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Abstract

The “Expressiveness of Human Body Movements” inspires this dissertation.
People naturally synchronize hand, body movements, and facial expressions
to create a cohesive nonverbal message. To understand this communication,
measuring and quantifying it in natural settings is essential. Consequently,
the focus of this work is on designing versatile wearable solutions, taking the
situational context of body actions into account. The dissertation introduces a
set of measurement tools to the wearable community, aiding in expanding the
understanding of body movement expressiveness. It designs experimental sce-
narios with typical gestures associated with body language. It is important to
note that the evaluations in this thesis primarily assess hardware capabilities
and do not aim to evoke genuine emotions in participants. The work also pro-
poses a variety of multipositional and multimodal wearable prototypes. The
idea is that different sensor positions and multiple sensing modalities help
to form a unified perception and understanding of complex situations. An-
other relevant aspect is to recognize human behavior/activities pervasively.
Wearable devices are the most promising ubiquitous human activity recogni-
tion (HAR) option. Creating wearable-based HAR solutions that are both
small and widely accepted by users presents a significant challenge. In this
context, a multidisciplinary approach is required. This includes expertise in
sensor technologies, signal processing, data fusion algorithms, and domain-
specific knowledge. One way to gain user acceptance is to deploy the HW/SW
systems in the most common wearable accessories on the market. Hence, the
designs presented here are based on wristbands, goggles, headwear (helmet and
sports cap), and clothing (jacket and gloves). This work focuses on HW/SW
co-design systems for HAR in the context of Hand Position and Gesture
Estimation, Head and Facial Muscle Movements Recognition, and
Body Postures and Gesture Classification. Considering these three sce-
narios, the thesis explores customized smart-wearable design with application-
specific goals. The decision criterion in this work is based on two factors: how
relevant the scenario is to understanding human behavior and how innovative
the sensing technology is within the wearable community. Overall, the designs
have been tested in various experimental settings with evaluation based on
mimicked gestures. The experiments were designed to test the feasibility of
the proposed hardware for solving specific scenarios. The main goal is to pro-
vide tools that can be used in the future to understand the “Expressiveness of
Human Body Movements” in a ubiquitous way. Nonetheless, the experiments
should be extended to include the emotional element of expressions. This is
beyond the scope of this dissertation, which focuses on mimicked experiments.
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Chapter 1
Introduction

PhD Forum H. Bello, “Unimodal and Multimodal Sensor Fusion for Wear-
able Activity Recognition” 2024 IEEE International Conference on Pervasive
Computing and Communications Workshops and other Affiliated Events (Per-
Com Workshops), Biarritz, France, 2024, pp. 364-365, doi: 10.1109/Per-
ComWorkshops59983.2024.10502797.

Figure 1.1.: Simplify Diagram of the Unspoken Expressiveness of Human Body
Movements with Specific Example Scenarios Studied in Thesis.

1.1. Motivation

The “Expressiveness of Human Body Movements” inspires this dissertation.
People naturally synchronize hand, body movements, and facial expressions
to create a cohesive nonverbal message. To understand this communication,
measuring and quantifying it in natural settings is essential. Consequently,
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Chapter 1: Introduction

the focus of this work is on designing versatile wearable solutions, taking the
situational context of body actions into account. The dissertation introduces
a set of measurement tools to the wearable community, aiding in expanding
the understanding of body movement expressiveness. It designs experimental
scenarios with typical gestures associated with body language. It is important
to note that the evaluations in this thesis primarily assess hardware capabilities
and do not aim to evoke genuine emotions in participants.
In addition to the selection of scenarios, this work also proposes a variety

of multipositional and multimodal wearable prototypes. The idea is that dif-
ferent sensor positions and multiple sensing modalities help to form a unified
perception and understanding of complex situations. Another relevant aspect
is to recognize human behavior/activities pervasively. Wearable devices are
the most promising ubiquitous human activity recognition (HAR) option. Cre-
ating wearable-based HAR solutions that are both small and widely accepted
by users presents a significant challenge. In this context, a multidisciplinary
approach is required. This includes expertise in sensor technologies, signal
processing, data fusion algorithms, and domain-specific knowledge. One way
to gain user acceptance is to deploy the HW/SW systems in the most com-
mon wearable accessories on the market. Hence, the designs presented here are
based on wristbands, goggles, headwear (helmet and sports cap), and cloth-
ing (jacket and gloves). This work focuses on HW/SW co-design systems for
HAR in the context of Hand Position and Gesture Estimation, Head
and Facial Muscle Movements Recognition, and Body Postures and
Gesture Classification. Considering these three scenarios, the thesis ex-
plores customized smart-wearable design with application-specific goals. The
decision criterion in this work is based on two factors: how relevant the sce-
nario is to understanding human behavior and how innovative the sensing
technology is within the wearable community. Overall, the designs have been
tested in various experimental settings with evaluation based on mimicked ges-
tures. The experiments were designed to test the feasibility of the proposed
hardware for solving specific scenarios. The main goal is to provide tools that
can be used in the future to understand the “Expressiveness of Human Body
Movements” in a ubiquitous way. Nonetheless, in future work, the exper-
iments should be extended to include the emotional element of expressions.
This is beyond the scope of this dissertation which focuses mainly on mimicked
experiments without inducing emotional states in the participants.

1.1.1. Scenario Selection

1. Hand Position and Gestures provide valuable information for the
recognition of human activity, mainly based on the fact that our hands
are the main means of interaction with our physical environment, fa-
cilitating the manipulation of objects, as in robot-human interaction,
and improving human-human communication among others. In partic-
ular, the vertical position of the hands around the body provides clues
as to which group of human activities is taking place, since, when the
hands are around the feet it is reasonable to filter out activities that

2



1.1. Motivation

include hand-face interaction and vice-versa. Hence, hand-vertical po-
sition tracking can be the first step in a hierarchical scheme for HAR,
reducing the solution complexity. Understanding the vertical position of
the hands, along with other aspects of hand gestures and body language,
is crucial for effective communication, especially in situations where ver-
bal communication may be limited or ambiguous. This work tracks the
vertical position of the user’s dominant hand using atmospheric pressure
sensors and radio frequency identification (RFID). The idea is evaluated
in two scenarios. The first scenario tracks the person’s hand (vertically)
to monitor order-picking activities for stock management in warehouses;
this is an example of the position of the hand relative to the environ-
ment and shows the precision of the method. The second one tracks the
vertical position of the hand around the body, which can be used as con-
textual information for HAR. In addition, a subset of hand gestures is
recognized with a multipositional and multimodal approach, using tex-
tile capacitive sensors and inertial information. Although the gesture
dictionary is intended for drone control, the methodology is extensible
to other applications in the fields of sign language, gaming, and robot
control, among others.

2. Head and Facial Muscle Movements are delicate and valuable fea-
tures for understanding human interaction with other humans/objects.
The ability to move our face depends on the craniofacial muscles. The
craniofacial muscles cooperate to regulate the movements of the cheeks,
chin, eyebrows, eyelids, forehead, upper and lower lips, and nostrils. In
particular, the temporalis and masseter muscles control facial expressiv-
ity and are activated by eating episodes. Thus, by detecting facial muscle
movements, it is possible to monitor facial expression and, at some level,
also monitor eating episodes such as chewing and swallowing. Facial
expression monitoring can be used for various purposes, including early
detection of facial muscle-related conditions and even assessing pain lev-
els in non-verbal patients. Tracking the food intake helps to gain control
over eating habits, and when facial expressions and eating monitoring
are combined it would be possible to gain an understanding of stress-
eating episodes. In Chapter 3, a set of publications for facial muscle
monitoring is presented. The focus is on wearable-based designs with
mechanomyography and inertial information fusion.

3. Body Posture and Gestures as control commands can improve ac-
cessibility for people with physical disabilities. It is a relevant area in
a variety of applications, from improving human-computer interaction
to improving health and fitness, security, education, entertainment, and
collaborative work environments. The state of the art in the wearable
community is primarily focused on motion capture with inertial measure-
ment units (IMUs) deployed in elastic or fitted garments. As a coun-
terpart, in this work, a loose-fitting clothing solution is proposed with
the use of contactless, textile-based capacitive channels and RFID-based

3



Chapter 1: Introduction

synchronization.

In summary, with these scenarios, this work aims to provide tools that can be
used in the future to understand the “Expressiveness of Human Behavior” in
a ubiquitous way.

1.1.2. Modality Selection

Several sensing modalities were studied. The selection is based on the appli-
cation and the novelty of the idea in the wearable community. Ubiquitous
solutions for HAR must take into account power consumption, memory foot-
print, cost, dimensions, and user safety, among other aspects. In addition, a
trade-off between the sensing modality and the position of the sensors on the
body must be considered. This has led many solutions to recognize activity
indirectly, which is the case of detecting facial muscle movement with sensors
at discrete points on the face, as a result of which the entire facial surface is not
detected. Moreover, it is a cumbersome or even impossible task to study all
wearable sensing modalities. In this work, the scope of modalities includes at-
mospheric pressure, radio frequency identification (RFID), sound and pressure
mechanomyography, and inertial and capacitive sensing. The selected modali-
ties are energy-efficient, memory-efficient, low-cost, privacy-friendly, and easily
integrated into commercial wearable garments/devices. In general, informa-
tion fusion is performed in two ways, multipositional and unimodal fusion and
multipositional and multimodal fusion. This section provides a summary of
the selected modalities.

Atmospheric Pressure: Atmospheric pressure changes can indicate a ver-
tical positional displacement. The relationship is described by the barometric
formula, which quantifies the decrease in pressure with increasing altitude.
To measure the atmospheric pressure a barometer is employed. A barometer
measures the relative pressure concerning the prevailing atmospheric pressure.
The altitude estimation using the barometric equation is influenced by factors
such as temperature, humidity, and weather conditions. Usually, the barome-
ter is placed in a stable position to provide a reliable measurement of altitude.
Nowadays barometers are available in smartwatches and smartphones, pro-
viding contextual information about the user. Thus, they are suitable for
low-cost and ubiquitous monitoring. This thesis demonstrates the feasibility
of using barometric differences to determine the user’s vertical hand position.
Barometer differential measurements are proposed. The difference between a
semi-static barometer, the reference, and a moving target barometer is used
to reduce the drift influence and the weather condition dependency on the
measurements.
Radio Frequency Identification (RFID): Radiofrequency identification

(RFID) is a fast and reliable option to automatically track the movements of
goods through distribution. RFID systems consist of a reader and a tag. The
reader generates radio waves to detect the presence of an RFID tag and then
reads the data stored in it. Tags are embedded in cards, buttons or other
small items. The RFID types are passive or active. An active RFID system
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uses a tag with an embedded battery to increase the detection range, at the
expense of higher power consumption, size, tag price, and varying report rates.
A passive RFID tag does not include a battery, instead, it receives its energy
to function from the reader, making it a low-power option. The tag gathers
the electromagnetic energy from the reader to respond with its identification
information. Passive tags have the benefit of being able to read at a fast rate,
they are thin, allowing them to be placed between layers of paper, and cheap
less than a dollar. All of the above makes the RFID system suitable for smart
wearable designs. This work uses passive RFID technology to locate reference
positions as a synchronization/calibration method for sensor nodes distributed
over multiple positions.

Mechanomyography (MMG):MMG is a noninvasive method to examine
muscle mechanical activity. The mechanical activity of the muscle is detected
using specific transducers to record muscle surface oscillations due to mus-
cle stretching/relaxation. As the MMG is a passive and mechanical sensing
modality, it is intrinsically low power. IMUs, piezo-electric sensors, pressure
sensors, and microphones can be used as MMG transducers. Pressure and
Acoustic mechanomyography are the two main MMG methods of interest in
this work. Acoustic Mechanomyography (AMMG) also called phonomyogra-
phy is a technique to measure the force of the muscle contraction by recording
the low-frequency sounds resulting from muscular activity. Typically, the sig-
nal is measured using condenser microphones attached to the skin. AMMG
is also employed to measure muscle activities underwater with the use of
hydrophones. Sound can be captured at a higher sampling rate compared
to other transducers, leading to a reduced response time. A trade-off be-
tween response time and power consumption should be considered. Pressure
Mechanomyography (PMMG) is another approach for MMG. In this work,
piezo-electric film and force-sensitive resistor sensors are employed as trans-
ducers for this type of MMG. A key advantage of MMG is that it does not
require precise positioning of the transducer to monitor the muscle activity,
this is due to the propagation property of the muscle’s mechanical activity. It
is considered a low-power, low-cost technique and although it requires contact
with the skin, it does not need to penetrate it, so it is also called superficial
MMG. Flexible/elastic garments are a suitable option for MMG wearable-
based designs.

Acceleration and Orientation: IMUs-based wearables are widely ex-
plored in the state of the art for HAR. The inertial information plays a crucial
role in HAR. This is due to its ability to provide fine-grained, real-time, and
versatile information about motion patterns, enabling applications across di-
verse domains. IMUs are considered energy efficient. This makes them suitable
for battery-powered wearable devices that need to operate for extended peri-
ods without frequent recharging. In this work, the inertial information is then
employed for multipositional and multimodal fusion to enhance the accuracy
and robustness of HAR system by compensating for limitations and errors
inherent in individual sensor types.

Capacitive Sensing: Capacitive transducers work on the principle of

5
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change in capacitance between conductive plates. Capacitance is typically
measured indirectly, by using it to control the frequency of an oscillator or
to vary the level of coupling (or attenuation) of an AC signal. It is a versa-
tile technology for HAR. Its touch and proximity detection capabilities make
it valuable for creating interactive and context-aware systems in smart envi-
ronments, wearable and other technological applications. Moreover, capaci-
tance can be non-contact-based, which is a desirable characteristic for loose
garment-based wearables. This work focused on using capacitive sensing for
body motion detection with textile and loose garments.
This thesis explores a wide range of modalities for HAR. The selection

criterion is based on the specific scenario and the novelty of the idea in the
wearable community. The details are discussed in the chapters below with the
respective publications.

1.2. Contribution

In this section, a general summary of the contributions made by this thesis is
presented.

• This work demonstrated vertical position tracking of the user’s hand
with differential atmospheric pressure fusion (between two barometric
sensors), where a reference barometer in the pocket simulates a smart-
phone and another barometer on the user’s wrist simulates a smartwatch.
This multipositional fusion is then multimodally fused with an RFID sig-
nal to synchronize the barometer pair and reduce signal drift, obtaining
a vertical hand position tracking of ≤30cm range.

• Capacitive textile-based gloves for hand gesture recognition were intro-
duced. The capacitive channels are fused with inertial sensing modal-
ity hierarchically to reduce power consumption and increase robustness
against the null class, where the first stage detects movements and rec-
ognizes a non-null hand gesture using an inertial model. Then, using a
capacitive model, the second stage classifies a set of hand gestures for
applications such as drone control. The solution includes real-time and
on-the-edge deployment, demonstrating the flexibility, low power con-
sumption, and low price of the idea. The evaluation is based on gestures
for drone control but has potential applications in sign language, gaming,
and robot control.

• The thesis also proved the idea of using differential sound analysis to
unobtrusively acquire information about facial muscle activity patterns
that can be associated with facial expressions and actions. The acquisi-
tion of the sound signal is based on stethoscope microphones distributed
around the masseter, temporal, and frontal muscles to perform acoustic
mechanomyography (AMMG) on the face, which is a novel contribu-
tion in terms of application and detection modality. In addition, facial
muscle detection was extended to a multimodal fusion between AMMG,
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pressure mechanomyography (PMMG), and inertial data fusion with a
sex-balanced dataset with eight nationalities to gain inclusivity and gen-
erability of the solution. Continuing the work, the multimodal fusion
between PMMG and inertial data solution was run on the embedded
hardware and evaluated in real-time to detect facial expressions and
eating episodes.

• The work continued with the introduction of a wearable approach for de-
tecting body postures and gestures (BPG) that does not require sensors
to be firmly fixed to the body or integrated into a tight-fitting gar-
ment. Instead, the sensing is embedded into a loose-fitting garment (a
formal men’s jacket). For this purpose, the famous musical instrument
theremin (capacitive sensing) was adapted as a sensor and integrated
into the jacket. The theremin antennas, capacitive electrodes, were tex-
tile cables sawed into the jacket lining without altering the jacket design
structure, for a complete wearable and loose-fitting garment solution for
BPG. The idea is then multimodally fused with RFID synchronization
to automatically capture the start and end of gestures hierarchically,
reducing the power consumption and increasing robustness against the
null class.

Figure 1.2.: Wearable Devices and Applications Proposed in this Dissertation.

Fig. 1.2 depicts an overview of the hardware designs and applications pur-
sued by the work. The following chapters will expand on each of the above
contributions with a more detailed list based on each of the publications in
the thesis.
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1.3. Related Work

1.3.1. Hand Position and Gesture Recognition with
Smart-Wearable Devices

The position estimation of the user’s hands is a multidimensional, and com-
plex problem. In this section, the focus is on a subset of the hand-tracking
problem: the detection of the vertical position of the wrist. The state of the
art in vertical position estimation is mainly based on IMU sensors, at least
in the wearable community. IMUs can be used together with the appropri-
ate biomechanical models to track the exact position and orientation of the
hand. However, given the degrees of freedom of human joints, this cannot be
achieved by a wrist-worn sensor alone but requires at least three sensors: one
at the wrist, one at the upper arm, and one at the torso (at least for an exact
solution), and under a stable magnetic environment. Nowadays, IMUs-based
tracking has been combined with neural network-based algorithms, reducing
the number of sensors and improving performance.

Table 1.1.: Non-Visual and Wearable-Based Solutions for Hand Position Tracking
Date-Work Highlights

03-2008[48]

• Sensing: IMU and Ultra Wide Band (UWB)
• Wearable: GypsyGyro-18 Suit and Ubisense Tag
• Scenario: Body Position Tracking
• Users: 1 Participant
• Results: 0.14 m Error with Kalman Filter

03-2018[196]

• Sensing: RFID
• Wearable: RFID Tags Around The Body
• Scenario: Upper-Body Position Tracking
• Users: 5 Participants.
• Results: 4.4 cm Relative Position Error with Kinect 2.0 Testbed.

10-2019, Ours[16]

• Sensing: Barometer and RFID
• Wearable: Wristbands
• Scenario: Vertical Hand Position Tracking.
• Users: 2 Scenarios, 3 and 5 Participants, respectively.
• Results: 84.15 % and 60.25 % average accuracy.

10-2019 [26]

• Sensing: IMU
• Wearable: Smartwatches (Left/Right)
• Scenario: Moving, Upper, Lower, and Away Positions
• Users: 6 Participants
• Results: 97.00 % accuracy

04-2023 [136]

• Sensing: IMU
• Wearable: Smartwatches (Left/Right).
Smartphones(Left/Right Pockets).
and Earbuds (Left/Right).
• Scenario: Body Position Tracking. BLSTM
• Users: 10 Participants
• Results: 12.08 cm Mean Per Joint Vertex Error (MPJVE)

In the Table 1.1, a summary of wearable-based solutions for tracking hand
position is compared. Multipositional IMU-based systems are the ones with
higher accuracy in the classification task and lower error in the tracking tasks.
The inertial information has also been employed in combination with Ultra-
WideBand (UWB) in [48]. The authors employed a biomechanical model with
a Kalman filter as the backbone of the multimodal fusion (IMU and UWB).
This is an example of the classical approach to body tracking. It uses multiple
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sensors around the body and relies on an accurate mechanical model, which
is not always available and is usually oriented to linear systems.

To learn the non-linear patterns in the inertial data it is possible to use
a neural network as in [136]. Recently, in [136], the authors estimate the
full-body pose using three distributed IMUs. The IMUs’ positions were in a
smartwatch, smartphone, and earbuds. The system tracks which devices are
present and uses the available IMU data. With one IMU device available, the
Bidirectional Long Short-Term Memory-based (BLSTM) system has a Mean
Per Joint Vertex Error (MPJVE) of 16.27 cm with a standard deviation of 9.93
cm. The error is further reduced when three IMUs are available, achieving an
MPJVE of 11.1 cm with a standard deviation of 6.51 cm. Which are promising
results toward an exact body position tracking with a reduced number of IMUs.
In [196], a wearable RFID is proposed. The idea offers the advantage of using
RFID Tags sticker to clothing around the body and it is also training free.
The authors track the body movement in 3D space by analyzing the phase
information of wearable RFID Tags combined with a human geometric model
and a Kalman Filter. And obtained a 4.4cm relative position error for the
position estimation of joints compared with the Kinect 2.0 testbed. The main
drawback of the RFID solution presented in [196] and the IMU-UWB fusion
presented in [48] is that both systems require a receiver/transmitter deployed
in the environment, so they are not complete wearable approaches.

In summary, the literature can be split into mathematical-based modeling or
data-based modeling. The former depends on how accurate the mathematical
model is and the latter depends on big data and long training requirements.
In [16], this work, demonstrated the use of relative height estimation between
pressure differences and the RFID as a monitor-error method to detect the ver-
tical position of the hand. Wrist elevation is tracked by comparing the signal
from the wrist barometer(simulating a smartwatch) to the reference (simulat-
ing a smartphone) and using the barometric formula. This goal was achieved
by only using a simple linear model and an RFID chip to calculate the initial
offset and to reduce the impact of the drifting and offset in the vertical posi-
tion estimation, in addition to the reduction of the effects of sudden changes
on pressure, due to the opening of windows or doors around the devices. The
details of the proposed solution are further discussed in Chapter 2.

Another focus of this work is on hand gesture recognition with wearable
and textile-based solutions for drone control. We can find several textile-based
sensing modalities on gloves for drone control in the literature, as shown in
Table 1.2. Researchers have employed various sensing technologies, including
textile pressure sensors, triboelectric nanogenerators (TENG), flexible capac-
itive pressure sensors, piezoresistive, and conductive fiber-based textile pres-
sure sensors, among others [169], [5], [186], [111]. A common practice among
state-of-the-art textile wearable glove alternatives is to use different and lim-
ited gesture dictionaries compared to camera-based solutions, which mainly
include going forward/backward and going to the left/right classes. For the
capacitive or textile pressure sensor options, the textile is used as a soft push
button, where each textile patch is an on/off instruction. Textile as binary
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actuators (push buttons) is a simple and effective way of Human-robot in-
teraction (HRI). However, it lacks robustness against the null class, and the
number of control instructions is limited to the number of textile patches. This
is an issue if the drone/robot requires performing more sophisticated tasks [93].
For example, in [111], the patches are placed on the fingertips, leading to the
incorrect recognition of null activities, such as checking a smartphone, typ-
ing on a keyboard, or touching/grabbing tools, as control instructions for the
drone/robot. In [5], the authors employed a capacitive textile sensor on the
back of the palm of the right/left hand, and with the other left/right hand, the
user touched the patches to generate the control signal for the drone. How-
ever, this solution does not account for the potential extension of gestures by
including both hands in the pipeline. In [169], the authors used TENG to
fabricate a sensing glove for gesture recognition, including sign language and
drone control applications. However, their focus was mainly on introducing
the technology and its futuristic applications, thus neglecting null activities
and lacking information about user experimental evaluations.

To overcome these limitations, we introduce a capacitive and inertial fusion-
based glove-based design for real-time on-the-edge hand gesture recognition.
Our design incorporates textile capacitive electrodes as sensing channels on
the fingers and an IMU sensor on the wrist. Textile capacitive sensing has
demonstrated its effectiveness as a low-power consumption, cost-effective, and
scalable technology for movement tracking in gesture and activity recognition
[22], [23], [220]. Furthermore, IMU sensors have been widely used to monitor
wrist movements by researchers[121], [177], [89]. Our approach is an alterna-
tive solution for hand gesture recognition that addresses critical requirements,
including minimal invasiveness, low power consumption, privacy preservation,
flexibility, and scalability. While our focus is mainly on a gesture dictionary
related to drone control, the same concept can be extended to hand-based HRI
in various domains such as sign language, gaming, and robot control.

Table 1.2.: Non-Visual-Based Hand Gesture Solution with Wearable Garments
Date-Work Highlights

02-2015 [91]

Sensing:Air pressure sensors
Wearable: Air bladder band
Scenario: 6 Hand gestures
Users: 6 Participants
Results: Custom Fuzzy Logic. 90.00%

05-2021[158]

Sensing: 8 Nanocomposite Pressure Sensors
Wearable: Stretchable Textile Tape
Scenario: 0 American Sign Language Numbers
Users: 10 Participants.
Results: User-dependent. Extreme Learning Machine (ELM). 93.00 %

05-2021 [172]

Sensing: EGaIn-Silicone Soft: React to pressure or stretch
Wearable: Glove
Scenario: 12 Static hand gestures
Users: 15 Participants.
Results: User-dependent. Random Forest. 97.30%

06-2019 [217]

Sensing: Surface EMG
Wearable: Armband, commercial
Scenario: 5 hand gestures
Users: 12 Participants
Results: User-dependent. ANN 98.70 %

10-2023 and 02-2024, Ours [17, 18]

Sensing: Capacitive and IMU
Wearable: Glove
Scenario: 8 Hand Gestures for Drone Control
Users: 1 Participant. User-dependent.
Results: 80.00 % and 67.00% F1-Score, offline and Real-Time on-the-Edge, respectively.
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1.3.2. Facial Muscle and Head Movements Recognition with
Head-Mounted Accessories

Monitoring of head and face muscle activity has been explored with the use
of several sensing modalities. Detection methods range from camera, light
detection, piezoelectric phenomenon, sound, and electromyography (EMG)
to textile pressure mechanomyography. Cameras are the most widely used
solution to monitor facial activities with an expected accuracy of more than
90.00 %. In wearable applications, cameras are not always a desirable solution.
The camera placed in front of the face brings privacy concerns for everyday
use. The constant movements of the user, the light conditions, and occlusion
can represent another problem for visual-based systems.

In the Table 1.3, the state-of-the-art visual-based wearable solutions for fa-
cial activity recognition are compared. The visual solutions presented in the
Table 1.3 include cameras, infrared cameras, and photo-reflective sensors. The
positioning of the visual-based sensors is highly relevant, thus the sensor cap-
tures the face area without hindering the user visibility. The photo-reflective
approach is a clever idea deployed within the frame of smart glasses. Hence,
the user visibility is not compromised, and it is a privacy-aware sensing modal-
ity. Still, the photo-reflective solution is sensitive to light conditions. Later on,
an IMU is combined with photo-reflective sensors to improve the robustness
of the system. However, it still relies on an active (photo-reflective) detec-
tion mode. Active sensing modalities are those that radiate signals around
the human body. Therefore, an active detection method around the eyes for
ubiquitous use may raise some concerns about the user’s long-term health.
Further studies should be conducted to ensure that targeted active detection
is safe for the user.

