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Abstract

Accurate modeling of weather and climate is critical for taking effective action
to combat climate change. Predicted and observed quantities such as pre-
cipitation, clouds, aerosols, wind speed, and temperature impact decisions
in sectors such as agriculture, energy, health, and transportation. While
these quantities are often required at a fine geographical and temporal scale
to ensure informed decision-making, most climate and weather models are
extremely computationally expensive to run, resulting in coarse-resolution
predictions. Recent advances in deep learning (DL) make it an attractive
tool for speeding up simulations. The two main ways to decrease computa-
tional efforts with DL are downscaling, the increase of the resolution directly
on the predicted climate variables, and emulation, the replacement of model
parts to achieve faster runs initially.

This thesis leverages DL models for accelerated climate forecasting while
making sure the methods are feasible for physical modeling. Standard DL
approaches often violate simple physical constraints such as positivity or con-
servation properties. We develop novel methodologies to incorporate those
constraints into the training and into architectures of DL. First, we look
into so-called soft-constraining methods that introduce an additional regu-
larisation term. Then several hard-constraining methods that change the
neural networks (NNs) architectures, by adding final constraining layers, are
discussed.

We consider two application cases to test our constraining methodology
and evaluate the potential of DL for speeding up climate modeling. The
first test case is downscaling. We not only show how our hard-constraining
layers guarantee the constraints to be satisfied, but also increase the overall
predictive performance. In the second employment of our constrained DL
models, the aerosol microphysics module in the global ICON climate model
is replaced by a NN. We both investigate offline performance, as well as
implement the NN in Fortran to run it online within ICON, achieving a
stable an accurate coupled simulation. We discuss challenges and choices for
a successful deployment of DL in climate and weather simulations.
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Chapter 1

Introduction

Deep learning shows great potential in many fields, including climate mo-
deling. In this thesis, we research approaches to employ deep learning to
accelerate simulations, while ensuring physical consistency within the meth-
ods used.

The introduction to this thesis consists of three parts, starting with a
motivational section that answers why the problem we are tackling is relevant
and how the different constituents matter to achieve the goal of accelerating
climate models with deep learning.

The second section, the contribution section, describes existing work that
addresses similar or related issues concurrently with this thesis. We make
clear how our work distinguishes itself from others and pinpoint the ways
in which it contributes to scientific advances in the field of deep learning in
climate science.

The introduction is then concluded with the third section, an overview of
the thesis structure.

1.1 Motivation

This thesis tackles the question of how deep learning can help accelerate
climate modeling and which ways of adaptations of existing methods are
required to be successful in this novel field of application. In this first section,
we answer some motivational and introductory questions:

• How do weather and climate impact society?

• Why do we need faster and more accurate weather and climate models?

• How can deep learning aid climate and weather modeling?
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• Why do we need physical constraints incorporated in deep learning
models applied to climate modeling?

We discuss these questions while briefly introducing important methods
and concepts used throughout the thesis, such as deep learning, physical
constraining, downscaling, and emulation. A more detailed description of
these methods can be found in Chapter 2.

How do weather and climate impact society? Everyday weather and
local climate affect our lives in various ways. Based on the forecasts, we de-
cide whether to put on a raincoat, how to plan our weekend or we receive a
warning about health risks from a heat wave. Our food supply through agri-
culture is highly dependent on temperature and precipitation and transport,
tourism, and infrastructure can be influenced by conditions such as snowfall
or thunderstorms. Wind speed and solar radiation prediction support the
efficient use of renewable energy production. We prepare for disasters such
as floods or try to adapt to a changing climate.

What are earth system models? Both climate and weather models de-
scribe atmospheric processes governed by equations of fluid dynamics. The
same earth system models (ESMs) can be used for climate and weather, but
they span different temporal and spatial scales. Weather modeling is an ini-
tial value problem, whereas climate modeling is a boundary condition prob-
lem. ESMs not only model atmospheric circulation, but different systems
are included such as the ocean, the cryosphere1, and land-surface processes.
Modeling the atmosphere alone already involves various subprocesses: radi-
ation, cloud formation, or aerosols are some processes that affect our climate
in complex ways while interacting with each other.

Why do we need faster and more accurate weather and climate
models? The computational costs of ESMs are immense; it can take months
to obtain multidecade, global climate predictions. The computing power
needed depends heavily on forecasts’ lead time and resolution. Here, we
have a trade-off of speed and accuracy. Any effort to include more complex
processes in a climate model results in slower runs. For example, aerosol
processes are often not represented in sufficient detail in global climate mod-
els that contributes to the problem that aerosol forcing remains the largest
source of uncertainty in the anthropogenic effect on the current climate [Bel-
louin et al., 2020].

1Cryosphere refers to all parts of the earth system that includes water in solid form,
such as sea ice or snow.
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Faster modeling can be beneficial in multiple ways. On the one hand, it
enables us to run at finer resolution for longer lead times, providing more
detailed information on weather and climate. On the other hand, forecasts
can be made more easily accessible by being able to run on smaller com-
puting infrastructures, up to the extreme of being able to run on a personal
computer. This decrease in computational demand also saves energy and
resources and, with that, has economic and environmental advantages.

What is deep learning? In recent years, we all have been able to witness
impressive advancement in deep learning, especially with extremely popular
tools like ChatGPT [Brown et al., 2020] or DALL·E [Ramesh et al., 2022].
Deep learning (DL), is a subfield ofmachine learning (ML), where algorithms
learn from data, by searching for an approximation function while optimizing
some cost function. Neural networks (NNs) are a specific model type within
machine learning thatconnect input and output nodes through layers of nodes
with linear operations and nonlinear activation function, resulting in so-called
universal function approximators [Hornik et al., 1989]. If NNs are involved
and consist of two or more hidden layers, it is considered as deep learning.
A vast amount of resources in both for-profit and non-profit entities have
been put into the research and development of deep learning methodology
and tools. Can we take advantage of some of the advancements to benefit a
field like climate modeling? For more details on deep learning and various
architectures, we refer to Section 2.2.

How can deep learning aid climate modeling? The idea of using ML
or, in particular, DL to help modeling earth systems is fairly young, it became
popular starting with approaches such as Rasp et al. [2018a] which models
clouds with an NN. Two of the most common ways to employ deep learning
within climate modeling are so-called downscaling and emulation, both aim-
ing at speeding up simulations but with different approaches. Downscaling
allows us to run a climate model at a lower resolution and then increases res-
olution afterward (see Figure 1.1), while emulation replaces expensive model
parts within the simulation with faster ML surrogates (see Figure 1.2).

What is downscaling? Downscaling (DS) refers to obtaining some high-
resolution (HR) climate data given low-resolution (LR) data, using statistical
methods as opposed to physical models. Downscaling via established statis-
tical methods—statistical downscaling—has been long used by the climate
science community to increase the resolution of climate data [Maraun and
Widmann, 2018]. If the LR data is of the same quantity as its HR coun-
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Figure 1.1: A schematic view of downscaling as a super-resolution task tack-
led by DL. An earth system model creates a low-resolution forecast that is
then super-resolved by a neural network. This can save computational costs
or time compared to directly creating the high-resolution forecast with the
ESM.

terpart downscaling poses a very similar problem to that of super-resolution
(SR) in computer vision, where the resolution on an image is increased. Fol-
lowing the fast-paced advancements in SR, traditional statistical methods
to tackle downscaling are being more and more replaced with deep learn-
ing approaches. SR has evolved rapidly using various deep learning archi-
tectures, with such methods now including super-resolution convolutional
neural networks (CNNs) [Dong et al., 2016], generative adversarial models
(GANs) [Wang et al., 2018], vision transformers [Yang et al., 2020], and
diffusion-based models [Mardani et al., 2023]. For a detailed introduction to
downscaling see Section 2.3.

What is emulation? Emulation refers to replacing an entire climate or
weather model or parts of it, it is also referred to as surrogate modeling. The
goal is to find a much faster replacement for a physical model or describe a
process more accurately. This can be achieved by using machine learning.
Full model emulation, replacing the entire ESM [Watson-Parris et al., 2022]
with ML has different challenges than the more common task of replacing
specific parts that contribute significantly to the computational costs of sim-
ulations [Cachay et al., 2021], submodel emulation. An emulator can help
with the trade-off of representing certain processes and the computational
burden connected to incorporating them [Rasp et al., 2018a]. In submodel
emulation, we distinguish between offline emulation and online emulation.
Offline emulation describes running an emulator as a standalone model, with-
out feeding its output back into a bigger model. Online emulation includes
coupling the emulator to an ESM, that uses the emulators predictions for
different submodels within the ESM.

In this thesis, we only consider submodel emulation, visualized in Figure
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Figure 1.2: A schematic view of emulation tackled by DL. Here, an ESM can
be slow including an expensive submodel. Due to computational constraints
it produces only a low-resolution forecast. The setup can be speed-up using a
NN as a faster surrogate for the expensive submodel. With this faster setup,
we are then able to produce a higher resolution forecast.

1.2, but consider both offline and online tasks. The example looked at here
is aerosol microphysics emulation. Aerosol microphysics are crucial for ac-
curate climate prediction but often are not modeled in sufficient detail due
to computational constraints. For details on emulation see Section 2.4, for
more details on aerosols see Section 2.5.

Why do we need physical constraints incorporated in deep learning
models? In most cases, deep learning architectures from other fields like
computer vision are applied to climate tasks with only minimal changes or
slightly adapted to increase predictive accuracy. It is often neglected here
that predicted physical quantities require not only accurate models but also
physically plausible ones. Some employed DL models predict negative mass,
violate conservation laws, or predict a higher minimum temperature than
maximum temperature [Wang and Tian, 2022]. First, this decreases the
trust and willingness of climate scientists and end users to use these new
methods, and second, included within physical models, it can easily cause
instabilities, when coupled to classical physical models.

Downscaling methods are mostly used as a post-processing tool. However,
downscaling tools can also be applied online within a global climate model
[Quiquet et al., 2018], where a lower-resolution output of a climate model
part is downscaled and its high-resolution version is fed back into the climate
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model.
For emulation tasks that are integrated into earth system models it is

inevitable to ensure physically consistent predictions, e.g. a negative mass
value causes a crash of the run, and violating a conservation law produces
instability issues. A slight bias in mass conservation can get amplified with
every time step and lead to a blow-up after multiple timesteps.

Deep learning searches for a close-to-optimal solution in a vast function
space; constraining the model decreases this space and thus can help converge
to a better local optimum faster, making the learning task easier.

How to do physics-constraining? First works on ML for climate sci-
ence have attempted to enforce certain physical constraints via soft penalties
in the loss [Beucler et al., 2019] inspired by the so-called physical-informed
neural networks (PINNs) that solve differential equations by adding them to
the loss function [Raissi et al., 2019]. The term physics-informing is used
with different meanings; apart from solving differential equations, it is also
widely used to describe any physics-related information included in the de-
velopment of the deep learning methods [Kashinath et al., 2021]. In contrast
to that, we use the term physics-constrained deep learning here to refer to
the case where we have some constraints given by equations or inequalities
depending on input and output variables of the network (see Chapter 3). The
term soft constraints refers to a way of incorporating constraints without any
guarantee of them being satisfied at inference time (i.e., when we apply the
NN after training), whereas hard constraints refers to the case where we do
have a guarantee of constraint satisfaction by construction. For details on
constraining we refer to Chapter 3.

1.2 Contribution

In this section, we discuss relevant existing work in the field of DL for climate
and weather modeling, focusing on downscaling, emulation, and physically
constrained architectures. We then specify what our work contributes within
the field of DL for climate modeling, both methodologically and by tackling
new application cases.

1.2.1 Existing Work

We review works on deep learning for climate modeling in general by going
through the most relevant publications in the field. Then we discuss litera-
ture on downscaling and emulation, specifically aerosol emulation, giving an
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overview of work we build on or that tackles problems similar to the ones
addressed by this thesis. We conclude with constrained DL for climate where
we discuss the related work in detail.

Deep Learning for Climate Modeling The field of DL for climate
and weather modeling has been growing rapidly within the past four years
[de Burgh-Day and Leeuwenburg, 2023]. Besides downscaling and submodel
emulation which are discussed in more detail below, the most influential
works in the field started with learning cloud modeling [Rasp et al., 2018a]
and nowadays focus on full weather models [Lam et al., 2022] which are being
included for operational forecasting by major institutions.

The first neural network applied in the climate domain was developed by
Chevallier et al. [1998] to learn longwave radiative budget from observations
with a fully-connected neural network with only one hidden layer. The be-
ginning of the time when ML, especially DL got increasingly influential in
the field of earth system modeling was marked by famous papers such as
Gentine et al. [2018b] that model moist convection with a fully-connected
neural network as a column model, learning from a physical higher resolu-
tion model. Other efforts that laid the foundations of the now vibrant field
of DL for atmospheric sciences are a neural network approach to approxi-
mate the global weather prediction toy model, the Lorenz 95 model [Lorenz,
2006], comparing different architectural choices [Dueben and Bauer, 2018] or
using a neural network to predict sources of heat and moisture by learning
from a higher-resolution aqua-planet simulation [Brenowitz and Bretherton,
2018]. Pioneering but less well-known work, includes an approach that intro-
duces a novel architecture – the convolutional LSTM (long-short-term mem-
ory model) – to accommodate the spatial-temporal structure of climate and
weather data and perform short-term rainfall predictions [Shi et al., 2015].

In parallel to the first modeling approaches, DL was frequently employed
for tasks that are closer to computer vision tasks, such as the detection and
classification of weather events. First works, such as Liu et al. [2016] and
Racah et al. [2016] applied CNNs for detecting extreme weather events from
climate model and reanalysis data such as tropical cyclones, atmospheric
rivers, and weather fronts. Lguensat et al. [2017] introduced a convolutional
encoder-decoder model followed by a pixel-wise classification layer to auto-
matically detect oceanic eddies, i.e. moving rotating water masses that give
insights into larger-scale oceanic circulations.

After previous work [Schultz et al., 2021] demonstrated the limitations of
neural networks in weather prediction recently a new wave of deep learning
weather prediction models started to compete with classical deterministic
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numerical forecasts. Prominent examples are GraphCast [Lam et al., 2022],
which employs a graph neural network architecture [Bronstein et al., 2016],
FourCastNet [Pathak et al., 2022], which uses adaptive Fourier neural opera-
tors with a vision transformer backbone, and PanguWeather [Bi et al., 2022],
utilizing a 3d transformer model. These models now achieve performance
close to operational weather forecast [Ben-Bouallegue et al., 2023] on some
variables like geopotential height that are easier to predict for ML approaches
than other variables, e.g. precipitation. All models use the European Center
for Medium-range Weather Forecast (ECMWF) reanalysis data ERA5 (used
as well in this thesis) as training data and compete with the Integrated Fore-
cast System (IFS) deterministic forecast provided by the ECWMF.

Replacing operational climate models is a harder problem to solve, with
almost no existing approaches yet. Here challenges include ensuring the
physical consistency of ML approaches to enable multi-year stable runs. Very
recently one of the first works proposed a spherical Fourier neural operator
approach [Watt-Meyer et al., 2023].

State-of-the-art deep learning methods such as foundation models [Bom-
masani et al., 2021, Nguyen et al., 2023a, Lessig et al., 2023] or diffusion-based
models [Cachay et al., 2023] achieve impressive results for a variety of tasks,
such as regional forecasting, subseasonal forecasting, or downscaling.

For a more detailed review of ML for climate and weather modeling in
general the reader is referenced to Reichstein et al. [2019] for earlier works,
to de Burgh-Day and Leeuwenburg [2023] for a recent review of modeling
approaches and for benchmark and datasets in the field we refer to Dueben
et al. [2022].

Downscaling There exists extensive work on ML methods for earth sys-
tem observation and prediction downscaling [Rampal et al., 2024]. The tasks
tackled include a variety of different data sources, climate models, different
quantities predicted, commonly temperature, precipitations, wind, or solar
data. Downscaling has been applied as well as tackling various local regions as
well as global applications, different upsampling factors, and including differ-
ent input variables. New architectures are developed continuously, driven by
the fast advancement in deep learning and its application to super-resolution.

Especially early methods include non-DL ML such as linear regression,
e.g. applied to satellite precipitation observation downscaling [Sharifi et al.,
2019] or random forests [Pang et al., 2017] for temperature downscaling over
southern China. Now almost all of the approaches moved away from those
methods and are built on deep learning.

In deep learning, different architectures have been employed for downscal-
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ing, usually following state-of-the-art methods in computer vision. The state-
of-the-art for super-resolution, when not focused on a specific application
task, is mostly measured on a few benchmark datasets such as Set14 [Zeyde
et al., 2012], BSD100 [Martin et al., 2001], and Urban100 [Huang et al.,
2015]. Starting with convolutional networks [Dong et al., 2014], advanced
through residual [Ledig et al., 2016a] and generative adversarial approaches
[Wang et al., 2018], the most successful methods now are transformer-based.
Currently, transformers employing a shifted window scheme (SwinIR) [Liang
et al., 2021] have become very successful including Hybrid Attention Trans-
formers (HAT) [Chen et al., 2022, Zhang et al., 2022]. Compared to super-
resolution, there are different metrics and requirements for models in down-
scaling, so the optimal architecture may vary. For details on differences
between super-resolution and downscaling, see Section 2.3.1.

The most common method that emerged as the standard in downscaling is
a convolutional neural network (CNN). Different variants of CNNs are used,
apart from a standard CNN, U-Nets [Ronneberger et al., 2015] and residual
CNNs are powerful tools. first application of a CNN in downscaling [Vandal
et al., 2017] used three stacked 3-layer SRCNNs to increase daily precipitation
from 100km spatial resolution to 12.5km successively over the United States,
including an elevation map as additional input. Sha et al. [2020] use the U-
Net, originally developed for semantic segmentation, to downscale minimum
and maximum temperature.

Generative adversarial networks (GANs) [Goodfellow et al., 2014b] are
becoming a very popular architectural choice, making it possible to give
a probabilistic prediction and including more high-frequency information in
the output [Harris et al., 2022]. GAN-based works tackle precipitation down-
scaling [Wang et al., 2021b, Watson et al., 2020, Chaudhuri and Robertson,
2020], but other quantities such as wind and solar data are also considered.
Stengel et al. [2020] perform 50x upsampling using a successive architecture,
similar to Vandal et al. [2017]. The discriminator then acts on the interme-
diate medium-resolution prediction as well. Harris et al. [2022] show how
GANs outperform CNNs in probabilistic precipitation downscaling, compar-
ing a Wasserstein GAN [Arjovsky et al., 2017] with a variational auto-encoder
combined GAN applied to predict radar measurements of precipitation given
a UK weather model output.

Very recently diffusion-based models [Sohl-Dickstein et al., 2015] have
shown promise in this field [Mardani et al., 2023, Wan et al., 2023] and vision
transformer models as foundation models are fine-tuned to tackle downscaling
[Nguyen et al., 2023a].

To date, there has been limited work on spatiotemporal SR with cli-
mate data. Some authors have looked at super-resolving multiple time steps
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at once, but not increasing the temporal resolution [Harilal et al., 2021,
Leinonen et al., 2021], whereas Serifi et al. [2021] increase the temporal res-
olution by just treating the time steps as different channels and using a
standard SR-CNN.

Unified frameworks for comparing methods and benchmarks were intro-
duced by Baño Medina et al. [2020] to assess different SR-CNN setups and
by Kurinchi-Vendhan et al. [2021] with the introduction of a new dataset
for wind and solar SR. Chen et al. [2020] establish a benchmark for small-
scale super-resolution on precipitation. The novel climate benchmark dataset
ClimateLearn [Nguyen et al., 2023b] includes, next to forecasting benchmark
tasks, a downscaling setup learning a mapping from CMIP6 models to ERA5
as a target. A first benchmark dataset for climate model scale downscaling is
currently under development [Langguth et al., 2024]. Here, different quanti-
ties of the ERA5 dataset such as temperature, precipitation, wind, and solar
data are supposed to be brought to the resolution of a higher-resolution ob-
servational dataset. For a full review on deep learning for downscaling we
refer to the recent overview work Rampal et al. [2024].

Emulation Replacing climate model components with machine learning
approaches and, therefore, decreasing a model’s computing time has shown
promising results, but can struggle with lack of physical consistency [Gentine
et al., 2018a] and with the back-integration into climate models.

There are several works on emulating convection. Both random forest ap-
proaches [O’Gorman and Dwyer, 2018] and fully-connected neural networks
[Rasp et al., 2018b, Gentine et al., 2018a, Beucler et al., 2020b] have been ex-
plored. In most approaches, the ML model is trained on data generated from
a more complex convection scheme, e.g. 2d cloud-resolving models [Gentine
et al., 2018a], that are too expensive to run in a global climate model. In
Gentine et al. [2018a] it is emphasized that an issue is the lack of moisture
and energy conservation of the NN in terms of a potential integration of the
emulator into a climate model.

Multiple consecutive neural networks, one predicting the sign of changes,
one the magnitude, have been used to emulate a bin microphysical model for
warm rain formation processes [Gettelman et al., 2021] that usually results
in a 400x slowdown maintaining the same speed as the control run. Chantry
et al. [2021] use a fully-connected neural network to emulate gravity wave
drag – the propagation of large-scale waves through the atmosphere, pro-
ducing accurate and stable forecasts over long timescales. In Bertoli et al.
[2023] a random forest and multiple NN approaches are trained to emulate
radiative transfer in an offline test case. Whereas the random forest shows
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the lowest bias, its memory requirements quickly become prohibitive.
Besides atmospheric processes there exist other subsystems of the climate

that can be emulated. One subfield is building ocean emulators that model
quantities such as the sea-surface temperature and can be coupled to atmo-
spheric models. Next to LSTMs, reservoir computing – a special kind of
recurrent neural network – has emerged as a lightweight and stable emulator
[Arcomano et al., 2023, Harder et al., 2023b] trained on reanalysis such as
ERA5 sea surface temperature data. A few works exist on land-surface mod-
eling using an NN to predict surface fluxes learned from model data [Meyer
et al., 2021].

In addition to many application cases, there now exist benchmark datasets
for climate model emulation [Watson-Parris et al., 2022, Cachay et al., 2021,
Yu et al., 2023]. Cachay et al. [2021] developed ClimART, a benchmark
dataset for radiative transfer based on the Canadian ESM. The first bench-
mark dataset for full climate projections is ClimateBench [Watson-Parris
et al., 2022]. ClimateBench gives different emission pathways of aerosol and
greenhouse gases as inputs to then predict temperature and precipitation
on a global scale for multiple decades. The ClimateSet dataset [Kaltenborn
et al., 2023] contains the inputs and outputs of 36 climate models from the
Input4MIPs and CMIP6 archives that can be used to train an ML emula-
tor on several climate models instead of just one to create an emulator that
can quickly project new climate change scenarios. Yu et al. [2023] take a
similar approach, providing a large emulation benchmark dataset including
5.7 billion pairs of multivariate input and output vectors targeted for hybrid
ML-physics modeling. Nguyen et al. [2023b] present the Pytorch framework
ClimateLearn that includes benchmark data built on ERA5 and CMIP6 mod-
els for forecasting and downscaling tasks.

When considering submodel emulation most works only tackle the offline
emulation part and do not go the technical challenging step of incorporating
the emulator back into an earth system model. Brenowitz et al. [2020] show
that an NN – emulating the aggregate effect of moist physics – that performs
well offline struggles with performance online, i.e. a stable coupled run.

Aerosol Emulation There exists various work on aerosol satellite obser-
vations [Hameed et al., 2022, Lu et al., 2020], but limited work on aerosol
emulation compared to subprocesses like convection. All emulation works
consider fairly simple ML architectures, such as random forests or fully-
connected neural networks. Silva et al. [2020a] compare several methods,
including deep neural networks, XGBoost [Chen and Guestrin, 2016], and
ridge regression as an emulator for aerosol activation, including the esti-
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mated activation from the Twoomey scheme as another input, predicting
the residual. Also, random forest approaches have been used to successfully
derive the cloud condensation nuclei (CCN) number concentrations (for an
explanation of CCN see Section 2.5) from multi-campaign atmospheric mea-
surements [Nair and Yu, 2020], limited though to an offline proof-of-concept.
Schreck et al. [2022] predict secondary organic aerosol formation by com-
paring a recurrent neural network approach and a fully-connected approach,
learning from modeled data from the Generator for Explicit Chemistry and
Kinetics of Organics in the Atmosphere (GECKO-A) model. They find the
recurrent approach to produce more stable and longer-running box simu-
lations compared to the fully-connected NN. Their evaluation is limited to
an offline setup. Very recently, another fully-connected neural network em-
ulation approach was developed that describes the coagulation of aerosols
with the models trained on data of a sectional model to replace the said sec-
tional [Okonkwo et al., 2023]. Geiss et al. [2023] emulate radiative properties
of aerosol, such as short-wave absorption and extinction, using a randomly
wired neural network. Geiss et al. [2023] find improved performance com-
pared to fully-connected architectures but limit themselves when it comes to
integration into a climate model, as libraries such as Fortran-Keras-Bridge
[Ott et al., 2020] do not support these layers.

Constrained Learning for Climate Modeling First works on ML for
climate science have attempted to enforce certain physical constraints via soft
penalties in the loss [Beucler et al., 2019] inspired by the so-called physical-
informed neural networks (PINNs) that solve differential equations by adding
them to the loss function [Raissi et al., 2019]. Soft-constraining has been used
more frequently in deep learning for weather and climate. Kashinath et al.
[2021], Kriegmair et al. [2021] add a penalizing term for mass conservation,
also employing an NN to model convection achieving improved stability for
their forecast.

Some recent work applies hard constraints within DL for climate models.
[Beucler et al., 2021] uses linearly constrained neural networks for convec-
tion using completion methods, here a subset of the output is predicted and
the remaining ones are calculated according to the constraints. Zanna and
Bolton [2020, 2021] use a final fixed convolutional layer to achieve momentum
and vorticity conservation in an ML ocean model. The fixed convolutional
layer acts as a finite difference stencil. A different line of work incorporates
constraints into machine learning based on flux balances [Sturm and Wexler,
2020, 2021, Yuval et al., 2020]. These strategies use domain knowledge of how
properties flow to ensure the conservation of different quantities; instead of
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predicting tendencies directly, fluxes between properties are predicted. Here
a non-trainable stoichiometric matrix is multiplied in the final layer. Hess
et al. [2022] introduce one global constraint to be applied to bias-correct2 the
precipitation prediction generated by a GAN, by rescaling the final output
with one scalar. Outside climate science, recent work has emerged on en-
forcing hard constraints on the output of neural networks by adjusting the
optimisation procedure [Donti et al., 2021].

In super-resolution for turbulent flows, MeshfreeFlowNet [Jiang et al.,
2020] employs a physics-informed model that adds PDEs as regularisation
terms to the loss function. Parallel to our work, the first approaches employ-
ing hard constraints for climate-related downscaling were developed: Geiss
and Hardin [2023] introduce an enforcement operator applied to multiple
CNN architectures for scientific datasets such as ERA5 cloud fraction, satel-
lite radiance data and radar data, with LR counterparts created synthetically
by average pooling. Here a scaled additive readjustment layer is integrated
as a last layer. Similarly, a CNN with a multiplicative renormalisation layer
is used to downscale atmospheric chemistry data in Geiss et al. [2022].

There have been a large number of approaches applying machine learning
to climate and weather modeling tackling a variety of scales, tasks, and
variables. The field benefits from the rapid advancements in deep learning,
from where methods are applied with just slight modification. Despite recent
success in the field, we identify a lack of methods to ensure the physical
consistency of ML modeling approaches and see opportunities to improve
downscaling and online performance in emulation.

1.2.2 Our Work

This thesis aims to advance both the field of constrained DL in general as
well as the application fields of downscaling and aerosol emulation (see Figure
1.3).

Constrained Deep Learning We develop novel hard-constraining me-
thods such as readjustment layers that include additive, multiplicative, and
softmax constraint layers, as well as a correction layer. We are also the
first to rigorously test and compare all constraining methods across different
problem setups, datasets, and architectures.

2Bias correction is the process of scaling climate model outputs to account for their
systematic errors, in order to improve their fitting to observations.
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So far most of the applications of deep learning in climate and weather
modeling apply deep learning architectures without including any physical
constraints or guarantees [Reichstein et al., 2019], struggling with instabilities
[Brenowitz et al., 2020] and unphysical predictions [Wang and Tian, 2022].
We are among the pioneers in introducing the concept of constraints into
climate modeling and applying hard or soft constraints for downscaling and
aerosol emulation.

Many works only consider soft constraints [Kriegmair et al., 2021, Chu
and Thuerey, 2017]. While soft constraints are flexible and can be sufficient,
they do not provide any guarantees on constraints, unlike our proposed hard
constraint layers, as demonstrated in this thesis. Additionally, soft con-
straints can lead to more unstable training, ”require additional tuning, and
potentially decrease accuracy as we show in this work (see Section 4.4). We
discuss and compare hard and soft constraints experimentally, providing the
first benchmarking of different constraining approaches.

