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Abstract

The thesis presents a cost-effective approach to enhancing the autonomy and optimiza-

tion capabilities of smart sensory electronic systems (SSES) through the integration of

artificial intelligence (AI) at the lowest levels of automated test equipment (ATE). This

integration aims to realize self-configuring, self-optimizing, and self-healing (”self-X”)

properties in SSES, leveraging the transformative power of machine learning to revo-

lutionize traditional sensory systems. In the era of Industry 4.0, where the fusion of

advanced digital technologies with the physical production and operational processes

defines a new industrial revolution, the application of AI and machine learning in SSES

represents a critical step forward in realizing intelligent, efficient, and highly adaptable

manufacturing and production environments.

This work primarily focuses on electronic design automation (EDA) from the de-

velopment of tuning knobs for enhanced adaptivity, through the advanced designing

of extrinsic optimization techniques, culminating in the seamless integration of these

methodologies on hardware specifically dedicated for the assessment and optimization of

the chip. The implementation of a chip performance assessment unit on this hardware

is crucial for enabling the development of self-X properties in SSES. The reconfigurable,

fully differential indirect current-feedback instrumentation amplifier (CFIA) is intrin-

sically optimized using a single test sinusoidal signal stimulus and measures the total

harmonic distortion (THD) at the output. Additionally, a power-monitoring module is

integrated into the CFIA circuit to assess power consumption, ensuring a power-efficient

and reliable configuration. The implemented assessment unit effectively manages data

acquisition, THD computation via FFT, and executes an advanced optimization al-

gorithm for dynamic system configuration, facilitating an adaptive and efficient data

management and transmission protocol. The design of the architecture has been kept

generic to ensure its easy integration with higher-level system designs, enhancing its ap-

plicability across diverse technological applications. Preliminary tests conducted on the

fabricated chip, using the default configuration pattern from post-layout simulations,

revealed an unacceptable performance behavior of the CFIA. Nevertheless, the proposed

in-field optimization successfully restored the circuit’s performance, resulting in a ro-

bust design that meets the performance achieved in the design phase. This architecture
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resulted in a 34% increase in power efficiency while achieving a THD value of −72 dB

with a 2 Vp-p differential input signal at 1 MHz. Dynamic intrinsic optimization across

a temperature range of −20◦C to 40◦C and a 25% reduction in supply voltage revealed

the system’s adaptability to process, voltage, and temperature (PVT) variations.

A novel experience replay particle swarm optimization (ERPSO) algorithm, embed-

ded on Red Pitaya FPGA boards, acts as an AI agent for intrinsic in-field optimization

of the CFIA. The proposed ERPSO algorithm expands the classical PSO selection pro-

cess with an experience replay buffer (ERB) to reduce the likelihood of trapping in local

minima. The ERB archives previously visited global best particles and uses an adaptive

epsilon greedy method in velocity updating. The ERPSO algorithm’s performance is ver-

ified using eight popular benchmarking functions. The evaluation of robust optimization

for CFIA, using surrogate-based and archive-based methodologies, is conducted through

simulation-based results due to timing constraints. Benchmark functions and direct

application to CFIA highlighted this method’s effectiveness in reducing the average ex-

pected error (AEE) and improving correlation metrics. This facilitated precise tuning

of CFIA to achieve desired performance levels while effectively managing uncertainties

and imperfections.

An evaluation of filter optimization using reconfigurable non-intrusive sensors pro-

vides a comprehensive examination of a novel approach to optimizing filter characteris-

tics, particularly cutoff frequencies, through indirect measurements. The typical indirect

measurement approach using regression models for the device under test (DUT) perfor-

mance prediction is integrated with ERPSO for reconfigurable non-intrusive sensors.

This work’s novelty lies in optimizing the non-intrusive sensors by copying the DUT’s

tuning knobs, indirectly optimizing DUT performance without interrupting its opera-

tion. In-field optimization is based on low-cost sensor measurements, achieving a 92%

correlation performance metric for regression tasks. The study also presents the fil-

ter’s dynamic performance under temperature variations, illustrating robustness. The

filter recalibrates with a maximum 3% discrepancy from intended cutoff frequencies,

emphasizing its resilience and optimization strategy. A reinforcement learning approach

further addressed layout-induced deviations, reducing the need for extensive physical

measurements and adapting to fabricated chips.

The practical application of a reconfigurable analog front-end with self-X properties
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for the tunnel magneto-resistance (TMR) sensor, provided by Sensitec, demonstrates

seamless integration with higher system hierarchies. Configuration bits derived from the

optimization algorithm highlight the integration of theoretical and algorithmic progress

with practical implementation.

The research successfully demonstrates the potential of AI and machine learning

to enhance the autonomy and optimization of SSES. Future work will focus on un-

interrupted optimization processes, such as implementing real-time operating systems

(RTOS) or time-triggered embedded systems (TTES) to interleave calibration and mea-

surement tasks. Additionally, further investigations will explore the intrinsic evaluation

of non-intrusive sensor-based indirect measurement techniques and the application of

reinforcement learning methods to reduce the need for extensive physical measurements,

thus enhancing the efficiency and robustness of smart sensory electronic systems. These

future directions aim to provide more robust, adaptable, and cost-effective solutions for

next-generation industrial applications.
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Kurzfassung

In dieser Arbeit wird ein kosteneffizienter Ansatz zur Verbesserung der Autonomie und

der Optimierungsfähigkeiten intelligenter sensorischer elektronischer Systeme (SSES)

durch die Integration von künstlicher Intelligenz (KI) auf den untersten Ebenen der

automatisierten Testausrüstung (ATE) vorgestellt. Diese Integration zielt darauf ab,

selbstkonfigurierende, selbstoptimierende und selbstheilende (”self-X”) Eigenschaften in

SSES zu realisieren und die transformative Kraft des maschinellen Lernens zu nutzen,

um traditionelle sensorische Systeme zu revolutionieren. Im Zeitalter von Industrie

4.0, in dem die Verschmelzung fortschrittlicher digitaler Technologien mit physischen

Produktions- und Betriebsprozessen eine neue industrielle Revolution definiert, stellt

die Anwendung von KI und maschinellem Lernen in SSES einen entscheidenden Schritt

nach vorn bei der Realisierung intelligenter, effizienter und hochgradig anpassungsfähiger

Fertigungs- und Produktionsumgebungen dar.

Diese Arbeit konzentriert sich in erster Linie auf die elektronische Entwurfsautoma-

tisierung (EDA), von der Entwicklung von Abstimmknöpfen für eine verbesserte Anpas-

sungsfähigkeit über die fortschrittliche Gestaltung von extrinsischen Optimierungstech-

niken bis hin zur nahtlosen Integration dieser Methoden in Hardware, die speziell für die

Bewertung und Optimierung des Chips vorgesehen ist. Die Implementierung einer Chip-

Leistungsbewertungseinheit auf dieser Hardware ist entscheidend für die Entwicklung

von Self-X-Eigenschaften in SSES. Der rekonfigurierbare, vollständig differentielle, indi-

rekte stromrückgekoppelte Instrumentenverstärker (CFIA) wird anhand eines einzigen

sinusförmigen Test-Signalstimulus optimiert und misst die gesamte harmonische Verzer-

rung (THD) am Ausgang. Zusätzlich ist ein Leistungsüberwachungsmodul in den CFIA-

Schaltkreis integriert, um den Stromverbrauch zu bewerten und eine energieeffiziente

und zuverlässige Konfiguration zu gewährleisten. Die implementierte Bewertungsein-

heit verwaltet effektiv die Datenerfassung, die THD-Berechnung mittels FFT und führt

einen fortschrittlichen Optimierungsalgorithmus für die dynamische Systemkonfigura-

tion aus, der ein adaptives und effizientes Datenmanagement und Übertragungsprotokoll

ermöglicht. Das Design der Architektur wurde generisch gehalten, um eine einfache In-

tegration in übergeordnete Systemdesigns zu gewährleisten und die Anwendbarkeit in

verschiedenen technologischen Anwendungen zu verbessern. Vorläufige Tests, die auf
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dem hergestellten Chip unter Verwendung des Standardkonfigurationsmusters aus Post-

Layout-Simulationen durchgeführt wurden, zeigten ein inakzeptables Leistungsverhalten

des CFIA. Durch die vorgeschlagene Optimierung im Feld konnte die Leistung der Schal-

tung jedoch erfolgreich wiederhergestellt werden, was zu einem robusten Design führte,

das die in der Entwurfsphase erreichte Leistung erfüllt. Diese Architektur führte zu einer

Steigerung der Leistungseffizienz um 34% bei einem THD-Wert von −72 dB mit einem

2 Vp-p Differenzeingangssignal bei 1 MHz. Eine dynamische intrinsische Optimierung

über einen Temperaturbereich von 20 bis 40 °C und eine Verringerung der Versorgungss-

pannung um 25% zeigte die Anpassungsfähigkeit des Systems an Prozess-, Spannungs-

und Temperaturschwankungen (PVT).

Ein neuartiger ERPSO-Algorithmus (Experience Replay Particle Swarm Opti-

mization), der in Red Pitaya FPGA-Boards eingebettet ist, fungiert als KI-Agent für

die Optimierung des CFIA in der Praxis. Der vorgeschlagene ERPSO-Algorithmus

erweitert den klassischen PSO-Auswahlprozess um einen Erfahrungswiedergabepuffer

(ERB), um die Wahrscheinlichkeit des Einfangens in lokalen Minima zu verringern.

Der ERB archiviert zuvor besuchte global beste Partikel und verwendet eine adap-

tive Epsilon-Greedy-Methode bei der Geschwindigkeitsaktualisierung. Die Leistung

des ERPSO-Algorithmus wird anhand von acht gängigen Benchmarking-Funktionen

überprüft. Die Bewertung der robusten Optimierung für CFIA unter Verwendung von

surrogat- und archivbasierten Methoden erfolgt aufgrund zeitlicher Beschränkungen

durch simulationsbasierte Ergebnisse. Benchmark-Funktionen und die direkte An-

wendung auf CFIA haben die Effektivität dieser Methode bei der Reduzierung des

durchschnittlich erwarteten Fehlers (AEE) und der Verbesserung der Korrelations-

metriken hervorgehoben. Dies erleichterte die präzise Abstimmung von CFIA, um

die gewünschten Leistungsniveaus zu erreichen und gleichzeitig Unsicherheiten und

Unzulänglichkeiten effektiv zu bewältigen.

Eine Bewertung der Filteroptimierung mit rekonfigurierbaren nicht-intrusiven Sen-

soren bietet eine umfassende Untersuchung eines neuartigen Ansatzes zur Optimierung

von Filtereigenschaften, insbesondere von Grenzfrequenzen, durch indirekte Messungen.

Der typische Ansatz der indirekten Messung unter Verwendung von Regressionsmod-

ellen für die Vorhersage der Leistung des zu testenden Geräts (DUT) wird in ERPSO

für rekonfigurierbare nichtintrusive Sensoren integriert. Die Neuheit dieser Arbeit liegt in
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der Optimierung der nicht-intrusiven Sensoren durch Kopieren der Abstimmknöpfe des

Prüflings, wodurch die Leistung des Prüflings indirekt optimiert wird, ohne seinen Be-

trieb zu unterbrechen. Die Vor-Ort-Optimierung basiert auf kostengünstigen Sensormes-

sungen und erreicht eine 92%-Korrelationsleistungsmetrik für Regressionsaufgaben. In

der Studie wird auch die dynamische Leistung des Filters bei Temperaturschwankun-

gen dargestellt, um die Robustheit zu veranschaulichen. Der Filter rekalibriert sich

mit einer maximalen Abweichung von 3% von den beabsichtigten Grenzfrequenzen, was

seine Widerstandsfähigkeit und Optimierungsstrategie unterstreicht. Ein Ansatz des

verstärkten Lernens befasst sich darüber hinaus mit layoutbedingten Abweichungen,

wodurch sich die Notwendigkeit umfangreicher physikalischer Messungen verringert und

eine Anpassung an gefertigte Chips möglich wird.

Die praktische Anwendung eines rekonfigurierbaren analogen Frontends mit Self-X-

Eigenschaften für den Tunnelmagnetowiderstandssensor (TMR), der von Sensitec bere-

itgestellt wurde, zeigt die nahtlose Integration in höhere Systemhierarchien. Aus dem

Optimierungsalgorithmus abgeleitete Konfigurationsbits verdeutlichen die Integration

von theoretischen und algorithmischen Fortschritten mit der praktischen Umsetzung.

Die Forschung demonstriert erfolgreich das Potenzial von KI und maschinellem

Lernen zur Verbesserung der Autonomie und Optimierung von SSES. Zukünftige

Arbeiten werden sich auf ununterbrochene Optimierungsprozesse konzentrieren, wie z.

B. die Implementierung von Echtzeit-Betriebssystemen (RTOS) oder zeitgesteuerten

eingebetteten Systemen (TTES), um Kalibrierungs- und Messaufgaben miteinander zu

verzahnen. Darüber hinaus werden weitere Untersuchungen die intrinsische Bewertung

von nicht-intrusiven sensorgestützten indirekten Messtechniken und die Anwendung von

Methoden des Reinforcement Learning erforschen, um den Bedarf an umfangreichen

physikalischen Messungen zu verringern und so die Effizienz und Robustheit intelligenter

sensorischer elektronischer Systeme zu verbessern. Diese zukünftigen Richtungen zielen

darauf ab, robustere, anpassungsfähigere und kostengünstigere Lösungen für industrielle

Anwendungen der nächsten Generation bereitzustellen.
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Chapter 1

Introduction

The integration of machine learning (ML) and artificial intelligence (AI) with other

emerging technologies, such as cyber-physical systems, big data analytics, cloud com-

puting, and the industrial internet of things (I(I)oTs), is driving the transformation

of the industrial domain. This transformation, commonly referred to as Industry 4.0,

represents a new era of industrial revolution [1–5]. At the core of Industry 4.0 is the

collection, analysis, and interpretation of data generated by I(I)oTs devices, which are

increasingly being employed across various industries, including manufacturing, logis-

tics, and transportation. A critical requirement for the success of Industry 4.0 is the

development of accurate and reliable sensors and sensory electronics [5,6]. These sensors

are responsible for collecting, processing, and transmitting data for further procedures.

They play a vital role in capturing physical, chemical, and environmental information,

enabling informed decision-making and process optimization.

Concurrently, advancements in integration technologies, such as monolithic systems-

on-chip (SoC) and heterogeneous system-in-package (SiP) architectures [7, 8], are also

enhancing the capabilities of computing systems, sensors, and sensory systems. Both

traditional and innovative computing systems, drawing inspiration from biological ner-

vous systems or neural networks, require efficient interfacing with a growing range of

sensors while adhering to metrology constraints. The continuous progress in CMOS

node technology, aligned with the ’More Moore’ extension outlined by the 2015 Interna-

tional Technology Roadmap for Semiconductors (ITRS) [8] and the 2021 Edition of the

International Roadmap for Devices and Systems (IRDS) [7], significantly contributes to

the advancement of digital systems. However, the adoption of the latest node in analog

1
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and mixed-signal circuits, particularly those involved in interfacing with sensor signals,

often lags due to various technical challenges. Several studies have highlighted these

difficulties [9, 10]. The realization of analog front ends (AFEs) that possess the neces-

sary attributes of accuracy, robustness, and flexibility plays a pivotal role in ensuring

the overall system quality and effectiveness. The development of such AFEs demands

substantial design expertise both for chips in SiP and cells in SoC realizations.

1.1 Impact of Static and Dynamic Variations on AFEs

The performance of smart sensory electronics (SSEs) is strongly influenced by static

and dynamic variations. These include irreversible effects such as aging [11, 12]. Static

variations, particularly in advanced-node complementary metal oxide semiconductors

(CMOS), arise from local (random/stochastic) and global (systematic) mismatches

among chip devices [13]. These discrepancies can be attributed to imperfections in

the manufacturing process, such as limitations in lithography resolution that cause

deviations in device size, gate oxide thickness profiles affecting transistor threshold

voltage, and variations in electron and hole mobility that ultimately impact MOS I-V

characteristics [14]. Additionally, the application of mechanical stress to the chip during

the die molding process, induced by packaging and assembly of integrated circuits (ICs),

can lead to significant static mismatches in chip device characteristics [15]. Dynamic

variations, especially, the reversible type, result from environmental fluctuations,

changes in power supply voltage, as well as thermal drift caused by self-heating

and temperature gradients arising from non-uniform power dissipation in ICs [16].

These variations are more pronounced in densely packed transistors in advanced node

technology and SoC designs [17]. The reversible dynamic performance and static

process variations can be effectively modeled using foundry process design kits (PDK),

enabling evaluation through circuit simulation with electronic design automation

(EDA) tools across various process corners and variations in voltage and temperature,

commonly referred to as Process-Voltage-Temperature (PVT) variation. Modeling and

predicting the impact of aging on circuit performance and ensuring long-term reliability

remain significant challenges [18]. This is of utmost importance when assessing and

implementing robust and reliable circuits for critical applications in real-world operating
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conditions throughout the lifecycle of the integrated circuit (IC) [19].

1.2 Performance Optimization and Self-X in Industry 4.0

A high yield and performance exceeding targeted specifications can be achieved by de-

signing a circuit surpassing the minimum performance requirements. By incorporating

sufficient margins in the design, the actual operating point of the circuit can consis-

tently fall within the acceptable performance range, irrespective of the PVT variations.

However, this overdesigned circuit typically compromises other circuit characteristics of

lesser importance for a specific application. For instance, the temperature coefficient

and line sensitivity are critical circuit parameters in a high-precision voltage or current

reference circuit. Therefore, designers may trade-off circuit area and power consumption

to attain a low-temperature coefficient and minimal line sensitivity, disregarding PVT

variations [20].

Extensive research has been conducted to find a more optimal trade-off among cir-

cuit characteristics, considering that attaining excessive performance margins may not

always be practical. The concept of evolvable hardware (EHW) has been introduced

as one of the robust approaches for addressing harsh environmental conditions in vari-

ous domains, such as space [21]. EHW refers to configurable electronic hardware that

can be self-configured using biologically inspired ML and AI techniques such as meta-

heuristic optimization algorithms [22, 23]. The evolutionary processing unit (EP) [24]

autonomously reconfigurable the EHW to enable self-X properties, including includ-

ing self-monitoring, -calibration1, -trimming, -repair, -configuration, and -optimization.

Figure 1.1 illustrates the block diagram of the sensory electronics with self-X features.

Within this diagram, the assessment unit plays a crucial role in evaluating the system’s

performance. It accomplishes this by utilizing the optimization solutions and providing

signals stimuli while measuring the output response under the control of the optimization

unit.

The self-X methodology presents benefits by facilitating the calibration of sensory

electronics systems even after chip packaging. This approach aims to achieve a more

1In the context of this thesis, for simplicity, the term ”calibration” is used to describe the compensa-
tion for PVT variations through the utilization of reconfigurable tuning knobs. Conversely, as per the
DIN 1319 standard [25], ”trimming” refers to the modification of the equipment or hardware by utilizing
reconfiguration resources in response to observed deviations. This distinction between calibration and
trimming also extends to corresponding self-X activities.
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Reconfigurable ElectronicsReconfigurable Electronics

Configurations

Manufacturing ProcessManufacturing Process Sensor(s)
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Figure 1.1: Block diagram of smart sensory electronics as lowest level of self-X hierarchy.

optimal trade-off among circuit characteristics by minimizing the area and power con-

sumption overheads of the calibration/tuning circuit. The Industry 4.0 paradigm high-

lights the need for self-X capabilities, which are essential for ensuring the reliability

and performance of smart sensory electronics. These capabilities enable a higher level

of control and coordination across the entire value chain of products [26]. Moreover,

the technology and sensor trends roadmaps released by the Association for Sensors and

Measurement (AMA) and the User Association of Automation Technology in Process

Industries (NAMUR) have both highlighted the importance of integrating sensory elec-

tronics enriched with self-X properties [6, 27]. This integration plays a crucial role in

guaranteeing reliability, robustness, and adaptability across diverse applications, partic-

ularly within the demanding contexts of Industry 4.0 and other settings characterized

by harsh environmental conditions [24]. Furthermore, it contributes a important role

in enabling enhanced control and coordination throughout the entirety of the product

chain [28].

Despite ongoing research on calibration/tuning circuits for analog circuits, the de-

velopment of robust and reliable sensors and sensory electronics capable of operating

in harsh environments is still necessary. This requires leveraging the potential offered

by modern ML and AI techniques under the pyramid of Industry 4.0. Implementing

self-monitoring, self-calibration, and data visualization at different levels of the self-X

hierarchy can enhance the overall system performance and reliability. The focus is design-

ing suitable electronics, the lowest and most critical level in a self-X hierarchy [5] (refer

to Figure 1.2). Integrated solutions, in particular, can greatly benefit from adopting this



Chapter 1. Introduction 5

Physical System/
Manufacturing Process

Sensor(s)

Integrated 
Actuator(s)/ 
Supply Ctrl.

Self-X Electronics

Analog 
Sensing

Analog 
Actuation

ADCs

DACs

Digital 
Electronics

(Control & Self-X 
Algorithms)

Power ElectronicsActuator(s)

Mixed-Signal Electronics

Configurations/PD

Condition 
Info

Close to Sensor 
Integration

Environmental Influence
(T,B,…,Age)

H
ig

h
e

r-
Le

ve
l-

P
ro

ce
ss

-
C

o
n

tr
o

l &
 S

el
f-

X

Figure 1.2: Sensor electronics with Self-X functionality includes the sensor element [5].

approach. Instead of costly individual calibration of systems, integrated solutions incor-

porate redundancy, reconfiguration, and correction features. These features are based

on adaptation or learning/optimization techniques at different levels of abstraction. Nu-

merous industrial examples, such as the Synopsys research and the previous work of

Moortec, utilize Silicon Lifecycle Management (SLM) technology. This involves the im-

plementation of in-built sensing devices and corresponding control loops within complex

chips (SoCs), which facilitate long-term data collection [29–33]. Figure 1.3 illustrates

Synopsys’ goal of implementing self-monitoring, self-calibration, and data visualization

at various levels of the self-X hierarchy.
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Figure 1.3: Vision to expand the lowest level of self-X hierarchy [33].

Transitioning from the conceptual phase of self-X sensory electronics to their practical
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implementation within the framework of Industry 4.0 presents a variety of challenges.

The primary hurdle lies in the intricacy associated with the optimization of circuit

characteristics in an overdesigned system. While such a system offers advantages in

terms of performance, it can impose significant trade-offs in power consumption and

circuit area. Additionally, the introduction of observer imperfection further compounds

the complexity of these challenges, an aspect this thesis aims to address.

In response to these challenges, this work aims to strike a balance between circuit

characteristics, observer imperfection, and the inherent complexity of integrated systems.

The goal is to design systems that are flexible and resilient, ensuring reliable performance

under various environmental conditions, and simplifying the processes of observation and

calibration. A key consideration in this work is the cost associated with performance

measurement methods. Hence, exploring low-cost, indirect measurement methods serves

as a significant part of this research.