On the other hand, there has been significant interest in the wearable com-
munity in non-visual-based sensing approaches for head and face movements
monitoring. The main challenge faced by non-visual approaches is using lim-
ited areas to capture facial information, preferably around glasses, on the head
(e.g., using a cap or helmet), and around the ears or nose. In the Table 1.4,
the state-of-the-art wearable and non-visual-based solutions for facial activity
recognition are compared. More than 46 % of the studies in the Table 1.4 are
based on earpieces. Nowadays is considered normal to use headphones/ear-
buds every and almost all day, making the ear the new wrist in the wearable
community. Around the ear is a non-obstructive position to acquire facial
movement information. The earpiece and ultrasound-based systems are the
most promising methods for facial movement tracking. Having multiple chan-
nels of ultrasound signals sent to the face and ear area every day and all day
may compromise the user’s acceptance of the method. Besides, experiments
on animals have shown damage to internal organs from receiving different
ultrasonic frequencies [138].

For the non-camera-based approaches, higher accuracy is obtained by the
active sensing methods. This is the case for the photo-reflective signal and the
ultrasound signals broadcasted around the user’s face. In the present work, we
focus on passive solutions such as the one presented in [221], where a textile
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Table 1.3.: Visual-Based Wearable Solutions for Facial Activity Recognition
Date-Work Highlights

03-2016 [129]

Sensing: 17 Photo reflective Sensors
Wearable: Glasses
Scenario: 8 Expressions. Support Vector Machine (SVM).
Users: 8 Participants
Results: User-dependent Average 92.80 % accuracy. One session

10-2020 [42]

Sensing: Cameras
Wearable: 2 Ear Mounted Cameras
Scenario: 8 Emojis. BLSTM
Users: 9 Participants
Results: User-dependent 88.60 % Accuracy

10-2020 [105]

Sensing: Camera
Electrodermal Activity (EDA)
Photoplethymogram (PPG)
Wearable:
Scenario: Recognition of the Quadrant of the Arousal-Valence Plane
Support Vector Machine
Users: 20
Results: User-dependent 76.09 % Accuracy

11-2020 [127]

Sensing: 16 Photo Reflective Sensor and IMU
Wearable: Glasses
Scenario: Eight Temporal Gestures. CNN
Users: 13 Participants
Results: User-dependent 91.10 % F1 Score.

02-2021 [10]

Sensing: Cameras
Wearable: Glasses with 2 Cameras
Scenario: 7 Pseudo Face Images
Comparison with Stored Images
Users: 6 Participants
Results: User-dependent.
Accuracy 87.50 % Neutral, 66.70 %
Happy and 71.40 % Surprise

06-2021 [41]

Sensing: Infrared Cameras
Wearable: Necklace and Neckband with Cameras
Scenario: 8 Customized Facial Movements
CNN. Real-Time Tracking
Users: 13 Participants
Results: MAE 30.29 Necklace and 25.61 Neckband

11-2021 [60]

Sensing: IR Sensor Array
Wearable: Ear Accessories
Scenario: 9 Facial Gesture.
Support Vector Machine
Users: 5 Participants.
Results: User-dependent 97 % F1-Score

pressure matrix (mechanomyography) was introduced into a headband design
to classify seven facial expressions, with intermediate results of up to 38.00%
accuracy. Moreover, piezoelectric thin films (PEF) have been used in real-time
[188] to detect and classify skin deformation to decode facial movements in pa-
tients with amyotrophic lateral sclerosis. Their work is intended to be used
in clinical settings for nonverbal communication and neuromuscular monitor-
ing conditions. PEF sensing technology is lightweight, customized, and with
mechanical harvesting capability [168]; therefore, we could claim that PEF
technology is worthy of research and study in specific applications.

The work in this thesis and for the scenario of head and facial muscle move-
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Table 1.4.: Non-Visual-Based Wearable Solutions for Facial Activity Recognition
Date-Work Highlights

10-2017 [9]

Sensing: Barometer
Wearable: Earphone
Scenario: 11 Face Related Movements
Users: 12 Participants. Random Forest
Results: User-dependent 87.60 % accuracy

09-2019 [7]

Sensing: Ultrasound
Wearable: Earphones with Speaker and Microphones
Scenario: 21 Customized Expressions. Support Vector Machine.
Users: Eleven Participants
Results: User-dependent Average 62.50 %

03-2020 [115]

Sensing: IMU and Electrooculography
Wearable: Glasses
Scenario: 9 Kissing Gestures and Walking
Users: 5 Participants
Results: User-dependent 74.13 % accuracy

08-2020 [221]

Sensing: Pressure Matrix
Wearable: Headband with Pressure Sensors
Scenario: 7 Facial Activities. Support Vector Machine.
Users: Twenty Participants
Results: User-dependent 37,80 % F1 Score. One Session.

10-2020 [21]

Sensing: 6 Microphones
Wearable: Helmet with Stethoscope Microphones
Scenario: 10 Facial Activities. Support Vector Machine.
Users: 8 Participants
Results: User-dependent 75.37 average % F1 Score.

10-2020 [188]

Sensing: Piezoelectric Films
Wearable: Flexible Films Stickers
Scenario: Smile, Twitch, and Pursed Lips. KNN–DTW
Users: One healthy and One Patient with Amyotrophic Lateral Sclerosis
Results: User-dependent Average 86.80 % and 75.00 % accuracy. One session.

02-2021 [130]

Sensing: Capacitive Sensors
Wearable: Glasses
Scenario: 12 Facial and Head Gestures
Random Forest
Users: 10 Participants
Results: User-dependent 89.60 % accuracy

09-2021 [192]

Sensing: IMU
Wearable: Earphones with IMU
Scenario: 30 Action Units. Temporal Convolutional Network
Users: 12 Participants
Results: User-dependent 89.90 % accuracy

09-2021 [63]

Sensing: IMU
Wearable: Earbuds with IMU
Scenario: 3 Head Movements. Hierarchical classification.
Users: 21 Participants
Results: User-dependent 84.79 (smile, talk, and yawn)% accuracy

05-2022 [181]

Sensing: Ultrasound
Wearable: Headphones
Scenario: 7 Facial Expressions. LSTM
Users: 5 Participants
Results: User-dependent 80.00 % accuracy

07-2022 [113]

Sensing: Microphones
Wearable: Microphones and Speaker in Earphones
Scenario: Customized Facial Movements
Users: 12 Participants
Results:User-dependent. MAE 25.90

10-2022 [67]

Sensing: Surface Electromyography sEMG
Wearable: Pico Virtual Reality Headset with EmteqPro Sensors.
Scenario: Neutral, Negative, and Positive Valence and Arousal Scores.
Users: 38 Participants. Pearson’s Correlation Coefficient.
Results: Significant Values -0.24 to 0.64.

06-2023 [15]

Sensing: IMU, FSR, Piezoelectric, and Microphones
Wearable: Sportscap
Scenario: 9 Head and Facial Gestures
Users: 13 Participants
Results: CNN User-dependent 85.00 % F1 Score

10-2023 and -2024 [19, 20]

Sensing: IMU, FSR and Piezoelectric
Wearable: Glasses
Scenario: 5 Head and Facial Movements and Eating Episodes
Users: 1 and 6 Participants, respectively
Results: CNN User-dependent 86.00 %. Expressions
User-independent 94.00 % F1-Score. Eating Episodes
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ment monitoring is presented in three main publications. In [21] acoustic
mechanomyography (AMMG), a passive technique was employed with an F1
score of 75.37 % average in classifying ten facial muscle activities. In [15]
a fusion between passive sensing is studied. The fusion consists of sensing
such as pressure mechanomyography (PMMG) using a force-sensitive resistor
(FSR) and piezoelectric film (PEF), inertial sensing based on orientation and
acceleration, and acoustic mechanomyography (AMMG). In [19], [20] PMMG,
PEF, and inertial information are fused to monitor facial muscle movements
expected to appear in facial expressions and eating episodes. The wearable
accessories used were a helmet, a sportscap, and glasses for each of the studies,
respectively. The detailed information is presented in Chapter 3.

1.3.3. Body Posture and Gesture Recognition with Wearable

Body posture and gestures (BPG) are key components of human activities
and are essential ways to convey emotion and personality, implicit social in-
teractions, sign language, etc. As a result, BPG recognition has been one
of the first wearable sensing applications, leading to many mature commer-
cial applications for motion capture. BPG recognition methods are widely
explored in the literature. Most popular wearable BPG sensing techniques
use inertial measurement units (IMU) and, on the textile side, stretch sensors.
While highly effective in many applications, most current systems share one
limitation: they require sensors to be firmly fixed to the body through tight
garments or dedicated accessories, such as bracelets and straps.
Inertial measurement units (IMU) distributed in clothing or accessories for

BPG recognition is a widely used technique [32, 74, 164]. Another relevant ap-
proach for BPG analysis is called kinesiological electromyography (EMG) [47,
217]. Such approaches are reliable and robust solutions with accuracy above
90.00 %. However, both detection modalities require stable sensor positions to
avoid the effect of noise and motion artifacts on the signals. Furthermore, the
placement of discrete and rigid sensors around the joints could be uncomfort-
able for the user. In [119] the authors employed 100 microchips with memory
and temperature sensors interconnected in a flexible fiber on a T-shirt, which
is a solution to increase the flexibility and comfort of the user while wearing
discrete sensors, a promising idea to explore in the future.
On the other hand, stretchable garments with strain-based or pressure sens-

ing methods have been studied by many researchers [28, 91, 116, 134, 158, 172,
179, 221], which demonstrate their value in textile-based BPG recognition.
Fiber optic embedded in a jacket and pants was proposed in a limited study
(one person) [102]; the transmitted light changes with the wearer’s movements,
creating a time series pattern due to the bending of the fiber optics. The
wearable optical technology is growing rapidly with multiple hardware designs
being proposed [4, 101, 102, 107, 112, 189, 214]. A fabric-based triboelectric
sleeve is proposed in Kiaghadi et al. [96]. Four Radio Frequency Identifica-
tion (RFID) tags were proposed on the back, chest, and feet over the persons’
clothes and shoes in [198] to recognize a total of eight activities (standing,
sitting, walking, along with others). The piezoelectric effect was employed in
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[35], where four flexible piezoelectric sensors were placed on the knee and the
hip in slack pants to detect walking, standing, and sitting activities.
A comparison between the BPG recognition approaches is presented in Ta-

ble 1.5. This work, introduced a quick and easy option to integrate e-textile
components in loose-fitting garments [22]. The proposed idea uses commercial
conductive textile parts as the antennas of the modified off-the-shelf theremin
(OpenTheremin) based on capacitive sensing. In [23] the work is extended
from multipositional fusion to multimodal fusion. The idea is then fused with
Radio Frequency Identification (RFID) synchronization for real-time and wire-
less recognition of six classes of a dance movements dictionary. Further details
are presented and discussed in Chapter 4.

1.4. Outline

The current thesis consists of five chapters. In this first chapter, the moti-
vation and the contribution overview as well as the current state of research
in the scientific area related to the thesis are presented. The motivation in-
cludes the reasoning about the scenario and the sensing modalities selection.
The related work is separated by application-specific scenarios. Each of the
three subsequent chapters (Chapter Two, Chapter Three, and Chapter Four)
presents the contributions of each application-specific scenario. Chapter 2
focuses on hand position and gesture recognition with smart-wearable de-
vices. Chapter 3 summarizes the contributions in the area of facial muscle
and head movement estimation with mechanomyography and inertial fusion.
Chapter 4 comprehends the works related to body posture and gesture recog-
nition with multipositional textile capacitive sensing-based fusion. Finally,
Chapter 5 summarizes the main conclusions, analyzes the research articles
presented, and offers implications and recommendations for future research.
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Table 1.5.: Non-Visual based BPG Solution with Wearable Garments
Author-Year Highlights

02-2008[74]

Sensing: 3 Accelerometers
Wearable: Long Sleeve Shirt
Scenario: 12 Arm Movements
Users: 8 Participants.
Results: User-dependent. Nearest Centroid Classifier 95.00 % Accuracy

06-2015 [73]

Sensing: Capacitive
Wearable: Leg/Chest Band, Insole
Scenario: 5 Motor Activities
Users: 10 Participants
Results: User-independent. Bayesian Classifiers. 88.97 % Accuracy

03-2016 [198]

Sensing: RFID
Wearable: 4 Antennas; Aack, Chest and Feet
Scenario: 5 Motor + 3 Cleaning Activities
Users: 4 Participants
Results: User-dependent. SVM 93.60 % Accuracy

02-2018[35]

Sensing: Flexible Piezoelectric
Wearable: Loose Pants
Scenario: 5 Motor Activities + 8 Transitions
Users: 10 Participants.
Results: User-dependent. Rule-Based Algorithm [36]. 93.00% Accuracy

09-2018[96]

Sensing: Fabric-Based Triboelectric Joint Sensing
Wearable: Sleeve
Scenario: Brushing, eating, walking, idle
Users: 14 Participants
Results: User-dependent. SVM 91.30 % Accuracy

10-2018 [102]

Sensing: Hetero-core Fiber Optics
Wearable: Jacket and Pant
Scenario: 8 Motor Activities
Users: 1 Participant.
Results: User-dependent. SVM 98.70 % Accuracy

10-2018 [179]

Sensing: Textile Pressure Sensors.
Wearable: Trousers (3 sizes).
Scenario:19 Sitting Postures/Gestures.
Users: 6 Participants.
Results: User-dependent. Random Forest. 99.18 % Accuracy

01-2020 [221]

Sensing: Textile Pressure Matrix (TPM)
Wearable: Elastic Sport Band
Scenario: 4 Gym Exercises + 3 Non-Exercises
Users: 6 Participants.
Results: User-dependent. ConfAdaBoost. 93.30 % Accuracy

04-2020 [116]

Sensing: Optical-strain sensor
Wearable: Sweat Jacket
Scenario: Standing, Sitting, Lying, Walking, Running
Users: 12 Participants
Results: User-dependent. CNN-LSTM 90.90 % Accuracy

06-2021[119]

Sensing: Flexible Fiber
Wearable: Shirt with 100 Microchips with Temperature Sensors.
Scenario: Sit, Stand, Walk and Run
Users: 1 Participant.
Results: User-dependent. CNN 96.40 % Accuracy

09-2021[22]

Sensing: Capacitive
Wearable: Loose-Fitting Jacket
Scenario: 20 Posture/Gestures
Users: 14 Participants
Results: User-dependent. Conv2D. 97.18%. User-independent 86.25% Accuracy

06-2022[23]

Sensing: Capacitive
Wearable: Loose-Fitting Jacket
Scenario: 8 Dance Movements
Users: 3 Participants
Results: User-dependent. 1DConv. 92.00% F1-Score
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2.1. Hand Vertical Position Estimation with
Atmospheric Pressure and RFID synchronization

2.1.1. Problem Statement

Our hands are the primary means of interacting with our physical environ-
ment. Thus, the position of the user’s hands is a crucial piece of information
for a broad range of context recognition tasks. It is made difficult by two
considerations. First, in many cases, to be meaningful, the tracking has to be
accurate to within 10–50cm. This is, for example, the case when we need to
know which object the user has picked from a shelf, which/how she/he has
interacted with a household device, or when he/she has taken a piece of food
into the mouth. Second, for many applications, the amount of instrumenta-
tion that can be introduced into the environment to facilitate the tracking
is limited. Ideally, the tracking would be achieved by a sensor that can be
easily integrated into a smartwatch or a fitness tracker without needing fur-
ther environmental instrumentation. Furthermore, understanding the vertical
position of the hands, along with other aspects of hand gestures and body
language, is crucial for effective communication, especially in situations where
verbal communication may be limited or ambiguous. To this end, this work
tracks the vertical position of the user’s dominant hand using atmospheric
pressure sensors and RFID synchronization techniques. The idea is evaluated
in two scenarios. The first scenario tracks the person’s hand (vertically) to
monitor order-picking activities for stock management in warehouses; this is
an example of the hand’s position relative to the environment and shows the
precision of the method. The second one tracks the vertical position of the
hand around the body, which can be used as contextual information for human
activity recognition (HAR).
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2.1.2. Contributions

The main contribution of the idea is summarized as follows:

• We demonstrated how a combination of wrist-worn and stationary barom-
eter (differential pressure) can be used to track the vertical position of
the user’s hand with an accuracy of 30 cm.

• We propose a simple linear model based on the barometric formula to
calculate the altitude. Differential atmospheric pressure sources from a
static and a wearable position are used to calculate the relative altitude.
And, an RFID-based synchronization technique is employed to obtain
the initial offset between the wearable and stationary barometer. These
techniques help reduce the impact of drift and the effects of sudden
changes in pressure due to open windows or doors around the devices.

• We evaluated the system in two different scenarios: an order-picking
scenario in a warehouse, and a movement of the arm to specific body
locations scenario. In the first scenario, a six-level shelf is employed and
the altitude of the user’s hand is tracked. The altitude is later used to
locate the user’s position hand according to one of the shelf levels. In the
second scenario, the categories to be classified were; hand on the head,
chest, and feet. Despite the simplicity of our method, it shows initial
results of 60.25% and 84.15% average accuracy, respectively.

2.1.3. Apparatus

The hardware design is based on the development board STM32L475 DIS-
COVERY with an Arm Cortex-M4, running the real-time operating system,
MBED version 5.12. The sensor used to measure the atmospheric pressure was
the barometer BMP388 from Bosch company. The radio frequency communi-
cation (RFID) system consists of a PN532 reader and a MIFARE tag (13,56
MHz). The barometer and the RFID reader use the I2C protocol at 400 KHz
to communicate with the microcontroller (MCU). The MCU is connected to a
PC via the ST-LINK-UART protocol at a baud rate of 1 Mbps. The complete
system is depicted in Fig. 2.1Left. The sampling rate of the data acquisition
system depends on the schedule of the RTOS MBED. Fig. 2.1 Right depicts
the variability of the sampling time with 90.00% of time being less or equal
to 62.5Hz (16 ms). Two copies of the hardware design were made, one for
the person’s wrist and one for a stationary reference system (on a table or the
user’s pocket).

2.1.4. Signal and Data Processing

In this section, the procedure to obtain the linear model for the barometric-
based hand vertical position estimation is discussed. It also presents the details
of the conducted experiment based on the two scenarios; an order-picking
scenario in a warehouse, and a movement of the arm to specific body locations
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Figure 2.1.: Left The Hardware Prototype Shows the Antenna, Microcontroller
(STM32L475), the RFID-tag, RFID-Reader(PN532), and the Barom-
eter (BMP388). (Right) Depicts The Sample Rate Distribution for
the Pressure Data in The Real-Time Operating System MBED.

scenario. Finally, the classification method selection as a naive Bayes classifier
is justified.

Linear Model Procedure

The vertical hand position modeling is based on the barometric formula [54,
110, 200], as shown in Eq. (2.1). Where P is the pressure at a certain altitude
H, P0 is the pressure at a reference point, M is the molar mass of dry air,
g is the gravitational field strength, R is the gas constant of air, and T0 is
the temperature [207]. From Eq. (2.1) it is possible to get the height for a
given pressure as shown in Eq. (2.2). This is a non-linear relation between the
pressure and the height. The linear version of this equation is in Eq. (2.3).
Where, β is the temperature elapsing under 11km, with a value of β = −6.5 ∗
10−3 [200]. This is an equation that depends on a reference value. The sea
level pressure is usually used as the reference pressure value, as in [200]. The
authors used a base barometer and a rover barometer and made the height
estimation relative to the sea level pressure.

P = P0 ∗ exp
−g ∗M ∗H

R ∗ T0
(2.1)

H = −R ∗ T0

g ∗M ln
P

P0
(2.2)

H = T0

β
⋅ [ P
P0

−β∗R
g

− 1] +H0 (2.3)

Since the air pressure varies typically between 950 and 1050 hPa during a
year, the expected variation in sea level due to air pressure is between +63 cm
and -37 cm around mean sea level, which is a situation that we cannot quantify
or control. In [151] the authors studied the sources of errors in barometer pres-
sure measurements and concluded that barometers in differential mode would
provide a very accurate altitude solution, but local disturbances in pressure
must be taken into account in the design of the application. We proposed to
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apply the formula 2.3 but, with a stationary reference pressure and a wearable
pressure device, eliminating the dependence on sea level pressure, and having
access to monitor changes in reference pressure values. The altitude equation
also depends on the temperature. In [110], the authors set the temperature
value as an average between the temperature at the standard atmospheric
pressure and the current pressure point. Following this logic, we set the tem-
perature value as the average between the stationary pressure point and the
variable pressure point, which is the pressure given by the wrist-worn device.

The aim is to use the differential altitude between the stationary and vari-
able pressure points to track the vertical hand position. However, even two
barometers of the same version and on the same height position possess greater
noise levels and variability. The idea is to find a linear relationship between
the pressures to obtain the simplest differential solution possible. Thus, we
proceed to do a set of experiments, including coherence values and stationary
tests to guarantee that a linear fitting is suitable to represent the relation
between the two devices.

Coherence Pressure Test: We developed two copies of the hardware
design. One is used as a fixed reference point and the second one as a movable
pressure point. Both devices were placed on the same table (same height) and
close to each other to record the pressure values. This setting aims to obtain
the time series static information. The experiment was repeated three times
on different days and the duration of each recording was between 20 to 45
minutes as depicted in Fig. 2.2. These recordings were done indoors without
interruptions and windows and doors closed.

Fig. 2.3 depicts the coherence between the pressures of the pairs of devices.
The coherence results show a relation between the two pressures in the low-
frequency band. Thus, an exponentially weighted low pass filter is applied.
This technique increases the similarity between the pressures, improving the
precision of a linear fitting between the two pressures.

Stationary Test: The precision of the tracking is required to be less than
one meter to be relevant. However, the variation of only one pascal in the
pressure means an eight-centimeter difference relative to the sea level. As a
consequence, a linear fitting is only valid in the situation it was calculated.
Hence it is relevant to perform the stationary test, also called the Dickey-
Fuller test [76]. The Dickey-Fuller test was applied to pressure data coming
from three different days in static conditions. The results of the stationary
test of the pressure data from the reference and wearable boards are presented
in Table 2.1. The reference pressure data is 95.00% to 99.00% stationary, with
Test ≤ Critical−V alue(1%). And, the pressure data from the wearable board
was 90.00% to 95% stationary, with Test ≤ Critical−V alue(5%). Both results
indicate that the pressure values are semi-stationary. But still, the Fig. 2.2
shows that the pressure values vary per day. Moreover, the offset difference
between the pressures of the reference and wearable board is not constant.

The coherence and stationary tests show that the simplest model version is
a linear model, as the Eq. (2.4). Where Wp is the pressure at the wearable
board and the Rp is the pressure at the reference board, a is the weight of the
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Figure 2.2.: Three Days Static Pressure Variation Capture by the Customized
Hardware for 20 to 45 minutes.

similarity between pressures, and e is the DC offset difference between Wp
and Rp.

Wp = a ∗Rp + e (2.4)

Linear Model Fitting: The linear equation in Eq. (2.4) has two unknown
variables, a and e. RANSAC and polynomial linear fit methods are used
to determine the variable a, which is the similarity weight between the two
pressure sources. The static pressure data (see Fig. 2.3) is divided into 70.00%
training data and 30.00% testing data. The results from both methods are in
Table 2.2. The minimum mean-squared error is 4.27 Pascal from the RANSAC
method. This corresponds to a value in height of 33 centimeters, relative to
the sea level pressure. The weight of similarity between the pressures (variable
a) is then set to the suggested value of the RANSAC method of 0.97.

The DC offset variable e is initialized at the mean value difference between
the reference and the wearable pressure values from the semi-static scenario.
The DC offset error is then updated by the RFID synchronization method.
The RFID synchronization method consists of recalculating e when the refer-
ence and wearable pressure devices are at the same height. The RFID method
has two elements, a reader on the wrist and the tag on the reference position.
Then, every time the reader captures the tag the e is adjusted accordingly.
And, the RFID tag-reader combination selected for this work is the same used
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Figure 2.3.: Top Depicts the Pressure of the Reference Device in Red and the Pres-
sure of the Wearable Device in Blue. Bottom Shows the Coherence
of the Signals.

by researchers in [100, 159, 202].

2.1.5. Experiment Design

Two scenarios were tested. The first was an order-picking scenario in a
warehouse. Order picking involves the movement of boxes/items between a
compartment and a cart or picking table. The trolley or pick-up table is a suit-
able reference position to monitor height differences and determine in which
compartment an object has been placed/taken. For this scenario, we placed
the reference device (barometer + RFID tag) on a fixed table, simulating an
order-picking car. The movable device (barometer + RFID reader) is set on

Table 2.1.: Dickey-Fuller Test Results to Test Stationary Attributes of the Pressure
Values in Three Different Days in Static Conditions for the Reference
and Wearable Pressure-Based Devices.

Reference Board Wearable Board

Test = -3.44 Test = -3.17
p-value = 0.0096 p-value = 0.022

Lags = 71 Lags = 71
Observations = 118265.0 Observations = 118265.0

Critical-Value(1%) = -3.430405 Critical-Value(1%) = -3.43
Critical-Value(5%) = -2.86 Critical-Value(5%) = -2.86
Critical-Value(10%) = -2.57 Critical-Value(10%) = -2.57
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Table 2.2.: Comparison of The Linear Fitting Results for RANSAC and Polynomial
Linear Fit Methods of The Pressures Between the Reference and The
Wearable Device.

RANSAC Polynomial

Mean-squared-error = 4.27 Mean-squared-error = 4.47
Variance-score = 0.95 Variance-score: 0.94

the wrist of the participant to simulate the smartwatch position. In this sce-
nario, a shelf of six compartments is used as the level categories to be tracked.
Five participants were recruited to place/take objects to/from between the
shelf and the table. They were asked to move a box between the reference
table and each of the shelf’s compartments randomly. The waiting period
in each shelf’s level was between 3 to 5 seconds. In total, each participant
performed 10 picking actions per compartment, every time going back to the
reference table and waiting there for 3 to 5 seconds. The maximum compart-
ment height is 28 cm, and the reference table height is 85.4 cm. And, the
heights of the volunteers in decreasing order were: 197,190,177,170,157 cm.