Now, there exist first works on hard-constraining, all formulated and ap-
plied to specific application cases [Geiss et al., 2022, Hess et al., 2022, Zanna
and Bolton, 2020]. Here we develop a generally applicable formulation and
framework. Our completion layer (CompL) is a generalisation of the mech-
anism introduced by Beucler et al. [2020b]. The correction layer (CorL) can
be viewed as a generalisation of the ReLU layer, which has been incorpo-
rated before for the special case of enforcing the positivity of a prediction
[Beucler et al., 2020b]. A specific case of our multiplicative layer as a global
constraint (see Section 4.1.2) is applied by Hess et al. [2022] for bias correc-
tion. Here, we formulate a more general version of a multiplicative constraint
layer (MultCL), that is flexible enough to be applied to any application case
and can enforce multiple local constraints. Parallel works [Geiss and Hardin,
2023, Geiss et al., 2022] introduce two layers that enforce consistency in
super-resolution applications, which take a similar approach compared to our
readjustment layers: a slightly different multiplicative approach and a scaled
additive approach. A detailed comparison of our approaches and Geiss and
Hardin [2023] can be found in Harder et al. [2023a]. The additive constraint
layer (AddCL) and soft-max constraint (SmCL) layers can only be found
in our work. They show the best performance across metrics and architec-
tures in downscaling. SmCL uniquely ensures both equality and inequality
constraints at the same time.

Downscaling Our main contribution in the field of downscaling, is de-
veloping and including constraints that work well in the setting of super-
resolution. With these constraints, we then advance many deep learning
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architectures that have been applied in this field without any constraints,
potentially violating laws of physics [Wang and Tian, 2022].

Besides bringing constraining into the various methodologies for climate
super-resolution, we develop a new spatio-temporal architecture, combining
a deep voxel flow architecture [Liu et al., 2017] and a convolutional recurrent
NN, advancing previous works super-resolving multiple time steps at once,
but not increasing the temporal resolution [Harilal et al., 2021, Leinonen
et al., 2021], or increasing the temporal resolution by just treating the time
steps as different channels and using a standard SR-CNN Serifi et al. [2021].

Additionally, we are the first to apply deep learning for NorESM super-
resolution between two climate simulations run at different resolutions with
the same setup. Finally, our constraint layers are not limited to climate-
related data, we showcase how our new methodology can improve other fields
of super-resolution for instance enhancing satellite imagery.

Aerosol Emulation Not much work exists in aerosol emulation, compared
to other fields like clouds and convection [Beucler et al., 2020a]. This work
is the only one on emulating aerosol microphysics models like M7 [Vignati
et al., 2004], distinguishing itself from other approaches such as emulating
the single process of aerosol activation [Silva et al., 2020a] containing multiple
variables and complex processes.

There are only rare cases that include constraints in emulation [Beucler
et al., 2020b] and even fewer that include hard constraints, which makes our
work an innovative and impactful effort in the area of emulation, testing the
success of constraints in aerosol emulation.

Besides this novel application and developing and including constraints,
we are among the few works that go beyond pure ML development in Python,
bringing the emulator closer to deployment. We show challenges and design
choices for the implementation of an ML emulator within a global climate
model such as ICON [Zängl et al., 2015].

We can summarize our main contributions as follows:

• This is the first framework and detailed comparison of different con-
straining methods in deep learning for climate and weather modeling.

• We develop and successfully apply novel hard-constraining layers in
different scenarios, using readjustment techniques. These layers enforce
(physical) constraints for deep learning architectures and can improve
predictive performance.

• We advance deep learning for downscaling by demonstrating how our
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Figure 1.3: The topics of this thesis lie in the overlap of constrained DL
and DL to accelerate climate modeling, including downscaling, emulation,
aerosol emulation, soft and hard constraining methods, readjustment layers
and completion and correction mechanisms.

constraints enhance the performance for a variety of settings and in-
troduce a novel spatio-temporal architecture.

• This work is the only approach to emulate a full aerosol microphysics
model and is pioneering with the use of hard constraints in the emula-
tion field.

• The Fortran implementation of the neural network emulator and its
integration into and evaluation in ICON gives new insights into the
challenges of the deployment of neural networks for climate modeling.

1.3 Thesis Organisation

This work consists of six chapters. After motivating and outlining our work
and reviewing existing efforts in Chapter 1, this thesis starts with introducing
the foundations of relevant methods with an emphasis on deep learning, then
also going over downscaling, emulation, and aerosol modeling (see Chapter
2). For a reader knowledgeable in deep learning, downscaling, emulation or
aerosol modeling the respective section can be skipped.

Chapter 3 frames the problem of constraining deep learning architectures,
considering both equality and inequality constraints. This chapter introduces
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our own newly developed methods for constraining. We show how soft con-
straints are incorporated through a penalizing term in the loss function that
is minimized during training and what different ways there are to hard-
constrain neural networks with a final layer, like completion, correction, or
readjustment layers.

Chapters 4 and 5 then go through two detailed application cases: Down-
scaling and aerosol microphysics emulation. In both cases, we outline how
constraints are integrated, describe the datasets used for the experiments
conducted, and present the results achieved.

The downscaling application case focuses on demonstrating the effect of
constraints on a large variety of datasets and deep learning architectures.
For aerosol microphysics emulation, in addition to offline experiments, we
discuss our test case of implementing the neural network in Fortran and
running a global climate simulation with it. The thesis is then concluded
with a summary of this work and its overall contribution, as well as outlining
future avenues of research.
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Chapter 2

Foundations

In this chapter, we introduce all the methods and concepts used within the
thesis on a general level. As it is the main tool of this work, we focus on
deep learning, explaining all the different components being utilized here. We
start by describing machine learning, which forms the basis of deep learn-
ing. Then we give a brief description of downscaling, emulation, and aerosol
modeling to provide background information for our two application cases,
constrained downscaling and constrained aerosol emulation. An introduction
to our developed constraint methodologies can be found in the next chapter,
Chapter 3.

2.1 Machine Learning

Machine learning (ML) is a computational tool that enables systems to au-
tomatically learn and improve from experience without being explicitly pro-
grammed [Murphy, 2012]. Algorithms and models are developed to enable
computers to discover patterns in data, allowing them to make predictions
or decisions. ML algorithms learn from data, identify hidden relationships
within that data, and adapt their own behavior over time. ML models it-
eratively learn by solving an optimisation problem.As opposed to standard
optimisation processes, though, the final objective is to perform well on new
examples, not only the data seen during optimisation, to enable machines to
generalize from specific examples. If the performance is only good on training
data, the data used to optimize, and bad on the testing data, the data used
for final evaluation, this is known as overfitting, which needs to be avoided.

Supervised vs. Unsupervised ML In machine learning, the distinction
between supervised and unsupervised tasks often lies within the type of data
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Figure 2.1: An overview of an ML pipeline targeted towards application.

available and thus influences the learning process. In supervised learning,
the algorithm is trained on a labeled dataset, where each input is paired
with its corresponding output or target. The objective is to learn a mapping
from inputs to outputs, enabling the algorithm to make predictions on new,
unseen data. Unsupervised learning works with unlabeled data, where the
algorithm explores the inherent structure or patterns within the data without
explicit guidance on the output. Unsupervised tasks often include clustering,
dimensionality reduction, and density estimation. In this work, we only focus
on supervised tasks, but our methodological advancements in constrained
deep learning are applicable to unsupervised tasks as well.

Classification vs. Regression Tasks In machine learning, the distinc-
tion between classification and regression tasks depends on the predicted
output. Classification tasks involve predicting the categorical class or label
of an input and assigning it to predefined categories. The goal is to learn a
decision boundary that separates different classes in the feature space. Ex-
amples include spam detection or image classification, where the output is
a discrete label. On the other hand, regression tasks focus on predicting a
continuous numeric value, aiming to learn a mapping from inputs to a real-
valued output. Tasks like predicting house prices or stock prices fall into the
regression category. While both classification and regression involve super-
vised learning and share common algorithmic foundations, the key difference
lies in the type of output: discrete labels for classification and continuous
values for regression. In this work, we focus on regression tasks, learning the
continuous values of physical variables such as aerosol masses or atmospheric
water content. A classification model, though. is used at one point when we
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employ a generative adversarial network (see Section 2.2.2).

2.1.1 Machine Learning Pipeline

When using machine learning for an application task, it consists of the follow-
ing steps that need to be considered and that come with their own challenges
(see Figure 2.1 for an overview):

• Data: Choosing the right data that represents the final application,
most accurately is crucial. The split for validation and testing datasets
should be chosen so they represent a generalizability challenge that
is close to the one encountered when deploying the model. The data
quality highly determines the model’s future success and needs to be
ensured through careful data analysis and potential cleaning. Whereas
non-DL models can rely on feature engineering, choosing the right set
of input variables is important. For deep learning, this is often done
automatically by the model. For more details on dataset consideration
see Section 2.1.3.

• Model: A model needs to be chosen carefully, keeping dataset size, di-
mensions, data structure, future application, computational capacity,
and hardware requirements in mind. Common ML models are de-
scribed in Section 2.1.4 such as linear regression, random forests, and
Gaussian processes for non-DL tasks. For deep learning, i.e., neural
network (NN) models, we refer to Section 2.2.2. NNs as opposed to
other ML methods are often chosen, in settings where the learning task
is high-dimensional or very complex and a lot of data is available to
train.

• Training: We choose an objective function to decide what is minimized
during training, e.g., the mean-squared error. An optimizer is then
applied that decides how the ML parameters are adjusted to itera-
tively improve the models’ predictions on the training set. The most
common optimizer for deep learning approaches, the Adam optimizer
is described in Section 2.2.3, which builds on the simpler stochastic
gradient descent.

• Validation: The separate validation dataset serves several purposes. It
makes sure we do not overfit while training and also determines what
we choose as our hyperparameters. During training the validation er-
ror can be tracked and the training can be stopped once the validation
increases due to overfitting (early-stopping). To choose parameters for
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the optimizer or the machine learning architectures (number of layers,
etc.), the validation set is used to determine the best setup by calcu-
lating the evaluation metrics on the validation set (see Section 2.2.4).

• Testing: Choosing metrics that accurately represent the performance
of the trained model is the challenge to make the testing phase use-
ful. Usually, multiple metrics are evaluated, including the objective
function. The testing phase gives the chance to compare to simple
baselines or existing approaches to determine which model shows the
most promise to move toward deployment (see Section 2.2.4).

• Deployment: This stage is often not included in research-related ML.
It is about bringing the ML model to a real-world application task.
First, it needs to be tested whether the performance on the offline test
case translates to good performance online, which is often a challeng-
ing generalization task. Then there are additional challenges such as
software and hardware considerations, in our case transferring from
a Pytorch/GPU1 setting to a Fortran/CPU2 setting. Considerations
such as usability and speed become even more important for deploy-
ment compared to development.

2.1.2 Formalisation

Here, we introduce the notations of machine learning used throughout this
chapter and the entire thesis. We consider the setting, where x ∈ Rnin is the
input vector and y ∈ Rnout the final output vector of the ML model. The
ML model is given by a function fθ : Rnin → Rnout , parameterized by the
parameter θ ∈ Rl, so fθ(x) = y. Given the targets ŷ ∈ Rnout our supervised
learning task is solving following optimisation problem for all training pairs
(xi, ŷi)i=1,...,n for a training set of size n

min
θ∈Rl

n∑
i=1

L(fθ(xi), ŷi). (2.1)

L is a cost function, with the mean-squared error (MSE) being the most
common choice, and is used throughout this thesis. We only consider the
supervised learning task in this thesis, which means we always have the
target vector ŷ provided.

1GPU stands for graphics processing unit and is commonly used in ML.
2CPU stands for central processing unit and is commonly used in climate modeling.
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2.1.3 Datasets

Ensuring to have a suitable and high-quality dataset is usually the first step
that is tackled in an ML or DL problem. Here we briefly go through some
points that need to be considered when getting the data ML-ready, especially
in the context of climate data:

• Domain Relevance: The dataset should be relevant to the problem
domain and reflect real-world scenarios to ensure that the model learns
meaningful patterns and relationships.

• Data Diversity and Representativeness: Ensuring that the dataset cov-
ers a wide range of scenarios, variations, and extreme cases improves
the model’s ability to generalize to unseen data. This is especially im-
portant in a climate science context, where there is a huge variation in
the data depending on location and time.

• Quality of Data: High-quality data needs to be both relevant and di-
verse as said above. Additionally, the data needs to be clean, including
no corrupted values, and input and targets need to be matched cor-
rectly.

• Quantity of Data: Additionally, a sufficient quantity of diverse data en-
sures that the model learns robust patterns and features representative
of the entire dataset. The quantity highly depends on the dimensional-
ity of inputs and targets. In combination with a high diversity, a high
enough quantity of data is crucial to prevent overfitting.

• Data Preprocessing: Proper preprocessing steps such as normalisation,
standardisation, and handling missing values are important to ensure
that the data is in a suitable format for training. Preprocessing such
as normalisation leads to faster training and better performance [Nawi
et al., 2013]. Preprocessing also involves data augmentation techniques
to increase the diversity of the dataset, especially when dealing with
limited data.

• Train-Validation-Test Split: Proper partitioning of the dataset into
training, validation, and test sets is essential to assess the model’s per-
formance accurately. The training set is used to train the model, the
validation set is used to tune hyperparameters and monitor for over-
fitting, and the test set evaluates the model’s performance on unseen
data. For future deployment the train-val-test split must resemble the
generalisations task that is going to be present in deployment, e.g. a
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model that is going to be applied for future data, should be trained on
older data than it is tested.

2.1.4 Models

Three common ML methods used for regression problems that are not neural
networks and are applied in this thesis to emulate aerosol properties are linear
regression, random forests, and gradient boosting.

Linear Regression Linear regression is a statistical method used in ma-
chine learning to model the relationship between the target vector, y, (also
called dependent variable) and the input vector, x, (also called independent
variables or features) by fitting a linear equation through training data. The
linear regression equation is expressed as

fθ(x) = y = β0 +
n∑

i=1

βixi. (2.2)

Here, β0 is the intercept, βi, i = 1, . . . , nin are the slope coefficients. The goal
of linear regression is to determine the optimal values for θ = (β0, . . . , βn)
such that the sum of squared differences between the observed and predicted
values (residuals) is minimized. Linear regression most commonly uses gra-
dient descent methods, for more details see 2.2.3.

Linear regression is a popular choice in many fields of application, as
well as climate science, due to its computational efficiency, simplicity, and
interpretability. Linear regression though can lack expressive ability given
that it only models linear relationships. It is often used as a first baseline,
given a lower bound on performance more complex ML approaches should
exceed.

Random Forests Random forest regression is a machine learning ensemble
method that combines the predictions of multiple decision trees to improve
overall predictive accuracy and robustness [Ho, 1995]. Unlike linear regres-
sion, which fits a linear equation to the data, random forest regression is a
non-linear model capable of capturing more complex relationships within the
dataset.

A decision tree in machine learning is a predictive model that resembles
an upside-down tree, where each internal node represents a decision based on
a specific feature, and each leaf node corresponds to the predicted outcome.
The tree structure is created through a process called recursive partitioning,
where at each step, the algorithm selects the best feature to split the data,

24



Figure 2.2: A schematic view of a random forest prediction. The input goes
through multiple decision trees and in the end the prediction of these trees
is averaged to the final prediction.

aiming to maximize the homogeneity of samples within each branch. The
decisions made at each node are based on criteria such as Gini impurity [Shi,
2007] or information gain for classification tasks, or variance reduction or
root-mean-squared error for regression tasks. By following the branches of
the tree from the root to a leaf, an input can be classified or assigned a
predicted value.

Each decision tree is trained on a subset of the dataset and makes in-
dependent predictions. Randomness is introduced in two main ways: by
selecting a random subset of features for each tree and by bootstrap aggre-
gation or bagging, i.e. creating the random subsets of the training data.
During the prediction phase, the output of the random forest is determined
by aggregating the predictions of individual trees. For regression tasks, this
means averaging the predicted values from each tree, resulting in a more
robust and accurate prediction than any individual tree alone. A schematic
visualisation of a random forest prediction can be found in Figure 2.2.

Random forest regression is particularly well-suited for capturing non-
linear relationships and mitigating overfitting. It is a popular choice for
climate emulators, given its simple design and training as well as its ability
to conserve properties in the data, such as mass [O’Gorman and Dwyer,
2018]. Additionally, random forests give a feature importance for each input,
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making it an interpretable method. On the downside random forests can
have high memory requirements and slow inference [O’Gorman and Dwyer,
2018].

Gradient Boosting Gradient boosting [Friedman, 2001] is another en-
semble learning technique used for both classification and regression tasks,
successfully applied in competition and benchmarks such as ClimateBench
[Watson-Parris et al., 2022]. Like random forests, it builds a strong predic-
tive model by combining the predictions of multiple weak learners. However,
unlike random forest, which builds independent trees in parallel, gradient
boosting constructs trees sequentially, with each tree correcting the errors of
the previous ones.

Figure 2.3: A schematic view of a gradient boosting prediction. The input
goes through multiple decision trees that are fitted on the residual of the
previous trees prediction. The decision trees’ predictions are then added up
to produce the final prediction.

Gradient boosting begins with a simple model, often a shallow decision
tree, as the initial approximation of the target variable. Subsequent trees are
then built to correct the errors of the combined predictions of the existing en-
semble. The learning process involves adjusting the parameters of each weak
learner to minimize a specified loss function, typically the mean-squared er-
ror for regression problems. A schematic visualisation of a gradient boosting
prediction can be found in Figure 2.3.
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The key idea in gradient boosting is to fit each new tree to the negative
gradient of the loss function with respect to the ensemble’s current predic-
tion. This process is repeated iteratively, with each new tree focusing on
the remaining errors that the ensemble has not yet captured effectively. The
learning rate parameter controls the contribution of each tree to the ensem-
ble, and regularisation techniques are often employed to prevent overfitting.

The final prediction is obtained by summing the predictions of all trees
in the ensemble. Gradient boosting is known for its high predictive accu-
racy, adaptability to different types of data, and ability to capture complex
relationships in the data. In the context of climate modeling or other com-
plex systems, gradient boosting can be a valuable ML method for generating
accurate predictions on tabular data.

2.2 Deep Learning

Deep learning (DL) [Goodfellow et al., 2016] represents a subset of machine
learning that focuses on the development and training of neural networks.
Usually, deep learning is associated with neural networks including multiple
layers, also known as deep neural networks.

A neural network is a computational model inspired by the structure and
function of the human brain. It consists of interconnected nodes, also called
neurons, organized into layers. Each connection between nodes is associated
with a weight, representing the strength of the connection. The network
receives input data, processes it through a series of layers by adjusting the
weights of connections based on the input, and produces an output. Through
a process called training, the network learns to adjust its weights to minimize
the difference between its predictions and the actual outcomes, enabling it
to generalize and make accurate predictions on new, unseen data.

In the following, we discuss different neural network layers used in this
work. We then go through full architectures such as convolutional neural
networks and generative adversarial neural networks. Finally, we discuss the
training procedure and its components, objective function, optimizer, and
regularisation as well as the final evaluation of DL models.

2.2.1 Layer Types

Input/Output Layer The input layer is the initial stage of a neural net-
work where raw data is fed into the model for processing. This layer consists
of nodes, each representing a feature or attribute of the input data. The
number of nodes in the input layer corresponds to the dimensionality of the
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input, meaning the number of features or variables. For example, in image
classification, each node in the input layer might represent the intensity of a
pixel. The values of these nodes are the input signals that propagate through
the network.

The output layer is the final stage of a neural network where the processed
data is transformed into the desired format for the specific task. This layer
typically consists of nodes, with each node representing a possible outcome
or prediction related to the task being performed. The number of nodes in
the output layer depends on the nature of the problem, such as the num-
ber of classes in classification tasks or the number of predicted variables in
regression tasks. For instance, in image classification, each node in the out-
put layer may represent the probability of the input image belonging to a
particular class.

Input and output layers are visualized in Figure 2.4.

Hidden Layer A hidden layer in a neural network is an intermediate stage
between the input and output layers where the raw input data is transformed
through a series of computations. Hidden layers can have many different
forms, like dense layers, convolutional layer, or recurrent layers (see below).

Figure 2.4: A schematic view of a neural network with input layer, hid-
den layers, that are fuly-connected layers in this case, and output layer. A
prediction is created by moving an input through the layers applying linear
transformation and non-linear activations.

Fully-Connected Layer In deep learning, a fully-connected or dense layer
is a fundamental component where each neuron is connected to every neuron
in the previous and subsequent layers, forming a fully-connected network.
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It was first introduced as the perceptron [Rosenblatt, 1958]. Represented
mathematically, the output yi of a neuron in the layer is computed as:

yi = f

(
N∑
j=1

wij · xj + bi

)
. (2.3)

Here, N is the number of neurons in the previous layer, wij represents the
weight connecting the j-th neuron in the previous layer to the i-th neuron in
the current layer, xj is the input from the j-th neuron, bi is the bias term for
the i-th neuron, and f(·) is the activation function. Fully-connected layers
are visualized in Figure 2.4.

Activation Layer Activation layers or activation functions introduce non-
linearity to the model, allowing neural networks to capture complex relation-
ships within the data. One common activation function is Rectified Linear
Unit (ReLU) [Nair and Hinton, 2010], defined as

f(x) = max(0, x). (2.4)

ReLU sets all negative values to zero, facilitating efficient learning and miti-
gating the vanishing gradient problem. Leaky ReLU [Maas et al., 2013] is a
variant that allows a small negative slope for negative inputs, defined as

f(x) = max(αx, x), (2.5)

where α is a small positive constant addressing the problem of dying Re-
LUs [Goodfellow et al., 2016]. Another activation function is the hyperbolic
tangent (Tanh), given by

f(x) =
e2x − 1

e2x + 1
, (2.6)

which squashes input values between -1 and 1, aiding in learning features
with zero mean. Sigmoid is another activation function expressed as

f(x) =
1

1 + e−x
, (2.7)

mapping input values to the range (0, 1).
The softmax layer is a specialized activation function often used in the

output layer of neural network models for multi-class classification problems.
It is defined as

f(xi) =
exi∑
j e

xj
, (2.8)

where xi is the input to the softmax function for class i, and the denominator
is the sum of the exponential values of all inputs across the classes in the
output layer.
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Pooling Layer A pooling layer acts as a downsampling mechanism, re-
ducing the spatial dimensions of the input data to enhance computational
efficiency and promote translation invariance [Goodfellow et al., 2016]. The
two most common types of pooling are max pooling and average pooling. In
max pooling, the input is segmented into non-overlapping regions, retaining
only the maximum value within each region. For a more general max pool-
ing operation with a pooling size of n× n, the output Y for any cell (i, j) is
calculated as

Yi,j =
n−1
max
k=0

n−1
max
l=0

Xni+k,nj+l. (2.9)

Figure 2.5: An example for max and average pooling. On the left: max
pooling takes the maximum value in a region decreasing the size. On the
right: average pooling takes the average value in a region decreasing the size

Conversely, average pooling calculates the mean value within each region.
Thus, for a pooling size of n× n, the output Y is given by

Yi,j =
1

n2

n−1∑
k=0

n−1∑
l=0

Xni+k,nj+l. (2.10)

An example is visualised in Figure 2.5.

Batch Normalisation Layer A batch normalisation (batch-norm) layer is
a technique [Ioffe and Szegedy, 2015] designed to stabilize and accelerate the
training of neural networks by normalizing the input of each layer within a
mini-batch (for a definition of mini-batch see Section 2.2.3). This is achieved
by subtracting the mean and dividing by the standard deviation of the input.
Mathematically, for each dimension i of the input x in a mini-batch, a batch-
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norm layer performs the following operations:

Batch mean: µB =
1

m

m∑
i=1

xi (2.11a)

Batch variance: σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (2.11b)

Normalisation: x̂i =
xi − µB√
σ2
B + ϵ

(2.11c)

Scaling and shifting: yi = γx̂i + β (2.11d)

Here, m is the mini-batch size, µB and σ2
B are the batch mean and variance,

x̂i is the normalized input, and yi is the final output after scaling and shifting
with learnable parameters γ and β. The addition of a small constant ϵ is to
avoid division by zero.

Convolutional Layer A convolutional layer is the key component in con-
volutional neural networks (CNNs) designed for processing grid-like data,
such as images [Goodfellow et al., 2016]. The layer employs learnable filters
or kernels to scan across the input data, capturing local patterns and fea-
tures. Mathematically, the convolution operation for a 2D input X and a
filter W is expressed as:

Yi,j =
∑
m,n

Xi+m,j+n ·Wm,n + b (2.12)

Figure 2.6: An example for a convolution operation. For each region ele-
mentwise multiplication with the kernel and then summation of the entries
is done to obtain the output value.

Here, Yi,j is the output at position (i, j), Xi+m,j+n represents the input
at position (i + m, j + n), Wm,n denotes the filter weights, and b is the
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bias term. The convolutional layer introduces the concepts of stride and
padding. Stride determines the step size of the filter movement, influencing
the output size, while padding involves adding extra values around the input,
preventing information loss at the edges. In climate science, convolutional
layers are valuable for extracting spatial patterns from satellite imagery or
climate model data, aiding in tasks like super-resolution. An example for a
convolutional operation can be found in Figure 2.6.

Upsampling Layer An upsampling layer is a component used to increase
the spatial resolution of the input data. A common technique for upsampling
is transpose convolution, also known as deconvolution, where each element
in the input is expanded into a larger receptive field [Goodfellow et al., 2016].

Figure 2.7: An example for a transpose convolution operation. First each
entry of the input is multiplied with the kernel, then shifted and added up
to the final, higher-dimensional output.

Upsampling layers may also use interpolation methods such as bilinear
interpolation or nearest neighbors to fill in the gaps between existing values,
enhancing spatial resolution. In tasks like super-resolution or downscaling
in climate modeling, upsampling layers play a crucial role in reconstructing
high-resolution information from lower-resolution inputs, allowing models to
generate detailed outputs from coarser data. An example for a transpose
convolutional operation can be found in Figure 2.7.

Residual Layer Residual layers are a building block of neural networks
that include a shortcut connection, allowing the model to learn and empha-
size residual information—differences between the input and its representa-
tion. Residual layers became popular through the introduction of ResNets
[He et al., 2016]. Mathematically, for a residual layer, the output y is calcu-
lated as:

y = f(x) + x. (2.13)

Here, x is the input to the layer, f(x) represents the learned transfor-
mation by the layer, and + denotes element-wise addition. The primary
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idea is that instead of learning to approximate the target directly, the model
learns to capture the residual information, making it easier for the network to
converge and preventing the vanishing gradient problem. In tasks like super-
resolution or downscaling in climate modeling, residual layers facilitate the
extraction of fine-scale details and contribute to improving the quality of pre-
dictions by focusing on the residual features. A schematic view of a residual
layer can be found in Figure 2.8.

Figure 2.8: A schematic view of a residual layer. The input skips a layer and
is added to the output of that layer, in that way a residual is learned.

Recurrent Layer A recurrent layer is a type of layer designed for pro-
cessing sequential data, making it well-suited for tasks involving time-series
information [Hochreiter and Schmidhuber, 1997]. Unlike traditional feedfor-
ward layers, recurrent layers have connections that loop back on themselves,
allowing the network to maintain memory of past inputs. The output Yt of
a recurrent layer at time t is computed as a function of the current input Xt

and the previous hidden state Ht−1:

Ht = f(Whh ·Ht−1 +Whx ·Xt + bh) (2.14a)

Yt = Wyh ·Ht + by. (2.14b)

Here, Whh, Whx, Wyh are weight matrices, bh and by are bias terms,
and f(·) is an activation function. The recurrent layer’s ability to retain
information from previous time steps is crucial for modeling dependencies
in sequential data. In climate science, recurrent layers are important for
processing time-series data, such as temperature or precipitation records,
enabling models to capture temporal patterns and make predictions based
on historical information.

Gated Recurrent Unit Gated Recurrent Units (GRU) are a type of re-
current layer designed to capture long-range dependencies in sequential data
while addressing some of the challenges, such as the vanishing gradient prob-
lem, faced by traditional recurrent layers [Cho et al., 2014]. The GRU in-
troduces gating mechanisms that regulate the flow of information within the
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Figure 2.9: A schematic view of a recurrent layer. Each time step is an input
to the network, along with a memory, the hidden state (H).

network. The hidden state Ht at time t in a GRU is updated using the
following formulas:

zt = σ(Wz · [Ht−1, Xt]) (2.15a)

rt = σ(Wr · [Ht−1, Xt]) (2.15b)

H̃t = tanh(Wh · [rt ⊙Ht−1, Xt]) (2.15c)

Ht = (1− zt)⊙Ht−1 + zt ⊙ H̃t. (2.15d)

Here, Xt is the input at time t, Wz, Wr, and Wh are weight matrices, σ is
the sigmoid activation function, ⊙ denotes element-wise multiplication, and
Ht−1 and Ht represent the hidden states at time t − 1 and t, respectively.
The update gate zt controls how much information to retain from the pre-
vious hidden state, and the reset gate rt determines how much of the past
information to forget.

Convolutional GRU Convolutional Gated Recurrent Unit (ConvGRU)
layers [Shi et al., 2015] merge convolutional layers with GRUs. In a Con-
vGRU, the standard GRU operations—reset gate, update gate, and new
memory generation—are modified to include convolution operations instead
of only matrix multiplications. This modification allows the model to main-
tain spatial information across the sequence. The update equations for a
ConvGRU can be represented as follows:

zt = σ(Wz ∗Xt + Uz ∗Ht−1 + bz) (2.16a)

rt = σ(Wr ∗Xt + Ur ∗Ht−1 + br) (2.16b)

H̃t = tanh(W ∗Xt + rt ⊙ (U ∗Ht−1) + b) (2.16c)

Ht = (1− zt)⊙Ht−1 + zt ⊙ H̃t. (2.16d)

Here, ∗ denotes the convolution operation, ⊙ represents the element-wise
multiplication, σ is the sigmoid activation function, and tanh is the hyper-

34



bolic tangent activation function. W , U , and b are the weights and biases
associated with the input Xt and previous hidden state Ht−1, respectively.