This work contributes towards designing a system that not only offers high perfor-

mance but also efficiently manages observer imperfection and complexity. Navigating

through the intricate aspects of circuit design, the focus remains on the implementation

of an assessment and self-X optimization architecture to enhance the performance of

AFE in the presence of observer imperfection. This work aims to retain the simplic-

ity and flexibility of traditional integrated circuit design, while leveraging the potential

opportunities offered by the transition to Industry 4.0.

1.3 The Goals of the Thesis

This research aims to develop an in-field performance optimizer for the reconfigurable

readout sensory electronics systems with self-X properties for Industry 4.0 and IoTs

devices. This thesis mainly focuses on implementing assessment and self-X optimization

architecture for the performance optimization of the AFE in the presence of observer

imperfection. Alternatively, preceding work [34] focuses on the USIX (Universal and

Self-X Integrated Sensor Interface) chip, to which our group’s subsequent research [35]

adds more evolved features such as reconfigurability in the AFE, thereby developing a

hardware platform for the intrinsic evolution of the proposed methodology.

In the context of this study, ”in-field” refers to the placement of the device under
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test (DUT) within the operational environment, such as a smart factory, smart car,

or smart farming system. As a result, access to bulky laboratory device performance

testing equipment is no longer available. Additionally, these devices present limitations

in terms of limited battery power, physical space, and data reliability. Therefore, in

order to effectively optimize performance in the field, it is imperative to reassess the

conventional approach to integrated circuit design and capitalize on the full potential

offered by the Industry 4.0 era. The hardware of interest in this study is the recon-

figurable analog front end with self-X properties (AFEX) proposed by Alraho [35–37].

The reconfigurability of the hardware is limited to the sensitive elements, leading to a

reduction in device implementation area and improved dynamic performance by mini-

mizing parasitic effects. However, it is important to note that parasitics can vary not

only due to process variations but also between instances of the same chip. In other

words, an algorithm that inherently incorporates parasitics in circuit design for one chip

may not work effectively on another chip. Additionally, it should be acknowledged that

as the number of reconfiguration options increases, there is a likelihood of introducing

additional parasitics.

The overhead of the performance assessment unit is also considerably essential for

SSE in terms of system complexity and measurement time of different quantities. It is

crucial to consider key performance characteristics of analog integrated circuits, including

open-loop gain, phase margin, slew rate, gain- bandwidth product, and common-mode

range. However, implementing a direct performance evaluation setup for infield perfor-

mance optimization is not feasible. Therefore, this work aims to explore low-cost indirect

measurement methods as an alternative approach. These methods rely on statistical cor-

relations between different DUT performance characteristics and simple test stimulation

to estimate various performance parameters simultaneously. Additionally, an indirect

power monitoring scheme will be investigated to enhance system power efficiency, long-

term reliability and ensure a safe reconfiguration pattern in analog evolvable circuits

while addressing the power, performance, area, and cost (PPAC) metrics of IC [38].

In-field performance optimization requires embedding an AI agent in the automatic

test equipment (ATE) for realizing self-X properties. This work discusses placing an

AI agent at the lowest hierarchical level within ATE, with the aim of attaining self-X.

Due to the complex search space of smart sensory electronic systems (SSES), simple
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derivation-based optimization techniques are not suitable. Therefore, a particle swarm

optimizer (PSO), a population-based metaheuristic optimization algorithm, is selected.

Modifications to the basic architecture of PSO are required to balance exploration and

exploitation [39] in the complex search space imposed by SSES. Potential improvements

over state-of-the-art PSO variants are investigated through benchmarking functions.

Furthermore, the optimization of ICs in the presence of observer imperfection is

very rare. It leads to unacceptable system performance even after the calibration or

optimization [40]. This research also aims to explore the concept of integrating a fallible

observer and co-integrating the sensor system itself, observer or assessment electronics,

and computational unit with AI algorithms for reconfiguration in a practical and effective

manner. Dynamic intrinsic optimization on the chip will be conducted by adjusting the

temperature and supply voltage, demonstrating the capability to handle all sources of

variation, including process, voltage, and temperature (PVT).

The implementation of the entire architecture for in-field performance optimization

of the smart sensory electronic systems needed to be kept generic and easy to integrate

with any higher level of system hierarchy or cloud computing for further data gathering

and processing. One application with this data will be presented by modelling the

regression model of the AFEX for dynamic operating conditions and optimizing its

performance using the pretrained regression model. Finally, the thesis will discuss the

possible solution to address the interruption problem of sensory measurement during

the calibration process. The proposed discussion will interleave the calibration and

measurement processes to achieve continuous measurement without interruption.

1.4 Thesis Structure

This thesis is organized into seven main chapters, each focusing on a specific aspect

of optimization algorithms within the context of Industry 4.0 and reconfigurable ana-

log integrated circuits with self-X properties. The structure is designed to provide a

systematic and comprehensive exploration of the subject. Below is an outline of each

chapter:

1. Introduction: This opening chapter sets the stage for the thesis, outlining the re-

search background, motivation, and overarching goals. It introduces the challenges
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and opportunities in the field of reconfigurable electronics.

2. State of the Art: A thorough review of the current literature is presented in this

chapter. It highlights existing research, identifies gaps, and frames the context for

the subsequent chapters.

3. Optimization Algorithms: This chapter explores the critical role of optimiza-

tion algorithms in addressing the escalating complexity of real-world problems. It

delves into various types of optimization algorithms, including heuristics, meta-

heuristics, and nature-inspired techniques, and their application in the context of

Industry 4.0. The chapter also introduces the proposed Experience Replay Par-

ticle Swarm Optimizer (ERPSO), detailing its development, implementation, and

performance evaluation.

4. Proposed Design Methodology: Here, the novel design methodologies devel-

oped in the research are introduced. This chapter discusses the conceptual frame-

work and theoretical underpinnings of these methodologies.

5. Experimental Setup and Results: This chapter is crucial in demonstrating the

practical application and effectiveness of the proposed methodologies. It details

the experimental setups and presents the results obtained.

6. Sensory System Application: The application of the developed methodologies

in sensory systems is explored in this chapter. It discusses the translation of

research findings into practical, real-world solutions.

7. Conclusions and Summary: The final chapter synthesizes the research findings,

draws conclusions, and reflects on the research’s implications, limitations, and

future directions.

In addition to these main chapters, the thesis includes sections and subsections that

provide detailed explorations of specific topics within each chapter, ensuring a compre-

hensive exploration of the research area.



Chapter 2

State of the Art

The growing demand for adaptable systems in diverse sectors has propelled the sig-

nificance of reconfigurable analog integrated circuits (ICs). These ICs are capable of

adapting to process and dynamic variations, ensuring their optimal performance. This

chapter presents a comprehensive overview of the reconfigurable analog ICs and specifi-

cally focuses on the introduction of analog evolvable hardware (EHW) system designed

for readout sensory electronics. The EHW systems discussed here integrate bio-inspired

metaheuristic optimization algorithms as an evolvable optimizer to recalibrate system

performance to mitigate variations from the manufacturing process and dynamic factors.

Additionally, this discussion covers the field programmable transistor array (FPTA) con-

cept, which allows for on-chip reconfiguration of various circuits at the transistor level.

This concept, highlighted by the work of the NASA JPL group, enables significant

adaptability, though it faces challenges in optimizing designs exclusively through ex-

trinsic simulations due to potential disparities between simulation results and actual

fabricated chips.

To combat these issues, the chapter introduces the concept of mixtrinsic evolu-

tion, which combines both intrinsic and extrinsic evaluation techniques, ensuring ro-

bust and generalized solutions. Subsequent enhancements led to the development of

FPTA2, the second-generation FPTA, addressing existing challenges and incorporating

programmable capacitors, resistors, and integrated photodetectors. Practical applica-

tions of these advancements have been demonstrated through the stand-alone board-level

evolvable system (SABLES) and evolved into the development of evolvable Systems-on-

Chip (SoCs).

10
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Further exploration of configurable electronics has led to significant developments

from institutions such as TU Kaiserslautern research group. The group contributed

a novel approach to configurable electronics granularity with the introduction of the

field programmable medium-granular mixed-signal array (FPMA), providing flexibility

in implementing various algorithms.

The chapter also addresses the integration of self-X principles in sensor systems, re-

sulting in the development of the universal sensor interface with self-X properties (USIX),

offering robustness for physical measurements using a single chip. These advancements

align with the requirements of Industry 4.0, emphasizing the need for flexible systems

over traditional fixed-design electronic systems. The chapter then delves into the role

of the assessment unit in evaluating the performance of reconfigurable hardware, with a

special emphasis on the mixtrinsic evaluation approach. It also discusses non-intrusive

sensors’ integration within reconfigurable hardware and their potential to enhance pre-

diction accuracy.

Finally, the chapter sheds light on the challenges related to observer imperfections in

the control or optimization loops and how robust optimization techniques can address

these uncertainties. The overall discussion underscores the need for rapid prototyp-

ing, system performance optimization, and the design of intelligent sensor systems for

Industry 4.0 applications.

2.1 Reconfigurable Electronics as a Fundamental Part of

Industry 4.0

Highly integrated sensor systems have become a standard feature in everyday objects.

However, the implementation of such systems faces significant challenges in harsh indus-

trial environments. Extreme ambient conditions, such as high operating temperatures

or humid and chemically aggressive environments, hinder the reliable operation of sen-

sitive electronic components. This renders standard electronics, process technology, and

packaging impractical for use [41, 42]. The demand for robust and reliable electronics

becomes even more critical in applications exposed to harsher or noisier environments,

such as space technology, where extreme temperature and radiation can significantly

degrade circuit characteristics. This highlights the necessity for electronics that can
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effectively endure and function in such demanding situations [43].

Moreover, with the initiation of Industry 4.0, the demand for adaptable systems

that can quickly respond to evolving requirements has become vital for manufacturers.

Traditional electronic systems relying on fixed designs for mass-produced products and

predictable demand are no longer sufficient. The focus has shifted toward flexible systems

that can be efficiently reconfigured with minimal operational and capital overhead [44].

On-chip dynamic approaches are based on organic computing and evolutionary elec-

tronics [5]. EHW refers to configurable electronic hardware that can self-configure using

bio-inspired optimization algorithms [22, 23]. This approach involves employing config-

urable elements within the circuit and system performance evaluation setup [5, 11, 45].

These configurable elements serve as design tuning or calibration knobs that can be

adjusted to restore the circuit performance, facilitating design adaptation throughout

the product life cycle. Industry 4.0 highlights the value of self-X properties in automa-

tion technology [5], with these features serving as new design principles for efficient

and autonomous manufacturing process control [26]. To address these challenges posed

by harsh environments and the demands of Industry 4.0, researchers and engineers have

turned to the concept of reconfigurable analog integrated circuits, which is a key element

of evolutionary electronics and organic computing.

2.2 Reconfigurable Analog Integrated Circuits in the Lit-

erature

Understanding the potential and scope of reconfigurable analog integrated circuits, sev-

eral studies and literature have delved into this area. The present study is part of this

endeavor, introducing an analog evolvable hardware (EHW) system for intermediate

frequency (IF) filters [46]. The system utilizes a genetic algorithm (GA) as an evolv-

able optimizer and consists of a reconfigurable IF filter. After fabrication, variations in

process and dynamic factors can negatively affect the performance of the IF filter. To

address these variations, the Gm filter’s transconductance is fine-tuned by adjusting the

biasing current. The architecture of the reconfigurable IF filter is depicted in Figure 4.6.

The GA acts as an optimizer to recalibrate the system performance. The circuit
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Figure 2.1: Analog evolvable hardware chip for intermediate frequency filters [46].

configuration can be modified by updating the binary string or architecture bits in

the on-chip configuration register. These bits represent the chromosomes of the GA

optimizer, indirectly controlling the transconductance of the Gm amplifier. The fitness

value of the chromosomes is evaluated using the following equation:

fitness =
n∑︂

i=1

wi |S (fi)−O (fi)| (2.1)

where S (fi) represents the desired value, O (fi) represents the obtained value at

frequency fi, and wi represents the corresponding weight. The chromosomes with higher

fitness values are selected using an elitist strategy for the next iteration. Through the

introduction of reconfigurability and optimization, approximately 95% of the IF filter

can be recalibrated to meet the desired specifications.

Adrian Stoica from the NASA Jet Propulsion Laboratory (JPL) group presented an

innovative concept termed the Field Programmable Transistor Array (FPTA), an analog

EHW operating at the transistor level [47]. The primary FPTA chip, developed through

0.5 µm CMOS technology, encompasses 64 FPTA cells [48–50]. Figure 2.2 illustrates

how these modules can cascade to form a versatile reconfigurable platform, allowing on-

chip self-reconfiguration of digital, analog, and mixed-signal circuits [21]. The FPTA can

be understood as a fine-grained FPAA architecture, equivalent to configurable analog

blocks (CAB) at the transistor level [21, 49].

The evolutionary process at the transistor level enables the discovery of new and un-
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Figure 2.2: FPTA1 module from JPL [48].

conventional circuit topologies, going beyond conventional human designs. It also allows

for the construction of standard topologies, which is particularly valuable for synthesiz-

ing robust and fault-tolerant hardware [51] under challenging operating conditions, such

as extreme temperatures [52] throughout the operational lifespan. Figure 2.3 provides

a visual representation of the evolutionary methodology, which is facilitated by a host

machine running the Genetic Algorithm (GA). Within this research, the GA’s chromo-

somes denote the binary bit patterns that determine the switching state of the elements

in the reconfigurable hardware. For intrinsic optimization, control bitstrings are up-

loaded directly to the reconfigurable hardware, thereby enabling the circuit evolution on

the hardware itself for assured solution validation. In contrast, in the case of extrinsic

evaluation, the chromosomes are transformed into circuit models for fitness evaluation

via the SPICE simulation. Subsequently, device reactions are evaluated against the in-

tended specifications, and individuals are graded according to their fitness value. In the

succeeding iteration, a new population is generated from the highest-ranking individu-

als of the previous generation. Nevertheless, relying exclusively on extrinsic simulation

for optimization has its limitations due to potential disparities between simulation and

fabricated chips [49].

Addressing the issue identified in previous research [52], there is a potential discrep-
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Figure 2.3: Analog EHW Chip for IF filters [48].

ancy between optimized solutions derived from extrinsic optimization and their evalua-

tion on the real hardware. This discrepancy could arise from various factors including

inconsistencies between models and physical hardware, limitations of the simulator and

testing systems, and others [53]. To rectify this, a third approach to Evolutionary Hard-

ware (EHW), known as mixtrinsic evolution, is introduced in [53]. Mixtrinsic evolution

encapsulates an array of techniques that incorporate a variety of combination method-

ologies for the extrinsic and intrinsic modes. The most prevalent method entails the

evaluation of each candidate solution in both software and hardware, assigning an av-

erage fitness value accordingly. Solutions generated through the mixtrinsic evolutionary

process are robust and sufficiently generalized to satisfy the design constraints of both

platforms.

The simulation of complex analog circuit modules can be considerably more time-

intensive than hardware optimization. Several challenges are associated with the FPTA

approach. This includes the influence of the on/off resistance and parasitic capacitance of

CMOS switches on the performance of analog circuits, and the lack of passive components

such as capacitors and resistors in the FPTA structure. Moreover, the immutable size

of the MOS transistor in the FPTA introduces restrictions related to adaptability and

optimization.

Despite these limitations, the authors developed the second-generation FPTA2,

which incorporates configurable cells with programmable capacitors, resistors, and

integrated photodetectors for mixed-signal tasks [54]. The FPTA2 chip, fabricated

using 180 nm CMOS technology, offers enhanced granularity and the capability to
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create complex analog blocks such as buffered op-amps, filters, and computational

circuits [54]. It serves as a field-programmable mixed-signal array (FPMA) and lays the

foundation for on-chip evolvable sensor interface systems.

To demonstrate the practical applications of evolvable analog circuits, the JPL

group developed the stand-alone board level evolvable system (SABLES), featuring the

FPTA2 as a compact, low-power, standalone evolvable board [55]. The SABLES system

showcases rapid prototyping of fault-tolerant self-reconfigurable analog circuits and real

hardware-in-the-loop autonomous applications. It addresses observer uncertainty, GA

processor limitations, and signal stimuli challenges encountered in the adaptation loop.

The system’s success opens the door to the development of evolvable SoCs, integrating

the GA on the same chip and enabling self-recovery capabilities for extreme temperature

conditions [56]. In an enhanced version of SABLES, the digital signal processor (DSP)

unit was replaced with a field-programmable gate array (FPGA) [24].

Following JPL’s work, many research institutions, including the University of Sus-

sex [57], Catholic University of Rio [58], and UERJ-Rio de Janeiro State University [59],

have initiated development of evolvable platforms similar to SABLES, although based

on discrete components. The authors of [60] created a FPAA with a continuous-time

OTA-C filter that can perform various signal-processing tasks at frequencies up to 20

MHz, while offering a wide tuning flexibility [61]. Georgia Tech researchers [62] proposed

an FGT-based CT FPAA, achieving higher bandwidth and a more compact architecture

than previous designs. This design was later developed into an ultra-low-power SoC-

based FPAA chip [63], enabling rapid reconfigurable analog and digital computation.

Albert-Ludwigs-University researchers [64] presented a CT FPAA topology, offering ca-

pabilities for various high-speed filter circuits and promising for artificial evolution and

rapid prototyping of configurable CT filters . The configuration’s performance was

tested through simulation [65]. A new OTA-C based FPAA [66] replaces conventional

routing switches [67], improving reconfigurability and frequency performance, and en-

abling accommodation of multiple independent and cascading filters. The JPL group

evolved from FPTA2’s limitations to create the reconfigurable analog array [68], offering

higher configurability and bandwidth. The group then further improved the design with

the self-reconfigurable analog array [69], allowing real-time adaptation during operation

while compensating for temperature fluctuations.
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Figure 2.4: The simplified block diagram of the proposed FPTA proposed by Heidelberg
group on the left and right given the NMOS transistor cell block diagram [70].

The research group from TU Kaiserslautern has demonstrated substantial progress

in the exploration of granularity within the context of configurable electronics, focusing

on fine (FPTA) and coarse-grained approaches (FPMA) [71, 72]. They introduced the

field programmable medium-granular mixed-signal array (FPMA) as a hybrid granular

level approach, designed for rapid prototyping of continuous-time circuits in sensory

electronics [72,73]. The FPMA enables the realization of self-X properties, such as self-

healing and self-adaptation, and offers flexibility in implementing various algorithms.

By integrating design knowledge and optimizing circuit topologies, the authors achieved

predictable system behavior and reduced configuration switches, leading to improved

dynamic performance and compliance with industrial standards [74, 75]. The FPMA

demonstrated the implementation of configurable op-amps and the Generic Operational

Amplifier (GOPA) with adaptability in topology and programmable elements, providing

versatility in circuit selection and device sizing [74].

Measurement results of the first fabricated FPMA chip were presented, demonstrat-

ing manual and optimized configurations for specific circuit parts [76, 77]. Intrinsic

and extrinsic optimization experiments were conducted to examine system performance

under dynamic environments and temperature changes [78, 79]. The proposed recon-

figurable sensor system, depicted in Figure 2.5, consists of reconfigurable hardware, an

optimization unit employing evolutionary algorithms, and an assessment unit for mea-

suring and extracting hardware specifications during the reconfiguration process [78,79].

FPMA2, a revised version, incorporated layout techniques, reduced switches per tran-

sistor unit, and employed charge pumps for improved performance [74,80]. The FPMA
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approach also led to the development of an analog IC training board for rapid prototyp-

ing and educational purposes [81]. Comprehensive information about FPMA1, FPMA2,

and the optimization approach can be found in [82,83].

Figure 2.5: Conceptual block diagram of the evolvable sensor system. [79].

Furthermore, in [79], a novel approach called Mixtrinsic evolution was introduced,

which addresses the challenge of simulating specifications that are difficult to measure

due to cost and time constraints. It classifies hardware specifications into two distinct

categories. The first category consists of specifications that present difficulties in mea-

surement due to cost and time factors. Specifications such as open-loop gain, phase

margin, and output resistance, which are less prone to deviations, fall under this cat-

egory. For these, an extrinsic evaluation technique is adopted. Conversely, the second

category comprises specifications that exhibit sensitivity to deviations and have a direct

impact on signal distortion. Specifications including offset, swing output voltage, and

common mode range (CMR), which are economically and easily measurable, belong to

this category. For these, the approach employs an intrinsic measurement technique. The

optimization criteria in this approach involve multi-objective optimization, where each

individual is assigned both intrinsic and extrinsic objectives, as illustrated in Figure 2.6.

It is important to highlight that, unlike in [53], this approach refers to ”mixtrinsic mul-

tiobjective evolution,” indicating the utilization of both intrinsic and extrinsic evolution

for each individual with different objectives.

Moreover, the researchers expanded the concept of self-X vision to enhance the design
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Figure 2.6: New type of mixtrinsic multi-objective optimization environment proposed
by authors in [79].

of intelligent integrated sensor systems, introducing self-X principles at various levels of

abstraction, including the sensor element within the optimization loop [84]. Integration

of calibration actuators inside the sensor was proposed for error minimization [85–87].

The power consumption of wireless sensor nodes can be reduced through the control

of sensor bridge power using a programmable current source controlled by the self-X

system [88, 89]. To address the demands of Industry 4.0, a universal sensor interface

with self-X properties (USIX) was developed, providing versatility and robustness for

various physical measurements using a single chip [90]. The principal enhancements in

the USIX 2.0 version predominantly focus on its optimization for integration with dual

bridge magnetoresistive sensors (XMR), notably those with a high dynamic differen-

tial range, such as tunnel magnetoresistance (TMR) sensors. It also incorporates self-X

functionalities for the TMR sensor by managing the reset coil during incidents of sen-

sor saturation. Another key advancement is the integration of impedance spectroscopy

measurements, which directly facilitates the evaluation and diagnosis of aging-related
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effects [91, 92]. Overall, the research group work on granularity, reconfigurable elec-

tronics, and self-X vision contributes to the advancement of rapid prototyping, system

performance optimization, and the design of intelligent sensor systems for Industry 4.0

applications.

A reconfigurable Tow-Thomas filter is discussed in [93]. This filter offers limited

tunability restricted to sensitive elements only, reducing area and parasitic effects. The

tuning of R(C) values optimizes the system performance while considering process vari-

ations. However, achieving higher resolution demands larger chip area and increased

power consumption due to passive elements in the tuning knobs. Therefore, a compro-

mise must be made between area, power consumption, and optimization quality when

selecting the resolution.

Figure 2.7: Tow-Thomas BPF circuit with tunable resistors R1, R2, R3, and R4 [93].
This figure has been adapted from [93] to align with the standard Tow-Thomas filter
configuration [94], as the original deviated in the placement of ’+’ and ’-’ inputs.

The optimization of device under test (DUT) characteristics can be achieved in-

directly through statistical correlation among different performance characteristics, as

presented in [45]. Figure 2.8 shows the flow diagram of the proposed optimization pro-

cess. The process starts with low-cost measurements from non-intrusive sensors. If the

DUT’s performance falls below the specified threshold, the optimization loop is executed

to meet the desired specifications. This calibration process employs pretrained regression

models to approximate the complex correlations among different characteristics of re-

configurable analog integrated circuits. In this work, an artificial neural network is used

as a regressor. The proposed post-fabrication calibration technique is demonstrated on

a 65 nm RF power amplifier based on fabricated chips from corners and typical wafers.



