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Abstract. Isotropic curves in Minkowski spacetime M(1,3) are classified with respect to mul-
tiplicity of curvature. The natural curve parameter is closely related to one introduced by E.
Vessiot. Four sets of Frenet equations are obtained. This multiplicity of four corresponds to the
four disconnected parts into which the lightcone of a two dimensional Minkowski space M(1,1) is
decomposed after removal of its apex. This implies four Darboux bivectors and hence, four diffe-
rent equations of motion on Spin(1,3). Comparing with an explicit representation of real isotropic
curves by M. Pinl et al., the way to the general solution of the equations of motion is discovered.

1. INTRODUCTION

With the aim to develop a relativistic quantum dynamic for several interacting
electrons (positrons), David Hestenes [1] conjectured the electron as a selfinteracting
pointcharge which moves on a lightlike, i.e., an isotropic curve in spacetime M(1, 3).

Whereas differential geometry of complex isotropic curves has a long tradition
[2], [3], real-valued isotropic curves in Minkowski space M(1,3) have been discussed
quite rarely [4], [5].

The purpose of this article therefore is to give a selfcontained treatment of real
isotropic curves in spacetime M(1,3) with no recourse to complex analysis. Real
geometric algebra [6] will be made use of throughout.

Differential geometry of curves in R"™ is so widespread [7] because the euclidean
structure of R" admits an obvious choice of a natural invariant curve parameter,
namely, the arclength. Just this quantity vanishes for isotropic curves. The missing
natural curve parameter caused the main problem in section 5 of ref. [1].

Section 2 of this article starts with the simple demonstration, that the natural pa-
rameter discovered by E. Vessiot [2] for complex curves also applies to non—straight
real isotropic curves after a slight modification. Subsequently higher order deri-
vatives of the position vector and various inner products of them are formed. In
this way, two basic differential invariants are obtained which, supplemented by the
Vessiot parameter, allow to represent all higher order invariants in terms of linear
combinations of their derivatives. Squaring outer products of position vector deri-
vatives up to order four, one finds that in M(1, 3) isotropic curves of only double
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and triple curvature exist. This means, that the first four derivatives of the position
vector with respect to the Vessiot parameter either span a 3—space M(1,2) in case
of double curvature, or, the full 4-space M(1, 3) in case of triple curvature.

In section 3, the derivatives of the position vector are related to an orthogonal
frame by means of a generalized Gram-Schmidt process. This generalization is
needed in order to take account of the pseudo—euclidean structure of M(1, 3). Four
linear mappings from the orthogonal frame to the derivatives of the curve position
vector are found, which imply four different sets of Frenet equations. With the help
of spatial rotations in M(1,3), this fourfold multiplicity is concentrated on a two—
dimensional subspace M(1, 1). The isotropic cone of this subspace, after removal of
the apex, just decays into the four disconnected parts on which the four different
sets of Frenet equations generate SO(1,1) motions. Guided by this geometrical
explanation, two reflection elements of the group O(1,3) are found, which allow to
obtain all three other Frenet systems from one by successive applications of them.

Section 4 is devoted to the derivation of equations of motion on one cover of
Spin(1,3) from the Frenet equations acting on SO(1,3). Corresponding to the fourfold
multiplicity of the Frenet equations, four Darboux bivectors result, which, by means
of the two reflections mentioned above, successively may be reduced to one normal
form.

Finally, in section 5, the quadrature—free, explicit representation of real isotro-
pic curves by Max Pinl et al. [4] is translated into the highly efficient language of
spacetime algebra. After calculating the isotropy group of the curve tangent vector
(a 3-parameter Lie group), a closed—form expression is discovered for the general
solution spinor of the equations of motion on Spin(1,3). This spinor then provides
all solutions of the corresponding Monge problem. In general however, it is no longer
free of quadratures and depends on the solutions of a linear, homogeneous second
order differential equation over the field of complex valued functions composed of a
scalar and a pseudoscalar part. The independent variable of these functions is the
real-valued Vessiot parameter.

2. THE NATURAL PARAMETER, DIFFERENTIAL INVARIANTS AND COMOVING FRAMES

Throughout this article the coordinate—free, elegant formulation of vector algebra in
spacetime M(1, 3) due to David Hestenes [8] is employed.