The second scenario was related to the movement of the arm to specific
body locations. Three locations are defined as the upper, middle, and lower
parts of the body. In this case, the reference device is placed on top of the
pocket of the participant to simulate a common position for the smartphone.
As in the first scenario, the movable device is set on the wrist of the volunteer.
Three participants were asked to move their dominant arm starting from the
pocket to three different positions. The levels around the body were to the
head, to the chest, and to the feet. They performed the movements randomly
and for 10 repetitions per location, returning to the pocket for every repetition.

The RFID synchronization method was validated in an additional experi-
ment. Three volunteers were asked to move an object between the table and
a shelf compartment of their choice. Two of the participants performed 30
repetitions of the gesture. The third performed 50 repetitions of the gesture.
In all cases, the RFID captured 100% of the picking actions, which validated
the RFID synchronization method.

Naive Bayes Classifier: In Fig. 2.4 is the altitude distribution (one hour
per level) by each level of the shelf. The altitude distribution based on the
barometric formula shows Gaussian behavior. Hence, a naive Bayes classifier
is a suitable method to quantify the system’s accuracy. First, the altitude is
calculated using the barometric formula. The linear model is used to match the
pressure from the wearable device to the reference pressure and then proceed to
obtain the elevation values. Then, each picking action is divided into windows
of 12 samples, 0.192 seconds in total with a sampling rate of 62.5Hz(16ms), and
statistical features were calculated for each window. The statistical features
were the mean, standard deviation, maximum, and minimum values of the
pressure-based height measurements.
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Figure 2.4.: Altitude Values Level Distribution (Vertical axis in Meters) from the
Warehouse Scenario

2.1.6. Results

For the first scenario, the naive classifier was trained with one minute of al-
titude static data from each compartment. The testing data came from five
participants for a user-independent evaluation scheme. The performance for
the best case was 62.86% accuracy. And for the worst case, the accuracy was
56.81%. Fig. 2.5 Left shows the confusion matrix of the best performance for
the pressure-RFID-based approach. In Fig. 2.5 Right shows the best results
for the case of not using the RFID method for synchronization and error cor-
rection. In this case, the classifier was trained with the same one minute of
altitude static data, but without applying the RFID error correction method.
This means only using the differential barometric information with the linear
model. Thus, the system will only reduce the impact of pressure signal drifting
and sudden changes in the pressure. When the RFID method is not employed
the offset error between the pressures is not updated. As a consequence, the
accuracy of the system decreased to 48.61%, and the recognition performance
of the shelf middle height levels was highly affected (see Fig. 2.5 Right).

For the second scenario, arm movement around the body, three different
models were developed. One model is trained on 70% of the data coming from
the participant with 170 cm in height, and tested in the remaining two partic-
ipants. Another model was trained with 70% of the data from the volunteer
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Figure 2.5.: Left Confusion Matrix of the Best Case from the Warehouse Scenario
Using RFID-Monitor Error Method. Right Best Case Confusion Ma-
trix Without using RFID Synchronization Method

with a height of 177 centimeters. And, a third model is trained on 70% of the
data coming from the volunteer with 190 cm in height. The accuracy results
are presented in Table 2.3. The third scenario is the one with less variation
in accuracy. In Fig. 2.6, are the confusion matrices for the third scenario for
the three participants. At this stage, it is almost impossible to justify these
results. This is mainly due to the reduced number of participants.

User to Test Height User to Train Accuracy

P1 170 cm P1-170cm 87.28%
P2 177 cm P1-170cm 81.82%
P3 190 cm P1-170cm 78.81%

P1 170 cm P2-177cm 82.03%
P2 177 cm P2-177cm 91.48%
P3 190 cm P2-177cm 73.05%

P1 170 cm P3-190cm 86.39%
P2 177 cm P3-190cm 85.23%
P3 190 cm P3-190cm 84.25%

Table 2.3.: Comparison Between Accuracy Results of Three User-Independent
Models using The Vertical Hand Position Estimation to Classify Body
Positions (Upper, Middle, and Lower Body).

2.1.7. Discussion

Our work validates the idea of using differential atmospheric pressure to track
the vertical position of the user’s hand. Two copies of the same hardware with
a barometric sensor are deployed to obtain the reference pressure and variable
pressure sources. One custom hardware was on the wrist (variable pressure)
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Figure 2.6.: Confusion Matrices of Three Participants from The Around the Body
Position Scenario for the Naive Bayes Classifier Trained on Data From
Participant Three.

and the other was static on a reference table or in the user’s pocket. The main
idea is to use a linear model as the relationship between the reference pressure
and the variable pressure source at the wrist. This technique mitigates the
effects of pressure drift and reduces sensitivity to sudden pressure changes
in the environment, such as opening/closing doors or windows. In addition,
RFID synchronization is used as an error correction method for the initial
offset between the two pressures. The RFID reader is placed on the wrist
device and the RFID tag is placed on the reference device (on the table or in the
pocket). Then, each time the RFID reader detects the tag it indicates that the
two pressure sources are at the same height, and the initial offset is corrected.
The system is evaluated in two scenarios: order picking experiments and arm
movement around the body. In general, the results with the RFID-based
approach are significantly improved (≥ 48%). The idea offers a novel, simple
but effective strategy for using differential pressure information. Moreover, in
the case of the order-picking scenario with six levels as categories, the model
is trained on one minute of pressure data in static conditions per level and
tested on data from five participants in a user-independent evaluation scheme
(accuracy of 60.25%). This shows the potential of the method.

Nevertheless, our system has several limitations. The size of the custom
hardware is 11 cm in height. In the future, it is possible to reduce the size
of the electronic design (smartwatch size). The experiment design can be
extended in the number of participants to train a neural network that could
improve the accuracy of the hand vertical position estimation. Also with
neural network-based modeling, it is possible to learn the nonlinear influences
on the pressure-height relationship, which is intrinsically nonlinear. Moreover,
the system could be merged with technologies such as inertial sensing and
Bluetooth low energy (BLE) to add wireless connectivity, both of which are
available in recent smartwatch designs. On the other hand, the experiment
results included user-dependent and user-independent evaluation schemes. In
the case of the order-picking experiment, the evaluation scheme is completely
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user-independent. And, for the case of the head, chest, and feet position
categories, only 70% of the data from one of the participants (three in total)
is used for training, which is minimal. The classifier is then evaluated with
test data from the remaining two participants. This makes our evaluation fair
but challenging to obtain high performance (≥ 90% accuracy) due to the small
number of volunteers to learn from.

2.1.8. Conclusion

The use of relative height estimation using barometer pressure differences and
RFID as an error monitoring method improved vertical position detection
compared to using the barometer-height relationship without RFID, where
the dependence on drift, humidity, and temperature was not taken into ac-
count. This objective was achieved by using only a simple linear model and
an RFID chip to calculate the initial error and reduce the impact of drift and
displacement on the estimation of the vertical position, as well as reducing the
effects of sudden changes in pressure due to open windows or doors around
the devices. This initial step could evolve into sensor fusion for more accurate
results. An important point to note is that the prototyping hardware has a
height of 11 cm, which means that the error will be in the measurement de-
pending on the orientation of the wrist in the picking action. In addition, the
linear fit has a minimum mean square error of 4.27 Pa. For the simplicity and
limitations of the system, this first step achieved relatively good results.

2.2. Capacitive and Inertial Fusion-Based Glove for
Real-Time on Edge Hand Gesture Recognition

2.2.1. Problem Statement

Human-robot interaction (HRI) has emerged as a significant field that focuses
on optimizing the interaction between users and robots by designing interfaces
that meet users’ needs [78]. HRI is relevant in the smart factory because it
improves efficiency and safety. Besides, it can empower workers with human-
centered artificial intelligence [150]. The default and most accurate option
to recognize hand gestures are camera-based solutions [142, 143, 152, 210,
211]. However, concerns regarding workers’ privacy and technology protection
in industrial environments are critical. In this context, alternative solutions
that can provide good performance without the risk of technology leakage are
highly encouraged. Non-camera-based wearables offer a convenient option for
a privacy-aware robot control mechanism. The ideal wearable should be flex-
ible and comfortable to ensure minimal disruption to the worker’s schedule
while maximizing efficiency. One of the challenges the wearable community
faces is bridging the gap between the performance of camera-based solutions
and the accuracy of a flexible, privacy-aware wearable device. Using gloves for
smart garments particularly interests the wearable community [50]. Gloves are
commonly used as protective equipment in various industries and offer flex-
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Figure 2.7.: Hand Gestures Dictionary for Drone Control [98]

ibility and dexterity to generate many control patterns with the fingers and
wrist. Textile sensors integrated into gloves provide additional advantages such
as softness, comfort, lightness, and air permeability. Thus, a glove-based tex-
tile solution for HRI is a convenient wearable option. In this work, a subset of
hand gestures is recognized with a multipositional and multimodal approach,
using textile capacitive sensors and inertial information. Although the gesture
dictionary is intended for drone control (see Fig. 2.7), the methodology is ex-
tensible to other applications in the fields of sign language, gaming, and robot
control, among others.

2.2.2. Contributions

The main contributions of our approach can be summarized as follows:

• We present a real-time on-the-edge solution for drone control that utilizes
textile-based sensing, providing flexibility, low power consumption, and
cost-effectiveness, with potential applications in sign language, gaming,
and robot control.

• We employ lightweight neural network models to ensure a low memory
footprint, providing an embedded and sustainable solution.

• We propose a hierarchical multimodal fusion to reduce power consump-
tion and increase robustness against the null class, where the first stage
detects movements and recognizes a non-null hand gesture using an
inertial-based model. Then, using a capacitive-based model, the second
stage classifies the dictionary shown in Fig. 2.7.

• Experimental results demonstrate that our approach is a step towards
a wearable, textile, and privacy-friendly alternative for hand gesture
recognition.

2.2.3. Apparatus

Fig. 2.8A presents the prototype showing the IMU and the capacitive chan-
nels (textile electrodes) on a sports glove. The hardware block diagram is in
Fig. 2.8B. In Fig. 2.7, the drone hand gesture dictionary is depicted. The
dictionary comes from [98]. They presented a camera-based and real-time
solution using MediaPipe. The gesture majority are dominant by finger pat-
terns. To monitor finger movements, we proposed to use textile conductive
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Figure 2.8.: (A) The Hardware Prototype Shows the Capacitive Channels and
IMU Positions on the Sports Glove. (B) Depicts The Hardware Block
Diagram with the Sensors Connections to the Main Board (Portenta
H7) and PC.

thin patches as capacitive channels. Moreover, the IMU-selected placement is
on the wrist. This approach reduces the number of connections, and flexibility
and comfort are considered. Noticeably, our glove does not cover the entire
area of the fingers, minimally affecting the user’s mobility.

The hardware has three blocks; a main board, an inertial and environmental
sensing board, and a capacitive sensing board see Fig. 2.8B. The main board
is a Portenta H7; the main processor is the dual-core STM32H747, including
a Cortex M7 running at 480 MHz and a Cortex M4 running at 240 MHz.
Portenta H7 offers 2MB flash and 8MB SDRAM and wireless data transmission
options such as WiFi, Bluetooth classic, and BLE. The inertial board is a Nicla
Sense with a 64 MHz ArmCortex M4 (nRF52832) and sensors such as; IMU,
air pressure, humidity, temperature, and gas. The capacitive board is based
on the state-of-the-art capacitance to digital converter FDC2214 with four
channels. Four capacitive channels are distributed on the glove; channel one
on the wrist, channel two on the thumb, channel three on the index finger, and
channel four on the little finger. The capacitive channels are textile electrodes
based on Shieldex Technik-tex P130+B. The dimensions of the electrodes are
0.55 mm in thickness and between 11-15 cm long. The FDC2214 offers single-
end and differential sensing modes. We use single-end mode to reduce the
number of capacitive patches on the glove. Furthermore, the FDC2214 is
configured using an external inductor of 18 uH and a capacitor of 33 pf to
operate with an average frequency of 13.7 Mhz [220]. The sampling rate for
the sensors is around 50 Hz. The highlights of our prototype are in Table 2.4.

2.2.4. Signal and Data Processing

As shown in Fig. 2.9, two collaborative models were deployed for the real-
time and on-the-Edge (RTE) recognition of the gestures in Fig. 2.7. A pre-
normalization ((x−xmin)/(xmax−xmin)) per window is applied to the inertial
and capacitive signals. The window size is 2s, and the window’s step is 0.5s.
The first neural network model (NN) is the inertial model with three channels
as input (linear acceleration). This model is used to distinguish the null class
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Table 2.4.: Glove Apparatus Component Highlights
Component Benefits

Portenta H7

• Dual core STM32H747
• Graphics Accelerator
• 2MB Flash, 8MB SDRAM
• WiFi/BT Module
• NXP SE050C2 Crypto

Nicla Sense ME
• BHI260AP IMU
• BMP390 and BME680, Pressure, Humidity, Temperature, and Gas
• AI self-learning sensor

FDC2214

• 4 Channels 28-Bit Capacitance to Digital Converter
• Single or Differential mode
• Proximity Detection
• Liquids sensing (detergent, soap, ink)
• Collision Avoidance
• Rain, Fog, Ice, Snow Sensor

Textile Electrodes

• Shieldex Technik-tex P130+B
• Knit type: Stretch-Tricot
• Resistivity ≤ 2Ω
• Nitrile rubber protective coating
• Double stretch direction
• Temperature range -30 to 90○C

Figure 2.9.: Real-Time and on-the-Edge Implementation for Hand Gesture Recog-
nition

from gesture detection. The null class includes activities such as; walking
and standing/sitting down, among others. The output of the acceleration
model served as a trigger for the second model, the capacitive model. If
an activity is classified as non-null, the capacitive model is activated. The
second model fused the four capacitive channels as four independent input
channels. The outputs of the capacitive model are the eight classes defined
in the dictionary in Fig. 2.7 plus the null class (total of nine classes). The
hierarchical approach reduces the complexity of the models, leveraging the
information fusion with lightweight NNs (0.10-1.23 MB) to be deployed in
tiny MCUs. The intermediate tensor space (Arena) is 16.66 KB for the inertial
model and 130.56 KB for the capacitive model.
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The Inertial Model: The NN structure comprises three convolutional
layers (filters=10, kernel=10, ReLu). For each convolutional layer, batch nor-
malization, max-pooling ((5,1)), and dropout (0.5) are applied. Then it is
followed by a flattening layer, a fully connected (FC) layer of 10, and an FC
with softmax and two outputs. The training ran for 100 epochs with early
stopping (patience 30 and restoring weights). The number of parameters of
the inertial model is 2882; thus, it is a lightweight design and less susceptible
to overfitting. The structure of the neural network for the inertial model is
depicted in Fig. 2.10 Top.

The Capacitive Model: The NN structure comprises two convolutional
layers (filters=40, kernel=10, ReLu). A normalization layer follows the first
convolutional layers. For each convolutional layer, batch normalization, max-
pooling ((5,1)), and dropout (0.3) are applied. Then it is followed by a flat-
tening layer, a fully connected (FC) layer of 100, and an FC with softmax and
nine outputs (gesture dictionary Fig. 2.7 plus null class). The training ran
for 200 epochs with early stopping (patience 30 and restoring weights). The
number of parameters of the capacitive model is 49890; thus, it is a lightweight
design and less susceptible to overfitting compared to a small network such
as MobileNetV2 with 3.5 Million parameters. For both models (inertial and
capacitive), the NN optimizer is AdaDelta, with a learning rate of 0.9 and
categorical cross-entropy as a loss function. The metric to monitor during
training is accuracy. The NN models were trained using the TensorFlow/K-
eras 2.12.0 framework. The structure of the neural network for the capacitive
model is depicted in Fig. 2.10 Bottom.

Figure 2.10.: Lightweight Neural Network Structure for Real-Time and on-the-
Edge Inference of Hand Gestures using CaptAinGlove. Top: Inertial
Model Structure. Bottom: Capacitive Model Structure.
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Figure 2.11.: Results of the offline Capacitive Model; Null(0), Up(1), Down(2),
Back(3), Forward(4), Land(5), Stop(6), Left(7), Right(8) and F1-
score=80%(A). Real-Time on the Edge Results of Capacitive Model;
F1-score=67%(B).

Real-Time and on-the-Edge (RTE):

TensorFlow Lite for MCU was used to generate the embedded version of
the NN models. For RTE recognition, a sliding window scheme is employed.
A sliding window of 2s (100 samples) with a step size of 0.5s is used as an
input data frame to the NNs. The Fig. 2.9 depicts the real-time on-the-edge
procedure. The first step consists of movement detection (using acceleration),
reducing power consumption by 10 %. The movement detection is based on a
threshold condition ruled by Σ5

n=0 = ∣ax∣n+∣ay ∣n+∣az ∣n. Then, the inertial model
will run and detect null or gesture cases. In the case of activity ≠ Null, the
capacitive model will output the recognized drone control gesture in Fig. 2.7.
The power consumption (PC) when only the movement detection is activated
(only sensor data acquisition) is 0.84 W. Then, if a movement is detected,
the inertial model is triggered, and the PC increases by 0.10 W (0.94 W). If
the inertial model detects a gesture, the capacitive model runs, and the PC
increases to 1.15 W. Hence, the NN model PC adds 0.31 W to the system
pipeline. 1. For the real-time and on-the-Edge assessment, one volunteer
performed five sessions with five repetitions of each gesture from our dictionary.

2.2.5. Results

Fig. 2.11 shows the offline results (10-fold cross-validation) for the collabo-
rative approach; inertial model (Null vs. Activity) in Fig. 2.9 with F1-score
= 96% and capacitive model (gesture dictionary) with an F1-score = 80%
in Fig. 2.11A. For the training data (offline results), one volunteer (female)
participated in mimicking (randomly ten sessions) the gesture dictionary in

1USB Digital Power Meter: https://www.az-delivery.de/en/products/charger-doktor
DLA: January 2, 2025
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Figure 2.12.: Example of Smoothing Temporal Windows for Continuous Recogni-
tion [141]

Fig. 2.7 while wearing the system. The sessions were recorded on different
days to ensure our device was worn repeatedly. The offline evaluation scheme
was 10-fold cross-validation with a leaving-one-session-out. Each session has
four random tries per gesture. 2

In Fig. 2.11A and in Fig. 2.11B, the confusion matrices for offline and on-
line recognition are presented. In the offline results, we can observe confusion
between the gestures, Up and Land (14%) and Forward and Up (13%); both
pairs mainly differentiate by how the finger’s upper parts move. The sports
glove we employed does not cover the finger’s upper parts to allow flexibil-
ity/comfort for the user. There is also confusion for the case of the pairs;
Stop and Right (13%), Right and Down (13%), Right and Back(13%), and
Left and Right (12%). All these pairs have in common that the fist is closed,
and their main difference is how the thumb and the index finger move. For
specific applications such as sign language gesture recognition, the glove can
be extended to cover the fingers completely to reduce confusion. For appli-
cations where the finger flexibility/freedom does not want to be reduced, we
proposed as a future work that the inertial data (including orientation) could
be fused with the capacitive information to add the wrist position in space
(earth navigation frame). As an example of such applications, in an industrial
environment, when the worker is focusing on order and picking or assembling
tasks, the worker can benefit from the help of a drone/robot to ease the work-
flow but still needs to handle tools comfortably. These future solutions will
positively impact the online results presented in Fig. 2.11B. The real-time
on-the-edge results (5 sessions, re-wearing, one volunteer) in Fig. 2.11B gave
an F1-score=67%. There was a reduction of 13% in the F1-score between
the offline and the embedded solution. Noticeably, the RTE confusion ma-
trix in Fig. 2.11B is based on cross-validation, shuffled, and without temporal
smoothing between adjacent windows, which could improve the results in the
future, as shown in Fig. 2.12.

2.2.6. Discussion

Our system combines inertial and capacitive sensing modalities to recognize
hand gestures used for drone control using a sports glove. The inertial in-
formation is employed as a movement detector (using a threshold). Later,
using an inertial model, the inertial information is used to recognize between
null and gestures from the dictionary in Fig. 2.7. Then the inertial model
triggers the gesture recognition with the capacitive information (nine classes).
This is similar to the approaches applied in [23] and in [16], where the Radio
Frequency Identification (RFID) signal is used as a trigger to begin gesture

2The participant signed an agreement following the policies of the university’s committee
for protecting human subjects and following the Declaration of Helsinki.
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detection, reducing power consumption and model complexity while improv-
ing accuracy. The set of gestures is not very intuitive. The selected dictionary
comes from [98]. And it could be improved to suit the target. We aimed
to have a fair comparison between a real-time camera-based solution and our
proposed method.
It is important to note that our system was tested for one participant.

Thus, more participants are still required to make it generalizable. The solid
hardware components (MCUs and IMU) position was limited to the wrist to
reduce the negative impact on the user’s movements. The capacitive electrodes
used are stretchable and soft. We selected a sports glove that does not cover
the entire fingers to maintain the user’s mobility. The hierarchical fusion of the
inertial and capacitive information impacts the power consumption reduction
by about 27%. The fusion method also helps reduce model complexity and
parameters to obtain lightweight neural networks to be deployed in embedded
devices. Our approach is a step toward a textile, flexible, embedded solution
for drone control. The main idea can be extended to other hand gesture-
controlled applications where comfort, power consumption, and privacy are
desirable.
On the other hand, our design has several limitations and possibilities for

improvement.

• The hardware prototype can be reduced in size by doing a professional
encapsulated electronic design.

• The latency of the recognition in real-time is not optimized. The main
board offers two MCUs that can work in parallel, but in our design, we
allocate the entire flash (2MB) to the Cortex M7 core of the STM32H747,
and the code is running only on the M7 at 480 MHz. The latency could
be improved by using the M7 to run the neural network models and the
Cortex M4 (at 240 MHz) for the sensor acquisition data. Special atten-
tion must be given to memory access to avoid collisions and bottlenecks.

• Additionally, our work transmits the recognition results to the PC using
a universal asynchronous receiver/transmitter (UART) to focus on prov-
ing the idea. The main board can be configured to send the recognition
results by wireless communication (Bluetooth or Wifi) to improve com-
fort and make the system ubiquitous. The Bluetooth/Wifi will require
an external antenna and memory allocation for the wireless communica-
tion managing functions.

• For the case of the RTE results, the confusion matrix is calculated based
on shuffled cross-validation over fine-granular windows, which does not
consider continuous sequences of windows of a single gesture where the
majority of windows are true positive with sparse false detection. Our
result could be improved by merging temporal windows from simple
gap filling and event-based smoothing to selective merging based on
CNN [141]. Although temporal window smoothing techniques have been
demonstrated in offline evaluations where the computation is performed
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on the PC, edge adaptation with resource-constrained embedded hard-
ware is a task we will investigate in future work.

• The power consumption reported in this work includes the complete
pipeline. The pipeline comprehends sensor powering and data acquisi-
tion up to the RTE. For the worst-case power consumption, only 27%
(0.31 Watts) is required for the real-time inference. Hence, the power
consumption could be further reduced with techniques, such as lowering
the data sampling rate and setting the sensors in sleep mode.

• In addition, the NNs can be pruned and trained with aware quantization
to reduce size with minimal impact on the performance [175].

2.2.7. Conclusion

Figure 2.13.: CaptAinGlove V2 Hardware Description with Volunteer Wearing the
Prototype (Left and Right Hand)

.

In this section, we have presented a glove-based design that provides a min-
imally obtrusive, low-power, privacy-friendly, flexible, and scalable solution
for hand gesture recognition. By combining textile capacitive electrodes and
inertial sensors, our system achieves real-time on-the-edge recognition of hand
gestures for drone control.

A key contribution of our approach lies in the hierarchical fusion of inertial
and capacitive information, which significantly reduces power requirements
and enables the deployment of tiny memory models suitable for on-the-edge
devices. This fusion technique improves the system’s efficiency and perfor-
mance, making it well-suited for practical applications.

Beyond drone control, our glove-based design holds great potential for var-
ious control-related applications, such as game control and assisting robot
control in industrial settings. Moreover, its privacy-friendly nature and wear-
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able form factor open up possibilities for broader adoption in human-robot
interaction scenarios, sign language recognition, and gaming interfaces.
In the case of specific applications such as sign language gesture recog-

nition, the glove can be extended to cover the fingers completely to reduce
confusion. For applications where the finger flexibility/freedom does not want
to be reduced, we proposed as a future work that the inertial data (including
orientation) could be fused with the capacitive information to add the wrist
position in space (earth navigation frame).
The extension of this work has been published in TSAK [14], where we used a

pair(Left/Righ Hand) of capacitive textile-based gloves fused with inertial data
to recognize Smart Factory worker’s activities, Fig. 2.13 shows an overview of
the extended hardware design.
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3.1. Facial Muscle Activity Recognition with
Reconfigurable Differential Stethoscope
Microphones

3.1.1. Problem Statement

The face plays a crucial role in many critical human actions and interactions.
Through facial expressions, we show our feelings and communicate them to
others. Our faces show when we are tired, stressed, engrossed in a task, or lost
in thoughts. Eating, drinking, speaking, and breathing, the most elementary
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actions of our lives, involve facial muscles. The same is valid for health-
related activities such as sneezing, coughing, snoring, or various habits such as
smoking. In the literature, face analysis is mainly pursued in computer vision,
with relevant performance, but comparatively little in wearable sensing [11,
99].
This is because, for a long time, placing sensors on the user’s face was con-

sidered obtrusive to be practicable. Specially, for wearable systems that are
meant to be widespread and for everyday use, rather than constrained lab set-
tings. However, recently, more and more intelligent ”head-mounted” devices
such as smart headphones, smart glasses, or smart hats have become avail-
able and have gained user acceptance. Such devices are an attractive platform
for sensing face activity. Nonetheless, while facial activity affects nearly the
entire face area, such devices only allow for placing sensors at particular loca-
tions (e.g., in the smart glasses frame). Consequently, sensing modalities are
needed, which can infer overall facial activity from a few predefined locations.
In this section, we argue that differential body sound is a useful candidate

modality. Thus, any time our facial muscles perform an action sound is gen-
erated. While the sound by itself may be challenging to interpret, differential
analysis can pinpoint the sound source, which is correlated to the muscles
that have created it[13, 40]. Patterns of differential sound correspond to the
activation pattern of the different facial muscles (21 mimetic and masticatory
muscles [126]). Furthermore, differential analysis helps mitigate noise.

