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Abstract

We present an entropy concept measuring quantum localization in
dynamical systems based on time averaged probability densities. The
suggested entropy concept is a generalization of a recently introduced
[PRL 75, 326 (1995)] phase-space entropy to any representation chosen
according to the system and the physical question under consideration.
In this paper we inspect the main characteristics of the entropy and the
relation to other measures of localization. In particular the classical
correspondence is discussed and the statistical properties are evaluated
within the framework of random vector theory. In this way we show
that the suggested entropy is a suitable method to detect quantum
localization phenomena in dynamical systems.



1 Introduction

The ultimate goal in the rapidly developing field of Quantum Chaos is to ob-
tain fingerprints of classical chaos in quantum systems. Considerable progress
has been made both in semiclassical quantization of classical chaotic systems
as well as in the statistical description of quantum spectra within the frame-
work of random matrix theory (see, e.g., [1, 2, 3]). Another approach towards
an understanding of the role of chaos in quantum mechanics is to analyze the
localization properties of quantum states. In several numerical studies, it has
been demonstrated that quantum states which are completely delocalized on
a classically ergodic region in phase space (a ‘chaotic sea’) can be described
within the context of random vector theory [4, 5, 6, 7|. Several mechanisms,
however, lead to limitations of quantum ergodicity for a finite value of A :

(i) Dynamical localization: This so-called quantum suppression of classi-
cal diffusion has been comprehensively investigated for the kicked rotor and
has been explained in analogy to the Anderson localization in disordered
solids [8, 9]. Moreover, dynamical localization seems to be a universal phe-
nomenon, related to the time scale (the so-called break-time or Heisenberg
time) on which quantum time evolution saturates due to the discreteness of
the spectrum (see, e.g., [10]).

(ii) Barrier action of tori and cantori: Localization on quantized invari-
ant tori is well described within the semiclassical EBK—theory. This theory,
originally developed for integrable systems, proved to be also applicable to
KAM-tori in systems with mixed phase-space if the corresponding stability
regions are large enough compared to h/ (for examples see [11, 12]). The nu-
merical work by Geisel et al. [13] showed that the, so-called, cantori can also
act as barriers like tori. A general (semiclassical) theory for this phenomenon
is, however, still missing, at least to the knowledge of the authors.

Besides these ’stronger types’ of localization, which are characterized by
an exponential decay outside of a certain region, also weaker forms of localiza-
tion have been encountered as there are ’scars’, localization on ’ghost orbits’
and on regular phase-space structures (’islands’) much smaller than Planck’s
constant. These types of localization may, however, not be intermixed with
the so-called weak localization. This term denotes the quantum enhance-
ment in the autocorrelation function of a wave packet due to constructive
interference of time-reversed paths.

Quantitative studies of these localization phenomena require an appropri-



ate measure for the degree of localization. A general problem faced in study-
ing, e.g., the localization of eigenstates are inherent quantum fluctuations
which do not vanish in the classical limit and hence cause large fluctuations
and deviations in the measures of localization from the corresponding classi-
cal values. It has therefore been difficult to perform quantitative studies of
the weaker forms of localization which yield statistical significant results.

In Sect. 2, we briefly review some measures of localization commonly used
and dicuss their statistical properties within the framework of random vector
theory. In Sect. 4, an entropy concept based on time-averaged quantum
densities is introduced, which is a generalization of the phase-space entropy
first introduced in [14]. Here we evaluate the statistical properties of the
introduced entropy, in particular the scaling with & and the classical limit
and compare it with the traditionally used measures reviewed in Sect. 2.

