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Abstract

As Automated Driving Systems (ADSs) revolutionize the intelligent transportation land-
scape, ensuring unparalleled safety becomes increasingly essential. Moreover, as automa-
tion levels rise, the responsibility for safety shifts from the driver to the system developers.
This transition necessitates a reevaluation of safety assumptions and the creation of a risk
assessment framework to assess system failures within an ADS.

The challenges of continuous risk assessment and early hazard identification for ADS is
multifaceted. Firstly, it is crucial to achieve comprehensive scenario coverage, as current
standards often focus on a limited set of predefined conditions and may not encompass
the wide range of potential real-world scenarios an ADS might encounter. Secondly, in-
tegrating complex system interactions is challenging because traditional approaches may
not fully account for the detailed interactions among various ADS subsystems or effectively
analyze the associated risks. Thirdly, integrating and analyzing diverse data streams is es-
sential but challenging, and current frameworks may not adequately address this aspect.
Lastly, validation under various operational conditions and continuous model improvement
is vital, with standard validation processes potentially not accounting adequately for the
wide variability in operational conditions faced by ADS and failing to specify measures for
open traffic scenarios.

The LeArning-based Dynamic Risk Indicators (LADRI) framework addresses these chal-
lenges, aiding safety engineers in early hazard detection for ADS development. It employs a
Plan-Do-Train-Adjust-Assess cyclic process, enabling continuous improvement in risk assess-
ment across diverse dynamic driving conditions. This approach leverages advanced learn-
ing algorithms and incorporates risk-specific context information from both the operational
environment and the ADS itself, providing runtime contextual insights for the model to ac-
curately predict severity and controllability indicators. This strategy bridges traditional gaps
in risk assessment by allowing the evaluation of severity and controllability to adapt to
different dynamic environments, instead of relying on subjective judgment. By monitoring
the risk spectrum during driving operations, safety engineers can identify specific risk pro-
files, thereby enhancing safety mechanisms for subsequent iterations of risk assessment.
Iteratively applying this framework allows developers to transition from unknown-unsafe
regions to known-safe regions, thus progressively enhancing safety.

A use case of Highway-Lane Following with Adaptive Cruise Control (ACC) functionality
is utilized, creating extensive testing across a variety of driving scenarios, on different road
shapes under diverse conditions, which has demonstrated the framework’s robust capability
for accurate risk prediction. The analysis underscores the importance of integrating time-
based, distance-based, and impact-based risk features for a comprehensive risk assessment.
These findings, supported by comprehensive model performance metrics and evaluations,
position the LADRI framework as an advanced tool to enhance the risk assessment process.
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Zusammenfassung

Mit der Revolutionierung des intelligenten Verkehrswesens durch Automatisierte Fahrsys-
teme (AFS) wird die Gewährleistung beispielloser Sicherheit zunehmend unerlässlich. Mit
steigendem Automatisierungsgrad verlagert sich die Sicherheitsverantwortung von den
Fahrern auf die Systementwickler. Dies erfordert eine Neubewertung der Sicherheitsan-
nahmen und die Entwicklung eines Rahmens zur Risikobewertung von Systemausfällen
innerhalb eines AFS.

Die kontinuierliche Risikobewertung und frühzeitige Gefahrenerkennung für AFS bringt
vielschichtige Herausforderungen mit sich. Erstens fehlt eine umfassende Abdeckung
potenzieller Szenarien. Aktuelle Standards berücksichtigen oft nur begrenzte, vordefinierte
Bedingungen, was reale Herausforderungen unzureichend abdeckt. Zweitens sind kom-
plexe Interaktionen zwischen AFS-Teilsystemen schwer zu integrieren, da herkömmliche
Ansätze nicht die ganzheitliche Analyse dieser Interaktionen ermöglichen. Drittens bleibt
die Nutzung und Analyse diverser Datenströme unzureichend, obwohl diese für eine präzise
Risikobewertung essenziell ist. Viertens mangelt es an standardisierten Validierungsver-
fahren, die die Variabilität der AFS-Betriebsbedingungen oder offene Verkehrsszenarien
berücksichtigen.

Das LeArning-basierte Dynamische Risikoindikatoren (LADRI)-Rahmenkonzept adressiert
diese Herausforderungen und unterstützt die frühzeitige Gefahrenerkennung in AFS.
Mithilfe eines Plan-Do-Train-Adjust-Assess-Zyklus wird eine kontinuierliche Verbesserung
der Risikobewertung unter verschiedenen dynamischen Fahrbedingungen ermöglicht.
Dieser Ansatz nutzt fortschrittliche Lernalgorithmen und integriert risikospezifische Kontex-
tinformationen aus der Umgebung sowie dem Fahrzeug selbst, um Laufzeitkontextdaten
zu liefern. So können Schweregrad- und Kontrollindikatoren präzise vorhergesagt werden.
Im Gegensatz zu herkömmlichen Methoden überbrückt LADRI bestehende Lücken, indem
es die Anpassung der Risikobewertung an dynamische Umgebungen statt subjektiver
Urteile ermöglicht. Die Risikoüberwachung während des Fahrzeugbetriebs erlaubt die
Identifikation spezifischer Risikoprofile, was die Weiterentwicklung von Sicherheitsmecha-
nismen in iterativen Prozessen unterstützt. Dadurch können unsichere Szenarien sukzessive
in sichere überführt werden.

Ein Anwendungsfall von Highway-Lane Following mit adaptiver Tempomat-Funktionalität
wurde genutzt, um die Fähigkeiten des LADRI-Konzepts zu demonstrieren. Tests unter
vielfältigen Fahrszenarien und Bedingungen verdeutlichen die robuste Fähigkeit zur
genauen Risikovorhersage. Die Analyse unterstreicht die Relevanz der Integration zeit-
, distanz- und wirkungsbasierter Merkmale für eine umfassende Risikobewertung.
Diese Ergebnisse, gestützt auf umfassende Metriken und Evaluationen, etablieren das
LADRI-Rahmenkonzept als fortschrittliches Werkzeug zur Verbesserung des Risikobewer-
tungsprozesses.
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1 Introduction

As the transportation sector evolves with the advent of new technologies,
the safety-critical behaviors of autonomous modes of transport become
a focal point for research and development. These autonomous systems,
whether they operate on the rails, through the skies, or along our ur-
ban roadways, are not only expected to revolutionize how we travel but
also to ensure the highest standards of safety and reliability. Consequently,
the following table provides a comparative overview of these behaviors
across three major autonomous transport modes: trains, airplanes, and
cars. It outlines the distinct challenges and operational parameters that
each mode must navigate to maintain safety and reliability in their respec-
tive domains.

Table 1.1: Comparison of Safety-Critical Behaviors of Autonomous Transport Modes [45]

Mode their behaviors.

Expected Operation

Trains Adherence to schedules and signal compliance.

Airplanes Flight plan and emergency response readiness, in-flight monitoring.

Cars Road rule adherence and responsive to dynamic conditions.

Freedom of Movement

Trains Restricted to rails.

Airplanes Operate in three-dimensional space with set flight paths.

Cars Can move in any direction on roadways.

Avoidable Traffic Encounters

Trains Other trains, predictable paths.

Airplanes Other aircraft, monitored by air traffic controller, relatively pre-
dictable.

Cars Diverse traffic including pedestrians and cyclists, unpredictable.

Environmental Monitoring

Trains Signals, weather affecting tracks.

Airplanes Weather patterns, air traffic over long distances and high altitudes.

Cars Road conditions, traffic signals, and weather.

Collision Risk

Trains Collisions with other trains, derailments.

Airplanes Risk of mid-air collisions, highest control during takeoff/landing.

Cars Collisions with all road users, high variability.
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Introduction

In light of this context, Table 1.1 sheds light on the fact that the com-
plexities and challenges for autonomous cars are more pronounced due
to their operation in a highly dynamic and unpredictable environment.
While trains and airplanes follow predetermined paths with strict schedul-
ing and air traffic control oversight, respectively, autonomous cars must
navigate a myriad of unpredictable factors such as diverse traffic condi-
tions, variable road rules, and unanticipated actions from pedestrians and
other road users. The operational demands on autonomous cars necessi-
tate a level of adaptive behavior and runtime decision-making that is far
more complex than that required for the other two modes of transport,
thus presenting greater challenges for safety and standardization in the
domain of automotive.

Autonomous cars are composed of a complex network of sensors, ac-
tuators, and processing units. This allows vehicles to independently per-
ceive, interpret, and navigate their surroundings. When delving into the
domain of autonomous cars, confusion often arises regarding the termi-
nology used, such as autonomous cars, automated driving, self-driving
vehicles, and driverless vehicles. Although these terms are frequently used
interchangeably, they possess almost same meanings. "Autonomous" and
"self-driving" vehicles are closely related, as are "automated" and "driver-
less" vehicles [47, 54, 99, 139, 143]. A truly autonomous vehicle would
independently determine its destination and route without any human in-
put.

The Society of Automotive Engineers (SAE) has established a classifica-
tion system for such system, which ranges from Level 0 (no automation)
to Level 5 (full automation) [60]. At Level 0, the human driver maintains
complete control over the vehicle at all times. Conversely, at Level 5, the
vehicle operates entirely without human intervention. For the sake of con-
sistency and clarity, this thesis follows the term Automated Driving System
(ADS) specifically referring to Level 5 automation, where no human inter-
vention is considered necessary. Nevertheless, it is recognized that some
research has used "Autonomous Vehicles (AVs)" as case studies. In these
scenarios, this thesis aligns the terminology by treating AV as synonymous
with ADS. This way thesis work ensures uniformity in the examination and
discussion of automated driving technologies.

ADS emerge as a promising solution for significantly reducing the vast
number of road accidents, and enhancing overall driving experiences. They
offer clear advantages, such as eliminating the need for manual vehicle
operation, reducing delays from congestion, and creating safer environ-
ments by minimizing human error. The push for developing ADS is primar-
ily driven by the fact that human error or misconduct causes the majority
of road accidents, with more than 90% attributed to such factors includ-
ing distracted driving, aggressive maneuvers, driving under the influence,
speeding, and lack of attention due to fatigue or drowsiness [123, 125].
This underscores a critical need for ADS to mitigate driving misconduct
and enhance road safety.
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However, as ADS operate in dynamic, safety-critical environments, it is im-
perative that they maintain safety for all traffic participants, including their
users, in the event of any hazard or system failure. By comprehensively un-
derstanding their own functional capabilities and the environment, ADS
can not only reduce the severity but also diminish the likelihood of acci-
dents. Furthermore, it is crucial that they do not introduce any additional
hazards that could potentially increase the number of road accidents.

Therefore, in this thesis, the research is centered on evaluating ADS across
diverse scenarios to determine whether their behavior is safe or unsafe.
The structure of the remainder of this chapter is outlined as follows:

In Section 1.1, the thesis focuses on motivation by highlighting the post-
deployment safety challenges faced by ADS and discusses how much risk
is considered safe enough. This section also explores the gap in current
risk assessment techniques.

In Section 1.2, the thesis explains the problems that ADS face with current
risk assessment techniques, where the thesis work can provide solutions,
and why dynamic risk assessment and a learning-based approach is nec-
essary.

In Section 1.3, the thesis outlines its contributions towards addressing the
issues highlighted in Sections 1.1 and 1.2.

In Section 1.4, the thesis discusses the key assumption made during the
development of its contributions.

Finally, an overview of the structure of the thesis is provided in Section 1.5

Chapter Content
1.1 Motivation................................................................................. 4

1.1.1 Post-Deployment Safety Challenges ........................................ 5
1.1.2 How Much Risk is Safe Enough?............................................. 6
1.1.3 The Gap in Current Risk Assessment Techniques......................... 9

1.2 Problem Statement ..................................................................... 10
1.2.1 Dynamic Driving Task and Operational Environment .................... 11
1.2.2 The Need for Dynamic Risk Assessment.................................... 12
1.2.3 Learning from Risk-Specific Context Information ........................ 14

1.3 Contributions ............................................................................. 17
1.4 Assumptions............................................................................... 20
1.5 Thesis Structure .......................................................................... 21

3



Motivation

1.1 Motivation

Ensuring the safety of ADS demands a comprehensive and interdisciplinary
approach that spans various areas, including safety engineering, comput-
ing hardware, robotics, human-machine interaction, software, security,
and testing [77]. A key challenge is validating ADS against unexpected
inputs and achieving the reliability necessary for widespread deployment,
especially with the driver out of the loop [76]. Developing an integrated
design and deployment process that consolidates safety considerations
across multiple technical domains into a cohesive strategy presents a sig-
nificant hurdle [15].

As depicted in Fig. 1.1, with automation levels increasing to Level 5, the
responsibility for safety shifts from the driver to system developers. This
change compels developers to incorporate safety measures throughout
ADS to effectively address the complex challenges it may face during its
operation. System developers bear the responsibility of adhering to and
potentially exceeding existing safety engineering standards, which may
not fully address the unique challenges presented by ADS. This entails a
comprehensive reevaluation of safety assumptions and the creation of de-
pendable safety mechanisms to manage rare but inevitable system failures
across an entire fleet, accommodating the absence of a human driver in
the operational loop.

Figure 1.1: Safety Responsibility: Level of Automation [60]

The quantification of risk in ADS presents multiple challenges, particularly
in validating the complex and interconnected systems essential to ADS
functionality. These systems often rely on inductive reasoning, complicat-
ing the assurance of their behavior in unforeseen conditions. Additionally,
the complexity and variability of real-world data present significant obsta-
cles to achieving system safety.

To address these challenges, a comprehensive validation strategy that goes
beyond traditional methods is necessary. Systems like ADS, capable of
learning and adapting over time, require dynamic testing approaches to
ensure thorough validation. These strategies must accommodate the dy-
namic nature of ADS operations, demanding rigorous and innovative ap-
proaches to ensure that ADS operate safely under all conditions.
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1.1.1 Post-Deployment Safety Challenges

To further illustrate the ongoing efforts to monitor and enhance the safety
of ADS post-deployment, the National Highway Traffic Safety Administra-
tion (NHTSA, USA) has issued a Standing General Order requiring manu-
facturers and operators to report crashes involving vehicles equipped with
ADS [2]. This order seeks to gather detailed, real time crash data to address
the primary safety challenge of understanding ADS behavior in a wide
range of real-world scenarios. If an ADS-equipped vehicle crashes and the
ADS was active within 30 seconds before the crash, causing property dam-
age or injury, it must be reported. Although the report does not specifically
discuss how safety challenges differ across various environments or condi-
tions, it implies that the Operational Design Domains (ODDs) of ADS vehi-
cles, which specify the conditions under which a given ADS can function,
are crucial. The report mentions that among the reported crashes, sev-
eral involved vulnerable road users, including cyclists, motorcyclists, buses,
heavy trucks, pickup trucks, vans, SUVs, and passenger cars. According to
the NHTSA, as depicted in Fig. 1.2, there have been 244 crashes involving
vehicles with Level 5 autonomy over the last 12 months.

Figure 1.2: ADS equipped Vehicle Crashes in Last 12 Months (NHTSA Dashboard) [2]

The primary safety challenges faced by ADS after deployment include [77]:

– Self-Monitoring and Fail-Operational Capabilities: ADS must be capable
of self-monitoring to reliably detect system degradation or failures.

– Validating Inductive Learning and Novel Environmental Inputs: A signif-
icant challenge involves validating Artificial Intelligence (AI) algorithms
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against novel environmental inputs not included in the training or test-
ing datasets. The complexity of real-world scenarios complicates en-
suring that ADS can handle unexpected situations with the necessary
safety.

– Achieving High Levels of Dependability: ADS must attain ultra-
dependability, a safety level akin to commercial aviation, to be consid-
ered safe for large-scale deployment. This requires systems to be robust
against diverse environmental conditions, including adverse weather,
sensor noise, and unpredictable road hazards.

– Managing Infrequent Failures at Scale: With large-scale ADS deploy-
ment, managing rare failures becomes challenging. Even infrequent fail-
ures can pose unacceptable risks when scaled to a fleet of millions of
vehicles. This requires a comprehensive approach to ensuring the safety
of computer-based automotive systems that goes beyond traditional
functional safety approaches.

– Social Acceptance and Human Factors: Gaining public trust in ADS
technology is critical for its adoption. This requires demonstrating the
safety and reliability of ADS and addressing challenges related to hu-
man factors, including interactions with ADS occupants, pedestrians,
and drivers of non-autonomous vehicles [89].

1.1.2 How Much Risk is Safe Enough?

Transitioning from the specific challenges to a broader regulatory perspec-
tive, the question of "How Much Risk is Safe Enough?" emerges as a
pivotal concern. The concept of "Acceptable Risk" is balanced with public
safety and regulatory standards through various means. Firstly, the safety
of ADS is recognized not solely as a technical issue but also as a matter of
public and regulatory importance, necessitating engagement with broader
societal values and standards. Secondly, risk quantification uses metrics like
"miles per disengagement" or "fatalities per million miles driven," which
are useful but limited. These need to be complemented by qualitative as-
sessments that consider the broader societal impacts of the technology.
Lastly, trust in ADS encompasses their performance (how safely they oper-
ate), the processes underpinning their development and deployment, and
their intended purposes. This multifaceted approach to technological risk
suggests that governance should extend beyond performance metrics to
also consider development processes and the technology’s goals within
society [126].

The comparative analysis in Fig. 1.3 indicates a notable disparity in the
types of collisions involving ADS compared to Conventional Vehicles (CVs),
underscores the necessity of integrating both quantitative metrics and
qualitative assessments in determining acceptable risk levels. Rear-end col-
lisions and proceeding straight incidents are significantly more common in
accidents involving ADS, which can be attributed to the aggressive driv-
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ing style of these systems. Additionally, factors such as unsafe speed, fol-
lowing too closely, side swipes, violations of traffic signals and signs, and
passing other vehicles represent a combination of maneuvers and errors
by ADS that lead to a higher rate of accidents compared to CVs. Unlike
broadside collisions, which is typically more severe but less common in
ADS accidents. This suggests that ADSs are good at avoiding some high-
risk crashes but might struggle with unusual situations that human drivers
rarely face, leading to more rear-end collisions because of their unexpected
way of driving [115]. This indicates that the overarching question of ac-
ceptable risk reinforces the argument for a multifaceted evaluation of ADS
before deployment.

Figure 1.3: Comparative Analysis of Accident Types between ADS and CV [115]

Measuring the safety of ADS or quantifying risk is both essential and dif-
ficult. There are still some open questions and challenges to define how
safe is safe enough [17, 75] or in other words, how much risk is safe
enough. The accident state in the context of ADS is not binary, it en-
compasses a spectrum that ranges from a safe (non-catastrophic) state
to an unsafe (catastrophic) state 1. As shown in Fig. 1.4, accidents in-
volving ADS range from safe state to catastrophic state, each presenting
unique insights for system improvement. For instance, near-misses (S1C1),
where accidents are averted at the last moment, highlight the importance
of ADS or human intervention, serving as crucial data points for analysis
and enhancement of the system. Minor incidents (S1C2,S1C3), involving

1 Machin et. al in [92] proposed partitions between catastrophic states and non-catastrophic states
for safety invariant
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low-speed collisions or slight contacts, though typically resulting in mini-
mal damage, reveal areas where the ADS could be improved. Moderate
accidents (S2C2, S2C1), which involve significant vehicle damage or mi-
nor injuries, indicate failures in the ADS’s decision-making or navigation
capabilities. These issues may lead to stricter regulations and safety en-
hancements. Serious accidents (S2C3, S3C1), which cause major injuries
or fatalities, point to significant failures in the ADS’s operational abilities,
requiring in-depth investigations and major system modifications. Catas-
trophic events (S3C2,S3C3), the most severe category, involving multiple
vehicles and casualties, impact public trust and regulatory policies, possi-
bly pausing ADS deployment for extensive system reviews. This gradation
of incidents underscores the continuous learning and adaptation process,
leveraging data from each event to refine algorithms, reassess design prin-
ciples, and enhance sensor functionalities for improved safety 2.

Figure 1.4: The Classification of Severity and Controllability as System-Dependent Risk Levels

As discussed earlier, traditional metrics like "miles per disengagement"
and "fatalities per million miles driven" have limitations; not all disengage-
ments equate in risk level, and such metrics don’t account for non-fatal
incidents or near misses [126]. Therefore, the RAND Corporation report
[17, 44] emphasizes the importance of identifying effective safety mea-
sures and recommends both leading and lagging indicators for measuring
safety. Additionally, the report advises that safety measurement methods
must be valid, feasible, reliable, and non-manipulatable. Leading measures
can serve as proxy measures of driving behaviors correlated to safety out-
comes, while lagging measures involve actual safety outcomes that include
harm.

In this context, controllability levels (C0-C3) serve as leading indicators, of-
fering runtime insights into the ADS’s ability to manage different driving
scenarios and suggesting areas for technological improvement or risk mit-
igation. Conversely, severity levels (S0-S3) act as lagging indicators, mea-

2 The classification of controllability and severity as system attributes underscores their inherent re-
lation to the system’s design, operation, and potential failure modes [71].
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suring the outcomes of ADS interactions in terms of incident severity, from
no injury to fatalities. This approach highlights the complexity of quantify-
ing risk in ADS and stresses the need for a comprehensive set of metrics,
including both predictive and outcome-based indicators, to ensure safety.

1.1.3 The Gap in Current Risk Assessment Techniques

The ISO 26262 standard [41], while comprehensive for Electrical/Electronic
(E/E) system failures, does not fully cover the broader risks associated
with ADS, including challenges outside of E/E problems, such as decision-
making by software algorithms under uncertain conditions [133]. Tradi-
tional risk assessment technique, such as Hazard Analysis and Risk Assess-
ment (HARA), relying on predefined scenarios and static hazard analysis,
struggle with the dynamic and unpredictable nature of real-world driving
environments [95]. This creates a gap in identifying hidden connections
and operational states that are not recognized as failure modes, highlight-
ing the need for functional safety in complex automotive systems.

The complexity of ADS, marked by their interconnected nature and the re-
quirement to interact with their environment, poses significant challenges.
This complexity leads to a system-of-systems scenario, increasing the risk
of malfunctions that could spread across system boundaries. The absence
of standardized practices for assigning Automotive Safety Integrity Levels
(ASILs) and subjective assessments complicates early hazard identification
in the ADS development process [57]. Additionally, functional insufficien-
cies, where system sensors, algorithms, or overall functionality fail due to
environmental constraints, highlight another gap in current risk assess-
ment approach. This indicates that even if a vehicle is safe from hardware
malfunctions, it might still be risky in complex driving situations for which
it was not designed or tested [35].

Additionally, the use of AI Algorithms in ADS introduces two major obsta-
cles: the lack of complete specification for AI-based components due to
the complexity of defining all potential environmental interactions, and the
non-interpretability of AI models, especially deep neural networks, which
hinders the ability to manually verify the correctness of these systems. The
lack of complete specifications and the issue of non-interpretability signif-
icantly affect the ability to verify and test AI-based components in ADS.
Approximately half of the verification and testing methods outlined in ISO
26262 become inapplicable under these conditions, leading to challenges
in assuring the safety and reliability of ADS [120].

Traditional safety standards and methodologies, such as ISO 26262 and
ISO 21448 [43], do not adequately consider environmental impacts over
the vehicle lifecycle, struggle to obtain statistically valid failure probabili-
ties, and lack established quantitative metrics for ADS. The inability to per-
form complete vehicle-level testing and the challenge of handling complex
and uncertain failure modes can result in overlooked potential hazards.
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Without clear risk metrics for ADS, making decisions under uncertainty
becomes difficult, potentially compromising safety in various operational
situations when ADS are deployed [130].

This situation necessitates an enhanced risk assessment methodology that
includes a wider spectrum of operational scenarios beyond typical testing
environments. Developing a deeper understanding of the ODDs, including
environmental, geographical, and temporal limitations for safe operation,
is essential. Additionally, integrating robustness and resilience in system
design is crucial, allowing ADS to maintain safety or degrade gracefully
under conditions beyond its nominal operational capabilities.

1.2 Problem Statement

This section focuses on identifying and analyzing the risks involved in de-
veloping and deploying ADS as part of the problem statement on ADS risk
assessment. The importance of considering dynamic factors in risk assess-
ment is highlighted, acknowledging that risks evolve in real-world scenar-
ios where conditions, human interactions, and ADS behaviors can change
unpredictably. Traditional HARA methods, as outlined in ISO 26262, strug-
gle to adapt dynamically and may not fully understand the complex nature
of ADS environments. Additionally, subjective risk assessment ratings can
be problematic because they depend on personal judgment, which can
vary greatly between people and may not always consider dynamic fac-
tors. Subjective risk ratings might find it hard to accurately measure risks
and adjust to new or changing information.

Therefore, this thesis proposes a new, more objective, and dynamic frame-
work for evaluating the risks associated with ADS. It aims to improve cur-
rent methods by incorporating specific information about risks and us-
ing learning-based algorithms to better adapt to dynamic conditions. The
goal is to thoroughly examine ADS under various conditions to confirm
their safety, reliability, and functionality before they deployed. This includes
identifying potential hazards and evaluating their effects using dynamic
risk indicators. While this work aims to provide a basis for taking safety
measures to reduce risks to acceptable levels, the detailed implementation
of such measures is beyond its scope. This method seeks to increase the
precision of risk evaluations and aid in making more informed decision-
making for the development and deployment of ADS.

In this thesis, given the evolving risks in ADS environments and the limi-
tations of HARA, the following research questions and objectives are pro-
posed:

1. Research Question: What are the specific dynamic factors that signif-
icantly influence ADS risk, and where do current models fall short in
capturing these dynamics?
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Research Objective: Conduct a thorough investigation into dynamic fac-
tors affecting ADS risks, such as environmental variability and ADS be-
havior, and pinpoint the deficiencies in current risk assessment models
regarding these factors.

2. Research Question: How can a more effective risk assessment method-
ology be developed to integrate dynamic factors into ADS evaluations?

Research Objective: Design and validate a comprehensive and iterative
framework that incorporates dynamic factors (e.g., failure modes, en-
vironmental changes, ADS behavior) into the risk assessment process
for ADS, utilizing runtime data and predictive analysis. Study how the
dynamic risk indicators can vary in diverse safety-critical scenarios.

3. Research Question: How can supervised Machine Learning (ML) algo-
rithms enhance HARA to increase the objectivity and effectiveness of
ADS risk assessment?

Research Objective: Develop and test ML algorithms to dynamically as-
sess risks, aiming to automate the process, enhance accuracy, and im-
prove adaptability to new situations compared to the current HARA
method. Study how correlations between risk factors affects risk assess-
ment accuracy. Evaluate the quality of empirical evidence that supports
the use of dynamic risk indicators.

1.2.1 Dynamic Driving Task and Operational Environment

The Dynamic Driving Task (DDT) of ADS is composed of multiple system
components integrated together, as depicted in Fig. 1.5. For instance, sen-
sors focus on data acquisition, underscoring their role in environmental
perception and obstacle detection. The Driver-Human Machine Interface
(HMI) monitors ADS functions and provides safety alerts when necessary.
Vehicle actuators are essential for implementing ADS decisions, influenc-
ing steering, braking, and throttle. The Decision and Control unit makes
tactical decisions such as speed adjustment and obstacle navigation, while
Vehicle Dynamics Management coordinates actuators and monitors the
vehicle’s state to ensure safe and intended movements.

Figure 1.5: Conceptual Architecture of ADS [65]
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A DDT for ADS encompasses a broad spectrum of activities that require
runtime processing and decision-making in response to ever-changing en-
vironmental conditions, traffic patterns, and sensor data. Unlike conven-
tional driving tasks where human drivers use their senses and cognitive
skills to respond road situations, ADS rely on sensors and AI algorithms to
perceive their environment and make decisions. For instance, ADS must
continuously adjust driving strategies to maintain safety amidst varying
traffic densities, weather patterns, and road conditions. The dynamic na-
ture of these tasks is further complicated by the need for tactical decision-
making, such as speed adjustments and lane changes based on sensor
inputs, which are affected by factors like sensor reliability, environmental
variability, and sensor degradation over time.