Chapter 2. State of the Art 21

The minimum achieved performance yield is shown to be 92.3%.
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Figure 2.8: Flow diagram of the one-shot calibration procedure [45].

Furthermore, on-chip analog circuit optimization and built-in self-test are presented

in [11]. By integrating the digital optimization unit and self-test circuits module on-chip

beside the DUT, this scheme can automatically explore an operating point that accom-

plishes a nice trade-off among different competing characteristic goals. The intrinsic

evaluation of this scheme is demonstrated by using a Tow-Thomas bandpass filter as a

DUT. The complete conceptual representation of this scheme is presented in figure 2.9. It

consists of a digital optimization unit and an analog BIST part. The performance charac-

teristics of the DUT can be tuned by the N-dimensional vector V →= [x′1, x′2, · · · , x′N ],

which represents the collection of tuning knobs, such as widths of transistors, bias cur-

rents, resistances, and capacitances. These tuning variables are implemented by using

an array of resistors, transistors, and capacitors using digitally controlled switches.

This platform allows measuring and analyzing two types of responses: frequency-

domain and time-domain. However, it does not utilize the full degree of freedom provided

by modern edge and cloud computing IoTs and Industry 4.0 domain.

Fraunhofer and Globalfoundries are currently developing the Universal Sensor Plat-

form (USeP) [95], which aims to provide a fast, reliable, and flexible platform for indus-

trial applications. USeP adopts a three-layer architecture:

(i) Top-Level: Sensors and Core Functionality

(ii) Mid-Level: SoC Core System
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Figure 2.9: Conceptual architecture of the built-in self-test circuit optimization platform
[11].

(iii) Bottom-Level: System Board

USeP intends to support the integration of various sensors for different physical

parameters. It also plans to include multiple communication standards and integration

in fog, edge, and cloud computing, while focusing on lower power consumption. The

ongoing project ”Intelligent Reliability 4.0” aims to develop new reliability models and

methodologies for electronic systems and ICs [96]. This project specifically supports IC

designers in achieving reliability objectives. The objective is to streamline the existing

aging simulations process by incorporating a universally applicable methodology for

evaluating reliability as a standard procedure within electronics design.

The Synopsys Silicon Lifecycle Management (SLM) product suite [30, 33] is specif-

ically designed to enhance silicon devices’ health and operational metrics throughout

their lifecycle. By integrating in-chip observability, analytics, and automation, SLM

enables a comprehensive understanding of devices at both the chip and system levels,

as depicted in Figure 2.10. Crucially, built-in sensing devices, including PVT sensors,

continuously monitor the dynamic operating conditions of the chip (voltage and temper-

ature) as well as the static process characteristics, allowing for the in-field optimization

of power consumption and speed performance based on the local chip conditions. This

approach helps detect anomalies and correct them before complete failure, improving
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long-term system reliability. PVT sensors play a vital role in validating power reduction

techniques, ensuring power remains within the targeted window and thermal dissipation

adheres to specified chip and package design requirements. Deviating from these metrics

can result in compromised performance and device failure. The collected data can be an-

alyzed on-chip to optimize performance and security or transmitted to the cloud through

various on-chip interfaces for more complex analysis. Cloud-based analysis of aggregated

system performance allows for two key objectives: maintaining device performance as

intended and identifying and addressing unforeseen device issues.
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Figure 2.10: SiliconMAX Silicon Lifecycle Management (SLM).

In summary, field programmable electronic hardware, particularly with respect to

analog and mixed circuits, is differentiated into three unique levels of granularity: coarse,

medium, and fine. Coarse-granular field programmable analog arrays (FPAAs) are con-

ducive to quick prototyping of intricate analog circuits, making them suitable for sensor

signal processing and interfacing. However, their limited programmability often restricts

the full execution of the evolutionary process, usually only supporting partial evolution.

Conversely, fine-grained evolution at the transistor level provides a versatile basis

for bio-inspired optimization. It can adapt circuits to demanding operating conditions

and potentially discover innovative design solutions. However, the resources required for

switches and element arrays are significant, leading to an increase in the die area. This

situation limits dynamic performance due to switch non-idealities and extensive routing.

Moreover, the unpredictability of non-standard circuit solutions diminishes the appeal

of fine-grained structures within the industry.

Medium-granular FPAAs offer a balanced approach, presenting flexibility and pre-



Chapter 2. State of the Art 24

dictable output owing to their predefined circuit topology. This is in line with industry

standards. The primary objective of configurable hardware is to support in-field self-X

functionalities, guided by various evolutionary algorithms. However, in-field optimiza-

tion requires an assessment unit to evaluate the system’s performance under operational

conditions. The use of laboratory equipment or ATE machines is not practical in such

scenarios. Consequently, it is necessary to integrate cost-effective performance evalua-

tion techniques into reconfigurable hardware. This aspect will be discussed in greater

detail in the subsequent section.

2.3 Assessment Unit

The assessment unit is a crucial part of measuring and evaluating reconfigurable hard-

ware performance. Performance assessment can be performed extrinsically, intrinsically,

or mixtrinsically [82].

Extrinsic evaluations are conducted through simulation-based measurement setups,

whereas intrinsic evaluations depend on real hardware measurements. Mixtrinsic eval-

uation, as the name suggests, combines both real and simulation-based measurements.

This method was first proposed in [53], which used a genetic algorithm incorporating

both intrinsic and extrinsic individuals. In prior work conducted at our institute [82],

this concept was further developed by performing complex measurements extrinsically

and executing simple measurements intrinsically, thereby reducing the complexity of the

assessment unit [82].

Nonetheless, the reliance on simulations in both methods poses a challenge as it

may not always yield accurate results compared to intrinsic evaluations with real hard-

ware. Additionally, under conditions with significant process variations and discrepan-

cies between hardware and simulation performance, a mixtrinsic approach might not be

practical [97].

Evaluating the cost-effectiveness of intrinsic evaluation measurement setups is espe-

cially crucial for smart sensory electronics (SSE) with increasing system complexities.

Performance measurement setups for a DUT can be categorized into two based on the

evaluation principle of the desired performance parameters [11]. The first category di-

rectly measures performance characteristics, offering higher accuracy and precision but
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also increased design complexity and chip area [11,20]. The second category employs in-

direct measurement (IM) methods, which leverage statistical correlation [11,45,98–103].

IM methods can estimate multiple system performance parameters simultaneously using

simple test stimuli [45].

In [101], the authors applied an optimized multitone signal with the assistance of an

evolutionary algorithm (EA) to the operational amplifier. They examined the transient

response to indirectly estimate characteristics such as input common-mode range, gain,

slew rate, and bandwidth. To enhance prediction accuracy, [102] proposes a substitute

test flow centered on the two defect filters approach. A similar concept is presented

in [103], where an envelope detector is employed to infer the target characteristics of the

ICs. However, in the application of SSE, this category of IMs requires optimization due

to limitations in computational resources.

To minimize the measurement and implementation costs of ATE, the authors in

[104] introduced another distinct category of IM methods that utilize feature extractor

sensors. These sensors can perform DC or low-frequency measurements. This capability

significantly reduces testing costs. An essential characteristic of these sensors is their

non-intrusive nature; they are electrically disconnected from DUT. Consequently, the

monitoring operation does not affect the performance of the primary circuit [45,99,105].

Also, this implies that these sensors can be seamlessly integrated into the design without

resizing the DUT to compensate for the sensor effect. The sensors are constructed

using basic analog stages replicating a portion of the main circuit’s topology. They also

incorporate stand-alone layout components, such as transistors and capacitors, directly

copied from the DUT layout. By placing the sensors in close proximity to the DUT,

they experience the same process variations and local operating conditions. As a result,

the sensor measurements correlate with the DUT performance. For non-intrusive sensor

design, the correlation among them should be as minimal as possible. Contrarily, their

correlation with the targeted characteristics of DUT should be as maximal as possible.

As observed from Figure 2.11, during the designing of the proposed non-intrusive sensor

the correlation among the sensors themselves is kept significantly small, while it has

a good correlation with the performance characteristics of a fully differential indirect

current feedback instrumentation amplifier (CFIA). Here CFIA is used as a test vehicle

because of the non-intrusive property of these sensors it can be used to predict the
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performance characteristics of other analog integrated circuits as well [45]. This figure

shows three sensors, where Sensor 3 is referred to as the temperature sensor [35] and is

specifically designed to address the chip’s dynamic variations.
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Figure 2.11: Correlation of the non-intrusive sensors with targeted performance charac-
teristics of DUT.

Normally, regression models are utilized to indirectly estimate the DUT performance

based on cost-effective, non-intrusive sensor measurements [45]. The optimization time

using non-intrusive sensors-based indirect measurement methods is faster compared to

executing tests with real measurements because it relies on simple measurements and

the predicted performance provided by the regression model [105]. This methodology

has attracted considerable attention [45, 106–110] and is worth investigating further for

enhancing AFEX performance.

As the performance (Y ) of the device being tested is influenced by variations in

process, voltage, and temperature (PV Tr) as well as calibration adjustments (CK).

This relationship can be represented by a function (f) defined as:

Y = f(PV Tr, CK). (2.2)

Since directly measuring the PVT variations is not feasible, measurements (X) that

are indirectly related to these variations through a function (g) are typically used:

X ≈ g(PV Tr). (2.3)
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By combining equations (1) and (2), Y can be approximated as a function of X and

CK:

Y ≈ f(g−1(X), CK) ≈ z(X,CK). (2.4)

The function z is unknown, and it is not possible to derive it analytically [45]. There-

fore, a commonly employed solution is to utilize an artificial neural network (ANN) as

a regressor to approximate the regression task. By employing an ANN, the desired per-

formance can be predicted based on the gathered data. The training and testing phase

for the IMs using non-intrusive sensors are graphically illustrated in figure 2.12.

Performance 

Measurements

Low-Cost Indirect 

Measurements

Train Regression 

Model

Training Phase

Training Devices

Low-Cost Indirect 

Measurements

DUT

Testing Phase

Figure 2.12: Training and testing phase for indirect measurement methods.

It is worth noting that the process of generating and collecting the necessary data

for the training phase of the ANN presents considerable challenges. The complexity

of this task increases exponentially with the complexity of the DUT. Moreover, the

non-intrusive sensors discussed in existing literature primarily possess a static nature,

offering only a snapshot of the current operational state of the IC. To fully integrate

non-intrusive sensors into the optimization process, it is necessary to introduce reconfig-

urability within these sensors. This would enable the utilization of tuning parameters

within the non-intrusive sensors themselves rather than relying solely on tuning param-

eters of the DUT using a pre-trained regression model. This approach would indirectly

improve prediction accuracy, particularly under severe PVT operating conditions. By

incorporating reconfigurability in non-intrusive sensors, the entire optimization process

can be performed, allowing for more precise adjustments based on the dynamic feedback

from the sensors.



Chapter 2. State of the Art 28

2.4 Observer Imperfections

The realization of an observer within the control or optimization loop is an interesting

and significant aspect to consider. Typically, this observer is constructed using the same

components as the circuits being analyzed, which can introduce errors. Some studies

have addressed this challenge by employing monitoring devices such as analog-to-digital

converters (ADCs) with higher resolution and quality than the systems being monitored,

as demonstrated in [79]. However, this approach is not practical as the observer should

ideally be implemented using the same components as the rest of the system.

The inherent problem in observer implementation is that it becomes subjected to the

same detrimental influences as the actual sensing system, given the ’all-in-one’ objec-

tive. This problem becomes even more prominent when the observer is a crucial part of

an intricate system where data reliability is essential, such as in advanced applications

like smart cars. Most of the state-of-the-art research considers these observers in ideal

conditions, potentially oversimplifying the actual scenarios the system might encounter.

One notable example in the literature evaluated the performance of the ADC under ex-

treme temperature conditions [24]. This study demonstrated that a 14-bit ADC could

lose up to 5 to 6 bits of accuracy, leaving only 8 to 9 effective number of bits (ENOB).

This loss translates into a significant 43% decrease in ADC performance, which can

heavily impact the subsequent stage of artificial intelligence or machine learning-based

performance predictors. This significant reduction in accuracy can result in an unaccept-

able system performance that may not be rectifiable through calibration or optimization

processes [40]. Therefore, this underlines the real challenge: addressing all types of un-

certainties associated with the observer without compromising the system’s integrity or

adding undue complexity.

One effective strategy to manage these uncertainties involves the application of ro-

bust optimization [111], which can be categorized into two main types [112]: archive-

based robust optimization [112,113] and robust optimization that utilizes meta-heuristic

optimization algorithms. These algorithms benefit significantly from the extensive ex-

ploration capabilities of the search agents during the optimization process, allowing for

a more thorough noise minimization through repeated assessments of the same solution.

The estimation of effective fitness for a trial solution X on a noise-affected objective
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surface is computed using the following integral:

fnoisy(X) =

∞∫︂
−∞

(f(X) + η)p(η)dη (2.5)

In this formula, p(η) represents the probability distribution of noise η, which distorts

the true value of the objective function f(X). Owing to the dynamic variations induced

by noise, evaluations of the same trial solution may yield varying outcomes. Typically,

the closed-form analytical expression for the effective fitness function is not available for

most noisy optimization scenarios [111]; hence, it is approximated through Monte Carlo

methods.

Monte Carlo methods approach the estimation of a solution’s fitness f(X) by re-

peatedly measuring it across multiple instances—often referred to as sample size. The

collected fitness values from these multiple evaluations of f(X) are subsequently aver-

aged to calculate the mean fitness estimate of X:

f̄(X) =
1

n

n∑︂
j=1

fj(X) (2.6)

σ(f(X)) =

⌜⃓⃓⎷ 1

n− 1

n∑︂
j=1

(fj(X)− f̄(X))2 (2.7)

se(f̄(X)) =
σ(f(X))√

n
(2.8)

This methodology leverages the power of averaging over multiple observations to

reduce the standard error of the mean fitness estimate, enhancing it proportionally to

the square root of the sample size, n. This increase in measurement accuracy effectively

mitigates the impact of noise, thereby refining the precision of fitness evaluations under

noisy conditions.

It is evident from 2.8 that sampling an individual’s objective function n times reduces

se(f̄(X)) by a factor of n, thus improving the accuracy in the mean fitness estimation

[111]. However, this approach requires additional memory resources. Initially, during

the optimization process, the optimizer tends to prioritize exploitation and may select a

suboptimal solution due to the imperfections of the observer. However, as the exploration

progresses, the correctness of the solution is evaluated with the assistance of the archive
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[112]. This method not only mitigates the observer imperfections but also enhances the

robustness of the system against noise and variability during optimization.

The second category is surrogate-based robust optimization, which relies on methods

such as Gaussian process regression (GPR) [114–116]. GPR, a well-known Bayesian

statistical regression technique, falls under this category. It is widely used for uncertainty

quantification and design optimization. In addition to fitting a wide range of functional

models, GPR also provides confidence intervals for prediction values [115, 116]. GPR is

capable of effectively representing uncertainty, enabling better estimation of uncertainty

and facilitating robust optimization [117].

In this context, robust optimization strategies, specifically archive-based and

surrogate-based robust optimization, present promising avenues for addressing these

challenges. These strategies, which will be elaborated upon in the following sections,

aim to alleviate the uncertainties and enhance the reliability and effectiveness of the

’all-in-one’ design approach. Such endeavors will further advance the field by enabling

observer implementation that is more resilient, adaptable, and capable of maintaining

high-performance levels in the face of dynamic environmental conditions or component

degradation.
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Optimization Algorithms

In this chapter, the intriguing world of optimization algorithms is explored. Recognizing

their critical role in addressing the escalating complexity of real-world problems, the

development and application of these algorithms across various fields are investigated,

emphasizing their inherent strengths, limitations, and applicability.

The chapter begins with an overview of optimization algorithms, discussing their vital

function in resolving intricate real-world issues. The crucial characteristics of an effective

optimization algorithm, namely, the ability to balance exploration and exploitation func-

tions, are elucidated. This balance lays the foundation for understanding optimization

algorithm performance.

Following the general overview, the discussion transitions into the types of optimiza-

tion algorithms, focusing on two primary categories: heuristics and metaheuristics. Their

characteristics, differences, and specific applications are thoroughly explored, providing

a comprehensive understanding of these powerful tools.

Subsequently, the chapter delves into nature-inspired optimization techniques. The

unique ways in which these algorithms draw inspiration from biological processes, social

behavior, and physical-chemical systems to solve complex problems are explored. The

different categories of these nature-inspired techniques are also examined, highlighting

their unique traits.

The later sections of the chapter focus on specific optimization algorithms and their

applications. Particle swarm optimization (PSO) is discussed in detail, along with an

overview of some popular modifications introduced in this algorithm. The proposed

experience replay particle swarm optimizer (ERPSO) is also presented, offering a detailed

31
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explanation of its operation and potential. Finally, the performance of ERPSO on

benchmarking functions is evaluated, providing empirical evidence of its efficiency and

effectiveness.

3.1 Overview of Optimization Algorithms

Owing to its substantial impact on industrial practices, the realm of optimization con-

sistently gains the interest of a multitude of researchers hailing from both industrial

sectors and academic environments. In our contemporary era, the complexity involved

in resolving real-world problems has escalated exponentially. This complexity has been

significantly increased due to the increased influence of external variables. As a di-

rect consequence, classical optimization techniques oftentimes prove to be inadequate in

providing viable solutions to these intricate issues.

Furthermore, the optimization landscape is in a state of constant evolution, enriched

persistently by a deluge of innovative concepts, methodologies, and algorithms. This

steady influx of innovation is largely driven by the relentless efforts of researchers en-

gaged in this field. As postulated by the No Free Lunch Theorem [118], there exists no

single optimal solution that can address every specific problem. This effectively means

that there is always room for improvement and refinement of the existing optimization

algorithms. This, in turn, engenders a prolific development of increasingly efficient op-

timization algorithms. These algorithms are implemented across an array of disciplines

on a consistent basis. This surge in algorithmic development and utilization can be

attributed not only to the rapid progression of technology but also to the significant

advancements in computational capabilities.

The performance of an optimization algorithm can be effectively evaluated by main-

taining an equilibrium between two vital characteristics: exploration and exploitation

[100, 119, 120]. These characteristics are intrinsically related to global search and local

search, respectively. The exploration function pertains to the ability of an algorithm

to explore and analyze a wide solution space, while the exploitation function refers to

its capacity to refine and optimize solutions within a localized area. The interplay and

balance between these two functions form a crucial aspect of evaluating the efficacy of

any optimization algorithm.
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Optimization engineering problems are generally classified into two overarching cate-

gories: heuristics [121] and metaheuristics [122]. Heuristic techniques are usually reliant

on the specific problem at hand, taking into account all the parameters and specifications

unique to the problem. As a result, these methods are prone to falling into local optima.

In contrast, metaheuristic algorithms are not bound by the specifics of the problem.

These techniques delve into the solution space more exhaustively to ascertain superior

solutions and can be leveraged as universal problem-solving tools or ”black boxes”. It

is important to note, however, that despite their wide-ranging applicability, metaheuris-

tic algorithms do not guarantee the achievement of a globally optimal solution when

compared to iterative methods [123].

Nevertheless, metaheuristics exhibit substantial utility in discovering optimal solu-

tions to real-world combinatorial problems. Their inherent simplicity makes it feasible

for them to search through a vast array of potential solutions. A prominent subset

of these algorithms are what’s typically known as nature-inspired optimization tech-

niques [124, 125], which have gained considerable traction among researchers in recent

times.

As suggested by their name, nature-inspired optimization techniques embody a di-

verse spectrum of algorithms, each drawing inspiration from various natural phenomena.

These algorithms can be classified into three primary categories: (a) bio-inspired, (b)

swarm intelligence, and (c) physical-chemical systems [123,126].

Bio-inspired algorithms derive their methodology from biological processes and mech-

anisms observed in nature [127–130]. Swarm intelligence algorithms, on the other hand,

imitate the collective behavior of social colonies, such as ants, birds, and fish, in or-

der to solve optimization problems [131–133]. The final category, physical-chemical

systems, takes cues from the principles and phenomena inherent in physics and chem-

istry [134–136].

The choice of an optimization algorithm is contingent upon the distinctive attributes

of the problem at hand. These attributes encompass elements such as the nature of the

objective function, the imposed constraints, and the dimensionality of the search space.

The objective function delineates the performance measure that the algorithm seeks

to optimize, while constraints outline the permissible boundaries or conditions within

which the solution must exist. The dimensionality of the search space, on the other
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hand, refers to the number of parameters or variables that need to be optimized. Thus,

a comprehensive understanding of these aspects is critical to select the most effective

and suitable optimization algorithm for a given problem.

These nature-inspired optimization techniques have proven their efficacy in grappling

with complex computational challenges, particularly those categorized as NP-hard [125].

An NP-hard problem is one for which no known algorithm can solve all instances quickly

(in polynomial time), and a solution, once found, is not necessarily easy to verify. The

ability of nature-inspired techniques to tackle these convoluted problems speaks to their

robustness and adaptability, underscoring their growing popularity in the realm of opti-

mization.

3.2 Optimization Algorithm for In-field Optimization

In the sphere of in-field optimization processes, the role of an AI or optimization agent

becomes indispensable. It is vital for this agent to be embedded within the automatic

test equipment (ATE) in a manner similar to the integration of the silicon lifecycle

management (SLM) agent proposed by Synopsys (Concertio) [32, 137]. This AI agent

can be positioned at varying levels within the system hierarchy, including the application

layer, operating system, firmware, or hardware level [31,137], as illustrated in figure 3.1.

”

Application

Operating 

System

Firmware

Hardware

AI Agent

Figure 3.1: Illustration of potential AI agent placements across various levels of the
system hierarchy.

As per the proposed methodology [100], the AI agent is positioned at the hardware
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level, which is the closest level to the device under test (DUT). Concerning the selection

of an optimizer for the calibration process, derivative-based optimizers are considered

unfeasible due to the discontinuous nature of the objective space [138]. In contrast,

meta-heuristic optimization algorithms have shown excellent effectiveness, regardless of

the presence of discontinuities within the objective space. In order to meet the demands

of complex search spaces and objective space optimization for smart sensory electronics

(SSE), the conventional particle swarm optimization (PSO) [139] has been employed as

an optimizer, following enhancements to its exploration capabilities. The primary rea-

sons for selecting PSO as the optimization algorithm include its ease of implementation

and rapid convergence rate [140].

3.3 Particle Swarm Optimization Algorithm

The particle swarm optimization (PSO) algorithm, introduced by Eberhart and Kennedy

in 1995 [139], is an evolutionary computation technique inspired by the flocking behavior

of birds and the schooling behavior of fish. It embodies an iterative method that seeks

to improve candidate solutions with respect to a given measure of quality, usually in the

form of a fitness function.

In PSO, each potential solution is conceptualized as a particle in a swarm, with

each particle representing a solution for the given optimization problem. These particles

are characterized by two vectors: the position vector and the velocity vector. The

position vector corresponds to the values of each variable in the problem at hand, with

its dimensionality equal to the number of parameters in the problem. For instance,

if a problem involves two parameters, the particles would have position vectors in two

dimensions. Consequently, each particle is capable of navigating an n-dimensional search

space, where n denotes the number of variables involved in the problem.