Differential 
Pair 
Topology

Horizontal Temple-
Cheeks

Eyebrow-
Cheeks

DMA pairs Mic1-Mic2
Mic3-Mic4
Mic5-Mic6

----

Mic2-Mic6
Mic1-Mic5
Mic2-Mic5
Mic1-Mic6

Mic4-Mic6
Mic3-Mic5
Mic3-Mic6
Mic4-Mic5

1 2
34

5 6

Figure 3.1.: Pairs of Reconfigurable First Order Differential Stethoscope-
Microphone Arrays To Detect Facial Expressions

3.1.2. Contributions

This work explores in detail the potential of body sound to unobtrusively
collect information about users’ facial activity and makes the following specific
contributions:

1. We put forward the idea of using differential sound analysis as an unob-
trusive way of acquiring information about facial muscle activity patterns
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and the associated facial expressions and actions.

2. We present the design and implementation of a reconfigurable signal
acquisition system based on that idea. It consists of six stethoscopes at
positions compatible with a smart glasses frame (see Figure 3.1).

3. We present an in-depth analysis of the system’s characteristics and the
signals for various facial actions.

4. We describe the design and implementation of the entire processing
pipeline needed to go from signal pre-processing to recognizing complex
facial actions, including a study of the significance of different features,
derived from combinations of six stethoscopes(at a set of locations in-
spired by a typical glasses frame). And the selection of best-suited ML
methods.

5. We have conducted a systematic evaluation with eight users mimicking
a set of 10 common facial expressions and actions (plus the null class
of neutral face), as shown in Figure 3.2. Each user has recorded three
sessions of 10 repetitions of each action for a total of 2640 events. Using
a leave-session-out evaluation scheme across all users, we achieve an F1-
score equal to 54%(9% chance-level) for those ten classes plus the non-
interest class defined as ”Neutral-face.” In the user-dependent case, we
achieved an F1-score between 60% and 89%(9% chance level), reflecting
that not all users were equally good at mimicking specific actions.

Figure 3.2.: Facial Expressions/Gestures Mimicking Set; Happiness, Upset, Sad-
ness, Surprise and Disgust [145], Angry [84] and Gestures Blinking[52],
Tongue Out[1], Kissing[34] and Taking a Pill.
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3.1.3. Approach

Our approach includes wearable differential stethoscope microphones distributed
around the face as depicted in Fig. 3.1. And the aim is to recognize the set
of facial movements in Fig. 3.2. The idea is split into; microphone arrays,
stethoscopes, and acoustic mechanomyography (A-MMG).

Microphone Arrays

Microphone arrays, commonly referred to as beamforming microphones, [85]
are primarily designed to modify and control the directivity of the gain factor
and noise robustness. Their functionality depends on the incident angle of
the source [131]. Thus, the source’s position will induce changes in how the
device amplifies or reduces the gain of the captured signal. This brings the
possibility of using them for position estimation of the sound sources [13,
40]. Typically, the structural design of microphone arrays can be categorized
as Additive Microphone Arrays (AMAs) and Differential Microphone Arrays
(DMAs)[31, 194]. There are also sub-categories based on the relationship
shared by the intensity of the sound and the angle of incidence. Further
specifications include the microphone arrays’ configuration variations in space,
denoted as first, second[33], third degrees, or higher. The structural design also
varies from planar, circular[30, 40, 77], spherical[157] to hybrid structures[3,
163]. With DMA, it is possible to tune the gain in a range of frequencies or
even generate a configurable resonance frequency peak. An advantage over
a traditional amplifier is that there is no amplification of noise outside the
selected frequencies. In the application, we use the DMA principle to focus
our system on relevant sound sources inside the body (facial muscles).

Overall the choice of Differential Microphone Array (DMA) configuration
is motivated by two considerations. First, DMA and Additive Microphone
Array (AMA) are the most straightforward configurations of microphone ar-
rays. Secondly, DMA allows noise resilience to common environmental sound
interference (subtraction). With AMA, this would increase (addition), and
we would need an additional technique for environmental sound removal.
Eleven pairs and three categories are considered, as shown in Fig. 3.5. DMA-
Horizontal, including Templeleft−Templeright, Eyebrowleft−Eyebrowright and
Cheekleft−Cheekright, and the self-explanatory temples-cheeks and eyebrows-
cheeks cases.

Stethoscopes

The combination of a stethoscope’s head and a microphone is an established
approach. In many cases the head is constructed using 3D printed stetho-
scope [154] together with an Electret microphone [6, 81, 187], mechanical mi-
crophones[103, 122, 148] or Piezo-Electrical Film[153]. Applications include
automatic analysis of the cardiac, lung, and even fetal-heart rate signals[38].
Various improvements to the design have been proposed including frequency
selection, noise filtering, wireless transmission, and real-time feedback [81, 88].
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To exploit the advantages of the stethoscope, it is critical to tune its fre-
quency response. Before using the stethoscope for our experiments, we must
understand how the stethoscope’s structural characteristics influence its acous-
tic properties. In simple terms, the stethoscope is an imperfect transducer of
sound for most frequencies other than the resonance frequency. So, a frequency
response analysis is necessary to understand our electronic stethoscope design.
Changing the material of the head of the stethoscope [125] and adding/re-
moving tubes will impact the resonance frequency [53]. Even a non-air-tight
system impacts the frequency response, which is challenging to handle in a
prototype. Likewise, the noise rejection depends on the construction. Thus,
the stethoscope is a challenging device to design and use. However, for our
purpose, it significantly improves the signal-to-noise ratio(SNR) if adequately
tuned.
In [53], an evaluation of stethoscopes used by nurses, a Littmann®electronic

stethoscope, and custom design was presented. The authors demonstrated
that both types (electronic and passive) are resonant devices based on the
experimental calculation of the frequency response using the step response
analysis. A summary of this method: (1) generates a fast change in pressure on
the stethoscope’s head, (2) measures the input pressure and the output signal
to obtain the impulse response (3) takes the derivative and (4) applies the
Fourier transform. In [154] a validation of a 3D-printed stethoscope system was
made. This time using a method called the ”phantom method”, which is based
on a latex balloon filled with water used to simulate the skin. The balloon was
stressed doing a sweep in vibration frequency to generate the response. Hence,
there is a particular interest in frequency analysis and construction design as
crucial parameters.

Acoustic Mechanomyography (A-MMG)

Many activities performed by our body are intrinsically related to muscular
contractions; therefore, activity recognition based on those contractions, myo-
graphy, is an active research topic [59, 68, 82]. In this area, our specific interest
is in the subset of mechanomyography, which involves measuring the force con-
traction using low-frequency sounds/vibrations (2-200Hz) with a signal power
below 50Hz [203]. We proposed to use this method to capture the facial mus-
cle (and to a degree tissue) movements for a specific group of gestures/facial
expressions. To the best of our knowledge, there was no known research on A-
MMG for the facial muscles by the time of publication. In the literature, the
authors in [209], investigate the replacement of electromyogram with sound
myography to measure muscle fatigue by using different microphones on the
middle forearm during lifting activities, finding that the Electret condenser
microphone with a sampling rate of 44,1KHz was the most stable. In [203]
sound was combined with the IMU(Inertial Measurement Unit), to monitor
the muscle movement of patients under rehabilitation. The inspiration came
from the high variability of the features of a person’s actions during a typi-
cal day, in particular patients under-recovery from a neurological injury or an
accident. According to [205], machanomyography (MMG) also can be com-
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bined with CNN (Convolutional Neural Network) for feature extraction and
SVM(Support Vector Machine) for regression to estimate the angle of the knee.

In summary, our evaluation aims to explore our hardware’s ability to dis-
tinguish different facial expressions and actions. It is motivated by the above
understanding of the importance of facial expressions to assess users’ emo-
tions and mental states. However, we understand that there is a big difference
between users mimicking expressions and experiencing emotions. Thus, recog-
nizing mimicked expressions is an important first step in identifying emotions,
but the two are not the same.

3.1.4. Apparatus

Fig. 3.3 Top Left, depicts the wearable prototype. It consists of six stetho-
scope microphones placed inside a construction helmet, four of them fixed into
an elastic band (numbers 1-4), to fix them around the temples and the eye-
brows of the subject. The other two (numbers 5-6) are attached to the cheeks
using construction goggles. These particular positions were selected to match
a typical glasses frame. Fig. 3.3Top Right, shows the stethoscope’s head cov-
ered with a leather-like textile to reduce outside noise further. The 3D cone in
Fig. 3.3 Bottom Left connects the Electret microphone to the stethoscope’s
head. This provides an air-tight design. Fig. 3.3 Bottom Right, depicts the
stethoscope microphones distribution around the face of a volunteer.

The electronic components were 6 Electret Microphone boards attached to
low power, low-cost pre-amplifier (MAX446) with adjustable gain from the
company Adafruit. The microphones have built-in amplification circuits and
are easy to program. The development board is the ESP32Huzzah develop-
ment board from Adafruit. The board has two cores running at 240 Mhz
and 2 analog to analog-to-digital converters (ADC) with 12 bits resolution, a
signal-to-quantization noise ratio (SQNR) ≈ 72dB, and a DC-Bias of VCC/2
at Vin=3.3V with a precision of 0.805 mV. In addition, it has Bluetooth low
energy (BLE), Bluetooth serial, and Wifi for easy wireless communication.

The sampling rate of each microphone was set to 200Hz. Although the
hardware could handle up to 3 kHz, a lower sampling rate has several advan-
tages. First, noise increases with a high sampling rate and we would require
more complicated noise rejection techniques. Second, the signal of interest is
localized in the low-frequency (lower than 200 Hz) [203]. The data transmis-
sion protocol to the PC was by Universal Asynchronous Receiver-Transmitter
(UART) at 1 Mhz for robust data collection. The data was collected using a
user interface developed in Python 3.6. Fig. 3.4, depicts the apparatus block
diagram .

3.1.5. Frequency Response Analysis of The Stethoscope
Microphones

In this section, we discuss the Differential Microphones Array (DMA) design
and calibration procedure to target acoustic mechanomyography(A-MMG),
considering the frequency response of single and differential microphones.
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Figure 3.3.: Inside View of the Helmet with Four Fixed Stethoscope Microphones
in Elastic Band (Numbers 1-4) and Two Loose (Numbers 5-6)Top
Left. Stethoscope Microphones’ Head with Leather Cover and Size
Comparison Top Right. 3D Cone Connector Between Electret Mi-
crophone and Nurse Stethoscope Head Bottom Left. Stethoscope
Microphones Distribution on Volunteer’s Face Bottom Right.

For this study, the DMA configuration called first-order end-fire dipole was
used. First-order means that only two elements are subtracted from each other,
as shown in Fig. 3.5 Left. The subtraction works as a filter for environmental
noise. End-fire connotation implies that the array will reject sound signals
from sources in the ±90 degrees and enhance sound signals coming from sources
at 0 and 180 degrees. This characteristic depends not only on the spatial
distribution of the array but also on the distances between each element and
the geometry of the component itself. The sound wave can be simplified from
a spherical wave to a plane wave when the source is in the far field, occurring
when r ≥ 2 ⋅W 2/λ (Fraunhofer distance)[131, 167], where W is the largest
dimension in the aperture (stethoscope-microphone head), λ is the wavelength
and r is the distance from the opening to the source. Usually, the far-field is
considered to start at a distance of 2 wavelengths away from the sound source.

Moreover, the dipole term describes the form of the polar graph of intensity
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Figure 3.4.: Apparatus Block Diagram from the Stethoscope Microphones and the
Hardware Prototype to the Data Reception by a Python-Based GUI.

Figure 3.5.: Left First Order Differential Microphone Array Block Diagram. With
G as a gain factor, d space between microphones, and T time-delay
between microphones. Right Polar Plot of first-order Differential
Microphone Array (Frequency vs Angle of Arrival). With an Inter-
microphone space of 16mm, distance from the source of 50 cm, and
frequencies 0.5,1,3,5,10 and 20KHz and sound rejection at ±90 de-
grees(red boxes). Diagram by STMicroelectronic[194]

vs. angle of arrival for different frequencies, as depicted in Fig. 3.5 Right. The
diagram in that figure assumes an inter-element space of 16mm, a distance
from the source of 50 cm, and frequencies of 0.5,1,3,5,10 and 20KHz. In our
case, the wave simplification is not valid, considering our sound sources as the
face muscles’ surface.

The End-fire design is shown in Fig. 3.5 Left. Where G is the gain factor
difference of the microphones, d is the inter-spacing, and T is the time delay
between the two microphones. We will assume T = 0, but this value can also
be configured according to the formula T = D/V , where V = 343m/s (sound
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velocity). This adjustment will change the polar-plot (directivity pattern) in
Fig. 3.5 Right and the dipole will change to cardioid (heart shape) representa-
tion [194]. This directivity pattern depends on the number of elements inside
the array, the inter-spacing, the length of the aperture (Area of sensing), and
their differences in the frequency response [85, 131, 194].
The frequency response and gain of the stethoscope microphone are highly

sensitive to the mechanical design parameters, which are not precisely identi-
cal across the individual devices. Furthermore, in the DMA configuration, the
spatial separation of the microphone is an additional influence. Thus, before
our sensor configuration can be used for facial activity recognition, a calibra-
tion step is needed. This includes gain differences for each of the individual
microphones and the first-order differential case. The calibration procedure is
divided into; Single Microphones Discrete Frequency Response and Differential
Microphones Discrete Frequency Response.

Single Microphones Discrete Frequency Response

Each stethoscope-microphone was exposed individually to a range of frequen-
cies in the low, middle, and high spectra. In the low spectrum, the frequencies
were 21, 41, 61, 81, and 101 Hz. In the middle spectrum, the frequencies were
501, 751, 1001, and 1251 Hz. And in the high spectrum, the frequencies were
1501, 1751, 2001, 2251, and 2501 Hz. The sound signal was a square wave
and the duration was of 20 seconds. The signal was generated by an Android
application in a Samsung Galaxy S8. The phone was placed on the top of the
stethoscope head with 3 centimeters separation and the audio signal was at the
highest available volume, as shown in Fig. 3.6 The experiment was conducted
in a quiet room with only a single person present.
Fig. 3.7 shows the frequency response of the six microphones. The peak-

to-peak value of the signal (ADC value) is not flat for the entire frequency
range. It is possible to distinguish a low-frequency spectrum from 21-751
Hz, a middle-frequency spectrum from 1001-1751 Hz, and a high-frequency
spectrum from 2001-2501 Hz.
If we define, A = V ⋅G. Where G is the gain of the microphone, and V is

the response of the microphone to a sound input at G = 1. A = V ⋅G depends
on the frequency area and the stethoscope-microphone used. This result was
to be expected due to a prototype design developed by hand.
In [203], the relevant frequency range is within the low-frequency range.

The corresponding values of the minimum, maximum, and mean for each
microphone are shown in Table 3.1. With the values in Table 3.1 and assuming
ideal conditions is possible to estimate the differential gain minimum error. In
the case of microphone five and microphone six, it will be 4.03. Hence, the
minimum gain discrepancy between the stethoscope microphones is a factor
of 4 in the low-frequency response range. From the results in Table 3.1 the
matching factor between the microphones is obtained. The matching factor is
MF = Ay

Ax
. Where Ax is the ADC value of microphone X and Ay is the ADC

value of microphone Y.
Next, we apply the 1st order DMA(Differential microphone array) with a
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Low-Freq 21-101Hz
Step = 20Hz

Medium-Freq 501-1251Hz
Step=250Hz

High-Freq 1501-2501Hz
Step= 250

20s

D=3cm

TOP 
Position

Figure 3.6.: Single Microphones Discrete Frequency Response. Phone as Sound
Source and Stethoscope’s Head at 3 Centimeters Separation with the
Frequency Range of The Square Wave with 20 Seconds Duration at
each Frequency.

Table 3.1.: A = V ∗G/1000 Values of Individual Microphones in the Low-Frequency
Response Range.

M1 M2 M3 M4 M5 M6
min=2.372 min=1.486 min=1.217 min=1.108 min=1.071 min=1.015
max=3.219 max=2.254 max=2.122 max=2.737 max=4.095 max=1.811
mean=2.787 mean=1.953 mean=1.701 mean=2.103 mean=2.656 mean=1.451

matching factor MF = Ay

Ax
before the subtraction and test the influence of the

gain. The matching factor MF is used in Eq. (3.1) to map the output of
microphone X to the output of microphone Y, resulting in Equation (3.3).

• DMA with matching factor is caldma:

caldma =
Ay

Ax
⋅Mx −My , where A = V ∗G and M is the ADC value: (3.1)

• By substitution of A = V ∗G in caldma:

caldma =
Vy ∗Gy

Vx ∗Gx
⋅Mx −My (3.2)
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Figure 3.7.: Frequency Response of Individual Microphones. For the Low-
Frequency Spectrum (21-751 Hz), Middle-Frequency Spectrum (1001-
1751 Hz) and High-Frequency Spectrum (2001-2501).

• Assuming the same sound source position and geometry, only gain dis-
crepancies.

Vy = Vx

• By substitution of Vy = Vx in caldma .

caldma =
Gy

Gx
⋅Mx −My (3.3)
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Differential Microphones Discrete Frequency Response

Top

Back

RightLeft

Front

Top

Back

RightLeft

Front

D=3cm

*Sound source is always 3 cm from the DMA pair

Side view Top view

 d

 d

*d is a variable distance; 5,9,7 and 12 cm

X Y

Figure 3.8.: DMA Discrete Frequency Response Setting. Phone as Sound Source
and Stethoscope’s Head at a 3 Centimeters Separation with the Fre-
quency Range of The Square Wave with 20 Seconds Duration at each
Frequency. Microphone ”X” and Microphone ”Y” with a Variable
Inter-Microphone Distance ”d” between 5 to 12 centimeters. The
Sound Source Positions are Back, Right, Left, Top, and Front.

In a DMA, the separation between the elements of the array alters the gain
frequency pattern. Thus, we conducted a discrete frequency sweep for four
distances between the microphones-stethoscope pair. The selected distances
were 5,7,9, and 12 centimeters. The distances were the average values of
separation between the six stethoscope heads placed on the volunteers’ faces.
DMA depends on the source position. Then, the sound source was placed
in 5 different locations; top, back, front, right, and left, as shown in 3.8,
at a 3cm fixed distance from the microphones. Fig. 3.9 depicts the results
of the DMA frequency response. The signal’s gain of our system depends
not only on the frequency range but also on source placement. In the low-
frequency spectrum, and the source positioned on top of the DMA gives a
higher gain. The frequency response in the low-frequency spectrum does not
show a resonance peak for the nine centimeters, seven centimeters, and twelve
centimeters separations between the microphone’s heads. This is in line with
the formula Fnull = V /2 ⋅D. Where, V = 343m/s is the sound speed, D is inter-
spacing, and Fnull is the tuned frequency [194]. In the case of DMA, end-fire
dipole implies the need for D = V /2 ⋅fnull. Due to geometry reasons, it was not
possible to achieve tuned directivity in the low-frequency range. The minimum
distance of our design (5cm) has a tuning frequency of ftune5cm = 3.4KHz
while the maximum (12cm) has ftune12cm = 1.4KHz.

In our design, we employ the Eq. (3.3) as a calibrated first-order DMA to
reduce gain discrepancies. This is applied for all the eleven combinations in
Fig. 3.5. Assuming negligible difference in the geometry of the microphone-
stethoscopes, and focusing on the low-frequency region between 21 and 751 Hz
(see Fig. 3.9) and the sound source position on top of the DMA. The system
remains with only the space position between the microphones’ dependency.
Therefore, in the presence of a common sound source, the ADC-coded value
will capture the space position relevance for such sound.
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Figure 3.9.: Differential Microphone Array Discrete Frequency Response for Mi-
crophone Pair Distances Between Five, Seven, Nine, and Twelve Cen-
timeters and Sound Source Positions, Back, Right, Left, Top, and
Front.

3.1.6. Experiment Design

Eight volunteers were asked to mimic the dictionary in Fig. 3.2. The selection
of categories is based on the Warsaw study [145]. Additionally, three flirting
gestures such as winkling, kissing, and tongue out are added. The gesture of
taking a pill is purposely added. This is a highly relevant gesture in medication
monitoring. Also, it is a gesture that represents the null class of sudden touches
to the mouth, which are not related to facial expressions.

The participants were five women and three men between the ages of 24-
29. They come from countries like Venezuela, Brazil, and India, and all of
them were students at the Technical University of Kaiserslautern(TU-KL),
Germany. This provides for reasonable ethnic diversity. To the best of our
knowledge, all volunteers had normal eyesight and could perceive the presented
expressions without prescription glasses. The participants did not have a prob-
lem identifying the facial expressions of themselves and others. All of them
signed an agreement following the policies of the university’s committee (Tech-
nical University of Kaiserslautern) for the protection of human subjects, which
approves experimental protocols at the university. The experiment was video
recorded for further private analysis. There were no reported pandemics or
any contagious disease outbreaks in the region during the experiment recording
time.

We followed the protocol described in [165], asking the volunteers to em-
ulate the facial actions with as little variability as possible. In addition to
the pictures, the name of the expression was provided. While this clarified
the action for some participants, it was, however, perceived as confusing by
others. The experiments were performed in a closed office with a carpeted
floor and only two persons inside, the person monitoring the experiment and
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the participant.

The hardware was fixed on each volunteer’s head with all six microphone
stethoscopes at the same time. The set of facial expressions was displayed in
random order with ten repetitions per activity for eight volunteers. We used
color-coded lights to prompt the subjects to start and stop mimicking each
repetition of each action. So, when the graphical user interface (GUI) showed
a green light, then the participant had to start making the respective action,
and he/she stopped and went back to neutral expression when the red light
went on. The duration per action was between two to three seconds, including
the rest time (neutral event). This neutral event was considered as the null
class because it is trained with data outside our gesture dictionary.

The same experiment was repeated three times (sessions) per volunteer with
a gap/resting period of a few hours or days. The gap is introduced to ensure
the participants’ facial muscles are properly rested, as the mechanomyography
could be used as a measure of the fatigue of muscle [133, 209]. We are using
the definition of fatigue as ”any reduction in the force-generating capacity re-
gardless of the task performed” [12]. We collected 240 samples per activity(10
repetitions per gesture, three sessions for eight volunteers) for a total of 2640
(null class included) samples.

3.1.7. Signal and Data Processing

In this section, we explain our data analysis approach, including feature calcu-
lation, feature selection, and classifier selection. We evaluate our approach on
an individual basis (user-dependent) and the dataset as a whole for a cross-
user evaluation. All the validation is carried out with the leave-session-out
scheme. A block diagram to summarize the steps is presented in Fig. 3.10.

Feature Selection

The DMA pairs showed in Fig. 3.1 are the inputs to the feature extractor.
To explore various time series features we employed the open-source Python
library Tsfresh version 0.16.0 [46]. Tsfresh is a time series feature extraction
library based on scalable hypothesis tests. Using the library we extracted
754-time features per input of DMA (11 in total), for a total of 8294 features.
For feature selection, Tsfresh provides a feature extractor based on the vector
of p-values. Where a smaller p-value means a higher probability of rejecting
the null hypothesis. To select the threshold for the p-value, the library uses
the Benjamini-Yekutieli (BY) procedure[24]. A summary of the BY procedure
would be; (1) organize the p-values from lower to higher (step-up) and (2) se-
lect a small group of them, where the boundary between the selected features
is set by the condition P(k) ≤ k

m⋅c(m)α. Where Pk is the p-value, k is the last

p-value to be declared as valid for a given α (rejecting the null hypotheses),
m is the total number of hypothesis/features, and c(m) is a constant defined
as c(m) = 1 when the features are independent or positively correlated, and
as c(m) = ∑m

i=1
1
i when there is an arbitrary dependency(selected case). This
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Figure 3.10.: Flow Diagram for the Facial Muscle Movement Recognition with
Differential Microphone Stethoscope

relationship is a simple graph of p-values as dependent variable(”y”) and in-
dependent variable (”x”) equal to the range of 1 to k, with slope = α

m⋅c(m) .
The Benjamini-Yekutieli technique is used for feature reduction. The se-

lected features were the sixteen top common features for all the participants.
Sixteen features were extracted by each DMA pair in Fig. 3.1 for a total of
176 features. A list of the sixteen features is shown below:

• F1 80% quantile

• F2 10% quantile

• F3 Absolute FFT coefficient #94

• F4 Absolute FFT coefficient #38

• F5 Absolute FFT coefficient #20

• F6 P-Value of Linear Trend

• F7 Standard-Error of Linear Trend

• F8 Energy ratio by chunks(num-segments=10,segment-focus=1)

• F9 Energy ratio by chunks(num-segments=10,segment-focus=8)

• F10 Autocorrelation of lag=2
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• F11 c3= {E}[L2(X)2 ⋅L(X) ⋅X] lag=3

• F12 Count below mean

• F13 Minimum R-Value of Linear Trend(chunk-length=10)

• F14 Largest fixed point of dynamics(PolyOrder=3,#quantile=30)

• F15 Ratio beyond r-sigma(r=1.5)

• F16 Mean change quantiles with absolute difference(qH=1.0,qL=0.0)

Classifier Selection

The next step is to find the best classifier for the selected features. In [205]
there is evidence that Support Vector Machine (SVM) is an option for avoiding
overfitting. Others [197, 216] have also achieved excellent results by using
SVM with mechanomyography signals. In addition to the SVM option, we
also decided to experiment with standard Matlab®classifiers.

We retained 33% as a hold-out from the training set for classifier fine-tuning
and started by looking at the default setting for KNN(K-nearest neighbors),
SVM, and Ensemble-classifiers (Bootstrap Aggregation(Bagging) and Sub-
space) were tested. The best-performing candidates were then fine-tuned
to obtain the optimal hyperparameters. The automatic performance met-
ric was ”accuracy” defined as TP+TN

TP+TN+FP+FN where TN=True-negatives and
FP=False-positives.