Not only this, the operational environment plays a critical role in influenc-
ing the performance and risks associated with ADS. Variability in weather
conditions such as rain, fog, snow, and changes in lighting can significantly
affect sensor performance and the decision-making algorithms of ADS. For
instance, poor visibility or sensor obstruction can impede the ADS’s ability
to accurately perceive its surroundings, increasing the risk of misjudgment
and accidents. Traffic congestion and fluctuating traffic patterns demand
continuous adjustments in driving strategy, posing challenges in maintain-
ing safety. Additionally, changes in road conditions, obstacles, and unex-
pected events like accidents or roadworks require ADS to make runtime
adjustments, thereby influencing their operational performance and asso-
ciated risks.

Modeling the DDT for risk assessment presents several challenges. First,
the variability in environmental conditions, and operational environment
necessitates sophisticated models that can accurately simulate the myr-
iad of possible scenarios ADS may encounter. Second, the performance
and reliability of sensors and detection systems, which can be affected by
environmental factors and wear and tear, add another layer of complex-
ity in modeling the ADS’s ability to perceive its surroundings accurately.
Third, the inclusion of adaptive and AI algorithms in ADS introduces un-
predictability, as these systems shape their responses based on accumu-
lated data, potentially leading to unforeseen behavior. Last, the need to
account for the dynamic interaction with other road users complicate the
modeling process, making it challenging to assess risks accurately.

1.2.2 The Need for Dynamic Risk Assessment

Dynamic Risk Assessment (DRA) offers a significant advancement over
static HARA by enabling runtime evaluation of risks in accordance with
the actual operational context and the system’s current state. Trapp et al.
in [132] highlighted the shift towards Dynamic Safety Management to ad-
dress the uncertainties in autonomous systems’ behaviors and operational
contexts, allowing for runtime safety and performance optimization (as
shown in Fig. 1.6). To implement the adaptation process and understand
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its roles, answers to different aspects of the questions (5W+1H), coined
by [122] and used in Table 1 of [111], are essential. The central question
in this framework, "WHY system need to perform adaptation?”, triggers
the adaptation process based on runtime risk assessments.

Figure 1.6: Basic Idea of Dynamic Safety Management (inspired from [132] and adapted from
[111]).

The inherent non-linear and non-deterministic behaviors of AI algorithms
that drive ADS pose a challenge to foresee all potential operational sce-
narios during the design phase. Due to the specific characteristics of ADS,
there are many uncertainties making it difficult or even impossible to
predict the system’s behavior necessitates a shift from static, worst-case
scenario-based assessments to more flexible, DRA. Additionally, it provides
a more realistic and flexible basis for the development of safe and cost-
efficient ADS. DRA enables ADS to dynamically assess risk and it can adjust
(using Why? as risk reasoning for) safety measures in response to actual
risks related to the current context 3 [111, 112]. This adaptability ensures
more efficient and effective operations compared to static assessments’
constraints.

3 The focus on safety measures based on DRA is beyond the scope of this thesis. However, DRA could
be coupled with self-adaptive systems that offer "Risk Reasoning" to explain why the system must
perform adaptation operations.
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However, testing ADS with DRA in real-world driving is not a practical solu-
tion. Additionally, testing ADS over extensive driving distances is physically
costly and not a feasible approach. Therefore, DRA using simulation-based
approach could be beneficial for the testing of ADS across a vast array of
driving scenarios, including rare or hazardous situations that are difficult
or dangerous to reproduce in real-world testing.

1.2.3 Learning from Risk-Specific Context Information

The HARA process in the automotive domain evaluates three critical com-
ponents for each identified hazard to provide insights into risk decompo-
sition (R) shown in Eqn. 1.1:

(1.1) R = f(S, E, C)

1. Severity (S) measures the potential impact of a hazard occurring, indi-
cating the seriousness of injury or damage that could result. Influenced
by factors such as impact energy and environment characteristics, sever-
ity aids in understanding the hazard’s potential consequences [64].

2. Exposure (E) assesses the likelihood or frequency of encountering a sit-
uation where a hazardous event might occur, reflecting the system or
its components’ susceptibility to conditions that could lead to a hazard.
Exposure assessment can vary subjectively based on expert knowledge,
affecting the exposure ratings [10].

3. Controllability (C) evaluates the vehicle occupants’ (or users’) ability to
avoid harm when facing a potential hazard (i.e. ADS capabilities in ab-
sence of driver). It measures the manageability of a hazard by the driver
or user under different conditions, influenced primarily by the vehicle’s
capability to alter its trajectory and environmental factors impacting this
ability [100].

By assessing severity, exposure, and controllability, developers can priori-
tize hazards and implement suitable safety measures. The standard cate-
gorizes severity into four classes: S0 (negligible), S1 (moderate injuries), S2
(severe injuries), and S3 (catastrophic injuries). Exposure is divided into: E1
(very low), E2 (low), E3 (medium), and E4 (highly probable). Controllability
is classified as: C0 (fully controllable), C1 (challenging), C2 (difficult to con-
trol), and C3 (uncontrollable) 4. As shown in Fig. 1.7, the two-dimensional
risk assessment is depicted through a risk matrix that considers two pri-
mary factors: the ability to avoid harm (controllability) and the potential
impact of a hazard (severity). This matrix is commonly used to categorize
risks into different levels (e.g., low, medium, high) based on these two
dimensions. This two-dimensional model is good for broadly categorizing

4 In this thesis, the research focuses solely on severity and controllability for the specified hazardous
events, with the exposure rating considered as E4 (highly probable).
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risks but might miss the details of complex risk scenarios, especially those
that change over time or are influenced by various risk factors.

Figure 1.7: Learning about Risk: Incorporating the Risk Knowledge Dimension (inspired from
[11, 108])

The introduction of the risk knowledge dimension transforms the tradi-
tional two-dimensional model into a three-dimensional model, as shown
in Fig. 1.7. This illustrates that as risk knowledge increases, the percep-
tion and categorization of risk can shift, emphasizing the need for con-
tinuous learning and adaptation in risk management. The importance of
risk knowledge (i.e. risk-specific context information) for DRA is important
due to the evolving nature of risk. As ADS technologies and operational
environments change, so do the risks associated with them. This evolu-
tion necessitates a continuous reassessment of risks, incorporating new
knowledge to refine our understanding and management of these risks.

Risk knowledge enables a deeper understanding of the performance and
limitations of ADS within high-risk environments. An approach presented
in [11, 108, 110], emphasize the importance of continuous information
systematization and the inclusion of new risk evidence through continu-
ous monitoring (i.e. through iterative process). This approach is centered
around the knowledge dimension of risk, advocating for an iterative pro-
cess that adapts to changing conditions and improves risk management
based on evolving knowledge.

Truth tables and rule-based approach, while useful in certain contexts,
confront significant challenges when applied to DRA in complex and un-
certain environments. Their limitations stem from issues with complexity,
scalability, adaptability, and a static nature that does not readily accommo-
date updates without manual intervention. Both struggle with ambiguity
and lack the capability to learn from new data, often oversimplifying real-
world scenarios and potentially overlooking critical risk factors.
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Figure 1.8: Idea of Risk-Learning Process [113]

To address these limitations, the application of a learning-based approach
introduces a dynamic method to continuously refine risk assessment
strategies [113]. By treating risk knowledge as an evolving variable, su-
pervised ML-based algorithms can automate the process of updating risk
knowledge based on new data, insights from past incidents, and ongoing
operational feedback (as shown in Fig. 1.8). This approach enables the
analysis of vast datasets to uncover hidden patterns, trends, and correla-
tions that may elude human analysts (i.e. Safety engineer), thus enriching
the depth and breadth of risk-related knowledge. The iterative process
that a learning-based approach provides establish a feedback loop for
the continuous integration of new information into risk assessments.
This iterative process ensures the risk knowledge base remains current,
reflecting the latest in operational conditions, and ADS advancements.

Furthermore, to extend the risk assessment coverage from unknown-
unsafe region to known-safe region (Table XII from [21]) within ADS, Zio
et al. in [147] suggest that a vast, combinatorial set of possible scenar-
ios, events, and conditions needs consideration, with only a few rare ones
leading to critical, unsafe situations. Through this proactive exploration of
both accidents and incidents [4], ADS developers can identify potential
risks and evaluate the effectiveness of mitigation strategies. The integra-
tion of a learning-based approach thereby equips decision-makers with
the most current and comprehensive risk information, enhancing decision-
making in the face of uncertainty.
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1.3 Contributions

This thesis introduces the LeArning-based Dynamic Risk Indicators (LADRI)
framework, a novel approach designed to enhance risk assessment for
ADS by leveraging runtime risk-specific context information. The LADRI
framework implements a cyclic process, named Plan-Do-Train-Adjust-
Assess (PDTAA), as depicted in Fig. 1.9, to dynamically update and refine
risk indicators. This allows for a more accurate and comprehensive assess-
ment of risks, ensuring the framework’s adaptability to new insights and
shifts in ADS operational conditions. The LADRI framework is centered
around the PDTAA cyclic process, designed to iteratively refine risk assess-
ments by integrating both design and non-design parameters along with
potential failure conditions, as shown in Fig. 1.10.

Figure 1.9: Concept of Enhancing Continuous Risk Assessment (Inspired from [39])

This thesis seeks to address the limitations mentioned earlier by using a
learning-based approach within the LADRI framework. This method helps
discover hidden patterns and connections related to specific risks, im-
proving the precision of risk assessments. Leveraging supervised ML al-
gorithms, the LADRI framework seeks to provide a more objective and
dynamic tool for risk assessment. The task of each phase of the LADRI
framework contribute to the next phase of the cyclic process:

1. PLAN: This initial phase defines the framework for simulation by iden-
tifying Design parameters (directly controllable aspects like sensor con-
figurations and vehicle control strategies), Non-Design parameters (un-
controllable factors like environmental conditions and traffic behavior),
and Failure conditions (potential system failures or errors, identified us-
ing Hazard and Operability Analysis (HAZOP) Guide words).
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Study objective:

– 1a: What are the critical design and non-design parameters, along
with failure conditions, that must be considered to effectively sim-
ulate real-world driving conditions for ADS?

– 1b: How can these parameters be quantitatively defined to max-
imize the relevance and comprehensiveness of the LADRI frame-
work?

Figure 1.10: Schematic Representation of the LADRI Framework

2. DO: Following the Plan, this phase involves the execution of simulations
that replicate the interactions between the ADS, the environment, and
surrounding traffic behavior across a spectrum of driving conditions.
The aim is to assess how these interactions influence the ADS’s decision-
making algorithm in different scenarios, generating risk-specific context
information and transformed them into risk features for further analysis.
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Study objective:

– 2a: How can interactions between the ego vehicle model, the en-
vironmental model, and the surrounding traffic behavior model be
accurately simulated to reflect a wide range of driving conditions?

– 2b: How do these interactions can generate a reach risk-specific
context information in various scenarios?

3. TRAIN: Utilizing the risk features generated in the Do phase, this phase
focuses on training and testing supervised ML models to predict dy-
namic risk indicators. The process involves analyzing the data to identify
underlying patterns and correlations that inform the risk assessment.

Study objective:

– 3a: Which ML algorithms learn most effectively from risk features
extracted from risk-specific context information?

– 3b: How ML model can be optimized (e.g., by changing hyper-
parameters) to better manage the complexities and variations of
ever-changing road environments?

4. ADJUST: In this phase, safety engineer review the performance of the
trained models. If the ML models’ predictions do not satisfactorily reflect
or fail to meet predefined criteria, adjustments or retraining occurs. This
way safety engineer ensures the models’ accuracy and performance in
predicting risk indicators in runtime.

Study objective:

– 4a: What are the roles of a safety engineer in intervening to refine
a ML model to ensure it neither overfits nor underfits?

– 4b: How can ML model be adjusted to accurately reflect the risk
thresholds and acceptance criteria for risk prediction?

5. ASSESS: With the ML model fine-tuned, it is deployed within the
ADS to assess risk levels in operational settings, identifying severity
and controllability indicators for scenarios not encountered during the
training phase. Safety engineers analyze these predictions to determine
necessary improvements or adjustments in the ADS, such as enhancing
braking performance or modifying sensor configurations.

Study objective:

– 5a: Upon deploying the ML model into ADS operations, how can
its performance and accuracy in risk assessment be continuously
monitored and logged for further refinement of the tool?

The process repeats cyclically once safety updates are made, with each
iteration building on the accumulated risk knowledge and risk indicators
from previous cycles. The cyclic process continues until all unknown-unsafe
situations within a particular ODD are explored. As depicted in Fig. 1.11,
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Figure 1.11: Advancement of Risk Knowledge Through Iterative Cycle

the process begins with ODD 1 in the first iteration, encountering the
first failure, followed by subsequent iterations for each addressing addi-
tional failures. Once all failures are attempted, a new ODD included. For
instance, if highway lane following straight road driving is considered in
ODD 1, then ODD 2 might be a curved road, ODD 3 an uphill scenario,
ODD 4 a downhill scenario, and so forth. The iterations on the X-axis
correspond to increasing complexity in DDT; for example, the first itera-
tion might cover basic acceleration/deceleration and braking operations,
the second iteration could introduce steering maneuvers, the third might
involve overtaking maneuvers, and the fourth could include exiting and
entering the highway.

As mentioned earlier, advanced simulation tools can generate a wide
range of hypothetical scenarios based on the existing knowledge base.
By exploring these scenarios, ADS developers can proactively identify po-
tential risks and assess the effectiveness of various mitigation safety strate-
gies.

1.4 Assumptions

The research focuses solely on severity and controllability risk indicators for
the specified hazardous events, with the exposure rating considered as E4
(highly probable). The thesis employs a simulation environment for validat-
ing its hypothesis, as articulated in the motivation section and reiterated
throughout the thesis when relevant. Within this environment, three ve-
hicles are utilized: one ego vehicle equipped with ADS functionality and
two non-ADS vehicles, positioned at the side and in the leading side, re-
spectively. To observe the ADS’s behavior under the influence of failure,
a Graphical User Interface (GUI) is employed for injecting runtime fail-
ure conditions during the simulation. Failures are introduced via a switch
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mechanism, halting specific behaviors to assess the risk. This thesis exam-
ines two types of failures: the first involving the throttle pedal position
sensors and the second involving the brake pedal position sensors. The
study focuses on the HAZOP guide word "Wrong Value" to analyze these
failures. The primary focus of this research is on highway-following driving
scenarios. Although the principles developed may have broader applica-
bility, the thesis specifically addresses the unique challenges and dynamics
of highway driving, excluding lateral maneuvers from its scope of inves-
tigation. Acknowledging that absolute safety assurance is unattainable,
the thesis sets a threshold whereby ML model performance above 99% is
considered safe for deployment in ADS for risk assessment.

1.5 Thesis Structure

The thesis is structured into five chapters, each methodically contributing
to the exploration and development of the LADRI framework for ADS.

Chapter 2 sets the stage by defining key terminologies and reviewing the
state of the art, identifying gaps in current research.

The development of the LADRI framework is detailed in Chapter 3, where
the PDTAA cyclic process is introduced.

Chapter 4 evaluates the framework across different scenarios using varied
risk feature combinations, discussing the optimization of ML models and
the framework’s applications and limitations.

The thesis concludes in Chapter 5, summarizing the findings, discussing
the implications for future research, and highlighting the LADRI frame-
work’s potential to advance ADS risk assessment.
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2 State of the Art

In this chapter, the thesis systematically unfolds the foundation and state-
of-the-art approaches relevant to research on risk assessment.

Section 2.1: Terminology - key terms and definitions are established in
this section, ensuring a common language and understanding for the dis-
course ahead.

Section 2.2: Background Work - This section delves into the evolution and
current methodologies of risk assessment, from its theoretical underpin-
nings to practical applications, and how it is connected to LADRI frame-
work.

Section 2.3: Related Work - An exploration of contemporary studies and
methodologies that share goals with the research being performed in this
thesis.

Section 2.4: Bridging the Gap - this section argues the need for a new
approach in risk assessment, one that transcends current state-of-the-art
practices to address unresolved challenges.
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2.1 Terminology

The purpose of this section is to clarify essential terms and establish a
terminology for exploring the depths of this thesis and risk assessment in
particular.

Automated Driving System

An Automated Driving System (ADS) is defined as a Level 3 to 5 driving au-
tomation system according to the Society of Automotive Engineers (SAE)
Levels of driving automation [139]. This thesis considers a vehicle equipped
with Level 5 automation.

Item

An item is a system or combination of systems, to which ISO 26262 is
applied, that implements a function or part of a function at the vehicle
level [41].

Hazard

A hazard is a potential source of harm (i.e., physical injury or damage)
caused by malfunctioning behavior (i.e., failure or unintended behavior)
of the item [41].

Hazardous Events

A hazardous event is a combination of a hazard and an operational situa-
tion [41].

Functional Insufficiency

Functional insufficiency refers to the inadequacy in a system’s specifica-
tion or performance that contributes to hazardous behavior or an inability
to prevent, detect, and mitigate a reasonably foreseeable indirect misuse
when activated by one or more triggering conditions [43].

Hazard Analysis and Risk Assessment

Hazard Analysis and Risk Assessment (HARA) is a method to identify and
categorize hazardous event of items and to specify safety goals and Auto-
motive Safety Integrity Levels (ASILs) related to the prevention or mitiga-
tion of the associated hazards in order to avoid unreasonable risk [41].
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Dynamic Driving Task

The Dynamic Driving Task (DDT) refers to the runtime operational and tac-
tical functions necessary for operating a vehicle in traffic. It encompasses
various functions, including lateral and longitudinal vehicle motion control
(operational), monitoring the driving environment and responding to ob-
jects and events (operational and tactical), maneuver planning (tactical),
and enhancing vehicle conspicuity through lighting, signaling, or gestur-
ing (tactical). These functions are critical for safely navigating a vehicle in
diverse traffic conditions [43].

Operational Design Domain

SAE J3016 defines an Operational Design Domain (ODD) as “Operating
conditions under which a given driving automation system, or feature
thereof, is specifically designed to function, including, but not limited
to, environmental, geographical, and time-of-day restrictions, and/or the
requisite presence or absence of certain traffic or roadway characteristics
[119].”

Safety

Safety is absence of catastrophic consequences on the user(s) and the
environment [13].

Safety Measure

A safety measure is an activity or technical solution to avoid or control
systematic failures and to detect or control random hardware failures, or
mitigate their harmful effects [41].

Safety Goal

A safety goal is a top-level safety requirement as a result of the HARA at
the vehicle level [41]. One safety goal can be related to several hazards
and several safety goals can be related to a single hazard.

Design Parameters

Design parameters refer to the elements or variables within a system that
can be adjusted or configured to influence the system’s performance. In
the context of ADS, design parameters are the directly controllable aspects
that affect how the system operates [50]. These parameters include:
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– ADS Vehicle Dynamics: In this thesis, to assess physical characteris-
tics of the ADS vehicle, vehicle´s engine, brakes, and aerodynamics,
acceleration, and deceleration capabilities are used to assess the ADS
algorithms.

– Sensor Configurations: The arrangement and types of sensors used
in the ADS, such as Cameras, Radar, and Lidar. These sensors gather
data about the vehicle’s surroundings.

– Algorithm Parameters: The settings within the algorithms that pro-
cess data from the sensors and use it to make decisions. These parame-
ters can affect how the system interprets data and chooses actions (e.g.
ACC Controller).

Non-Design Parameters

Non-design parameters refer to external factors or conditions that impact
a system’s performance but are beyond the control of the system’s design-
ers or operators. In the context of ADS, non-design parameters are the
variables related to the environment, traffic behaviors, and road condition
that the ADS must adapt to, even though it cannot alter these conditions
[50]. These parameters include:

– Other traffic participants: The behavior of other vehicles (e.g., their
speed, direction, lane changes, and braking actions) is external to the
ADS, and it considered as non-design parameters.

– Environmental Conditions: Weather patterns such as rain, snow, fog,
or varying light conditions that can affect sensor performance and ve-
hicle handling.

– Infrastructure Elements: The condition and layout of the road infras-
tructure, including signs, signals, road markings, and the presence of
construction zones or obstacles.

Failure Conditions

A system failure occurs when a system’s performance deviates from its in-
tended function, transitioning from delivering correct to incorrect service
[12]. It is an inability of a system, component, or process to perform a
required function according to its intended operation or design specifica-
tions. Failures can be caused by various factors, including design flaws,
hardware malfunctions, software bugs, operational errors, or external dis-
turbances. In the computer-based systems, it is divided as follows [97]:

– Omission: Refers to the absence of a response or action that should
have been provided by the system. It represents a failure condition
where the system fails to perform a function or produce an output that
is expected under given circumstances.
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– Wrong Value: Refers to the occurrence of incorrect values being pro-
duced or utilized by a system, which may initially seem valid, making
detection challenging. Even slight inaccuracies in these values can re-
sult in substantial adverse outcomes.

– Delay: Refers to an action or operation is performed later than ex-
pected. This could impact system performance or functionality when
timing is critical, such as in runtime systems where late execution might
lead to missed deadlines or failure to synchronize with other system
components.

Risk-Specific Context Information

Risk-specific context information refers to the broader environmental, op-
erational, and situational data that characterizes the setting in which risks
occur. This includes information about the physical environment, opera-
tional conditions, technological systems, and any external influences that
might affect risk.

Risk Features

Risk features are specific, quantifiable attributes or variables derived from
the risk-specific context information that are directly used in Machine
Learning (ML) models to identify, assess, and predict risks. These can in-
clude measurable parameters or derived metrics that are indicative of risk
levels.

Risk Indicators

Risk indicators are data points (i.e risk levels) that provide insights into
the current state of risk or the potential for future risks within a system.
For instance, severity, as a risk indicator, refers to the potential impact or
consequences of a risk event if it were to occur, whereas controllability
refers to the degree to which a ADS system can effectively manage or
mitigate a risk event once it has been detected or as it is occurring.

Supervised Learning

Supervised learning is a ML approach that uses labeled data, involving
a training phase and a testing phase. In supervised learning, the model
learns to categorize data into predefined labels based on the features of
the training dataset [14]. This categorization capability is then tested on
the testing dataset to measure the model’s ability to accurately predict the
labels of unseen data. Once the model has been trained and tested, the
learned model can be deployed to predict unseen and unlabeled data,
extending its utility beyond the initial dataset to real-world applications.
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2.2 Background

This section provides the technical background essential for understand-
ing the LeArning-based Dynamic Risk Indicators (LADRI) framework dis-
cussed in this thesis. Initially, an overview of risk assessment and the phases
integral to its process are explained, detailing the systematic approach
adopted within this field (Section 2.2.1). This serves as a foundation for
the subsequent exploration of HARA method, as outlined in ISO 26262
(Section 2.2.2), while acknowledging the limitations and structural con-
siderations previously discussed in Section 1.1.3.

Further, the nature of risk assessment is examined from both qualitative
and quantitative perspectives (Section 2.2.3), emphasizing the importance
of dynamic risk assessment in responding to the evolving nature of risks
(Section 2.2.4).The discussion includes identifying various risk features
(Section 2.2.5) and exploring the importance of risk assessment indicators,
especially leading and lagging indicators (Section 2.2.6). The advancement
towards simulation and scenario-driven approaches represents the latest
trend in risk assessment methodologies, reflecting a shift towards more
nuanced and adaptable strategies (Section 2.2.7).

Finally, the role of supervised learning algorithms in enhancing risk assess-
ment practices is explored (Section 2.2.8), highlighting the intersection of
advanced algorithms and traditional risk assessment techniques.

2.2.1 Overview of Risk Assessment

The landscape of risk assessment is changing due to technological ad-
vancements and new safety challenges in systems like ADS. It emphasizes
the need to integrate simulation techniques, focus on resilience, and adopt
dynamic approaches to assess risks. The complexity of cyber-physical sys-
tems, climate change impacts, and emerging risks/threats are underscored
as critical areas needing attention. The use of computational capabilities
and data to enhance risk assessment methodologies suggests a shift to-
wards more comprehensive and adaptive strategies for managing risks in
complex environments [147].

Defined by ISO 31010 [42], risk assessment is a systematic process that
includes Risk identification, Risk analysis, and Risk evaluation:

Risk Idenfitication: Techniques for identifying risks include a wide array
of methods designed to pinpoint potential hazards. From Failure Modes
and Effects Analysis (FMEA) to Hazard and Operability Analysis (HAZOP)
studies and beyond, these methodologies extend to perception surveys,
what-if scenarios, scenario analysis, and the utilization of checklists or tax-
onomies. The advantages of these structured approaches lie in their com-
prehensiveness and the thoroughness achieved through the application of
multiple techniques, showcasing effective due diligence. However, these
methods also face limitations, particularly in adapting to technological ad-
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vances and the dynamic risks associated with the rapidly evolving field of
ADS. The inherent complexity and variability of such systems may diminish
the efficacy of some traditional risk identification techniques.

Risk Analysis: Within the broader context of risk identification, risk anal-
ysis methods delve into the sources of risk, potential consequences, con-
trol effectiveness, and event likelihoods. These methods, including Cause-
Consequences analysis, Fault Tree Analysis (FTA), Decision Tree Analysis,
and others, offer significant benefits by facilitating an in-depth under-
standing of risks and their potential implications, which in turn supports
the development of targeted mitigation strategies. However, traditional
risk analysis methods may not adequately capture the dynamic interac-
tions and interdependencies between various system components and ex-
ternal factors in real-time. This can lead to underestimations of risk in sce-
narios where system behavior changes in response to external variables,
such as weather conditions, road types, or unpredictable human behavior.
Additionally, these methods often rely heavily on historical data and ex-
pert input, which may not always reflect future conditions or novel threats
introduced by advancing technologies. This discrepancy necessitates the
adoption of more system-specific approaches to accurately assess and ad-
dress these challenges.

Risk Evaluation: The Consequence/Likelihood Matrix is a notable risk
evaluation method, allowing for the effective comparison and commu-
nication of risks based on potential outcomes and occurrence probabilities
(e.g. ALARP, Bayesian Networks, Risk Indices etc.). This method, known
for its simplicity and the clarity of its visual representations, facilitates
the quick ranking and comparison of varied risks. Despite its advantages,
certain challenges persist; crafting a valid matrix demands specific exper-
tise, and the inherent subjectivity in determining a single indicative value
for consequences can complicate the accurate depiction of the complex,
multifaceted risks associated with ADS. Moreover, the subjective basis of
this evaluation tool may result in inconsistent risk assessments, especially
within the intricate contexts typical of dynamic behavior of the system.

2.2.2 Hazard Analysis and Risk Assessment

In automotive domain, ISO 26262 [41] outlines a structured approach to
hazard analysis within automotive electrical/electronic control systems, ad-
dressing different levels of system decomposition. At the item level, the
highest level of decomposition, it recommends methods like brainstorm-
ing, checklists, quality history, FMEA, and field studies, which rely heavily
on past experiences and expert knowledge. For more detailed safety anal-
ysis at lower levels, it employs, FTA, Event Tree Analysis (ETA), and HAZOP,
among others, as common practices in the automotive industry.

However, these methods face limitations when applied to modern, com-
plex electronic control systems. Techniques like FMEA, FTA, and ETA, while

29



Background

effective for addressing random hardware failures qualitatively and quan-
titatively, fall short in guiding the identification of unsafe system interac-
tions and are based on oversimplified linear chain-of-event models that do
not always apply to complex systems or software, given software’s lack of
random failures [84].

FMEA’s bottom-up, inductive approach and FTA’s top-down, cause-
focused method highlights the analytical challenges in complex systems,
emphasizing the labor-intensive process of identifying potential failure
combinations that could lead to system hazards [37]. HAZOP, with its
focus on guidewords and actual process modeling, offers a nuanced
examination of component failures and system interactions, yet its appli-
cation to automotive electronic control systems is not straightforward and
may require modifications for effectiveness.