Let the position vector of a representative curve point in M(1,3) be {z, where !
is a characteristic length and the dimensionless z = (29 + Z)7yp. Now, if @« € R is an
arbitrary parameter, a curve z = z(«) is called lightlike = isotropic if the tangent

dz . . -
vector o= 2’ («) satisfies the isotropy condition
a

n = (ng + 7)Y, n? = 0 implies n = (&|i| + @)y = —. So,

d
Writing d—z
o
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d2z_ :l:ﬁ dﬁ+dﬁ 4k
da? 7| da = da 70, and Aence
4?2\’ i di\’
— ] == =x—] <0. 2.2
() =~ (7 &) < 22
dit
The conclusion therefore is: Fxcept for straight isotropic lines d_n = uii, p € R, the
!

22 . o
vector Tz always is spacelike, 1.e.,
o

(£) <o ”

2

2
Thus, except for straight isotropic lines, the quantity — (ﬁ) is always positive.
a

Therefore it is ideally suited to take over the role played by the squared tangent vec-
tor or arclength squared in case of (nonisotropic) curves in euclidean space. Namely,
to provide the definition of a natural (invariant) curve parameter 3 according to [2]:

(dQZ(m>2 = 1. (2.4)

d3?
The derivation of the relation between the Vessiot parameter § and an arbitra-
. . . . . dz d? )
ry parameter « is straightforward. Equation (2.1) implies d—z - d—Zz =0 and with
o da

dz _dod: d*:  d*ad: | (da)\® d’z
dg) da?

g~ dfda’ dp* T dp? da
43 4 222\ 2
(&)=

The invariance of 8 may better be displayed when writing it in terms of (vector—

d%z

d
valued) first and second differentials of z, dz = da—z, d’z = da?——= ie.,
do do?

(d8)* = —(d*2)". (2.6)

equations (2.1) and (2.4) lead to

The advantage of employing # as a curve parameter is obvious. All quantities formed
of derivatives of the vector z with respect to 3 then are connected with the curve in
a motion— and parameter—invariant manner.

Higher derivatives soon get clumsy in the traditional notation of quotients and
primes. Let me therefore meet the convention

dz dz, dFt1z

21 :E:z/(ﬁ):z/’ k41 = 2p, = QB = A k> 1. (2.7)
With this compact notation, equations (2.1) and (2.4) lead to
22=0, 21-29=0, 25=-1. (2.8)

Taking successive higher order derivatives of this basic set of equations, as e.g.
29-23=0,20-204+21-23=0 = 21 23 =1, one finds the following
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TABLE I
Scalar differential invariants
order invariants
2 _
2 27 =0
3 21'22:0
4 B=—1, zn-zm=1
5 Zg'ZgZO, 21'24:0
6 232):0, 2924 = —0, Z1-25=0
7 223 - 24 = 0, Zz~25:—323~24:—%0”, 21~ZGZ%O'/, U/Zj—g
i
< Zi=-1|, zm-m=7+%, Z2-26=-30"—2z3-2z5=—-20"—71
5 1 9 _n
z1~z7+22~z6:§a, Z1 27 = 50 + 7
_ ! _ 17 3 _ 5 7 "
224 25 = —T', 2326 = (23-24)" + 57", 20 20 =—357" —5(23 - 24)",
_ " 7.1 _ 7 _ " 3.
9 21 -2 = 14(23 - 2a)" + 57", za-25=-TF, 23 26 =% + 57,
5 ( 11 ! 1"t 71
29z =—3(0"+1), zn-zs=To" 437
Inspection of Table I shows that
Cc=2i=—29-24, T=—22 (2.9)

may be choosen as lowest order invariants beyond 3. Also, as mentioned already
in the introduction, all inner products of higher order derivatives are expressible in
terms of linear combinations of derivatives of ¢ and 7 with rational coefficients.

In order to gain information about the shape of the curve z(f), the square of the
triyector T =2 Azg Azg =ti, i = y9y17273 now is calculated: 72 =T - T = ¢% =
—T-T=—(23NzaANz1) (21 ANza Azz) = —(21 - 23)(23 A 22) - (21 A 22) = 22(21 - 23)%.
Thus, according to Table I,

T? = (21 Aza Az3)? = —1, (2.10)

which means that the vectors 21, 22 and z3 always span a 3-dimensional subspace
of M(1,3). Isotropic curves in M(1,3) therefore either are straight or of double
curvature at least. A condition for the occurrence of triple curvature is found after
evaluating the square of the pseudoscalar P = 21 Azo AzsANza =T Nzg = —z4 AT,

P2=P . P=(uAzshzahz) - (21AzaAzzAz) =—(1—02) <0, (2.11)
Consequently P = 0 if and only if 7 = 02, whereas typically 7 > 02. The quantity
k=Vr1—02>0, (2.12)

which is needed subsequently, therefore is welldefined. That P = 0 implies k = 0,
may be seen from