Optical Flow In the context of frame interpolation, optical flow [Horn and
Schunck, 1981] is used to estimate the motion between two consecutive frames
at the pixel level. If I(x, y, t) represents the intensity of a pixel at coordinates
(x, y) at time t, the optical flow assumption states that the intensity of a pixel
remains consistent over time, even as it moves. This can be expressed as:

I(x, y, t) = I(x+ dx, y + dy, t+ dt). (2.17)

where dx, dy represent the pixel’s displacement between times t and t + dt.
Using this principle, optical flow algorithms compute the motion vectors for
each pixel, enabling the synthesis of new frames that smoothly transition
between the original ones.

Optical flow layers can be applied in various domains, including video
frame interpolation, where missing frames are generated by estimating the
motion between existing frames. In climate science, optical flow can be
utilized for analyzing the temporal evolution of climate patterns, tracking
changes in weather systems over time. This enables tasks such as the inter-
polation of climate data between time points predicted.

2.2.2 Architectures

Now that we learned about all necessary layer types, we discuss how these
can be combined into full models, going through architectures such as fully-
connected neural networks, convolutional neural networks, generative adver-
sarial networks, and recurrent neural networks.

Feed-Forward Neural Networks

A feed-forward neural network is a type of artificial neural network where
connections between the units do not form cycles [Goodfellow et al., 2016].
This architecture is characterized by the flow of information moving in only
one direction—from the input layer, through one or more hidden layers, to
the output layer. Each layer is made up of nodes, or neurons, which apply
an activation function to the weighted sum of their inputs. Fully-connected
neural networks, convolutional neural networks, and generative adversarial
neural networks are all kinds of feed-forward neural networks.
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Fully-Connected Neural Networks

Fully-connected Neural Networks (FCNNs) or multi-layer perceptrons (MLPs),
also referred to as artificial neural networks (ANNs), vanilla NNs, dense NNs,
or just neural networks (NNs), are the foundational architecture in the field
of deep learning. They consist of input and output layers and all hidden
layers are fully-connected layers (see Section 2.2.1). Fully-connected neu-
ral networks are a popular choice for climate emulation tasks [Beucler et al.,
2020b, Gentine et al., 2018b, Brenowitz and Bretherton, 2018, Gentine et al.,
2018a, Gettelman et al., 2021], when working with tabular data, given their
expressive power and computational efficiency.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [LeCun et al., 1998] represent a spe-
cialized class of neural networks designed to process and analyze structured
grid data, particularly well-suited for tasks like image recognition, object
detection, and computer vision. CNNs leverage the power of convolutional
layers to automatically extract hierarchical features from input data.

A CNN consists of several convolutional blocks, that combine a convolu-
tional layer, a pooling layer and an activation layer. At the end of a CNN
we often can find a fully-connected layer to produce the final prediction. A
a convolutional neural network might also include residual layers, especially
for tasks like super-resolution.

The defining characteristics of a CNN are feature hierarchy, weight shar-
ing and translation invariance. CNNs automatically learn hierarchical repre-
sentations of features through the convolutional layers. Lower layers capture
simple features like edges and textures, while deeper layers assemble these
features into more complex structures, allowing the network to learn high-
frequency details. Weight sharing is a key concept in CNNs, where the same
set of filters is applied across different spatial locations, promoting the ex-
traction of local patterns CNNs exhibit translation invariance, meaning they
can recognize patterns regardless of their position in the input space. This
property is crucial for tasks like object recognition, where the location of an
object in an image should not affect the network’s ability to identify it.

CNNs have revolutionized the field of computer vision, providing a robust
and efficient framework for extracting meaningful features from structured
grid data. Often working with spatial gridded data they have become a
popular tool for climate data too. In downscaling, they are used to extract
patterns in the low-resolution input that give insights into what the high-
resolution target contains [Vandal et al., 2017].
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Figure 2.10: A schematic view of a generative adversarial network. Two
NNs are included. The generator receives random noise and predicts a fake
sample. The discriminator then learns to distinguish real samples from fake
samples.

Generative Adversarial Neural Networks

Generative Adversarial Networks (GANs) represent a powerful class of deep
learning models designed for generative tasks, such as image synthesis, style
transfer, and data augmentation. Introduced by Goodfellow et al. [2014a],
GANs consist of two neural networks – a generator and a discriminator –
engaged in a adversarial training process. A schematic view of a GAN is
shown in Figure 2.10.

Components of GAN:

• Generator: The generator is tasked with creating data instances that
are indistinguishable from real data. It takes random noise as input
and transforms it into data samples. The generator tries to learn the
underlying distribution of the training data to produce realistic out-
puts.

• Discriminator: The discriminator, on the other hand, acts as a binary
classifier that distinguishes between real data samples and those gener-
ated by the generator. It is trained to correctly label the origin of the
input as either real or generated.

Adversarial Training Process:

• Objective: The objective of GANs is to train the generator to generate
realistic data such that the discriminator is unable to differentiate be-
tween real and generated samples. Simultaneously, the discriminator
aims to improve its discrimination capabilities.
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• Minimax Game: The training process of GANs can be viewed as a min-
imax game between the generator and discriminator. The generator
tries to minimize the probability of the discriminator correctly classi-
fying generated samples, while the discriminator seeks to maximize its
accuracy in distinguishing between real and generated samples.

• Mathematical Intuition: Let G represent the generator and D the dis-
criminator. The objective function for GANs can be expressed as:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

Here, pdata(x) is the distribution of real data, pz(z) is the distribution
of noise, x represents real data samples, and G(z) denotes generated
samples.

• Equilibrium: Ideally, at equilibrium, the generator produces data that
is indistinguishable from real data, and the discriminator cannot con-
fidently differentiate between the two.

In climate modeling, including downscaling, GANs emerged as a common
choice, especially when a probabilistic prediction is useful [Harris et al., 2022].

Conditional GAN A conditional GAN (cGAN) [Mirza and Osindero,
2014a] is an extension of the standard GAN that incorporates additional
information to guide the generation process. In a cGAN, both the generator
and discriminator are conditioned on some auxiliary information, often repre-
sented as additional input variables. Mathematically, the objective function
for a cGAN is modified to include this additional information:

min
G

max
D

V (D,G) = Ex,y[logD(x|y)] + Ez[log(1−D(G(z|y)))]. (2.18)

Here, x is real data, y is the auxiliary information, z is a random noise vector,
D is the discriminator, and G is the generator. The generator now takes
both random noise and auxiliary information as input to produce synthetic
samples. This architecture is a popular choice for image-to-image translation
tasks [Isola et al., 2016]. In super-resolution or downscaling the auxiliary
information is given by the low-resolution input data. A schematic view of
a cGAN is shown in Figure 2.11.

Supervised cGAN/GAN In a cGAN/GAN with a supervised learning
component, the model aims to generate outputs conditioned on auxiliary
information, while simultaneously minimizing the MSE or MAE loss between
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Figure 2.11: A schematic view of a conditional generative adversarial net-
work. Two NNs are included. The generator receives random noise plus
an additional auxiliary input and predicts a fake sample. The discriminator
then learns to distinguish real samples from fake samples.

the generated outputs and the ground truth. The objective function for such
a cGAN with an additional content loss term can be expressed as:

min
G

max
D

V (D,G) + λ · Ex,y[∥y −G(z|y)∥22]. (2.19)

Here, the first part of the objective function is the standard adversarial loss,
as in a traditional cGAN. The second part is the MSE loss term, where y is
the ground truth, and λ is a balancing parameter.

If an image-to-image translation or specifically a super-resolution task is
coming with matching pairs of inputs and targets this extension is a natural
choice [Isola et al., 2016] and is commonly used for downscaling [Harris et al.,
2022]. A schematic view of a supervised GAN is shown in Figure 2.12.

Recurrent Neural Networks

Recurrent Neural Network (RNN) is a type of neural network designed to pro-
cess sequential data by maintaining a hidden state that captures information
from previous steps. Unlike feedforward networks, RNNs have connections
that form a temporal loop, allowing them to capture dependencies over time.
The hidden state at each time step is updated based on the current input
and the previous hidden state. Next to basic recurrent layers and RNN can
include GRU layers as described in the previous section.

RNNs are suitable for tasks involving sequential data, such as time-series
analysis in climate science, where they can capture temporal patterns and
dependencies within the data. They can be combined with convolutional
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Figure 2.12: A schematic view of a supervised generative adversarial network.
Two NNs are included. The generator receives random noise and predicts a
fake sample. The discriminator then learns to distinguish real samples from
fake samples. The adversarial loss is extended with a supervised content loss
term, often the MAE/MSE between real and fake sample.

layers to accommodate spatio-temporal data [Leinonen et al., 2021]. For
our downscaling task, we use a convolutional RNN with a mixture of convo-
lutional, residual, ConvGRU, and upsampling layers, inspired by Leinonen
et al. [2021].

Encoder-Decoder Architectures

An encoder-decoder architecture is a type of neural network design com-
monly used for tasks involving sequence-to-sequence mapping [Sutskever
et al., 2014], such as machine translation or image captioning. They also
exist as convolutional encode-decoders, such as U-Net for semantic segmen-
tation [Ronneberger et al., 2015]. The encoder part of the architecture pro-
cesses the input data and transforms it into a fixed-dimensional representa-
tion called a latent space or embedding. This encoding captures important
features and patterns from the input data. The decoder part then takes this
encoded representation and generates an output. For our spatio-temporal
super-resolution task, we use an encoder-decoder architecture to extract a
lower dimensional representation of the input time-series. A schematic view
of an encoder-decoder architecture is shown in Figure 2.13.
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Figure 2.13: A schematic view of an encoder-decoder architecture. The
input is passed through an encoder that decreases the dimension to a latent
space representation. The decoder is the counterpart that then increases the
dimension again.

2.2.3 Training Procedure

Data Preprocessing

Data preprocessing is a critical step in training neural networks, ensuring
the model learns efficiently. Two fundamental techniques for preprocessing
are normalisation and standardisation, which help in scaling the input data.
Other preprocessing techniques include data augmentation, useful in a low-
data regime. But as we are not limited by the amount of data, it is not
applied here.

Normalisation Normalisation adjusts the data to a specific range, often
[0, 1], making it easier for the network to converge. It is computed for a
given feature by subtracting the minimum value and dividing by the range
of the feature values. Mathematically, if x is an original value, xnorm is the
normalized value, xmin and xmax are the minimum and maximum values of
that feature, respectively, the formula for normalisation is:

xnorm =
x− xmin

xmax − xmin

. (2.20)

Standardisation Standardisation, on the other hand, adjusts the data so
that it has a mean of zero and a standard deviation of one. This technique
does not bind values to a specific range, which may be beneficial for features
with outliers or when the distribution is not Gaussian. The standardisation
of a value x to xstd involves subtracting the mean µ of the feature and dividing
by the standard deviation σ:

xstd =
x− µ

σ
. (2.21)
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In special cases, a log transformation for training might be a good choice
too. This is e.g. done when super-resolving precipitation data [Wang et al.,
2021a], where the distribution is a log-normal distribution.

Objective Function

The choice of the objective function or loss function is crucial for the success
of training a deep learning model. In regression tasks, where the goal is to
predict continuous values, the mean-squared error (MSE) is commonly used
as the loss function. For a set of predictions ŷi and corresponding ground
truth values ŷi, MSE is defined as

MSE =
1

N

N∑
i=1

(ŷi − yi)
2, (2.22)

where N is the number of samples.
In classification tasks, where the aim is to assign data points to specific

classes, Cross-Entropy Loss, also known as log loss, is frequently employed.
For binary classification, the binary cross-entropy loss is given by

Binary Cross-Entropy = − 1

N

N∑
i=1

[yi log(yi) + (1− ŷi) log(1− yi)], (2.23)

where ŷi is the predicted probability of class 1. These loss functions quantify
the dissimilarity between model predictions and ground truth values, guiding
the optimisation process to iteratively update model parameters for better
performance.

Optimizer

Optimizers play an important role in training deep learning models by ad-
justing the model’s parameters during the learning process to minimize the
difference between predicted and actual values. Among the various optimiz-
ers, Adam [Kingma and Ba, 2015] (short for Adaptive Moment Estimation)
has gained popularity for its efficiency in balancing speed and accuracy and
is used here throughout the thesis. As Adam builds on gradient descent and
stochastic gradient descent, we introduce these briefly as well.

Gradient Descent Gradient descent is an optimisation algorithm used
in training machine learning models, aiming to find the minimum of a cost
function by iteratively adjusting model parameters. It computes the gradient,
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or the partial derivatives, of the cost function with respect to each parameter
and updates the parameters in the opposite direction of the gradient. The
update rule for parameter w is given by:

w = w − η · ∇J(w).

Here, η is the learning rate, controlling the step size in each iteration, and
∇J(w) represents the gradient of the cost function J(w).

Stochastic Gradient Descent Stochastic gradient descent (SGD) is a
variant of gradient descent that processes one training example at a time,
making it computationally more efficient for large datasets. The update rule
for SGD is similar, but it uses the gradient of the cost function for a single
training example:

w = w − η · ∇J(w;xi, ŷi).

Here, xi and ŷi are the features and targets of the i-th training example. SGD
is particularly useful in combination with large datasets where processing the
entire dataset in each iteration can be computationally expensive.

Mini-Batch Mini-batch gradient descent is a compromise between SGD
and gradient descent. Instead of using the entire dataset or a single sample
to compute the gradient, it uses a small, randomly selected subset of the
training data, called a mini-batch. The size of a mini-batch can vary but is
typically between 16 and 512 samples. This approach reduces the variance
in parameter updates compared to SGD, leading to more stable convergence,
while still being computationally more efficient than batch gradient descent.
The use of mini-batches allows for the utilisation of optimized matrix op-
erations in hardware accelerators like GPUs, further enhancing the training
speed [Goodfellow et al., 2016]. If you have a training dataset of N samples
and choose a mini-batch size of m, you would divide the dataset into ⌈N

m
⌉

mini-batches. The gradient of the loss function is then computed and the
model’s parameters updated for each mini-batch, iteratively improving the
model with each step.

Adam Adam is built on SGD, it combines ideas from both momentum-
based optimisation [Nesterov, 1983] and root mean square propagation [Hin-
ton, 2012]. It maintains two moving averages for each parameter: the first
moment (mt, mean) and the second moment (vt, uncentered variance). These
moving averages are used to adaptively adjust the learning rates for each pa-
rameter during training. The update rule for the parameter w using Adam
is given by:
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mt = β1 ·mt−1 + (1− β1) · ∇J(w)

vt = β2 · vt−1 + (1− β2) · (∇J(w))2

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

w = w − η · m̂t√
v̂t + ϵ

Here, β1 and β2 are exponential decay rates for the moving averages, t
is the iteration step, ∇J(w) is the gradient of the cost function, η is the
learning rate, and ϵ is a small constant to prevent division by zero. The first
and second moments are used to compute biased estimates (m̂t and v̂t), and
these estimates are then utilized to update the parameters.

Regularisation

Regularisation techniques are employed to prevent overfitting and enhance
the generalisation capability of models.

L1 regularisation [Tibshirani, 1996], or Lasso regularisation, incorporates
a penalty equal to the absolute value of the magnitudes of the model’s weights
into the loss function, thereby encouraging sparsity in the model weights:

LL1 = λ
∑
i

|wi|,

where wi denotes the weights of the model, and λ is a coefficient that regulates
the regularisation strength.

L2 regularisation [Hoerl and Kennard, 1970], also known as Ridge reg-
ularisation, involves adding a penalty based on the square of the weights’
magnitudes to the loss function. This encourages the distribution of weights
to be small and evenly spread, rather than allowing few weights to become
very large:

LL2 = λ
∑
i

w2
i .

Weight decay [Goodfellow et al., 2016] is very similar to L2 regularisation. For
many optimisation algorithms (like classic stochastic gradient descent), ap-
plying weight decay is mathematically equivalent to L2 regularisation. How-
ever, the distinction becomes important in the context of adaptive learning
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rate optimizers like Adam. In these cases, applying weight decay as a sepa-
rate step from the gradient update (true weight decay) can lead to different
behavior compared to incorporating the weight penalty into the loss function
(as in L2 regularisation). True weight decay modifies the weights directly af-
ter the adaptive learning rate has been applied, which can lead to different,
and sometimes more desirable, training dynamics [Loshchilov and Hutter,
2017].

Dropout [Srivastava et al., 2014], a different form of regularisation, en-
hances model robustness by randomly omitting a subset of neurons during
the training process. This prevents neurons from becoming overly reliant on
the presence of specific other neurons, effectively reducing overfitting:

Dropout: output = input×mask,

where ”mask” is a binary vector, with each element having a probability p of
being one, and 1− p of being zero, thereby randomly deactivating a portion
of neurons.

Hyperparameters

In deep learning, hyperparameters are external configuration settings that
influence the training process and architecture of a neural network, and they
are distinct from model parameters that are learned during training. Com-
mon hyperparameters include the learning rate (η), which determines the
step size in updating model weights during optimisation, and the batch size
(B), which specifies the number of samples processed together in each train-
ing iteration. Another crucial hyperparameter is the number of epochs (E),
representing the number of times the entire training dataset is passed through
the network. Additionally, the choice of activation functions, regularisation
strength (λ), and architecture-related parameters, such as the number of
layers and units, are considered hyperparameters. Finding an optimal set of
hyperparameters is a crucial task for effective model training and generalisa-
tion.

Hyperparameters are typically chosen through a combination of expert
knowledge, empirical testing, and automated search techniques. Initially,
domain knowledge and previous experience can guide the selection of rea-
sonable starting values. However, because the optimal hyperparameters can
vary widely between different datasets and model architectures, empirical
testing is often necessary. This testing is usually performed via grid search,
where a predefined range of values for each hyperparameter is systemati-
cally evaluated, or random search, which randomly selects hyperparameter
values within specified ranges and is often more efficient than grid search

45



[Bergstra and Bengio, 2012]. Additionally, more sophisticated methods like
Bayesian optimisation [Snoek et al., 2012], genetic algorithms [Bäck, 1996],
and gradient-based optimisation have been developed to efficiently explore
the hyperparameter space.

2.2.4 Evaluation

Depending on the task there are different metrics used to evaluate the per-
formance of a deep learning model. Usually a variety of quantitative mea-
sures are used for a thorough evaluation in parallel. The metric can be the
same function as the objective function, such as MSE or mean absolute er-
ror (MAE). Other important metrics, especially in scientific applications, are
bias, R2-score, and correlation. We go into detail on metrics for the two ap-
plication tasks that are considered: downscaling and emulation (see Section
2.3.5 and Section 2.4.4). If we consider a multi-variable output with variables
operating on different scales and we need one metric that aggregates all the
variables metrics, we use normalized versions of e.g. RMSE or bias.

Predictive accuracy compared to a ground truth might not be the only
quantity to consider. Speed during both training and especially inference can
be as or even more important depending on the application. Additionally, in
tasks like emulation stability of the trained model is an important quality to
take into account. This often is connected to generalisation ability, which is
crucial when applied to different times or locations. Moving to deployment
evaluation can include downstream tasks, e.g. in downscaling, counting the
occurrences of extreme events that are relevant for a user.

Another important component of the evaluation phase is comparison to
baselines and state-of-the-art models, to evaluate if and how the proposed
new architecture adds value to the field.

2.3 Downscaling

Downscaling (DS) in climate science and super-resolution (SR) in machine
learning (ML) refers to a function from low-resolution (LR) input data to
a high-resolution (HR) target data; in SR the high-resolution prediction is
referred to as super-resolved (SR) data. Downscaling via established statis-
tical methods—statistical downscaling—has been used long by the climate
science community to increase the resolution of climate data [Maraun and
Widmann, 2018] and recently more and more tackled by the machine learning
community.
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Classical downscaling is divided into two subfields, dynamical downscal-
ing and statistical or empirical downscaling. Such as empirical/statistical
downscaling, dynamical downscaling is a technique used in climate modeling
to refine global climate simulations at a regional or local scale. Dynamical
downscaling involves using regional climate models (RCMs) with higher spa-
tial resolutions to simulate climate conditions for specific areas. These RCMs
are nested within GCMs and utilize their output as boundary conditions.
By incorporating local topography and geography, RCMs can provide more
accurate and detailed information about regional climate patterns, helping
researchers understand local climate variations and potential impacts, such
as changes in precipitation, temperature, and extreme weather events.

2.3.1 SR in Computer Vision vs. Downscaling

Despite some similarities, there are a variety of characteristics that distin-
guish super-resolution in computer vision (CV-SR) and downscaling in cli-
mate science.

Terminology In super-resolution and downscaling, there are – sometimes
confusing – differences in the terms used in machine learning or climate
science. In machine learning/super-resolution the process of increasing the
data’s resolution is referred to as upsampling, whereas in climate science it is
downscaling. Analogously, decreasing the resolution is called downsampling
in ML and upsampling in an Earth system context.

Data Next to the obvious difference that SR in computer vision works
with different data, i.e. images of faces, scenes, etc., and downscaling targets
physical quantities such as temperature, precipitation, solar radiation, or
winds, there are other differences concerning the data. The low-resolution
version in SR for computer vision can have several forms of degradation
applied to it, such as blurring, subsampling, or adding noise. Climate data,
when at lower resolution is usually through wider grid spacing in simulations.
While climate data can be transformed onto a regular grid, resembling the
image pixel format, it originally comes from a variety of different grids or
point measurements.

Settings Super-resolution and downscaling both include a few subtasks.
Single-image super-resolution (SISR) in computer vision is the most com-
mon task and refers to enhancing the resolution of one given low-resolution
image. While this is also a setting in downscaling, e.g. where a low-resolution
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prediction of rainfall is super-resolved, downscaling often includes a variety
of different input variables and might not even include the predicted quan-
tity itself, being closer to a prediction task than SR in computer vision.
Multi-frame SR includes multiple input images, usually taken from the same
scene. Multi-frame SR is mostly a common task when working with satel-
lite imagery [Martens et al., 2019], which shows similarities to downscaling
setups like perfect prognosis (see below) that include a variety of variables
as inputs. Video super-resolution or video frame interpolation is similar to
super-resolving spatio-temporal climate data. For more details on the differ-
ent tasks within downscaling, see Section 2.3.2.

Objective The overall objectives of CV-SR and DS are often different.
Whereas in CV-SR the goal is to create images that look better and less
blurry, downscaling handles physical quantities, so it is less about qualita-
tive measures, but about correctness. This is reflected in the metrics, whereas
in CV-SR structural similarity (e.g. measured with SSIM) and peak-signal-
to-noise ratio are the standard measures in downscaling bias, mean-squared
error or probabilistic measures such as CRPS are commonly integrated (see
Section 2.3.5 for details). In downscaling it can be crucial to have a proba-
bilistic prediction, e.g. connected to rainfall predictions. Depending on the
authors and audience, metrics from computer vision might still be used for
downscaling in a machine learning focused environment.

2.3.2 Different Tasks

There are different tasks and setups in downscaling: super-resolution, perfect
prognosis, model output statistic, weather generators, and (spatio-) temporal
downscaling. In this thesis, we will consider the super-resolution case and
spatio-temporal downscaling. We briefly describe all the different setups:
Perfect prognosis, model output statistics, super-resolution, and (spatio-
)temporal super-resolution to clarify how the setup we are considering dis-
tinguishes itself from other approaches.

Perfect Prognosis In perfect prognosis, there are usually multiple in-
put fields given, that differ from the target quantity. Perfect prognosis uses
an empirical model to learn a mapping between large-scale global climate
model variables, such as geopotential height, pressure, and air temperature,
and local-scale quantities observed at the surface, e.g. surface temperature
or precipitation. The training data for perfect prognosis are observational
data. It works under the assumption that the learned relationship from ob-
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servational data can then be transferred to climate model data, applying the
trained model for future climate projections, that only include the larger-
scale variables.

Model Output Statistics Model output statistics (MOS) is a technique
for downscaling that includes correcting biases3. The setup is similar to
perfect prognosis, i.e. MOS lears a mapping from larger-scale variables to
local-scale variables, but the difference lies in the data source. MOS directly
trains on larger-scale quantities from climate model outputs, which then
introduces the additional challenge of learning the bias between models and
observations. The target variables remain observational.

Super-Resolution In super-resolution the input variable is the same quan-
tity as the output variable. Here, either high-resolution data is taken and
low-resolution counterparts are created by downsampling the HR data or LR
and HR come from different simulations of the same model. In the latter
case, there is some bias correction part included. If the LR data comes from
a simulation and the HR from observations, it is considered model output
statistics (see below).

(Spatio-)Temporal Downscaling This setup extends spatial downscal-
ing by including the temporal dimension. Here either only the temporal
dimension is increased or spatial and temporal dimensions are enhanced si-
multaneously.

2.3.3 Data

First, data used for downscaling has to address the general points for datasets
in ML formulated in Section 2.1.3: we need to ensure the data is relevant
to the problem we are trying to solve, this involves e.g. having the right
resolution and the right variables. The training data also need to cover
seasonal, day-time dependent, or location-dependent differences. Next to
having high-quality data, we need at least several thousand, better several
ten thousand samples to perform downscaling successfully, as it is usually a
high-dimensional problem.

The dataset used for a specific downscaling problem depends on the kind
of task we are tackling. The task can define the data source. For perfect
prognosis, the data comes from observations or reanalysis data. For MOS

3Bias correction is the process of scaling climate model outputs to account for their
systematic errors, in order to improve their fitting to observations.
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LR samples come from model data, whereas the target data is obtained from
higher-resolution observations too. For super-resolution there can either be a
synthetic setup, where the HR data is given by HR observations or modeled
data, the LR is then created by downsampling the HR data or HR and
LR include the same quantity but come from simulations at different scales
or observations with varying resolutions. If LR and HR data come from
different sources an important point is to align the data points. Here it can
be necessary to regrid data or even employ an unsupervised approach.

2.3.4 Architectures

Traditionally, downscaling is tackled by statistical methods, but now deep
learning shows the potential to outperform these methods [Baño-Medina
et al., 2021]. Various architectures can be applied depending on the spe-
cific requirements of the downscaling task. Here, we go through the most
common architectures that we also incorporate in Chapter 4 later.

CNNs To extract and recognize spatial patterns in gridded climate data,
CNNs are a natural fit and are commonly used for downscaling [Vandal et al.,
2017]. Here, the input is the low-resolution climate variable (or multiple
variables) that is transformed to its super-resolved counterpart. A neces-
sary feature of SR-CNNs (super-resolution CNNs) is an upsampling layer to
increase the resolution of the spatial field unless the input is preprocessed
by using bicubic interpolation or similar strategies. Most SR-CNNs differ
from classification CNNs in that they do not employ pooling layers to de-
crease the dimensionality; the U-Net architecture is an exemption with its
encoder-decoder architecture. For super-resolution residual layers are a use-
ful building block, given that the LR input and HR target share a lot of the
same information. An example of an SR-CNN architecture using a transpose
convolution is shown in Figure 2.14. For more details on CNNs see Section
2.2.2.

GANs In climate modeling, one low-resolution input may correspond to
multiple potential high-resolution counterparts. To address this challenge, it
has become more common to employ GANs for climate variable downscaling.
GANs consist of a generator that generates high-resolution samples and a
discriminator that evaluates the realism of those samples. During training,
the generator learns to produce SR representations that closely resemble true
high-resolution data, while the discriminator distinguishes between generated
and real HR samples. This adversarial training process refines the generator’s
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Figure 2.14: An example for an super-resolution convolutional neural net-
work architecture. the input s passed through a convolutional layer to extract
spatial pattern, the ReLU introduces non-linearities. A transpose convolu-
tion then increases the spatial dimension. In that higher dimension a residual
block is included to learn fine-grained details.

ability to produce realistic, high-resolution outputs, improving downscaling
of climate variables [Harris et al., 2022]. A schematic view of an SR GAN
architecture is shown in Figure 2.15. For more details on GANs see Section
2.2.2.

RNNs Even when only spatial SR is performed the underlying climate data
often comes with a temporal dimension that can be utilized. The previous
timestep can provide useful information for predicting the spatially super-
resolved data. Here, architectures are used that combine recurrent layers
with convolutions, such as ConvGRUs [Leinonen et al., 2021]. For more
details on RNNs see Section 2.2.2.

Frame Interpolation Networks As a common tool for video super-resolu-
tion or video frame interpolation, frame interpolation networks can be ap-
plied for temporal downscaling. Here, often optical flow is used to predict an
intermediate frame. This can be applied to predicting an intermediate time
step in downscaling, potentially combined with deep leanring. We incorpo-
rate an architecture like this, employing deep voxel flow [Liu et al., 2017]. A
combination of a ConvGRU and a frame interpolation network is shown in
Figure 2.16.

2.3.5 Metrics

Super-resolution/downscaling methods are evaluated using various metrics
to assess the quality and fidelity of the generated high-resolution (HR) out-
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Figure 2.15: A schematic view of a supervised conditional generative ad-
versarial network applied to super-resolution. Two NNs are included. The
generator received random noise and a LR input and predicts a a SR version.
The discriminator then learns to distinguish real samples HR samples from
SR samples.

puts. We note the predicted values with y and the target with ŷ. Here, are
some commonly used metrics, both from computer vision and meteorological
evaluation:

• Structural Similarity Index (SSIM) [Wang et al., 2004] measures the
structural similarity between the original and generated images. For-
mula:

SSIM(y, ŷ) =
(2µyµŷ + C1)(2σyŷ + C2)

(µ2
y + µ2

ŷ + C1)(σ2
y + σ2

ŷ + C2)
, (2.24)

where µ is the mean, σ is the standard deviation, and C1, C2 are con-
stants.