Furthermore, ISO 26262 suggests the applicability of these safety analy-
sis methods to software development, despite the majority of software-
related accidents stemming from requirements flaws rather than coding
errors [84]. This distinction highlights the inadequacy of traditional haz-
ard analysis methods for software, underscoring the need for tailored ap-
proaches that account for software’s unique failure modes and the com-
plex interdependencies within modern electronic control systems [133].

2.2.3 Nature of Risk Assessment: Qualitative Vs Quantitative

Qualitative assessments use expert judgment to categorize risks without
precise numerical values, which is useful in initial stages or when data is
scarce. Quantitative assessments, in contrast, use mathematical models
for a detailed evaluation of risk probabilities and impacts. ISO 26262’s tra-
ditional qualitative HARA may not suit ADS due to complex operational
situations and the dynamic nature of ADS exposure to these situations.
Unlike manually driven vehicles, where hazards are identified based on
human-operated functionalities, ADS requires continuous adjustment of
tactical decisions and performance capabilities, challenging the complete-
ness of identified hazards and hazardous events.

The conservative design approach of traditional HARA, assuming global
validity of situational frequencies, may lead to overly cautious ADS designs,
failing to account for ADS’s inherent variability and adaptability [138]. Es-
tablished methods often rely on ordinal scales for qualitative assessments,
which suffer from limitations such as poor resolution and neglecting cor-
relations, as highlighted in [8, 27, 59].

The quantitative risk assessment approach, on the other hand, evaluates
risks by assigning numerical values to both the likelihood of hazard occur-
rences and their potential consequences. Unlike qualitative risk assessment
methods that rely on descriptive analysis and expert judgment, quantita-
tive risk assessment utilizes data and statistical methods to quantify risks.
It involves calculating the frequencies of failures, probabilities of differ-
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ent outcomes, and the expected severity of consequences in measurable
terms. The output of a quantitative risk assessment is typically a numerical
value that represents the risk, facilitating a comparison against established
risk acceptance criteria to determine if the risk is acceptable or if further
mitigation measures are needed. Through the quantification of risks, this
approach emphasizes actual outcomes over theoretical risks, enhancing
the completeness and efficiency of safety goals by classifying incidents
into predefined categories [138].

The integration of qualitative and quantitative methods for ADS risk as-
sessment is not only feasible but advantageous. This approach yields safety
goals with a quantitative integrity attribute, such as a numeric value (e.g.
S3 or C3) for the maximum frequency of each incident type or the impact
of a hazard, diverging from ISO 26262’s qualitative norms on ASIL in-
heritance and decomposition. Instead, it adopts traditional mathematical
quantitative rules to refine these safety goals into allocated safety require-
ments during the ADS development phase. This synthesis enables a thor-
ough safety argumentation encompassing all potential safety risk causes,
whether systematic faults in software or hardware design, random hard-
ware faults, or performance limitations of sensors or actuators.

Furthermore, it supports an integrated HARA refinement strategy, Verifi-
cation & Validation (V&V) approach, and safety case structure, addressing
issues traditionally separated in ISO 26262 and ISO 21448. The customized
HARA emphasizes that a quantitative framework still allows for the inclu-
sion of qualitative evidence. For instance, criteria like ASIL from ISO 26262
for ensuring freedom from systematic faults still apply in this mixed ap-
proach. This means that safety goals based on quantitative data can also
include qualitative evidence, leading to a thorough and robust risk assess-
ment for ADS.

Connection to LADRI: LADRI acknowledges the limitations of traditional
qualitative HARA in addressing the complex operational situations of ADS,
mirroring concerns about the dynamic nature of ADS exposure. By in-
corporating a learning-based approach, LADRI facilitates the continuous
adjustment of tactical decisions and performance capabilities of ADS, ad-
dressing the need for a more nuanced risk assessment method. Recog-
nizing the conservative design approach of traditional HARA, LADRI in-
tegrates both qualitative judgments and quantitative data. This dual ap-
proach allows LADRI to navigate the inherent variability and adaptabil-
ity of ADS, moving beyond overly cautious designs to reflect real-world
operational variability. Even within a predominantly quantitative frame-
work, LADRI acknowledges the value of qualitative evidence in supporting
safety goals derived from quantitative assessments. This mixed approach
ensures a robust and comprehensive risk assessment for ADS, highlighting
the framework’s flexibility in incorporating qualitative insights to support
quantitative findings.
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2.2.4 Dynamic Risk Assessment

In order to facilitate the safety assurance of autonomous systems, Trapp
et al. [131] introduced the concept of context awareness, which allows
a system to monitor and analyze the operational situation from a safety
perspective. Here is a summary of key points regarding the performance
and necessity of Dynamic Risk Assessment (DRA):

– Integration of Perception Information and HARA Models: DRA lever-
ages real-time perception information about the system’s environment
and operational context, in conjunction with HARA models that are
accessible at runtime. This integration enables the system to evaluate
current risks based on the actual operational situation, moving away
from static worst-case assumptions.

– Operational Situation Impact on Risk: The assessment takes into ac-
count hazardous events, which are combinations of potential hazards
and specific operational situations. The risk associated with a hazardous
event is significantly influenced by the operational context. The HARA
process assesses the exposure (likelihood of encountering a particular
operational situation), controllability (the ability to mitigate a hazardous
event), and severity (expected harm) of these events.

– Dynamic HARA at Runtime: Implementing HARA at runtime offers a
balance between flexibility and assurability. It allows the system to be-
come aware of its current context, using parameters monitored in real-
time such as speed, weather conditions, and traffic context. This context
awareness enables the system to dynamically assess risks. By describing
situations as vectors of characteristic parameters and using continuous
functions to determine these parameters, the system achieves a high
degree of flexibility in DRA.

Additionally, DRA can be part of a broader dynamic risk management
framework that enables systems to assess and manage risks in real-time,
considering the actual operational context and internal state (as explained
in [112] and shown in Fig. 4.16). This approach marks a shift from static,
worst-case-based safety assessments to a more flexible, context-aware
strategy capable of adapting to the complexities and uncertainties inher-
ent in dynamic operational environments.

2.2.5 Risk Features

Risk features, criticality metrics, and risk indicators, though related and of-
ten used interchangeably, have distinct focuses and applications within risk
assessment. Understanding these differences is crucial for precise commu-
nication and effective implementation of risk assessment methodologies.
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Risk Features: are identifiable characteristics or factors that can influence
the likelihood or impact of a risk. In the context of ADS, risk features might
include vehicle speed, weather conditions, traffic density, or the proxim-
ity of objects. The identification of risk features is a foundational step in
risk assessment, serving to characterize the operational environment and
potential hazards. Risk features provide the raw data necessary for further
analysis and are often used as input variables in models predicting risk
metrics or assessing criticality.

Criticality Metrics: are quantitative measures that evaluate the urgency
or severity of a potential hazard or situation. They are often used to prior-
itize risks based on their immediate importance or potential impact (e.g.
Time to Collision (TTC), Deceleration Rate to Avoid Crash (DRAC), etc).
Criticality metrics focus specifically on the aspect of urgency and severity,
providing a means to assess how critical a situation is for immediate atten-
tion or response. These metrics are crucial for decision-making processes,
especially in dynamic systems like ADS, where prioritizing responses to po-
tential hazards is essential for safety [141]. However, criticality metrics do
not necessarily provide information about risk or the level of risk [68].

Risk Indicators: are quantitatively assess the potential impact of risks (i.e.
level of risk), often combining multiple risk features to provide an overall
risk evaluation. Risk indicators in ADS might encompass collision proba-
bility, potential injury severity, or likelihood of loss (e.g. severity, exposure,
and controllability). Risk indicators offer a comprehensive assessment of
risk, integrating various dimensions of risk features and criticality metrics
to estimate overall risk levels. They are instrumental in broader risk assess-
ment to classify the critical and non-critical situations.

Although all three concepts contribute to understanding and managing
risks, they serve different purposes in the risk assessment process. Risk
features identify factors contributing to risk; criticality metrics evaluate the
significance of those factors in specific scenarios; and risk indicators pro-
vide an overall assessment of risk likelihood and impact.

The distinction lies in the scope and application of each term. Identifying
risk features is about recognizing potential sources of risk. Assessing crit-
icality is about understanding the immediate implications of those risks.
Calculating risk indicators is about evaluating the overall level of risk. This
tiered approach enables detailed analysis of specific hazards and a com-
prehensive overview of risk levels, facilitating targeted and effective risk
assessment strategies.

Connection to LADRI: In this thesis, the risk assessment approach is re-
fined by converting risk features into criticality metrics, then incorporating
them as key risk features within the methodology. This transformation fa-
cilitates the calculation of risk indicators, specifically severity and controlla-
bility ratings, tailored to the operational dynamics of ADS. By adopting this
refined classification, these risk features become instrumental in runtime
risk assessment, enabling a proactive and dynamic evaluation of potential
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hazards. The categorization of these risk features falls into three distinct
but interconnected domains: Vehicle Dynamics, Temporal, and Environ-
mental 1.

Table 2.1: Summary of vehicle Dynamics Risk Features

Risk Features Impact On Runtime Risk Assessment

Required Lateral Acceleration
[62]

Measures the lateral force necessary to maintain
trajectory in a curve. Critical for evaluating vehicle
stability and handling.

Required Longitudinal Accelera-
tion [62]

Indicates the needed acceleration or deceleration
to match traffic flow or to stop. Affects vehicle’s
ability to adapt speed based on dynamic condi-
tions.

Deceleration Rate to Avoid
Crash [9]

Measures vehicle’s ability to prevent crashes, af-
fecting controllability. Evaluates the vehicle’s capa-
bility to safely decelerate under emergency condi-
tions.

Lateral Jerk [38] Sudden changes in lateral acceleration. Important
for assessing comfort and control during maneu-
vers.

Longitudinal Jerk [40] Indicates abrupt changes in acceleration or decel-
eration. Affects both risk of rear-end collisions and
passenger comfort.

Change in Velocity [82] Reflects impact severity, informing on potential in-
juries or damage. Assists in understanding the po-
tential severity of an accident.

Vehicle Dynamics Risk Features: This category encompasses features
that directly relate to the physical capabilities and limitations of the vehicle
itself, as shown in Table. 2.1. By focusing on fundamental aspects of vehi-
cle behavior such as lateral and longitudinal, and the ability to decelerate
effectively, this category assesses the intrinsic risk features of the vehicle.
These features are crucial for understanding how well a vehicle can re-
spond to and avoid potential hazards, underpinning the basic premise of
ADS safety by evaluating the vehicle’s stability, handling, and crash pre-
vention capabilities.

Temporal Risk Features: This category prioritize the dimension of time in
assessing risk, focusing on the critical time windows available for preven-
tative actions against potential hazards (as shown in Table. 2.2). Metrics
such as time to collision, provide insights into the immediacy of threat and
the available response time, respectively. This category highlights the im-
portance of timing in executing maneuvers and the adequacy of response

1 While the original literature identifies over 30 criticality metrics [141], this thesis focuses on a se-
lected few to underscore the risk assessment perspective and combined them into categories.
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Table 2.2: Summary of Temporal Risk Features

Risk Features Impact On Runtime Risk Assessment

Time To Collision [128] Indicates imminent collision risk, crucial for sever-
ity assessment. Helps in predicting the urgency of
avoiding actions.

Time To Brake [55] Assesses the vehicle’s response window for avoid-
ing obstacles. Indicates the critical time window
for initiating braking to prevent a collision.

Time To Maneuver [134] Determines flexibility in maneuvering to mitigate
risks. Measures the adaptability of the vehicle in
responding to unforeseen obstacles.

Time To Steer [56] Assesses the immediate time available for steering
to prevent collisions and gauges the maneuverabil-
ity to reduce risks.

time in avoiding collisions. By quantifying the urgency of situations, tem-
poral features offer a direct measure of the severity of risk and the ne-
cessity for timely interventions, enhancing the predictive and responsive
capabilities of ADS.

Table 2.3: Summary of Environmental Risk Features

Risk Features Impact On Runtime Risk Assessment

Conflict Index [7] Evaluates interaction risks, important for dynamic
environments. Helps in predicting potential con-
flict points between multiple agents, facilitating
proactive safety measures.

Time To React [128] Quantifies crash likelihood in multi-agent scenar-
ios, impacting severity. Assesses the time window
for reaction to prevent crashes in complex environ-
ments involving multiple agents.

Responsibility Sensitive Safety-
Dangerous Situation [63]

Defines situations that violate safety models, indi-
cating an imminent threat. Key for identifying sce-
narios where intervention is necessary to maintain
safety margins.

Environmental Risk Features: This category account for the complex
interactions between the vehicle and its surroundings, including other ve-
hicles, pedestrians, and infrastructure. This category recognizes that the
operational environment of ADS extends beyond the vehicle itself to in-
clude dynamic and potentially unpredictable elements, as shown in Table.
2.3. Metrics such as critical index, assess how external factors influence risk
levels, emphasizing the need for ADS to adapt to changing conditions and
interactions. The inclusion of the responsibility sensitive safety-dangerous
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situation further underscores the system’s need to identify and navigate
scenarios that could compromise safety. This category bolsters the holis-
tic assessment of ADS risk by incorporating the multifaceted nature of
dynamic driving environments.

2.2.6 Risk Indicators

Risk indicators play a crucial role in assessing the potential impact of risks
in dynamic environments, combining various factors to provide a compre-
hensive risk evaluation [53, 66, 83, 106]. These indicators, derived from
risk models using available data, can be categorized into leading and lag-
ging indicators, each serving a distinct purpose in risk assessment.

Leading indicators actively monitor key events or activities essential for
achieving safety outcomes, identifying early deviations that could lead to
negative consequences. For instance, in a highway lane-following sce-
nario, indicators such as unusual deceleration patterns of lead vehicles
may signal potential emergency braking events, enabling proactive risk
control measures.

Conversely, lagging indicators focus on reactive monitoring, involving the
reporting and investigation of incidents to pinpoint system weaknesses.
They indicate when safety outcomes have not been met, providing essen-
tial feedback for corrective actions. A balanced risk assessment includes
both leading and lagging indicators, offering a forward-looking perspec-
tive while considering historical performance data [81].

Landucci et al. in [81] further classify risk indicators into three types, em-
phasizing the monitoring of technical, human, and organizational factors.
Retrospective indicators draw from historical incident data to evaluate
safety performance over time, whereas predictive indicators use models
to forecast future risks. Aggregated indicators compile expert judgments,
accident analyses, and risk modeling, with a distinction between general
aggregation and those specifically aimed at proactive risk assessment.

Integrating leading and lagging indicators within the LADRI framework
creates a DRA strategy, combining the predictive power of leading indica-
tors with the empirical insights of lagging indicators. This dual approach
allows for a nuanced understanding of risk, combining the immediate
assessment of potential hazards with a reflection on past safety perfor-
mance. However, it is essential to recognize the limitations of both types
of indicators, such as the potential for false positives in leading indicators
and the reliance on historical data in lagging indicators, which may not
always accurately predict future scenarios in rapidly changing ADS opera-
tional environment.

Connection to LADRI: In this thesis, severity and controllability indicators
are adopted as key risk indicators within the LADRI framework, positioned
to leverage the distinctions between leading and lagging indicators for
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a nuanced approach to risk assessment in ADS. Severity ratings, which
gauge the potential impact of a risk event, align with the anticipatory na-
ture of leading indicators. They enable the identification of conditions that
may escalate into more severe outcomes, allowing for proactive risk miti-
gation strategies. Conversely, controllability ratings assess the ADS’s ability
to manage a risk event, reflecting the retrospective essence of lagging
indicators by evaluating past incidents.

By incorporating severity and controllability indicators, this thesis estab-
lishes a comprehensive risk assessment methodology that dynamically
integrates both predictive and reflective risk indicators. This integration
ensures that the LADRI framework can not only forecast potential risks
through severity indicators but also draw on historical data through con-
trollability indicators to enhance system robustness and resilience. Thus,
the classification of severity and controllability indicators under leading
and lagging indicators respectively, enriches the risk assessment capability,
allowing for a more adaptable and informed approach.

2.2.7 Risk Assessment Approach: Simulation and Scenario-Driven

The challenges inherent in risk assessment approaches necessitate explor-
ing diverse methodologies to forge a pathway toward a comprehensive
understanding of risks, delving into the strengths of simulation-based
analyses and scenario-based evaluations. This section aims to articulate
the distinctive aspects of each approach while setting the stage for their
integration within the LADRI framework.

Simulation-Driven Risk Assessment: Simulation-driven risk assessment
represents a cornerstone in the evolution of ADS and cooperative ADS.
Given the intricate and dynamic nature of these technologies, a robust
and comprehensive approach is indispensable for validating their safety
and effectiveness. Recent advancements underscore the importance of
this method, shedding light on various dimensions that enhance the de-
velopment and validation processes [6, 31, 51, 67, 96, 107].

A pivotal development in this field is the creation of simulation toolchains,
equipped to identify and evaluate critical scenarios that cooperative ADS
might encounter in real-world operations [49]. Traditional validation meth-
ods, constrained by the impracticality of extensive real-traffic testing, are
complemented by the innovation of digital twins. These advanced digital
prototypes replicate real ADS with high fidelity, allowing for precise testing
and refinement of automated driving functionalities.

Furthermore, the adaptability of simulation toolchains through exchange-
able driving functions, evaluation metrics, and parameter spaces broadens
their applicability across different scenarios. This versatility is instrumental
in identifying critical behaviors, utilizing safety and traffic quality metrics to
fine-tune ADS functionalities. The introduction of Prototype-in-the-Loop
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and other X-in-the-Loop methods bridges the gap between simulation and
real-world testing. By incorporating actual ADS into traffic simulations on
proving grounds, these approaches significantly enhance the realism and
reliability of simulation results. This integration ensures a more authentic
validation of simulation outcomes with real vehicle tests.

Emerging methodologies such as criticality assessment for ADS highlight
the efficacy of simulation in safety approval processes. Employing risk fea-
tures, this approach identifies and evaluates safety-critical scenarios based
on their likelihood and potential consequences. The innovation of vari-
able criticality thresholds further refines this process, allowing for a more
nuanced assessment that accounts for the dynamic interactions within
traffic[104].

Lastly, the SAHARA methodology exemplifies how simulation aids in haz-
ard analysis, streamlining the assessment process through automation
[116]. By generating simulation templates and integrating fault injec-
tion algorithms, SAHARA supports a systematic classification of scenarios,
aligning with the ISO 26262 framework for functional safety engineering.

Connection to LADRI: Collectively, these advancements illustrate the
transformative impact of simulation-based risk assessment in advancing
the safety and functionality of ADS. The LADRI framework incorporates
simulation-based risk assessment as a strategy to enhance the risk as-
sessment process. By leveraging advanced simulation toolchains, LADRI
aligns with recent advancements in the field, emphasizing the importance
of identifying and evaluating critical scenarios that ADS might encounter.
This approach mirrors the development and utilization of digital twins and
Prototype-in-the-Loop methodologies, enabling the precise testing and re-
finement of ADS functionalities within a controlled, simulated environ-
ment. These features allow for a nuanced examination of safety-critical
scenarios, accounting for the dynamic interactions within traffic systems.

Furthermore, by integrating risk features and diverse scenario generation
methods, LADRI efficiently identifies potential hazards, enhancing its abil-
ity to predict in runtime. By embodying these simulation-based advance-
ments, LADRI advances the validation process of ADS, aligning with the
ISO 26262 framework for functional safety engineering, and underscor-
ing the transformative potential of simulation in addressing the complex
safety challenges of ADS.

Scenario-Driven Risk Assessment: The evolution of risk assessment
methodologies, driven by recent research, marks a significant shift to-
wards dynamic, scenario-based approaches [5, 24, 25, 73, 85, 93, 101,
140, 146]. Central to this evolution is the integration of Systems Theoretic
Process Analysis within scenario-driven testing frameworks, illustrating a
move away from traditional risk evaluation strategies and emphasizing the
replication of real-world conditions for effective hazard identification and
ADS safety evaluation [72].

38



State of the Art

The development of an optimization algorithm based on vehicle risk as-
sessment aimed at improving autonomous driving capabilities, particularly
in lane-keeping and collision avoidance scenarios, adds depth to this evo-
lution [33]. By incorporating mathematical modeling and simulation trials,
the algorithm ensures vehicle safety and stability by dynamically adjusting
steering and braking based on environmental conditions.

Further complexity is introduced in scenario-driven study that merges tra-
ditional hazard analysis techniques with innovative enhancements tailored
for ADS [79]. This approach offers an integrated safety assessment frame-
work, combining scenario identification and risk quantification, to facil-
itate a thorough evaluation of potential risks and implement necessary
safety measures.

The convergence of a manageable set of scenario classes from which rel-
evant test cases can be derived is highlighted by structured methodolo-
gies for verifying and validating ADS [105]. The structured process involves
scenario elicitation, requirement gathering, test derivation, execution, and
evaluation, showcasing a detailed approach to safety validation.

This evolution culminates with the proposal of an adaptive testing sce-
nario library generation method for ADS, addressing performance gaps
between surrogate models and actual vehicles [34]. Utilizing Bayesian op-
timization to refine testing scenario libraries, this method accelerates the
evaluation process and increases precision. By dynamically updating the
testing library to better match ADS performance, this innovative approach
reduces the occurrence of suboptimal testing scenarios, marking a pivotal
advancement in the field.

Connection to LADRI: Collectively, these contributions weave a coherent
theme, the imperative transition towards scenario-based, dynamic analy-
ses that more accurately reflect the intricacies of automated driving envi-
ronments. Despite each methodology offering a distinct approach, includ-
ing systems theory integration, optimization algorithms, and adaptive test-
ing frameworks, they all agree that scenario-driven approaches are crucial
for improving the risk assessment process of ADS.

The LADRI framework marks a shift towards dynamic, scenario-based
risk assessment approach, reflecting current research advancements in
this area. By employing scenario-based analysis, LADRI utilizes adaptive
testing principles to accurately replicate real-world conditions, thus im-
proving HARA for ADS. This strategy is enhanced by optimization algo-
rithms designed to modify vehicle behavior for essential functions like
lane-following, considering the real-time environmental conditions and
outcomes of simulation trials. The framework focuses on identifying sce-
narios and quantifying risks while continually refining testing scenarios us-
ing a vehicle dynamics mathematical model. This ensures a thorough and
nuanced risk assessment framework that adapts dynamically, accurately
capturing the complex interactions characteristic of automated driving op-
erational environments.
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2.2.8 Supervised Learning Algorithms: Applications in Risk Assessment

Artificial Intelligence (AI), a subset of computer science, is dedicated to
enabling machines to learn from data and make predictions or decisions
without being explicitly programmed. ML, a crucial component of AI, al-
lows machines to learn from data through three types of algorithms: su-
pervised, unsupervised, and reinforcement learning, each tailored for spe-
cific data types and problems (as shown in Fig. 2.1). Among the supervised
ML algorithms, notable ones include Artificial Neural Networkss (ANNs),
Support Vector Machine (SVM), Decision Trees, Logistic Regression, Ran-
dom Forest (RF), Gradient Boosting Decision Tree (GBDT), Naïve Bayes,
k-Nearest Neighbors, and Linear Regression. This thesis primarily focuses
on four techniques2: SVM, ANN, RF, and GBDT.

Figure 2.1: Venn Diagram Representing the Components of AI and ML with a Focus on Super-
vised Learning for Data-Driven Risk Assessment. (Right: Adapted from [46])

Hegde et al. have noted that ADS are equipped with a wide array of sen-
sors generating data that can be processed using ML algorithms for risk
assessment [52]. They also highlighted that while IEC 31010 [42] outlines
approximately thirty different risk assessment techniques, their capability
for performing runtime risk assessment remains limited. Thus, engineering
risk assessment could greatly benefit from the adoption of ML algorithms.
A comprehensive review addressed research questions such as "Which
ML algorithm is adopted the most? Which ML algorithm has been imple-
mented and verified as suitable for risk assessment? What kind of data is
used to develop ML algorithms for risk assessment?" Therefore, this sec-
tion aims to explore the implementation of the four selected models in
risk assessment tasks across various aspects, highlighting their potential to
enhance engineering risk assessment.

Support Vector Machines: Support Vector Machines (SVM) are super-
vised learning models extensively used for classification, regression, and
outlier detection. Their significance in risk assessment is largely due to their
ability to model complex, non-linear relationships and maintain accuracy

2 The rationale behind selecting these four models is presented in Table. 3.6
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with high-dimensional data, making them ideal for identifying potential
risks [61, 74, 80, 86, 88, 91, 109, 135]. SVM combats overfitting and
ensures robustness, essential in risk scenarios with limited data or diverse
inputs.

One application of SVM in risk assessment includes its use in an Adaptive
Cruise Control (ACC) system to evaluate collision risks and adjust vehicle
distances, utilizing a Radial Basis Function (RBF) kernel for multiclass classi-
fication [144]. This study used traffic flow data from over 6,000 vehicles in
Germany, focusing on lane-keeping and changing behaviors. The system,
which achieved a 99.2% F1 score and 0.065m average root mean squared
error in performance metrics, showed a notable reduction in collision risks
compared to human drivers and traditional ACC systems.

Another study applied SVM to analyze driver injury severity in rollover
crashes, employing polynomial and gaussian RBF kernels [20]. With data
from 3,158 vehicle/driver records in New Mexico, this approach high-
lighted variables like seatbelt use and vehicle damage as significant. Poly-
nomial kernels showed superior classification accuracy, suggesting SVM’s
utility in traffic safety research despite the challenges of overfitting and
model applicability for severe injuries.

SVM was also used to predict driver drowsiness using eyelid-related pa-
rameters from EOG data, achieving high detection accuracy, particularly
for severe drowsiness [58]. This study highlights SVM’s potential in reduc-
ing accidents caused by drowsiness, but applying these findings to real-
world driving conditions still presents challenges.

These diverse applications of SVM, from enhancing driving safety and an-
alyzing crash injury severity to predicting driver drowsiness, illustrate the
adaptability of SVM algorithms to various challenges in risk assessment.
They highlight the need for further research to improve data comprehen-
siveness and model robustness. As SVM continues to improve, its poten-
tial for developing reliable risk mitigation strategies becomes increasingly
clear, offering advancements in risk assessment across various domains.

Artificial Neural Network: Artificial Neural Networks (ANN) are inspired
by biological neural networks and consist of interconnected units or nodes
that process data to learn tasks without being explicitly programmed.
ANNs are crucial in ML for modeling complex patterns in vast data sets,
applicable in areas ranging from road safety to data mining related to
traffic patterns [19, 121, 127].

One study focused on enhancing road safety through risk-aware route
planning with a hybrid ANN model [87]. It clustered data using a fuzzy
C-means algorithm, training separate networks for each cluster to predict
road risk indices for safer route planning. The hybrid ANN showed superior
performance in prediction accuracy over traditional models.

41



Background

Another study applied ANN to improve autonomous vehicles’ safety, fo-
cusing on lane detection and behavior prediction. It employed Convolu-
tional Neural Networks, demonstrating significant advancements in lane
detection and behavior prediction, thus contributing to vehicular safety
[26]. A different study utilized Recursive Neural Networks for risk assess-
ment at road intersections, employing a non-linear model and information
encoding to enhance safety [22]. It showed promising results in recog-
nizing unforeseen patterns, suggesting future applications in real-world
scenarios. Additionally, ANNs were integrated with probabilistic analysis
for dynamic failure assessment in chemical processes, predicting accident
probabilities based on process variables [1]. This approach highlighted
ANN’s efficacy in managing complex industrial systems’ dynamic failures.

These studies illustrate ANN’s broad applicability, showing how its unique
architectures and strategies tackle complex challenges across various
fields. ANNs’ ability to handle nonlinear relationships and vast datasets
significantly enhances predictive accuracy, underscoring their importance
in addressing evolving challenges across different domains.

