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1. Introduction

Recently, it has been demonstrated for the case of one-dimensional time-periodic systems
that the global quantum dynamics of a system can be conveniently analysed and
visualized by means of a quantum phase space entropy [1, 2, 3]. In close analogy to
the celebrated Poincaré surface of section in classical dynamics, which visualizes the
global dynamical properties by a synoptic portray of trajectories in phase space by
means of their consecutive intersections with a plane, the quantum dynamics can be
visualized by means of the time-averaged localization of wave packets on such a plane.
A more general discussion of the properties of these quantum phase space entropies can
be found in [4].

In the present paper, we extend the previous studies of time-periodically driven
systems with a single degree of freedom, where a stroboscopic plot of the phase space
points at integer multiples of the driving period has been used, to the more demanding

case of Hamiltonian systems with two degrees of freedom

1
H=; (p=" 4+ py”) + V{4, qy) - (1)
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As an illustrating expample, we will discuss the Pullen—-Edmonds [5] system
Ly, o 2 2
Vide: ) = 5 (2 +q2) +ade, (2)
which has been used by various authors to study the classical/quantum correspondence
for classically chaotic systems [5]-[10]. By scaling the variables, it can be shown that
the classical dynamics depends only on the product of the nonlinearity parameter o and
the energy E . It is therefore sufficient to fix the energy at, e.g., E = 20 and vary the

parameter . Figure 1 shows Poincaré sections

G=0 and  p,=pl" =+ (2(E - V(g.0)-p) ", (3)
at £ = 20 for a = 0.025, 0.05, 0.075, and 0.1. Note that the centre, (p,,q:) = (0,0),
the kinetic energy in the y-direction has its maximum value, i.e. p, = (2E)1/2, whereas
we have p, = 0 at the outer outer circle p? 4+ ¢> = 2E. Note also that the region
outside this circle is not empty because of dynamical restrictions, but only because of
geometrical reasons: there is no intersection of the energy shell H(p,q) = E with the

subspace ¢, = 0.

Figure 1. Classical Poincaré sections for the Pullen-Edmonds system (2) for an energy
E = 20.0 and increasing nonlinearity parameter a = 0.025, 0.05, 0.075, 0.1.

For small o the dynamics is predominantly regular. There is a pair of stable
periodic orbits along the g, and the ¢, axis, which appear as a central stability island
at (pz,q-) = (0,0) or as a full circle p? + ¢2 = 2F = 40, e.g. the outer boundary) in
the Poincaré plot in figure 1, respectively. For the future discussion we note that the
inner and outer regions of the Poincaré section are directly related by the symmetry
gz ¢ qy. In addition, there are two periodic orbits along the diagonals ¢, = +¢,, which
show up as stability islands at (p,,q.) = (£(E)'/?,0) ~ (£4.5,0). The anharmonic
perturbation breaks the coordinate — momentum symmetry of the harmonic oscillator
and the corresponding momentum space trajectories p, = +p, (circles in coordinate
space with radius & (E)1/2 A 4.5) are unstable and appear as hyperbolic fixed points
in figure 1 at (p,,¢;) =~ (0,4.5). Chaotic motion first shows up in the vicinity of these

points.
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With increasing o, the chaotic region grows and more elliptic/hyperbolic island
chains appear, as, e.g., the chain of four satellite islands of the central island for @ = 0.05
(by symumetry, these islands are also observable close to the outer boundary) and a
further increase of « leads to a bifurcation of the central fixed point (o = 0.075) followed
by a loss of stability and a further growth of the chaotic ‘sea’ between the islands. For
a = 0.1 only a few regular regions are observed in figure 1: Four islands close to the
boundary centred at (p,,q,) & (£6,0) or (0, £6); two larger resonances at (+4.5,0) and
two smaller ones at (£1.7,0) (note that the last two are related to the four outer ones
by the exchange symmetry ¢, ¢+ ¢q,). We will show, that this characteristic classical
scenario 1s also observable in quantum mechanics.

In the following section, we give a brief outline of the Husimi phase space
distribution for eigenstates of the Pullen-Edmonds Hamiltonian (2) and demonstrate
that the classical dynamical properties are reflected in some of the individual quantum
states. In addition, the localization of the quantum states on the energy shell (3) is
discussed. The global, i.e. state independent, phase space properties of the quantum

system are analysed in Sect. 3. We summarize our results in Sect. 4.

2. Phase space densities of individual states

The symmetry group of the Pullen-Edmonds Hamiltonian (2) is Cy, and the eigenstates
can be classified by the four one dimensional irreducible representations A, As, By, B,
and the two dimensional representation &£ [5]. Within each symmetry group S, the
eigenstates are expanded in terms of symmetry adapted harmonic oscillator wave
functions |qus>, l.e. eigenstates of the Hamiltonian for o = 0, which are given by
|ng) ® |77;> + |n;> ® |n¢) for class A;, by |n2) ® |nz> — |nz> ® [n%) for A,, by
[n5) @ [ng) — [ng) @ |ng) for By, and by [n2) @ [ng) + [n)) @ |ng) for By, where even and
odd states are denoted by e or o, respectively. In addition, these states are multiplied
by the normalisation factor (2(1 + 5n1n2))_1/2.
the Hamiltonian (2) can be easily evaluated analytically (a band matrix) and the