• The Multi-Scale Structural Similarity Index (MS-SSIM) [Wang et al.,
2003] is an extension of the SSIM metric that incorporates information
from multiple scales to provide a more comprehensive evaluation of
image quality. It considers three components: luminance (l), contrast
(c), and structure (s). At each scale, SSIM is calculated, and then the
scores are combined. The MS-SSIM formula is given as follows:

MS-SSIM(y, ŷ) = li(y, ŷ)
α ·

L∏
i=1

[
ci(y, ŷ)

β · si(y, ŷ)γ
]
. (2.25)
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Figure 2.16: An example of a combination of frame interpolation network
and spatial SR network for spatio-temporal super-resolution. Two LR time
steps are passed through the Deep Voxel Flow NN to output an intermediate
time step. These three time steps are then spatially super-resolved through
a ConvGRU.

Here, L is the number of scales. li(y, ŷ), ci(y, ŷ), and si(y, ŷ) are the
luminance, contrast, and structure scores at scale i. α, β, and γ are
parameters that control the relative importance of the luminance, con-
trast, and structure components.

Each of the components is calculated as follows:

li(y, ŷ) =
2µyiµŷi + C1

µ2
yi
+ µ2

ŷi
+ C1

ci(y, ŷ) =
2σyiσŷi + C2

σ2
yi
+ σ2

ŷi
+ C2

si(y, ŷ) =
σyiŷi + C3

σyiσŷi + C3

.

Here, yi and ŷi are the downsampled versions of y and ŷ at scale i.
µyi , µŷi , σyi , σŷi , and σyiŷi are the mean, standard deviation, and cross-
covariance of yi and ŷi. C1, C2, and C3 are small constants to avoid
division by zero. The MS-SSIM metric offers a more nuanced evalu-
ation by considering multiple scales, capturing both global and local
structural information in images.

• Peak Signal-to-Noise Ratio (PSNR) [Gonzalez and Woods, 2006] mea-
sures the ratio of the maximum possible power of a signal to its error:

PSNR = 10 · log10
(
MAX2

MSE

)
, (2.26)
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where MAX is the maximum possible pixel value and MSE is the mean
squared error.

• Pearson Correlation [Rodgers and Nicewander, 1988] measures the lin-
ear relationship between the original and generated data:

Correlation =
cov(y, ŷ)

σyσŷ

, (2.27)

where cov is the covariance, and σ is the standard deviation.

• Root Mean Squared Error (RMSE) quantifies the average magnitude
of the differences between corresponding values of the original and gen-
erated data:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (2.28)

where n is the number of samples.

• Mean Absolute Error (MAE) measures the average absolute differences
between corresponding values of the original and generated data:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (2.29)

where n is the number of samples.

• Mean Bias represents the average difference between the original and
generated data:

Mean Bias =
1

n

n∑
i=1

(yi − ŷi), (2.30)

where n is the number of samples.

• Variance measures the degree of spread or dispersion of the generated
data:

Variance =
1

n

n∑
i=1

(ŷi − ¯̂y)2, (2.31)

where n is the number of samples and ¯̂y is the mean of the generated
data.
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• Fractional skill score (FSS) [Roberts and Lean, 2008] is a statistical
metric used to assess the spatial accuracy of model predictions, com-
monly employed in fields such as meteorology and climate science. The
FSS quantifies the agreement between predicted and observed fields at
different spatial scales. Mathematically, the FSS is defined as:

FSS = 1−
∑s

i=1(ŷi − ˆ̂yi)
2∑s

i=1(ŷi − ¯̂y)2
, (2.32)

where the mean squared difference is calculated over a defined neigh-
borhood size, s, and the squared difference between the observed field
and its mean represents the variance of the observed field. FSS val-
ues range from 0 to 1, with higher scores indicating better agreement
between predicted and observed fields at the specified spatial scale.

• The Continuous Ranked Probability Score (CRPS) [Broecker and Smith,
2007] is a metric used to evaluate the accuracy of probabilistic forecasts.
For a given forecast probability distribution F and the true outcome
ŷ, the CRPS is calculated as follows:

CRPS(F, ŷ) =

∫ ∞

−∞
[F (z)− 1(z ≥ ŷ)]2dz. (2.33)

Here, F (z) is the cumulative distribution function (CDF) of the fore-
cast distribution at point z. 1(·) is the indicator function, which equals
1 if the condition inside is true and 0 otherwise. y is the observed
value. The CRPS measures the discrepancy between the forecast dis-
tribution and the observed value. A lower CRPS indicates a better
agreement between the forecast and the actual outcome. This metric is
particularly useful for assessing the reliability of probabilistic forecasts
in various fields, including weather and climate predictions.

2.4 Emulation

Emulation in the context of climate or weather refers to replacing whole mod-
els or model parts and is also referred to as surrogate modeling. Emulation is
a conceptually simple task, but there are a few details that matter, e.g. what
data to learn from, the amount of data needed, the choice of architecture,
and the importance of physical consistency. We here go through the different
kinds of tasks that can be considered, the common architectures and metrics
used.
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2.4.1 Different Tasks

Depending on which part of the numerical/physical model we want to replace
and what kind of data we train on, there are different setups for emulation
tasks.

Sub vs. Full Model Emulation With emulation, we can either replace
a full model [Watson-Parris et al., 2022] or a model part [Silva et al., 2020b].
Whereas full model emulation usually implies that a more complex function
needs to be learned, thus requiring a more complex architecture, sub-model
emulation comes with its own challenges. Whereas the full model emulation
usually implies that a more complex function needs to be learned here and
a more complex architecture is thus required, sub-model emulation comes
with its own challenges. If a submodel is replaced by an ML emulator it
often leads to instabilities when interacting with the physical model. Here
it is especially important to obey physical laws to achieve successful coupled
runs.

Direct Replacement vs. Higher-Fidelity Model One possibility of
emulation is to replace a model (part) by training on input and output pairs
generated by running the original model. This does not increase the accuracy
of representing any subprocess but is targeted to increase only the simula-
tion speed with the emulator. Another possibility that can provide a better
representation of processes is when the emulator is trained on a more sophis-
ticated model’s data [Rasp et al., 2018a] than the model being replaced or
even directly learns from observations [Nair and Yu, 2020]

Offline vs. Online Model We distinguish between offline emulation and
online emulation. Offline emulation describes running an emulator as a stan-
dalone model, without feeding its output back into a bigger model. Online
emulation includes coupling the emulator to an ESM, that uses the emula-
tors’ predictions for different submodels within the ESM. Even though the
final application of an emulator is to be an online model, it is important to
consider the difference between online and offline models, especially when it
comes to evaluation.

2.4.2 Data

First, data used for emulation has to address the general points for datasets
in ML formulated in Section 2.1.3: the domain relevance is automatically
given when training directly on data of a model we are trying to replace.
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For training on higher-resolution model data or even observations though, it
needs to be considered carefully that the data represents the exact process
we are emulating. A very crucial point is the data diversity, if there are not
enough cases represented in the training data the emulator can easily get
unstable when integrated back into the climate model. In most emulation
cases the training data is simulated data, which gives to possibility to gen-
erate lots of data points, so quantity is rarely the limit in emulation. The
data splitting in train-val-test subsets needs to be done by considering the
final application: will the emulator encounter new locations, new times, and
new pressure levels when coupled? The split should resemble this. Data
preprocessing is important, especially when multiple variables are predicted
that may span different ranges. In order to have a useful optimisation dur-
ing training where all variables are represented equally in the combined loss
function normalisation or standardisation is necessary.

No matter what emulation task is considered training and offline evalu-
ation data can come from different sources, it can be the exact inputs and
outputs as the original, or additional input data that help the ML model, it
can be data from a more complex or higher-res model or directly observa-
tional data, being the closest to the ground truth.

2.4.3 Architectures

Depending on the structure of the underlying data, whether it is tabular
data, gridded spatial data, time series, or spatio-temporal data the archi-
tectural preferences vary. Another big factor is whether a probabilistic or
deterministic prediction is desired.

For Tabular Data For deterministic architectures learning from tabular
data linear regression, random forests, gradient boosting, or fully-connected
neural networks are the most common choices [Silva et al., 2020b]. Is the
problem probabilistic but tabular or low-dimensional Gaussian processes are
a popular tool too [Vicent et al., 2023].

For Spatial Data For spatial data, CNNs are the most common choice
[Wider et al., 2023]. If probabilistic predictions are beneficial the CNN as
a generator might be extended with a discriminator network to obtain a
GAN [Brochet et al., 2023]. If the data is not on a regular grid, graph
neural networks [Bronstein et al., 2016] have recently emerged as a popular
architecture [Ngo et al., 2023].
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For Temporal Data If time series are emulated an RNN structure can
be incorporated to account for the history. Here, LSTMs are a common
choice as well as GRUs. More recently transformer and reservoir computing
[Arcomano et al., 2023] architectures have been employed for time-series em-
ulation too. If the data has both temporal and spatial structure combination
of RNNs and CNNs are common choices as well as more recently transformer
architectures.

As we work with tabular data and require a deterministic prediction for
our emulation task, we consider linear regression, random forests, gradient
boosting, or fully-connected neural networks as architectural choices (see
Chapter 5).

2.4.4 Metrics

Here we focus on metrics for tabular, deterministic target data, as that is
the only emulation case we are considering. To evaluate emulation often
different metrics than for downscaling are used while keeping the standard
RMSE, MAE, and bias metrics. Additional metrics include most commonly
the R2-score. If the target includes multiple variables on different scales,
metrics like RMSE, MAE, and bias need to be either calculated individually
or on normalized values to be able to aggregate in one score. The R2-score
comes with the advantage of being dimensionless and independent from linear
scaling.

R2-Score The coefficient of determination, often denoted as R2-score, is a
metric used to assess the goodness of fit of a regression model. It quantifies
the proportion of the variance in the dependent variable that is predictable
from the independent variables given by

R2 = 1−
∑n

i=1(ŷi − yi)
2∑n

i=1(ŷi − ȳ)2
. (2.34)

Here n is the number of samples, ŷi is the true value, yi is the predicted
value and ȳ is the mean of the true values. The numerator represents the
sum of squared differences between the target and predicted values, while
the denominator represents the sum of squared differences between the true
values and their mean. The R2-score has a maximum one and can be arbi-
trarily negative. A zero already indicates that the model does not explain
any variability, and one indicates perfect prediction.
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Other metrics for emulation can provide insights into the violation of
physical constraints, such as the negative fraction of naturally positive quan-
tities or a violation of mass (see Section 5.4).

2.5 Atmospheric Aerosols

Atmospheric aerosols are tiny solid or liquid particles suspended in the air.
They play a crucial role in Earth’s atmosphere and climate system. These
aerosols originate from various sources such as natural processes like volcanic
eruptions, wildfires, and sea spray, as well as human activities including in-
dustrial emissions and vehicle exhaust. Aerosols come in diverse forms in-
cluding dust, soot, and sulfates. Once released into the atmosphere, aerosols
can scatter and absorb sunlight, influencing the planet’s energy balance. Ad-
ditionally, they serve as nuclei for cloud formation, affecting cloud properties
and precipitation patterns. Understanding the distribution, composition,
and behavior of atmospheric aerosols is essential for accurately modeling
and predicting climate change, air quality, and weather patterns.

We will discuss below in more detail how aerosols influence the climate
and in which way they are represented in current climate models.

2.5.1 Aerosol-Climate Interactions

Aerosol radiative forcing is the predominant source of uncertainty in under-
standing the anthropogenic impact on the current climate [Bellouin et al.,
2020]. The cooling effect induced by aerosols masks a portion of the pos-
itive radiative forcing attributed to greenhouse gas emissions, and poten-
tial future measures aimed at reducing air pollution might unveil a stronger
observed warming. Aerosols influence climate through two primary mecha-
nisms: aerosol-radiation interactions and aerosol-cloud interactions [IPCC,
2013].

Aerosol-Radiation Interactions The behavior of aerosols in the atmo-
sphere involves the scattering or absorption of radiation, depending on the
composition of the particles. Notably, black carbon aerosols originating from
fossil fuel combustion exert a warming effect by efficiently absorbing radi-
ation, while sulfates released from volcanic eruptions induce cooling by ex-
hibiting lower absorption and predominantly scattering characteristics.

Clouds Clouds play an important role in the Earth’s radiation budget,
covering about two-thirds of the Earth’s surface. Clouds, made of tiny water
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droplets or ice crystals forming around particles like salt or dust, significantly
impact Earth’s climate by affecting the planet’s energy balance in multiple
ways [Forster et al., 2021]. Clouds reflect a significant portion of the incoming
short-wave radiation from the sun back into space. This is known as the
albedo effect, which has a cooling influence on the Earth’s surface and lower
atmosphere. The extent of this cooling effect depends on the cloud type,
altitude, and thickness. For example, thick, bright clouds (such as cumulus or
stratocumulus) are more effective at reflecting sunlight than thin, high clouds.
Clouds absorb long-wave radiation emitted from the Earth’s surface and then
re-emit it in all directions, including back towards the surface. This process,
often referred to as the greenhouse effect, results in a warming effect because
it traps heat in the atmosphere. High, thin clouds are particularly effective in
trapping outgoing long-wave radiation, contributing to a net warming effect.
In contrast, low clouds have a lesser effect on long-wave radiation compared
to their impact on short-wave radiation.

Aerosol-Cloud Interactions Aerosols, by acting as cloud condensation
nuclei (CCN), can significantly alter cloud properties. In a CCN-limited
regime, elevated aerosol concentrations lead to an increased number of CCN,
resulting in a greater yet smaller-sized population of cloud droplets for a fixed
volume of water. The presence of smaller droplets enhances the albedo of
clouds [Twomey, 1974] and has the potential to extend the lifetime of clouds
[Albrecht, 1989].

2.5.2 Aerosols in Climate Models

Many climate models commonly regard aerosols as external variables—input
once and maintained as constants throughout the entire modeling process.
In instances where models do incorporate aerosol properties, the distinction
between various aerosol types may be limited, often considering only the
aggregate mass. To achieve greater precision in aerosol representation, so-
phisticated aerosol-climate modeling systems, for instance ICON-HAM, have
been devised. Detailed models come with the cost of increased computational
time: ICON-HAM can be run at 150 km resolution for multiple decades. But
to run storm-resolving models, for example, the goal is ideally a 1km horizon-
tal grid resolution and still be able to produce forecasts up to a few decades.
If we want to keep detailed aerosol descriptions, a significant speedup of the
aerosol model is needed.
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2.5.3 Aerosol Microphysics Model M7

The M7 model [Vignati et al., 2004] employs seven log-normal modes to char-
acterize aerosol properties, wherein particle sizes are distributed across four
modes: nucleation, aitken, accumulation, and coarse modes. The aitken, ac-
cumulation, and coarse modes can exist in either soluble or insoluble states.
M7 encompasses various processes, including nucleation, coagulation, con-
densation, and water uptake, which result in the redistribution of particle
numbers and mass among the distinct modes. Moreover, M7 accounts for
five distinct aerosol types—Sea salt (SS), sulfate (SO4), black carbon (BC),
primary organic carbon (OC), and dust (DU). It is important to note that
M7 operates independently for each grid box, without explicitly modeling
spatial relationships. A full list of input and output variables can be found
in the appendix (see Appendix B.2).

2.5.4 Aerosol-Climate Model ICON-HAM

The ICON (ICOsahedral Non-hydrostatic) model [Zängl et al., 2015] is a cli-
mate and weather prediction model developed jointly by the GermanWeather
Service (Deutscher Wetterdienst, DWD) and the Max Planck Institute for
Meteorology (MPI-M). As a global model, ICON employs an innovative icosa-
hedral grid system to cover the Earth’s surface, enabling a uniform resolution
across the globe and avoiding the pole problem associated with traditional
latitude-longitude grids. This non-hydrostatic4 model is designed to simulate
atmospheric processes with high precision across a wide range of scales, from
global weather patterns down to localized extreme weather events. ICON-
HAM [Salzmann et al., 2022] integrates the ICON model with the sophisti-
cated aerosol model HAM [Stier et al., 2004], wherein the microphysical core
contains the M7 model.

1Throughout the thesis, the following abbreviations will be employed: NS=nucleation
soluble, KS/KI=aitken soluble/insoluble, AS/AI=accumulation soluble/insoluble,
CS/CI=coarse soluble/insoluble

4The term ”non-hydrostatic” refers to a class of atmospheric models that do not assume
hydrostatic equilibrium in their equations of motion.
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Chapter 3

Constraining Deep Learning
Architectures

In this chapter, we describe our developed constraining methodologies. We
introduce the notation for the generalized linear constraints we are consid-
ering, including equality and inequality constraints. We then show how the
given constraints can be incorporated both in a soft and in a hard manner.
We discuss the advantages and drawbacks of soft constraints. For hard con-
straints, we go through the several different layers we developed, such as
a completion layer, an additive constraint layer, a multiplicative constraint
layer, and a softmax constraint layer for equality constraints and a correction
layer for inequality constraints. For most cases, we consider incorporating
either equality or inequality constraints at a time, but we conclude with a
brief discussion of combining the two.1

We consider the DL setting, recalling the ML formulation from Section
2.1.2, where x ∈ Rnin is the input vector and y ∈ Rnout the final output vector
of the NN. The NN is given by a function fθ : Rnin → Rnout , parametrized by
the weights and biases θ ∈ Rl, so fθ(x) = y. Given the targets ŷ ∈ Rnout our
learning task is solving following optimisation problem for all training pairs
(xi, ŷi)i=1,...,n for a training set of size n

min
θ∈Rl

n∑
i=1

L(fθ(xi), ŷi). (3.1)

L is some cost function with the mean-squared error (MSE) being the most
common choice and used throughout this thesis as well. We only consider

1Parts of this chapter have been published in P. Harder, A. Hernandez-Garcia,
V. Ramesh, Q. Yang, P. Sattegeri, D. Szwarcman, C. Watson, and D. Rolnick. Hard-
constrained deep learning for climate downscaling. Journal of Machine Learning Research,
24(365):1–40, 2023a
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the supervised learning task for constraining in this thesis, which means we
always have the target vector ŷ given. The introduced constraining methods
are also adjustable for unsupervised tasks.

3.1 Constraining Setup

For this work, we focus on a generalized linear subset of constraints, as it
covers all our application cases and can be incorporated as hard constraint
layers. We introduce notations for both inequality constraints (noted with
in) and equality (noted with eq) constraints simultaneously.

Let (I
(eq)
j )j=1,...,np and (I

(in)
j )j=1,...,mp be partitions of {1, . . . , nout}, divid-

ing the output variables into np and mp disjoint subsets. This partitioning
is done to be able to enforce different constraints per subset. We define
kj := |Ij| as the number of variables per subset.

Let g
(eq)
i , g

(in)
i : D ⊂ R → R, i ∈ Ij be invertible functions and h

(in)
j , h

(eq)
j :

Rnin → R arbitrary functions. The set of equality constraints is given by∑
i∈I(eq)j

g
(eq)
i (yi) + h

(eq)
j (x) = 0 (3.2)

for each j = 1, . . . , np. This means for each subset of the partition we have
one constraining equation.

The set of inequality constraints is given by∑
i∈I(in)j

g
(in)
i (yi) + h

(in)
j (x) ≥ 0 (3.3)

for each j = 1, . . . ,mp.
For F, g : Rnout → Rnp with F (eq)(y) = (

∑
i∈I(eq)1

, . . . ,
∑

i∈I(eq)np
)T , g =

((g
(eq)
i )

i∈I(eq)1
, . . . , (g

(eq)
i )

i∈I(eq)np
)T and h(eq) = (h

(eq)
1 , . . . , h

(eq)
np )T we can write

Equation (3.2) more compactly in vectorized form:

F (eq)(g(eq)(y)) + h(eq)(x) = 0 (3.4)

and analogously for the inequality contraints Equation (3.3,

F (in)(g(in)(y)) + h(in)(x) ≥ 0. (3.5)

It is assumed that for the true dataset, the constraints are satisfied (or at
least close to being satisfied), i.e., for target ŷ

F (eq)(g(eq)(ŷ)) + h(eq)(x) = 0
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and
F (in)(g(in)(ŷ)) + h(in)(x) ≥ 0.

There can be cases where the constraints are not exactly, but just approxi-
mately satisfied in the training data. Unless they are too far from satisfac-
tion, it can still be useful to enforce constraints (see Section 4.2). This can
be formulated as

F (eq)(g(eq)(ŷ)) + h(eq)(x) = ϵ

and
F (in)(g(in)(ŷ)) + h(in)(x) ≥ −ϵ,

for small, positive values of ϵ.

3.2 Soft Constraining

Given equality and inequality constraints, both can be added as additional
terms to the loss function, resulting in a new loss L(constrained)

L(constrained)(y, ŷ) = L(y, ŷ)
+ µ · ||F (eq)(g(eq)(y)) + h(eq)(x)||
+ γ · ||ReLU(−(F (in)(g(in)(y)) + h(in)(x)))||.

(3.6)

Here || · || is a norm, usually the L2 norm. The first term on the right-hand
side is the standard supervised regression loss such as MSE, the second term
penalizes violations of the equality constraints, and the third term penal-
izes inequality constraint violations, any positive values of −(F (in)(g(in)(y))+
h(in)(x))), i.e. any negative values of F (in)(g(in)(y)) + h(in)(x)).

Often, we only consider equality constraints or inequality constraints one
at a time and optimize L(eq)

L(eq)(y, ŷ) = L(y, ŷ) + µ · ||F (eq)(g(eq)(y)) + h(eq)(x)||, (3.7)

or

L(in)(y, ŷ) = L(y, ŷ) + γ · ||ReLU(−(F (in)(g(in)(y)) + h(in)(x)))||. (3.8)

The ReLU function (ReLU(x) = max(0, x)) is commonly used in DL and
the most simple choice, but can be replaced with other functions that are
zero for negative values, e.g. the softplus2 function.

2softplus(x)= 1
β log(1 + exp(β · x)
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It is important to note that the two penalizing terms do not depend
on the target vector ŷ, this implies that such soft constraints can also be
included in an unsupervised learning task. Additionally, when utilizing pe-
nalizers in a supervised context that can include constraints depending on
the target vector as well, given that the regularisation term is only active
during training. Including the target vector for constraints is not possible
for hard constraining methods as proposed here.

The type of equation or inequality that is taken into account here can be
arbitrarily complex, it can be e.g. a differential equation and is not limited
to the generalized linear case we are considering here.

Tuning Here, a challenge is to tune the parameters µ and γ. We experience
a high sensitivity for the choices. A good starting point to choose them so
the different loss terms have similar magnitudes compared to the MSE loss
term. On the one hand, if the values of µ or γ are chosen too high it is
common to converge to a trivial solution such as y = x (for special cases).
On the other hand, if they are chosen too small, the constraints remain
significantly violated. One way to deal with this issue could be scheduling of
µ and γ, where they start very small at the beginning of training and then get
increased. Similarly to the common learning rate scheduling [Darken et al.,
1992], this could take advantage of the changing loss landscape during the
progression of training and is left for future work.

In summary, soft-constraining is a very flexible but potentially unstable
constraining method, which does not give a guarantee on the constraints to
be satisfied.

3.3 Hard Constraining Methods

We introduce different hard constraining methods, starting with multiple
constraining methods that address equality constraints and after that one
method that addresses inequality constraints. All hard constraining methods
work on the following principle: A standard NN, f̃θ : Rnin → Rnout , architec-
ture is applied and gives the intermediate prediction ỹ ∈ Rnout = f̃θ(x). The
intermediate output is then modified in a final layer, the constraint layer,
c : Rnout → Rnout , producing the final output

c(ỹ) = y.

The general constrained NN fθ : Rnin → Rnout is given by

fθ = c ◦ f̃θ.
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We want to highlight that a strength of this is that it is indepedent of the
architecture used for the NN. Another thing to note, is that c, the constraint
layer, does not include any tunable parameter. This constrained layer could
be extended to include learnable parameters, which is left for future explo-
ration.

Figure 3.1: The difference between applying a constraint layer offline or
online and unconstrained, standard training. The first row is the standard
usage of a NN wihtout any constraints activated. The second row shows
the offline application, where the constraint layer is only activated during
inference. The third row then is the online application, where the constraint
layer is active during both training and inference.

Constraint Formulation

Online vs. Offline Unlike soft constraints, hard constraints can be either
offline constraints or online constraints (see Figure 3.1). An application
offline means we train our model without any constraints (or potentially a
soft constraint) and then only add the constraint layer for inference. An
online constraint layer is part of the NN both during training and inference.
Most of the constraint layers developed by us can be either applied offline
or online, the criterion for that is that the constraining only applies minimal
changes and the constraining methodology does not change an already perfect
prediction, i.e. ỹ = ŷ.

67



3.3.1 Additive Layer

For this and the next subsections we will consider only equality constraints
and skip the (eq) in the notation for clarity.

The additive constraint layer (AddCL) readjusts the intermediate predic-
tion ỹ by adding the term−a·(h(x)+F (ỹ)) to it, where a := (1/k1, . . . , 1/knp)

T .
The output of the AddCL is defined as

yAddCL := g−1(ỹ − a · (F (ỹ) + h(x)), (3.9)

with using the vectorized formulation and g−1 as a notation for
((g−1

i )i∈I1 , . . . , (g
−1
i )i∈Inp

)T . If you consider the (common) case where g ≡ id

then − 1
n
(h(x) + F (ỹ)) ≈ 0, for a good enough intermediate prediction. In

that case we could apply AddCL offline.
Let us rewrite the AddCL in its detailed indices form

yAddCL
i := g−1

i (ỹi −
1

kj
(
∑
k∈Ij

ỹk + hj(x))) (3.10)

for i ∈ Ij and j = 1, . . . , np.
By construction, AddCL’s output satisfies Equation (3.2):∑

i∈Ij

gi(y
AddCL
i ) =

∑
i∈Ij

(ỹi −
1

kj
(
∑
k∈Ij

ỹk + hj(x)))

=
∑
i∈Ij

ỹi −
∑
i∈Ij

1

kj

∑
k∈Ij

ỹk −
∑
i∈Ij

1

kj
hj(x)

=
∑
i∈Ij

ỹi −
∑
k∈Ij

ỹk − hj(x)

= −hj(x).

3.3.2 Multiplicative Layers

The multiplicative constraint layer (MultCL) works similarly to AddCL,
though the adjustment is done by rescaling, multiplication, and not addi-
tion

yMultCL
i := g−1

i (ỹi ·
−hj(x)∑

k∈Ij ỹk
) (3.11)

for i ∈ Ij and j = 1, . . . , np. In its vectorized formulation the multiplicative
constraint can be written as

yMultCL := g−1(ỹ · −h(x)

F (ỹ)
). (3.12)
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Again, by construction MultCL’s output satisfies Equation (3.2):∑
i∈Ij

gi(y
MultCL
i ) =

∑
i∈Ij

gi(g
−1
i (ỹi ·

−hj(x)∑
k∈Ij ỹk

))

=
∑
i∈Ij

ỹi ·
−hj(x)∑

k∈Ij ỹk

= −hj(x).

The multiplicative approach can be extended by introducing a function t :
R → R and we obtain

y = g−1(t(ỹ) · −h(x)

F (t(ỹ))
). (3.13)

If −h(x) and t(y) are positive for all inputs, this constraint layer not only
guarantees the satisfaction of Eq. (3.2), but also the positivity of your output.

One possible and positive choice of the function t is the exponential func-
tion. Including that gives a constraint layer that is an adaptation of the
softmax layer (a common activation function for multi-class classification
problem). Here, the standard softmax layer is scaled with −h(x) and we
refer to it as the softmax constraints layer (SmCL)

ySmCL := g−1(exp(ỹ) · −h(x)

F (exp(ỹ))
) (3.14)

SmCL can include an either tunable or learnable parameter c that scales the
exponential

ySmCL,c = g−1(exp(c · ỹ) · −h(x)

F (exp(c · ỹ))
). (3.15)

This is not explored in this work, but left for future experimentation.

3.3.3 Completion Method

Unlike readjustment layers, the completion method does not treat every vari-
able yi within a subset of the partition in the same way. We need to first
choose an index ic ∈ Ij, then the completion layer (CompL) is defined as

yCompL
ic

:= g−1
ic
(−(

∑
k∈Ij\{ic}

gk(ỹk) + hj(x))) (3.16)

for j = 1, . . . , np. The other variables ỹi for i ∈ Ij \ {ic} stay unchanged:

yCompL
i = ỹi.

69



This, again by construction, satisfies Eq. (3.2):∑
i∈Ij

gi(y
CompL
i ) = gic(y

CompL
ic

) +
∑

i∈Ij\{ic}

gi(y
CompL
i )

= gic(g
−1
ic
(−(

∑
k∈Ij\{ic}

gk(yk) + hj(x)))) +
∑

i∈Ij\{ic}

gi(yi)

= −(
∑

k∈Ij\{ic}

gk(yk) + hj(x)) +
∑

i∈Ij\{ic}

gi(yi)

= −hj(x).

We set one variable per subset as the residual of the constraint depending
on the other variables. This method does not depend on any intermediate
prediction ỹ, it can be both applied offline and online.

