)

Pas and Zwolinski [160] 1991 0.97 - 0.97 2 (0)

Pas and Zwolinski [161] 1991 0.55 - 1.17 16 (1)

Heyes et al. [162] 1993 0.71 - 6.02 4 (0)

Lee and Cummings [163] 1993 0.95 - 1.13 8 (5)

Hoheisel [164] 1994 0.62 - 3.94 9 (2)

Stassen and Steele [165] 1995 1.26 - 1.26 5 (0)

Rowley and Painter [166] 1997 0.8 - 4.0 171 (5)

Canales and Padro [167] 1999 0.53 - 1.89 3 (1)

Ohara and Suzuki [168] 2001 0.84 - 0.84 1 (1)

Lee et al. [169] 2003 0.79 - 0.79 4 (0)

Continued on next page
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Authors Year T /εk−1
B #

Meier et al. [119] 2004 0.71 - 0.72 3 (0)

Vasquez et al. [170] 2004 0.7 - 6.0 104 (7)

Galliéro et al. [171] 2005 0.6 - 4.0 80 (0)

Laghaei et al. [57] 2005 0.7 - 1.8 72 (4)

Mountain [172] 2006 0.74 - 3.56 28 (0)

Galliéro et al. [173] 2007 1.0 - 2.5 35 (0)

Lee [174] 2007 0.79 - 0.79 4 (0)

Sun et al. [175] 2007 0.57 - 1.13 4 (3)

Thomas and Rowley [176] 2007 0.8 - 4.0 241 (30)

Viscardy et al. [177] 2007 0.72 - 0.72 1 (0)

Galliéro and Boned [178] 2008 1.0 - 2.5 7 (0)

Lee [179] 2008 0.79 - 0.79 1 (0)

Strąk and Krukowski [180, 181] 2008 2.56 - 6.24 23 (0)

Adebayo et al. [182] 2010 0.75 - 0.75 1 (0)

Oderji et al. [183] 2011 0.7 - 30.2 152 (0)

Baidakov et al. [184] 2012 0.4 - 2.0 216 (7)

Lee [185] 2013 1.18 - 28.74 10 (9)

Lee [186] 2014 2.28 - 2.28 3 (3)

Lee [186] 2014 0.79 - 0.79 6 (1)

Delage et al. [187, 188] 2015 0.8 - 6.0 121 (5)

Ohtori and Ishii [189] 2015 0.72 - 1.17 7 (1)

Nichele et al. [190] 2016 1.22 - 2.62 96 (27)

Ghimire and Adhikari [191] 2017 1.68 - 3.02 13 (0)

Ohtori et al. [192] 2017 1.16 - 2.33 77 (1)

Heyes et al. [193] 2019 0.72 - 205.58 7 (0)

Bell et al. [194] 2021 1.35 - 100.0 136 (0)

Heyes et al. [195] 2021 0.72 - 1.0 2 (0)

Rizk et al. [196, 197] 2022 0.57 - 22.5 296 (0)

Viet et al. [133] 2022 0.75 - 3.0 59 (0)

Fertig and Stephan [112] 2023 0.79 - 2.1 26 (1)

Continued on next page
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Authors Year T /εk−1
B #

S̆lepavic̆ius et al. [198] 2023 1.0 - 1.16 5 (0)

Chaparro and Müller [199] 2024 0.68 - 10.0 506 (23)

Fleckenstein et al. [200] 2024 0.1 - 95.01 2736 (421)

Ramkumar et al. [201] 2024 0.09 - 1.37 15 (15)

Saric et al. [202] 2024 1.06 - 5.29 120 (0)

Schmitt et al. [52] 2024 0.69 - 20.0 173 (12)

this work 2024 0.55 - 100.05 870 (46)

Thermal conductivity

Levesque et al. [138] 1973 0.72 - 0.72 1 (1)

Ashurst and Hoover [139] 1975 0.67 - 29.7 24 (13)

Heyes [203] 1984 0.71 - 4.58 36 (22)

Paolini et al. [204] 1986 0.72 - 0.72 3 (0)

Levesque and Verlet [149] 1987 0.72 - 2.74 3 (0)

Hammonds and Heyes [152] 1988 0.72 - 10.0 50 (0)

Heyes [153] 1988 0.72 - 12.3 212 (2)

Vogelsang et al. [154] 1988 0.74 - 3.56 14 (0)

Borgelt et al. [156] 1990 0.66 - 2.71 46 (0)

Heyes and Powles [157] 1990 0.72 - 6.0 26 (1)

Moon et al. [159] 1991 0.79 - 0.79 2 (0)

Pas and Zwolinski [160] 1991 0.97 - 0.97 2 (0)

Pas and Zwolinski [161] 1991 0.55 - 1.17 16 (1)

Heyes et al. [162] 1993 0.71 - 6.02 4 (0)

Hoheisel [164] 1994 0.62 - 3.94 9 (0)

Canales and Padro [167] 1999 0.53 - 1.89 3 (0)

Lee et al. [169] 2003 0.79 - 0.79 4 (2)

Andrade and Stassen [205] 2004 0.72 - 0.72 1 (1)

McGaughey and Kaviany [206] 2004 0.67 - 0.83 3 (0)

Hulse et al. [207] 2005 0.74 - 7.39 68 (3)

Mountain [172] 2006 0.74 - 3.56 28 (0)

Nasrabad et al. [208] 2006 0.9 - 2.0 67 (0)

Continued on next page



2.2 Database of Transport Properties of the Lennard-Jones Fluid 13

Authors Year T /εk−1
B #

Lee [174] 2007 0.79 - 0.79 4 (0)

Sarkar and Selvam [209] 2007 0.71 - 0.71 1 (0)

Sun et al. [175] 2007 0.57 - 1.13 4 (2)

Bugel and Galliéro [114] 2008 0.6 - 4.0 103 (0)

Galliéro and Boned [178] 2008 1.0 - 2.5 7 (0)

Lee [179] 2008 0.79 - 0.79 1 (0)

Galliéro and Boned [210] 2009 0.8 - 8.0 36 (0)

Lee [185] 2013 1.18 - 28.74 10 (9)

Baidakov and Protsenko [211] 2014 0.4 - 2.0 235 (0)

Lee [186] 2014 2.28 - 2.28 3 (1)

Lee [186] 2014 0.79 - 0.79 6 (0)

Nichele et al. [190] 2016 1.22 - 2.62 96 (17)

Ghimire and Adhikari [191] 2017 1.68 - 3.02 13 (0)

Heyes et al. [193] 2019 0.72 - 205.58 7 (0)

Fertig and Stephan [112] 2023 0.79 - 2.1 26 (2)

Chaparro and Müller [199] 2024 0.68 - 10.0 461 (9)

Fleckenstein et al. [200] 2024 0.45 - 95.44 1245 (76)

Ramkumar et al. [201] 2024 0.09 - 1.37 15 (15)

Saric et al. [202] 2024 1.06 - 5.29 120 (0)

Schmitt et al. [52] 2024 0.69 - 20.0 173 (10)

this work 2024 0.55 - 100.05 871 (30)

Self-diffusion coefficient

Rahman [71] 1964 0.79 - 1.08 2 (1)

Levesque and Verlet [212] 1970 0.72 - 5.09 23 (11)

Kushick and Berne [213] 1973 0.74 - 5.13 5 (2)

Schofield [214] 1973 0.73 - 1.1 3 (3)

Michels and Trappeniers [215] 1975 1.5 - 3.0 22 (22)

Chen and Rahman [216] 1977 0.68 - 2.16 7 (4)

Michels and Trappeniers [217] 1978 1.3 - 5.56 43 (43)

Heyes et al. [140] 1980 0.72 - 0.72 4 (2)

Continued on next page
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Authors Year T /εk−1
B #

Fincham and Heyes [143] 1983 0.71 - 2.7 22 (3)

Heyes [218] 1983 0.68 - 2.55 32 (14)

Heyes [144] 1983 0.68 - 4.58 54 (17)

Heyes [148] 1987 1.46 - 1.46 16 (9)

Erpenbeck [150] 1988 0.72 - 0.72 1 (0)

Hammonds and Heyes [152] 1988 0.72 - 10.0 51 (14)

Heyes [153] 1988 0.72 - 12.3 212 (73)

Hoheisel and Vogelsang [219] 1988 0.9 - 0.93 4 (0)

Borgelt et al. [156] 1990 0.66 - 2.71 46 (22)

Heyes and Powles [157] 1990 0.72 - 6.0 26 (3)

Moon et al. [159] 1991 0.79 - 0.79 2 (1)

Pas and Zwolinski [160] 1991 0.97 - 0.97 2 (2)

Pas and Zwolinski [161] 1991 0.55 - 1.17 16 (5)

Straub [220] 1992 0.75 - 4.0 35 (10)

Heyes et al. [162] 1993 0.71 - 6.02 4 (0)

Nuevo et al. [221] 1997 0.71 - 4.45 30 (6)

Rowley and Painter [166] 1997 0.8 - 4.0 171 (59)

Canales and Padro [167] 1999 0.53 - 1.89 3 (1)

Coelho et al. [222] 2002 1.5 - 2.0 12 (3)

Lee et al. [169] 2003 0.79 - 0.79 4 (0)

Meier et al. [118] 2004 0.7 - 6.0 368 (6)

Yeh and Hummer [122] 2004 2.75 - 2.75 1 (0)

Marinakis and Samios [223] 2005 0.96 - 1.62 127 (125)

Lee [174] 2007 0.79 - 0.79 2 (0)

Sarkar and Selvam [209] 2007 0.71 - 0.71 1 (1)

Sun et al. [175] 2007 0.57 - 1.13 4 (1)

Galliéro and Boned [178] 2008 1.0 - 2.5 7 (0)

Lee [179] 2008 0.79 - 0.79 1 (0)

Wei-Zhong et al. [224] 2008 0.75 - 1.09 5 (1)

Baidakov et al. [225] 2011 0.35 - 2.0 396 (11)

Continued on next page
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Authors Year T /εk−1
B #

Oderji et al. [183] 2011 0.7 - 30.2 152 (14)

Lee [185] 2013 1.18 - 28.74 20 (4)

Lee [186] 2014 2.28 - 2.28 6 (1)

Lee [186] 2014 0.79 - 0.79 12 (0)

Ohtori and Ishii [189] 2015 0.72 - 1.17 7 (2)

Ghimire and Adhikari [191] 2017 1.68 - 3.02 13 (5)

Ohtori et al. [192] 2017 1.16 - 2.33 77 (10)

Heyes et al. [193] 2019 0.72 - 205.58 7 (0)

Lopez Flores et al. [226, 227] 2021 1.0 - 4.5 54 (45)

Toxvaerd [228] 2021 1.25 - 1.25 1 (0)

Ji [229] 2022 1.67 - 1.67 14 (5)

Rizk et al. [196, 197] 2022 0.57 - 22.5 211 (59)

Atamas et al. [230, 231] 2023 0.71 - 0.92 6 (6)

Fertig and Stephan [112] 2023 0.79 - 2.1 26 (0)

Marchioni et al. [232] 2023 4.0 - 4.0 12 (5)

S̆lepavic̆ius et al. [198] 2023 0.91 - 1.97 19 (0)

Chaparro and Müller [199] 2024 0.6 - 10.0 607 (5)

Fleckenstein et al. [200] 2024 0.45 - 95.01 1996 (282)

Ramkumar et al. [201] 2024 0.09 - 1.37 15 (15)

Saric et al. [202] 2024 1.06 - 5.29 120 (0)

Schmitt et al. [52] 2024 0.69 - 20.0 173 (2)

this work 2024 0.55 - 100.05 871 (14)

The transport property database is provided as an .xlsx spreadsheet in the electronic

Supporting Information of Ref. [233]. In that electronic database, there is one tab for

each property, listing the actual data points regarding the thermodynamic condition

(T , ρ and/or p), the transport property value (η, λ, D), (if provided in the reference)

its corresponding statistical uncertainty (∆η, ∆λ, ∆D, respectively), and the reference.

Each data point possesses a digital tag (0 or 1), which indicates whether it was identified

to be an outlier or not, according to the assessment described below.

The general behavior of the three transport properties as a function of the pressure



16 2 Database and Data Assessment of Transport Properties of the the LJ Fluid

and the temperature is shown in Fig. 1. The purpose of Fig. 1 is to give an overview

Figure 1: Shear viscosity η (top), thermal conductivity λ (middle), and self-diffusion
coefficient D (bottom) as a function of the pressure p at selected temperatures
T ∈ {0.7, 0.9, 1.1, 1.34, 2, 5, 10}εk−1

B (see color scale). Lines: Results from the
entropy scaling model. Symbols: Computer experiment data points from the
database at the selected temperatures (±0.02 εk−1

B ).

on the range of the transport property values that are relevant for the LJ fluid and

for illustrating the topology of the three transport properties. The depicted isotherms

were chosen such that all fluid regions (gas, liquid, supercritical, metastable) are covered.

Moreover, the transport properties on the vapor-liquid equilibrium binodal and spinodal

are depicted. Both, MD data and results from the entropy scaling model adapted from

Ref. 52 are shown. The entropy scaling model rests on the Kolafa-Nezbeda EOS, which

is known to yield a realistic fluid description in a wide state range [50, 234].

The entropy scaling model represents the computer experiment data of the selected

isotherms overall well. The topologies of the shear viscosity and the thermal conductiv-

ity are similar (see Fig. 1 top and middle): With rising pressure, both quantities increase

for all stable and metastable states. In the unstable region, a van der Waals loop-type

behavior is observed. In contrast, the temperature dependence varies in different phase

regions: In the zero-density limit, shear viscosity and thermal conductivity increase

with rising temperature as predicted by Chapman-Enskog theory [75]. This changes

at higher density, where both quantities fall with increasing temperature. Thus, differ-

ent supercritical isotherms may cross each other. The self-diffusion coefficient behaves
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differently. It decreases with rising pressure, except for unstable states. The tempera-

ture dependence is always the same – the self-diffusion coefficient increases with rising

temperature throughout and no crossing of isotherms occurs. At the critical point,

the transport properties are estimated to be ηc = 0.26
√

εMσ−2, λc = 1.24 kB

√
ε/Mσ−2,

and Dc = 0.59
√

ε/Mσ. The transport properties exhibit a particular behavior near the

critical point, the so-called critical enhancement [235–237]. For the Lennard-Jonesium,

this is most pronounced for the thermal conductivity and not prominent for the shear

viscosity and the self-diffusion coefficient [128]. The critical enhancement is due to large

fluctuations that decay very slowly [235].

The LJ transport property database was compiled from data in peer-reviewed pub-

lications that were obtained from molecular simulation computer experiments. Data

predicted by theories (that are subject to assumptions and simplifications) were not

included. Only data for the full LJ potential was included in the database. Data from

modified LJ potentials, e.g. the LJs and LJTS potential, were not considered. Sim-

ulation data were only included if the cutoff was at least 2.5σ. In cases, where the

specifications on that were not fully conclusive, data were nevertheless mostly included.

In several cases where these specifications were vague, the data turned out to be iden-

tified as outliers by the data assessment (see below). The self-diffusion coefficient data

included in the database were taken uncorrected. For data of studies that only published

the final (corrected) values and that reported the applied correction, the original values

were recalculated and the applied procedure was reported in the Appendix A with the

conversion. All of the studies where values were uncorrected used the method proposed

by Yeh and Hummer [122]. Overall, only few studies even report the handling of the

long-range corrections (see below).

The total number of data points Ntot comprised in the transport property LJ database

(cf. Table 1) and the number of publications Npub from which those data were retrieved

is reported in Fig. 2. The number of data points for the thermal conductivity (4059) is

significantly lower than that for the shear viscosity (7044) and the self-diffusion coeffi-

cient (6183). All three properties are among the most studied properties of the LJ fluid

(compare Ref. 73), which underpins their importance.

Fig. 3 shows the state points for which transport property data are available (cf. Table 1),

in ρ−T diagrams. Fig. 4 introduces the symbols distinguished by shape and color used

for a given reference throughout this chapter. For all three transport properties, data

are available in all fluid state regions. Ten different state regions were distinguished

that are depicted in Fig. 5. All data points are assigned to a fluid region according to

Fig. 5. In some cases, simulations were also carried out in the metastable/unstable state

regions. As expected, for extreme conditions, especially for temperatures T > 10 εk−1
B ,

the data become sparse. Fig. 3 also contains the data sampled in this work (details on
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Figure 2: Total number of data points Ntot (top) and number of publications Npub

(bottom) for the shear viscosity η, thermal conductivity λ, and self-diffusion
coefficient D.

the simulation methodology are given in the Appendix A). They extend the range in

which data are available, but also cover regions with more data to allow for comparisons.

They were handled as the literature data, in particular, they were subjected to the same

tests.

For the vast majority of the transport property data in the database, both T and ρ

are available specifying the state point. In about 50 % of the cases, also the pressure

was reported. Less than 2 % of the data are reported for given T and p, i.e. without

providing the density. For these state points, the density was calculated with the Kolafa-

Nezbeda EOS [136] where required (e.g. for applying the MoDOD test). Moreover, in

some cases additional (time-independent) thermodynamic properties were reported, see

Appendix A for details. For the three considered transport properties, the availability of

data in the different fluid regions is similar. Around 44 % of the transport property data

are in the supercritical region (Su), 14 % in the extreme temperature region (Ex-T), 12

% in the liquid region (L), 10 % in the vapor-liquid metastable region (MU), 4 % in

the solid-metastable (SLE) region, 4 % in the gas region (G), 3 % in the high-density

liquid region (HD-L), 3 % in the critical region (C), 2 % in the high-density supercritical

region (HD-Su), and 2 % in at temperatures below the triple point (Lo-T).

The statistical uncertainties of the data points ∆η, ∆λ, and ∆D were included in the

database – if reported by the authors. Fig. 6 shows histograms of the values of the

relative statistical uncertainties. Statistical uncertainties are available for 80 %, 76 %,

and 66 % of the data points for the shear viscosity, thermal conductivity, and self-

diffusion coefficient, respectively. For the shear viscosity and thermal conductivity, the

vast majority of the reported relative statistical uncertainties ∆η/η are below 0.1. For

the self-diffusion coefficient, significantly smaller relative statistical uncertainties are

reported with ∆D/D < 0.01 for most of the data. This is due to the fact that the self-
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Figure 3: Overview of the state points of all available transport property simulation
data included in the database for the shear viscosity (left), thermal conduc-
tivity (middle), and self-diffusion coefficient (right) in the T -ρ plane. The
symbols are as given in Fig. 4. The binodal, spinodal, critical point, and
triple point were taken from Ref. 73, and the freezing and melting lines are
from Refs. 238, 239. All data refer to fluid state points, some lie in regions
that are not stable.

diffusion coefficient can be sampled for each particle individually. Thus, the self-diffusion

coefficient can be obtained as the average of the individual particles, which gives excellent

statistics. This is not the case for the shear viscosity or the thermal conductivity, where

only one value is computed for the entire simulation volume. Furthermore, the statistical

uncertainty depends on the region, where the studied state point lies. This is discussed

in the Appendix A using heat maps showing the uncertainty as a function of T and ρ.

Simulations for determining transport properties of the LJ fluid that are compiled in the

database were carried out with a large number of different simulation codes, hardware,

simulation methods, and simulation settings, such as particle number, time steps etc.

There is a consensus that publications should report not only the simulation results

and their uncertainties, but also meta data on the simulation method – with the main

goal to allow for a reproduction of the simulations [90, 240–243]. However, there is no
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Adebayo et al. (2010)
Andrade and Stassen (2004)
Ashurst and Hoover (1975)
Atamas et al. (2023)
Baidakov et al. (2011)
Baidakov et al. (2012)
Baidakov and Protsenko (2014)
Bell et al. (2021)
Borgelt et al. (1990)
Bugel and Galliero (2008)
Canales and Padron (1999)
Chaparro and Müller (2024)
Chen and Rahman (1977)
Coelho et al. (2002)
Delage-Santacreu et al. (2015)
Erpenbeck (1988)
Evans and Morriss (1987)
Evans et al. (1989)
Ferrario et al. (1991)
Fertig and Stephan (2023)
Fincham and Heyes (1983)
Fleckenstein et al. (2024)
priv. comm. Lopez Flores et al. (2021)
Galliero et al. (2005)
Galliero and Boned (2009)
Galliéro et al. (2007)
Galliero and Boned (2008)
Ghimire and Adhikari (2017)
Gosling et al. (1973)
Hammonds and Heyes (1988)
Heyes et al. (2019)
Heyes et al. (1993)
Heyes (1983)
Heyes (1983)
Heyes (1984)
Heyes (1988)
Heyes (1987)
Heyes et al. (2021)
Heyes et al. (1980)
Heyes and Powles (1990)
Hoheisel (1994)
Hoheisel and Vogelsang (1988)
Hoover et al. (1980)
Hulse et al. (2005)
Ji (2022)
Kushick and Berne (1973)
Laghaei et al. (2005)
Lee (2013)
Lee (2007)
Lee et al. (2003)
Lee (2014)
Lee (2014)
Lee (2008)
Lee and Cummings (1993)
Levesque et al. (1973)
Levesque and Verlet (1987)
Levesque and Verlet (1970)
Marchioni et al. (2023)
Marinakis and Samios (2005)
McGaughey and Kaviany (2004)
Meier et al. (2004)
Meier et al. (2004)
Michels and Trappeniers (1985)
Michels and Trappeniers (1975)
Michels and Trappeniers (1978)
Changman Moon et al. (1991)
Mountain (2006)
Nasrabad et al. (2006)
Nichele et al. (2016)
NIST (2023)
Nuevo et al. (1997)
Oderji et al. (2011)
Ohara and Suzuki (2001)
Ohtori and Ishii (2015)
Ohtori et al. (2017)
Paolini et al. (1986)
Pas and Zwolinski (1991)
Pas and Zwolinski (1991)
Rahman et al. (1964)
Ramkumar et al. (2024)
Rizk et al. (2022)
Rowley and Painter (1997)
Saric et al. (2024)
Sarkar and Selvam (2007)
Schmitt et al. (2024)
Schofield (1973)
Schoen and Hoheisel (1985)
Singer et al. (1980)
Slepavicius et al. (2023)
Stassen and Steele (1995)
Str k and Krukowski (2008)
Straub (1992)
Sun et al. (2007)
Thomas and Rowley (2007)
Toxvaerd (2021)
Vasquez et al. (2004)
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Viscardy et al. (2007)
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Yeh and Hummer (2004)
this work
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Ohtori and Ishii (2015)
Ohtori et al. (2017)
Paolini et al. (1986)
Pas and Zwolinski (1991)
Pas and Zwolinski (1991)
Rahman et al. (1964)
Ramkumar et al. (2024)
Rizk et al. (2022)
Rowley and Painter (1997)
Saric et al. (2024)
Sarkar and Selvam (2007)
Schmitt et al. (2024)
Schofield (1973)
Schoen and Hoheisel (1985)
Singer et al. (1980)
Slepavicius et al. (2023)
Stassen and Steele (1995)
Str k and Krukowski (2008)
Straub (1992)
Sun et al. (2007)
Thomas and Rowley (2007)
Toxvaerd (2021)
Vasquez et al. (2004)
Viet et al. (2022)
Viscardy et al. (2007)
Vogelsang et al. (1988)
Wei-Zhong et al. (2008)
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this work
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Figure 4: Legend of the symbols used for each source throughout this chapter. Each
line in the legend indicates one reference with a unique symbol and color
combination.
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Figure 5: Definition of characteristic fluid regions (colored) of the LJ fluid used for the
evaluation of the LJ transport property data: Metastable/unstable (MU),
gas (G), liquid (L), critical (C), supercritical (Su), high density liquid (HD-
L), high density supercritical (HD-Su), extreme temperature (Ex-T), low
temperature (Lo-T), and metastable/unstable SLE (SLE). Details on the
definitions of the boundaries of the regions are given in Ref. 234.

consensus on the level of detail of these meta data. A full specification seems infeasible

– and be it only for practical reasons, given the limitations of a standard publication.

In the vast majority of the considered publications, the meta data are far too vague to

allow for a serious replication attempt. In the following, a list is presented of what was

considered to be a good compromise between disclosing sufficient detail to reproduce

essential features of the simulation on the one side and conciseness and feasibility on the

other. For molecular simulations of transport data of bulk fluids, it is recommended to

include the following meta data: Sampling method, production time, equilibration time,

time step, software, ensemble, number of particles, cutoff radius, treatment of the long-

range interactions, and handling of finite size effects. Moreover, for EMD simulations

with the Green-Kubo method, the time correlation (TCF) length, the number of TCF

functions, and the frequency in which the respective quantity is used in the TCF should

be specified. In case of the Einstein method, the length of the slope, which was used for

calculating the transport property should be stated. For NEMD simulations, details on

the imposed gradients and the geometric setup should be provided. Moreover, details on

the applied definition and computation of the statistical uncertainty should be provided.

The availability of these meta data was assessed in the publications from the compiled

database (cf. Table 1). For this purpose, ten EMD studies and ten NEMD studies were

randomly selected and evaluated with respect to the availability of the meta data. More
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Figure 6: Histograms of the relative uncertainty of the data points for the viscosity
∆η /η (left), the thermal conductivity ∆λ /λ (middle), and the self-diffusion
coefficient ∆D /D (right). The grey bars (n.a.) represent the number of
data points published without specifying uncertainty.

than 90 % of these studies (both EMD and NEMD) provided all general parameters,

like the production time, time step, and number of particles. The equilibration time is

only given in around 30 % of the studies. Around 80 % of the studies report the cutoff

radius; but only 20 % specify the treatment of the long-range interactions explicitly.

The applied software package is only mentioned by around 20 % of the publications,

especially older publications often used unpublished in-house codes. Also, 50 % of

the Green-Kubo studies specify the TCF length, the number of TCF, and the sampling

frequency of the TCF. For the Einstein method studies, the length of the evaluated slope

is only given in around 30 % of the publications. In all inspected NEMD studies, the

applied gradient is given explicitly or implicitly by reporting the boundary conditions of

the simulations. Unfortunately, several studies do not even report the numerical values

of the transport property simulation results [100, 244–249]. In these cases, it was tried

to obtain simulation data via private communications for the preparation of this work,

but this approach is obviously tedious and limited. The digitization of data from papers

from the literature, usually available in pdf file format, is a tedious and error-prone

task. After a preliminary application of the outlier detection (see below), data points

identified to be gross outliers as well as data sets with particularly high outlier rates

were re-checked based on the respective publication. In some cases, copy-paste typos

were found and corrected.

2.3 Assessment of the Data

The LJ fluid transport property data compiled in this work were assessed using two

approaches with the aim of identifying outliers: (1) A model-based procedure was ap-

plied to the full data set using an entropy scaling model [52]. (2) The zero-density

limit transport properties from Chapman-Enskog theory were used for the assessment

of low-density data.
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2.3.1 Outlier Detection for Homogeneous States

The data points reported in the database were assessed by the model distance-based

outlier detection method (MoDOD) adapted from Refs. [73, 135]. The basic principle

of the MoDOD test and how it is combined with the entropy scaling model from Ref. 52

is described in the following. The MoDOD test evaluates each data point individually

by comparing it with a model value and computer experiment data in its vicinity. It

is designed to make a binary decision: Either a data point is an outlier or not. The

assessment is based on the relative deviation

δY =
Ysim − Ymod

Ymod

with Y ∈ {η, λ, D}, (2)

where Ysim is the computer experiment value at a given T , ρ and Ymod is the model value

determined for the same T , ρ. In this chapter, the entropy scaling model from Ref.

52 in combination with the Kolafa-Nezbeda EOS [136] was used for obtaining Ymod in

the MoDOD test. Many EOS models are available for the LJ fluid. The one proposed

by Kolafa and Nezbeda was found to yield the most accurate and robust description

of the LJ fluid in a wide temperature and pressure range for describing both thermal

and entropic properties [50, 234] so that it was used in this work. Fig. 1 shows that

the entropy scaling model from Ref. 52 combined with the Kolafa-Nezbeda EOS [136]

yields a good description of the transport properties of the LJ fluid. Especially for the

self-diffusion coefficient, it yields a high accuracy in a large state range. Nonetheless, it

should be pointed out that the global accuracy of the model is no prerequisite for its

application in the MoDOD test.

To assess a given state point j, state points from its neighborhood were determined by

means of the a weighted euclidean distance in the T − ρ plane (see Ref. 135 for details).

The neighbors i = 1 . . . Mj were used for the assessment of the data point j, where the

number of neighbors Mj is up to 20 (depending on the availability of data). The idea

of the test is to compare the mean deviation of the Mj data points in the vicinity of

the assessed data point j from the model and to identify j as an outlier if its deviation

from the model is very different from the deviations of its neighbors. The measure Pj

used to detect outliers by the MoDOD test is

Pj =

∣δYj −median
Mj

i=1 (δYi)∣
MADj

, (3)

where MADj is the mean absolute deviation defined as

MADj = k ⋅median
Mj

i=1 (∣δYi −median
Mj

i=1 (δYi)∣) , (4)
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with k = 1.4826 [73]. MADj was used here as a measure for the average local deviation

of the data points from the reference model. If Pj ≥ Pmax = 4, data point j is identified

as an outlier. Otherwise, the data point j is considered as ’confirmed’ by the MoDOD

method. The choice Pmax = 4 is conservative, i.e. false outlier identifications are unlikely,

but not excluded [135].

Fig. 7 shows the results of the MoDOD outlier assessment for each of the three trans-

port properties. In total, for all considered transport property data, about 10 % were

91.6% 96.5% 84.9%

D

Figure 7: Pie charts of the share of confirmed data points of the total number of data
points (colored areas) for shear viscosity η (left), thermal conductivity λ

(middle), and self-diffusion coefficient D (right). The grey area represents
the share of outlier data.

identified as outliers. Most outliers were identified for the self-diffusion coefficient, which

is due to the fact that the literature data have relatively small statistical uncertainties

and scatter little, so that the MADj is usually small and comparatively small deviations

of data point j lead to its classification as an outlier. Also the handling of the finite-

size correction is not consistent throughout the data due to a lack of reporting which

can leads to systematic deviations. The fraction of data points that were identified as

outliers does not vary strongly for the different regions in the phase diagram. Details

are given in the Appendix A.

Fig. 8 shows some examples for the results for the MoDOD test for the three transport

properties. The data for selected isotherms in the homogeneous region are shown and all

data points identified as outliers are marked. For the three properties, the MoDOD test

works well and is able to identify gross outliers. Despite the fact that the model exhibits

some systematic deviations, e.g. for the shear viscosity and thermal conductivity at low

pressure and high temperatures, the MoDOD test reliably and autonomously detects

outlier data points. For the thermal conductivity, the simulation data exhibit more

significant scatter compared to the self-diffusion coefficient. Therefore, the MoDOD

test is only able to detect very gross outliers among the thermal conductivity data,

whereas, for the self-diffusion coefficient, the MoDOD test acts more rigorously and

detects dubious data even in cases where they deviate only slightly from the data in
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their neighborhood.

Figure 8: Examples for results of the outlier detection with the MoDOD test. Con-
firmed data points are solid circles, outliers are crosses. Data for the shear
viscosity η (top), thermal conductivity λ (middle), and self-diffusion coeffi-
cient D (bottom) as a function of the pressure p for selected temperatures
T ∈ {0.7, 0.9, 1.1, 1.34, 2} εk−1

B in a double-logarithmic plot. The temperature
is color coded. Lines: Entropy scaling model. Symbols: Data that are at
temperatures within ∆T = ±0.02 εk−1

B of the isotherms.

2.3.2 Assessment by the Chapman-Enskog Zero-Density Limit

In the second assessment approach, the low density data were compared to the zero-

density limit of the transport properties η, λ, and D calculated analytically with the

Chapman-Enskog theory, addressed as ’CE test’ in the following. The zero-density limit

of the Lennard-Jones fluid can be calculated with high accuracy from the Chapman-

Enskog equations that originate from kinetic gas theory [124]. Based on Chapman-
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Enskog theory, the transport properties in the zero-density limit are given by

ηCE =
5
16

√
MkBT

π

1
σ2Ω(2,2)f

(3)
η , (5)

λCE =
75
64

kB

√
kBT

Mπ

1
σ2Ω(2,2)f

(3)
λ , (6)

DCEρ =
3
8

√
kBT

πM

1
σ2Ω(1,1)f

(2)
D , (7)

where M is the particle mass and Ω(1,1) or Ω(2,2) are the collision integrals, which are

a function of the temperature, i.e. Ω(1,1)
= Ω(1,1)(T /εk−1

B ) and Ω(2,2)
= Ω(2,2)(T /εk−1

B ).
The collision integrals were computed from an accurate empirical correlation that was

developed by Kim et al. [126]. Therein, the uncertainty of the collision integral models

was specified as ∆Ω = 0.007% up to T = 400 εk−1
B [126]. The terms f

(3)
η , f

(3)
λ , and

f
(2)
D in Eqs. (5) - (7) are 3rd order (for shear viscosity and thermal conductivity) and

2nd order (for self-diffusion coefficient) correction terms. With these correction terms,

the uncertainty of Eqs. (5) - (7) was reported to be below 0.01% [250, 251], which is

significantly better than the simulation uncertainties (cf. Fig. 6).

For the CE test of a given data point Ysim(T , ρ), its relative deviation δCEY from the

corresponding Chapman-Enskog value YCE(T ) was computed:

δCEY = (Ysim − YCE)/YCE with Y ∈ {η, λ, D}, (8)

where YCE was determined with Eqs. (5) - (7). The CE test was only applied to sim-

ulation data at densities ρ < 0.2 σ−3. Starting at ρ → 0, the Chapman-Enskog theory

values YCE are expected to deviate from the simulation data with rising density. The

magnitude of this deviation is not a priori known. For the assessment of the simulation

data within the CE test, the deviations δCEY were initially described by the simple

empirical function

δCEY (expected)(ρ) = aY (ρ/σ3)bY , (9)

where aY and bY are adjustable parameters that were fitted for a given transport prop-

erty Y ∈ {η, λ, D} to all simulation data with ρ < 0.2 σ−3 because no significant tempera-

ture dependence of the deviations from the CE values was observed. Outliers detected

by the MoDOD test were not considered in this fit. The obtained parameters ay and by

are reported in the Appendix A. To detect outliers, two additional, empirical functions

were defined as

f1(ρ) = 3 ⋅ aY (ρ/σ3)bY
+ cY , (10)

f2(ρ) = −cY , (11)
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providing an upper and lower threshold. Data points outside of this range were identified

as outliers by the CE test. In Eqs. (10) - (11), cY is an empirical offset chosen as

cη = cλ = 0.1 for the shear viscosity and the thermal conductivity and cD = −0.01 for the

self-diffusion coefficient, which reflects the statistical uncertainty and the scatter of the

simulation data.

Fig. 9 shows the results of the CE test by plotting δCEY as a function of the density

for all data points with ρ < 0.2 εk−1
B . It also depicts the curves describing the expected

Figure 9: Results from the CE test. Relative deviations of the simulation data from
Chapman-Enskog theory (cf. Eq. (9)) for the shear viscosity δCEη (top),
thermal conductivity δCEλ (middle), and self-diffusion coefficient δCED (bot-
tom) as a function of the density ρ (logarithmic scale) for ρ < 0.2 σ−3. The
solid line is the result of the empirical fit, cf. Eq. (9). The dotted lines
indicate the upper and lower thresholds defined by Eqs. (10) - (11), contain-
ing the confirmed data points (white area). Data outside of this band (grey
area), are outliers. Left column: Symbols as introduced in Fig. 4. Right
column: Open circles are data points confirmed by both the CE test and
the MoDOD test; solid circles are outliers identified only by the CE test and
crosses in the white area are outliers identified only by the MoDOD test;
crosses located in the grey area were identified as outliers by both methods.
Color indicates the temperature.

deviations as well as the thresholds. For all three properties, the deviation to the

zero-density limit δCEY decreases for ρ → 0, as expected. The deviations δCEY are

significantly smaller for the self-diffusion than for the other two properties. The vast
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majority of the simulation data lies in the threshold band defined by Eqs. (10) - (11).

Data points outside of this band were identified as outliers by the CE test. For the shear

viscosity, the number of outliers above and below the band is roughly the same. For the

thermal conductivity and the self-diffusion coefficient, the number of outliers below the

band is significantly larger than that above the band.

With the CE test, 271, 99, and 159 outliers were detected among the shear viscosity,

thermal conductivity, and self-diffusion coefficient data, respectively. Fig. 10 shows the

share of the confirmed data points and outliers identified by the CE method and the

MoDOD test for all three transport properties. The results from the MoDOD outlier

89.6% 94.7% 84.6%

D

Figure 10: Pie charts of the share of confirmed data points (colored areas) and outliers
identified by the MoDOD test alone (light grey), the CE test alone (grey),
and by both tests (dark grey) for the shear viscosity η (left), thermal con-
ductivity λ (middle), and self-diffusion coefficient D (right).

detection agree overall well with the results from the CE test. For the shear viscosity

and the thermal conductivity, the CE test identified a significant amount of data points

as outliers that were not identified by the MoDOD test. For the self-diffusion coefficient,

few outliers were identified only by the CE test, cf. Fig. 10. This is due to the small

statistical uncertainties of the self-diffusion data, which allow for a more rigorous outlier

detection with the MoDOD test. For the shear viscosity and the thermal conductivity,

the CE test identified several data points as outliers that were not identified as such by

the MoDOD test. Due to the use of the known behavior of the transport properties in

the zero-density limit ρ → 0, the CE test can be used in an overall more rigorous way

than the rather conservative MoDOD test. Thus, using the zero-density limit allows for

an additional designation of gross outliers based on physical knowledge that reasonably

complements and confirms the MoDOD test. For the final data evaluation, data points

were identified as outliers if at least one of the two tests identified it as such. In the

following, ’outliers’ refer solely to that aggregated evaluation.
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2.4 Discussion

Fig. 11 shows the relative deviations δY (cf. Eq. (2)) of the entropy scaling model

and the simulation data for the shear viscosity, thermal conductivity, and self-diffusion

coefficient, respectively. Only the confirmed simulation data is depicted in Fig. 11.

Figure 11: Relative deviation of the simulation data from the entropy scaling model
for the shear viscosity δη (top), thermal conductivity δλ (middle), and self-
diffusion coefficient δD (cf. Eq. (2)) as a function of the density (left) and
corresponding histograms of the relative deviations (right). Only confirmed
data are shown. The dashed line represents the entropy scaling model.
Error bars are omitted to avoid visual clutter. The color indicates the
temperature.

These deviation plots can be used to assess the availability and quality of the simulation
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data. They also confirm that the entropy scaling model describes the simulation data

robustly in the entire, very wide range of states for which data are available. A discussion

of details of the performance of the entropy scaling model is not entered here, the focus

lies solely on the simulation data here. The intention of Fig. 11 is to visualize the data

such that dubious data points become visible and give an impression of their scatter. A

similar representation of the relative deviations δY with an encoding of the publication

including the outliers is discussed in the appendix (Figs. A.1 - A.3).

For the shear viscosity and the thermal conductivity (cf. Fig. 11 top and middle),

most of the data points scatter within ±20 % from the entropy scaling model. For

the self-diffusion coefficient (Fig. 11 bottom), the deviations are significantly smaller,

mostly within ±5 %. This corresponds to the magnitude of the given uncertainties for

the three transport properties which behave similarly (cf. Fig. 6). The deviations are

independent of temperature for all three properties. Some data sets can be highlighted

that contain many data points with a small number of outliers for the shear viscosity

[171, 183, 194, 196, 197, 199, 202], thermal conductivity [114, 153, 199, 202, 211], and

self-diffusion coefficient [52, 118, 183, 199]. These collections of data sets cover a wide

range of state points and provide good accuracy. In the Appendix A, they are plotted

analogously to Fig. 11.

2.5 Conclusions

In this chapter, molecular simulation data for the Lennard-Jones fluid, i.e. shear vis-

cosity, thermal conductivity, and self-diffusion coefficient, were collected, reviewed, and

assessed. The transport property data (around 17,000 data points) were digitized, evalu-

ated, and provided as a consistent database to complement the Lennard-Jones database

on (time-independent) thermodynamic properties [73]. This database contains data in

all fluid regions, including gaseous, liquid, and supercritical states as well as the vapor-

liquid and the solid-liquid metastable regions. Approximately 11 %, 5 %, and 16 %

of the shear viscosity, thermal conductivity, and self-diffusion data points, respectively,

were identified as outliers by the applied tests. For the assessment of the data quality,

two tests were applied, namely the MoDOD test [135] that was coupled with an entropy

scaling model and a test procedure based on the Chapman-Enskog zero-density limit of

the transport properties. The detected outliers are homogeneously and randomly dis-

tributed across the different fluid regions. The relatively large ratio of outliers identified

among the self-diffusion coefficient data can be attributed to the fact that the outlier

detection can be applied in a more rigorous way due to the high overall accuracy of

the self-diffusion coefficient data. This is expressed by the relatively small statistical

uncertainty as well as by small deviations to the model (which are connected).
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The transport properties of the Lennard-Jones fluid are of high interest since its poten-

tial model was originally proposed [66, 71]. Consequently, many studies have examined

the transport properties of the Lennard-Jones fluid. The present chapter summarizes

knowledge on the transport properties of Lennard-Jonesium and provides high qual-

ity benchmark data. It thereby also contributes to determining the reproducibility of

transport properties by molecular simulation. Systematic uncertainties between the re-

sults from different studies, i.e. based on different sampling methods, simulations codes,

hardware, etc. were identified. Since the Lennard-Jones fluid can be considered as one

of the simplest molecular models, these systematic uncertainties can be considered as

a lower limit to what has to be expected for more complex real substance molecular

models.
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3 Evaluation of Force Fields for the

Simulation of Thermophysical

Properties of Long Alkanes

3.1 Introduction

Thermophysical properties of lubricants at extreme pressures are highly important for

the design of processes in mechanical engineering [12]. Especially the density and the

transport properties determine the performance of the lubricant in the lubrication gap.

The pressure in tribological systems with small contact areas are often higher than

1,000 MPa [2]. For such conditions, experimental data are rare due to high costs and

complexity of the measurements [252]. Hence, reliable predictive models are needed.

Molecular simulation is an attractive method for this.

Molecular dynamics (MD) simulations have been used often for the prediction of ther-

mophysical bulk properties of lubricants [19, 253–259], wetting, and interfacial prop-

erties on solid walls [59, 260–262], as well as for the simulation of tribological con-

tact processes [263–270]. Simulations of lubricants usually aim at predicting trans-

port properties, in particular the viscosity, using either equilibrium molecular dynamics

(EMD) [62, 112, 271–273] or non-equilibrium molecular dynamics (NEMD) simulations

[255, 274–277]. Both methods are challenging: EMD simulations require a large com-

putational effort to compute the viscosity, especially for higher viscosities due to the

slow convergence of the auto correlation function (ACF) [84]. In NEMD simulations,

the shear rate has to be small enough to reach the Newtonian regime which can require

very long simulation times due to the bad signal-to-noise ratio at small shear rates [87].

As the viscosity becomes very large at high pressures [278], the prediction of transport

properties at high pressures is a challenging task with high computational costs. Spe-

cial methods have been applied for tackling this task, such as the time decomposition

method [84].

MD simulations of lubricants require force fields that model the inter- and intramolecular

interactions. Especially for the quantitative prediction of bulk properties, the choice of
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an adequate force field is crucial. There is a large number of different force fields that

can be used for modeling lubricants [63, 279, 280]. The choice of the force field is not

trivial as different force fields have different strengths and weaknesses, and comparisons

on equal terms are usually difficult from the information that is available in the literature

alone. The most important attribute of the force field is its the ability to predict the

target properties with the desired accuracy. Another attribute is the type of the force

field, i.e. the approach that is taken to model the atomistic architectures and their

interactions. This is decisive for the computational cost but also relevant for the choice

of the simulation tool, as not all programs can handle all types of force fields. Three

different basic modeling levels are distinguished in the present chapter (cf. Fig. 12):

all-atom (AA), united-atom (UA), and coarse-grained (CG) force fields.

united-atom

coarse-grained

all-atom

Figure 12: Sketch of a squalane molecule modeled by the different types of force fields.

In AA force fields, every atom is assigned to an individual interaction site. They are

also often called ’explicit hydrogen’ models. In contrast, UA force fields assign multiple

atoms to a single interaction site. Usually, methylene and methyl groups are modeled

by a single interaction site. The modeling by CG force field goes a step further and

chain segments of multiple heavy atoms are combined to a single interaction site. For

AA force fields, two subtypes can be further distinguished: (i) reactive AA force fields,

which explicitly model chemical bonds (that can form and break during the simulation),

and (ii) classical AA force fields, which are built using intramolecular potentials that do

not break, e.g. a harmonic potential.

Nine force fields were applied in the present chapter for the modeling of five linear

and branched alkanes, which are typical components of poly-α-olefines (PAO) or used

as simple model lubricants. PAOs are an important group of lubricants [281]. The

substances include the three linear alkanes n-decane (C10H22), n-icosane (C20H42), and

n-triacontane (C30H62) as well as two isomers of n-triacontane: 1-decene trimer and

squalane (both C30H62). The chemical structures of the five substances investigated in

this chapter are depicted in Fig. 13. In the following, the substances are abbreviated

as n-C10, n-C20, n-C30, TRI, and SQU (cf. Fig. 13). Hence, the study comprises

alkanes with different chain lengths as well as different structure for a given molecular
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n-decane (n-C10)

n-icosane (n-C20)

n-triacontane (n-C30)

1-decene trimer (TRI)

squalane (SQU)

Name Structural formula Chemical formula

C10H22

C20H42

C30H62

Figure 13: Overview of substances included in this chapter.

formula. The molecule 1-decene trimer is the simplest (long branched) representative

of poly-(1-decene) and it is an important component of PAO base oils [281]. Squalane

(SQU) is frequently used as a model lubricant in experiments [274, 282] and also an

important substance in cosmetics [283]. The predictions for the density, the viscosity,

and the self-diffusion coefficient of these substances were systematically compared to

experimental data. Moreover, the computational costs of the different force fields were

assessed. The study covers pressures up to 400 MPa, the temperature is always 373.15 K.

The properties of lubricants at high pressure are of particular interest due to the high

pressure conditions occurring in tribological applications [2]. Furthermore, the linear

alkanes are common components of diesel fuels, whose properties at high pressure are

also of high practical interest [284].

Comparisons of different force fields have been published for a wide variety of sub-

stances. They address the prediction of phase equilibria [285, 286] as well as bulk prop-

erties like the density [272, 273, 280, 287–290], isothermal compressibility [280, 286],

and the speed of sound [287]. In some of the works, the ability of the force fields to

predict thermophysical properties at elevated temperatures and pressures was explicitly

addressed [64, 289, 291]. Studies explicitly addressing the properties of lubricants are

sparse. Lin et al. calculated the density and viscosity of a polyol ester (POE) lubricant

at ambient pressure with three different force fields and compared them to experimental

data [290]. Ewen et al. compared ten UA and AA force fields in their ability to predict

the density and the viscosity of n-hexadecane up to 200 MPa [273]. The viscosity and

the self-diffusion coefficient of branched alkanes as model lubricants have been studied

by Kondratyuk et al. [272]. A broad systematic comparison of force fields of different

types regarding their ability to predict properties that are important for lubrication, i.e.

density and viscosity, up to high pressures was, however, not available up to now. This

gap is closed by this work.

The different force fields lead to different computational costs of the molecular simu-

lations. For example, the number of interaction sites per molecule varies for different
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force fields and has a strong influence. The computational costs normally scale linearly

with the number of interaction sites for systems without electrostatic interactions [292].

With AA force fields, the number of interaction sites is approximately three times higher

compared to UA force fields for alkanes. As CG force fields combine multiple UA sites to

one site, the computational are further reduced. Another advantage of coarser modeling

of the molecular structure consists of preventing high frequency oscillations (e.g. CH

stretching bonds), which enables a larger time step. Furthermore, the type of interac-

tion potentials to be evaluated strongly influences the computational costs, for example

multibody or electrostatic interactions increase the computational time considerably

[293, 294]. Overall, multiple factors influence the computational cost of a simulation

with a given force field and the costs can not be predicted a priori. Presently, no sys-

tematic comparison of the computational costs of different transferable force field types

is available.

The following text is organized as follows: first, the methodology of the study is described

which includes details of the conducted simulations, the sampling of the observables,

information on the applied force fields, and the methods applied for the evaluation

of the results. Then, the results for the three examined properties, the density, the

viscosity, and the self-diffusion coefficient, for all studied substances are presented and

discussed. Thereafter, the computational costs of simulations with different force fields

are compared. Finally, conclusions are drawn.

3.2 Methodology

3.2.1 Simulation Details and Evaluation

Equilibrium molecular dynamics simulations were carried out to calculate the density,

the viscosity, and the self-diffusion coefficient of the studied pure substances. A cubic

simulation box with periodic boundary conditions was used. The number of particles was

chosen such that there were at least 200 molecules or 4000 interaction sites. The finite

size dependency of the simulations was assessed by simulations with different numbers

of molecules and extrapolating to the thermodynamic limit (N →∞). Details are given

in the Appendix B. The results show that no significant finite size dependency applies

to the results. The time step and integrator were chosen depending on the force fields

and are summarized in Table 2. For the AA force field (excluding the reactive force

fields), the RESPA multiple timestep method was used to reduce the computational

costs. Thereby, the simulation time was reduced by a factor of at least 8 compared to

the classical Velocity Verlet integrator with a time step of 0.25 fs. Details are given in
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Table 2: Time step and integrator used in the simulations.

Force field type Time step / fs Integrator

AA 0.25 (bonds, angles), 0.5 (dihedrals),
1 (nonbonded)

RESPA [295]

AA (reactive) 0.25

UA 0.5 Velocity-Verlet [14]

CG 10

the Appendix B. The cutoff radius was set to 14 Å throughout. An analytical long-

range correction for the pressure was applied for the dispersive interactions [14]. Rigid

bonds were realized using the SHAKE algorithm [296]. The electrostatic interactions

were calculated by the particle-particle particle-mesh algorithm [297]. All simulations

were carried out with the LAMMPS package (Version 3 March 2020) [298]. The initial

configuration was built up by randomly inserting molecules into the box. For the reactive

force fields, the molecules were inserted on a lattice to eliminate overlapping, which could

lead to false molecule geometries as the geometry of the molecule is only given by the

initial position. This insertion was done at a low density to avoid unphysical overlapping.

Subsequently, the energy of the system was minimized by moving the particles to avoid

large forces at the start of the MD simulations. After the energy minimization, the box

volume was reduced to the target density within a short MD run of 100 ps. After this

initialization phase, the actual simulations started.

For each substance and force field, five state points were studied. The pressures were

p ∈ {0.1, 10, 100, 200, 400}MPa and the temperature was T = 373.15 K in all cases. The

density was determined by NpT simulations. The Nosé-Hoover thermostat and barostat

[299–301] were used to control the temperature and the pressure in the simulations. The

damping times comprised 100 timesteps for the thermostat and 1000 timesteps for the

barostat, as recommended in the LAMMPS documentation [298]. Each NpT simulation

had an equilibration time of 1 ns and a production time of 2 ns. To ensure that the

simulation is sufficiently long enough, longer simulations have been run. More details are

given in the Appendix B. To reduce the statistical uncertainty, each NpT simulation

was replicated five times and the density of each state point was calculated as the

average of these five replica simulations. This density was then taken as input for NV T

simulations to determine the viscosity and the self-diffusion coefficient. To calculate the

transport properties, 20 independent NV T simulations were carried out for each state

point. The equilibration time was 1 ns. The production time varied from 2 to 10 ns

and was determined individually for each state point and substance, and was chosen to

obtain convergence of the correlation functions. Details are summarized in Table 3.
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Table 3: Simulation times in ns for the different substances and state points.

Substance

p /MPa n-C10 n-C20 n-C30, TRI, SQU

0.1 2 3 4

10 2 3 4

100 2 4 6

200 2 6 8

400 4 6 10

The viscosity was calculated using the Green-Kubo relations [97, 98] given by

η(τ) = 1

V kBT
∫

τ→∞

0
⟨Jαβ

p (t + τ̃) ⋅ Jαβ
p (t)⟩dτ̃ , (12)

where V is the box volume, kB the Boltzmann constant, T the temperature, t the ref-

erence time, τ the time variable, and J
αβ
p the non-diagonal entries of the stress tensor

[14]. The pressure tensor was sampled every 4 fs during the NV T simulations. Each of

the sampled time steps was taken as reference time t to achieve best possible statistics.

The time decomposition method (TDM) [84] was applied in this work, which enables

the reliable calculation of high viscosities by EMD simulations. Therefore, the viscosity

time evolution η(τ) was calculated for all 20 NV T simulations during the production

run. For the calculation of the ACF, a fast Fourier transform (FFT) technique was used

[302]. Contributions from all six independent entries of the pressure tensor pαβ were

averaged to calculate the viscosity as proposed by Ref. [303]. The cutoff time τcut for

the ACFs (to circumvent the ACF long-term noise) were determined from the standard

deviations ση(τ) as ση(τcut)
η(τcut)

= 0.4 as recommended in Ref. [84]. Different numbers ση(τcut)
η(τcut)

for the cutoff time have been compared in the Appendix B. The bootstrapping method

[84] with 200 iterations was used to calculate the final value and its uncertainty for

the viscosity. Therefore, 200 combinations of the 20 simulations were created randomly

whereas multiple appearances of individual simulations were allowed. For each combi-

nation, an average viscosity η̄(τ) was calculated and the function given in Eq. (13) was

fitted to η̄(τ) where η∞ is the long term limit.

η(τ) = η∞
αβ1 (1 − e

− τ
β1 ) + (1 − α)β2 (1 − e

− τ
β2 )

αβ1 + (1 − α)β2

(13)

Fig. 14 illustrates the TDM method for two state points showing the viscosity sampled

during the production phase η(τ). The results for all 20 simulation replica are shown.

The two simulations have different cutoff times τcut, which compensates differences of

long-term noise behavior. On the right-hand side of Fig. 14, also the final values and
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Figure 14: Illustration of the TDM method. Results for the sampled viscosity from
20 independent runs η(τ) over time τ of TRI at p = 0.1 MPa (top) and
p = 200 MPa (bottom) (T = 373.15 K for both). Histograms of the cor-
responding bootstrapping results and the final result of the bootstrapping
method.

the histograms consisting of 200 η∞ values as obtained from the bootstrapping method

are shown. The statistical uncertainties were computed from the histogram as the 95

% confidence interval. The individual results for η(τ) show in parts a wide scattering

that increases with time, which is a well-known phenomenon [304]. The time required

to reach a stable plateau of the viscosity differs strongly which can also be seen by

the different cutoff times. Overall, the TDM method provides relatively low statistical

uncertainties and enables a reliable calculation of the viscosity.

The self-diffusion coefficient D was calculated by the Einstein relation [14]

D = lim
τ→∞

d

dτ

1

6
⟨ 1

N

N

∑
i=1

∣ri(t + τ) − ri(t)∣2⟩ , (14)

where N is the number of particles in the box and ri is the position vector of center of

mass of the molecule or particle i. A calculation of the self-diffusion coefficient by the

Green-Kubo relation and the TDM method was not feasible as it would require to write

out the velocity vector of all atoms with a high frequency. The Einstein relation requires

the positional data of all atoms less frequently. The positional data were written out

every 10 ps. The term ∣ri(t + τ) − ri(t)∣2 is the mean squared displacement (MSD). It is

possible to calculate the MSD either from the atomic or the molecular center of mass

[305]. In this chapter, the molecular center of mass was used. The MSD was calculated

by making use of the FFT method [302]. The self-diffusion coefficient D was calculated
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individually for each NV T simulation using Eq. (14). By averaging the results of the 20

independent simulations, a single value for D was obtained for every state point. The

statistical uncertainty of D was calculated as the standard error as

∆D =

¿ÁÁÀ 1

Nrep

Nrep

∑
i=1

(Di −D)2 , (15)

with Nrep = 20. The self-diffusion is subject to finite size effects that are not negligible

[306]. There are two methods to obtain the self-diffusion coefficient in the thermody-

namic limit (i.e. infinite box size). The classical brute force approach is conducting

multiple simulations with different box sizes and extrapolating to the thermodynamic

limit. This is not feasible in this chapter since a large number of state points and force

fields are studied. Instead, the analytical correction term proposed by Yeh and Hummer

[122] was applied as

DL→∞ =D(L) + kBTξ

6πηL
, (16)

where L is the box length of the simulation, η the viscosity, and ξ = 2.837297 is a

dimensionless constant (adopted from Ref. [122]).

3.2.2 Force Fields

Table 4 gives an overview of the force fields studied in this chapter and their assignment

to force field classes. All force field parameters used in this chapter and validations of

the implementations are given in the Appendix B.

Table 4: Overview of all force fields used in this chapter.

Name Type Refs. Published

OPLS AA [34] 1996

COMPASS AA [35] 1998

L-OPLS AA [307] 2012

ReaxFF AA (reactive) [308] 2001

AIREBO-M AA (reactive) [309] 2015

TraPPE UA [37, 310] 1998

Potoff UA [38, 311] 2009

TAMie UA [39, 312] 2015

MARTINI CG [313] 2007
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All-atom Force Fields (AA)

In this chapter, the AA force fields COMPASS [35], OPLS [34], L-OPLS [307], ReaxFF

[314], and AIREBO-M [309, 315] were used. The latter two force fields are so-called

reactive all-atom force fields that allow bond breaking. However, no bond breaking

was observed in the simulations carried out in this chapter, hence, no special distinc-

tions from the other all-atom force fields are necessary here. All AA force fields except

AIREBO-M include Coulomb interactions. The COMPASS force field models the dis-

persive interactions by a 9-6 Mie potential. The intramolecular interactions include

bonds, angles, dihedrals, impropers as well as cross terms, which include mixed bond,

angle, and dihedral contributions. The parameters of the COMPASS force field were

determined from a fit to quantum-mechanical (QM) data (charges and intramolecular

potentials) and to liquid state properties (dispersive potential) [35]. In the OPLS force

field, the classical Lennard-Jones (LJ) 12-6 potential is used for modeling the dispersive

interactions. The bond and angle parameters of the OPLS force field were adopted from

the CHARMM/22 force field [34, 36]. The torsional and the dispersive parameters were

fitted to QM data and different thermodynamic and structural properties, respectively.

The L-OPLS force field adopts the majority of the OPLS parameters but dihedral and

dispersive parameters as well as the charges were refined to improve the modeling of

longer hydrocarbons [307]. Additionally, the bonds between carbon and hydrogen were

constrained to a constant distance in the L-OPLS force field. It is known that the L-

OPLS provides better predictions for bulk properties compared to the OPLS force field

[273]. As the OPLS force field is still widely used in its original version, it was also

included in this chapter.