The velocity vector plays a pivotal role in updating the position of the particles.

This vector defines the magnitude and direction of the step size, effectively guiding the

movement of each particle across each dimension independently. Therefore, the velocity

vector is integral to determining how a particle explores the search space.

The position of the particles is updated at each iteration of the optimization process
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according to the following equation:

x⃗i(t+ 1) = x⃗i(t) + v⃗i(t+ 1) (3.1)

where:

� x⃗i(t+1) and x⃗i(t) are the position of the i-th particle at time (t+1) and t respec-

tively.

� v⃗i(t+ 1) is the velocity of the i-th particle at time (t+1).

This equation indicates that the position updating is straightforward, with the veloc-

ity vector being the primary determinant. The velocity vector is defined using Equation

3.2:

v⃗i(t+1) = w · v⃗i(t)+ c1 · rand1 · (p⃗best, i(t)− x⃗i(t))+ c2 · rand2 · (g⃗best(t)− x⃗i(t)) (3.2)

where:

� v⃗i(t+1) and v⃗i(t) are the velocity of the i-th particle at time (t+1) and t, respec-

tively.

� w is the inertia weight, which controls the momentum of the particles.

� c1 and c2 are cognitive and social scaling factors, respectively.

� rand1 and rand2 are random numbers in the range of [0, 1].

� p⃗best,i(t) is the best known position of the i-th particle until time t.

� g⃗best(t) is the best known position among all particles in the swarm until time t.

� x⃗i(t) is the current position of the i-th particle at time t.

Equation 3.2 balances the exploration (searching new areas) and exploitation (search-

ing around the best-found solutions) during the search process. The terms involving c1

and c2 represent cognitive and social behavior, respectively. The cognitive component

(c1) pulls a particle towards its own best past position, while the social component (c2)

pulls the particle towards the best global position found in the swarm.



Chapter 3. Optimization Algorithms 37

A well-tuned balance between these two components along with a suitable inertia

weight can yield high-performing and robust optimization results, enabling the PSO al-

gorithm to efficiently solve a wide range of complex optimization problems. This balance

between position and velocity vectors lays the groundwork for various modifications and

improvements on the PSO algorithm, as discussed in the following section.

3.3.1 Exploring Variations and Improvements of PSO

Building upon the foundation of PSO, many improved versions of the algorithm have

been proposed over the last decade, aiming to extend its searching capability and min-

imize the probability of getting trapped into local minima [140, 141]. For instance, the

linearly decreasing inertia weight (LDW-PSO) [39] modifies the inertia weight w (which

appears in the velocity update equation 3.2) as follows:

w = wmax − currentIteration

(︃
wmax − wmin

maxIteration

)︃
(3.3)

where wmin and wmax represent the minimum and maximum value of the inertia

weight w, respectively; currentIteration denotes the current running iteration number,

and maxIteration represents the maximum number of iterations. Usually, a larger value

of w achieves the global optimum exploration, and a smaller value performs the local

exploitation. The PSO algorithm with linearly varying acceleration coefficients (LAC-

PSO) was presented in [142]. The cognitive scaling factor or acceleration coefficient c1 is

linearly decreasing, while the social scaling factor or acceleration coefficient c2 is linearly

increasing, as follows:

c1 = (c1f − c1i)×
maxIteration − currentIteration

maxIteration
+ c1i (3.4)

c2 = (c2f − c2i)×
maxIteration − currentIteration

maxIteration
+ c2i (3.5)

where c1i,2i and c1f,2f represent the initial and final values of the acceleration coeffi-

cients respectively. Reference [143] recently proposed the sigmoid function based adap-

tive acceleration coefficients adjustments. These adjustments affect the cognitive and

social components of the velocity update equation 3.2, resulting in significant alterations

in the exploration-exploitation trade-off. These adjustments are given as:
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c1 = c2 = F (D) =
a

1 + e−c(D−d)
+ b (3.6)

where , a = 0.5, b = 1.5 , c = 0.0000353.81 × search range (distance between upper and

lower bound of particle), d = 0 and D = Pp or g(k)− xi(k) represents the distance of the

ith particle to its personal or global best at the kth iteration.

This continued research into the potential of PSO is also seen in the introduction

of various topologies and updating strategies, including the pyramid, clusters, von Neu-

mann, and ring structures [82,144]. Each of these variants introduces new elements into

the fundamental structure of the PSO, allowing for greater flexibility and adaptability

in solving complex optimization problems.

It is also noteworthy to mention the research on biological and sociological inspired

methods, such as the aging theory-based PSO algorithm, the cultural-based PSO algo-

rithm, and the niching PSO algorithm [145–148]. These modifications look to nature

and society for inspiration, bringing novel perspectives into the algorithmic design of the

PSO.

However, despite the advancements, the continuous research and development

of these PSO algorithms are crucial, especially for complex, high-dimensional,

multi-objective search spaces with many local optima, such as in the case of SSE

optimization [120, 140, 149]. These challenging domains remain the frontier of PSO

research, inviting novel modifications and applications of the algorithm.

3.4 Proposed Experience Replay Particle Swarm Opti-

mizer

This section presents the experience replay particle swarm optimizer (ERPSO), an inno-

vative optimization algorithm specifically developed in this research work to enhance the

exploration capabilities of the conventional PSO algorithm. Drawing inspiration from

nature, ERPSO mimics the behavior of birds, which not only remember their current

globally best location (gbest) when searching for food but also retain memories of previ-

ous global best locations. In this algorithm, an experience replay buffer (ERB) functions

similarly, solving complex objective space problems like SSE.

ERPSO builds on the classical PSO by incorporating a random selection of historical
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global bests (gbests) via an ERB. This novel integration of an ERB into the velocity

updating equation (VUE) provides ERPSO with unique characteristics. Just like birds

recalling past food sources, the ERB archives previously visited gbest particles and

leverages this collective memory to improve convergence accuracy. This approach is

commonly used in reinforcement learning, as shown in references [150,151].

The ERB minimizes the risk of getting stuck in local minima by drawing from past

experience rather than relying solely on recent data. An adaptive epsilon-greedy al-

gorithm is used to select from the ERB, striking a balance between exploration and

exploitation [152]. The fundamental VUE of ERPSO is formulated as follows:

V j+1
i =

⎧⎪⎨⎪⎩ wr1V
j
i + c1r2(P

j
i −Xj

i ) + c2r3(G
j −Xj

i ) ε < η ∗ w

wr1V
j
i + c1r2(P

j
i −Xj

i ) + c2r3(G
j −Xj

i ) + c3r3(A
j −Xj

i ) ε ≥ η ∗ w
(3.7)

where:

� V j
i represents the velocity of the ith particle in the jth iteration.

� w is the inertia weight, with the value defined by equation 3.3.

� r1,2,3 are uniformly distributed random numbers in the range [0, 1].

� c1 and c2 are the cognitive and social coefficients, respectively, with c1 = c2 = c3 =

2.

� P t
i and Gt are the personal and global best information of the whole swarm.

� ε is a random variable introduced to balance the exploration and exploitation

through the epsilon greedy algorithm.

� η denotes the intensity factor that controls the exploration and exploitation.

� At represents the archive of previously visited global best positions of the swarm.

The position update equation of ERPSO is given as follows:

Xj+1
i = Xj

i + V j+1
i (3.8)
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where Xj
i represents the position of the ith particle in the jth iteration. According to

the proposed VUE, the particles attempt to converge rapidly towards the global optimum

with a probability of 1 − ε. As such, the VUE of the conventional PSO algorithm

is employed for the initial scenario. Conversely, to diminish the chance of premature

convergence, the ERPSO algorithm employs the epsilon greedy algorithm to stimulate

recall of past gbest solutions from the experience replay archive with a probability of ε.

As depicted in figure 3.2, the ERPSO algorithm starts by randomly initializing the

positions and velocities of all particles in the swarm. This initialization provides a diverse

range of solutions and establishes the starting point for the optimization process.

Start

Random initialization 
of velocity & position

Solution evaluation

Better?

Update P_best and 
G_best

Termination?

End

Yes

Yes

No

No

Calculate the inertia 
weight

Update position and 
velocity based on ε value

Update the archive if 
required

Figure 3.2: Flow diagram of the proposed ERPSO algorithm.

After the initialization stage, the fitness value for each particle is calculated. The
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fitness value is a measure of the quality of the solutions provided by the particles. It

quantifies how closely a particle’s position matches the desired objective. These fitness

values are essential as they determine which particles possess the best positions globally

(gbest) and personally (pbest).

Following the fitness evaluation, each particle’s fitness value is compared to its per-

sonal best (pbest) and the global best (gbest). If a particle’s fitness surpasses its own

pbest or the swarm’s gbest, the particle’s respective personal and global data are up-

dated. This update means that the swarm has now discovered a better solution.

Concurrently, the inertia weight w, which balances the global and local search abil-

ities of the swarm, is calculated according to equation 3.3. The inertia weight plays a

crucial role in the ERPSO algorithm’s convergence behavior and solution quality.

In the subsequent stage, the velocity of each particle is updated using the VUE. This

update process considers the random variable ε and depends on whether ε is less than or

greater than the product of the intensity factor η and the inertia weight w. Depending

on this condition, the velocity update may or may not consider the archive of previously

visited gbest positions, At.

Once the velocities have been updated, the position of each particle is adjusted based

on its new velocity. The position adjustment nudges the particles closer to the areas of

the search space with higher fitness values.

These steps, from the fitness evaluation to position adjustment, constitute a single

iteration of the ERPSO algorithm. The algorithm proceeds with these iterations until

it reaches a predetermined maximum number of iterations or another stopping crite-

rion. Throughout this iterative process, the ERPSO algorithm progressively refines the

solutions, steering the swarm towards the optimal solution.

3.4.1 Finding the Optimal Metaparameters for ERPSO

To achieve optimal performance with ERPSO, finding the appropriate metaparameters

is crucial. The most significant parameters include the inertia weight (w), cognitive and

social coefficients (c1 and c2), and the epsilon-greedy intensity factor (η).

Inertia Weight (w): A lower value favors exploitation, while a higher value pro-

motes exploration. A balance must be struck to achieve optimal convergence rates.

Cognitive and Social Coefficients (c1, c2): These coefficients influence personal
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and social influences on particle movement. Adjusting these values affects the particles’

trajectories toward individual or global bests.

Epsilon-Greedy Intensity Factor (η): This controls the trade-off between explo-

ration and exploitation. Higher values lead to more exploration through the ERB, while

lower values lean toward exploitation.

Random Variables (r1,2,3): Uniformly distributed random variables ensure diverse

solution exploration.

The impact of each parameter on the algorithm’s performance is thoroughly ex-

amined, ensuring that the chosen configuration minimizes premature convergence and

enhances global optimality, particularly for the SSE objective space.

By leveraging the ERB and integrating the epsilon-greedy approach, the ERPSO

algorithm presents a robust technique for overcoming local optima and premature con-

vergence, issues commonly faced by the conventional PSO. As a result, it demonstrates

higher efficacy in navigating complex, multimodal search spaces and achieving superior

optimization results.

The effectiveness and efficiency of the ERPSO algorithm are validated in the subse-

quent section by testing it on a range of diverse and challenging benchmark functions.

These tests will provide a comprehensive understanding of the algorithm’s performance,

assessing its robustness, versatility, and adaptability across various optimization land-

scapes.

3.4.2 Performance Evaluation of ERPSO on Benchmarking Functions

In evaluating the performance of the ERPSO on benchmarking functions, eight distinct

benchmarking functions (BMFs) are employed, selected from existing literature to offer

a comprehensive view of the optimization behavior of the ERPSO. Table 3.1 presents

the specifics of these BMFs, encapsulating their respective names, dimensions, search

space spans, and global best values.

These BMFs represent high-dimensional problems, mimicking the search space com-

plexity of SSE. Among them, the Griewank function f1(x) is typically employed to

examine the convergence rate of optimization algorithms due to its popularity in this

context. The Rastrigin function f2(x) and Ackley function f3(x) present considerable

optimization challenges owing to their numerous local optima. Furthermore, the Rosen-
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Table 3.1: Configuration of benchmarking functions (BMF).

Function Name Functions Dimension Search Space Global Minima

Griewank f1(x) 25 [−600, 600] 0
Rastrigin f2(x) 25 [−5.12, 5.12] 0
Ackley f3(x) 25 [−32, 32] 0
Rosenbrock f4(x) 25 [−30, 30] 0
Schwefel 1.2 f5(x) 25 [−100, 100] 0
Schwefel 2.22 f6(x) 25 [−100, 100] 0
Levy f7(x) 25 [−10, 10] 0
Sphere f8(x) 25 [−100, 100] 0

brock function f4(x), also referred to as the Valley or Rosenbrock’s Banana function,

and the Levy function f7(x), are non-convex functions. The Schwefel 1.2 function f5(x)

and Schwefel 2.22 function f6(x) are representative of typical multimodal and unimodal

functions respectively, each of which possesses its own challenges in locating the global

optimum. Lastly, the Sphere unimodal function f8(x) is utilized to scrutinize the con-

vergence rate.

The experimental setup involves 30 particles, 25 dimensions, and 5000 iterations.

Each experiment is repeated 100 times to mitigate the effects of random fluctuations

or lucky shot results. The performance of the ERPSO algorithm is evaluated against

four well-known PSO algorithms, namely, LDW-PSO, LAC-PSO, PSO, and SPSO. The

convergence curves of the ERPSO algorithms are depicted in Figure 3.3, where the

horizontal axis signifies the number of iterations and the vertical axis represents the

mean fitness value (logarithmic scale) across all the PSO algorithms.

Upon analyzing these convergence curves, one can observe that the PSO and LAC-

PSO display a significantly quicker convergence rate compared to the ERPSO algorithm.

Nevertheless, the ERPSO algorithm achieves a superior fitness value for the global mini-

mum, surpassing the other PSO algorithms. This stellar performance across all optimiza-

tion BMs testifies to ERPSO’s exceptional capability to avoid local optimum trapping.

In the context of the Ackley and Levy function, the proposed ERPSO algorithm’s perfor-

mance is on par with LDW-PSO and surpasses the other algorithms. While the sphere

function shows slightly less convergence for the ERPSO algorithm, it still successfully

identifies the global optimum. The convergence rate of ERPSO could potentially be

improved by reducing the exploration intensity η. However, considering the complexity

of the SSE search space, exploitation is given preference over exploration.
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Figure 3.3: Optimization convergence curves for (a) Griewank function f1(x) (b) Rastri-
gin function f2(x) (c) Ackley function f3(x) (d) Rosenbrock function f4(x) (e) Schwefel
1.2 function f5(x) (f) Schwefel 2.22 function f6(x) (g) Levy function f7(x) (h) Sphere
function f8(x).

Additionally, Table 3.2 offers a deeper insight into the optimization process, providing

statistical data about the fitness value (minimum, mean, and standard deviation) of the

various PSO algorithms for each BMF, and including the successful ratio of convergence.

In most cases, the mean value of ERPSO is lower than the other PSO algorithms,

suggesting ERPSO’s superiority in achieving the global minima. As observed in the
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Table 3.2: Comparison of different PSO algorithms on eight optimization BMF.

PSO SPSO LDW-PSO LAC-PSO ERPSO

f1(x)

Min 0.00 0.00 0.00 9.20× 10−6 0.00
Mean 1.95× 10−2 2.40× 10−2 2.26× 10−2 3.40× 10−1 7.48× 10−14

Std 2.77× 10−2 2.75× 10−2 2.34× 10−2 5.90× 10−1 6.44× 10−13

Ratio 100% 96% 97% 37% 100%

f2(x)

Min 1.89× 101 9.95× 100 8.95× 100 6.10× 101 0.00
Mean 4.22× 101 3.06× 101 1.03× 101 3.08× 101 4.83× 10−15

Std 1.43× 101 1.11× 101 2.34× 10−2 1.68× 101 1.34× 10−14

Ratio 0% 0% 0% 0% 100%

f3(x)

Min 4.44× 10−15 7.99× 10−15 4.40× 10−15 1.80× 100 8.88× 10−16

Mean 2.60× 10−1 3.16× 10−14 9.91× 10−15 1.68× 100 1.36× 10−14

Std 5.91× 10−1 6.99× 10−14 3.44× 10−15 1.68× 101 8.63× 10−15

Ratio 82% 100% 100% 0% 100%

f4(x)

Min 6.50× 10−3 1.90× 10−1 1.67× 10−1 7.58× 100 3.17× 10−3

Mean 1.85× 103 4.57× 103 4.77× 103 1.22× 103 1.89× 101

Std 1.26× 104 1.97× 104 1.96× 104 9.01× 103 1.79× 101

Ratio 4% 0% 0% 0% 7%

f5(x)

Min 0.00 3.81× 10−22 3.81× 10−14 4.20× 10−1 0.00
Mean 4.92× 10−14 1.00× 100 2.42× 10−12 1.69× 101 1.44× 10−15

Std 8.84× 10−13 1.00× 101 1.04× 10−11 2.22× 101 1.23× 10−14

Ratio 100% 99% 100% 0% 100%

f6(x)

Min 8.12× 10−65 1.05× 10−17 1.98× 10−28 2.84× 100 0.00
Mean 2.20× 101 6.11× 101 7.30× 101 2.82× 102 4.88× 10−13

Std 4.83× 101 7.23× 101 8.39× 101 1.51× 102 2.56× 10−12

Ratio 81% 51% 48% 0% 100%

f7(x)

Min 1.49× 10−32 1.50× 10−32 1.47× 10−32 2.41× 100 4.13× 10−31

Mean 2.08× 100 2.91× 10−18 3.44× 10−14 9.28× 100 1.22× 10−15

Std 2.05× 100 1.96× 10−17 1.30× 10−12 4.26× 100 1.10× 10−14

Ratio 23% 100% 100% 0% 100%

f8(x)

Min 0.00 0.00 0.00 0.00 0.00
Mean 2.90× 10−45 4.11× 10−27 2.90× 10−40 5.51× 10−8 1.58× 10−13

Std 2.01× 10−44 4.10× 10−26 1.97× 10−39 1.16× 10−7 9.16× 10−12

Ratio 100% 96% 99% 100% 100%

convergence curves, the convergence rate of ERPSO is slower than that of the other PSO

algorithms, which is evident in this table by the mean value of the f8(x). Regardless,

the proposed ERPSO algorithm finds the global minima with an improved mean value

for other BMFs. Moreover, the convergence performance ratio (CPR) is another crucial

metric to evaluate the algorithms’ success in reaching the global optimum. Different

variants of the PSO algorithms demonstrate quite low CPR, as seen in the Rastrigin

function due to its vast local optima. Conversely, the proposed ERPSO exhibits a much

higher CPR value, thanks to its extended exploration abilities. Despite a lower CPR

in the Rosenbrock function optimization, the EPRSO still performs significantly better

than the other algorithms.
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Proposed Design Methodology

In the ever-evolving field of smart sensory electronics, achieving both efficiency and

reliability poses unique challenges, especially under varying and unpredictable environ-

mental conditions. This chapter introduces a multi-dimensional design methodology

to tackle these challenges, combining robust optimization techniques with innovative

indirect measurement methods for in-field performance optimization.

A cornerstone of this methodology is the use of total harmonic distortion (THD) as

a key metric for indirect performance evaluation. Leveraging a fully differential indirect

current feedback instrumentation amplifier (CFIA) as the device under test (DUT), the

framework employs THD to provide a holistic, low-cost assessment of system perfor-

mance. This indirect measurement approach is augmented by advanced robust opti-

mization techniques, specifically surrogate-based and archive-based robust optimization.

These methods employ the experience replay particle swarm optimization (ERPSO) al-

gorithm to consider multiple objectives, including THD and power efficiency, thereby

offering a nuanced approach to optimizing complex electronic systems.

Further enriching the methodology, the chapter explores the use of non-intrusive

sensors for indirect measurement. These sensors are placed near the DUT to experience

identical process, voltage, and temperature (PVT) variations, thus ensuring accurate

and consistent environmental impact measurements. A regression model correlates these

sensor readings with the performance metrics of the DUT, providing an additional layer

of indirect, yet efficient, performance estimation.

An application of this methodology is its incorporation into optimizing an anti-

aliasing filter, which plays a crucial role in signal conditioning. Specifically, based on

46
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the Sallen-Key architecture with a Butterworth approximation, this filter ensures noise

elimination within the Nyquist bandwidth preceding its conversion by the ADC. Such

an approach paves the way for an extended bandwidth range, but tuning over this

range traditionally necessitated resource-intensive measurements. To address this, the

methodology introduces a non-intrusive sensor-based indirect measurement, making the

tuning process both cost-effective and efficient without disrupting the DUT’s operation.

Throughout this methodology development, this work predominantly focused on the

EDA aspect, involving tuning knobs, extrinsic optimization, and OCeaN programming.

This emphasized designing and implementing efficient optimization algorithms and mea-

surement strategies that complement circuit-level development.

By integrating low-cost indirect measurement techniques such as THD, robust op-

timization strategies, and non-intrusive sensing methods, this chapter aims to offer a

comprehensive approach to optimizing complex sensory electronics. Subsequent sections

will elaborate on the technical intricacies of CFIA, power monitoring modules (PMM),

and the various optimization and measurement strategies discussed.

4.1 THD-Based Power-Efficient Indirect Measurement

Method

As shown in Figure 4.1, the block diagram presents the proposed methodology designed

to implement a low-cost indirect performance measurement for smart sensory electronic

systems [97]. This approach uses a reconfigurable fully differential indirect current feed-

back instrumentation (CFIA), an essential component of the readout sensory electronics,

as a test vehicle for intrinsic assessment of the proposed framework. The process starts

with the digital-to-analog (DAC) converter of the Red Pitaya, which generates a si-

nusoidal signal of a defined amplitude and frequency. This signal is then fed into the

CFIA to serve as a cost-effective test stimulus for the in-field optimization procedure.

Subsequently, the CFIA’s output is captured by the Red Pitaya board’s high-speed

analog-to-digital converter (ADC). The THD is evaluated from this sampled response,

allowing for the simultaneous prediction of multiple performance characteristics of the

CFIA by using single test stimuli.

An underpinning principle of this methodology is the insight that design imper-
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ADCDAC
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Figure 4.1: The block diagram of the proposed methodology of power efficient THD
based indirect measurement method for AFEX.

fections like input common-mode range (ICMR), slew rate, gain-bandwidth product

(GBW), full-power bandwidth, effective number of bits, and signal-to-noise ratio (SNR)

manifest as nonlinear distortion at the output of the closed-loop amplifier. Optimizing

evolvable analog circuits at the transistor level can lead to undesirable outcomes, like

high currents that can either permanently damage the DUT or shorten its life cycle. This

contrasts with the optimization of digital evolvable hardware, such as field-programmable

gate array (FPGA) optimization, which doesn’t present such risks. In order to tackle this

problem, improve long-term reliability, and enhance the power efficiency of the CFIA, a

cost-effective indirect PPM has been integrated alongside a THD-based optimization ap-

proach. Finally, the proposed experience replay particle swarm optimization (ERPSO)

a modified variant of PSO [100] , is selected as the optimization unit.