There are multiple ways of choosing the index ic:

• Choose completely randomized (every forward pass in the NN it can
be different).

• Choose random once and keep it fixed.

• Choose index of worst performing variable.

• Choose index such that additional inequality constraints are satis-
fied (if possible).

3.3.4 Correction Method

Now, we switch to incorporating an inequality constraint with a hard con-
straint layer. Let us define Rj(x, y) :=

∑
i∈Ij gi(yi) + hj(x) as the contraint

residual. The correction layer (CorL) is then defined as the following (skip-
ping (in) in the notation)

yCorL
i :=

{
ỹi Rj(x, y) ≥ 0

g−1
i (− 1

kj
hj(x)) else

for i ∈ Ij and j = 1, . . . , np.
For the most commonly appearing inequality constraints, where there is

no sum included, i.e. Ij = {j} for j = 1, . . . , np,

gj(yj) + hj(x) ≥ 0. (3.17)

Same as for the soft constraining, we then utilize the ReLU function:

yCorL
j = g−1

j (ReLU(gj(ỹj)) + hj(x))− hj(x)) (3.18)
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for j = 1, . . . , np.
In vectorized form, this can be written as

yCorL = g−1(ReLU(g(y) + h(x))− h(x)) (3.19)

The same as the completion method, it can be applied offline and online.
The offline application is a commonly used method referred to as clipping.

3.4 Combining Methods

There are cases where it is necessary or beneficial to have both inequality
and equality constraints including the same variables. For this case, we can
combine the proposed constraints methods. Soft constraints can, as discussed
before, easily include multiple constraints by adding several terms to the loss
function.

Soft+Hard Any hard equality constraint layer can be combined with a
soft inequality constraint, and any hard inequality constraint layer can be
combined with the soft equality regularisation loss. We apply e.g. a aerosol
mass conservation soft contraint together with a correction layer for positive
masses in our emulation application.

SmCL For simple enough inequality constraints such as positivity of the
output, SmCL can enforce both equality constraints and positivity. We use
this e.g. to conserve water mass as an equality constraint and then also
ensure water mass positivity alongside.

There are more ways to combine equality and inequality constraints, their
implementation and experimentation are left for future exploration, but we
will briefly describe the ideas behind them. We can combine correction and
completion methods.

CorL+CompL One option is that we apply the correction layer first and
achieve guaranteed inequality constraints. CompL then leaves us the choice
of index ic, here we can choose ic (if it exists) so that the inequality constraints
are still satisfied for yic . We iterate over i ∈ Ij until we find ic such that

yCompL
ic

satisfies the inequality constraints.

CompL+redistribtion of residual Another possibility is enforcing the
equality constraint first, via CompL, then enforcing the inequality constraint
by distributing the residual among different variables such that they stay in
the feasible region with respect to the inequality constraints.
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Chapter 4

Physics-Constrained
Downscaling

After we have developed the constraint methodology in Chapter 3, we now
apply this new tool to real-world application tasks. Introduced in Chapter 2,
we will start with the task of downscaling, increasing the resolution of climate
data. We show what constraints exist naturally for downscaling. Taking the
constraining tools from the previous chapter, we reformulate them for our
specific application case. We then describe the datasets, such as the Euro-
pean Center for Medium-Weather Forecast (ECMWF) reanalysis data water
content, Weather Research and Forecast model data, and Norwegian ESM
data. We go through the architectures, including convolutional neural net-
works, generative adversarial neural networks, and recurrent neural networks
that are being employed here. After the experimental setup, we conclude by
going through the results, demonstrating the successful application of our
constraint layers.1

4.1 Constrained Downscaling

When modeling physical quantities such as precipitation or water mass, prin-
cipled relationships such as mass conservation can naturally be established
between low-resolution and high-resolution samples. Here, we develop a setup
in which we can utilize the methods introduced in the previous chapter for
downscaling. We first give a technical description of the downscaling setup

1Parts of this chapter have been published in P. Harder, A. Hernandez-Garcia,
V. Ramesh, Q. Yang, P. Sattegeri, D. Szwarcman, C. Watson, and D. Rolnick. Hard-
constrained deep learning for climate downscaling. Journal of Machine Learning Research,
24(365):1–40, 2023a
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consired here and then restate the constraint layers for this specific case.

4.1.1 Downscaling Setup

We consider downscaling as a supervised learning task, which is the most
prominent case, even though there are some unsupervised cases, where there
are no matching pairs of LR and HR samples [Groenke et al., 2020]. The
input vector is the low-resolution sample x ∈ Rnin . It is usually a two-
dimensional image x ∈ Rkin × Rkin , with k2

in = nin, for simplicity, we use
the equivalent one-dimensional formulation. The output vector is the HR
version of x, y ∈ Rnout with nout = N2 · nin, where N ∈ N is the upsampling
factor. Any pixel xj, yi ∈ R describes the value of a physical quantity (e.g.
temperature, rain mass) at a given location. For each input pixel xj ∈ R
there is a set of output pixels, (yi)i∈Ij , called super-pixel, covering the same
area. Ij is the set of indices corresponding to the location of xj in the HR,
|Ij| = N2 := n.

Figure 4.1: Our Softmax constraint layer (SmCL) is shown for one input
pixel x and the corresponding predicted 2 × 2 super-pixel for the case of
2 times upsampling. This layer is added at the end of a NN and enforces
given constraints guaranteed by construction. Besides equality constraints,
it enforces the positivity of the outputs.
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Figure 4.2: The CNN architecture used here for two times upsampling, in-
cluding the constraint layer (in red). The LR input is passed to the last layer,
the constraint layer, to enforce the constraint and produce a consistent HR
output.

4.1.2 Constraint Formulation

Let us briefly recall the constraint formulation of the previous chapter. The
equality constraints are given by∑

i∈I(eq)j

g
(eq)
i (yi) + h

(eq)
j (x) = 0 (4.1)

for each j = 1, . . . , np, and the inequality constraints by∑
i∈I(in)j

g
(in)
i (yi) + h

(in)
j (x) ≥ 0 (4.2)

for each j = 1, . . . ,mp.
For downscaling, the most commonly appearing constraint is a consis-

tency constraint between LR and predicted HR, i.e., SR. For water mass
(per area), this consistency means conserving the LR water mass when pre-
dicting the HR sample. In the above form, that is∑

i∈Ij

yi − n · xj = 0, (4.3)

for each j = 1, . . . , nin. The function hj here is the negative projection
on the j−th entry scaled by the square root of the upsampling factor, n,
h
(eq)
j (x) = −n · xj and g

(eq)
i the identity.

For cases where only positive values are physically plausible, the inequal-
ity constraints are

yi ≥ 0 (4.4)

for each i = 1, . . . , nout.
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Soft constraining Soft constraining can be applied using an L2-penalty
of the difference between the low-res pixel and the mean of the super-pixel.
For soft mass conservation we use the notation (soft m.)

L(eq)(y, ŷ) = L(y, ŷ) + µ · 1

nin

nin∑
j=1

(
∑
i∈Ij

yi − n · xj)
2. (4.5)

To encourage positivity, we can penalize −y, the soft negativity con-
strained (soft n.):

L(in)(y, ŷ) = L(y, ŷ) + γ · 1

nout

nout∑
i=1

ReLU(−yi)
2. (4.6)

The two different penalizers can also be combined and applied at the same
time, soft negativity and mass constraining (soft n.+m.). Soft constraints
penalize violations but do not give any guarantees for exact constraint satis-
faction.

Readjusment Layers The previously introduced readjustment layers, Ad-
dCL, MultCL, and SmCL to achieve guaranteed equality constraints given
by Equation (4.3) for downscaling are given by

yAddCL
i = ỹi −

1

n
(
∑
k∈Ij

ỹk − n · xj) (4.7)

yMultCL
i = ỹi ·

n · xj∑
k∈Ij ỹk

(4.8)

ySmCL
i = exp(ỹi) ·

n · xj∑
k∈Ij exp(ỹk)

(4.9)

for each i ∈ I
(eq)
j and j = 1, . . . , nin, applying one constraint per super-pixel,

xj. To apply MultCL we have to ensure that none of the super-pixels are all
zero. For downscaling a quantity as precipitation that might happen, other
hard constraints need to be used instead or the variables need to be scaled
(see below). The SmCL has the advantage of only predicting positive values,
given that x is positive – a valuable feature for predicting physical quantities
such as water mass.

Completion Layer The readjustment layers treat every sub-pixel in a
super-pixel equally, whereas for the completion method, only one pixel is
changed

yCompL
ic

= −(
∑

k∈Ij\{ic}

yk − n · xj) (4.10)
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for a chosen ic ∈ Ij and each j = 1, . . . , nin. In this downscaling setting, ic is
alway chosen randomly, nit fixed, to not bias certain pixels.

Correction Layer For our positivity constraint, the correction layers sim-
plify significantly; we directly discard any negative values of our intermediate
prediction ỹ

yCorL = ReLU(ỹ). (4.11)

This correction can be applied during training and inference, or only during
inference as post-processing. The correction method for this special case is a
commonly applied technique already in super-resolution, usually offline and
referred to as clipping.

Weighted Constraining There two common cases where a slightly more
complicated formulation of constraints is need in downscaling

1. We train on normalized data (almost always the case)

2. Not all LR pixels cover the same area (the case for latitude-longitude
grids)

Both cases can be addressed with a weighted formulation of staying in the
general framework of

1

n

∑
i∈I(eq)j

αiyi − xj = 0 (4.12)

Remark: the positivity constraint is not affected as long as we scale with a
positive factor.

The readjustment layers to enforce the scaled equality constraints then
are

yAddCL
i =

1

αi

(ỹi − (
1

n
(
∑
k∈Ij

ỹk − xj)) (4.13)

yMultCL
i =

1

αi

(ỹi ·
n · xj∑
k∈Ij ỹk

) (4.14)

ySmCL
i =

1

αi

(exp(ỹi) ·
n · xj∑

k∈Ij exp(ỹk)
) (4.15)

for each i ∈ Ij and j = 1, . . . , nin. For normalisation to obtain data between
[0, 1], so yi ∈ [0, 1], α is the maximum of the whole dataset in the original
scale. For this, it is assumed the minimum in the original dataset is zero.
For an area-weighted constraining αi is the area of the ith sub-pixel of the
jth super-pixel in the output.
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Global Constraints The constraint layers can be relaxed by increasing
the constraint window size and constraining on the mean of the input pixels
that fall into that window; this can then impose softer constraints. In the
extreme case, this reduces the number of constraints to one and allows using
a global constraint. The constraint for the global case is

nout∑
i=1

yi −
nin∑
j=1

xj = 0 (4.16)

and can be enforced via

yAddCL
i = ỹi −

1

n
(
∑
k∈Ij

ỹk −
nin∑
j=1

xj) (4.17)

yMultCL
i = ỹi ·

∑nin

j=1 xj∑
k∈Ij ỹk

(4.18)

ySmCL
i = exp(ỹi) ·

∑nin

j=1 xj∑
k∈Ij exp(ỹk))

. (4.19)

4.2 Data

To assess our proposed approach, we employ a diverse collection of datasets,
including both newly generated datasets and established ones. We create
multiple datasets by leveraging the ERA5 reanalysis product, employing av-
erage pooling to construct the low-resolution (LR) inputs—a conventional
methodology in climate downscaling studies [Serifi et al., 2021, Leinonen
et al., 2021]. Additionally, we incorporate datasets derived from outputs of
models such as the Weather Research and Forecasting model and the Nor-
wegian Earth System Model, which provide authentic low-resolution simu-
lation data paired with corresponding high-resolution data. Furthermore,
we extend our evaluation to non-climatic datasets, specifically lunar satellite
imagery. For a comprehensive overview of the various datasets utilized, we
refer to Table 4.1.

ERA5 Dataset

The ERA5 dataset [Hersbach et al., 2020] is classified as a reanalysis prod-
uct generated by the European Center for Medium-Range Weather Forecast
(ECMWF). This dataset integrates model data with observational inputs
from across the globe through a process known as data assimilation, which
seeks to determine the most suitable physical model state that aligns with
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Table 4.1: Here we show the different datasets we use to test our constraint
layers. The names are given to identify the datasets throughout this chapter.
Most datasets are based on ERA5 atmospheric water content data and LR
is generated synthetically, we include different upsampling factors, an OOD
case, and temporal datasets. Additional datasets include the moist static
energy (MEn) dataset as well as WRF and NorESM model data. Lunar
images give a non-climate application dataset.

Name Source Type Dim.
LR/HR

W2 ERA5 water cont. (1,64,64)/(1,128,128)
W4 ERA5 water cont. (1,32,32)/(1,128,128)
W8 ERA5 water cont. (1,16,16)/(1,128,128)
W16 ERA5 water cont. (1,8,8)/(1,128,128)
OOD ERA5 water cont. (1,32,32)/(1,128,128)
WT1 ERA5 water cont. (3,32,32)/(3,128,128)
WT2 ERA5 water cont. (2,32,32)/(3,128,128)
MEn ERA5 water vapor (3,32,32)/(3,128,128)

liq. water
temp.

WRF WRF temp. (1,45,45)/(1,135,135)
NorESM NorESM temp. (1,32,32)/(1,64,64)
Lunar satell. photons (1,32,32)/(1,128,128)

observed conditions. ERA5 offers global, hourly data at a resolution of a
0.25◦ × 0.25◦ regular latitude-longitude grid, translating to approximately
25 km per pixel in the mid-latitudes. Spanning from 1950 onwards, ERA5
provides comprehensive coverage of weather patterns and phenomena over
the specified time period.

Total Water Content Dataset One chosen quantity we focus on is the
total column water (W), given in kg/m2, and describes the vertical integral
of the total amount of atmospheric water content, including water vapor,
cloud water, and cloud ice, but not precipitation.

Spatial SR Data To acquire our high-resolution data points, we extract a
random 128×128 pixel image from each available time step, where each time
step consists of a grid of dimensions 721×1440, with roughly 60,000 time steps
accessible. For training, we randomly sample 40,000 data points, reserving
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Figure 4.3: Samples of the three different dataset types used in this work.
a) A data pair we use for our standard spatial super-resolution task. The
input is an LR image, and the target is the HR version of that. b) A data
pair to perform SR for multiple time steps simultaneously. The input is a
time series of LR images, and the output is the same time series in HR. c)
A data pair where SR is performed both temporally and spatially, with two
LR time steps as input and three HR time steps as a target.

10,000 each for validation and testing purposes. To generate low-resolution
counterparts, we compute the mean over N×N patches, where N represents
our upsampling factor. An illustrative sample pair is depicted in Figure 4.3
a). This approach adheres to physical principles, as the conservation of water
content dictates that the water density described within an LR pixel should
equate to the average of the corresponding HR pixels. Additionally, in LR-
modeled data like WRF data (as shown below), the modeled quantities in a
low-resolution run approximate the mean of a high-resolution run, offering
further validation for our coarsening strategy.

Spatio-Temporal Datasets To incorporate the temporal progression of
our data, we establish two supplementary datasets. In the first dataset, a
single sample encompasses three consecutive time steps, with identical time
steps assigned to both input and target, albeit at different resolutions. This
enables simultaneous spatial super-resolution across multiple time steps, as
depicted in Figure 4.3 b). We designate three random 128×128 pixel regions
per global image, yielding an equivalent number of instances as outlined pre-
viously. Similar to our previous approach, we randomly partition the data,
and each time step undergoes downsampling via spatial averaging. Next, we
construct a second dataset tailored for enhancing both spatial and tempo-
ral dimensions. Similarly to the previous dataset, we extract three images
from a series of three consecutive time steps to generate our high-resolution
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targets. For the low-resolution inputs, we reduce both the temporal and
spatial dimensions. To decrease temporal resolution, we omit the interme-
diate (second) time step from each sample, performing subsampling. For
spatial resolution reduction, we employ the same spatial averaging technique
as before. These operations yield two low-resolution inputs, as illustrated in
Figure 4.3 c). Notably, temporally coarse-graining via subsampling, rather
than averaging, is implemented to prevent future information leakage into
previous time steps.

Different Upsampling Factors As we create our LR counterpart our-
selves by availability pooling, we can decide on the upsampling factor, keep-
ing the HR at the same resolution and obtaining the LR, respectively. With
that we construct cases for the upsampling of 2x, 4x, 8x, and 16x to create
the W2, W4, W8, and W16 datasets.

OOD Dataset In the datasets outlined earlier, the division into training,
validation, and testing sets is performed randomly. To investigate the im-
pact of our constraints on out-of-distribution generalisation, we construct a
dataset with a temporal split. In this setup, we anticipate observing pat-
terns in later time steps that deviate from previously observed distributions.
Specifically, we train our model on older data and subsequently evaluate its
performance on more recent years. For training, we utilize data from the
years 1950 to 2000, while validation spans from 2001 to 2010, and the final
testing phase covers the years 2011 to 2020. This temporal division enables
us to assess the model’s ability to generalize to unseen data distributions
over time.

Energy Dataset Additionally sourced from the ERA5 data, we compile
a second dataset featuring diverse physical variables, to include different
constraints. This dataset is designed to conserve moist static energy and
water masses while forecasting water vapor, liquid water content, and air
temperature. The variables are extracted from the pressure level at 850hPa.

WRF Data

In Watson et al. [2020], the authors introduce a dataset derived from the
advanced research version of the Weather Research and Forecasting (WRF)
Model. This dataset encompasses hourly operational weather forecast infor-
mation for Lake George in New York, USA, spanning from January 1, 2017,
to March 20, 2020. Further details regarding the model and its configuration
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are provided in Watson et al. [2020]. For our investigation, we focus on the
temperature at 2m above ground level. Unlike the preceding datasets, this
dataset does not include synthetic downsampling. Instead, it consists of two
forecasts executed at different resolutions employing distinct physics-based
parameterisations: one at a horizontal resolution of 9 km and another one at
3 km. Our objective is to predict the temperature field at the 3 km resolu-
tion using the 9 km resolution data. This approach builds upon the work by
Auger et al. [2021], who conducted a similar analysis using the same dataset.

NorESM Data

Our NorESM dataset is derived from the second version of the Norwegian
Earth System Model (NorESM2), developed by the NorESM Climate Model-
ing Consortium and based on the Community Earth System Model, CESM2.
This dataset is constructed from two distinct runs: NorESM-MM, featur-
ing a 1-degree resolution for model components, and NorESM2-LM, with a
2-degree resolution for atmosphere and land components. We focus on sur-
face temperature (tas) data spanning from 2015 to 2100. For training, we
utilize scenarios ssp126 and ssp585, while ssp370 is reserved for validation
and ssp245 for testing purposes. Each scenario is cropped into 64 × 64 and
32× 32 pixels, resulting in a dataset containing 12,000 data points for each
scenario.

Figure 4.4: A sample from the NorESM temperature training dataset. We
compare the low-resolution simulation to the downsampled high-resolution
counterpart. It can be observed that the LR and the downsampled HR are
significantly different, with an average violation of 2.48K.
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Non-Climate Data: Lunar Imagery

Recent research [Delgano-Centeno et al., 2021] focusing on super-resolution
for lunar satellite imagery has demonstrated the efficacy of deep learning
techniques in enhancing captured data, potentially benefiting future lunar
missions. To address the challenge of low-resolution imagery in regions such
as the south pole, where high-resolution data is unavailable, a machine-
learning-ready dataset has been curated. This dataset includes 220,000 im-
ages extracted from the Narrow-Angle Camera (NAC) imagery captured by
NASA’s Lunar Reconnaissance Orbiter (LRO); further details are provided
in Delgano-Centeno et al. [2021]. In this study, we utilize a 4x upsampled
version of the dataset to assess the efficacy of our constraint methodologies
in enhancing super-resolution performance beyond the realm of climate sci-
ence. The averaging process employed in this context is justified, as real
low-resolution images are generated by aggregating photon counts in low-
light regions.

Constraints in our Datasets

When predicting various physical quantities, we must account for different
constraints. The majority of our datasets adhere to the downscaling con-
straints given by Eq. (4.3), which LR-HR pairs satisfy either approximately
(for simulations conducted at both LR and HR with quantities adhering to
physical conservation laws) or precisely (in instances where the LR version
is created via average pooling). Further explanation on these constraints is
provided in the subsequent subsections.

Water Content Conservation To predict the total column-integrated
water content, we start with the low-resolution water content Q(LR) and aim
to derive the super-resolved counterpart Q(SR). The downscaling constraint,
or mass conservation constraint (Eq. 4.3), for each LR pixel q(LR) and its

corresponding super-pixel (q
(SR)
i )i=1,...,n is expressed as follows:

1

n

n∑
i=1

q
(SR)
i = q(LR). (4.20)

Moist Static Energy Conservation One of our objectives involves fore-
casting column-integrated water vapor, liquid water, and temperature while
ensuring conservation of both water mass and moist static energy. As ex-
plained earlier, conserving water mass is a straightforward process that in-
volves directly applying our constraining methodology. However, approxi-
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mating the (column-integrated) moist static energy S constains the following
procedure:

S ≈ ((1−Qv) · cpd +QL · cl) · T + Lv ·Qv, (4.21)

where
Lv ≈ 2.5008 · 106 + (cpw − cL) · (T − 273.16)

is the latent heat of vaporisation in (Jkg−1). The water vapor Qv[kg · kg−1],
the liquid water QL[kg ·kg−1], and the temperature T [K] are being predicted,
whereas cpd, cpv and cL[J ·K−1 · kg−1] are heat capacity constants.

The following procedure is used to predict these quantities while conserv-
ing moist static energy:

1. Given LR TLR, QLR
V , QLR

L

2. Calculate LR SLR with (4.21)

3. Predict SR SSR, QSR
v , QSR

L while enforcing (Eq. (4.3)) using one of our
constraint layers

4. Calculate SR T SR using (4.21) and SR SSR, QSR
v , QSR

L .

This implies we predict T SR not directly, but by predicting SSR. With that
we are able to predict the temperature T while ensuring (approximate) energy
conservation by applying our constraint layer to the prediction of SSR.

Different Simulations When LR-HR pairs stem from two simulations
conducted at varying resolutions, rather than by deriving the local mean of
the HR, the downscaling constraint is not inherently met within the data.
This scenario is applicable to our WRF and NorESM datasets. Despite the
downscaling constraint not being precisely adhered to (refer to Figure 4.5),
it is approximately fulfilled, allowing us to employ our constraint layers in
the same way as in previous approaches. Even when the real low-resolution
data and the downsampled high-resolution data exhibit minor discrepancies,
constraining can still enhance predictive quality, as demonstrated in Figure
4.8.

4.3 Experiments

Here, we conduct two types of experiments:

1. Show the applicability of our constraining method to different neural
network architectures.
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Figure 4.5: A random LR-HR pair from the WRF temperature data. HR and
LR come from different runs using the same model at different resolutions.
Here we compare the real LR with the LR data created by average pooling
of the HR, written as DS(HR). It shows that there is not an exact match
between LR and downsampled HR, which makes the success of a constraint
layer more difficult. The violation of the downscaling constraint in the WRF
dataset is 0.68K on average.

2. Show the applicability of our constraining method to different datasets
and different constraint types included in that dataset.

In most of our experiments, we utilize synthetic low-resolution data gen-
erated by averaging the original high-resolution samples. This approach mir-
rors typical practices in evaluating ideal downscaling configurations. More-
over, we investigate scenarios involving pairs of real low-resolution and high-
resolution simulations to demonstrate the efficacy of our methods in real-
world applications.2

Architectures

Now, we thoroughly test our constraint methods throughout a variety of
standard deep learning SR architectures as described in detail in Section
2.3.4, including an SR-CNN, conditional GAN, a combination of an RNN
and CNN for spatio-temporal SR, and a new architecture combining optical
flow with CNNs/RNNs to increase the resolution of the temporal dimension.
The standard, unconstrained versions of these architectures then also serve
as a comparison for our constraining methodologies. We here give details for
the specific setups in which the formerly introduced architectures are being
used.

2The code can be found at https://github.com/RolnickLab/

constrained-downscaling. It contains 1200 lines of code written in Python/Pytorch.
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SR-CNNs The SR-CNN network that is used here is similar to Lim et al.
[2017]. It consists of convolutional layers and ReLU activations. The upsam-
pling is performed by a transpose convolution followed by residual blocks
(convolution, ReLU, convolution, adding the input, ReLU). The architec-
ture for 2-times downscaling is shown in Figure 4.2. The architecture starts
with a convolutional layer, using 3 × 3 kernels and stride and padding of
one, followed by a ReLU. Then depending on the upsampling factor multiple
transpose convolutional layers, with a stride and kernel size of two. Multiple
residual blocks then learn the higher-frequency features. The final layers in-
clude a 1× 1 kernel convolutions. For more details on CNNs, in general see
Section 2.2.2 in the context of downscaling see Section 2.3.4. For an expla-
nation of residual layers, convolutions, and transpose convolution see Section
2.2.1.

Figure 4.6: The GAN architecture used here including the constraint layer
(in red). The LR input is passed to the last generator layer, the constraint
layer, to enforce the constraint and produce a consistent HR output.

SR-GAN A common approach for super-resolution tasks is to employ a
conditional Generative Adversarial Network (GAN) architecture [Mirza and
Osindero, 2014b, Ledig et al., 2016b]. In our implementation, we utilize the
CNN architecture introduced earlier as the generator network. The discrimi-
nator, adapted from [Ledig et al., 2016b], comprises convolutional layers with
a stride of 2, gradually reducing dimensionality at each step, combined with
ReLU activations and a final average pooling layer and a sigmoid activation
to obtain the predicted scalar between (0,1). Trained as a classifier, it distin-
guishes between super-resolved (SR) images and real high-resolution (HR)
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images using binary cross-entropy loss. The generator takes both Gaussian
noise and low-resolution (LR) data as inputs and produces an SR output. Its
training involves a combination of MSE loss to aid in reconstruction and ad-
versarial loss provided by the discriminator, following the standard approach
of SR GANs [Ledig et al., 2017]. For details and background on GANs and
cGANS, in general, see Section 2.2.2, in the context of downscaling see Sec-
tion 2.3.4. For a description of the cross-entropy loss see Section 2.2.3.

SR-ConvGRU We employ an SR architecture based on the GAN pre-
sented by Leinonen et al. [2021], which uses ConvGRU layers to address the
spatio-temporal nature of super-resolving a time series of climate data, com-
bining an RNN structure with convolutions. Compared to Leinonen et al.
[2021] we here use the generator on its own, both during inference and train-
ing time without the discriminator, providing a deterministic approach. The
ConvGRU network employed here starts with a 3 × 3-kernel convolutional
layer, followed by a residual block using again 3 × 3 kernel convolutions
and leaky ReLU. After the residual block, the ConvGRU layer is applied,
followed by bilinear upsampling and a final convolutional layer. An explana-
tion of RNNs and ConvGRUs can be found in Chapter 2, in Sections 2.2.2
and 2.3.4.

Figure 4.7: Our novel spatio-temporal architecture, combining deep voxel
flow and a ConvGRU-based SR NN. The inputs are two LR images at two
times, the first part predicts the in-between time step using the Deep Voxel
Flow model, the second part increases the spatial resolution of the three time
steps using a convolutional GRU net.

SR-FlowConvGRU To enhance the temporal resolution of our data, we
utilize the deep flow method [Liu et al., 2017], a deep learning framework
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designed for video frame interpolation. This approach merges optical flow
techniques with neural networks to interpolate between video frames effec-
tively. We introduce a novel architecture named FlowConvGRU by inte-
grating the deep flow model with the ConvGRU network (see Figure 4.7).
Initially, we enhance the temporal resolution with the deep voxel flow net-
work, resulting in a time series of low-resolution (LR) images with a higher
frequency. Subsequently, we employ the ConvGRU architecture to boost the
spatial resolution of these LR images. The combined neural networks are
then trained end-to-end, as depicted in Figure 4.7. To go into more detail on
the deep voxel flow architecture: the deep voxel flow network consists of two
parts, a first encode-decoder model that is then combined with optical flow
to predict the intermediate frame. The encoder-decoder networks consist
of convolutional blocks with ReLU, max pooling, and batch normalisation
layers. In the encoder, the convolutional layers with kernels of dimension 5
and a stride of two decrease the dimensions, whereas in the decoder bilinear
interpolation is used to increase the dimensions again. Then optical flow is
combined with the encoder-decoder output to obtain the target frame. For
a more detailed explanation of optical flow see Section 2.2.1.

Training

Our models are trained with the Adam optimizer, a learning rate of 0.001,
and a batch size of 256. We trained for 200 epochs, which took about 3—
6 hours on a single NVIDIA A100 Tensor Core GPU, depending on the
architecture. All models use the MSE as their criterion and weight decay
as regularisation; the GAN additionally uses its discriminator loss term. All
data are normalized between 0 and 1 for training. A description of the
Adam optimizer and the definition and role of learning rate and batch size
can be found in Section 2.2.3. We do not perform much hyperparameter
optimisation here but rely on previously established values.

Baselines

Pixel Enlargement The enlargement baseline consists of scaling the LR
input to the same size as the HR by duplicating the pixels. It is included
to have reference metrics that reflect how close the LR is to the HR data,
without adding any additional assumptions. This baseline conserves mass by
construction.

Bicubic Interpolation Serving as a simple baseline, we use bicubic inter-
polation for upsampling – a common choice [Kurinchi-Vendhan et al., 2021]
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– for spatial SR and take the mean of two frames for temporal SR. We
considered bilinear and nearest neighbour interpolation as well, but bicubic
interpolation showed the strongest performance.