Random Forest: Random Forest (RF), an ensemble learning method that
builds multiple decision trees for training and produces either the mode of
the classes (for classification) or the mean prediction (for regression) of the
trees, is pivotal in risk assessment. Its ability to handle large datasets with
high dimensionality and to provide robustness against overfitting makes it
highly suitable for complex risk scenarios, particularly in traffic safety and
autonomous driving.

A study examining road traffic accidents in the UK in 2020 utilized RF,
alongside Decision Tree, LightGBM, and XGBoost, to select features from
a dataset of 135,453 records [98]. Despite challenges like data imbalance,
the study underscored the impact of vehicle characteristics and driver age
on accident severity, suggesting directions for enhancing road safety. An-
other study in Zarqa City, Jordan, forecasted traffic crash severity using RF
among other models [3]. With data on 97,900 accidents from 2014-2018,
RF excelled in performance, indicating its effectiveness in predicting crash
severity levels better than models like AdaBoost. A study from Gauteng,
South Africa, aimed to model road traffic accidents using RF, which, af-
ter optimization, showed superior prediction capability over other models
[18]. The study faced challenges with dataset scope but suggested RF’s
potential in transportation safety.

Assessing collision risks for ADS in dynamic environments, another study
utilized RF to analyze autonomous driving activity scenes [103]. Despite
challenges in predicting human-driven vehicle behavior, significant pre-
dictive accuracy was noted, especially with features like relative distance
and time to collision. Finally, leveraging vehicle-to-vehicle communication
data for traffic accident detection, RF demonstrated a 92% accuracy and
94% sensitivity in a traffic simulation environment, outperforming SVM
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and ANN [28]. This study points to RF’s potential in real-time traffic man-
agement, despite challenges in data processing.

Collectively, these studies highlight RF’s versatility and effectiveness across
various risk assessment contexts. Its strength in managing imbalanced
data, resisting noise, and providing superior predictive accuracy empha-
sizes its potential in enhancing traffic safety with efficient feature selection
and accurate risk predictions.

Gradient Boost Decision Tree: Gradient Boosted Decision Trees (GBDT)
excel as an ensemble learning technique, merging multiple decision trees
to refine predictions and manage data inconsistencies and complexities. Its
versatility across data types (numerical, categorical), ability to model non-
linear relationships without extensive data preprocessing, and reduction
of overfitting through gradient boosting make it a standout method in
risk assessment. GBDT addresses challenges such as data heterogeneity,
imbalanced datasets, and the necessity for precise prediction accuracy.

A study investigating risky driving behaviors with GBDT focused on driver-
dependent vehicle features and achieved 100% accuracy on selected top
features, highlighting GBDT’s potential for enhancing driving safety [48].
Another research aimed at predicting the severity of single-vehicle crashes
with GBDT, analyzing 33,327 crash records from California [145].

Similar to this, another framework assessing driving behavior and pre-
dicting risk levels utilized GBDT, particularly XGBoost, extracting around
1300 driving behavior features from vehicle trajectory data [124]. With
an overall accuracy of 89% for predicting risk levels, the study demon-
strated GBDT’s efficacy in risk assessment, despite challenges like class im-
balance. Furthermore, a study analyzing Maryland State Police crash data
from 2015 to 2019 with GBDT highlighted its superior accuracy in crash
severity prediction, outperforming other models and suggesting future re-
search directions for broadening predictive capabilities by incorporating
driver behavior data [32].

These studies collectively underscore GBDT’s high performance, adaptabil-
ity, and robustness in risk assessment scenarios, showcasing its effective-
ness in handling complex relationships and diverse datasets.

Connection to LADRI:The LADRI framework integrates a comprehensive
approach to risk assessment, utilizing the strengths of diverse ML mod-
els such as SVM, ANN, RF, and GBDT, to meet the specific demands of
learning-based risk assessment. SVM is selected for its ability to define
precise boundaries in high-dimensional spaces, essential for nuanced risk
identification. ANN is chosen for its ability to model the complex dynamics
and interactions within automated driving scenarios, owing to its flexi-
bility and predictive accuracy. RF is valued for its versatility in managing
imbalanced data and providing accurate risk predictions, making it suit-
able for dynamic environments. GBDT is included for its adaptability and
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effectiveness in refining risk assessments through iterative improvements.
Collectively, the integration of these models within the LADRI framework
leverages their unique strengths to address the complex challenges of ADS
risk assessment effectively.

2.3 Related Work

This section reviews related work in the field of risk assessment, high-
lighting significant advancements across diverse methodologies. It begins
with an exploration of advanced risk assessment approaches, focusing on
structural and situation-aware improvements (Section 2.3.1), followed by
discussions on iterative hazard analysis and function refinement (Section
2.3.2). The section further delves into dynamic risk ratings via deep learn-
ing (Section 2.3.3), integrated collision risk assessment strategies (Sec-
tion 2.3.4), the implementation of the KnowGo framework for adap-
tive learning-based risk assessment (Section 2.3.5), and concludes with
insights into scenario-based collision detection using ML (Section 2.3.6).
This overview frames the context for understanding the current state and
directions of risk assessment research and practice.

2.3.1 Advancing Risk Assessment: Structured and Situation-Aware Approach

The Structured Approach for Hazard Analysis and Risk Assessment (SA-
HARA) framework aims to address existing methodological shortcomings
in automotive systems [70]. The approach provides a model-based repre-
sentation. It includes components like GOBI (Gradation of Baneful Influ-
ence) to formalize understanding of HARA. OASIS (Ontology-based Anal-
ysis of Situation Influences on Safety) is used to formalize operational
situations and their safety impacts. HEAT (Handy Exposure Assessment
Technique) is employed for modeling and assessing situation exposure.
Utilizing Parnas’ Four-Variable Model, SAHARA extends interactions to in-
clude system, human, and environmental factors and employs the ARID
(Analysis of Risk through In-system Degradation) algorithm to manage
the complexities of multiple service failures. The framework’s development
and validation involved over 300 operational situations from 10 industrial
case studies, enhancing its ontology and models. SAHARA’s effectiveness
is demonstrated through feasibility studies, especially ARID’s capability for
automatic hazard analysis, which ensures thorough coverage of critical
system parts. This implementation highlights SAHARA’s advantages in im-
proving consistency, efficiency, and correctness in HARA processes over
traditional methods, significantly reducing reliance on expert judgment.
Its efficiency in managing multiple service failures marks SAHARA’s dis-
tinctiveness. The framework’s comprehensive, automated approach offers
a significant leap forward in handling complex scenarios with multiple ser-
vice failures, distinguishing it from conventional manual HARA methods.
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However, the study did mentions some criticisms and limitations of SA-
HARA, particularly regarding the algorithm’s complexity and the extensive
domain knowledge required for its effective application. It highlights the
challenge of integrating SAHARA into existing safety processes due to its
novel approach and the potential resistance from industry practitioners ac-
customed to traditional methods. Additionally, while SAHARA aims to re-
duce dependency on expert judgment, the initial setup and customization
for specific automotive contexts still demand significant expertise, which
could limit its accessibility and scalability for broader adoption without fur-
ther simplification and automation enhancements.

Figure 2.2: Situation-aware Dynamic Risk Assessment Framework Overview [117]

The SItuatioN-Aware Dynamic Risk Assessment (SINADRA) framework,
on the other hand, addresses the challenge of assuring safety for Au-
tonomous Vehicles (AVs) by shifting traditional risk assessment from
design time to runtime, employing a model-based approach to mimic
human-like risk reasoning under uncertainty [117]. This approach en-
hances safety assurance in AVs by enabling DRA, allowing AVs to adapt
to changing conditions instead of relying on predefined worst-case sce-
narios. Utilizing a Bayesian network synthesis and assurance process,
SINADRA integrates tactical situational knowledge for probabilistic run-
time risk monitoring within an adaptive safety management system.
Key components of SINADRA include situation class detection, Bayesian
network-based behavior intent prediction, trajectory distribution gen-
eration, and risk assessment, as demonstrated by implementation in
the CARLA open-source simulator [29]. SINADRA employs probabilistic
environmental knowledge and datasets specific to the operational design
domain for learning Bayesian networks, as shown in Fig. 2.2.

The SINADRA framework tackles the challenge of dynamically controlling
driving functions based on residual risk assessments. It utilizes a compre-
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hensive collision risk framework that incorporates probabilistic risk metrics.
This approach enhances situational awareness and improves the accuracy
of behavior intent predictions, demonstrating superior risk assessment ca-
pabilities over simpler DRA models [118]. The ongoing development of
SINADRA focuses on quantitatively evaluating its performance gains com-
pared to traditional DRA methods, tackling challenges like the complex-
ity of real-time risk assessment under uncertainty. Systematic design-time
methods and runtime risk inference modeling are employed to manage
the integration of comprehensive environmental knowledge effectively.

However, SINADRA faces limitations in real-time data processing that are
crucial for immediate decision-making in dynamic driving scenarios. Its
current scope may not adequately capture complex interactions at inter-
sections or predict pedestrian intents with high fidelity. Future improve-
ments are suggested to extend SINADRA’s applicability to a broader range
of scenarios and to conduct sensitivity analyses on environmental factors
influencing collision risk, which are vital for enhancing the framework’s
sensitivity and overall effectiveness in diverse traffic conditions.

Both methodologies leverage concepts such as Bayesian networks, onto-
logical analysis, and situation exposure modeling to address the challenges
of DRA in complex, uncertain environments. By aiming to overcome the
limitations of traditional methods, both frameworks propose advanced so-
lutions for runtime adaptation and systematic assessment of risks in auto-
motive systems.

2.3.2 Iterative Hazard Analysis and Function Refinement

The proposed risk assessment method addresses the challenge of ensur-
ing safety of ADS by identifying and quantifying hazardous scenarios,
enhancing both functional safety and safety of the intended functional-
ity [79]. The method integrates established HARA from the automotive
domain, with enhancements for automated driving. It employs scenario-
based identification with a keyword-based HAZOP approach and causal
chain analysis through extended FTA. Data characteristics were not ex-
plicitly detailed in the sections reviewed but involve the use of real-world
data, expert judgment, and scenario modeling for hazard identification
and quantification. Risk is assessed by combining the probability of occur-
rence and potential severity of identified hazards, with an emphasis on re-
ducing risk to tolerable levels through iterative refinement and risk mitigat-
ing measures. The method, tested on the PEGASUS Highway-Chauffeur
project, demonstrated its utility for identifying and quantifying risks in au-
tomated driving, indicating its effectiveness in supporting development
and risk assessment processes. Suggestions include further refinement of
the method to enhance scenario specification and combining expert anal-
ysis with data-driven approaches for comprehensive risk assessments in
more complex environments, such as urban areas.
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The limitations related to the complexity and dynamic nature of automated
driving environments present challenges for exhaustively identifying and
accurately quantifying hazardous scenarios. It emphasizes the difficulty in
creating comprehensive models that accurately represent all potential real-
world conditions and interactions. Further, it highlights the reliance on ex-
pert opinion and data availability, which may introduce subjectivity and
limitations in risk assessment accuracy. These aspects underline the need
for ongoing refinement of methodologies and the incorporation of more
sophisticated, data-driven approaches to enhance reliability and compre-
hensiveness in risk assessments for ADS.

Figure 2.3: Proposed hazard analysis and function refinement process compared to ISO 26262
[137]

Building on the iterative process previously discussed, a method proposed
in [137] aims to enhance the safety of ADS through a structured, iterative
hazard analysis and function refinement process. This method, designed to
ensure comprehensive identification and mitigation of hazards in ADS op-
erations, emphasizes the dynamic nature of automotive risk assessment.
Unlike traditional approaches, this method considers the item definition as
an outcome of the HARA, rather than an input. This adjustment allows for
a more dynamic and thorough exploration of safety requirements, as de-
picted in Fig. 2.3. The iterative hazard analysis process is configured with
steps including preliminary feature description, systematic hazard analysis,
risk assessment, and function refinement, culminating in the definition of
safety goals and further refinement based on identified hazardous events.
Challenges arise from managing the complexity of autonomous functions
and ensuring the completeness of safety goals. The method provides a
structured approach to improving safety but faces limitations in foreseeing
and accurately simulating all potential real-world scenarios. Future work
suggests developing tool support to automate and refine the process fur-
ther, thereby enhancing its efficiency and applicability across a wider range
of autonomous vehicle functions.
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2.3.3 Dynamic Risk Ratings using Deep Learning

A study highlighted in [36] introduces a deep learning-based method for
DRA in highly automated vehicles, utilizing images from front stereo cam-
eras. This method contrasts with traditional automotive approaches by
harnessing deep learning’s potential for enhancing automotive safety and
situational awareness. The methodology involves creating a dataset from
simulated driving scenarios, annotated with a straightforward, objective
risk metric, and employing a Convolutional Neural Network for risk pre-
diction from images. With a 72.87% accuracy in risk assessment, this
approach shows promise as a supplement to traditional systems, but it
has limitations for use in safety-critical applications. A major reason for
the network’s sub-optimal performance is identified as the discrepancy
between the camera’s view and the area considered by the risk metric
calculator in the risk assessment. Critical situations occurring outside the
camera’s view could not be captured or assessed accurately, leading to a
mismatch between the predicted risk and the actual risk assessed by the
risk metric calculator. This limitation highlights the difficulty in meeting
the stringent reliability and accuracy requirements for automotive safety
applications, where errors can have severe consequences.

Figure 2.4: Risk Ratings Estimation of Traffic Scene using Learning-based Approach [136]

Expanding on the concept of DRA, [136] introduces a collision risk rat-
ing system designed to assess the probability of collisions using dashboard
camera videos, depicted in Fig. 2.4. This system leverages two-stream Con-
volutional Neural Networks and rank learning for predicting collision risk
levels, supported by the creation of a novel traffic collision dataset. The
findings highlight the advantages of integrating spatial and temporal fea-
tures for accurate collision risk prediction, outperforming existing video
classification methods. The study points towards future improvements,
such as incorporating pedestrian detection and semantic segmentation,
to enhance the collision risk rating’s effectiveness. Further expansion of
the dataset is also recommended for more refined risk rate definitions.
This research enhances driving assistant systems and autonomous vehicle
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technologies by providing a comprehensive insight into collision risks in
real-time traffic scenarios. However, the explicit rank prediction approach
performed poorer than classification approaches for collision risk rating.
This limitation arises from two factors. First, optimizing rank learning is
inherently more complex than optimizing classifier learning. Second, rank-
ing machines have a smaller model capacity compared to multi-class linear
SVMs or fully connected layers in Convolutional Neural Networks. This lim-
itation suggests a potential area for improvement in developing more ef-
fective ML models for collision risk assessment that can accurately capture
the ordered nature of risk levels (as shown in Fig. 1.4).

2.3.4 Integrated Collision Risk Assessment

For integrated collision risk assessment, the study introduces dynamic
bayesian network model that combines network-level collision prediction
with vehicle-level risk assessment for autonomous vehicles, aiming to en-
hance real-time safety perception [69]. The dynamic bayesian network
configuration includes a new layer for network-level collision risk (CRN),
complementing traditional layers for vehicle-level collision risk (CRV), sen-
sor measurements (Z), and vehicle kinematics (K), as shown in Fig. 2.5. The
data used encompasses traffic simulations on a 4.52 km motorway sec-
tion, yielding 7800 conflict events and 23400 non-conflict cases. Perfor-
mance metrics focus on classification accuracy, recall, and specificity, with
results indicating enhanced model performance in identifying collision-
prone conditions. This approach offers a comprehensive risk assessment
tool, applying across traffic safety and autonomous driving domains.

Figure 2.5: Integrated Risk Assessment Network [69]
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The study acknowledges challenges in ensuring the accuracy and reliabil-
ity of collision risk assessment models, particularly in dynamically chang-
ing environments like autonomous driving. One critical limitation is the
model’s dependency on accurate and comprehensive data for training and
validation, which might not always encapsulate the complexity of real-
world driving scenarios. Moreover, the balance between false positives
and false negatives in risk prediction is highlighted as an area needing im-
provement to avoid unnecessary interventions or missed hazard detection.
These limitations suggest a need for ongoing refinement of risk assess-
ment methodologies, incorporating broader data sources and advanced
computational techniques to enhance model performance and applicabil-
ity in diverse driving conditions.

2.3.5 KnowGO: Adaptive Learning-based Dynamic Risk Assessment

The KnowGo score framework incorporates an architecture for DRA. It
features a modular setup with components like risk scorers, a data inges-
tion module, a scorer selector, and a scorer aggregator, all designed to
dynamically enact, manage, and fuse risk predictions from multiple mod-
els based on real-time data and vehicle states (as shown in Fig. 2.6). The
framework employs both ML and rule-based methods to dynamically se-
lect and tune risk scoring models according to the changing conditions.
The data for the study was generated using a simulation environment,
provided a wide range of driving conditions, events, and automation lev-
els, creating a comprehensive dataset for training and evaluating the risk
scoring models implemented within the KnowGo framework.

The framework’s effectiveness was evaluated through predictive accuracy
and the ability of the auto-tuning feature to adapt the risk scoring based
on changes in automation levels. The models showed varied accuracies,
with non-ML models for night driving and weather conditions reaching
100% accuracy, while ML-based models such as linear regression for jour-
ney duration and a multi-model approach for driver alertness had lower
accuracies. The study found that KnowGo could accurately predict au-
tomotive risks, with performance significantly influenced by the selec-
tion and tuning of risk scorers. Auto-tuning enhanced prediction accuracy
across varying levels of automation, showcasing the adaptability of the
framework. A mix of ML and non-ML models was used, ensuring high con-
fidence in the system’s overall risk assessments. This application is critical
for enhancing safety and reliability as vehicles transition between different
levels of automation.

The KnowGo framework, designed for DRA, inherently faces several limi-
tations from a risk assessment perspective. First limitation is the variability
and unpredictability of real-world scenarios pose significant challenges to
ensuring consistent accuracy and reliability. Second, the effectiveness of
KnowGo is heavily dependent on the quality and availability of input data.
Inconsistent, heterogeneous, and volatile data, as often encountered in
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Figure 2.6: KnowGo: Dynamic Risk Assessment Framework [102]

dynamic driving environments, can significantly impact the system’s abil-
ity to make accurate risk assessments. Third, the framework’s capability to
dynamically select, tune, and integrate multiple risk scoring models adds
a layer of complexity, potentially impacting its operational efficiency and
scalability. Managing the interaction between different models, especially
in real-time, requires sophisticated coordination and optimization strate-
gies to prevent latency and ensure timely risk assessments. Lastly, the use
of multiple models and dynamic decision-making processes could hinder
the transparency and explainability of risk assessments. For stakeholders,
including drivers, manufacturers, and regulators, understanding the basis
of risk scores and the rationale behind model selection and tuning deci-
sions is crucial for trust and acceptance.

2.3.6 Scenario-based Collision Detection Using Machine Learning

The study aimed to enhance ADS safety by identifying potential collisions
through scenario-based hazard analysis, as shown in Fig. 2.7. It utilized
multilayer perceptron to detect collisions in the safety-related concept
phase, thus contributing to reducing the number of scenarios needed
for HARA. The multilayer perceptron configuration was chosen for its
relevance to the datasets used for collision detection. The model was
evaluated across various datasets to support safety argumentation. The
multilayer perceptron model had three hidden layers, and experiments
were performed to optimize its performance in terms of accuracy and
loss. Two types of simulation-based scenario datasets were examined:
knowledge-based and data-driven scenarios. The knowledge-based sce-
narios were derived from expert knowledge and parameter boundaries es-
timated using Monte Carlo Simulation. The data-driven scenarios were op-
timized through parameter-based analysis and sensitivity inspection. These
datasets emphasized vehicle safety-related parameters like vehicle speed,
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distance between vehicles, and lane change duration. Performance evalu-
ation was conducted using accuracy, loss, and cross-validation methods.

Figure 2.7: Scenario-based Hazard Analysis using Machine Learning [73]

A systematic approach was used to collect, generate, and optimize input
data, showcasing the model’s high accuracy in detecting actual collisions.
Notably, parameter-based optimized dataset, showed higher accuracy in
model predictions. The study also highlighted the importance of quality
input datasets, revealing that realistically optimized datasets could signif-
icantly enhance model prediction accuracy. The model performed better
with the parameter-based optimized dataset than with the Monte Carlo
simulation-based dataset.

The study recognizes ML’s potential in improving ADS with scenario-based
HARA but emphasizes the need for further research to effectively integrate
ML techniques into hazard identification and risk assessment. It raises con-
cerns about the assurance of ML models’ safety, given their inherent un-
predictability and the difficulty in validating their performance across all
possible operational scenarios. The critical perspective here emphasizes the
need for a careful, scrutinized approach to adopting ML in safety-critical
applications, underscoring the balance between innovation and safety.

A significant challenge in applying ML for ADS is ensuring the complete-
ness and quality of scenario data used for training ML models. The current
state of scenario-based testing and data collection methodologies, indicat-
ing the scope and depth of scenarios might not be comprehensive enough
to cover all potential hazardous situations. This limitation could affect the
model’s ability to accurately predict or detect collision scenarios, suggest-
ing a gap in the data acquisition process that needs addressing.

The exponential increase in the number of scenarios for HARA poses a
challenge for training ML models effectively. The study points out the dif-
ficulty in managing large datasets and the complexity of scenarios, which
could hinder the ML model’s performance and its application in real-world
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situations. This limitation underscores the need for advanced data man-
agement and model training strategies that can accommodate the vast
and complex nature of driving scenarios.

2.4 Bridging the Gap: Need for a New Approach in Risk
Assessment

The landscape of HARA in ADS development is replete with diverse
methodologies, each with its unique approach to ensuring safety. De-
spite the advancements, the limitations highlighted in existing research
underscore the necessity for a novel framework capable of overcoming
these challenges. The LADRI framework emerges as a solution, integrating
learning-based dynamic risk indicators (e.g. severity and controllability),
iterative processes, and simulation-based scenarios to address the short-
comings of current practices. Through a comprehensive examination of
related work, this thesis elucidate the imperative need for LADRI, drawing
connections between its capabilities and the gaps identified in prior
studies.

Addressing Complexity and Expertise Demand: Frameworks such
as SAHARA have made significant strides in structuring HARA through
model-based representations and formalized understandings of safety im-
pacts. However, the complexity and extensive domain knowledge required
for effective application limit their scalability and accessibility [70]. LADRI
mitigates these challenges by incorporating advanced learning algorithms
that adapt to dynamic driving conditions without the need for extensive
manual configuration, thereby reducing the barrier to entry and reliance
on expert judgment.

Dynamic Risk Assessment: The shift towards DRA, as explored in
SINADRA and other dynamic HARA models [69, 117], highlights the
critical need for frameworks that can adapt to changing conditions while
driving in dynamic environment. LADRI’s employment of learning-based
dynamic risk indicators and its Plan-Do-Train-Adjust-Assess cyclic process
provide a mechanism for continuous improvement and real-time hazard
detection, surpassing the static nature of traditional approaches.

Incorporating Learning-based Methods for Enhanced Predictability:
The reliance on scenario and simulation-based methods across multiple
frameworks underscores the importance of accurate risk prediction under
varied operational conditions. While works like those of Feth et al. [36] and
Wang et al. [136] demonstrate the potential of learning-based methods in
DRA, LADRI advances this approach by integrating ML with traditional HA-
ZOP and iterative HARA processes. This integration allows for an objective
assessment of severity and controllability, leveraging risk-specific context
information to provide runtime contextual insights, a capability not fully
explored in previous models.
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Table 2.4: Summary of Related Work Vs LADRI

Related Work Scenario-
driven

Learning-
based

Simulation-
based

Use of
HAZOP

Iterative
HARA

Dynamic
HARA

[70] ✓ ✓

[117] ✓ ✓ ✓

[79] ✓ ✓ ✓ ✓

[137] ✓ ✓

[36] ✓ ✓ ✓ ✓

[136] ✓ ✓ ✓

[69] ✓ ✓ ✓

[102] ✓ ✓ ✓ ✓

[73] ✓ ✓ ✓

LADRI ✓ ✓ ✓ ✓ ✓ ✓

Iterative HARA: The iterative approach to hazard analysis and function
refinement, as detailed in research by Kramer et al. [79] and Warg et al.
[137], resonates with LADRI’s cyclic process. However, LADRI distinguishes
itself by embedding this process within a learning-based framework that
not only identifies hazards but also evolves with each iteration, enhancing
safety measures in subsequent cycles of ADS development.

Simulation-based Scenario Integration: Simulation-based scenarios
play a pivotal role in risk assessment, offering a controlled environment
for testing and validation. LADRI’s use of simulation-based scenarios goes
beyond testing to include training its models within these environments.
This ensures that the framework’s predictions and assessments are based
on thorough and realistic driving conditions.

The comparative analysis provided in Table 2.4 illustrates LADRI’s com-
prehensive inclusion of scenario-driven, learning-based, simulation-based
approaches, use of HAZOP, iterative HARA, and dynamic HARA processes.
This integration positions LADRI as a holistic framework that addresses the
noted limitations of existing research, offering advancements in DRA and
risk quantification. The development of LADRI is not just another HARA
methodology; it is an essential evolution that fills existing gaps in ADS
risk assessment. By leveraging the strengths of existing approaches and
addressing their limitations, LADRI introduces a framework that enhances
traditional HARA.
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3 Development of a Learning-based
Dynamic Risk Indicator

The focus of this chapter is to present a complete process of the develop-
ment of a specialized tool known as the "LeArning-based Dynamic Risk
Indicators (LADRI)." Initially, the chapter commences with an overview of
the solution. Following this, the thesis delves into the meticulous steps
involved in creating a simulation environment. The text then transitions
to the core of the research, discussing the training and testing phases of
the ML model. The chapter concludes with the model adjustment and
deployment processes. The text demonstrates how the ML model, once
trained and refined, is deployed back into the simulated environment. This
completes the research cycle, showcasing an iterative process that enables
continuous learning from the data.
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3.1 Solution Overview

This thesis introduces the LADRI framework, a novel approach aimed at
enhancing continuous risk assessment and early hazard identification for
ADS by leveraging runtime risk-specific context information. The LADRI
framework utilizes a supervised ML model to provide a more dynamic and
evidence-based tool for risk assessment. This approach aims to reduce sub-
jectivity in risk ratings by enhancing the precision of assessments through
the identification of hidden patterns and correlations associated with spe-
cific risks. The framework employs a cyclic process named Plan-Do-Train-
Adjust-Assess (PDTAA), as depicted in Fig. 3.1, to dynamically update and
refine risk indicators. Each phase of the PDTAA process contributes to the
next, creating a comprehensive approach to risk assessment:

Figure 3.1: The Cyclic Process of the Learning-Based Dynamic Risk Indicator Tool

PLAN-Scenarios: In the Plan phase, the framework identifies three key
categories of parameters: design parameters, non-design parameters, and
failure conditions. Design parameters, which are directly controllable, in-
clude aspects such as sensor configurations, and vehicle capabilities like
acceleration and deceleration, alongside vehicle control strategies. Non-
design parameters encompass uncontrollable factors, including environ-
mental conditions, the behavior of traffic participants, and road condi-
tions. Failure conditions refer to potential system failures, identified using
HAZOP guiding words, such as the omission of a sensor signal or incorrect
values considered by actuators.

The systematic variation of parameters and failure conditions within the
framework reveals hidden vulnerabilities, with insights from failure injec-
tion being critical for guiding design improvements. This way, Plan sce-
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narios can create a wide range of conditions, even rare and extreme ones,
ensuring coverage of all foreseeable hazardous events, including low prob-
ability but high impact situations. This phase sets the foundation for ac-
curately simulating driving scenarios, incorporating both vehicle dynamics
and environmental influences for precise risk assessment.