Grid search is used for hyper-parameters improvement[80]. Grid search is
an exhaustive search based on a defined subset of the hyper-parameter space.
In the SVM case, there exists a kernel parameter that we can use to esti-
mate if our data is linearly or non-linearly separable. Using grid-search, we
tested the kernel to 2 types, one linear and the other as a polynomial. We
searched the best fit for a range of values of the regularization parameter
(C) equal to [0.001,0.01,1,10], in case of polynomial, C=[7,8,9,10,12,15,20],
degrees-options=[1,2,3] and the γ was set to [1∗4/F ,1∗16/F ,1/F ,1/4 ⋅F ,1/16 ⋅
F ]. Where F is the top sixteen features by DMA pairs. And, in the cross-
user case, the Gaussian kernel was added with C=[3,5,6,7,8,9]. The validation
of the grid-search selected was with 10fold cross-validation, and the perfor-
mance metric was ”recall” defined as TP

TP+FN ; where TP=True-positives and
FN=False-negatives. We focused on SVM in Python using the scikit-learn
library [155] version 0.23.1 and compared the result with the standard Matlab
classifiers as a baseline. The evaluation is performed in user-dependent and
cross-user with a leave-one-session-out validation scheme.

3.1.8. Results and Discussion

In this section, we present the results of the user-dependent and cross-user
evaluation scheme. Fig. 3.11, presents the confusion matrices for both cases.
The best performance for the user-dependent models was obtained by the
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Figure 3.11.: Left Average Results of Eight Volunteer User-Dependent Evaluation
with Ensemble Model in Matlab. Right Cross-User and Leave-One-
Session-Out Evaluation Results of Eight Volunteers with SVM in
Python.

Matlab ensemble classifier tool (see Fig. 3.11Left). The support vector ma-
chine (SVM) model in Python gave the best performance for the cross-user
and leave-one-session-out evaluation scheme, as shown in Fig. 3.11Right. The
Gaussian kernel is selected for the SVM model. Both results were obtained
by substituting the maximum values for the matching factor MF from the
Table 3.1. The selection gave the most balanced recall results for the case of
the first volunteer’s data. The results in general are highly affected by the
participant’s ability to mimic the facial movements in the dictionary Fig. 3.2.

For the user-dependent in Fig. 3.11Left the F1-Score is 75.38% which is
above the chance level. And, for the cross-user evaluation, the F1-score is
54.00%, which is also above the chance level (around 9%). This confirms that
the approach can extract relevant information about facial muscle activity
patterns. In particular, the null class with more than 80.00% recall for both
evaluation schemes means that the specificity of our system is reasonably good
at picking relevant action from noise. In the cross-user case, the weakest facial
movements to recognize are sad, upset, and disgust. On the other hand, for the
user-dependent, the average recognition of the sad face improves to 80.00%.
And, it can be seen that upset increases to 50.00% with 20.00% of the instances
being confused with sad. This is reasonable due to the similarity between the
mimicked faces of upset and sad in Fig. 3.2.

The results in Fig. 3.11 prove that the differential sound signal from the
chosen locations contains information about relevant facial actions. Moreover,
it shows that our processing chain manages to extract much of this information.
The fact that the error is not equally distributed but instead some classes are
recognized much better than others is an indication that the results are not
limited by system noise but by the actual information content. The results
must be seen in the context of two things that make achieving good results
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difficult and indicate that the approach is suitable for real-life applications.
First, given the diversity and complexity of facial gestures, from the point of
view of machine learning, the training data set is relatively small. Second, each
user recorded three sessions with a long (hours or days) pause between sessions
and, most importantly, the sensors being removed and placed again on the user
before each session. This means that sensor placement inaccuracies/variations,
which are major concerns in many wearable applications, are already factored
in the results.

The cross-user results show a minimum F1-score of 60.00% (Volunteer 8)
while the score for the best user goes up to 89.00% (Volunteer 1). The dif-
ferences between users can be attributed to three sources; (1) Physiological
differences between users. (2) Different ways users may express specific ac-
tions. (3) Related to the last point, the inability of some subjects to mimic
specific actions accurately.

A detailed understanding of which of the above accounts for which aspects
of the system’s performance requires further research, including a more de-
tailed analysis of the correspondence between physiological actions and sound
signals. Preliminary indications can be inferred from some qualitative obser-
vations. Thus, the most accurate volunteer was the person whose expressions
were easier to decode by an observer. In the third volunteer case, we noticed
this person was doing exaggerated imitations compared to the rest and was
commonly moving the entire face in all the gestures. In the case of volunteers
4 and 8, their movements were more subtle than the rest. The next step must
be to assemble a large number of user representatives both in terms of physi-
ology and the type of expressions and investigate how advanced deep learning
methods can generalize those for a more robust user-independent recognition.

3.1.9. Conclusion

We have demonstrated the feasibility of using differential sound mechanomyo-
graphy as an unobtrusive mechanism for sensing facial muscle activity pat-
terns. In particular, we have shown that sensors placed at locations roughly
corresponding to the outline of typical smart glasses can provide enough in-
formation about muscle activity on the face as a whole to reliably identify
meaningful expressions and facial actions. Our approach has an average F1-
score of 75.38% for the user-dependent case and an F1-score of 54.00% for the
cross-user evaluation. Key specific takeaways are:

1. Using differential signals between suitable pairs of microphones is a key
feature of our system. This is probably related to the fact that it cap-
tures temporal patterns of muscle activation rather than a precise sound
corresponding to the specific type of activation of a particular muscle.
It also helps us deal with inter-person variability and noise.

2. The eyebrows-cheeks’ positions are the most informative locations for
most of the investigated gestures and actions.
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3. Using a stethoscope-like sound acquisition setup has significantly im-
proved the signal quality.

4. We have also seen a strong dependency on the person’s ability to rec-
ognize and mimic the expressions with the best user reaching an F1-
score=89.00% and the worst one being 60.00%.

Our solution has some limitations. The size of the stethoscope microphones
is not comfortable to wear daily. It is possible to reduce the number of stetho-
scope pairs to the most relevant positions, such as eyebrow and cheeks or tem-
ple and cheek muscles. The reduction of the stethoscope geometry is desirable
to embed the solution into a smart glasses frame and increase the ubiquity. In
the next section, we will also investigate the fusion of differential sound infor-
mation with other sensing modalities in particular with inertial measurement
units (IMU), and pressure mechanomyography (PMMG).

3.2. InMyFace: Inertial and Mechanomyography-Based
Sensor Fusion for Wearable Facial Activity
Recognition

3.2.1. Problem Statement

Facial expression recognition is a complex problem for several reasons. First
and foremost, its large interpersonal variability [215]. It is influenced by cul-
tural background [87, 173], age, sex [190], race, and other person-specific char-
acteristics, leading to a user-dependent solution in many related works [213].
Recently, in [123], the authors have formally studied the impact of a sex-
balanced dataset on the fairness of the results for facial expression recognition
(happiness, sadness, surprise, fear, disgust, and anger). They conclude that
training with the mixed dataset achieves the best results in all cases. Fur-
thermore, fairness is compromised in training with a highly biased dataset,
especially when classifying particular expressions. In addition, different ex-
pression categories may have only minor differences (e.g., anger and sadness,
as depicted in Fig. 3.12)
Recognizing facial activity is a well-understood (but non-trivial) computer

vision problem. However, reliable solutions require a camera with a good
view of the face, which is often unavailable in wearable settings. Furthermore,
in wearable applications, where systems accompany users throughout their
daily activities, a permanently running camera can be problematic for privacy
(and legal) reasons. In addition, as the example of GoogleGlass has shown,
having a permanently body-worn camera in everyday situations can be socially
awkward and even illegal in some countries. Computer vision-based methods
also tend to have a larger memory footprint and power consumption than
non-visual sensor-based solutions, such as the one presented in [188].
Monitoring facial expressions has been investigated in many pervasive com-

puting applications. Examples include novel human-computer interfaces [65,
213], learning feedback [149], and recognizing a car’s driver’s fatigue or mood
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[83, 90]. Moreover, facial expression monitoring is particularly relevant dur-
ing multi-user activities for automatically analyzing non-verbal behaviors for
detecting group membership [114] or to gain insights into the participants’
emotions and engagement levels. For example, a smile on a participant’s
face could indicate that they are enjoying the activity, while a furrowed brow
could suggest confusion or dissatisfaction. By monitoring participants’ facial
expressions, we can adjust the activity in real-time to maximize engagement
and satisfaction, an essential factor in providing immersive experiences while
playing console games [70]. This type of behavior is also known as situation-
aware wearable computing systems, where wearable devices can sense and
understand what is happening in the environment to adapt their behavior and
anticipate users’ needs[49]. Overall, creating a relationship between facial ex-
pressions and multi-user activities can provide valuable insights into human
behavior and help optimize the design and delivery of these activities.

Alternatively, multimodal approaches have been studied to exploit the lim-
itations of independent sensing modalities. The idea is to combine multiple
data sources with complementary information to reduce ambiguity, add com-
pleteness to the situation being studied (”gain in representation”), improve
the signal-to-noise ratio(assuming independent error sources), and increase
the confidence in the model decision(”gain in robustness”). In [127], the au-
thors proposed a combination of IMU and 16 optical sensors in smart glasses
to detect eight temporal facial gestures. Obtaining F1 score results of 91.10 %
for the case of one model per person for the recognition of facial action units
(AUs: AU12, AU27, LP, AU1+2, AU4, AU43, AU46R, AU61) [55]. Optical
sensors for facial muscle movements limit the system to stable light conditions.
In [115], another solution based on the fusion of IMU and electrooculography
is presented to recognize kissing gestures, obtaining an accuracy of 74.33% in
a cross-user scheme. IMU is the common basis in the multimodal scheme, so
it is a source of information to be considered.

This work presents an alternative multimodal solution based on the fusion of
wearable inertial sensors, planar pressure sensors, and acoustic mechanomyo-
graphy (muscle sounds). The facial expressions to be evaluated come from the
Warsaw Photoset (seven expressions) and [21] (two facial movements); thus,
it will be simpler to compare with future solutions, see Fig. 3.12. The sensors
were placed unobtrusively in a sports cap to monitor facial muscle activities
related to facial expressions. We present our integrated wearable sensor sys-
tem, describe data fusion and analysis methods, and evaluate the system in an
experiment with thirteen subjects from different cultural backgrounds (eight
countries) and both sexes (six women and seven men). In addition, our unique
set of participants and minimally biased experimental design demonstrate the
inclusiveness of the approach, which is beneficial for further generalizability.

3.2.2. Contributions

In summary, our contributions are:

• We present a multimodal sensing alternative for facial muscle motion
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Figure 3.12.: Facial Muscle Activities Dictionary with Sensor Signal Examples; 7
Facial Expressions from Warsaw Photoset [145] and 2 Gestures from
[21]. Two Channel Raw Audio Data, Thirteen Mel Frequency Cep-
stral Coefficients (Two Channel Audio-Monophonic), Force Sensitive
Resistor, Piezoelectric Film, Orientation and Acceleration.

monitoring based on inertial, planar pressure, and acoustic sensors dis-
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tributed in a minimally obstructive wearable accessory (sports cap).
Furthermore, the idea can be adapted and potentially unobtrusively in-
tegrated into other head-worn platforms (e.g., glasses and headbands)
without compromising the sensing capability.

• We adopt a modular multimodal fusion method based on sensor-dependent
neural networks using a late fusion approach with a low memory foot-
print (≤ 2 MB) to simplify the future deployment of the idea in wear-
able/embedded devices with tiny dimensions and reduce memory (4 MB
to 16 MB Flash).

• We conduct a user study with thirteen participants from diverse cul-
tural backgrounds (eight countries) and both sexes (six women and seven
men). Our unique dataset demonstrates the inclusiveness and general-
izability of the results. For the evaluation, we use the Warsaw Photoset
[145] plus two facial gestures from [21].

• We evaluate the system using a hybrid fusion approach with locally con-
nected inception blocks with dimension reduction per sensing modality
for the best eight imitators of the facial expression dictionary in Fig. 3.12,
and six classes.

3.2.3. Approach

Our system combines inertial, pressure, and audio sensors to recognize facial
muscle activity from an unobtrusive sports cap platform. Fig. 3.12 presents
the facial muscle movements dictionary. The IMU has already demonstrated
its potential to distinguish various face- and head-related movements [115,
127]. PMMG provides a flexible and comfortable solution for facial gesture
recognition with moderate accuracy [221]. AMMG for facial muscle activity
recognition was used in [21]. However, the design was bulky and obtrusive to
achieve high sensing accuracy. Piezoelectric thin films (PEF) have been used
in real-time [188] to detect and classify skin deformation to decode facial move-
ments in patients with amyotrophic lateral sclerosis. Their work is intended
to be used in clinical settings for nonverbal communication and neuromuscu-
lar monitoring conditions. PEF sensing technology is lightweight, customized,
and with mechanical harvesting capability [168]; therefore, we could claim that
PEF technology is worthy of research and study in specific applications. Com-
bining the three sensing modalities with an appropriate sensor fusion pipeline
allows us to achieve high accuracy with an unobtrusive system. Here, we pro-
posed to fuse passive sensing such as; pressure mechanomyography (PMMG)
using a force-sensitive resistor (FSR) and piezoelectric film (PEF), inertial
sensing based on orientation and acceleration, and acoustic mechanomyogra-
phy (AMMG).
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Figure 3.13.: Hardware Prototype and Data Collection Diagram.A Sports Cap
with Sensors Distribution.B Sensor Placement on the Frontalis and
Temporalis Muscles of the Participant.C Data Acquisition Diagrams
with the Custom Printed Circuit Board.

3.2.4. Apparatus

The prototype hardware is shown in Fig. 3.13. The FSR sensors were dis-
tributed on the frontalis and temporalis muscles using a sports cap as a wear-
able accessory. Two Inter-IC Sound (I2S) microphones sampled at 44.1kHz
were placed on the left/right side of the cap as shown in Fig. 3.13. A custom
printed circuit board (PCB) based on Teensy 4.1 1 and LoRaESP32 2 was
used to sample the sensor data. The integrated SD card of the Teensy 4.1 is
used to store the acoustic data. The microphone openings are pointed towards

1Teensy 4.1, Paul Stoffregen: https://www.pjrc.com/store/teensy41.html DLA: January 2,
2025

2LoraESP32, Sparkfun: https://www.sparkfun.com/products/18074 DLA: January 2, 2025
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the frontalis muscle to capture the mechanical sound information (AMMG).
The analyzed sound information comes from the muscle movements, so it is a
privacy-aware system (no speech or ambient sounds). Pairs of FSR and PEF
were placed to the left and right of the temporalis muscle. The FSR and PEF
were selected to measure the PMMG generated by facial muscle movements.
An IMU was in the sports cap viewer to capture head movements related to
facial expressions. FSR, PEF, and IMU data were transferred by Bluetooth
Serial (BT) to a cell phone application (Flutter Framework [140]) to save them
in a JSON file for further analysis. The sampling rate was about 100 Hz for
FSR, PEF, and IMU data. The Bluetooth communication scheme limited the
data acquisition but is still fast enough to capture micro and macro expressions
with a duration ≤ 200ms and duration ≥ 200 ms, respectively [170]. Detailed
sensor data acquisition diagrams are in Fig. 3.13.

The sensor distribution (around the head) and the dimensions/weights of
the selected sensors, see Table 3.2, make our design suitable for integration into
other head-related accessories such as headbands and glasses. In our sports
cap, the dimensions and weight are negatively affected by the selected battery
(1300 mAh) and the main board of the prototype (6.5 x 4.3 cm); both could
be reduced in a future design and improve user comfort.

The power consumption of the prototype is around 0.22A at 4.97V (1.09
Watts continuous mode) 3. Several possibilities exist for further power con-
sumption reduction based on the overall concept. On the one hand, FSR-PEF
data could trigger IMU and audio data acquisition, reducing power consump-
tion to 0.06A at 4.99V (0.3 Watts) when no pressure is detected in the tem-
poralis muscle. On the other hand, PEF is a mechanical energy source. Me-
chanical energy is considered ubiquitous ambient energy that can be converted
into electric power [168]. Employing piezoelectric as a mechanical energy har-
vesting mechanism is an active field of research [168, 195, 218]. Harvesting
energy from human motion and at the same time classifying such motions has
also been demonstrated before [57, 118, 135, 218] which could be employed to
reduce the power consumption further.

In addition to mitigating power issues, the FSR has the advantage of being
robust against motion artifacts. We thus recommend the use of the slope/-
gradient of the FSR signal as a possible trigger for automatic segmentation of
the input data and to avoid motion artifacts. For example, the signal’s slope
of acceleration data was automatically used to segment MMG data in [204].
Finally, although we use off-the-shelf and non-textile FSR and PEF sensors for
fast prototyping, it is noteworthy that both technologies are already available
in textiles [135, 206, 221].

In Fig. 3.14, the synchronized multimodal signals are displayed. Due to the
variability of the sampling rate between the different sensing modalities, the
synchronization is based on the time-stamped by the camera, which acts as
a global timer. At the beginning of data collection, a button is pressed in
front of the camera, and this signal is used to calculate the delay between the

3USB Digital Power Meter: https://www.az-delivery.de/en/products/charger-doktor
DLA: January 2, 2025
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Table 3.2.: Sensors Characteristics

Sensor Manufacturer Name Dimensions (cm)
Weight
(grams)

Benefits

FSR 1 Alpha MF01A-N-221-A01 1.25 diameter 0.26 Ultra-thin and flexible
PEF 2 TE SDT1-028K shielded 4.45 x 1.97 x 0.32 0.30 Low noise, shielded and flexible

Microphones 3 Knowles SPH0645LM4H 0.35 x 0.26 x 0.09 0.40
High SNR of 65dB(A), Flat Fre-
quency Response, Omnidirectional

IMU 4 Bosch BNO055 0.38 x 0.52 x 0.11 0.15 Outputs fused sensor data

1 https://www.mouser.de/datasheet/2/13/MF01A__c3_a2_c2_96_c2_a1_A01-1915118.pdf DLA:
January 2, 2025
2 https://www.te.com/usa-en/product-CAT-PFS0010.html DLA: January 2, 2025
3 https:

//media.digikey.com/pdf/Data%20Sheets/Knowles%20Acoustics%20PDFs/SPH0645LM4H-B.pdf DLA
: January 2, 2025
4 https://www.mouser.de/datasheet/2/783/BST_BNO055_DS000-1509603.pdf DLA: January 2,
2025

camera and sensor signals. The delay between the sensors and the camera
remains constant throughout one experiment session.
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Figure 3.14.: Comparison between Synchronized Sensors Signals for the Dictionary
of Facial Movements in Fig. 3.12(without neutral) Versus Activities,
such as; Clapping, Walking, Checking Emails and Talking. Joy is
yellow, Surprise is pink, Anger is red, Disgust is green, Sadness is
blue, Winking is magenta, Fear is purple, Taking a Pill is grey, and
the in-between (white spaces) are the noise factors activities.

Fig. 3.14 compares the facial expression-generated signals to those gener-
ated by noise factors, such as clapping, walking, checking emails, and talking.
The robustness to environmental noise and not facial-related movements of
the multimodal fusion approach can be observed by the distinctive FSR-PEF
signals. In the case of facial muscle movement, the signal is remarkable even to
the naked eye. While affecting the audio signal, the environment’s noise does
not influence the PMMG or inertial-based sensors. The movements generated
by clapping and walking affect the inertial sensors more than the FSR-PEF
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sensors. The inertial information is quite distinctive inside our dictionary with-
out considering the noise factors. Hence, the fusion power of the FSR-PEF
to signal muscle movement detection is encouraged as a simple and robust
technique to avoid undesirable confusion. The proposed multimodal fusion
favors noise reduction and reduces the algorithm’s complexity for detecting
facial muscle motion.

3.2.5. Multimodal Sensor Fusion
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Figure 3.15.: Left Ensemble Multimodal Sensor Fusion Model Overview; Fusion
in the Prediction Phase. Right Hybrid Multimodal Sensor Fusion
Model Overview; Fusion Within Hidden Layers, and Before Predic-
tion.

Multimodal sensor fusion can be broadly classified into early and late fu-
sion, depending on the position of the fusion within the processing chain [61].
Our primary approach is referred to as late fusion. The fusion is performed in
the individually trained networks’ decision phase (confidence scores). The late
fusion method has the advantage of extracting the specific patterns of each sen-
sor independently and the parallel deployment of each sensor-dependent neural
network (NN) on multiple microcontrollers (MCUs), reducing the recognition
latency and memory requirement per MCU(≤ 2 MB per network). The main
drawback of late fusion is the limited potential to extract cross-correlation
between sensing modalities and channels. Additionally, we also explored a
hybrid fusion alternative. The fusion performed in the hidden layers of the
neural network and before the decision layer is called hybrid fusion. In our
work, the hybrid fusion structure and evaluation are made considering the out-
comes from the late fusion performance. An overview of the late fusion and
hybrid fusion diagrams is depicted in Fig. 3.15. The Fig. 3.15a Left shows
the concatenation of the sensor-dependent models after the decision phase us-
ing an ensemble NN. The specific sensor-dependent models are explained in
Section 3.2.5. The Fig. 3.15b Right presents the primary blocks of the hy-
brid fusion method. The blocks consist of sensor inputs, inception blocks, and
hybrid fusion NN in Section 3.2.5.
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In the case of late fusion, our approach leverages sensor-dependent fusion
techniques to combine heterogeneous sensing modalities to recognize facial
muscle motion ubiquitously. Furthermore, for the case of hybrid fusion, we
propose to employ the inception block with dimension reduction as an early
feature extractor per sensing modality to reduce the complexity of the NN
and the number of parameters. This method can be easily exported to other
types of sensors as a size-reduction technique for heterogeneous NN-based
algorithms.
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Figure 3.16.: Sensor Dependent Neural Network Models.Top Neural Network for
FSR-PEF (PMMG) and IMU(Orientation and Acceleration) Infor-
mation.Bottom Neural Network for Mel Frequency Cepstral Coef-
ficients of Audio (AMMG).

We employ sensor-based late fusion [139] as depicted in Fig. 3.15a Left and
Fig. 3.16. The data was divided by sensor type, and we implemented four
sensor-dependent neural networks (NN) models in Fig. 3.16. This approach
gives each NN the advantage of learning the unique properties of each modal-
ity and facilitates a simple fusion method. In the initial step, the inputs to the
sensor-dependent NNs were pre-processed in a sensor-specific manner, as de-
scribed below. The data of each movement was processed as a whole instance.
The NNs were developed using the TensorFlow framework (version 2.9.2). The
training included early stopping with the patience equal to 30 and restored
weights option equal to true to avoid overfitting and ran for 500 epochs. In the
individual models, the learning rate was manually tuned for each participant,
and for the case of one ensemble model for all participants (cross-user case), it
was set to 0.03. Categorical cross-entropy loss function and Adagrad optimizer
were used to optimize the sensor-type NN. The ensemble NN consisted of one
fully connected layer of 20, Adam optimizer (0.01), and softmax function with
nine probability outputs, see Fig. 3.15a Left Model Ensemble. The details
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of the sensor-type dependent NNs are explained below.

Pressure Mechanomyography (PMMG) and IMU: We sense PMMG
with a combination of FSR and PEF. For the case of inertial sensing, the
quaternions were selected for orientation to avoid the gimbal lock problem [29]
and to improve stability. The FSR, PEF, and inertial sensors (quaternions and
acceleration) data were normalized by subtracting the average of the gesture’s
first (starting point) and last values (ending point). Since each facial event
is a temporal series with variable lengths, a dynamic resample procedure to
400 samples was applied [22, 23]. Then, the resampled signals were fed to a
first-degree Butterworth low pass filter with a cut frequency of 5Hz to remove
the ringing peak in the signal’s edges coming from the resampling procedure
and to highlight the low-frequency range.

FSR and PEF signals were treated as a pair; hence they have a joint
NN. Orientation and acceleration were processed in separate NNs. In to-
tal, three networks were trained for PMMG and inertial sensing. The NN
structure was based on a modified 1D-LeNet5 network [108] as depicted in
Fig. 3.16 Model MMG. The network consisted of a convolution (conv)—max
pooling (maxpool)-conv-maxpool-conv—fully connected (fc)-fc-softmax layers
with batch normalization and dropout on the convolution layers. The convo-
lution layers contain 40 filters, a kernel size of 10, and the activation function
ReLu. For max pooling, the pool size was (40, 40) for the first convolution
(400, 40) and (4, 40) for the second convolution (40, 40). The third convolution
was of size (4, 40) without pooling. A flattening layer of 160 was followed by
a fully connected layer of 100. The nine outputs for the different facial muscle
activities in Fig. 3.12 are then converted into probabilities by a fully connected
layer and softmax function. A detailed view of the sensor-dependent neural
network structure for the PMMG and IMU is shown in Fig. 3.16 Top Model
MMG.

Acoustic Mechanomyography (AMMG): As shown in Fig. 3.13, two
I2S microphones sampled at 44.1kHz were positioned on the sports cap to
cover the frontalis muscle of the volunteer. The audio information was used
as AMMG as proposed in [21] but without the stethoscope to amplify the au-
dio. Two channels of audio were resampled to 52000 (1.17 seconds). Muscle’s
audio data was transformed to the mel spectrum to reduce the dimension of
the audio and speed up the convergence time of the neural network for a small
dataset. The Mel Frequency Cepstral Coefficients (MFCCS) have been used
for many applications [39, 176]. Thirteen Mel filters are a common choice in
the literature for audio analysis [39, 75]. The short-time Fourier transform
(STFT) parameters were defined as; a sampling rate of 44.1kHz, hamming
window and size of 4096 (93 ms), and hop length of 1024 (23 ms). Although
we are not using speech information, the STFT configuration was selected to
match the default configuration defined in [132] (the typical setting for speech
analysis) for simplicity. In addition to the MFCCS, we also calculated the
first and second derivatives of the MFCCS to boost the recognition accuracy
[79]. The input shape to the NN was (39,51,2); 13 MFCCS, 13 MFCCS’ delta,
and 13 MFCCS’ second delta, 51-time frames, and two audio channels. The
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deep learning model was defined as two-dimensional convolution (conv2D)-
max pool-conv2D-conv2D-fc-fc-softmax layers with batch normalization and
dropout on the convolution layers. The first, second, and third conv2D con-
sisted of 64,32, and 16 filters, respectively, with a kernel size of 7 and an
activation layer of ReLu as depicted in Fig. 3.16 Bottom Model AMMG.