2 Measures of localization

We assume for convenience that {|n)}, is a complete set of normalized eigen-
states of the Hamiltonian H , numbered by a (multi-)index n, i.e. we assume
the system to be bound. Thus one has the decomposition of unity

=2 In)n|, (1)

on the underlying Hilbert space. On the other hand, we assume to have
some other set {|a)}, of states also forming a basis, which might, however, be
overcomplete like, e.g., coherent states. Also the representation in coordinate
or momentum space can be treated within this context. The corresponding
decomposition of unity reads therefore in general

1= [ dpala)(al . (2)

The choice of a basis {|a)} depends on the system and the physical problem
under investigation. In perturbed systems, the eigenstates of the unperturbed
Hamiltonian may provide some ’natural basis’. For periodically kicked or
continuously driven rotor systems one usually computes eigenstates in an
expansion of free-rotor states, which allow for a definition of a localization
length in momentum space (see. e.g. [10, 15]). In other systems, one may



be interested in phase-space localization giving rise to the introduction of
coherent states. An appropriate measure for the degree of delocalization of
a state |¢) in the basis {|a)} is the Shannon entropy

S{a} = - /d,u/a Do lnpa, (3)

with p, =|{t|c)|? being the die projections of a unit vector |1)) onto the basis
states. An alternative measure is the, so-called, mean inverse participation
ratio

g{_al} = /d,U’a pi: (4)

(see, e.g., [16, 17]). These different measures of localization can, however, be
subsumed under the concept of a Renyi entropy

1
Sty = . _vln/aduapl, (5)
which is defined for 0 <y <oo, y#1 (see, e.g., [18]). The comparison with
(4) yields immediately S® = In¢,; and the Shannon entropy (3) results
from the Renyi entropy in the limit v\,1. Between the different Renyi
entropies there is the inequality

S > 80 for 4 <A (6)

In the following we will concentrate on the Shannon entropy (3) which
can be interpreted as the missing information about the state 1)) when only
its projections p, are known. A comparison with the information entropy
(or von Neumann entropy) Sy x=—tr(01lng) of a density matrix ¢ shows that
the entropy (3) of a pure state |¢)) corresponds to the information entropy of
a density matrix

o= [ ditapala)(el (7)

which results from the projector onto [¢)) by cancelling the off-diagonal ele-
ments in the {a}-representation. In contrast to the information entropy, the
Shannon entropy (3) is basis-dependent. For the particular case of harmonic
oscillator coherent states as a basis, i.e. {|a) = |p,q)}, the corresponding
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entropy was introduced by Wehrl [19]. A discussion of the properties of the
Wehrl entropy

Ind’
S == [ Gt 0.8 I 9.l ®)

and the relation to the uncertainty principle can be found in [20]. Within an
operational approach, the Wehrl entropy can be interpreted as a sampling
entropy with coherent states as a filter. A comprehensive presentation of this
approach was recently given by Buzek et al. [21, 22].

Independent of the chosen basis {|«)} one has the inequality

S{a} Z SV.N.: (9)

which can be easily verified using the concavity of the function f(z)=zInz.
For pure states, this inequality is obviously trivial, because S, y=0.

In several studies the entropy (3) has been used to measure the degree of
localization of eigenstates in a certain 'natural basis’, also in order to separate
the states into ‘regular’ and ‘chaotic’ ones my measuring their degree of
localization (for recent applications see [23, 24]). This distinction is, however,
limited on the one hand by weaker localization phenomena as mentioned
above and on the other hand by strong fluctuations in the entropy of ’chaotic
states’. These fluctuations limit also the accuracy with which a localization
length can be determined and often some kind of averaging has to be done.

The fluctuations in the entropy result from inherent quantum fluctuations
in the projections p,, which can be described within the context of random
vector theory. A first comprehensive discussion of the entropy of random
vectors was presented by Wooters [25] and Zyczkowski [26]. Here we give
only a brief summary of their results as far as necessary for the following. But
we will present a novel straightforward derivation of the expression for the
mean entropy and in addition also for the mean fluctuations of the entropy.

3 The entropy of random vectors

The basic idea of random vector theory is to assign to each unit vector in
the underlying Hilbert space the same probability, e.g., to be an eigenstate
of a certain operator. Formally this means to define a probability density



on Hilbert space which is invariant under the group of unitary transforma-
tion of the system. Assuming the Hilbert space to be N-dimensional and
{l7), 7=1,..., N} to be an orthogonal basis, the probability distribution on
the corresponding space K = {ci,...,cn} of coefficients ¢; = (j|¢) has the
form

N
o(ci,...,cy) = const X (5(1 -> |cj\2) . (10)

J=1

From this density, the probability distribution P(|c;|>=p) for the projection
on any given vector can be derived (see, e.g., [27]). The result is

T'(Nv/2)
W/2T((N = 1)) "

Due to the isotropy of the density (10), the probability distribution (11) is
independent of the direction of projection. The parameter v =1, 2,4 distin-
guishes the three universality classes (orthogonal, unitary, symplectic) of the
system [28].