Z4:—Z4T2:—(Z4T)T—(Z4/\T)T:—(Z4T)T+PT (213)
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and

/

(24 T) T = %zl—}—azQ. (2.14)

In fact, P = 0 in (2.13) leads to

O_I
24 = ?zl + o029, (2.15)
and hence, according to Table I, 7 = —z% = o2, or, k = 0.
Summing up: Isotropic curves in M(1, 3) are either straight lines or typically,
i.e. for & > 0, of triple curvature. Only in the atypical, particular case k = 0

they degenerate to double curvature. Making the agreement to exclude straight
isotropic lines, the vectors 21, 22, z3 and z4 for k > 0 always generate a comoving,
non-orthogonal frame for the curve z.

Let me now calculate the reciprocal frame {z!, 22, 23, 2*} defined by

FPE= ()" A A Az Aza) P, k=1,2,3,4. (2.16)

The result is

1 o’ o’
27 =—021+ 23+ ——< | 24— —%21 —0z29

252 2
9 o o’
25 ==z 4+ F 24 — 521 — 0Zy (217)
23 =z
4 1 o’
t=—— 24— —21—02z
Z\ T A 2
1 for k=1
. k ok .
and satisfies 2% - z; = 0] = { 0 for k1 as it should.
In the exceptional case k = 0, equation (2.15) is valid and (2.17) degenerates into
2l = —0z1 + 23
22 = —24 (2.18)
23 =z,
if the definition
1 o'
K_2(24 — 52’1 — 0'22) =0

is met for &k = 0.
For k > 0, all derivatives of z of order greater than four may be decomposed into
the frame {z1, 29, 23, 24 }. For instance

4
zfl:%:Ezk(zkwg,), k> 0. (2.19)
k=1
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Making use of Table I, one finds

3 / !
=z =2 <,€2_|_0-__K0-)+z2 <—O'I—U'K—)+Z30'—|—Z4K—, k>0, (2.20)
K 2 K K

which supplemented by
2 = ze, 2h=z3, 25=17a4 (2.21)

may be considered as a linear, homogeneous system which determines every isotropic
curve of triple curvature in M(1, 3) for given & and ¢. In the exceptional case k = 0,
equation (2.15) implies the system

0./

/ 7 I
23:2:4:52:1—}—0'22, 2y = 23, 27 =22, k=0, (2.22)

which determines every isotropic curve of double curvature in M(1, 3) for given o.
The systems (2.20), (2.21) and (2.22) via generalized Gram-Schmidt orthonormali-
zations of the frame z; lead to Frenet formulas and Darboux bivectors for isotropic
curves as is shown in the following section.

3. FRENET FORMULAS

As indicated already in the introduction, the Gram-Schmidt orthonormalization
process, known for euclidean vector spaces, needs modifications in order to account
for the pseudo-euclidean structure of M(1,3). Let me start this modified orthonor-
malization with the triple {z1, 22, z3} since according to (2.10) it always generates a
3—dimensional frame. In this triple zo is a spacelike unit vector, i.e. 22 = —1. So,
without loss of generality, one may put

Z9 = €343, 6% =1, e3€eR. (31)

The vectors z; and z3 are orthogonal to g3 = e3z3, as seen from Table I. Thus,
there are two normalizable orthogonal vectors go and g2, g0 - g2 = 0, such that
go = A1z1+A323 and g2 = p121 +psz3, A,k € R. Now, goAga = goga = (A1pz—
Aspi1)z1 A zz3 = Dz A z3, and hence (gog2)? = D*(z1 A 23)? = D? = —g2g3 = +1,
which finally implies (except for an interchange of indices 0 and 2)

go=1=-g3=-g3, g0-92=0, g, g3=0. (3.2)

Note, that because of (3.2), the triple {z1, 22, z3} spans a Minkowski space M(1, 2)
for which the signature had to be calculated! This is one of the peculiarities of the
pseudo—euclidean structure which do not occur in standard theory of curves [7]. The
determination of linear mappings from z1, 23 to gg, g2 now is straightforward. One

finds

c0goN/20+0 = 021 + 23, €292\/20+ 0 = —z1(0+ 0) + 23,

20+0>0, ez=1, e, €R, pu=0,23,

(3.3)
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with the inverse
1
z21 = \/ﬁ (5090 - 5292) )

Equations (3.1) and (3.4) represent the triple {z1, 22,23} as the image of 2% = 8
different one—parameter families of linear mappings applied to the orthonormal triad
{90, 92, 93}. This eightfold multiplicity arises because each of the parameters eg, €5
and e3 independently may take the values £1.