Unconstrained Neural Networks Additionally, we compare against an
unconstrained version of the above-introduced standard SR NN architectures
– SR-CNN, SR-GAN, SR-ConvGRU, and SR-FlowConvGRU).

4.4 Results

Figure 4.8: A random prediction for the WRF temperature test dataset. We
compare unconstrained and softmax-constrained downscaling predictions. It
can be seen that in this case, the constraining improves the visual quality
significantly including more fine-grain details.

Figure 4.9: A random sample prediction for the NorESM temperature test
dataset, we compare an unconstrained CNN and a softmax-constrained CNN
here on the downscaling task. The constrained prediction looks more similar
to the HR ground truth, including more high-frequency features.

Metrics

To evaluate our results, we use typical metrics for weather and climate super-
resolution as introduced in section 2.3.5: root-mean-square error (RMSE,
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see Eq. (2.28)), mean absolute error (MAE, see Eq. (2.29)), Fractional
Skill Score (FSS, see Eq. (2.32)), and mean bias (see Eq. (2.30)) as well
as typical metrics for super-resolution: peak signal-to-noise ratio (PSNR,
see Eq. (2.26)), structural similarity index measure (SSIM, see Eq. (2.24)),
multi-scale SSIM (MS-SSIM, see Eq. (2.25)), and Pearson correlation (see
Eq. (2.27)).

Figure 4.10: One example image from the downscaling water content test
set. Shown here are the LR input, different constrained and unconstrained
predictions, and the HR image as a reference. For the unconstrained CNN
prediction, we can observe some artifacts in the lower left part, which get am-
plified by applying soft-constraining but decreased using hard-constraining
like AddCL or SmCl.

We find that most metrics are highly correlated in our case, therefore
some are moved to the appendix (see Table A.2). For the GAN giving a
probabilistic prediction, we also use the continuous ranked probability score
(CRPS, see Eq. (2.33)). Given that we are interested in the violation of
conservation laws and predicting non-physical values, we also look at the av-
erage constraint violation, the number of (unwanted) negative pixels, and the
average magnitude of negative values. We additionally look at the variance
among the pixels within a predicted super-pixel and investigate the difference
for constraining methods, see appendix, Table A.5.

Results of Different Constraining Methods Hard-constraining shows
exact conservation and appears to enhance performance in most cases when
using readjustment layers (see e.g. Table 4.2). For completion or correction
methods that also ensure exact satisfaction of given constraints performance
from the unconstrained version is either kept constant or decreased.
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Table 4.2: Metrics RMSE, MAE, Multi-scale SSIM, mass violation and num-
ber of negative pixels per million pixels, (all explained in Section 4.4) for dif-
ferent constraining methods applied to the SR-CNN, calculated over 10,000
test samples of the water content downscaling data. The mean is taken over
three runs. The best scores are highlighted in bold blue, second best in bold.

Dat Model/ RMSE MAE MS-SSIM Mass viol. #Neg
Constraint ↓ ↓ ↑ ↓ per mil. ↓

W4 Enlarge 1.29 0.72 97.6 0.00 0
W4 Bicubic 0.80 0.40 99.1 0.17 0.5

W4 cnn/none 0.66 0.33 99.4 0.06 2.4

W4 soft m. 0.80 0.41 99.2 0.02 581
W4 soft n. 0.61 0.30 99.5 0.04 0
W4 soft n.+m. 0.75 0.37 99.3 0.00 0.3

W4 AddCL 0.58 0.29 99.5 0.00 1.4
W4 MultCL 0.61 0.30 99.5 0.00 0
W4 SmCL 0.58 0.29 99.5 0.00 0

W4 CompL 0.63 0.31 99.4 0.00 10
W4 CompL offl 0.66 0.33 99.4 0.00 2.7
W4 CorL 0.66 0.32 99.4 0.02 0
W4 CorL offl 0.66 0.33 99.4 0.06 0

The application of soft-constraining on the other hand does decrease con-
straint violation, but still maintains a significant magnitude of it, which can
be seen in Table 4.2 for example. In addition, soft constraints seem to suffer
from an accuracy-constraints trade-off, where depending on the regularisation
factor, either the constraint violation is reduced or the accuracy increases,
but it struggles to do both simultaneously. A table for different regularisation
factors for soft mass constraining is shown in the appendix (see Table A.1).
For some cases soft constraints cause instabilities in training and diverge,
which happens e.g. for the GAN architecture, see Table 4.3.

Overall, we observe the best performance by AddCL and SmCL methods
throughout NN architectures and datasets. SmCL provides the advantage of
also ensuring positivity in relevant cases (see e.g. Table 4.2).

MultCL, performs weaker than the other readjustment layers in terms
of predictive skills (see Table 4.2), which could be due to instability when
inputs come close to zero. The completion method works well for the CNN
water content case (see Table 4.2), but struggles for more complex tasks and
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Table 4.3: Metrics RMSE, MAE, Multi-scale SSIM, mass violation and num-
ber of negative pixels per million pixels, (all explained in Section 4.4) for dif-
ferent constraining methods applied to an SR-GAN, calculated over 10,000
test samples of the 4x upsampling water content data. The mean is taken
over three runs. The best scores are highlighted in bold blue.

Data Model RMSE MAE CRPS Mass viol. #Neg
Constraint ↓ ↓ ↓ ↓ per mil.↓

W4 Enlarge 1.29 0.72 - 0.00 0
W4 Bicubic 0.80 0.40 - 0.17 0.5

W4 GAN/none 0.63 0.31 0.15 0.05 3.5

W4 soft m. 2.81 1.17 0.54 0.90 2613
W4 soft n. 0.71 0.36 0.17 0.08 2.2
W4 soft n.+m. 2.43 1.72 0.81 1.07 0

W4 AddCL 0.60 0.31 0.15 0.00 7.4
W4 MultCL 0.73 0.41 0.20 0.00 0
W4 SmCL 0.60 0.31 0.15 0.00 0

W4 CompL 1.16 0.72 0.33 0.00 4225
W4 CompL offl. 0.63 0.32 0.15 0.00 142
W4 CorL 0.69 0.36 0.19 0.07 0
W4 CorL offl. 0.63 0.31 0.15 0.04 0

architectures, such as time-series models, see Table 4.4. The offline correction
method that enforces positivity of the output, keeps the performance for al
models, the online version can worsen metrics such as RMSE though (see
e.g. 4.5).

Results of Different Architectures We show in Tables 4.2, 4.3, 4.4, 4.5
that adding the constraint layers enforces the constraint and improves the
evaluation metrics compared to the CNN case for all architectures (CNN,
GAN, ConvGRU, FlowConvGRU). To constrain the GAN leads to less of
a performance boost, but AddCL and SmCL still enhance the prediction’s
quality compared to the unconstrained GAN. Including the temporal dimen-
sions, the constraining improves the predictions much more significantly than
in the case with just a single time step (see Tables 4.2 and 4.5). As shown in
Table 4.4, the RMSE, for example, decreases from 0.67 in the unconstrained
case to 0.50 with constraints.
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Figure 4.11: The difference in the errors of constrained and unconstrained
predictions. Positive values (blue) mean a lower error in the constrained
version.

Figure 4.12: A random sample prediction from the lunar downscaling
dataset is shown. We compare the unconstrained with the constrained pre-
diction.

Results of Different Datasets and Constraints

Different Upsampling Factors Results The success of our constraining
methodology does not depend on the upsampling factor: in Table A.6, we
can see that the constraining methods work well and improve all metrics for
upsampling factors of 2, 4, 8, and 16. Looking at a visual example in Figure
4.16 we can see that structures that are not correctly reconstructed in the un-
constrained prediction, are apparent in the constrained version. For 16-times
upsampling we observe very blurry predictions, for both constrained and un-
constrained versions. Here adding additional inputs, such as high-resolution
topography would be necessary to achieve good downscaling results.

OOD Results When applied to our out-of-distribution dataset, the im-
provement achieved by adding constraints is very similar to the randomly
split data (see results in the appendix in Table A.2).
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Table 4.4: Metrics RMSE, MAE, Multi-scale SSIM, mass violation and num-
ber of negative pixels per million pixels, (all explained in Section 4.4) for
different constraining methods applied to an SR-ConvGRU, calculated over
10,000 test samples of the water content downscaling data. The best scores
are highlighted in bold blue.

Data Model RMSE MAE MS-SSIM Mass viol. #Neg
Constraint ↓ ↓ ↑ ↓ per mil.↓

WT1 Enlarge 1.29 0.72 97.7 0.00 0
WT1 Bicubic 0.81 0.40 99.2 0.17 2.2

WT1 none 0.67 0.34 99.4 0.10 55

WT1 soft m. 0.74 0.39 99.3 0.18 50
WT1 soft n. 0.78 0.42 99.3 0.20 9.7
WT1 soft n.+m. 0.98 0.56 98.9 0.29 9.8

WT1 AddCL 0.50 0.26 99.6 0.00 1358
WT1 MultCL 0.90 0.47 99.0 0.00 0.3
WT1 SmCL 0.50 0.26 99.6 0.00 0

WT1 CompL 1.22 0.54 98.29 0.00 4405
WT1 CompL offl 0.93 0.42 99.0 0.00 1008
WT1 CorL 0.79 0.44 99.3 0.24 0
WT1 CorL offl 0.67 0.34 99.4 0.10 0

Moist Static Energy Results Mass is not the only quantity that can
be conserved, but other quantities such as moist static energy. We show
that moving on to different quantities of the ERA5 dataset, temperature,
water vapor, and liquid water. By looking at Table A.7 (see appendix), one
can observe similar results for liquid water QL and water vapor Qv as for
the total water content: AddCL and SmCL significantly improve results in
all measures over the unconstrained CNN, while enforcing energy and mass
conservation. For temperature, on the other hand, MultCL performs the
strongest, followed by SmCL, whereas AddCL achieves smaller improvements
in the scores. This shows that MultCL performs very well, when there are
now variables encountered that are close to zero.

WRF Results TheWRF temperature dataset differs from others in that it
contains low-resolution data points derived from a distinct simulation rather
than being downsampled. This characteristic presents a more challenging
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Figure 4.13: One random test sample and its prediction. Shown here are
the two LR input time steps, predictions by both a constrained and uncon-
strained version of the FlowConvGRU, and the HR sequence as a reference.

task for our model. However, Table 4.6 indicates a slight improvement in
scores when employing our constraint layer. This outcome might seem coun-
terintuitive given the presence of violations in the training data. Neverthe-
less, these violations are relatively minor and resemble random noise, thus
not introducing significant bias. Consequently, the constraints contribute
to simplifying the learning process and enhancing performance. While the
slight violations in the original dataset could prompt consideration of soft-
constraining, our observations reveal that soft-constraining actually under-
mines predictive performance, whereas hard-constraining surprisingly proves
beneficial. On average, the constraint violation in the original data amounts
to an RMSE of 0.68.

NorESM results For the NorESM data the results are shown in Table 4.8:
the best scores are in achieved by the unconstrained CNN. This is probably

95



Table 4.5: Metrics RMSE, MAE, Multi-scale SSIM, mass violation and num-
ber of negative pixels per million pixels, (all explained in Section 4.4) for dif-
ferent constraining methods applied to our FlowConvGRU, calculated over
10,000 test samples of the water content downscaling dataset. The best scores
are highlighted in bold blue, second best in bold.

Data Model RMSE MAE MS-SSIM Mass viol. #Neg
Constraint ↓ ↓ ↑ per mil.↓

WT2 Interp. 0.83 0.43 99.1 0.17 2.1

WT2 none 0.67 0.35 99.4 0.07 18

WT2 soft m 0.70 0.38 99.4 0.08 21
WT2 soft n 0.75 0.40 99.3 0.10 6.8
WT2 soft n+m 1.05 0.60 98.6 0.20 12

WT2 AddCL 0.51 0.28 99.6 0.00 37
WT2 MultCL 0.72 0.38 99.3 0.00 0
WT2 SmCL 0.51 0.28 99.6 0.00 0

WT2 CompL 1.44 0.66 97.7 0.00 6042
WT2 CompL offl. 1.76 0.54 97.1 0.00 4394
WT2 CorL 0.72 0.39 99.3 0.11 0
WT2 CorL offl. 0.67 0.35 99.4 0.07 0

due to the stronger violation of the downscaling consistency constraints be-
tween low-resolution and high-resolution data. We can observe a significant
difference between the real LR and the HR downsampled, as shown in Figure
4.4. The violation of the constraints here is 2.48K (RMSE) per superpixel
on average, which is much higher than for the WRF case (0.68). The visual
quality of the prediction, on the other hand, seems to be improved by con-
straining, an example is shown in Figure 4.9. One potential approach for
improvements here could be lat-lon weighted constraining as the data covers
a much larger area and thus the areas per grid box might vary more.

Lunar Satellite Imagery Results Finally, we also show that applying
our constraint methodology can improve results in other domains, even in
cases where there is no physics involved. We see that for lunar satellite
imagery, the application of our SmCL improves the traditional metrics, as
shown in Table 4.7. The visual quality is slightly improved, see Figure 4.12.
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Table 4.6: Metrics RMSE, MAE, Multi-scale SSIM and constraint violation
(all explained in Section 4.4) for different constraining methods applied to
the SR-CNN applied on the WRF temperature data, calculated over 10,000
test samples. We choose the most common (RMSE, MAE, Multi-scale SSIM)
and relevant (constr. viol) for our cases. The mean is taken over three runs.
The best scores are highlighted in bold blue, second best in bold.

Data Constraint RMSE MAE MS-SSIM Constr. viol.
↓ ↓ ↑ ↓

WRF Enlarge 1.02 0.65 94.5 0.00
WRF Bicubic 0.97 0.61 95.0 0.07

WRF none 0.95 0.62 94.9 0.18

WRF soft m. 1.02 0.66 94.6 0.03

WRF AddCL 0.96 0.60 95.2 0.00
WRF MultCL 0.97 0.61 95.0 0.00
WRF SmCL 0.95 0.59 95.3 0.00

WRF CompL 0.99 0.62 94.8 0.00
WRF CompL offl. 1.27 0.73 92.9 0.00

Table 4.7: Metrics RMSE, MAE, Multi-scale SSIM, and PSNR, (all explained
in Section 4.4) for different constraining methods applied to the SR-CNN,
calculated over the test samples of the lunar dataset. The mean is taken over
three runs. The best scores are highlighted in bold blue.

Data Model Constraint RMSE MAE SSIM PSNR
↓ ↓ ↑ ↑

Lunar CNN none 0.0022 0.0015 90.08 37.6
Lunar CNN SmCL 0.0021 0.0014 90.40 37.7

Perceptual Quality of Predictions In addition to a quantitative en-
hancement, we can see an improved visual quality for some examples, as
shown in Figure 4.10 and 4.16 for the water content data. In Figure 4.10 it is
visible that an artifact (diagonal stripes) in the unconstrained prediction gets
removed by constraint layers AddCL and SmCL. Figure 4.16 shows that fea-
tures, such as the diagonal line in the HR image can be better reconstructed
with using constraints, especially looking at 8x upsampling. For the WRF
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Figure 4.14: The development of training and validation errors with increas-
ing iterations during training as well as mass conservation violation. Shown
for an unconstrained CNN and the soft-constrained version applied to the
water content data.

Table 4.8: Metrics RMSE, MAE, Multi-scale SSIM and constraint violation
(all explained in Section 4.4) for different constraining methods applied to
the SR-CNN, calculated over the test samples of the NorESM downscaling
dataset. The mean is taken over three runs. The best scores are highlighted
in bold blue, second best in bold.

Data Model RMSE MAE MS-SSIM Constr. viol.
Constraint ↓ ↓ ↑ ↓

NorESM Enlarge 2.99 1.92 96.0 0.00
NorESM Bicubic 2.91 1.86 96.4 0.07

NorESM none 2.35 1.56 96.9 1.03

NorESM soft 2.93 1.87 96.3 0.04

NorESM AddCL 2.89 1.85 96.5 0.00
NorESM MultCL 2.89 1.86 96.4 0.00
NorESM SmCL 2.89 1.85 96.5 0.00

NorESM CompL 2.90 1.86 96.4 0.00
NorESM CompL offl. 4.12 2.27 91.9 0.00

temperature forecast data, we see a very significant improvement in the per-
ceptual quality of the prediction. Looking at an example, such as shown in
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Figure 4.15: The development of training and validation errors with increas-
ing iterations during training. Shown for an unconstrained CNN and different
hard-constrained CNNs applied to the water content data. We can observe
how the readjustment layers (AddCL, MultCL, SmCL) are accelerating con-
vergence and smoothening the learning curve, both measured in training and
validation error.

Figure 4.8, we can see how much more high-frequency detail is added to the
prediction when including a constraint layer. For the lunar satellite imagery,
Figure 4.12 shows that applying constraints can make the image slightly less
blurry.

Spatial Distribution of Errors A common challenge encountered in
downscaling methods is the coastal effect, characterized by amplified predic-
tion errors in coastal regions. Additionally, mountain ridges can also present
significant challenges. As illustrated in Figure A.1 (see appendix), both the
unconstrained and softmax-constrained predictions exhibit heightened errors
in coastal and mountainous areas. However, upon closer examination of the
difference in errors between the unconstrained and constrained versions de-
picted in Figure 4.11, it becomes evident that applying constraints results in
reduced errors in these regions.

99



Figure 4.16: Each model was trained for the same target resolution but with
a different upsampling factor. The first row shows the LR inputs for each
resolution and the last row the corresponding HR ground truth. The second
and third rows show the prediction of an unconstrained CNN and with the
SmCL, respectively.

Loss Curves Observing how the training and validation MSEs develop
during training (see Figure 4.15), we can see that the curves differ signifi-
cantly among different constraints. Training and validation curves both show
the same behaviours. The three readjustment layers AddCL, MultCL, and
SmCL all exhibit much smoother curves than the unconstrained CNN, while
also converging to a lower minimum. AddCL and SmCL here again show the
best performance, being smooth and lower from the beginning of the train-
ing. CompL and CorL both show a more unstable behaviour than without
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constraints.
For soft constraints in Figure 4.14 we can see that the additional loss

term worsens the training and validation curves, converging to a higher local
minimum. The constraint violation is improved by soft constraining, starting
around epochs 100, but still showing a very unstable behaviour.
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Chapter 5

Physics-Constrained Emulation

This chapter goes through the second application case, aerosol microphysics
emulation, where we replace a computationally expensive numerical model
with an ML approximation while still obeying physical constraints. After we
described aerosol modeling and specifically the aerosol microphysics model
M7 in Section 2.5, we here follow a similar structure to that in the downscal-
ing chapter by introducing the formal setup, reformulating the constraint
methods, then moving to the description of the dataset and experimental
setup, and concluding with results. In contrast to the downscaling work, in
this chapter, there are two separate sets of experiments and results:1

1. Offline experiments and results, i.e., training, validating, and testing
on a fixed dataset in Python.

2. Online experiments, i.e. including our trained model in ICON with
Fortran and analyzing the performance in global year-long ICON runs.

5.1 Constrained Emulation

To fulfill our goal of replacing M7 with a faster ML version, we want to ensure
that the emulator respects the same physical constraints as the original. M7
redistributes aerosol masses and numbers among different modes, modeling
their change in time for each grid box independently, and it does not con-
sider sinks or sources. M7 conserves the aerosol mass per species within one
grid box. The positivity of the masses, the water content, and the numbers
needs to always be ensured. We refer to our emulator as NeuralM7, a neural

1Parts of this chapter have been published in P. Harder, D. Watson-Parris, P. Stier,
D. Strassel, N. R. Gauger, and J. Keuper. Physics-informed learning of aerosol micro-
physics. Environmental Data Science, 1:e20, 2022a. doi: 10.1017/eds.2022.22
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network version of the M7 microphysics module. For more details on M7 we
refer to Section 2.5.

5.1.1 Aerosol Microphysics Emulation Setup

Let us formulate the learning task for this emulation problem, where we
try to approximate the M7 model. An input vector x ∈ Rnin consists of
all the inputs that are also provided for the original model; this includes
atmospheric variables, as well as masses and the number concentration of
aerosols, in our case nin = 35. The outputs y ∈ Rnout are changes in aerosol
masses and numbers (i.e. na = 24 aerosol variables), as well as the water
content (nw = 4), with overall nout = 28 output variables. The first nm = 17
variables for both x and y describe the masses with the species S = {SO4,
BC, OC, DU}. The following nn = 7 variables refer to aerosol numbers per
mode. A full list of input and output quantities is shown in the appendix
(see Appendix B.2).

5.1.2 Constraint Formulation

Let us recall again the constraint formulation of the previous chapter (see
Section 3.1) – first the equality constraints∑

i∈I(eq)j

g
(eq)
i (yi) + h

(eq)
j (x) = 0 (5.1)

for each j = 1, . . . , np, and then the inequality constraints∑
i∈I(in)j

g
(in)
i (yi) + h

(in)
j (x) ≥ 0 (5.2)

for each j = 1, . . . ,mp.
For aerosol mass conservation while predicting changes, we have to ensure

that changes per species add up to zero - the equality constraints are∑
i∈I(eq)s

yi = 0, (5.3)

with s iterating over the different species S. Here, h
(eq)
s ≡ 0 and g

(eq)
i ≡ Id.

I
(eq)
s ) consists of the indices of species’ s mass, (I

(eq)
s )s∈S is a partition of

{1, . . . , nm}. I(eq)s contains ns variables, |I(eq)s | = ns.
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The positivity constraint includes the input variables xi, i = 1, . . . , na;
not the change must be positive but the sum of input plus predicted change

yi + xi ≥ 0 (5.4)

for i = 1, . . . , na, with I
(in)
j = {j} for j = 1, . . . , nout. For water content,

which is predicted directly, the output itself has to be positive

yi ≥ 0, (5.5)

for i = na + 1, . . . , nout. This means h
(in)
i (x) = xi for an aerosol index i =

1, . . . , na, h
(in)
i ≡ 0 for i = na + 1, . . . , nout, and g

(in)
i ≡ Id for i = 1, . . . , nout.

Soft Constraining The mass violation per aerosol species can be penalized
via soft constraints (soft mass/soft m.)

L(eq)(y, ŷ) = L(y, ŷ) + 1

ns

∑
s∈S

as(
∑
i∈Is

yi)
2, (5.6)

with tunable parameters as ∈ R, to weigh depending on the species. We
choose these parameters in a way that at beginning of training the individual
terms

∑
i∈Is yi are all of the same magnitude. For the loss function, L, we

again choose the MSE. To encourage positivity, we can penalize −(y + x)
for predicting changes in aerosol masses and numbers and penalize −y when
predicting water content directly (soft neg./soft n.)

L(in)(y, ŷ) = L(y, ŷ)+ 1

na

na∑
i=1

biReLU(−(yi+xi))
2+

1

nw

nout∑
i=na+1

wiReLU(−yi)
2,

(5.7)
again with tunable parameters bi, wi ∈ R, which are chosen so the indi-

vidual penalizing terms are roughly the same.

Readjustment Layers The previously introduced additive readjustment
layer, AddCL, can be employed to achieve guaranteed aerosol mass conser-
vation, readjusting the intermediate outputs ỹi

yAddCL
i = ỹi −

1

ns

∑
k∈Is

ỹk, (5.8)

for i ∈ Is and s ∈ S. The layers MultCL and SmCL cannot be applied
directly given that hj(x) = 0, leading to a constant zero prediction. Our
variables will be normalized and standardized for our final application in
this aerosol emulation task. Therefore, SmCL and MultCL can be applied
again. We will review that case below (see Section 5.1.2).
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Completion Layer The readjustment layers treat every variable per species
equally, whereas for the completion method, only one variable per species s
is changed and set as the negative sum of the remaining variables of the same
species

yCompL
ic

= −
∑

k∈Is\{ic}

ỹk. (5.9)

The other variables yk := ỹk, k ∈ Is \ {ic} remain unchanged in the con-
straint layer. Here again, we have to decide on how to select ic, randomly,
by performance or according to an additional inequality constraint. Choos-
ing the index randomly can cause problems, e.g. predictions that result in
negative masses. An example could be if the mass is borrowed from a mode
that contains very little mass like nucleation mode.

Correction Layer The correction layer for the changes in mass and num-
ber takes into account the input x.

yCorL
i = ReLU(ỹi + xi)− xi (5.10)

for i = 1, . . . , na. For water content, we can directly apply a ReLU function

yCorL
i = ReLU(ỹi) (5.11)

for i = na + 1, . . . , nout.

Normalized Reformulation Having multiple output variables that model
different physical quantities they all span very different ranges. Training on
one loss requires all outputs to be in a similar range. We apply z-scaling for
each input xi and output variable yi. We subtract its mean µx

i , µ
y
i and divide

it by its standard deviation σx
i , σ

y
i .

The constraints for mass conservation are then formulated as follows∑
i∈Is

yi · σy
i + µy

i =
∑
i∈Is

yi · σy
i +

∑
k∈Is

µy
k = 0 (5.12)

for all species s ∈ S, with h
(eq)
s (x) =

∑
k∈Is µ

y
k. For mass and number posi-

tivity, we obtain
yi · σy

i + µy
i + xi · σx

i + µx
i ≥ 0 (5.13)

for i = 1, . . . , na and for water content

yi · σy
i + µy

i ≥ 0, (5.14)

for i = na + 1, . . . , nout.
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The formulation of the constraint layer, based on the unnormalized for-
mulation from Eq. (5.8) for AddCL changes to the normalized version

yAddCL
i =

1

σy
i

(ỹi −
1

ns

(
∑
k∈Is

ỹk +
∑
k∈Is

µy
k)). (5.15)

The general multiplicative readjustment introduced in Section 3.3.2, ad-
justing the intermediate output by rescaling, can be reformulated for our
mass conservation layer in the normalized setup

yMultCL
i = ỹi ·

ns ·
∑

k∈Is µ
y
k

σy
i

∑
k∈Is ỹk

, (5.16)

assuming σy
i

∑
k∈Ij ỹk ̸= 0.

The softmax constrained layer (SmCL), previously described in Section
3.3.2 as a different approach to multiplicative rescaling, can also be used to
enforce mass conservation here, when applied on the normalized data

ySmCL
i = exp(ỹi) ·

ns ·
∑

k∈Is µ
y
k

σy
i

∑
k∈Is exp(ỹk)

, (5.17)

The completion layer, CompL, applied in the normalized case changes
from previous Eq. (5.9) to

yCompL
ic

=
1

σy
ic

(−(
∑

k∈Is\{ic}

ỹk +
∑
k∈Is

µy
k)). (5.18)

Finally, CorL, in the normalized case changes to

yCorL
i =

1

σy
i

(ReLU(yi · σy
i + µy

i + xi · σx
i + µx

i )− µy
i + xi · σx

i + µx
i ) (5.19)

for i = 1, . . . , na and for water content

yCorL
i =

1

σy
i

(ReLU(yi · σy
i + µy

i )− µy
i ), (5.20)

for i = na + 1, . . . , nout.

Combining Constraints Applying one constrained layer either enforces
our equality (mass conservation) or inequality constraint (positivity), but
not both at the same time. Here, it is possible to combine constraints. We
combine soft and hard constraints. One combination includes a correction
layer for positive enforcement and a mass conservation loss term (CorL+soft
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mass). The other hybrid constraining method is a completion layer (online)
with a penalizing term for changes resulting in negative masses and numbers
(CompL+soft neg.). The two soft constraints, mass conservation loss, and
positivity loss are also considered combined by including two extra terms in
the loss function (soft n+m). Combinations of CorL and CompL as described
in Section 3.4 could be helpful here as well, but are left for future work.

5.2 Data

To build our training and offline validation dataset, we run the ICON-HAM
global climate model and write out the aerosol masses and numbers before
and after applying M7 within ICON, as well as all other input and output
variables of M7.

ICON-HAM Setup We use the ICON-A-HAM 2.3 version developed by
Salzmann et al. [2022] and that is available on GitLab for ICON developers
and researchers2. The grid used is the R2B4 grid3, with a horizontal resolu-
tion of about 160 km. For more details on the ICON setup, see appendix,
Section B.3.

Run Details We set up ICON-HAM on the ARCHER2 supercomputing
cluster. We run ICON-HAM for five years from 2000-2004 at a timestep of
10 minutes and 47 pressure levels. The experiment is a standardized run of
the Atmospheric Model Intercomparison Project (AMIP, Gates et al. [1999]).
For more details on the run setup, see appendix, Section B.3.

To have a more manageable dataset, we sub-sample among time and
locations for the ML development phase, obtaining around 5 million data
points. Here, we need relatively quick training times to experiment with
different architectural choices. A description of how the dataset is built
exactly and how the subsampling is done can be found in the appendix,
Section B.4.

Normalisation We experiment with different normalisation techniques,
such as log transformation, normalisation between 0 and 1, and standard-
isation to the z-scale (minus mean + divided by standard deviation). We

2https://git.iac.ethz.ch/hammoz/icon-hammoz/-/tree/hammoz/marc_

salzmann?ref_type=heads
3A RnBk grid divides the icosahedral edges into n parts, followed by k subsequent edge

bisections
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experience the best results in the original scale when using z-scaling. The
scaling is applied to the changes and not the full values.

Data Splits We split the data into training, validation, and testing sets
to perform hyperparameter optimisation (such as learning rate, batch size,
activation layer, weight decay, number of layers, and nodes per layer) and
offline evaluation. Here, we also explore different splittings, such as splitting
randomly, in time, or for different locations. To create an offline test case
that resembles the application in future times, we choose the split in time,
training on the first four years, followed by six months each of validation and
testing. Our training dataset contains around 4.4 million samples.