For large N the distribution approaches a y2-distribution

1//2—1(1 . p)(N—l)u/Q—l ) (11)

Ep) =

vN\"/? 1 vN
B(p) ~ Nx;(Np) = <7> 0 /2) pP ! exp (— 729) . (12
In this limit, the fluctuations of the projections onto different unit vectors
become independent of each other, i.e. the correlation of different projections
due to the normalization of the state |¢)) vanishes since 5 =1/N — 0 for
N — 0. The mean product of the projections onto two unit vectors |«) and
|a') can easily be derived to be

v+ 2/{a|a’)?

N(Nv+2) (13)

PaPo' =

An important point is that the fluctuations of the projections fulfill the re-
lation
2

~p” (14)

(Ap)* =

for large N. This means that the relative fluctuations are of order 1 and
independent of IV, i.e. they do not vanish in the classical limit N —o00.
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In several studies it was shown that (in the absence of dynamical localiza-
tion) the fluctuations of eigenstate components in some chosen natural basis
are in accordance with the predicted distribution function (12)[4, 5, 6, 7].
This result can be interpreted by saying that the eigenbasis and the chosen
'natural basis’ contain no information of each other, i.e. they appear to be
random to each other. If, e.g., the underlying 'natural basis’ is the basis of
an unperturbed Hamiltonian, this result may be interpreted as the quantum
analogue of the classical destruction of invariant tori by a (strong) pertur-
bation. In this case, the invariant phase-space structure does not contain
any more tori of the unperturbed system. If, however, the perturbed system
is still (almost) integrable, the phase-space of the system is still stratified
by invariant tori which originate from those of the unperturbed system by
smooth deformation. In this case, the quantum states — since they are sup-
ported by quantized invariant tori — do still contain information about the
unperturbed states and their expansion coefficients will show a non universal
distribution.

Using the distribution function (11) one can compute the average entropy
of a random vector:

S, = —N/dpP,,(p)plnp. (15)

Jones [29] showed by an involved analysis that the integral (15) allows for an
analytical evaluation with the result

5, =U(WN/2+1) - (v/2+1), (16)

where U(z) = I''(z)/T'(z) is the digamma function [30]. For the case of
a Gaussian distribution (i.e. ¥ = 1) this exact result was already given by
Izrailev [31]. There is, however, a much simpler straight forward derivation
of (16) by using Euler’s beta function [32]:

Blw,?) = [ app* (1 —p)y = % (17)

Rewriting the integral (15) as

- 0
S, = —%IDB(U),Z) (18)



with parameters w=v/2+1 and z=(N—1)r/2 immediately leads to (16).
Using the asymptotic series of the digamma-function ¥(z) = In(z) +
O(1/x) one obtains for large N the asymptotic behavior of the mean en-

tropy:

S, = InN—-¢,, (19)
¢, = Inv/2-Y(v/2+1), (20)

which follows also from evaluating the integral (15) within the y?-approxima-
tion (12) [25, 26]. This result states that the average entropy of a ‘random’
unit N-vector is the maximum entropy, In N, minus a (N-independent) con-
stant c¢,, which is determined by the symmetry class of the system only. The
origin of the reduction of the mean entropy compared to the maximum en-
tropy are the non-vanishing relative fluctuations in the vector components.
Casati et al. [10] realized that these deviations have to be taken into account
when defining an appropriate number of occupied states or a localization
length on basis of this entropy.