DO-Simulation: In the Do phase, the previously identified parameters
are simulated to replicate ADS interactions with the environment and sur-
rounding traffic (e.g. Non-ADS) across diverse conditions. Simulating in-
teractions between the ADS-equipped ego vehicle and surrounding traffic
through comprehensive behavioral algorithms and dynamic environmen-
tal factors, such as rain, snow, and fog, enables realistic and complex driv-
ing scenarios. This phase tests the ego vehicle’s adaptability and decision-
making capabilities against unpredictable scenario conditions, including
variable weather and aggressive maneuvers by other vehicles. By exposing
the ego vehicle to a range of hazards and operational challenges, the sim-
ulation provides valuable risk-specific context information and data on its
performance.

This comprehensive risk-specific context information forms the basis for
identifying critical elements influencing risk scenarios. From this broad
context, risk features are extracted and meticulously selected based on
their relevance and potential to indicate risk levels. Risk features are spe-
cific, quantifiable attributes, meaning they can be numerically expressed
to identify, assess, and predict risks. These quantifiable attributes, used
as inputs by ML models, allow for learning from historical patterns, rec-
ognizing risk factors, and making predictions about potential future risks.
The selection, quality, and relevance of risk features significantly affect the
accuracy and effectiveness of ML models in risk prediction.

TRAIN Model: In this phase, the focus is on utilizing risk features gener-
ated during the Do phase to predict dynamic risk indicators through the
training and testing of supervised ML models. Initially, data labeling is con-
ducted to enable the ML model to distinguish between various risk levels
accurately. This process involves tagging each data point with an output
label that represents different levels of severity and controllability, which
the model aims to predict based on the inputs. Such supervised learn-
ing ensures that ML models can learn from input-output pairs and make
informed predictions.

Following data labeling, the dataset undergoes normalization and balanc-
ing. Normalization addresses datasets with risk features on vastly differ-
ent scales, which can hinder the training process. Normalization uniformly
scales the feature space, which helps models converge more smoothly and
quickly to optimal parameters, reducing numerical instability and speeding
up the learning process. On the other hand, balancing the dataset is cru-
cial for ensuring the model learns equally from all risk classes, regardless of
their occurrence frequency. This balanced learning approach improves the
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model’s generalization to unseen data, enhancing its predictive accuracy
across different risk categories.

With the data preprocessed through labeling, balancing, and normaliza-
tion, the ML model proceeds to training. During this stage, the model
learns the patterns and correlations within the prepared dataset that indi-
cate different levels of risk severity and controllability.

Figure 3.2: Comprehensive Overview of LADRI Process: Intersections of Design Time, Runtime,
Value-Based, and Fact-Based Considerations

ADJUST Model: During this phase, the safety engineer rigorously eval-
uates the ML model’s performance using metrics like accuracy, precision,
recall, specificity, and F1 score, focusing on its runtime risk indicator pre-
diction capabilities. If the model’s predictions don’t meet the predefined
accuracy criteria (>= 99%), it undergoes adjustments or retraining pro-
cess. This may involve sessions with modified parameters or datasets and
thorough validation to ensure the model’s compliance with performance
criteria. The safety engineer examines potential overfitting or underfitting
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issues, employing cross-validation and analyzing learning curves for in-
sights. Additionally, the risk features utilized by the model may be refined
or adjusted for relevance and comprehensive representation of operational
complexities. Modifications are made to the rules or thresholds for classify-
ing risk labels, aiming to improve the accuracy of predictions and prevent
biases in the model. Hyperparameters are also fine-tuned to achieve an
optimal balance between bias and variance, aiming for a model that gen-
eralizes effectively to new unseen and unlabeled data. Continuous post-
deployment monitoring and periodic reassessment using feedback loops
ensure the model’s sustained performance and adaptability to evolving
risks, maintaining strict accuracy and performance standards. Safety en-
gineers also maintain comprehensive documentation of all changes, up-
dates, and performance logs related to the ML model for future reference.

ASSESS Risk Level: In this phase, the refined ML model is integrated into
the ADS for runtime risk assessment, focusing on detecting severity and
controllability indicators in scenarios not previously encountered. These
indicators allow safety engineers to establish safety goals for the nec-
essary enhancements or modifications to ADS, including improvements
to braking systems or alterations to sensor configurations. Monitoring
the ML model’s performance during runtime risk assessments introduces
unique challenges, particularly when it encounters new, unlabeled data,
and ground truths are unknown to the safety engineer.

To navigate these challenges, safety engineers employ data visualization
tools to scrutinize the model’s predictions against new data, facilitating
the discovery of emerging patterns, trends, or anomalies indicative of pre-
viously unrecognized risk indicators. Moreover, the application of model
explainability and interpretability tools, like Shapley values or Brier score,
sheds light on the rationale behind the model’s predictions in unfamiliar
scenarios. This understanding aids safety engineers in pinpointing unseen
risk indicators and grasping the model’s decision-making logic.

The LADRI framework delineates operational dynamics into runtime and
design time activities, as depicted in Fig. 3.2. This structured division aligns
with ADS risk assessment’s specific objectives, facilitating a continuous, it-
erative loop crucial for ADS development. During runtime, the Plan and
Do phases dynamically simulate ADS behavior across varied operational
contexts, while the Assess phase translates simulation outcomes into ac-
tionable risk indicators like severity and controllability.

Conversely, the Train and Adjust phases, classified as design time activi-
ties, focus on leveraging simulation data to develop and refine predictive
ML models. These models are trained to identify risk indicators from com-
plex datasets, and safety engineers adjust them to accurately reflect ADS
operations based on performance.

Incorporating both fact-based and value-based analyses is pivotal within
this framework. Fact-based analysis, which draws on empirical data and
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objective evidence, supports the Plan, Do, and Train phases by generating,
executing, and learning from simulated scenarios that mirror real-world
conditions. This ensures the models are empirically grounded, enhancing
their relevance and accuracy.

Meanwhile, value-based analysis, which relies on professional judgment
and expertise, is key to the Adjust and Assess phases. These phases involve
evaluating and modifying predictive models with a nuanced understand-
ing of safety principles and assessing risk indicators against operational
safety goals. This blend of fact-based and value-based approaches en-
sures a comprehensive risk assessment, leveraging empirical evidence and
expert judgment to enhance HARA.

3.2 Simulation Environment

In this thesis, to simulate an ADS-equipped ego vehicle, the example
"Highway Lane Following with Intelligent Vehicles" from Matlab/Simulink
is utilized and modified as per the thesis requirements. This example allows
the ego vehicle to travel within a marked lane [129].

The simulation environment comprises several key modules designed to
simulate and analyze the behavior of ADS within a 3D scenario (as shown
in Fig. 3.3). The Simulation 3D Scenario subsystem sets the foundation by
defining the road, ADS-equipped ego vehicle, surrounding non-ADS vehi-
cles, and synthesizing sensors for the simulation. To understand the vehi-
cle’s surroundings, the lane detector algorithm model detects lane bound-
aries using data captured by the camera sensor, while the vehicle detector
algorithm model identifies vehicles within the frame. Enhancing the vehi-
cle’s perceptual capabilities, the forward vehicle sensor fusion algorithm
model amalgamates detection of vehicles ahead of the ego vehicle from
both vision and radar sensors.

The lane following decision logic algorithm model determine the vehicle’s
movement, providing lane center information and the most important ob-
ject related data to the controller for lateral and longitudinal decision-
making. Complementing this, the ego Adaptive Cruise Control (ACC) al-
gorithm governs the vehicle’s steering, braking and acceleration/decelera-
tion. Lastly, the vehicle dynamics module outlines the model for the ego
vehicle, completing the suite of tools designed to simulate and refine ADS
functionalities.

The simulation environment for ADS serves as a dynamic "Dashboard,"
integrating a blend of design and non-design parameters along with a va-
riety of potential failure conditions. This integration create a scenario-rich
platform that produces extensive and contextually diverse data. Such data
is important for accurately reflecting the complexities and unpredictability
of real-world dynamic driving conditions. This environment is exceptionally
conducive to the development, training, and testing of the LADRI frame-
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Figure 3.3: Integrated Simulation Environment: Combining Design and Non-Design Parame-
ters with Failure Conditions

work. It encompasses an array of driving scenarios, ranging from standard
operational conditions to rare and extreme situations, ensuring the data
collected is thorough. This comprehensive data collection is essential for
developing a LADRI framework that is both adaptable and efficient.

The simulation environment is structured through a Plan-scenario phase,
which involves the identification and categorization of various parameters
and conditions. This phase guides the subsequent Do-Simulation phase
effectively as shown in Fig. 3.3. The simulation environment varies pa-
rameters based on three main pillars defined in the Plan-Scenario phase:
Design Parameters, Non-Design Parameters, and Failure Conditions. Each
of these elements plays a role in creating detailed and variety of real-world
scenarios, providing an environment for evaluating LADRI framework per-
formance.

3.2.1 Design Parameters

Design parameters are those that have a direct influence on a vehicle’s
dynamic behavior and the decision-making capabilities of the ADS. These
parameters include the ego vehicle’s set speed, maximum and minimum
longitudinal acceleration, the reaction time of the ADS, default safe dis-
tance, vehicle mass, runtime longitudinal acceleration, vehicle speed, and
ACC control gain parameters (as shown in Table. 3.1). The rationale be-
hind the selection of these parameters lies in their direct impact on how
the ADS operates under various traffic conditions and environmental set-
tings, which in turn, shapes the risk assessment process.

For example, maximum acceleration and deceleration rates determine the
ADS’s emergency response capability, while reaction time and ACCC con-
trol gains dictate the system’s responsiveness and adaptability. The inclu-
sion of vehicle mass and default safe distance further allows for a nu-
anced understanding of how physical characteristics and predetermined
safety protocols affect risk scenarios. Together, these parameters provide
enriched scenarios for LADRI framework to analyze and predict potential
hazards, offering insights into the effectiveness of the ADS in safety-critical
situations. In addition, the simulation environment offers opportunities to
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modify sensor specifications, including adjustments to sensor angles, their
position, or altering their range and sensitivity. However, to maintain focus
and conciseness, these adjustments were not explored in this study.

Table 3.1: Design and Non-Design Parameters

Type Parameters Relevant Source Units

D
es

ig
n

Pa
ra

m
et

er

Set Speed of Ego (SetSpeedego) Static Input m/s

Max. Longitudinal Acceleration (amax,ego) Static Input m/s²

Min. Longitudinal Acceleration (amin,ego) Static Input m/s²

Max. Longitudinal Deceleration (dmax,ego) Static Input m/s²

Min. Longitudinal Deceleration (dmin,ego) Static Input m/s²

ADS Response Time (P) Static Input seconds

Default Safe Distance (ddefault) Static Input meter

Ego Vehicle Mass (m) Static Input kg

Longitudinal Acceleration (aego) Accelerometer m/s²

Longitudinal Vehicle Speed (vego) Speed sensor m/s

Position of Ego vehicle (xego ) GPS sensor Coordinates

ACC Control Gain Parameters Software Algorithm -

N
o

n
-D

es
ig

n
Pa

ra
m

et
er

Set Speed of Lead (SetSpeedlead) Static Input m/s

Max. Longitudinal Acceleration (amax,lead) Static Input m/s²

Min. Longitudinal Acceleration (amin,lead) Static Input m/s²

Max. Longitudinal Deceleration (dmax,lead) Static Input m/s²

Min. Longitudinal Deceleration (dmin,lead) Static Input m/s²

Length of the Lead (Llead) Static Input meter

Lane Width (lwidth) Static Input meter

Longitudinal Acceleration (alead) Accelerometer m/s²

Longitudinal Vehicle Speed (vlead) Speed sensor m/s

Road friction coefficient (μ) Wheel slip sensors -

3.2.2 Non-Design Parameters

As shown in Table 3.1, non-design parameters such as the lead vehicle’s
maximum longitudinal acceleration, length, speed, lane width, traffic den-
sity, weather conditions, and road friction coefficient are crucial for cap-
turing the variability and complexity of real-world driving conditions, im-
pacting the behavior of ADS. Although these parameters are not directly
controllable, they have a significant impact on ADS behavior.

For instance, the maximum longitudinal acceleration and speed of the lead
vehicle, along with its length, directly impact the spacing and timing de-
cisions of the ego vehicle, affecting how it adjusts its speed or changes
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lanes in response to the lead vehicle’s actions. Similarly, lane width influ-
ences maneuverability and safety margins, especially important in scenar-
ios involving lane changes or avoiding obstacles (e.g., during Cut-in and
Cut-out scenarios).

Furthermore, traffic density metrics from GPS data provide critical context
for the LADRI framework, enabling it to assess risk ratings based on vehi-
cle proximity and potential for congestion. Weather conditions and road
friction coefficients, gathered from weather sensors and wheel slip sensors
respectively, are crucial for understanding environmental impacts on ADS
performance, particularly in terms of braking distances and traction.

By integrating these non-design parameters into simulation environments,
the LADRI framework enhances its ability to evaluate ADS behavior and
risk ratings in a detailed manner. This approach allows the LADRI frame-
work to adjust its risk ratings dynamically across a spectrum of scenar-
ios, from ideal to challenging conditions, including heavy traffic, adverse
weather, varying road surfaces, ensuring more precise and context-aware
predictions.

3.2.3 Failure Conditions

To ensure the safety and reliability of ADS, it is crucial to rigorously test
these systems under a wide range of conditions, including those that
are unlikely but potentially catastrophic. The rationale behind synthetically
generating specific failure scenarios is rooted in the HAZOP methodology
[97], which is designed to identify and evaluate potential hazards in a sys-
tem by examining possible deviations from normal operations. By apply-
ing HAZOP guide words to simulate failure conditions, engineers can sys-
tematically explore the effects of various faults and malfunctions, thereby
gaining insights into the ADS’s behavior under adverse conditions. This ap-
proach enables the identification of weaknesses in the system design and
the development of mitigation strategies to enhance overall safety.

Various failure conditions are considered to rigorously evaluate the effec-
tiveness and robustness of the LADRI framework under safety-critical sce-
narios that ADS may encounter during driving operation on highway lane
following situation. The chosen failure conditions include unintended ac-
celeration, unintended braking, insufficient engine/brake power, jerky and
fluctuating acceleration/deceleration, and object detection delay by radar
sensors as shown in Table. 3.2.

For example, unintended acceleration scenarios evaluate the system’s re-
sponse to abnormal speed increases, which could potentially lead to front-
end collisions. Similarly, scenarios involving unintended braking aim to as-
sess rear-end collisions caused by unexpected deceleration of the vehicle.
The ultimate objective of these simulations is to mimic both common oc-
currences and rare, yet potentially safety-critical scenarios. This approach
not only highlights real-world issues that could lead to accidents if not
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Table 3.2: Potential Failure Conditions Leading to Hazardous Scenarios

No Failure conditions Associating HAZOP Guide Words with
Faults and Simulation Methods

1 Unintended acceleration leading
to front-end collision

HAZOP: Wrong Value; Faults: Software
glitches in acceleration control; Injection:
Simulate erroneous throttle command
inputs in the control algorithm.

2 Unintended braking leading to
rear-end collision

HAZOP: Wrong Value; Faults: Hardware
failure in braking system; Injection: Intro-
duce random actuator malfunctions into
braking system.

3 Insufficient engine/brake power
despite higher demand, creating
potential risk scenario

HAZOP: Delay; Faults: Communication
delays affecting power delivery; Injec-
tion: Simulate message loss impacting
engine or brake commands.

4 Jerky and fluctuating accelera-
tion/deceleration leading to pos-
sibility of rear or front-end colli-
sions

HAZOP: Omission; Faults: Intermittent
software or hardware faults in throt-
tle/brake control; Injection: Introduce
random fluctuations in throttle/brake ac-
tuation commands.

5 Object detection delay by radar
sensors leading to unnecessary ac-
celeration/deceleration

HAZOP: Delay; Faults: Radar sensor drift
or processing errors; Injection: Manipu-
late radar sensor data to create delayed
in object detection scenarios.

properly addressed but also test the prediction capability of LADRI frame-
work in variety of challenges.

3.2.4 Integrated Overview of ADS

An integrated ADS behavior, particularly provide large amount of data for
diverse driving scenarios to serve as an input for the LADRI framework.
In the simulated environment, vehicle behaviors are meticulously modeled
to reflect real-world dynamics. For instance, as shown in Fig. 3.4, the be-
havior of an ego vehicle, equipped with an ACC system, is simulated to
adapt its speed in response to a lead vehicle’s actions. This is achieved by
configuring the ego vehicle to automatically adjust its speed to maintain
a safe following distance, thereby emulating the ACC controller’s role in
runtime ADS operation. The incorporation of design parameters, such as
the ego vehicle’s maximum acceleration and deceleration rates, alongside
non-design parameters like lead vehicle speed and weather conditions,
facilitates the creation of diverse driving scenarios.

Failure conditions introduce an additional layer of complexity, simulating
potential system malfunctions or sensor inaccuracies that might lead to
unintended vehicle behaviors. For example, a failure condition introduced
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Figure 3.4: Integrated ADS behavior

during a braking operation could artificially impair the performance of the
ego vehicle, causing it to reduce the distance between itself and the lead
vehicle much more quickly than intended, resulting in a front-end collision
(as shown in Fig. 3.4). This scenario not only tests the ACC controller’s
responsiveness but also examines the LADRI framework’s ability to iden-
tify and evaluate the emerging risk, assigning a risk indicator based on
the severity and controllability of the hazardous scenario. By varying the
speed, environmental conditions, and applying different sets of parame-
ters, the simulation environment enables a nuanced exploration of how
LADRI framework can assess risks across a spectrum of scenarios. The risk-
specific context information collected (at every 0.1 second) from sensors
during these simulations, such as vehicle speed, distance to the lead ve-
hicle, and acceleration/deceleration patterns, are critical for risk feature
extraction.

3.2.5 Risk Feature Extraction

In the LADRI framework, a "Risk Feature" is defined as a quantifiable at-
tribute or metric derived from risk-specific context information, indicative
of potential hazards or conditions that may lead to safety-critical events
within an autonomous driving context. These features are crucial for ML
algorithms, enabling the model to identify, assess, and predict risk ratings
by analyzing complex data patterns that traditional risk assessment meth-
ods might not discern. These risk features can be used to identify intricate
hidden patterns and correlations within their data points, offering a nu-
anced and comprehensive understanding of the risk landscape.

Traditional safety metrics such as Time to Collision (TTC), often termed Sur-
rogate Indicators [94] or Criticality Metrics [141], serve as the foundation
of driver safety assessment. Their incorporation as risk feature within an
ML-driven algorithm enhances their utility. Embedding these metrics en-
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ables the LADRI framework to dynamically interpret these features in light
of a broad spectrum of data inputs, such as environmental conditions,
vehicle dynamics, and traffic behavior patterns. This enriched analysis ca-
pability enables LADRI framework to discern that unintended acceleration
decreases TTC, indicating an imminent front-end collision risk, whereas
unintended braking might paradoxically increase TTC with respect to the
lead vehicle but still poses a high-risk scenario due to the potential for
a rear-end collision. LADRI framework evaluates these dynamics, under-
standing how different failure conditions affect the overall risk level, recog-
nizing that metrics like TTC require contextual interpretation; an increase
in TTC is not universally safe, nor is a decrease always risky without con-
sidering the specific failure condition and surrounding traffic dynamics.

By simulating various design and non-design parameters as static inputs
for diverse driving scenarios in the Matlab/Simulink environment, LADRI
framework acquires both quantitative and qualitative risk features. To
gather these risk features, common static inputs were initially introduced
into the simulation environment, as detailed in Table 3.3. Dynamic in-
puts were then collected through the sensor fusion capabilities provided
by Matlab/Simulink. As a result, three types of feature sets: Time-based,
Distance-based, and Impact-based risk features, were derived to represent
the comprehensive behavior of ADS, thereby facilitating a thorough risk
assessment.

Time-based Risk Features: Time-based risk features encompass metrics
related to the timing of potential safety-critical incidents, focusing on the
duration until a critical event, such as a collision or the need for evasive
action, might occur. These are essential for understanding the urgency and
timing of safety-related decisions.

TTC, Time to Escape (TTE), Time to Stop (TTS) each provide unique insights
into the critical time windows available for action before a potential inci-
dent. While TTC offers a direct measure of the time until a collision at
current speeds, TTE gives an indication of how quickly a vehicle can avoid
an obstacle, emphasizing maneuverability. TTS, on the other hand, focuses
on the vehicle’s capability to come to a complete stop, highlighting brak-
ing efficiency. As shown in Fig. 3.5, understanding these temporal risk
features is essential for designing ADS that can make informed decisions
about when to initiate braking to avoid collisions.

TTC: can be defined as the time available for the ego vehicle to collide
with a lead vehicle, given the prevailing speeds, distances, and trajectory
of the ego vehicle. In a scenario where two vehicles (e.g. ego and lead)
driving at same speed, the denominator diminishes, and TTC value turn to
infinite. Therefore, to avoid this issue, enhanced TTC is used [142].
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Table 3.3: Simulation Parameters: Static and Dynamic

Type Parameters Values
D

yn
am

ic

Velocity of EGO vehicle (Longitudinal) vego

Velocity of LEAD vehicle (Longitudinal) vlead

Relative Velocity vrel = vlead – vego

Position of EGO vehicle (Longitudinal) xego

Position of LEAD vehicle (Longitudinal) xlead

Relative Distance drel = xlead – xego

Acceleration of EGO vehicle (Longitudinal) aego

Acceleration of LEAD vehicle (Longitudinal) alead

Relative Deceleration Drel = alead – aego

Velocity of EGO vehicle (Lateral) vego,lat

Velocity of Object vehicle (Lateral) vobj,lat

Relative Lateral Speed vrel,lat = vobj,lat – vego,lat

Position of EGO vehicle (Lateral) xego,lat

Position of Object vehicle (Lateral) xobj,lat

Relative Lateral Distance drel,lat = xobj,lat – xego,lat

St
at

ic

Max. Acceleration of EGO vehicle amax,ego = 2m/s2

Min. Acceleration of EGO vehicle amin,ego = –2m/s2

Max. Deceleration of EGO vehicle (brake) dmax,ego = 9.8m/s2

Min. Deceleration of EGO vehicle (brake) dmin,ego = 3.8m/s2

Max. Acceleration of LEAD vehicle amax,lead = 2m/s2

Min. Acceleration of LEAD vehicle amin,lead = –2m/s2

Max. Deceleration of LEAD vehicle (brake) dmax,lead = 9.8m/s2

Min. Deceleration of LEAD vehicle (brake) dmin,lead = 2m/s2

Lane Width lwidth = 3.5 meter

Default Safe Distance ddefault = 2 meter

Response Time P = 1.4 seconds

Vehicle Mass m = 1575kg

Length of the LEAD Llead = 4.848 meter

(3.1) TTC =

√
v2

rel + 2Dreldrel – vrel

Drel
; v2

rel > 2Dreldrel

TTE: By quantifying the risk of lateral movement, TTE offers a more com-
prehensive risk assessment, going beyond TTC, which mainly focuses on
longitudinal risks. Integrating TTE into the risk assessment process aids in
identifying and implementing collision avoidance maneuvers that are not
solely reliant on braking, but also take into account lateral movements.
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Figure 3.5: Temporal Risk Features for Model Training

This becomes particularly crucial in scenarios where braking alone may
not suffice to avoid a collision, such as when a vehicle from an adjacent
lane unexpectedly merges into the lane of the ego vehicle [85]. Moreover,
TTE offers insights into the amount of time the ego vehicle has to avoid
a front-end collision in cases of sudden deceleration and braking by the
lead vehicle.

(3.2) TTE =
–lwidth + drel,lat

vrel,lat

TTS: is an essential metric for risk assessment in the domain of ADS and
vehicular control. It represents the crucial interval needed for an ego ve-
hicle to come to a complete halt from its current speed, post-initiation of
braking. In the context of risk assessment, TTS provides valuable insights
into the immediate actionable window available to prevent potential col-
lisions or mitigate their severity. Moreover, the behavior of TTS, akin to
other time-based safety metrics, indicates that longer stopping times are
generally associated with less severe outcomes and greater controllabil-
ity over the vehicle’s state. This correlation underscores the importance of
maintaining adequate stopping distances and highlights the role of TTS in
facilitating proactive risk indicator [142].

(3.3) TTS =
vrel

dmax,ego
; drel, vrel > 0
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Distance-based Risk Features: Distance-based risk features measure
the necessary safety distances around the vehicle, including stopping dis-
tances under various conditions. These risk features are essential for spatial
awareness and maintaining safe buffers between vehicles and obstacles.

Minimum Distance to Avoid Crash (MDAC), Safety Distance (SFD), Stop-
ping Distance (STD) each contribute to understanding the spatial require-
ments for safety, as shown in Fig. 3.6. MDAC focuses on the critical min-
imum buffer needed to prevent collisions, directly informing safety mar-
gins. SFD is more prescriptive, indicating the ideal following distance under
normal conditions, while STD calculates the total distance needed to halt
the vehicle, including both reaction and braking distances. These spatial
metrics collectively provide a multidimensional view of the vehicle’s spatial
requirements for safety, essential for maintaining proper positioning on
the road.

Figure 3.6: Transformation of Raw Sensor Data into Features for Model Training

MDAC: The minimum distance required to avoid a crash at any given
time between the ego and lead vehicles is defined as the shortest dis-
tance necessary to prevent a collision. This concept, also known as the
Responsibility-Sensitive Safety model [78], is derived from a scenario in
which the lead vehicle performs a panic stop using the maximum possi-
ble braking force. In this scenario, the ego vehicle, initially traveling at a
distance greater than or equal to the MDAC, detects this action and re-
sponds by panic braking with a deceleration matching at least its minimum
braking capability. Given the challenges posed by variability in real-world
driving conditions, such as road surface conditions, vehicle braking ca-
pabilities, and unexpected maneuvers by other road users, the MDAC risk
feature aids in quantifying the impact of these variables on safety margins.
This, in turn, allows for a more robust and accurate risk assessment.
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(3.4) MDAC =

[
vego · P + 0.5 · amax,ego · (P)2 +

(vego + P · amax,ego)2

2 · dmin,ego
–

(vlead)2

2 · dmax,lead

]

SFD: Safety distance refers to the minimum distance that should be main-
tained between two vehicles to ensure safety while driving. This distance
allows an ego vehicle sufficient time and space to react and stop to avoid
a collision with the vehicle ahead in case of sudden braking or any unex-
pected event. The safety distance varies based on the ego vehicle’s speed,
the acceleration capabilities of the ego, and the reaction time of the ACC
system [30]. It accounts for the reaction time of the system’s response
time, providing a buffer period to initiate a braking maneuver. Maintain-
ing an appropriate safety distance reduces the risk of rear-end collisions,
which are among the most common types of vehicle accidents.

(3.5) SFD = vego · P +
v2

ego

2 · amax,ego
+ ddefault ; alead ̸= 0

The concepts of MDAC and SFD, while related, serve different roles in the
context of risk assessment for vehicle safety, particularly when evaluating
the severity of potential accidents and the controllability of vehicles to pre-
vent those accidents. MDAC is a precise measure of the minimal distance
needed between two vehicles to avoid a collision under specific condi-
tions, focusing on reactive scenarios. SFD, however, is a broader concept
recommending a minimum distance for safe driving under normal con-
ditions, accounting for factors such as vehicle speed, braking capabilities,
road conditions, and the reaction time of the ADS. While MDAC addresses
the minimal distance to prevent crashes in emergency situations, SFD pro-
vides extra margins for safety, influencing the evaluation of crash severity
potential and vehicle controllability. A vehicle maintaining more than the
SFD under varied conditions shows good controllability, while one closer
to the MDAC limit has a higher crash risk due to reduced error margin.

STD: refers to the total distance a vehicle travels from the moment a sys-
tem perceives a need to stop (including the reaction time) to the point
where the vehicle comes to a complete stop. This includes both the reac-
tion distance (distance covered during the system’s reaction time) and the
braking distance (distance covered from the start of braking to a complete
stop) [142].