Datset Extension for Online Case For the final online retraining, we
extend our dataset to cover more of the distribution and achieve stable runs.
We retrain on all available years (including offline validation and training
data) and add additional locations. A description of how the dataset is built
exactly and how the subsampling is done can be found in the appendix,
Section B.4.

5.3 Offline Experiments

Before implementing an emulator in a climate model, careful development
and offline testing are crucial to find the architectures that show the most
promise to perform well online4.

Network Architecture We explore different machine learning approaches
for emulating the M7 microphysics model, including random forest regression,
gradient boosting, and a neural network. For more details on the different
ML architectures see Section 2.1.4. Providing more expressivity, the neural
network approach appears to be the most successful for this application. We
present not only one neural network model here, but different constrained
versions built on the same base architecture, and discuss the advantages and
disadvantages of these different designs.

We employ a fully connected neural network, where the values are prop-
agated from the input layer through multiple hidden to the output layer,
using a combination of linear operations and non-linear activations, see Fig-
ure 5.1. We use a ReLU activation function and three hidden layers, each

4The code for this work can be found at https://github.com/paulaharder/

aerosol-microphysics-emulation, it contains about 400 lines of Python code.
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hidden layer containing 256 nodes. Using zero hidden layers results in linear
regression and does not have the required expressivity for our task; one hid-
den layer already performs well, but after two layers of the model, we can
not see any significant improvements. For more details on neural networks
and the different layers see Section 2.2.

Figure 5.1: The offline data flow and NN architecture used here for M7
emulation, including a constraint layer (in red).

Constraint Formulation

Training We train all our NNs using the Adam optimizer with a learning
rate of 10−3, a weight decay of 10−9, and a batch size of 4096. Our objective
to optimize during neural network training is specified in Equation (5.6)
and Equation (5.7), using an MSE loss in every version and activating the
additional loss terms depending on the specified constraint. We train our
models for 100 epochs. Training on a single NVIDIA Titan V GPU takes
about 6 hours.

Baselines We explore simpler ML models such as linear regression, ran-
dom forests, and gradient boosting. Given the limited expressivity, these
methods do not achieve the same performance compared to NNs. Linear
regression and random forests naturally provide less mass violation, making
them attractive for emulation tasks. The results of these models can be found
in Table 5.1.

5.4 Offline Results

Metrics We consider multiple metrics to obtain an insight into the perfor-
mance of the different emulator designs, covering overall predictive accuracy,
mass violation, and predicting non-physical values. We examine the R2 score
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(see Eq. (2.34)), the normalized RMSE, and a normalized bias for accuracy.
To understand mass violation in our predictions we look at mass bias (MaB)
and overall mass violation with a normalized RMSE (MaE), where all scores
are normalized by the mean over the respective species. The metrics are
completed with two scores on negative value predictions: An overall fraction
of negative and, therefore non-physical predictions (NFrac) and the average
negative extent per predicted value (NMean). We take the mean over three
different random initialisations of the underlying neural network for all the
different scores and architectures.

Other ML approaches

Apart from a neural network approach, we investigate other ML models to
emulate the M7 module. We look at linear regression (LR) and different
ensemble methods such as a random forest regressor (RF) and a gradient
boosting model (GB), detailed descriptions of these models can be found in
section 2.1.4. In Table 5.1 we report the test scores for linear regression, a
random forest, and a gradient boosting approach. Being linear combinations
of training points, linear regression, and random forest both automatically
are close to conserving mass. Overall, the random forest shows the best
accuracy among these models. We note that the random forest performs
worse than the neural network in terms of predictive accuracy, but could
still be considered for future work because of the mass conserving property.
On other important factor though, is that RF and GB are both significantly
slower than NNs, which makes them less useful as emulators.

Accuracy As shown in Table 5.2 and Figure 5.3, we achieve very good
performance with a R2 up to 0.87 evaluating on the predicted changes. We
also achieve a normalized RSME of 0.26, and a normalized bias of 0.00045.
The strongest models measured in the R2 value are the unconstrained NN
(None), the offline correction version (CorL offl.) and correction combined
with a mass regularisation term (CorL+soft mass). Similar performance is
achieved by soft mass-constraint, online correction, and completion versions.
Soft positivity constraints reduce performance to a R2 value of 0.68, unless
combined with the completion layer, when it still reaches a good result of
0.80.

For variables, that can have both negative and positive changes, we can
observe that the models sometimes struggle with predicting zeros. It can
both happen that the true data is zero and the model predicts a non-zero
change or that there is a non-zero change in the true data, but the model
predicts zero. This shows in the prediction vs. truth plot as a cross structure
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Table 5.1: The test scores for different ML approaches (linear regression
(LR), random forests (RF) and gradient boosting (GB)) evaluating offline
performance, including the unconstrained (NN) and two constrained ver-
sions of neural networks. NN+CorL+soft m. uses the correction layer
(CorL) for positivity and a penalizing term for mass conservation (soft m.).
NN+CompL+soft n. uses the completion layer (CompL) for mass conser-
vation and a penalizing term for positivity (soft n.). MaB=Mass Bias,
MaE=Mass Error in RMSE, NFrac= negative fraction, NMean= negative
mean. Best in bold blue, second best in bold black.

Model R2 RMSE Bias MaB MaE NFrac NMean
↑ ↓ ↓ ↓ ↓ ↓ ↓

LR 0.20 0.65 1.2e−3 7.8e−10 1.3e−6 0.26 3.0e−3

RF 0.72 0.45 2.7e−4 3.7e−9 4.3e−6 0.23 3.2e−3

GB 0.53 0.57 2.1e−4 6.3e−5 2.5e−2 0.26 9.0e−3

NN 0.87 0.27 7.3e−4 3.0e−5 1.5e−3 0.20 1.6e−3

NN 0.87 0.26 6.1e−4 2.5e−5 3.2e−3 0.00 0.00
+CorL
+soft m.
NN 0.80 0.29 1.2e−2 0.00 0.00 0.11 5.1e−4

+CompL.
+soft n.

around zero, such as for DU AS, the fourth column in Figure 5.3 or less
pronounced in the fifth column.

In the appendix (see Tables B.1, B.2 and B.3) we show the R2 score for
every 28 predicted variables individually. All different architectures perform
similarly well on most the of variables (see also Figure 5.3). Only two vari-
ables achieve a R2 score below 0.77, which are the coarse mode masses of
sulfate and black carbon.

Constraint violations All hard-constrained methods successfully enforce
either mass conservation or positivity. Correction and completion methods
come with either no or minimal costs in terms of predictive accuracy, while
the readjustment layers significantly decrease the R2 values. Soft negativity
constraining improves negative fraction, bringing it down to 0.17-0.11 and
a slight decrease in negative magnitude when combined with CompL. Soft
mass-constraining lowers the mass RMSE (MaE) but has no effect on the
mass bias. The difference in online and offline application of CompL and

112



Change in H2SO4 concentration

Figure 5.2: The change in H2SO4 concentration modeled by the M7 module
for the first time step of the test data is plotted on the left (ground truth).
The change predicted by our NN emulator NeuralM7 (base version - no con-
straints) is plotted on the right. Both plots show the change in concentration
on a logarithmic scale.

CorL is almost negligible, with a slight better performance of the offline
versions.

Runtime comparison We conduct an offline runtime analysis by com-
paring the Python runtime for the emulator with the Fortran runtime of the
original aerosol model to evaluate the speed-up potential of NeuralM7. We
take the time for one global time step, which is about 570,392 data points
to predict. For the M7 model, the 31 vertical levels are calculated simulta-
neously, and for the emulator, we predict the one time step at once, using
a batch size of 571,392 and taking into account the time for transforming
variables and moving them on and off the GPU. We use a single NVIDIA
Titan V GPU and a single Intel Xeon 4108 CPU. As shown in Table 5.3 we
can achieve a large speed-up of over 11,000x in a pure GPU setting. Includ-
ing the time it takes to move the data from the CPU onto the GPU and
back, the acceleration is 64x compared to the original model. In case of no
available GPU, the NN emulator is still 2.8 times faster.

5.5 Online Experiments

Here, we describe how the online experiments are conducted. First, we retrain
the NN, move the weights through the pipeline described below (also see
Figure 5.4), and then conduct an ICON-HAM run.
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Figure 5.3: NN predictions vs. M7 original values on the test set, calculated
for random variables per species/type. First row is the base NN, second
soft mass-constrained NN, third correction-constrained NN and the last the
completion-constrained NN. The brightness indicates the density of points
in the scatter plot.

To run our aerosol emulator coupled to a global climate model, we need
to move it from the original implementation in Python/Pytorch to an imple-
mentation in Fortran, the language used for almost all climate and weather
models. We achieve this by transforming our trained weights through the
Fortran-Keras Bridge library [Ott et al., 2020], which can then run the NN
with pre-implemented layers in Fortran. Within the global climate model
code, ICON-HAM in our case, we replace the original M7 function, m7, with
a NN version, neural m7. An overview of our end-to-end pipeline for Neu-
ralM7 is shown in Figure 5.4. The first step was discussed in the previous
section about offline experiments and results; here we go through steps 2
(Retraining), 3 (Fortran implementation), and 4 (ICON integration).
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Table 5.2: Test scores for different constraining methods evaluating offline
performance, to determine the most promising approaches to move forward
to online experiments, Calculated on the held-out test set over 0.5M samples.
The mean is taken over three runs. The best scores are highlighted in bold
blue, second best in bold. MaB=Mass Bias, MaE=Mass Error in RMSE,
NFrac= negative fraction, NMean= negative mean.

Model R2 RMSE Bias MaB MaE NFrac NMean
Constraint ↑ ↓ ↓ ↓ ↓ ↓ ↓

None 0.87 0.27 7.3e−4 3.0e−5 1.5e−3 0.20 1.6e−3

soft neg. 0.68 0.46 2.2e−2 3.1e−3 1.3e−2 0.15 1.6e−3

soft mass 0.86 0.27 1.3e−3 3.1e−5 9.7e−4 0.22 1.4e−3

soft n+m 0.59 0.51 3.8e−2 1.7e−3 2.1e−2 0.17 4.2e−3

CorL off. 0.87 0.26 4.5e−4 2.1e−4 2.5e−3 0.00 0.00
CorL on. 0.86 0.27 7.7e−4 1.2e−4 4.3e−3 0.00 0.00
Compl. off. 0.85 0.27 6.8e−4 0.00 0.00 0.21 1.9e−3

Compl. on. 0.84 0.27 8.2e−4 0.00 0.00 0.24 2.3e−3

AddCL 0.17 0.77 4.4e−3 0.00 0.00 0.32 5.4e−2

MultCL 0.36 0.70 6.9e−4 0.00 0.00 0.25 2.2e−2

SmCL 0.35 0.71 1.3e−3 0.00 0.00 0.27 2.2e−2

CorL 0.87 0.26 6.1e−4 2.5e−5 3.2e−3 0.00 0.00
+soft m.
CompL 0.80 0.29 1.2e−2 0.00 0.00 0.11 5.1e−4

+soft n.

Retraining

For online experiments, the training, validation, and testing split are no
longer required; we will automatically encounter new samples when running
the simulation. We experience that a training dataset that covers a larger
part of the data distribution is essential for stability when running online.
This motivates us to retrain on our entire dataset, including the validation
and testing parts. Additionally, we later extend the dataset to include more
locations. Our finally used dataset includes five years of simulation and spans
more locations than the offline case, covering slightly less than one-third of
the globe. A description of how the dataset is built exactly and how the
subsampling is done can be found in Appendix, Section B.4.

The retrained Pytorch weights are then converted to Keras/Tensorflow
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Table 5.3: Runtime comparison for the original M7 model and the NN emula-
tor. NN pure GPU includes only the transformation of the variables and the
prediction, whereas NN CPU-GPU-CPU also includes the time to transfer
the data from the CPU to the GPU and back to the CPU. NN CPU is the
case where the data and neural network stay on the CPU and the application
of the NN is performed on the CPU.

Model M7 NN pure GPU NN CPU-GPU-CPU NN CPU

↓ time (s) 5.781 0.000517 0.0897 2.042
↑ speed-up - 11181.8 64.4 2.80

using the Open Neural Network Exchange (ONNX) ecosystem [Foundation,
2019] as an in-between step. This is done to accommodate the required
format for the integral part of converting to Fortran using the Fortran-Keras-
Bridge.

Implementation in Fortran

The implementation is mostly based on the Fortran-Keras-Bridge library that
converts our weights to a Fortran compatible file and provides most required
NN parts.

Fortran-Keras Bridge The Fortran-Keras Bridge (FKB) is a library that
enables the implementation of NNs in Fortran. Here, different NN layer types
are pre-implemented in Fortran. This covers simple layers, such as dense
layers, batch normalisation, and different activation functions. The user
has to provide the weights file from their trained NN to run the inference
in Fortran using the FKB layers. The weights file is required to be in a
Keras/Tensorflow format, then this is transformed into a txt file, specifying
the layer types and including the weights. There is also the possibility to
train directly in Fortran, but here we only use its inference features. One
limitation of FKB is that it takes only a one-dimensional input and does
not support batches, which decreases the speed compared to standard batch
approaches

Our constraint layers are not included as pre-implemented layers in the
FKB library. They can be easily implemented here as a separate, non-
trainable layer at the end of the NN and are added to the Fortran code
by us directly.
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Figure 5.4: An overview of our NeuralM7 pipeline: The first phase consists
of the development and offline testing in PyTorch. The second phase is
retraining and conversion into Keras. The third phase applies the FKB
library to obtain the Fortran implementation, and in the final fourth step,
we include NeuralM7 in ICON-HAM..

NeuralM7 in ICON-HAM

The global climate-aerosol model ICON-HAM calls the function m7 for each
time step to update the aerosol microphysics properties. We introduce the
new subroutine neural m7 that replaces the standard m7. The neural m7

function applies the following steps

1. Initializes all variables.

2. Standardizes and normalizes the inputs for the NN.

3. Applies the NN.

4. Applies a potential constraint layer.

5. Back-transforms outputs to the original scale.

6. Update aerosol masses, numbers and water content.

In addition to replacing M7, we need to extend the initialisation to load
the NN’s weights once and distribute copies of them among processes for
parallel execution. The code exists as a branch within the ETH Zürich
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ICON development Gitlab repository5 and is available to ICON developers
and researchers.

Runs We employ the ICON-HAM global aerosol-climate model as described
in the previous data section (see Section 5.2). We run the model either for a
year (starting in January 2000) or until the climate model crashes (for details
on model crashes see Section B.5). We add a three-month spin-up period at
the beginning, which is done using the original M7 module. For more details
on the run setup, see in the appendix, Section B.3.

Testing To ensure correct results, we test the NN throughout the pipeline.
A test case prediction is done first in Pytorch, secondly with the Keras
weights, then with the offline Fortran implementation, and in the end with
the weights loaded in ICON-HAM to ensure that at all stages the application
of the NN gives the same outcome.

5.6 Online Results

In this section, we discuss the results achieved by performing our coupled
runs of the NN emulator and ICON-HAM. We go through the aspects of
stability and predictive accuracy and look at burdens and predicted variable
values as well as aerosol properties. We compare the values after a year-long
run including different versions of our emulator to a reference run. Finally,
we discuss the runtime performance depending on the neural network size.

Stability

The first criterion for evaluating an emulator’s performance is its stability.
Even a very accurate surrogate is not of use if it does not result in a stable
climate run when coupled. Table 5.4 shows the stability for all implemented
NN architectures, as well as tables (see Tables 5.7 and 5.6) showing the
stability depending on the size of the NN and the training set.

Simulation crashes, i.e., the occurrence of an error that leads to the simu-
lation stopping, appear to be caused by some versions of our emulator. Here
the error does not occur in the emulator code, but in later parts, such as
the convection scheme, as a result of unrealistic predictions by the NN. More
details can be found in the appendix (see Section B.5).

5https://git.iac.ethz.ch/rherbe/icon-hammoz/-/tree/harder-neural-m7, in-
cluding 100 lines of Fortran code
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Table 5.4: The stability of different NN setups, when coupled to ICON-HAM,
measured in days until model crash. We run ICON for one year, after a three-
month spin-up. Here, 365 days is the maximum that can be achieved. Best
results are highlighted in bold blue.

run Stab. (d)/365 ↑

None 0
Soft mass 365
CorL offl. 365
CorL onl. 19
CompL offl. 0
CompL onl. 0
CorL offl.+soft m. 365
CorL onl.+soft m. 26
CompL offl+soft m. 37

As shown in Table 5.4, three of the nine architectures achieve full sta-
bility. The initial NN, without any constraint included, does not achieve a
single day of stable run. The completion layer does not help to provide a
stable run despite its mass-conserving properties. While the mass loss term
does not have a significant effect on offline performance, it stabilizes the NN
performance for a full year in the online setting. Offline correction (enforcing
mass positivity) and a combination of soft mass constraint and correction
achieve full stability too.

Neural network size We experience a high sensitivity of stability towards
the NN’s size. Table 5.7 shows that smaller architectures tend to be less
stable, especially when including fewer layers. Here, stability correlates with
offline performance, which also increases with the neural network’s size and
depth. We observe that a further increase in depth or width of the NN does
not aid stability or performance and can even harm it. Additionally, a bigger
NN always increases computational costs.

Training Set Size The size and diversity of the training set significantly
affect the stability of NeuralM7 as well. Table 5.6 shows that a training
set is needed that spans more years and more locations to achieve a stable
run. We use four different datasets. The first and smallest dataset consists
of samples from only one year and from a fifth of the locations, the second
dataset includes samples from an additional three, and the third from four
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Table 5.5: R2 scores (higher is better) for different emulators evaluating
online performance, by considering aerosol properties and burdens. Best
scores are highlighted in bold blue.

run soft mass CorL offl. CorL offl.+soft mass

AOD 550nm 0.89 0.63 0.63
AOD 865nm 0.88 0.61 0.62
Abs. 550nm 0.94 0.84 0.82
AE. 550nm-865nm 0.79 0.75 0.80

Burden H2S04 0.90 0.91 0.91
Burden S04 0.80 0.83 0.83
Burden BC 0.93 0.96 0.93
Burden OC 0.94 0.96 0.93
Burden DU 0.89 0.59 0.62
Burden WAT 0.63 0.70 0.75

years, both still coming from the same location. The final fourth dataset
samples from more locations, covering roughly one-third of the grid boxes
and 5 years.

Table 5.6: Stability of online runs in days depending on the training set size.
Here we use the soft mass-constrained architecture and train it on different
data sets, samples from different spatial and temporal coverage. Bold blue
highlights the best result.

data set1 set2 set3 set4

years y. 1 yrs. 1-4 yrs. 1-5 yrs. 1-5
spatial coverage 1/5 1/5 1/5 3/10
set size 0.5M 4.4M 5.5M 9M

↑ Stab. (d)/365 0 23 32 365

The proceeding accuracy analysis is limited to stable models only that
provide a year of run data, i.e., the soft mass-constrained version (soft mass),
the offline correction-constrained version (CorL offl.), and the combination
of these two constraining methods (CorL offl. + soft mass).
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Figure 5.5: Aerosol burdens after 1 year run of ICON-HAM with our soft
mass-constrained emulator compared to a reference run including the M7
original. Plots for the other two architectures can be found in the appendix.
The brightness indicates the density of points in the scatter plot.

Additional Attempts to Stabilize Runs We try a variety of methods
and ways to stabilize emulator runs, here are attempts that we implement to
resolve the stability issues.

• Ensemble forecast: We implement a setup where different weight files
are applied for inference and the mean of the prediction is then passed
on to ICON. The different weights files can either come from the ex-
act same architectural and hyperparameter setup and just differ based
on different random initialisation, or include architectural differences.
Ensembles are known to make predictions more stable, but in our case
it does not prevent model crashes. A disadvantage of ensemble NNs is
an increased computational demand.

• Separate NNs: Predicted variables can be divided in different sub-
groups, such as sulphate masses, black carbon masses, number concen-
tration, etc.. We train individual NNs for each of those subsets and
included them in ICON. Offline we can achieve slightly better perfor-
mance than with one single NN. The idea for stability is that if one
variable gets predicted off bounds, it does not directly impact other
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variables. We still run into stability issues with this setting. This is to
be expected as most M7 modes are internally mixed so all mass species
in one mode undergo the same physical processes.

• Set hard upper-boundaries: We hard code upper boundaries for the
predicted variables in Fortran, this then causes that in some grid boxes
all the values saturate that boundary and stay there, still giving prob-
lems in later code parts.

• Interchanging physical prediction and NN: We conduct runs where a
time step performed with NeuralM7 is followed by a time step per-
formed by the original model. While this extends the time ICON-HAM
runs stably, it did not resolve stability issues completely.

• Predicting full values: Instead of learning to predict the changes we
train a NN to predict the full mass and number values at the next time
step. Here we can easily force the positivity and set hard boundaries
using a sigmoid as a last layer. The offline scores evaluated on the full
values themselves achieve good scores, but when evaluated on changes
they do ot achieve much predictive skill. In an online run, we achieve
stable runs but the aerosol properties stay constant throughout the
simulation, which makes predicting full values infeasible for our task.

Aerosol Properties We look at aerosol radiative properties that depend
on their microphysics such as optical thickness, absorption optical depth,
and Angstrom Exponent (AE) after one year of simulation, considering the
monthly mean of all properties. Aerosol optical thickness, also called aerosol
optical depth (AOD), measures the amount of light that gets redistributed
through scattering and absorption due to the presence of aerosols on a vertical
path through the atmosphere. AOD depends on the wavelength considered,
here we include 550nm and 865nm. The absorption optical depth (Abs.
OD) is the amount of light at a specific wavelength absorbed by aerosols.
The Angstrom Exponent (AE) describes how AOD changes relative to the
various wavelengths of light and is a valuable proxy of column-integrated
aerosol size.

In Table 5.5 and Figure 5.6 we can see that all stable emulators are able
to predict aerosol properties well. The soft mass-constrained neural network
achieves very good results with R2 values between 0.79 and 0.94.

Variables and Burdens Aerosol burdens are the column aggregated changes
in aerosol masses or numbers. Taking into account values after one year of
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Figure 5.6: Aerosol properties, monthly mean, after a 1-year run of ICON-
HAM with our three different stable architectures. The first row is the soft
mass-constrained emulator compared to a reference run with the original M7,
the second row is the emulator with CorL and the last combines CorL and
soft mass-constraining. We show aerosol optical depth (AOD) at 550nm and
865nm, absorption optical depth (Abs. OD) at 550nm and the Angstrom
Exponent (AE) from 550nm-865nm. The brightness indicates the density of
points in the scatter plot.

running, we show the mass burdens for H2S04, SO4, BC, OC, dust, and wa-
ter content in Figure 5.5 for the soft mass-constrained NN; the same plots for
the CorL and CorL + soft mass networks can be found in the appendix (see
Figures B.1 and B.2). Table 5.5 shows that we achieve very good or good
results ranging from a R2 value of 0.59 to 0.96 depending on the variable
and model. For burdens, the correction NN performs better than the soft
mass-constrained one, with the exception of dust burden.

Tables B.4, B.5, B.6 (see appendix) show the R2 score for the monthly
mean of every individual variable value after a year of simulation. Most
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Table 5.7: Runtime comparison for the original M7 model and the NN em-
ulators, when coupled with ICON, using four nodes and 128 processes per
node. We report the time spend on m7/neural m7 for a month of a global
run. We compare different sizes of NN, with the architectures’ depth x width.
Best scores are highlighted in bold blue.

Model M7 2x16 2x32 2x64 1x256 2x128 2x256
#params - 1.3k 3.1k 8.3k 16.4k 24.7k 82.2k

↓ time (s) 15 11 17 28 61 68 193
↑ stability (d)/365 365 2 2 4 2 14 365
↑ offl. R2 1.0 0.66 0.70 0.72 0.39 0.79 0.87

of the 28 variables are well predicted, with R2 reaching 0.70 to 0.96. The
six weakest variables are coarse modes for black and organic carbon, water
content accumulation mode as well as Aitken mode for sulphates and num-
ber concentration. The three different models perform all well on the same
variables.

Runtime Comparison The runtime heavily depends on the number of
parameters in the NN, which is determined by the number of layers and
nodes per layer. The constraint layers do not noticeably influence the run-
time. Table 5.7 shows the runtime of ICON-HAM-NeuralM7 compared to
the original. With the current setup, a speed-up is achieved only with the
smallest NN consisting of 16 nodes per hidden layer and two hidden layers.
Our stable NN setup with two layers and 256 nodes per layer needs about
ten times more time than the original. Compared to the offline runtime eval-
uation it is important to notice that here the batch size is one, only one
sample is predicted by the NN at once. Here, tools are required to support
parallelized batch execution of NN, or a setting where the NN can be run
on a GPU to achieve its full potential. When considering the NN size, we
observe a trade-off between stability and runtime, where bigger architectures
perform better but are slower.
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Chapter 6

Conclusion and Future Work

This chapter finalizes our work on the topic of physics-constrained DL for
accelerating climate modeling. It is divided into a conclusion and an out-
look section. The conclusion section briefly summarizes the results of this
thesis and highlights our contributions within the field. The future work sec-
tion describes how current limitations can be tackled in ongoing efforts and
showcases interesting avenues for new research building upon this work.

6.1 Conclusion

There is a need for faster climate modeling to achieve more accurate predic-
tions, make models easier to use, save energy while forecasting, or predict
further into the future. The recent success of deep learning can be utilized for
speeding up climate modeling both through replacing expensive model parts
(emulation) and through running models at lower resolution and increasing
the resolution afterward (downscaling). However, at the same time, we need
to pay attention to physical constraints that are often violated when using
deep learning.

This thesis introduces novel methodologies to incorporate generalized lin-
ear equality and inequality constraints into any deep learning architecture.
Our framework covers both soft constraint methods by adding penalizers to
the loss function and hard constraint methods by stacking a final constraint
layer to the end of the NN. Our hard constraint layers guarantee a specified
constraint to be satisfied, and we can showcase their successful application
for downscaling and emulation. All of our constraining code is publicly avail-
able and usable for anyone. The constraints layers can be easily utilized for
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any other problem; they are available as Pytorch modules.1 2

In this work, we develop four different hard constraint layers for equal-
ity constraints and one hard constraint layer for inequality constraints. For
equality constraints, this includes the readjustment layers AddCL, MultCL,
and SmCL, and a completion layer, CompL. AddCL adds a small adjust-
ment term depending on the input and the constraint violation, MultCL
rescales the intermediate prediction by a factor depending on the violation,
and SmCL is a softmax layer scaled by an additional factor depending on
the constraints again. CompL works differently; it sets one variable per con-
straint subset depending on the other variable in a way that the constraints
are satisfied. The correction layer, CorL, corrects the output so that inequal-
ity constraints, such as positivity, are satisfied. Constraint layers are usually
included during training, to be considered by the optimizer. Though CompL
and CorL can also be applied offline, at inference only. All these layers show
exact enforcement of the desired properties, but depending on the task they
affect the predictive performance differently.

For constrained downscaling, we show that our AddCL and SmCL read-
justment layers perform well, across different deep learning architectures,
upsampling factors, predicted quantities, and datasets. We demonstrate its
ability to operate on both standard downscaling datasets and on data created
by independent simulations with the WRF. Our constrained models are not
only guaranteed to satisfy consistency such as mass conservation between
LR and HR, but also increase predictive performance across metrics, such
as RSME and SSIM, and across use cases. Compared to soft-constraining
through the loss function, the hard-constraint methodology does not suffer
from the common accuracy-constraints enforcement tradeoff and is easy to
integrate without any tuning necessary. Our hard-constraining performance
enhancement is not only limited to climate super-resolution but also notice-
able in satellite imagery of the lunar surface. Within the climate context, our
AddCL and SmCL constraint layers can help with common issues connected
to deep learning applied to downscaling: it dampens the coastal effect, errors
get lower in critical regions, and training is more stable. Hard-constraining
can weaken performance if the enforced relationships are strongly violated in
the true data (see NorESM data). Also, if a bias exists in the LR (or other
input) it can be propagated to the HR prediction by constraining on the LR.

Apart from our major contribution to constrained downscaling, we also
advance the field of deep learning for climate downscaling by introducing
a novel neural network (NN) architecture to perform spatial and temporal

1https://github.com/RolnickLab/constrained-downscaling
2https://github.com/paulaharder/aerosol-microphysics-emulation
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super-resolution simultaneously. It is the first model to tackle this problem
and outperforms the CNN+interpolation baseline by combining an optical
flow encoder-decoder frame interpolation architecture with a convolutional
RNN. Moreover, we establish a new challenging dataset as a testbed for
climate super-resolution, introducing the NorESM data as a downscaling
problem3.

When building an aerosol emulator, physical constraints appear natu-
rally, making it an interesting second test case for constrained deep learning.
The aerosol emulator shows slightly different behavior with respect to the
constraints compared to downscaling. Hard constraint layers still ensure sat-
isfaction of the constraint by construction, but here completion and correc-
tion are much more successful in keeping the original performance compared
to readjustment layers. The online performance benefits from constraints,
especially soft mass constraining and CorL that enable stable runs.

We are the first to build an emulator for the M7 aerosol microphysics
model, predicting changes in aerosol masses and numbers. We achieve very
good offline performance, with a R2 score of 0.87, using a fully-connected,
2-layer NN that significantly outperforms linear regression random forests
and gradient boosting.