The question now is, how many of these different linear mappings can be made
equivalent by means of the group SO(1,3) of Lorentz rotations? Or, otherwise asked,
how many normal forms of (3.1) and (3.4) remain modulo the group SO(1,3) [9],
when the triad {go, g2, g3} is extended (lifted) to the tetrad

(3.4)

zZ3 =

1
\/ﬁ [e0gol(e + o) + 0e2g2] .

gu=LUe, UL, pu=0,1,23, (3.5)
where
ey = Ry,R, +,=0, RR=1, iR=Ri, (3.6)
and
A s
L=e3%%  \gR, U=eillmealeses (3.7)

The task of the spinor L is to cancel /2¢ + ¢ in (3.3) and (3.4), as will be shown
later. The spinor U generates a spatial rotation in the ez, es—plane with an angle =
for e3 = —1 and with the angle 0,i.e., U =1, for e3 = +1. For u =0, 2, 3, equations
(3.5) therefore read

gJo = Leoi, gs = 63L62E, g3 = 63L€3l~; = &3€3, (38)
whence equation (3.1) yields
Z9 = €3. (39)

Inserting (3.8) into (3.4), one finds first of all the vector e; multiplied by the signfac-
tor £3e5. Since however ¢y and €2 are independent signfactors, no generality is lost
in replacing e3¢; by €2 simply. In this way, one obtains

€p€g — €2€2 > coeo(o+ o) + oeneq +

z1 = , 2z3=1 L, 3.10
! V2o+o 3 V2o+o ( )

where
L=¢€2%% XcR, 20+0>0. (3.11)

In order to arrive at a particularly simple form of (3.10), the freedom of choosing A
appropriately is exploited. The formulas

L(egeo F 5262)f/ = ejFaUaz)‘(eoeo Fegeq) = Legeol F Leses L (3.12)
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when inserted for z; in (3.10) lead to

6—6052)\

“= 0(6060 — e2€2)

— E€p€p — €2€2 = 21 (313)

for the choice

A o+ o =1, 20+0>0. (3.14)

Adding and substracting equations (3.12), the choice (3.14) implies

- 1 1
2legegl=cyey <T+\/_)+6363 (T_\/_> (3.15)
V= VETe
and hence,
2z3 = epeg(l + o) + e2e3(1 — o). (3.16)
So, one may conclude from (3.9) and (3.10)
Z1 = €geg — €€, 22 —e3, 223 =egeg(l+ o)+ ezea(l — o). (3.17)

The process of orthonormalization is complete if z4 also is decomposed with
respect to the vectors e, in (3.6)

3
2422(1“6“, ay €R, ep-e =W, (3.18)
n=0

such that the following conditions from Table I hold

0./

21'24:0, 29~ 24 = —0, Z3'Z4:?, Z4 " 24 = —T. (319)

A nonunique result follows from (3.19) since the condition z2 = —7 is quadratic

!

Z4 = %(6060 —egey) +oez+ere1k, e ==%x1, k=vVr—-02>0. (3.20)
Again the signfactor ;1 in (3.20) may be moved to the vector ez by rotating the
tetrad e, in the ey, es—plane with the spinor et whence the signfactor &
of e3 becomes €1£5. Because of the independence of € and e5 in (3.20), the product
€1€7 finally may be replaced by e; without loss of generality. So, effectively ¢; in
(3.20) may be replaced by £ = 1 and (3.17) together with (3.20) then comprise the
result of this generalized Gram—Schmidt orthonormalization process, viz.,

z1 = Epeg — E€3, 22 =e3, 223 =¢cgeg(l+ o)+ ezea(l— o)
o y ) (3.21)
Z4:E(6060—5262)+K€1+063: go=1=¢e, ¢ €R.
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Note, that this expression for z4 also holds for k = v/7 — ¢2 = 0. In that case, 24
just satisfies equation (2.15), as seen from (3.21).