For deriving the standard deviation of the entropy, one has to start from
the joint probability density (10) in order to include also the influence of the
correlations between different vector components. Therefore this calculation
is, though elementary, very lengthy such that we omit here the derivation.
The result is:

2 v v Nv Nv
2 _ s - _ -
(A8)F = [(2+1)x11(2+1) ( 5 +1)7( 5 +1)] . (21)
where U’ denotes the derivative of the digamma function. Inserting the
asymptotic expansion of the the digamma function, one obtains for large N
the approximation

(AS)? = VN2+ 5 [(g + 1)@'(% +1) - 1] . (22)

The derivatives of the digamma functions are intimately related to the zeta
function; the values of ¥/(¥ 4 1) can can be obtained recursively from ((2)



[30]. The result for the three universality classes is explicitely:

3%—14 v=1
1 2
(AS)* = <4 %—3 v=2 . (23)
™2 19
r_ -7 —4
| 18 v

This asymptotic result has already been presented by Wooters for the case
v=2[25]. Of interest is the scaling of AS with 1/v/N; the fluctuations of
the mean inverse participation ratio are of the same order of magnitude.

The formulas (19,23) explain the behavior of the entropy of "chaotic eigen-
states’ computed in some natural basis, as, e.g., done in [23, 24] to separate
"chaotic’ from ’regular’ quantum states. The small but not negligible fluc-
tuations in the individual entropies make it, however, difficult to distinguish
states which show some weaker form of localization in a statistical significant
way.

Rather than computing the entropy S{a}(n)=— [ dttaPnaInpnq of the
eigenstates {|n)} of a full Hamiltonian in some natural basis {|a)}, one may
instead compute the entropy

S{”} (a) = - Z Pn,a lnpn,a (24)

of the chosen basis vectors in the eigenbasis of the system. When using
coherent states as a basis {|c)}, the map o — Sg)(a) defines a quantum
phase-space mapping showing local localization phenomena. Such a plot was
suggested by Zyczkowski [26].

One can easily verify that the Shannon entropy of any vector |«) in the
eigenbasis of a Hamiltonian corresponds to the information entropy Sy, (a) =
—tr(g, Ing,) of the time averaged projector

2. = Ii —/ )ldt, 9
u=Jim + () (25)

T—00

provided that the eigenstates are non-degenerate. This measure of local-
ization was suggested by Thiele and Stone [33] as a dynamical approach to
quantum chaos. It has, however, the disadvantage that there is no direct clas-
sical counterpart to this entropy and that it is dominated by non-negligible
quantum fluctuations of order 1/ VN as described above.
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4 Entropy of time averaged probability den-
sities

Here we shall suggest an entropy concept based on time averaged probabil-
ity densities which has a direct classical counterpart. In addition, it will be
shown that the relative fluctuations of this entropy due to inherent quantum
fluctuations are reduced to an order of 1/N thus being small in the semiclas-
sical regime compared to, e.g., the fluctuations in (24) of order 1/v/N.

The basic quantity we consider are the time averaged probability densities
obtained for the time evolved basis states |«):

o) = Jim 7 [ dtGa(®]a). (20)

This quantity has already been considered long time ago by Nordholm and
Rice to quantify the vibrational relaxation in isolated molecules [34]. It
describes the statistical relaxation of the propagation of the states |«) in
the sense that the time-dependent projections g(a, o, t) = |(a(t)|a/)|* will
fluctuate around these mean values for all times.

Expanding the basis vectors |a) in the eigenbasis {|n)} of the Hamilto-
nian, one obtains

ola, o) =3 [{e|m)*[{e/In)[* = 3 panPas » (27)

provided the the eigenbasis is non-degenerat. From (27) one recognizes im-
mediately that the probability matrix g(«, «') is symmetric. The diagonal
elements p(a, ) are the mean inverse participation ratios f{_nl}(a) =X, pfw
of the state o in the Hamiltonian eigenbasis. Rather than using onle these
diagonal elements as a measure for localization, we suggest to compute the
entropy from the probability distributions given by the columns (or rows) of
the matrix, i.e.

S(a) = — /d,ua:g(oz, o) Ino(a, a) . (28)
This entropy has two important properties which quantify it as a better quan-

tity offering a dynamical approach towards measuring quantum localization
in dynamical systems.
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The classical entropy

The probability distribution o(«, o) has a classical counterpart, which can be
defined in a entirely analogous manner on basis of time-averaged probability
densities on phase-space. Consider first a discrete division of classical phase-
space in cells of size /. Then one defines 0(%,7) to be the time averaged
probability for a trajectory initially located in cell ¢ to visit cell j. The
entropy

§U(i) = =3 070, 5) n ¢ (i, j) (29)

J

of these classical discrete probability distributions was introduced by Ninez
et al. [35] as an indicator of chaos in models of celestial dynamics. An
interesting property of the classical entropy is its scaling with the box size,
which is per definition the information dimension of the invariant set cell ¢
belongs to, i.e.