In the case of a future real-time implementation, the modular approach
offers the flexibility of sharing the computation of each NN model between
microcontrollers (MCUs). The NNs developed in this work are less than 2
MB, a practical size for an embedded device (typically between 4 and 16 MB
of flash), and with the TensorFlow Lite framework4, can be compressed for use
on mobile/embedded devices. Compared to a wearable camera solution with
162 MB in [41], our 2 MB distributed NNs are two orders of magnitude smaller.
Therefore, we could schedule the FSR-PEF and IMU model (Fig. 3.16 Model
MMG) into MCU-one and the audio model ( Fig. 3.16 Model AMMG) into
MCU-two, which in the end will be merged by the ensemble model using the
Bluetooth-capable phone. As lightweight and individually deployable models
in the MCU(s), only the prediction results are sent out of the embedded device,
which will maintain the privacy of the user’s data.

Multimodal Hybrid Fusion
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Figure 3.17.: Modified Inception Block with Dimension Reduction Locally Con-
nected per Sensing Modality

4Machine Learning for Mobile and Edge Devices - TensorFlow Lite
https://www.tensorflow.org/lite
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An early/hybrid fusion approach learns the contributions to the recognition
performance of all sensing modalities as a unit, exploiting the cross-correlation
between information sources. On the other hand, the NN structure for ear-
ly/hybrid multimodal sensor fusion could be complex to give competitive re-
sults, consequently increasing computational time [61, 139]. In some cases,
fusing low-level features might be irrelevant to the task, thus decreasing the
fusion power [117]. Hence, the level at which the merge is made will influence
the quality of the information being fused. Additionally, this fusion method
requires all the sensor’s data to enter the same processing pipeline, reducing
the parallelism and increasing deployment complexity in embedded devices.
The challenge is maintaining a low-complexity model while achieving perfor-
mance comparable to the late fusion approach. In this section, we evaluate the
performance of such a sensor fusion methodology to test our system’s facial
muscle movements recognition capability.

Our experiment is based on imitating facial movements related to typical
facial expressions. Therefore, the ground truth could be affected negatively
by the imitation ability of the volunteers (with no acting experience). In this
section, the eight best imitators were selected to test the system’s feasibility
without outliers due to the imitation inaccuracy of our participants. The se-
lection is based on the visual perception of the similarity of the volunteers’
facial dictionary imitation performance, as assessed visually by most partic-
ipants. The main drawback of reducing the number of volunteers is that it
increases the risk of overfitting, which is already high due to the higher com-
plexity of hybrid fusion modeling compared to late fusion for our specific task.
Therefore, we employ techniques developed to reduce the risk of overfitting.
These techniques include: early stopping with patient equal to 30 and restored
weights option enabled, batch normalization, and max pooling, the evaluation
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scheme is defined by leaving one session out, and the NN structure is based on
a lightweight NN designed to reduce the number of parameters. We focused
on using the main block of one of the most popular lightweight NN as the stem
network [191], locally connected to each sensing modality, known as the incep-
tion block as shown in Fig. 3.17. These main blocks were explicitly designed
to reduce the number of parameters while maintaining a balance between la-
tency and accuracy to allow their deployment in mobile/embedded systems.
Moreover, the loss function performs soft labeling (also called label smooth-
ing) with 10% distributed equally over the opposite classes. Hard labeling is
the typical way of assigning labels to class members, where class membership
is binary, i.e., labels are true/false. In soft labeling, class membership is based
on a probability score assigned to each member. Thus, a 10 % soft labeling
means that, for example, the probability of class 1 is 90 % when class 1 is the
truth value, and 10 % is equally distributed over the opposite classes.

To reduce the complexity of the hybrid model structure, we have reduced
the number of classes based on the risk of confusion. The joy and surprise
classes are merged due to the similarity of visual perception of facial gestures,
assessed visually by most participants (survey). In this case, the visual per-
ception excludes (on purpose) the gesture of opening the mouth to focus on
the direct sensing areas of a sports cap attachment, such as the frontal and
temporalis muscles, leaving the indirect perceptual area of the masseter out
of the equation. These two classes differ only in the mouth movement, and
the placement of the sensors on the forehead makes their recognition indi-
rect, which could lead to considerable confusion between them. In addition,
the following section Section 3.2.7 shows that the confusion in the late fu-
sion approach is mainly dominated by two pairs of classes, ”Disgust-Anger”
and ”Sadness-Anger”, when all sensing modalities are combined, leading us to
merge these categories. The classes recognized were Neutral, Joy + Surprise,
Disgust + Sadness + Disgust, Wink, Fear, and Take a Pill, for a total of six
categories. Despite all the parameters and complexity reduction techniques,
the hybrid fusion in our case reached 939,706 parameters ( 2.35x Late Fusion
Parameters). However, based on the number of parameters is still a small net-
work compared to typical networks considered smallish, such as MobileNetV2
with 3.5 million parameters [161].

As depicted in Fig. 3.15b, we employed inception blocks locally connected to
each sensing modality, followed by a concatenation. The output is then fed to
a hybrid fusion model/NN. Before entering the NN, the same signal processing
steps performed in Section 3.2.5 are applied per sensor type. Our data sources
are not spatiotemporally aligned due to the number of channels/resolutions
and different sampling frequencies. Therefore, a certain degree of preprocess-
ing is necessary before concatenating them using a CNN. As a result, the data
of all sensors were in the form (Time steps = 400, Channels). The channels
were four, four, three, and two; for PEF and FSR, orientation, linear accelera-
tion, and audio, respectively. The locally connected inception block structure
is depicted in Fig. 3.17. The inception block is then followed by a hybrid
fusion model as shown in Fig. 3.18. The hybrid model consisted of conv1D-
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maxpool-conv1D-maxpool-flatten-fully connected(fc)-(fc)-softmax layers with
batch normalization and dropout on the convolution layers. The convolution
layers contain 40 filters, a kernel size of 10, and the activation function ReLu.
For max pooling, the pool size was (40, 40) for the first convolution (400,
40) and (4, 40) for the second convolution (40, 40). A flattening layer of 160
was followed by a fully connected layer of 100. The six outputs for the six
categories (Neutral, Joy + Surprise, Anger + Disgust + Sadness, Winking,
Fear, and Taking a Pill) are then converted into probabilities by a fully con-
nected layer and softmax function. The training ran for 200 epochs with early
stopping enabled with a patient equal to 30 and restoring weights option en-
abled. Categorical cross-entropy loss function and AdaDelta optimizer with
a learning rate of 0.09 were used to optimize the sensor-type NN. AdaDelta
optimizer is a method that performs an adaptive learning rate per dimension,
and its main advantage is that there is no need to select a global learning
rate. Moreover, it can handle the intrinsic continuous decay of learning rates
throughout training [212].

3.2.6. Experiment Design

Thirteen participants from diverse backgrounds (Germany, Italy, Peru, India,
France, China, Republic of Korea, and Venezuela) mimicked the facial muscle
movements defined in Fig. 3.12 in a random sequence per session while wearing
our sports cap prototype.
The dictionary of Fig. 3.12 contains seven of the facial expressions proposed

in the Warsaw Set of Emotional Facial Expression Pictures (Warsaw Photo-
set) [145], which is a database of high-quality photographs of genuine facial
expressions. The photographs were taken after appropriate training, and the
participants (actors) were inclined to express felt emotions. In addition, the
facial movements of taking a pill and winking [21] were added to the dictionary
to extend the scope of recognition beyond the imitated expressions. Specifi-
cally, taking a pill encompasses a more sophisticated/complex facial gesture,
including picking up the pill from the table, going to the mouth and opening
the mouth, tilting the head back, and swallowing the imaginary pill. The
gesture of taking a pill can be replaced for a future application by the typical
behavior of users snacking while playing video games. Snacking while playing
includes taking a snack from the table, bringing it to the mouth, and chew-
ing/swallowing. This cycle will generate facial muscle movements, which are
not related to tracking the player’s satisfaction with the game, and most of
the snacking steps are contained in the gesture of taking a pill.
It is essential to accentuate that the system recognizes consciously simu-

lated facial expressions and not authentic expressions, as in previous hardware-
related works, to test the feasibility of fusing the sensing modalities. Therefore,
we emphasize that what we recognize are ”facial muscle movements” related to
creating features similar to what we expect to see in genuine facial expressions.
Participants’ muscle movement sounds and pressure patterns were recorded

without any additional conditions other than that they mimic the dictionary
as closely as possible. It should be noted that the volunteers did not receive
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any prior training and that the facial muscle movements were executed as they
saw fit. Subjects were not forced to make sounds or restricted to a specific
time to perform the facial muscle movements. Therefore, the amount of time
for each gesture is variable, even for the same participant. All participants
performed five sessions. One session consisted of four randomized/shuffled
appearances of each face gesture within the dictionary, which is used to avoid
muscle fatigue and avoid correlation between instances of the same gesture.
A total of 180 instances per volunteer were collected. The neutral face marks
the start and end points of a gesture. In total, 2160 valid facial movements
were collected.
Mechanomyography provides the timing requirements for the experiment to

avoid corrupting the data because of the tiredness of the participant [209].
Therefore, the duration of a session was between five and seven minutes. On
average, subjects rested for at least 10 minutes between sessions (without
wearing the sports cap). For some volunteers, the experiment was completed
in 2 days. The volunteers were six women aged 21 to 30 years and seven men
aged 21 to 35 years (mean 27.00 ± 4.11) with head diameters of 52 to 61 cm
(mean 55.54±2.56) and with different hairstyles (straight, curly, and no hair).
The experiments were carried out in an office, and the participants remained
seated during the experiment. All participants signed an agreement following
the policies of the university’s committee for protecting human subjects and
following the Declaration of Helsinki [171]. The experiment was video-recorded
for a further confidential analysis. The observer and participant followed an
ethical/hygienic protocol following the mandatory public health guidelines at
the date of the experiment. The minimum number of valid sessions was 4
(Volunteers 3,4,8, and 10), and the typical case was five valid sessions. The
training/testing scheme was defined as a 5-fold stratified cross-validation with
leave one session out scheme [25], similar to the cross-session validation in
[113]. Leaving one session out of cross-validation reinforces the robustness of
the training against re-wearing of the system, as is common with wearable
devices.

3.2.7. Results

Fig. 3.19 A shows the performance in the case of individual models (per-user)
versus the ensemble model. The average improvement of the ensemble model
was 14.30% (F1 score) compared to the best sensor-dependent model. The
confusion matrix in Fig. 3.19 B shows an average F1 score of 85 % for the case
of the individual concatenated models. The ensemble model for all (cross-user,
see Fig. 3.19 C) yielded an F1-score of 79.00%. In addition, the one-ensemble
model for thirteen participants achieved a 16.00% increment in the F1-score
compared with the best sensor-type dependent NN (see Fig. 3.19 C).

Specifically, the F1 values of sensor-dependent NNs for thirteen participants
were as follows: FSR+PEF = 51.00%, orientation = 58.00%, acceleration =
63.00%, and microphones = 44.00%. For subjects 2, 3, 6, 9, and 11, the
ensemble model increased performance by up to 28.00% of the F1 result. In
some cases, the ensemble model results were limited to the best sensor type
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NN (inertial sensing) performance in participants (7 and 8), indicating that
the ensemble model did not improve the performance in these particular cases.

In Fig. 3.19 C, the most evident misclassification is between sadness and
anger with up to 17.00% confusion. This could be the consequence of the
misinterpreted eyebrow movement while doing sadness; instead of eyebrows
up, many volunteers moved their eyebrows down and the intensity of the
gesture. A 13.00% confusion happens with the faces of anger and disgust,
which are depicted as similar in Fig. 3.12. Another relevant misclassification
(10.00%) occurs with surprise and joy gestures, which are faces distinguished
by the mouth movement. The recognition value of 98.00% of the neutral
face (null class) indicates the high specificity of the design, making null class
recognition a suitable candidate for automatic data segmentation in real-time.
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Hybrid Fusion Results
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The AMMG sensing modality has the weakest performance. Multiple rea-
sons can lead to this result; the facial expression usually involves audio patterns
in a natural setting, which might not be present in a mimicked experiment.
The audio analysis in this work only considers the MFCCS with 13 filters to
speed up the NN converging time but overlooks the spectral information in
the entire spectrum. Due to the small dataset, more elaborated image process-
ing techniques were not explored. In the future, it is highly recommended to
do data augmentation and transfer learning to exploit the audio information
completely.

Fig. 3.20 Left shows the performance of the hybrid fusion model using a
leave-out session evaluation scheme. The result has an F1-score = 82 %, which
is the average of five iterations/sessions. The main confusions are between the
pairs; ”Fear-Joy + Surprise” and ”Winking-Anger + Disgust + Sadness”,
with 23 % and 19 %, respectively. It is relevant to notice that the confused
classes have similar eyebrow movements. The first pair consists of expressions
dominated by up-eyebrow movements and down-eyebrow movements mainly
dominate the second. However, the confusion is in the categories with fewer
instances. Due to the merged categories, the model can learn the distinction
in the complementary classes with recall above 80.00 % for the case of ”Joy
+ Surprise” and up to 88.00 % recall for the case of ”Anger + Disgust +
Sadness”. Despite our small dataset, an F1 score over 80 % is an encouraging
outcome. The outcome can be improved if more data is fed to the NN.

The result of the hybrid fusion is the output of the data analysis pipeline
depicted in Fig. 3.20 Right. Thus, a direct comparison between late and
hybrid fusion is impossible. Still, the low complexity and parallelism of the
modular late fusion, one sensor-dependent NN per MCU, make it our prefer-
able option to be used in embedded devices. Additionally, the hybrid fusion
employs 2.35x more parameters than the early fusion to exploit the correla-
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tions between the sensing modalities. In the future, the hybrid model results
could be improved if more data were supplied to the NN. It is worth explor-
ing NN partitioning techniques to solve the lack of parallelism in the hybrid
fusion model. In [72], the authors proposed to leverage the power of multi-
ple embedded/edge devices to run a large CNN. They proposed a framework
that automatically partitions a CNN model into sub-models and generates the
code for the execution of these sub-models on multiple edge devices (possibly
heterogeneous) while supporting the exploitation of parallelism between and
within edge devices.

3.2.8. Discussion

The experiment design tests the proposed approach’s feasibility in classifying
facial movements. Notably, this study aims to recognize facial muscle pat-
tern movements, and emotion recognition is beyond our scope. The
selection of the dictionary of facial expressions is based on the Warsaw Set of
Emotional Facial Expression Pictures[145], which is a database of high-quality
photographs of genuine facial expressions. The photographs were taken after
appropriate training, and participants (actors) were inclined to express felt
emotions. In addition, the facial movements of taking a pill and winking an
eye were added to the dictionary to extend the scope of recognition outside of
the mimicked expressions.
The results above are based on a facial expression imitation experiment

with participants from different cultures without acting experience. Although
each participant interpreted facial activity in their own way, we found that
complementary sensing modalities could detect patterns. Our results are min-
imally biased due to the high intrapersonal and interpersonal variability of
imitated facial movements/expressions in a data set containing subjects from
eight different cultural backgrounds. Furthermore, our results are inclusive
due to a sex-balanced data set. Unfortunately, none of these characteristics
were notable in the related works, mainly containing highly biased datasets
of one cultural background and sex. A promising idea to improve the results
will be to include a procedure for pre-training participants to close the gap
between imitation and authentic facial expressions, as employed in [44].
Due to the design of our prototype, our solution has several limitations.

One of them is that when using a sports cap as a wearable accessory, cheek
and mouth movements are captured indirectly and without a complete map
of the facial activity. The size of the custom-built electronics board and the
chosen battery make the system heavy for real-life daily use. Downsizing
the prototype board is inevitable to test the idea in realistic scenarios with
natural facial expressions. The distributed sensing modalities in the frontalis
and temporalis muscles may also lead to variations in MMG signal strength.
A definitive statement about the best sensor modality could only be made if
the placement of the sensors is the same, but this would be at the expense of
user comfort, at least with our current hardware. A possible alternative is to
stack (sandwich) all the sensors in a miniature circuit prototype; in this way,
a quantitative comparison can be made between the sensing modality and the
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type of activity.
On the other hand, based on our encouraging offline results, real-time im-

plementation of the models is a reasonable next step. However, at the current
stage, the system relies on segmenting the entire facial gesture (start/end
point) to do the recognition. In the future, a plan to test the idea of online in-
ference is to use the FSR gradient as a trigger for automatic data segmentation
(unrest state recognition) and then proceed to inference.
In general, the sensing approaches and the modular technique can be applied

to many different fields, such as psychology, to monitor students’ learning
process in classrooms [149]. Nevertheless, a clinician/cognitive expert will still
need to redesign the experiment to adapt it to the psychological requirements.
Overall, our design goal is to explore the system’s feasibility in detecting facial
muscle movements.

3.2.9. Conclusion

This work presents a privacy-preserving, low-memory, low-power consumption,
and unobtrusive alternative system for facial expression detection. Although
the design uses microphones, it only uses them to capture the sound of mus-
cles while facial movements are performed, so no voice or ambient sound will
affect the privacy requirement. Our system has demonstrated the ability to
detect facial expressions using non-camera sensors mounted on a sports cap.
In addition, the system works on participants of both sexes and from different
cultures, demonstrating the inclusivity and generalizability of the approach.
In the individual and cross-user results, the remounting of the sports cap
was accountable; hence, our results are robust against everyday re-wearing in
wearables. The results indicate that a multimodal approach based on the pro-
posed sensors is well-suited for recognizing facial activities with an unobtrusive
wearable sensor system.
Compared to the solutions based on our single sensing models, our ensemble

approach provides a performance improvement of 16%. IMU and PMMG were
the two sensing methods that contributed the most significantly to our results.
An interesting question for future studies is how to extract more information
from AMMG while maintaining a low-memory, privacy-friendly design. In
particular, data augmentation and transfer learning methods could be used to
understand the AMMG better. Also, it would be necessary to consider dif-
ferent sensors’ placement around the head for a detailed comparison between
sensing methods. One promising approach will be to design a miniature pro-
totype as a stack of sensor units consisting of pressure sensors, piezoelectric
sensors, a mechanical microphone, and an inertial measurement unit. The
sensor stack would simplify the connection between the sensor to be selected
and the types of muscle activities to be monitored.
Our results are from an offline analysis. Therefore, obstacles may appear to

the system’s deployment, such as environmental sounds, power consumption,
mobile scenarios, and user comfort. In the future, a miniaturized version
of the system is desirable to perform experiments with more people and in
realistic (out-of-office) scenarios. The use of an entire gesture-instance data
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processing technique has the advantage of lighter and faster models (due to
its simplicity). At the same time, it makes the design dependent on automatic
segmentation techniques to determine the start/end point of a facial gesture for
the case of real-time gesture recognition. For automatic gesture segmentation,
it is possible to select one or a combination of the following paths; the FSR
pressure data gradient can be used as a trigger to detect a person’s unrest
state and then proceed to signal the start/stop of data collection to make
the prediction. The FSR gradient option is also suitable for reducing power
consumption. The solution can be combined with a weighted belief system
and use the PEF gradient with the FSR; it is necessary to consider that the
PEF is susceptible to the motion of the worn accessory, a sports cap, in our
case. The FSR-PEF disturbance detection system can be the first step in a
hierarchical procedure in which the FSR-PEF model is used to detect the null
class (83.00 % recall for thirteen volunteers). Then the ensemble/fusion model
is activated.

We employ seven validated facial expressions (Warsaw Photoset) in our work
to compare our results with future solutions. Although a fair comparison with
related work is negatively affected by many research papers using personalized
facial/head activities, we believe our results are competitive with the state of
the art. In the next section, we embedded the pressure mechanomyography
and the inertial modalities into a glasses frame to monitor facial expressions
and eating activities in real-time and on-the-Edge.

3.3. MeciFace: Mechanomyography and Inertial
Fusion-based Glasses for Edge Real-Time
Recognition of Facial and Eating Activities

3.3.1. Problem Statement

Facial expression recognition and eating monitoring technologies have be-
come increasingly essential in understanding stress-related eating behaviors
and their impact on overall health [137]. Wearable devices offer a convenient
and non-intrusive solution to detect potential health issues, such as binge eat-
ing, stress-related overeating, and anorexia [156], and monitor these behav-
iors, catering to individuals with specific dietary restrictions, such as diabetic
patients or those with food sensitivities. In addition, wearables can help indi-
viduals develop coping mechanisms to manage stress and maintain a healthy
lifestyle.

The use of glasses for human activity recognition (HAR) in wearable tech-
nologies is widespread due to their ubiquity and strategic position in front of
the user’s face. In general, glasses-based wearables offer a comprehensive ap-
proach to capturing visual cues, tracking eye movements, integrating sensors,
providing real-time information, and enabling hands-free use. These aspects
contribute significantly to accurate and efficient activity recognition [127], [10,
105, 115, 128, 130, 208]. Commercial solutions, such as OCOsense (Emteq
Labs), have already been introduced, utilizing optical-flow, inertial, pressure,
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and microphone sensors to monitor facial expressions and emotions [66].
However, existing state-of-the-art glass-based wearables typically rely on

external devices, such as computers, servers, or smartphones/tablets for real-
time data processing and inference. The distribution of power consumption,
latency, and memory can limit the efficiency of the system. Handling data
across multiple devices can become a privacy and security concern. To address
these limitations, in this paper, we introduce MeciFace, a real-time solution
that performs facial activity recognition and eating/drinking gesture detection
on-the-edge. By embedding data acquisition, signal processing, and inference
within the MeciFace hardware, the system minimizes reliance on external de-
vices.
The MeciFace system utilizes neural network models (NN) deployed on a

microcontroller (MCU) using the TensorFlow Lite for microcontrollers frame-
work. The proposed system fuses information from inertial and mechanomyo-
graphy (MMG) sensors, ensuring privacy and low power consumption while
achieving robust recognition performance [15]. The facial expression dictio-
nary is defined in Fig. 3.21, in addition to the null/else class as static face [15,
21]. In particular, the gesture of taking a pill is included to differentiate eat-
ing/drinking episodes from the sporadic gesture of touching the face/mouth.
The eating scenario-related classes are eating, drinking, and null to extend the
work in [221].

Figure 3.21.: Facial Muscle Activities Dictionary; 6 Facial Expressions from War-
saw Set of Emotional Facial Expression Photoset [145] and 2 Ges-
tures from [15]. Taking a Pill Facial Muscle Movement is Included
to Differentiate Eating/Drinking Episode with the Sporadic Gesture
of Touching Face/Mouth.

3.3.2. Contributions

The main contributions of our approach can be summarized as follows:

• We present MeciFace, a state-of-the-art real-time solution for facial ac-
tivity related to facial expressions and eating/drinking gestures that uses
a fusion of mechanomyography and inertial sensing, providing flexibil-
ity, low power consumption, and cost-effectiveness, with potential future
applications such as monitoring sporadic episodes of emotional eating.

• We employ lightweight neural network models to ensure a low memory
footprint, providing an embedded and sustainable solution.

• We propose a hierarchical multimodal fusion to reduce energy consump-
tion and increase robustness against the null class, in which the first

78



3.3. MeciFace: Mechanomyography and Inertial Fusion-based Glasses for
Edge Real-Time Recognition of Facial and Eating Activities

stage detects motions and recognizes a non-null facial gesture using an
MMG model. Then, using an inertial model, the second stage recognizes
the dictionary in Fig. 3.21.

• The hierarchical multimodal fusion is extended for the case of eating/-
drinking monitoring. The first stage discriminates between null and eat-
ing/drinking categories with an MMG model. The second stage employs
an inertial model to classify between eating and drinking.

• Our work is a first step towards a ubiquitous system that monitors fa-
cial expressions and eating/drinking episodes to add contextual infor-
mation from both scenarios, relevant to detecting stress-triggered eating
episodes.

3.3.3. Apparatus

The MeciFace prototype is shown in Fig. 3.22A. The microcontroller is a QTPy
ESP32 from Adarfruit. The MCU is an ESP32-S3-Dual-Core 240MHz Ten-
silica with 8MB flash, 512KB SRAM, and Bluetooth low energy (BLE). The
prototype includes an SD Card, which is used as a data logger. The sensors are
an inertial measurement unit (IMU-BNO085), an atmospheric pressure, envi-
ronmental and gas sensor (BME688), an analog microphone (SPH8878LR5H),
a force-sensitive resistor (FSR), and a piezo-electric film (PEF) for MMG, see
Table 3.3.

Table 3.3.: MeciFace Sensors Characteristics

Sensor Vendor Dimensions(cm) Grams Benefits

FSR
Alpha MF01A-N-221-
A01

1.25 diameter 0.26 Ultra-thin/flexible

PEF
TE SDT1-028K
shielded

4.45 x 1.97 x
0.32

0.30
Low noise/shield-
ed/flexible

IMU Bosch BNO085
0.38 x 0.52 x
0.11

0.15
Fused data, Auto cali-
bration

Barometer Bosch BME688
3.0 x 3.0 x 0.9
mm³ 0.3

Pressure and Gas Sen-
sor with AI

Microphone
Knowles
SPH8878LR5H

0.35 x 0.27 x
0.13

0.25
Low Noise and Omni-
directional

In Fig. 3.22B, the block connections diagram is presented. The IMU sen-
sor connects to the MCU via a serial peripheral interface (SPI) bus. The
hardware includes a pressure and environmental sensor (BME688) and analog
audio (SPH8878LR5H). The data from the BME688 and SPH8878LR5H is
not used in this work. Still, the option of monitoring environmental and audio
data makes our design extendable for future analysis. FSR and PEF infor-
mation is transferred to the MCU using an inter-integrated circuit (I2C) with
the intermediate assistance of ADS1015. The ADS1015 is an analog to I2C
converter. Converting analog signals to digital makes the system robust to
subtle movements/motion artifacts, and reduces the signal’s sensitivity to the
distance between the sensor position and the MCU. Besides, it is also easier
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to add slaves to an I2C bus compared to adding more analog channels to the
system. The sampling rate of the sensors is around 50 Hz. The battery is a
LiPo; 3.7V, 500mAh(3.5x3 cm).