Unlike many works in the field, we take an extra step towards deployment
and implement and test our emulator in a global climate model, using the
Fortran-Keras bridge library. We showcase stable coupled runs with ICON
as well as an accurate prediction of aerosol properties, such as AOD with
an R2 of 0.89 with respect to the reference run after one year of simulation.
One observation for online runs was that NNs could easily become unstable,
predicting unrealistic or unphysical values, especially when encountering out-
of-the-distribution samples. This made it necessary to extend our training
dataset size several times until we reached stable runs. While increasing
the training set size and its variety, we also need to increase the NN’s size,
running into a size-stability and with that a speedup-stability tradeoff. With
the current library being used that only supports a single batch size, the NN
is slower than the original, here further work needs to be invested to achieve
the speed-up building on the promising offline runtimes.

In summary, this work advances the field of constrained deep learning
methodologically by developing new layers. We showcase how downscaling
and emulation can benefit from these constraints. The development of an
aerosol microphysics emulator and its integration into ICON demonstrated
both the promise and difficulties of neural network emulators.

3https://drive.google.com/file/d/1D5tLE7cGcvh3dap-P3VOLEOK_7FqdChF/

view?usp=sharing
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6.2 Future Work

This thesis results in a variety of exciting future avenues for research, from
examples, like extending the constraint methods over new downscaling ar-
chitectures, to accelerating the online emulator

Although our generalized linear formulation for constraints covers all the
application cases we encountered and is relatively straightforward to enforce,
it is interesting to extend the set of constraints that can be addressed us-
ing a hard constraining methodology. Here, future research can be done
on incorporating non-linear constraints and finding appropriate application
cases that benefit from that. Existing constraint layers such as SmCL can
be enhanced by including a learnable parameter, and soft-constraining can
be potentially advanced through the scheduling of the regularisation factor.
More combinations of our introduced constraining methods could be explored
to achieve inequality and equality constraint satisfaction simultaneously.

Our work focuses on the effect of constraints in different architectures,
and less on pushing downscaling performance to its maximum. Here, climate
super-resolution performance could be enhanced by including additional in-
formation such as by incorporating high-resolution topography. The con-
strained downscaling work can be extended to any NN architecture. As the
field advances quickly, new methods come out regularly. The first works
building on our ideas use a constrained Fourier Neural Operator for arbi-
trary resolution downscaling [Yang et al., 2023]. Additionally, for a perfect
prognosis setup, the idea of hard inequality constraints via ReLU has been
adapted from our work [González-Abad et al., 2023]. Diffusion-based super-
resolution methods, that recently appeared as a popular probabilistic method
in climate science, can also benefit from a hard constraint layer when applied
to climate downscaling. Transformer-based architectures, state-of-the-art in
SR for computer vision, could be adopted for deterministic downscaling and
enhanced with constraint layers. Splitting up a DL downscaling task into
bias correction and super-resolution parts can enable constraints to be more
successful when LR and HR are too far apart (e.g. for our NorESM data).

An open question for constrained climate downscaling is a concrete appli-
cation case that includes a downstream task. For post-processing purposes,
the offline application of our method, our code is readily available. To de-
ploy these constrained super-resolution methods online, the next step is to
use Fortran-Python bridges [Ott et al., 2020] to include them in global cli-
mate model runs.

There are a variety of possibilities to improve the final online performance
of our aerosol emulator. There are multiple options to improve stability and
accuracy. One new pathway is an active learning approach, in which we can
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utilize our developed aerosol box model (see Appendix B.1) to produce new
output from whatever input we need. The speed of our emulator can be in-
creased in various ways. As we established in our current setup, the inference
time depends heavily on the number of nodes in the NN. Pruning methods
can help to achieve a smaller architecture. Utilizing different libraries that
support parallelized batch predictions for NNs can help to accelerate the em-
ulator while remaining at the same size. Before employing an emulator such
as NeuralM7 for climate forecasting, it is necessary to ensure that ICON-
HAM-NeuralM7 reproduces historical climate and forcing of aerosols in a
multi-year run. Given the expressive power of NNs but the limited ability
to speed up already efficient small submodels in climate models, an exciting
future project is emulating not only the aerosol microphysics but the entire
aerosol model HAM.

This thesis contributes significantly to advancements in the integration
of deep learning with climate modeling, presenting novel methodologies that
ensure physical constraints are respected while accelerating simulation pro-
cesses. Looking forward, our constraining methods can be beneficial for a va-
riety of application tasks, and our online evaluation can aid future work with
the challenging integration of deep learning within existing climate model
setups.
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H. Schwenk, and Y. Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. In EMNLP, 2014.

M. Chu and N. Thuerey. Data-driven synthesis of smoke flows with CNN-
based feature descriptors. ACM Transactions on Graphics, 36(4):1–14, jul
2017. doi: 10.1145/3072959.3073643.

C. J. Darken, J. T. Chang, and J. E. Moody. Learning rate schedules for
faster stochastic gradient search. Neural Networks for Signal Processing II
Proceedings of the 1992 IEEE Workshop, pages 3–12, 1992.

C. O. de Burgh-Day and T. Leeuwenburg. Machine learning for numerical
weather and climate modelling: a review. Geoscientific Model Develop-
ment, 16(22):6433–6477, 2023. doi: 10.5194/gmd-16-6433-2023.

134



J. Delgado-Centeno, P. Harder, V. Bickel, B. Moseley, F. Kalaitzis, S. Ganju,
and M. Olivares-Mendez. Superresolution of lunar satellite images for en-
hanced robotic traverse planning: Maximizing the value of existing data
products for space robotics. IEEE Robotics & Automation Magazine, pages
2–14, 2023. doi: 10.1109/MRA.2023.3276267.

J. Delgano-Centeno, P. Harder, B. Moseley, V. Bickel, S. Ganju, F. Kalaitzis,
and M. Olivares-Mendez. Single image super-resolution with uncertainty
estimation for lunar satellite images. NeurIPS Workshop ML for Physical
Sciences, 2021.

C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using
deep convolutional networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38:295–307, 2014.

C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using
deep convolutional networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(2):295–307, 2016. doi: 10.1109/TPAMI.2015.
2439281.

P. Donti, D. Rolnick, and J. Z. Kolter. Dc3: A learning method for opti-
mization with hard constraints. In International Conference on Learning
Representations, 2021.

P. Dueben, M. G. Schultz, M. Chantry, D. J. Gagne, D. Hall, and A. Mc-
Govern. Challenges and benchmark datasets for machine learning in the
atmospheric sciences: Definition, status and outlook. Artificial Intelligence
for the Earth Systems, 2022.

P. D. Dueben and P. Bauer. Challenges and design choices for global weather
and climate models based on machine learning. Geoscientific Model De-
velopment, 2018.

B. Fallah, C. Menz, E. Russo, P. Harder, P. Hoffmann, I. Didovets, and F. F.
Hattermann. Climate model downscaling in central asia: a dynamical and
a neural network approach. Geoscientific Model Development Discussions,
2023:1–27, 2023.

P. Forster, T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame,
D. Lunt, T. Mauritsen, M. Palmer, M. Watanabe, M. Wild, and H. Zhang.
The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity,
page 923–1054. Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 2021. doi: 10.1017/9781009157896.009.

135



T. L. Foundation. Onnx, 2019. URL https://onnx.ai/. Accessed on 16th
Jan, 2024.

J. H. Friedman. Greedy function approximation: a gradient boosting ma-
chine. Annals of statistics, pages 1189–1232, 2001.

W. L. Gates, J. S. Boyle, C. Covey, C. G. Dease, C. M. Doutriaux, R. S.
Drach, M. Fiorino, P. J. Gleckler, J. J. Hnilo, S. M. Marlais, T. J. Phillips,
G. Potter, B. D. Santer, K. R. Sperber, K. E. Taylor, and D. N. Williams.
An overview of the results of the atmospheric model intercomparison
project (amip i). Bulletin of the American Meteorological Society, 80:29–
55, 1999.

A. Geiss and J. C. Hardin. Strictly enforcing invertibility and conservation
in cnn-based super resolution for scientific datasets. Artificial Intelligence
for the Earth Systems, 2(1):e210012, 2023. doi: https://doi.org/10.1175/
AIES-D-21-0012.1.

A. Geiss, S. Silva, and J. Hardin. Downscaling atmospheric chemistry sim-
ulations with physically consistent deep learning. Geoscientific Model De-
velopment Discussions, 2022:1–26, 2022. doi: 10.5194/gmd-2022-76.

A. Geiss, P. Ma, B. Singh, and J. C. Hardin. Emulating aerosol optics with
randomly generated neural networks. Geoscientific Model Development,
2023.

P. Gentine, M. Pritchard, S. Rasp, G. Reinaudi, and G. Yacalis. Could
machine learning break the convection parameterization deadlock? Geo-
physical Research Letters, 45(11):5742–5751, 2018a. doi: https://doi.org/
10.1029/2018GL078202.

P. Gentine, M. S. Pritchard, S. Rasp, G. Reinaudi, and G. Yacalis. Could
machine learning break the convection parameterization deadlock? Geo-
physical Research Letters, 45:5742 – 5751, 2018b.

A. Gettelman, D. J. Gagne, C.-C. Chen, M. W. Christensen, Z. J. Lebo,
H. Morrison, and G. Gantos. Machine learning the warm rain process.
Journal of Advances in Modeling Earth Systems, 13(2):e2020MS002268,
2021. doi: https://doi.org/10.1029/2020MS002268. e2020MS002268
2020MS002268.

R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice Hall,
2006.

136

https://onnx.ai/
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S. Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux,
P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg,
S. Villaume, and J.-N. Thépaut. The era5 global reanalysis. Quarterly
Journal of the Royal Meteorological Society, 146(730):1999–2049, 2020. doi:
https://doi.org/10.1002/qj.3803.
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Appendix A

Appendix Downscaling

A.1 Tuning Soft Mass-Constraining

Here, we investigate the influence of the factor α on the soft mass-constraining
method in more detail. α is used as follows

Loss = (1− α) ·MSE + α · Constraint violation. (A.1)

Table A.1 shows how the increase of α improves the mass conservation but
only up to a value between 0.014 and 0.017. At the same time, it shows that
the predictive skill decreases with the increase of α significantly.

Table A.1: Metrics calculated over 10,000 validation samples. The best scores
are highlighted in bold blue, the second best in bold black.

Data Alpha RMSE MAE MS-SSIM Mass viol. #Neg
↓ ↓ ↑ ↓ per mil. ↓

W2 0.0001 0.241 0.102 99.95 0.021 1.21
W2 0.001 0.237 0.100 99.96 0.022 0.12
W2 0.01 0.247 0.103 99.96 0.022 1.39
W2 0.1 0.252 0.104 99.95 0.023 0.41
W2 0.9 0.268 0.110 99.95 0.020 16.83
W2 0.99 0.297 0.133 99.94 0.014 31.01
W2 0.999 0.477 0.261 99.84 0.016 600.96
W2 0.9999 0.706 0.433 99.71 0.017 3867.90
W2 1 2.618 1.814 94.22 0.017 960.42
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Figure A.1: The errors of the global predictions for unconstrained and con-
strained (SmCL) CNNs, when compared to the ground truth. The CNN is
applied per 32x32 patch and then put together for a global predictions at a
random time step. Used here is the TCW4 dataset. We can observe how
the stronger errors in coastal and mountainous regions for the unconstrained
predictions are dampened by soft-max constraining.

A.2 Additional Scores

We look at additional scores for our water content dataset. We investigate
the mean bias (mean over the difference for each pixel value of prediction
and truth), the peak signal-to-noise ratio (PSNR), the structural similarity

Figure A.2: A random sample for the GAN predictions, showing 3 different
outputs from the ensemble, comparing constrained and unconstrained GANs.

index measure, the Pearson correlation (Corr), and the negative mean (the
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average magnitude of predicted negative values, the average is calculated over
all predicted values, including positive, that are set to zero to calculate the
negative mean). These metrics show a similar trend then the metrics shown
in Chapter 4: all of them are improved by adding constraints (soft m.) in our
architecture. Without or with soft mass-constraining there are small biases
appearing in the predictions, but hard constraining removes those biases.
PSNR is a function of the MSE and therefore shows the same trend as it.

Table A.2: Metrics for different constraining methods applied to the SR
CNN applied on the OOD water content dataset, calculated over 10,000 test
samples. The mean is taken over 3 runs. The best scores are highlighted in
bold blue, second best in bold black.

Data Model RMSE MAE MS-SSIM Mass viol. # Neg
Constraint ↓ ↓ ↑ ↓ per mil. ↓

OOD Enlarge 1.274 0.711 97.60 0.000 0
OOD Bicubic 0.792 0.397 98.63 0.167 0.55
OOD CNN 0.661 0.327 99.39 0.059 4.93
OOD AddCL 0.575 0.287 99.50 0.000 1.65
OOD MultCL 0.591 0.294 99.47 0.000 0
OOD SmCL 0.579 0.289 99.49 0.000 0

SSIM and correlation give very similar results, AddCL and SmCL showing
the best scores. Overall we can see that soft mass-constraining leads to
the most significantly negative predictions, which would cause issues in the
context of climate models and predictions.

In Table A.4 we report the Fractional Skills Score (FSS) for window sizes
2,4 and 8 for 95th and 99th percentiles, observing a slight improvement with
enforcing constraints.
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Table A.3: More metrics for different constraining methods applied to an SR
CNN, calculated over 10,000 test samples. The best scores are highlighted
in bold blue, second best in bold.

Data Model Mean bias PSNR SSIM Corr Neg mean
Constraint ↓ ↑ ↑ ↑ ↓

W2 Enlarge 0.000 45.36 98.65 99.75 0.000
W2 Bicubic 0.000 51.46 99.71 99.95 0.000
W2 CNN −0.003 53.62 99.82 99.97 0.002
W2 soft m. −0.002 52.07 99.74 99.94 0.192
W2 AddCL 0.000 54.91 99.85 99.98 0.002
W2 MultCL 0.000 54.65 99.84 99.97 0.000
W2 SmCL 0.000 54.95 99.85 99.98 0.000

W4 Enlarge 0.000 39.43 94.91 98.98 0.000
W4 Bicubic 0.000 43.55 98.29 99.63 0.000
W4 CNN −0.015 45.26 98.70 99.74 0.001
W4 soft m. −0.001 43.55 98.15 99.59 0.546
W4 AddCL 0.000 46.35 98.89 99.80 0.001
W4 MultCL 0.000 45.98 98.83 99.78 0.000
W4 SmCL 0.000 46.31 98.88 99.79 0.000

W8 Enlarge 0.000 34.84 89.08 96.95 0.000
W8 Bicubic +0.0001 37.77 95.40 98.50 0.006
W8 CNN −0.0148 38.96 95.93 98.82 0.012
W8 soft m. −0.0071 37.32 94.37 98.22 0.656
W8 AddCL 0.000 39.56 96.23 98.96 0.011
W8 MultCL 0.000 39.13 95.99 98.87 0.000
W8 SmCL 0.000 39.55 96.21 98.96 0.000

W16 Enlarge 0.000 30.92 85.20 92.19 0.000
W16 Bicubic +0.0090 32.91 91.99 95.15 0.063
W16 CNN −0.0091 33.83 92.48 95.94 0.006
W16 soft m. +0.0115 32.70 90.45 94.63 4.233
W16 AddCL 0.000 34.14 92.67 96.20 0.581
W16 MultCL 0.000 33.98 92.54 96.07 0.000
W16 SmCL 0.000 34.13 92.68 96.19 0.000
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Table A.4: Fractional Skill Score (FSS, higher is better) for different con-
straining methods and SR CNN applied on the ERA5 water content data,
calculated over 10,000 test samples. We look at window sizes 2, 4 and 8 and
the 95th and 99th percentiles. The best scores are highlighted in bold blue,
second best in bold black.

Data Model 95perc. 99perc.

Constraint 2 4 8 2 4 8

W4 Enlarge 0.970 0.989 0.997 0.935 0.974 0.991
W4 Bicubic 0.971 0.987 0.994 0.935 0.969 0.986
W4 CNN 0.978 0.992 0.997 0.950 0.979 0.993
W4 soft m. 0.971 0.989 0.997 0.935 0.974 0.991
W4 AddCL 0.981 0.993 0.998 0.956 0.983 0.994
W4 MultCL 0.979 0.992 0.998 0.951 0.980 0.993
W4 SmCL 0.981 0.993 0.998 0.955 0.983 0.994

Table A.5: The variance among super-pixels for different constraining meth-
ods and SR CNN applied on the ERA5 water content data, calculated over
10,000 test samples.

Data Model Constraint Variance

W4 Enlarge none 0.00
W4 Bicubic none 0.85
W4 CNN none 1.22
W4 CNN soft m. 0.96
W4 CNN AddCL 1.32
W4 CNN MultCL 1.24
W4 CNN SmCL 1.34
W4 HR none 1.65
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Table A.6: Metrics for different constraining methods applied to an SR CNN,
calculated over 10,000 test samples of the water content data. The mean is
taken over 3 runs. The best scores are highlighted in bold blue, second best
in bold.

Data Model RMSE MAE MS-SSIM Mass viol. #Neg
Constraint ↓ ↓ ↑ ↓ per mil.↓

W2 Enlarge 0.422 0.361 99.61 0.000 0
W2 Bicubic 0.322 0.137 99.90 0.066 0.25
W2 CNN 0.251 0.105 99.95 0.026 1.40
W2 soft m. 0.301 0.137 99.23 0.016 104.65
W2 AddCL 0.216 0.092 99.96 0.000 1.31
W2 MultCL 0.223 0.094 99.96 0.000 0
W2 SmCL 0.215 0.094 99.96 0.000 0

W4 Enlarge 1.286 0.717 97.60 0.000 0
W4 Bicubic 0.800 0.401 99.12 0.169 0.53
W4 CNN 0.657 0.326 99.40 0.058 2.41
W4 soft m. 0.801 0.410 99.15 0.023 581.54
W4 AddCL 0.580 0.290 99.50 0.000 1.42
W4 MultCL 0.606 0.300 99.47 0.000 0
W4 SmCL 0.582 0.291 99.49 0.000 0

W8 Enlarge 2.181 1.294 92.39 0.000 0
W8 Bicubic 1.557 0.900 96.49 0.318 6.56
W8 CNN 1.358 0.782 97.15 0.109 15.48
W8 soft m. 1.640 0.965 96.06 0.029 103,702
W8 AddCL 1.267 0.733 97.41 0.000 632.32
W8 MultCL 1.331 0.733 97.22 0.000 0.10
W8 SmCL 1.268 0.734 97.40 0.000 0

W16 Enlarge 3.425 2.159 85.55 0.000 0
W16 Bicubic 2.723 1.730 91.72 0.510 53.67
W16 CNN 2.450 1.545 92.68 0.203 4.15
W16 soft m. 2.794 1.776 90.74 0.036 2250.77
W16 AddCL 2.364 1.491 92.96 0.000 457.34
W16 MultCL 2.409 1.518 92.77 0.000 0.17
W16 SmCL 2.368 1.492 92.95 0.000 0
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Table A.7: Metrics for different constraining methods applied to the SR CNN,
calculated over the test set for water vapor, liquid water, and temperature.
The mean is taken over 3 runs. For QL, RMSE, MAE, and Constr. violation
are scaled by a factor of 103 for readability. The best scores are highlighted
in bold blue, second best in bold black.

Data Var. Model RMSE MAE MS-SSIM Constr. viol.
Constr. ↓ ↓ ↑ ↓

MEn Qv Enlarge 0.474 0.262 94.74 0.000
MEn Qv Bicubic 0.326 0.182 97.12 0.07
MEn Qv CNN 0.260 0.141 98.14 0.02
MEn Qv AddCL 0.250 0.133 98.28 0.00
MEn Qv MultCL 0.250 0.133 98.28 0.00
MEn Qv SmCL 0.248 0.132 98.30 0.00

MEn QL Enlarge 0.0217 0.00862 98.34 0.00000
MEn QL Bicubic 0.0186 0.00765 98.96 0.00236
MEn QL CNN 0.0157 0.00617 99.15 0.00067
MEn QL AddCL 0.0155 0.00588 99.18 0.00000
MEn QL MultCL 0.0166 0.00647 99.06 0.00000
MEn QL SmCL 0.0155 0.00585 99.17 0.00000

MEn T Enlarge 0.470 0.288 99.03 0.0
MEn T Bicubic 0.281 0.156 99.67 159.1
MEn T CNN 0.459 0.287 99.03 139.7
MEn T AddCL 0.276 0.160 99.67 0.0
MEn T MultCL 0.270 0.155 99.69 0.0
MEn T SmCL 0.272 0.155 99.68 0.0
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Appendix B

Appendix Aerosol Emulation

B.1 Aerosol Boxmodel

The aerosol box model is a tool we built to easily generate input-output pairs
for emulator development. It extracts the M7 module from the ECHAM-
HAM model, so it can quickly run without the rest of the climate model.
This can be used in the future for active learning approaches.

B.2 Modeled Variables

Table B.2 shows all the variables used for our emulator. Overall we consider
39 quantities; the first eleven shown in the table are only input variables and
are not changed by M7/our emulator. The masses and concentrations of dif-
ferent aerosol species are both input and output for the model. Additionally,
we output the water content of different aerosol modes.

B.3 ICON Setup Details

The AMIP run is based on the non-hydrostatic atmosphere and ECHAM
physics. It is initialized from the Integrated Forecast System (IFS) analy-
sis files and uses transient boundary conditions for sea surface temperature
(SST) and sea ice, spectral solar irradiation, well-mixed greenhouse gases
CO2, CH4, N2O, CFCs, O3 concentration, optical properties of tropospheric
aerosols and optical properties of stratospheric volcanic aerosols. ICON-A
uses a vertical hybrid sigma height coordinate with 47 levels. The emission
scenario used is the Representative Concentration Pathway (RCP) 4.5.
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Figure B.1: Aerosol burdens after 1 year run of ICON-HAM with our
correction-constrained emulator compared to a reference run including the
M7 original.

B.4 Data Subsampling

The objective for the dataset is to have enough and very diverse data, that
covers many different cases, so application to new samples does not go too
far out of the training distribution. We also want the dataset to still have
a manageable size, around a couple of gigabyte to enable fast and flexible
experiments.

For both offline and online cases we run ICON as described for 5 years,
from 2000-2004. Here we then subsample across times. We sample from the
first day of each month, alternating from midnight to noon UTC. We always
use all pressure levels.

Whereas the temporal subsampling is the same for both cases, the spatial
subsampling then differs for offline and online training datasets. For practical
reasons, the spatial subsampling is done across processes. For parallelisation,
the global gridboxes are divided across processes, in our case 1024 processes
for 8 cores with 128 processes each. The offline dataset then consists of every
fifth process’s data, taking every process with a number that ends with ”0”
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Figure B.2: Aerosol burdens after 1 year run of ICON-HAM with our soft
mass-constrained plus CorL emulator compared to a reference run including
the M7 original.

or ”5”. The online dataset includes one additional process’s data per ten
processes, i.e. includes data from 3/10 of the processes/locations.

We also employed or emulator on data from all locations, i.e. from all
processes, but we observed a worsening of the online performance here. This
might be because if a more complex or bigger dataset it might be necessary
to adjust the neural network size as well. Keeping our 2-layer and 256 nodes
architecture, a smaller dataset is more beneficial.

This subsampling scheme could be improved in future work, optimizing
it for more diversity with fewer data samples and not depending on different
processes.

B.5 ICON Crashes

Here, we explain what happens when our simulation ”crashes”. With ’crash,’
we refer to the case when an error in the simulation occurs that is severe
enough to stop the simulation. We only observe crashes, when our NN em-

161



ulator is included, not in the original M7 versions. This gives a strong indi-
cation that the crashes are caused by our emulator. The errors that appear,
never appear inside our NN code part, but in code parts that follow later.

We observe two kinds of errors:

1. A lookup table overflow error: ”FATAL ERROR in cuini: lookup table
overflow”.

2. A lookup table overflow error: ”FATAL ERROR in cuadjtq (1): lookup
table overflow”

The errors occur both due to a look-up table overflow in the convection
scheme. These errors occur possibly due to unrealistic temperature or hu-
midity fields, that are caused by unphysical predictions of the NN, when
encountering out-of-distribution samples.

We find that the first error appears when we do not strictly ensure the
positivity of aerosol numbers and masses. The second error appears when
we do not ensure mass conservation. It is important to notice that our
constraining methods applied in the aerosol case only enforce either positivity
or conservation of mass and not both at the same time. This is why the
instabilities can still occur.

We are able to find three different setups where no crashes are observed:
including the correction layer Corl, which guarantees positive masses and
numbers, including a soft mass constraint, which enables to model to run
stably. So far, we have only tested the stability of a one-year run, but it is
likely that a multi-year run would also remain stable.
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Variable Unit Input Output

Pressure Pa
√

Temperature K
√

Rel. Humidity -
√

Geop. height m
√

layer thick. m
√

grid vol. m−3 √

Ionisation Rate -
√

cloud cover -
√

Boundary layer -
√

Forest fraction -
√

H2SO4 prod. rate cm−3s−1 √

H2SO4 mass µg m−3 √ √

SO4 ns mass molec. m−3 √ √

SO4 ks mass molec. m−3 √ √

SO4 as mass molec. m−3 √ √

SO4 cs mass molec. m−3 √ √

bc ks mass µg m−3 √ √

bc as mass µg m−3 √ √

bc cs mass µg m−3 √ √

bc ki mass µg m−3 √ √

oc ks mass µg m−3 √ √

oc as mass µg m−3 √ √

oc cs mass µg m−3 √ √

oc ki mass µg m−3 √ √

du as mass µg m−3 √ √

du cs mass µg m−3 √ √

du ai mass µg m−3 √ √

du ci mass µg m−3 √ √

ns concentration cm−3 √ √

ks concentration cm−3 √ √

as concentration cm−3 √ √

cs concentration cm−3 √ √

ki concentration cm−3 √ √

ai concentration cm−3 √ √

ci concentration cm−3 √ √

ns water kg m−3 √

ks water kg m−3 √

as water kg m−3 √

cs water kg m−3 √
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Table B.1: R2 scores (higher is better) on the test set for each variable for the
offline case, for our base NN, soft mass constrained, correction constrained
and completion constrained variants. Best scores are highlighted in bold
blue.

SO4 Black Carbon

Variable H2SO4 NS KS AS CS KS AS CS CI

base 1.00 0.87 0.95 0.95 0.28 0.67 0.98 -0.03 0.97
soft m. 1.00 0.76 0.96 0.95 0.30 0.52 0.97 -0.03 0.97
CorL 1.00 0.79 0.95 0.95 0.28 0.51 0.97 -0.07 0.97
CompL 1.00 0.86 0.87 0.95 0.24 0.44 0.97 -0.22 0.97

Table B.2: Same as the table above for additional variables.

Organic Carbon Dust

Variable KS AS CS CI AS CS AI CI

base 1.00 0.99 0.77 0.97 0.95 0.97 0.95 0.97
soft m. 1.00 1.00 0.85 0.98 0.93 0.88 0.95 0.88
CorL 1.00 0.99 0.83 0.97 0.95 0.96 0.96 0.96
CompL 1.00 0.99 0.88 0.98 0.51 0.92 0.86 0.93

Table B.3: Same as table above for additional variables.

Number particles Water content

Variable NS KS AS CS KI AI CI NS KS AS CS

base 0.77 0.96 0.98 0.94 0.98 0.95 0.94 0.98 0.98 0.88 0.85
soft m. 0.77 0.96 0.97 0.97 0.97 0.95 0.97 0.98 0.98 0.88 0.83
CorL 0.80 0.93 0.97 0.95 0.97 0.96 0.96 0.98 0.99 0.91 0.84
CompL 0.72 0.95 0.96 0.89 0.97 0.86 0.88 0.98 0.97 0.89 0.78

Table B.4: R2 scores (higher is better) for tracer values after a one-year
run, comparing ICON-HAM-NeuralM7 and original ICON-HAM runs. We
consider all three stable versions of NeuralM7, the soft mass-constrained one
(soft m.), the offline correction one (corr. offl.) and the model constrained
with a combination (sm+corr). Best scores are highlighted in bold blue.

SO4 Black Carbon

Variable H2SO4 NS KS AS CS KS AS CS CI

soft m. 0.86 0.21 0.06 0.75 0.83 0.85 0.88 -0.33 0.94
corr. offl. 0.89 0.75 0.25 0.80 0.85 0.88 0.92 0.48 0.94
sm+corr 0.86 0.80 0.37 0.80 0.83 0.87 0.89 0.21 0.95
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Table B.5: Same as table above for additional variables.

Organic Carbon Dust

Variable KS AS CS CI AS CS AI CI

soft m. 0.91 0.91 0.38 0.95 0.86 0.89 0.85 0.87
corr offl. 0.92 0.94 -3.15 0.95 0.89 0.91 0.10 0.24
sm + corr. 0.92 0.91 -2.26 0.95 0.89 0.89 0.15 0.33

Table B.6: Same as table above for additional variables.

Number particles Water content

Variable NS KS AS CS KI AI CI NS KS AS CS

soft m. 0.72 -1.68 0.84 0.86 0.96 0.84 0.87 0.09 0.67 0.25 0.66
corr offl. 0.88 -1.19 0.86 0.91 0.96 0.10 0.31 0.61 0.75 0.41 0.71
sm + corr. 0.91 -1.75 0.84 0.89 0.96 0.16 0.36 0.70 0.73 0.37 0.76
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