D= lim S
P00 In fiy

(30)
where hg is a dimensionless scaling parameter proportional to A. This di-
mension may also be fractal.

Alternatively to a discrete division of phase-space a continuous partition
using distribution functions wS(p, ¢) with a scaling parameter % can be de-
fined. By propagating each of these distributions by Liouville’s equation and
taking the overlap with the initial distribution functions, i.e.

f%aﬁﬂi)=§/dpdquQ%QJ)w$OLq% (31)

one obtains after time averaging the classical probability distribution

1 /T
cl ! . cl i
— 1 —/ 2
Q@a)ﬁgToﬁgmﬂ@, (32)
in analogy to the quantum density (26). In case that the classical dynamics
is mixing, the last step of time averaging is, however, non essential, since
then the time-dependent distribution (31) converges by definition.
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The classical probability distribution (32) defined in this way results from
the classical ergodic measures

pral#',¢) = Jim = [ at5104, o)~ (p(0),a(0))], (33)

generated by a trajectory by coarse graining it both in the phase-space point
(p',¢') and the initial point (p, q) .

The link between the quantum and classical probability distributions can
be established using the Wigner—Weyl phase-space formalism (for a review
see, e.g., [36, 37]), which allows to assign to each projector 9= |a){c| a phase-
space function wy(p, g) such that the overlap of two states can be written
as an integral over the product of their phase-space functions. Within this
formalism, the definition (26) of the time-averaged density reads

oo, \t) = / dpdqwa(p, q,t) ww (p,q), (34)

exactly as in the definition of the classical density (31).

Therefore, we conclude that the quantum probability distribution o(a, )
is an appropriate quantity to describe quantum localization. By computing
the entropy (28) of the quantum probability distribution, the degree of lo-
calization can be quantified and — by comparison with the entropy of the
corresponding classical probability distribution ¢%(c, ') — quantum local-
ization phenomena can be detected, which manifest on a time scale smaller
than the classical ergodicity time scale. The latter refers to the time a clas-
sical wave packet needs to explore the available phase-space area, i.e. the
time 7 the time-averaged density (32) needs in order to converge. It is
not essential to compute the Shannon entropy as a measure of localization,
but one may compute any Renyi entropy (5) of the density o(c, o) as, e.g.,
S® = [ dpa 0*(a, o).

There is, however, a difference between the quantum and the correspond-
ing classical entropy in the presence of discrete symmetries. The origin of
the difference is that in the quantum system tunneling will occur between
symmetry related phase-space regions, whereas classically such regions may
belong to different invariant sets. In case of a k-fold symmetric structure
this leads to an additional term of Ink in the quantum entropy compared
to the classical one. This inherent difference can, however, be removed by
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de-symmetrizing the system, i.e. identifying symmetry related phase-space
regions.

The Wigner function is in general a real but not necessarily a positive
phase-space function. Therefore it cannot be unambiguously interpreted as
a classical phase-space density. This problem does, however, not occur if
one considers coherent states as a basis, which are the only pure states with
strictly positive Wigner functions [38].

The well known coherent states {|a) = |p, ¢)} of the harmonic oscillator
are eigenstates of the annihilation operator a= (o — ip)/v/2ho , i.e., ala) =
ala) with a=(og—ip)/v/2ho . They can be generated from the vacuum state
(defined via @|0) = 0) by the displacement operator D(a) = exp[adl —a*d].
These coherent states form an overcomplete basis of minimum uncertainty
states:

d%a ol = dpdg

ot P, 9){p, ql - (35)

Their Wigner symbol is a Gaussian centered at (p, ¢) with widths (Ap)?>=oh
and (Aq)?="%/o; the parameter o is refered to as squeezing parameter. The
Wigner function of coherent states is thus strictly positive and converges
in the classical limit to a delta function on (p,q). More general coherent
states are parametrized by a complex squeezing parameter whose polar angle
accounts for an additional rotation in phase-space. In f-dimensional systems
coherent states are conveniently defined as a product of f one-dimensional
coherent states. For a discussion of the most general coherent states in 2f-
dimensional phase-space see the work by Hagedorn [39]. There it is also
mathematically rigorous shown that the propagation of quantum coherent
states follows that of the corresponding classical phase-space distribution up
to a time scale which goes to infinity in the classical limit.

