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Abstract

The quasienergy spectrum of a periodically driven quantum system is con-
structed from classical dynamics by means of the semiclassical initial value
representation using coherent states. For the first time, this method is ap-
plied to explicitly time dependent systems. For an anharmonic oscillator
system with mixed chaotic and regular classical dynamics, the entire quan-
tum spectrum (both regular and chaotic states) is reproduced semiclassically
with surprising accuracy. In particular, the method is capable to account for

the very small tunneling splittings.
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The classical-quantum correspondence for typical systems with mixed regular/chaotic
classical dynamics is still a challenging problem of current research. We have demonstrated a
surprisingly high degree of such a correspondence for time-periodically driven systems [1-4].
Here we consider the problem of semiclassical quantization of quasienergy states for such
systems.

A semiclassical theory of quasienergy states has been presented recently [5,6] for inte-
grable systems based on classical invariant tori. The method can be extended to (weakly)
chaotic systems to quantize semiclassically the regular quantum states still supported by
invariant tori. It is, however, not possible to treat chaotic states by such a technique. or
systems with mixed dynamics.

In recent studies, quantum systems have been successfully treated semiclassically by the
semiclassical initial value representation [7] using a frozen Gaussian approximation (FGA)
[8]. The papers by Herman and Kluk [9,10], by Miller and coworkers [11] as well as studies
by Grossman [12], Garashchuk and Tannor [13], Walton and Manolopoulos [14] and Kay
[15] demonstrate the wide applicability of this method. Additional progress has been made
by combination with the cellular dynamics algorithm of Heller [16,17,20].

An advantage of the FGA is the absence of the difficulties related to root searching and
uniformization in the somewhat more rigorous semiclassical approach, which aims at the
construction of all elements of the analysis in the semiclassical limit. The FGA method also
seems to work for systems which are classically chaotic [14]. Previous application have shown
the applicability of the method for systems depending not explicitly on time [11-17] (see [18§]
for a recent review; a different, however related approach based on classically propagated
Gaussians has been suggested by Pattanayak and Schieve [19]).

Here we extend such a hybrid semiclassical method to time dependent systems, more
specifically we construct the quasienergy (Floquet) states of a periodically driven quan-
tum system, which is typical in the sense that it shows mixed regular and chaotic motion
classically. The method is entirely different from the ‘rigorous’ semiclassical periodic orbit

quantization [21] and avoids the problems related to the proliferation of the long periodic



orbits. A different approach avoiding long periodic orbits has been recently used to con-
struct the spectrum of a kicked top semiclassically [22]. A related semiclassical description
of the quasienergy states of the kicked rotor has been developed by Chang and Perez [23].
Here we report a general semiclassical technique which is easily applicable for continuously
driven systems.

As an example, we consider a simplified version of an anharmonic oscillator coupled to

an external driving field
H = wita + yal?a? + g, (& i 4 &’(e—iﬂt)
A2 iQt | ~t2 —iQt
+.C]2<(le +a'"e ) (1)

Similar Hamiltonians occur frequently in quantum optics, e.g. to model a nonlinear medium
in a laser resonator driven by external lasers. The creation and annihilation operators are

related to the position, ¢, and momentum, p, operators by
a=(G+ip)/V2, it =(q-ip)/V2. (2)

The Hamiltonian (1) describes the mixing of two primary resonances zones, a 1:1 and a 1:2
resonance, as can be seen by transformation to a rotating frame.

As the coupling constants g » are increased, the two resonance zones overlap creating
higher order resonances until finally an extended part of the phase space begins to show
mixed regular/chaotic motion (compare Fig. 1). Since the Hamiltonian is periodic with
period T = 27/, the dynamics can be understood entirely in terms of Floquet states

[ (t)) (see, e.g. [5,6,24]), which are eigenvectors of the Floquet Hamiltonian

Hp|a(t)) = (=100 + H(1)) [$a(t)) = €a[¢a(t)) (3)

which are T—periodic and live in the extended Hilbert space [¢,(t)) € Hr @ H, . Note that
the quasienergies €, are defined only modulo /) and that o numbers the states with respect
to a specified ordering (see below).