The ReaxFF [314] and AIREBO-M [309, 315] force fields include explicit calculations

of the bond order, which enables them to model chemical reactions [293]. The CHON-

2017_weak version of the ReaxFF force field [308] was implemented in this chapter.

It includes parameter adjustments that aim at improving the density prediction of the

condensed phase [308]. The AIREBO-M force field [309] was derived from the AIREBO

force field [315] by replacing the LJ potential interactions by a Morse potential. Its

parameters were adjusted to layer spacing of graphite up to pressures of 14 GPa and

to QM data of small alkanes. Both reactive force fields were only applied to n-decane

(n-C10) in the present chapter due to their extremely high computational costs.

United-atom Force Fields (UA)

The TraPPE [37], Potoff [38], and TAMie [39] UA force fields were used in this chapter.

The TraPPE force field uses the classical 12-6 LJ potential. These LJ parameters were

fitted to critical temperatures and saturated liquid densities. The Potoff and the TAMie
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force fields use n-6 Mie potentials for the non-bonded interactions. In both force fields,

the repulsive parameter n of the Mie potential was additionally adjusted in the fitting

procedure. For the TAMie and the Potoff force fields, the non-bonded parameters were

fitted to saturated liquid densities and vapor pressures. The cutoff distance of the Potoff

force field was set to 10 Å as recommended [38]. In contrast to the AA force fields, there

are no Coulomb interactions for UA models of hydrocarbons as all interaction sites are

electrostatically neutral. In this chapter, flexible bonds between the interaction sites

were applied. Therefore, a harmonic potential was used with the given bond length

as equilibrium bond length. The energy parameter of the bond potential was taken

from the OPLS force field. Despite the fact that the TraPPE, Potoff, and TAMie force

fields were originally developed using rigid bond lengths, it is common practice to adapt

them with flexible bonds [316–318]. Moreover, it was shown that the flexible bonds do

not influence the results if the bond force constant is well chosen [94, 291]. The angle

and dihedral potentials are the same for all three UA force fields as they were mainly

adopted from the OPLS-UA [33] and OPLS-AA [34] force fields.

Coarse Grained Force Field (CG)

In this chapter, the MARTINI CG force field was used. There are two approaches to

parameterize CG force fields: bottom-up by derivation from a finer resolved force field

(e.g. AA) and top-down by fitting parameters directly to experimental data [319]. The

MARTINI force field [313] is based on the top-down approach. It was parameterized to

the free energy of hydration and vaporization as well as the partitioning free energies

between water and multiple organic substances [313]. A four-to-one mapping is applied

by the MARTINI force field in general, which means four heavy atoms (all atoms except

hydrogen atoms) are fused to a single interaction site. The force field consists of the LJ

potential for non-bonded parameters and harmonic potentials for the angle and bond

interactions. There are no dihedral potentials. The mapping of molecules to CG beads

is not strictly defined. There are several methods to create CG models from a given

molecular topology [320–322]. In this chapter, the automatic mapping algorithm from

Potter et al. [322] was applied. As the mapping may in general have an influence

on the force field predictions, the MARTINI results should be considered as results

obtained from "MARTINI + Potter mapping". For brevity, only "MARTINI" is used

in the following. The bond lengths of the created models were adjusted as suggested

in Ref. [322] for the prediction of thermodynamic bulk properties. The MARTINI 2

[313] version was used in this work instead of the recently published MARTINI 3 force

field [323] as the MARTINI 2 version has been widely applied in recent years – and as

different auxiliary tools are available for MARTINI 2.
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3.2.3 Data Analysis

The simulation results for the density, the viscosity, and the self-diffusion coefficient

were analyzed in a consistent way as described in the following. As a basis, correlations

to all available experimental literature data were developed. An overview of the avail-

able data for the five considered substances and the three considered thermophysical

properties is given in Table 5. The functions, parameters, and accuracy of the corre-

Table 5: Overview of available experimental literature data (references given) and the
corresponding maximum pressures for the different substances and properties
examined in the current study. "n.a." indicates that no literature data were
found.

ρ η D

Ref. p /MPa Ref. p /MPa Ref. p /MPa

n-C10 [324–327] 279 [325, 328] 300 [329] 200

n-C20 [330, 331] 500 [332] 243 n.a.

n-C30 [330] 500 n.a. [333] 600

TRI n.a. [278] 1298 n.a.

SQU
[282, 334–

337]
243 [278, 338] 1298 n.a.

lations are reported in the Appendix B. They represent the experimental data within

relative deviations of up to 0.3 % (ρ), 5.2 % (η), and 2.6 % (D). Furthermore, also

correlations for the properties where no experimental data was available are provided in

the Appendix B. These correlations were created on the basis of the simulation data of

the Potoff force field (which turns out to be clearly the most accurate force field among

those studied here). Their parameters are also reported in the Appendix B. For the

assessment of the force fields with respect to the experimental data, the deviations of

the simulation results to the correlations of the experimental data were calculated from

δYexp =
Ysim − Ycorr

Ycorr

for Y ∈ {ρ, η, D}. (17)

The total average deviation δY of a force field was calculated as the mean value of ∣δYexp∣
(Y ∈ {ρ, η, D}) averaged over all state points and substances for which experimental data

were available (cf. Table 5).
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3.3 Results

In the following, the simulation results for the density ρ, the viscosity η, and the self-

diffusion coefficient D are presented and discussed. Where available, also the experi-

mental data is included in the discussion. Furthermore, correlations of the experimental

data (cf. Section 3.2.3) are shown and used as a reference for the deviation plots. Where

no experimental data were available, a correlation of the simulation data of the Potoff

force field were used as a reference. Fig. 15 shows three snapshots of different n-decane

(n-C10) simulations, one for each force field type. It illustrates the different abstraction

Figure 15: Snapshots of three n-decane simulations (p = 0.1 MPa). The force fields are:
(a) L-OPLS (AA), (b) TraPPE (UA), and (c) MARTINI (CG). The length
scale is the same for all snapshots. One molecules is highlighted in each
snapshot. The single sites are colored as follows: light green - end site of
the CG model, dark green - central site of the CG model, light blue - CH2,
dark blue - CH3, gray - carbon, white - hydrogen.

levels at which the molecules were modeled by the different force field types. The struc-

ture of the molecules was evaluated by the radius of gyration. Details are given in the

Appendix B.

Fig. 16 gives an overview of the total average deviations δY of all force fields for the

three studied properties, the density, the viscosity, and the self-diffusion coefficient

(Y ∈ {ρ, η, D}). The total deviations are lowest for the density with up to δρ = 6.4 %.

The deviations for the viscosity and the self-diffusion are substantially larger (up to

δη = 210.1 % and δD = 70 %). For a given force field, the deviations of the viscosity

and self-diffusion predictions are very similar for most force fields. As can be seen from

Fig. 16, there is no direct indication that the deviation depends on the force field type

as the deviations scatter also within the different force field types (AA, UA, and CG).

This indicates that the individual parametrization of a force field (cf. Section 3.2.2)

is more important for the deviations produced by the force field. The total average

deviations of the single force fields are discussed in detail in the following sections.
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Figure 16: Total average deviations of the simulation results to the correlations of
experimental data (values given in %) for the density δρ, the viscosity δη,
and the self-diffusion coefficient δD.

3.3.1 Density

The simulation results for the density are shown in Fig. 17 in comparison to experi-

mental data (where available). The corresponding deviation plots are shown in Fig. 18.

The Potoff UA force field gives excellent predictions of the density, the average deviation

from the experimental data δρ is only 0.4 %. The predictions obtained with the TAMie

UA force field are also good (δρ = 1.3 %). The third studied UA force field, TraPPE,

yields poorer results (δρ = 2.4 %). The TraPPE force field tends to overestimate the

density, especially for the linear alkanes.

Despite their higher complexity, the AA force fields OPLS, L-OPLS, and COMPASS

generally do not yield better results than the UA force fields. Among the AA force

fields, COMPASS (δρ = 0.8 %) is slightly better than the two others (OPLS: δρ = 1.1 %,

L-OPLS: δρ = 1.4 %). In assessing the results from the OPLS force field, it has to be

considered that it predicts n-C20 and n-C30 to be solid for the conditions studied here.

This is in line with findings from the literature [339], which report that the OPLS force

field predicts the liquid-solid phase transition for long alkanes at temperatures that are

much higher than the experimental melting temperature [307]. More details on this are

given in the Appendix B. The OPLS data for n-C20 and n-C30 are excluded for the

present discussion.

The reactive AA force fields ReaxFF and AIREBO-M were only applied to n-C10.

ReaxFF (δρ = 1.5 %) overestimates the density, AIREBO-M (δρ = 6.4 %) strongly

underestimates it, cf. Fig. 18. The latter yields the poorest prediction of the density.

The CG force field MARTINI (δρ = 5.9 %) also shows high deviations.

The pressure dependency of the density (dρ/dp)T is predicted generally quite well by

most of the models (cf. Fig. 17). Among the UA force fields, the TraPPE force field
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n-C10

n-C20 n-C30

Figure 17: Density ρ of n-C10, n-C20, n-C30, TRI, and SQU at T = 373.15 K as a
function of the pressure p. Colored symbols indicate the simulation results
for the different force fields and the black crosses are experimental data
points (cf. Table 5). Black solid lines are correlations of the experimental
data, blue broken lines are correlations of the simulation data with the
Potoff force field.

yields the poorest prediction of the pressure dependency of the density as it overestimates(dρ/dp)T . While the Potoff force field slightly underestimates (dρ/dp)T , the results

obtained from the TAMie force field do not show this tendency. This difference originates

from the different repulsive Mie coefficients n of the TraPPE (n = 12), the TAMie

(n = 14), and the Potoff (n = 16) force fields. The higher the repulsive coefficient,

the lower is (dρ/dp)T . This also holds for the three classical AA force fields, which

also utilize a Mie potential (OPLS: n = 12, COMPASS: n = 9, L-OPLS: n = 12) and

overestimate (dρ/dp)T . Besides the potential, also the choice of the state points used for

parametrization influences the results. This can especially be seen for the AIREBO-M

force field, which was fitted including state points at high pressure. Its predictions of

the density are best for the highest investigated pressure (400 MPa).

3.3.2 Viscosity

The results for the viscosity are shown in Fig. 19 using a logarithmic scale as a function

of pressure. The corresponding deviation plots are shown in Fig. 20. Again, the results
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n-C10

n-C20

n-C30

Figure 18: Relative deviation of the density δρ (cf. Eq. (17)) at T = 373.15 K as
a function of the pressure p for all studied force fields and substances.
The relative deviation (cf. Eq. (17)) refers to the correlation, which was
obtained from either experimental data (black crosses, cf. Table 5) or the
simulation data with the Potoff force field (dark blue diamonds).

for n-C20 and n-C30 obtained with OPLS are discarded from the discussion as they

refer to solids (cf. Appendix B). As expected, the viscosity of all substances increases

approximately exponentially with increasing pressure. Moreover, the viscosity of the

linear alkanes (n-C10 to n-C30) increases with increasing chain length. This behavior

is described well by all studied force fields. In contrast to the predictions of the density,

the scattering of the results is larger and the predictions from the different force fields

deviate in a range of an order of magnitude. This scattering is larger for the two

branched alkanes (TRI, SQU) compared to the linear alkanes (n-C10 to n-C30).

As already seen for the density results, the Potoff UA force field gives the best predictions

for the viscosity with δη = 11.4 %. The deviations obtained with the TAMie UA force

field are doubled (δη = 26.4 %) compared to the Potoff UA force field and show an

underestimation of the viscosity, especially for high pressures. Messerly et al. [291]

found similar deviations for the Potoff and TAMie force fields for the viscosity of shorter

alkanes. The TraPPE UA force field strongly underestimates the viscosity and yields the

largest deviations from the experimental data among the UA force fields (δη = 47.1 %).

The underestimation of the viscosity by the TraPPE force field was already stated in

literature [287, 291, 340]. The only CG force field, MARTINI, has similar deviations

from the experimental correlations with δη = 51 %, which is in accordance with results
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n-C10

n-C20 n-C30

Figure 19: Viscosity η of n-C10, n-C20, n-C30, TRI, and SQU at T = 373.15 K as a
function of the pressure p. Colored symbols indicate the simulation results
for the different force fields and the black crosses are experimental data
points (cf. Table 5). Black solid lines are correlations of the experimental
data, blue broken lines are correlations of the simulation data with the
Potoff force field.

reported in literature [289]. The time scale, which is crucial for the calculation of the

viscosity (cf. Section 3.2.1), is often scaled in CG simulations as CG models usually

exhibit faster dynamics compared to higher resolution atomistic models. Therefore, a

time scaling factor of 4 is often applied [313]. In the Appendix B, results for the viscosity

calculated by the MARTINI force field are given with a time scaling factor of 4. For

the three linear alkanes, the results do not improve compared to the results without

conversion factor. The scaled results overestimate the experimental values. For the two

branched alkanes, the scaling improves the results and decreases the deviations to the

experimental data. More details are given in the Appendix B. Yet, in the main part of

this chapter, results without a scaling factor are presented.

The AA force fields show very different behaviors. The COMPASS (δη = 14.1 %) and

the ReaxFF (δη = 17.5 %) force fields yield good predictions for the viscosity. The

latter predicts the viscosity accurately up to a pressure of around 100 MPa which is in

accordance with findings reported by Morrow and Harrison [280] for alkanes and other

thermophysical properties. For higher pressure, the viscosity is underestimated by the

ReaxFF force field. For the COMPASS force field, there is a tendency for overestimation
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n-C10

n-C20

n-C30

Figure 20: Relative deviation of the viscosity δη (cf. Eq. (17)) at T = 373.15 K as
a function of the pressure p for all studied force fields and substances.
The relative deviation (cf. Eq. (17)) refers to the correlation, which was
obtained from either experimental data (black crosses, cf. Table 5) or the
simulation data with the Potoff force field (dark blue diamonds).

of the viscosity predicted (which has also been reported by Refs. [256, 272]). The

AIREBO-M force field predicts the viscosity with δη = 33.7 %. Its deviations decrease

with increasing pressure. The L-OPLS force field deviates with δη = 38.4 % from the

experimental data on average. Thus, it shows a good improvement to the closely related

OPLS force field [273, 341], which yields by far the worst predictions for the viscosity

(δη = 210.1 %). The poor prediction ability of the viscosity by the OPLS force field

was already reported for shorter alkanes [272, 340, 341]. In general, the AA force fields

have larger error bars compared to the UA and CG force fields, especially for the large

molecules n-C30, TRI, and SQU.

3.3.3 Self-diffusion Coefficient

The results for the self-diffusion coefficient using a logarithmic scale as function of

pressure and the corresponding deviation plot are shown in Fig. 21 and 22, respectively.

Here, also the results of the OPLS force field for n-C20 and n-C30 are discarded and

can be found in the Appendix B. The self-diffusion coefficient decreases with increasing

pressure for all substances and force fields – as expected. The close relation of the self-

diffusion coefficient and the viscosity [342] can be observed in the MD simulation results:
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n-C10

n-C20 n-C30

Figure 21: Self-diffusion coefficient D of n-C10, n-C20, n-C30, TRI, and SQU at T =

373.15 K as a function of the pressure p. Colored symbols indicate the
simulation results for the different force fields and the black crosses are
experimental data points (cf. Table 5). Black solid lines are correlations of
the experimental data, blue broken lines are correlations of the simulation
data with the Potoff force field.

high values for the viscosity go along with low values for the self-diffusion and vice versa.

Therefore, the self-diffusion coefficient shows opposite characteristics compared to the

viscosity (cf. Section 3.3.2) regarding the deviations of the single force fields. In the

Appendix B, figures of the viscosity plotted as a function of the self-diffusion coefficient

are shown to underline their close relation.

The predictions for the self-diffusion coefficient with the Potoff force field are again

the best and show the lowest deviations from the experimental data with δD = 18.2%.

This is in line with the results for the density and the viscosity. The TAMie force field

overestimates the self-diffusion for all substances with a total deviations of δD = 35.7%.

The TraPPE force field also predicts too high values for the self-diffusion coefficient but

with a much higher total deviation (δD = 75.7%). For both the TAMie and the TraPPE

force fields, the deviations increase with increasing pressure. The MARTINI CG force

field predicts the self-diffusion coefficient surprisingly well with a total deviation of

δD = 20.7%. Like the viscosity, the self-diffusion coefficient is a time-dependent property

and thus, it is also influenced by time scaling, as often applied in CG simulations. As

for the viscosity, results with time scaling are given for the self-diffusion coefficient
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n-C10

n-C20

n-C30

Figure 22: Relative deviation of the self-diffusion coefficient δD (cf. Eq. (17)) at
T = 373.15 K as a function of the pressure p for all studied force fields
and substances. The relative deviation (cf. Eq. (17)) refers to the corre-
lation, which was obtained from either experimental data (black crosses,
cf. Table 5) or the simulation data with the Potoff force field (dark blue
diamonds).

in the Appendix B. The results are similar to those for the viscosity: For the linear

alkanes, results worsen compared to experimental values and the self-diffusion coefficient

is underestimated. For the two branched alkanes, the predictions improve compared to

the experimental data. More details are given in the Appendix B. In the main part of

this chapter, results without a scaling factor are presented.

The COMPASS (δD = 18.9%) and the L-OPLS (δD = 18.8%) force fields exhibit nearly

the same total deviations. Their predictions are very good and similar to those of the

Potoff force field. With δD = 20.4%, also the ReaxFF force field shows good predic-

tions for the self-diffusion coefficient. They both slightly overestimate the self-diffusion

coefficient. The OPLS force field also overestimates the self-diffusion coefficient with a

total deviation of δD = 26.8%. This was already reported in literature for simulations

of n-hexane with the OPLS force field [343]. The deviations of the OPLS force field are

much lower for the self-diffusion compared to the viscosity as only n-C10 is included

in the calculation of the total deviation. The AIREBO-M force field shows the second

largest total deviations (δD = 53.3%) for the self-diffusion coefficient.
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3.3.4 Computational Costs

The computational costs of the different force fields were evaluated by additional sim-

ulations for n-C10 at one state point (T = 373.15 K and ρ = 0.67982 g/ml). 20 replica

simulations were conducted for each force field and the viscosity and the self-diffusion

coefficient were calculated as described in Section 3.2.3. As the density strongly in-

fluences the computational costs, the same density was prescribed to the simulations

for all force fields. All simulations for the determination of the computational costs

were executed on the same machine with Intel XEON SP 6126 processors and with

the same simulation parameters (200 molecules, 1 ns equilibration, 2 ns production

run, cutoff radius of 14 Å). Different number of cores have been used for the differ-

ent simulations (AA: 24 cores, UA: 8 cores, CG: 1 core) to ensure perfect parallel

efficiency. The computational costs were measured using the CPU hours (cpuh), i.e.

cpuh = number of processors × simulation time required for a given simulation. The re-

sults for the computational costs are shown in Fig. 23. The computational costs are

normalized with respect to the OPLS force field computational costs. The statistical
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Figure 23: Computational costs cpuh of all force fields normalized with respect to
the computational costs of the OPLS force field cpuhOPLS for 20 replica
simulations with T = 373.15 K and ρ = 0.67982 g/ml.

uncertainties obtained from these simulations are reported in the Appendix B.

The three classical AA force fields, OPLS, COMPASS, and L-OPLS, require similar

computational costs, as expected. The slightly increased computational costs of the

COMPASS force field compared to the OPLS and the L-OPLS force field are due to the

use of more complex functions for computing the interactions in the COMPASS force

field (including cross terms, e.g. bond-angle interactions). The two reactive AA force

fields, ReaxFF and AIREBO-M, require substantially higher computational costs. The

ReaxFF force field requires by far the highest costs with approximately 25 times the

costs of the classical AA force fields.
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The three UA force fields require lower computational costs than the AA force fields

with 10 % - 25 % of the costs of the AA force fields. For studying the computational

costs, the cutoff radius of the Potoff force field was set to 14 Å (equal to the other

force fields). The higher computational costs of the Potoff and the TAMie force fields

compared to the TraPPE force field are due to the use of the Mie potential instead

of the 12-6 LJ potential. The latter is computationally more efficient as the repulsive

part (exponent n = 12) and the attractive part (exponent m = 6) can be evaluated

simultaneously benefiting from r12
= (r6)2. Furthermore, the calculation of the mixed

exponent for Mie parameters produces an additional computational overhead. The low

computational costs of the MARTINI CG force field are due to the small number of

interaction sites and the larger time step used in the MARTINI simulations.

The uncertainties of the simulations are given in the Appendix B. The statistical un-

certainties for the viscosity are about an order of magnitude larger compared to the

self-diffusion coefficient results. For a given property, the different force fields yield

similar statistical uncertainties.

3.4 Conclusions

The ability of different force fields to predict the density, the viscosity, and the self-

diffusion coefficient of model lubricants was investigated. Pure linear (n-decane, n-

icosane, n-triacontane) and branched alkanes (1-decene trimer, squalane) up to C30

were studied. The results were compared to experimental data where such data were

available. The force fields consisted of five AA force fields (OPLS, L-OPLS, COMPASS,

AIREBO-M, ReaxFF), three UA force fields (TraPPE, Potoff, TAMie), and one CG force

field (MARTINI). The Potoff UA force field yields the best results for all three properties

and is at the same time still computationally relatively cheap. The COMPASS and the

ReaxFF AA force fields provide a good accuracy predicting the density, the viscosity,

and the self-diffusion coefficient. For all force fields (except AIREBO-M), the deviations

from experimental data increase with increasing pressure. The reason that AIREBO-

M AA force field performs relatively well at extreme pressure is probably due to the

applied parametrization which included data at high pressure [309]. The CG force field

MARTINI simplifies the molecular architecture most. It yields large deviations from

experimental data. The unphysical prediction of a solid-like phase by the OPLS force

field for long linear alkanes [307] was confirmed by the conducted simulations. The

optimized version for long linear alkanes of the OPLS force field, the L-OPLS force

field [307], shows significantly better results. If no experimental data are available, the

predictions by the force fields can provide good estimates to fill this gap. The Potoff

force field is recommended for this purpose. The accuracy of predictions of experimental
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data for the studied substances with this model was found to be about 0.5 % for the

density, 10 % for the viscosity, and 18 % for the self-diffusion coefficient. As a convenient

tool, also the empirical correlations developed in the present chapter based on the Potoff

predictions can be used. The results from this chapter can be taken as a benchmark for

testing the performance of new force fields under extreme conditions.



4 Online Database for Transferable Force Fields 55

4 Online Database for Transferable

Force Fields

4.1 Introduction

Molecular simulation is a powerful tool for predicting macroscopic thermophysical prop-

erties [58, 273, 344–351] as well as for the modeling of nanoscopic processes [19, 20, 59,

60, 352–355]. Molecular simulation, namely molecular dynamics (MD) and Monte Carlo

(MC) simulation, have become an indispensable tool in many scientific disciplines such

as computational physics [19, 20, 354, 356], physical chemistry [346, 357–359], molecular

biology [360–364], and engineering [347, 365–367]. In MD and MC simulations, matter

is modeled on the atomistic level based on molecular interactions, which are described

by so-called force fields. A force field is the mathematical description of the molecu-

lar interactions. The quality of molecular simulation results primarily depends on the

quality of the employed force field [77, 273, 286, 368–371]. Hence, an important focus

has been in the past decades on the force field development and, accordingly, a large

number of force fields is available today [14]. Also, the development of new force fields

is still a very active field. Yet, the electronic availability, transparency, and usability

of molecular force fields remains unsatisfactory [372]. Despite their importance, data

science aspects (databases, data formats, interoperability, ontologies, FAIR principles

[373] etc.) of force fields are still in their infancy.

While molecular interactions can be modeled today using first principle quantum me-

chanics, such simulation methods are computationally too expensive for the simulation

of many particle systems as required for example in molecular biology. Therefore, molec-

ular simulations based on Newton’s mechanics and classical force fields are widely used

today. In classical force fields, the molecular interactions are modeled by interaction

potentials describing the potential energy as a function of the distance and orientation

U(r). These interaction potentials provide a relatively simple approximation of the

’true’ molecular interactions. Yet, these force fields have proven very powerful and are

successfully used across many scientific fields today.

A force field is a collection of parametric equations and corresponding parameter values
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describing the interaction potentials between interaction sites representing atoms or

groups of atoms. Force fields are used in molecular dynamics simulations to calculate

forces between interaction sites. Based on these forces, the trajectories of the interaction

sites are computed. Alternatively, the potential energy is directly used in Monte Carlo

simulations for evaluating the probability that a given randomly generated atomistic

configuration exists.

Transferable force fields for molecular substances are a particularly powerful tool as

they can be used for modeling a large number of substances. A transferable force field

is a generalized chemical construction plan for substance classes, e.g. characterizing

the interaction between two chlorine atoms or the angle potential in an aromatic ring.

Therefore, a transferable force field itself cannot be directly used for carrying out molec-

ular simulations. However, based on a transferable force field, component-specific force

fields can be uniquely derived by a user and then employed in a simulation. Hence,

the strength of transferable force fields lies in their generalized description of molecular

interactions, which comes at the cost of a high abstraction level and challenges in the

usability.

A large number of transferable force fields, i.e. construction plans, is available today,

for example DREIDING [374], UFF [375], AMBER [376], PCFF8 [377], TraPPE-UA

[37, 310, 378–387], OPLS-AA [34, 376, 388–390], Potoff [38, 311, 391, 392], and CVFF

[393]. They are mostly used for modeling fluid states. The coverage of the transferable

force fields for modeling different types of substances strongly varies, i.e. the variety of

chemical groups and interactions captured in the construction plan. For example, some

force fields are restricted to hydro- or halocarbons [38] and others cover a large range

of the periodic system [34]. Hence, transferable force fields can consist of hundreds

of parameters. Moreover, this parameter data is heterogeneous as the potentials of a

transferable force field describe different types of interactions, e.g. intermolecular and

intramolecular. Usually, the parametrization of the building block parameters is carried

out with a limited number of components and the obtained force field parameters are

then transferred to other substances containing the same building blocks. Therefore,

the development of transferable force fields is a demanding and tedious task.

Among transferable force fields, there are different approaches to model the atomistic

architecture. Three types of force fields are often distinguished: all-atom (AA), united-

atom (UA), and coarse-grained (CG) force fields [14]. In AA force fields, all atoms are

represented by individual interaction sites. In contrast, UA force fields combine multiple

atoms to one interaction site. Mostly, CHx groups are modeled as one interaction site

in which the H atoms are only implicitly modeled. In CG force fields, larger molecule

segments (or multiple molecules) are merged into a single interaction site.

Different data aspects of molecular simulations have been addressed in recent years for
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increasing the transparency, reproducibility [90, 372, 394, 395], and interoperability of

molecular simulations [241, 396–403]. Yet, these attempts mostly focus on the simulation

scenario setup and the simulation results. Thereby, multiple data formats for atomistic

configurations, i.e. snapshots of simulations, have been well established, e.g. the .xyz file

format or the .pdb file format for proteins [404]. Also, data formats for specific individual

molecules are available which includes data formats for (small) molecules such as CML

[405] format, SYBYL Line Notation [406], SMIRNOFF format [407], MCDL [408], and

SMILES [409] as well as for macromolecules such as proteins, peptides, and polymers

such as HELM [410] and SPICES [411]. Moreover, some transferable force fields are

electronically accessible for users, e.g. the CHARMM force field in Ref. [412], the

Amber force field in Ref. [413], the AMOEBA force field in Ref. [413], the TraPPE

force field in Refs. [414, 415], the Merck force field in Ref. [416], and the OPLS force

field in Refs. [415, 417]. Yet, most of these use individual data formats designed for

the respective force field or computational framework. Also, most of these tools provide

component-specific force field files (built from an implemented transferable force field),

i.e. they are atom typing tools for generating force fields for a given individual molecule.

The OpenKIM [418], the OpenMM [413, 419], and the MoSDeF [397, 415, 420] platform

provide a digital infrastructure for atom typing and storing force field parameters, which

can also be used for different molecular modeling and simulations tasks, e.g. setting up

simulation scenarios and coupling with simulation engines.

For building a component-specific force field from a transferable force field construc-

tion plan, multiple challenges arise. Publications on transferable force fields use many

different notations, units systems, mathematical forms of interaction potentials etc.,

which makes it difficult to use different force fields in one workflow. Also, the atom-

istic coordinates of the interaction sites in a molecule are only implicitly described by

transferable force fields by the global minimum of the intramolecular interaction po-

tentials. Moreover, different atomistic configurations, i.e. conformations, of a given

molecule are often feasible and the equilibrium conformation (or distribution of con-

formations) is usually not a priori known. Furthermore, several force field features are

treated and implemented differently in different simulation engines, e.g. electrostatic

multipoles, long-range forces, and rigidity constraints, which can cause deviations in the

results [90]. Moreover, important differences are present in the design concepts of dif-

ferent transferable force fields, which makes switching from one to another transferable

force field in a workflow tedious and error-prone. No broad database for transferable

force fields of fluids has been established yet. Some force field databases are available

[63, 414, 417, 421, 422], but they mostly cover just one specific transferable force field

(usually developed by the creators of the respective database) or potential models for

solid states [423].
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In this work, a generalized data scheme for transferable force fields is proposed, which

formalizes the underlying general chemical construction plan and is applicable for a large

variety of transferable force fields. Based on the developed data scheme, a concrete

SQL-based data format is proposed. The data scheme developed in chapter is based

on identifiers that are both human-readable as well as machine-readable. The latter in

particular enables the integration in automated workflows. Also, the syntax is chemically

consistent such that for example bond order rules are correctly captured. The data

scheme is moreover designed to be simple, flexible, and extendable. The applicability

of the data scheme and data format is demonstrated for different types of transferable

force fields. The data scheme and data format proposed in this chapter (termed TUK-

FFDat) enables an interoperable data exchange between publications of new transferable

force fields, users of different molecular simulation engines, and force field databases (cf.

Fig. 24).

simulation

engines

f r e f eld

public tions

Da abase

K FF

Figure 24: Applicability of the TUK-FFDat data scheme and data format for estab-
lishing a link between databases, simulation engines, and force field publi-
cations.

Additionally, as described in the second part of this chapter, a broad database for trans-

ferable force fields was developed and implemented in the existing MolMod database [63],

which so far only considered component-specific force fields. Fig. 25 gives an overview

of the structure of the MolMod Database including the ’component-specific’ part as well

as the ’transferable’ part presented in this chapter. The two parts share the same front

end, but have individual back end kernels and data structures.

The MolMod Transferable database is able to handle both AA and UA force fields.

Table 21 gives an overview of the transferable force fields that are presently implemented

in the MolMod database. Presently, MolMod Transferable contains eight transferable

force fields, namely: TraPPE [37], TAMie [39], Potoff [38], COMPASS [35], CHARMM
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Figure 25: MolMod database consisting of the ’component-specific’ part (left) and the
new ’transferable’ part.

[36], GROMOS [424], OPLS-AA [34], and OPLS-UA [33]. These force fields were taken

from the literature and cover in general different chemical substance classes (details

are given below). The data infrastructure of MolMod Transferable uses the force field

data ontology and data format proposed in Refs. [399, 400, 425]. Based on these

interoperable data standards, further transferable force fields can readily be integrated

into the MolMod database. A graphical user interface is provided on the website that can

be used for defining a molecular structure. The website directly displays the transferable

force field parameters for that given molecule based on a chosen transferable force field.

Moreover, MolMod Transferable provides input files for different simulation engines that

can be downloaded in different formats.

This chapter consists of two parts: (1) The description of the TUK-FFDat data scheme

and data format; (2) the extension of the molMod database to transferable force fields.

The first part is organized as follows: First, different classification approaches and fea-

tures of transferable force fields are introduced. Based on this ontology, the novel data

scheme is built.Then, the implementation of the data scheme in an SQL-based data

format is presented followed by an exemplary application of the presented data format

to three transferable force fields. Conversion tools that translate the data scheme in-

formation from a user-friendly .xls spread sheet format to the SQL database format

is described in the Method section. The second part describing the extension of the

MolMod database is organized as follows: first, the operating principles of MolMod

Transferable are explained. Then, the implementation of the force fields and the avail-

able input formats are described. Afterwards, comments on the data infrastructure,

data management, and data integrity are given. Finally, the work is summarized and

an outlook to future work is presented.
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4.2 TUK-FFDat: Data Scheme and Data Format

for Transferable Force Fields

4.2.1 Classification of Force Fields

Force fields can be classified using different attributes. Fig. 26 shows a systematic

classification of force fields regarding the modeling approach, the model detail level, the

interaction potential types, and the parametrization approach. Blue highlights in the

intramolecularall-atom

modeling approach

transferable component-specific

force field

potentialsmodeling level 

intermolecularcoarse grainunited-atom

parametrization

bottom-up top-down

rigid semi-flexible flexible reactive

Figure 26: Force field ontology and classification used in this work. Blue indicates
attributes covered by the TUK-FFDat data scheme and data format.

ontology (Fig. 26) indicate the coverage of the data scheme developed in this work.

There are two main modeling approaches for molecular force fields: (i) component-

specific, where the layout of the interaction sites, the choices for the parameter functions

as well as the parametrization procedure is carried out for a specific substance, e.g.

ethanol. This usually results in a relatively accurate model since the focus was on that

substance alone. The downside of that approach is that the developed model is only

valid for that substance and no parts of the model can in general be transferred and

re-used for modeling other substances. In the transferable force field approach (ii),

molecular features and interactions are modeled in a generalized way based on building

blocks, e.g. single atoms or groups of atoms. These force fields will usually (but not

necessarily) be less accurate than component-specific force fields for a given substance

since the objective during the development was broader. Yet, transferable force fields

can be applied in a wider sense since the molecular features are captured in building

blocks.

Different modeling levels can be used for developing force fields, namely (i) all-atom; (ii)

united-atom; and (iii) coarse grain. Fig. 27 shows these different approaches – using n-

butane as an example. Going from (i) to (iii), the degree of abstraction of the molecular

model increases, which also increases the computational efficiency as less details are
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Figure 27: Classification of force fields according to the modeling level used to model
molecules based on interaction sites (spheres).

included. However, the accuracy for predicting macroscopic thermophysical properties

does not necessarily depend on the degree of abstraction [77, 288]. Usually, the ability

to extrapolate to state regions that were not considered in the fit usually decreases with

increasing the degree of abstraction. In all-atom force fields, each atom in a molecule

is explicitly modeled by an interaction site, including small hydrogen atoms. In united-

atom force fields, small groups of atoms are modeled as an interaction site. In this

approach, usually, chemical groups, e.g. methyl or methylene groups, are fused to a

single interaction site, cf. Fig. 27. In united-atom force fields, especially hydrogen

atoms are often substituted within the nearest larger neighbor atom. In coarse grain

force fields, larger sections of molecules (or even multiple molecules) are modeled as an

interaction site, cf. Fig. 27. For each modeling level, an interaction site is represented by

a geometrical point. However, in visualizations, interaction sites are usually represented

by spheres, cf. Fig. 27, representing the extend of the repulsive interactions of the

respective potential (in a simplified way).

The mathematical form of the interaction potentials is an important force field attribute

(cf. Fig. 26). Interaction potentials are parametric functions that describe the potential

energy between the interaction sites. Both intramolecular interaction potentials (be-

tween sites of the same molecule) and intermolecular interaction potentials (between

sites of different molecules) exist, cf. Fig. 26. The intramolecular interaction poten-

tials establish the molecule flexibility and allow molecular vibrations. Different types of

intramolecular interactions can be applied for a force field: A molecule can be fully flex-

ible, meaning that all interaction sites have three independent translational degrees of

freedom. Force fields that have intramolecular potentials, but have certain fixed bond

lengths, fixed bond angles, or fixed torsion angles are called semi-flexible. Thereby,

stretching between direct neighbor interaction sites is often constraint to be rigid (this
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allows the use of a larger time step and faster exploration of the phase space [14]). In the

limiting case where all intramolecular interactions are constraint, the force field is rigid

and no intramolecular degrees of freedom, i.e. no change in the molecular geometry

and vibrations, occur. This is usually only meaningful for relatively small molecules.

Reactive force fields are a special type of flexible force fields. In reactive force fields

[314], bonds are modeled by bond order potentials, which describe the state of a bond

between two interaction sites. This enables a dynamic mapping of interaction sites dur-

ing a simulation and thereby chemical reactions. Most available transferable force fields

are of the flexible or semi-flexible type.

Force fields consist of different types of intramolecular and intermolecular interaction po-

tentials, Fig. 28. For fully flexible force fields, different types of intramolecular potentials

Intramolecular potentials

bond potential

angle potential

Figure 28: Classification of force fields based on the potential types.

can occur: Interaction potentials describing the potential energy between two bonded

interaction sites are called bond potentials – modeling a strongly localized chemical bond

[426]. Bond potentials are parametric functions that usually depend on the bond length

of the bond between the interaction sites under consideration. Intramolecular poten-

tials describing the potential energy between three directly neighbored interaction sites

are called angle potentials. The angle potentials are a function of the angle between

three sites. Intramolecular potentials describing the potential energy between four di-

rectly neighbored interaction sites (for example the four carbon atoms in n-butane, cf.

Fig. 27) are called torsion potentials. Dihedral potentials have an important impact on

the molecular configurations and the macroscopic thermophysical properties. In force

fields describing branched molecules, so-called improper torsion potentials are used at

times. These potentials describe the potential energy between four directly neighbored
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interaction sites, whereby three interaction sites are bonded to a fourth central interac-

tion site. Improper torsion or dihedral potentials are usually formulated as a function

of the ’out of plane’ angle, cf. Fig. 28. Intramolecular potentials describing the poten-

tial energy between two interaction sites that belong to the same molecule and have

a distance of n − 1 bonds, are called 1, n interaction potentials (where n > 1). The

1, n potentials model dispersive and repulsive interactions between interaction sites in

a molecule that are not close neighbors. This is particularly relevant for large curled

molecules. Usually, the 1, n interactions are described by scaled intermolecular poten-

tials (see below). The van der Waals and the electrostatic interactions are usually scaled

individually.

There are (in practically all cases) two types of intermolecular interactions: Electrostatic

interactions, dispersive (attractive) interactions, and repulsive interactions. The latter

two model attractive forces at moderate distances (a.k.a. van der Waals forces) and

repulsive forces at short distances (mimicking the overlap of electron orbitals) [14, 426].

In most cases, effective pair potentials are used for describing intermolecular interac-

tions. For these interactions, mostly the Lennard-Jones [66, 73, 427] potential or the

Mie [428] potential is used. The electrostatic interactions are mostly modeled by simple

point charges, but also higher multipole interaction sites are used in force fields at times.

These relatively simple electrostatic interactions model the molecular orbital charge dis-

tribution (that is in reality much more complex), e.g. the charge distribution in alcohol

groups and π-orbitals in aromatic components. To describe the potential energy between

different types of interaction sites (kinds of atoms or groups of atoms), in practically all

cases, the same mathematical functions are used within a given transferable force field

and the cross-interaction parameters are determined using combination rules.

Both the intermolecular and the intramolecular potential functions have parameters

that – together – describe the chemical and physical nature of the interactions. For

the development of force fields, different strategies for determining the parameter values

have been applied in the literature (cf. Fig. 26). Two main routes are established today:

(i) a bottom-up approach and (ii) a top-down approach.

In the bottom-up approach, the ’true’ molecular interactions are determined using quan-

tum mechanical simulations [429–432]. Based on the results, both the intermolecular and

the intramolecular interactions in force fields can in general be determined. The para-

meter values of the intramolecular potentials are often fitted to first principle quantum

chemical simulation results for the potential energy surface (PES). Yet, using quantum

mechanical simulations for fitting the intermolecular potential parameters is conceptu-

ally and computationally challenging, e.g. since multi-body interactions are mapped to

pair interactions.

In the top-down approach, the parameter values of the potential functions are deter-
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mined using macroscopic thermophysical property data. The parameters are tuned

such that the force field describes a given set of macroscopic properties well. For force

fields for fluids, mostly vapor–liquid equilibrium properties and self-diffusion data is

used for the parametrization. In many cases, the top-down approach and the bottom-

up approach are combined such that intramolecular interactions are determined from

quantum chemical simulation results and intermolecular interactions using macroscopic

thermophysical property data.

Furthermore, force fields can be sub-classified based on the mathematical functions em-

ployed in a force field. Also, machine learning force fields have been developed in recent

years as a novel class [433]. In machine learning force fields, the potential functions

and their parameters are determined using machine learning (mostly using large PES

data sets). Machine learning force fields can be considered a sub-type of the bottom-up

parametrization strategy.

The generalized data scheme proposed in this chapter captures a large variety of trans-

ferable force field types (blue highlighting in Fig. 26). Based on the ontology and

terminology introduced in Fig. 26, the new data scheme is presented in the following.

4.2.2 Definition of Data Scheme

The data scheme proposed in this chapter consists of seven sections that formalize the

definition of a transferable force field construction plan. Fig. 29 gives an overview of

the data scheme. In the i = 1...7 sections, the interaction potentials constituting a

transferable force field are stored as follows: (1) intermolecular interactions; (2) bond

intramolecular interactions; (3) angle intramolecular interactions; (4) torsion intramolec-

ular interactions; (5) improper intramolecular interactions; (6) 1, n interactions; and (7)

special case interactions.

A ’tag’ notation is introduced defining the interaction site type, i.e. atom or group of

atoms (in the case of a united-atom force field). Tag tuples are used in the different sec-

tions to indicate the combination of interaction site types defining a specific interaction,

e.g. a bond between a hydrogen atom and a carbon atom. Using the tag notation and

the bond order between the interaction sites, the interaction potentials acting between

a given set of sites is defined in a generalized way.

A tag consists of four parts that are separated by a hyphen ’-’. The first two parts are

strings and the third and fourth part are integer values. Details are given in Table 6.

Fig. 30 shows a united-atom 3-methyl-1-butene (C5H10) molecule model illustrating

the definition of the tag. The first part of the tag is an abbreviation representing

the functional group to which the interaction site is assigned. Table 7 gives a list of
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TUK-FFDat scheme

section 4:

tag 1, order 1, tag 2, order 2, tag 3, 

order 3, tag 4

(potential) ID4, p0, p1, ... , meta4

torsion

section 5:

tag 0, order 1, tag 2, order 2, tag 3, 

order 3, tag 4

(potential) ID5, p0, p1, ..., meta5

improper

section 6:

n

scaling 1, scaling 2, meta6

1,n

section 7:

tag 1, dist, tag 2

(potential) ID7, p0, p1, ..., meta7

special

section 1:

data:

data:

tag

(potential) ID1, p0, p1, p2, ..., meta1

intermolecular

section 2:

tag 1, order, tag 2

(potential) ID2, p0, p1, p2, ..., meta2

bond

section 3:

tag 1, order 1, tag 2, order 2, tag 3

(potential) ID3, p0, p1, p2, ..., meta3

angle

data:

data:

data:

data:

data:

Figure 29: Schematic overview of TUK-FFDat data scheme for transferable force fields.

chemical groups and their abbreviations used in the data scheme. The second part of

the tag indicates the type of atom or group of atoms modeled by the interaction site

under consideration. For atoms, the classical periodic table notation is used [434]. For

sites modeling a group of atoms (in an united-atom force field), fused hydrogen and

carbon atoms are indicated by a ’C’. Hence, in this part of the tag hydrogen atoms

are neglected in united-atom models unless a site explicitly models a single hydrogen

atom. The third part of the tag is the number of bonds the interaction site forms with

other (non-hydrogen) interaction sites. The fourth part of the tag indicates the highest

bond order the interaction site under consideration enters into. The tag ’A-C-2-1’, cf.

Fig. 30, for example indicates a carbon atom C (fused with the substituted hydrogen

atoms) in an alkane group A forming one ’1’ bond with (non-hydrogen) interaction



66 4 Online Database for Transferable Force Fields

Table 6: Definition of tag notation part1-part2-part3-part4 characterizing a
given interaction site and data type of the individual tag entries.

Part Value Description

part1 string functional group of which interaction site is part of (cf. Table 7)

part2 string atom or group of atoms modeled by interaction site

part3 integer number of bonds of interaction site (with non-hydrogen atoms)

part4 integer highest bond order of interaction site

part1-part2-2-1

part1-part2-2-2

part1-part2-1-1

part1-part2-1-1

part1-part2-1-1

a) b)

Figure 30: Exemplaric definition of tag identifier notation (cf. Table 6) for interaction
sites (atoms or groups of atoms) using 3-methyl-1-butene: a) last two parts
of the tag specifying bond structure in a molecule (details given in the text);
b) first two parts of the tag specifying the atom type and site structure of
the model.

sites, which has a bond order of ’2’, i.e. a double bond. The tag notation also enables

a direct distinction of a particular atom type that is modeled differently, i.e. different

parameters, in different chemical environments. Details on the tag notation are given

in Appendix C.

In the seven sections of the data scheme (cf. Fig. 29), chemical sub-structures (i.e.

formations of two sites (bonds), three sites (angles) etc.) are characterized using tuples

of tags indicating the participating interaction sites. This constitutes the chemical

construction plan. Each of the seven sections of the data scheme has a list of entries

defining the interaction potentials and their parameters assigned to a given chemical

structure, i.e. combination of types of interaction sites. The interaction potentials are

represented by parametric functions with the parameters p0, p1, ..., pn (cf. Fig. 29).

The mathematical functions used for describing a given interaction are represented by

the ’IDi’ with i = 1...7. Each section has its own ID and interaction potential list. For

example, for the bond potential i = 2, the classical harmonic function has the ID2 =

1. Moreover, meta data indicating the origin of the data (in most cases the parameter

values) is appended for each structural information. For this purpose, the DOI numbers

are used as references, which provide a unique link to the respective references [435].
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Table 7: Functional groups included in the data scheme (first part of the tag, cf. Ta-
ble 6).

Abbreviation Type Functional group

A∗ CHx–CHx
a, CHx=CHx

b, CHx ≡CHx
c alkane

Ac CHx–O–C(=O)–CH=CH2
a acrylate

Ace CHx–O–C(–X)2–O–CHx
a,d acetal

Ad CHx–C(=O)–N–X2
a,d amide

Ak CHx–O–Ha alcohol

Al X–C(–H)=Oa,d aldehyde

Am CHx–N–X2
a,d amine

B∗∗ CH–CH (arom.) benzene

CA∗∗ CH2–CH2 (cyc.) cycloalkane with 6 < (ring
size) <18

CA5∗∗ CH2–CH2 (cyc.) cycloalkane with ring size 5

CA6∗∗ CH2–CH2 (cyc.) cycloalkane with ring size 6

Cac CHx–C(=O)–O–Ha carboxylic acid

DS CHx–S–S–CHx
a disulfide

E CHx–O–CHx
a ether

Es CHx–C(=O)–O–CHx
a ester

K CHx–C(=O)–CHx
a ketone

mAc CHx–O–C(=O)–C(–CH3)=CH2
a methacrylate

Nl CHx–C≡Na nitrile

No CHx–N–O2
a nitro

Sd CHx–S–CHx
a sulfide

Tl CHx–S–Ha thiol
a x ∈ [0, 1, 2, 3], b x ∈ [0, 1, 2], c x ∈ [0, 1], d X ∈ [H, CHx].
∗ Both, alkenes (sp2) and alkynes (sp1) are abbreviated ’A’ in the first part of the tag.
∗∗ Functional groups inside cycloalkanes or aromatic benzene rings are also abbreviated

’CA’ and ’B’, respectively, in the first part of the tag.

In the following, the structure and syntax of each of the seven sections is introduced in

detail. It should be noted that the equilibrium structure (bonds, bond angles, ...) of

a given molecule is implicitly given by a global minimum of its total potential energy,

which is therefore not explicitly described by the data scheme.

The first section of the data scheme is termed intermolecular and contains the in-

formation on the intermolecular interaction potentials between interaction sites. The

assignment of the individual intermolecular potential functions by the corresponding

IDs is given in Table 8. The intermolecular section explicitly lists potential functions
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Table 8: Intermolecular potential functions and their parameters (first section of data
scheme, cf. Fig. 29), where rij indicates the distance between the considered
interaction sites i and j, ε0 the vacuum permittivity, kB the Boltzmann con-
stant, q the charge, ε the dispersion energy, σ the size parameter, and n the
potential exponent.

ID1 Function p1 p2 p3 p4

1 4εij [(σij

rij
)12

− (σij

rij
)6] + 1

4ε0π

qij

rij
qii εii σii -

with:

qij = qiiqjj, εij = √εiiεjj, σij = σii+σjj

2

2 Cnεij [(σij

rij
)nij

− (σij

rij
)6] + 1

4ε0π

qij

rij
qii εii σii nii

with:

nij = nii+njj

2
, Cn = ( nij

nij−6
) (nij

6
) 6

nij−6 , qij = qiiqjj,

εij = √εiiεjj, σij = σii+σjj

2

3 4εij [(σij

rij
)12

− (σij

rij
)6] + e2 qij

rij
qii εii σii -

with:

qij = qiiqjj, εij = √εiiεjj, σij = σii+σjj

2

4 εij [( rmin, ij

rij
)12

− ( rmin, ij

rij
)6] + 1

εl

qij

rij
qii εii rmin,ii -

with:

qij = qiiqjj, εij = √εiiεjj, rmin, ij = rmin, ii+rmin, jj

2

with its corresponding parameters and a combination rule. The interaction sites in the

first section of the data scheme are defined by a single corresponding tag. The potential

functions used for modeling the interactions between given site types are encoded in the

ID1 (cf. Table 8). Also the combination rule type describing the interaction potential

between unlike interaction sites is comprised in the ID1. For a given transferable force

field, the ID1 is constant. In the list of intermolecular interaction potential functions

(cf. Table 8), also the meaning of the parameter values is specified.

The second section of the data scheme is termed bond and contains the specifications

for the bond potentials for different combinations of two directly neighbored interac-

tion sites. Hence, all information on intramolecular bond potentials within the given

transferable force field are stored in the second data scheme section. A bond interaction

is specified by the tags of the two involved interaction sites ’tag 1’ and ’tag 2’ as well

as the bond ’order’ between the considered interaction sites (cf. Fig. 29). The bond

potential specification for two interaction sites consists of a bond potential function and

its parameters – analogously to the intermolecular potential section. The bond potential
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function is encoded by the ID2. Details on the potential functions are given in Table 9.

Table 9: Bond potential functions and their parameters (second section of data scheme,
cf. Fig. 29), where rij is the distance between the considered interaction sites
i and j, and k parameters of the potentials.

ID2 Function p1 p2 p3 p4

1 k2

2
(rij − r0)2 k2 r0 - -

2 k2 (rij − r0)2 + k3 (rij − r0)3 + k4 (rij − r0)4 k2 k3 k4 r0

3 k4

4
(r2

ij − r2
0)2 k4 r0 - -

The third section of the data scheme is termed angle. It contains the specifications for

the angle potentials for different combinations of three directly neighbored interaction

sites. An angle interaction potential is specified by the tags of the three involved types of

interaction sites ’tag 1’, ’tag 2’, and ’tag 3’ and the two bond orders ’order 1’ and ’order

2’. The ’order 1’ indicates the bond order between the central interaction site indicated

by ’tag 2’ and the first interaction site ’tag 1’. The ’order 2’ indicates the bond order

between the ’tag 2’ and ’tag 3’ interaction sites. The interaction potential functions

are encoded by the ID3. The list of mathematical functions and the corresponding

parameters is given in Table 10.

Table 10: Angle potential functions and their parameters (third section of data scheme,
cf. Fig. 29), where i and k are the interaction sites that are bond to the
interaction site j, such that i, j and k form the bond angle Θ, rij is the
distance between the interaction sites i and j, rjk is the distance between
the interaction sites j and k.

ID3 Function p1 p2 p3 p4 p5 p6 p7 p8 p9

1 l2
2
(Θ −Θ0)2 l2 Θ0 - - - - - - -

2

l2 (Θ −Θ0)2 + l3 (Θ −Θ0)3 +
l4 (Θ −Θ0)4+k2 (rij − r1) (rjk − r2)+
N1 (rij − r1) (Θ −Θ0) +
N2 (rjk − r2) (Θ −Θ0)

l2 l3 l4 Θ0 k2 r1 r2 N1 N2

3 c
(cos Θ−cos Θ0)2

2
Θ0 c - - - - - - -

The forth section of the data scheme is termed torsion and contains the specifications

for the torsion potentials for different combinations of four directly neighbored in-line

(no branching) interactions sites. This type of interaction is also often named dihedral.

A torsion potential is specified by the tags of the four involved types of interaction
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sites ’tag 1’, ’tag 2’, ’tag 3’, and ’tag 4’ and the three bond orders ’order 1’, ’order

2’, and ’order 3’. The interaction sites indicated by ’tag 1’ and ’tag 4’ are the tail

interaction sites of a torsion structure; the interaction sites indicated by ’tag 2’ and

’tag 3’ are the central interaction sites. Accordingly, the ’order 1’ and ’order 3’ specify

the bond order of the tail bonds of a torsion structure; the ’order 2’ specifies the bond

order of the central bond. The potential function types are encoded by the ID4. The

list of mathematical functions and the corresponding parameters is given in Table 11.

Details on the specifications of special cis/trans isomerism-dependent torsion potentials

are given in Appendix C.

Table 11: Torsion potential functions and their parameters (fourth section of data
scheme, cf. Fig. 29), where Φ is the torsion angle formed by the interac-
tion sites under consideration and c and n are potential parameters.

ID4 Function p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

1
c0 + c1 (1 + cos Φ) +
c2 (1 − cos 2Φ) +
c3 (1 + cos 3Φ) c0 c1 c2 c3 - - - - - - - -

2 c
(Φ−Φ0)2

2
c Φ0 - - - - - - - - - -

3 ∑6
i=0 ci cos iΦ c0 c1 c2 c3 c4 c5 c6 - - - - -

4 c0 [1 − cos (2Φ +Φ0)] c0 Φ0 - - - - - - - - - -

5 ∑7
i=0 ci cosi Φ c0 c1 c2 c3 c4 c5 c6 c7 - - - -

6 ∑4
i=1 ci[1 +

cos (niΦ −Φi)] c1 n1 Φ1 c2 n2 Φ2 c3 n3 Φ3 c4 n4 Φ4

The fifth section of the data scheme is termed improper. It contains the specifications

for improper torsion potentials of a branching intersection of four directly neighbored

interaction sites. Hence, the improper torsion potential is specified by the four involved

types of interaction sites ’tag 0’, ’tag 1’, ’tag 2’, and ’tag 3’ and the three bond orders

’order 1’, ’order 2’, and ’order 3’ – as for the in-line torsion potential (see above). In a

branched structure modeled by an improper torsion, one interaction site is the central

one – indicated by the ’tag 0’ in the data scheme. The three remaining interaction sites

’tag 1’, ’tag 2’, and ’tag 3’ have a direct bond to the central one. Accordingly, ’order 1’,

’order 2’, and ’order 3’ specify the bond order from the central interaction site to the

respective neighboring interaction site. The three interaction sites indicated by ’tag 0’,

’tag 1’, and ’tag 2’ span a specific plane (which is relevant for some improper torsion

potential functions). The potential functions used for modeling the improper torsion

differs in most cases from those used for modeling the in-line torsion. The improper
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torsion potential function types are encoded by the ID5. The list of mathematical

functions and the corresponding parameters is given in Table 12.

Table 12: Improper torsion potential functions and their parameters (fifth section of
data scheme, cf. Fig. 29), where Ψ is the out of the plane angle formed by
the interaction sites under consideration and l are potential parameters.

ID5 Function p1 p2

1 l2
(Ψ−Ψ0)2

2
l2 Ψ

The sixth section of the data scheme is termed 1,n. It contains the information on the

1,n intramolecular interaction potentials, i.e. the potential acting between an interac-

tion site and its nth neighbor. For modeling these intramolecular interactions, scaled

intermolecular potentials are used. The individual parts modeling the van der Waals

interactions and the electrostatic interaction of the intermolecular potential are scaled

individually. Hence, the mathematical functions are adopted from the first section, but

scaled by a factor. The 1,n section of the data scheme contains two values, i.e. n in-

dicating the distance of two sites in a molecule and two corresponding ’scaling’ values.

The ’scaling 1’ contains the information on the scaling for the van der Waals interactions

and ’scaling 2’ the information on the scaling for the electrostatic interactions. If not

specified otherwise, the scaling factor is taken to be 0 for n ≤ 4 and 1 for n > 4 for both

the van der Waals and the electrostatic potentials within the data scheme.

The seventh section of the data scheme is termed special and contains special interaction

potential cases that may occur in specific transferable force fields that are not covered

within the sections one to six. The syntax used for the special potential cases is similar to

the 1,n interactions introduced above. Hence, special interaction potentials are specified

between two interaction sites. Special potentials model the potential energy between

specific interaction sites, which have a certain distance with respect to direct bonding

neighbors. The information structure in the special potential section is similar to the

bond section. A special interaction is specified by the tags of the two involved types of

interaction sites ’tag 1’, ’tag 2’, and ’dist’ (cf. Fig. 29). The latter specifies distance of

the involved sites by counting the number of direct bonds between the sites ’tag 1’ and

’tag 2’. The potential functions and the corresponding parameters are encoded by the

ID7. The list of mathematical functions and the corresponding parameters is given in

Table 13. The dimensions of the parameters used in Tables 8 - 13 are given in Table 14.

The seven data scheme sections generalize and formalize a transferable force field con-

struction plan. Therein, for a given transferable force field, the ID-vector ID = {ID1,
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Table 13: Special potential functions and their parameters (seventh section of data
scheme, cf. Fig. 29), where rij indicates the distance between the considered
interaction sites i and j, and k parameters of the potentials.

ID7 Function p1

1 k12/r12
ij

k12

Table 14: Force field parameters (cf. Tables 8 – 12) and their physical dimensions as
well as their units used in the TUK-FFDat data format.

Parameter Dimension Unit

εii, c energy eV

σ, r length Å

n n 1

q charge e

ki energy/lengthi eV/Åi

li energy/anglei eV/degi

Θ, Φ, Ψ angle deg

N energy/(angle length) eV/(Å deg)

ID2 ... ID7} specifies the mathematical structure of the model. The outlined data scheme

can be applied to all-atom and united-atom force fields. Also, force fields parameterized

by the bottom-up and top-down approach can be described using the data scheme. Re-

garding the molecular architecture and potentials, rigid, flexible, and semi-flexible force

fields can be described by the data scheme. For semi-flexible force fields it is possible

that individual bond lengths, bond angles or torsion angles are constrained. Details are

given in Appendix C.

The tag notation in combination with the bond order and the systematization of the

potential types provides a formalization for transferable force field construction plans.