Propagation of coherent states is therefore a preferable tool to study
quantum/classical correspondence in Hamiltonian systems, and in particular
deviations from it, which manifest themselves in localization phenomena.

With the choice of coherent states as a basis set the time-averaged prob-
ability distribution (26) becomes the time-average of the Husimi density
00 (a, ' 1) = [{p, q, t|p', ¢')|* of initial Gaussian wave packets. The resulting
probability matrix and the entropy computed from it depend on the squeez-
ing parameter o of the coherent states, although the results seem (according
do our experience) not to change essentially if the parameter is varied. For-
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mally, however, one can define an entropy independent of any such parameter
as the infimum over the parameter, i.e.,

S(a) = inf (—/%ga(a, o) 1n g, (a, a')) . (36)

This means that for each phase space point «, the squeezing parameter is
optimized such that the resulting time-averaged phase-space density o(a, o)
occupies a minimum phase space volume.

Quantum fluctuations in the entropy

The second advantage of the suggested entropy concept is that the influence
of inherent quantum fluctuations is reduced to order N~! and is therefore
small in the semiclassical limit. This is easily seen by looking on the fluc-
tuations of the matrix elements g(«, ') using their relation (27) to the pro-
jections p, . . If these weights are random variables, the matrix p(a, ') can
be considered as a doubly stochastic matrix, i.e. its columns and rows both
are random probability distributions. From (13), one immediately obtains as
the mean value of the matrix elements

= 0T (v +2/(ala)?) . (37)

The overemphasis of the diagonal terms g(c, ') by a factor of 14+2/v is the
well-known weak localization phenomenon.

We were not able to derive the exact expression for the variance of the
matrix elements p(c, /). Under the assumption of uncorrelated vector com-
ponents p, . , however, one easily finds

o(a, o)

Ag¥(a, o) = (1/(1/ + 1) + 2v[{a|d) > + (v* + Tv + 12)\(04\0/)|4) . (38)

4
(vN)?
This expression overestimates the fluctuations in p(a, ') even in the limit
N — oo since the error due to neglecting the correlation between different
vector components p,, and p,, is of the same order of magnitude as the
result. The scaling with NV is, however, obtained to the correct order which
is

(39)



The fluctuations in the matrix elements p(a, o) vanish thus in the classical
limit N —oo. For almost every vector |a) the entropy (28) will therefore be
the maximum entropy minus small deviations of order N~!:

S=mN(1-0O(N™). (40)

The influence of the weak localization on the entropy is thereby of the same
order of magnitude as the fluctuations caused by the random fluctuations
in the matrix elements p(«, a'). Compared to the statistical properties of
the entropy of an vector |«) in the eigenbasis discussed in Sect. 3, one finds
the fluctuations to be smaller by a factor of In N/+/N, and in addition the
absence of the constant symmetry related shift in the mean entropy compared
to the maximum entropy.

The classical interpretation and the limit of the entropy can be best in-
terpreted using coherent states as a basis. Suppose the classical dynamics is
ergodic on a chaotic sea A with volume V. The number of independent states
which can localize on this area can be estimated to be N ~V/h/ according
to Weyl’s rule (For a more sophisticated treatment of the relation between
phase-space cells and quantum projectors, see Omnes [40].). Classically, each
Gaussian initially located inside the chaotic sea will fill it ergodically. The
resulting classical time-averaged probability distribution (32) is therefore

o p,q,p,q) = { (1)/ v Eﬁ::g:g ;ﬁ (41)

with some smooth transition on the boundary of A depending on h. The
classical entropy is thus

S%(p,q) = In(V/h) (42)

with some deviations of lower order in 7 due to the Gaussian smoothing of the
boundary. Assuming now that the quantum evolution of the coherent state
centered inside A follows the ergodic classical motion sufficient long such
that the wave packets behave like a completely delocalized random state, the
statistical considerations above imply that the quantum entropy agrees with
the classical one up to relative deviations of order A’/ due to random quantum
fluctuations, i.e.