4.1.1 Indirect Current-Feedback Instrumentation Amplifier

The instrumentation amplifier (In-amp) serves as the fundamental element of the AFE

circuitry for the sensor signal conditioning and interfacing [153]. There are three pri-

mary topologies for designing in-amp circuits [154]. These include the capacitive coupling

chopper-stabilized in-amp (CCIA) [155], the conventional in-amp that utilizes three op-

erational amplifiers (op-amps), and the indirect current-feedback in-amp (CFIA) [156].

The CFIA operates on the basis of the active feedback amplifier (AAF) topology [157],

which is alternatively known as the differential-difference amplifier (DDF) [158]. This de-

sign offers multiple advantages, including a high input impedance, substantial open-loop

DC gain, and an expansive bandwidth [159]. When compared to the 3-opamp in-amp,
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the CFIA stands out for its efficiency in both area and power. This is because its input

and feedback transconductance stages utilize a unified output driver stage [153].

One distinctive property of the CFIA is its ability to separate and insulate the input

stage’s common-mode voltage from the feedback stage. This is accomplished through

the implementation of two balanced differential stages [160], as depicted in Figure 4.2.

This architectural choice facilitates the direct connection of sensor pairs with different

common-mode voltages to the CFIA’s output common-mode voltage. The input and

feedback transconductance stages convert voltage signals into current signals while re-

jecting the common-mode voltage efficiently. This results in the CFIA boasting a higher

CMRR compared to the 3-opamp in-amp [161]. Moreover, mismatches in the feedback

resistor only affect closed-loop gain inaccuracy error [162] without detrimentally affecting

the CMRR performance.
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Figure 4.2: The block diagram of the proposed configurable fully-differential indirect
current feedback instrumentation amplifier (CFIA).

Depending upon whether the input stage is NMOS or PMOS, the CFIA can amplify

sensor voltages that approach either of the power supply rails, making it versatile for

conditioning a diverse range of sensors. However, the CFIA has challenges, especially
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when associated with the DDF core amplifier. The primary challenge is a gain inaccuracy

error from the mismatch between the input and feedback transconductances. Nonethe-

less, this issue can be mitigated through the utilization of identical types of differential

transistors for both the input and feedback stages and ensuring layout matching during

the physical design phase.

Furthermore, the implementation of cascoded biasing currents offers the potential for

achieving a higher degree of matching between transistors. The second issue arises from

the constrained input differential range inherent to the input transconductance stage

when operating in an open-loop configuration [158]. This constraint becomes acutely

problematic when the CFIA is interfaced with high dynamic range sensors, such as those

based on magnetoresistive technology. To mitigate this limitation, a novel approach was

presented in [163], where a wide input range fully differential CFIA architecture was

proposed. This architecture is based on the fully-balanced DDF topology [164]. This

approach facilitated the simultaneous attainment of remarkable dynamic performance

as well as extensive input range functionality.

To enable self-X features within the CFIA, configurable functionalities are integrated

into the critical components of the circuit, as well as those elements that substantially

impact circuit performance. The identification of these critical components is accom-

plished by applying an optimization algorithm to the CFIA and employing extrinsic

optimization techniques [165, 166]. This is followed by a subsequent evaluation of the

CFIA’s performance. These selected components serve as tuning knobs for adjusting

the performance parameters of the CFIA [37]. Their roles and placements within the

circuit are illustrated in Figure 4.2 and indicated by arrow symbols. These elements

are composed of digitally-weighted, scalable arrays that are controlled by configuration

bits, generated by the optimization algorithm. To accelerate the optimization process,

a shadow register memory featuring four rows is utilized for storing these configuration

bits. This enables seamless transitions, commonly known as ’hot swapping,’ between

various pre-stored configurations, thereby enhancing optimization efficiency.

The presented design features programmable GBW functionality, accomplished

through the fine-tuning of compensation capacitors to align with the stability criteria

corresponding to the selected gain level. The design offers a selection of eight discrete

gain levels, encompassing 1, 2, 4, 8, 16, 32, 64, and 128. Furthermore, the ability
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to program the biasing current facilitates precise control over both the amplifier’s

non-dominant and dominant poles. This attribute significantly contributes to restoring

the stability of the CFIA when faced with an unstable operational state.

Figure 4.3 illustrates the schematic diagram of the CFIA circuit, encompassing the

PMM. Further details about the PMM will be presented in the next section. The ampli-

fier utilizes a buffered class AB topology [97]. Additionally, a common-mode feedback

amplifier (CMFB) is integrated to ensure the CFIA’s output common-mode voltage

remains in proximity to the desired voltage (VCM ). In order to optimize the output

dynamic range, the value of VCM is set precisely at the midpoint of the supply voltage,

specifically at 1.65 V. As a result of employing NWELL CMOS technology, the bulk

connections of NMOS transistors are tied to the ground, whereas those of PMOS tran-

sistors are connected to VDD, unless explicitly stated otherwise. The power-down scheme

is depicted in blue color, omitting the biasing circuit and programmable current source

for clarity and simplicity. The Figure 4.4 displays the adjustable input and feedback

transconductance (Gm1 and Gm2) components.
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Figure 4.3: CFIA schematic diagram integrating the power monitoring module.

This architecture consists of three configurable stages, each of which can be mul-

tiplexed in accordance with both common-mode and differential-range voltages. The

first stage is particularly well-suited for applications where sensor signals demonstrate

high dynamic ranges and are centered around the midpoint of the CFIA’s operational

supply voltage. The second and third stages are augmented with degeneration resistors,

offering advantages particularly when the sensor’s common-mode voltage approximates

eitherGND or VDD, respectively. For additional details on the transistor dimensions used
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Figure 4.4: The configurable input and feedback transconductance of the CFIA.

in this configuration, reference may be made to publications authored by the research

group [36,37,167].

4.1.2 Power Monitoring Module (PMM)

A widely used method for determining circuit current in the printed circuit board (PCB)

community involves detecting the voltage drop on a small current-sense resistor (CSR)

located on the main supply voltage path. This is accomplished through the use of a

differential amplifier and an analog to digital converter [168]. There are several consid-

erations that must be taken into account when using this approach. Firstly, the voltage

drop on the CSR should not significantly reduce the circuit headroom voltage when

high current flows through it. Secondly, the resistor tolerances to process variation and

temperature drift should be negligible for precise measurement, which can be difficult to

achieve using on-chip sheet resistors without trimming technologies. Thirdly, the CSR

must be able to safely dissipate the generated power.

Moreover, the main issue with this approach is that it measures the power on the

main supply rails, which may be shared with different circuits powered by the same power

pads and supply ring. Therefore, it is not possible to measure the power of individual

circuits using this method unless individual power monitoring schemes are incorporated

and the supply rails and pads are separated, resulting in additional design constraints.

In certain scenarios, it may be sufficient to detect the threshold value of power, rather

than measuring its absolute value. In [169, 170], the authors proposed a simple method

for detecting maximum power using a basic current sense sensor. However, this approach

shares the same issue as the previous method by utilizing a current sensing resistor

in the supply rail path. In the work presented in [167], an alternative methodology
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for indirectly estimating the current consumed by a CFIA circuit is introduced. This

achievement is facilitated by transferring a scaled-down version of the circuit’s current

into a current-starved ring oscillator, as illustrated in Figure 4.3 by the components

marked in green, with a scale-down factor of 240:1. The modulation of the drawn

current, and correspondingly the power dissipation, manifests as changes in the clock

frequency. The digital processing unit in smart sensory electronics can easily interpret

the resultant signal. Due to the direct proportionality between the output frequency and

the current drawn, this approach serves dual purposes: it not only identifies the power

threshold value but also provides a reliable estimate of power consumption for diverse

optimization strategies.

4.1.3 Experience Replay Particle Swarm Optimization

In the work outlined in [100], the experience replay particle swarm optimization al-

gorithm (ERPSO) is introduced as the optimization unit underpinning the approach

presented in this study. The schematic representation of the design methodology’s flow

is depicted in Figure 4.5. The optimization process begins with the random initialization

of each particle’s velocity and position parameters. Following this initialization, a fast

Fourier transform (FFT) is executed on output response of the CFIA. For this analysis,

a sinusoidal signal characterized by a known fundamental frequency is deployed as the

test stimulus. The THD value is subsequently computed from the resulting output spec-

trum. Concurrently, the power consumption for the generated solution is approximated

utilizing the embedded indirect PMM. The quantified values of power consumption and

THD serve as objective functions, or fitness values, which guide the optimization process

executed by the ERPSO algorithm. In the ensuing phase, the algorithm revises either the

individual or collective best positions based on the fitness values, making adjustments

as necessary.

To optimize the balance between explorative and exploitative behaviors within the

search space, modifications are applied to the velocity update equation (VUE) of the

standard PSO algorithm. Specifically, historical data regarding previously visited global

best positions are incorporated into the VUE. The selection among these options is im-

plemented using an epsilon-greedy algorithm. In accordance with the newly proposed

VUE, particles are probabilistically inclined to converge swiftly toward the globally opti-
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Figure 4.5: The proposed optimization methodology flow chart incorporating the
ERPSO algorithm, PMM, and THD-based low-cost indirect measurements.

mal solution with a probability of 1 - ϵ. Consequently, for the first optimization scenario,

the VUE of the traditional PSO algorithm is employed. To minimize the probability of

premature convergence, an alternate mechanism is introduced: the ERPSO algorithm

stochastically selects a historical global best position from an experience replied buffer

(ERB) with a probability of ϵ. This iterative procedure continues until a predefined

maximum number of iterations has been achieved.
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4.1.4 Robust Optimization for Observer Imperfections

4.1.4.1 Surrogate-Based Robust Optimization

In the work detailed in [114], a block diagram illustrating the surrogate-based robust

optimization methodology is presented in Figure 4.6. The DUT in this experiment em-

ploys CFIA, while ERPSO serves as the optimization algorithm. The Gaussian process

regression (GPR) module evaluates the output response from the DUT to predict the

level of uncertainty. Subsequently, a THD-based low-cost performance measurement

approach is implemented, as explained in the previous section.
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Gaussian Process 
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Vout+
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Figure 4.6: Block diagram of proposed surrogate-based robust optimization.

The schematic representation of the proposed THD-based low-cost robust particle

swarm optimizer is depicted in Figure 4.7. The method initiates similarly to the original

ERPSO-based optimization framework in the modified flow diagram. It commences with

randomly initializing each particle’s position and velocity parameters. Following this,

a sinusoidal input signal is applied to the DUT. Unique to this adapted scheme is the

subsequent utilization of GPR for uncertainty estimation related to the DUT’s output.

Gaussian Process Regression is a form of constrained regression used to create sur-

rogate models [116]. Mathematically, the GPR model is expressed as:

f(x) ∼ GP
(︁
m(x), κ

(︁
x, x′

)︁)︁
(4.1)

Here m(x) denotes the mean function, and κ (x, x′) signifies the kernel function.

The experiment optimizes Gaussian process regression (GPR) by fine-tuning the mean

and kernel functions based on the training data set. Specifically, a combination of a

white kernel, which captures noise variations, and an exponential sine squared kernel,
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Figure 4.7: Flowchart of the proposed THD-based low-cost robust optimization.

accounting for the periodic component, is employed.

Upon completing this intermediate uncertainty assessment step, the methodology

reverts to the conventional ERPSO framework. FFT is executed on the CFIA’s output,

and THD is calculated. Power consumption is also estimated in parallel, serving as an-

other objective function. These metrics guide subsequent optimization steps executed

by the ERPSO algorithm, which continues to balance explorative and exploitative be-
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haviours in the search space and iterates until a predefined maximum number of cycles

is reached.

By introducing the GPR-based uncertainty estimation block, this adapted flow adds

an additional layer of robustness to the methodology. It ensures that the uncertainty

associated with the output response of the DUT is accounted for before proceeding to the

THD measurement, thereby offering a more comprehensive evaluation of the system’s

performance and reliability.

4.1.4.2 Archive-Based Robust Optimization

In the work detailed in [113], a block diagram showcasing the methodology of archive-

based robust optimization is presented in Figure 4.8. The DUT in this experimental

framework is a CFIA, and the ERPSO serves as the optimization algorithm. The archive

stores both previously visited positions generated by the optimization algorithm and the

output responses from the CFIA. This archived data is later leveraged to reduce the

system’s uncertainty levels. Following this, a THD-based low-cost performance mea-

surement technique is executed, consistent with previous methodologies.
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Vref+

Vref+
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Figure 4.8: Block diagram of proposed robust optimization using archive-based robust
optimization.

The flow diagram presented in Figure 4.9 shares many similarities with the proposed

GPR-based robust optimizer depicted in Figure 4.7. Both methodologies start with the

random initialization of each particle’s velocity and position parameters, followed by the

application of a sinusoidal input signal to the DUT.

However, the two approaches diverge in how they handle the uncertainty associated

with the DUT’s output. While the methodology in Figure 4.7 employs Gaussian Process

Regression (GPR) for uncertainty estimation, the approach outlined in Figure 4.9 uses
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Figure 4.9: Flowchart of the proposed THD-based low-cost robust optimization using
archive-based robust optimization.

an archive of previously visited positions by the optimization algorithm. This archive

serves to minimize the uncertainty level of the system.

This unique feature is graphically exemplified in Figure 4.10 using the two-

dimensional Griewank objective function. As the exploration activities of the searching

agents become more focused around the global best position over time, the methodology

becomes increasingly adept at minimizing the impact of observer inaccuracies.
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Figure 4.10: Visualization of the exploration capabilities of the PSO after 100 number
of iterations.

After addressing the uncertainty, both methodologies revert to the foundational

framework of ERPSO. FFT is executed on the CFIA output. Subsequently, THD and

power consumption are calculated and used as objective functions to guide further op-

timization by the ERPSO algorithm. Iteration continues until a predefined maximum

number of cycles is reached.

By substituting the GPR-based uncertainty estimation with an archive of previously

visited algorithmic positions, the methodology in Figure 4.6 offers an alternative but

equally robust way to account for uncertainties in system output, thereby providing an

alternative evaluation of the system’s performance.

4.2 Indirect Measurement Method based on Non-Intrusive

Sensors

The work detailed in [171] presents a block diagram illustrating a methodology for non-

intrusive sensor-based low-cost indirect measurement, as shown in Figure 4.11. Non-

intrusive sensors are placed on-chip in close proximity to the main DUT, yet they are

electrically disconnected from it. This configuration allows the sensors to experience the

same PVT variations as the DUT, ensuring a consistent environmental impact on both.
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A regression model is commonly employed to correlate the sensor data from the NS with

the performance metrics of the DUT, enabling an efficient, indirect estimation of the

DUT’s operational characteristics [45,98].
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Figure 4.11: Block diagram of the proposed IMs method.

For demonstration, a wide tunable range anti-aliasing filter is used as the DUT.

Both the non-intrusive sensors and the DUT operate with similar tuning knob values,

thereby reducing the complexity of the search space and simplifying the machine learning

task. Once optimization is complete, these fine-tuned tuning knob values are mirrored

to the main DUT for performance improvement. The distinctive contribution of this

methodology lies in executing the optimization algorithm on the non-intrusive sensors

while mirroring the tuning knobs settings of the DUT. This strategy enables the indirect

optimization of the DUT’s performance without causing any interruption to its ongoing

operation. In terms of modeling, a random forest regressor is employed to create a

robust regression model. This model associates the non-intrusive sensors output and

tuning knob settings with the DUT’s performance metrics. The random forest regressor

thus facilitates indirect performance prediction based on the non-intrusive sensors’s low-

cost, quasi-digital output frequency measurements. The complete workflow is illustrated

in a flow diagram in Figure 4.12.
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Figure 4.12: Flow chart of the proposed IMs approach.

During the initial stage, a subset of tuning knob values is chosen from the larger

optimization search space. This is done to minimize the size of the training dataset

as well as to reduce evaluation time. Both the non-intrusive sensors output and the

DUT performance are then simulated under identical PVT conditions. From the entire

dataset, 80% is randomly allocated for the training of the RFR, while the remaining

20% is used to assess model performance.

The testing and optimization phase starts with the initialization of a PSO, which

employs a set of particles to represent potential solutions in the tuning knob value space.

The PSO then selects an initial set of tuning knob values to apply to the non-intrusive

sensors. The output from the non-intrusive sensors, influenced by these tuning knob

values, serves as the input for the pre-trained random forest regressor model. The

random forest regressor, in turn, estimates the performance metrics of the DUT based

on this input. The PSO uses this indirect performance estimation to adjust the tuning

knob values for the next cycle of optimization. Finally, the process evaluates whether

the optimization has converged, based on criteria either reaching a predefined maximum



Chapter 4. Proposed Design Methodology 62

number of cycles or hitting an acceptable error threshold. Once the convergence criteria

are met, the optimized tuning knob values are transferred from the non-intrusive sensors

to the DUT, completing the optimization cycle.

4.2.1 Anti-Aliasing Filter

A key application of the methodology is its use in optimizing the performance of an

anti-aliasing filter. This filter is vital for signal conditioning, specifically for eliminating

noise within the Nyquist bandwidth before the signal is converted by the ADC. To

accommodate a wide bandwidth range, a novel fully-differential fourth-order, tunable

continuous-time active low pass filter was proposed, based on the Sallen-Key structure

with Butterworth approximation, as outlined in the work [172]. The quality factor of

this filter is set through well-matched capacitor ratios.

To accommodate the extensive tunable bandwidth, modifications were made to the

metal-oxide-semiconductor (MOS) floating resistor [173], as well as adjustments to its

biasing current, as detailed in the schematic diagram in Figure 4.13. Yet, tuning the

filter within this extensive range is a challenging task that traditionally would require

costly measurement processes for optimization.
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Figure 4.13: Simplified schematic design of the proposed anti-aliasing filter with tunable
MOS resistor.

To mitigate this, an indirect measurement principle based on non-intrusive sensors is

implemented within the chip. These sensors allow for a more cost-effective optimization

process. Additionally, the core amplifier for this filter is designed as a fully differential
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difference amplifier, similar to the one used in the design of the CFIA. Adaptations have

been made to this amplifier to lower its output resistance to levels compatible with the

Sallen-Key topology requirements. Furthermore, its GBW has been extended to meet

the frequency requirements of the filter. This multifaceted approach not only enhances

the filter’s capabilities but also makes the optimization process more economical and

efficient.

4.2.2 Non-Intrusive Sensors

In an effort to enhance the accuracy of the regression model, three different non-intrusive

sensors are employed [98, 171, 174]. The first non-intrusive sensor is a clock generator

based on a ring oscillator (RO) circuit, as depicted in Figure 4.14. This sensor is specif-

ically designed for Process, Voltage, and Temperature (PVT) monitoring. To improve

data correlation, the RO shares numerous circuit elements with the Design Under Test

(DUT). Initial tests, however, reveal limitations in predictive accuracy, as quantified by

the adjusted R-squared value of the regression model. These limitations suggest that

while the RO is sensitive to PVT variations, its primary performance characteristics are

governed by RC components, which do not provide sufficient correlational data with the

DUT for effective regression modeling.

Figure 4.14: Ring oscillator as a low-cost non-intrusive PVT monitoring sensor.

A second non-intrusive sensor is introduced to address this limitation, as presented

in Figure 4.15. Unlike traditional circuits that monitor only the threshold voltage (Vth)

of PMOS transistors, the modified sensor also captures variations in NMOS transistors.

This dual-monitoring approach enhances the model’s predictive accuracy by accounting

for complementary behaviors between PMOS and NMOS transistors.
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Figure 4.15: Threshold voltage monitor circuit.

M6
M2

M1

C1=C2

M3
M13 M15 M16 M17

M4 M5
M14 M18 M19 M20

M8 M9
M21 M22 M23

M12

M10

M11

M7

M24

M25

M26

M27
R1 R2

Q1

Q2 Q3
Q4 Q5

M28

M30

M23

M29

M31

M33

VDD

GND

R

S

out

out

Startup circuit
Temperature sensing core

(Temperature to Current converter)
Current-controlled oscillator

(Temperature to frequency converter)

3.5 pF10 kΩ 35 kΩ 

1:8

VBGR

IPTAT IPTAT

IPTAT

Figure 4.16: The proposed temperature sensor schematic circuit using the XFAB 0.35 µm
technology.

The third sensor focuses on temperature variation detection and consists of two main

units, as illustrated in Figure 5.45. The first unit is the temperature sensing core (TSC)

that converts temperature variations into a current signal. The second unit, the current-

controlled oscillator (CCO), then converts this current into a frequency signal. The TSC

incorporates a bandgap reference circuit (BGR) to generate a proportional to absolute

temperature (PTAT) current and a reference trigger voltage for the comparator in the
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CCO stage. The PTAT current is mirrored to the CCO to create a quasi-digital signal

that modulates temperature changes in frequency while maintaining a constant duty

cycle. To achieve a high power supply rejection ratio (PSRR), the BGR circuit employs

wide-swing cascode mirrors, though at the cost of incorporating two additional bipolar

junction transistors (BJTs).



Chapter 5

Experimental Setup and Results

This chapter comprehensively explores the experimental setup and the results obtained

from two distinct yet interconnected studies: the THD-based power-efficient optimiza-

tion of the Current Feedback Instrumentation Amplifier (CFIA) and the evaluation of

filter optimization using non-intrusive sensors. The experiments are designed to demon-

strate the practical application of theoretical concepts in real-world settings, specifically

focusing on the adaptability and efficiency of electronic systems in response to dynamic

variations. The fabrication and packaging of the chip is carried out through the EURO-

PRACTICE program. The chip’s layout and micrograph are depicted in Figure 5.1a,

while Figure 5.1b illustrates the chip layout.

Figure 5.1: MPC USIX chip. (a) Chip layout including the pad frame. (b) Micrograph
photo showing the bonding wires and the sealing ring.

The die is coated with a passivation layer for surface protection, obscuring the die

66
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details. This chip is packaged in a Ceramic Pin Grid Array (CPGA) 100 package and is

a multi-project chip (MPC). This MPC comprises various circuits, including amplitude

and spike-domain analog front-end circuits with self-X properties (AFEX), forming the

foundation of an advanced universal sensor interface called the USIX chip, with the spike-

domain circuits being the work of another Ph.D. candidate in our research group [175].

This thesis, however, focuses primarily on the amplitude domain section of the chip,

exploring its unique characteristics and capabilities within the broader context of the

USIX chip’s functionality.

5.1 Evaluation of THD-based Power-Efficient Optimiza-

tion of CFIA

This section focuses on the experimental setup and comprehensive results of the research,

centered on THD-based power-efficient optimization of the CFIA. The exploration re-

volves around a self-optimizing system’s intrinsic implementation and architectural de-

sign, leveraging Field-Programmable Gate Array (FPGA) technology. Two Red Pitaya

boards are employed to construct a robust framework for in-field performance optimiza-

tion of the CFIA, utilizing principles of indirect measurement approaches for enhanced

accuracy and efficiency.

The experimental procedure is designed to cover various aspects of the CFIA per-

formance, including shadow register verification, testing under default and optimized

configurations, and dynamic performance evaluation under varying environmental con-

ditions. The setup is designed to address the challenges of continuous sensory measure-

ment during device optimization.