(3.6) STD =
(

vrel + Drel ·
P
2

)
· P +

(vrel + Drel · P)2

2 · Dmax,rel
; alead ̸= 0
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Impact-based Risk Features: By concentrating on the dynamics of de-
celeration and the kinetic energy involved in potential collisions, impact-
based risk features offer a quantitative foundation for assessing the forces
of impact, as illustrated in Fig. 3.7. These features evaluate the severity
of possible impacts and the vehicle’s ability to avoid them. Deceleration
Rate to Avoid Crash (DRAC) considers the vehicle’s ability to decelerate to
prevent collisions, focusing on the physical capabilities and limitations of
the vehicles involved. Kinetic Energy (KE) adds another layer by quantify-
ing the energy that would be involved in a collision, offering a measure of
the potential severity of impacts. These features provide a foundation for
evaluating the potential outcomes of scenarios and the effectiveness of
possible interventions, focusing on the physics of collision avoidance and
impact mitigation.

Figure 3.7: Transformation of Raw Sensor Data into Features for Model Training

DRAC: is defined as the rate of deceleration that the ego vehicle must
achieve at any given time to avoid a crash, assuming the lead vehicle
continues moving at the same speed and trajectory [23]. A key aspect of
using deceleration rates effectively is the recognition of different driving
conditions, such as wet or icy roads, which significantly affect the actual
deceleration a vehicle can achieve. Safety engineers and ADS developers
use standard deceleration rates under normal conditions as a baseline but
must also consider adverse conditions when planning and developing ve-
hicle safety features.

(3.7) DRAC = alead +
v2

rel
2 · drel

; alead ̸= 0
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KE: is proportional to the vehicle’s mass and the square of its speed, de-
termining the severity of a collision. The KE of a moving vehicle directly af-
fects its stopping distance when brakes are applied. A vehicle with higher
KE will require a longer distance to come to a complete stop, assuming
the same braking force. For ADS, understanding the KE dynamics of the
vehicle and its surroundings is necessary for effective risk assessment.

(3.8) KE =
1
2

m · v2
ego

The delineation into temporal, spatial, and impact-based feature sets un-
derpins a comprehensive LADRI framework, ensuring that every facet of
risk assessment is meticulously accounted for. Each category of risk fea-
tures provides a layer of granularity that contributes to a more detailed
risk profile. Temporal features offer insights into the timing aspects of
potential hazards, spatial features provide context regarding the physi-
cal positioning and distances involved, and impact-based features assess
the potential severity of outcomes. This categorization ensures that the
Train model phase is equipped with a multidimensional understanding of
risk, crucial for accurate predictions of severity and controllability indica-
tors across various highway lane-following scenarios. The integration of
these diverse sets of features into the Train model phase provides a holis-
tic and nuanced approach to risk assessment.

3.3 Model Training and Testing

In this phase, the focus is on utilizing risk features generated in previous
section to train and test of supervised ML models, as shown in Fig. 3.8.
Risk features provide the necessary input that allows ML models to learn
the relationship between input data and the corresponding output labels
(e.g., severity and controllability)1.

However, risk features cannot be directly used as inputs for training ML
models. There are certain preparatory steps, as highlighted in an estab-
lished study [109, 110], such as data preprocessing and feature selection.
Both steps enhances the learning and prediction capabilities of ML mod-
els. This section elaborates in detail on each step of the Train phase, as
depicted in Figure 3.8.

1 In this thesis, the research focuses solely on severity and controllability for the specified hazardous
events, with the exposure rating considered as E4 (highly probable). The classification of control-
lability and severity as system attributes underscores their inherent relation to the system’s design,
operation, and potential failure modes [71].
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Figure 3.8: The Role of Safety Engineer

3.3.1 Data Preprocessing

This stage lays the groundwork for a robust predictive analysis by imple-
menting a series of essential preprocessing techniques aimed at refining
the input data. It encompasses three key processes: Labeling, Normaliza-
tion, and Class balancing, each tailored to enhance the quality and rele-
vance of the data before it enters the training pipeline.
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Labeling Rules: Severity and Controllability: Labeling is an essential
for supervised learning, serving as the foundation for models to learn the
mapping between inputs and outputs from example pairs. It provides the
necessary guidance for algorithms to understand and predict outcomes
based on input features, similar to learning animal categories with specific
examples. Unlike rule-based systems, which depend on predefined rules,
labeling enables models to learn and infer patterns from the data, allow-
ing for generalization and prediction on new, unseen data. This process
enables models to identify patterns and relationships within the data, al-
lowing them to manage new scenarios or minor deviations from the train-
ing data. For example, they can predict the risk associated with a new type
of sensor failure under specific conditions by leveraging learned patterns
of the environmental impact on vehicle behavior.

Table 3.4: Thresholds for Classification Rule-Set

Category Level Condition

TTC

1 ≥ 15s

2 10s ≤ TTC < 15s

3 5s ≤ TTC < 10s

4 < 5s

MDAC

1 ≥ 30m

2 20m ≤ MDAC < 30m

3 10m ≤ MDAC < 20m

4 < 10m

DRAC

1 ≤ 1 m/s2

2 1 < DRAC ≤ 3 m/s2

3 3 < DRAC ≤ 5 m/s2

4 > 5 m/s2

In this thesis, the labeling of severity and controllability risk indicators for
LADRI framework is meticulously designed around three critical param-
eters: TTC, MDAC, DRAC. The selection of TTC, MDAC, and DRAC for
labeling severity and controllability is grounded in their direct relevance to
the physical and dynamic aspects of driving scenarios that critically influ-
ence the outcome of potential collision events. By quantifying the tempo-
ral urgency (TTC), spatial constraints (MDAC), and the vehicular response
demands (DRAC), these parameters provide a comprehensive foundation
for assessing and categorizing risks.

From a learning-based risk assessment perspective, training models with
data labeled according to these parameters equips the system with the
nuanced understanding needed to evaluate the severity and controllabil-
ity of unseen scenarios. As shown in Table. 3.4 and Table. 3.5, this rule-
set and threshold ensures that the assessment model can make informed
predictions about the risk indicators, considering the intrinsic dynamics
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Table 3.5: Combined Severity and Controllability Ratings Based on Threshold Names

Feature
Severity Ratings Controllability Ratings

TTC 1 TTC 2 TTC 3 TTC 4 DRAC 1 DRAC 2 DRAC 3 DRAC 4

MDAC 1 S0 S1 S2 S3 C0 C1 C2 C3

MDAC 2 S1 S1 S2 S3 C1 C1 C2 C3

MDAC 3 S2 S2 S2 S3 C2 C2 C2 C3

MDAC 4 S3 S3 S3 S3 C3 C3 C3 C3

of vehicular motion and the operational limits of ADS. For example, the
model can understand how the combination of high kinetic energy and
low safety distance under unintended acceleration increases collision risk.

Normalization: Normalization is a crucial preprocessing step in ML, par-
ticularly for supervised learning algorithms. It involves scaling the feature
data to a specific range, typically 0 to 1 (by using eqn. 3.9). This process is
essential for several reasons, especially in the context of risk assessment,
where features might have different scales of measurement. Normaliza-
tion ensures that each feature contributes equally to the model’s learning
process, preventing any single feature from dominating the model’s pre-
dictions due to its scale. This equality is crucial for models that rely on
gradient-based optimization methods, as features (x) on different scales
can distort the optimization landscape, making it more challenging for
the model to converge to an optimal solution.

Figure 3.9: Normalization of Risk Features: Min - Max

(3.9) xi =
xi – xmin

xmax – xmin
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In risk assessment, features such as TTC (temporal), MDAC (spatial), and
DRAC (impact-based) are measured on entirely different scales. Normal-
ization ensures that these features are on a uniform scale, facilitating a
balanced learning process where each feature’s importance is based on its
contribution to the outcome rather than its scale. As shown in Fig. 3.9,
by scaling the features to a common range, normalization can speed up
the training process. It helps in achieving faster convergence during the
model’s optimization phase, as the gradient descent paths are smoother
and more straightforward when all features are normalized. Normalized
data can lead to better model generalization on unseen data. This is be-
cause the model learns in a more balanced environment, where the influ-
ence of each feature on the prediction is proportional to its relevance, not
its scale.

Figure 3.10: Comparative Plots of Unbalanced vs. Balanced Class Distributions for Severity and
Controllability Ratings
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Class Balancing: In the context of risk assessment, having a dataset with
balanced representations of each class is crucial for developing ML mod-
els that can accurately predict a range of outcomes. In experiments with
risk indicators for severity (S0, S1, S2, S3) and controllability (C0, C1, C2,
C3), an unbalanced dataset where lower risk indicators (S0, C0) are less
represented than higher ones (C3, S3), as shown in Fig. 3.10, can skew
model performance. This imbalance affects the model’s ability to learn
from less frequent classes, often resulting in a bias towards predicting the
more common classes. Models trained on unbalanced datasets may not
generalize well to unseen data, particularly for underrepresented classes.
This limits their practical applicability as they fail to identify critical but less
frequent risk scenarios.

Class balancing can be achieved using techniques like Synthetic Minority
Over-sampling Technique.It works by identifying k-nearest neighbors for
instances in the minority class and generating synthetic samples along the
line connecting each instance with its neighbors. This process continues
until class distribution becomes balanced (as shown in Fig. 3.10), adding
diversity to the dataset and enhancing model generalization. This tech-
nique benefits risk assessment by improving model sensitivity to rare risk
indicators, enhancing predictive performance across classes, and prevent-
ing overfitting through the generation of varied synthetic examples, thus
making models more reliable for identifying a wide range of risk scenarios.

3.3.2 Model Selection

In developing an effective LADRI framework, it is crucial to recognize that
no single ML model is universally best for all types of data or complexity
levels. Different models have unique strengths and weaknesses, making
some more suitable for certain tasks than others. Given this variability, a
safety engineer must adopt a flexible approach, selecting and comparing
various models based on the specific characteristics of the dataset at hand
and the complexity of the risk assessment task 2. This section explores
the strategic selection and comparison of models by safety engineers to
optimize performance in diverse contexts, as shown in Table. 3.6.

2 This section focuses on the characteristics of ML models in the context of risk assessment for ADS,
deliberately omitting detailed mathematical explanations. This approach aims to maintain focus
on the practical implications of these models within ADS environments, as the mathematical foun-
dations are well-documented in many scientific literatures.
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Table 3.6: Comparison of Machine Learning Models for Risk Assessment

Model Description

Support Vector Ma-
chine (SVM)

Handles high-dimensional data well, suitable for scenarios
with a clear margin of separation. Moderate interpretability
and computational efficiency. Good performance on imbal-
anced data.

Logistic Regression Well-suited for binary outcome predictions and serves as a re-
liable baseline model. High interpretability and computational
efficiency but moderate performance on imbalanced data.

Artificial Neural
Networks (ANN)

Excels in identifying complex, non-linear relationships within
very high-dimensional data. Lower interpretability and com-
putational efficiency dependent on network size. Effective
with proper tuning, even on imbalanced datasets.

K-Nearest Neigh-
bors

Ideal for simple classification tasks on small datasets. Lower
interpretability and computational efficiency, with poor per-
formance on imbalanced data.

Random Forest (RF) High data complexity handling, excellent interpretability, and
computational efficiency. Performs very well on large datasets
and in determining feature importance. Particularly effective
on imbalanced data.

Naive Bayes Offers a baseline probabilistic approach with high inter-
pretability and computational efficiency. Good performance
on imbalanced data.

Gradient Boost-
ing Decision Tree
(GBDT)

Good at handling unbalanced data and ensuring predictive
accuracy. High data complexity handling with moderate inter-
pretability and computational efficiency.

Decision Trees Provides very high interpretability, making it excellent for ana-
lyzing simple relationships and understanding decision paths.
Moderate computational efficiency and good performance on
imbalanced data.

Long Short-Term
Memory

Specialized for time series and sequential data, handling
high data complexity with sequence-dependent performance.
Lower interpretability and computational efficiency varying
with sequence length and model complexity.

Recommendation: For further analysis, models highlighted in gray (SVM,
ANN, RF, GBDT) are selected based on their robust data handling, adapt-
ability to complex patterns, and balance between interpretability and com-
putational efficiency.
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3.3.3 Support Vector Machine

SVM is a powerful classification method that works by finding the best
hyperplane that separates different classes in the feature space. Imagine
plotting data points in a multi-dimensional space, where each dimension
represents a feature of the data. SVM finds the "hyperplane" that best
divides data into classes, aiming to maximize the margin between different
categories. For risk assessment, SVM can effectively segregate scenarios
into different risk levels by finding the optimal boundary that separates
them based on their features.

Figure 3.11: Feature Space Transformation: From 2D non-separability (left) to 3D linear separa-
bility with SVM hyperplane (right).

SVM is particularly useful when the data is clearly non-separable and uti-
lizes the feature map transformation. It can transform low-dimensional
feature space to high-dimensional feature space (many features), making
it suitable for complex risk assessment scenarios where multiple factors
determine the risk level.
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As shown in Fig. 3.11, the top plot shows a synthetic dataset in a 2D
feature space, where the two classes (Class 0 and Class 1) are not linearly
separable. This is a common scenario in many real-world problems, where
the relationship between classes and features is not straightforward. The
bottom plot, on the other hand, illustrates the SVM transformation of the
same dataset into a 3D feature space, using a simple feature mapping. In
this transformed space, the two classes become more clearly separable,
allowing for the construction of a hyperplane (shown in yellow plane) that
can effectively classify the data points into two different classes.

3.3.4 Artificial Neural Networks

ANNs are inspired by the biological neural networks that constitute ani-
mal brains. An ANN is composed of layers of nodes (neurons), with each
node connecting to several other nodes in the next layer, and weights (W)
assigned to these connections as shown in Fig. 3.12. The network pro-
cesses inputs (data features) through multiple layers, where each neuron
computes a weighted sum of its inputs, applies a non-linear activation
function (e.g., sigmoid, relu, tanh), and produces the output, classifying
the data into different categories.

ANNs are highly flexible and can model complex non-linear relationships,
making them ideal for risk assessment scenarios where the relationship
between the input features and the risk levels is not straightforward. They
can learn to identify subtle patterns and interactions between features
that may indicate different levels of risk.

Figure 3.12: Basic Structure of ANN Model

A carefully chosen configuration is utilized for the classification task in
order to ensure the effectiveness of the ANN model in predicting unseen
data outcomes. This configuration includes a batch size, a learning rate, a
Multi-Layer Perceptron classifier with hidden layers structured as 8-9-9-1,
and the sigmoid activation function. The model processes large batches of
data simultaneously, facilitating efficient training. The small learning rate
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aids in achieving precise weight updates, and the hidden layers capture
complex relationships within the data. The sigmoid function introduces
non-linearity, enabling intricate decision boundary learning.

3.3.5 Random Forest

RF uses an ensemble of decision trees to make predictions, leveraging the
strength of multiple trees to produce a more accurate and stable model
than a single decision tree could provide. For classification tasks, each de-
cision tree in the forest outputs a class prediction, and the final output pre-
diction of the RF is determined by a majority vote. For instance, if model
has generated 500 trees, and 351 trees predict class A while 149 trees
predict class B for a particular input, then class A will be the final output
of the model for that input (as shown in Fig. 3.13). RF correct for decision
trees’ habit of overfitting to their training set, making the ensemble more
robust and accurate.

RF is particularly useful for risk assessment because it can handle a large
number of input variables without variable deletion. It is robust against
overfitting and can model complex interactions between features. RF can
provide insights into the importance of each feature in predicting risk lev-
els, which is valuable for understanding risk factors.

Figure 3.13: Basic Structure of RF Model

The configuration of RF algorithms plays a key role in predicting risk in
unseen scenarios. Key hyperparameters include the number of trees in
the forest, which enhances model robustness and accuracy by introduc-
ing randomness. The maximum number of splits helps control tree depth
to prevent overfitting and reduce computation time, while the minimum
leaf size ensures the model does not become overly precise on the train-
ing set, thereby maintaining generalizability. RF algorithms are particularly
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effective in risk assessment due to their resistance to overfitting, ability to
highlight important features for targeted model tuning, and efficient par-
allel processing capabilities. These features, along with their capacity to
handle non-linear relationships between features, make RF well-suited for
the dynamic and complex nature of autonomous driving environments,
where it is essential to predict risks accurately in real-time.

3.3.6 Gradient Boosting Decision Tree

GBDT is an ensemble method that builds decision trees in a sequential
manner, where each subsequent tree is specifically designed to correct the
residual errors made by the previous trees. This model synergizes multiple
weak predictors, primarily decision trees, to construct a robust predictive
model. The focus of GBDT is on minimizing loss, which is quantified as
the difference between the actual and predicted risk levels. It does this
through an iterative process that refines its predictions by continuously
adjusting the sum of log odds, enhancing the accuracy of the final model
output. Each tree adds its log odds prediction to the ensemble’s cumula-
tive prediction, progressively reducing the residual error and boosting the
model’s accuracy with each iteration, as illustrated in Fig. 3.14.

Figure 3.14: Basic Structure of GBDT Model

GBDT is highly effective for handling unbalanced data, which is typical in
risk assessment where high-risk scenarios may be rare. It excels at captur-
ing complex non-linear relationships and interactions between features,
making it adept at accurately classifying scenarios into different severity
and controllability levels. Key parameters such as the number of learn-
ing cycles dictate how well the model can capture intricate patterns in
dynamic environments, enhancing its ability to adapt to new data. The
learning rate determines the impact of each iteration on the final model,
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facilitating rapid adaptation to changing risk factors, which is critical in dy-
namic environments. Sub-sampling adds randomness, reducing bias and
increasing adaptability. GBDT’s robustness comes from its capacity to dis-
cern complex feature relationships and its sequential training approach,
which allows it to continuously refine its predictions. This makes GBDT es-
pecially effective in environments where risk features evolve, ensuring it
remains relevant and effective over time.

Model Selection Criteria: The safety engineer plays a pivotal role in se-
lecting the most suitable model or combination of models. They evaluate
the performance of various models, considering factors such as accuracy,
interpretability, and the model’s responsiveness to dynamic conditions. Im-
portant considerations also include computational efficiency, the model’s
ability to generalize from training data to new situations, and its robust-
ness against overfitting. This thorough evaluation ensures that the selected
model not only meets the technical needs but also fulfills the operational
demands of the ADS risk assessment process.

3.4 Model Performance

After the model selection phase, the model training process begins, where
the model is meticulously tuned to recognize patterns and correlations in-
dicative of potential risks. This tuning process is not merely about adjusting
the model to fit the training data but is focused on enhancing the model’s
ability to accurately identify risk ratings. It emphasizes the model’s gen-
eralization capabilities, ensuring that it can perform well on new, unseen
data. This fine-tuning process is necessary for developing a model that is
not only sensitive to the nuances of risk indicators but also robust against
the variability inherent in diverse driving scenarios.

Figure 3.15: Confusion Matrix illustrating the classification outcomes with areas designated for
True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN)
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Following the training phase, the model undergoes a critical testing phase.
This phase employs a separate dataset that has not been used during the
training process, providing an unbiased evaluation of the model’s predic-
tive performance. The use of this distinct test dataset is essential for assess-
ing the model’s effectiveness across diverse scenarios, thereby validating its
operational accuracy. Performance evaluation during this phase employs a
suite of metrics, encapsulated in a confusion matrix, which offers a de-
tailed view of the model’s predictive True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN), as shown in Fig. 3.15.

Central to this process is the role of the safety engineer, as depicted in
Fig. 3.8, who checks the model’s verification process. The safety engineer
conducts a critical analysis of key performance metrics: Accuracy, Precision,
Recall, F1-Score, and Specificity. Each metric provides insight into different
aspects of the model’s predictive performance. The safety engineer is also
responsible for identifying any instances of overfitting or underfitting to
ensure the model performs optimally.

Figure 3.16: Various Model Performance Metrics: Severity and Controllability

Accuracy: Accuracy measures the proportion of true results (both true
positives and true negatives) among the total number of cases examined.
It provides a high-level view of the model’s overall performance across all
classes, making it a straightforward and intuitive metric. However, accu-
racy might not be reliable in cases of imbalanced datasets where one class
significantly outnumbers another. Accuracy is determined by the ratio of
correctly predicted observations to the total observations.

(3.10) Accuracy =
TP + TN

TP + TN + FP + FN
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Precision: Precision, also known as positive predictive value, measures
the proportion of true positive results in all positive predictions made by
the model. It is crucial for scenarios where the cost of a false positive is
high, indicating how reliable a model’s positive classifications are. Preci-
sion is particularly important in applications where the goal is to minimize
incorrect positive identifications. Precision is determined by the ratio of
correctly predicted positive observations to the total predicted positives.

(3.11) Precision =
TP

TP + FP

Recall: Recall, or sensitivity, measures the proportion of actual positives
that are correctly identified by the model. It is essential in situations where
missing a positive instance (false negative) carries a greater risk than in-
correctly identifying a negative instance as positive. High recall is critical in
ADS, particularly in detecting hazardous scenarios such as potential colli-
sions or system failures. Failing to identify these risks can lead to severe
consequences on the road. Recall is determined by the ratio of correctly
predicted positive observations to all observations in the actual class.

(3.12) Recall =
TP

TP + FN

F1-Score: The F1-Score is the harmonic mean of precision and recall, of-
fering a balance between the two by taking both false positives and false
negatives into account. It is a better measure than accuracy for cases with
imbalanced classes or when false positives and negatives have a different
cost. The F1-Score is particularly useful for comparing the performance of
models across datasets that may not share the same distribution of classes.
F1-Score is determined by the weighted average of Precision and Recall.

(3.13) F1-Score = 2 · Precision · Recall
Precision + Recall

Specificity: Specificity, or true negative rate, measures the proportion of
actual negatives that are correctly identified by the model. High speci-
ficity indicates that the model is effective at identifying negative instances,
making it complementary to recall, which focuses on positive instances.
Specificity is crucial in fields like autonomous vehicle safety, where falsely
identifying potential hazards can lead to unnecessary braking or evasive
maneuvers. This can disrupt traffic flow or cause undue stress to the vehi-
cle’s occupants. Specificity is determined by the ratio of correctly predicted
negative observations to all observations in the actual negative class.
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(3.14) Specificity =
TN

TN + FP

Upon concluding the training and testing phases, and with a comprehen-
sive understanding of the model’s performance through the calculated
metrics, the safety engineer decides whether to retrain the model with
adjustments to increase its performance. The following section delves into
strategies for refining the model further, addressing any identified defi-
ciencies. It encompasses adjustments in hyperparameters, which could en-
hance the model’s accuracy and its ability to generalize. Moreover, it may
involve updating classification rules and adjusting thresholds to optimize
performance, ensuring that the model meets the required performance
criteria. This seamless transition from evaluating the model’s current state
to implementing adjustments underscores a dynamic, iterative process of
continuous improvement, emphasizing the adaptability and precision re-
quired in the risk assessment process.

3.5 Model Adjustment

In this Adjust phase, the role of the safety engineer in the development
and implementation of ML models for LADRI framework is crucial. They
are primarily responsible for calibrating risk thresholds within the ML
model. Their rigorous analysis of the model’s performance in various simu-
lated driving scenarios is essential. This analysis aids in identifying potential
weaknesses and enhancing the model’s robustness, ensuring it can effec-
tively handle diverse and unpredictable driving conditions.

In addition, the safety engineer is pivotal in facilitating cross-disciplinary
coordination. They act as a bridge between data scientists, software de-
velopers, and domain experts, fostering a holistic approach to risk assess-
ment. This collaboration is essential for developing a comprehensive risk
assessment tool that accurately represents the complexities of ADS.

Model retraining involves updating a deployed ML model with new infor-
mation, such as changes in classification rules or threshold modifications.
When a model falls short of meeting the predefined performance criteria
(>= 99%), it undergoes retraining with adjusted parameters. This cycle of
training, testing, and retraining fosters continuous improvement, refining
and optimizing the model. The model’s ongoing refinement is achieved
through rigorous training and comprehensive testing to ensure enhanced
accuracy and effectiveness in predicting runtime risks.
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3.5.1 Updating Classification Rules and Thresholds

Calibrating the prediction model is essential for improving its performance
in unknown scenarios. The process of updating risk thresholds and se-
lecting specific features for severity and controllability classification is fun-
damental to enhancing the model’s performance and adaptability across
various driving conditions. For the sake of brevity, the classification rules
for severity and controllability ratings incorporate three distinct features,
as outlined in Table.3.4, offering a comprehensive view of both immediate
and potential risks. This approach ensures an unbiased assessment across
different severity or controllability ratings.

Thresholds for these risk features are determined through extensive sim-
ulation testing, utilizing a trial-and-error approach to encompass a wide
range of potential driving scenarios comprehensively. As indicated in Table
3.5, combining MDAC with TTC provides a solid foundation for assessing
severity, capturing both spatial and temporal safety margins. This combi-
nation emphasizes the urgency and potential impact of a scenario. Con-
versely, coupling MDAC with DRAC proves effective for evaluating con-
trollability. The determination of optimal thresholds for these risk features
is a dynamic, ongoing process that evolves through continuous simulation
testing. By employing a trial-and-error approach, safety engineers metic-
ulously explore various combinations of risk features and their thresholds.
This iterative exploration ensures that the ML models are finely tuned to
the complexities of driving conditions.

This meticulous selection process guarantees that the model accurately
responds to a wide spectrum of critical driving dynamics, including as-
pects such as distance, time, and the vehicle’s capability in critical situ-
ations. Should model verification reveal areas of improvement, a safety
engineer undertakes refinement efforts, as depicted in Fig. 3.8. This itera-
tive method, embedded within a transparent and traceable development
cycle, might involve retraining the model with revised features or alter-
ing classification thresholds based on the testing outcomes. Additionally,
sensitivity analysis might be conducted to understand the impact of each
risk feature on the model’s predictions, further guiding the optimization
of feature selection and threshold setting. This systematic and data-driven
approach ensures that the model maintains relevance in complex driving
environments.

Such iterative refinement is pivotal as new data emerges or when prevail-
ing patterns change, necessitating updates to preserve the model’s pre-
cision. This ongoing learning strategy assures the model’s sustained rele-
vance and efficacy in evolving conditions. Each cycle of testing and adjust-
ment is meticulously documented, charting a clear path for subsequent
hyperparameters tuning phases. Every adjustment is made with intention,
aimed at optimizing the LADRI framework to provide accurate and precise
risk assessments.
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3.5.2 Hyperparameter Selection

In the domain of ML, optimizing models and their hyperparameters plays
a key role in enhancing model performance. Hyperparameters, predefined
settings configured prior to training, significantly influence the learning
process, guiding it in a way that differs from the adaptation of model
parameters, which are learned during training itself. The selection of the
most effective model and hyperparameter values presents a complex and
resource-intensive challenge.

Figure 3.17: Hyperparameter Optimization Method: Grid Search and Random Search

To address this, strategies such as Grid Search and Random Search are uti-
lized [16]. As shown in Fig. 3.17, Grid Search conducts a methodical explo-
ration of specified hyperparameter combinations, ensuring comprehensive
examination at the expense of high computational demand. Conversely,
Random Search samples the hyperparameter space randomly, providing
a more efficient yet potentially less thorough alternative. The choice be-
tween these methods hinges on the problem specific requirements, includ-
ing the scope of hyperparameters and available computational resources.
In this thesis, Grid Search was selected for (shown hyperparameter in Ta-
ble. 3.7) optimization due to its systematic and exhaustive approach in
identifying the most effective model parameters for predicting risk ratings.
This method is aimed at achieving optimal performance in risk assessment
tasks.

SVM is sensitive to the choice of the kernel and its parameters, which de-
fine the shape of the decision boundary. The C parameter controls the
trade-off between the model’s complexity and the degree to which devi-
ations from a perfectly separating hyperplane are tolerated. Different Ker-
nels allow the model to fit non-linear boundaries, and gamma determines
the influence of individual training examples on the boundary, with larger
values leading to more complex models.

ANNs are highly configurable models capable of capturing complex rela-
tionships in data. The number of hidden units and layers determines the
model’s capacity to learn non-linear functions but also its propensity to
overfit. The learning rate is critical as it defines the size of the steps the
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Table 3.7: Hyperparameters and their ranges for Grid Search optimization.