The proposed data scheme can be used for electronically documenting and defining a

large variety of transferable force fields, cf. Fig. 26. Therefore, the data scheme is

implemented in an SQL-based data format.

4.2.3 SQL-based Data Format

The data scheme introduced above is implemented as an SQL-based data format to

make it interoperable and directly usable in automated workflows, e.g. in simulation

engines, databases, and for publishing new transferable force fields.
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The information contained in each of the seven sections of the data scheme is translated

into an SQL table structure in the data format. The data comprised in each of the

sections of the data scheme (cf. Fig. 29) are translated to the columns of the tables.

The tag notation (cf. Table 6) introduced above is used for specifying interaction sites

within the tables.

The data format syntax and data type used in the seven tables is specified in Table 15.

For each table, the name of each column and the data type (string, real number, integer,

etc.) stored in the column is specified in Table 15. To avoid redundant or duplicate

entries within a section and to keep the tables compact, a short-hand notation is intro-

duced. Thereby, an ’X’ indicates either a part of a tag or a bond order. The ’X’ syntax

serves as a placeholder for an arbitrary entry. For example, the bond identifier (tag 1,

order, tag 2) = (A-C-X-X, 1, A-C-X-X) specifies all types of bonds in alkanes. Hence,

they would all be modeled by the same mathematical function and parameters.

Table 15: Data structure of TUK-FFDat data format.

Column Value Description

First table: intermolecular

tag tag tag of atom or group of atoms of interaction site (cf.

Table 6)

ID1 integer identifier for potential function for intermolecular in-

teractions and combining rule encoded in ID1 (cf. Ta-

ble 8)

p1 real number parameter of intermolecular potential function

p2 real number parameter of intermolecular potential function

⋯ ⋯ ⋯

ref string DOI of the reference in which the potential parameters

were published

Second table: bond

tag1 tag tag of interaction site (cf. Table 6) involved in the

considered bond

order integer bond order of considered bond

tag2 tag tag of interaction site (cf. Table 6) involved in the

considered bond

Continued on next page
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Column Value Description

ID2 integer or ”none” identifier for bond potential function encoded in ID2,

cf. Table 9 (”none” indicating a fixed bond length)

p1 real number if ID2 == ’none’: bond length, else: parameter of

bond potential function

p2 real number parameter of bond potential function

⋯ ⋯ ⋯

ref string DOI of the reference in which the potential parameters

were published

Third table: angle

tag1 tag tag of central interaction site (cf. Table 6) involved in

the considered angle

order1 integer bond order of the bond between the sites represented

by tag1 and tag2

tag2 tag tag of interaction site (cf. Table 6) involved in the

considered angle

order2 integer bond order of the bond between the sites represented

by tag2 and tag3

tag3 tag tag of the interaction site (cf. Table 6) involved in the

considered angle

ID3 integer or ”none” identifier for angle potential function encoded in ID3,

cf. Table 10 (”none” indicating a fixed bond angle)

p1 real number if ID3 == ’none’: bond angle, else: parameter of

angle potential function

p2 real number parameter of angle potential function

⋯ ⋯ ⋯

ref string DOI of the reference in which the potential parameters

were published

Fourth table: torsion

tag1 tag tag of interaction site (cf. Table 6) involved in the

considered torsion angle

Continued on next page
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Column Value Description

order1 integer bond order of the bond between the sites represented

by tag1 and tag2

tag2 tag tag of interaction site (cf. Table 6) involved in the

considered torsion angle

order2 integer bond order of the bond between the sites represented

by tag2 and tag3

tag3 tag tag of interaction site (cf. Table 6) involved in the

considered torsion angle

order3 integer bond order of the bond between the sites represented

by tag3 and tag4

tag4 tag tag of interaction site (cf. Table 6) involved in the

considered torsion angle

ID4 integer or ”none” identifier for torsion angle potential function encoded

in ID4, cf. Table 11 (”none” indicating a fixed torsion

angle)

p1 real number if ID4 == ’none’: torsion angle, else: parameter

of torsion potential function

p2 real number parameter of torsion potential function

⋯ ⋯ ⋯

ref string DOI of the reference in which the potential parameters

were published

Fifth table: improper

tag0 tag tag of central interaction site (cf. Table 6) involved in

the considered improper torsion angle

order1 integer bond order of the bond between the sites represented

by tag0 and tag1

tag1 tag tag of interaction site (cf. Table 6) involved in the

considered improper torsion angle

order2 integer bond order of the bond between the sites represented

by tag0 and tag2

tag2 tag tag of interaction site (cf. Table 6) involved in the

considered improper torsion angle

Continued on next page
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Column Value Description

order3 integer bond order of the bond between the sites represented

by tag0 and tag3

tag3 tag tag of interaction site (cf. Table 6) involved in the

considered improper torsion angle

ID5 integer or ”none” identifier for improper torsion angle potential function

encoded in ID5, cf. Table 12 (”none” indicating a fixed

improper torsion angle)

p1 real number if ID5 == ’none’: improper torsion angle, or:

parameter of improper torsion potential function

p2 real number parameter of improper torsion potential function

⋯ ⋯ ⋯

ref string DOI of the reference in which the potential parameters

were published

Sixth table: 1n_potential

n integer distance between the two sites involved in the 1,n po-

tential given in number of bonds between them

scaling1 real number scaling factor applied to the potential modeling van

der Waals interactions

scaling2 real number scaling factor applied to the potential modeling elec-

trostatic interactions

ref string DOI of the reference in which the potential parameters

were published

Seventh table: special

tag1 tag tag of interaction site (cf. Table 6)

dist integer distance between the two sites involved in the special

potential given in number of bonds between them

tag2 tag tag of second interaction site (cf. Table 6)

ID7 integer or ”none” potential function for special potentials encoded in

ID7

p1 real number parameter of the special potential function

p2 real number parameter of the special potential function

Continued on next page
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Column Value Description

⋯ ⋯ ⋯

ref string DOI of the reference in which the potential parameters

were published

4.2.4 Application of Data Format

The TUK-FFDat format proposed in this chapter is applied to three transferable force

fields of different type. The three transferable force fields are:

• the TraPPE-UA force field [37, 310, 378–387] (semi-flexible, united-atom),

• the OPLS-AA force field [34, 376, 388–390] (flexible, all-atom), and

• the Potoff force field [38, 311, 391, 392] (semi-flexible, united-atom).

The TraPPE-UA and the Potoff transferable force field have been developed within the

chemical engineering community. They are widely used for predicting thermodynamic

properties – in particular of hydrocarbons [37, 38, 310, 311]. The OPLS-AA transferable

force field has been developed within the molecular biology community and is accordingly

mostly used for modeling bio systems, e.g. predicting structural protein properties [364].

The TUK-FFDat implementations of all three transferable force fields (TraPPE-UA,

OPLS-AA, and Potoff) are available on Zenodo [436]. In this work, a representative

part of the TraPPE-UA transferable force field is depicted and discussed as examples

(cf. Tables 16 - 20). This selection represents the alkane and alcohol part of the TraPPE-

UA transferable force field. In the main body of the manuscript (Tables 16 - 20), the

manuscript references are used instead of the DOIs (see online repository [436]).
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Table 16: First table (intermolecular) of the data format, cf. Table 15, for the TraPPE-
UA for field for alkanes and alcohols.

tag ID1 p1 p2 p3 ref

A-C-0-0 1 0 148 3.73 [37]

A-C-1-1 1 0 98 3.75 [37]

A-C-2-1 1 0 46 3.95 [37]

A-C-3-1 1 0 10 4.68 [310]

A-C-4-1 1 0 0.5 6.4 [310]

Ak-O-2-1 1 -0.7 93 3.02 [379]

Ak-H-1-1 1 0.435 0 0 [379]

Ak-C-1-1 1 0.265 98 3.75 [379]

Ak-C-2-1 1 0.265 46 3.95 [379]

Ak-C-3-1 1 0.265 10 4.33 [379]

Ak-C-4-1 1 0.265 0.5 5.8 [379]

Table 17: Second table (bonds) of the data format, cf. Table 15, for the TraPPE-UA
force field for alkanes and alcohols.

tag1 order tag2 ID2 p1 ref

X-C-X-1 1 X-C-X-1 none 1.54 [37]

Ak-C-X-X 1 Ak-O-2-1 none 1.43 [379]

Ak-H-1-1 1 Ak-O-2-1 none 0.945 [379]

Table 18: Third table (angles) of the data format, cf. Table 15, for the TraPPE-UA
force field for alkanes and alcohols.

tag1 order1 tag2 order2 tag3 ID3 p1 p2 ref

X-C-X-X 1 X-C-2-1 1 X-C-X-X 1 62500 114 [37]

X-C-X-X 1 X-C-3-1 1 X-C-X-X 1 62500 112 [310]

X-C-X-X 1 X-C-4-1 1 X-C-X-X 1 62500 109.47 [310]

X-C-X-X 1 Ak-C-X-1 1 Ak-O-2-1 1 50400 109.47 [379]

Ak-C-X-1 1 Ak-O-2-1 1 Ak-H-1-1 1 55400 108.5 [379]
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Table 19: Fourth table (torsion) of the data format, cf. Table 15, for the TraPPE-UA force field for alkanes and alcohols

tag1 order1 tag2 order2 tag3 order3 tag4 ID4 p1 p2 p3 p4 ref

X-C-X-X 1 X-C-2-1 1 X-C-2-1 1 X-C-X-X 1 0 355.03 -68.19 791.32 [37]

X-C-X-X 1 X-C-2-1 1 X-C-3-1 1 X-C-X-X 1 -251.06 428.73 -111.85 441.27 [310]

X-C-X-X 1 X-C-2-1 1 X-C-4-1 1 X-C-X-X 1 0 0 0 461.29 [310]

X-C-X-X 1 X-C-3-1 1 X-C-3-1 1 X-C-X-X 1 -251.06 428.73 -111.85 441.27 [310]

X-C-X-X 1 X-C-2-1 1 X-C-3-2 1 X-C-X-X 1 0 0 0 461.29 [310]

X-C-X-X 1 Ak-C-2-1 1 Ak-O-2-1 1 Ak-H-1-1 1 0 209.82 -29.17 187.93 [379]

X-C-X-X 1 Ak-C-3-1 1 Ak-O-2-1 1 Ak-H-1-1 1 215.96 197.33 31.46 -173.92 [379]

X-C-X-X 1 Ak-C-4-1 1 Ak-O-2-1 1 Ak-H-1-1 1 0 0 0 163.56 [379]

X-C-X-X 1 X-C-2-X 1 X-C-2-1 1 X-O-2-1 1 0 176.62 -53.34 769.93 [379]

X-C-X-X 1 X-C-X-1 1 X-O-2-1 1 X-C-X-1 1 0 725.35 -163.75 558.2 [380]

X-O-2-1 1 X-C-2-1 1 X-C-2-1 1 X-O-2-1 1 503.24 0 -251.62 1006.47 [380]
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Table 20: Seventh table (special) of the data format, cf. Table 15, for the TraPPE-UA
force field for alkanes and alcohols.

tag1 dist tag2 ID7 p1 ref

Ak-O-X-X 4 X-H-1-1 1 75000000 [380]

Ak-O-X-X 5 X-H-1-1 1 75000000 [380]

The TraPPE-UA transferable force field is a semi-flexible united-atom force field. In the

TraPPE-UA force field, all bonds between interaction sites are constrained to be rigid.

This translates in the data format as none entries in the second data format table, cf.

Table 17. The TraPPE-UA transferable force field does not contain improper torsion

potentials. Accordingly, the fifth table of the data format remains empty (not shown).

Despite the fact that the TraPPE-UA is a united-atom force field, hydrogen atoms are

explicitly modeled in some chemical structures, e.g. specific polar functional groups.

Details are given in Appendix C.

4.2.5 Conversion Tools

The SQL-based data format presented here can be favorably used for process automa-

tion. For human interaction and creating the tables, the classical .xls spreadsheet format

can, however, be more convenient. An auxiliary tool is provided in the online repository

[436] for converting the data scheme from the .xls format to the SQL-based format and

vice versa. Therefore, two Python scripts are provided in the online repository [436].

For testing, example .xls and SQL transferable force field files are also provided. The

script named xlsx2SQL.py reads an .xls spreadsheet file in which a transferable force

field is defined and creates an SQL database containing the corresponding transferable

force field. The second script reads a transferable force field from an SQL database

and creates the corresponding .xls spreadsheet files. The handling of these scripts is

described in detail in Appendix C. The .xls spread files are intended for constructing

the actual SQL-based data format files of a given transferable force field.

4.2.6 Conclusions

A generalized data scheme for transferable force fields was presented that can be ap-

plied to various types of force fields such as rigid and flexible as well as all-atom and

united-atom force fields. The data scheme is implemented into an SQL-based file for-

mat. Thereby, the data scheme is fully machine readable and provides uniquely defined
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data structures. It is called TUK-FFDat. The TUK-FFDat data scheme and data for-

mat is specifically designed for transferable force fields (opposite to component-specific

force fields), i.e. it provides data structures for generalized chemical construction plans

that define model building blocks for substance classes. Three applications of the data

scheme and data format are given (the TraPPE-UA, OPLS-AA, and Potoff transferable

force fields). These three examples show important differences, which demonstrates the

general applicability of the data scheme. The data scheme and data format proposed in

this chapter can be favorably used for increasing the force field interoperability in the

molecular simulations community. The data scheme and data format can be used for

sharing transferable force field data between different actors, e.g. database developers,

force field developers, and simulators.

The data scheme and data format presented here can readily be extended in different

directions. New interaction potentials can easily be added in the corresponding potential

lists (cf. Tables 8 - 12) by adding a new IDi-value. Also, new chemical groups can be

added in the corresponding functional group list, cf. Table 7. Also, in the case that the

topology of the transferable force field is to be extended, new sections can be added to

the data scheme. Also, the ongoing development of a given transferable force field can

favorably be carried out based on the data scheme by adding entries in the different

section tables. If new interaction site types are added to a transferable force field, the

new entries specifying the different potential interactions can be readily appended in the

lists of the seven sections. For future work, the data scheme proposed in this chapter

can be extended to coarse grain, reactive, and machine learned force fields.

4.3 MolMod Database: Extension to Transferable

Force Fields

4.3.1 MolMod Transferable

The MolMod Transferable database can be accessed at molmod.boltzmann-zuse.de/.

The purpose of MolMod Transferable is to provide findable, accessible, and interoperable

access to force field models for molecules based on transferable force fields. The main

task of MolMod Transferable is to build a component-specific force field for a given

molecule based on a given transferable force field and to provide simulation engine

input files. The workflow of MolMod Transferable is depicted in Fig. 31. The user input

(left side of Fig. 31) consists of the specification of the molecule and the transferable

force field to be used. The molecule specification is to be provided by specifying the

molecule structure. The geometry of the molecule can be specified by a drawing of the

https://molmod.boltzmann-zuse.de/
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Figure 31: Workflow for users of MolMod Transferable.

structural formula or by providing a MOL file [437]. The drawing can be done by the

ChemDoodle sketcher [438], which is integrated into the MolMod website. Additionally,

the user has to select a transferable force field among those currently available in the

MolMod database.

MolMod displays the component-specific force field model for the considered molecule

on-the-fly on the front end of the website. For identifying the functional groups of a given

molecule, an algorithm based on the method proposed by Ertl [439] was implemented in

MolMod Transferable. The kernel of MolMod Transferable builds a component-specific

force field model by assigning the model parameters from the generalized transferable

construction plans to a concrete molecular structure. Presently, MolMod Transferable

covers only molecules that can be represented by the scheme of Kanagalingam et al.

[425], which comprises a large number of organic substances (see below for details). If

this is the case, the component-specific force field can be built; otherwise the user is

informed by the website that the transferable force field cannot be used in the present

case. Changes of the molecular structure via the structure drawing tool or changing the

transferable force field are quasi-instantaneously depicted on the website. Both, the data

of the force field and the meta-data are displayed on the website. The actual force field

data consists of the force field parameters, i.e., variables and their numeric values and

units that define the interaction sites, the initial configuration, and the intermolecular

as well as the intramolecular potentials acting between the interaction sites. The meta-

data of a user-built component-specific force field comprises the information on the

references that published the transferable force field parameters in use for the given

model. For some molecules, this might be multiple publications, e.g., for an alcohol

where the methyl and methylene group parameters were published separately from the

hydroxyl group parameters. Moreover, input files for MD or MC simulation engines of

the component-specific force field model built by the user are directly provided by the
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MolMod database.

Besides being a tool for simulators, the MolMod Transferable database is also a useful

tool for force field developers to distribute newly developed force fields. The force field

parameters in the MolMod Transferable database are stored in the generalized data

format proposed in Ref. [425]. The format is both human-readable and interoperable

with MolMod Transferable. Thus, it is straightforward to integrate new transferable

force fields into the MolMod Transferable database. Details on the implementation of

force fields and the general workflow to upload new force fields are given below.

Fig. 32 shows a screenshot of the user interface of the MolMod Transferable front end.

The MolMod Transferable front end consists of five sections (top to bottom). In the user

input section (highlighted in red in Fig. 32), which is entitled Builder, the user specifies

the structure of the molecule by drawing the structure formula or providing a MOL file

and specifies the transferable force field via a drop-down menu.

The section Overview (highlighted in green in Fig. 32) contains meta-data information

on the component-specific force field, including the molecular formula, identifiers for the

references used for building the model, the number of interaction sites in the force field,

and the name of the underlying transferable force field.

The Force Field section (highlighted in blue in Fig. 32) contains the full specification

of the actual component-specific force field by providing its parameters in separate

tables. The first subsection contains the specification of the sites and the equilibrium

configuration, the second and third subsections contain the specifications of the inter-

and intramolecular interactions.

In the first subsection, the first table Sites provides a list of the interaction sites, their

names, their functional groups as well as their molar masses. In the second table, the

Initial Configuration is given (xyz coordinates of each interaction site in an equilibrium

configuration). Details on the calculation of the initial configuration are given below.

The Intermolecular Potential Parameters subsection provides the parameters for the

intermolecular interactions. Depending on the types of interactions used in a given

component-specific force field, the corresponding tables are depicted, i.e., a table for

the dispersive-repulsive interactions (e.g. Lennard-Jones or Mie potential parameters)

and a table for charges and multipoles (no charges are applicable in the ethane model

exemplarily shown in Fig. 32). Also, a link to the nomenclature section of the MolMod

database is given that provides details on the underlying mathematical equations used

for the modeling of the interactions. The Intramolecular Potential Parameters subsec-

tion provides the parameters for the intramolecular interactions as well as the speci-

fications of intramolecular constraints. In this section, tables for the specification of

the bond, angle, dihedral, and improper interactions are displayed (latter three are not
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Figure 32: Screenshot of the user interface of the MolMod Transferable front end. As
an example, the modeling of ethane C2H6 with the TraPPE-UA transferable
force field is considered.

applicable in the example shown in Fig. 32).

The individual tables contain all information needed to identify the interaction potential

(an ID for each interaction type, the IDs and names of the sites that are part of the

interaction, the potential ID, the actual potential parameters, the type of interaction
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(rigid or flexible), and the reference to the publication in which the parameters were

first published).

In the Downloads section (highlighted in yellow in Fig. 32), MolMod Transferable pro-

vides files for download that contain the data and meta-data of the considered component-

specific force field. Different file formats are available that correspond to input file for-

mats of popular simulation engines. More details on the input files are given below in

’Data Management and Data Integrity’.

The last section References (highlighted in light blue in Fig. 32) provides the details

on the literature sources that were used to construct the component-specific model.

In some cases, it might contain only a single reference, but multiple references will be

listed when the information was spread in several papers or if erratums were considered.

The references are specified using the full author list, title, journal title, volume, page

number, year, and the DOI number including a web-link.

4.3.2 Implemented Transferable Force Fields

MolMod Transferable covers both UA and AA transferable force fields. Table 21 gives

an overview of the force fields presently implemented in MolMod Transferable. These

Table 21: Overview of transferable force fields presently implemented in the MolMod
database. Both united-atom (UA) and all-atom (AA) force fields are avail-
able. Sorted chronologically. The number of citations was taken from the
Web of Science (https://www.webofscience.com) as of June 26th,
2023. The number of citations is the sum of citations of the references given
in the third column.

Name Type References First publication Citations

OPLS-UA UA [33, 440–451] 1984 6433

OPLS-AA AA [34, 389, 390] 1996 11429

TraPPE-UA UA [37, 310, 378–387] 1998 5181

COMPASS AA [35] 1998 4406

CHARMM AA [36] 1998 11617

GROMOS UA [424] 2001 753

Potoff UA [38, 311, 391, 392] 2009 150

TAMie UA [39, 312, 452–455] 2015 105

transferable force fields differ significantly in the chemical groups for which parame-

ters are available, cf. Table 22. Furthermore, the force fields were developed at different

times, e.g., the OPLS-UA force field was in most parts developed in the 1980ies, whereas

https://www.webofscience.com
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Table 22: Substance classes and functional groups implemented in the MolMod
database (1st and 2nd column). The 3rd column lists the transferable force
fields that comprise a given functional group.

Substance class Functional group Force fields

alkanes CHx–CHx
a

OPLS-UA, OPLS-AA, TraPPE-
UA, COMPASS, CHARMM,
GROMOS, Potoff, TAMie

alkenes CHx=CHx
b OPLS-UA, TraPPE-UA, Potoff,

TAMie

alkynes CHx ≡CHx
c Potoff

(meth)acrylates CHx–O–C(=O)–CX=CH2
a,d TraPPE-UA

alcohols CHx–O–Ha OPLS-UA, OPLS-AA, TraPPE-
UA, TAMie

aldehydes X–C(–H)=Oa,d TraPPE-UA, TAMie

aromatic rings CH–CH (arom.) OPLS-AA, TraPPE-UA,
CHARMM

cycloalkanes CH2–CH2 (cyc.) TraPPE-UA, GROMOS, TAMie

disulfides CHx–S–S–CHx
a OPLS-UA, OPLS-AA, TraPPE-UA

ethers CHx–O–CHx
a OPLS-UA, OPLS-AA, TraPPE-

UA, TAMie

ketones CHx–C(=O)–CHx
a OPLS-AA, TraPPE-UA, TAMie

nitriles CHx–C≡Na OPLS-UA, TraPPE-UA

sulfides CHx–S–CHx
a OPLS-UA, OPLS-AA, TraPPE-UA

thiols CHx–S–Ha OPLS-UA, OPLS-AA, TraPPE-UA

a x ∈ [0, 1, 2, 3], b x ∈ [0, 1, 2], c x ∈ [0, 1], d X ∈ [H, CHx].

the Potoff and TAMie force field were developed in the past two decades. Transferable

force fields presently implemented in the MolMod database use the Lennard-Jones po-

tential or the generalized Mie potential for modeling the dispersive-repulsive interactions

and point charges for modeling the polarities for describing intermolecular interactions.

For the intramolecular interactions, different approaches are used, i.e., some transfer-

able force fields use constraint stretching and bending bonds (i.e. rigid), whereas other

transferable force fields use harmonic springs for modeling the stretching and bending.

Most force fields use a torsion potential for modeling the intramolecular rotations. Yet,

different force fields mostly use different torsional potential functions.

The force fields are stored in the MolMod database using the data format proposed in

the previous section. This data format is based on tags that are attributed to every site

and that contain information on the functional groups, the modeled atoms or group of

atoms, the neighboring interaction sites, the number of bonds, and the highest bond
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order of the site. In particular, the data format provides a high interoperability and is

well-defined [425], which enables an easy integration of new force fields in the database.

Presently, eight transferable force fields are integrated in MolMod Transferable. In the

following a brief overview of these transferable force fields (cf. Table 21 and Table 22) is

given. For some transferable force fields, multiple versions are available in the literature,

i.e., multiple parameter sets for a given functional group have been proposed. In the

MolMod database, only a single version for each transferable force field is implemented

– as indicated by the references in Table 21.

The united-atom OPLS-UA transferable force field (Optimized Potentials for Liquid

Simulations) [33] was developed by Jorgensen and co-workers. The basis of the OPLS-

UA force field was published in 1984 and has been extended in the following years.

Today, it can be applied to a wide range of structural groups (cf. Table 21). The inter-

molecular interactions are represented by charges and Lennard-Jones interaction sites.

The bond lengths and bond angles are fixed in OPLS-UA. The bond length and bond

bending angle values were determined using spectroscopic data. The intramolecular tor-

sion is considered by explicit potentials and the potential parameters were obtained using

quantum chemical data. Parameters for the charges and the non-bonded dispersive-

repulsive interactions were optimized with respect to macroscopic thermodynamic data

and structural data.

Also the all-atom OPLS-AA transferable force field [34] is implemented in the MolMod

database. It was also developed by Jorgensen and co-workers and is today widely

used, e.g., in computational biology. For the OPLS-AA force field [34], the bond and

bending angle parameters were adopted from the AMBER [376] and the CHARMM

force field [456]. The torsional potential parameters were fitted to QM data. The

non-bonded dispersive-repulsive interaction parameters (modeled by the Lennard-Jones

potential) and charges were fitted to thermodynamic and structural property data (in

parts adopted from the OPLS-UA [33]).

The TraPPE-UA transferable force field (Transferable Potentials for Phase Equilibria)

comprises a large number of functional group building blocks, cf. Table 21. It was

developed by Siepmann and co-workers [414]. In the MolMod database, presently the

UA force field (TraPPE-UA) is implemented, which has to be distinguished from the

AA force field TraPPE-AA [457–459]. The TraPPE-UA force field is today one of the

most widely used transferable force fields, cf. Table 21. The basis of the TraPPE-

UA force field was published in 1998 and has been substantially extended since. The

nonbonded dispersive-repulsive interactions are represented by the classical Lennard-

Jones potential. The Lennard-Jones interaction parameters were fitted to experimental

data for the vapor-liquid equilibrium of selected components. The parameters for the

charges and the intramolecular interactions were either taken from the literature or
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fitted to quantum-mechanical (QM) calculation results. In most cases, the bending

parameters were adopted from AMBER [376]; the dihedral parameters as well as charge

parameters were adopted from OPLS-UA [33, 446].

The AA COMPASS (Condensed-phase Optimized Molecular Potentials for Atomistic

Simulation Studies) transferable force field is an all-atom force field that was first pub-

lished in 1998 [35]. The force field was developed to describe simultaneously thermo-

dynamic condensed phase properties and vibrational molecular properties. Hence, an

important focus was also on the intramolecular interaction parameters [14]. Therefore,

besides the bond, bending, dihedral, and improper interactions, also cross terms are

included in the transferable force field. These cross terms model the coupling between

the different intramolecular interactions, e.g., the bond-bond, bond-angle, angle-angle,

bond-torsion, and angle-torsion couplings. The bond and angle potentials are described

by functions with quartic terms. The dispersive-repulsive interactions are modeled by a

9-6 Mie potential. The parameters of the COMPASS force field were determined from

a fit to QM data (charges and intramolecular potentials) and to thermodynamic liquid

state properties (dispersive-repulsive potential).

The AA CHARMM (Chemistry at HARvard Macromolecular Mechanics) transferable

force field version C22/CMAP [36] is implemented in the MolMod database. The

CHARMM force field was originally developed for modeling bio-molecules such as lipids

and proteins, but is today also used for other applications. The CHARMM force field

is one of the most popular force fields, cf. Table 21. As for most force fields, the in-

tramolecular parameters were fitted to structural data. Therefore, data from different

spectroscopic methods were used in addition to ab initio QM data. The charges were

fitted to QM data. The dispersive-repulsive interaction parameters were fitted to expe-

rimental solvation data for model compounds in water. As a water model, TIP3P [460]

was used in the optimization process.

The UA GROMOS transferable force field (Groningen Molecular Simulation) was de-

veloped by Van Gunsteren and Berendsen and co-workers and was primarily designed

for describing aqueous bio-molecular systems. In the MolMod database, the GROMOS

version 45A3[461] is implemented. The intermolecular parameters of the 45A3 GRO-

MOS version were fitted to experimental data for the bulk liquid density, the enthalpy

of vaporization, and the free energy of hydration. The simple point charge (SPC) [462]

water model was used in the optimization process. The intramolecular parameters of the

45A3 GROMOS version were adopted from earlier versions, where they were in most

parts fitted to quantum chemical data and in parts fine-tuned to macroscopic liquid

phase properties [461].

The UA Potoff transferable force field [38], named here after the principal developer,

J. Potoff, was first published in 2009. Compared to other transferable force fields, the
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Potoff force field presently comprises only a small number of functional group build-

ing blocks, such that alkanes, alkenes, and alkynes as well as perfluoralkanes, perflu-

oralkenes, and perfluoralkynes can be modeled. The Potoff force field uses the Mie

potential for modeling the dispersive-repulsive interactions. The Mie parameters were

fitted to experimental vapor-liquid equilibrium data. The intramolecular potential pa-

rameters were adopted from the TraPPE force field. The Potoff force field has recently

been found to be remarkably accurate for predicting properties and state regions that

were not considered in the model parametrization [77].

The UA TAMie (Transferable Anisotropic Mie) transferable force field [39] was devel-

oped by Gross and co-workers and uses the Mie potential for modeling the dispersive-

repulsive interactions. For the TAMie force field, the intramolecular potential parame-

ters were adopted from the TraPPE force field. In contrast to the TraPPE force field, the

TAMie force field framework uses an anisotropic approach regarding the bond length

between terminal methyl groups and neighboring interaction sites to better account

for the hydrogen atoms. In its fitting procedure, parameters for the dispersive-repulsive

interactions, partial charges, and the repulsive exponent of the Mie potential were simul-

taneously fitted to experimental vapor-liquid equilibrium data. The dispersive exponent

was set to 6 in all cases.

4.3.3 Available Input Formats

The component-specific force fields built by MolMod Transferable can be directly down-

loaded by the user as input files for different common simulation engines. These input

files contain the actual force field data written in the corresponding simulation engine

syntax as well as the force field meta-data to make the input files transparently reusable.

Presently, MolMod Transferable provides download input files for three simulation en-

gines, namely for LAMMPS [298], ms2 [463, 464], and Gromacs [465]. The files contain

the calculated initial configuration of all sites as well as the force field parameters in the

respective formats for the molecule of interest.

The LAMMPS input files provided by the MolMod database consists of two files: the

.int file contains the force field parameters for all types of interactions applicable to the

model. It is written as a LAMMPS script file and, thus, can be readily integrated into

any LAMMPS simulation script. The second file (.molecule) contains the geometry

of the molecule (bond topology as well as the initial coordinates). For ms2, a .pm file

is provided containing the geometry as well as the potential parameters. The Gromacs

input files provided by MolMod Transferable consist of four .itp files containing the

force field parameters, which are split into a main file, a file defining general force field



90 4 Online Database for Transferable Force Fields

properties, and two files for defining bonded and non-bonded interactions. Additionally,

the initial coordinates are stored in a .pdb file.

4.3.4 Data Management and Data Integrity

In the following, the operating principle of the MolMod database for using transfer-

able force fields and the corresponding data management system is presented. Fig. 33

schematically shows the interplay between the different database parts, users, and devel-

opers. The MolMod database is designed such that users can easily find and access force

Figure 33: Operating principle of the MolMod Transferable database and the interac-
tion of the MolMod developers, the user, and force field developers with the
MolMod Transferable database.

field data. For adding new force field models to the MolMod database, force field devel-

opers are invited to submit their force fields along with the corresponding meta-data to

the MolMod developers (info.molmod@boltzmann-zuse.de). The data is then checked

for consistency and integrated into the database. For submitting new force fields, the

data format specified in Ref. [425] should be used, which is directly compatible with

the MolMod database.

The MolMod database is hosted at the RPTU computer center. The MolMod database

consists of two parts: the MolMod database website (highlighted in red in Fig. 33) and

the actual database comprising the data and meta-data of the force fields (highlighted

in blue in Fig. 33). The latter is stored in an SQL database. Both parts are stored

in an individual Git repository, which provides a basic and robust data integrity level.

The SQL database is setup within a Git repository that is updated once a day. Hence,

a backup is written every 24 h and changes, that eventually crash the website or alter

force field data, can be traced back. Also the code for the actual MolMod website is



4.3 MolMod Database: Extension to Transferable Force Fields 91

developed within a (separate) Git repository. Thereby, the integrated database system

(cf. Fig. 33) is well maintainable, and the data quality traceable. Moreover, the system

is designed in a modular way such that it can be well extended, e.g., new transferable

force fields can be easily integrated using the SQL data format defined in Ref. [425] and

new user features implemented in the back end or front end of the website, e.g., new

interaction potential functions.

The MolMod website itself consists of a back end and a front end (cf. Fig. 34). The

Figure 34: Operating principle of MolMod Transferable for a user request for building
a component-specific force field for a given component based on a given
transferable force field and providing an input file for a certain simulation
engine.

back end contains the routines for building a component-specific force field based on the

molecule structure specifications of the user and a transferable force field. Therefore, the

back end retrieves the required force field parameters from the SQL database. Then, the

back end builds the component-specific force field as well as determines an equilibrium

configuration based on a heuristic approach that determines a (local) minimum of the

total intramolecular potential energy [466]. Also, the back end constructs the simulation

engine input files and carries out conversions, e.g., between xyz and internal coordinates

and different multipole representations [467]. The results are then returned and depicted

for the user on the front end.

Both the force field data and meta-data of MolMod Transferable are stored in an SQL

database. The SQL database (here the version MySQL 8.0.32 was used) contains the

force field parameters within multiple tables (cf. Ref. [425] for details of the data archi-

tecture) for the sites, masses, bonds, angles, dihedrals, and special interactions, which

also include references to the original publications using DOI identifiers. The data for-

mat [425] used in the SQL database generalizes the transferable force field construction
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plans such that different transferable force fields can be stored in a homogenized and

well-defined machine readable way.

An overview of the internal operating principle for a user request for building a component-

specific model for a given molecule structure is depicted in Fig. 34. Accordingly, the

front end and the back end interact upon a user request. The molecule structure is

in an intermediate step stored in an internal format that includes the information of

the chemical groups and the molecule bonding structure. The molecular structure is

converted into a collection of sites specifying chemical groups and their bonding struc-

ture. Based on this basic layout, the applicable types of intermolecular interactions and

intramolecular interactions are identified. Then, a tag ID (following the data scheme

embedded in the data format [425]) is assigned to each site according to the atom or

group of atoms they represent, which also includes the information on the functional

group they are part of. The details of this step evidently differ for UA and AA force

fields. Based on the tags, the force field parameters for the intramolecular as well as

intermolecular interactions are requested from the SQL database. That request is car-

ried out for all implemented transferable force fields returning the information on which

transferable force field actually contains parameters for all functional groups present in

the molecule specified by the user. The information, which transferable force field is

applicable for the considered component is then provided to the user via the force field

drop down menu, cf. Fig. 32 – red-colored section. Thereby, users can quickly screen

the availability of force field models for a given substance.

Finally, the initial configuration of the considered molecule is computed based on the

intramolecular force field potentials. Due to the increasing computational effort with

increasing number of sites, the use of the MolMod database is only recommended for

molecules up to 100 sites. Moreover, users have a limited open-access budget. Once

all relevant parameters and the corresponding meta-data for a given component-specific

force field are assigned and compiled, the data is sent to the front end and provided

to the user. Moreover, the user can optionally request input files for different software

packages. Such files are created upon explicit user request to save computer time when

input files are not required.

4.3.5 Exemplary Application

The application of the MolMod Transferable website is demonstrated in the following.

Therefore, molecular dynamics simulations of n-decane (C10H22) at a temperature of

T = 373.15 K and three pressures p ∈ {20, 90, 160} MPa were conducted for each of the

eight force fields. The force fields were used as implemented in the MolMod Transferable



4.3 MolMod Database: Extension to Transferable Force Fields 93

database. For the TraPPE-UA, COMPASS, Potoff, and TAMie force field, simula-

tions were carried out using LAMMPS. For the OPLS-UA, OPLS-AA, CHARMM, and

GROMOS force field, simulations were carried out with Gromacs. All simulations were

conducted in the NpT ensemble with 500 molecules. The time step was ∆τ = 0.1 fs. The

simulations were equilibrated for 105 time steps. The production ran for 106 time steps.

In the simulation with LAMMPS, the Nosé-Hoover thermostat and barostat [299–301]

were applied. In the Gromacs simulations, the Nosé-Hoover thermostat [299, 300] and

the Parinello-Rahman barostat [468] were used.

Fig. 35 shows the results for the sampled density as function of the pressure in compar-

ison with experimental data (experimental data points and correlation of experimental

data). All considered force fields yield reasonable results for the density. It is out of

Figure 35: Density of n-decane as function of the pressure at T = 373 K. Open sym-
bols: simulation results from eight different force fields; line: correlation to
experimental data [77]; crosses: experimental values from Ref. [325].

the scope of this chapter to compare the performance of different force fields. Such

comparisons have been carried out in the literature, e.g., Refs. [77, 273].

4.3.6 Conclusions

In this work, the MolMod database was extended to transferable force fields. Therefore,

a new workflow was developed and implemented that establishes a link between a user

request for a component-specific force field for a given molecule and a transferable force

field. The user specifies a molecule structure and a transferable force field; based on that,

the database constructs the corresponding component-specific force field and provides

both a comprehensive description as well as input files for popular molecular simulation

engines. Various transferable force fields were included in MolMod Transferable, namely
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OPLS-UA, OPLS-AA, COMPASS, CHARMM, GROMOS, TraPPE, Potoff, and TAMie.

The data architecture used to obtain a unified description of these models is based on a

force field data standard developed in Section 4.2. Thereby, new transferable force fields

can readily be integrated into the MolMod database. Force field developers are invited

to submit their transferable force fields to the MolMod developers for integration in the

database. MolMod Transferable provides ready-to-use input files for different popular

molecular dynamics and Monte Carlo simulation engines. MolMod Transferable is open-

access for the scientific community. Presently, MolMod Transferable comprises UA and

AA force field frameworks. It would be interesting to extend this to CG force fields in

the future.

The development and maintenance of molecular simulation infrastructure such as the

MolMod database is a highly interdisciplinary task. Experience in multiple programming

languages, interfaces, data science aspects, chemistry, and computational physics are

closely interconnected. MolMod Transferable provides a new level of accessibility and

interoperability of transferable force fields, and, by reducing the risk of input errors,

also to the reliability of molecular simulations based on transferable force fields.
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5 Non-Equilibrium Molecular

Simulations of Interfacial Heat

Transfer in a Model System

5.1 Introduction

The heat transfer across solid-fluid interfaces plays an important role in many technical

and natural processes. For describing macroscopic heat transfer, it is generally sufficient

to assume that thermal equilibrium is established at the interface. As dimensions get

smaller, surface phenomena become increasingly important and interfacial effects begin

to play a significant role. This chapter deals with the interfacial effects associated with

heat transfer that were systematically studied first by Pyotr Leonidovich Kapitza [469].

The heat transfer between a solid and a fluid phase requires energy transfer between the

particles in the solid and those in the fluid. There is a heat transfer resistance associated

with this, which is known as Kapitza resistance RK [470] and often expressed in terms

of the Kapitza length LK [471]. In heat transfer theory, the Kapitza length LK plays a

similar role as the slip length LS in fluid dynamics, which replaces on the microscale the

assumption of zero slip used for describing macroscopic flow processes. In macroscopic

heat transfer theory, the Kapitza resistance is usually neglected and replaced by the

assumption of thermal equilibrium between both phases at the interface.

The Kapitza resistance is difficult to study experimentally. Therefore, molecular dynam-

ics (MD) simulations have been frequently used in the literature to study its influence

on heat transfer [471–479]. The available results show that the Kapitza resistance plays

an important role in heat transfer on the nanoscale. Notably, there is a temperature

jump at the interface, which has to be accounted for and which is directly related to

the Kapitza length LK. The Kapitza resistance at solid-fluid interfaces of many ma-

terial pairings has been studied by NEMD simulations[480–483], often with water as

fluid component[6, 484, 485]. Besides the variation of the material pairings, the in-

fluence of single simulation parameters like the channel width[486, 487], the surface
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geometry[481, 488], the temperature or the thermostating[484, 489–491], the fluid den-

sity [492, 493], and the solid-fluid [472, 477, 478, 485, 494–496] as well as the solid-solid

interaction [471, 474, 497, 498] were determined by MD simulations.

While numbers for LK have been determined for various situations, no relations have

been established yet that allow an estimation of LK for a wide range of conditions. We

have therefore carried out a comprehensive MD study of the Kapitza resistance for a

model system for which different influencing parameters were varied systematically and

used the results for establishing an empirical correlation.

The simulation scenario used in this work consists of a fluid confined between two par-

allel fixed plane walls: a hot and a cold one. There is no convection. Both the fluid

and the walls were modeled with the Lennard-Jones potential truncated and shifted at

the cutoff radius rc = 2.5 σ (LJTS). This potential is well studied regarding both bulk

[108, 113, 499] and interfacial properties [60, 63, 260, 264, 500–502] and is often used to

study processes on the nanoscale [103, 263, 352, 503, 504]. Moreover, the LJTS potential

provides a simple yet realistic model for simple spherical substances [63]. The effects

of different influencing factors (solid-fluid interaction, solid-solid interaction, mass of

the solid particles, temperature difference between fluid and solid, fluid temperature,

fluid density, and channel width) on the heat transfer between the walls and the stag-

nant fluid were thereby studied systematically. Based on these results, an empirical

correlation was developed in this work that describes the heat transfer resistance at the

interface as a function of those influencing factors. Furthermore, a dimensionless num-

ber is introduced, which is called Kapitza interface number Ki, to distinguish it from

the well-known Kapitza number Ka [505]. The latter describes the flow of a fluid down

an inclined surface, another phenomenon that has been studied by Pyotr Leonidovich

Kapitza. The Kapitza interface number Ki relates the Kapitza length LK to a character-

istic macroscopic length of the heat transfer problem, called H here, i.e. Ki = LK/H. It

is straightforward to show that Ki can be interpreted as the ratio of the Kapitza resis-

tance RK and the heat transfer resistance due to heat conduction in the fluid Rcond, i.e.

Ki = RK/Rcond. If the characteristic macroscopic length H is large, Ki goes to zero and

the Kapitza resistance becomes much smaller compared to the conductive resistance.

Surprisingly, there are only few studies available in which the interfacial heat transfer

on the microscale was related to that on the macroscale [506, 507]. In the presence of

convection, the macroscopic heat transfer is usually described by the Nusselt number

Nu. Formally, the Nusselt number can also be applied when there is no convection.

This results in Nu = 1 [508], if the usual definition is applied. The interfacial heat

transfer resistance reduces that number [506, 507], but as dimensions increase, the limit

of Nu = 1 is finally attained, as long as there is no convection. It has been shown that

the interfacial heat transfer resistance is hardly influenced by convection, even for large
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streaming velocities [506], such that results obtained for stagnant conditions, as those

reported in this work, can also be used for estimating the heat transfer conditions if

convection is present.

This chapter is organized as follows: first, details on the molecular model are given.

Then, the MD simulation setup and sampling procedure for the observables are pre-

sented. Furthermore, the dimensionless quantities used are introduced and an overview

of the set of simulations that were carried out is presented. In the subsequent section,

the results are reported including a discussion of the effect on the molecular level. Then,

the correlation describing the heat transfer based on the simulation data is presented

and it is shown how that can be applied in also more complex heat transfer problems.

Finally, conclusions are drawn.

5.2 Molecular Model

All molecular interactions were modeled using the LJTS potential, which is based on

the Lennard-Jones (LJ) potential:

uLJTS(rij) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

uLJ(rij) − uLJ(rc) rij < rc

0 rij ≥ rc

(18a)

uLJ(rij) = 4ε

⎡⎢⎢⎢⎢⎣(
σ

rij

)12

− ( σ

rij

)6⎤⎥⎥⎥⎥⎦ , (18b)

where rij is the intermolecular distance between two particles i and j, σ is the size

parameter, and ε is the energy parameter. The truncation radius is rc = 2.5σ for all

molecular interactions and in all simulations of this work.

All size parameters are the same: σff = σss = σsf, where “ff” stands for interactions

in the fluid f, “ss” stands for interactions in the solid s, and “sf” stands for solid-fluid

interactions. The influence of the attractive solid-solid and solid-fluid interactions as well

as the mass of the solid particles on the interfacial heat transfer resistance was studied

systematically by varying the corresponding parameters εss, εsf, and Ms, respectively.

All physical quantities are reported using classical reduced Lennard-Jones units, i.e. all

quantities are reported with respect to the parameters of the LJTS potential of the

fluid: the energy parameter εff, the size parameter σff, and the mass Mf. The reduced

units system obtained in this way should be distinguished from dimensionless quantities

introduced to lower the number of independent parameters for describing a physical
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problem, such as the Nusselt number Nu or the Kapitza interface number Ki. The

latter can be formulated either directly with physical SI unit quantities or, equivalently,

with the corresponding reduced Lennard-Jones unit quantities.

5.3 Methods

5.3.1 Simulation Details

The simulation setup consists of a hot and a cold wall, which confine a stagnant fluid.

A snapshot of the simulation setup is depicted in Fig. 36.

Figure 36: Snapshot of the simulation setup. The cyan particles represent the fluid.
The remaining particles (gray, red, blue, and yellow) belong to the solid
walls, including two fixed layers at the boundaries in z-direction (gray par-
ticles) and two thermostatted regions next to those with Thot (red particles)
and Tcold (blue particles). The thermostats induce a temperature gradient
in the channel. The yellow particles of the walls are unconstrained. The
box boundaries are depicted as black lines. The dimensions of the sim-
ulation box are given. The length H is half the channel width and was
systematically varied in this work.

The solid walls had an FCC crystal structure and the (001) surface at the solid-fluid

interface. The coordinate system used is depicted in Fig. 36: z = 0 indicates the initial

position of the first solid layer of the hot wall that is in direct contact with the fluid.

The dimensions of the box in the x- and y-direction were ∆x = ∆y = 21.8 σff . The

thickness of each solid wall in the z-direction was 14 σff . The fluid channel width was

2 H, where H is the distance from z = 0 to the center of the channel. The wall position

z = 0 was defined as the average z-position of all particles of the first layer (directly in

contact with the fluid particles) of the left wall (cf. Fig. 36). The channel width was

systematically varied in this work.

Periodic boundary conditions were applied in the x- and y-directions. The two layers

of the hot and the cold walls next to the fixed layers were thermostatted (red and blue
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particles in Fig. 36). The temperature was high in one wall (Thot) and low in the other

(Tcold). Thus, a heat flux in positive z-direction was induced and measured as described

below. Due to the geometry of the setup, the temperature of the fluid in the center of

the channel is approximately Tf = (Thot + Tcold)/2.

All simulations were carried out using the LAMMPS package [509]. The simulation

time step was 0.002 σff(Mf/εff)1/2. Each simulation run started by 1 million time steps

of equilibration in the NV T ensemble. During that equilibration, a Nosé-Hoover ther-

mostat was applied to the entire system for thermostatization to the temperature Tf.

Subsequently, non-equilibrium conditions were prescribed for 4 million time steps, in

which a Langevin thermostat was used to control the temperature in the thermostatted

zones of the hot wall and the cold wall. The temperature of the walls were Thot = Tf+∆Tw

and Tcold = Tf −∆Tw, where ∆Tw is a system parameter that was systematically var-

ied in the study. Within that non-equilibrium simulation phase, a steady state with a

stationary temperature profile was built up during the first 1 million time steps. The

following 3 million time steps were used for the sampling of the results. No drift of the

total energy appeared in the sampling phase of the simulations.

The simulation volume was uniformly discretized in z-direction for the sampling of local

properties. The local density and temperature were determined in bins of the thickness

∆zρ = 0.1 σff and ∆zT = 0.5 σff , respectively. An exemplaric temperature profile and

a fluid density profile obtained from the simulations from the hot wall to the middle

of the channel is shown in Fig. 37. There, the layering of the fluid at the wall, i.e.

the adsorption layer, can be seen. The adsorption in solid-fluid dispersive systems has

been extensively studied in the literature [261, 501, 502, 510–514]. At the depicted

state point (cf. Fig. 37), multiple layers of particles are observed in the adsorption film,

which reaches approximately z = 8 σff . Fluid particles at larger distances from the wall,

i.e. z > 8 σff are considered as ‘bulk fluid’ in the following. Therefore, the smallest

considered channel width in this chapter was chosen as H = 10 σff such that there was

a small bulk region present in all cases. The uncertainty of the sampled Kapitza length

LK was calculated by block averaging. For this purpose, the sampling part of the non-

equilibrium simulation phase was divided into ten blocks, each of a length of 300,000

time steps and the Kapitza length was calculated for each block. The given uncertainties

are the standard deviation of the ten values. The results reported for LK are the mean

values of the ten block results.



100 5 Molecular Simulations of Interfacial Heat Transfer

Figure 37: Exemplaric simulation result for (a) a temperature profile in the simulation
box and (b) a density profile of the fluid for the hot side of the simulation
box. The wall is indicated by the gray shaded area. The black solid line
in (a) is a linear fit of the fluid temperature profile. The horizontal dashed
lines in (a) indicate both the temperature of the hot wall Thot and the fluid
temperature Tf (i.e. the temperature in the middle of the channel). The
temperature difference at the interface ∆Ti and the temperature difference
between the hot wall and the fluid in the middle of the channel ∆Tw are
also depicted.

5.3.2 Theoretical Background

From the temperature profiles sampled during the simulations, the temperature jump

at the interface ∆Ti and the Kapitza length LK were determined as indicated in Fig. 37

at both the hot and the cold side. Furthermore, the heat flux q was determined from

q =
1

As

dE

dt
, (19)

where dE/dt is the slope of the cumulative kinetic energy added to the hot wall and

removed from the cold wall with respect to the time (see Appendix D for details) deter-

mined by linear regression and As is the cross-sectional area of the solid-fluid interface,

which was computed as the cross-section of the simulation box As =∆x ∆y.

Applying Fourier ’s law of heat conduction to the bulk fluid region, here to the hot

side of the simulation box (cf. Fig. 37, analogously applicable to the cold side of the

simulation box), yields
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q

λ
= −

dT

dz
=

∆Ti

LK

=
Thot − Tf

H +LK

, (20)

where dT/dz indicates the slope of the temperature profile determined from a linear fit

to the sampled simulation results in the bulk fluid region (cf. Fig. 37). In Eq. (20),

λ is the thermal conductivity of the bulk fluid, which is assumed to be constant in the

channel. The numbers for λ were determined by the slope of the temperature of the

fluid in the channel in the stationary phase and the heat transferred from the hot to the

cold wall (cf. Eq. (20)). The values obtained were compared to an empirical correlation

from Ref. [113]. Good agreement (AAD of 2.9%) of the simulated values and the

empirical correlation from Lautenschlaeger and Hasse [113] in the range of validity of

the correlation (ρf > 0.2 σ−3
ff ) was found. The uncertainty of the empirical correlation

was estimated to be 2.4% [113]. The temperature jump at the interface is indicated as

∆Ti. The Kapitza length LK can be determined either from Eq. (21a) or from Eq. (21b):

LK =
λ

q
∆Ti , (21a)

LK =
λ

q
(Thot − Tf) −H , (21b)

which are equivalent as long as the temperature profile in the fluid is linear, which was

well satisfied by all simulation results from this work. As the statistical uncertainties

were found to be smaller when LK was determined using Eq. (21b), this route was

applied in the present work.

5.4 Influencing Factors and Overview of the

Simulations

The following influencing factors on the heat transfer at the microscale were considered

in this work:

• the dispersion energy εsf describing the solid-fluid interactions,

• the dispersion energy εss describing the solid-solid interactions,

• the mass of the solid particles Ms,

• the temperature difference between the mean fluid temperature and the walls ∆Tw,

• the mean fluid temperature Tf,
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• the fluid density ρf, and

• the channel width H.

The interaction parameters εsf, εff, and εss are not independent due to the reduced units

system, which is why εff was not varied here.

Table 23: Overview of the simulations of this work and results obtained for the heat
flux q and the Kapitza length LK. The variables of the settings are described
in the text. Simulation 1 is the default simulation. Plain entries of settings
have the same value as the default simulation.

Setting Results

Sim.
Tf

εffk−1
B

∆Tw

εffk−1
B

ρf

σ−3
ff

εsf

εff

εss

εff

Ms

Mf

H

σff

q

εffσ−3
ff (Mf/εff)−1/2

LK

σff

1 0.80 0.10 0.80 1.00 30 2.0 10 0.01934 21.665

2 0.85 0.80 0.02011 19.638

3 0.90 0.81 0.02118 20.075

4 0.95 0.80 0.02202 17.965

5 1.00 0.80 0.02278 17.856

6 1.05 0.81 0.02436 15.850

7 1.10 0.81 0.02512 15.216

8 1.20 0.81 0.02613 13.798

9 1.30 0.80 0.02792 13.032

10 0.81 0.25 0.00554 105.270

11 0.81 0.50 0.01000 51.330

12 0.80 0.75 0.01441 31.112

13 0.81 1.25 0.02299 16.434

14 0.80 1.50 0.02554 12.891

15 0.80 1.75 0.02773 11.358

16 0.80 2.00 0.03005 9.425

17 0.80 2.25 0.03111 8.169

18 0.80 2.50 0.03307 7.184

19 0.81 10 0.03831 5.259

20 0.80 20 0.02645 12.392

21 0.80 40 0.01401 32.836

Continued on next page
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Sim.
Tf

εffk−1
B

∆Tw

εffk−1
B

ρf

σ−3
ff

εsf

εff

εss

εff

Ms

Mf

H

σff

q

εffσ−3
ff (Mf/εff)−1/2

LK

σff

22 0.81 50 0.01052 50.686

23 0.81 60 0.00833 61.388

24 0.80 70 0.00644 84.316

25 0.80 80 0.00521 88.298

26 0.80 90 0.00394 134.559

27 0.80 100 0.00359 174.420

28 0.81 15 0.01636 22.441

29 0.80 20 0.01476 22.373

30 0.80 25 0.01279 21.725

31 0.80 50 0.00853 21.691

32 0.80 75 0.00642 21.944

33 1.00 0.80 15 0.01984 18.844

34 1.00 0.80 20 0.01713 17.402

35 1.00 0.80 25 0.01489 17.186

36 1.00 0.80 50 0.00967 17.944

37 1.00 0.80 75 0.00674 19.239

38 1.30 0.80 15 0.02401 13.340

39 1.30 0.80 20 0.01985 13.244

40 1.30 0.80 25 0.01786 13.424

41 1.30 0.80 50 0.01049 14.644

42 1.30 0.80 75 0.00773 13.765

43 0.81 0.25 15 0.00526 107.881

44 0.81 0.25 20 0.00514 107.452

45 0.81 0.25 25 0.00476 110.885

46 0.80 0.25 50 0.00403 101.094

47 0.80 0.25 75 0.00338 107.178

48 0.80 2.50 15 0.02609 7.318

49 0.80 2.50 20 0.02134 7.695

50 0.80 2.50 25 0.01843 7.620

Continued on next page
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Sim.
Tf

εffk−1
B

∆Tw

εffk−1
B

ρf

σ−3
ff

εsf

εff

εss

εff

Ms

Mf

H

σff

q

εffσ−3
ff (Mf/εff)−1/2

LK

σff

51 0.80 2.50 50 0.01062 8.450

52 0.79 0.80 2.50 75 0.00722 7.892

53 0.79 0.80 10 15 0.02922 5.388

54 0.79 0.80 10 20 0.02328 5.268

55 0.79 0.80 10 25 0.01965 5.433

56 0.79 0.80 10 50 0.01094 6.130

57 0.79 0.80 10 75 0.00748 5.520

58 0.80 100 15 0.00343 173.528

59 0.80 100 20 0.00321 158.409

60 0.80 100 25 0.00325 152.951

61 0.80 100 50 0.00300 163.039

62 0.80 100 75 0.00256 174.058

63 0.85 0.04 0.80 0.00836 20.803

64 0.85 0.06 0.80 0.01204 20.403

65 0.85 0.08 0.80 0.01628 20.458

66 0.85 0.12 0.80 0.02360 20.548

67 0.85 0.14 0.80 0.02841 20.323

68 0.85 0.16 0.80 0.03162 20.795

69 1.20 0.04 0.80 0.01053 15.354

70 1.20 0.06 0.81 0.01598 13.550

71 1.20 0.08 0.81 0.02077 15.157

72 1.20 0.12 0.81 0.03153 14.754

73 1.20 0.14 0.81 0.03685 13.855

74 1.20 0.16 0.81 0.04235 14.683

75 0.81 0.5 0.00683 77.124

76 0.81 1.0 0.01264 37.883

77 0.81 1.5 0.01677 28.314

78 0.80 2.5 0.02073 18.497

79 0.81 5.0 0.02346 15.482

Continued on next page
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Sim.
Tf

εffk−1
B

∆Tw

εffk−1
B

ρf

σ−3
ff

εsf

εff

εss

εff

Ms

Mf

H

σff

q

εffσ−3
ff (Mf/εff)−1/2

LK

σff

80 0.80 7.5 0.02364 14.437

81 0.80 10 0.02274 15.447

82 0.80 15 0.02153 17.841

83 0.81 25 0.01828 22.723

84 0.81 50 0.01157 42.811

85 0.80 75 0.00819 62.876

86 0.81 100 0.00643 87.765

87 0.69 0.01468 16.606

88 0.71 0.01525 18.085

89 0.73 0.01596 18.743

90 0.75 0.01680 18.747

91 0.77 0.01705 20.989

92 0.79 0.01835 19.936

93 0.82 0.02011 21.181

94 0.85 0.02109 22.837

95 0.86 0.02166 21.789

96 0.88 0.02288 23.678

97 1.30 0.08 0.00345 3.855

98 1.30 0.12 0.00505 3.531

99 1.30 0.16 0.00656 4.276

100 1.30 0.21 0.00761 4.401

101 1.30 0.27 0.00893 4.450

102 1.30 0.33 0.00939 5.690

103 1.30 0.39 0.01089 6.625

104 1.30 0.45 0.01193 7.746

105 1.30 0.51 0.01329 8.573

106 1.30 0.56 0.01473 9.514

107 1.30 0.61 0.01647 10.392

108 1.30 0.65 0.01899 11.872

Continued on next page
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Sim.
Tf

εffk−1
B

∆Tw

εffk−1
B

ρf

σ−3
ff

εsf

εff

εss

εff

Ms

Mf

H

σff

q

εffσ−3
ff (Mf/εff)−1/2

LK

σff

109 1.30 0.71 0.02114 12.961

110 1.30 0.76 0.02387 13.124

111 1.30 0.85 0.03274 14.000

112 1.30 0.90 0.03632 14.709

113 1.30 0.95 0.04062 13.998

Table 23 gives an overview of the simulations carried out in this chapter and also reports

the simulation results for the sampled heat flux q and the Kapitza length LK. In total,

113 simulations were carried out. Simulation 1 (see first column in Table 23) is defined

as the default simulation. The parameters of the default simulation were chosen such

that they are in the middle of the studied parametric ranges and similar to cases that

were studied in the literature [113, 471, 473, 477–479, 502, 503, 507, 510, 515]. The

temperature of the fluid Tf, the solid-fluid interaction energy εsf, and the solid-solid

interaction energy εss were varied separately in the ranges 0.8 ≤ Tf / εffk−1
B ≤ 1.3, 0.25 ≤

εsf / εff ≤ 2.5, and 10 ≤ εss / εff ≤ 100, while the other parameters were kept constant, i.e.

their values are identical to those from the default simulation. Such single parametric

variations were carried out in simulations 2 – 27. In simulations 28 – 62, the effect of the

channel width H was studied with either the maximum or the minimum value of each

of the three influencing factors εsf, εss, and Tf. The channel width H was varied between

10 and 75. In simulations 1 – 62, the temperature difference between the walls and the

fluid temperature in the middle of the channel was always ∆Tw = 0.1 εffk−1
B . In order to

study the influence of the temperature difference ∆Tw, simulations with different wall

temperatures were carried out for the two fluid temperatures 0.85 εffk−1
B and 1.20 εffk−1

B

(cf. Table 23, simulations 63 – 74) to generate ∆Tw in the range of 0.04 εff and 0.16 εff .