Furthermore, the section presents a detailed analysis of measurement results, show-

casing the impact of different optimization strategies on the CFIA’s performance. This

involves an examination of the circuit under both static and dynamic conditions, thereby

providing a comprehensive understanding of its capabilities and limitations. The results

indicate the CFIA’s performance and the effectiveness of the employed optimization

techniques in enhancing the system’s overall efficiency and robustness.
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5.1.1 Experimental Setup

5.1.1.1 Intrinsic Implementation and Architecture of the Self-X System

Figure 5.2 illustrates the intrinsic implementation of in-field performance optimization

for the CFIA using an indirect measurement approach. This configuration employs two

Red Pitaya boards. The first board (FPGA board 1) is dedicated to data acquisition,

computing THD using FFT, and transmitting the data to a server. The second board

(FPGA board 2) focuses on implementing the ERPSO, managing the serial data-transfer

protocol for CFIA configuration, and determining the signal frequency for the power-

monitoring module.

FPGA 
Board 1

1
.6

5
 V

1
.6

5
 V

FPGA 
Board 2

  Stimulus signals 

3.3 V, 0 V
Digital signals

Cloud 
Computing 

DAC

ADC
ÄDUT

AFEX / CFIA

ÄDUT

AFEX / CFIA

3.3 V

CFIA outputs

Figure 5.2: Block diagram illustrating the in-field optimization methodology for the
reconfigurable CFIA circuit.

Given that the analog outputs of the Red Pitaya board are referenced to 0 V, FPGA

board 1 undergoes a DC level shift of 1.65 V to align with the dynamic input range of

the CFIA’s single-supply operation, which is powered by 3.3 V. Alternative methods to

match the dynamic range between FPGA board 1 and the CFIA chip include the use

of a transformer balun, such as the Coilcraft PWB2010, or an active DC level shifter

using wide-bandwidth, fully-differential amplifier circuits like the LMH6553 from Texas

Instruments or the LTC6363 from Analog Devices. However, employing a transformer

restricts the experiment to higher frequencies, and the latter solution is avoided to

preclude any uncertainties that might arise from adding another analog component in
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the prototyping demonstration.

The implementation of the self-X architecture on the CFIA circuit using Red Pitaya

boards 1 and 2 is detailed in Figures 5.3 and 5.4. The generation of specific binary

files facilitates the configuration of these boards is performed by using the Xilinx Vivado

design suite. In this setup, the integrated RF DACs on the Red Pitaya boards are utilized

to generate fully-differentiated stimulus signals, essential for evaluating the performance

of the CFIA circuit. Concurrently, the RF ADCs on the boards are employed to capture

the circuit’s output response. Both ADC and DAC are 14-bits. The ERPSO algorithm

runs on Red Pitaya board 2, while board 1 measures THD.

AXI S2MM

DRAMDRAM

AXI 
Master 1 ADC 

Samples

THD 
Calculations

Controller

AXI 
Master 2

GPIO

DAC

Flag to inform new ADC Samples are written on DRAM

Flag to inform new 
Configuration is written 

on USIX Chip

THD Value

Serial Transmission Flag 
from Red Pitaya 1

ServerServerServer

MPC USIX 
Chip

ZYNQ PS

ZYNQ PL

ADC

AXI Data Mover

Figure 5.3: Detailed implementation of self-X architecture for Red Pitaya board 1.

5.1.1.2 Workflow of the Optimization Process

Figure 5.5 depicts the optimization process, paralleling the performance optimization

framework of Synopsys [31]. This system includes two Red Pitaya boards equipped with

ADCs/DACs to optimize THD while minimizing power usage through a multi-objective,

agglomerative optimization strategy. Within the CFIA circuit, scalable elements func-

tion tuning knobs. The algorithm reconfigures the system by applying a configuration

pattern to the CFIA, followed by measuring the CFIA’s output response. This iterative

cycle is repeated until a pre-established termination condition is fulfilled. A detailed

report of the results will be provided upon concluding the optimization process.

The optimization process initiates with the serial transmission of ERPSO particle



Chapter 5. Experimental Setup and Results 70

AXI Slave 1

Block 
RAM
Block 
RAM

AXI 
Master 1

PSO 
Particles

ERPSO

Controller

AXI 
Master 2 GPIO

Serial 
Register

Serial Transmission, Block RAM 
Update, and Power Monitoring Flags

THD Value from Red 
Pitaya 2

Serial Transmission 
Done

ServerServerServer

MPC USIX 
Chip

ZYNQ PS

ZYNQ PL

Power Monitoring 
Module

AXI 
Master 1

AXI 
Master 3

GPIO
P

o
w

e
r 

M
o

n
it

o
ri

n
g 

V
al

u
e

Figure 5.4: Detailed implementation of self-X architecture for Red Pitaya board 2.
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Figure 5.5: Performance optimization workflow for smart sensory electronics.

values to the CFIA’s shadow register through Red Pitaya board 2. The CFIA is tem-

porarily powered down during this data transfer to prevent potential transitional states.

Once the data is successfully written, the CFIA is reactivated. Subsequently, Red Pitaya

board 1, upon server notification, starts the THD calculation for the specific ERPSO

particle solution.

Red Pitaya board 1 initiates the THD calculation by applying a fully differential sinu-

soidal stimulus to the input of the CFIA and then captures the resulting output response

using its onboard RF DAC and ADC. These gathered data samples are subsequently

stored in the board’s shared dynamic random-access memory (DRAM), facilitated by

an advanced eXtensible interface (AXI) stream to memory-mapped IP. Once this data

transfer is complete, the controller module signals the end of the acquisition process by

setting an acknowledgment flag, thereby informing the processing subsystems (PS) of

the Red Pitaya board. The THD is then computed using these samples on the PS side
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Figure 5.6: Lab setup for the evaluation of the proposed methodology.

of Red Pitaya board 1. This THD value is forwarded to Red Pitaya board 2 via the

server for incorporation into the ERPSO algorithm.

In the next phase, the ERPSO activates the power-monitoring module to measure the

output frequency from the CFIA’s power-monitoring circuit, thereby indirectly assessing

the DC power consumption of the current configuration. Notably, during THD calcu-

lations, the power-monitoring function is temporarily disabled to prevent any potential

disturbances from transient pulse switching that might impact the analog outputs. This

optimization process persists until the pre-set maximum number of iterations is reached.

Figure 5.6 illustrates the experimental laboratory setup used in this methodology. The

prototype, consisting of a four-layer printed circuit board (PCB), was designed using

Eagle Autodesk software. Separate power and ground planes have been implemented

to improve the system’s noise performance, enhanced with decoupling capacitors placed

near the chip’s power pins for optimal noise reduction.

5.1.2 Measurement Results

5.1.2.1 Shadow Register Verification

The initial verification process is performed by loading the CFIA circuit with a default

configuration pattern, as outlined in the post-layout extrinsic evaluation detailed in [36].

This configuration data is serially transmitted from the Red Pitaya to the CFIA’s shadow
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register at a transfer speed of 1 Kb/s, employing a mode akin to the SPI (serial peripheral

interface) protocol mode 0. In this setup, the Red Pitaya acts as the master device, with

the CFIA chip serving as the slave. The clock’s polarity is maintained at a logical low

during idle states. The shadow register is designed to sample data on the clock’s rising

edge, with data transitions occurring on the falling edge. Control of the shadow register’s

read and write operations is governed by four specific bits—two for write operations and

two for read operations. Furthermore, the most significant bit (MSB) of the register is

connected to the “Dout Debug” pin on the chip, a crucial element for debugging the

serial data in the register, as explored in [36]. Figure 5.7 demonstrates this debugging

process. Following the completion of write operations across the register’s four rows, the

data initially written into the first row is successfully read back, confirming the effective

transfer of the configuration data.

Debug_Data

CLK

Serial data

Memory control bits

Figure 5.7: Shadow register function verification using the debugging pin.

5.1.2.2 CFIA Testing Using the Default Configuration

The CFIA circuit exhibited satisfactory performance in simulations using the RC extrac-

tion netlist and successfully passed PVT (process, voltage, and temperature) validations,

including Monte Carlo (MC) and worst-case (WC) simulations. These simulations ac-

counted for an extensive industrial temperature range (from −40 °C to 85 °C) and
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considered supply voltage variations of ±10%. Notably, these simulations incorporated

a process variation margin of 6 sigma. Despite this, actual measurements indicated a de-

gree of instability in the circuit. This instability could potentially arise from deviations

in device characteristics due to the fabrication and packaging processes.

Figure 5.8 presents the MC post-layout simulation conducted to assess the CFIA’s

phase margin (PM), serving as a measure of unity-gain closed-loop stability under the

default configuration. This evaluation was performed using 500 samples and a Gaussian

distribution function to mirror real process variations. The simulation included both

process and mismatch variations across the entire CFIA circuit. The Figure shows that

the CFIA maintained a stable PM even at extreme conditions, demonstrating a 100%

yield for a targeted PM of over 45 degrees. Each differential output pair was connected

to a 15 pF capacitive load and a 10 kΩ resistive load during these tests. Notably,

in its default configuration, the CFIA uses only the two least significant bits of the

configurable compensation capacitor and operates with reduced power in the output

stage. This configuration leaves room for further PM enhancement, though based on

simulation results, such an enhancement is not considered essential.

Figure 5.9 displays the observed practical behavior at the outputs when both inputs

are connected to the common-mode DC voltage (VCM) of 1.65 V. The input capacitance

of the mixed-signal storage oscilloscope (MSO) used, from Rohde & Schwarz, is 14 pF

in the X10 channels with a 10 MΩ impedance, which aligns with the load capabilities of

the CFIA.

On the other hand, the output signals of the CFIA provide crucial insights. They in-

dicate that a symmetrically balanced layout leads to even and in-phase outputs, thereby

achieving a high common-to-differential-mode rejection ratio. This is evident as the dif-

ferential output signal (Vout diff) displays a noticeably reduced oscillation amplitude.

The inherent capability of the fully differential circuit to mitigate common signal noise

is a significant advantage [176]. Nevertheless, the presence of oscillatory behavior at the

output suggests that the CFIA struggles with linear response to the input signal.

Figure 5.10 highlights this issue by portraying the DC output characteristics of the

CFIA when its inputs undergo a linear sweep from 0 to 3.3 V at unity gain, with a step

size of 33 mV. These observed behaviors are then compared with the outcomes of the

post-layout simulation for comparison. Additionally, Figure 5.11 presents the transient
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: MC simulations on the post-layout CFIA netlist with RC exctraction type
and using of 500 sample per corner: (a) VDD = 3.0 V and T = −40 ◦C, (b) VDD =
3.0 V and T = −85 ◦C, (c) VDD = 3.3 V and T = −40 ◦C, (d) VDD = 3.3 V and T =
85 ◦C, (e) VDD = 3.6 V and T = −40 ◦C, (f) VDD = 3.6 V and T = 85 ◦C.

response of the output to a fully differential sinusoidal input signal, characterized by a 1

Vp-p amplitude and a frequency of 1 MHz, thereby revealing the degree of distortion in

the time domain. Furthermore, Figure 5.12 exhibits the differential output signal in the

frequency domain obtained through the execution of the FFT. The nonlinearity at the

output introduces harmonic distortion within the signal’s frequency spectrum, which is

directly related to the CFIA’s nonlinearity. As a result, there is a direct correlation be-
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Vout_diff=(Vout+ - Vout-)

Figure 5.9: Unstable condition of the CFIA under default pattern configuration.

tween the nonlinearity of the CFIA and the observed Total Harmonic Distortion (THD)

value. Specifically, a THD value of -30 dB signifies a considerable degree of nonlinearity

in this case.
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Figure 5.10: Output DC characteristics of the non-stable CFIA with unity gain config-
uration as compared to the post-layout simulation.

The experimental procedure outlined was initially carried out on a selection of 15

chips, which were part of a larger batch of 32 chips received from the foundry. These
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Vout+

Vout_diff=(Vout+ - Vout-)

Vout-

Figure 5.11: Output transient response to the fully-differential sinusoidal signal under
non-stable condition.

THD: –32.13 dB

Figure 5.12: FFT output of the CFIA under non-stable condition.

chips were sequentially numbered, and for this experiment, chips numbered 1 and 3 –

16 were chosen for testing. All tested chips exhibited similar characteristics, likely due

to their origin from the same wafer during fabrication. This uniformity implies that the

entire batch would be discarded if the circuit were designed with fixed-size elements.

This situation underscores the critical importance of having configurable circuits with



Chapter 5. Experimental Setup and Results 77

self-X properties, which offer adaptability in addressing such challenges. To explore this

further, the subsequent experiment involved subjecting the chip to in-field optimization

using the ERPSO algorithm. The aim was to identify the optimal configuration pattern

to bring the CFIA into its best operational region.

5.1.2.3 PMM Characterization

Before the optimization, the power monitoring circuit was assessed by altering the

CFIA’s biasing current by configuring the current DAC. Subsequently, the correspond-

ing output-pulse frequency of the module was monitored. The PMM circuit, functioning

as a current-to-frequency converter, generates a quasi-digital signal characterized by a

50% duty cycle, as illustrated in Figure 5.13. The CFIA current was measured using the

current meter of the power supply unit (PeakTech 6181), which provides a resolution

of 1 milliampere. A Frequency-to-Digital Converter (FTD) was designed on the Red

Pitaya to read the signal frequency from the PMM and convert it into a decimal value,

as presented in Table 5.1 with specific parameters. When the initial rising edge of the

output signal from the PMM circuit is detected, the FTD module commences counting

until the subsequent rising edge is identified. Hence, the counter value represents the re-

spective frequency. The FTD counter operates at a frequency of 125 MHz, synchronized

with the Red Pitaya system clock. Since the maximum frequency of the PMM has been

established to be less than 10 MHz, it can be concluded that the resolution provided by

the FTD is sufficient for this specific measurement.

In Figure 5.14, it can be observed that the power monitoring scheme demonstrates

satisfactory linearity. This characteristic proves advantageous for the optimization al-

gorithm as it provides essential CFIA power data. This, in turn, facilitates the identi-

fication and selection of the most efficient solution within the search space. It is worth

noting that the resolution of the current measurement influences the linearity graph.

5.1.2.4 CFIA Performance Optimization Using the THD-based Optimiza-

tion Method

The experiment involved generating a fully differential sinusoidal signal with a 1 Vp-p

amplitude and a 1 MHz frequency, utilizing the Digital Signal Synthesizer (DSS) of the

Red Pitaya 1, part of the Xilinx Vivado IP blocks suite. This signal served as the primary
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Vout-

hhh

f = 451.816 kHz

Figure 5.13: Output signal of the integrated power monitoring module.

Table 5.1: Recorded values of frequency-to-decimal conversion of the power monitor-
ing module.

Config Nr. Clock Frequency Decimal Equivalent CFIA Current

1 325 kHz 24,561 1 mA
2 520 kHz 15,372 2 mA
3 701 kHz 11,401 3 mA
4 875 kHz 9162 4 mA
5 1.05 MHz 7233 5 mA
6 1.21 MHz 6618 6 mA
7 1.42 MHz 5627 7 mA
8 1.57 MHz 4725 8 mA
9 1.71 MHz 4566 9 mA
10 1.82 MHz 4404 10 mA
11 4.45 MHz 1626 24 mA
12 4.53 MHz 1595 25 mA
13 4.86 MHz 1489 27 mA

test stimulus in the performance enhancement process of the CFIA. The Red Pitaya’s

ADC performed the signal acquisition at a 125 MHz sampling frequency, facilitating THD

analysis via FFT. The optimization algorithm was implemented with 15 particles across

200 iterations. In the multi-objective optimization framework, significant emphasis was

placed on THD value (80% weight) compared to power monitoring (20% weight). To

ensure the reliability of the optimization outcomes and mitigate the effects of random
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Figure 5.14: Linearity performance of the power monitoring module showing the rela-
tionship between the frequency and the CFIA current.

variability, the experiment was replicated across 10 separate runs on the designated chip

labeled as number 1. Additionally, Figure 5.15 depicts the average error convergence

trend observed in the optimization algorithm. The CFIA was configured to operate at

unity gain for worst-case stability conditions.

Figure 5.15: Mean value of the error convergence curve of the CFIA optimization.

The THD value of the test stimuli is first calculated with no chip in the loop, where

the DAC output of the Red Pitaya is directly connected to its ADC input. Figure

5.16 displays the frequency spectrum of the input test stimuli in this configuration. For
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comparison, the chip is then included in the loop, with the DAC output of the Red

Pitaya fed into the chip and the chip output connected to the ADC of the Red Pitaya.

Figure 5.17 shows the FFT graph indicating the CFIA output frequency response for a

solution found by the algorithm with the chip in the loop.

Vout+

Vout-

Vout_diff

THD: -74.40 dB

Figure 5.16: FFT output of the test stimuli used for optimizing the CFIA, with the DAC
output of the Red Pitaya directly connected to its ADC input.

THD: –71.27 dB

Figure 5.17: FFT output of the stable CFIA solution found by the optimization, with
the DAC output of the Red Pitaya fed into the chip and the chip output connected to
the ADC of the Red Pitaya.

Following the optimization cycle, the achieved average obtained THD value is -72 dB,

with an associated power consumption of 55 mW. This is graphically depicted via the
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error bar graph in Figure 5.18 (a), which summarizes the results from 10 separate runs.

Additionally, Figure 5.18 (b) provides a detailed view of the optimization performance

metrics, focusing on a single optimization cycle conducted on 15 individual chips. The

findings indicate that the CFIA has been optimized to its fullest within the limits of the

test signal used. Consequently, it is theorized that an enhancement in the THD value of

the test stimuli would likely lead to a corresponding improvement in the CFIA’s THD

performance.

Vout-

(a) (b)

Figure 5.18: Box plots of the ERPSO algorithm (a) over 10 independent runs on a single
chip. (b) single run for 15 independent chips.

Figure 5.19 showcases the sinusoidal output response, which indicates an absence of

oscillation in the signal. The measured slew rate, derived from impulse response analysis,

is approximately ±11 V/µs. A step response test was performed to further assess the

system’s stability. The results, illustrated in Figure 5.20, reveal that both the rising and

falling edges of the response have a phase margin exceeding 60 degrees. Additionally,

Figure 5.21 presents the DC characteristics, highlighting the dynamic input range at

unity gain. This broad differential range is particularly beneficial for interfacing with

high-output differential sensors like tunnel magnetoresistance (TMR). The AC perfor-

mance of the system under various gain settings is detailed in Figure 5.22. Notably, the

gain observed in the graph was found to be 6 dB lower than expected. The observed

disparity in the gain, as shown in the Bode plot (Figure 5.22), does not present a sig-

nificant concern and can be attributed to the specific setup used for the measurement.

This setup involved acquiring a single-ended output during the Bode plot analysis.

The CFIA circuit, incorporating a class-AB complementary output stage, demon-

strates an output common-mode range closely approaching the supply rails, as shown in

Figure 5.23. This test used a small sinusoidal signal with a 250 mVp-p amplitude and

1 kHz frequency, while the CFIA gain was set at 16. It is important to recognize that

the limitation observed in the output signal is primarily due to the characteristics of the
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Figure 5.19: Large signal sinusoidal output response of the CFIA after the optimization.

Vout+

Vout_diff=(Vout+ - Vout-)

Vout-

Figure 5.20: Large signal step response of the CFIA after the optimization.

output stage rather than the input features of the system.

Incorporating a class AB complementary output stage, the CFIA circuit features

an output common mode range that approaches the supply rails, as depicted in Figure

5.23. During this test, a small sinusoidal signal with an amplitude of 250 mVp-p and a
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Vout_diff

Figure 5.21: Output DC characteristics of the stable CFIA with unity gain configuration
after the optimization.

Figure 5.22: Small signal AC response of the optimized CFIA with different gain setting.

frequency of 1 kHz was utilized, while the CFIA gain was established at 16. It should be

noted that the output signal constraint is attributable to the output stage rather than

the input characteristics.

Table 5.2 offers a comparative analysis of CFIA performance between intrinsic and

extrinsic evolution. The intrinsic differential DC gain is indirectly predicted from the

closed-loop gain error, given that isolating the feedback network from the amplifier core

is impractical. Notably, the table reveals discrepancies between extrinsic and intrinsic
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Vout-

6.72 V

 f = 1 kHz

Figure 5.23: The output dynamic range of the CFIA showing the rail-to-rail properties
of the class AB output stage.

results attributed to post-manufacturing shifts. One potential cause for this could be

the inductive effects of bonding wires and package leads, potentially inducing oscillatory

conditions in the CFIA, especially considering this is the first prototype chip developed

using XFAB technology.

The fourth column in Table 5.2 displays the CFIA’s performance using the default

extrinsic optimization configuration. Due to the inherent instability and oscillatory be-

havior under this configuration, precise characterization of its performance is infeasible.

However, the proposed optimization approach effectively identified an optimal configu-

ration, resulting in satisfactory CFIA performance.

The divergence between the simulated and measured power can be attributed to the

variation in configuration patterns. This variation arises as the algorithm seeks a stable

solution by adjusting the first non-dominant pole of the CFIA driver stage. Specifically,

it aims to move this non-dominant pole away from the unity gain frequency point, a

process that involves employing higher currents. The CFIA’s output stage is designed

using fixed-size transistors. Consequently, adjusting their associated poles necessitates

increased transconductance (gm), achievable only by applying a higher current. Addi-

tionally, the algorithm tries to enhance the value of the compensation capacitor. This
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Table 5.2: CFIA characteristics based on extrinsic and intrinsic optimization solutions for
chips 1, 3, 4, 5, 6, 7, 8, 9, 10, and 11 (VDD = 3.3 V , VCM = 1.65 V , Tsimulation = 27 ◦C,
Tmeasurement = 22 ◦C).

CFIA Design Parameter Schematic
Level

Post-
Layout
Level

Chip
Level
Before
Opti-
mization

Chip
Level
Mean of
10

Differential DC gain (AVD) 94.80 dB 94.73 dB N/A > 80 dB
Gain–bandwidth product (GBW) 47.75 MHz 39.41 MHz N/A >

10 MHz∗
Phase margin (PM) 73.22◦ 60.47◦ < 0◦ > 60◦

Slew rate (SR) ±63.38 V/µs±60.34 V/µsN/A ±11 V/µs
PMM output frequency (fck) 347.18 kHz 377.48 kHz 700 kHz 3.1 MHz
Static power dissipation (PD) 4.17 mW 4.16 mW 9.9 mW 53 mW
Input Dynamic Range Rail-to-

rail
Rail-to-
rail

N/A Rail-to-
rail

Output Dynamic Range Rail-to-
rail

Rail-to-
rail

N/A Rail-to-
rail

* The Bode plot capability of the utilized MSO (Rohde & Schwarz 3004) is limited to 10 MHz due to
its signal generator; therefore, the CFIA’s gain bandwidth is expected to be higher.

increase contributes to the observed decrease in the measured slew rate. The compensa-

tion capacitor’s value varies between 0.35 pF and 2.35 pF, with incremental adjustments

of 0.25 pF. In the context of the extrinsic evaluation, the average capacitor value recorded

is 0.850 pF, in contrast to the intrinsic evaluation, which yields an average value of 2

pF. It is important to mention that this research aims to develop a combined software

and hardware framework for reconfigurable electronics. This framework is designed to

facilitate the restoration of degraded circuits while ensuring minimal cost associated with

measurement equipment to assess the system performance.