Model Hyperparameter Values to Compute

C [0.1, 1, 10, 100]

Kernel [’linear’, ’poly’, ’rbf’, ’sigmoid’]

SVM Degree (for poly) [2, 3, 4, 5]

Gamma [0.001, 0.01, 0.1, 1, ’scale’, ’auto’]

Number of hidden units [10, 50, 100, 200]

Batch size [16, 32, 64, 128]

ANN Learning rate [0.001, 0.01, 0.1, 0.2]

Number of epochs [10, 50, 100]

Dropout rate [0.0, 0.2, 0.5]

n_estimators [10, 50, 100, 200]

max_depth [10, 20, 30]

RF min_samples_split [2, 5, 10]

min_samples_leaf [1, 2, 4]

Max features [’auto’, ’sqrt’]

Bootstrap [True, False]

Number of trees [50, 200, 300, 400, 500]

GBDT Learning rate [0.01, 0.05, 0.1, 0.5, 1]

Sub sampling rate [0.7, 0.8, 0.9, 1]

optimizer takes during training, with too high rate possibly overshoot-
ing minima and too low converging slowly. The batch size influences the
stability of the learning process, and the dropout rate is a regularization
technique to prevent overfitting.

RF models are ensembles of decision trees which tend to reduce overfit-
ting by averaging the predictions. The n estimators parameter controls the
number of trees in the forest, generally leading to better performance with
more trees, albeit with diminishing returns. The max depth of the trees is
a key parameter to control the complexity of the model, with deeper trees
having a higher risk of overfitting. The min samples split and min samples
leaf help provide constraints on tree growth and are forms of regulariza-
tion.

GBDT is a sequential ensemble technique that builds one tree at a time,
where each new tree helps to correct errors made by previously trained
trees. The number of learning cycles determines the number of trees in
the model, which can improve performance but also risk overfitting if too
large. The learning rate controls the contribution of each tree to the final
model and is typically set to a low value to allow for a more gradual and
robust learning process. The sub sampling rate is part of the stochastic
gradient boosting feature that helps in reducing overfitting by considering
only a subset of data for each tree.
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Each hyperparameter set is precisely aligned with the unique characteris-
tics of the extracted features. This ensures both accuracy and computa-
tional efficiency in model predictions. Such meticulous calibration is inte-
gral to fully leveraging each algorithm’s capabilities. Throughout the train-
ing process, the safety engineer observes and guides these adjustments,
ensuring model efficacy. Safety engineer also maintains a log of changes
in hyperparameter (as depicted in Fig. 3.8) for clarity on decision-making
processes and justify specific model outcomes, enhancing transparency.

These change logs enable tracking of the model’s performance over time.
This allows teams to link specific alterations to shifts in the model’s effi-
cacy. If performance degradation or technical issues arise, a detailed log
is invaluable for efficient debugging and troubleshooting. In collaborative
and multi-departmental development environment, these logs are essen-
tial for knowledge sharing. They ensure that all contributors are aware
of the modifications and understand their underlying reasons. This prac-
tice fosters a cohesive and informed approach to model development and
maintenance for risk assessment.

3.6 Model Deployment

In the Assess phase, the best-performing model is deployed on ADS within
a simulated environment. The primary goal is to use the model for predict-
ing severity and controllability indicators. As shown in Fig. 3.18, this de-
ployment allows for the recording of runtime risk assessment levels, cap-
turing data on severity, controllability, and any anomalies, vital for safety
engineer’s analysis and ML model refinement. To maintain the integrity
of the model, version control is strictly implemented, providing detailed
documentation of each version of the risk assessment model. This enables
clear change tracking, rollback capabilities, and audit processes.

Log Risk Assessment levels: The implementation of a log risk assess-
ment levels is instrumental post-deployment of the ML model, particularly
for early hazard identification. The log risk assessment module provides
valuable evidence for ongoing runtime risk assessment. It captures runtime
severity and controllability indicators and logs any anomalies or issues, en-
abling the safety engineer to promptly identify and address potential haz-
ards. This monitoring includes incident reporting and tracking the model’s
performance, ensuring any deviations or unexpected behaviors are imme-
diately flagged for review.

Furthermore, the module supports a structured feedback loop, where in-
sights from the Assess phase are channeled back into the Plan and Do
phases, fostering continuous improvement. Following the deployment of
the ML model, the predictions it generates during the Assess phase play a
crucial role in refining subsequent iterations of the Plan phase. Based on
these predictions, the Plan phase can be adjusted to include new or altered
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Figure 3.18: Post-Deployment Role of Safety Engineer

scenarios that target identified weaknesses or emerging risk patterns. For
instance, if the model predicts a high risk of collision under certain traffic
densities or environmental conditions, the Plan phase can be tailored to
simulate and analyze these specific scenarios more extensively in the next
cycle. This targeted adjustment allows for the development of more effec-
tive risk mitigation strategies and control measures, enhancing the overall
safety of the ADS. Additionally, this adaptive approach enables the inte-
gration of real-time data and feedback from the operational environment,
ensuring that the model remains relevant and effective against evolving
driving conditions and risk landscapes. This continuous cycle of feedback
and refinement fosters a proactive approach to risk management, dynam-
ically enhancing the ADS’s capabilities to predict and mitigate potential
hazards.

Validation of the model takes place by applying it in diverse simulated
driving conditions. The safety engineer assesses the model’s performance
across various scenarios to ensure its continued effectiveness and may
make necessary adjustments to optimize its functionality based on these
observations. During the validation phase, the model is rigorously tested
across a spectrum of simulated ODDs that represent different traffic, en-
vironmental, and road conditions. Each ODD presents unique challenges
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and complexities, which helps to evaluate the model’s performance under
varied and sometimes extreme conditions.

Moreover, the complexity of the DDT is progressively escalated in these
simulations. For instance, initial tests might focus on simple driving
tasks such as maintaining lane-following under steady traffic conditions,
whereas later tests might involve complex interactions like lane change
maneuver, responding to erratic non-ADS driver behaviors, or emergency
braking in slippery conditions. This stepwise increase in task complexity
helps in assessing the model’s decision-making capabilities and its ability
to prioritize and react to dynamic risks accurately.

Monitoring the ML model’s performance during runtime risk assessments
introduces unique challenges, particularly when it encounters new, un-
labeled data, and ground truths are unknown to the safety engineer. To
navigate these challenges, safety engineers employ data visualization tools
to scrutinize the model’s predictions against new data, facilitating the dis-
covery of emerging patterns, trends, or anomalies indicative of previously
unrecognized risk indicators. Additionally, the application of model ex-
plainability and interpretability tools, like Shapley values, sheds light on
the rationale behind the model’s predictions in unfamiliar scenarios. This
understanding aids safety engineers in pinpointing unseen risk indicators
and grasping the model’s decision-making logic.

Having outlined the LADRI framework for continuous risk assessment and
early hazard detection, the focus now shifts to its practical implemen-
tation. The subsequent section demonstrates the application of LADRI
framework´s theoretical constructs and components in simulations to as-
sess risk in runtime, illustrating how theory translates into actionable in-
sights in a simulated environment.
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Building upon the methodology outlined in previous chapters, this eval-
uation chapter aims to forge a seamless connection, ensuring continuity
with the LADRI framework’s evaluation. In this section, the thesis delves
into various aspects, including the contribution of scenarios and the ver-
ification of feature sets, where time-based, distance-based, and compre-
hensive features are tested to validate the model’s efficacy. Subsequently,
it explores the optimization of model performance through the application
of the Adjust phase process, followed by the deployment of the model on
ADS for validation across diverse driving scenarios. Additionally, this chap-
ter provides insights into the model’s explanation by the safety engineer,
who evaluates the importance of risk features. Finally, the chapter con-
cludes with a discussion on the application and limitations of the LADRI
framework, offering a comprehensive overview of its impact and scope.
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4.1 Scenario Combination

To conduct a thorough evaluation of the LADRI framework, a strategic
approach was adopted that encompassed model training, testing, and
validation by deploying the model across a spectrum of simulated driv-
ing scenarios. This comprehensive strategy ensured that the LADRI frame-
work covered various aspects of highway lane-following scenarios, thereby
equipping it to predict severity and controllability indicators in a wide array
of safety-critical situations.

Figure 4.1: Scenario Map: Straight Road with Dynamic Driving Task

In an effort to generate a diverse set of scenarios, both S-curve and straight
road configurations were utilized. These scenarios were crafted to include
variations in speed, vehicle mass, behaviors of traffic participants, and lev-
els of road friction to mimic environmental impacts, such as rain, and var-
ious failure conditions, as explained in Section 3.2. Specifically, Scenario
S1 was chosen for the training and testing of ML models. All scenarios
were devised based on predefined design and non-design parameters (as
per Plan and Do phase), with only the speed, vehicle mass, road friction
coefficient, and traffic participants’ behavior being altered, as shown in a
Table. 3.1.

For the S-curve road, the lead vehicle’s speed changes over a certain dis-
tance in different phases (as illustrated in Fig. 4.1): starting with an accel-
eration to 30m/s, maintaining this speed for up to 500m, then slowing
down to 5m/s for 50m. It accelerates again to 15m/s, holding this speed
until 1800m, then speeds up to 30m/s. From this point, the speed fluctu-
ates randomly between 25 and 35m/s until 2400m, followed by a slow-
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down to 12m/s. The speed then varies randomly between 10 and 15m/s
up to 3600m, at which point it emergency brakes to 3m/s, holds for 20m,
accelerates back to 20m/s, and maintains this velocity until 3800m. It con-
cludes with another emergency brake to 3m/s, maintaining for another
20m. Such detailed simulation allowed for a nuanced exploration of vehi-
cle dynamics under varied conditions.

Table 4.1: Summary of Simulation Scenarios for LADRI Evaluation

ID Speed
(m/s)

Vehicle
Mass (kg)

Traffic
Participant
Behavior

Road
Friction
(μ)

Failure Mode

S1 Varied 1500 Normal 0.9 None

S2 12-36 2000 Normal 0.9 Unintended Acceleration (Ego)

S3 12-36 2000 Normal 0.3 Emergency Braking (Lead)

S4 12-36 2000 Cut-In 0.9 None

S5 12-36 2000 Cut-Out 0.9 None

On the straight road, scenarios S2, S3, S4, and S5 were simulated to val-
idate the deployed model, as shown in Table. 4.1. In these scenarios, the
lead vehicle performs a sequence of actions starting with an initial accel-
eration to a predetermined speed, followed by a phase of maintaining
this speed. This sequence then introduces a deceleration phase, adding
dynamic complexity, before maintaining a steady speed again. The cycle is
completed by a re-acceleration to the initial speed and maintaining it, thus
presenting adaptive challenges. The sequence concludes with the lead ve-
hicle coming to a full stop to evaluate the ego vehicle’s braking capabilities.
These scenarios covered a broad range of speeds, varying from 12 m/s to
36 m/s in increments of 4 m/s to simulate different scenario combinations.
Throughout these scenarios, unintended acceleration was introduced from
the dashboard (shown in Fig. A.1) in the ego vehicle, and emergency brak-
ing maneuvers were executed in the lead vehicle. Cut-in and cut-out (side
vehicle) maneuvers were also incorporated as planned behaviors at specific
points on the straight road segment.

The rationale behind executing experiments in these phases, across both
S-curve and straight road configurations, was driven by the goal to deeply
understand the dynamic interactions between the lead and ego vehicles
under a variety of conditions. By deliberately altering the lead vehicle’s be-
havior, a rich dataset created from which risk features could be derived,
as explained in Section 3.2.5. The effectiveness of the ML model, leverag-
ing these diverse feature sets, is discussed in the following section. This
structured approach not only ensures a robust evaluation of the LADRI
framework but also enhances our understanding of vehicle dynamics and
risk assessment in complex driving environments.
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4.2 Verification of Feature Set

In this section, ML models are trained and tested (Train phase) on Sce-
nario S1 using diverse risk feature sets to improve their predictive ac-
curacy in assessing severity and controllability indicators. This thesis ex-
plores the performance enhancement of ML models through the selec-
tion of an optimal combination of risk features, as indicated in [74]. To
validate the hypothesis that enhancing risk knowledge from diverse per-
spectives can improve model performance, the study systematically di-
vides the feature set into three distinct categories: Time-based, Distance-
based, and Comprehensive-based. The Time-based set focuses on tem-
poral vehicle interactions, such as TTC, TTS, and TTE, crucial for imme-
diate risk assessment. The Distance-based set emphasizes spatial con-
siderations like MDAC, SFD, and STD, vital for strategic maneuvering.
The Comprehensive-based feature set comprises temporal and spatial di-
mensions alongside additional metrics such as DRAC and KE, offering a
rounded perspective on vehicle behavior and risk. Separate ML models
are trained using each of the three feature sets. This process allows for a
direct comparison of how the inclusion of different types of risk knowl-
edge affects model performance. Conducting experiments and analyzing
the results from these feature sets validate the effectiveness of the LADRI
framework in predicting safety-critical scenarios.

4.2.1 Feature Set I - Time-based

The selection of this feature set is grounded in the hypothesis that the
temporal distance to potential hazards, such as a front-end collision, pro-
vides a direct measure of the urgency and severity of a risk scenario. These
features offer insights into the available reaction window to initiate cor-
rective actions, thus directly influencing the controllability aspect as well.
From a risk assessment perspective, utilizing time-based features allows for
evaluating how swiftly a situation might escalate into a hazard. The time
dimension reflects not just the vehicle’s current state but its dynamic inter-
action with the environment, including the behavior of other road users
and changing road conditions.

Utilizing only time-based features, ML models demonstrated higher accu-
racy in predicting severity indicators compared to controllability as shown
in Fig. 4.2. This can be attributed to the direct correlation between time
margins and the severity of potential impacts, which is more straightfor-
ward to predict. Models like ANN and SVM tend to perform well with
these features due to their ability to model complex nonlinear relationships
in time-constrained scenarios. However, the predictability of controllability
is less pronounced, likely because controllability involves additional spatial
and dynamic considerations not captured by time-alone metrics.
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Figure 4.2: Model Performance Metrics: Time-based Feature

4.2.2 Feature Set II - Distance-based

The ego vehicle’s braking efficiency, acceleration capabilities, and the cur-
rent velocity directly influence distance-based features. These features are
crucial for understanding the physical space needed to prevent collisions
under various conditions. A vehicle with higher braking capabilities may
require a shorter stopping distance, positively affecting the controllability
indicators. However, in high-speed scenarios or conditions with reduced
traction, even vehicles with advanced braking systems may face increased
stopping distances, elevating the severity indicators.

Figure 4.3: Model Performance Metrics: Distance-based Feature

Utilizing only distance-based features, the ML models showed an en-
hanced ability to predict controllability over severity as shown in Fig. 4.3.
This improvement in controllability predictions arises because these fea-
tures directly relate to the vehicle’s capacity to maintain or regain safe po-
sitioning relative to other vehicles and obstacles. The RF and GBDT models,
known for their strength in handling feature interactions and dependen-
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cies, excel in utilizing distance-based features, reflecting their effective-
ness in spatial aspect of the vehicle’s interaction with its surroundings. The
higher performance in controllability suggests that spatial dynamics are
more indicative of the vehicle’s ability to control or to avoid hazards.

4.2.3 Feature Set III - Comprehensive

The comprehensive-based feature set integrates both time-based and
distance-based features along with additional features such as DRAC and
KE, offering a holistic view of the risk landscape. This integrative approach
is predicated on the understanding that a multifaceted assessment incor-
porating both the temporal urgency and spatial requirements of risk sce-
narios, along with the vehicle’s physical response capabilities, yields the
most accurate risk predictions. This feature set allows for a nuanced risk
assessment that considers immediate threats (time-based), spatial safety
margins (distance-based), and the vehicle’s operational dynamics (deceler-
ation rate and kinetic energy).

Figure 4.4: Model Performance Metrics: Comprehensive-based Feature

Incorporating a comprehensive feature set resulted in a balanced accuracy
for both severity and controllability predictions across all ML models as
shown in Fig. 4.4. The observed performance patterns, higher accuracy in
predicting severity with time-based features and better controllability pre-
dictions with distance-based features, underline the importance of feature
selection based on the risk dimension being assessed. This suggests that a
blend of temporal, spatial, and impact dynamics provides a robust foun-
dation for assessing risk.

However, performance optimization, potentially through techniques such
as Grid Search, is identified as necessary to further enhance the model’s
performance. This need for optimization suggests that while a compre-
hensive set of features enriches the model’s input, identifying the most
effective feature interactions and model parameters is crucial for maximiz-
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ing predictive performance. This aspect will be discussed in the following
section.

4.3 Optimizing Model Performance

In this thesis, the focus was on optimizing four ML models: SVM, RF, GBDT,
and ANN, by meticulously selecting and tuning a variety of hyperparame-
ters to achieve the best performance outcomes and Adjust the model.

For the SVM model, optimization focused on the kernel function and the
box constraint value (C), using a grid search to evaluate performance
across different kernel functions (linear, radial basis function (rbf), and
polynomial) and box constraint values ([0.1, 1, 10]). This method allowed
the identification of the optimal combination that maximized test set ac-
curacy.

Regarding the RF model, the number of trees hyperparameter was the
primary focus, crucial for the model’s generalization capabilities without
overfitting. After thorough testing, setting the number of trees to [10, 50,
100, 200] was determined to provide a balanced blend of accuracy and
computational efficiency.

Table 4.2: Model Performance Metrics: Severity

Model Accuracy Precision Recall F1-Score Specificity

GBDT 0.9992 0.9982 0.9993 0.9988 0.9998

ANN 0.9102 0.8679 0.9241 0.8951 0.9718

RF 0.9992 0.9984 0.9993 0.9989 0.9997

SVM 0.9937 0.9905 0.9938 0.9922 0.9976

The ANN model’s optimization involved using the Adam optimization al-
gorithm, adjusting the learning rate schedule ([0.001, 0.01, 0.1, 0.2]), and
varying the number of epochs ([10, 50, 100]), all of which significantly im-
proved the model’s performance.

For the GBDT model, attention was focused on adjusting the learning rate
hyperparameter (set at 0.01, 0.05, 0.1, 0.5, 1) to balance capturing the
nuances of the training data and preventing overfitting.
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Table 4.3: Model Performance Metrics: Controllability

Model Accuracy Precision Recall F1-Score Specificity

GBDT 0.9989 0.9982 0.9993 0.9988 0.9996

ANN 0.8690 0.8162 0.8979 0.8551 0.9549

RF 0.9989 0.9981 0.9993 0.9987 0.9997

SVM 0.9907 0.9834 0.9940 0.9887 0.9969

The optimization process for each model was guided by an extensive ex-
ploration of various hyperparameters, as detailed in Table 3.7. Due to
computational cost considerations, not all potential hyperparameters were
computed; instead, a strategic selection was made based on their impact
on model performance. This careful selection was crucial in achieving the
high accuracy levels documented in our results for severity in Table 4.2 and
controllability in Table 4.3 for predictions.

4.4 Validation in Diverse Driving Scenarios

Based on the optimization process and its results, this thesis proceeds to
practically validate ML models across various driving scenarios. This deploy-
ment phase aimed to Assess how well the models generalize to situations
they have not encountered during training, thereby validating their pre-
dictions against ground truth. Among all the models, SVM, RF, and GBDT
demonstrated good performance. However, for the sake of brevity, the
GBDT model was selected for detailed analysis due to its superior perfor-
mance over the others, as evidenced by the polar plots for both severity
and controllability in Fig. 4.5.

Figure 4.5: Model Performance: Validation of Diverse Driving Scenarios
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To illustrate the practical application and efficacy of the GBDT model in
dynamic driving conditions, the subsequent analysis focuses on its deploy-
ment on an ADS-equipped ego vehicle. This examination specifically as-
sesses the model’s precision in forecasting the severity and controllability
indicators during complex vehicular maneuvers, including acceleration, de-
celeration, and speed adaptation in relation to dynamic traffic participants.

Figure 4.6: Model Validation: Unintended Acceleration at 12 m/s

101



Validation in Diverse Driving Scenarios

4.4.1 Ego Vehicle Unintended Acceleration

As depicted in Fig. 4.6, the top plot presents the velocity of both the ego
and lead vehicles, alongside the MDAC feature over time. MDAC is a key
feature for classifying both severity and controllability. Initially, up to 800
seconds, the ego vehicle maintains a controlled distance from the lead
vehicle. However, post-800 seconds, an unintended acceleration occurs,
significantly reducing the MDAC and potentially escalating the risk of col-
lision.

The middle and bottom plots extends the further evaluation, showcasing
the severity (S0 to S3) and controllability (C0 to C3) indicators, respectively.
The severity plot shows varying severity levels, mainly between S1 and S2,
indicating that while the situation is generally under control, it becomes
critical when unintended acceleration occurs.

Moreover, the controllability classes plot reveals that the model’s predic-
tions (red solid line) closely mirror the ground truth (blue dashed line),
showcasing the model’s adeptness at runtime risk assessment. Before the
unintended acceleration event, the controllability ranges between C1 and
C2, indicating moderate control. However, after 800 seconds, controllabil-
ity deteriorates to C3, marking a high-risk scenario with diminished con-
trol. Also, the model’s predictions are in strong agreement with the ground
truth, particularly in critical events like unintended acceleration, highlight-
ing its reliability in runtime risk evaluation.

In an escalated scenario within this thesis, the ego vehicle encounters un-
intended acceleration at a velocity of 27 m/s (as shown in Fig. 4.7). A
deviation in the velocity profile from the previous 12 m/s case is evident,
with the spike in speed signaling a severe unintended acceleration, thus
presenting a significant challenge for front-end collision avoidance. The
resultant sharp decrease in MDAC suggests diminished reaction time, es-
calating the risk of collision in high-speed conditions.

The model’s performance, depicted in in Fig. 4.7, the severity plot, reveals
an acute rise to the S3 level following the acceleration, accentuating the
event’s seriousness. The sudden shift to the highest severity level indicates
the possibility of serious consequences due to high-speed irregularities.
Concurrently, the controllability classes plot displays intervals with a C3
controllability, indicating severely hampered vehicle handling.

Despite these challenges, the GBDT model’s predictions include a notewor-
thy aspect: the presence of false positives and false negatives is minimal.
The model adeptly identifies critical situations, reflecting its robustness
and the scalability of its predictive accuracy. This is commendable, con-
sidering the dynamic and sometimes unpredictable nature of high-speed
unintended acceleration incidents.
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Figure 4.7: Model Validation: Unintended Acceleration at 27 m/s

4.4.2 Lead Vehicle Emergency Braking

In this scenario, the performance of the GBDT model is meticulously eval-
uated in a lead vehicle emergency braking scenario under heavy rain con-
ditions. This situation introduces additional complexities related to vehicle
dynamics and sensor fidelity. Heavy rain not only diminishes visibility but
also impacts the road’s friction coefficient, a pivotal element in vehicle dy-
namics that affects braking behavior and stopping distances.
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Figure 4.8: Model Validation: Emergency Braking at 18 m/s

The velocity plot distinctly captures the ego vehicle’s response to the lead
vehicle’s emergency braking at 18 m/s. Despite the challenging weather
conditions, the ego vehicle successfully increases the MDAC, indicating an
effective emergency response. This enhancement suggests that the model
takes into account factors of vehicle dynamics, recognizing the extended
distances required for coming to a safe halt on wet surfaces.

Furthermore, the severity plot illustrates the model’s prompt identification
of the escalated risk to S3 during the emergency braking peak. This swift
adjustment indicates the model’s capacity to integrate runtime data on en-
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vironmental conditions, modifying risk levels in response to the diminished
traction and elongated stopping distances caused by heavy rainfall.

Figure 4.9: Model Validation: Emergency Braking at 27 m/s

In the controllability plot, transient discrepancies between the model’s pre-
dictions and the ground truth during the emergency braking episode un-
derscore the challenges imposed by dynamic driving conditions. However,
the model’s swift adjustment to precise controllability evaluations after the
incident demonstrates its capability to adapt to changing dynamics caused
by wet road conditions.
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Similarly, another scenario evaluates the GBDT model’s capability in the
context of lead vehicle emergency braking at a higher velocity of 27 m/s
(as shown in Fig. 4.9). The velocity graph depicts the ego vehicle reach-
ing a higher speed before a drastic deceleration, contrasting with the lead
vehicle’s more gradual speed reduction. The MDAC increases sharply dur-
ing the ego vehicle’s deceleration, indicating a rapid response to the un-
expected event. The severity plot remains at S3 for the duration of the
scenario, suggesting that the model consistently recognizes the high-risk
potential of sudden deceleration at such speeds. Meanwhile, the con-
trollability plot shows the model’s predictions fluctuating before stabiliz-
ing, reflecting the challenge of immediate risk classification during abrupt
changes in vehicle dynamics.

Both these scenarios underscores the GBDT model’s proficiency in manag-
ing complex driving situations influenced by adverse weather and dynamic
vehicle behaviors, affirming its utility in enhancing vehicular safety under
varied environmental conditions. The consistent S3 prediction highlights
the model’s conservative approach to safety, emphasizing an immediate
response to potential high-impact events. However, the model’s delayed
C3 prediction during rapid high-velocity events highlights the difficulty of
effectively managing such critical situations.

4.4.3 Traffic Participants Behavior: Cut-In

The challenge of representing the dynamic nature of a cut-in scenario in
2D plots is difficult, however, the shown Fig. 4.10, presented valuable in-
sights. The green line depicts a side vehicle executing a cut-in maneuver
at approximately 400 seconds, compelling the ego vehicle to decelerate
abruptly to maintain a safe following distance. The velocity profile prior to
the cut-in event is relatively stable, with the ego and lead vehicles main-
taining consistent speeds. However, the introduction of the side vehicle
at 400 seconds is a critical moment, sharply impacting the velocity of the
ego vehicle as it decelerates to avoid a front-end collision. The absence
of a trailing vehicle is fortunate, as the scenario could have escalated to
include the additional risk of a rear-end collision.

The MDAC peaks following the cut-in, showing the ego vehicle’s response
to increasing the distance from the side vehicle (which is now lead vehi-
cle) to avoid a crash. The severity and controllability plots demonstrate a
fluctuating assessment of risk, with severity reaching S3 and controllability
oscillating, as the model reacts to the sudden change in traffic dynamics.
The fluctuating controllability levels highlight the model’s sensitivity to the
rapidly changing situation and the inherent challenges of accurately pre-
dicting vehicle behavior in complex scenarios. This evaluation illustrates
the intricacies of ADS when addressing real-world driving behaviors. The
ability of the GBDT model to adapt to a sudden cut-in, emphasizes its po-
tential to contribute to the development of an advanced risk assessment
model that can handle unpredictable traffic events.
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Figure 4.10: Model Validation: Analyzing Traffic Participant Behavior at 22 m/s (Cut-In)

4.4.4 Traffic Participants Behavior: Cut-Out

As shown in the Fig. 4.11, a cut-out scenario at a speed of 22 m/s, a
driving event where a leading vehicle moves out of the lane, resulting in
an increased following distance (MDAC) for the ego vehicle. The vehicle
speed plot shows the ego vehicle decelerating shortly after the lead ve-
hicle’s cut-out, which increases the MDAC significantly. This action likely
reflects an automated response to suddenly improved road visibility and
available space ahead, which in real-world dynamics would allow for a
variety of driver responses based on the new driving context. The sever-
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Figure 4.11: Model Validation: Analyzing Traffic Participant Behavior at 22 m/s (Cut-Out)

ity plot shows a decrease to S0 post cut-out, which might initially seem
counterintuitive given the increased MDAC. However, in the context of ve-
hicle dynamics, the ego vehicle’s risk of front-end collision has decreased
substantially due to the lead vehicle’s absence, thus reducing the severity
assessment.