Conclusion: There are precisely four linear mappings, non—equivalent under
~ d*
SO(1,3), from an orthonormal frame e, = Ry, R to the vectors z; = d?f) , k=1,
2, 3, 4. For these four mappings the normal form is given by (3.21).
From the trivector
Z1 A z9 A Z3 = —E&Qpfa€peatz = —606261i (322)
and the pseudoscalar
zZ1 A Z92 A z3 A Z4 = —EQpEaKEp€1€a€3 = —6052f€i (323)

one notes that the mapping (3.21): e, — 2 is injective only for £ > 0. So, for £ > 0
equation (3.21) yields the inverse

l1—0 n o’ n
Ep€p = Z1 zZ3, K€l = ——2Z1 — 02y Z4,
2 1 2 (3.24)
+ 0o
€€y = — z1 + 23, €3 = 22.

Frenet equations are obtained from (3.24) by derivation with respect to £,
!

l1-0o o C .
coey = Tzi + 25 — 5 % elimination of the “primes”over z by means of z, =

zg41 and finally mapping back from the z; to the e, with the help of (3.21). In
!

l1—0 o 1+o
22+Z4—7Z1:K61+T63,01’,

detail: g 66 =

140
ey = €gkel + €o 5 ¢ (3.25)
In the calculation of €] according to (ke;)’ = ke| +k'e; = —%122 — 023+ 25— 07”21 —

o' zo, the fifth derivative z5 is needed. This however already has been decomposed
into the frame z;, k =1,2,3,41n (2.20), for which the reciprocal frame (2.17) was
needed. So, finally one obtains the set of equations

I 7

€1 = Egkeg — EgKeEg, €5 = EgKel + &2 5 €3, 396
, 140 l1-0o (3.26)
€3 = €0 9 €o + €2 7 €2,

which together with (3.25) constitute a generalization of the euclidean Frenet equa-

tions [7] to (non-straight) isotropic curves in M(1,3). Recall, that because of

e2=1=¢2, ¢, €R, equations (3.25) and (3.26) in fact are four different sets of
2

Frenet equations, which can not be made equivalent (coincident) by acting on the
tetrad e, with arbitrary elements of the group SO(1,3)!

A geometrical explanation for the existence of four “branches” of Frenet equations
is obvious when the dimensions spanned by the vectors e; and e are projected away.
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The fourfoldness remains untouched when projecting on the M(1, 1) generated by
ep and ey, as seen from (3.21). In this M(1, 1) the isotropic cone (lightcone) however
consists of two intersecting straight lines and decays into four disconnected straight
halflines when the intersection point (apex) is removed. It is evident, that the group
SO(1,1) can act transitively only along each straight halfline separately. Elements
of SO(1,1) can not map the motion along one halfline into the motion along another
halfline. Therefore, precisely four different sets of Frenet equations are needed.

There is another lesson to be learned from this consideration. On the euclidean
plane R?, which carries the M(1, 1) with its quadratic form, all four branches of the
lightcone are obtained from a single one by successive reflections at the ares eg and
€. This also holds in M(1, 3), since the dimension is even [10], viz.,

1 | —ey for p=v ol
Tye, L, _{ e, for ptuv’ r:ir;* =—i, (3.27)
where
[, =eyi, i=egereae3 =Y0V17273- (3.28)

It is easy to see, that by successive applications of the reflections (3.27) with v = 0 or
v = 2, the Frenet equations (3.25) and (3.26) are reducible to their O(1,3)—equivalent
normal form with ¢ = 1 = —¢y

1 1-—
66:.‘661—}— +U€3, 6’1:.%60 + Kea, 6/2:—,‘661—|— 063,
(3.29)
o — 1+Ue +0’—16
3= T4 ¢o 5 €2
Correspondingly, equation (3.21) becomes
z1 =eg+es, z2=e€3, 2z3=(l4+0)eg+(c—1)es,
o’ (3.30)
Za = 5(60 + e2) + kel + oes.

Conclusion: For isotropic curves in even—dimensional Minkowski spaces there is
precisely one set of Frenet equations with respect to the full orthogonal group.

The final remark in this section concerns the exceptional case of double curvature,
k = 0. Even though the assumption £ > 0 has been made for the derivation of (3.24),
equations (3.29) and (3.30) remain valid in the case & = 0. This may be checked by
repeating the precedure of this section for kK = 0 with (2.15) instead of (2.20). The
result is again (3.29) and (3.30) with k = 0. So, one can work in general with (3.29)
and (3.30), or on SO(1,3), with (3.21), (3.25) and (3.26).