As eigenvectors of time-independent Hamiltonians are commonly accepted to correspond

to certain classical trajectories so do the Floquet states [1,()). Thus a Floquet eigenstate
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|10o(0)) considered at time t = 0 may be associated with a Poincaré section constructed by
stroboscopically sampling the value of a certain trajectory ¢(¢), p(¢) at integer multiples of the
period T (see Fig. 1). For the numerical calculation, we have considered the symmetrically

ordered version of the Hamiltonian (l) and furthermore taken w to be zero:

H = X{&TZ&Z}S + g (& el &J‘e_im)

1g, <&2eim + &f2e—i9t> (4)

Clearly, Eq. (4) may equally well be expressed in normal ordering using {a'*a?}, = af?a? +
2hata+h*/2. The time-evolution operator U(T) has been calculated by numerically solving

the equation of motion
ihoU(t)=H(t)U(t) (5)

(different algorithms are available; here we used a straightforward Runge-Kutta integration
of the coupled equations for the expansion coefficients in the oscillator basis a'a|n) = fin|n)).
The propagated matrix U, (T) = (n|U(T)|m) has been diagonalized to yield the Floquet

eigenstates at time zero

U(T)|a(0)) = e /%45 0)). (6)

with components Y& = (n|,(0)) as well as the eigenvalues ¢,.
For the semiclassical construction of the propagator, we need the classical Hamilton

function H(z,p), which — due to our choice of (4) — is independent of A, i.e.:

H(p,q) = % (p2 + q2)2 +v2g (g cos(t) — psin(2t))

+9g ((q2 — p?) cos(Qt) — 2gp sin(Qt)) . (7)

Following the semiclassical frozen Gaussian FGA [10], we approximate the true propagator

by

sc dpquz i .
U l(t) = / 27k A(pi7 qi, t) € S(p“q“t)/h|pf’ Qf><pia Qi| 3 (8)



where |p,q) = ei(p(j—qﬁ)/h|0> are coherent states with a@|0) = 0 (see (12) for a representation
in harmonic oscillator eigenfunctions). In other words, |g;,p;) is a minimum uncertainty
Gaussian wave packet centered at the initial phase space point (p;,q), and |ps,qs) is
centered at the time-evolved position of the classical trajectory at (pys,qr) = (p(t),q(t)).

The phase is essentially determined by an action integral

1 to
5(pi,qz-,t)=—§ (pray _PiQi)+/(J [pg—H(p,q,7)]dt, (9)

and the amplitude is given by

(q“pza ) 2 (apl + Jg; +laql‘ lapi ( O>

In an equivalent formulation, the terms —p;g;/2 and psqs/2 can be included in the defini-
tion of the coherent states. It seems worthwhile to emphasize that, in contrast to related
semiclassical methods, only the amplitude and the phase of the Gaussians are varied along
with the classical propagation, but not their size and shape.

The fact that the action S given in Eq. (9) holds for time dependent Hamiltonians as
well is immediately seen by using the (¢,t') formalism to solve the Schrodinger equation
[25]. Since following the (¢,#') (extended phase space) formalism, ¢’ appears as an additional
coordinate and H is replaced by the Floquet Hamiltonian [26] so that the classical term
put’ = pl is canceled out when —H is replaced by —(H + py) = —Hp.

The action (9) as well as the partial derivatives in the prefactor (10) have been calculated
by propagating the monodromy matrix simultaneously with the trajectories [27]. After
calculating all the classical elements, the approximative propagator has been evaluated by

an integration,

_ dp;dg;

Ui (T) = 5T AT) DM nlpy, qr)pi, gilm) (11)
with
. 1 +ip\"
— o= (P*+d?)/4n a1 12
(n|p,q) = e hn!( ’_QE,) : (12)



to yield the same form as in the exact numerical quantum calculation (5). Both, the am-
plitude A(p;, ¢, T) and the action S(pi,q;,T), depend smoothly on the initial conditions
(Pi, Qi)-

Figure 1 shows a classical stroboscopic Poincaré section for the driven anharmonic os-
cillator (7). The parameters are x = 0.1, g; = 0.005, g2 = 0.01, and © = 0.5. For these
parameters, the dynamics is clearly organized: In the outer region, where the driving fre-
quency is small compared to the anharmonic motion in the time independent potential, and
in the inner region, where the reverse relation holds, the dynamics is almost regular. The 1:1
resonance developed into an extended chaotic ‘sea’ and a stable resonance island centered
at (p,q) ~ (0,—2.2). In addition, one observes two smaller islands of the 1:2 resonance at
(p,q) = (£1.6,0.15) .

These classical phase space structures can also be detected in the quantum quasienergy
states (we use the same parameters as in the classical case and i = 0.02). The quasienergy
states are numbered by @ = 0,1, ... with increasing values of the expectation value (Hy), =
(a(0)|Holtpa(0)) of the field-free Hamiltonian H.