The IMU is on the nose bridge of the glasses to mimic the position of
the temporal muscle in [15]. The IMU position is suitable to capture head
displacement, cheek movements, and symmetrically sense vibrations on the
glasses frame. The FSR and PEF are on the temples (right/left) muscles also
used in [15] The temple position is relevant to monitor masseter muscle-related
movements. Masseter’s movements include chewing, swallowing, and tongue
sweeping for the case of eating activities and smiling or getting angry for the
facial expression scenario.

Figure 3.22.: MeciFace Prototype A. Hardware Connections Blocks: Motion and
Environmental Station on The Glasses’ Nose Bridge with BNO085
(IMU), SPH8878LR5H (Microphone) and BME688 (Barometer). On
The Temples are The Force Sensitive Resistor (FSR), Piezoelectric
Film (PEF), and QtPy ESP32 (MCU) B.

3.3.4. Multimodal Sensor Fusion

As shown in Fig. 3.23A and in Fig. 3.23B, two collaborative models were
deployed for the facial and eating monitoring applications. The first neural
network model (NN) is the FSR-Piezo (MMG-model) with four channels as
input. Two FSR and two Piezo channels complete the four inputs of the
MMG model. This model is used to distinguish the null class from activity
detection. The null class includes activities such as; walking, talking, stand-
ing/sitting down, picking cutlery, and working on the PC, among others. The
output of the MMG model served as a trigger for the second model, the iner-
tial model. In the event of an activity being classified as non-null, the inertial
model is activated. The second model fused inertial information, including
acceleration and orientation, as seven input channels. Specifically, the input
channels are linear accelerations (x, y, and z axes) and quaternions as orien-
tation. For the case of facial expressions, the second model outputs are the
classes in Fig. 3.21. For the case of eating monitoring, the inertial model
returns eating/drinking classes. The hierarchical approach reduces the com-
plexity of the models, leveraging the information fusion with lightweight NNs
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Figure 3.23.: Real-Time and on-the-Edge Flow Diagram Implementation for the
Eating/Drinking Scenario with the Two Stages Hierarchical Mod-
eling; First Stage is the Mechanomyography-based Model (MMG-
Model) to Detect Null/Activity. The Second Stage is the Inertial-
Model to Classify Eating and Drinking Episodes by Window Size of
One Second and Window Step of Half a Second A. Real-time and
on-the-Edge Flow Diagram Implementation for the Facial Expres-
sions Scenario with Motion Threshold Detection and Two Stages
Hierarchical Modeling; The First Stage is the MMG-Model to de-
tect Null/Activity. The Second Stage is the Inertial-based Model to
Classify the Facial Movements Dictionary in Fig. 3.21 B.

(11-19KB) to be deployed in tiny MCUs. Using the MMG-model as a trigger
signal, the power consumption remains below or equal to 0.55 Watts.

The NN structure consists of a convolution (filters=3, kernel= 10, ReLu),
a layer normalization, and batch normalization layers with max-pooling ((5,1))
and dropout (0.5), followed by a flattening layer, a fully connected (FC) layer
of 10 and an FC with softmax. The NN optimizer is AdaDelta, with a learn-
ing rate of 0.9 and categorical cross-entropy (label smoothing 30%) as a loss
function. The metric to monitor during training is a recall at a precision of
0.9. This NN structure is used in the MMG and inertial models for both ap-
plications (Expressions/Eating). The training ran for 200 epochs with early
stopping (patience 30 and restoring weights). The number of parameters of our
NNs is ≤ 3890; thus it is a lightweight design and less susceptible to overfitting.
The NN models were trained using the TensorFlow/Keras 2.12.0 framework.

3.3.5. Experiment Design

Ethical Agreement All participants signed an informed consent following
the Declaration of Helsinki. The ethical committee of Kaiserslautern Univer-
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sity and the German Research Center for Artificial Intelligence have approved
the study. Participation was entirely voluntary and could be withdrawn at any
time. The participants did not receive any compensation for their participa-
tion. The subjects could deny answering questions if they feel uncomfortable
in any way. There are no risks associated with this user study. Discomforts
or inconveniences will be minor and are not likely to happen. All data pro-
vided in this user study will be treated confidentially, will be saved encrypted,
and cannot be viewed by anyone outside this research project unless separate
permission is signed to allow it. The data in this study will be subject to the
General Data Protection Regulation (GDPR) of the European Union (EU)
and treated in compliance with the GPDR.
Evaluation Eating/Drinking Scenario Two groups of volunteers were

recruited for the evaluation, for a total of ten participants. The training group
and the test group have the same size and sex composition, but the participants
do not overlap. For the training group, five volunteers (three female and two
male) participated in the eating monitoring experiment. The volunteers come
from Germany, the Republic of Korea, China, and the United Kingdom, and
range in age from 24 to 64 years old (mean 47). The participants consumed
their lunch or dinner without any restriction in a natural setting during four
separate sessions. It is important to note that participants were not forced
to perform special activities or follow a script to ingest their food. Thus, the
null activities are acquired in a natural/authentic setting. The four sessions
per participant were recorded on different days, ensuring that our device was
worn repeatedly. For the eating/drinking case, the offline evaluation scheme
was 4-fold cross-validation with a leaving-one-session-out. In addition, another
group of five participants (testing group) was recruited for the real-time and
on-the-edge evaluation. Therefore, the real-time evaluation was performed
with another five participants (three female and two male), whose data were
not used during model training. For the RTE assessment, volunteers come
from India, Poland, USA, Germany, and Venezuela, and range in age from
25 to 34 years (mean 28,6). With this methodology, our results are user-
independent and sex-balanced, with high cultural variability.
Evaluation Facial Scenario For the facial scenario, one person mimicked

(randomly-10 sessions) the dictionary in Fig. 3.21 while wearing the MeciFace.
A 10-fold cross-validation with a leave session out scheme was used. The
ten sessions were on different days. Each session has four random tries per
expression. The facial experiment is an extension of the previous work in
[15]. In [15], we fused MMG and inertial data to monitor facial expressions
with a sports cap design and thirteen participants (offline evaluation). In this
work, we focus on the real-time glasses-based idea implementation for a more
ubiquitous/embedded solution.

3.3.6. Real Time and On-The-Edge Recognition

The real-time and on-the-edge flow diagram is presented in Fig. 3.23. The
flow diagram is split into two specific applications; Eating and Facial Muscle
Movement recognition.
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Eating Scenario: TensorFlow Lite for MCU was used to generate the em-
bedded version of the NN models. For RTE recognition, two algorithms were
used. In Fig. 3.23A is the eating/drinking flow diagram. A sliding window
of 2 seconds (100 samples) with a step size of 0.5s is used as an input data
frame to the NNs. For the eating monitoring, the PC is 0.5489 Watts (only
MMG-model), and when the inertial model is activated, the PC is 0.5988
Watts.

Facial Scenario: The Fig. 3.23B depicts the procedure for the facial ex-
pressions’ case. The first step consists of movement detection (using accel-
eration), reducing power consumption by 16% (from 0.55 to 0.46 Watts).
The movement detection is based on a threshold condition ruled by Σ5

n=0 =
∣ax∣n + ∣ay ∣n + ∣az ∣n. The motion detection only applies to the facial scenario
as depicted in Fig. 3.23B. Then, the data collection will run until no move-
ment is detected. Therefore, the size of the input window is variable and
depends on the duration of the detected movements. The NN input is fixed
at 100-time samples, so dynamic resampling of the window size is necessary.
After data collection, the data is resampled to 100 samples using the equation:
Yi = (p∗aindex+1+(NS−p)∗aindex)/NS−1. WhereNS =new sampling, OS =old
sampling, p = i∗OS%NS, index = i∗(OS/NS) for i ∈ (0,NS − 1). The resam-
ple’s output is the input to the MMG model. In the case of activity ≠ Null,
the inertial model will output the recognized facial expression. The power
consumption (PC) for the facial expression solution is 0.55 Watts and 0.65
Watts when MMG and inertial model are activated. 5

3.3.7. Results and Discussion

Figure 3.24.: Results of the offline MMG-Model with Five Volunteers (Leave-one-
session-out cross-validation) in Lunch/Dinner Scenario;F1-score=83
%(A). Results of the offline Inertial-Model with Five Volunteers
(Leave-one-session-out cross-validation) Lunch/Dinner Scenario; F1-
score=88 %(B). Real-Time on-the-Edge Recognition Results for Five
Unseen Volunteers (User-independent) in Snacking Scenario; F1-
score = 94 %(C).

5We used the USB Digital Power Meter: available in https:www.az-
delivery.deenproductscharger-doktor DLA: January 2, 2025
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Figure 3.25.: Results of the offline Inertial-Model for Ten Sessions on Different
Days with Leave-One-Session Out Cross Validation for the Recog-
nition of the Dictionary in Fig. 3.21; Joy/Surprise(1), Anger/Dis-
gust/Anger(2), Winking(3), Fear(4) and taking a pill(5) and F1-
score=95%(A). Real-Time and on-the-Edge Results of the Inertial-
Model for Three Sessions on Different Days for the Recognition of the
Facial Activities in the Dictionary in Fig. 3.21; F1-score=86%(B).

The test group and the training group have the same size and sex distri-
bution but with no overlap between participants. Fig. 3.24A-B shows the
eating/drinking (5 persons, 4-fold cross-validation) offline results for the col-
laborative approach; MMG model (Null vs Activity) Fig. 3.24A and Inertial
model (Eating vs Drinking) Fig. 3.24B. The results in Fig. 3.24A-B are from
the training group (three females and two males) in a leave-one-session out
cross-validation scheme. In Fig. 3.24C are the results for the real-time and on-
the-edge evaluation, performed by the test group. For the RTE, the test group
(three women and two men) ate and drank freely without any restrictions or
instructions. The RTE for the eating/drinking monitoring F1-score was 94%
with five additional subjects (test group), not within the training group. A
total of ten participants performed the eating/drinking scenario evaluation.
Hence, our approach could be generalized, but more unknown participants are
still required.

In Fig. 3.24B, the offline results of the classification between eating and
drinking instances with a score F1 = 88% are displayed. Instances are defined
with a window size of 2 seconds and a step size of 0.5 seconds. Fig. 3.24C
shows the online results of the NN network embedded in the glasses with a
score F1 = 94%. In the online evaluation, a majority voting system was used
to classify the eating/drinking episodes. The voting buffer consists of five
windows of size 2 seconds and step size 0.5 seconds, for a total inference time
of about 4 seconds. Therefore, we can assume that the voting mechanism is
the main reason for the improved performance of 6%.

A 10-fold cross-validation with a leave-one session out (10 sessions on dif-
ferent days) was performed to obtain the offline results in Fig. 3.25A. The
real-time and on-the-edge results for the facial expression scenario (3 sessions,

84



3.3. MeciFace: Mechanomyography and Inertial Fusion-based Glasses for
Edge Real-Time Recognition of Facial and Eating Activities

different days, one volunteer) are shown in Fig. 3.25B. There was a reduction
of 10% in the F1-score between the offline and the embedded solution. We
believe this is due to errors in the motion detection algorithm in conjunction
with the simplified (linear-based) dynamic resampling technique deployed in
the prototype compared to the Fourier-based dynamic resampling of the train-
ing set.

The class of taking a pill degrades the most in performance between online
and offline results, from 100% to 75%. In the offline results, the start and end
of facial movements are manually annotated using the videotaped sessions as
ground truth. In contrast, in online recognition, the start and end of facial
movements depend on the motion detection algorithm. The motion detection
algorithm is based on a threshold to determine the transition from a static
to a moving state. Most classes are composed of a strong movement to make
the facial expression, then a static period, and return to a neutral face with
another strong movement. These steps are easily detected by the motion
detection algorithm. But, the gesture of taking a pill is more complex in
comparison. The activity of taking a pill involves a strong movement of the
hand toward the face, followed by a slow movement of inserting the pill into
the mouth, and ending with a strong movement of the hand coming back
to rest. Thus, the gesture of taking a pill has a semi-static state (inserting
the pill) compared to the other categories with a more defined static state.
Therefore, we believe that the motion detection algorithm is the main cause
of a reduction in the performance of 25% in the gesture of taking a pill. A
future solution could be to deploy two different motion detection algorithms
and make a probabilistic voting decision for classification.

The results (both scenarios) have an F1-score ≥ 86 %, meaning that our
approach holds promise for further development. This work has demonstrated
the feasibility of using the MeciFace idea in two scenarios. Future work can
focus on merging the two scenarios into one to obtain contextual information
about users during sporadic eating activities. Besides, it would be meaningful
to exploit the additional sensing information with the barometer/gas sensor
and the microphone. For example, the gas sensor can detect volatile organic
compounds (VOCs), volatile sulfur compounds (VSCs), and carbon monoxide,
among other gases. Detecting VSCs is an indicator of bacteria growing. In
[104], the authors use the VSCs in exhaled breath as a potential diagnostic
method for oral cancer. On the other hand, the audio information can be used
to detect sound related to emotions as a contextual source [21].

Integrating IMU sensors into smart glasses is not a challenge as they are
already unobtrusively integrated into a commercial smart wearable like in [66].
The FSR and Piezo sensors are also straightforward to integrate due to their
flexible design and minimal circuit requirement with only an analog to digital
input constraint per sensor. Additionally, the mechanomyography sensing
modality is completely passive compared to the IMU-based modality, so the
power consumption is kept low.

Limitations Here we present a list of the limitations we have identified as
well as future directions for optimizing the system:
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Experiment Extension. The evaluation is considered preliminary with only
one user for the facial and ten volunteers for the eating. Thus, an extended ex-
periment setting is crucial to demonstrate the generality of the approach. The
experiment should include variability in sex and culture to have fair training
of the NNs to recognize facial activities as in [15].

Neural Network Tuning. The NNs were deployed using the TensorFlow Lite
framework for MCU without any additional optimization technique. It is rele-
vant to explore optimization approaches such as; quantization aware training,
pruning, and quantization in the bits level, to improve the power consumption
and the performance of the NNs. These optimization techniques are highly
dependent on the selected embedded hardware. We leave this exploration for
future work.

Miniaturization. The hardware in this work is a fast prototype, but the
selected sensors have reduced dimensions, as shown in Table 3.3, which could
be fully embedded in the glasses frame to improve comfort.

Human Feedback. After all the above limitations are addressed, it is crucial
to do a human study to expose the weaknesses of the design and tune it to
include user perception.

3.3.8. Conclusion

In this section, we proposed MeciFace, an innovative energy-efficient wearable
system for real-time facial and eating activity recognition. By leveraging a
glass frame as the wearable accessory, we strategically deployed sensors and
the microcontroller, ensuring minimal intrusion into the user’s daily life. The
fusion of mechanomyography and inertial information on eyeglass temples and
nose bridges allowed for comprehensive monitoring of facial expressions and
eating activities. In the experimental results, we demonstrated the perfor-
mance of MeciFace in real-time and on-the-edge, achieving an F1 score of
≥ 86% for the facial expressions scenario and an F1 score of 94% for the eating
scenario with a test group of five volunteers (user-independent case). Two
groups of volunteers were recruited for the evaluation. The training group
and the test group have the same size and sex composition, but the partici-
pants do not overlap. For the training group, five volunteers (three female and
two male) participated in the eating monitoring experiment in a natural set-
ting during lunch/dinner. The second group of five volunteers (three women
and two men) were recruited for the real-time and on-the-edge evaluation of
the eating monitoring case. Hence, with this methodology, our results are
user-independent and sex-balanced, with high variability across cultures.

The hierarchical scheme implemented in the system significantly reduced
power consumption, maintaining it below 0.55 Watts, thus enhancing the
wearability and practicality of the device.

The TensorFlow Lite for Microcontroller framework enabled the seamless
deployment of neural network-based models in their embedded versions. Tech-
niques such as quantization and pruning can contribute further to memory re-
duction and efficient utilization of embedded resources, ensuring the system’s
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sustainability. MeciFace can be easily extended to include contextual infor-
mation from the environment, thanks to the incorporation of barometer/gas
sensors and a microphone on the glasses’ nose bridge. This extension enhances
the potential of the system to detect stress-triggered eating episodes and offers
a holistic approach to monitoring emotional eating behaviors.
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Chapter 4
Body Posture and Gestures
Recognition with Multipositional
Capacitive Fusion

The author of this thesis has published the content, figures, and tables included
in this chapter in the following publications:
Bello, H., Zhou, B., Suh, S., & Lukowicz, P. (2021, September). Mocapaci:

Posture and gesture detection in loose garments using textile cables as capac-
itive antennas. In Proceedings of the 2021 ACM International Symposium on
Wearable Computers (pp. 78-83).
Bello, H., Zhou, B., Suh, S., Sanchez Marin, L. A., & Lukowicz, P. (2022).

Move with the theremin: Body posture and gesture recognition using the
theremin in loose-garment with embedded textile cables as antennas. Frontiers
in Computer Science, 4, 915280. Journal

Contents

4.1. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3. Electronic and garment prototype . . . . . . . . . . . . . . . . . . 91
4.4. Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.1. General Dictionary Experiment . . . . . . . . . . . . . . . 93
4.4.2. Dance Movements Experiment . . . . . . . . . . . . . . . 94

4.5. Signal and Data Processing . . . . . . . . . . . . . . . . . . . . . . 95
4.5.1. General Dictionary Experiment Evaluation . . . . . . . . 95
4.5.2. Dance Movements Experiment Evaluation . . . . . . . . 96

4.6. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6.1. General Dictionary Experiment Results . . . . . . . . . . 98
4.6.2. Dance Movements Experiment Results . . . . . . . . . . 99

4.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.7.1. General Dictionary Experiment Discussion . . . . . . . . 101

89



Chapter 4: Body Posture and Gestures Recognition with Multipositional
Capacitive Fusion

4.7.2. Dance Movements Experiment Discussion . . . . . . . . 102

4.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1. Problem Statement

Human activity recognition (HAR) is an umbrella term that gives shelter to
various specific applications to understand human behavior. Body postures
and gestures (BPG) recognition are an essential piece of HAR. The popular-
ity of BPG recognition is well earned due to the ability to describe human
activities by changing postures or by detecting specific gestures [51]. BPG
detection could lead to the generation of emotion and personality profiles [92,
144], to understand implicit social interactions [62, 71], to aid in sign language
communication [56], and to predict people’s intentions [162].

Many wearables sensing applications have found their purpose in BPG, de-
livering highly developed solutions such as commercial motion capture systems
[166]. The commercial and research markets for BPG recognition are mainly
dominated by inertial measurement units (IMU) wearable-based techniques
[32, 74, 164], and on the textile side by stretch or pressure sensors [37]. Most
current solutions for BPG recognition have a common baseline requirement:
the sensors need to be firmly attached to the body using tight garments or
dedicated accessories, such as bracelets and straps. Therefore, we could argue
that a reliable method for BPG recognition with loose garments remains a
largely open problem. This work proposes a loose garment solution based on
non-contact capacitive sensing with off-the-shelf components.

We present a novel intelligent garment design approach for body posture/ges-
ture detection in the form of a loose-fitting blazer prototype, ”the MoCa-
Blazer”. The main component of our system is a modified electronic musical
instrument, the theremin [180] for BPG recognition. The well-known musi-
cal instrument usually consists of one or two long metal rod/loop antennas
emitting sub-MHz frequencies. As the thereminist moves inside the anten-
nas’ range, volume and pitch can be controlled by his/her hand’s position.
The theremin antennas are metallic, but any conductive wire/textile can be
used as an antenna due to its intrinsic capacitive sensing. We substituted the
metal rod with soft wires and integrated them inside a loose-fitting garment.
The use of soft textile antennas as the sensing element allows flexible gar-
ment design and seamless tech-garment integration for the specific structure
of different clothes. Our novel approach is evaluated through two experiments
involving defined movements. First, the system is evaluated in the recognition
of 20 arm/torso gestures. Secondly, a set of dance movements is evaluated
to demonstrate the potential use case of our design as a sophisticated/elegant
game controller. The inspiration came from the Nintendo Wii Rayman Raving
Rabbids ®: TV Party- ShakeTV [201]
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4.2. Contributions

Distinctive aspects in our design are a discrete gesture dictionary and the
antennas move with the wearer’s body motion, consequentially changing the
signal. Our contributions include:

• Presenting a wearable approach for detecting BPG that does not require
sensors to be firmly fixed to the body or integrated into a tight-fitting
garment. Instead, sensing is incorporated into a loose-fitting garment.

• Implementing a prototype, ”MoCaBlazer” that adapts the famous theremin
musical instrument [64] as a sensor merged into a loose man’s jacket by
integrating and modifying off-the-shelf components.

• Evaluating the proposed approach with the MoCaBlazer with 14 diverse
participants in an experiment to detect 20 body postures and gestures.

• Applying several deep neural network models from the wearable HAR
domain to the collected data, demonstrating accuracy of 86.25% for the
leave-person-out (LPO) case and up to 97.18 % for the leave-recording-
out (LRO) scenario.

• Fusing multipositional capacitive sensing with Radio Frequency Identifi-
cation (RFID) synchronization for real-time and wireless recognition for
one participant and six classes of a dance movements dictionary, obtain-
ing an f1-score = 82 %. Hence, our ”MoCaBlazer” could be a promising
alternative for an elegant/sophisticated game controller.

4.3. Electronic and garment prototype

The principal component in our electronic garment prototype is an off-the-shelf
electronic musical instrument, ”The OpenTheremin V3” [64]. 1 The theremin
produces musical notes based on the frequency fluctuation of its antennas
caused by the proximity of a person’s hands. In a theremin, we could find
two antennas, one for volume (loop antenna) and another for pitch control
(rod antenna) [180]. Capacitive sensing is the physical principle governing the
behavior of the theremin. The human body could be modeled as a capacitor
plate virtually connected to the earth and, in conjunction with the theremin’s
antennas (second plate), completes a capacitor [178]. Thus, human proximity
changes the effective capacitance of the Clapp LC oscillator in Figure Fig. 4.1
D, affecting its frequency. Therefore, we could infer that relative differences
between body parts and theremin’s antennas could be used to distinguish body
postures. In the present work, the pitch and volume antennas were embedded
in a tailored garment (men’s blazer); thus, the person’s body moves with the
theremin and ”makes music” with different postures and gestures (frequency
profiles).

1The OpenTheremin V3 has been updated to OpenTheremin V4: https://www.gaudi.ch/
OpenTheremin/
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Figure 4.1.: Electronic Garment Design ”the MoCaBlazer”, A Is The Back Part
of The Blazer, B Are The Textile Cables Sewn Inside The Garment,
C Is The Front Part of The Blazer, D Is The Circuit Simplification
Design of The Clapp Oscillator with The Antennas, E Are The Two
Options for Collecting Data Coming From The Blazer; with a UART-
Wired Option, and a Bluetooth-Based Android Application (Flutter
framework) as The Wireless Option.

To test our approach we designed a prototype, the ”MoCaBlazer”, as shown
in Figure Fig. 4.1. We employed a Tom Tailor®L/52 size blazer (best suited
for 184 cm tall persons). In Figure Fig. 4.1A andC the positions and patterns
of our four antennas are depicted. The antennas cover the chest, a small part
of the shoulders, the arms, and the back, as seen in Figure Fig. 4.1 A. This
setting was appropriate for detecting upper-body postures and gestures with-
out altering the tailored garment’s main structure or hindering the wearer’s
motion.

The back antennas (standard 28 AWG cables) [8] in 4.1 A (Arm-Left, Arm-
Right) start from the side pockets and, following a curving pattern (simulating
a volume antenna), pass over the latissimus dorsi muscles toward the deltoids;
they then turn sharply to go along the outer sleeve lines and terminate before
the cuff buttons. The front antennas (TWC24004B textile cables) [199] in 4.1
C (Collar-Left, Collar-Right) were sewn inside the lining without modifying
the structural design of the blazer (see Figure 4.1 B). 2 The Collar-Left and
Collar-Right antennas were arranged to simulate a theremin’s pitch antenna
as closely as possible. Thus, they begin on the side pockets and go to the front-
top button, then turn to align with the inner crease of the lapels and reach
the notch; consecutively lead out of the crease and climb around the shoulder
to the back, and end at the middle edge of the shoulder pad. The antennas’
lengths are 80 cm (front) and 100 cm (back) for this particular blazer size
(L/52).

Two ”OpenTheremin” boards were inside the side pockets of the ”MoCa-
Blazer” (see Figure Fig. 4.1) to handle four channels. The channels frequencies

2TWC24004B textile cables are deprecated, for an alternative option: Interactive Wear
http://www.interactive-wear.com/
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were modified by changing the capacitor (C2) in the clap-oscillator circuit to
minimize cross-talk between them, as depicted in Figure Fig. 4.1 D. Then, the
channels were sampled (frequency-count [184]) at 100 Hz by the Teensy®4.1
[185] development board.

Two options are available for the data collection: a UART serial (115200
Baud rate) as a wired option and a Bluetooth serial (9600 baud rate) as a
wireless option. In the case of the wired alternative, the data is received by
the serial port (USB) in a computer. The computer runs a Python script with
a graphical user interface (GUI) developed using Tkinter [120], as depicted
in Fig. 4.1 E upper element. For the wireless option, the data of the four
channels is sent using the Huzzah-ESP32 Bluetooth serial protocol [58] (in the
upper pocket) to a smartphone. The smartphone runs an android application,
developed using Flutter framework [140], as shown in Fig. 4.1 E lower element.

4.4. Experiment Design

Two experiments were conducted with our garment prototype, the ”MoCa-
Blazer”. The experiments were carried out in an office without user calibra-
tion, i.e., without tuning the antennas’ base frequencies to reduce the impact
of different body capacitances. Inside the office, there were a few metal objects
nearby, which are known to affect capacitive sensing [147]. All participants
signed an agreement following the policies of the university’s committee for
the protection of human subjects and following the Declaration of Helsinki.
The experiment was video-recorded for a further confidential analysis. The
observer and participant followed an ethical/hygienic protocol following the
mandatory public health guidelines at the date of the experiment.

The first experiment scenario was based on a general dictionary of pos-
ture and gestures in Figure Fig. 4.2. The second one was inspired by dance
movements from the Rayman Raving Rabbids: TV Party-Nintendo Wii®as
depicted in Figure Fig. 4.3.