4. EQUATIONS OF MOTION ON SPIN(1,3)

Equation (3.6) relates the comoving tetrad e, to the tetrad 7, which is fixed in

d
M(1,3), i.e., 7} = diﬁ%‘

Equations of motion for R will now be derived from the condition of unimodularity

RR =1 (= RR), (4.1)

= 0, by means of the variable unimodular spinor R = R(f).
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the mapping from Spin(1,3) on SO(1,3)

5 dR(B)
€u = R'}/NR, RI = W, (42)
and from the Frenet equations (3.25), (3.26).
Equation (4.1) implies that
Q=2R'R=-Q (4.3)

is a bivector, called Darbouz bivector, whence (4.2) leads to the Frenet system
, 1
€y = §(Qeu —e,Q)=Q-¢e,. (4.4)

That conversely a given Frenet system like (3.25) or (3.26) uniquely determines a
Darboux bivector €2 rests on the important theorem, that for every bivector Q2

D (Q-g0) N g =29, (4.5)

where {g,} is an arbitrary (non-orthogonal) basis in M(1, 3) and {g”} the corre-
sponding reciprocal basis defined by

1 for p=v
B.g —§h—
gt g, = oF _{0 for ptuv (4.6)

The proof of (4.5) follows from the formula
E[(a Ab) gl Ng" = Zgu Alb(a-gu) —a(b-gu)]

H ©
= Z[(a “gu)gt Nb—(b-gu)g* Nal =2a b,
I3

(4.7)

valid for arbitrary grade 1 vectors a and b. Now, in every finite-dimensional linear
vector space, a bivector 2 always is a finite linear combination of outer products of
grade 1 vectors. By linearity therefore, equation (4.7) implies the theorem (4.5).

The calculation of the Darboux bivector is straightforward when the tetrad e, is
choosen in (4.5). In that case equations (4.4) and (4.2) lead to

3

3 3
QQ:Ee;/\e“:egAeo—Ze;/\ek:eé/\eo—}—Zek/\e;c. (4.8)
©=0 k=1 k=1

The following Darboux bivector is found from (3.25) and (3.26)

1 1—
Q=¢g <m31+ —12—0-63)60+i62< 20-61—1—}663)60, (4.9)

with the same fourfold sign multiplicity with respect to g9 and e as the Frenet
equations of course. The Darboux bivector is an extremely powerful tool in curve
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theory because it compactly comprises all structural information which sparsely is
distributed in a Frenet system.
As a simple application, let me display the action of the reflections (3.27) on Q,

viz.,

1 1-—
FQQFal = —¢€p <ff€1 + —12—0-63) eo + iEQ < 5 0-61 + 563) €o (410)

1 1-—
FZQF2_1 =&p <f€61 + —12_0-63> eg — ieg < 5 g + Ifeg) €. (4.11)

One notes again, that by successive applications of I'g and I'y, as in (4.10), (4.11),
every sign constellation of g and €3 can be achieved.

As it stands in (4.9), Q depends on the comoving tetrad e,. For the purpose
of integrating (4.3), it is however more convenient to refer Q the fixed tetrad v, in

(4.2), i.e.,

- ~ L 140 . -0 o
Q=RwR, w=ROQR=¢ <KU1 + Us) + 182 < 5 71 + KU?’) T (4.12)
Ok = kY0,
whence
dR
R R = Rw i3 (4.13)

Equations (4.12) and (4.13) describe the motion on Spin(1,3) in terms of the uni-
modular spinor R. When this spinor is calculated, z; is found from (3.21) and
(4.2)

dz

= % = R(B)[eovo — 6272]R(5)- (4.14)

Z1

The position vector [z(8) of a curve point then may be obtained from (4.14) by a
quadrature.

5. CLOSED-FORM SOLUTIONS ON SPIN(1,3)

For complex isotropic curves in C?, Karl Weierstrass (1866) found an explicit, closed—
form expression free of any quadratures. Comparable explicit representations of real
isotropic curves in pseudometric spaces, to my knowledge, may all be traced back to
Max Pinl, a follower of Josef Lense at Vienna. Max Pinl et al. published in ref. [4]
a quadrature—free explicit representation for real isotropic curves in M(3,1). This
representation, equation (8) in ref. [4], correspondingly written for the signature
(1,3) using a parameter o € R instead of the Vessiot parameter 3 (2.4), then takes
the form

ae"2B  B= (14971, a=(ag+ad)y = a(a), (5.1)
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ag = fi+ fs, d=—=1(f+ f2) +F(fs — fr) + Fs(fo — 1),

d* f(@)
= k> 1.
fk dOék 3 sl
The first derivative of z with respect to « is
dz ap. _ap
— = e2 ae 2
da '
where the “dot—derivative” a defines a shorthand notation for
) da
a=—+B-a.
da +

One finds

a=(o+v)(fa—-f)=0b

i=b=(y0+7)(fs — fi) + (n —v3)(fa — f).