The mass of the solid particles Ms was varied in simulations 75 – 86 in the range

0.5 ≤Ms /Mf ≤ 100, while the other simulation parameters were set to the default values

of simulation 1. In the remaining simulations 87 – 113, the fluid density was varied along

the two isotherms Tf = 0.8 εffk−1
B and 1.3 εffk−1

B . The critical temperature of the LJTS

fluid is at approximately Tc = 1.1 εffk−1
B [63]. Hence, the isotherm Tf = 0.8 εffk−1

B is in the

subcritical liquid region, whereas the isotherm Tf = 1.3 εffk−1
B is in the supercritical region.

For the supercritical isotherm (Tf = 1.3 εffk−1
B ), simulations with fluid bulk densities in

the range ρf = 0.08 σ−3
ff and 0.96 σ−3

ff were carried out. For the subcritical isotherm

(Tf = 0.8 εffk−1
B ), the density was varied in the liquid state region (0.69 ≤ ρf /σ−3

ff ≤ 0.89).

Simulations with lower density have also been carried out in preliminary tests, but

showed a phase separation, i.e. vapor bubbles in the metastable vapor-liquid region.
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The resulting state points sampled are shown in Fig. 38. Only simulation results with

a homogeneous fluid bulk phase are reported here.

Figure 38: Representation of the studied state points of the fluid. The filled black
circles represent the simulated state points (●). The binodal and the spin-
odal for the vapor-liquid equilibrium of the LJTS fluid were computed from
an equation of state [501]. The other phase boundaries (the sublimation,
melting, and freezing line) were adopted from LJ potential data [238]. The
critical point is marked by a star (⋆). The dotted line indicates the triple
point temperature [63].

5.5 Results and Discussion

5.5.1 Empirical Correlation for the Kapitza Length LK

The results obtained from varying ∆Tw and H show that these two simulation param-

eters have no significant influence on the Kapitza length LK. More information is given

in Appendix D. Hence, the Kapitza length LK is discussed in the following as a function

of five variables LK = LK(εsf, εss, Ms, Tf, ρf). The results presented in Table 23 were used

to develop a simple empirical correlation, which describes the Kapitza length LK as

function of the solid-fluid interaction energy εsf, the solid-solid interaction energy εss,

the mass of the solid particles Ms, the fluid temperature Tf, and the fluid density ρf.

The mathematical form of the empirical correlation is

LK

σff

= α + β ( Tf

εffk−1
B

εsf

εff

)γ (εss

εff

)δ ⎛⎜⎝
ε (Ms

Mf
)2 + ζ

Ms

Mf

⎞⎟⎠(
ρf

σ−3
ff

)η
Tf

εff k−1
B

+θ

. (22)

The numeric values of the parameters α, β, γ, δ, ε, ζ, η, and θ are given in Table 24.

The correlation yields an absolute average deviation (AAD) of 5.1% to the data used
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for the fit.

Eq. (22) in connection with Table 24 reveals that the Kapitza length LK increases with

decreasing fluid temperature Tf and decreasing solid-fluid interaction εsf. In contrast,

increasing the solid-solid interaction energy εss and increasing the density of the fluid ρf

results in an increase of the Kapitza length LK. A more complex behaviour is found for

the dependency on Ms: The Kapitza length passes through a minimum in the studied

range Ms. In the following sections, the individual influencing factors are discussed in

detail.

Table 24: Numeric values of the empirical correlation model for the Kapitza length (cf.
Eq. (22)).

Parameter Value

α 2.447

β 0.324

γ -1.238

δ 1.781

ε 0.00635

ζ 0.267

η -0.621

θ 2.057

Fig. 39 shows the performance of the empirical model (cf. Eq. (22)) in a parity plot

in comparison to the simulation results. For most data points, the model describes the

simulation results with a relative deviation of 10% or less. Especially for moderate to

high values of the Kapitza length (10 < LK,sim /σff < 100) where many data points are

available, the correlation provides a good fit to the simulation results. For smaller values

of the Kapitza length, there are more outliers. Nevertheless, most data points in this

region have a relative deviation smaller than 10%.
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Figure 39: Parity plot of the Kapitza length calculated from the empirical correlation
(cf. Eq. (22)) LK,cor plotted over the simulation results LK,sim. Both axis
have a log scale. Symbols indicate the simulation results. The black solid
line represents the case LK,cor = LK,sim. The dotted lines represent deviations
±10%.

5.5.2 Influence of Solid-Fluid Interaction Energy

The solid-fluid interaction energy is known to have a strong influence on the microscopic

heat transfer at solid-fluid interfaces [264, 493, 496, 502]. Fig. 40 shows the results ob-

tained in present chapter for the Kapitza length as a function of the solid-fluid interaction

energy εsf in the simulations 1 and 10 – 18 (cf. Table 23). As the solid-fluid interaction

energy εsf increases, the Kapitza length LK decreases, i.e. the transport resistance at

the interface decreases. Hence, a strong solid-fluid interaction and thereby a strong

coupling enables a high heat transfer across the solid-fluid interface, as expected. This

is due to a stronger attractive coupling of the solid and fluid particles at the interface,

which enables a better transfer of kinetic energy across the interface. For small values

of the solid-fluid interaction energy, the Kapitza length exhibits large values, which is

due to the repulsive interactions dominating the interactions at the interface, which acts

as a hindrance for heat transfer. As the attractive interactions at the interface become

important (with increasing εsf), the dependence of the Kapitza length on εsf becomes

weaker and the curve flattens (cf. Fig. 40). Similar observations for the dependency

on the solid-fluid interaction energy were also observed for tribological properties of the

same LJTS model system studied in scratching simulations [264], i.e. a strong influence

of the solid-fluid interaction energy for εsf/εff < 1 and only a moderate influence for

εsf/εff > 1.

Furthermore, the influence of εsf on the adsorption layer, which describes the layering

structure at the interface, was investigated. As shown in Ref. [502], the adsorption layer
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may have an important influence on interfacial processes. The results for the adsorption

layer are presented and discussed in Appendix D.

Figure 40: Kapitza length LK as a function of solid-fluid interaction energy εsf. Results
from simulations 1 and 10 – 18 (symbols) (cf. Table 23). The solid line
indicates the empirical correlation (cf. Eq. (22)). For all shown data points,
the simulation parameters εss, Ms, Tf, ∆Tw, ρf, and H were constant (cf.
Table 23).

5.5.3 Influence of Solid-Solid Interaction Energy

Fig. 41 shows the Kapitza length LK as a function of the solid-solid interaction energy εss

as obtained from simulations 1 and 19 – 27 (cf. Table 23). Within the studied range, the

Kapitza length LK increases with increasing εss. This is in accordance with the acoustic

mismatch model (AMM), which predicts a deterioration of the energy transport between

a solid and a fluid phase as a result of a mismatch between the solid and fluid interaction

energies [470, 516]. Moreover, according to the AMM, a linear relation between the misfit

and the heat transfer resistance is expected. In contrast, the simulation results depicted

in Fig. 41 show a non-linear relation – especially for small εss values. This behaviour is

in line with findings from studies, which showed partial failure of AMM for predicting

the interfacial thermal resistance [473, 477].

For large values of εss, the heat transfer between the solid and the fluid basically breaks

down; the AMM predicts: LK →∞ for εss →∞[470, 517]. In principle, one could expect

that for εss/εff → 1 the Kapitza length LK → 0. However, this would require that also all

other differences between the solid and the liquid vanish, which is not the case in the

present study as the mass of the solid particles was Ms/Mf = 2 in simulations 19 – 27.

The influence of Ms on the results is the subject of the next section.
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Figure 41: Kapitza length LK as a function of the solid-solid interaction energy εss.
Results from simulations 1 and 19 – 27 (symbols) (cf. Table 23). The solid
line indicates the empirical correlation (cf. Eq. (22)). For all shown data
points, the simulation parameters εsf, Ms, Tf, ∆Tw, ρf, and H were constant
(cf. Table 23).

5.5.4 Influence of Mass of Solid Particles

The influence of the mass of the solid particles Ms was studied by simulations 75 – 86.

The range 0.5 ≤ Ms/Mf ≤ 100 covers also extreme mass ratios to investigate the limits

of the Kapitza length. For Ms/Mf < 0.5 and Ms/Mf > 100, the heat flux is close to zero,

which leads to large statistical uncertainties for the sampled Kapitza length. Therefore,

only simulations in the range 0.5 ≤Ms/Mf ≤ 100 were included in the study. In Fig. 42,

the results for the variation of Ms are shown.

The Kapitza length LK exhibits a minimum at approximately Ms/Mf = 7.5. For larger

masses of the solid particles, the Kapitza length increases, which is covered well by

the correlation (cf. Eq. (22)). According to AMM, a linear dependency of LK on the

elastic properties of the solid [470], i.e. Ms, is expected, which is confirmed by the

simulations from this work only for Ms/Mf > 15. At about Ms/Mf = 7, the Kapitza

length has a minimum of about LK = 13 σff . For smaller values, the Kapitza length

LK increases with decreasing mass of the solid particles. This behaviour is a result of

the decreasing momentum of the solid particles and, therefore, the decreasing energy

being transferred between solid and fluid particles when they collide. The correlation

(cf. Eq. (22)) describes the complex dependence of the Kapitza length on the mass of

the solid particles overall well.
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Figure 42: Kapitza length LK as a function of the mass of the fluid particles Ms.
Results from simulations 1 and 75 – 86 (symbols) (cf. Table 23). The solid
line indicates the empirical correlation (cf. Eq. (22)). For all shown data
points, the simulation parameters εsf, εss, Tf, ∆Tw, ρf, and H were constant
(cf. Table 23).

5.5.5 Influence of Fluid Temperature

Fig. 43 shows the results for the Kapitza length LK as a function of the mean fluid

temperature Tf as obtained from simulations 1 – 9. In the studied temperature range,

LK decreases with increasing Tf. This qualitative behaviour of the Kapitza resistance was

also reported by previous studies[478, 482, 493, 497]. A higher mean fluid temperature

Tf leads to a higher temperature of both the fluid and the solid particles in the vicinity

of the interface. The effect of the fluid temperature on the structuring of the adsorption

layer is shown and discussed in detail in Appendix D. In general, the structuring of

the adsorption layer can have an influence on the local transport properties of fluids

[518, 519]. However, it was found that the effective transport properties averaged across

the entire adsorption layer exhibit only minor deviations from the corresponding bulk

phase values [502] for systems as the ones studied here.

With increasing temperature, the mean undirected kinetic energy of the particles and

thus their mobility increases, which yields higher collision rates in both, bulk phases

and at the interface, which decreases interfacial heat transfer resistance and thereby the

Kapitza length. The Fluid structure at the interface (see Appendix D) becomes less

prominent with increasing temperature, which counteracts the aforementioned effect.

As the interfacial structuring of the fluid decreases with increasing temperature, both

phases become more unlike and fewer fluid particles are permanently coupled to solid-

phase particles at the interface. This hinders the heat transfer through the interface

and is also in accordance with AMM[470]. In the simulation results from this work, the
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temperature effect on the overall particle mobility dominates the adverse effect from the

adsorption structure. Yet, even for the highest temperature (which is slightly above the

critical point of the LJTS fluid [500]) studied here, the Kapitza length LK remains fairly

high.

Figure 43: Kapitza length LK as a function of the fluid temperature Tf. Results from
simulations 1 – 9 (symbols) (cf. Table 23). The solid line indicates the em-
pirical correlation (cf. Eq. (22)). For all shown data points, the simulation
parameters εsf, εss, Ms, ∆Tw, ρf, and H were constant (cf. Table 23).

5.5.6 Influence of Fluid Density

The influence of the fluid density ρf was studied in the liquid phase region (Tf = 0.8 εffk−1
B )

and at supercritical conditions (Tf = 1.3 εffk−1
B , cf. Fig. 38). The corresponding simula-

tion results are shown in Fig. 44. For both isotherms, the Kapitza length LK increases

monotonically with increasing fluid density. Such behavior was already reported by

Amani et al. [493] for liquid phase state points. The results for Tf = 1.3 εffk−1
B show that

this also holds at supercritical conditions and for low densities of the fluid. Yet, the

density dependence is found to be more prominent at low temperatures, i.e. the slope

of LK(ρf) is larger at low temperatures. Moreover, it can be seen that the influence of

temperature and density on LK plays an important role. The developed empirical corre-

lation describes the behavior well for both, the sub- and the supercritical temperature.

An increasing Kapitza length with increasing fluid density may be considered counter-

intuitive: one might expect an improvement of the heat transfer as the particles bump

into each other more often at higher densities. This would lead to larger transfer of mo-

mentum between the solid and the fluid particles and, therefore, decrease the interfacial

heat resistance. However, this mechanism is counteracted by an increasing structuring

in adsorption layers with increasing density and an increasing dominance of repulsive
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interactions. The adsorption layers are shown in Appendix D for ten state points with

0.08 ≤ ρf/σ−3
ff ≤ 0.96 and Tf = 1.3 εffk−1

B . With increasing density, the number of ad-

sorption layers increases, while the individual layers become thinner at the same time.

This leads to a decrease of the mobility of the particles in the vicinity of the interface,

especially perpendicular to the surface, and thereby also to an increase of the interfacial

heat resistance.

Figure 44: Kapitza length LK as a function of the fluid density ρf for the temperatures
Tf = 0.8 εffk−1

B (red) and Tf = 1.3 εffk−1
B (blue). Results from simulations 1

and 87 – 113 (symbols), (cf. Table 23). The solid lines indicate the empir-
ical correlation (cf. Eq. (22)). For all shown data points, the simulation
parameters εsf, εss, Ms, ∆Tw and H were constant (cf. Table 23).

5.5.7 Introducing the Kapitza Interface Number Ki

In the heat transfer simulation scenario studied here (cf. Fig. 36), heat conduction in

the fluid plays an important role. Even in the case of total absence of the Kapitza effect

(i.e. for LK = 0), there is the heat transfer resistance due to the heat conduction in the

fluid between the two planar walls, which is simply

Rcond =
H

λ
, (23)

where H is the channel width and λ is the thermal conductivity of the fluid. Here, we

assume that the mean thermal conductivity in the adsorption layer is the same as in the

bulk fluid, which is a reasonable approximation, as the temperature profiles that were

observed in the liquid were basically linear in all cases studied in the present work. For

a systematic investigation of the thermal conductivity of the LJTS fluid near walls, see

Ref. [502].
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It is, therefore, interesting to relate the Kapitza heat transfer resistance RK, which is

simply

RK =
LK

λ
(24)

to Rcond. The quotient RK/Rcond is a dimensionless number, which is called Kapitza

interface number Ki. It follows from Eq. (23) and (24) that

Ki =
RK

Rcond

=
LK

H
, (25)

which gives a descriptive geometric interpretation of Ki as the ratio of the Kapitza

length LK and the characteristic macroscopic length of the problem, which is H here.

The total thermal resistance Rtotal in a system without convection, as it was considered

in this work, is defined as the sum of the conductive thermal resistance Rcond and the

Kapitza resistance RK

Rtotal = RK +Rcond =
H

λ
(Ki + 1) . (26)

Here, the conductive thermal resistance of the walls is neglected and a constant wall

temperature is assumed (cf. Fig. 37). For the LJTS system studied here, this is an

excellent assumption due to the much higher thermal conductivity in the solid compared

to the fluid [113, 520].

The dimensionless number Ki characterizes the influence of the Kapitza interface re-

sistance on the total thermal resistance. Due to its definition (see Eq. (25)), Ki goes

to zero for large channel widths H, and the influence of the Kapitza resistance on the

total heat transfer resistance Rtot vanishes, see Eq. (26). Fig. 45 shows the dependency

of the results for the Ki number obtained from the simulations of the present work on

the channel width H. As expected, Ki decreases inversely proportional to H, which

indicates that the numbers for LK are independent of the channel width H, which is

also shown in Appendix D and is in line with findings from the literature [486, 487].

As can be seen in Fig. 45, the empirical correlation developed in this chapter agrees

well with the simulation results. Only for simulations 19 and 53 – 57 (◁) with weak

solid-solid interaction energies and, therefore, small values for the Kapitza length LK

(cf. section 5.5.3), the correlation shows some deviations from the simulation results as

already discussed in section 5.5.1. Fig. 45 illustrates that the dimensionless number Ki

is particularly high for weak solid-fluid interaction energies εsf (△) and large solid-solid

interaction energies εss (▷). For both simulation series (△ and ▷), Ki > 1 holds for

all conducted simulations. In Fig. 45, the results from the correlation are deliberately

shown for a very large range of H covering values up to 1000, which is much higher than
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the maximum channel width studied here, which was about Hmax = 75 σff . Values of

Ki > 1 indicate that the Kapitza resistance RK is larger than the resistance due to heat

conductivity Rcond, but even for Ki = 0.1 the Kapitza resistance RK is 10% of Rcond, and

hence, not negligible. Fig. 45 illustrates that this is true in many cases even for channel

widths as large as 2000 molecular diameters (H = 1000 σff).

Figure 45: Kapitza interface number Ki as function of the channel width H as log-log
plot. Symbols indicate simulation results; the numbers given in the legend
correspond to the simulation numbers given in Table 23. The solid lines
represent the values for Ki obtained from the empirical correlation for LK

(Eq. (22) and Eq. (25)).

5.5.8 Describing Heat Transfer with Convection and Scale-up

In general, the application of the correlation given in Eq. (22) on real substance systems

requires the estimation of the parameters, which describe the molecular interactions

and the size of the molecules, namely εff, εsf, εss, and σff. These parameters can be

estimated by different methods. For the parameters of the fluid εff and σff, there are

many parameter sets given in the literature, mainly for small, spherical molecules [63,

107]. Estimations for the solid-solid interaction energy εss are also available for different

materials, e.g. for some metals [521]. The solid-fluid interaction energy εsf can be derived

from the wetting behavior of the material pairing [260]. With these four parameters

given, all quantities involved in a given problem (e.g. T or H) can be reduced and the

correlation in conjunction with Eq. (25) can be used to estimate Ki. Merabia et al.

[522] showed that such a mapping of results from a Lennard-Jones model system to real

systems of nanoparticles based on a corresponding states principle yields good results.
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In the following, it is briefly discussed, how the results for Ki that were obtained in this

work can be applied for describing heat transfer with convection. Also the scale-up from

nanoscale channels to macroscale channels is discussed. As an example, the following

situation is considered: a fluid flows between two parallel planar walls of the temperature

Tw, which differs from the fluid temperature Tf, which is defined here as the temperature

of the fluid in the middle of the channel for the sake of simplicity. The characteristic

length L of such a scenario is usually defined in terms of the channel width, i.e. L = 2H

[523, 524]. The Kapitza interface number Ki (cf. Eq. (25)) accounts for the Kapitza

resistance in the absence of convection.

The heat transfer from a solid surface with the temperature Tw to a bulk fluid with the

temperature Tf is described by

q =
Tw − Tf

Rtotal

, (27)

where Rtotal is the total thermal resistance, which can be written as

Rtotal = RK +Rconv . (28)

The term Rconv includes the convective and the conductive contribution to the thermal

resistance such that Eq. (26) is extended to systems with convection. The summation

of the resistances in Eq. (28) is adapted from Refs. [525–527]. Usually, the transport

resistance Rconv is calculated in engineering from the Nusselt number Nu:

Rconv =
1

αconv

=
L

Nu λ
=

2 H

Nu λ
, (29)

where αconv is the convective heat transfer coefficient. From Eqs. (25), (28), and (29),

it follows that

Rtotal =
H

λ
(Ki +

2

Nu
) . (30)

Eq. (30) accounts for the interfacial resistance, the conductive, and convective heat

transfer effects. Heat conduction in the flowing bulk fluid is incorporated in the Nusselt

number Nu. Different Nusselt number correlations have been proposed in the literature

[528], which may yield different limits for zero flow velocity. In many cases, the limit is

zero, i.e. heat conduction is neglected. To be consistent with the discussion above, the

limit of the Nusselt number for zero flow velocity should be Nu = 2 (cf. Eq. (26) and

30).
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Eq. (30) also enables discussing the influence of the scale of the problem on the heat

transfer. The scale is determined by the geometric parameter H. As H increases, Ki

approaches 0 and the right side of Eq. (30) is dominated by Nu. On the other side, for

small H, Ki≫ 1 and there is a significant contribution of the term Ki to the total heat

transfer resistance. Fig. 45 shows that, even for a simple fluid as studied in this work,

the contribution from Ki may play a role up to H = 1000 σff. For a fairly small organic

molecule with σff = 0.5 nm this corresponds to H = 0.5 µm. This is only a ballpark

estimate. The correlation presented in Eq. (22) enables more accurate considerations

for specific situations.

5.6 Conclusions

In this chapter, the heat transfer across a solid-fluid interface was studied in a model

system using molecular dynamics simulations. In the simulation scenario, a stagnant

fluid was confined between two planar fixed walls with different temperatures. The heat

transfer resistance between the two thermostatted walls can be split up in a formal way

into two contributions: firstly, a resistance that would be present if the entire channel

was filled with the stagnant bulk fluid, and secondly, a contribution that accounts for

the heat transfer resistance at the interfaces, which is known as the Kapitza resistance

and usually characterized by the Kapitza length.

A model system is studied, where both the fluid and the wall particles were described

with the Lennard-Jones truncated and shifted potential. The influence of different pa-

rameters on the heat transfer was studied systematically: the strength of the solid-fluid

interaction, the strength of the solid-solid interaction, the mass of the solid particles,

the fluid density, the fluid temperature, the temperature difference between solid and

fluid as well as the channel width. The obtained results for the dependencies of the

Kapitza length LK on these parameters were correlated by a simple analytical function.

The temperature of the wall and the channel width were found to have no significant

influence on the interfacial heat transfer resistance. For the fluid temperature Tf, an

increasing Tf yields a decreasing interfacial heat transfer resistance. Furthermore, a

strong mismatch between the solid-solid interaction and the fluid-fluid interaction en-

ergies leads to a high heat transfer resistance at the interface, while a strong solid-fluid

interaction decreases that resistance. These findings are in line with results reported

in the literature [472, 477, 478, 493, 498]. An increase of the fluid density leads to an

increase of the Kapitza length for both studied temperatures, the subcritical and the

supercritical isotherms. For liquid states, this behavior was also reported by Amani et

al. [493]. The mass of the solid particles has a more complex influence on the interfacial

heat transfer resistance: the Kapitza length exhibits a minimum as a function of the
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mass of the solid particles. The Kapitza length is found to be minimal for a reduced

mass of the solid particles of about Ms/Mf ≈ 7.5. For future work, it would be inter-

esting to analyze the different contributions to the heat flux, i.e. the kinetic and the

configurational contributions [210, 529], in the adsorption layer to elucidate different

mechanisms in detail.

Furthermore, the study yields information on the scale of the problem. The influence

of the interfacial thermal resistance and the bulk fluid thermal resistance of the heat

transfer can readily be estimated using the dimensionless number proposed in this chap-

ter. For large scales, the heat transfer is dominated by heat conduction and the Kapitza

resistance is negligible. But as the scale becomes smaller, the influence of the Kapitza

resistance increases. It can play a role in channels with widths corresponding to several

hundred diameters of the fluid molecules. The results of this work provide a simple yet

effective tool to estimate the relevance of the interfacial heat transfer resistance in a

given heat transfer problem.
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6 Measurements and Equation of

State Modeling of the Density of

1-Alcohols at High Pressures

6.1 Introduction

Linear primary alcohols with carbon backbone lengths between 6 and 10 are important

chemicals. For instance, they are utilized as alternative biofuels [530–535]. They ex-

hibit good combustion characteristics [530] and can be used as additives in biodiesel

[535, 536]. This is of particular interest as long alcohols can be produced from biomass

[531, 532]. Long chain 1-alcohols are also used as lubricant additives, e.g. in manufac-

turing processes [537–539]. Furthermore, they are important chemical intermediates and

frequently used as solvents (e.g. for extraction processes) in chemical industry [540–543].

The density (at given temperature and pressure) is a basic thermodynamic property

and data on the density and derived properties, such as the compressibility and the

thermal expansion coefficient, are needed in many engineering tasks [8, 544]. The ac-

curate description of the density is also an important requirement in the development

of equations of state (EOS)[545]. In many applications, also information on the density

at extreme conditions is needed. E.g., pressures up to 250 MPa are reached in injection

systems of combustion engines and pressures in lubricated contacts may exceed 1,000

MPa [2, 74, 353, 537, 546]. To be able to model such processes accurately, knowledge

on the density at such high pressures, where experiments are difficult, is required. As

experimental data of the density is often unavailable, especially at extreme conditions,

EOS are needed that enable robust predictions.

There are different methods to measure the density at elevated pressure [547–549].

Vibrating-tube densimeters are well-established for such measurements as they yield

precise results in a wide temperature and pressure range [549–551]. The density in

those devices is calculated from the period of the tube vibrations, which is the primarily

measured quantity. This requires, however, a suitable calibration with calibration fluids

of known density [552].
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For predictive modeling of thermodynamic properties, molecular-based EOS are an at-

tractive choice [22, 23, 108, 234]. Molecular-based EOS are usually formulated as funda-

mental equations describing the Helmholtz energy of the studied substance and explicitly

account for different types of molecular interactions and molecular architecture. Due

to their physical basis, they often yield reliable predictions for properties at conditions

that were not considered in the training of the model [324, 331, 336, 553, 554]. For

the modeling of substances with hydrogen bonding, molecular-based EOS using the

statistical association fluid theory (SAFT) [555, 556] are the state of the art. Several

molecular-based EOS models comprising SAFT have been proposed in the literature

[41–43, 557].

In this chapter, the density of 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol

was measured at temperatures between 298.15 K and 423.15 K and pressures up to

120 MPa with a vibrating-tube densimeter. The experimental results complement and

extend the range of existing literature data. Literature data were used to validate the

measurement results. The measurements were then used to model the density, the ther-

mal expansion coefficient, and the isothermal compressibility using four molecular-based

EOS, namely the PC-SAFT [40], the SAFT-VR Mie [41], the soft SAFT [558], and the

CPA EOS [43]. Therefore, new component-specific models were fitted to experimental

data (both from this work and from the literature), which enables a fair comparison.

6.2 Experimental Methods

6.2.1 Chemicals and Sample Preparation

The CAS registry numbers, suppliers, and purities of the chemicals used for sample

preparation are given in Table 25. All chemicals were used without further purification.

Toluene and ethanol were used as calibration fluids for the calibration.

6.2.2 Measurements

The measurements were conducted with a density-measuring cell (DMA HPM, Anton

Paar) in combination with an evaluation unit (mPDS 5, Anton Paar) for digital data

processing. A scheme of the experimental setup is shown in Fig. 46. The setup has two

parts: A hydraulic and a sample part, which are separated by a separator piston. The

pressure is induced by a hand spindle pump. The pressure in the sample part is mea-

sured by a digital pressure transducer from WIKA (S-20) with a standard uncertainty

of u(p) = 0.05 MPa (specified by the manufacturer). The pressure in the hydraulic part
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Table 25: Chemical specifications.

Substance CAS reg. no. Supplier Mole fraction puritya Lot number

toluene 108-88-3 Sigma-Aldrich 99.98 % MKCF6188

ethanol 64-17-5 Merck Supelco ≥ 99.9 % K52680280

1-hexanol 111-27-3 ThermoScientific 99.3 % 10238077

1-heptanol 111-70-6 ThermoScientific 99.8 % 10237915

1-octanol 111-87-5 Merck Supelco 99.5 % K54568191

1-nonanol 143-08-8 TCI 99.7 % AD6TI

1-decanol 112-30-1 Merck 99.8 % S7025863

a As specified by the supplier.
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Figure 46: Scheme of the experimental setup (grey: Hydraulic part, blue: Sample
part).
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is monitored by an analog pressure gauge. The temperature is measured by a built-in

temperature sensor (Pt1000 resistance thermometer from ABB AG) in the measuring

cell with a standard uncertainty of u(T ) = 0.1 K (specified by the manufacturer). All

components were chosen to withstand a pressure of at least 140 MPa. To avoid the

accidental buildup of higher pressure, safety valves were installed in both the hydraulic

and the sample parts (not shown in Fig. 46). For each substance (see Table 25), six

isotherms were studied T /K ∈ {298.15, 323.15, 348.15, 373.15, 398.15, 423.15} at 13 pres-

sures p /MPa ∈ {0.1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120}. Only liquid states were

studied. Hence, combinations that led to solid or gas states were excluded. All samples

were degassed by a vacuum pump before loading the system. The evacuation of the

sample was conducted in the sample reservoir. The temperature T , the pressure p, and

the period τ of the vibrating tube were recorded digitally for two minutes at each state

point using this setup. The valve between the densimeter and the sample reservoir was

closed during the measurements to reduce external influences, which slightly increased

the pressure. Therefore, the target pressure given above was not always met exactly.

To calculate densities from the measured periods, the density-measuring cell was cali-

brated by calibration fluids with known density. Several empirical models for correlating

the density have been proposed in the literature [559–561]. A model proposed by Anton

Paar was used, which describes the relation between the density ρ and the measured

period τ , temperature T , and pressure p as

ρ /kg m−3
=a1 + a2(T /K) + a3(p/MPa) + a4(T /K)2 + a5(p/MPa)2
+ (a6 + a7(T /K) + a8(p/MPa) + a9(T /K)2 + a10(p/MPa)2) (τ / s)2
+ a11(τ / s)4,

(31)

where a1 . . . a11 are eleven device constants, which were determined by a fit to the mea-

surements of the calibration fluids (which provides ρ, τ , T , p data sets). Ethanol and

toluene were used as calibration fluids. The calibration fluids were selected such that

their densities cover the complete expected density range of the samples, i.e. one cali-

bration fluid (ethanol) has a lower density and one calibration fluid (toluene) a higher

density than the target substances. The density for the calibration fluids was taken

from the multi-parameter EOS from Ref. 562 for ethanol and from Ref. 563 for toluene.

They are both valid in the entire considered range of conditions. The uncertainties for

the density are specified by the developers of the EOS as ur(ρ) = 0.002 for ethanol [562]

and ur(ρ) = 0.002 for p ≤ 300 MPa or ur(ρ) = 0.005 else for toluene [563]. For the condi-

tions considered here, the uncertainties of both EOS are significantly smaller, as shown

in Appendix E. For both calibration fluids, the density was measured at the state points

stated above, excluding state points above the boiling temperature at the corresponding

pressure (T ≥ 373.15 K at p = 0.1 MPa for ethanol and T ≥ 398.15 K at p = 0.1 MPa for
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toluene). The parameters of the calibration function a1 . . . a11 were determined from a

least-squares fit. The relative standard uncertainty of the calibration is estimated to be

ucal,r(ρ) = 0.0005.

The overall expanded uncertainty of the density Ur(ρ) with k = 2 was calculated from

the individual uncertainties [564] as

U(ρ) = k

¿ÁÁÀ(( ∂ρ

∂T
)

p,τ

u(T ))2

+ ((∂ρ

∂p
)

T ,τ

u(p))2

+ ((∂ρ

∂τ
)

T ,p

u(τ))2

+ (ucal,rρ)2, (32)

where the coverage factor k was chosen to be 2 throughout this chapter and u(τ) is

the standard uncertainty of the primary data of the measured period τ . The partial

derivatives of the density with respect to temperature, pressure, and period were cal-

culated from Eq. (31). The resulting relative expanded uncertainty is approximately

Ur(ρ) = 0.0016 in the entire temperature and pressure range.

6.3 Computational Methods

6.3.1 Empirical Correlation ρ(T , p)
For each studied substance, an empirical correlation of the density data ρ(T , p) was

established to evaluate the results and compare them to literature data. Therefore, the

polynomial function ρ(T , p) given in Eq. (33) was chosen based on preliminary tests.

ρcorr /kg m−3
=c0 + c1(T /K) + c2(T /K)2 + c3(p/MPa)+
c4(T /K)3(p/MPa) + c5(T /K)(p/MPa)3 + c6(T /K)2(p/MPa)2 (33)

The seven adjustable parameters of Eq. (33) were fitted to the experimental results for

each substance individually. Due to their empirical nature, the resulting correlations

are not suited for extrapolation beyond the temperature and pressure range of the data

to which it was fitted. The parameters are given in the Appendix E.

The thermal expansion coefficient α and the isothermal compressibility β were computed

as

α = −
1

ρ
( ∂ρ

∂T
)

p

and (34)

β =
1

ρ
(∂ρ

∂p
)

T

. (35)

The thermal expansion coefficient α and the isothermal compressibility β were com-

puted directly from the empirical density model ρcorr = ρcorr(T , p), cf. Eq. (33). Both
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properties were computed for the state points studied experimentally (see above). Ad-

ditionally, the data are compared to literature data in Appendix E. The obtained α and

β data are referred to as ’pseudo experimental’ data in the following. The expanded

uncertainty of the derived quantities U(α) and U(β) are estimated by error propagation

as

U(α) = k

¿ÁÁÀ(∂α

∂ρ
)ρ +

6

∑
i=0

(∂α

∂ci

)u(ci) and (36)

U(β) = k

¿ÁÁÀ(∂β

∂ρ
)ρ +

6

∑
i=0

(∂β

∂ci

)u(ci), (37)

where u(ci) are the standard errors of the parameter ci calculated from the results of the

linear regression in Eq. (33) [565]. For 1-hexanol, 1-heptanol, 1-octanol, and 1-nonanol,

the average uncertainties were calculated to be Ur(α) = Ur(β) = 0.08. For 1-decanol, the

uncertainties are slightly larger with Ur(α) = 0.12 and Ur(β) = 0.14.

6.3.2 Molecular-based Equation of State Modeling

The density, the thermal expansion coefficient, and the isothermal compressibility of the

1-alcohols were modeled using four molecular-based EOS: PC-SAFT [40, 557], SAFT-VR

Mie [41], soft SAFT [558], and CPA [43]. The applied EOS are formulated in the molar

Helmholtz energy a as function of the temperature and the density, i.e. a = a(T , ρ). The

considered molecular-based EOS models are composed of different contributions to the

Helmholtz energy as

a = aid + arep + adisp + achain + aassoc, (38)

where aid is the ideal gas contribution, arep and adisp are the contributions due to re-

pulsive and dispersive interactions, respectively, achain is the contribution due to chain

formation, and aassoc represents the associating (H-bonding) interaction. The PC-SAFT

EOS and the SAFT-VR Mie employ the hard sphere model from Boublik and Mansoori

[566, 567]. Both EOS use a monomer dispersion term specifically designed for the EOS,

cf. Refs. [40] and [41], respectively. The soft SAFT EOS uses the Lennard-Jones EOS

from Johnson et al. as monomer term for modeling the repulsive and dispersive interac-

tions [568]. The CPA EOS uses the Soave-Redlich-Kwong EOS as monomer term. All

four considered EOS frameworks use versions of the SAFT model proposed by Chap-

man [555] for describing the association. For the chain contribution, the PC-SAFT EOS

uses a hard chain reference fluid model from Boublik and Mansori [566, 567]. The soft

SAFT EOS is based on the chain model (describing Lennard-Jones chains) proposed by

Johnson et al. [569]. The SAFT-VR Mie EOS chain term is formulated as a model for

tangential bonded Mie segment chains [41]. No explicit chain contribution is used in
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Table 26: PC-SAFT component-specific models developed in in this work: The column
indicate the segment number m, segment diameter σ, segment dispersion
energy ε, association volume κAB, and association energy εAB.

Substance m σ /Å ε /kBK κAB /10−3 εAB /kBK

1-hexanol 2.6387 4.0904 296.28 2.2982 2985.1

1-heptanol 3.1386 4.0206 287.29 2.5257 2943.2

1-octanol 3.5238 4.0157 285.27 2.3575 2944.9

1-nonanol 3.9179 4.0033 280.35 2.3733 3010.5

1-decanol 4.3381 3.9888 278.38 2.0959 3018.7

Table 27: SAFT-VR Mie component-specific models developed in in this work: The
column indicate the segment number m, segment diameter σ, segment disper-
sion energy ε, repulsive exponent λr, association radius rAB, and association
energy εAB. The attractive exponent was λa = 6 in all cases.

Substance m σ /Å ε /kBK λr rAB /σ εAB /kBK

1-hexanol 2.0411 4.5361 370.31 13.532 0.27932 3192.6

1-heptanol 2.2228 4.6161 406.97 15.566 0.2834 3108.3

1-octanol 2.3588 4.7289 456.3 18.936 0.29574 2912.8

1-nonanol 2.6733 4.66 419.34 16.579 0.28245 3182.2

1-decanol 3.0053 4.6078 407.63 15.97 0.27674 3224.8

the CPA EOS. For most of the studied alcohols, component-specific models for the four

EOS frameworks are available in the literature [570–574]. The results using models from

the literature are shown and compared in Appendix E. Yet, those were parameterized

using different reference data sets and fitting methods. To enable a fair comparison of

the performance of the EOS frameworks, component-specific models for the five alcohols

was developed in this work using the same reference data sets and fitting routines for all

EOS frameworks. All models include association by the SAFT term [555], but no polar

contributions. The 2B association scheme was applied. The component-specific model

parameters were fitted in this work for all five substances using the density results from

this work in combination with experimental data from the literature [570, 575–588] for

the vapor pressure ps and the saturated liquid density ρs. Only vapor pressure and

saturated liquid density data with T < 0.9Tc were used as the critical point is not well

described by molecular-based EOS [589]. The squared relative error was used for the

fitting. Details are given in Appendix E. For the SAFT-VR Mie, six parameters were

used in the models in contrast to only five parameters used for the other three EOS

frameworks. The resulting parameters are given in Tables 26 - 29.
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Table 28: Soft SAFT component-specific models developed in in this work: The column
indicate the segment number m, segment diameter σ, segment dispersion
energy ε, association volume κAB, and association energy εAB.

Substance m σ /Å ε /kBK κAB εAB /kBK

1-hexanol 3.176 3.8521 276.96 35.46 3279.5

1-heptanol 3.5617 3.8604 280.8 31.755 3254.7

1-octanol 3.8077 3.9316 288.16 21.411 3332.8

1-nonanol 3.8409 4.0513 296.6 14.501 3584.1

1-decanol 4.0642 4.1128 301.34 11.182 3672.3

Table 29: CPA component-specific models developed in in this work: The column indi-
cate the energy parameter α, pseudo critical temperature Tcm, pseudo critical
pressure pcm, association volume κAB, and association energy εAB.

Substance α Tcm /K pcm /bar κAB /10−3 εAB /kBK

1-hexanol 0.94524 596.9 38.149 2.0513 2837.7

1-heptanol 0.95308 636.87 35.364 0.92934 3025.8

1-octanol 0.95976 668.74 33.052 0.52529 3217.9

1-nonanol 1.1088 682.79 30.174 0.51068 3093.2

1-decanol 1.1686 706.71 28.578 0.31068 3171
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Table 30: Overview of Brown’s characteristic curves including the name, the abbrevi-
ation, and the definition.

Name Abbreviation Definition

Zeno curve Z Z = vp

RT
= 1

Amagat curve A (∂Z
∂T
)

ρ
= 0

Boyle curve B ( ∂Z
∂1/ρ)T = 0

Charles curve C ( ∂Z
∂1/ρ)p = 0

Brown’s characteristic curves [590] were used to assess the extrapolation behavior of the

EOS models. The characteristic curves define lines on the thermodynamic pρT surface,

along which the compressibility factor Z or its derivatives are identical to the corre-

sponding ideal gas values. Details are given in Refs. 348, 590, 591. The thermodynamic

definitions of the four curves are given in Table 30. Based on these characteristics, the

consistency of EOS can be tested [592, 593]. Brown postulated several criteria for the

characteristic curves to be thermodynamically consistent [348, 590, 591, 594, 595]. These

criteria were originally derived for simple fluids, i.e. spherical particles with repulsive

and dispersive interactions. Yet, it has been shown based on first principle molecular

simulation data [348] that the criteria are applicable to associating, elongated, and po-

lar fluids [348, 594, 595]. Therefore, Brown’s tests were applied to the 1-alcohol EOS

models developed in this chapter. Yet, successfully passing this test is only a necessary,

but not sufficient condition for the models to be thermodynamically consistent.

6.3.3 Evaluation of Models

To quantify the deviations from a given model (empirical correlation or EOS) and ex-

perimental data, two deviation measures are used in this chapter: The average absolute

deviation (AAD) and the median absolute deviation (MAD) given as

AADsrc
Y ,mod =

1

Nexp

Nexp

∑
i

∣Ymod,i − Y src
exp,i

Y src
exp,i

∣ and (39)

MADsrc
Y ,mod =Median{∣Ymod,i − Y src

exp,i

Y src
exp,i

∣} , (40)

where Y src
exp,i are the experimental data (source (src) is either this work (th) or literature

(lit)) and Ymod,i the corresponding value calculated either from an empirical correlation

model (corr), cf. Eq. (33), or an EOS model.
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6.4 Results and Discussion

6.4.1 Experimental Results

The experimental results for the density of the studied 1-alcohols are given in Table 31.

Table 31: Results for the density measurements for 1-hexanol, 1-heptanol, 1-octanol,
1-nonanol, and 1-decanol. The standard uncertainties of the temperature
T and pressure p are u(T ) = 0.1 K and u(p) = 0.05 MPa. The combined
expanded uncertainties for the density is U(ρ) = 1.3 kg m−3 (k = 2).

p /MPa ρ /kg m−3 p /MPa ρ /kg m−3 p /MPa ρ /kg m−3

1-hexanol

T = 298.15 K T = 323.15 K T = 348.15 K

0.2 815.1 0.14 796.6 0.12 777.4

10.2 821.6 10.19 804.1 10.32 786.1

20.14 827.6 20.21 810.8 20.15 793.5

30.16 833.3 30.31 817.1 30.2 800.5

40.13 838.5 40.24 822.9 40.14 806.9

50.3 843.6 50.29 828.4 50.21 813.0

60.29 848.4 60.26 833.5 60.05 818.5

70.24 852.9 70.25 838.4 70.22 823.9

80.22 857.2 80.28 843.0 80.06 828.9

89.97 861.2 90.12 847.4 90.26 833.8

100.04 865.3 100.17 851.7 100.13 838.3

110.18 869.2 110.1 855.8 110.03 842.7

120.04 872.8 120.07 859.7 120.18 846.9

T = 373.15 K T = 398.15 K T = 423.15 K

0.2 757.3 0.12 734.7 0.3 710.5

10.22 767.1 10.36 746.3 10.32 724.2

20.07 775.7 20.2 756.2 20.3 735.8

30.33 783.7 30.27 765.0 30.33 745.8

40.3 790.7 40.12 772.9 40.11 754.7

50.34 797.4 50.14 780.2 50.25 762.9

60.25 803.0 60.18 787.0 60.25 770.6

Continued on next page
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p /MPa ρ /kg m−3 p /MPa ρ /kg m−3 p /MPa ρ /kg m−3

70.2 808.7 70.17 793.3 70.21 777.5

80.23 814.2 80.16 799.2 80.04 783.8

90.1 819.3 90.12 804.8 90.05 789.9

100.24 824.3 100.32 810.2 100.13 795.6

110.01 828.9 110.09 815.2 110.18 801.2

120.08 833.6 120.18 820.1 120.24 806.3

1-heptanol

T = 298.15 K T = 323.15 K T = 348.15 K

0.39 819.1 0.32 800.9 0.22 782.1

10.24 825.3 10.44 808.1 10.29 790.3

20.38 831.3 20.25 814.5 20.18 797.5

30.51 836.8 30.24 820.5 30.28 804.3

40.2 841.8 40.28 826.2 40.22 810.5

50.39 846.8 50.29 831.5 50.3 816.4

60.42 851.4 60.4 836.6 60.24 821.8

70.34 855.8 70.47 841.3 70.2 827.0

80.47 860.0 80.3 845.8 80.27 832.0

90.38 864.1 90.24 850.1 90.23 836.6

100.39 868.0 100.27 854.4 100.19 841.1

110.33 871.7 110.37 858.4 110.11 845.3

120.17 875.3 120.07 862.2 120.26 849.5

T = 373.15 K T = 398.15 K T = 423.15 K

0.18 762.3 0.35 740.6 0.26 717.9

10.18 771.6 10.32 751.3 10.3 730.8

20.3 780.0 20.34 760.9 20.16 741.6

30.33 787.6 30.33 769.4 30.14 751.2

40.18 794.3 40.25 777.1 40.34 760.0

50.2 800.8 50.13 784.1 50.3 767.8

60.17 806.7 60.3 790.7 60.27 774.8

70.33 812.6 70.1 796.7 70.39 781.9

Continued on next page
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p /MPa ρ /kg m−3 p /MPa ρ /kg m−3 p /MPa ρ /kg m−3

80.28 817.8 80.33 802.7 80.37 788.1

90.2 822.8 90.14 808.1 90.23 793.8

100.42 827.7 100.23 813.2 100.19 799.4

110.3 832.2 110.43 818.2 110.22 804.7

120.3 836.6 120.24 822.8 120.23 809.7

1-octanol

T = 298.15 K T = 323.15 K T = 348.15 K

0.15 822.0 0.21 803.8 0.12 785.4

10.14 828.2 10.14 810.7 10.11 793.2

20.14 833.8 20.17 817.0 20.14 800.4

30.24 839.2 30.4 823.0 30.22 807.0

40.38 844.3 40.33 828.5 40.28 813.1

50.26 849.0 50.24 833.6 50.25 818.7

60.31 853.5 60.12 838.4 60.24 824.1

70.32 857.9 70.29 843.2 70.14 829.1

80.3 862.0 80.3 847.7 80.32 834.0

90.25 865.9 90.21 851.9 90.12 838.5

100.26 869.7 100.11 856.0 100.17 842.9

110.19 873.4 110.13 859.9 110.08 847.1

120.1 877.0 120.16 863.7 120.25 851.2

T = 373.15 K T = 398.15 K T = 423.15 K

0.29 765.9 0.25 745.3 0.17 723.2

10.26 775.2 10.21 755.7 10.17 735.5

20.18 783.1 20.28 764.9 20.11 746.0

30.14 790.4 30.2 772.9 30.24 755.4

40.3 797.3 40.14 780.4 40.37 763.8

50.11 803.3 50.26 787.4 50.11 771.2

60.38 809.4 60.12 793.6 60.05 778.2

70.24 814.7 70.26 799.7 70.48 785.0

80.31 820.0 80.29 805.3 80.32 791.1

Continued on next page



6.4 Results and Discussion 133

p /MPa ρ /kg m−3 p /MPa ρ /kg m−3 p /MPa ρ /kg m−3

90.19 824.9 90.11 810.5 90.16 796.7

100.16 829.6 100.25 815.7 100.22 802.3

110.35 834.2 110.33 820.6 110.33 807.5

120.26 838.4 120.17 825.2 120.29 812.4

1-nonanol

T = 298.15 K T = 323.15 K T = 348.15 K

0.17 825.2 0.27 807.6 0.14 789.1

10.14 831.0 10.21 814.3 10.15 796.8

20.1 836.6 20.21 820.5 20.12 803.7

30.29 841.8 30.24 826.2 30.25 810.2

40.16 846.7 40.35 831.6 40.21 816.1

50.24 851.4 50.16 836.6 50.29 821.7

60.22 855.8 60.21 841.4 60.1 826.8

70.35 860.0 70.19 845.9 70.22 831.8

80.24 864.1 80.38 850.4 80.31 836.6

90.17 867.9 90.3 854.6 90.26 841.1

100.22 871.7 100.25 858.6 100.2 845.3

110.27 875.3 110.36 862.4 110.2 849.5

120.0 878.7 120.22 866.1 120.39 853.5

T = 373.15 K T = 398.15 K T = 423.15 K

0.16 770.3 0.3 750.1 0.17 728.5

10.21 779.0 10.15 760.0 10.28 740.3

20.14 786.8 20.1 768.7 20.37 750.5

30.22 794.0 30.29 776.9 30.22 759.3

40.19 800.6 40.25 784.1 40.18 767.5

50.18 806.7 50.18 790.8 50.28 774.9

60.14 812.4 60.17 797.0 60.2 781.6

70.21 817.8 70.32 802.8 70.13 788.0

80.24 822.8 80.21 808.3 80.31 794.0

90.17 827.7 90.36 813.5 90.22 799.6

Continued on next page
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p /MPa ρ /kg m−3 p /MPa ρ /kg m−3 p /MPa ρ /kg m−3

100.2 832.3 100.3 818.6 100.12 804.9

110.24 836.7 110.26 823.3 110.38 810.2

120.14 840.8 119.9 827.6 119.96 814.7

1-decanol

T = 298.15 K T = 323.15 K T = 348.15 K

0.22 827.2 0.29 810.1 0.16 791.9

10.22 833.0 10.22 816.6 10.17 799.4

20.33 838.5 20.29 822.6 20.11 806.2

30.23 843.6 30.21 828.2 30.26 812.5

40.3 848.4 40.17 833.5 40.19 818.4

50.2 853.0 50.32 838.6 50.17 823.8

60.17 857.4 60.35 843.3 60.2 829.0

70.17 861.7 70.19 847.8 70.18 833.8

80.34 865.9 80.24 852.1 80.31 838.5

90.25 869.6 90.2 856.2 89.99 842.8

100.44 873.5 100.27 860.2 100.26 847.2

110.38 864.0 110.14 851.3

120.2 867.7 120.22 855.2

T = 373.15 K T = 398.15 K T = 423.15 K

0.2 773.6 0.31 752.4 0.22 729.5

10.18 782.1 10.38 762.6 10.13 740.5

20.23 789.7 20.23 770.7 20.31 750.5

30.28 796.6 30.2 778.3 30.1 759.2

40.29 803.2 40.3 785.8 40.3 767.0

50.37 809.2 50.29 792.3 50.27 774.4

60.29 814.8 60.36 798.4 60.28 781.2

70.3 820.1 70.25 804.1 70.22 787.6

80.28 825.0 80.27 809.6 80.23 793.3

90.15 829.6 90.0 814.7 90.16 798.8

100.21 834.2 100.36 819.6 100.43 804.2

Continued on next page
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p /MPa ρ /kg m−3 p /MPa ρ /kg m−3 p /MPa ρ /kg m−3

110.39 838.6 110.33 824.4 110.27 808.8

120.1 842.8 120.31 829.0 120.05 814.1

Fig. 47 shows the measured densities of the five 1-alcohols as a function of the pressure.

Also the results from the empirical correlations of the data, cf. Eq. (33), are shown.

The density of the 1-alcohols increases with increasing chain length. Only liquid state

points were studied, i.e. state points where the sample was (partially) solidified were

discarded. This was evidenced by an increased density at these points and an abrupt

pressure drop during compression, indicating a phase transition. A solidification was

observed only for 1-decanol at T = 298.15 K and p ≥ 110 MPa. Both state points are

above the measured solidification pressure at this temperature [596] (see also Appendix

E).

The results from this work were compared to literature data. Refs. 550, 577, 586, 597–

647 report data on the studied 1-alcohols. An overview of the available literature data

for each of the five substances is given in the Appendix E. For 1-hexanol, data are

available in the entire range of conditions that were studied in this work. For the longer

1-alcohols (1-heptanol to 1-decanol), data are sparse. The experimental data from this

work significantly extend and complement the available data for these substances.

For comparing the different data sets, the relative deviation between the data and the

empirical correlations is used here. The relative deviations of all studied 1-alcohols

at ambient pressure are shown in Fig. 48 as a function of the temperature. Overall,

the experimental data from this work agree well with the literature data. Most of

the literature data deviate not more than ±0.2 % from the empirical correlations over

the entire temperature range. The experimental data from this work are generally well

within the scattering of the literature data from the different groups, especially for lower

temperatures, where more experimental data are available.

Fig. 49 shows the relative deviations of the experimental data and the empirical cor-

relations for 1-hexanol, 1-heptanol, and 1-octanol as a function of the pressure for the

different studied temperatures. Fig. 50 shows the corresponding results for 1-nonanol

and 1-decanol. The literature data at elevated pressure scatter more than those at ambi-

ent pressure. At temperatures above 348 K, literature data are scarce, especially at high

pressures. For 1-nonanol and 1-decanol, in general, few data are available in literature.

The experimental results from this work are in very good agreement with the literature

data, especially for 1-hexanol and 1-heptanol. For 1-octanol, the results from this work

lie slightly below the majority of the literature data for T ≤ 348.15 K. However, the
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Figure 47: Density ρ of the studied 1-alcohols as a function of pressure p. Symbols:
Experimental results from this work; lines: Empirical correlation based on
Eq. (33).
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Figure 48: Relative deviation between experimental density data at ambient pressure
(symbols) and the empirical correlations of the data from the this work,
cf. Eq. (33), (baseline) as a function of the temperature T . Solid squares
indicate results from this work (with error bars U(ρ) (k = 2)) and open
symbols indicate data from the literature [550, 577, 586, 597–647] (symbols
are defined according to the legends in Figs. 49 and 50).

deviations are still within the given expanded combined uncertainty (k = 2). Also, at

T > 373.15 K, the data from this work agrees well with most of the literature data.

Overall, the experimental data from the literature confirm the experimental results of

this work. This is also shown by the AADρ,corr and MADρ,corr (cf. Eqs. (39) and (40))

between the empirical correlations and the experimental data. The two deviation mea-

sures were computed for the two experimental data sets, i.e. the literature data AADlit
ρ,corr

and the data from this work AADth
ρ,corr. The results for the AAD and the MAD of the five

substances are given in Table 32. The empirical correlations describe the experimental

results with relative mean absolute deviation of less than 0.05 %, which is significant-

ly below the expanded uncertainty specified above. The small deviations between the

experimental data from this work and the empirical correlations are measures for the

accuracy of the empirical correlations, which were fitted to the experimental data from

this work alone. With one exception, also both AADlit
ρ,corr and MADlit

ρ,corr, which quantify
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Figure 49: Relative deviation between experimental density data (symbols) and the
empirical correlations, cf. Eq. (33), (baseline) for 1-hexanol, 1-heptanol,
and 1-octanol as a function of the pressure p. Solid squares indicate results
from this work (with error bars U(ρ) (k = 2)) and open symbols indicate
data from the literature [550, 577, 586, 597–647].
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Table 32: Deviations of the literature data and the measurement data from this work
to the empirical correlations (cf. Eq. (33)). The columns indicate (left to
right) the substance name, the average deviations AADlit

ρ,corr as well as the
median deviations MADlit

ρ,corr of the literature data, and the average devia-
tions AADth

ρ,corr as well as the median deviations MADth
ρ,corr of the measure-

ment data from this work (cf. Eqs. (39) and (40)).

Substance AADlit
ρ,corr /% MADlit

ρ,corr /% AADth
ρ,corr /% MADth

ρ,corr /%
1-hexanol 0.16 0.07 0.03 0.03

1-heptanol 0.10 0.04 0.03 0.03

1-octanol 0.07 0.06 0.03 0.03

1-nonanol 0.23 0.13 0.03 0.03

1-decanol 0.14 0.11 0.05 0.05

the deviations of the literature data from the empirical correlations of the present data,

are within the expanded uncertainty U(ρ) (k = 2) of the present data of 0.16 %. The

only exception is the AADlit
ρ,corr = 0.23 % obtained for 1-nonanol, which can be attributed

to some large outliers in the literature data (see Appendix E for a discussion). Overall,

the values shown in Table 32 confirm the good agreement of the results from this work

with the literature data, as already demonstrated in Figs. 48 - 50.

6.4.2 EOS Modeling Results

By using the same fitting procedure and reference data for the different EOS models, a

fair comparison of the different EOS frameworks (PC-SAFT, SAFT-VR Mie, soft SAFT,

and CPA) is possible. An additional evaluation of component-specific models from the

literature for the considered EOS frameworks is given in the Appendix E. The results of

the fit from this work, i.e. the AADs obtained for the vapor pressure, saturated liquid

density, and homogeneous state density are reported in Table E.2 in the Appendix. The

description of VLE properties, i.e. the vapor pressure and the saturated liquid density,

is similar for all EOS frameworks. The vapor pressure data are overall described with

AADlit
ps,EOS values of up to around 1 %. The corresponding values for the saturated liquid

density are slightly smaller for the PC-SAFT and the SAFT-VR Mie than for the other

two EOS. For the soft SAFT and the CPA EOS, the AADlit
ρs,EOS is significantly larger

with values between 1 % and 2 %. The performance of the EOS models with respect to

the density and its derived properties is discussed in detail in the following.

Fig. 51 shows the deviations of the EOS model results from the empirical correlations

(cf. Eq. (33)) as a function of the pressure for 1-hexanol, 1-octanol, and 1-nonanol.

Fig. 52 shows the corresponding results for 1-nonanol and 1-decanol. Additionally,
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Figure 51: Relative deviation between the results for the density from the four EOS
frameworks and the empirical correlations from this chapter (cf. Eq. (33))
for 1-hexanol, 1-heptanol, and 1-octanol as a function of the pressure p.
Each rows shows results for a constant temperature.

the AADs for the density ρ, the thermal expansion coefficient α, and the isothermal

compressibility β, i.e. AADth
Y ,EOS, were calculated for the four EOS and five substances.

For the density ρ, the experimental data from this work were used. For the thermal

expansion coefficient α and the isothermal compressibility β, the pseudo-experimental

data from this work were used (see above). Fig. 53 shows the AADs for ρ, α, and β for

all substances and EOS.