A quantitative description of the localization properties in phase space is provided by

the Husimi distributions [28]

0a(psq) = [{p, qlta(0))] . (13)
The entropy
dpdq
Sa == | 57 ¢a(p:q) In 277 0a(p, ¢)] (14)

of the Husimi distribution is a measure of the phase space area occupied by state a. An
energy—entropy diagram as shown in Fig. 2 can be used to separate the states into different
classes according to their phase space localization [3,4]. Here we distinguish six classes
labeled by A,..., F in Fig. 2. States of class A localize on the central island and class
B consist of almost degenerate pairs localizing on the two 1:2 resonance islands. About 50

states in class C can be considered as ‘chaotic’, i.e. their Husimi distribution shows seemingly



erratic oscillation over the classically chaotic region; the nearest neighbour spacings of the
quasienergies are Wigner distributed [4], and the entropy (14) shows strong fluctuations ~
Vh [4] with an average value of §*" & 3.7340.4. In agreement with previous findings [4], this
quantum value is considerably smaller than the classical estimate ?“l = In(Achaotic/ (27h)) ~
4.40, where Achaotic & 10.24 1s the area of the classically chaotic region. The difference
S 5™ — 0.67 should approach the value of ¢; =1 —¢=0.423... (¢ = Euler’s number)
for small 7 [4]. The class D states in Fig. 2 are supported by the 1:1 resonance at (p,q) &~
(0,—2.2) in Fig. 1, where the state a = 108 with the lowest energy and entropy in this
class localizes at the center of the resonance island and the higher entropy and energy states
approach finally the outer separatrix, where the cloud of class C' states meets the separatrix
states E. Class F consists of the outer regular states. This classification can also be verified
by inspection of the individual Husimi distributions in phase space.

The main result of the present letter is, however, the possibility to reproduce the entire
quantum quasienergy spectrum semiclassically. Figure 3 shows a comparison of quantum
and semiclassical quasiangles 6, = €,T/h, which shows a surprisingly good agreement for
both regular and chaotic states. Note that the quasienergies €, are given modulo hw, i.e. 8,
modulo 27. For all states shown in the figure, the difference is less than 107% (in the figure,
the real part of the semiclassical quasiangle is shown; the (small) imaginary part is due to
the fact, that the FGA is unitary only within the stationary phase approximation [9]). For
such a comparison as shown in Fig. 3, the semiclassical states corresponding to the quantum
ones first must be identified. This is done by selecting the quantum state with maximum
overlap with the semiclassical one, which turns out to be a quite secure recipe, because
this overlap is very close to unity or zero (see below). It should be pointed out, that the
semiclassical FGA method also seems to reproduce the tunneling splittings of the pairs of
states of class B, namely a = (50,51), (49,53), and (41, 58) localizing on the 1:2 resonance
islands. For these states, the quasiangles are degenerate modulo 7 [6] and the splittings
are 4.03 - 1077, 3.4 - 107" and 1.6 - 1073, respectively, in satisfactory agreement with the
semiclassical splittings 4.01 - 1077, 2.1-10™* and 1.7 - 1073,



The semiclassical eigenfunctions, i.e. the eigenstates of the semiclassical propagator, are
of the same accuracy as the eigenvalues. As an illustration, Fig. 4 shows a comparison of
the quantum and semiclassical Husimi distributions for the state a = 87, which is the state
with the largest entropy localizing on the chaotic phase space region in Fig. 1. The two
distributions are (almost) identical.

Let us furthermore point out that the proposed method is free from the well-known
drawbacks of other semiclassical methods. It is, however, clearly not fully semiclassical.
The matrix elements (11) are computed numerically and not by, e.g., stationary phase and
the eigenvalues and eigenvectors of the Floquet operator are obtained exactly as in quantumn
mechanics. The basic input for the semiclassical method, however, the Floquet propagator,
is entirely taken from classical dynamics.

In conclusion, we have demonstrated that the semiclassical initial value representation
can be used to compute the entire spectrum for both regular and chaotic stated from clas-
sical dynamics. However, one should note that in the present 1D case the computational
‘costs” of both computations are of the same order of magnitude. This is very different
in higher dimensions, where the semiclassical method can be expected to be much faster
(see, e.g. the recent work on photodissociation of ozone [29] using the semiclassical initial
value representation.) In addition, the semiclassical method provides illuminating insight
into the quantum dynamics, i.e. the phase space localization properties of quantum states

on (classically) regular and chaotic regions.

This work was done while one of the authors (N.M.) was staying at the University
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FIGURES

FIG. 1. Classical stroboscopic Poincaré section for the driven anharmonic oscillator (7).
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FIG. 2. Husimi entropy of the quasienergy states versus the expectation value of the field-free

Hamiltonian (same parameters as in Fig. 1; & = 0.02).
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FIG. 3. Comparison of quantum (¢) and semiclassical quasi angle 8, = €, T/h (4)

The
quasienergies €, are given modulo hw, i.e. 8, modulo 27.
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FIG. 4. Quantum (a) and semiclassical (b) Husimi distributions for the state o = 87. This

state has the largest entropy and is localized on the chaotic phase space region in Fig. 1. Because

of symmetry, only one half of the distributions are displayed.
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