Contrastingly, the controllability plot shifts to C3 during this period. This
could be attributed to the ego vehicle’s need to recalibrate its driving strat-
egy after the lead vehicle’s maneuver. It might also indicate a response to
other objects or vehicles in the environment, suggesting a momentary loss
of control or increased difficulty in maintaining the desired trajectory.
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This analysis underscores the model’s sensitivity to changing driving con-
texts and its ability to dynamically adjust risk assessments. The shift from
a state of higher severity and controllability to S0 and C3 respectively, fol-
lowing a cut-out, reflects a complex interplay between ADS perception
and decision-making processes, influenced by the vehicle’s dynamics and
the immediate driving environment. Understanding the reasons behind
these transitions is critical for refining safety strategies for ADS.

4.4.5 Assessment of Model Validation Against Key Quality Criteria

The validation of GBDT model in predicting risk ratings can be summarized
by examining several quality aspects:

– Completeness: The model captures various driving scenarios such as
unintended acceleration, emergency braking, cut-in, and cut-out ma-
neuvers, indicating a comprehensive approach to scenario coverage.
Severity and controllability plots indicate that the model can predict a
range of outcomes, suggesting a level of completeness in risk assess-
ment.

– Correctness: The close alignment of predictions with ground truth in
several plots suggests high correctness in standard driving conditions.
However, discrepancies observed in the controllability during complex
maneuvers indicate that correctness may vary with the driving context’s
complexity.

– Adaptability: The fluctuations in controllability ratings in response to dy-
namic driving events show the model’s adaptability to sudden changes
in the driving environment. The model adapts its severity assessment
appropriately when MDAC increases due to a cut-out scenario, high-
lighting its contextual adaptability.

– Reliability: The consistent performance of the model across different
scenarios suggests a degree of reliability in its predictive capabilities.
Occasional misalignment between predictions and ground truth under
certain conditions may affect perceived reliability and warrant further
investigation.

– Robustness: The model’s robustness is evidenced by its ability to main-
tain performance despite the introduction of high-speed anomalies and
environmental challenges. The model’s ability to manage sudden events
such as unintended acceleration and emergency braking without critical
errors indicates a robust design.

– Variability: The model demonstrates variability in its predictions, as seen
by the shifts in severity and controllability classes during different ma-
neuvers. This variability reflects the model’s responsiveness to changes
in the vehicle’s dynamics and environmental conditions, indicating a nu-
anced understanding of driving behaviors.
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– Complexity and Scalability: The model’s performance in varied and high-
speed scenarios indicates its capability to handle complexity and scala-
bility. The ability to adjust predictions in runtime to events like cut-in
and cut-out maneuvers demonstrates the model’s scalability to differ-
ent traffic situations.

– Correlation vs Causality. The model appears to correlate driving behav-
iors with risk levels effectively; however, it is unclear if it truly under-
stands causality, such as recognizing if increased MDAC is a result of
the ego vehicle’s actions or other external factors.

4.5 Explaining Risk Feature Importance

In the quest to elucidate the intricacies of model behavior, the Shapley
summary plots stand out as an useful tool for model explanation, particu-
larly following the extensive validation of ML models across diverse scenar-
ios. The Shapley value analysis methodically quantifies the contribution of
each risk feature towards the predictive outcomes of the model, adhering
to principles that ensure the fidelity and fairness of the attribution.

The Shapley values fulfill two critical properties that bolster their utility
in model explanation. First, local accuracy guarantees that the simplified
explanation model’s output aligns with the original model at all feature
vectors. Second, consistency demands that if the contribution of a feature
to the prediction increases or remains constant, its attributed importance
should proportionally reflect this change. As demonstrated in [90], Shapley
values uniquely satisfy both local accuracy and consistency. The summa-
tion of individual feature Shapley values equates to the overall deviation
of the model’s prediction for a given sample from the average model pre-
diction, providing a comprehensive understanding of feature impact.

It allows us to identify the specific impact of each feature, whether tem-
poral or spatial, on the model’s evaluation of severity and controllability
indicators. By leveraging the clarity provided by Shapley values, safety en-
gineer can optimize the LADRI framework to enhance its predictive accu-
racy, ensuring that it serves as a reliable and transparent tool for evaluating
safety-critical situations.

Shapley values can be computed on both the dataset used for training
the model and on completely new, unseen datasets. Typically, Shapley val-
ues are used to interpret the model’s predictions on individual instances,
which means they can be applied to explain the contribution of each risk
feature to a particular prediction, regardless of whether that data point
was part of the training set or not. When applied to training data (sce-
nario S1), Shapley values can provide insights into how the model learned
to make predictions based on the training features. In this thesis, Shapley
values are calculated for the new unseen data (scenarios S2, S3, S4, S5)
to understand how the model generalizes its learned patterns to make
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predictions on previously unencountered data. This flexibility makes Shap-
ley values a powerful tool for model interpretation and explanation across
different scenarios.

Figure 4.12: Shapley Summary Plot: Severity and Controllability (GBDT Model)

As shown in Fig. 4.12, a Shapley value summary plot visually represents the
impact of each feature on a model’s prediction. The horizontal axis displays
the Shapley values, where positive numbers indicate a feature generally
increases the model’s prediction, and negative ones suggest a decrease.
Vertically, the plot lists each feature, with color-coded points reflecting the
feature’s value in a specific instance, ranging from low (blue) to high (yel-
low). The spread of points across the horizontal axis shows the variability
of each feature’s impact, with a wider spread indicating greater variability.
A vertical dashed line at zero serves as a reference, distinguishing fea-
tures that positively contribute from those that negatively contribute to
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the model’s prediction. Jittering of points aids in discerning the density of
overlapping data.

The evaluation of severity using GBDT model highlights the significant im-
pact of MDAC and TTC on severity predictions, as demonstrated by their
shapley values being notably distinct from zero. This finding supports the
hypothesis that both the proximity of a potential collision and the available
space to avoid it are critical factors in assessing the severity of incidents.
Furthermore, the variation in shapley values for MDAC and TTC points
to a scenario-dependent influence on severity, with a range of driving
situations from normal traffic to critical events like unintended accelera-
tion being adeptly handled by the model. This variability, mirrored in the
color gradation of the plot, underscores the model’s ability to adapt and
accurately gauge severity across diverse driving conditions. It showcases
model’s capability to integrate real-world driving dynamics, where tempo-
ral and spatial factors are crucial in determining the severity of incidents.

In the evaluation of controllability using the GBDT model, MDAC emerges
as a crucial factor, with its Shapley values indicating a significant impact
on controllability assessments, albeit variable. In contrast, the DRAC shows
less variability but maintains a consistent influence across scenarios, high-
lighting its steady contribution to controllability predictions. The GBDT
model demonstrates a stable impact from most features on controllability,
with MDAC and DRAC as exceptions, suggesting a focused understanding
of what determines controllability. The model appears to have learned that
controllability is primarily dictated by the ability to decelerate or control ac-
celeration and DRAC, which might relate to vehicle dynamics in response
to events like cut-in or cut-out operations.

It is important to note that while MDAC, TTC, and DRAC are crucial, they
do not work alone. The GBDT model’s performance also hints at the in-
fluence of additional, perhaps subtler, risk features that were not directly
employed in labeling. This indicates that factors influencing severity and
controllability go beyond our primary risk features, highlighting the com-
plexity of driving scenarios and the model’s ability to incorporate various
inputs to improve predictions.

4.6 Iterative Risk Assessment Process

The LADRI framework’s iterative risk assessment process exemplifies a me-
thodical approach to enhancing the safety and reliability of ADS across
various ODDs. Each cycle of this process builds on insights and risk indica-
tors from previous evaluations, systematically enhancing safety measures
and refining the system’s response to potential hazards. As depicted in the
described Fig. 4.13, the progression from one ODD to the next, alongside
the escalation in driving task complexity, underscores the framework’s ca-
pacity to adapt and respond to an expanding array of driving scenarios
and environmental conditions.
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Figure 4.13: Advancement of Risk Knowledge Through PDTAA process

For example, if highway lane following on a straight road is considered
as ODD 1, subsequent ODDs might include curved roads as ODD 2, up-
hill scenarios as ODD 3, and downhill scenarios as ODD 4, respectively. The
iterations on the X-axis correspond to increasing complexity in DDT; for ex-
ample, the first iteration might cover basic acceleration/deceleration and
braking operations, the second iteration could introduce steering maneu-
vers, the third might involve overtaking maneuvers, and the fourth could
include exiting and entering the highway.

The phased exploration of increasing complexity in DDT, depicted along
the X-axis, reflects the LADRI framework’s strategic approach to gradu-
ally introducing and mastering each aspect of the driving environment.
This systematic escalation not only assesses the ADS’s capabilities in a con-
trolled manner but also ensures that safety engineers and the system can
gradually adapt to and learn from each new set of challenges presented.

This iterative nature of the LADRI framework ensures a comprehensive
exploration of the ADS’s behavior in diverse settings, systematically ad-
dressing and mitigating previously unidentified or untested unsafe condi-
tions. By sequentially incorporating new scenarios, ranging from straight-
forward to complex driving tasks such as steering adjustments, overtaking
maneuvers, and navigating exit/entering highway, the framework contin-
ually enhances its predictive models. This progression not only broadens
the scope of risk assessment but also deepens the system’s understanding
of dynamic driving challenges.

Moreover, the cyclic repetition of assessing risk indicators (as shown in Fig.
4.14) following safety modifications fosters a continuous improvement
loop, which is discussed in detail in the next section. This loop continu-
ously refines ADS functionalities by understanding the unique challenges
and specific failures of each ODD. The runtime risk indicators acquired
through risk knowledge, can assist safety engineers in augmenting ADS
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Figure 4.14: Iterative Risk Assessment Process: Severity, Controllability, and Risk Knowledge

design to increase redundancy or incorporate fault-tolerant mechanisms,
relying on empirical evidence and objective indicators rather than subjec-
tive and biased assessments that do not fully consider system capabilities
and environmental factors.

4.7 Application and Limitation of the LADRI Framework

The LADRI framework represents a significant departure from traditional
risk assessment methods, standing at the crossroads of safety engineer-
ing, vehicle engineering, and ML engineering. It aims to enhance the op-
erational safety of ADS in dynamic environments, particularly focusing on
highway lane-following scenarios.

In this thesis, severity and controllability risk ratings are crucial for transi-
tioning from static safety goals to tailored, context-specific safety goals.
As shown in Fig. 4.15, these actions are deeply rooted in risk-informed
decision-making, utilizing runtime risk assessments to enhance decision-
making processes. By leveraging these risk ratings, safety experts can iden-
tify underlying causes of risks, bolster safety mechanisms, and improve
cross-domain communication. The outputs of the model are utilized to
establish specific safety goals that merge quantitative data with expert
insights, enabling a thorough review of the ADS to identify potential im-
provements.

This continuous cycle of evaluation and refinement ensures the ADS not
only meets technological standards but also adheres to rigorous safety
norms. Additionally, the ongoing optimization of both the ML model and
safety protocols, driven by operational feedback, ensures that the frame-
work remains both data-driven and aligned with evolving safety standards.
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Figure 4.15: Overview of Risk-Informed Actions Enabled by LADRI Framework for Pre-
Deployment Safety Enhancement of ADS (adapted from [114])

This dynamic approach ensures a comprehensive integration of empirical
evidence and safety values crucial for the effectiveness of ADS. The follow-
ing four key actions are instrumental in facilitating this transition [114]:

Identifying and Analyzing Underlying Causes: LADRI excels in DRA
by adapting to runtime data and changing conditions, such as in high-
way lane-following scenarios. It dynamically adjusts risk indicators based
on the relative movements of the ego, lead, and side vehicles, whether
they are accelerating, decelerating, or braking, thus enabling ADS to make
informed decisions swiftly. Through detailed analysis of predicted risk rat-
ings, it becomes possible to pinpoint the underlying causes of risks. For
example, a high severity rating during highway driving could suggest prob-
lems with the vehicle’s ACC in specific situations. Such insights guide fo-
cused investigations into particular system behaviors or environmental fac-
tors that may increase risk levels. However, the efficacy of LADRI is deeply
reliant on the quality and immediacy of sensor inputs. In rapidly changing
highway environments, any lag in data processing or sensor failure could
lead to inaccuracies in risk assessment.

Continuous Improvement and Reinforced Safety Mechanisms: The
insights derived from analyzing risk ratings can be used to enhance the
safety mechanisms in ADS. When specific scenarios consistently result in
high-risk ratings, it indicates a need to strengthen the related safety pro-
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tocols or system responses. For instance, scenarios that exhibit low con-
trollability could require improvements to the vehicle’s emergency brak-
ing system or updates to the algorithms that control evasive maneuvers.
The framework is designed for iterative updates, enabling the integration
of new insights and data. This ensures LADRI remains current with the
latest traffic patterns, construction zones, and environmental conditions
on highways, facilitating up-to-date risk assessments. However, this con-
tinuous improvement cycle requires ongoing data collection and model
retraining, which can be resource-intensive and face practical constraints
like computational limits, especially in onboard systems during operation.

Communicate Risk and Enhanced Decision-Making: Quantified risk
ratings are crucial for effective communication among cross-domain ex-
perts. Clear, data-driven risk assessments facilitate targeted and efficient
discussions with safety engineers, software developers, and other key
stakeholders. Such collaborative efforts are vital for developing an all-
encompassing safety strategy, which ensures thorough examination and
optimization of every element of the ADS, from software algorithms to
hardware reliability. Also, refining severity and controllability indicators to
a more granular 5-level scale enhances decision-making by allowing ADS
to respond more appropriately to detected hazards. It also improves com-
munication with human operators or other systems by conveying risk lev-
els more precisely. However, this finer granularity introduces challenges
such as the need for larger training datasets, more complex calibration
of thresholds, potential ambiguity in ratings, and increased demands on
sensing and processing capabilities.

Increase Learning Capability through Model Refinement: LADRI
leverages ML to enhance risk prediction capabilities over time. Continuous
data feeds from highway scenarios allow the system to recognize subtle
patterns preceding incidents, thereby improving its predictive accuracy
for assessing severity and controllability. Nonetheless, ML models demand
extensive and varied data for effective learning. LADRI’s learning effec-
tiveness might diminish in unique or rare scenarios where data is scarce,
potentially increasing the margin of error in risk predictions. Designed to
generalize across various driving scenarios, LADRI is particularly beneficial
for highway driving, where conditions can significantly differ. It can apply
risk assessments learned from one highway segment to another by rec-
ognizing common risk indicators, despite changing external conditions.
Achieving true generalization is challenging. Highways feature various
environments and behaviors, and models effective in one scenario may
not perform well in others without significant adjustments. Additionally,
over-generalization can overlook specific risks unique to certain highway
segments.

The continuous risk assessment through the LADRI framework, encoun-
ters several challenges due to the ADS’s complexity and evolving nature.
These challenges include the complex interconnectivity of ADS compo-
nents, from advanced algorithms to runtime data processing modules,
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which may complicate accurate modeling and prediction of outcomes.
Additionally, fully comprehending both functional and non-functional re-
quirements in dynamic environments proves challenging, particularly in
scenarios that are unique or rare. The integration of diverse sensors and
subsystems essential for precise risk modeling further complicates this
task, given the potential for data nuances and inaccuracies. Lastly, the ex-
tensive computational demands required to model a wide range of driving
conditions and interactions can hinder the process’s efficiency, potentially
causing delays in risk assessment and decision-making.

Figure 4.16: Application of LADRI in Adaptation: [a] Structural adaptation during acceleration
[b] Parameter adaptation during braking [c] Context adaptation during accelera-
tion [d] Context adaptation during braking [112]

To effectively manage some of these challenges, implementing adaptive
techniques as part of the reconfiguration process could help mitigate risk
during ADS operation. As discussed in Section 1.2.2, "Why systems need
to perform adaptation?" outlines how runtime risk assessment initiate the
adaptation process. Similarly, predicted dynamic risk indicators can acti-
vate appropriate safety measures, enhancing the vehicle’s ability to dy-
namically respond to predicted risks, as shown in Fig. 4.16. Adaptation
in the reconfiguration process involves three techniques: parameter-based
reconfiguration to adjust or tune specific parameters, structural reconfig-
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uration to replace a failed component with a redundant one, and context
reconfiguration that merges both methods 1.

Utilizing dynamic risk indicators for adaptation not only enhances immedi-
ate responses to detected risks but also contributes to the long-term evo-
lution of vehicle safety systems. By continuously learning from the adapta-
tions made and the outcomes achieved, the ADS can refine its algorithms,
improve its predictive accuracy, and enhance its overall adaptability. The
ability of dynamic risk indicators to provide detailed risk reasoning is vital
for the execution of adaptive responses. This reasoning involves analyzing
the data behind each indicator to understand the cause of risk and its po-
tential impact. This allows the ADS to prioritize the most necessary and
urgent adaptations. This ensures that the system’s responses are not only
timely but also appropriate to the level of risk encountered, optimizing
safety outcomes.

Implementing adaptive reconfiguration techniques in ADS enhances vehi-
cle safety but introduces several challenges. These include the increased
complexity of integrating multiple systems, a high dependency on accu-
rate and timely data, and the substantial computational resources required
for real-time operations. Additionally, there’s a risk of overfitting to spe-
cific scenarios, which can compromise the system’s effectiveness in new
conditions. The testing and validation of these systems are complex due
to the unpredictability of driving scenarios, and regulatory standards may
struggle to keep pace with rapid technological advancements. Moreover,
continuous learning and updates needed to maintain system effectiveness
can increase operational costs and logistical complexities. This highlights
the importance of managing these adaptive systems carefully to ensure
they enhance safety without introducing new risks.

Despite these challenges, the LADRI framework’s dynamic, data-driven
approach, combined with its learning capabilities, potential for continu-
ous improvement, and ability to generalize across scenarios, stands out.
However, it faces obstacles related to data dependency, extensive training
needs, the resource requirements for continuous updates, and the com-
plexity of generalization across varied highway scenarios. Balancing these
strengths and limitations is crucial for the successful deployment and op-
eration of LADRI framework for ADS development.

Using predicted risk ratings as quantitative outputs lays a strong founda-
tion for developing ADS, but incorporating qualitative aspects improves
the system’s robustness and relevance before deployment. By quantify-
ing risk indicators such as severity and controllability, developers gain pre-
cise metrics to refine and validate the ADS’s performance. However, in-
corporating qualitative assessments allows for a deeper understanding of
the contextual nuances that might influence these risk ratings. This dual

1 The detailed explanation of the behaviors associated with these adaptation techniques is provided
in [112]. To maintain the flow and focus of this thesis, these explanations have not been reiterated
here.
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approach ensures that the ADS not only meets specific numeric risk ac-
ceptance thresholds but also aligns with broader safety expectations and
scenarios that may not be fully captured through quantitative data alone.
Such integration of qualitative insights with quantitative data helps in con-
structing a comprehensive safety case, making the ADS development pro-
cess more thorough and aligned with real-world operational needs. This
ensures that the system is well-prepared to handle diverse driving condi-
tions and can adapt to unexpected situations, ultimately enhancing safety
and reliability before the ADS is deployed.
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5 Summary

This thesis summarizing the scientific advancements contributed by recall-
ing research objectives, discussing the challenges encountered during the
research and implementation phases of the framework, and outlining po-
tential directions for future research that could further develop or expand
upon the contributions of this work.

Ensuring the safety of ADS necessitates an integrated approach that en-
compasses multiple technical domains, including safety engineering, com-
puting hardware, software algorithms, and human-machine interaction.
This interdisciplinary approach is essential for addressing the challenges
of validating ADS against unexpected failures and ensuring their reliability
for widespread deployment. As automation levels increase, the responsi-
bility for safety transitions from the driver to the system developers. This
shift demands a reevaluation of safety assumptions and necessitates the
creation of a risk assessment framework to assess system failures across
an ADS. Moreover, the complexity of ADS, marked by their reliance on
inductive reasoning and the variability of real-world data, poses significant
challenges in ensuring system safety. It requires a comprehensive valida-
tion strategy that goes beyond traditional testing methods to quantify and
address the risks associated with these systems.

5.1 Conclusion

The LADRI framework introduced in this thesis marks a step forward in ad-
vancing risk assessment within ADS. By integrating the domains of safety
engineering, vehicle engineering, and ML engineering, LADRI emerges as
a comprehensive tool designed to navigate the dynamic complexities of
operational safety in ADS. Its foundation lies in the PDTAA cyclic process,
a methodical approach that ensures continuous refinement and adaptabil-
ity of risk indicators to ever-evolving operational conditions.

Central to the LADRI framework, the PDTAA cycle encompasses planning
simulations, executing these simulations to gather risk-specific context in-
formation, training ML models with this data, adjusting the models based
on assessment outcomes, and applying these models for ongoing opera-
tional risk assessment. This process ensures a perpetual loop of learning
and improvement, allowing for the constant evolution of the risk assess-
ment framework in line with the ADS’s exposure to new data and opera-
tional shifts. By detailing each phase of the PDTAA cycle, Plan, Do, Train,
Adjust, and Assess, the framework outlines a clear strategy for integrating
a wide array of parameters and potential failure conditions, elucidating
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the operational dynamics of the LADRI framework and highlighting how
each phase feeds into the next, fostering continuous enhancement of risk
knowledge.

1. Research Objective:

Conduct a thorough investigation into dynamic factors affecting ADS risks,
such as environmental variability, traffic participants and ADS behavior.

This cyclic process systematically integrates both controllable design pa-
rameters and uncontrollable non-design parameters alongside potential
failure conditions. By considering design parameters, such as sensor con-
figurations and vehicle control strategies, alongside non-design param-
eters, like environmental conditions and traffic behavior, LADRI offers a
comprehensive understanding of the myriad operational risks and chal-
lenges ADS may encounter. This holistic view goes beyond the scope of
traditional risk assessment methods, providing a more nuanced and thor-
ough perspective on the risk that ADS may face, and facilitates a deeper
understanding for a more accurate prediction of risks.

The strategic use of advanced simulation tools facilitates the generation
and exploration of a broad spectrum of hypothetical scenarios, enabling
proactive identification and assessment of potential risks. By simulating
real-world driving conditions of varying complexity and potential failures,
the LADRI framework validates itself in a controlled environment and eval-
uates the effectiveness of different mitigation strategies. This proactive
stance towards risk assessment is instrumental in identifying and address-
ing potential risks before their manifestation in real-world operations, thus
contributing to the enhancement of ADS deployment.

2. Research Objective:

Develop and test ML algorithms for assessing risks dynamically, with the
goal of making the process automatic, more accurate, and better at ad-
justing to new situations compared to the current HARA method.

Extensive testing across scenarios from S-curves to straight roads under
various conditions has validated the framework’s robust capability to pre-
dict severity and controllability indicators accurately. The analysis indicates
the crucial roles of both time-based and distance-based features in assess-
ing risk, with a holistic integration of these features proving essential for a
comprehensive risk assessment approach. The fine-tuning of ML models,
particularly the standout performance of the GBDT and RF models, high-
lights the importance of optimization in achieving high accuracy and relia-
bility in predictions. Practical validation in diverse driving conditions further
demonstrates the GBDT model’s exceptional adaptability and reliability, re-
inforcing the LADRI framework’s utility in complex environments. These
key findings, supported by detailed performance metrics and scenario-
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based evaluations, establish the LADRI framework as an advancement in
the field of risk assessment.

In the Adjust phase, the LADRI framework empowers safety engineers
to optimize model performance by updating risk feature thresholds for
classification or refining the classification rule set through the addition of
new risk features. This phase is crucial for maintaining the framework’s
relevance and effectiveness in changing conditions and emerging risk sce-
narios. Moreover, safety engineers have the option to engage in hyperpa-
rameter optimization, a process that further increases model performance
by fine-tuning the ML algorithms based on the assessment outcomes.

The LADRI framework emphasizes the critical risk indicators of severity
and controllability for hazardous events, highlighting key aspects of the
risk landscape for ADS. This focus allows the framework to comprehen-
sively address both the impact of hazardous events and the ADS’s ability
to manage such events. By prioritizing severity and controllability, which
are system-dependent attributes, the LADRI framework enhances the op-
erational understanding of specific risks, enabling more targeted safety
measures.

The challenge of monitoring ML model performance during runtime risk
assessments for ADS, particularly when encountering new, unlabeled
data, is addressed through the use of data visualization and model ex-
plainability tools, such as Shapley values. This thesis demonstrates the
effectiveness of Shapley values in elucidating the impact of critical risk
features on severity and controllability assessments. This method not
only underscores the significance of spatial and temporal factors in risk
assessment but also showcases the model’s adaptability to a variety of
driving conditions. The identification of influential risk features beyond
MDAC, TTC, and DRAC highlights the complexity of driving scenarios and
the model’s capacity to process a broad spectrum of inputs. This refined
understanding of ADS risk assessment, nurtured by the LADRI frame-
work, represents a significant advancement in the field of explainable risk
assessment.

3. Research Objective:

Design and validate a comprehensive and iterative framework that incor-
porates dynamic factors into the risk assessment process for ADS, utilizing
runtime data and predictive analysis.

The LADRI framework, through its implementation of an iterative cycle,
fosters the continuous enhancement of risk knowledge. This approach en-
sures that the risk assessment framework evolves in alignment with new
insights and the changing operational conditions of ADS. A key feature
of this iterative process is its emphasis on continuous learning and adap-
tation, which allows the framework to remain both relevant and effective
over time. This capability is crucial in facilitating ongoing improvements
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in safety measures and deepening the understanding of ODDs and the
complexities of DDT. Each cycle within the PDTAA process is meticulously
designed to explore and address previously unknown or unsafe situations
across various ODDs, thereby progressively enhancing the safety strate-
gies for ADS. This structured exploration methodically expands the risk
knowledge base with each iteration, addressing increasingly complex driv-
ing scenarios and potential failure conditions.

5.2 Future Work

Future research on the LADRI framework should focus on deepening the
understanding of causal links between risk features and risk indicators,
clearly differentiating between correlation and causality using causal infer-
ence models. This will refine the framework’s capability to identify and mit-
igate risks more effectively. Expanding the exploration of ODD to encom-
pass complex urban environments, varied weather, and traffic conditions
will broaden the framework’s applicability. The integration of comprehen-
sive risk features related to vehicle dynamics and environmental charac-
teristics will facilitate nuanced risk assessments across a diverse range of
scenarios.

Addressing the challenges of transparency and interpretability associated
with "black box" ML models is essential. The development of explain-
able AI (XAI) methods within the LADRI framework will enhance the trans-
parency of risk assessments, rendering the process more understandable
and trustworthy for stakeholders. Optimizing the LADRI framework for
computational efficiency, possibly through edge computing solutions and
the development of less computationally intensive algorithms, is also crit-
ical. A key focus will be on mitigating sensor data uncertainty, requiring
advanced filtering techniques to ensure the reliability of risk assessments
under various conditions. Enhancing data fusion algorithms will help ad-
dress discrepancies and inaccuracies in sensor data, supporting reliable risk
assessment even in scenarios with incomplete information.
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A Appendix

A.1 Scenario Creation Dashboard

Figure A.1: Interactive Dashboard for Scenario Modification and Failure Injection

A.2 Ego Vehicle Dynamics Model

Figure A.2: Modified Vehicle Dynamics Model [129]

137



Simulation 3D Scenario

A.3 Simulation 3D Scenario

Figure A.3: Simulink Model of 3D Scenarios

A.4 Risk Feature Extraction

Figure A.4: Risk Feature Extraction block in Simulink
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Appendix

A.5 Matlab Function for Supervised ML Classification

1 svmModel = fitcecoc(X_train , y_train , 'Learners ', template , '

Coding ', 'onevsall ', 'ClassNames ', unique(y_train));

Listing A.1: MATLAB function for SVM

1 net = trainNetwork(X_train , y_train , layers , options);

Listing A.2: MATLAB function for ANN

1 rfModel = TreeBagger(numTrees , X_train , y_train , 'Method ', '

classification ');

Listing A.3: MATLAB function for RF

1 gbdtModel = fitcensemble(X_train , y_train , 'Method ', 'Bag', '

NumLearningCycles ', 30);

Listing A.4: MATLAB function for GBDT
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