The findings for all five alcohols are similar. First of all, the deviations for the EOS

are overall about an order of magnitude larger than the deviations for the empirical

correlations for describing the experimental data, cf. Figs. 49 and 50. In the entire

considered temperature and pressure range, the deviations for the density are in the

range ±3 % for all EOS and substances. Also, the EOS-deviations of the second-order

derivative properties α and β are about one order of magnitude larger than the deviations

obtained for the density, which is, among other reasons, due to larger uncertainties of the

pseudo-experimental data of α and β (up to 14 %, see above). For both second-order

derivative properties, the deviations reach values up to 50 % across all studied EOS

frameworks – yet with significant differences between the individual EOS frameworks.

The PC-SAFT results overestimate the density for most substances and states, cf.
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Figure 52: Relative deviation between the results for the density from the four EOS
frameworks and the empirical correlations from this chapter (cf. Eq. (33))
for 1-nonanol and 1-decanol as a function of the pressure p. Each rows
shows results for a constant temperature.

Figs. 51 and 52. While the density results of the PC-SAFT EOS often agree well with

the experimental data at ambient pressure, the density is overestimated at elevated pres-

sure. The thermal expansion coefficient, a measure for the temperature dependence of

the density, is well described by the PC-SAFT EOS with AADth
α,EOS values between 4 %

and 10 % (cf. Fig. 53 middle). The pressure dependence of the density, i.e. the isother-

mal compressibility β, is less accurately described by the PC-SAFT EOS (cf. Fig. 53

bottom). The AADth
β,EOS for the PC-SAFT EOS is the second largest of the different

EOS and increases with increasing chain length with values from 18 % (1-hexanol) up

to 36 % (1-decanol).

The SAFT-VR Mie EOS yields the lowest deviations among the studied EOS for the

density for all studied substances with a lowest AADth
ρ,EOS of <0.2 % and a maximum

AADth
ρ,EOS of around 0.7 % (cf. Fig. 53 top). This is also reflected in the deviations

for α and β. Similar to the PC-SAFT EOS, the SAFT-VR Mie EOS provides a good

description of the thermal expansion coefficient α, which is line with findings from previ-

ous studies [648, 649]. Only for 1-hexanol and 1-heptanol, the AADth
α,EOS obtained from

the SAFT-VR Mie EOS is relatively large with values up to 14 % (for 1-hexanol). The

pressure dependence of the density, i.e. the isothermal compressibility, of the alcohols is

described remarkably well by the SAFT-VR Mie EOS (cf. Fig. 53 bottom). The values
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Figure 53: Average absolute deviation of the EOS results AADth
Y ,EOS (cf. Eq. (39))

for the density ρ, the thermal expansion coefficient α, and the isothermal
compressibility β for the five 1-alcohols. The AADs were computed with
respect to the reference data from this work ’th’.

for the AADth
β,EOS are the smallest for all substances with a maximum of 10 %. The

good performance of the SAFT-VR Mie EOS is probably to some extend due to the fact

that a higher degree of freedom was used in the fitting procedure since the additional

parameter λr is used in the models. However, increasing the repulsive exponent λr in

force fields for molecular simulations yields similar improvements for the description of

the density and the pressure dependence of the density [77, 291].

The performance of the soft SAFT EOS for describing the density is similar to the per-

formance of PC-SAFT. Only for the density of 1-heptanol and 1-nonanol, the deviations

obtained for the soft SAFT EOS are significantly larger than those of the PC-SAFT,

cf. Fig. 53 top. The density is overestimated by the soft SAFT EOS for most of the

substances and conditions, especially for the lower temperatures (cf. Figs. 51 and 52).

This is also reflected in the deviations obtained by soft SAFT for the thermal expan-

sion coefficient α, which are slightly larger than those obtained from the PC-SAFT and

SAFT-VR Mie EOS. The pressure dependence of the density is slightly overestimated

by the soft SAFT EOS (similar to the PC-SAFT) yielding AADth
β,EOS between 9 % and
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28 %.

The results from the CPA EOS show the largest deviations for all three properties

(cf. Fig. 53): The CPA EOS yields the largest deviations for the density with values

AADth
ρ,EOS > 1 % for all substances (see Fig. 53 top). At ambient conditions (T = 298.15 K

and p = 0.1 MPa), the deviations for the density are relatively small (see Figs. 51 and 52).

At high temperatures, the density at ambient pressure is overestimated with deviations

of more than 2 % by the CPA EOS. The AAD for describing the thermal expansion

coefficient by the CPA EOS, i.e. AADth
α,EOS, is the largest among the studied EOS

with values between 35 % and more than 50 % (cf. Fig. 53 middle). Also, the pressure

dependency of the density (cf. Fig. 53 bottom) is not well reproduced by the CPA EOS:

The slope ∂ρ/∂p is too small (cf. Figs. 51 and 52), i.e. the CPA EOS underestimates

the isothermal compressibility β. This results in large AADth
β,EOS values of up to 35 %.

The overall relatively high deviations obtained for the CPA EOS are possibly due to the

fact that the molecule elongation is not explicitly represented in the CPA EOS.

Overall, there is a tendency for the deviations to increase with increasing chain length

of the 1-alcohols, i.e. the smallest deviations are observed for 1-hexanol and the largest

deviations are observed for 1-decanol. This is the case for the CPA EOS for all three

studied properties (ρ, α, β) and the case for PC-SAFT and soft SAFT for one or

two properties. This indicates that the chain contribution (which is coupled with the

monomer contribution [40–42]) causes systematic deviations and that the molecular

structure is not ideally described by it. Only for the SAFT-VR Mie EOS, no systematic

deviations are obtained for the molecule size dependency. This is in line with the fact

that the lowest overall deviations were obtained for the SAFT-VR Mie EOS.

The extrapolation behavior of the EOS models was also evaluated by studying the

characteristic curves and assessing the behavior in the vapor-liquid two-phase region.

Fig. 54 shows the characteristic curve results for 1-octanol for the PC-SAFT, SAFT-

VR Mie, soft SAFT, and CPA EOS. 1-Octanol was chosen as an example here; the

results for the other studied 1-alcohols are qualitatively the same (see Appendix E).

The SAFT-VR Mie EOS yields realistic predictions of all four characteristic curves.

The other three EOS frameworks yield realistic Zeno, Charles, and Boyle curves, but

a distorted Amagat curve. These findings are in line with the performance of the four

EOS frameworks reported for other substances [50, 650, 651]. For the PC-SAFT EOS,

the distorted Amagat curve has been attributed to the employed soft repulsion in the

monomer term [651]. For the soft SAFT, a distorted Amagat curve has also been

attributed to the underlying monomer term [50], i.e. the Johnson Lennard-Jones EOS

[568]. Hence, for both PC-SAFT and soft SAFT, the defects in the Amagat curve are

a result of the monomer term. Since all four EOS frameworks applied in this chapter

use the SAFT term for describing the H-bonding association and a thermodynamically



6.5 Conclusions 145

Figure 54: Characteristic curves of 1-octanol obtained from the PC-SAFT EOS,
SAFT-VR Mie EOS, soft SAFT EOS, and CPA EOS (left to right) in-
cluding the Zeno curve (red), Amagat curve (orange), Boyle curve (blue),
and Charles curve (purple). Black solid line and star represents the va-
por pressure curve and the critical point, respectively, as calculated by the
corresponding EOS.

consistent Amagat curve is obtained for the SAFT-VR Mie EOS, the SAFT term does

most likely not contribute to the defects in the depicted case. Since the CPA EOS

comprises only the SAFT term and the Soave-Redlich-Kwong term, the latter probably

causes the defects in the Amagat curve. Hence, among the studied models, only the

SAFT-VR Mie EOS should be used for extrapolation to extreme states.

The extrapolation behavior in the vapor-liquid metastable and unstable region was also

tested. A physically reasonable behavior, i.e. a single spinodal and no undulations of

isotherms and a smooth van der Waals loop, is for example critical for the application

of an EOS model within density gradient theory for describing interfacial properties

[500, 652, 653]. The results for 1-octanol from the SAFT-VR Mie EOS are depicted in

Fig. 55. Additionally, isotherms are depicted, where density data were determined in

this work. The SAFT-VR Mie EOS yields single smooth van der Waals loops in a wide

temperature range for 1-octanol. This is in line with results reported in Ref. [234] for

the underlying monomer.

6.5 Conclusions

In this chapter, the density of the 1-alcohols 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol,

and 1-decanol was measured at pressures up to 120 MPa with a high pressure vibrating-

tube densimeter. The available density data for the five 1-alcohols was significantly

extended and supplemented by this work – especially at elevated temperatures and

pressures. Based on that experimental data, an empirical correlations was developed

that describes the data with an accuracy of 0.05 %. This was used to determine pseudo-
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Figure 55: Density of 1-octanol as function of the pressure for ten isotherms between
323.15 K and 1023.15 K. Lines are results from the SAFT-VR Mie EOS:
Black solid line, black dashed line, and star represents the vapor-liquid
equilibrium curve, the spinodal curve, and the critical point, respectively;
colored lines are isotherms with the color coded according to the color scale.
The squares are the experimental results from this work.

experimental data for the thermal expansion coefficient and the isothermal compress-

ibility.

The density, the thermal expansion coefficient, and the isothermal compressibility were

modeled using molecular-based EOS, namely the PC-SAFT, SAFT-VR Mie, soft SAFT,

and CPA. Therefore, new parameter sets were fitted using the new experimental data

from this work in combination with vapor-liquid equilibrium data from the literature.

Overall, the SAFT-VR Mie EOS yields the best results: i) It is the most accurate model

for describing the density, the thermal expansion coefficient, and the isothermal com-

pressibility and at the same time describes the vapor-liquid equilibrium data very well;

ii) it yields a thermodynamically consistent extrapolation behavior regarding Brown’s

curves as well as into the vapor-liquid two-phase region. Yet, the deviations are about

an order of magnitude larger compared to the uncertainty of the experimental data.
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7 Framework for Modeling

Transport Properties using

Entropy Scaling

7.1 Introduction

Transport properties of pure fluids and fluid mixtures are important in many disciplines

of science and engineering [4, 8]. In many cases, also transport properties at conditions,

that are far away from the region in which data are available, have to be known. For ex-

ample, in tribological applications [353, 654], information on the viscosity at pressures

above 1 GPa is required [12]. Other examples stem from carbon capture and stor-

age [655], petroleum industry [7, 656], power engineering [10, 76], process engineering

[8, 17, 60, 657], and combustion processes [658]. Experimental transport property data

are often only available for moderate conditions and for pure fluids; transport property

data for extreme conditions and mixtures are scarce. Moreover, for a large number of

relevant substances, even at moderate conditions, only little or no data are available.

For modeling dynamic processes at interfaces [17, 59, 659], information on transport

properties is also required in the metastable and unstable region [60, 352, 502], where

practically no experimental data are available. Hence, reliable and predictive mod-

els for transport properties are required – which is challenging as transport properties

vary strongly depending on the chosen conditions. Fig. 56 illustrates the viscosity, the

thermal conductivity, and the self-diffusion coefficient for a molecular fluid in a phase

diagram [660]; a detailed discussion of these topologies is given in Appendix F.

Entropy scaling is an interesting method for the modeling of the viscosity, thermal

conductivity, and self-diffusion coefficient. It is based on the discovery that the three

properties are (within certain limits) monovariate functions of the configurational en-

tropy – when properly scaled by the density and the temperature. The entropy scal-

ing approach was originally proposed by Rosenfeld in 1977 [25] and 1999 [26]. En-

tropy scaling can be favorably coupled with equations of state (EOS)[24] that are used

for modeling the configurational entropy as a function of, for example, temperature
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Figure 56: Schematic diagrams with subcritical and supercritical isotherms for the
viscosity (a), thermal conductivity (b), and self-diffusion coefficient (c) as
a function of the pressure p. The isotherms are: two subcritical isotherms
in the homogeneous liquid phase region (blue), in the homogeneous gas
phase region (green), the metastable and the unstable region (grey), and
the critical and supercritical (red) region. The binodal is indicated as solid
line, the spinodal as dotted line, and the critical point by a star. The arrows
indicate increasing temperature of the isotherms. The diagrams were drawn
based on the entropy scaling models of a simple fluid.

and pressure sconf = sconf(T , p). Therefore, an accurate description of the configura-

tional entropy is crucial for entropy scaling. For predicting the transport properties

in state regions where no experimental data are available, a reliable extrapolation be-

havior of the entropy scaling model itself is required as well as reliable predictions for

the configurational entropy sconf = sconf(T , p) in that region. Several entropy scaling

approaches have been proposed in recent years using empirical multi-parameter EOS

models [128, 661–666]. Empirical EOS, however, often lack of a robust extrapolation

behavior. Molecular-based EOS, on the other hand, enable reliable extrapolations in-

cluding mixtures [22, 23, 58, 83, 112, 667, 668]. Some entropy scaling models that

use molecular-based EOS have been proposed in the past: Gross and co-workers have

developed entropy scaling models specifically for PC-SAFT [669–675]. The PC-SAFT

EOS was also used by other authors to create entropy scaling models for the viscosity,

the thermal conductivity, and the self-diffusion coefficient [676–682]. Yet, the PC-SAFT

EOS has a physically unrealistic behavior at extreme conditions [50, 651, 683, 684]. Also

cubic EOS were used in entropy scaling models [130, 679–681, 685]. Entropy scaling was

also applied to the transport properties of model fluids like the Lennard-Jones (LJ) fluid
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using specific LJ EOS [128, 132, 686, 687]. As these models were specifically developed

for a given EOS, they cannot be straightforwardly transferred to other EOS (that might

provide a better description of the thermodynamic properties of the fluid). Hence, no

generalized entropy scaling model has been developed yet that can be straightforwardly

coupled with different molecular-based EOS.

The core of the entropy scaling approach is the conversion of the transport proper-

ties to the so-called ’macroscopically scaled’ quantities. Rosenfeld [25, 26] found a

monovariate relation of a macroscopically scaled transport property as a function of

the configurational entropy sconf . These findings were later elaborated in the isomorph

theory [688, 689]. The macroscopic Rosenfeld [25, 26] scaling is only exact for some

simple model potentials, e.g. for the inverse power-law potential [24]. For more complex

model potentials (even the LJ potential) and real substances, there are deviations from

this monovariate behavior [690] and the relation between the configurational entropy

and the transport properties cannot be predicted a priori from the theory. Therefore,

(component-specific) adjustable parameters are introduced for these substances.

In this work, a generalized framework for the application of entropy scaling in conjunc-

tion with molecular-based EOS is proposed, which can be used for modeling transport

properties of model fluids as well as real substances. The framework is designed such

that the viscosity, the thermal conductivity, and the self-diffusion coefficient can be

described. The new framework is based on a scaling of the three properties, that com-

bines the Rosenfeld scaling with a scaling for the zero-density limit. The transition

between the two approaches is achieved in a convenient, yet not physically rigorously

deducible way. The universal parameters of the entropy scaling framework were fitted

to computer experiment data for transport properties and the entropy of the LJ fluid,

so that they do not depend on the chosen EOS. Therefore, simulations of the LJ fluid

were conducted in which the transport properties and the entropy were sampled simul-

taneously. This makes the model on one hand robust and on the other hand flexible

as it can be straightforwardly coupled with basically any EOS. For modeling a spe-

cific real substance, the entropy scaling model requires component-specific parameters,

which have to be adjusted to experimental data of transport properties. The number

of component-specific parameters of the model is 2-5 and can be chosen depending on

the amount and quality of transport data that are available for the training. Hence, the

model can also be applied in a meaningful way if only very few data are available. Based

on the component-specific parameters for the pure substances, the framework can be

applied to predict the viscosity and the thermal conductivity of mixtures without any

additional information.

The flexibility of the entropy scaling framework was demonstrated by applying it to nine

different molecular-based EOS. Also, the robust extrapolation behavior of the framework
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to high pressures, metastable and unstable states, as well as mixtures is demonstrated.

For mixtures, it is shown that transport properties can be predicted by the framework

without the adjustment of additional parameters – even for highly non-ideal mixtures.

The chapter is organized as follows: First, the entropy scaling framework is described,

including the scaling procedure, the treatment of the zero-density limit, and the de-

termination of the universal parameters. Then, the applicability of the framework

is demonstrated for different pure substances and mixtures. Finally, conclusions are

drawn.

7.2 Model

The principles of the entropy scaling framework developed in this chapter are depicted

in Fig. 57. It can be applied for modeling the viscosity, the thermal conductivity, and

Figure 57: Scheme of the entropy scaling framework proposed in this chapter.

the self-diffusion coefficient of pure component fluids; and for modeling the viscosity

and the thermal conductivity of fluid mixtures. The entropy scaling framework consists

of two parts: a suitable macroscopic scaling of the transport properties (green part

in Fig. 57) and correlations that describe the scaled data (blue part in Fig. 57). The

scaling part comprises two different methods, one for the low-density region and one for

the high-density region. The scaling is carried out so that the scaled properties from

both regions fall onto a single continuous smooth curve describing the dependency of the

scaled property on the configurational entropy. The mathematical function that is used

here for describing this relation has both universal parameters that determine basic

features of the function and component-specific parameters that have to be fitted to

experimental data. The universal parameters were fitted to molecular dynamics (MD)

simulation results of the transport properties and the entropy of the LJ fluid determined

in this chapter, i.e. without using an EOS. For applying the entropy scaling framework,

it is coupled with a molecular-based EOS that yields the configurational entropy for the
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state point of interest, i.e. sconf(T , ρ, x), where x indicates the composition vector of a

mixture.

7.2.1 Molecular-based EOS

Molecular-based EOS are algebraic models for describing thermodynamic properties of

fluids and fluid mixtures [22, 23]. They are usually formulated in the Helmholtz energy

per particle a = A/N as a function of the temperature, density, and composition, i.e.

a = a(T , ρ, x), since this is a thermodynamic fundamental expression. All other thermo-

dynamic properties can be derived from it [545]. In molecular-based EOS, the formula-

tion of the Helmholtz energy is physically motivated and can be divided into an ideal

gas and a configurational (or residual) contribution. The configurational contribution

is usually constructed as a sum of terms in molecular-based EOS, each modeling the ef-

fect of a given molecular interaction or molecular architecture feature on the Helmholtz

energy, for example, repulsion, attraction, association [555], electrostatic interactions

[22], the chain formation [40] and branching in the molecular structure [691]. Hence,

the configurational Helmholtz energy aconf can be written as

aconf = arep + adisp + achain + abranching + aassoc + aD + aQ, (41)

where arep, adisp, achain, abranching, aassoc, aD, and aQ indicate the contributions due

to repulsive and dispersive interactions of monomers, the chain formation of multiple

monomers, branching, associating (H-bonding) interactions, dipole interactions, and

quadrupole interactions, respectively [692]. The terms contain different component-

specific parameters, which can be physically interpreted. In different molecular-based

EOS, different terms are combined to constitute the EOS. Component-specific param-

eters are for example the segment diameter σ, the segment dispersion energy ε, and

the chain length, i.e. segment number or elongation parameter m. These component-

specific parameters are usually fitted to experimental data – in particular to vapor-liquid

equilibrium (VLE) properties and liquid phase densities.

Many different molecular-based EOS have been described in the literature [22], e.g. the

BACKONE EOS family of Fischer and co-workers [693, 694], the PACT EOS family of

Prausnitz and co-workers [695, 696], the EOS family that uses the statistical association

fluid theory (SAFT) of Chapman, Jackson, and Gubbins [555, 556], and the CPA EOS

family of Kontogeorgis and co-workers [43, 697]. Since different molecular-based EOS

are based on different modeling approaches and approximations, they differ in parts

significantly in their mathematical formulation. Accordingly, for a given component,

the component-specific parameters are not transferable among different molecular-based

EOS.
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Due to their sound physical basis, molecular-based EOS often enable reliable predictions

for states and properties that were not considered in the training [22, 23, 348, 651, 692,

698], i.e. many of them can be reliably applied not only for describing stable gas, liquid,

and supercritical states, but also metastable and to some extend unstable states (which is

for example relevant for interfaces). Yet, without further modifications [589], the critical

point is not well described by most EOS. They overestimate the critical temperature and

pressure (due to the underlying critical scaling behavior). For modeling mixtures with

molecular-based EOS, mixing and combination rules are applied [22, 47, 58, 667, 699].

Thereby, it is usually sufficient to use a single state independent parameter ξij, which

is generally introduced in the Berthelot term, with which the binary dispersive cross-

interactions εij are described [700]

εij = ξij

√
εiεj, (42)

where εi and εj are the dispersive interaction parameters of the pure components.

For entropy scaling, the calculation of the molar configurational entropy sconf at a given

state point (T , ρ, x) is required. It can be calculated from the configurational Helmholtz

energy aconf as the derivative with respect to temperature T at constant volume v and

composition x

sconf = −(∂aconf

∂T
)

v,x

. (43)

In this chapter, nine molecular-based EOS were used: three LJ EOS (Kolafa-Nezbeda

[136], PeTS [108], Stephan et al. [234]), three from the SAFT EOS family (PC-SAFT

[40], SAFT-VR Mie [41], soft SAFT [558]), one from the PACT EOS family (PACT+B

[695]), one from the BACKONE family [694], and one from the cubic EOS family (sCPA

[43, 701]). The pure component model parameters were taken from the literature [40,

41, 62, 63, 558, 694, 695, 697, 702–704]. Details are given in Appendix F.

7.2.2 Scaling of the Transport Properties

The scaling of the viscosity η, the thermal conductivity λ, and the self-diffusion coeffi-

cient D with respect to temperature and density is the core of entropy scaling [25, 26].
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Here, a modified Rosenfeld scaling from Bell [128, 690] (indicated by +) is adopted:

η+ = η
ρ
−2/3
N√

MTkB/NA

(−sconf

R
)2/3

, (44)

λ+ = λ
ρ
−2/3
N

kB

√
RT /M (

−sconf

R
)2/3

, (45)

D+ =D
ρ

1/3
N√

RT /M (
−sconf

R
)2/3

, (46)

where ρN is the number density in 1/m3, M the molar mass in kg/mol, R = kBNA the

universal gas constant, kB the Boltzmann constant, and NA the Avogadro number. The

scaled transport properties Y + with Y ∈ {η, λ, D} obtained from Eqs. (44) - (46) are

dimensionless. This scaling approach yields an approximately monovariate dependency

of Y + on the configurational entropy for dense states. However, this does not hold for low

density states [26, 705]. To overcome this drawback, a reduction using the Chapman-

Enskog (CE) transport properties is applied here for low-densities as explained in more

detail below.

Fig. 58 schematically shows the scaling procedure introduced in this chapter starting

from Y + (green, cf. Eqs. (44) - (46)). In the framework, the reduced configurational

Figure 58: Scheme illustrating the modeling principle of the entropy scaling frame-
work. LD and HD indicate the low-density and the high-density region,
respectively. Green indicates the scaled transport property Y + for a given
substance with Y ∈ {η, λ, D}. Y +CE (left inset) indicates the zero-density
limit transport property (ρ→ 0, s̃conf → 0) obtained from Chapman-Enskog
theory as function of the temperature T . Ŷ +LD indicates the CE-scaled trans-
port property in the LD region (cf. Eq. (54)) and Ŷ +HD the CE-scaled trans-
port property in the HD region (cf. Eq. (55)). The light red and light blue
areas are not used.

entropy s̃conf is defined as

s̃conf =
−sconf

m R
. (47)

Therein, the segment number m describes the elongation of a molecule in a given

molecular-based EOS and is used to scale sconf such that the values of s̃conf are within a
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similar range for molecules of different sizes [669]. Moreover, s̃conf is also a dimensionless

property. The limit s̃conf → 0 corresponds to the limit ρ → 0. Based on s̃conf , a split for

individually describing the low-density (LD) and high-density (HD) region is applied.

The LD region covers all states s̃conf < s̃×conf and the HD region all states s̃conf ≥ s̃×conf .

Here, a value of s̃×conf = 0.5 was chosen based on preliminary studies.

The scaling with Eqs. (44) - (46) usually yields very good results for the HD region,

but scattering results for the LD region (cf. Fig. 58, green part in the LD region). This

scattering can be understood as a consequence of the known temperature-dependence of

the results for ρ→ 0, as described by the Chapman-Enskog theory, cf. insert in Fig. 58.

Applying Eqs. (44) - (46) to the results from the Chapman-Enskog theory yields:

η+CE =
5

16
√

π

1
σ2

CEΩ(2,2)
(T (dB

dT
) +B)2/3

, (48)

λ+CE =
75

64
√

π

1
σ2

CEΩ(2,2)
(T (dB

dT
) +B)2/3

, (49)

D+CE =
3

8
√

π

1
σ2

CEΩ(1,1)
(T (dB

dT
) +B)2/3

, (50)

where the relation

lim
ρN→0
(∂(−sconf/R)

∂ρN

)
T

= T
dB

dT
+B (51)

is exploited with B being the second virial coefficient (computed from the EOS) and

Ω(1,1) and Ω(2,2) are the reduced collision integrals [75], which are functions of the reduced

temperature TkB/εCE, i.e. Ω(1,1)
= Ω(1,1)(TkB/εCE) and Ω(2,2)

= Ω(2,2)(TkB/εCE). The

two parameters σCE and εCE characterize the molecular size and dispersion energy,

respectively. The scaled Chapman-Enskog transport properties η+CE, λ+CE, and D+CE are

solely functions of the temperature. In Appendix F, the Eqs. (48) - (50) are derived

from the Chapman-Enskog equations. The LJ fluid is taken as a reference fluid for

calculating the zero-density limit transport properties; the empirical correlations for the

collision integrals for the LJ fluid from Kim and Monroe were used [126]. To determine

the parameters σCE and εCE, the LJ model is mapped to a given real substance by

applying the corresponding states principle. Hence, σCE and εCE are determined from

the critical temperature Tc and pressure pc of the considered substance and the critical

temperature and pressure of the LJ fluid as

εCE =
Tc

Tc,LJ/εLJ

, (52)

σCE = ((pc,LJσ3
LJ/εLJ) εCE

pc

)1/3

, (53)

where εLJ and σLJ indicate the size and energy parameter of the LJ potential, respec-
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tively. The reduced critical temperature and pressure of the LJ fluid were taken from

the literature: Tc,LJ = 1.321 εLJ/kB and pc,LJ = 0.316 εLJ/σ3
LJ [73]. Thus, Eqs. (52) - (53)

establish a link between the real substance model described by the molecular-based EOS

and the LJ model in the zero-density limit. The critical parameters Tc and pc for a given

substance are taken from the EOS.

The CE-scaled transport property for the LD region Ŷ +LD (with Y ∈ {η, λ, D}) is calcu-

lated from Y +LD as

Ŷ +LD =
Y +LD

Y +CE

. (54)

As illustrated in Fig. 58, Ŷ +LD provides a monovariate function with respect to the re-

duced configurational entropy s̃conf . In the case of exact representation of the zero-

density limit of the transport properties by the Chapman-Enskog theory, Eq. (54) yields

unity (Ŷ + = 1) for s̃conf → 0. Applying Eq. (54) to all states including the HD region

would, however, yield a distinctly poorer scaling than in the LD region, as illustrated

in Fig. 58. As the modified Rosenfeld scaling already yields a decent behavior in the

HD region, the scaled transport property for the HD region Y +HD only has to be shifted

in a suitable way to obtain a smooth transition in Ŷ + from the LD to the HD region

at s̃×conf . Preliminary studies showed that this can be achieved by simply dividing Y +

by a constant factor for which the minimum of the scaled Chapman-Enskog transport

property min(Y +CE(T )) was chosen, i.e.

Ŷ +HD =
Y +HD

min (Y +CE(T )) . (55)

The rationale behind this choice is that the scattering of Y + can be understood as

positive deviations from a master curve that extends the results from the HD region (cf.

green part in Fig. 58). By dividing the results from the HD region by the minimum

value from the Chapman-Enskog theory, it can be expected to recover this curve, albeit

in a version that is shifted.

To avoid having to work with a distinction of cases (LD vs. HD), a continuous function

Ŷ + is introduced:

Ŷ + = Ŷ +LDW + Ŷ +HD(1 −W ), (56)

with

W =
1

1 + exp (20 (s̃conf − s̃×conf)) , (57)

where W = 1 for s̃conf ≪ s̃×conf and W = 0 for s̃conf ≫ s̃×conf . The CE-scaled transport

property Ŷ + is a monovariate function of the reduced configurational entropy s̃conf (cf.

Fig. 58) in all state regions as shown below. Details of the framework are given in

Appendix F and an implementation is available on GitHub.

https://github.com/se-schmitt/EntropyScaling
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7.2.3 Component-Specific Correlation

CE-scaled transport properties are approximate monovariate functions of the configura-

tional entropy s̃conf . Yet, the shape of this monovariate function is different for the three

transport properties and for different components. The relation Ŷ +(s̃conf) is described

here by an empirical, rational function

ln(η̂+i (s̃conf))
λ̂+i (s̃conf)

ln(D̂+i (s̃conf))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

α
(Y )
0,i + α

(Y )
ln,i ln(s̃conf + 1) + α

(Y )
1,i s̃conf + α

(Y )
2,i (s̃conf)2 + α

(Y )
3,i (s̃conf)3

1 + g
(Y )
1 ln(s̃conf + 1) + g

(Y )
2 s̃conf

. (58)

The parameters α
(Y )
0,i , α

(Y )
ln,i , α

(Y )
1,i , α

(Y )
2,i , and α

(Y )
3,i are specific for the studied component

i as well as for the transport property Y . They are fitted for each substance to reference

data. The number of parameters, i.e. terms, used in the nominator of Eq. (58) can

be conveniently chosen for a given problem. The parameters g
(Y )
1 and g

(Y )
2 in the

denominator are universal parameters for the transport property Y . All parameters

of Eq. (58), i.e. α
(Y )
0,i , α

(Y )
ln,i , α

(Y )
1,i , α

(Y )
2,i , α

(Y )
3,i , g

(Y )
1 , and g

(Y )
2 , are dimensionless. The

mathematical form (cf. Eq. (58)) and choice for the universal parameters (see below)

provides well behaving functions for the resulting model, i.e. no pole for s̃conf > 0, and

a defined limit for s̃conf → 0, i.e. α
(Y )
0,i .

7.2.4 Molecular Simulations and Adjustment of the Universal

Parameters

The universal parameters, i.e. g
(Y )
1 and g

(Y )
2 (cf. Eq. (58)), were fitted to LJ simulation

data. As suitable data were not available in the literature, homogeneous bulk phase MD

simulations were carried out in this work with the software ms2[463, 464]. The simula-

tions were carried out for liquid, vapor, supercritical, metastable VLE and metastable

solid-liquid equilibrium (SLE) regions as well as on the VLE binodal and the freezing

line. In total, 173 state points were studied. The studied state points are depicted in

Fig. 59.

Each simulation consisted of 5000 particles. The gear predictor-corrector integrator was

used with a time step of ∆t = 0.001 ((σ2M/NA) /ε)1/2. The simulations were conducted

in the NV T ensemble with 1 × 105 equilibration time steps and 5× 106 production time

steps. Periodic boundary conditions were applied in all directions. The viscosity, the

thermal conductivity, and the self-diffusion coefficient were sampled using the Green-

Kubo [97, 98] formalism with a correlation length of 104 time steps for ρ ≥ 0.1σ−3 and

105 time steps for ρ < 0.1σ−3. Details on the computational procedure of the Green-



7.2 Model 157

0.0 0.5 1.0

/
3

0.8

1.0

1.2

1.4

T
/
k

1 B
0.0 0.5 1.0 1.5

/
3

5

10

15

20

Figure 59: Overview of the 173 state points (circles) of the LJ fluid that were studied
in this chapter. The binodal and the critical point (star) were taken from
Ref. [73], the spinodal from Ref. [706], and the freezing and melting lines
from Ref. [238].

Kubo implementation in ms2 are given in Refs. [707, 708]. The viscosity, the thermal

conductivity, and the self-diffusion coefficient data obtained from the simulations were

CE-scaled according to Eqs. (44) - (56). The second virial coefficient B of the LJ fluid

and its derivative with respect to T used in Eqs. (48) - (50) were calculated analytically

from the interaction potential [709]. Moreover, the configurational entropy was deter-

mined from the simulations. Therefore, the chemical potential µconf was sampled using

Widom’s test particle method [710]. From that, the configurational Helmholtz energy

aconf was calculated as [464]

aconf = −
∂aconf

∂ρ
ρ + µconf =

p

ρ
+ µconf . (59)

The configurational entropy sconf was then calculated as

sconf =
uconf

T
−

aconf

T
, (60)

with uconf being the configurational internal energy. Thereby, data for sconf , η̂+, λ̂+,

and D̂+ of the LJ fluid were obtained in a wide state range. Details are discussed in

Appendix F. Moreover, the numeric data of the MD simulation results are provided in

Ref. 52.

The sampled entropy data were converted to the reduced configurational entropy s̃conf

using Eq. (47) and m = 1. The universal parameters g
(Y )
1 and g

(Y )
2 for the correlations

for Y ∈ {η, λ, D} (cf. Eq. (58)) were obtained from a fit to the computer experiment

data η̂+(s̃conf), λ̂+(s̃conf), and D̂+(s̃conf). The results are given in Table 33.



158 7 Framework for Modeling Transport Properties using Entropy Scaling

Table 33: Universal parameters of the entropy scaling framework, i.e. Eq. (58), as
well as the component-specific parameters used for the fits of the universal
parameters for the viscosity, the thermal conductivity, and the self-diffusion
coefficient.

Property f(s̃conf) g
(Y )
1 g

(Y )
2 α

(Y )
0,LJ α

(Y )
ln,LJ α

(Y )
1,LJ α

(Y )
2,LJ α

(Y )
3,LJ

viscosity ln(η̂+(s̃conf)) -1.6386 1.3923 0 0 0 1 0

thermal

conductivity
λ̂+(s̃conf) -1.9107 1.0725 1 0 0 0 1

self-diffusion ln(D̂+(s̃conf)) 0.6632 9.4714 0 0 0 0 -1

The component-specific parameters α
(Y )
0,LJ, α

(Y )
ln,LJ, α

(Y )
1,LJ, α

(Y )
2,LJ, and α

(Y )
3,LJ were a priori

fixed to constant values for the fit (see Table 33). The value of α
(Y )
0,LJ determines the low-

density limit of the studied property, which is zero for ln(η̂+) and ln(D̂+) and 1 for λ̂+.

The logarithmic term and the linear term in the denominator of Eq. (58) were not used,

i.e. α
(Y )
ln,LJ = α

(Y )
1,LJ = 0. The numbers for α

(Y )
2,LJ and α

(Y )
3,LJ were, depending on the property,

set either to 0 or 1, so that the numerator of Eq. (58) is either a quadratic (viscosity)

or a cubic function (thermal conductivity and self-diffusion coefficient) of the reduced

configurational entropy s̃conf . As the denominator of Eq. (58) is linear, this results in a

linear asymptote for s̃conf → ∞ for the viscosity, which accounts for the approximately

linear behavior of the CE-scaled viscosity as function of the configurational entropy

[128]. For the thermal conductivity and the self-diffusion coefficient, the CE-scaled

transport properties can be described more accurately by a quadratic asymptote. The

values for the parameters given in Table 33 are valid for the LJ fluid, but they can

also be used as default and starting values for individual fits to data for other fluids.

Fig. 60 shows the result of the fit for the CE-scaled properties as function of the reduced

configurational entropy for the LJ fluid. The data are well represented by the fit. The

mean relative deviations of the fits are δη̂+ = 9.12 %, δλ̂+ = 11.49 %, and δD̂+ = 2.01 %

and were calculated as

δY =
1

Nexp

Nexp

∑
j

∣δYj ∣ (61)

with δYj =
Yexp,j − YES,j

Yexp,j

, (62)

with Nexp being the number of data points, Yexp the (computer) experiment value, and

YES the values obtained from the entropy scaling model. Since the studied state points

cover a large range of states with respect to temperature and density (cf. Fig. 59), also a

large range of states with respect to the configurational entropy is covered (see Appendix
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Figure 60: CE-scaled viscosity η̂+, thermal conductivity λ̂+, and self-diffusion coeffi-
cient D̂+ of the LJ fluid as function of the reduced configurational entropy
s̃conf . Symbols represent MD simulation results (state points as shown in
Fig. 59) and the solid line is the global fit to these results (cf. Eq. (58) and
Table 33). All shown properties are dimensionless.

F). For the viscosity and the thermal conductivity, the vast majority of the data points

is described by the entropy scaling model with a deviation below 5 %; that number is

2 % for the self-diffusion coefficient. The deviations are larger for the data points at

the largest configurational entropies which corresponds to very high densities, where

the sampling of both the entropy and the transport properties is challenging. These

deviations are of the same order as the relative statistical uncertainties of the simulation

data for the viscosity and the thermal conductivity, which are on average 7.4 % and 8.5

%, respectively. For the self-diffusion coefficient, the corresponding uncertainty for the

simulation data is 0.15 %.

Fig. 60 also indicates that the strategy proposed in this work, that is based on different

procedures for the LD region and the HD region, works well. The curves are smooth,

also in the vicinity of the threshold at s̃conf = 0.5.

7.2.5 Extension to Mixtures

Also for mixtures, an approximately monovariate relation between the transport prop-

erties and the configurational entropy has been observed [62, 672]. Therefore, the en-

tropy scaling model for the viscosity and the thermal conductivity of pure components

described above was extended to modeling mixture properties. The extension to self-

diffusion coefficients is less straightforward, as there is one self-diffusion coefficient for
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each component, so this issue is not discussed here and left open for future work. In the

approach, the mixture is treated as a pure pseudo-component following the one-fluid

theory mixing rule concept [28, 711].

Transport properties of mixtures are represented here as a function of the temperature,

density, and composition x, i.e. Ymix(T , ρ, x), and described by the entropy scaling

model as Ŷ +mix(s̃conf(T , ρ, x)). In Eqs. (44) - (46), M is now the mean molar mass of the

mixture

M =
N

∑
i

xiMi, (63)

where N is the number of components and xi and Mi are the mole fraction and the molar

mass of component i. The reduced configurational entropy of the mixture s̃conf(T , ρ, x)
is calculated from the molecular-based EOS using Eq. (47), where the segment number

m of the pseudo-component representing the mixture is calculated from

m =
N

∑
i

ximi, (64)

where mi is the segment number of the component i. The zero-density transport prop-

erties of the mixture were calculated as follows: the viscosity of the mixture in the

zero-density limit η+CE,mix was calculated according to Wilke [712]

η+CE,mix =

N

∑
i

xiη
+

CE,i

∑N
j=1 xiφij

,

with φij =

(1 + (η+CE,i/η+CE,j)1/2(Mi/Mj)1/4)2
(8(1 +Mi/Mj))1/2 ,

(65)

where η+CE,i and η+CE,j are the pure component Chapman-Enskog values for the viscosity

(cf. Eq. (48)). The thermal conductivity of the mixture in the zero-density limit λ+CE,mix

was calculated according to Wassiljewa [713] and Mason and Saxena [714] from

λ+CE,mix =

N

∑
i

xiλ
+

CE,i

∑N
j=1 xiφij

,

with φij =

(1 + (λ+CE,i/λ+CE,j)1/2(Mi/Mj)1/4)2
(8(1 +Mi/Mj))1/2 ,

(66)

where λ+CE,i and λ+CE,j are the pure component Chapman-Enskog values for the thermal

conductivity (cf. Eq. (49)). In Eq. (58), which describes the mathematical form of the
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generalized function Ŷ +conf(s̃conf), linear mixing rules are applied for the parameters, i.e.

βmix =

N

∑
i

xiβi with βi ∈ {α(Y )0,i , α(Y )ln,i , α(Y )1,i , α(Y )2,i , α(Y )3,i }
and βmix ∈ {α(Y )0,mix, α(Y )ln,mix, α(Y )1,mix, α(Y )2,mix, α(Y )3,mix}.

(67)

Here, βmix is the resulting parameter for the mixture, N is the number of components, xi

is the mole fraction of component i, and βi indicates the component-specific parameters.

The values for the universal parameters g
(Y )
1 and g

(Y )
2 (cf. Table 33) are the same for pure

components and mixtures. Additional information on the entropy scaling framework for

mixtures is given in Appendix F.

7.2.6 Remarks Regarding the Physical Basis of the Model

Framework

The outlined entropy scaling framework is a physically-motivated model designed to

be coupled with molecular-based EOS. The framework provides a basis for the mod-

eling and prediction of transport properties in a wide range of thermodynamic states,

different substance classes, and different EOS models (see applications below). Yet,

the physical aspects of the entropy scaling model also comprise several assumptions

and simplifications that influence the performance and are briefly critically summarized

here. Moreover, while the entropy scaling framework is designed to be coupled with

molecular-based EOS, it can in general be also used with empirical EOS. Yet, this route

is not further exploited here.

In the zero-density limit, the Chapman-Enskog theory, which assumes spherical parti-

cles, is applied in the proposed model. By applying the model, it is assumed that the

Chapman-Enskog theory, coupled with the corresponding states principle, also works

for more complex molecules. This is a relatively crude assumption for highly non-ideal

fluids, e.g. H-bonding fluids. Furthermore, the thermal conductivity of gases depends

on internal degrees of freedom, which are not considered in the Chapman-Enskog theory

[75]. Hence, also the model developed in this chapter does not consider the influence

of the internal degrees of freedom on the thermal conductivity [75], which can cause

problems with predictions for fluids at low densities. However, fitting the parameter

α
(Y )
0,i and not using the default value of 0 or 1 offers a pragmatic work-around that can

alleviate some of these problems. More details are given in the applications section

below and in Appendix F. In principle, the framework proposed in this chapter could

be extended by adding a model for the intramolecular degrees of freedom.

Furthermore, the smoothness of the transition between the LD and the HD region
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depends on the (presence of the) minimum of the function Y +CE(T ), which depends on

the description of the second virial coefficient by the employed EOS. In cases where the

second virial coefficient is not described well by a given EOS, a work-around can be

used – see Appendix F.

Moreover, in this chapter, molecular-based EOS with a classical scaling behavior were

used such that systematic errors in the critical region have to be expected (overes-

timation of the critical temperature). The latter could be overcome by using more

sophisticated EOS models, e.g. based on renormalization group theory [589], which

were, however, not applied in this work.

Furthermore, the entropy scaling model itself does not account for near-critical effects,

i.e. the critical enhancement [235]. In principle, additional contributions in the entropy

scaling approach could be used to account for this, but this was not considered here, so

that the model should not be used without modifications in the near-critical region.

7.3 Applications

7.3.1 Overview

The new entropy scaling framework was applied in this chapter to pure substances

and binary mixtures. To demonstrate the flexibility, different molecular-based EOS

were used for the modeling. In total, 15 pure components, four binary mixtures, and

a quaternary mixture were studied. Table 34 gives an overview of the studied pure

components.
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Table 34: Overview of the studied pure components: the columns indicate (from left to right) the substance name, the EOS used for
the modeling, the references for the pure component model. Nexp is the number of experimental data points used for the
parameter adjustment and model evaluation, Npar the number of entropy scaling parameters used. δY indicates the mean
relative deviation (cf. Eq. (61)) for the viscosity η, the thermal conductivity λ, and the self-diffusion coefficient D.

Substance EOS Ref. Viscosity Thermal conductivity Self-diffusion

Nexp Npar δη/% Nexp Npar δλ/% Nexp Npar δD/%

LJ Kolafa-Nezbeda [136] - 654 4 5.57 529 4 4.66 947 4 3.69

LJTS PeTS [108] - 348 4 4.54 348 4 3.91 348 2 5.22

methane Stephan et al. [234] [715] 2588 4 2.99 3082 5 5.84 318 4 5.53

n-butane PC-SAFT [40] [40] 973 4 4.36 2859 5 4.68 42 2 7.71

n-hexane SAFT-VR Mie [41] [41] 1487 4 3.36 1845 5 3.01 12 2 1.31

n-hexanea SAFT-VR Mie [41] [41] 867 4 3.18 - - - - - -

n-hexadecane PC-SAFT [40] [40] 592 4 5.7 431 3 1.81 109 2 8.63

propene soft SAFT [558] [558] 244 4 5.61 172 5 12.59 - - -

cyclohexane PACT+B [695] [695] 895 4 4.59 294 3 2.37 15 2 3

benzene SAFT-VR Mie [41] [41] 1379 4 3.63 803 5 2.93 426 2 4.02

nitrogen SAFT-VR Mie [41] [702] 2826 5 1.49 2223 5 2.86 - - -

carbon dioxide PC-SAFT [40, 703] [703] 2911 4 2.82 1968 5 8.49 324 1 14.72

methanol sCPA [43, 701] [697] 1233 5 3.84 609 5 4.81 103 3 4.78

1-propanol SAFT-VR Mie [41] [41] 896 2 5.44 273 5 4.82 - - -

1-octanol PC-SAFT [40, 557, 716] [704] 341 4 3.59 197 5 3.8 19 2 19.95

R134a BACKONE [694] [694] 742 4 3.71 6478 5 5.79 - - -

aextrapolation study (details below)
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Table 35 gives an overview of the studied mixtures. The results for the mixtures are

Table 35: Overview of the studied mixtures: the columns indicate (from left to right)
the components, the EOS used for modeling, the Berthelot combination
rule parameter ξij, Nexp is the number of experimental data points used for
the evaluation, δY indicates the mean relative deviation (computed from
Eq. (61)) for the viscosity η and the thermal conductivity λ. The size para-
meter σ was the same for both LJTS components, the pure component mod-
els for the other four (real) components were the same as in Table 34. No
parameters were adjusted to the mixture data.

Components EOS ξij Viscosity
Thermal

conductivity
Nexp δη/% Nexp δλ/%

LJTS (ε1) + LJTS (ε2 = 0.9 ε1) PeTS 1.2 55 4.71 55 5.42

LJTS (ε1) + LJTS (ε2 = 0.9 ε1) PeTS 0.85 51 4.85 51 4.55

1-octanol + n-hexadecane PC-SAFT 1 42 2.39 - -

benzene + n-hexane SAFT-VR Mie 1 - - 19 3.47

n-decane + n-dodecane +
n-tetradecane + n-hexadecane

PC-SAFT 1 18 1.97 - -

predictions based on the pure component models (cf. Table 34) and the mixing rules

(cf. Eqs. (63) - (67)), i.e. they were obtained without any adjustment to experimental

mixture data of transport properties. Also for the EOS mixture models, fully predictive

mixing and combination rules were used.

Nine different molecular-based EOS were used to model the different substances (cf.

Tables 34 and 35). The choice of the EOS models was not optimized to create entropy

scaling models with low deviations, but to show the general applicability and robustness

of the framework. The individual choices were made so as to obtain examples that reflect

realistic applications, e.g. the BACKONE EOS is often used for modeling refrigerants

in the literature [717, 718]. It was out of the scope of this chapter to compare the perfor-

mance of different EOS. The EOS pure component parameters were adopted from the

literature (see Appendix F for details). The entropy scaling parameters (cf. Eq. (58))

were fitted to transport property data taken from the literature. The number of pa-

rameters for each model (cf. Table 34) was chosen so that no overfitting occurred for

the function Ŷ +(s̃conf). For the viscosity, four parameters were used in most cases. For

the thermal conductivity, five parameters were used since also the value α
(λ)
0,i had to be

adjusted to get a good representation of the zero-density limit, for the reasons discussed

in Section 7.2.6. Only for the spherical model fluids (LJ and LJTS), the parameter α
(λ)
0,i

was not fitted for the thermal conductivity due to the absence of internal degrees of

freedom in this radial-symmetric model. For the self-diffusion coefficient, the data basis
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is smaller for all substances. Except for the LJ fluid and methane, only one to three

parameters were used in the entropy scaling model. All experimental data were used

for adjusting the entropy scaling parameters, except in the case of n-hexane modeled

by the SAFT-VR Mie EOS (cf. Table 34). To test the extrapolation capability of the

model to states that were not considered in the fit, the model parameters for n-hexane

were adjusted using state points p ≤ 10 MPa alone. The model performance was then

evaluated using data at p > 10 MPa, which includes state points up to p = 1000 MPa.

Both the pure component EOS parameters and the entropy scaling parameters used in

this chapter are reported in Appendix F.

The experimental data for the real substances were taken from the Dortmund Database

(DDB) [719] and from the database from Suárez-Iglesias et al. [329]. For the model

fluids, i.e. the LJ and the Lennard-Jones truncated and shifted (LJTS) fluid, data were

taken from Refs. [62, 114, 118, 153, 176, 184, 211, 225]. Data from different fluid regions

were considered for the entropy scaling modeling, i.e. gaseous, liquid, and supercritical

(and in some cases also metastable) states in a large temperature and pressure range.

In total, 43,750 data points were considered for the 15 pure components and 291 data

points for the five mixtures. Overall, the availability of data on the transport properties

of mixtures is significantly lower than that for the pure components. In all cases, the

data compiled from the literature was screened for gross outliers which were removed

for the fit and model evaluation. Also, data in the direct vicinity of the critical point

were omitted.

7.3.2 Pure Components

The mean relative deviation results for the pure components are given in Table 34 .

They are in a range from 1.49 % to 19.95 %. For the vast majority of the studied pure

components, a mean relative deviation below 6 % is obtained. This is impressive con-

sidering the fact that not more than five parameters were used for the fit that describes

large data sets covering a wide range of conditions. Four typical examples are presented

and discussed in detail in the main body of this paper, namely the viscosity of n-butane

and n-hexane, the thermal conductivity of nitrogen, and the self-diffusion coefficient of

benzene (cf. Table 34).

Fig. 61 shows the entropy scaling plot Ŷ + = Ŷ +(s̃conf) for the viscosity of n-butane,

the thermal conductivity of nitrogen, and the self-diffusion coefficient of benzene (the

corresponding plot for the viscosity of n-hexane is shown at the end of this chapter).

In all three plots, the CE-scaled transport properties are distinct monovariate functions

of the reduced configurational entropy in the entire range of s̃conf . The scattering of
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Figure 61: CE-scaled viscosity η̂+ of n-butane (top), CE-scaled thermal conductivity of
nitrogen λ̂+ (middle), and CE-scaled self-diffusion coefficient D̂+ as function
of the reduced configurational entropy s̃conf . Symbols are the data points
derived from experimental data (η, λ, and D from experimental data and
s̃conf from the EOS). The EOS applied for the three substances are given
in Table 34. The color indicates the pressure. The black line is the entropy
scaling model.

the data points is very small for all properties and substances. In all cases, a smooth

transition between the LD and the HD region is observed.

In the following, the results for the four selected systems are discussed in detail by

means of Figs. 62 - 65. For each example, the results from the entropy scaling model

are compared to the reference data for selected isotherms (plot a in Figs. 62 - 65).

Additionally, a deviation plot is shown (plot b in Figs. 62 - 65), which comprises all

considered experimental data. Furthermore, a parity plot (plot e in Figs. 62 - 65) is

given together with histograms of the temperature and pressure distributions of the

considered state points (plots c and d in Figs. 62 - 65).

Fig. 62 shows the results for the viscosity of n-butane. Four parameters (cf. Eq. (58))

were adjusted to 973 experimental data points. The experimental data were in the range

0.0267 MPa < p < 1000 MPa and 140 K < T < 511 K, which includes gaseous, liquid, as

well as supercritical states. Most state points are in the temperature range from 300 to

500 K and pressure of 0.1 MPa to 100 MPa (cf. Fig. 62 c & d). The EOS was PC-SAFT.

The viscosity of n-butane is described well by the model with a mean relative deviation

of δη = 4.36 %.

The supercritical isotherms cross each other in the vicinity of the critical point, which

reflects the change of the temperature dependency. At low pressure, the viscosity in-
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Figure 62: Results for the viscosity η of n-butane. a: Viscosity η as function of the
pressure p for 12 isotherms obtained from the entropy scaling model (lines)
and experimental data (colored symbols). The viscosity computed from
entropy scaling for the saturated liquid and saturated vapor (dashed line),
and the critical point (star) are also given. b: Relative deviation between
entropy scaling results and experimental data δη (cf. Eq. (62)) as function
of the pressure p (all considered data). The black dotted line indicates the
mean average deviation δη = ±4.36 %. a and b: The color indicates the
temperature. c and d: Histograms of the number of experimental data
points Nexp regarding their temperature (plot c) and pressure (plot d). e:
Parity plot for the viscosity computed from the entropy scaling model ηES

vs. experimental data ηexp (all considered data). The entropy scaling results
were obtained with the PC-SAFT EOS. Ñexp indicates the number of data
points depicted in a given plot.

creases with increasing temperature as predicted by the Chapman-Enskog theory; at

high pressure at liquid-like states, the viscosity decreases with increasing temperature,

which is as expected [75, 660].

Overall, the entropy scaling model yields an excellent description of the viscosity over the

whole temperature and pressure range. Only for pressures p < 1 MPa, the experimental

values are slightly systematically overestimated by the entropy scaling model (cf. Fig. 62

b). This is due to an overestimation of the zero-density limit by the Chapman-Enskog

theory in combination with the corresponding states principle.

Fig. 63 shows the results for the thermal conductivity of nitrogen modeled by the en-

tropy scaling model in conjunction with the SAFT-VR Mie EOS. The 2223 state points

comprise temperatures in the range 77 K < T < 2473 K and pressures in the range

0.009 MPa < p < 1000 MPa (cf. Fig. 63 c & d), which includes a large amount of su-
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Figure 63: Results for the thermal conductivity λ of nitrogen. a: Thermal conductivity
λ as function of the pressure p for 13 isotherms obtained from the entropy
scaling model (lines) and experimental data (colored symbols). The thermal
conductivity computed from entropy scaling for the saturated liquid and
saturated vapor (dashed line), and the critical point (star) are also given.
b: Relative deviation between entropy scaling results and experimental
data δλ (cf. Eq. (62)) as function of the pressure p (all considered data).
The black dotted line indicates the mean average deviation δλ = ±2.86 %.
a and b: The color indicates the temperature. c and d: Histograms of
the number of experimental data points Nexp regarding their temperature
(plot c) and pressure (plot d). e: Parity plot for the thermal conductivity
computed from the entropy scaling model λES vs. experimental data λexp

(all considered data). The entropy scaling results were obtained with the
SAFT-VR Mie EOS. Ñexp indicates the number of data points depicted in
a given plot.

percritical state points as well as some gas and few liquid state points. The structure

of the λ − log(p) diagram regarding the different state regions (cf. Fig. 63 a) is similar

to that for the viscosity. The isotherms with low temperatures are shown up to the

solidification pressure (data taken from Grace et al. [720]).

The mean relative deviation is δλ = 2.86 %, which is impressive considering that only five

parameters were fitted to a very large and diverse data set. Some larger deviations (up to

δλ = 15 %) are observed in in the gas region at low pressure (log(p /MPa) ≤ −1). These

deviations slightly increase with increasing temperature. This is likely due to the fact

that the Chapman-Enskog model does not consider internal degrees of freedom. On the

other hand, state points at large pressures up to 1000 MPa and moderate temperatures

are described very well (cf. Fig. 63 b), i.e. with δλ < 1.5 %. These state points can also

be identified in the parity plot (cf. Fig. 63 e) as the ones with λ > 0.2 W K−1m−1, which
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indicates the robustness of the macroscopic scaling used for dense states (cf. Eq. (56)).

Fig. 64 shows the results for the self-diffusion coefficient of benzene. Only two component-
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Figure 64: Results for the self-diffusion coefficient D of benzene. a: Self-diffusion co-
efficient D as function of the pressure p for 12 isotherms obtained from
the entropy scaling model (lines) and experimental data (colored symbols).
The self-diffusion coefficient computed from entropy scaling for the satu-
rated liquid and saturated vapor (dashed line), and the critical point (star)
are also given. b: Relative deviation between entropy scaling results and
experimental data δD (cf. Eq. (62)) as function of the pressure p (all
considered data). The black dotted line indicates the mean average devi-
ation δD = ±4.02 %. a and b: The color indicates the temperature. c and
d: Histograms of the number of experimental data points Nexp regarding
their temperature (plot c) and pressure (plot d). e: Parity plot for the
self-diffusion coefficient computed from the entropy scaling model DES vs.
experimental data Dexp (all considered data). The entropy scaling results
were obtained with the SAFT-VR Mie EOS. Ñexp indicates the number of
data points depicted in a given plot.

specific parameters were used. The experimental data of the self-diffusion coefficient for

benzene (Nexp = 426) cover temperatures in the range 279 K < T < 684 K and pressures

in the range 0.1 MPa ≤ p < 236 MPa, which corresponds to liquid, gaseous, and super-

critical states. The majority of the data points is at temperatures below 373.15 K and

ambient pressure, i.e. liquid states. The parity plot (cf. Fig. 64 e) reveals two groups

of points, for liquid-like states (D < 10−8 m2s−1) and for gas-like states (D ≥ 10−7 m2s−1).

This distribution of the state points makes benzene an interesting candidate for testing

the entropy scaling framework. The self-diffusion coefficient exhibits a qualitatively dif-

ferent behavior D = D(p, T ) compared to the viscosity and thermal conductivity. For
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all fluid states, D increases with increasing temperature and decreases with increasing

pressure.

The self-diffusion coefficient of benzene is described with a mean average deviation of

δD = 4.02 %. This is impressive considering the fact that only two adjustable parameters

were used. The description of the different state regions is overall similar. Hence, no

region shows particularly high deviations, which indicates that the splitting approach

between the low-density and high-density states in the entropy scaling framework works

well. This is supported by the fact that also the gaseous state points at high tempera-

tures T > 550 K are well described by the model.