The optimization procedure is conducted again without implementing a power mon-

itoring strategy. As a result, the mean power consumption of the CFIA was measured

at 80 mW to achieve the same Total Harmonic Distortion (THD) value of -72 dB. This

experiment demonstrates that integrating power monitoring into the optimization pro-

cess increased power efficiency by 34%. Such an improvement is particularly beneficial

for applications where power availability is constrained, like sensor nodes powered by

battery or energy harvesting. Additionally, reducing current consumption enhances effi-

ciency and extends the device’s lifespan by avoiding limitations related to current density

in chip interconnections. High current levels can lead to interconnection failure due to
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electromigration.

Table 5.3: Extrinsic evaluation of the intrinsically optimized configuration showing the
deviation between the simulated and fabricated chip number 1 under the same measure-
ment conditions (VDD = 3.3 V , VCM = 1.65 V , T = 22 ◦C).

CFIA Design Parameter Intrinsic Evaluation Extrinsic Evaluation

Differential DC gain (AVD) > 80 dB 100 dB
Gain–bandwidth product (GBW) > 10 MHz 39.5 MHz
Phase margin (PM) > 60◦ 82◦

Slew rate (SR) ±10.4 V/µs ±71 V/µs
PMM output frequency (fck) 2.98 MHz 5.72 MHz
Static power dissipation (PD) 49 mW 79.2 mW
Input Dynamic Range Rail-to-rail Rail-to-rail
Output Dynamic Range Rail-to-rail Rail-to-rail

A configuration derived from the intrinsic optimization was applied in the extrinsic

evaluation phase to assess further the difference between designed and manufactured

chips. This approach revealed a clear difference in performance, particularly in power

consumption. The specific configuration consumed 15 mA in the intrinsic evaluation

and 24 mA in the extrinsic assessment. Table 5.3 details the CFIA’s performance with

this configuration, allowing for direct comparison with the data in Table 5.2. Notably,

the extrinsic evaluation for this measurement was carried out at the typical mean corner

of the process module, which inherently differs from the actual fabrication conditions.

A Monte Carlo simulation around this solution provides a better comparison. Despite

this, the deviation remained outside the intrinsic performance range, as evidenced in

Figure 5.24, where power dissipation is recorded.

5.1.2.5 Strategies for Continuous Sensory Measurement During Device Op-

timization

It is important to acknowledge that during the optimization of the device, there is an

interruption in the sensory measurement process. Two strategies can be employed to

address this challenge and ensure continuous measurement.

The first strategy involves the deployment of a real-time operating system (RTOS) or

a time-triggered embedded system (TTES) on the Red Pitaya board. This is particularly

suitable for managing low-frequency sensor signals, such as those from a TMR sensor

used to monitor a rotating shaft’s speed. The integration of RTOS or TTES enables the

simultaneous execution of calibration and measurement processes, effectively interleaving
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Figure 5.24: MC simulation around the optimization configuration imported from the
intrinsic evaluation.
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Figure 5.25: Interleaving of optimization and measurement.

them to minimize disruptions. As illustrated in Figure 5.25, this interleaving process

includes phases such as ‘Measurements’, ‘Transfer Configurations’, ‘THD Calculations’,

and ‘Power Monitoring’, demonstrating how the system manages to concurrently perform

measurement and optimization tasks.

The second strategy is more applicable to high-frequency sensor signals. This ap-

proach, known as the ping-pong strategy, operates on the principle of alternating opera-

tions between two CFIAs. While one CFIA is being optimized, the other remains active
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and fully functional. This dual-system setup ensures that there is always one operational

CFIA, thereby facilitating uninterrupted high-frequency signal measurements.

5.1.3 Assessment of CFIA Dynamic Performance Optimization

For the dynamic in-field optimization of self-X sensory electronics, the optimization pro-

cess is performed by taking into account the varying environmental factors, specifically

temperature fluctuations and supply voltage variations [177]. Figure 5.26 depicts the

LAB demonstration setup. The Binder MK53 climate chamber is employed for tem-

perature modulation, while the PeakTeck 6181 programmable power supply is utilized

for varying the supply voltage. The FPGA boards are situated within the chamber, ac-

knowledging the uncertainty inherent to the optimization system, specifically regarding

the test stimuli and ADC as an observer device.

Climate chamber
Binder MK53

Chip

Red Pitaya 1

Rohde & Schwarz 
RTB2004

PeakTech 6181

Power Supply MSO

Red Pitaya 2

Figure 5.26: The dynamic optimization setup using Binder climate chamber.

This dynamic testing phase utilizes the same stimulus signal previously employed

during the static condition optimization. The experiment involves varying the chip
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temperature from -20°C to 40°C and adjusting the supply voltage from 3.3 V down to

2.6 V. To validate the optimization results and avoid the lucky shot solutions, each

optimization iteration is repeated three times.

The output results of this experiment are graphically shown using the error bar graph

in Figure 5.27. Additionally, the optimization convergence curves for this experiment

are detailed in Figure 5.28. These graphs provide a clear visual representation of the in-

field optimization’s effectiveness. It demonstrates the system’s capacity to autonomously

adjust the CFIA settings to optimize the THD value while simultaneously minimizing

power consumption. The results from these dynamic tests confirm the robustness and

adaptability of the proposed optimization method under various environmental condi-

tions. Configurations for CFIA dynamic conditions and various gain settings can be

found in Appendix A.

Figure 5.27: Error paragraph for dynamic optimization.
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Figure 5.28: Optimization conversion error under dynamic operating condition

5.1.4 Extrinsic Evaluation of Robust Optimization for CFIA

In this subsection, the evaluation of robust optimization for CFIA is conducted ex-

trinsically, focusing solely on simulation-based results due to timing constraints. The

remainder of the section presents results derived from hardware implementations and

practical experiments.

5.1.4.1 Surrogate-Based Robust Optimization

The effectiveness of the surrogate-based robust optimization approach is extrinsically

evaluated on the complex objective space of the reconfigurable CFIAs. The experimental

framework employed a sinusoidal test stimulus of 100 kHz frequency and a peak-to-

peak amplitude of 2 V. The target THD is set to -75 dB. To mitigate the impact of

channel length modulation, all transistors were uniformly sized at a length of 1 µm. The

optimization process varied only the width of critical transistor elements.

The surrogate-based robust optimization algorithm is implemented using Python.

The framework used to implement this process is shown in Figure 5.29. The robust

optimization algorithm, written in Python, passes the solution particle information to

the OCeaN (OCN) language in Cadence design tools using File 1, as presented in Figure

5.29. The OCN design tools execute the netlist simulation of the Device Under Test

(DUT) and pass back the system output response to the robust optimization algorithm
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using File 2. This system response is used as an objective function for the robust

optimization. This process continues iteratively until the maximum number of iterations

is reached.

Robust 
Optimization 

Algorithm

Cadence 
Simulation

File 1 

File 2 

Python OCN

Figure 5.29: Framework for integrating Python-based optimization with OCeaN simu-
lations in Cadence.

Table 5.4 presents the obtained performance characteristics of the CFIA after the

optimization process. This table indicates that the THD-based indirect measurement

technique successfully optimized the CFIA, meeting the predefined performance bench-

marks. Moreover, to ensure reliability and avoid any lucky shots, the experiment is

repeated for 15 independent runs. The results, representing a statistical compilation of

these runs, are graphically represented through error bar graphs in Figure 5.30. Fig-

ure 5.31 compares the noisy and predicted output signals using the Gaussian process

regression (GPR)-based robust optimizing with 95% confidence intervals. As seen from

the figure, in addition to uncertainty level prediction, the GPR helps forecast the data,

which can considerably minimize the transmission power of wireless sensor network ap-

plications.

To assess the performance of the surrogate-based robust optimization, the following

six different error metrics are employed:

� The Root Mean Square Error (RMSE) is a fundamental metric in regression anal-

ysis employed to represent the Average Expected Error (AEE). It is defined by the

following equation:
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Table 5.4: Performance characteristics of the CFIA after the optimization, VDD =
3.3 V,VCM = 1.65 V.

CFIA design parameter Value

Differential DC gain (AVD) 95.12 dB
Gain bandwidth product (GBW) 78.43 MHz
Phase margin (PM) 66.74◦

Slew rate (SR) 207.61 V/µs
Differential input linear range (VID) 2.22 VP−P

Total harmonic distortion (THD) −85.88 dB
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Figure 5.30: Error bar diagram of the six different performance characteristics of the
reconfigurable CFIA by using LCRPSO over 15 independent simulation runs.

RMSE =

√︄∑︁N
i=1(yi − ŷi)2

N
(5.1)

In this equation, yi denotes the actual value, ŷi the predicted value, and N the

number of samples.

� Pearson’s Correlation Coefficient is used to quantify the degree of correlation be-

tween actual and predicted values. It is expressed as:

p = 100 · cov(y, ŷ)
σyσŷ

(5.2)

Here, σy and σŷ are the standard deviations of the actual and predicted values,
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Training and Forecast Split

Figure 5.31: The predicted output with the 95% confidence interval and illustration of
data forecasting capabilities by the application of GPR block.

respectively.

� The Mean Absolute Error (MAE) measures the absolute discrepancies between

predicted and actual values. It is defined as:

MAE =
1

N

N∑︂
i=1

|yi − ŷi| (5.3)

� The R-Squared Error, also known as the Coefficient of Determination, evaluates

how closely data fits the predicted regression model. It is calculated as:

R2 =

∑︁N
i=1(yi − ŷi)

2∑︁N
i=1(yi − ȳ)2

(5.4)

where ȳ is the mean value of the data.

� Adjusted R-Squared, an extension of the R-Squared metric, adjusts for the number

of predictors in the model relative to the number of observations:

R̄2 = 1− (1−R2)
N − 1

N − p− 1
(5.5)

� The Figure of Merit (FoM), as introduced in [178], correlates the RMSE with the

standard deviation of the data, offering a perspective on the expected average error
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Table 5.5: Performance evaluation of the GPR by using six various error metrics.

Nr. Error metrics Value

1 Root mean square error 0.286
2 Pearson’s correlation 93.67
3 Mean absolute error 0.313
4 R-squared error 0.927
5 Adjusted-R squared error 0.908
6 Figure of merit 0.073

in relation to data variability:

FOM =
RMSE

σy
(5.6)

The effectiveness of the robust optimizer is detailed in Table 5.5. Metrics such as

MAE, FoM, and RMSE are indicative of the Average Expected Error (AEE); a lower

value in these metrics signifies greater accuracy of the regression model. Conversely,

values of R2, p and R̄2 represent the degree of correlation between the predicted and

actual values. A value nearing unity (or 100 in the case of p) denotes a more accurate

prediction. As observed in Table 5.5, the highest recorded value for AEE metrics is

0.313. Regarding the correlation metrics, the lowest value recorded is 0.908, indicating

a strong correlation between the estimated and ground truth.

5.1.4.2 Archive-Based Robust Optimization

In this experiment, firstly, an investigation into the efficacy of archive-based robust

optimization was conducted using three benchmark (BM) functions derived from exist-

ing literature [111]. The experiment was executed with 30 particles over 150 iterations,

maintaining all other initial parameters as outlined in the preceding chapter. Figure 5.32

displays the results: the first column indicates the specific BM function, and the second

column illustrates the corresponding convergence curves. These curves demonstrate a

variation in performance across the BM functions, with BM3 achieving convergence in

fewer than 50 iterations, in contrast to the over 50 iterations required by the remaining

functions. The convergence process was protracted, attributed to the inherent uncer-

tainty in the system. Notably, the uncertainty level was progressively reduced by the

archive-based robust optimization from 10% to approximately 1.8%, a margin that could

be further narrowed by increasing the iteration count.



Chapter 5. Experimental Setup and Results 95

Figure 5.32: Behaviour of archive-based robust optimization on BM1, BM2, BM3.

Subsequently, the archive-based robust optimization was applied to the CFIA for

extrinsic evaluation. This analysis focused on two primary objectives: THD and power

consumption. An agglomerative method was utilized for multi-objective optimization.

This evaluation utilized a sinusoidal waveform of 100 kHz and a peak-to-peak amplitude

of 2 V as the test stimulus, with the aim of maintaining the THD below -75 dB. For

consistency and to mitigate channel length modulation effects, all transistors were main-

tained at a uniform length of 1 µm, with the optimization algorithm adjusting only the

transistor widths. The optimization algorithm was implemented in Python, with circuit

simulations conducted using the Ocean Script language in Cadence design tools. Table

5.6 delineates the performance characteristics of the reconfigurable CFIA following the

optimization. The optimization’s efficacy is evident from the improved THD values,

indicating the successful tuning of the CFIA to its desired performance metrics. This

approach enabled the reduction of output root mean square error from 4.24% to 0.56%,

leveraging the archive method’s strength.

Additionally, to demonstrate the algorithm’s capability to suppress measurement un-
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Table 5.6: Performance characteristics of the CFIA after the optimization, VDD =
3.3 V,VCM = 1.65 V.

CFIA design parameter Value

Differential DC gain (AVD) 91.79 dB
Gain bandwidth product (GBW) 81.13 MHz
Phase margin (PM) 65.94◦

Slew rate (SR) 201.18 V/µs
Differential input linear range (VID) 2.18 VP−P

Total harmonic distortion (THD) −86.07 dB
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Figure 5.33: Comparison of the ideal, predicted (using robust optimization), and noisy
output.

certainty, the voltage response of the CFIA in a unity configuration was examined using

robust particles. Figure 5.33 compares the ideal output signal with both the predicted

output of the CFIA and the noisy output resulting from observer uncertainty, achieved

with a reduced setup of five particles and 80 iterations. The algorithm demonstrated its

ability to recalibrate the system in the presence of uncertainty, thereby enhancing the

reliability of the output.

5.2 Evaluation of Filter Optimization using Non-Intrusive

Sensors

This section delves into the experimental exploration of filter optimization, utilizing a

low-cost indirect measurement method with non-intrusive sensors. The setup for this

experiment mirrors that used in the CFIA experiments, maintaining consistency in the

experimental approach. It is important to clarify that the filter’s performance evaluation
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and verification are conducted on hardware, while the optimization using non-intrusive

sensors is performed through simulations due to time constraints.

The exploration begins with a detailed presentation of experimental results from

shadow register verification, a critical step in validating the reliability of measurements.

Following this foundational analysis, the focus shifts to assessing the filter’s performance

under its default configuration, thereby establishing a baseline for subsequent optimiza-

tions.

A key aspect of this investigation is the examination of the filter’s reconfigurability,

particularly in terms of its cutoff frequency. The study demonstrates how the filter’s cut-

off frequency can be finely tuned by adjusting various configuration bits. This tunability

is crucial in adapting the filter to different operational requirements. The impact of

these adjustments is further illuminated by correlating the filter’s performance with the

readings from low-cost, non-intrusive sensors, showcasing the direct relationship between

the filter’s settings and sensor outputs.

The section then progresses to scrutinize the filter’s behaviour under dynamic condi-

tions, particularly focusing on the deviation of its cutoff frequency. The filter’s resilience

is tested, and strategies for recovering its performance through reconfiguration are dis-

cussed. These insights are derived from comprehensive measurements on the fabricated

chip, demonstrating the filter’s capabilities in real-world scenarios.

This section concludes with an in-depth overview of the self-X indirect measurement

system, employing a low-cost indirect measurement method with non-intrusive sensors.

The section offers an in-depth examination of the filter’s reconfigurability, particularly in

terms of its cutoff frequency, and assesses its performance under default and optimized

conditions. The findings from this section underscore the feasibility and effectiveness

of using non-intrusive sensors in conjunction with advanced optimization techniques to

achieve desired performance characteristics in smart sensory electronics.

Due to time constraints, this comprehensive system is evaluated extrinsically.

Nonetheless, these findings strongly indicate the system’s intrinsic capabilities, suggest-

ing that similar outcomes would likely be observed with a hardware implementation.

The analysis effectively validates the functionality of each component, reinforcing the

efficiency and coherence of the entire setup as an integrated system.
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5.2.1 Filter Measurement Results

5.2.1.1 Initial Test of Filter

The following section details the filter testing process, as illustrated in the block diagram

in Figure 5.34. The initial phase of the test involves an in-depth verification of the filter’s

shadow register, as presented in Figure 5.35. It is essential to note the filter’s memory

does not have external pins for direct access. As a result, data is relayed serially from

the adjacent memory block of the CFIA. This testing step is essential to confirm the

accurate transfer of the configuration bit patterns.

FPGA 
Board 1

1
.6

5
 V

1
.6

5
 V

FPGA 
Board 2

  Stimulus signals 

3.3 V, 0 V
Digital signals

Server

DAC

ADC
ÄFilter

AFEX 

ÄFilter

AFEX 

3.3 V

Filter outputs

Figure 5.34: Detailed block diagram for the LAB filter testing procedure.

In the following test, the filter is configured using data derived from post-layout

extrinsic evaluation, setting its cut-off frequency to 2.6 MHz. A sinusoidal signal with a

frequency of 1 kHz and an amplitude of 1 Vp-p is applied to the filter under standard

operating conditions (ambient laboratory temperature of 24◦C and a supply voltage,

VDD, of 3.3 V). The resultant output, shown in Figure 5.36, indicates that the output

amplitude maintains unity gain within the filter’s pass band. Furthermore, the output

demonstrates a phase shift of 179.49◦, signifying good matching in the output differential

stage.

The filter, featuring two amplifier stages, each consuming 13 mA, has a total cur-

rent draw of approximately 26 mA at 24◦C. Practical experiments have shown that

utilizing the filter’s programmable current source can effectively reduce the total current
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Figure 5.35: Verification test for the filter shadow register memory.

consumption to 11 mA without affecting the filter’s operational functionality.

Vout+

Vout-

Vout_diff

Figure 5.36: sinusoidal transient response of the filter

The small-signal AC response is assessed using a sinusoidal signal of 100 mV am-

plitude. As depicted in Figure 5.37, the results demonstrate a roll-off of less than -80

dB. This aligns with the post-layout simulation predictions, suggesting an effective filter



Chapter 5. Experimental Setup and Results 100

order of less than four. The observed low-frequency gain of -6 dB, resulting from using

a single output during measurements, corresponds to the filter’s 0 dB linear differential

(unity) gain.

Figure 5.37: Small-signal AC response of the filter using one of the extrinsic patterns at
typical operation condition: T= 22◦C and VDD= 3.3 V.

The impulse response is examined by applying a square signal to assess the filter’s

stability under unity-gain conditions. While stability can be predicted from the small

signal AC response peaking, experimental validation is conducted by exciting the filter

with a sharp-edged pulse. As shown in Figure 5.38, the results affirm the filter’s stability

and validate its Butterworth performance through a smooth transition into the settling

region.

As previously introduced, there are three non-intrusive sensors, two non-intrusive

sensors NIS1 and NIS2, operate using the same filter configuration, and the third tem-

perature sensor does not require any configuration bits. Tested at T=24◦C, their outputs,

presented in Figures 5.39, 5.40, and 5.41, reveal the expected quasi-digital form. Using

the Red Pitaya board, the frequency-modulated signal allows straightforward conversion

to digital equivalent weight (F/D). Moreover, all sensors have the respective enabled sig-

nal for power optimization.

The relationship between the filter bandwidth and the outputs of the non-intrusive

sensors (NISs) is explored under various filter configuration settings. Table 5.7 demon-

strates a proportional yet nonlinear correlation between the frequencies of the NISs and
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Vout+

Vout-

Vout_diff

Figure 5.38: Implulse response of the filter confirming the stability using one of the
extrinsic patterns at typical operation condition: T = 22◦C and VDD= 3.3 V.

Figure 5.39: The output from non-intrusive sensor1 using one of the extrinsic patterns
at typical operation condition: T = 24◦C and VDD= 3.3 V.

the filter bandwidth. To model this nonlinearity, a regression model can be easily uti-

lized to indirectly estimate the filter’s cut-off frequency. It can be observed that when

the frequency fell below 1 kHz, Sensor1 reached a saturation point in its measurements,
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Figure 5.40: The output from non-intrusive sensor2 using one of the extrinsic patterns
at typical operation condition: T = 24◦C and VDD= 3.3 V.

Figure 5.41: The temperature sensor output at T = 24◦C and VDD= 3.3 V.

in contrast to Sensor2, which continued to display proportional variations. Further-

more, the integrated on-chip temperature sensor played a crucial role in validating the

regression model, facilitating the indirect prediction of the filter frequency in dynamic

operational conditions.
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Table 5.7: Filter bandwidth and non-intrusive sensors outputs T = 24◦C and VDD= 3.3
V.

Filter Bandwidth Sensor1 Sensor2

10 MHz 24.6 MHz 6.37 MHz
6.7 MHz 7.51 MHz 5.44 MHz
2.6 MHz 5.03 MHz 4.49 MHz
234 kHz 761.3 kHz 1.66 MHz
140 kHz 515.26 kHz 1.29 MHz
37.2 kHz 185.5 kHz 562.5 kHz
1.7 kHz 26.62 kHz 80.5 kHz
427 Hz 33.71 kHz 66.7 kHz
276 Hz 33.03 kHz 30.91 kHz

5.2.1.2 Filter Dynamic Performance

This experiment evaluated the effect of temperature variations on the filter’s AC per-

formance. Initially, the filter is configured at an ambient temperature of 24◦C, with the

aim of establishing specific cut-off frequencies at various points: 67 Hz (minimum), 1

kHz, 10 kHz, 100 kHz, 1 MHz, 5 MHz, and 10 MHz. The experiment proceeded by

placing the filter assembly within a climate chamber, as illustrated in Figure 5.42, and

gradually changing the temperature from −20◦C to 40◦C.

Figure 5.43 shows that the filter bandwidth is sensitive to temperature-induced varia-

tions. However, the filter’s inherent reconfigurability or tunability allows for recalibration

by manually adjusting the MOS resistors, thereby updating the configuration pattern

that controls the MOS pole resistors. The recalibration results, presented in Figure 5.44,

shows that the cut-off frequencies realign to their intended values. However, at 67 Hz

and T = 40◦C, the measurement could not be conducted due to equipment limitations.

As a result, the corresponding fields in Table 5.8 are marked as ’N.A.’ to reflect this

constraint. This suggests that the filter’s adjustable range at T = 40◦C spans from

approximately 100 Hz to 10 MHz. Additionally, the spectral range was limited to 25

MHz due to constraints imposed by the digital storage oscilloscope (DSO) used in these

tests.

Table 5.8 summarizes the filter’s bandwidth before and after these adjustments,

indicating a maximum discrepancy of 3% within the successfully recalibrated range.

The configurations for dynamic filter conditions and various cutoff frequency settings

are documented in Appendix A.
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Figure 5.42: Dynamic test of the filter using the climate chamber

Furthermore, the temperature sensor is tested for the temperature range from −20◦C

to 70◦C, with a stepsize of 5 degrees. As depicted in Figure 5.45, the frequency response

varied proportionally with temperature changes while maintaining a consistent duty

cycle of approximately 50%.