S, q) =S p,q) + O(W Inm ™). (43)
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In contrast to the fluctuations of order VA’ , as exposed by the entropy of
coherent states in the eigenbasis, these inherent quantum fluctuations are
small in the semiclassical regime. Therefore we claim that the entropy sug-
gested here is — by comparing it with the corresponding classical entropy — an
appropriate tool to detect quantum localization phenomena which manifest
on a time scale smaller than the classical ergodic time scale.

5 Illustrative Example

In order to demonstrate the usefulness of the proposed entropy we show an
example computed for a periodically driven rotor and compare this with the
corresponding classical entropy as well as the quantum entropy of coherent
states in the quasi-energy basis of the system. The continuously driven rotor
described by the Hamiltonian

2
H(t) = 5 fcoso coswt (44)
has been comprehensively studied both classically and quantum mechanically
(see [7, 41, 23] and references therein). The system is also referred to as double
resonance model since it shows two resonances at J = 4w which overlap
according to Chirikov’s criterium [42] at fw? =1/2. Since one of the two
parameters can be removed by rescaling the time, there is only one relevant
classical parameter, e.g. f. For larger values of f there is a global chaotic sea
confined by adiabatic invariant curves. In addition, there are two embedded
stability islands which undergo bifurcations when a parameter is changed.

For the example shown here, we have chosen w=1 and f=1, i.e. double
the Chirikov parameter, and h=0.02. For this value of Planck’s constant,
the number of states localizing on the chaotic sea is approximately N ~192;
a comprehensive study of the quasi-energy states for this case has already
been published in [23].

For time periodic systems the unitary Floquet operator, which is the
time evolution operator U(0,T) over one period T = 27 /h of the system,
corresponds to the classical stroboscopic Poincaré map. The basis of the
computed entropy was the time-averaged phase-space density o(p,q,7’,q")
obtained from iterating coherent states at t=0 under the Floquet operator.
This means that instead of the time integral in (31), the sum over full periods
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ty=kT,k=0,1,2,... has been taken. The explicit formulas for this discrete
case can also be found in [14]. For the computation of the different entropies

the squeezing parameter has been chosen to be o= \/m , i.e. adapted to the
frequency of rotation around the central orbit in the center of the stability
island.

In Fig. 1, first the classical entropy is shown as a contour-plot of the
3D-graph {J, ¢, S(J,¢)}; the distance of the contour lines is chosen to be
0.1. Because of symmetry only the half-plane with positive momentum J is
shown. One recognizes a plateau of high entropy in the range S, =>5.29+0.01
(the small fluctuations are due to inaccuracy in the computation). This value
is a bit larger than the value of S=1In(V/h)=5.22 predicted from the area
of the chaotic sea (compare (40)). This deviation is due to the Gaussian
smoothing of the boundary of the sea which leads to an increase in entropy.

Outside the chaotic sea, where the dynamics is restricted to invariant
curves, the entropy falls off to a lower value. The central stability island
appears in the entropy plot as a valley with a minimum value close to S =
1 +In2, where the logarithm of 2 occurs since the island has a symmetric
partner at negative momentum [14]. A further visible feature are three small
dips in the entropy plot caused by tiny islands of size less than 0.03h each.

The diagram of the quantum entropy (28) computed from discrete time-
propagation of coherent states shown in Fig. 2 exhibits the same overall
structure as the classical one in Fig. 1. The value of the entropy on the
chaotic sea fluctuates around a value of S=5.27 which is almost identical to
the classical value of S =5.29. The mean fluctuations of the entropy around
this value are approximately AS =0.025 such that they are not visible in the
contour plot with intervals of 0.1. Outside of the chaotic sea the quantum
and the classical entropy agree as well.