Fig. 65 shows the results for the viscosity of n-hexane. Here, a different fitting strategy
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Figure 65: Results for the viscosity η of n-hexane. a: Viscosity η as function of the
pressure p for 9 isotherms computed from the entropy scaling model (lines)
and experimental data (symbols). b: Relative deviation between entropy
scaling model and experimental data δη as function of the pressure p (all
available experimental data). The black dotted line indicates the mean
average deviation δη = ±3.18 %. a and b: The circles denote the data points
at p ≤ 10 MPa (grey area, used for fitting) and the crosses the data points
at p > 10 MPa. The color indicates the temperature. c and d: Histograms
of the number of experimental data points Nexp (blue: used for fit (p ≤
10 MPa), red: data points at p > 10 MPa) regarding their temperature (plot
c) and pressure (plot d). e: Parity plot for the viscosity computed by the
entropy scaling model ηES vs. experimental data ηexp (black circles: state
points used for fit (p ≤ 10 MPa), red crosses: data points at p > 10 MPa).
The entropy scaling results were obtained with the SAFT-VR Mie EOS.
Ñexp indicates the number of data points depicted in a given plot.

was used in order to test the extrapolation behavior of the entropy scaling framework:
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the experimental data were divided into two sets based on the pressure, state points

at p ≤ 10 MPa were used for fitting the component-specific parameters of the entropy

scaling model; state points at p > 10 MPa were used for the assessment of the predictions

of the entropy scaling model. Accordingly, 867 experimental state points were used for

the parametrization and 620 state points were used for the evaluation of the predictions

(cf. Table 34). For n-hexane, all considered experimental data points for the assessment

of the entropy scaling model are at supercritical pressure (up to 1000 MPa), but sub- and

supercritical isotherms are shown, cf. Fig. 65 (the critical temperature and pressure are

Tc = 507.6 K and pc = 3.02 MPa [721], respectively). Four component-specific parameters

were used in the fit. The entropy scaling model describes the data used for the fit

(p < 10 MPa) very well with a mean relative deviation of δη = 3.18 %. Upon using

the entropy scaling model for extrapolation (p > 10 MPa), a mean relative deviation of

δη = 2.88 % is obtained. The vast majority of predicted data points yields a deviation

well below 10 %. For the data points at p > 500 MPa (where also experiments are

challenging to carry out), a larger deviation up to 38 % is obtained. Yet, the trends

are qualitatively captured well at these extreme pressures. Hence, the entropy scaling

model is capable of making reliable predictions for the viscosity across two orders of

magnitude in the pressure. Also the temperature dependency is very well described by

the model.

The main reasons for the robust extrapolation behavior of the framework lie in the

robust extrapolation behavior of the molecular-based EOS and the basic principle of

the entropy scaling concept – correlating transport coefficients that are in general a

function of two state variables, e.g. T and p, by only the configurational entropy sconf

(which is a function of T and p in the example). This leads to situations, where an

extrapolation in the T , p space is an interpolation in the s̃conf space. This is illustrated

in Fig. 66 for the n-hexane case discussed above. It shows the CE-scaled viscosity η̂+ as

function of the reduced configurational entropy s̃conf . For all considered experimental

data points, the configurational entropy was computed (cf. Eq. (43)) from the EOS.

The data points considered for the entropy scaling model fit (p < 10 MPa) lie in the range

0 < s̃conf < 5 (cf. Fig. 66 a). For the vast majority of the data points at p > 10 MPa,

the reduced configurational entropy s̃conf is also in the range 0 < s̃conf < 5 (cf. Fig. 66

b). Hence, the vast majority of data points predicted by the model at high pressure

p > 10 MPa are actually interpolated by the kernel of the model, i.e. in the entropy

space. Only few state points are in fact extrapolations in the s̃conf space, which are the

state points with large viscosities at extremely high pressure (cf. Fig. 65). This principle

could be favorably used in the design of experiment for determining most useful data

for the parametrization of entropy scaling models.
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Figure 66: CE-scaled viscosity η̂+ as function of the reduced configurational entropy
s̃conf for n-hexane. Symbols are data points derived from experimental data
(η from experimental data and s̃conf from the SAFT-VR Mie EOS). The
color indicates the temperature. The black line is the entropy scaling model.
a: Data points at p ≤ 10 MPa (used for fit). b: Data points at p > 10 MPa
(testing extrapolation behavior). Both η̂+ and s̃conf are dimensionless prop-
erties.

7.3.3 Mixtures

The entropy scaling framework was also used for predicting transport properties of

mixtures based on the pure component models discussed above. Five mixtures were

studied (cf. Table 35). The results for three mixtures are presented and discussed in

the main part of this work; the results for the other two mixtures are presented in

Appendix F. For all studied mixtures, no parameters were fitted to the experimental

data of the mixtures, i.e. the mixture results are pure predictions.

Fig. 67 shows the results for the viscosity and the thermal conductivity of an LJTS

model mixture with σ2 = σ1, M1 =M2, ε2 = 0.9 ε1, and ξ = 1.2 [62]. The PeTS EOS [108]

was used for modeling the LJTS mixtures. Results are shown for a wide temperature

range and the entire composition range. The mixture exhibits a high-boiling azeotropic

phase behavior for all studied temperatures [62]. All studied data points for the LJTS

mixture are liquid phase state points. The predictions from the entropy scaling model

are in excellent agreement with the reference data, which is astonishing considering

the fact that the mixture is highly non-ideal. For all studied temperatures, both the

viscosity and the thermal conductivity exhibit a maximum at x2 ≈ 0.4 mol mol−1, which

corresponds approximately to the azeotropic composition [62]. For the vast majority

of data points, the entropy scaling predictions agree with the computer experiment

results within their uncertainties. The mean relative deviations of the entropy scaling

model are δη = 4.71 % and δλ = 5.42 %. These deviations are even slightly below the

mean relative deviations obtained for the pure LJTS component (cf. Table 34) which
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Figure 67: Viscosity η (top) and thermal conductivity λ (bottom) of the LJTS mixture
with σ2 = σ1, ε2 = 0.9 ε1, and ξ = 1.2 [62] as function of the mole fraction x2.
Molecular simulation data (symbols) from Ref. [62] and predictions with
entropy scaling (lines). The color indicates the temperature. The pressure
is p = 0.1 ε/σ3. The entropy scaling results were obtained with the PeTS
EOS.

emphasizes the predictive capabilities of the entropy scaling framework for modeling

mixtures. The success of the predictions justifies the use of the simple linear mixing

rules for the component-parameters of the fit function (cf. Eq. (58)) and emphasizes

that the deviations from ideality are a result of the modeling of the entropy of the

mixture by the EOS. The results for another LJTS mixture with same σ and ε values,

but a mixing parameter ξ = 0.85 (cf. Table 35), a mixture with a low-boiling azeotrope,

are reported in Appendix F. Also for this LJTS mixture, the performance of the entropy

scaling framework is excellent.

Fig. 68 shows the results for the viscosity of the mixture 1-octanol + n-hexadecane.

Predictions from the entropy scaling model are compared with experimental data for

three different temperatures from 298.15 K to 308.15 K at ambient pressure in the

entire composition range. All considered state points are liquid. The predictions of the

entropy scaling model are in excellent agreement with the experimental data. For mole

fractions xC16H32
≳ 0.8 mol mol−1, the experimental viscosity data exhibit a plateau for

all temperatures. The entropy scaling model predicts a faint minimum in that region.

It is astonishing that such details of the behavior are predicted by a model that was

not trained to mixture data. Both the temperature and composition dependency of the

viscosity are predicted well by the entropy scaling model. This is also reflected by the

mean relative deviation of δη = 2.39 %.

Fig. 69 shows the results for the quaternary mixture n-decane + n-dodecane + n-

tetradecane + n-hexadecane. The predictions from entropy scaling are compared with
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Figure 68: Viscosity η of the mixture 1-octanol + n-hexadecane as function of the
mole fraction of n-hexadecane xC16H34

at ambient pressure p = 0.1 MPa.
Experimental data [722] (symbols) and entropy scaling (lines). The color
indicates the temperature. The entropy scaling results were obtained with
the PC-SAFT EOS.

experimental data for three different temperatures (313.15 K, 333.15 K, and 353.15 K)

as a function of the pressure. All considered state points are liquid. The entropy

scaling model provides a very good description of the experimental data over the whole

temperature and pressure range. Thus, the mean relative deviation is δη = 1.97 %.

7.4 Conclusions

An entropy scaling framework was developed for modeling transport properties of pure

fluids and mixtures. The entropy scaling framework proposed in this chapter combines

multiple physical theories and concepts such as the Chapman-Enskog theory, the Rosen-

feld scaling theory, a LJ model at the kernel, the corresponding states principle, and

molecular-based EOS. The aim of entropy scaling is to obtain a master curve that re-

lates a suitably scaled transport property to the configurational entropy of the studied

fluid. In the entropy scaling framework proposed in this chapter, the Rosenfeld scaling is

used for describing high-density states and the Chapman-Enskog theory for low-density

states. The two approaches are connected in a convenient way using the lowest number

obtained for the scaled zero-density limit from the Chapman-Enskog theory. This leads

to a smooth transition between the scaled Chapman-Enskog data at low densities and

the Rosenfeld-scaled data at high densities, which can be described easily as a function of

the configurational entropy. The kernel of the entropy scaling framework comprises a LJ

model such that the LJ critical parameters and the LJ collision integrals were adapted.

A generalized mathematical form for this master curve was proposed that contains both

component-specific parameters as well as universal parameters. The latter were fitted

in this work to transport data for the LJ fluid. The number of component-specific pa-
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Figure 69: Viscosity η of the mixture n-decane + n-dodecane + n-tetradecane +
n-hexadecane as function of the pressure p with constant mole fractions
xC10H22

= 0.31 mol mol−1, xC12H26
= 0.26 mol mol−1, xC14H30

= 0.23 mol mol−1

and xC16H34
= 0.20 mol mol−1. Experimental data [723] (symbols) and en-

tropy scaling (lines). The color indicates the temperature. The entropy
scaling results were obtained with the PC-SAFT EOS.

rameters can be varied, depending on the amount of available data. The mathematical

form contains five component-specific parameters, but usually only some of these have

to be adjusted to obtain good correlations of the available transport data of a given

fluid. By applying simple mixing rules to these parameters, also transport properties

of mixtures can be predicted from the pure component models. The applicability and

good performance of this framework has been demonstrated in this chapter for several

pure fluids and also for some mixtures.

Entropy scaling requires a suitable model for calculating the entropy, which is usually

accomplished by an EOS. The entropy scaling framework proposed in this chapter is

designed to be coupled with molecular-based EOS, which provide in many cases robust

extrapolation capabilities to conditions not used in the model development. The EOS are

integrated in the entropy scaling framework model in a consistent way by adapting the

second virial coefficients, the critical point parameters, molecular property parameters,

and the configurational entropy from the EOS. Based on that coupling, the entropy

scaling framework can be flexibly used in conjunction with practically any molecular-

based EOS (and in general also with empirical EOS). This was demonstrated by applying

several molecular-based EOS, without, however, aiming at a systematic comparison of

their performance.

The big advantage of combining entropy scaling with molecular-based EOS is that,

based only on a few data points, transport properties can be predicted for a wide range

of states. What may be a bold extrapolation in terms of the transport data in variables

of temperature and pressure may turn out to be a simple interpolation in the scaled

transport data as a function of the configurational entropy.
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Due to the strong physical basis of the framework, transport properties can be described

in a large range of states with very few adjustable parameters. Even two parameters

can provide a good description of transport property data in a wide state range. The

entropy scaling framework was shown to yield excellent predictions also for states that

were not considered for the parametrization, i.e. for metastable states, extreme pressure

and temperature as well as for mixtures.
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8 Entropy Scaling for Modeling

Diffusion Coefficients in Mixtures

8.1 Introduction

Diffusion in mixtures is important in many natural and technical processes. And, num-

bers for diffusion coefficients are needed in many applications, e.g. for the design of

fluid separation processes and reactors or for modeling combustion processes. However,

experimental data on diffusion coefficients are notoriously scarce, so that reliable models

for their prediction are needed. A new model type is introduced that is based on entropy

scaling and enables predictions that were previously infeasible.

In diffusion, two phenomena are distinguished: Self-diffusion (a.k.a. tracer diffusion)

and mutual (transport) diffusion. Self-diffusion and the corresponding self-diffusion

coefficient Di of a component i describes the Brownian movement of individual particles

and is defined for pure components and mixtures. In contrast, mutual diffusion is

only defined in mixtures and describes the motion of particle collectives of the different

components that results in macroscopic mass transfer. Obviously, self-diffusion and

mutual diffusion are closely related, but there exist no generally applicable equations

that relate self-diffusion coefficients and mutual diffusion coefficients. The different

diffusion coefficients are schematically depicted in Fig. 70 for a binary mixture.

For describing mutual diffusion [724], there are two common frameworks: Those of Fick

and Maxwell-Stefan. The corresponding diffusion coefficients are the Fickian diffusion

coefficients Dij (related to the concentration gradient as driving force) and the Maxwell-

Stefan diffusion coefficients Ðij (related to the chemical potential gradient as driving

force). The two frameworks are thermodynamically consistent representations and can

be transformed into each other. For a binary mixture, these diffusion coefficients are

related by

Dij = ÐijΓij, (68)
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where Γij is the thermodynamic factor, which is defined by

Γij =
xixj

RT

∂2G

∂x2
i

, (69)

where xi and xj are the mole fractions of components i and j, respectively, R is the

universal gas constant, and G is the Gibbs energy of the mixture.

Evidently, the two coefficients Dij and Ðij become equal if the thermodynamic factor is

unity, which is the case in the infinite dilution limit (and for ideal mixtures). Further-

more, self-diffusion coefficient and the mutual diffusion coefficients are related in the

infinite dilution limit (cf. Fig. 70). Thus, the following relations apply for the infinite

dilution limit:

xi → 0 ∶ Ðij =Dij =Di =D∞i (70)

xj → 0 ∶ Ðij =Dij =Dj =D∞j (71)

where D∞i is the diffusion coefficient of component i infinitely diluted in component j,

D∞j the diffusion coefficient of component j infinitely diluted in component i. Modeling

the different diffusion coefficients in a mixture in a consistent way is a challenging task.

In this work, a new methodology that provides such a framework is proposed.

Physical models for predicting mixture diffusion coefficients at gaseous states are known

and established for a long time within kinetic gas theory [9] - see Appendix G for details.

The prediction of mixture diffusion coefficients at states where significant intermolecular
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interactions prevail, on the other hand, is still an unresolved problem. Einstein has pro-

posed a method for estimating infinite dilution diffusion coefficients in liquids [342], for

which several modifications exist today [9, 675, 725]. For estimating the concentration

dependence of mutual diffusion coefficients in mixtures, several empirical models have

been proposed, e.g. the Vignes model and the generalized Darken model [13, 726, 727].

However, these models often fail for strongly non-ideal mixtures (see Appendix G).

In recent years, entropy scaling has received significant attention for modeling transport

properties [24, 669, 728]. It is based on the discovery of Rosenfeld [25, 26], that dynamic

properties (i.e. viscosity, thermal conductivity, and self-diffusion coefficient) of pure

components, when properly scaled by the density and temperature, are a monovariate

function of the configurational entropy sconf . This scaling behavior is physically based

and related to isomorph theory [24, 688] (however, it is not yet fully understood). For

describing the entropy with respect to the desired state point (e.g. given by T , p),

usually an equation of state (EOS) is used. Entropy scaling can be favorably combined

with molecular-based EOS [22], which enables predictions beyond the available data

[52, 74]. Entropy scaling is well established for predicting the viscosity and thermal

conductivity of mixtures [664, 672]. The corresponding models are based on combination

and mixing rules and often enable a reliable prediction of mixture viscosities and thermal

conductivities. However, entropy scaling for mixture diffusion coefficients – as depicted

in Fig. 70 – has not yet been developed. So far, only the pure component limiting

cases for the self-diffusion coefficients D
pure
1 and D

pure
2 (cf. Fig. 70) can be described by

entropy scaling models from the literature [52, 128, 130, 671, 679]. Molecular dynamics

simulation results indicate that also mixture diffusion coefficients might be subject to a

scaling with respect to the entropy [62, 686, 728]. However, no modeling framework for

describing mixture diffusion coefficients has been developed yet.

In this work, an entropy scaling model for predicting mixture diffusion coefficients,

namely the self-diffusion coefficients as well as the (Fickian and MS) mutual diffu-

sion coefficients, without any adjustable mixture parameters is proposed. The physical

framework developed here for predicting diffusion coefficients in mixtures is unique and

can be characterized as follows: (1) It can be applied in the entire fluid region, i.e.

it covers gases, liquids, and supercritical fluids, phase equilibria, and even metastable

states. (2) It describes both self-diffusion and mutual diffusion in a consistent way. (3)

It comprises the dependence of the diffusion coefficients on temperature, pressure and

composition in the entire fluid region. The applicability of the model is demonstrated

for binary mixtures in this work.

The approach developed in this work is based on three central ideas and concepts: (1)

Infinite dilution diffusion coefficients are treated as pseudo-pure components that exhibit

a monovariate scaling behavior, which can be treated by classical entropy scaling [52]. (2)
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Therefore, the mixture diffusion coefficient limiting cases, i.e. the pure component and

pseudo-pure component self-diffusion coefficients (cf. Fig. 70), are modeled as functions

of the entropy. This requires at least one reference data point for each limiting case.

(3) Based on the information of the limiting cases, the concentration dependence of the

diffusion coefficients Di, Dj, Ðij, and Dij are predicted using combination and mixing

rules. It is demonstrated that these predictions can succeed without any adjustable

mixture parameter. The performance of the new approach is demonstrated using model

fluids as well as real substance systems. In this work, molecular-based EOS models are

used. Yet, also other EOS types such as multiparameter [545] or cubic EOS [43] could

be used.

8.2 Methods

The framework proposed in this work consists of two new elements: (1) Treating the

infinite dilution self-diffusion coefficient as a pseudo pure component to obtain a mono-

variate scaling; (2) The application of mixing and combination rules for predicting the

different diffusion coefficients in a mixture.

8.2.1 Entropy Scaling of Infinite Dilution Diffusion Coefficients

The infinite dilution diffusion coefficient D∞i (T , p) is treated as a pseudo-pure component

property such that the corresponding scaled property D̂
∞,○
i (sconf) exhibits a monovariate

function with respect to the configurational entropy sconf . For testing this postulate,

the ES model for pure component diffusion coefficients from Ref. 52 is adopted here.

Thereby, the infinite dilution self-diffusion coefficient is transformed using a modified

Rosenfeld scaling (marked by ○) as

D
∞,○
i =D∞i

ρ
1/3
N√

RT /MCE

(−sconf

R
)2/3

, (72)

where ρN is the number density of the solvent at given T and p. The reference mass

MCE is adopted from the Chapman-Enskog (CE) theory as

MCE =
2

1/Mi + 1/Mj

, (73)

where Mi and Mj are the molar masses of the pure components. For the zero-density

limit, the scaled Chapman-Enskog infinite dilution diffusion coefficient D
∞,○

CE,i is com-

puted using a Lennard-Jones kernel (see Appendix G for details). Therefore, the
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Lennard-Jones cross-interaction size and energy parameters σij and εij are calculated

by the Lorentz-Berthelot combining rules here [700, 729]. Finally, the CE-scaled infinite

dilution diffusion coefficient D̂
∞,○
i is described by a split between the low-density (LD)

and the high-density (HD) region as

D̂
∞,○
i =

D
∞,○
i

D
∞,○

CE,i²
LD

W (s̃conf) + D
∞,○
i

min (D∞,○

CE,i
)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HD

(1 −W (s̃conf)), (74)

where s̃conf = −sconf/(Rm) is the reduced configurational entropy using the segment

parameter m of molecular-based EOS and W is a smoothed step function. The CE-

scaled infinite dilution diffusion coefficient D̂
∞,○
i (s̃conf) is then described by a function

with up to five adjustable parameters αk (see Appendix G). In this work, one or two

system-dependent parameters were used for the real substance systems. A detailed

description of the entropy scaling framework for infinite dilution diffusion coefficients is

given in Appendix G. To test and validate this new scaling approach for infinite dilution

diffusion coefficients, two model systems and a real substance system (all strongly non-

ideal systems) were studied in this work using molecular dynamics simulations using

the molecular simulation engine ms2 [464]. Simulations were conducted in all fluid

regions, i.e. liquid, gaseous, supercritical, and metastable states (details are given in

Appendix G).

8.2.2 Predicting Diffusion Coefficients in Mixtures

For predicting the diffusion coefficients Di(xj), Dj(xj), Ðij(xj), and Dij(xj) in a mix-

ture, the entropy scaling framework is extended using combining and mixing rules. It is

briefly outlined how this is done here; details are given in Appendix G. Diffusion coeffi-

cients in mixtures are predicted based on the limiting case models for the self-diffusion

coefficient of pure components and the (infinite dilution) pseudo-pure component. The

scaled diffusion coefficient Λ̂○ ∈ {D̂○i , D̂○j , Ð̂
○

ij} is computed using the configurational en-

tropy of the mixture smix
conf = smix

conf(T , ρ, x) and a mixture model for the scaled function

Λ̂○ = Λ̂○(smix
conf , αk,mix), which is computed from the limiting case scaling functions. The

final (unscaled) diffusion coefficient Λ ∈ {Di, Dj, Ðij} is calculated as

Λ =
Λ̂○

W (s̃mix
conf
)

Λ○
CE

+ 1−W (s̃mix
conf
)

min(Λ○
CE
)

⋅

√
RT /Mref

ρ
1/3
N

(−smix
conf

R
)−2/3

, (75)

where Λ○CE is the Chapman-Enskog property of the mixture, ρN is the number density

of the mixture, and Mref is the reference mass of the mixture. The Fickian diffu-

sion coefficient is obtained from the Maxwell-Stefan diffusion coefficient by the ther-
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modynamic factor as predicted by the EOS (see Eq. (68)). Details on the calculation

of the Chapman-Enskog property of the mixture Λ○CE, the reference mass Mref , and

Λ̂○ = Λ̂○(smix
conf , αk,mix) are given in Appendix G. All required quantities are obtained

using predictive combination rules and mixing rules and the EOS mixture model. No

adjustable mixture parameters are introduced. The non-ideality of the mixture is pri-

marily taken into account by the underlying EOS via the predicted mixture entropy.

The combination of the EOS and entropy scaling enables the consistent calculation of

the diffusion coefficients (Di, Dj, Ðij, Dij), homogeneous bulk properties (pvT , sconf ,

Γij, etc.), and phase equilibria (e.g. vapor-liquid and liquid-liquid equilibria).

8.3 Results

First, the applicability of a monovariate scaling to the infinite dilution self-diffusion

coefficients by treating D∞i as a pseudo-pure component is demonstrated. This enables

the prediction of D∞i to practically all fluid states based on very little data. Then, results

for the prediction of the different mixture diffusion coefficients for selected examples are

presented.

8.3.1 Infinite Dilution Diffusion Coefficients

Fig. 71a demonstrates the monovariate scaling behavior (cf. Eqs. (72) - (74)) for

infinite dilution diffusion coefficients D̂
∞,○
2 for a binary Lennard-Jones mixture. This is

impressive considering the fact that a large range of states was studied, cf. Fig. 71a-

inset. The quality of the scaling of D̂
∞,○
2 (i.e. how well the data can be described by

a monovariate function) is essentially the same as that found for the pure component

diffusion coefficient D2. This supports the picture introduced in this work that D∞2

can be considered as a pseudo-pure component property. This picture is physically

meaningful considering the fact that in both cases, the mobility of a single particle in

a homogeneous environment is described. The Chapman-Enskog diffusion coefficient

agrees well with the low-density simulation results – as indicated by the convergence

of D̂
∞,○
2 → 1 for sconf/R → 0. In Appendix G, the results for a second binary Lennard-

Jones system that support the findings discussed here. For the two Lennard-Jones

model systems, the "global" parameters from Ref. 52 were sufficient for describing D̂
∞,○
2 .

This finding was not expected and demonstrates the broad applicability of the universal

parameters g1 and g2 in the correlation, that were determined in Ref. 52.

From the models for the pure component self-diffusion coefficient D̂
pure
2 (s̃conf) [52] and

the infinite dilution diffusion coefficient D̂∞2 (s̃conf), both D
pure
2 and D∞2 can be predicted
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a)

b)

Figure 71: Entropy scaling of diffusion coefficients in a Lennard-Jones mixture with
σ2 = σ1, ε2 = 0.9 ε1, and ε12 = 1.2

√
ε1ε2. a) Scaled infinite dilution diffusion

coefficient of component 2 D̂
∞,○
2 as a function the reduced configurational

entropy sconf/R. The line indicates the entropy scaling model. Symbols are
MD simulation data from this work. The inset shows the simulation state
points in the temperature-density phase diagram of component 1. Therein,
solid lines indicate the phase envelopes from Refs. 73, 238. b) Self-diffusion
coefficient of component 2 D2 (top) and infinite dilution diffusion coefficient
of component 2 D∞2 (bottom) as function of the pressure. Lines are the
entropy scaling model and symbols are simulation results from Ref. 52
(Dpure

2 ) and from this work (D∞2 ). The black solid lines indicates the vapor-
liquid equilibrium and the black dashed line the corresponding spinodal.
Colors indicate the temperature.

in a wide range of states. For the Lennard-Jones mixture, the configurational entropy

was taken from the Kolafa-Nezbeda EOS [136]. Fig. 71b shows the results of the entropy

scaling models for D2 and D∞2 in comparison to the MD results. The agreement between

both methods is excellent, which is a result of the good performance of the EOS as well
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as of the fact that both properties show a monovariate relation with respect to the

entropy.

Besides the Lennard-Jones models systems, also the scaling behavior of two real sub-

stance mixtures was investigated based on simulation data and experimental data.

Fig. 72 shows the simulation results for the real substance system benzene + isobu-

tane. The simulation state points cover the gas, liquid, and the supercritical region.

The scaled infinite dilution diffusion coefficient of benzene D̂
∞,○
1 shows a monovariate

Figure 72: Scaling behavior of the infinite dilution diffusion coefficient of benzene in
the system benzene (1) + isobutane (2). a) Simulation state points (sym-
bols) in the temperature-density phase diagram of the solvent isobutane.
The line indicates the vapor-liquid equilibrium and the star the critical
point as calculated from the PC-SAFT EOS [40]. b) Scaled diffusion coef-
ficient of benzene infinitely diluted in isobutane D̂

∞,○
1 as a function of the

configurational entropy s̃conf . The symbols are the simulation results (color
indicates the temperature) and the line the entropy scaling model (fitted
to the simulation results).

behavior with respect to the reduced configurational entropy s̃conf – similar to the results

for the Lennard-Jones systems (see Fig. 77).

Experimental infinite dilution self-diffusion coefficient data in a large range of states

(as considered for the model systems) are unfortunately not available. For the system

toluene + n-hexane, experimental data of infinite dilution diffusion coefficients at differ-

ent pressures and temperatures are available, but only for the liquid phase. Fig. 73 shows

the scaled infinite dilution diffusion coefficients of the system toluene (1) + n-hexane

(2) as function of the reduced configurational entropy, i.e. D̂
∞,○
1 (s̃conf) and D̂

∞,○
2 (s̃conf).

Additionally, the system-specific entropy scaling models are shown for both cases. For

each case, two system-specific parameters were adjusted (see Tab. G.2 in Appendix G).

The scaled experimental data lie on a single curve, i.e. show a monovariate behavior



8.3 Results 185

, ,

Figure 73: Scaling behavior of the infinite dilution diffusion coefficients in the system
toluene (1) + n-hexane (2) as function of the reduced configurational en-
tropy s̃conf . Left: Scaled diffusion coefficient of toluene infinitely diluted in
n-hexane D̂∞○1 . Right: Scaled diffusion coefficient of n-hexane infinitely di-
luted in toluene D̂∞○2 . The line indicates the system-specific entropy scaling
model (parameters given in Tab. G.2). The color indicates the pressure.

with respect to s̃conf . The results for both real systems based on simulation data and

experimental data confirm the validity of the entropy scaling methodology introduced

in this work for real substance systems.

Hence, reliable analytical models for the limiting cases D1, D2, D∞1 , and D∞2 (cf. Fig. 70)

are now available that can be applied in all fluid regions. They are the basis for the next

step, the prediction of D1, D2, Ð12, and D12 at arbitrary compositions in the mixture.

8.3.2 Application to Mixtures of OMEs with Alkanes

Blends of poly(oxymethylene) dimethyl ethers (OME) and hydrogenated vegetable oils

(HVO) are interesting new synthetic fuels that can be produced from renewable resources

[730–733]. OME are oligomers with the chemical structure CH3O(CH2O)nCH3 with

n ≥ 2. For synthetic fuels, OME with chain lengths n = 3− 5 are often used [734]. These

oligomers have suitable physical properties to replace fossil diesel, but produce much

less soot upon combustion because they contain oxygen in their backbone [735–737].

HVO consist predominantly of n-alkanes, with C-numbers between 15 and 20 [737].

For the modeling of production processes and combustion applications, information and

models for the transport properties of OME and HVO and their mixtures are required.

They are needed, e.g., for calculating the Lewis number Le, which is the ratio of the

heat conductivity and the diffusion coefficient, which must be known to decide whether

explosions of droplets in fuel sprays may occur [657, 738].

In this section, the entropy scaling method for modeling infinite dilution diffusion coef-

ficients was applied to the self-diffusion data in binary mixtures of OMEn and alkanes,
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which were determined from data obtained by PFG-NMR spectroscopy at temperatures

between 298.15 and 353.15 K at ambient pressure [134]. The entropy scaling model

as well as the experimental results were compared to the models of Evans et al. [725]

(SEGWE) and Wilke and Chang [739] (WC). Details on the SEGWE and WC models

are given in Appendix G. The extrapolations over a wide range of conditions enabled

by the entropy scaling model is demonstrated.

The entropy scaling model was combined with the PC-SAFT [40] equation of state

(EOS). The EOS parameters to model all pure components were taken from the litera-

ture, for the alkanes from Gross and Sadowski [40] and for the OMEn from Schappals et

al. [740]. The self-diffusion coefficients of the pure components were scaled as described

above. The global and component-specific parameters are given in Appendix G.

Fig. 74 shows the entropy scaling results in comparison with the experimental data.

Good agreement is observed. This is not astonishing as two parameters were fitted

T / K T / K

D
 /
 1

0
-9

 m
2
 s

-1

Figure 74: Pure component self-diffusion coefficients as a function of temperature.
Left: n-dodecane (squares) and n-hexadecane (C16) (circles). Right:
OME1 (diamond), OME2 (squares), OME3 (circle), and OME4 (triangle).
Open symbols are experimental results from Ref. [134] obtained with PFG-
NMR spectroscopy and filled symbols are literature data [741–743]. Solid
lines are results from entropy scaling. Error bars are within symbol size.

to the data for each studied component, and the data were measured only in a quite

narrow temperature range at ambient pressure. Furthermore, as only the temperature

was varied, the entropy scaling brings no immediate advantages for correlating the data

set. The advantage of entropy scaling is that, based on the limited amount of data that

is provided here, self-diffusion coefficients can be predicted for a much wider range of

conditions (temperatures and pressures) for all studied components. Such extrapolation

yield good results, as has been demonstrated in extensive studies with model fluids [62].

Fig. 75 shows the results for the infinite dilution diffusion coefficients in binary mixtures

of OMEn + n-dodecane (C12) and OMEn + n-hexadecane (C16) at different tempera-

tures. As expected, the diffusion coefficients of OMEn in n-dodecane are higher than in

n-hexadecane, and the diffusion coefficients of n-dodecane in a given OMEn are higher
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than those of n-hexadecane in the same OMEn, and the diffusion coefficients increase

with increasing temperature. The correlation of the data for the infinite dilution dif-

fusion coefficients with entropy scaling was successful for all studied systems. For each

pair solute + solvent, two parameters were fitted to the data so that the success of the

correlation is not astonishing, but it should be kept in mind that the method enables ex-

trapolations beyond the range that was studied here. The predictions with the SEGWE

and the WC model yield only poor results. No clear ranking of the models is possible;

sometimes SEGWE is better and sometimes WC.
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Figure 75: Infinite dilution diffusion coefficients in binary mixtures of OMEn (1) + n-
dodecane (2) (left) and OMEn(1) + n-hexadecane (2) (right) as a function
of temperature. Symbols: Experimental results from Ref. [134] obtained
with PFG-NMR spectroscopy. Lines: Entropy scaling model (solid) and
predictions with SEGWE (dashed) and WC (dotted). The colors indicate
the OMEn (OME2: dark blue, OME3: green, OME4: yellow).

An example for the application of the entropy scaling model based on the new data on

infinite dilution diffusion coefficients from Ref. [134] is presented in Fig. 76, where the

mutual diffusion coefficients in the system OME2 + n-dodecane (C12) are shown for a

wide range of temperatures using the Vignes equation. Therein, the numbers of the

infinite dilution diffusion coefficients outside the temperature range that was studied by

experiments here were obtained from the entropy scaling model. The interpolation by
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Figure 76: Diffusion coefficients of OME2 + n-dodecane (C12) as a function of com-
position and temperature from NMR data, entropy scaling, and Vignes.
Symbols: NMR data from Ref. [134] (squares) and entropy scaling data
(circles). Solid lines: Vignes correlation.

the Vignes equation is almost linear in all cases. The results should be interpreted as

predictions of the binary Maxwell-Stefan diffusion coefficient. For calculating Fickian

diffusion coefficients, the thermodynamic factor should be considered.

8.3.3 Prediction of Diffusion Coefficients in Mixtures by

Entropy Scaling

The model proposed in this work (see Section 8.2.2) is able to predict all diffusion

coefficients in a mixture, which is demonstrated here for binary systems. Fig. 77

shows the model predictions for all four diffusion coefficients (D1, D2, Ð12, D12) of two

Lennard-Jones mixture for the entire composition range and different temperatures. For

comparison, simulation data from Ref. [112] are used. The predictions from the entropy

scaling framework and the computer experiment results agree well for all four diffusion

coefficients and both studied mixtures (see Fig. 77).

For the first Lennard-Jones mixture with strong cross interactions (cf. Fig. 77 left), the

self-diffusion coefficient simulation data, for which the statistical uncertainty is smaller

than for the mutual diffusion coefficients, are described mostly within their uncertainty,

despite the strong non-ideality that leads to extrema at about x2 ≈ 0.4 mol mol−1. The

simulation data for Ð12 scatter more and have larger error bars than those for D1 and D2.

The entropy scaling framework predicts the Ð12 simulation data very well in the entire

composition range. In particular, the strongly non-ideal behavior is captured accurately

by the entropy scaling framework in contrast to established empirical models such as

the Vignes or Darken model that fail here (see Appendix G). Also the temperature and

pressure dependency of the diffusion coefficients are very well described by the model

(cf. Fig. 77 and Appendix G, respectively). For the predictions of the Fickian diffusion

coefficient, the trends are correctly predicted by the entropy scaling predictions, but
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LJ mixture (ε2 = 0.85, ξ12 = 1.2) LJ mixture (ε2 = 0.5, ξ12 = 0.85) 

Figure 77: Diffusion coefficients in two binary Lennard-Jones mixture with σ2 = σ1,
ε2 = 0.9 ε1, and ξ12 = 1.2 (left) and σ2 = σ1, ε2 = 0.5 ε1, and ξ12 = 0.85
(right) as a function of the mole fraction x2 at p = 0.13 σ3

1ε−1
1 (left) and

p = 0.26 σ3
1ε−1

1 (left). a) Self-diffusion coefficient of component 1 D1; b)
Self-diffusion coefficient of component 2 D2; c) Maxwell-Stefan diffusion
coefficient Ð12; d) Fickian diffusion coefficient D12. Lines are predictions
from the entropy scaling framework. Symbols are simulation results from
Ref. 112. The entropy scaling framework was used in combination with
the Kolafa-Nezbeda EOS [136]. The colors indicate the temperature T ∈{0.79, 0.855, 0.92, 0.985, 1.05}kBε−1

1 (from blue to yellow). The black lines
indicate the vapor-liquid equilibrium and the star the critical point.

deviations are observed, cf. Fig. 77d. The deviations between simulation results and

entropy scaling are larger for the Fickian diffusion coefficient, which can be attributed

to the inclusion of the thermodynamic factor adding additional complexity to the model

predictions (and the MD sampling [62]). In contrast to the other three diffusion coeffi-

cients (D1, D2, Ð12), the Fickian diffusion coefficient D12 exhibits a maximum at about

x2 ≈ 0.55 mol mol−1, which is in line with values of Γ12 ≫ 1 obtained in this system. Due

to the coupling of entropy scaling and EOS, the model is inherently consistent and can

be applied over a wide range of states.
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The right part of Fig. 77 shows the results from the entropy scaling diffusion coef-

ficient model for the second Lennard-Jones mixture with weak cross interaction, i.e.

ξ12 = 0.85, resulting in a liquid-liquid miscibility gap at the considered conditions. The

entropy scaling model proposed in this work is able to predict not only the different

diffusion coefficients in the bulk phases, but also describes the diffusion coefficients of

the coexisting phases of the liquid-liquid equilibrium. The results from entropy scal-

ing are again compared to simulation results from Ref. 112 (cf. Fig. 77 left). For

the two self-diffusion coefficients D1 and D2, the agreement between entropy scaling

predictions and the simulation data is excellent. The self-diffusion coefficients increase

with increasing mole fraction x2 in both liquid phases. The Maxwell-Stefan diffusion

coefficient shows a similar characteristic and is reasonably well described by the entropy

scaling model. The Fickian diffusion coefficient has a different qualitative behavior

compared to the Maxwell-Stefan diffusion coefficient – due to the non-ideality of the

system comprised in the thermodynamic factor. Also the Fickian diffusion coefficient

of the liquid-liquid phase equilibrium envelope shows a qualitatively different course

compared to the corresponding Maxwell-Stefan coefficient. At the upper critical solu-

tion point, the thermodynamic factor becomes zero and so does the Fickian diffusion

coefficient (x2 ≈ 0.38 mol mol−1). This is as expected for the Fickian diffusion coefficient

at a critical point [83]. For both mutual diffusion coefficients, the agreement of the en-

tropy scaling model with the simulation data is reasonable considering the fact that the

model is fully predictive and the fact that the system is strongly non-ideal. In Ref. 83,

it was shown that the Kolafa-Nezbeda EOS exhibits some deviations already for phase

equilibria predictions in such strongly non-ideal mixtures.

Fig. 78 shows the results for the diffusion coefficients in two real substance systems: A

mixture of alkanes, n-hexane (C6H14) + n-dodecane (C12H26), and the mixture toluene

(C7H8) + n-hexane (C6H14). For both systems, only little experimental data are avail-

able (which is common for practically all real mixtures), which is used for the validation

of the predictions. The thermodynamic properties of the systems were modeled by the

PC-SAFT EOS [40] and the component-specific models for the pure substances were

taken from the literature (see Appendix G for details).

Fig. 78a shows the entropy scaling predictions in comparison to the experimental refer-

ence data for both self-diffusion coefficients of the system n-hexane + n-dodecane at two

temperatures. Both components strongly differ in their molar mass. Both self-diffusion

coefficients decrease with increasing mole fraction x2 in a non-linear way, which is pre-

dicted well by the framework. The entropy scaling predictions of both self-diffusion

coefficients and the experimental data are in excellent agreement.

Fig. 78b shows the results for the Fickian diffusion coefficient in the system toluene +

n-hexane D12 at four temperatures from 293.15 K to 308.15 K as a function of the mole
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Figure 78: Diffusion coefficients of real substance mixtures predicted by entropy scal-
ing. Symbols are experimental data and lines are predictions from the
entropy scaling framework. a) Self-diffusion coefficients D1 in the mixture
n-hexane (1) + n-dodecane (2) as a function of the mole fraction of n-
dodecane x2 at p = 0.1 MPa. Experimental data are from Ref. 744. b)
Fickian diffusion coefficient D12 in the mixture toluene (1) + n-hexane (2)
as a function of the mole fraction of n-hexane x2 at p = 0.1 MPa. Experi-
mental data are from Ref. 745.

fraction at ambient pressure. The Fickian diffusion coefficient increases with increasing

temperature. Again, the entropy scaling predictions are in excellent agreement with the

experimental data.

Fig. 79 shows the predictions for the Maxwell-Stefan diffusion coefficient phase di-

agrams of the system toluene + n-hexane at two pressures: p = 0.1 MPa (top) and

p = 4 MPa (bottom). The diffusion coefficients of the coexisting phases can be obtained

in a straightforward manner by the framework. At p = 0.1 MPa, both components are

subcritical (see inset in Fig. 79 top). The Maxwell-Stefan diffusion coefficient is shown

for three isotherms (340 K, 360 K, 385 K). As shown in the inset (see Fig. 79 top),

one isotherm is entirely in the liquid phase (340 K), one isotherm passes through the

vapor-liquid equilibrium (360 K), and one isotherm is entirely in the gas phase (385

K). The Maxwell-Stefan diffusion coefficient in the gas phase is significantly larger than

that in the liquid phase. In the liquid phase, the diffusion coefficient strongly depends

on the composition. In the gas phase, the Maxwell-Stefan diffusion coefficient exhibits

only a minor dependency on the composition. This is in line with the Chapman-Enskog

theory [9] – which is inherently incorporated in the framework. At p = 4 MPa (cf. Fig.
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79 bottom), n-hexane is supercritical and a critical point exists at about T = 547.18 K

(see inset). Four isotherms are plotted: One subcritical isotherm (T = 540 K), the criti-

cal isotherm (T = 547.18 K), one isotherm passing through the vapor-liquid equilibrium

(T = 570 K), and one isotherm entirely in the gas/supercritical phase (T = 590 K). The

isotherm at T = 540 K exhibits a transition between the two pseudo-pure component

limiting cases – from a liquid state at x2 = 0 to a supercritical state at x2 = 1 mol mol−1.

At the critical point, the diffusion coefficient exhibits a large gradient with respect to

the composition. Due to the thermodynamic consistency established by the EOS, the

framework correctly predicts the Fickian diffusion coefficient to be zero at critical points

(see Fig. 77).
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Figure 79: Maxwell-Stefan diffusion coefficient Ð12 in the mixture toluene (1) + n-
hexane (2) as a function of the mole fraction of n-hexane x2 at p = 0.1 MPa
(top) and p = 4 MPa (bottom). Black lines: Vapor-liquid equilibrium; col-
ored lines: Isotherms. Insets show the T −x vapor liquid-equilibrium phase
diagram at the respective pressure.

Also diffusion coefficients of metastable and unstable states as well as at spinodal

states can be described by the framework (which is for example relevant for nucle-

ation). Fig. 80 demonstrates the application of the entropy scaling model to Maxwell-

Stefan diffusion coefficients at metastable and unstable states in the mixture toluene

(1) + n-hexane (2). Therefore, three lines with constant partial densities of n-hexane

ρ2 = 0.25, 0.75, or 1.25 mol l−1 were calculated by varying the partial density of toluene

in the range 0 mol l−1
≤ ρ1 ≤ 5.6 mol l−1 at a temperature T = 560 K, where n-hexane is
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Figure 80: Predictions of the VLE properties and the Maxwell-Stefan diffusion co-
efficient from the entropy scaling + EOS model in the two-phase vapor-
liquid equilibrium region of the binary mixture toluene (1) + n-hexane (2).
Maxwell-Stefan diffusion coefficient Ð12 (top), partial density of n-hexane
ρ2 (middle), and pressure p (bottom) as a function of the partial density
of toluene ρ1 (a, c, and e) and of the mole fraction x2 (b, d, and f) at
T = 560 K. The black solid lines correspond to the vapor-liquid binodal,
the dotted line to the vapor-liquid spinodal, and the black star indicates
the critical point. The three colored lines are lines with constant partial
density of n-hexane ρ2.

supercritical. This procedure is computationally convenient for calculating metastable

and unstable states as the applied PC-SAFT EOS is formulated in the Helmholtz energy

a with its fundamental variables T , ρ, and x. All three partial isochores cross the vapor-

liquid equilibrium. The corresponding pressures undergo a van-der-Waals-like loop with

minima and maxima at the spinodals (see Fig. 80). Evidently, the application of the en-

tropy scaling model in metastable states requires an EOS model that shows a physically

reasonable behavior in that region, i.e. a single van der Waals loop, which is the case

here. Here, only predictions of the Maxwell-Stefan diffusion coefficient are shown. The

Maxwell-Stefan diffusion coefficient smoothly transitions from the liquid phase to the

gas phase through the vapor-liquid equilibrium including the metastable and unstable
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regions. While there is no diffusion coefficient reference data available for validation,

these predictions seem physically reasonable. This significantly exceeds the capabilities

of all presently available diffusion coefficient models.

8.4 Conclusions

In this work, a new methodology for predicting diffusion coefficients in mixtures in

a consistent manner for all fluid states is proposed. This includes self-diffusion and

mutual diffusion coefficients. The new approach combines several physical concepts,

including the Rosenfeld scaling, the Chapman-Enskog theory, and a molecular-based

EOS. The framework enables predictions for the mixture diffusion coefficients without

any adjustable parameters based on the limiting cases of the pure components and

pseudo-pure components (i.e. infinite dilution). Due to the coupling of entropy scaling

and EOS, the framework can consistently describe diffusion coefficients in mixtures in

different phases (gas, liquid, supercritical, metastable) – including coexisting phases such

as vapor-liquid and liquid-liquid equilibria. Also predictions to regions in which no data

are available are possible. The strong predictive capabilities are a result of the physical

backbone of the framework. The fact that infinite dilution diffusion coefficients exhibit a

monovariate scaling behavior was discovered here for the first time. It enables an efficient

entropy scaling modeling of the limiting mixture diffusion coefficient cases based on very

few data. Since the limiting case diffusion coefficients are monovariate functions with

respect to the entropy, extrapolations beyond the temperature and pressure range where

data are available are feasible. In the mixture, no general monovariate behavior retains.

Nevertheless, the mixture entropy in combination with mixing and combination rules

enables predictions of mixture diffusion coefficients, which was demonstrated here for

model mixtures as well as real substance systems.

The new entropy scaling framework requires an accurate and robust EOS model that

describes mixture thermodynamic properties reliably, i.e. the phase equilibria, the en-

tropy, the thermodynamic factor, and the second virial coefficient. If such a model is

available, the entropy scaling framework proposed in this work is a powerful tool. For

future work, the extension to multi-component systems would be interesting.
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9 Conclusions

Information on transport properties is important for the development of industrial pro-

cesses, e.g. for designing tribological systems and separation processes. In many cases,

experimental data are scarce – or not available at all. Therefore, physical models with

reliable extrapolation behavior are needed which only require a small set of experimen-

tal data as input. In this work, transport properties of pure fluids and fluid mixtures

were studied using methods from molecular thermodynamics, namely molecular dy-

namics (MD) simulation and entropy scaling. Additionally, experiments were carried

out for determining reference data. The focus of this work was on the viscosity, thermal

conductivity, and diffusion coefficients.

MD simulations were applied for predicting transport properties using different transfer-

able force fields. The investigated state points included high pressure states which are

experimentally hardly accessible. In MD simulations, the accuracy of the results strongly

depends on the employed force field. Particularly suited force field for the prediction of

transport properties were identified in a comprehensive evaluation of force fields. Addi-

tionally, a literature review on transport properties of the Lennard-Jones fluid provided

insights into general aspects of MD simulation modeling of transport properties, e.g.

the accuracy presently achieved by MD simulations for a simple model fluid. Due to

the strong predictive capabilities of MD simulations in combination with transferable

force fields, even transport properties of substances for which no experimental data are

available can be determined, which was demonstrated for several substances. However,

conducting MD simulations, especially at extreme conditions, is computationally ex-

pensive and requires a high-performance computing infrastructure. Hence, analytical

models for describing transport properties are required that provide a robust physical

extrapolation behavior.

Therefore, a new modeling framework based on entropy scaling was developed. Entropy

scaling makes use of the discovery that properly scaled transport properties of a given

substance can usually be represented as a monovariate function of the configurational

entropy, which is the basis for the prediction of transport properties for a wide range

of fluid states. The new framework enables the consistent modeling of the viscosity,

the thermal conductivity, and the self-diffusion coefficients of pure components in the
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entire fluid region, including liquid, gaseous, supercritical, and metastable states. By

integrating first-principle MD simulation data of the Lennard-Jones fluid, only a small

set of experimental data are required for the model parametrization. Although the

framework can be coupled with any EOS, it is designed to be used in combination

with molecular-based EOS. As shown in this work, excellent extrapolation behavior

is obtained in such cases. However, a prerequisite for the reliable extrapolation of

the developed transport property modeling framework is the accurate extrapolation

behavior of the underlying EOS model. Therefore, new component-specific EOS models

for alcohols were developed and their extrapolation behavior was critically assessed. For

this purpose, the density of five primary alcohols was measured up to very high pressures.

The new data were employed in the parametrization of the component-specific EOS

models.

The entropy scaling framework developed in this work was designed such that predic-

tions for mixture transport properties are possible based on the pure component models

alone. The viscosity and thermal conductivity of mixtures can reliably be predicted by

the framework which is demonstrated for several examples including multicomponent

mixtures. While entropy scaling predictions for the viscosity and thermal conductivity

of mixtures have been available in the literature before, no entropy scaling model was so

far available for predicting mixture diffusion coefficients. Therefore, the framework was

extended to enable, for the first time, the modeling of diffusion coefficients in mixtures

based on entropy scaling. The framework is able to predict the self-diffusion coefficients

and the mutual diffusion coefficients in mixtures consistently and for all fluid states. The

entropy scaling framework was successfully applied for predicting transport properties

of several model and real substance systems. The new model shows excellent predictive

capabilities – considering the fact that no parametrization to mixture data was applied.

The predictions of the transport properties by the new framework can be applied in

various cases, for example for studying transport phenomena at interfaces or as input

for dynamic fluid simulations.
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A.1 Simulation Details

The software package ms2 [464] was used for the simulations performed in this work.

Simulations were carried out with 5,000 particles. The Gear-predictor-corrector integra-

tor was used with a time step of ∆τ = 0.001 σ(M/ε)1/2. The simulations were conducted

in the NV T ensemble with 1× 105 equilibration time steps and 5× 106 production time

steps. Periodic boundary conditions were applied in all directions. The shear viscosity,

thermal conductivity, and self-diffusion coefficient were sampled using the Green-Kubo

[97, 98] formalism with a correlation length of 104 time steps for ρ ≥ 0.1 σ−3 and 105

time steps for ρ < 0.1 σ−3. Details on the computational procedure of the Green-Kubo

implementation in ms2 are given in Refs. [707, 708]. For the simulations at ρ < 0.01 σ−3,

a different computational setup was used. These simulations were conducted with the

software package LAMMPS [298]. Number of particles, time step, ensemble, and bound-

ary conditions were the same as above. The number of equilibration and production

time steps were adjusted for the low-density simulations to 106 and 108, respectively.

The shear viscosity and thermal conductivity were calculated with the Green-Kubo

method with correlation lengths of 2× 106 (ρ = 10−2 σ−3 and ρ = 5× 10−3 σ−3) and 5× 106

(ρ = 10−3 σ−3) time steps. The self-diffusion coefficient was calculated by the Einstein

method [14] based on the mean squared displacement.
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A.2 Discussion of Data Sets

Figs. A.1 - A.3 show the relative deviations δY (cf. Eq. (2)) of the entropy scaling model

and the simulation data for the shear viscosity, thermal conductivity, and self-diffusion

coefficient as a function of temperature, respectively. All data are shown, i.e. both

Figure A.1: Relative deviation of the simulation data from the entropy scaling model
for the shear viscosity δη (cf. Eq. (2)) as a function of temperature. All
data are shown (including those identified as outliers). The dashed line
represents the entropy scaling model. Symbols as introduced in Fig. 4.
Error bars are omitted to avoid visual clutter. Panel b) is a magnified
view of a part of panel a). Panel c) shows a histogram of the relative
deviations.

the confirmed data and outliers. For the shear viscosity, the model has a tendency to

underestimate the computer experiment data, cf. Fig. A.1 a). There are no systematic

temperature-dependent deviations – the deviations at high temperatures are similar

to those at moderate temperatures (which is different for λ and D – see below). For

the triple point temperature Ttr = 0.69 εk−1
B [238] and below (mainly metastable liquid

simulations, cf. Fig. 3), large deviations were observed. Several data points from the

reproducibility study from Fleckenstein et al. [200] (blue vertical lines) significantly
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Figure A.2: Relative deviation of the simulation data from the entropy scaling model
for the thermal conductivity δλ (cf. Eq. (2)) as a function of temperature.
All data are shown (including those identified as outliers). The dashed line
represents the entropy scaling model. Symbols as introduced in Fig. 4.
Error bars are omitted to avoid visual clutter. Panel b) is a magnified
view of a part of panel a). Panel c) shows a histogram of the relative
deviations.

exceed the entropy scaling model. Most of these data points at high temperatures can

bet traced back to the NEMD simulation data reported therein. Several of these data

points were identified as outliers (see Supporting Information). At high temperatures,

the thermal (undirected) particle velocities are large and thus, it is difficult to determine

the velocity profile that is required for the evaluation of the shear viscosity by NEMD

simulations. Furthermore, significant deviations were observed for the data reported by

Baidakov et al. [184] (red triangles pointing left), cf. Fig. A.1 a). A significant amount

of these data points lies in the solid-liquid two-phase region or beyond the melting line

(cf. Fig. 3). Since data are only scarcely available in these regions for comparison, the

MoDOD algorithm does not identify all of these data as outliers. The data from Michels

and Trappeniers [145] (orange hexagons) show a peculiar temperature dependence (cf.

Fig. A.1), which is reflected by the fact that around two third of the according data
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Figure A.3: Relative deviation of the simulation data from the entropy scaling model
for the self-diffusion coefficient δD (cf. Eq. (2)) as a function of tempe-
rature. All data are shown (including those identified as outliers). The
dashed line represents the entropy scaling model. Symbols as introduced
in Fig. 4. Error bars are omitted to avoid visual clutter. Panel b) is a
magnified view of a part of panel a). Panel c) shows a histogram of the
relative deviations.

were identified as outliers. For some data points reported by Thomas and Rowley [176]

(green triangles pointing right), significant deviations are observed, cf. Fig. A.1 a) and

c). Most of these data points are at high density liquid states and were identified as

outliers. This is in line with a statement of the authors regarding the reliability of these

very high-density data [176], which was determined by a specific approach. Similarly, a

significant amount of data from Heyes [144] (red hexagons) deviate from most other data,

cf. Fig. A.1 a) and c), especially for densities ρ < 0.6 σ−3 and temperatures T > 1.2 εk−1
B

(see electronic Supporting Information). Most of these data points were also identified as

outliers. This might be due to the fact that the NEMD method applied in Ref. 144 has

difficulties under these conditions. Some systematic positive deviations were observed

for simulation data from this work (cyan crosses) at extreme temperatures, cf. Fig. A.1.

These deviations are mainly caused by the model: At high temperatures T > 20 εk−1
B
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and densities ρ > 1.8 σ−3, the employed EOS exhibits artifacts, which yields an unreliable

description of the entropy. Yet, practically no data points in the region where the Kolafa-

Nezbeda EOS exhibits artifacts were identified as outliers, which supports the robustness

of the MoDOD method. Details are given in the Supporting Information.

For the thermal conductivity (cf. Fig. A.2), also several aspects regarding specific data

sets were observed. The thermal conductivity data reported by Borgelt et al. [156]

(black hexagons) (all at ρ = 0.7802 σ−3 and 0.66 ≤ T / εk−1
B ≤ 2.71) slightly underestimates

the other simulation data, cf. Fig. A.2 a) and b). Nevertheless, the deviations of the

data from Borgelt et al. do not exceed the overall scatter of the thermal conductivity

data to be identified as outliers with the MoDOD test. Also for the data of Heyes

[203] (turquoise pluses), systematic deviations from the majority of the other data are

observed. These deviations support the findings from the MoDOD test, which identified

most of these data points as outliers. This might be due to the relatively large time step

used in Ref. 203 and the special NEMD method used therein. The data from Ashurst

and Hoover from 1975 [139] (blue stars) show a large scatter with respect to the entropy

scaling base line, cf. Fig. A.2 a). This is in line with the fact that several of these

data points were identified as outliers. The same holds for the first simulation data set

reported for the thermal conductivity by Levesque et al. [138] in 1973 (blue square).

Some of the data from Fleckenstein et al. [200] (blue vertical lines) overestimate the

thermal conductivity in the vicinity of the critical point. Most of these data points were

sampled with different NEMD methods, whereof some were identified as outliers.

For the self-diffusion coefficient, the deviation plot in Fig. A.3 yields additional insights

regarding the quality of individual data sets. The systematic deviations in the extreme

temperature region are again due to the artifact of the base line model at ρ > 2 σ−3.

Systematic deviations were observed for the studies from Michels and Trappeniers from

1975 [215] and 1978 [217] (blue crosses and green pluses, respectively). Both data sets

systematically underestimate the remainder of the data. The deviations increase with

rising temperature. This is in line with the fact that many of these data points were

identified as outliers. The defects of these data are probably due to the relatively short

sampling time and small number of particles used in the simulations [215, 217]. The data

from Heyes et al. [140] (blue diamonds) and Heyes [153] (pink crosses) systematically

underestimate the majority of the simulation data, which is also reflected by the MoDOD

test that identified around 30% of these data as outliers. The same holds for the data

of Borgelt et al. [156] (black hexagons), whereof about 40% were identified as outliers.

The data from Oderji et al. [183] (orange circles) are in good agreement with most of

the other simulation data up to about T = 10 εk−1
B , cf. Fig. A.3 a) and c). At higher

temperatures, the data from Oderji et al. deviate from the base line model and other

simulation data, cf. Fig. A.3 a). Hence, these data might have a defect, which is
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supported by the results from the CE test, cf. Fig. 9.

A.3 Overview of Other Properties Reported in the

References

Table A.1 gives an overview for the data of other properties (not shear viscosity, thermal

conductivity, or self-diffusion coefficient), e.g. caloric or entropic properties. The listed

publications and data reported therein are not part of the original (static property)

Lennard-Jones database [73].

Table A.1: Overview of (static) thermodynamic properties reported in the references
considered in this work. The columns indicate (from left to right) the
authors, year of publication, properties given, and number of data points.
In the third column, the variables indicate the pressure p, internal energy u,
isochoric and isobaric heat capacities cv and cp, isothermal compressibility
β, configurational entropy sconf , and derivatives of the Helmholtz energy
ãij [706].

Authors Year Properties #

Fincham and Heyes [143] 1983 cv, u 11

Heyes [218] 1983 cv, cp, β 10, 15, 15

Heyes [203] 1984 cv 36

Heyes [148] 1987 u 126

Levesque and Verlet [149] 1987 u, cv 3

Heyes [153] 1988 u 210

Wei-Zhong et al. [224] 2008 u 1

Oderji et al. [183] 2011 β 1

Fertig and Stephan [112] 2023 ãij 26

Fleckenstein et al. [200] 2024 u 1497

Saric et al. [202] 2024 sconf 120

Schmitt et al. [52] 2024 sconf 196
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A.4 Heat Maps of the Statistical Uncertainties of

the Data

The mean relative statistical uncertainties reported in the database (using all data) are

depicted in heat maps as a function of T and ρ in Fig. A.4.

Figure A.4: Heat maps of the relative statistical uncertainty of the data points for the
shear viscosity ∆η/η (top left), thermal conductivity ∆λ/λ (top right),
and self-diffusion coefficient ∆D/D as a function of temperature T and
density ρ. The color encodes the uncertainty as given by the colorbar.
The phase envelopes are the same as in Fig. 3.