5.2.2 Extrinsic Evaluation of the Non-Intrusive Sensors based Indirect

Measurement Method

This experiment employs a fully differential fourth-order tunable continuous-time active

low-pass filter, based on the Sallen–Key structure with a Butterworth approximation,

as the device under test (DUT) [172]. As explained before, to simplify the machine

learning (ML) regression task and reduce the search space complexity, the DUT and
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T = -20 °C
T = 24 °C
T = 40 °C

Figure 5.43: The filter small-signal AC response performance under dynamic tempera-
ture change at different cut-off frequencies

T = -20 °C
T = 24 °C
T = 40 °C

Figure 5.44: The filter small-signal AC response performance under dynamic tempera-
ture after bandwidth recovery

non-intrusive sensors share similar tuning knob (TK) values. A digitized MOS resistor,

serving as a TK, is utilized to set the filter’s cutoff frequency. These TK values are copied

to the main DUT after the completion of the optimization process. The low pass filter’s

cutoff frequency is selected as the performance characteristic to be optimized. Random

forest regressor (RFR) is used to create an accurate regression model between the non-

intrusive sensor’s outputs, TK values, and DUT performance. This RFR comprises 1000

estimators and uses mean squared error as its criterion. For this specific experiment,
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Figure 5.45: Temperature sensor test at VDD= 3.3 V using the climate chamber

all ERPSO performance parameters are maintained at default values, as previously ex-

plained, with the adjustment to include 10 particles and 100 iterations. The effectiveness

of the RFR is visually depicted in Figure 5.46, using 20% of the testing data set from

the schematic data set.

Figure 5.46: Scatter plot illustrating the correlation between predicted and actual values
from the schematic dataset.
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Six different performance metrics are employed to evaluate the prediction accuracy

of the methodology. The results, summarized in Table 5.9, indicate the highest mean

square error of 0.09. In terms of correlation metrics, the lowest value recorded is 0.92,

signifying a strong correlation between estimated and actual values.

Table 5.9: Performance evaluation of the regression model for the schematic dataset of
the LPF using various error metrics.

Nr. Error metrics Value

1 Root mean square error 0.08
2 Pearson’s correlation 94.51
3 Mean absolute error 0.09
4 R-squared error 0.93
5 Adjusted-R squared error 0.92
6 Figure of merit 0.05

Furthermore, the experiment was conducted five times with different cutoff frequen-

cies for the filter to ensure robustness and avoid the lucky shot. The average results of

these individual runs are summarized in Table 5.10. Notably, the maximum optimization

error was approximately 9% at 1 kHz, suggesting potential for further minimization by

increasing the training data set around this frequency range.

Table 5.10: Averaged optimization results of the DUT characteristics for five individual
runs.

DUT Characteristic Targeted Achieved

5 MHz 4.95 MHz
1 MHz 1.03 MHz

3 dB cut-off frequency 100 kHz 94.37 kHz
10 kHz 9.56 kHz
1 kHz 1.09 kHz

5.2.3 Enhancing Regression Model Robustness to Compensate for

Fabrication Deviations

This section explores the approach of addressing deviations caused by chip layout to sim-

ulate the effects that might occur in fabricated chips. By tackling these layout-induced

deviations, the study demonstrates the potential applicability of the methodology to real-

world fabricated chips. The process begins with the application of a regression model,

originally trained on schematic simulations of the Low Pass Filter (LPF), to a dataset

derived from layout simulations. This step is crucial to understand how layout variations
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might reflect in a fabricated environment. Figure 5.47 illustrates the results of this ap-

plication, showing a correlation between the schematic and layout simulations. However,

due to the deviations inherent in the layout simulation, the regression model trained on

the schematic dataset is not directly transferable. This is evident in Table 5.11, where

the deviation impact is quantified, showing an increase in the AEE metric to 0.48 and a

decrease in the correlation metric to 0.61.

Figure 5.47: Scatter plot depicting the deviation between predicted and actual values
in the layout simulation dataset.

Table 5.11: Performance evaluation of the regression model for the layout simulation
dataset of the LPF using various error metrics.

Nr. Error metrics Value

1 Root mean square error 0.48
2 Pearson’s correlation 64.12
3 Mean absolute error 0.41
4 R-squared error 0.64
5 Adjusted-R squared error 0.61
6 Figure of merit 0.37

A reinforcement learning approach is employed to adapt the regression model to

these layout-induced deviations. This technique involves using a new, limited dataset

that reflects the deviations from the layout simulation, thereby updating the regression
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model initially trained on the schematic data. In this experiment, the layout simulation

dataset comprises 15% of the size of the schematic dataset used for the initial training.

The results post-application, shown in Figure 5.48, indicate a significant improvement

in model accuracy. Table 5.12 confirms this, with performance metrics showing marked

improvement, including a decrease in the highest AEE metric to 0.13 and an increase in

the lowest correlation metric to 0.91.

Figure 5.48: Scatter plot showing improved correlation in the layout simulation dataset
post-deviation adjustment using reinforcement learning.

Table 5.12: Performance evaluation of the regression model for the layout simulation
dataset of the LPF after reinforcement learning.

Nr. Error metrics Value

1 Root mean square error 0.13
2 Pearson’s correlation 94.02
3 Mean absolute error 0.11
4 R-squared error 0.93
5 Adjusted-R squared error 0.91
6 Figure of merit 0.07

This concept effectively addresses deviations caused by layout simulation and can

be seamlessly extended to manage deviations arising from the fabrication process. The

adapted regression model demonstrates the potential to predict the performance of a
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fabricated chip, requiring only minimal real measurements for model validation. Con-

sidering the time and resource constraints often associated with extensive measurement

campaigns on fabricated chips, this approach offers a significant advantage.

Although the implementation on a physically fabricated chip has not been conducted

due to timing constraints, the results observed in the above subsection with the mea-

surement results of filter and non-intrusive sensors indicate expected and favourable

outcomes. Therefore, it is reasonable to anticipate that similar results could be achieved

at the chip level. This projection is based on the consistent behaviour exhibited by the

non-intrusive sensors and the filter under study, suggesting a high likelihood of compa-

rable performance in actual chip fabrication scenarios.



Chapter 6

Sensory System Application

This chapter focuses on the practical application and analysis of a sophisticated sen-

sor system, particularly emphasizing the integration and optimization of the system

components. The experimental configuration is outlined, and analytical results derived

from the experiments are presented. Central to this study is the deployment of a re-

configurable analog front-end with self-X properties for the tunnel magneto-resistance

(TMR) sensor, provided by Sensitec, specifically for angular encoding applications. This

is coupled with sophisticated data acquisition and processing techniques to highlight the

sensor system’s effectiveness and adaptability in practical applications.

A pivotal element of this study is the application of configuration bits obtained from

algorithm solutions developed in the preceding chapter. Under the umbrella of the Self-X

optimization method, this approach highlights the harmonious integration of theoretical

and algorithmic progress with their practical implementation in sensor systems. The

configurations derived from these solutions are instrumental in fine-tuning the sensor

system for optimal performance.

6.1 Experimental Configuration

This section outlines the experimental setup utilized for the study. The experiment

incorporates the TMR sensor manufactured by Sensitec, which operates on a 3.3 V

DC voltage. It features dual-balanced, fully differential bridge circuits. These circuits

generate two differential signals, each offset by 90◦ and a common mode voltage centred

around 1.65 V. Figure 6.1 [179] depicts the LAB functional setup.
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Figure 6.1: The functional setup of the proposed interface with TMR sensor.

For data acquisition, the configuration includes two FPGA Red Pitaya boards, pro-

cessing the amplified and filtered signals from the sensor through custom AFEX chips,

utilizing the onboard 14-bit RF ADCs of the Red Pitayas. Additionally, a third FPGA

board is dedicated to configuring the AFEX chips. A key aspect of this configuration

is the use of configuration bits derived from one of the algorithm solutions identified by

the Self-X optimization approach, as presented in the previous chapter.

Although a configuration utilizing only two FPGAs for both signal acquisition and

system configuration is feasible, this setup aligns the ground level of the FPGAs to the

common mode voltage of the bridge. The AFEX chips, in contrast, are referenced to

0V. An alternative approach involving a DC-level shifter permits using just two FPGA

boards. The server unit oversees the execution of the self-X algorithm for angle com-

putation and anomaly detection. Another doctoral candidate in our research group is

investigating the application of self-x concepts to sensor systems at multiple levels [179].

In this context, the angular decoder is employed as a comprehensive case study giving

the opportunity to join Self-X work from sensor, sensor electronics to abstract software

layer [180]. The TMR sensor is placed on the front of the DC motor’s rotary shaft.

Details on the TMR readout circuit are provided in Figure 6.2.



Chapter 6. Sensory System Application 114

Digital Offset
Calibration

Active
LPF

CFIA

Vin+

Vin-

+

-

+

-

Vo+

Vo-

Vout+_Sin

Vout-_Sin

Digital Offset
Calibration

Active
LPF

CFIA

Vin+

Vin-

+

-

+

-

Vo+

Vo-

Vout+_Cos

Vout-_Cos

FPGA Board
(Red Pitaya)

Sin+

Cos+

Sin-

Cos-

VDD

GND

TMR full-
bridge chip

C
o

n
fi

gu
ra

ti
o

n
 b

it
s

A
D

C Red Pitaya
FPGAA

D
C Red Pitaya

FPGA

A
D

C Red Pitaya
FPGAA

D
C Red Pitaya

FPGA

Figure 6.2: The schematic diagram of the proposed TMR readout circuit.

The CFIA offset voltage autozeroing feature is a viable method for compensating

the sensor bridge’s offset voltage. In addition to the automatic circuit, the offset voltage

trimming pattern can be externally configured using the Self-X algorithm. These offset

compensation patterns are then transferred to the shadow register. The total number

of configuration bits employed to program the CFIA and filter is 88, including those

for offset correction. This extensive customization capability enhances the precision and

adaptability of the experiment. The laboratory setup, demonstrating the complete TMR

sensor assembly, is depicted in Figure 6.3.

6.2 Measurement Results

The experiments were conducted with the filter cutoff frequency set at 1 kHz. This value

is ten times higher than the highest frequency expected from the DC motor at maximum

speed, ensuring no signal attenuation in the TMR outputs. Initially, the TMR sensor

is positioned 4 mm from the motor shaft. The in-amp gain is set at unity to observe

the TMR signal without amplification. Figure 6.4 shows that the differential outputs

were approximately 0.5 Vp-p with a phase shift of 90◦, indicating sine and cosine signals.

Given the ADC’s full-scale voltage of 2 Vp-p, the gain was adjusted to 4 at this distance,
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with results shown in Figure 6.5.
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Figure 6.4: TMR sensor outputs at the in-amp gain of unity and distance of 4 mm.

However, it is observed that the offset voltage, which represents the combined effect

of the sensor and the in-amp, is also amplified by a factor of 4. It is evident from the

mean cycle measurement. With the amplifier configured for unity gain, it was inferred

that the contribution of the filter’s offset voltage was negligible. An autozeroing scheme
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Figure 6.5: TMR sensor outputs at the in-amp gain of 4 and distance of 4 mm.
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Figure 6.6: TMR sensor outputs at the in-amp gain of 4, distance of 4 mm and with
offset autozeroing.

was implemented to counteract the amplified offset voltage, and the results, depicted in

Figure 6.6, show a reduction in offset voltage to below 10 mV.

To further illustrate the impact of offset voltage, the sensor’s distance from the motor
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Figure 6.7: TMR sensor outputs at the in-amp gain of 32, distance of 11 mm.
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Figure 6.8: TMR sensor outputs at the in-amp gain of 32, distance of 11 mm and with
offset autozeroing.

shaft was increased to 11 mm, necessitating an adjustment of the gain to 32. This setup

revealed an offset voltage of approximately 250 mV, as shown in Figure 6.7. Following

the application of the autozeroing scheme, the offset voltage was effectively reduced to
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around 16 mV, as evidenced in Figure 6.8.

It is important to note that the offset voltage limits the resolution of readings by

consuming the ADC’s full-scale voltage capacity and significantly affects the accuracy

of angle computation. This relationship is encapsulated in the following equation [179]:

θ = arctan

(︃
2Asin sin(α+ φ) + offsetsin

2Acos cos(α) + offsetcos

)︃
(6.1)

In this equation, θ represents the measured rotational angle, α is the magnet’s ro-

tational angle relative to the sensor, 2Asin and 2Acos denote the peak sine and cosine

amplitudes, respectively, φ is the phase error between the sin and cos signals and offset

sin and offset cos represent the respective offset errors in the sine and cosine amplitudes.

In summary, the sensor requirements and challenges have been evaluated in relation

to the capabilities of the analog front end, including the CFIA and filter. The study

successfully demonstrated that the tuning adjustments available are sufficient to manage

perturbations effectively. This validation underscores the robustness of the design deci-

sions made, ensuring that the sensor system can meet operational requirements across

different conditions, leveraging the configuration insights derived from the optimization

algorithm.



Chapter 7

Conclusions

This research aims to enhance the autonomy and optimization capabilities of smart

sensory electronic systems (SSES) through the integration of artificial intelligence (AI)

at the lowest levels of automated test equipment (ATE). By adopting a cost-effective

approach, it has successfully demonstrated the potential of AI and machine learning to

enable self-X properties in SSES for their in-field performance optimization.

To achieve this, the study implemented power-efficient chip performance optimiza-

tion using low-cost indirect measurement methods, employing XFAB 0.35 µm CMOS

technology. The comprehensive approach included developing electronic design automa-

tion (EDA) methodologies and extrinsic optimization techniques, seamlessly integrated

into dedicated hardware for assessment and optimization. The optimization algorithm is

implemented at the hardware level using Red Pitaya FPGA boards, which utilize DACs

and ADCs to assess and acquire data from the analog front during the optimization pro-

cess. The chip that serves as the hardware platform for intrinsic evolution is designed

by another doctoral candidate within our research group [35]. This chip acts as a foun-

dational component for achieving self-X properties and provides a robust architectural

base for the in-field performance optimization approach presented in this research.
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7.1 Key Findings

7.1.1 Goal 1: Cost-Effective Indirect Measurements for In-field Opti-

mization

The research introduced a cost-effective and power-efficient approach for intrinsic per-

formance optimization of the configurable current-feedback instrumentation amplifier

(CFIA). Initial testing, conducted prior to the intrinsic optimization process based on

post-layout simulations using the configuration obtained from extrinsic optimization, re-

vealed degraded performance and unexpected instability within the CFIA circuit. Sub-

sequently, the in-field optimization based on total harmonic distortion (THD) and power

monitoring approaches successfully discovered the optimal configuration for the linear

operation of the CFIA circuit using the optimization algorithm, highlighting the signifi-

cant benefits of implementing sensory electronic circuits with self-X properties for yield

optimization. The THD optimization approach proved effective in reducing the total

number of assessment units required to optimize the performance of the CFIA or any

other amplifier. This is primarily due to the statistical correlation of various perfor-

mance characteristics of the amplifier on the measured THD value. Additionally, even

non-stable circuit conditions correlated to lower THD values. To ensure stability, a pulse

test is conducted at the end of the optimization process, making most of the optimiza-

tion process conducted using a single sinusoidal signal stimulus an efficient method for

improving amplifier performance.

The power monitoring technique assisted the optimization algorithm in identifying

the power-efficient solution from the explored search space. This significantly improved

the power efficiency of the solution, ultimately leading to prolonged device lifetime and

better energy utilization. The CFIA is optimized for a 1 MHz signal frequency and a 2

Vp-p dynamic input range. The achieved average optimized THD is equal to −72 dB,

relative to signal stimuli with a THD of −74.49 dB. This optimization result achieved

a 34% increase in power efficiency compared to the optimization process without the

power monitoring module.

In the initial experiment, optimization is carried out under static conditions, specif-

ically at room temperature. Then, in the next step, in-field dynamic optimization of

sensory interface systems, specifically focusing on a fully differential CFIA, is conducted.
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The intrinsic optimization is performed on-chip, with changes in temperature ranging

from −20◦C to 40◦C, and by reducing the supply voltage by 25% from the nominal value

of 3.3 volts. The practical evaluation demonstrates the capability to tackle all sources of

variation, i.e., process, voltage, and temperature (PVT). The results show satisfactory

THD measurements at various temperatures, with the measured THD being −71.93 dB

at 25◦C, −69.95 dB at −20◦C, and −74.01 dB at 40◦C.

7.1.2 Goal 2: Implementation of AI Agent

Given the complexity of search and objective spaces in smart sensory electronics, a novel

experience replay particle swarm optimization (ERPSO) algorithm is developed to act

as an AI agent for optimizing the CFIA. The ERPSO algorithm, embedded on Red

Pitaya FPGA boards, facilitates autonomous extrinsic in-field optimization of the CFIA

by expanding the selection process of the classical PSO with an experience replay buffer

(ERB). The FPGA boards handle the serial data-transfer protocol for configuring the

CFIA, generate test stimuli, acquire CFIA responses, calculate total harmonic distortion

(THD) using FFT, determine the signal frequency for the power-monitoring module,

implement the ERPSO algorithm, and transmit data to a server. This implementation

enables the AI agent to autonomously search for and optimize the CFIA’s performance

for PVT variations directly in its operational environment.

7.1.3 Goal 3: Optimization in the Presence of Observer Imperfections

In the next step, the evaluation of robust optimization for CFIA using surrogate-based

and archive-based robust optimization methodologies is conducted extrinsically, focusing

solely on simulation-based results due to timing constraints. These robust optimizations

demonstrate their capabilities through benchmark functions and direct application to the

CFIA, focusing on optimizing THD and power consumption. The results from this opti-

mization method indicate a successful reduction in average expected error (AEE) error

and improvement in correlation metrics, which helps in the improvement of THD values,

illustrating the method’s proficiency in fine-tuning the CFIA to achieve desired perfor-

mance levels while effectively managing uncertainties. Further experimental validation

is needed to confirm these results in practical settings and ensure their applicability to

diverse analog circuit designs.
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7.1.4 Goal 4: Non-Intrusive Sensor-Based Low-Cost Measurements for

Filter Performance Optimization

In the next phase, a comprehensive evaluation of a low-cost, non-intrusive sensor-based

indirect measurement method is proposed for optimizing filter performance, specifically

focusing on the cutoff frequencies for smart sensory electronics. The filter is a crucial

component of the readout sensory electronics chain, and its optimization is vital for

enhancing overall system performance. Due to timing constraints, the filter’s perfor-

mance verification is conducted intrinsically, while its performance optimization using

non-intrusive sensors is performed extrinsically. Filter performance verification begins

with a shadow register verification, ensuring the accuracy of configuration bit patterns for

filter tuning. The filter is configured using data derived from post-layout extrinsic evalu-

ation, setting its cut-off frequency to 2.6 MHz. The sinusoidal response of the filter, with

an output phase shift of 179.49 degrees and maintaining unity gain within its passband,

demonstrates a roll-off of less than −80 dB. This aligns with the post-layout simulation

predictions, suggesting an effective filter order of less than four. Further, the study

thoroughly evaluates the filter’s dynamic performance under temperature variations, il-

lustrating its robustness. The filter’s ability to recalibrate, maintaining a maximum

discrepancy of only 3% from intended cutoff frequencies post-adjustment, emphasizes its

resilience and the efficacy of the optimization strategy. This recalibration is performed

within the temperature range of −20◦C to 40◦C, highlighting the filter’s operational

stability across a dynamic environment.

To further enhance the filter optimization process, non-intrusive sensors for indirect

measurement are integrated. These sensors provide a low-cost, effective way to correlate

filter settings with sensor outputs, enabling the development of a regression model to

estimate the filter’s cutoff frequency indirectly. This model is crucial for navigating the

non-linear relationship between the filter’s bandwidth and sensor outputs.

Although the optimization is conducted extrinsically due to timing constraints, devi-

ations caused by chip layout simulate the effects that might occur in fabricated chips. By

addressing these layout-induced deviations through a reinforcement learning approach,

the study demonstrates the adaptability and potential applicability of the optimization

method to fabricated chips.
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7.1.5 Goal 5: Generic and Easily Integrable Architectural Design

The practical application of a reconfigurable analog front-end with self-X properties for

the TMR sensor, provided by Sensitec, specifically for angular encoding applications,

demonstrates that the architecture is designed for seamless integration with higher sys-

tem hierarchies. This generic architecture is adaptable to a wide range of sensors and

applications, offering significant flexibility, with TMR being just one example.

In this study, the autonomous chip performance optimization process is initially

achieved. However, when connected with the TMR sensor setup, the configuration bits

derived from the optimization algorithm are used for the analog front end. The data

acquisition from the TMR sensor is performed manually, and this acquired data being

transferred to a higher hierarchical system for further processing.

Although the process was not entirely autonomous due to time constraints, the

system’s ability to generate and transfer data highlights its generic nature and ease

of integration with upper-level systems. This approach underscores the integration of

theoretical and algorithmic progress with practical implementation in sensory systems,

demonstrating the architecture’s flexibility.

7.2 Future Work

The research presented has laid a robust foundation for the optimization and enhance-

ment of smart sensory electronic systems through the integration of AI and machine

learning. However, several avenues remain unexplored and present exciting opportuni-

ties for future investigation. The following areas have been identified as key directions

for extending the current work:

1. Interleaved Measurement and Calibration Processes: The exploration of

uninterrupted optimization processes represents a promising avenue for future re-

search. One potential strategy involves deploying a real-time operating system

(RTOS) or a time-triggered embedded system (TTES) on the Red Pitaya board.

This is particularly suitable for managing low-frequency sensor signals, such as

those from a TMR sensor used to monitor a rotating shaft’s speed. The inte-

gration of RTOS or TTES enables the simultaneous execution of calibration and

measurement processes, effectively interleaving them to minimize disruptions. This
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interleaving process includes phases such as ’Measurements’, ’Transfer Configura-

tions’, ’THD Calculations’, and ’Power Monitoring’, demonstrating how the system

manages to concurrently perform measurement and optimization tasks.

2. ERPSO Algorithm Optimization: Further refining the implementation of the

ERPSO algorithm on Red Pitaya FPGA boards to enhance the efficiency and

effectiveness of autonomous extrinsic in-field optimization of CFIA.

3. Verification of Observer Uncertainty Intrinsically: Experimentally validat-

ing the robust optimization methods for CFIA on hardware to confirm their ef-

fectiveness in managing uncertainties and ensuring their applicability to diverse

analog circuit designs.

4. Verification of Non-Intrusive Sensors on Hardware Level: Intrinsically

evaluating non-intrusive sensor-based indirect measurement techniques for smart

sensory electronic systems. The non-intrusive nature of these sensors facilitates un-

interrupted calibration of the measurement system, offering a pathway to enhance

system continuity and efficiency. Additionally, the application and validation of re-

inforcement learning methods to address deviations between simulation predictions

and actual chip performance will be explored. This approach has the potential to

significantly reduce the need for extensive physical measurements, thus saving time

and resources.

5. Complete Autonomous Implementation of Analog Front End with TMR

Sensor: Achieving full autonomy in the implementation of the analog front end in

conjunction with the TMR sensor, ensuring seamless data acquisition, processing,

and integration with higher hierarchical systems.

By addressing these areas, future research can build on the foundational work pre-

sented in this study, advancing the capabilities and applications of smart sensory elec-

tronic systems.
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