One observes, however, that the tiny period-3 islands are much stronger
pronounced in the quantum entropy compared to the classical entropy in
Fig. 1. Here, one clearly observes a quantum localization phenomenon, which
leads to an overestimate of the amount of regularity in phase-space. This
effect is also slightly visible at the boarder of the large stability island. When
inspecting the individual quasi-energy states of the system one finds also
states which localize on the tiny period-3 island despite of their smallness.
The entropy plot in Fig. 2, however, detects this localization in a quantitative
way and without the need of inspecting all individual states.
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In the Fig. 3, we show the quantum entropy (24) of the coherent states
in the quasi-energy states of the system. These states are the eigenstates of
the Floquet operator, i.e. U(0,T)|n) = ¢»T/*|n) | and play in time-periodic
systems the role Hamiltonion eigenstates have in time-independent systems.
When comparing this entropy with that in Fig. 2, one immediately notifies
the dominance of strong fluctuations, which are on the average approximately
AS = 0.085 on the chaotic sea. A further difference to the entropy of the
time-averaged probability densities is the smaller mean value of the entropy
over the chaotic sea which is S=4.80. This deviation is is close to deviation
of ¢;=1—C=0.422 predicted for random unitary vectors (compare (19)).

The localization on the period-3 islands is also visible in this entropy plot,
but it is not clear whether this is the only statistical significant localization
phenomenon in this system. One may notify other structures which might
be due to some localization, but their effect on the entropy is of the same
order of magnitude as the inherent statistical fluctuations due to the quantum
fluctuations in the projections |{J, #|n)|?. This leads for instance also to the
lowered entropy on the axis {J=0}. The quasi-energy states decompose in
two classes with even and odd parity, respectively [41, 23]. In the momentum
representation the odd states are all equal zero at J =0 and therefore their
overlap with coherent states located on this line will in general be smaller
than that of the even states. As a result, their entropy is smaller than
the average entropy on the chaotic sea. This observation is, however, not
related to any dynamical localization. An advantage of the entropy shown
in Fig. 2 is that these effects do not show up but instead the localization due
to a quantum suppression of the classical ergodic spreading of wave packets
is clearly exposed without superposition of other effects or large quantum
fluctuations.

6 Conclusion

In this paper, we have presented a novel entropy concept measuring local-
ization in dynamical systems. Based on time-averaged probability densities,
this concept is suitable to describe the statistical relaxation of time propa-
gated wave packets. One of the main advantages of the novel concept is that
is has a classical counterpart. By comparing the quantum entropy with the
corresponding classical one, localization phenomena which manifest themself
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in suppressing the classical spreading of a wave packet on a time scale smaller
than the classical ergodicity time can be detected and quantified.

An interesting characteristic of the classical counterpart of the entropy is
that its scaling behavior with A~%/? is given by the dimension of the under-
lying ergodic sets of the classical dynamics. A map (p,q) —S(p, q) obtained
from a quantum computation provides therefore a global quantum phase
space image showing the quantum correspondence of the different classical
invariant phase space sets.

Although coherent states are a preferable tool to study the transition
from classical to quantum dynamics, the suggested entropy is defined with
respect to any 'natural basis’ set whose dynamics one wants to study in view
of localization.

A further essential advantage of the novel entropy concept is that the
influence of inherent quantum fluctuations on the entropy is reduced to an
order of ii/. Therefore the novel concept offers the possibility to quantify
quantum localization in a statistical significant way, and we hope that the
concept will in the be applied in future studies of localization in dynamical
systems.
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Figure Captions

Fig. 1:

Fig. 2:

Fig. 3:

Classical entropy computed from the time-averaged phase-space
probability distributions of iterated classical Gaussian densiti-
ties using a squeezing parameter of o= \/1/72 The distance of
the contour lines is 0.1. One recognizes a plateau of high en-
tropy with an embedded stability island and three tiny island
of area less than 0.01A.

Quantum entropy computed from the time-averaged Husimi
density. The comparison with Fig. 1 shows a quantum local-
ization on the tiny regular islands.

Entropy of the coherent states expanded in the quasi-energy
states of the system, i.e. S(J, ¢)=— 3, [{J, ¢|n)|? In|(J, §|n)|? .
The plot is dominated by strong fluctuations.
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