The statistical uncertainties of the shear viscosity and thermal conductivity are largest in

the subcritical gas phase region. Especially the uncertainty of the thermal conductivity

data strongly increases there. For the other state regions, the uncertainties are uniformly

distributed with a slight tendency of increasing uncertainty with rising temperature. The

uncertainty of the self-diffusion coefficient data is not elevated in the gas phase region.

There are larger uncertainties in the liquid phase state region and in the metastable

regions including the metastable SLE and VLE regions.

A.5 Outliers in the Phase Diagram

Fig. A.5 shows the data points identified as outliers in the T − ρ plane. In general, the
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Figure A.5: Data points identified as outliers for the shear viscosity (left), thermal
conductivity (middle), and self-diffusion coefficient (right) as a function
of T and ρ. Symbols and lines are the same as in Fig. 3.

data points identified as outliers are distributed across the entire phase diagram, which

includes gas, liquid, supercritical, and metastable states. For the shear viscosity, an

increased number of data points at high liquid densities and in the metastable liquid-

solid region were identified as outliers, which can be attributed to the difficulties for

the simulation techniques there. Data points in the unstable regions are not in all

cases identified as outliers, which is mostly due to the fact that the data points in their

neighborhood also exhibit similar deviations from the model, cf. Eq. (3). Moreover,

the neighborhood Mj is often sparsely populated for data points in the unstable region,

which makes the MoDOD algorithm reluctant to identify a data point as an outlier.

A.6 Evaluation of the Critical Region

In Fig. A.6, the deviations of the data points with respect to the base line models in

the vicinity of the critical point are given. For the shear viscosity, there are positive

deviations independent of density or temperature. This is probably due to the poor

description of the entropy by the Kolafa-Nezbeda EOS in the vicinity of the critical

point. For the thermal conductivity, the deviations of the simulation data from the

reference model show systematic deviations when approaching the critical point – both



Appendix A Supporting Information for Chapter 2 283

Figure A.6: Relative deviations of the simulation data and the entropy scaling
model for the shear viscosity δη (top), thermal conductivity δλ (mid-
dle), and self-diffusion coefficient δD (bottom) as a function of the
density ρ for state points in the vicinity of the critical point with
Tc − 0.1 εk−1

B < T < Tc + 1.2 εk−1
B and ρc − 0.2 σ−3 < ρ < ρc + 0.2 σ−3. The

dashed lines represent the entropy scaling model. The color of the sym-
bols indicates the temperature.

for the density and temperature dependence. Regarding the density dependence, the

deviations exhibit a maximum at the critical density as can be seen in Fig. A.6. This is

due to the critical enhancement of the thermal conductivity [128]. For the self-diffusion

coefficient, the deviations are consistently smaller and a critical enhancement is visible.

However, for temperatures near the critical point, the deviations are positive, i.e. the

simulation data are underestimated by the base line model. For higher temperatures,

this relation is reversed and the base line model tends to overestimate the simulation

data. This behavior can be attributed to the scaling behavior of the Kolafa-Nezbeda

EOS in that region.
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A.7 Artifact of Kolafa-Nezbeda EOS at High

Temperatures and Densities

For the self-diffusion coefficient, there are some data sets at high temperatures and

pressures that seem to have a strong systematic deviation. These spurious deviations

are due to the unphysical behavior of the Kolafa-Nezbeda EOS in this (small) state

region which is demonstrated in the following. Fig. A.7 shows the isentropes calculated

with the Kolafa-Nezbeda EOS in the entire T − ρ phase diagram up to T = 100 εk−1
B .

For densities ρ > 1.8 σ−3 and temperatures T > 15 εk−1
B , which is outside of the validity

sconf / R

Figure A.7: Phase diagram of the Lennard-Jones fluid. Black lines represent the phase
envelopes. Colored lines represent isentropes calculated with the Kolafa-
Nezbeda EOS [136]. The melting and the freezing lines (black) were taken
from Ref. 238. The color indicates the entropy value of a given isentrope.

range of that EOS, the isentropes exhibit a maximum temperature, which is unphysical.

Due to this artifact of the EOS, the entropy scaling model yields erroneous values in

this region leading to large deviations. As the outlier detection method MoDOD [135]

is a conservative approach and takes such deviations implicitly into account, these data

points were not identified as outliers. An artifact of the Kolafa-Nezbeda LJ EOS was

also identified by Stephan and Deiters [50] using the characteristic curve test approach.

Yet, this test revealed an artificial behavior (for the Amagat curve) beyond the freezing

line at extreme temperatures and densities. In this work, it becomes clear that the

Kolafa-Nezbeda EOS shows artifacts already in the fluid region at extreme temperatures

and densities based on the behavior of the entropy. This underlines the statement

that passing the characteristic curve test is necessary, but not sufficient to prove the

thermodynamic consistency of an EOS model. Nevertheless, the characteristic curve

test correctly indicated issues in that state region.
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A.8 Deviation Plots of Selected Data Sets

Fig. A.8 shows the deviation plot of the data sets with high accuracy as mentioned in

the Chapter 2, namely Refs. 171, 183, 194, 196, 197, 199, 202 for the viscosity, Refs.

114, 153, 199, 202, 211 for the thermal conductivity, and Refs. 52, 118, 183, 199 for the

self-diffusion coefficient. The data show significantly less scatter compared to all data

(cf. Chapter 2). These data sets comprise more than 1000 data points for each of the

three transport properties and span over a wide temperature and density range.
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Figure A.8: Relative deviation of the simulation data from the entropy scaling model
for the shear viscosity δη (top), thermal conductivity δλ (middle), and
self-diffusion coefficient δD (cf. Eq. (2)) as a function of the density (left)
and corresponding histograms of the relative deviations (right). Only
confirmed data from Refs. 171, 183, 194, 196, 197, 199, 202 (η), 114, 153,
199, 202, 211 (λ), and 52, 118, 183, 199 (D) are shown. The dashed line
represents the entropy scaling model. Error bars are omitted to avoid
visual clutter. The color indicates the temperature.
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Chapter 3

B.1 Finite Size Analysis

The finite size dependency of the results was analysed by conducting simulations of n-

decane with the Potoff force field at T = 373.15 K and ρ = 0.66836 g/ml with six different

box sizes that contained 200, 400 (used in this work for n-decane simulations), 1000,

2000, 5000, and 10000 molecules, respectively. For every box size, 20 replica simulations

have been conducted and the procedure described in Chapter 3 was applied to calculate

the viscosity and the self-diffusion coefficient. The results of these simulations are given

in Fig. B.1 as function of the inverse box length 1/L. For the viscosity, all results are

within their error bars. Thus, there is no size dependency of the viscosity results. For the

self-diffusion coefficient, it is known that there is a box size dependency when using the

Einstein relation and a correction term was proposed [122]. In Fig. B.1, the raw results

without correction (circles) as well as the final values as used in this work (diamonds)

are shown. The thermodynamic limit (L → ∞) can be calculated by extrapolating a

linear fit on the uncorrected values to 1/L = 0. The results in Fig. B.1 show that the

correction term produces good results in accordance with the result calculated from

extrapolating to the thermondymic limit.
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Figure B.1: Viscosity η (top) and self-diffusion coefficient D (bottom) as func-
tion of the inverse box length 1/L of n-decane at T = 373.15 K and
ρ = 0.66836 g/ml calculated using the Potoff force field. Top: The dashed
line represents the mean viscosity values as calculated from all box lengths.
Bottom: The solid line represents a linear fit on the self-diffusion values
and the dotted line the thermodynamic limit (1/L = 0) as obtained from
the linear fit. Filled symbols represent the values used in this work.

B.2 Choice of Integrator for All-atom Simulations

The all-atom force fields (excluding the reactive force fields) have been used with the

RESPA multiple timestep integrator to reduce the computational costs of these simu-

lations. The computational costs of all-atom force fields is in particular high as they

usually use 3-4 times more interaction sites compared to united-atom force fields by na-

ture. Additionally, they need a smaller time step as they include C-H bonds that obey

high frequencies. To still conserve the total energy of the system, the time step has to

be very small. This can be fixed by a multiple time step integrator like RESPA. There-

fore, simulations of n-C10 with the COMPASS force field have been conducted with

three different integration schemes in advance. The three integration schemes are the

standard velocity Verlet algorithm [14] with a time step of ∆t = 0.25 fs and the RESPA

multiple time step method [295] with a maximal time step of ∆t = 1 fs and ∆t = 2 fs.

The results of these simulations are shown in Fig. B.2. For all three properties (ρ, η,

and D), the simulation results agree within their error bars. Based on this results, the

RESPA integrator with a maximal time step of ∆t = 2 fs was used for the all-atom force

fields as the compuatational costs are reduced by more than a factor of 8 (Verlet) or 1.5

(RESPA with ∆t = 1 fs).
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Figure B.2: Density ρ, viscosity η, self-diffusion coefficient D, and the computational
costs cpuh (from left to right) calculated from simulations of n-C10 with
the COMPASS force field at p = 100 MPa and T = 373.15 K with three
different integration schemes. Details on the different integration schemes
are given in the text.

B.3 Long NpT Run

To ensure equilibration in the NpT simulations, a long NpT simulation run of 100 ns

was conducted (see Fig. B.3). The total energy Etot and the density ρ over time show
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Figure B.3: Total energy of the system Etot and the density ρ as a function of the
simulation time t for TRI with the Potoff force field at p = 0.1 MPa and
T = 373.15 K.

that there is no shift. The equilibrated state is reached after few timesteps (tsim < 1 ns).

B.4 Influence of the Cutoff Criterion in the TDM

The cutoff criterion σ(tcut)/η(tcut) of the time decomposition method was set to 0.4. It

determines the time at which the autocorrelation function is cut to remove noise from

the evaluation. To ensure a proper choice of the criterion, a series of 20 simulations of
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n-octane modeled by the TraPPE force field at ρ = 0.764 g ml−1 and T = 293 K was

evaluated to caluclate the viscosity using cut criteria from 0.2 to 0.8. The results are

shown in Fig. B.4. The cutoff criterion does not have an influence on the simulation
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Figure B.4: Viscosity η as function of the cutoff criterion σ(tcut)/η(tcut) of the TDM
for n-octane modeled by the TraPPE force field with ρ = 0.764 g ml−1 and
T = 293 K.

result. All results are within their error bars. For large values of σ(tcut)/η(tcut) (≥ 6),

the calculated uncertainty increases.

B.5 Force Field Parameters

In this section, the force fields that were used in Chapter 3, are presented togehther

with their paramaters. The following functions were used to describe the interaction

potentials U :

U(r) = Cε [(σ

r
)n − (σ

r
)m] with C = ( n

n −m
)( n

m
) m

n−m

(B.1)

U(r) = k2(r − r0)2 (B.2)

U(r) = k2(r − r0)2 + k3(r − r0)3 + k4(r − r0)4 (B.3)

U(θ) = l2(θ − θ0)2 (B.4)

U(θ) =l2(θ − θ0)2 + l3(θ − θ0)3+
l4(θ − θ0)4 + k2(rij − r1)(rjk − r2)+
N1(rij − r1)(θ − θ0) +N2(rjk − r2)(θ − θ0) (B.5)
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U(φ) = c0 + c1(1 + cos(φ)) + c2(1 + sin(2φ)) + c3(1 + cos(3φ)) (B.6)

U(φ) = 0.5c1(1+cos(φ))+0.5c2(1−cos(2φ))+0.5c3(1+cos(3φ))+0.5k4(1−cos(4φ)) (B.7)

U(φ, θ, r) = n=1

∑
3

cn(1 − cos(nφ − φn))+
(rjk − r2)(B1 cos(φ) +B2 cos(2φ) +B3 cos(3φ))+
(rij − r1)(B4 cos(φ) +B5 cos(2φ) +B6 cos(3φ))+
(rkl − r3)(B7 cos(φ) +B8 cos(2φ) +B9 cos(3φ))+
(θijk − θ1)(L1 cos(φ) +L2 cos(2φ) +L3 cos(3φ))+
(θjkl − θ2)(L4 cos(φ) +L5 cos(2φ) +L6 cos(3φ))+
M1(θijk − θ1)(θjkl − θ2) cos(φ) (B.8)

U(φ, θ) =M1(θijk − θ1)(θkjl − θ2) cos(φ)
M2(θijk − θ1)(θijl − θ2) cos(φ)
M3(θijl − θ1)(θkjl − θ2) cos(φ) (B.9)

B.5.1 UA Force Fields

The non-bonded parameters of the TraPPE, Potoff, and TAMie force field are given in

Tab. B.1 - B.3. All three force fields use the same intramolecular parameters. The

bond, angle, and dihedral interaction parameters are given in Tab. B.4 - B.6.

Table B.1: Non-bonded interaction parameters of the TraPPE force field. Parameters
given for the Lennard-Jones potential (see Eq. (B.1) with n = 12 and m = 6).

Site ε /eV σ /Å Ref.

CH3 0.008445 3.75 [37]

CH2 0.003964 3.95 [37]

CH 0.000862 4.68 [310]
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Table B.2: Non-bonded interaction parameters of the Potoff force field. Parameters
given for the Mie potential (see Eq. (B.1)).

Site n m ε /eV σ /Å Ref.

CH3 16 6 0.010449 3.783 [38]

CH2 16 6 0.005257 3.99 [38]

CH 16 6 0.001206 4.70 [311]

Table B.3: Non-bonded interaction parameters of the TAMie force field. Parameters
given for the Mie potential (see Eq. (B.1)).

Site n m ε /eV σ /Å Ref.

CH3 14 6 0.011747 3.60 [39]

CH2 14 6 0.004560 4.04 [39]

CH 14 6 0.001253 4.37 [312]

Table B.4: Bond interaction parameters of the UA force fields. Parameters given for
the harmonic potential (see Eq. (B.2)).

Bond k2 /eVÅ
−1
r0 /Å Ref.

CHx-CHy 11.6216 1.54 [37, 389]

CH3-CHy (only TAMie) 11.6216 1.74 [39, 389]

Table B.5: Angle interaction parameters of the UA force fields. Parameters given for
the harmonic potential (see Eq. (B.4)).

Angle l2 /eV θ0 /○ Ref.

CHx-CH2-CHy 2.6929 114 [37]

CHx-CH-CHy 2.6929 112 [310]
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Table B.6: Dihedral interaction parameters of the TraPPE force field. Parameters
given for the Fourier potential (see Eq. (B.6)).

Dihedral c0 /eV c1 /eV c2 /eV c3 /eV Ref.

CHx-CH2-CH2-CHy 0 0.03059 -0.00588 0.06819 [37]

CHx-CH2-CH-CHy -0.02163 0.03695 -0.00964 0.03803 [310]

B.5.2 OPLS

The non-bonded parameters of the OPLS force field are given in Tab. B.7. The bond,

angle, and dihedral interaction parameters are given in Tab. B.8 - B.10.

Table B.7: Non-bonded interaction parameters an charges of the OPLS force field.
Parameters given for the Lennard-Jones potential (see Eq. (B.1) with n =

12 and m = 6).

Site ε /eV σ /Å q /e Ref.

C (CH3) 0.002862 3.5 -0.18 [34]

C (CH2) 0.002862 3.5 -0.12 [34]

C (CH) 0.002862 3.5 -0.06 [34]

H 0.001301 2.5 0.06 [34]

Table B.8: Bond interaction parameters of the OPLS force field. Parameters given for
the harmonic potential (see Eq. (B.2)).

Bond k2 /eVÅ
−1

r0 /Å Ref.

C-C 11.6216 1.529 [34]

C-H 14.7438 1.090 [34]
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Table B.9: Angle interaction parameters of the OPLS force field. Parameters given for
the harmonic potential (see Eq. (B.4)).

Angle l2 /eV θ0 /○ Ref.

C-C-C 2.5303 112.7 [34]

C-C-H 1.6262 110.7 [34]

H-C-H 1.4310 107.8 [34]

Table B.10: Dihedral interaction parameters of the OPLS force field. Parameters given
for the OPLS potential (see Eq. (B.7)).

Dihedral c1 /eV c2 /eV c3 /eV Ref.

C-C-C-C 0.07545 -0.00681 0.01210 [34]

C-C-C-H 0.0 0.0 0.01587 [34]

H-C-C-H 0.0 0.0 0.01379 [34]

B.5.3 L-OPLS

The non-bonded parameters of the L-OPLS force field are given in Tab. B.11. The C-C

bond potential of the L-OPLS is given in Tab. B.8. The C-H is rigid with a distance of

r0 = 1.09 Å. The angle interaction parameters of the L-OPLS force field are the same as

those of the OPLS force field (see Tab. B.9). The dihedral parameter are given in Tab.

B.12.
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Table B.11: Non-bonded interaction parameters an charges of the L-OPLS force field.
Parameters given for the Lennard-Jones potential (see Eq. (B.1) with n =

12 and m = 6).

Site ε /eV σ /Å q /e Ref.

C (CH3) 0.002862 3.5 -0.222 [307]

C (CH2) 0.002862 3.5 -0.148 [307]

C (CH) 0.002862 3.5 -0.06 [307]

H (CH3) 0.001301 2.5 0.074 [307]

H (CH2) 0.001140 2.5 0.074 [307]

H (CH) 0.001301 2.5 0.06 [307]

Table B.12: Dihedral interaction parameters of the L-OPLS force field. Parameters
given for the OPLS potential (see Eq. (B.7)).

Dihedral c1 /eV c2 /eV c3 /eV Ref.

C-C-C-C 0.02796 -0.00929 0.00773 [307]

C-C-C-H 0.0 0.0 0.01301 [746]

H-C-C-H 0.0 0.0 0.01301 [746]

B.5.4 COMPASS

The parameters for the non-bonded (cf. Table B.13), the bond (cf. Table B.14) the

angle (cf. Table B.15), the dihedral (cf. Table B.16), and the improper (cf. Table B.17)

interactions are given in the following.
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Table B.13: Non-bonded interaction parameters and charges of the COMPASS force
field. Parameters given for the Mie potential (see Eq. (B.1)) with n = 9

and m = 6.

Site ε /eV σ /Å q /e Ref.

C (CH3) 0.002689 3.8540 -0.159 [35]

C (CH2) 0.002689 3.8540 -0.106 [35]

C (CH) 0.001735 3.8540 -0.053 [35]

H 0.000997 2.8780 0.053 [35]

Table B.14: Bond interaction parameters of the COMPASS force field. Parameters
given for the quartic potential (see Eq. (B.3)).

Bond k2 /eVÅ
−2

k3 /eVÅ
−3

k4 /eVÅ
−4

r0 /Å Ref.

C-C 12.9949 -21.7588 29.4794 1.530 [35]

C-H 14.9606 -30.0032 36.6253 1.101 [35]

Table B.15: Angle (3-body) interaction parameters of the COMPASS force field. Pa-
rameters given for the potential given by Eq. (B.5). The equilibrium
bonds r1 and r2 are given in Table B.14.

Angle

(i − j − k)
l2 /eV l3 /eV l3 /eV θ0 /○ k2 /eV N1 /eV N2 /eV Ref.

C-C-C 1.7136
-

0.3228

-

0.4145
112.67 0.0 0.3476 0.3476 [35]

C-C-H 1.7976
-

0.4598
0.2224 110.77 0.1469 0.9000 0.4953 [35]

H-C-H 1.7190
-

0.5603

-

0.1055
107.66 0.2312 0.7850 0.7850 [35]
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Table B.16: Dihedral (4-body) interaction parameters of the COMPASS force field.
Parameters given for the potential given by Eq. (B.8). The equilibrium
bonds r1−r3 as well as the equilibrium angles θ1−θ2 are given in Table B.14
and B.15.

Dihedral

(i − j − k − l)
c1 /eV c2 /eV c3 /eV B1 /eVÅ

−1
B2 /eVÅ

−1
B3 /eVÅ

−1 Ref.

C-C-C-C 0.0 0.0022 -0.0062 -0.7713 -0.3117 0.0 [35]

C-C-C-H 0.0 0.0014 -0.0073 -0.6452 -0.1586 -0.0136 [35]

H-C-C-H -0.0062 0.0027 -0.0066 -0.6184 -0.0231 -0.0211 [35]

B4 /eVÅ
−1

B5 /eVÅ
−1

B6 /eVÅ
−1

B7 /eVÅ
−1

B8 /eVÅ
−1

B9 /eVÅ
−1

C-C-C-C -0.0032 0.0 0.0 -0.0032 0.0 0.0 [35]

C-C-C-H 0.0108 0.0105 -0.0040 0.0035 0.0026 0.0096 [35]

H-C-C-H 0.0092 0.0135 0.0034 0.0092 0.0135 0.0034 [35]

L1 /eV L2 /eV L3 /eV L4 /eV L5 /eV L6 /eV
C-C-C-C 0.0169 -0.0136 0.0060 0.0169 -0.0136 0.0060 [35]

C-C-C-H -0.0106 0.0 -0.0049 0.0135 0.0196 -0.0086 [35]

H-C-C-H -0.0351 0.0242 -0.0107 -0.0351 0.0242 -0.0107 [35]

M1 /eV
C-C-C-C -0.9560 [35]

C-C-C-H -0.7009 [35]

H-C-C-H -0.5448 [35]
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Table B.17: Improper (4-body) interaction parameters of the COMPASS force field.
Parameters given for the potential given by Eq. (B.9). The equilibrium
angles θ1−θ3 are given in Table B.15. The atom j defines the central atom
of the improper.

Improper (i − j − k − l) M1 /eV M2 /eV M3 /eV Ref.

C-C-C-C -0.0075 -0.0075 -0.0075 [35]

C-C-C-H -0.0572 -0.0572 0.0051 [35]

H-C-C-H 0.0119 -0.0209 0.0119 [35]

H-C-H-H -0.0137 -0.0137 -0.0137 [35]

B.5.5 MARTINI

The coarse-grained models of all five substances as used in this work are shown in

Fig. B.5.
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Figure B.5: Coarse grained models for the Martini force field used in this work.

The parameters for the non-bonded, the bond, and the angel interaction potentials are

given in Tab. B.18 – B.20.
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Table B.18: Non-bonded interaction parameters of the MARTINI force field as used
in this work. Parameters given for the Lennard-Jones potential (see
Eq. (B.1) with n = 12 and m = 6).

Molecule Interaction sites ε /eV σ /Å
n-C10, n-C20,

n-C30, TRI

C2H4 – C2H4 0.0363 4.7

C4Hx – C4Hy 0.0321 4.7

C2H4 – C4Hy 0.0363 4.7

SQU CxHy – CxHy 0.0363 4.7

Table B.19: Bond interaction parameters of the MARTINI force field as used in this
work. Parameters given for the harmonic bond potentials (see Eq. (B.2)).

Molecule Bond k2 /eVÅ
−1

r0 /Å Bond k2 /eVÅ
−1

r0 /Å
n-C10 1 – 2 0.0648 3.390 1 – 3 0.0648 3.410

n-C20
1 – 3 0.0648 4.942 2 – 4 0.0648 4.930

3 – 5 0.0648 5.001 4 – 5 0.0648 4.977

n-C30

1 – 2 0.0648 3.291 1 – 3 0.0648 3.291

2 – 6 0.0648 4.452 3 – 7 0.0648 4.425

4 – 8 0.0648 5.600 5 – 9 0.0648 5.667

6 – 8 0.0648 5.667 7 – 9 0.0648 5.654

TRI

1 – 3 0.0648 3.290 1 – 7 0.0648 4.420

2 – 3 0.0648 3.348 2 – 6 0.0648 4.608

3 – 9 0.0648 4.608 4 – 6 0.0648 5.782

5 – 7 0.0648 5.869 8 – 9 0.0648 5.884

SQU

1 – 2 0.0648 3.290 1 – 3 0.0648 4.420

3 – 4 0.0648 3.348 4 – 6 0.0648 4.608

5 – 7 0.0648 4.608 6 – 8 0.0648 5.782

7 – 9 0.0648 5.869 8 – 9 0.0648 5.884
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Table B.20: Angle interaction parameters of the MARTINI force field as used in this
work. Parameters given for the harmonic angle potentials (see Eq. (B.4)).

Molecule Angle l2 /eV θ0 /○ Angle l2 /eV θ0 /○
n-C10 2 – 1 – 3 0.1296 143.1

n-C20
1 – 3 – 5 0.1296 142.5 2 – 4 – 5 0.1296 142.4

3 – 5 – 4 0.1296 143.6

n-C30

2 – 1 – 3 0.1296 137.1 1 – 2 – 6 0.1296 131.4

1 – 3 – 7 0.1296 130.7 2 – 6 – 8 0.1296 137.5

3 – 7 – 9 0.1296 139.7 4 – 8 – 6 0.1296 137.7

5 – 9 – 7 0.1296 136.8

TRI

3 – 1 – 7 0.1296 102.4 1 – 3 – 2 0.1296 117.5

1 – 3 – 9 0.1296 119.1 1 – 7 – 5 0.1296 132.8

3 – 2 – 6 0.1296 136.0 2 – 3 – 9 0.1296 87.8

2 – 6 – 4 0.1296 138.8 3 – 9 – 8 0.1296 137.5

SQU

2 – 1 – 3 0.1296 119.3 1 – 3 – 4 0.1296 138.7

3 – 4 – 6 0.1296 120.3 4 – 6 – 8 0.1296 135.4

5 – 7 – 9 0.1296 140.8 6 – 8 – 9 0.1296 126.1

7 – 9 – 8 0.1296 126.9

B.5.6 Reactive Force Fields

For both reactive force fields, external input files have been used. The CHON-2017_weak

version of the ReaxFF is provided in the Supplementary Material of Ref. [308]. For

the AIREBO-M, the file distributed by LAMMPS (Version 3 March 2020) was used

(CH.airebo-m).

B.6 Validation

In the following, the implementation of some force fields as used in this work is validated

using literature data. As can be seen in Fig. B.6 - B.10, the results agree well with the

values given in the literature.
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Figure B.6: Validation of the ReaxFF force field with data from Morrow and Harrison
[280] for the density ρ of n-hexadecane as function of temperature T at
a pressure p = 0.1 MPa. Blue squares represent the result from this work
and red circles the results from literature.
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Figure B.7: Validation of the AIREBO-M force field with data from Morrow and Har-
rison [280] for the density ρ of n-hexadecane as function of temperature
T at a pressure p = 0.1 MPa. Blue squares represent the result from this
work and red circles the results from literature.



302 Appendix B Supporting Information for Chapter 3

η
 /
 P

a
 s

0.00

0.00

0.01

0.10

ρ / g ml-1
0.7 0.75 0.8 0.85 0.9

p
 /
 M

P
a

0

250

500

750

ρ / g ml-1
0.7 0.75 0.8 0.85 0.9

Figure B.8: Validation of the TraPPE force field with data from Messerly et al. [747]
for the pressure p and the viscosity η of n-octane as function of density ρ

at a temperature T = 293 K. Blue squares represent the result from this
work and red circles the results from literature.
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Figure B.9: Validation of the TAMie force field with data from Messerly et al. [747]
for the pressure p and the viscosity η of n-octane as function of density ρ

at a temperature T = 293 K. Blue squares represent the result from this
work and red circles the results from literature.
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Figure B.10: Validation of the MARTINI force field with data from Papavasileiou et
al. [289] for the density ρ of n-dodecane as function of temperature T at
a pressure p = 0.1 MPa. Blue squares represent the result from this work
and red circles the results from literature.
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B.7 Correlations of Experimental Data

Eq. (B.10) was used to fit the experimental data.

y/[y] = a0 + a1(T /K) + a2(p/MPa) + a3(p/MPa)2 + a4(T /K)(p/MPa)
1 + b1(T /K) + b2(p/MPa) + b3(T /K)(p/MPa) (B.10)

Table B.21 shows the units of the properties used for the fits with Eq. (B.10).

Table B.21: Units of the correlations used with Eq. (B.10).

y [y]

ρ g/ml

η Pa s

D m2/s

λ W/(K m)

The references of the experimental data are given in Chapter 3. Table B.22 contains

the fitted parameters as well as the AAD of the fits for all properties with experimental

data available.

B.8 Correlations of Simulation Data

The parameters for the properties without experimental data available are given in Table

B.23.

Table B.23: Correlation parameters for Eq. (B.10) with a1 = 0, a4 = 0, b1 = 0, and
b3 = 0.

Substance Property a0 a2 a3 b2 AAD / %

n-C20 log(D) −2.09e1 −8.06e−3 4.77e−6 6.19e−16 0.07

n-C30 log(η) −5.86e0 7.22e−3 −3.64e−6 1.01e−15 0.34

TRI ρ 7.64e−1 4.36e−3 5.33e−7 4.75e−3 0.01

log(D) −2.22e1 −1.76e−1 −4.57e−5 7.23e−3 0.03

SQU log(D) −2.22e1 −2.03e−2 4.68e−6 3.31e−4 0.02

They were fitted to the simulation results of the Potoff force field.
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Table B.22: Correlation parameters for Eq. (B.10).

Substance Property a0 a1 a2 a3 a4 b1 b2 b3 AAD / %

n-C10 ρ 9.44e−1 −8.35e−4 3.43e−3 1.11e−6 6.23e−6 −1.43e−4 3.52e−3 9.16e−6 0.13

log(η) 8.64e1 −8.17e−1 1.57e0 1.03e−3 −8.56e−3 7.14e−2 −1.23e−1 1.0e−3 1.4

log(D) −4.51e1 −2.43e−1 1.52e−1 −6.65e−5 −2.23e−3 1.60e−2 −140e−2 1.22e−4 1.61

n-C20 ρ 9.57e−1 −8.23e−4 4.64e−3 1.38e−6 4.47e−6 −3.13e−4 5.04e−3 6.35e−6 0.16

log(η) 1.05e1 −9.09e−2 2.49e−1 7.36e−5 −8.84e−4 6.94e−3 −2.01e−2 1.07e−4 0.43

n-C30 ρ 9.64e−1 −7.42e−4 5.66e−3 1.41e−6 2.58e−6 −2.51e−4 6.13e−3 4.13e−6 0.13

log(D) −1.64e7 −1.17e5 6.00e4 −2.67e1 −7.67e2 7.42e3 −5.82e3 3.98e1 1.22

TRI log(η) 1.82e7 −8.32e4 1.44e5 4.59e1 −4.49e2 5.87e3 −9.9e3 5.38e1 3.19

SQU ρ 9.96e−1 −7.03e−4 5.46e−4 2.55e−7 8.42e−6 −7.82e−5 1.52e−4 9.88e−6 0.28

log(η) 2.65e7 −1.18e5 2.37e5 8.14e1 −7.05e2 8.11e3 −1.4e4 7.44e1 5.12



306 Appendix B Supporting Information for Chapter 3

B.9 Radius of Gyration

The radius of gyration was calculated for all simulations. The results are shown in

Fig. B.11 for all molecules and force fields. There is only a weak pressure dependency

n-C10

n-C20 n-C30

Figure B.11: Radius of gyration Rg of n-C10, n-C20, n-C30, TRI, and SQU at T =

373.15 K as a function of the pressure p. Colored symbols indicate the
simulation results for the different force fields.

of Rg. Especially the simulations with the MARTINI force field show a decrease of the

radius of gyration with increasing pressure. The strong decrease of Rg for pressures

p > 50 MPa observed by Prentice et al. [748] for SQU with the L-OPLS force field

could not be confirmed. The radius of gyration was averaged over all pressures for

every force field and molecule. The results are shown in Fig. B.12. The radius of

gyration increases with increasing chainlength for the linear alkanes as expected. The

two branched alkanes show lower radii of gyration compraed ot their isomer n-C30. TRI

(long branches) exhibits thereby smaller radius of gyration then SQU (short branches).

The different force fields show very similar results for the radius of gyration. Only the

simulations with the OPLS force field for n-C20 and n-C30 and the MARTINI force field

for SQU deviate from the other force fiels. For OPLS, this is already known as its results

for long linear alkanes show unphysical behavio (see Section B.10). The deviation of

the MARTINI force field for SQU can be explained by the representation by MARTINI

as a linear chain (see Section B.5).
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n-C10 n-C20 n-C30

Figure B.12: Averaged radius of gyration Rg of n-C10, n-C20, n-C30, TRI, and SQU
at T = 373.15 K for the different force fields averaged over all state points.

B.10 OPLS Simulations of n-Icosane and

n-Triacontane

The simulations for n-icosane (n-C20) and n-triacontane (n-C30) with the OPLS force

field exhibit an unphysical transition to a gel-like phase, which has already been de-

scribed by Ref. [307]. Therefore, these simulations were discarded in Chapter 3. For

transparency, these results are shown here in the Supplementary Material. A screen-

shot of such a gel-like phase of n-icosane (n-C20) at a density of 0.833 g/ml is shown in

Fig. B.13.

Figure B.13: Screenshot of an NV T simulation of n-icosane (n-C20) at ρ = 0.833 g/ml

and T = 373.15 K. The single sites are colored as follows: gray - carbon,
white - hydrogen.

The backbones of the n-icosane (n-C20) molecules are blockwise structured in parallel.

In measurements, the phase transition to solid-like phase is observed at significantly

lower temperatures than considered in this work [307]. In general, the single replica

simulations exhibit different metastable states and are inhomogeneous. The transition

to the gel-like phase strongly influences the prediction of the density and leads to high
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uncertainties of the pressure in the NV T simulations due to different degrees of struc-

turing in the set of replica simulations. Additionally the densities calculated from the

preliminary NpT simulations do not reproduce the pressure in the NV T simulations

which is why the OPLS simulations do not match the prescribed pressures. This struc-

turing can only be observed for n-icosane (n-C20) and n-triacontane (n-C30) modeled

by the OPLS force field.

The results for the densities of n-C20 and n-C30 calculated with the OPLS force field

are shown in Fig. B.14. For both substances, the simulations show large deviations

n-C20

n-C30

Figure B.14: Density ρ as function of pressure p for n-C20 and n-C30. Symbols in-
dicate the simulation results for the OPLS force field. Lines represent
the empirical correlations (black solid lines in cases where exp. data was
used). All properties given for the temperature T = 373.15 K.

to the experimental data. Except for the highest pressure, the densities are strongly

overestimated.

In Fig. B.15, the viscosity results for n-C20 and n-C30 simulated with the OPLS force

field are displayed. For nearly all state points, the OPLS force fields overestimated the

experimental data by more than one order of magnitude. The increased viscosity is a

result of the decreased mobility of the molecules due to the structuring.

The results for the self-diffusion coefficient of n-C20 and n-C30 of the OPLS force field

are shown in Fig. B.16. As expected from the increased viscosity, the OPLS force field

underestimates the experimental data.
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n-C20

n-C30

Figure B.15: Viscosity η as function of pressure p for n-C20 and n-C30. Symbols
indicate the simulation results for the OPLS force field. Lines represent
the empirical correlations (black solid lines in cases where exp. data was
used; blue dotted lines in cases where the Potoff force field was used).
All properties given for the temperature T = 373.15 K.

n-C20

n-C30

Figure B.16: Self-diffusion coefficient D as function of pressure p for n-C20 and n-C30.
Symbols indicate the simulation results for the OPLS force field. Lines
represent the empirical correlations (black solid lines in cases where exp.
data was used; blue dotted lines in cases where the Potoff force field was
used). All properties given for the temperature T = 373.15 K.
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B.11 Relation Between Viscosity and Self-diffusion

Fig. B.17 shows the linear relation between the self-diffusion coefficient and the viscosity

as predicted by the Stokes-Einstein relation [342]. Using the Stokes-Einstein equation

n-C10

n-C20 n-C30

Figure B.17: Viscosity η as function of the self-diffusion coefficient D for n-C10, n-
C20, n-C30, TRI, and SQU. Symbols indicate the simulation results
for the different force fields. All properties given for the temperature
T = 373.15 K and pressures p = 0.1 − 400 MPa.

(see Eq. (B.11)), the hydrodynamic radii rh were calculated for each state point.

D =
kBT

6πηRh

(B.11)

The results are given in Fig. B.18. A dependency of the hydrodynamic radius Rh on

the pressure is hardly detectable. Thus, a breakdown of the Stokes-Einstein relation

for high pressure as observed by Ref. [748] is not found. However, the values for the

hydrodynamic radius of SQU are in accordance with the vallues given by Prentice et al.

for low pressure (p < 50 MPa).
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n-C10

n-C20 n-C30

Figure B.18: Hydrodynamic radius Rh of n-C10, n-C20, n-C30, TRI, and SQU at
T = 373.15 K as a function of the pressure p. Colored symbols indicate
the simulation results for the different force fields.

The hydrodynamic radius was also averaged over all pressures for every force field and

molecule. The results are shown in Fig. B.19.

n-C10 n-C20 n-C30

Figure B.19: Averaged radius of gyration Rh of n-C10, n-C20, n-C30, TRI, and SQU
at T = 373.15 K for the different force fields averaged over all state points.

The results are similar to the radius of gyration (see Fig. B.12). The force fields are

mostly consistent in their prediction of the hydrodynamic radius except the OPLS force

field for n-C20 and n-C30. Due to its unphysical properties for long linear alkanes, it
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predicts smaller values than all other force fields. In general, the hydrodynamic radius

is smaller than the radius of gyration which is in accordance with Ref. [748].

B.12 Results for the MARTINI Force Field with

Time Scaling

In Fig. B.20 and B.21, the results for the viscosity and the self-diffusion coefficient

calculated by the MARTINI force field with time scaling are compared to the original

MARTINI results without time scaling. For the time scaling, a scaling factor kt = 4 was

applied. The viscosity and the self-diffusion coefficient with time scaling were calculated

from the original values of the MARTINI force field by ηscaled = η ⋅ kt and Dscaled =D/kt,

respectively. For both properties, the predictions by the MARTINI force field worsen

n-C10

n-C20 n-C30

Figure B.20: Viscosity η of n-C10, n-C20, n-C30, TRI, and SQU at T = 373.15 K as a
function of the pressure p. Stars indicate the simulation results for the
MARTINI force field without (dark red) and with scaling (light green)
and the black crosses are experimental data points. Black solid lines are
correlations of the experimental data, blue broken lines are correlations
of the simulation data with the Potoff force field.

for the linear alkanes. They overestimate the viscosity and underestimate the self-

diffusion clearly for all three substances where the original MARTINI without time

scaling provided good predictions. In contrast, the predictions for the branched alkanes
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n-C10

n-C20 n-C30

Figure B.21: Self-Diffusion D of n-C10, n-C20, n-C30, TRI, and SQU at T = 373.15 K
as a function of the pressure p. Stars indicate the simulation results for
the MARTINI force field without (dark red) and with scaling (light green)
and the black crosses are experimental data points. Black solid lines are
correlations of the experimental data, blue broken lines are correlations
of the simulation data with the Potoff force field.

improve: The viscosity is underestimated and the self-diffusion is overestimated without

time scaling. With time scaling, the deviations to the experimental values decrease.

Overall, the time scaling does not improve the results throughout all substances and state

points. Additionally, the factor itself is kind of arbitrary. For example, the standard

scaling factor kt = 4 was derived from the comparison of the diffusional dynamics of

water in CG simulations and experiments. Higher scaling factors (5-10) have been also

used for different systems [313].

B.13 Uncertainties of the Simulations for the

Computational Costs

The uncertainties shown in Fig. B.22 give an impression of the statistical quality of the

simulations that were compared by their computational costs. For the viscosity, ∆η is

between 7.4 % and 22 % of the computed value. The uncertainty of the self-diffusion

coefficient is smaller in the range between 1 % and 1.6 %. For both properties, the
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uncertainties of the AA force fields tends to be slightly larger then the uncertainties of

the UA and CG force fields. For the self-diffusion, this trend is even more mitigated.
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Figure B.22: Uncertainties of the viscosity ∆η and the self-diffusion coefficient ∆D

of all force fields for 20 replica simulations with T = 373.15 K and ρ =

0.67982 g/ml.
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C Supporting Information for

Chapter 4

C.1 Further Details on the Data Scheme and Data

Format

C.1.1 Tags of Interaction Sites Modeling Hydrogen Atoms

The tags for interaction sites modeling a hydrogen atom in all-atom force fields have a

special format regarding the last two parts of the tag format. Since hydrogen atoms can

only form a single first-order bond, hydrogen atoms would have tags of the form "part1-

part2-1-1". To increase the quality of information in the tag, the last two parts of the

tag are modified for hydrogen atoms: The third part of the tag thereby describes, which

atom is modeled by the interaction site to which the hydrogen atom under consideration

is bound. The last part of the tag is a tuple divided by a backslash "\". The first part

of the tuple specifies the number of bonds of the interaction site to which the hydrogen

atom under consideration is bound. In case of non-cyclic molecular structures, the

second part of the tuple describes the highest bond order of the interaction site to

which the hydrogen atom under consideration is bound. Therein, the number of bonds

neglects bonds to hydrogen atoms. Fig. C.1 shows an all-atom model of a n-pentane

molecule, in which each interaction site has been assigned its corresponding tag. For

cyclic molecular structures see the following section.
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Figure C.1: All-atom model of the n-pentane molecule with tags assigned to the in-
teraction sites.

C.1.2 Tags of Interaction Sites Modeling Cyclic Structures

The tags for interaction sites modeling an atom or a group of atoms within a cyclic

molecular structure have a special format regarding the last two parts of the tag format.

The second part of the tag is preceded by a "C" to indicate that the interaction site

under consideration is located in a cyclic molecular structure. The last part of the tag,

on the other hand, consists of several flags separated by a hyphen "/". The first flag

describes the functional group within the ring. Table C.1 gives examples of flags used

in the data format.

Further flags are an alphabetical listing of all second parts of the tags of the interaction

sites bond to the interaction site under consideration. In the case that the part of

the considered interaction site is "CC", another flag is appended. This appended flag

Table C.1: Flags representing a functional group within a cyclic molecular structure. ∗

Only for cycloalkanes with a ring size of five or six. ∗∗ Only for cycloalkanes
with a ring size of six.

Abbreviation
Functional

group

CA cycloalkane

E∗ ether

diE(1,3)∗ 1,3 di-ether

diE(1,4)∗ 1,4 di-ether

triE∗∗ tri-ether

Aro benzene
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Figure C.2: Model of a cyclic molecular structure and the tags associated with the
interaction site.

describes the minimum distance of the considered interaction site to another site within

the ring whose second part of the tag is not "CC". In case of a pure "CC" ring, the flag

has the value "0". Fig. C.2 shows a model of an united-atom cyclic molecular structure

and the tags associated with each interaction site. For all-atom modeled hydrogen atoms

that are bound to a cyclic molecular structure, only the last tag is altered compared to

the description in the previous section. The last tag follows the same rules described in

this section.

C.1.3 Non-Transferable Models of Molecules in the Data

Scheme

Some transferable force fields also include models of molecules that are intrinsically non-

transferable and parameters are fitted for each component-specific force field model.

Hence, for specific molecules, exceptions from the transferable model framework are

defined and component-specific models are used. For example, water molecules often

possess parameters which are exclusively used for this particular molecular model and

cannot be applied to any other molecule. The data scheme presented in this chapter is

capable of incorporating these component-specific force field models by assigning them

a new functional group. Therefore, the first tag is an abbreviation representing the

functional group. The other tags follow the principles of the data scheme outlined in

Chapter 4. Analogously, interaction sites modeling an atom or group of atoms within

a cyclic molecular structure in a non-transferable model can be assigned a new flag

representing the functional group.
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C.1.4 Details on Rigid, Flexible, and Semi-Flexible Force

Fields

For rigid force fields, all bond lengths, bond angles or torsion angles are constrained.

Semi-flexible force fields allow that individual bond lengths, bond angles or torsion

angles are constrained. The TraPPE-UA force field for example uses rigid bond lengths

for all bonds, whereas bond angles and torsion angles are not constrained – in most

cases. Certain molecular structures (e.g. benzene) are also constrained with respect

to their bond angles and torsion angles. Constrained bond lengths or bond angles are

given the IDi = 0 and the parameter p0 takes either the constrained bond length or

the constrained bond angle. All other parameters take the value ’-’. In the case of a

constrained torsion angle, both the potential and all parameters take the value ’-’.

C.1.5 Specifications for Special Cis/Trans Torsion Potentials

To distinguish between cis and trans configurations, further metadata is required. There-

fore, for isomerism-dependent torsion potentials, the potentials for both configurations

are given by specifying two potential functions, parameter sets and meta data separated

by a slash. The first data refers to the cis configuration and the second to the trans

configuration.

C.2 Application to the TraPPE-UA, OPLS-AA, and

Potoff Force Fields

The TraPPE-UA, OPLS-AA, and Potoff transferable force fields were implemented in

the TUK-FFDat data format. The corresponding files are provided in the Zenodo repos-

itory 436 in the three files "TUK-FFDat_TraPPE-UA.xlsx", "TUK-FFDat_OPLS-

AA.xlsx", and "TUK-FFDat_Potoff.xlsx".

It should be noted that the extension of the TraPPE-UA force field from Zhang et al.

[384] was used, since perflouranes have a backbone consisting of "CFx" interaction sites

instead of "CHx" interaction sites. In the special case of perflouranes, each interaction

site "CFx" is assigned the first and second part of the interaction site tag "A-PF" instead

of the regular alkane tag of "A-C".
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C.3 Building a TUK-FFDat Force Field File

For force field developers, a blank .xlsx TUK-FFDat template (template.xslx)

is provided that can be used to create new transferable force field files. The tem-

plate consists of seven tabs (intermolecular, bond, angle, torsion, improper,

1n_potential, special) – analogue to the interaction types (cf. Tables 8 - 13). The

headers of the tables are colored in dark green in the template. The names of the head-

ers may not be changed as they are part of the data format. The body of the table is

colored light green. This body needs to be filled with the actual force field data as out-

lined in Tables 8 - 13. Examples how the force field data needs to be filled are given via

the TraPPE, OPLS-AA, and Potoff force field (see above). For each of the seven tabs,

the columns defined by the data format are present. Since the number of parameters is

variable for each interaction, additional columns can be added (see Tables 8 - 13, and

15 for details). In the template, placeholders (orange colored) for additional columns

are added for clarity. The parameters have to be numbered in ascending order (p1, p2,

p3, ...) and its names have to be inserted in the respective header cells. Hence, the

number of columns varies according to the number of parameters used in a given force

field. Moreover, the number of parameters and columns is indirectly coded in the ID

variable of each tab. Any number of rows can be used within the limits of the .xlsx

file format. The .xlsx file can then be converted to an SQL database with the tools

described in the next section.

C.4 The Handling of the Conversion Tools

The python scripts "xlsx2SQL.py" and "SQL2xlsx.py" are designed to run under

python 3. The requirements for running the scripts given in the Zenodo repository 436

is a computer on which python 3 and the package manager "pip" are installed. Further

python modules needed to run the scripts "xlsx2SQL.py" and "SQL2xlsx.py" that

are specified in the file "requirements.txt" and can be installed with the help

of the package manager "pip". Using the command line, the directory in which the

file "requirements.txt" was downloaded needs to be navigated to. The following

command is then to be entered into the command line:

$ pip install -r requirements.txt

Both python scripts "xlsx2SQL.py" and "SQL2xlsx.py" require two arguments each.

The script "xlsx2SQL.py" reads in an .xlsx spread sheet file containing a transfer-

able force field in the TUK-FFDat data format and outputs an SQL script that sets up a
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corresponding SQL database containing the transferable force field. The first argument

to this script is the name of the .xlsx spread sheet file including the file extension

".xlsx". The second argument is the name of the SQL script to be generated – also

including the corresponding file extension ".sql". The .xlsx spread sheet file should

have the same structure as the files .xlsx given in the Zenodo repository 436, which

means that the names and headers of the individual tables must be identical.

The python script "SQL2xlsx.py" is the counterpart to the "xlsx2SQL.py" script.

It reads in an SQL script that sets up a database and then outputs an .xlsx spread

sheet file. The first argument to this script is the name of the SQL script including the

file extension ".sql". The second argument is the name of the .xlsx spread sheet file

to be generated – also including the corresponding file extension ".xlsx".

Thus, the two scripts "xlsx2SQL.py" and "SQL2xlsx.py" can be executed with the

following commands via the command line:

$ python3 xlsx2SQL.py input.xml output.sql

or accordingly:

$ python3 SQL2xlsx.py input.sql output.xml

C.5 Comparison with Literature Data

The implemented force fields were validated using literature data. Figs. C.3, C.4, and

C.5, show the results for the TraPPE, OPLS-UA, and the TAMie force field. For the

TraPPE and the TAMie force field, simulations were carried out based on the MolMod

implementation and the results were compared with those from Messerly et al. [291].

For the OPLS-UA force field, results from the MolMod implementation were compared

with those from Schappals et al. [90]. The results obtained from the force fields from the

MolMod implementation are in very good agreement with the results from the literature

in all cases.
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Figure C.3: Pressure of n-octane for the TraPPE force field from this work (green
diamonds) in comparison with results from Messerly et al. [291] (magenta
stars) as function of the density ρ at T = 293 K.

Figure C.4: Pressure of n-octane for the TAMie force field from this work (green di-
amonds) in comparison with results from Messerly et al. [291] (magenta
stars) as function of the density ρ at T = 293 K.
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Figure C.5: Density of n-butane for the OPLS-UA force field from this work (green
diamonds) in comparison with results from Schappals et al. [90] (magenta
stars) as function of the temperature T at p = 41 MPa.
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D Supporting Information for

Chapter 5

D.1 Cumulative Kinetic Energy

Fig. D.1 shows a typical result for the kinetic energy E added to the hot wall and

removed from the cold wall by the thermostats as a function of the simulation time t

during the sampling phase of the simulation. The linear dependency indicates a steady-

state.
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Figure D.1: Cumulative kinetic energy E added to the hot wall (red) and the cold wall
(blue) by the thermostats as a function of the simulation time t in the 4
million time steps of the sampling phase. Data taken from simulation 1,
cf. Table 23.

D.2 Influence of the Channel Width H and the Wall

Temperature Tw

The simulations 28 − 62 (cf. Tab. II) were used to study the influence of the channel

width on the Kapitza length. As shown in Fig. D.2, the Kapitza length LK is practically

independent of the channel width H.
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Figure D.2: Influence of the channel width H on the Kapitza length LK. Results
from the simulations (symbols) are indicated in the legend; the numbers
correspond to the simulation number given in Table 23. The solid lines
represent the mean values of the respective simulations.

The influence of the temperature difference between the fluid in the center of the channel

and the wall ∆Tw was studied by the simulations 63 − 74 (cf. Table 23). The results

of these simulations are shown in Fig. D.3 and reveal that ∆Tw has no significant

influence on LK in the range of values studied in Chapter 5, i.e. the results scatter

around a common mean value.
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Figure D.3: Dependence of the temperature difference between the fluid in the center
of the channel and the wall ∆Tw on the Kapitza length LK. Results from
the simulations 63 – 68 (red symbols) and 69 – 74 (green symbols), cf.
Table 23. The red and green solid lines represent the mean value of the
respective simulations.

D.3 Density Profiles Near the Solid Surface

Fig. D.4 shows that the solid-fluid interaction energy εsf has an important influence on

the fluid structure at the interface. Not only the width of the maxima depend on εsf,

but also their position. As expected, low numbers of εsf lead to less ordering. A high

ordering in the adsorption layer leads to an increased heat transfer resistance of the

interface

Figure D.4: Density profile ρz of the fluid at the solid-fluid interface for different solid-
fluid interaction energies εsf. The bulk density is ρf = 0.8 σ−3

ff . Results
from the simulations 1 and 10 – 18, cf. Table 23.

Fig. D.5 shows the influence of the fluid temperature Tf on the structure of the fluid
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at the interface. Fig. D.5 reveals that high temperatures lead to a decrease of the

structuring due to a larger fluid particle mobility.

Figure D.5: Density profile ρz of the fluid at the solid-fluid interface for different fluid
temperatures Tf. The bulk density is ρf = 0.8 σ−3

ff . Results from the simu-
lations 1 – 9, cf. Table 23.

In Fig. D.6, the structuring of the fluid is plotted for ten different mean fluid densities

along supercritical isotherm T = 1.3 εffk−1
B . It reveals that the number of adsorption

layers and thus the structuring of the fluid near the wall increases with increasing density.

Figure D.6: Density profile ρz of the fluid for ten bulk densities ρf at a temperature of
T = 1.3 εffk−1

B . The mean bulk fluid density is indicated in each subplot.
Results from the simulations 9, 97, 99, 101, 103, 105, 107, 109, 112, and
113, cf. Table 23.



Appendix E Supporting Information for Chapter 6 327

E Supporting Information for

Chapter 6

E.1 Multi-parameter EOS of Calibration Fluids

In Fig. E.1, the densities calculated from the multi-parameter EOS for the reference

fluids ethanol and toluene [562, 563] are compared to experimental data from the Dort-

mund Database (DDB) [719]. The mean average deviations of the depicted data from

the EOS are 0.06 % for ethanol and 0.075 % for toluene.

E.2 Estimation of the Calibration Uncertainty

ucal,r(ρ)
The calibration uncertainty ucal,r(ρ) was estimated similar to Eq. (32) as

ucal,r(ρ) =√u2
fit,r + u2

EOS−Eth,r + u2
EOS−Tol,r, (E.1)

where ufit,r = 0.000232 is the standard uncertainty of the calibration fit, uEOS−Eth,r =

0.00028 and uEOS−Tol,r = 0.00036 are the standard uncertainties of the data which obey a

smaller deviation than the mean average deviations given in the section before. This data

reduction was implemented to remove the influence of outliers and get a real estimation

of the uncertainty. The resulting uncertainty for the calibration is ucal,r(ρ) = 0.0005.

E.3 Parameters of Empirical Correlations ρcorr(T , p)
The parameters of the empirical correlations (cf. Eq. (33)) are given in Table E.1.
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Figure E.1: Relative deviations of experimental data and results from the multiparam-
eter EOS as a function of the pressure p for the reference fluids ethanol
and toluene. Experimental data ρexp were taken from the DDB [719]. The
EOS from Refs. 562 (ethanol) and 563 (toluene) were used to calculate
the densities ρEOS.

Table E.1: Parameters of the empirical correlations ρcorr(T , p) (cf. Eq. (33)) for the
1-alcohols studied in this work.

1-hexanol 1-heptanol 1-octanol 1-nonanol 1-decanol

c0 /102 9.202185 9.202185 9.518282 9.486945 9.030465

c1 /10−1 -0.211634 -0.211634 -1.943067 -1.695094 1.071356

c2 /10−1 -0.011168 -0.011168 -0.008145 -0.008269 -0.012203

c3 /10−1 3.731305 3.731305 3.642881 3.586195 3.585842

c4 /10−8 1.209565 1.209565 1.058661 1.008344 0.965867

c5 /10−8 3.520952 3.520952 2.783496 2.593317 2.500269

c6 /10−8 -3.315736 -3.315736 -2.781481 -2.624923 -2.515265
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E.4 Literature Data

Fig. E.2 shows the available literature data for the density of the five 1-alcohols for

298.15 ≤ T /K ≤ 423.15 and 0.1 ≤ p /MPa ≤ 120. Experimental data are available

for all five substances. Most experiments were conducted at ambient conditions. In

general, data is sparse especially for elevated pressures (p ⪆ 50 MPa) and temperatures

(T ⪆ 380 K). The density data for of 1-hexanol are distributed relatively uniformly in

the considered pressure and temperature range. The availability of experimental density

data tends to decrease with increasing chain length.

In addition to Figs. 49 - 50, Fig. E.3 shows the deviations of the experimental data

of this work as well as the literature data are shown as function of the pressure. In

contrast to the Figs. 49 - 50 (which are limited to deviations between -0.4 % and 0.4 %

for better visibility), deviations up to 1.6 % are displayed in Fig. E.3 to also include

large deviations. For 1-nonanol, the literature data scatter most and do not agree with

each other (especially Refs. 623, 634, 638). These data points obey both, positive and

negative deviations to the empirical model of this work. Due to this distribution of the

deviations and the fact, that other references (only available for p < 35 MPa) agree well

with the results of this work, the data from these references are assumed to be outliers.

This is also the reason for the higher AADlit
%,corr for 1-nonanol (see Table 32).
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Figure E.2: State points (temperature T and pressure p) where measurements are
available in literature (including measurements of this work) for 1-hexanol,
1-heptanol, 1-octanol, 1-nonanol, and 1-decanol. The dashed line repre-
sents a correlations for the solid-liquid equilibrium of 1-decanol from Ref.
596.
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Figure E.3: Relative deviations between experimental density data (symbols) and the
empirical correlation, cf. Eq. (33), (baseline) as a function ot the pressure
p. Symbols are the same as in Fig. E.2 (individually for each substance).
The color indicates the temperature.

E.5 Details on the Fitting Procedure

For the fitting procedure of the component-specific models, the error for the vapor

pressure was weighted five times more than the error of the saturated densities and the
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Table E.2: Result of the fit: Deviations of the EOS models to the reference data used
for the fit for the vapor pressure AADlit

ps,EOS, the saturated liquid densities
AADlit

ρs,EOS, and the homogeneous state liquid density AADth
ρ,EOS.

1-hexanol 1-heptanol 1-octanol 1-nonanol 1-decanol

AADlit
ps,EOS /%

PC-SAFT 0.31 0.84 0.98 0.74 0.92

SAFT-VR Mie 0.21 0.77 0.99 0.99 1.24

soft SAFT 0.37 0.7 0.92 1.16 1.4

CPA 0.49 0.88 0.94 0.51 0.93

AADlit
ρs,EOS /%

PC-SAFT 0.76 0.41 0.56 0.65 0.73

SAFT-VR Mie 0.92 0.56 0.24 0.51 0.65

soft SAFT 1.3 1.68 1.2 2.11 1.67

CPA 1.11 1.39 1.59 1.45 1.25

AADth
ρ,EOS /%

PC-SAFT 0.49 0.57 0.66 0.91 0.99

SAFT-VR Mie 0.4 0.31 0.2 0.38 0.73

soft SAFT 0.61 0.97 0.61 1.59 0.93

CPA 1.13 1.34 1.37 1.54 1.52

homogeneous bulk densities. Thus, the objective function

∆ = 5

Nps

Nps∑
i

(pv
exp − pv

EOS

pv
exp

)2 + 1

Nρs

Nρs∑
i

(ρsat
exp − ρsat

EOS

ρsat
exp

)2 + 1

Nρ

Nρ∑
i

(ρexp − ρEOS

ρexp

)2

, (E.2)

was used.