4.4.1. General Dictionary Experiment

To study the flexibility of our system to adapt to an abroad type of gestures, a
general dictionary of 20 upper-body postures/gestures was defined, see Figure
4.2. Fourteen participants mimicked the postures defined in the dictionary in
a random sequence per session while wearing the unbuttoned ”MoCaBlazer”.
The ”MoCaBlazer” is based on a size L/52 blazer (Tom Tailor®), a recom-
mended size for 184 cm tall persons. All participants performed five sessions.
One session consisted of four random appearances of each gesture inside the
dictionary, giving 400 instances per volunteer. The starting and ending point
of a gesture was marked by the null position (standing position). On average,
the volunteer’s resting period was at least 20 minutes (without wearing the
blazer) in between sessions. For some volunteers, the experiment was com-
pleted in two days. The volunteers were seven women, 24-64 years old and
157-183 cm in height; and seven men, 25–34 years old, and 178–183 cm in
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Figure 4.2.: Twenty General Upper-Body Gestures/Postures Dictionary with Ex-
ample Signals. x = (0,400) Time Steps, y:Norm.

height.

4.4.2. Dance Movements Experiment

As an application-specific experiment, a dance movements dictionary contain-
ing the eight postures depicted in Figure 4.3 was defined. It is essential to high-
light that the data transmission from the ”MoCaBlazer” for this experiment
was wireless. Therefore the capacitive channels were floating (not connected
to the ground). The dance movements were selected from the game Rayman
Raving Rabbids: TV Party-Nintendo Wii®to test the feasibility of using the
system as a sophisticated game controller. Three volunteers were asked to im-
itate the eight movements using the buttoned ”MoCaBlazer”. Three sessions
were recorded per volunteer; each session contained five random appearances
per gesture inside the dictionary for a total of 120 instances per participant.
The volunteers were asked to rest (without wearing the blazer) for at least 10
minutes in between sessions. The participants were two men and one woman,
26-30 years old and 160-183 cm in height.

Figure 4.3.: Eight Dance Movements Dictionary with Example Signals. x =
(0,400) Time Steps, y:Norm(0,1).
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4.5. Signal and Data Processing

As shown in Figure 4.1, the Clapp oscillators generated four data channels.
The wearer’s movements alter the channels’ fundamental frequency. The chan-
nels’ data is processed as a time sequence. The granularity of the evaluation
was a complete gesture/instance. An instance was completed when it included
a change from the standing position (starting point) and a return to the stand-
ing position (ending point). Furthermore, the impact of common and subtle
disturbances on the four capacitive channels was reduced by normalizing the
gesture/posture. The digital signal processing was slightly different for the two
types of experiments. The videos of both experiments were used as ground
truth in a manual labeling procedure.

4.5.1. General Dictionary Experiment Evaluation

The fundamental frequencies of the channels could be seen as a bias differ-
ence between the four channels. A normalization procedure was performed
to remove these biases and reduce the capacitive sensing modality reliance on
the ground. The normalization consisted of subtracting the average of the
gesture’s first (starting point) and last values (ending point). Then, the nor-
malized four channels’ time sequences of each posture/gesture were fed to a
fourth-order Butterworth band-pass filter with pass frequencies between 1 Hz
to 10 Hz. The duration of gestures performed was not constant, which led to
variations in the number of samples per instance. The average duration of a
gesture was around 2 seconds (200 samples at 100Hz). A window of 4 seconds
(400 samples at 100Hz) was selected to guarantee the activity’s capture. The
signals were dilated or contracted depending on whether the gesture contained
less or more than 400 samples. Due to the dynamic nature of the applied re-
sampling procedure (dilation or contraction), this is called time-warping [69].
The signals dynamically resampled (upsampled or downsampled) to 400-time
steps provided a fixed-size input for the neural network. The time-warping
process was based on the Fourier method [106] implemented in the SciPy li-
brary [193]. The normalization procedure forced the gesture to start and end
circa the same value. Hence, the Fourier method was employed without a win-
dow function, which is a method customarily used to avoid ringing artifacts.

A total data of 5600 gestures/instances of the dictionary in Figure Figure 4.2
(fourteen participants) were processed.

Deep Learning Model

Deep learning models such as 1D-LeNet5 [109, 182], DeepConvLSTM [146],
and Conv2D [94, 95, 174] were evaluated. The best trade-off between per-
formance, parameters, and training time was obtained from a modified 1D-
LeNet5 model (see Table 4.1). The modified 1D-LeNet5 was defined as a
convolution (conv) - max pooling (maxpool)-conv-maxpool-conv- fully con-
nected (fc)-fc-softmax layers with batch normalization [86] and dropout [183]
on the convolution layers.
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Figure 4.4.: Data Partition Scheme to Train and Test the Deep Learning Mod-
els. A Shows the Leave-Recording Out (LRO) and Leave-Person Out
(LPO) Paradigms Used for the Data of the Twenty General Postures.
B Shows the Leave-Recording Out (LRO) Scheme Employed for the
Data of the Eight Dance Movements.

Leave-recording out (LRO) and Leave-person out (LPO) schemes were used
as depicted in Figure 4.4 A. The LRO paradigm studies the method’s perfor-
mance for a known group of people, while LPO evaluates the model’s perfor-
mance in the case of unknown persons. We ran all the person’s permutations
or recording combinations within each run and summarized the confusion ma-
trix together. That means a complete run of LRO has 5 and LPO has 14× 13
train-valid-test cycles. The number of epochs used was 500, stopping when
there were signs of overfitting. The three convolution layers are used with a
kernel size of 41 and the activation function of ReLU. For max pooling, the
pool size was (40, 40) for the first convolution (400, 40) and (4, 40) for the
second convolution (40, 40). The third convolution was of size (4, 40) without
pooling. A flattening layer of 160 was followed by a fully connected layer of
100. The twenty outputs for the different activities in Figure 4.2 are then
converted into probabilities by a fully connected layer and softmax function.
The categorical cross-entropy loss function and Adam optimizer [97] were used
in the optimization of the neural network.

4.5.2. Dance Movements Experiment Evaluation

In this experiment, the time sequences of the four channels were resampled/time-
warped to 400-time steps using the same methodology as above The signals

were normalized between 0 and 1, as xnorm = x−min(X)
max(X)−min(X) . Where x is a

one-time step, X is a sequence of 400-time steps, and xnorm is the normalized
time step.

In total four deep learning models were generated. 3 Three individual mod-
els per volunteer were trained; two sessions from the same person were used as

3The deep learning framework was TensorFlow version 2.8.0 [2, 124] and Keras version
2.8.0 [45] in Google Colab environment [27].
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training, and the third session was for testing. Moreover, a fourth model was
developed using two sessions from each participant (three in total) as training
and the third session for testing as shown in Figure Fig. 4.4 B. A total data
of 360 gestures of the dictionary in Figure Fig. 4.3 (three participants) were
fed into a one-dimension convolutional neural network as shown in Figure 4.5.
The neural network’s input layer was a time series of 400 samples per four
channels/antennas (400,4,1). Two convolutional layers followed this with a
max-pooling of 10, batch normalization, and dropout of 20 %. A third con-
volutional layer was added but without max pooling. Next, a flattening layer
of 160 was followed by a fully connected layer of 100. The eight outputs from
the different activities in Figure 4.3 were converted to probabilities using a
fully connected layer and a softmax function. The training consisted of 500
epochs for all the models. The optimization of the neural network used the
categorical cross-entropy loss function and stochastic gradient descent (SGD)
[160] optimizer with learning rate=0.005 and momentum=0.001.

Figure 4.5.: Structure of the 1DConv Neural Network Model Used for The Data
of The Eight Dance Movements. Input Shape(time-Steps,Channels,1)
= (400,4,1) and Output Shape = 8 Classes.

97



Chapter 4: Body Posture and Gestures Recognition with Multipositional
Capacitive Fusion

Real-Time recognition with RFID Synchronization

Following the training and testing paradigms in Fig. 4.4 B a group model was
built for the three participants in the dance experiment. The resulting model
considered an entire gesture when the person follows the sequence; standing-
gesture-standing. So, this sequence needs to be matched to do a real-time
evaluation. We proposed to use Radio Frequency Identification (RFID) as
a synchronization technique to signal the starting and ending points of the
gesture. RFID synchronization was employed in the calibration of atmospheric
pressure sensors to estimate the vertical position of the hand in [16]. The RFID
system comprehends two parts; the reader and the tag. The most commonly
used extension of RFID is near-field communication (NFC), which is available
in most smartphones to make over-the-air payments. In [16] the reader was
on the wrist and the tag was around the pocket to simulate the NFC systems.

It should be noted that there is already an NFC system in our smartphones
and that the pocket is a common position to carry our phones. In addition,
RFID stickers are nowadays a commonly used solution for tracking merchan-
dise in stores in a ubiquitous and unobstructed manner. Hence, we propose
a setting for the real-time evaluation as the one shown in Figure Fig. 4.6 A.
The wrist was the selected position for the reader, and the side pocket of
the ”MoCaBlazer” was the position for the RFID tag (Mifare Classic 13.56
MHz). Figure Fig. 4.6 B shows a volunteer wearing the synchronization sys-
tem. The RFID signal and the ”MoCaBlazer” four-channel outputs were sent
using Bluetooth serial (wireless) to a Python script running the TensorFlow
model. The Python script follows the flow diagram in Figure Fig. 4.6 C. The
real-time evaluation was performed with participant number two of the three
participants pool. The participant was asked to do five repetitions per dance
gesture (40 motions).

It is worth mentioning that the real-time recognition with RFID synchro-
nization did not include any pre-training stage with the RFID signal. The
model used here was generated from the offline data without RFID. The in-
put data to the offline model was manually labeled with a granularity of 50
fps (recorded video).

4.6. Results

4.6.1. General Dictionary Experiment Results

In Table 4.1 the results for the three models; 1D-LeNet5, DeepConvLSTM, and
Conv2D are compared. There is not a remarkable variation across the models.
The confusion matrices using Conv2D for the Leave-recording out (LRO) and
for Leave-person out (LPO) are depicted in Fig. 4.7. The results confirmed a
robust recognition of the 20 postures/gestures dictionary. The LRO or user-
dependent case gave an average accuracy of 95%, see Figure Fig. 4.7 A. There
was a decrease of around 10% for the LPO or user-independent case, shown in
Figure Fig. 4.7 B. Furthermore, we achieved an average accuracy of 86.25 %,
with nine classes out of the 20 returning above 95 % accuracy. Hence, we could
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Figure 4.6.: Real-Time Recognition System. A The ”MoCaBlazer” with the RFID
Reader-Tag Pair Positions. B Volunteer Wearing the ”MoCaBlazer”
with the RFID Synchronization System. C Flow Diagram of the Real-
Time Recognition Python Script.

Table 4.1.: Comparison Results for the General 20 Body Postures and Gestures
Dictionary (in %) with Various Models

Method Accuracy (LRO) Accuracy (LPO) Parameters Training Time

1D-LeNet5 96.86±0.46 85.34±7.83 152,880 1.00x

DeepConvLSTM 94.11±0.82 85.42±5.84 440,852 2.32x

Conv2D 97.18±0.70 86.25±8.09 584,800 0.86x
aLRO: leave recording out, LPO: leave person out.
bThe accuracy numbers are represented as mean ± std, the standard deviation is from
within each complete cross-validation.
c1.00x Training time of 50 minutes as the baseline of complete LRO on NVidia RTX A6000
with the TensorFlow framework.

conclude that these results are good enough to consider that our model will
perform well for the stranger case; people not included in its training phase.

4.6.2. Dance Movements Experiment Results

Four models were generated using the neural network structure in Figure
Fig. 4.5. The results for the three individual models are shown in the confusion
matrices in Figure Fig. 4.8. Fig. 4.8 A presents the recognition for the first
model trained (2 sessions) and tested (1 session) with the data from volunteer
number one. The first participant obtained the lowest performance, f1-score
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Figure 4.7.: Confusion Matrices for the Data of the Twenty General Gesture Dic-
tionary.A Results for the Leave-Recording Out (LRO) Scheme. B
Results for the Leave-Person Out (LPO) Scheme.

= 93 %. Fig. 4.8 B depicts the result for Leave-one recording out (LRO) of
the second volunteer, showing an f1-score = 100 %. For the third participant,
the results are only 5% less than the perfect f1-score. With this performance,
our design successfully recognized the gesture dictionary in Figure Fig. 4.3.

Figure 4.8.: Individual Models Confusion Matrices for the Data of the Eight Dance
Movements Dictionary. A Results for the Leave-Recording Out (LRO)
Scheme for Participant One. B Results for the Leave-Recording
Out (LRO) Scheme for Participant Two. C Results for the Leave-
Recording Out (LRO) Scheme for Participant Three.

The data partition (train and test) of the fourth model is in 4.4 B, and
the result is illustrated in 4.9 A with a f1-score = 92 %. The fourth model
was tested in real-time in conjunction with RFID synchronization and gave
an f1-score = 82 % as shown in 4.9 B for 6 classes. In the confusion matrix
in 4.9 B, the classes 4-5 and the classes 6-7 were merged, which gives a total
of 6 classes. In the case of merged classes 4-5, the fourth class was completely
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confused, with half of its instances being recognized in class number 1 and
the other half in class number 5. Moreover, in the case of the merged classes
6-7, the seventh class was recognized consistently as class number 6. The
above indicates that the dance movements 4 and 7 in Fig. 4.3 could not be
recognized correctly with the combination of the fourth deep learning model
(offline) and the RFID synchronization (online). Despite the negative cases of
classes 4 and 7, the real-time recognition with RFID synchronization shows
decent performance for the merged classes (6 classes in total).

Figure 4.9.: Group Model Evaluation Results. A Confusion Matrix for the Offline
Test Results with Leave-Recording Out (LRO) for Three Participants.
B Confusion Matrix for the Online Results Using the RFID Synchro-
nization Method for One Volunteer.

4.7. Discussion

4.7.1. General Dictionary Experiment Discussion

To discuss our results the confusion matrices in Fig. 4.7 and the 20 gesture/-
posture dictionary in Figure 4.2 will be referenced as a duo. In the case of the
Leave-recording out results in Fig. 4.7 A, the accuracy was above 90 % for the
20 classes. On the other hand, in Fig. 4.7 B the result for the Leave-person
out scheme is depicted, and we could observe several pairs of false recognition.
For the pairs of arms-up (Gesture 12) / open-arms (10) and forearms-block (9)
/ frame-picture (19), the arm motions and directions are physically similar.
For the case of lean-forward (1) / frame-picture (19), the similarity is seen
in the signals in Figure Fig. 4.2; we believe it is a negative effect of partici-
pants of different body shapes wearing the same size blazer L/52, which leads
to misclassification of 11 %. Nonetheless, for forearms-block (9) / hands-on-
head(11) pair with similar signal patterns and elbow flexion, the misclassifica-
tion is only 5 %. It is worth noticing that the activities with shoulder motion,
such as shrug (7), forearms-block (9), hands-on head (11), arms-up(12), and
frame-picture(19), have a reduction in accuracy in the Leave-person out (LPO)
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result compared to the Leave-recording out (LRO) case. The confusion could
be due to the lack of antennas to cover the shoulders of the ”MoCaBlazer”
and that all fourteen volunteers (of different body shapes) were wearing the
same one-size blazer.

4.7.2. Dance Movements Experiment Discussion

The result of the individual model of participant number one shows some
misclassification (see Fig. 4.8 A). For the classes/dance movements 1 and 4,
20 % of the gestures are confused; these two gestures have in common that the
arms move to the same side of the body trunk but at a different height. The
same happens to participant number three as seen in Fig. 4.8 C. The similarity
between these two participants is that they are both men and have a difference
in height of 8 cm. In the triplet consisting of dance movements 5, 6, and 7,
the seventh and fifth gestures were falsely identified as number six for the case
of participant number one. In the case of the third participant, movement
number seven has 20 % of its instances confused with the fifth movement.
Such gestures include moving both arms in between the legs. A significant
difference in the activities is how the legs move; left/right leg in the air or
both feet on the ground with the knee bent, and how the shoulders move.
The lack of antennas on the shoulder blades and not antennas on the lower
part of the body could be the sources of the misclassification. For the second
participant, an f1-score = 100 % was achieved. This volunteer is a woman with
a height of 160 cm. The ”MoCaBlazer” was looser for the second participant,
which indicates the blazer has more flexibility and could be interpreted as
more wrinkles on the garment while doing the movements.
The fourth model was developed using the LRO scheme depicted in Fig. 4.4

B. With this model two tests were performed; LRO-Offline with the three
participants and confusion matrix in Figure Fig. 4.9 A, and the second test
was a real-time (online) with RFID synchronization which performance is in
Fig. 4.9 B.
For the first test of the fourth model (offline), the highest recognition error

was observed for two pairs of classes, 4/1 and 3/0, with 13 % of the instances
being wrongly recognized. These two pairs of classes consisted of both arms
moving from the standing position (starting point) to the right/left, with
the main difference in how much height the arms reach, including a visually
distinctive shoulder movement. As seen in the individual models in Fig. 4.8,
the classes number 5, 6, and 7 are confused with each other, which also occurs
in the group-model/fourth model, so it was a foreseen situation. An f1-score
= 92 % for the recognition of the gestures in the dance movements dictionary
makes our system a good solution for a sophisticated and elegant dance game
controller.
The second test result, the real-time with RFID synchronization in Fig. 4.9

B, shows perfect recognition for the dance movements 0,1 and 2. This is not
the case for movement number 3, with 40 % of its instances being confused
with the merged class 6-7. The merged class 6-7 could be considered as activity
number 6 in Fig. 4.3 G, due to the consistent recognition of dance movement
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number 7 as dance movement number 6. Therefore, the comparison between
dance gesture number 3 in Fig. 4.3 D and gesture number 6 in Fig. 4.3 G
applies. We suspect two reasons for the 40 % wrongly recognized instances;
the first could be the slight height difference in the arms’ positions and the
non-presence of antennas on the shoulders or around the legs. Secondly, it
is essential to remark that this confusion is not present in the offline results,
which concludes that our solution depends highly on excellent labeling to mark
the gesture’s starting point and ending point.

The offline results were obtained using labeling/marking the starting point
and ending point with high accuracy in 50 fps/camera. The RFID labeling
or marking of the starting point and ending point has an intrinsic error of
a slight hand movement (location of RFID reader) to get close enough and
detect the RFID tag (on the side pocket). In addition, the RFID solution has
a granularity of seconds instead of milliseconds (video-based labeling /offline
case)

The merged class 4-5 has a 33 % misclassification with class number 1, and
this confusion can also be observed in the offline result of the three volunteers
model. Despite the far from perfect RFID synchronization to signal a gesture
sequence ”standing-gesture-standing” in comparison with the offline version
(in the order of milliseconds), we could consider it a promising technique for
real-time recognition. A solution to improve the RFID fusion results could be
to train the model with data synchronized through the RFID in-situ labeling.

4.8. Conclusion

This work has explored a method for posture and body gesture recognition
based on a commercially available electronic theremin, the ”OpenTheremin”,
which, together with conductive textile antennas, was embedded in a loose-
fitting garment, the ”MoCaBlazer”. Our solution can be deployed and inte-
grated in a fashion and fast manner into loose garments. The ”MoCaBlazer”
was evaluated with fourteen participants (sex-balanced) mimicking a general
dictionary of 20 upper-body movements. Additionally, as an application-
specific evaluation, a pool of three volunteers participated in mimicking an
eight dance movements dictionary inspired by the Rayman Raving Rabbids:
TV Party-Nintendo Wii ®game.

For the 20 gestures dictionary, different deep learning models were selected,
such as 1D-LeNet5, DeepConvLSTM, and Conv2D. For the case of the eight
dance movements dictionary, a one-dimension convolutional neural network
was selected. In both evaluations, the system has offered competitive perfor-
mance compared to state-of-the-art in loose garments for BPG detection. In
the experiment design, repeated wearing of the ”MoCaBlazer” was enforced
(per session) to make the results robust against disturbances of re-wearing.

With our chosen sensing modality, the non-contact capacitive method, we
use the advantages of being independent of muscular strength/pressure and,
therefore, no need for tight or elastic garments. In addition, it is relatively not
sensitive to sweat or skin dryness [219]. A limitation of the capacitive sensing
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modality is that it is sensitive to conductors, which include persons/objects
in close range with different dielectric properties compared to the antennas
[147]. To avoid the effect of environmental disturbances as much as possible,
we normalized our data per gesture window, removing the dependency on
absolute values, and built our system upon the relative differences between
capacitive channels.
The ”MoCaBlazer” data collection for the dance gesture experiment was

wirelessly transmitted to an Android phone application. With an f1-score =
92% for eight classes with wirelessly collected data, our design demonstrated
robustness against capacitive channel drifting values due to floating ground
conditions (typical case in wearables). Moreover, a real-time test with RFID
synchronization was done (wireless-online) for one volunteer with f1-score =
82 % for six classes.
Our ”MoCaBlazer” evaluation has shown promising results in loose gar-

ments as a body posture detection method. Hence, we would continue de-
veloping elaborated garment integration; with miniaturized sensing modules,
more channels, stretchable antennas, and different antenna pattern designs. In
the future, the fusion with other sensors such as IMU for continuous posture
detection will be an exciting field to explore, in addition to real-time system
deployment/evaluation at the edge (embedded devices).
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This dissertation has brought to the wearable community a set of measurement
tools that can be used to expand the knowledge about the expressiveness of
body movements. This work focused on wearable-based design solutions to
be ubiquitous and include the situational context of the body’s actions. The
aim was the exploration of experimental scenarios and gestures that happen
when the body expresses itself. It is relevant to highlight that it is understood
that the evaluations presented in this thesis are hardware-based capability
evaluations. This means that it was never intended to stimulate real emotions
in the participants. Overall, the designs have been tested in experimental
settings with evaluation based on mimicked gestures.

The exploration includes scenarios such as vertical hand positioning in cases
such as a position relative to the environment in an order and picking scenarios
and positions relative to body parts (head, chest, and feet). A fusion between
differential atmospheric pressure and radio-frequency identification technology
is employed for those specific scenarios. Hand gesture recognition is explored
with a multimodal fusion, employing textile-based capacitive sensing channels
and inertial information to recognize a gesture dictionary used for drone con-
trol. Even though a specific set of gestures was recognized, the system can be
extended to applications such as signal language and game control. The hand
vertical positioning and hand gesture recognition application are the topics of
Chapter 2.

In Chapter 3, the goal is to monitor facial and head muscle movements. The
modalities explored were passive-based such as mechanomyography (MMG),
including sound and pressure-based mechnomyography and inertial sensing
information. The chapter presented the evolution of the hardware-software
co-design. The first design is a bulky but wearable helmet design with stetho-
scope microphones distributed around the face. With this bulky design, this
work put forward the idea of using differential sound MMG information for
facial muscle movement recognition. The second design demonstrates that
the privacy-aware audio information for facial muscle pattern recognition is
relevant but requires higher complexity than pressure MMG and inertial in-
formation. Besides, the size factor of the stethoscope-microphone negatively

105



Chapter 5: Conclusion

affects the participant’s comfort. Hence, the last design of the chapter is a
glasses-based design that includes pressure MMG and inertial sensing modali-
ties for the real-time and on-the-edge evaluation of the idea. The glasses-based
design recognizes the facial muscle movement related to facial expression and
eating/drinking episodes. The goal is to expand further capabilities to quan-
tify facial movement caused by stress-related eating/drinking behaviors.

Finally, in Chapter 4, body posture gesture (BPG) recognition is studied.
We introduce an approach for detecting BPG that does not require sensors to
be firmly fixed to the body or integrated into a tight-fitting garment. Instead,
sensing is incorporated into a loose-fitting garment. Evaluating the proposed
approach with the MoCaBlazer with 14 diverse participants in an experiment
to detect 20 body postures and gestures. The work is expanded by fusing
multipositional capacitive sensing with Radio Frequency Identification (RFID)
synchronization for real-time and wireless recognition for one participant and
six classes of a dance movements dictionary. Thus, our ”MoCaBlazer” could
be a promising alternative for an elegant/sophisticated game controller.

In summary, our hardware and software co-designs focused on the challenges
in wearable and ubiquitous computing. Such as restrictions in memory, power,
and reduced computing capabilities compared to server/cloud-based solutions.
Furthermore, our sensing modalities are tailored to face specific tasks which
reduces the complexity of the algorithm while increasing its performance in
embedded devices. The sensing modalities employed are privacy-aware and
passive. The experiment designs followed the Declaration of Helsinki[171] for
the protection of human subjects and the Ethical Principles for Research with
Human Subjects, the Belmont Agreement[43]. This means that the partici-
pant’s comfort, data, and safety were the priority in developing human-centric
artificial intelligence-based solutions.

5.1. Limitations and Future Work

In general, our set of measurement tools for the “Expressiveness of Human
Body Movements” are not end-to-end designs. This means that our systems,
although they have proven their relevance in controlled experimental environ-
ments, are still far from being commercial solutions. Experimental settings in
the wild and on-the-edge evaluations are important future steps. A summary
list of relevant limitations is as follows:

• Size of the prototypes: Our designs have the potential to be greatly
reduced in size with proper electronic printed board designs. This will
facilitate experimental settings in the wild and the evaluation of the user
experience on an everyday basis.

• Latency: The algorithms are not optimized to the capabilities of the
hardware. Techniques such as multicore running, sleep modes, and mem-
ory sharing can positively influence the inference time of the models.

• Model Size: For the case of neural network-based solutions, we have
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not employed size optimization techniques such as quantization-aware
training, pruning, or compression using knowledge distillation.

• Stimulate real expressions: Our experiments are based on mimick-
ing. They focus on testing the potential of the hardware/software de-
signs. Still, monitoring of real expressions is missing. To induce real
expression in humans is another field of research and it is outside of the
scope of this work.

The two most relevant future aspects are the reduction of the size of the sys-
tems and their evaluation in the wild with realistic body movements. All of
the designs have the potential of being deployed on the edge. With tuned
hardware designs it is possible to reduce the latency and deploy the neural
network-based algorithm into the embedded device. Complete data process-
ing in embedded devices will improve data security and privacy protection
and, more importantly, will give systems the ubiquity needed for real and
continuous monitoring of user expressiveness.

To finish this dissertation here are the thoughts of Nikola Tesla. It is para-
doxical, yet true, to say, that the more we know, the more ignorant we become
in the absolute sense, for it is only through enlightenment that we become
conscious of our limitations. Precisely one of the most gratifying results of in-
tellectual evolution is the continuous opening up of new and greater prospects.
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