(5.4)

(5.5)

(5.6)

Note, that according to (5.5) and (5.3), the vectors a and j—; are isotropic, as they

should.

The relation between an arbitrary curve parameter a and the Vessiot parameter

3 is given by equation (2.5). With

2
d°z :6%3.. _ap
da?

equation (5.6) and

(57) = (@) = ~2(fa— ),

the result

()l -

d d d
is obtained. So, z; = : : /—ﬁ may be written in the form

% ~da/ da
Z—; =2 =0e3B(yy +y2)e” 2B, B =(14i)F,
where
— d4
0= Ja—J Ja= /(2) f=7(a).

dat '’

[2(fa = )] 7*

(5.10)

(5.11)

Equation (5.10) for z; should be compared with (4.14). One notes that 6 # 0 is
necessary. A zero of ¢ means that z; is situated in the apex of the (lightcone)
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isotropic cone. Excluding from this article zeroes and sign changes of 6 (particle
transmutations), it is no loss of generality to assume 6 > 0 henceforth, i.e., to put
€0 = 1 = —eg in (4.14). The case 6 < 0 then follows from 6 > 0 with the help of
sign—changing reflections (particle conjugations).

For § > 0, equations (3.11) and (3.12) with e, replaced by v, provide the formula

00 +72) = (0 +72) = ¥ (30 +p)e 2%, A=In0,  (5.12)
which allows to change (5.10) into

Be

R
NP
N>

z1=¢€ T2 (

Yo 4+ y2)e” 2%2e7 5B, (5.13)

The intention now is to determine the spinor R by comparison of (5.13) with (4.14)
for eg = 1 = —é9,

21 = Ry +72)R. (5.14)
Apart from being a product of the spinors

1

Ry =e3B Ry =e292Inf (5.15)
R in general may have a right-hand unimodular factor Rs,
R = Ri1RaR3, (5.16)
with the property
Rs(yo +72)R3 =~0 + 72, Rai =iR3. (5.17)

Equation (5.17) has the general solution

Ry=e Ve 5N iy = idy =y, (5.18)
N:El(l—EQ):71(70—{—')/2):5"1—2'5"3, (519)
(=G+i¢, ¢,,peR. (5.20)

Note, that R3 generates a Lie group with 3 real parameters (1, (2 and ¢, the socalled
isotropy group of the vector v + y2. The bivector N, (5.19), is nilpotent

N%=0, (5.21)
and has the projection properties
9N = N = —Ndos. (5.22)

Now the following question will be answered affirmatively: Is the representation
(5.16) of R sufficiently general that (4.13) implies the bivector w in the canonical
form (4.12)?7 Note, that w depends on two arbitrary functions of 3, namely o = ()
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and k = k(8) = V7 —02>0, 7 =7(F). The calculation of w in (4.13) proceeds

via
w =2RR' = 2(R3R4 + R3RaRy R3 + RsRs Ry R, Ry R3) (5.23)
and a little skill in spacetime algebra. The result is

w= iz’ + N[ig'¢ +¢'(1 = )] + (In0)'[2 + N¢(1 — e77)]

+%I(1 + i){ [(0 + é) 7+ (9 - é) iﬁs] e’ (5.24)
+20 [#2((1 — €9) + N¢*(1 — cos ¢)] }

where the primes denote derivatives with respect to 8. In (4.12) there are no contri-
butions proportional to is = i¢y and &3. To eliminate these unwanted terms from
(5.24), it is important to exploit the freedom of choosing ¢ in (5.20) and (5.18) in
such a way, that these terms cancel, viz.,

CO*e (e —1)(141) = dd [log(0e'?)], 6> 0. (5.25)

" da
With (5.25) equation (5.24) becomes

w= N [igo'C + (1 =)+ 9C(1 —e™™) + o' (1 +i)e? ¢3(1 — cos 30)]

+a! (14 0) 71720 +9), 020
where instead of & > 0 now the variable ¥
0=e” (5.27)
is used. In terms of ¥, equation (5.25) becomes
Ca' 20N (1 — ™) (14 i) =0 + i, (5.28)
Equation (5.26) coincides with the normal form of w, for e = 1 = —¢£3 in equation
(4.12), i.e.,
w:53+[ﬁ+%(0—1)]N, N =&1(1 - d3). (5.29)