Table E.2 reports the results of the fits of the component-specific models developed in

this work for the vapor pressure, the saturated density, and the homogeneous state

liquid density. The AADs are calculated using the data used for the fit, which comprise

literature data for the vapor pressure and saturated liquid density as well as the measured

densities from this work. Details on the fitting procedure are given in Chapter 6.
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E.6 Comparison of the Second-Order Derivative

Properties to Literature Data

Fig. E.4 shows a comparison of the thermal expansion coefficient α and the isothermal

compressibility β calculated from the empirical model (cf. Eq. (3)) with literature data

for 1-octanol and 1-decanol. For the thermal expansion coefficient, the AADs between

a) b) 1-Octanol 1-Decanol

Figure E.4: Thermal expansion coefficient α (top) and isothermal compressibility β as
function of pressure p for 1-octanol (a) and 1-decanol (b). Lines are the
results from this work calculated from Eqs. (3) - (5). Symbols are results
from Ref. 646. The color indicates the temperature.

the empirical model and the literature data (cf. Eq. (9)) are 3.2 % and 2.8 % for 1-

octanol and 1-decanol, respectively. For the isothermal compressibility, the agreement

to the literature data is higher resulting in lower average deviations (AADs: 1.0 % for

1-octanol and 1.3 % for 1-decanol). All deviations to literature data are within the

given uncertainties of Ur(α) = Ur(β) = 0.08 for 1-octanol and Ur(α) = 0.12 as well as

Ur(β) = 0.14 for 1-decanol (see Chapter 6).

E.7 EOS Parameters from the Literature

For the studied alcohols, there are also EOS component-specific models available in

literature for the EOS frameworks used in this work. Only for soft SAFT, no models

are available for 1-nonanol and 1-decanol. The references for these EOS models are

given in Table E.3. All models include association but no polar contribution.
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Table E.3: References of the substance-specific EOS parameters for the 1-alcohols ap-
plied in this work.

EOS 1-hexanol 1-heptanol 1-octanol 1-nonanol 1-decanol

PC-SAFT 570 570 570 570 570

SAFT-VR Mie 571 571 572 572 572

soft SAFT 573 573 573 - -

CPA 574 574 574 574 574

To compare these models, the AADs for the vapor pressure, saturated liquid density, and

the homogeneous state liquid density were calculated (which corresponds to the data

used for fitting the component-specific EOS models in this work). The resulting AADs

are given in Table E.4. Additionally, the results for the density, thermal expansion

Table E.4: Deviations of the EOS models from literature to experimental data of the
vapor pressure AADlit

ps,EOS, the saturated liquid densities AADlit
ρs,EOS and the

compressed liquid density AADth
ρ,EOS.

1-hexanol 1-heptanol 1-octanol 1-nonanol 1-decanol

AADlit
ps,EOS /%

PC-SAFT 0.59 0.96 1.12 0.8 1.18

SAFT-VR Mie 3.52 7.84 2.39 1.37 5.19

soft SAFT 27.69 28.52 25.91

CPA 7.13 18.31 9.8 11.04 8.02

AADlit
ρs,EOS /%

PC-SAFT 0.66 0.63 0.54 0.33 0.84

SAFT-VR Mie 0.78 2.4 0.35 0.54 1.26

soft SAFT 0.21 0.42 1.17

CPA 1.43 1.31 1.63 2.12 1.2

AADth
ρ,EOS /%

PC-SAFT 0.59 0.47 0.69 1.4 2.03

SAFT-VR Mie 0.33 1.93 0.16 0.46 0.77

soft SAFT 0.37 0.66 1.62

CPA 1.2 1.15 1.38 1.36 1.49

coefficient, and the isothermal compressibility of these models are shown in Fig. E.5.

The soft SAFT EOS was used here without a crossover term, even though the parameters

were fitted using a version that includes a crossover term [573].

For three out of the four EOS models, the deviations of the vapor pressure, i.e. AADlit
ps,EOS,



Appendix E Supporting Information for Chapter 6 335

0.0

0.5

1.0

1.5

2.0

2.5

AA
D

th ,E
O

S
/%

Density

PC-SAFT
SAFT-VR Mie

soft SAFT
CPA

0

20

40

60

AA
D

th ,E
O

S
/%

Thermal expansion coefficient

1-
he

xa
no

l

1-
he

pt
an

ol

1-
oc

ta
no

l

1-
no

na
no

l

1-
de

ca
no

l0

10

20

30

40

50

AA
D

th ,E
O

S
/%

Isothermal compressibility

Figure E.5: Average absolute deviations of the EOS results AADth
Y ,EOS for the density

ρ, the thermal expansion coefficient α, and the isothermal compressibility
β for the five 1-alcohols using the EOS models from literature [570–574].
The AAD were computed with respect to the reference data from this
work ’th’.

are significantly larger than the ones from this work. This is probably due to a different

target function used in the fitting procedure with less weight on the vapor pressure, be-

sides a different set of experimental data. The target function is not given in most of the

publications which hinders the reproducibility of the given results. The extremely high

deviations of the vapor pressure description by the soft SAFT EOS, cf. Table E.4, are

possibly related to the fact that a crossover term was used in the original publication.

Compared to the models parameterized in this work (see Chapter 6), the results for the

density show slightly higher deviations for most of the substances. This is due to the

parametrization, as the models from the literature were only adjusted to vapor pressure

and saturated liquid density data. Nevertheless, also the models from the literature

yield relatively small deviations of only up to around 2 %. As already seen for the

models adjusted in this work, the SAFT-VR Mie shows the overall lowest deviations

(with one exception for 1-heptanol). Some effects can be found for both, the models

from the literature and from this work: For both, the soft SAFT and CPA EOS, the
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deviations increase with increasing chain length for all three properties (ρ, α, β). Also,

the pressure dependence of the density, i.e. the isothermal compressibility, is described

very well by nearly all the SAFT-VR Mie models.

E.8 Brown’s Characteristic Curves

Fig. E.6 shows Brown’s characteristic curves for 1-hexanol, 1-heptanol, 1-nonanol, and

1-decanol as obtained by the PC-SAFT, SAFT-VR Mie, soft SAFT, and CPA EOS.

Qualitatively, the behavior of the characteristic curves is the same for a given EOS

model for the different alcohols. Hence, the defects are likely not a results of the

component-specific parameters, but a result of the fundamental mathematical form of

a given molecular-based EOS – as expected.
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Figure E.6: Characteristic curves of 1-hexanol, 1-heptanol, 1-nonanol, and 1-decanol
(top to bottom) calculated by the PC-SAFT EOS, SAFT-VR Mie EOS,
soft SAFT EOS, and CPA EOS (left to right): Zeno curve (red), Amagat
curve (orange), Boyle curve (blue), and Charles curve (purple). Black solid
lines and the stars represent the vapor pressure curve and the critical point,
respectively, as calculated by the corresponding EOS.
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F Supporting Information for

Chapter 7

F.1 Phase Diagrams of Viscosity, Thermal

Conductivity, and Self-Diffusion

Fig. 56 of this work schematically shows the fluid phase diagram for the three transport

properties (viscosity, thermal conductivity, and self-diffusion). The topologies of these

diagrams are discussed here in more detail. The viscosity and the thermal conductivity

exhibit the same qualitative characteristics. First, both transport properties increase

with increasing pressure in all fluid phase state regions. For the states p < pc and T < Tc,

liquid and gaseous isotherms can be easily distinguished. Liquid isotherms start on the

saturated liquid curve and lie above the VLE, i.e. higher viscosity or thermal conduc-

tivity in the liquid phase state than the corresponding value of the saturated liquid at

the corresponding pressure. The larger the temperature of an isotherm in the liquid

phase state region, the lower is the corresponding viscosity and thermal conductivity.

The isotherms in the gas region start in the limit p→ 0 and are nearly horizontal as the

transport properties of gases only depend on the temperature, as also indicated by the

Chapman-Enskog theory [75]. Here, the temperature dependency is inverted compared

to the liquid phase state region: The viscosity and thermal conductivity increase with

increasing temperature. The gaseous isotherms end in the saturated vapor curve and

exhibit higher viscosities than the corresponding saturated vapor at the same pressure,

i.e. the isotherms lie above the saturated vapor curve. The critical isotherm has similar

characteristics as the gaseous isotherms for T > pc. At the critical point, the viscosity

and thermal conductivity strongly increases. The supercritical isotherms show also the

same characteristics as the gaseous isotherms for p < pc, but their values are higher than

the ones of the critical isotherm. For T > Tc, the supercritical isotherms cross both the

critical isotherm and other supercritical isotherms with lower temperature. This is due

to the inversion of the temperature dependency. In the metastable and unstable region,

the viscosity and the thermal conductivity steadily increase from the saturated vapor

to the saturated liquids. As expected, they obey a pressure maximum on the vapor-side
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spinodal and a pressure minimum on the liquid-side spinodal.

The self-diffusion coefficient behaves qualitatively different compared to the viscosity

and the thermal conductivity. For the whole phase diagram of D(T , p), the self-diffusion

coefficient increases with increasing temperature and decreases with increasing pressure.

Hence, the self-diffusion coefficient of the saturated liquid is smaller than of the saturated

vapor phase at the same pressure. Therefore, the gas state points lie above the VLE

region, i.e. the self-diffusion coefficient of the homogeneous gas phase states is larger than

its corresponding values of the saturated vapor at the same pressure. Consequently, the

self-diffusion coefficient of the liquid phase state region is lower than its corresponding

values of the saturated liquid at the same pressure. The supercritical isotherms do

not cross each other (as there is no change in the temperature dependency from gas

to liquid states). In contrast to the viscosity and the thermal conductivity, the self-

diffusion steadily decreases from the gas to the liquid in the metastable and unstable

region.

F.2 Scaled Chapman-Enskog Transport Properties

η+CE, λ+CE, and D+CE

The unscaled Chapman-Enskog transport properties are given as [75]

ηCE =
5

16

√
MkBT

πNA

1

σ2
CEΩ(2,2) , (F.1)

λCE =
75

64
kB

√
RT

Mπ

1

σ2
CEΩ(2,2) , (F.2)

DCEρ =
3

8

√
MkBT

πNA

1

σ2
CEΩ(1,1) , (F.3)

where ρ is the mass density in kg m−3 and Ω(1,1) and Ω(2,2) are the reduced collision

integrals (see Chapter 7). These properties are now scaled according to Eqs. (44) - (46)

using the relation

lim
ρN→0
(∂(−sconf/R)

∂ρN

)
T

= T
dB

dT
+B, (F.4)
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where B is the second virial coefficient. The resulting scaled Chapman-Enskog equations

are

η+CE = ηCE

1√
MkB/NAT

(T (dB

dT
) +B)2/3

, (F.5)

λ+CE = λCE

1

kB

√
RT /M (T (

dB

dT
) +B)2/3

, (F.6)

D+CE =DCEρ
1√

MkB/NAT
(T (dB

dT
) +B)2/3

. (F.7)

Inserting Eqs. (F.1) - (F.3) into (F.5) - (F.7) yields the Eqs. (48) - (50).

F.3 Isentropes of the LJ fluid

The configurational entropy sconf as calculated from first principle molecular dynamics

simulations are given in Fig. F.1 in a T − ρ diagram. Additional to the simulation

results, isentropes have been calculated by the Kolafa-Nezbeda EOS. The simulation

results agree well with the EOS.

Figure F.1: Results of the 196 state points (squares) of the Lennard-Jones fluid sim-
ulations conducted to adjust the universal parameters of the model. The
symbols represent the simulation state points and the lines are isentropes
calculated by the Kolafa-Nezbeda EOS [136]. The color of the symbols
and the lines indicate the configurational entropy sconf / R. The phase
envelopes are depicted as black solid lines. The binodal and the critical
point are taken from a Ref. [73], the spinodal from Ref. [706], and the
freezing and melting lines from Ref. [238].

F.4 EOS Parameters

The EOS parameters of the substance models were taken from the literature [40, 41,

62, 63, 558, 694, 695, 697, 702–704]. They are given in Table F.1 - F.6 for the PC-
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SAFT EOS, SAFT-VR Mie EOS, soft SAFT EOS, PACT+B EOS, BACKONE EOS,

and the sCPA EOS, respectively. The parameters for methane used with the EOS from

Stephan et al. were taken from the MolMod database [63] and are M = 16.043 kg mol−1,

σ = 3.7281 Å, and ε/kB = 148.55 K for the molar mass, the size parameter, and the

energy parameter.

The segment number m is used in Eq. (47) to scale the configurational entropy. For

EOS that do not use the segment number m explicitly, namely the PACT+B EOS, the

BACKONE EOS, and the sCPA EOS, the equivalent parameters describing the molec-

ular elongation or anisotropy are used. For the PACT+B EOS, the segment parameter

c was used and for the BACKONE EOS, the anisotropic parameter α. For methanol

modeled by the sCPA EOS, m was set to 2. For the two model fluids, the LJ and LJTS

fluid, m was set to 1.
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Table F.1: PC-SAFT EOS parameters used in this work: The columns indicate the
substance name, molar mass M , segment number m, segment diameter
σ, segment dispersion energy ε, dipole moment µ, quadrupole moment Q,
bonding type scheme of association, association radius κ, association energy
εAB, and the reference where the parameters were taken from. The 2B
association scheme was used.

Substance M m σ ε/kB µ Q κ εAB/kB Ref.

g/mol Å K D DÅ K

n-butane 58.123 2.3316 3.7086 222.88 0 0 0 0 [40]

n-hexadecane 226.45 6.6485 3.9552 254.7 0 0 0 0 [40]

carbon-dioxide 44.01 1.5131 3.1869 163.33 0 4.4 0 0 [703]

1-octanol 130.23 4.403 3.6943 260.9 1.7 0 0.002612700.3 [704]

Table F.2: SAFT-VR Mie EOS parameters used in this work: The columns indicate
the substance name, molar mass M , segment number m, segment diameter
σ, segment dispersion energy ε, repulsive exponent λr, attractive exponent
λa, bonding type scheme of association, association radius κ, association
energy εAB, and the reference where the parameters were taken from. The
attractive exponent was 6 for all substances, i.e. λa = 6. The 2B association
scheme was used.

Substance M m σ ε/kB λr κ εAB/kB Ref.

g/mol Å K K

n-hexane 86.177 2.1097 4.423 354.38 17.203 0 0 [41]

benzene 78.114 1.9163 4.0549 372.59 14.798 0 0 [41]

nitrogen 28.01 1.4214 3.176 72.438 9.8749 0 0 [702]

1-propanol 60.096 2.3356 3.5612 227.66 10.179 0.35377 2746.2 [41]
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Table F.3: Soft SAFT EOS parameters used in this work: The columns indicate the
substance name, molar mass M , segment number m, segment diameter σ,
segment dispersion energy ε, and the reference where the parameters were
taken from.

Substance M m σ ε/kB Ref.

g/mol Å K

propene 42.08 1.9681 3.566 206.561 [558]

Table F.4: PACT+B EOS parameters used in this work: The columns indicate the
substance name, molar mass M , segment parameter c, characteristic tem-
perature T ∗, soft core volume v∗, and the reference where the parameters
were taken from.

Substance M c T ∗ v∗ Ref.

g/mol K cm3mol−1

cyclohexane 84.162 1.705 358.5 61.71 [695]

Table F.5: BACKONE EOS parameters used in this work: The columns indicate the
substance name, molar mass M , anisotropic parameter α, characteristic
temperature T0, characteristic density ρ0, dipole moment µ, the quadrupole
moment Q, and the reference where the parameters were taken from.

Substance M α T0 ρ0 µ Q Ref.

g/mol K mol/l D DÅ

R134a 102.04 1.4287 332.07 4.957 2.99218 8.22875 [694]

Table F.6: sCPA EOS parameters used in this work: The columns indicate the sub-
stance name, molar mass M , co-volume parameter b, energy parameter a0,
energy parameter c1, bonding type scheme of association, association en-
ergy εAB, association volume β, and the reference where the parameters
were taken from. The 3B association scheme was used.

Substance M b a0 c1 εAB β Ref.

g/mol l/mol K mol/l bar l/mol−1

methanol 102.04 0.0334 4.5897 1.0068 160.7 0.0344 [697]
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F.5 Component-Specific Entropy Scaling

Parameters

Tables F.7 - F.9 contains the component-specific parameters of the pure substance en-

tropy scaling models summarized in Table 34.

Table F.7: Entropy scaling parameters of all component-specific models for the viscos-
ity including the substance name and the parameters α

(η)
0,i , α

(η)
ln,i, α

(η)
1,i , α

(η)
2,i ,

and α
(η)
3,i .

Substance i α
(η)
0,i α

(η)
ln,i α

(η)
1,i α

(η)
2,i α

(η)
3,i

LJ 0 -3.218 3.29 -0.071 0.151

LJTS 0 -0.075 0.756 0.4 0.113

methane 0 -1.963 2.157 0.121 0.125

n-butane 0 -14.165 13.97 -2.382 0.501

n-hexane 0 -1.906 2.883 0.178 0.152

n-hexanea 0 -2.135 2.991 0.207 0.142

n-hexadecane 0 10.987 -6.898 3.01 0.172

propene 0 -29.914 29.005 -7.646 1.407

cyclohexane 0 -11.074 10.705 -1.759 0.415

benzene 0 -7.591 7.779 -1.152 0.363

nitrogen -0.013 -2.291 3.005 -0.037 0.25

carbon dioxide 0 -9.576 9.498 -1.76 0.418

methanol 0.118 -12.592 11.046 -2.159 0.444

1-propanol 0 0 0 0.69 0.158

1-octanol 0 -18.349 18.866 -3.858 0.807

R134a 0 -4.92 4.288 0.065 0.083

aonly fitted to exp. data with p ≤ 10 MPa.
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Table F.8: Entropy scaling parameters of all component-specific models for the thermal
conductivity including the substance name and the parameters α

(λ)
0,i , α

(λ)
ln,i,

α
(λ)
1,i , α

(λ)
2,i , and α

(λ)
3,i .

Substance i α
(λ)
0,i α

(λ)
ln,i α

(λ)
1,i α

(λ)
2,i α

(λ)
3,i

LJ 1 3.892 -2.24 0.008 0.985

LJTS 1 -23.5 22.5 -6.678 1.851

methane 1 6.789 -3.655 -0.312 1.095

n-butane 3.962 98.222 -82.974 20.079 1.073

n-hexane 8.971 -6.462 8.837 -3.673 3.602

n-hexadecane 39.064 0 0 6.413 17.801

propene 3.418 6.022 -2.581 0.717 2.274

cyclohexane 10.121 0 0 0.466 1.691

benzene 6.224 -3.916 5.903 -2.205 2.755

nitrogen 1.322 -21.803 21.88 -6.878 2.875

carbon dioxide 1.668 -31.829 32.545 -10.475 3.313

methanol 2.147 -3.268 7.385 -2.678 1.007

1-propanol 4.872 25.028 -14.238 4.503 0.866

1-octanol 11.186 -63.034 65.556 -7.559 5.549

R134a 3.536 -12.106 13.7 -3.933 1.758
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Table F.9: Entropy scaling parameters of all component-specific models for the self-
diffusion coefficient including the substance name and the parameters α

(D)
0,i ,

α
(D)
ln,i , α

(D)
1,i , α

(D)
2,i , and α

(D)
3,i .

Substance i α
(D)
ln,i α

(D)
1,i α

(D)
2,i α

(D)
3,i

LJ 4.402 -4.178 0.868 -1.135

LJTS 0 0 -0.672 -0.818

methane -0.911 0.15 0.021 -0.982

n-butane 0 0 -3.507 -0.997

n-hexane 0 0 -2.095 -0.609

n-hexadecane 0 0 -7.316 -2.958

cyclohexane 0 0 -0.243 -1.757

benzene 0 0 0.979 -1.999

carbon dioxide 0 0 0 -3.491

methanol 0 -1.015 2.512 -2.170

1-octanol 0 0 0.497 -3.341

F.6 Details on Entropy Scaling Framework

Here, details on the entropy scaling framework are given. If the function Y +CE(T ) becomes

negative with increasing temperature due to the behavior of the EOS in the zero-density

limit, the value min (Y +CE(T )) is set to Y +CE(T = 0.6TBoyle) with TBoyle being the Boyle

temperature of the respective substance. This choice is adapted from the temperature

of the minimum of Y +CE(T ) of the LJ fluid.

In the following, the equations for the macroscopic scaling as well as the correlation

functions are given for mixtures. The CE-scaled viscosity and thermal conductivity are

defined analogue to Eq. (56). Therein, the low-density (LD) and the high-density (HD)

scaling are defined as

Ŷ +LD,mix =

Y +LD,mix

Y +CE,mix

, (F.8)

and

Ŷ +HD,mix =

Y +HD,mix

min (Y +CE) , (F.9)

where Y +LD,mix and Y +LD,mix are the scaled transport properties of the mixture in the
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LD and HD regions, respectively. The scaled Chapman-Enskog property Y +CE,mix are

calculated according to Eqs. (65) - (66) from the zero-density limits of the pure compo-

nents. The minimum of the scaled Chapman-Enskog property min(Y +CE) is computed

from the minima of the zero-density transport properties of the pure components by

Eqs. (65) - (66). The macroscopically scaled values of a mixture η+mix and λ+mix are de-

fined as

η+mix = ηmix

ρ
−2/3
N,mix√

MmixTkB/NA

(−sconf,mix

R
)2/3

, (F.10)

λ+mix = λmix

ρ
−2/3
N,mix

kB

√
RT /Mmix

(−sconf,mix

R
)2/3

, (F.11)

(F.12)

where ρN,mix is the number density of the mixture, Mmix is the mean molar mass of the

mixture calculated by Eq. (63), and sconf,mix is the configurational entropy of the mix-

ture. The configurational entropy is calculated from the EOS model and is a functions

of the temperature, pressure, and composition, i.e. sconf,mix = sconf,mix(T , p, x). The

correlation functions ln(η̂+(s̃conf,mix)) and λ̂+(s̃conf,mix) are given as

ln(η̂+mix(s̃conf))
λ̂+mix(s̃conf)

⎫⎪⎪⎬⎪⎪⎭ =
α0,mix + α

(Y )
ln,mix ln(s̃conf + 1) + α

(Y )
1,mixs̃conf + α

(Y )
2,mix(s̃conf)2 + α

(Y )
3,mix(s̃conf)3

1 + g
(Y )
1 log(s̃conf + 1) + g

(Y )
2 s̃conf

(F.13)

according to Eq. (58). The parameters α
(Y )
0,mix, α

(Y )
ln,mix, α

(Y )
1,mix, α

(Y )
2,mix, and α

(Y )
3,mix are cal-

culated according to Eq. (67) from the component-specific entropy scaling parameters.

F.7 Implementation of the Entropy Scaling

Framework

An implementation of the introduced entropy scaling framework is available on GitHub

as Julia [749] module. The module implements all equations introduced in Chapter 7 and

enables an application of the framework. Implementations of the applied equations of

state are not included and have to be added externally. However, the repository contains

a ready-to-use example to model the viscosity of methane by the Peng-Robinson (PR)

EOS.

https://github.com/se-schmitt/EntropyScaling
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F.8 Comparison of EOS for Modeling the Viscosity

of Methane

Three different EOS, namely the EOS from Stephan et al., the PC-SAFT EOS, and

the BACKONE EOS, were used for modeling the viscosity of methane. For all three

EOS, the same experimental viscosity data were used to adjust the entropy scaling

parameters and four parameters were adjusted for each EOS. The EOS parameters for

the component models were taken from Refs. [40, 63, 694]. In Table F.10, the mean

average deviations obtained for the three models are given.

Table F.10: Mean average deviations δη obtained for the three EOS.

EOS δη /%

Stephan et al. 2.99

PC-SAFT 2.67

BACKONE 2.90

All models have similar mean average deviations with less than 3 %. The lowest mean

average deviations is achieved using the PC-SAFT EOS with δη = 2.67 %. The model

using the EOS from Stephan et al. has the largest mean average deviation with nearly

3 %. This can be contributed to the underlying component-specific EOS parameters

used to calculate the configurational entropy. For the PC-SAFT and BACKONE EOS,

these parameters were directly fitted to experimental data of methane. The EOS from

Stephan et al. is a EOS for the LJ model fluid and the parameter were taken from the

MolMod database [63].

In Fig. F.2, the scaling behavior of the three models is compared. Despite the slightly

larger mean average deviation, the scaling obtained from the LJ EOS from Stephan et

al. shows a more robust behavior compared to the other two models. For the PC-SAFT

and the BACKONE EOS, some larger deviations are identified.
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Figure F.2: CE-scaled viscosity η̂+ of methane as function of the reduced configura-
tional entropy s̃conf using the EOS from Stephan et al. (left), the PC-SAFT
EOS (middle), and the BACKONE EOS (right). Symbols are the data
points derived from experimental data (η from experimental data and s̃conf

from the EOS). The color indicates the temperature. The results from the
respective other two EOS are illustrated as light grey symbols in the back-
ground.

F.9 LJTS Mixture

The results for the viscosity and the thermal conductivity of the LJTS mixture with

σ2 = σ1, ε2 = 0.9 ε1, and ξ = 0.85 [62] are given in Fig. F.3. The PeTS EOS [108]

is used to model the pure components and the mixtures. The results are shown over

the entire composition range for five temperatures. For the temperature range 0.715 ≤

T / εk−1
B ≤ 0.88, the mixture exhibits a low-boiling azeotrope [62]. For the lowest given

temperature T = 0.66 ε/kB, heteroazeotropic behavior is observed [62] which is why

there is a miscibility gap at p = 0.1 εσ−3. For all other temperatures, the viscosity and

the thermal conductivity exhibit a minimum at a molar fraction of x2 ≈ 0.7 mol mol−1,

which approximately corresponds to the azeotropic point. As already seen for the other

LJ mixture discussed in Chapter 7, the predictions by the entropy scaling model are in

good agreement with the simulation data for all temperatures.

F.10 Thermal Conductivity of Mixture Benzene +

n-Hexane

Fig. F.4 shows the results for the thermal conductivity of the mixture benzene + n-

hexane. The thermal conductivity is given as function of the mole fraction of n-hexane

xC6H14
at the temperature T = 294.7 K. Additionally, the thermal conductivity is shown

as function of the pressure for a constant composition of xC6H14
= 0.73113 mol mol−1 at

two temperatures. All state points are in the liquid region. The thermal conductivity
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Figure F.3: Viscosity η (top) and thermal conductivity λ (bottom) of a LJTS mixture
with σ2 = σ1, ε2 = 0.9 ε1, and ξ = 0.85 [62] as function of the mole fraction
x2. Molecular simulation data (symbols) from Ref. [62] and predictions
with entropy scaling (lines). The colors indicate the temperature. The
pressure is p = 0.1 εσ−3. The entropy scaling results were obtained with
the PeTS EOS.

decreases with increasing mole fraction xC6H14
as the thermal conductivity of benzene is

smaller than that of n-hexane and the mixture behavior is nearly linear. With increasing

pressure, the thermal conductivity of the mixture with constant composition increases.

In total, the thermal conductivity of all included state points only varies in a small range

between 0.12 W m−1 K−1 and 0.15 W m−1 K−1. For all state points, the entropy scaling

model slightly overestimates the experimental values. This can already be seen for the

pure components in the λ − xC6H14
plot. The mean relative deviation is δλ = 3.47 %,

which is in the range of the pure component models (with δλ = 2.93 % for benzene and

δλ = 3.01 % for n-hexane).
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Figure F.4: Thermal conductivity λ of the mixture benzene + n-hexane as func-
tion of the mole fraction xC6H14

of n-hexane (left) at T = 294.7 K

and of the pressure p with xC6H14
= 0.73113 mol mol−1 and

T /K = 303.15 (darkblue) and 323.15 (yellow) (right). Experimental data
[750, 751] (symbols) and entropy scaling (lines). The entropy scaling re-
sults were obtained with the SAFT-VR Mie EOS.



352 G Supporting Information for Chapter 8

G Supporting Information for

Chapter 8

G.1 Entropy Scaling of infinite dilution diffusion

coefficients

In the following, the scaling for infinite dilution diffusion coefficients is described in

detail. The infinite dilution diffusion coefficient D∞i is scaled by the temperature T , the

number density ρN, and the configurational entropy of the solvent sconf = sconf(T , ρ).
Thereby, the modified Rosenfeld-scaled diffusion coefficient D

∞,○
i is dimensionless and

defined as

D
∞,○
i =D∞i

ρ
1/3
N√

RT /MCE

(−sconf

R
)2/3

, (G.1)

where R is the universal gas constant. The molar mass MCE is adapted from the

Chapman-Enskog theory as

MCE =
2

1/Mi + 1/Mj

, (G.2)

where Mi and Mj are the molar masses of the pure components. The modified Rosenfeld-

scaled diffusion coefficient D
∞,○
i (denoted by the ’○’) exhibits some scattering in the

zero-density limit for sconf → 0. Therefore, the scaling is further modified using the

Chapman-Enskog diffusion coefficient D○CE,i. This follows the scaling procedure from

Chapter 7 used for pure component self-diffusion coefficients. The scaled Chapman-

Enskog infinite dilution diffusion coefficient D
∞,○
CE,i is only a function of the temperature

and given as

D
∞,○
CE,i =

3

8
√

π

1

σ2
ijΩ
(1,1) (T (dB

dT
) +B)2/3

, (G.3)

where B is the second virial coefficient of the solvent at a given temperature (which is

computed from the EOS model), σij is the cross-interaction Lennard-Jones size para-

meter, and Ω
(1,1)
ij = Ω(1,1)(TkBε−1

ij ) is the collision integral for diffusion [9, 126]. The

Lennard-Jones parameter σij and εij are calculated according to the Lorentz-Berthelot
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combining rules [700, 729] from the pure component interaction parameters as

σij =
σi + σj

2
and (G.4)

εij =
√

εjεi. (G.5)

The Lennard-Jones parameters σi, σj, εi, and εj of a given pure (possibly real) compo-

nents are calculated by the corresponding states principle with the Lennard-Jones fluid

as reference from the critical temperature Tc,j and the critical pressure pc,j of the solvent

as εj = Tc,jkB/1.321 and σj = (εj0.129/pc,j)1/3.
The CE-scaled infinite dilution diffusion coefficient D̂

∞,○
i is then constructed from the

low-density region (LD) and high-density region (HD) as

D̂
∞,○
i =

D
∞,○
i

D
∞,○
CE,i²
LD

W (s̃conf) + D
∞,○
i

min (D∞,○
CE,i
)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

HD

(1 −W (s̃conf)), (G.6)

where s̃conf = −sconf/(Rm) is the reduced configurational entropy using the chain length

parameter of the EOS model m of the solvent and W is a continuous step function (see

Ref. 52). The function W establishes a smooth transition from the low-density region to

the high-density region. In the low-density region (LD, s̃conf < 0.5), the Rosenfeld-scaled

diffusion coefficient is divided by the corresponding scaled Chapman-Enskog diffusion

coefficient. In the high-density region (HD, s̃conf ≥ 0.5), the Rosenfeld-scaled diffusion

coefficient is divided by the minimum of D
∞,○
CE,i, i.e. min D

∞,○
CE,i. This results in a contin-

uous, monovariate function D̂
∞,○
i = D̂

∞,○
i (s̃conf).

The scaled infinite dilution coefficient D̂
∞,○
i is modeled by the empirical function

ln (D̂∞,○
i ) = α

(D∞)
0,ij + α

(D∞)
ln,ij ln(s̃conf + 1) + α

(D∞)
1,ij s̃conf + α

(D∞)
2,ij (s̃conf)2 + α

(D∞)
3,ij (s̃conf)3

1 + g
(D)
1 ln(s̃conf + 1) + g

(D)
2 s̃conf

,

(G.7)

where α
(D∞)
0,ij , α

(D∞)
ln,ij , α

(D∞)
1,ij , α

(D∞)
2,ij , and α

(D∞)
3,ij are system-dependent parameters and

g
(D)
1 = 0.6632 and g

(D)
2 = 9.4714 are global parameters fitted to the self-diffusion co-

efficient of the Lennard-Jones fluid [52]. The system-dependent parameters α
(D∞)
k,ij are

fitted to experimental data of the pseudo-pure component, i.e. the diffusion-coefficients

at infinite dilution, individually for each system. The mathematical form of the model

proposed here for the infinite dilution diffusion coefficients is equivalent to that pro-

posed for pure component self-diffusion coefficients in Chapter 7. The fact that this

yields excellent and very similar results (see main body of this work and results shown

below) supports the physical picture that infinite dilution self-diffusion coefficients can

be interpreted as a pseudo-pure component property. Moreover, both limits (cf. Fig. 1
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in main body) are thereby treated consistently.

G.2 Entropy Scaling of Diffusion Coefficients in

Mixtures

The models for the limiting cases D̂
pure,○
i , D̂

pure,○
i , D̂

∞,○
i , and D̂

∞,○
j , can be used for pre-

dicting both self-diffusion coefficients as well as the Maxwell-Stephan and the Fickian

diffusion coefficient in the mixture, i.e. Di(xj), Dj(xj), Ðij(xj), and Dij(xj). The main

feature for these predictions into the mixture at a given composition is the configura-

tional entropy of the mixture, i.e. sconf = sconf(T , ρ, x). To predict the self-diffusion

coefficient of a component i in a mixture with component j, i.e. Di = Di(T , ρ, x), the

limiting case models are the self-diffusion of the pure component i and the diffusion of

infinitely diluted component i in the solvent j, i.e. the models describing D̂
pure,○
i (s̃conf)

and D̂
∞,○
i (s̃conf). For the Maxwell-Stefan diffusion coefficient Ðij = Ðij(T , ρ, x), the lim-

iting case models are the infinite dilution diffusion coefficients, i.e. the models describing

D̂
∞,○
i and D̂

∞,○
j . The methodology for all three cases is similar and is described in the

following. The Fickian diffusion coefficient is predicted via the Maxwell-Stefan diffusion

coefficient and the thermodynamic factor described by the EOS mixture model.

The CE-scaled self-diffusion coefficients, i.e. D̂○i or D̂○j , and the CE-scaled Maxwell-

Stefan diffusion coefficient Ð̂
○

i in the mixture are predicted using the same ansatz as

that for the limiting case models

ln (Λ̂○) = α
(Λ)
0,ij + α

(Λ)
ln,ij ln(s̃conf + 1) + α

(Λ)
1,ij s̃conf + α

(Λ)
2,ij(s̃conf)2 + α

(Λ)
3,ij(s̃conf)3

1 + g
(D)
1 ln(s̃conf + 1) + g

(D)
2 s̃conf

, (G.8)

where sconf = sconf(T , ρ, x) is the configurational entropy of the mixture and Λ is either a

self-diffusion coefficient or the Maxwell-Stefan diffusion coefficient, i.e. Λ ∈ {Di, Dj, Ðij}.
The parameters β

(Λ)
ij ∈ {α(Λ)0,ij , α

(Λ)
ln,ij, α

(Λ)
1,ij , α

(Λ)
2,ij , α

(Λ)
3,ij} are predicted using mixing rules as

β
(Di)
ij = xiβ

(Dpure
i
) + xjβ

(D∞i ), (G.9)

β
(Dj)
ij = xiβ

(D∞j ) + xjβ
(Dpure

j
), (G.10)

β
(Ðij)
ij = xiβ

(D∞j ) + xjβ
(D∞i ), (G.11)

for the self-diffusion coefficients of components i and j and the Maxwell-Stefan diffusion

coefficient, respectively.

Kinetic gas theory enables the prediction of both the mutual diffusion coefficient and

the self-diffusion coefficients at ρ→ 0 (based on molar masses and parameters describing
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the pair collisions). Also temperature dependence of the diffusion coefficients in gases at

low densities is captured. The mutual diffusion coefficient in gases does not depend on

the composition for these mixtures and Dij = Ðij. The Chapman-Enskog self-diffusion

coefficients in the mixture D○i,CE(x) and D○i,CE(x) are calculated according to Miller and

Carman [752] as

1

D○CE,i

=
xi

D
pure,○
CE,i

+ xj

D
∞,○
CE,i

and (G.12)

1

D○CE,j

=
xj

D
pure,○
CE,j

+ xi

D
∞,○
CE,j

, (G.13)

where the Rosenfeld-scaled self-diffusion coefficients of the pure components D
pure,○
CE,i and

D
pure,○
CE,j are adapted from Ref. [52] as

D
pure,○
CE,i =

3

8
√

π

1

σ2
i Ω
(1,1)
i

(T (dB

dT
) +B)2/3

, (G.14)

and the Rosenfeld-scaled infinite dilution diffusion coefficients D
∞,○
CE,i and D

∞,○
CE,j are given

by Eq. (G.3). For the Maxwell-Stefan diffusion coefficient in the mixture, the corre-

sponding Chapman-Enskog diffusion coefficient is given as

Ð○CE,ij =
3

8
√

π

1

σ2
ijΩ
(1,1)
ij

(T (dB

dT
) +B)2/3

, (G.15)

where B is the second virial coefficients of the mixture calculated as

B = x2
i Bi + xixjBij + x2

jBj, (G.16)

where Bi and Bj are the second virial coefficients of the pure components and Bij is

cross second virial coefficient.

For determining the minimum of Λ○CE, i.e. min (Λ○CE), the mixing rule proposed by

Miller and Carman [752] are employed, for both the self-diffusion coefficients as well as

for the Maxwell-Stefan diffusion coefficient as

1

min D○CE,i

=
xi

min D
pure,○
CE,i

+ xj

min D
∞,○
CE,i

, (G.17)

1

min D○CE,j

=
xi

min D
∞,○
CE,j

+ xj

min D
pure,○
CE,j

, (G.18)

1

min Ð○CE,ij

=
xi

min D
∞,○
CE,j

+ xj

min D
∞,○
CE,i

. (G.19)
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The reference mass Mref is calculated as

MDi

ref = xiMi + xjMCE and (G.20)

M
Dj

ref = xiMCE + xjMj, (G.21)

for the self-diffusion coefficients Di and Dj, respectively. For the Maxwell-Stefan diffu-

sion coefficient, the reference mass is equal to MCE, i.e. Mref =MCE (see main body of

this work).

The entropy scaling methodology proposed in this work enables the predictions of the

’transformed’ diffusion coefficients D̂○i , D̂○j , and Ð̂
○

ij (Chapman-Enskog and Rosenfeld

scaled properties). For computing the ’normal’ diffusion coefficients Dj, Di, Ðij, and

Dij, the transformation formalism is reverted in a straightforward way that is briefly

illustrated in the following for convenience. The ’normal’ diffusion coefficients Di, Dj,

and Ðij are calculated from the corresponding scaled value D̂○i , D̂○j , and Ð̂
○

ij as

Di =
D̂○i

W (s̃conf)
D○

i,CE

+ 1−W (s̃conf)
min(D○

i,CE
)

√
RT /MDi

ref

ρ
1/3
N

(−sconf

R
)−2/3

, (G.22)

Dj =

D̂○j
W (s̃conf)

D○
j,CE

+ 1−W (s̃conf)
min(D○

j,CE
)

√
RT /MDj

ref

ρ
1/3
N

(−sconf

R
)−2/3

, (G.23)

Ðij =
Ð̂
○

ij

W (s̃conf)
Ð
○

ij,CE
+ 1−W (s̃conf)

min(Ð○ij,CE)

√
RT /MCE

ρ
1/3
N

(−sconf

R
)−2/3

, (G.24)

where the number density ρN and the configurational entropy sconf are evaluated at a

given mixture state point (pTx or ρTx).

G.3 Simulation Details

Molecular dynamics (MD) simulations for determining the infinite dilution diffusion

coefficients in two binary Lennard-Jones systems were conducted in this work. The

Lennard-Jones potential between two particles i and j is defined as

uij = 4εij

⎡⎢⎢⎢⎢⎣(
σij

rij

)12 − (σij

rij

)6⎤⎥⎥⎥⎥⎦ , (G.25)

where uij is their potential energy, rij the distance between both particles, and σij and εij

the size and energy parameters of the particles, respectively. For both systems, the size

parameters of both components were equal, i.e. σ2 = σ1. The energy parameter was ε2 =
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0.9ε1 for the first system and ε2 = 0.5ε1 for the second system. The potential parameters

for the interaction of unlike particles were calculated according to Eqs. (G.4) and

(G.5), whereas the Berthelot combining rule was modified by a single state-independent

mixture parameter ξij as

εij = ξij

√
εiεj (G.26)

to establishing a non-ideality in the system. The parameter ξij was chosen to be ξij = 1.2

in the first system (the particles have a strong cross affinity) and ξij = 0.85 in the second

system (the particles have a particularly weak cross affinity). Both mixtures are highly

non-ideal with a high-boiling azeotrope (first mixture) and a miscibility gap (second

mixture).

For each system, simulations at 114 state points in the gas, liquid, metastable vapor-

liquid, metastable solid-liquid, and supercritical region (of the solvent) were carried out

(see Fig. 2 in the main text). For each temperature-pressure pair, three simulations in

the vicinity of the infinite dilution limit (x2 = 0.001, 0.005, 0.01 mol mol−1) were carried

out. The three simulations were used to extrapolate to infinite dilution (x2 → ∞) in a

post-processing (see below).

The simulations were performed with the software ms2[464]. Each simulation consisted

of 5,000 particles. The Gear-predictor-corrector algorithm was used for time integra-

tion with a time step of ∆τ = 0.001 σ
√

ε−1M . The simulations were conducted in the

isochoric-isothermal (NVT) ensemble with 105 equilibration time steps and 5 ⋅ 106 pro-

duction time steps. Periodic boundary conditions were applied in all directions. The

self-diffusion coefficient of component 2 D2 was sampled using the Green-Kubo formal-

ism with a correlation length of 104 time steps for ρ ≥ 0.1 σ−3
1 and 105 time steps for

ρ < 0.1 σ−3
1 . The infinite dilution diffusion coefficient D∞2 at a given temperature-density

pair was computed by linear extrapolation from the results at finite dilution, cf. Fig. G.1.

The configurational entropy sconf was determined in the simulations using the relation

sconf =
uconf

T
−

p

ρT
−

2

∑
i=1

µconf,i

T
, (G.27)

where uconf is the configurational internal energy and µconf,i is the chemical potential of

component i. The chemical potentials were sampled using Widom’s test particle method

[710].

Additionally, a real system, the binary mixture benzene (1) + isobutane (2), was in-

vestigated by the same methodology. The component-specific force fields from Refs.

[349, 753] – taken from the MolMod database [63] – were used to model benzene and

isobutane. In total, 29 state points were investigated in the liquid, gas, and supercriti-
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a) b)

Figure G.1: Self-diffusion coefficient D2 as function of the mole fraction x2 for eight
state points (exemplarily chosen) in two Lennard-Jones systems with a)
σ2 = σ1, ε2 = 0.9ε1, ε12 = 1.2

√
ε1ε2 (a) and σ2 = σ1, ε2 = 0.5ε1, and

ε12 = 0.85
√

ε1ε2 (b). Triangles are the simulation results for the self-
diffusion coefficient D2, the circles are the extrapolated infinite dilution
diffusion coefficients D∞2 , and the lines represent the linear extrapolations.
The color indicates the configurational entropy.

cal regions. The time step was 0.329 fs for simulations with ρ > 8.9 mol l−1 and 0.987 fs

elsewise. Each simulation consisted of 4096 molecules – 4 benzene molecules and 4092

isobutane molecules (x1 ≈ 0.001 mol mol−1). The simulations were equilibrated for 5 ⋅105

time steps and the actual production run consisted of 6⋅106 time steps. The self-diffusion

coefficient of benzene D1 was sampled using the Green-Kubo formalism with a correla-

tion length 104 time steps. As for the Lennard-Jones systems, the chemical potential

was sampled using Widom’s test particle method to calculate the configurational en-

tropy (see Eq. (G.27)). The second virial coefficient as well as its temperature derivative

was calculated for all considered temperatures.

G.4 Component-Specific EOS Models

The entropy scaling framework proposed in this work for the prediction of mixture

diffusion coefficients can be coupled with practically any molecular-based equation of

state (and with minor adjustments also with empirical multiparameter EOS [545], e.g.

regarding the molecular property parameters m, ε, σ). In this work, the Kolafa-Nezbeda

EOS was used for modeling the Lennard-Jones model mixtures and the PC-SAFT EOS

for modeling the real substance mixtures. The Kolafa-Nezbeda EOS was found to be the

most accurate and robust EOS for modeling thermodynamic properties of the Lennard-

Jones fluid [83, 234]. Also the PC-SAFT EOS is known to often yield good predictions

for thermodynamic mixture properties [553, 554].
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The component-specific PC-SAFT EOS models for the real substances were taken from

Ref. 40. The parameters are given in Table G.1. The binary interaction parameters

ξij of all real substance systems were kept to unity in this work. Hence, the mixture

diffusion coefficients are described in a fully predictive way. For applications, the binary

interaction parameter could be adjusted to experimental data to improve the model

performance.

Table G.1: Component-specific PC-SAFT EOS parameters from the literature used in
the present work. The columns indicate (from left to right): The substance
name, segment diameter σ, segment dispersion energy ε, and chain length
parameter m.

substance σ ε/kB m reference

Å K

n-hexane 3.7983 236.77 3.0576 [40]

n-heptane 3.8049 238.40 3.4831

n-dodecane 3.8959 249.21 5.306

n-hexadecane 3.9552 254.70 6.6485

OME2 3.55 260 3.258 [740]

OME3 3.55 260 4.046

OME4 3.55 260 4.834

toluene 3.7169 285.69 2.8149 [40]

G.5 Entropy Scaling Models

The entropy scaling limiting case model parameters (pure component and pseudo-pure

component) used in this work are reported in Table G.2. Additionally, the references

of the experimental data used for the parameter adjustment are given. For the infinite

dilution diffusion coefficients, only up to two component-specific parameters were used

due to small number of experimental data available. The other parameters were set to

0.
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Table G.2: Component-specific entropy scaling parameters (see Eq. (G.7)) used in
the present work. The columns indicate (from left to right): the system,
the property, the parameters α2,i and α3,i as well as the reference where
experimental data were taken from. The parameters α0,i, αln,i, α1,i were
set to zero (since only few data were available).

system property α2,i α3,i data source

n-hexane (1) + n-dodecane (2) D1 -2.5414 -1.9186 329

D2 -4.3257 -3.2885

D∞1 0.0 -5.3751 744

D∞2 -3.1396

toluene (1) + n-hexane (2) D∞1 -4.0978 -1.0285 745

D∞2 -2.6050 -1.5678

OME2 (1) + n-dodecane (2) D1 0.130 -3.629 134

D∞1 -1.300 -4.272

D∞2 -0.120 -3.527

OME2 (1) + n-hexadecane (2) D2 -2.970 -5.194

D∞1 2.362 -6.650

D∞2 -1.590 -2.958

OME3 (1) + n-dodecane (2) D1 -1.932 -3.582

D∞1 -2.629 -3.905

D∞2 -1.459 -3.716

OME3 (1) + n-hexadecane (2) D∞1 -2.580 -4.684

D∞2 -1.572 -3.835

OME4 (1) + n-dodecane (2) D1 -1.782 -4.489

D∞1 -3.536 -3.454

D∞2 -1.530 -4.434

OME4 (1) + n-hexadecane (2) D∞1 -1.605 -5.183

D∞2 -0.431 -5.103
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G.6 Established Methods for Predicting Infinite

Dilution Diffusion Coefficients

The SEGWE model of Evans et al.[725] for predicting the diffusion coefficient of solute

"1" at infinite dilution in a solvent "2" D∞12 is given by

D
∞, SEGWE
12 /m2 s−1

=

(kB/J K−1) (T/ K) [3α
2
+

1
1+α
]

6π (η2/Pa ⋅ s) 3

√
3(M1/g mol−1)

4π(ρeff/g m−3)(NA/mol−1)

α =
3

¿ÁÁÁÀ(M2/g mol−1)
(M1/g mol−1)

(G.28)

where kB is Boltzmann’s constant, T is the temperature, η2 is the dynamic viscosity

of the solvent "2", M1 is the molar mass of the solute "1", M2 is the molar mass of the

solvent "2", ρeff = 619 kg m−3 is an "effective density", the number of which was fitted to

the literature data by the authors [725] and NA is Avogadro’s constant.

The model of Wilke and Chang [739] (WC) is given by

D
∞, WC
1 /m2 s−1

= 7.4 ⋅ 10−12

√
Φ2 (M2/g mol−1) (T/ K)
(η2/cP) (v1/cm3 mol−1)0.6

(G.29)

where Φ2 is the association factor of the solvent "2" which was set to 1 here in all cases,

and v1 is the liquid molar volume of the pure solute "1" at their normal boiling point

[739].

Data for the dynamic viscosity η2 of alkanes [754, 755] and of OME [756, 757] were

taken from the literature. Data for the liquid molar volume of the solutes at their

normal boiling point v1 were computed from correlations from DIPPR [758] and Burger

et al. [730].

G.7 Scaling Behavior of Pure Components and at

Infinite Dilution

For the Lennard-Jones model systems, a quasi-universality is observed using the applied

scaling, which is evident by the representation of D̂
∞,○
2 by the global model from Ref. 52,

which was only fitted to pure-component self-diffusion coefficient data. Hence, the

correlation developed in Ref. 52 using pure-component self-diffusion coefficient data of
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the Lennard-Jones fluid also describes the infinite dilution diffusion coefficient data from

this work.

In Fig. G.2, the scaling of the pure component self-diffusion coefficient is compared with

the scaling of the infinite dilution diffusion coefficient. Both CE-scaled diffusion coef-

LJb)

a) LJ m

p
u

re
,

p
u

re
,

Figure G.2: Scaled infinite dilution diffusion coefficient D̂
∞,○
2 (left) and self-diffusion

coefficient D̂
pure,○
2 (right) for two Lennard-Jones systems (a and b) as a

function of the configurational entropy sconf . The symbols are simulation
results from this work (D̂∞,○

2 ) and from Ref. 52 (D̂pure,○
2 ). The color of

the symbols indicates the temperature. The black solid line is the entropy
scaling model.

ficients show a monovariate behavior over the entire range of configurational entropies

and all temperatures. To quantify this, a measure ∆Λ was defined as

∆Λ =
¿ÁÁÀ 1

NΛ

NΛ∑
i

(Λsim,i −Λmod,i)2, (G.30)

where Λ ∈ {D̂pure,○
2 , D̂∞,○

2 }, NΛ is the respective number of simulation data points, Λsim,i

are diffusion coefficients obtained from the simulations, and Λmod,i the values calculated

from the entropy scaling model. The obtained values are ∆D̂
pure,○
2

≊ 1.244 and ∆D̂
∞,○
2
≊

1.254 for first system and ∆D̂
pure,○
2

≊ 1.244 and ∆D̂
∞,○
2
≊ 1.254 for the second Lennard-

Jones system.
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G.8 Results for the Lennard-Jones Mixtures at

Different Pressures

Fig. G.3 shows the application of the entropy scaling model to the Lennard-Jones mix-

ture with ε2 = 0.9ε1 and ε12 = 1.2
√

ε1ε2 at different pressures (corresponding to Fig. 3

of the main body). The predictions from the entropy scaling model are compared to
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Figure G.3: Diffusion coefficients in the Lennard-Jones system with σ2 = σ1, ε2 = 0.9ε1,
and ε12 = 1.2

√
ε1ε2 as a function of the mole fraction x2 at T = 0.92 kBε−1

1 .
a) Self-diffusion coefficient of component 1 D1; b) Self-diffusion coefficient
of component 2 D2; c) Maxwell-Stefan diffusion coefficient Ð12; d) Fickian
diffusion coefficient D12. Lines are the predictions from the entropy scaling
model. Symbols are simulation results from Ref. 112. The entropy scaling
model was used in combination with the Kolafa-Nezbeda EOS [136]. The
colors indicate the pressure p ∈ {0.13, 0.26, 0.39}σ3

1ε−1
1 (yellow to dark

purple).

simulation data from Ref. 112. The results for different pressures are very similar to

those for different temperatures (see main body of this work): The agreement between

the predictions from the entropy scaling model and simulation data is very good for

both self-diffusion coefficients. For the mutual diffusion coefficients, some deviations are



364 Appendix G Supporting Information for Chapter 8

observed.

G.9 Comparison of Entropy Scaling to the Vignes

and Darken Models

The Vignes equation [726] is an often applied, simple model for calculating Maxwell-

Stefan diffusion coefficients in mixtures based on the infinite dilution diffusion coeffi-

cients. It is written as

Ðij = (D∞i )xj (D∞j )xi . (G.31)

Besides the Vignes model, the generalized Darken model [759] is often applied and found

to be superior in some cases [13]. For binary mixtures, it is defined as

Ðij = xi (x(m)i D∞j + x
(m)
j D

(pure)
j ) + xj (x(m)i D

(pure)
i + x

(m)
j D∞i ) , (G.32)

where x
(m)
i and x

(m)
j are the mass fractions of the components i and j, respectively.

Both the Vignes and the Darken model only require information on the limiting case

diffusion coefficients, like the entropy scaling model proposed in this work.

In Fig. G.4, the predictions from the entropy scaling model proposed in this work are

compared to the results from the Vignes model and the generalized Darken model for

both Lennard-Jones mixtures. Both mixtures show a strongly non-ideal behavior (see

main text and above). For both mixtures, the entropy scaling model provides a reason-

able description of the Maxwell-Stefan diffusion coefficient in the mixture. The Vignes

and Darken models are not able to capture the trend of Ð12 in the first Lennard-Jones

system (see Fig. G.4a). For the second system (see Fig. G.4b), the predictions by the

Vignes equation show a wrong curvature compared to the simulation data and, most

importantly, do not capture the liquid-liquid equilibrium (LLE). Both empirical models

(Vignes and Darken) do not comprise information on the liquid-liquid miscibility gap.

The entropy scaling model proposed in this work, on the other hand, inherently captures

the LLE due to the coupling with the EOS model and also describes the diffusion coef-

ficients of the coexisting phases, metastable phases, supercritical phases etc. However,

no computer experiment data is available for the coexisting phase diffusion coefficients

for validation.
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Figure G.4: Comparison of MD reference data to the entropy scaling model proposed
in this work, the Vignes model, and the Darken model for the Maxwell-
Stefan diffusion coefficient. Results for two binary Lennard-Jones systems
(a: σ2 = σ1, ε2 = 0.9ε1, ε12 = 1.2

√
ε1ε2, b: σ2 = σ1, ε2 = 0.5ε1, ε12 =

0.85
√

ε1ε2) as a function of the mole fraction x2 at p = 0.13 σ3
1ε−1

1 (a) and
p = 0.26 σ3

1ε−1
1 (b). Symbols indicate simulation results from Ref. 112.

Solid lines are predictions from the entropy scaling model obtained in
combination with the Kolafa-Nezbeda EOS. Dotted lines are results from
the Vignes model (cf. Eq. (G.31)) and dashed lines from the generalized
Darken model (cf. Eq. (G.32)). The colors indicate the temperature
T ∈ {0.79, 0.855, 0.92, 0.985, 1.05}kBε−1

1 (blue to yellow). The black line
indicate the liquid-liquid equilibrium diffusion coefficient and the star the
critical point.

G.10 Scaled Diffusion Coefficient of Mixtures

Fig. G.5 shows the scaling behavior of mixtures for the two Lennard-Jones systems and

a real substance system. For the two considered Lennard-Jones systems, both scaled

self-diffusion coefficients and the scaled Maxwell-Stefan diffusion coefficient collapse on

one line, which is a special feature of the considered Lennard-Jones mixtures. As a

result, a single set of parameters is able to describe all three diffusion coefficients. The

scattering of the Maxwell-Stefan diffusion coefficients is larger than that for the self

diffusion coefficients, which is due to the scattering of the reference data. For the real

substance system n-hexane (1) + n-dodecane (2), results for both scaled self-diffusion

coefficients D̂○1 and D̂○2 are shown. The corresponding, non-scaled results are shown in

Fig. 4 of the main text. The data and models for the pure component self-diffusion

coefficient and the pseudo-pure component infinite dilution diffusion coefficient differ

significantly. The self-diffusion coefficients in the mixture (0 < x2 /mol mol−1
< 1) lie
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between both curves. The entropy scaling model connects both lines (here at a given T

and p) and is thus able to predict these points. The link is primarily established via the

entropy of the mixture and mixing and combination rules built in the entropy scaling

model.

Fig. G.5 demonstrates the two central elements of the proposed methodology: (1) the

infinite dilution diffusion coefficient, if scaled as proposed in this work, exhibit a mono-

variate relation and can be treated as a pseudo-pure component, which enables the

scaling of that property. The scaling can be used for predicting infinite dilution diffu-

sion coefficients far beyond the range of available data based on that scaling. (2) The

predictions of the diffusion coefficients into the mixture do not follow the monovariate

scaling behavior. Yet, the entropy of the mixture in combination with appropriately

designed mixing and combination rules enable the prediction of the diffusion coefficients

in the mixture in the scaled variables. For the limiting cases of the pure components and

the pseudo-pure components, empirical models for describing the scaled diffusion coeffi-

cient are required in this framework. Yet, these models require only very few parameters,

e.g. 1 or 2 parameters were used for the real substance cases studied in this work (cf.

Table G.2). From these few parameters, the model (1) can predict the corresponding

diffusion coefficient practically in the entire fluid state region, cf. for example Fig. G.2.

For the main part of the novel framework, i.e. the prediction of the different diffusion

coefficients in the mixture Di(xj), Dj(xj), Ðij(xj), no adjustable parameters are re-

quired. The mechanisms for establishing the link between the limiting case diffusion

coefficients (pure component and pseudo-pure component) are analogue and consistent

to the mechanisms usually used for predicting the viscosity and thermal conductivity of

mixtures by entropy scaling. Albeit, significantly more complex in the case of diffusion

since different diffusion coefficients are described in a single and consistent framework.

However, strong non-idealities of the Maxwell-Stefan diffusion coefficients, especially in

binary mixtures of an alcohol and a non-polar substance [760], may not be covered by

the proposed framework. The description of these non-idealities, which might be due to

local composition phenomena [761], requires modifications of the introduced framework

as well as of the underlying EOS models.
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a) b)

c) d)

Figure G.5: Scaled diffusion coefficients as a function of the configurational entropy
s̃conf in different mixtures. a & b: Lennard-Jones mixtures. c & d: Mix-
ture n-hexane (1) + n-dodecane (2). Symbols are scaled simulation results
(a & b) or experimental data (c & d) [62, 744]. Triangles: Self-diffusion
coefficients; squares: Maxwell-Stefan diffusion coefficient; circles: Infi-
nite dilution diffusion coefficients. a + b: The solid line represents the
global entropy scaling model for the diffusion coefficients of the Lennard-
Jones fluid [52]. c: The yellow and the dark blue lines represent the
entropy scaling models for D1 and D∞1 , respectively. d: The dark blue
and the yellow lines represent the entropy scaling model for D2 and D∞2 ,
respectively. c & d: Black dotted and dashed lines are results from the
entropy scaling model for constant temperature (dotted: T = 298.15 K,
dashed: T = 308.15 K) computed over the entire composition range, i.e.
0 < x2 /mol mol−1

< 1.
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