This is the clue to the general solution of (4.13). Comparing (5.26) with (5.29), one
notes that the solutions found by Max Pinl et al. [4] only cover the particular case

¥ =—In(a'V2), ¢=-m. (5.30)

The general solution of (4.13) for w according to (5.29), however is obtained by
putting

1 5
R=i§'N + 5oN#, i¢=di, RR=1, (5.31)
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where ¢ = ¢(f) may be considered as a spinor-valued auxiliary potential. In the
same way a corresponding quantity is introduced, when passing from the first-order
Dirac equation to a second—order spinor equation. Insertion of (5.31) in (4.13), where
w is given by (5.29), after some algebra leads to

4¢"(8) = [o(B) — 2i(8)] 6(B)- (5.32)

This reduces the task of finding the general solution of (4.13) to the problem of
solving a linear, homogeneous second order differential equation for the spinor—
valued function ¢(3). In general, ¢ is a linear combination of the form

¢ = ¢o + 107 + ¢101 + 9202 + ¢303 + i(Pad1 + O502 + 9603), (5.33)

which contains all elements of the even subalgebra of spacetime and each of the
coefficients ¢, € C(i), v =0,...,7 has to solve equation (5.32). This diversity of
complex coeflicients ¢, however rapidely decreases on two remaining ones, when the
quantities ¢ N and ¢’ N are calculated. Only these enter into (5.31), viz.,

6N = [¢o+ d2 +1(P5 + 67)]N + [01 + ¢6 + i(da — &3)]1 N, (5.34)

&' N = [¢po+ 2 + i(d5 + ¢7)'N + [61 + ¢6 + i(da — ¢3)]' 71N, (5.35)

since, because of the linearity of equation (5.32), every C(i)—complex linear combi-
nation of solutions ¢, again is a solution. Therefore, only ¢y and ¢; are needed in

(5.34), (5.35), whence (5.31) and (5.32) take the form

. - 1 - - . .
R:Z(¢6+¢301)N+5(¢0—|—¢10’1)NO’1, N:O’l(l—O'Q), (536)

467 (8) = [0(B) - 2ir(A)]é, (8), ¢, €C(i), BER. (5.37)

1

From (5.36) one notes, that the condition of unimodularity, RR = 1, implies the
Wronski relation

RR = 2i(¢od) — ¢hé1) =1 (5.38)

for the complex—valued solutions ¢ and ¢; of (5.37).

Let me recapitulate: Equations (5.36) — (5.38) provide the

general solution of (4.12), (4.13) for the case ¢g = 1 = —eg. The further three
sign combinations are obtained from this generic case with the help of reflections as
in (4.10) and (4.11). For instance, g9 = —1 = &3,

. 140, fl—0 o
w__ =— | ko1 + o3| —1 01+ KO3
2 2
1 1-
= ’701 |:f€0_"1—|— —;0-5"3 —Z( 9 0-6"1 —|—.‘i‘5"3):| ”yol (539)

. . . ? .
= Yolwy_ Yot = Yoi[Fs + (k + §(U — 1)Nlnoi.
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So,
2R’ _ = R__w__ = R__%yiws_"ot, (5.40)
or,
2901 R _~yoi = yoi R__yoiw4_ (5.41)
compared with
2R, _ = Ry_wy_ (5.42)
implies
R__ =viRi_yoi =y R4y = R _. (5.43)

A corresponding sign change of €9 is effectuated with the help of the formula
Ryy = 72iRy_(y21) 7" = —y2iRy_7yai = =72 Ry_7s. (5.44)

This article ends with a discussion of the canonical form of the isotropic tangent
vector (4.14), as implied for e = 1 = —&3 by the generic representation (5.36).
Making use of (5.21), the result of this straightforward calculation of the tangent
vector z; = v 18

VYo = ¢odp ‘f;) 0107 + F1(G0d] + dp01) + T2(dody — ¢107) + Fai(dgd1 — PodT)

- 5.45
= Vo +Zo'kvk; (5.45)
k=1

where

¢, =07, v=0,2 (5.46)

denotes the complex conjugation on C(7). For those, who enjoy components and
matrices, expressions (5.45) are repeated once more in the following notation

vo = (85 ¢7) <(1) ?) (23) (5.47)
v = (65 ¢7) <g é) (j) (5.48)
vs = (65 67) <(1) _g) (ﬁ) (5.49)

vs = (6 67) <_(Z) OZ> <$?> (5.50)

May this article help to convince those, who still believe in Van der Waerden’s
definition of “spinors for physicists”, that spacetime algebra is superior!
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