(
J
spectral transformation method of Lanczos [11]. The (degenerate) states of class &

In this basis, the matrix elements of

eigenvalues E, and eigenvectors |¢,) = jcy)|¢]‘s> are computed by means of the
are not explicitly considered here (the interested reader can find a discussion of the

computation and the properties of these states in [12]).
Classically, an estimate of the number of quantum states N%(E) up to an energy

E is given by the Weyl rule:
dpdq

NclE:/i()E—H”” 4
(E) Brh) ( (7. q)) (4)

in excellent agreement with the quantum staircase function

N(E) = i 8(E —E,) =Tr §(E — H). (5)
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Expanding the integrand in powers of the coupling constant «, a useful approximation
2
NYE,a) ~ QE? (1 - §E> (6)
can be derived. In the present analysis, we have computed 5500 states up to an energy
of E ~ 30. In addition, we note that the density of states is high, e.g. dN/dE ~ 230
for £ = 20.

As demonstrated in various studies before, not only the number of eigenstates, but
also the individual eigenstates themselves are intimately linked to the classical phase
space structure shown in figure 1. However, the individual states are more or less
supported by the various classical phase space structures, which can be conveniently

shown by inspecting the morphology of quantum (Husimi) phase space densities.

2.1. Individual Husimi phase space distributions

The Husimi distribution of a quantum wavefunction |¢) is given by

() = [al) (7)

where |d) = |a,)|ey) is a two-dimensional coherent oscillator state, i.e.
_omlaP/2 o= @ by a2 am O
a)=e —(a")"]0) =e —|n) . 8
) S 2Gh) > )
in the harmonic oscillator basis |n). The complex variable a can be mapped onto phase
space by a = (¢ +ip)/V/2h, and the coherent states can also be labelled as |&@) = |p, ¢),

1.e. by the phase space point where the Gaussian distribution of the coherent state 1s

localized. The Husimi distribution of a harmonic oscillator state is
B |a |2 (a*>n 2

M(p.9) = | (aln) |2=\e Ll =] ) s o

with I = ¢* + p* and 6 is the polar angle in the (p,q) plane. For a linear combination

[MB
—_

of oscillator states one simply gets a a linear combination of these terms and for the

present case of the coupled two dimensional oscillator (2) one has

pzl;l(vapyv qu qy) = |<O_2|¢V>|2

s E penets () ) G) G
’ 2 Cnina Coi, 5 2h 2h 2h

ni,n2 n ,n2

1

ER

X cos ((n1 —nf) b, + (n2 —ny) b, , (10)
vl na!lnflng!
with I, = ¢2+p2, ... . The C'T(,’ll’)n2 are computed expansion coefficients of the eigenstates

in the oscillator basis and the primed sum denotes a summation over the symmetry
selected basis states, 1.e. ny = 0,2,2,4,6,... and ny = 0,0,2,2,0,... for class Hy, .
This circumvents a numerical evaluation of the oscillatory integrals for the computation
of the Husimi distributions.
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The Husimi distributions pf = [|(@[sh,)]> of individual eigenstates of the
Hamiltonian (1) with eigenvalue E, have been considered by many authors to investigate
the classical quantum correspondence by comparison of pl},l(px,ng),qx,O) with the
classical Poincaré section (3) at an energy E = E, (see, e.g., [8, 13]-[16])). The
quantum states can be distinguished by means of the localization on the classical phase
space structures (e.g. chaotic regions, regular islands surrounded by invariant curves,

localization by cantori).

OoN S

OoNA

Figure 2. Quantum (Husimi) phase space densities on the (¢, ps)-plane for the
Pullen-Edmonds system (o« = 0.1, A = 0.25).

A few examples of Husimi distributions for twelve selected states with energies close
to E, & 20 are shown in figure 2 (a = 0.1). The states are ordered from the upper
left to the lower right one with increasing energies F, = 20.030, 20.041, 20.116, 20.175,
20.070, 20.313, 20.136, 20.379, 20.262, 20.248, 20.331, 20.378 and we will number them
by (1), (2),.... States (1,2,6,9,10) belong to symmetry class A;, state (8) to class A,
(5,7,11,12) to class By, state (4) to B, and state (3) to class &.

State (9) clearly localizes on the pair of large stability islands centred at (P, q,) &~
(+4.5,0) in the classical Poincaré section (figure 1). State (8) localizes on the two islands
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at (£1.7,0) and the four islands close to the boundary centred at (p,, ¢,) ~ (£6,0) or
(0,46), which are related by the symmetry ¢, <> ¢,. It is well known that quantum
states can also localize on unstable periodic orbits, as for example the state (12), which
strongly populates the central hyperbolic fixed point and, of course, because of symmetry
the outer boundary of the Poincaré section. Similarly, state (5) localizes on the already
destroyed chain of four satellite island, which are still visible in the classical Poincaré
sections (figure 1) for @ = 0.075. Some other states can be described as "excited” states
of the ones described above, as, e.g., states (2) and (6), which appear as excited versions
of states (9) and (12), respectively. The other states shown localize more or less on the

classically chaotic region.

2.2. Localization on the enerqgy shell

Intuitively, we expect that an eigenstate |1),,) with energy E,, is localized on the (classical)
energy surface H(p,q) = E, . This can be, however, only approximately true, because
such a state populates also phase space regions at energies E # E,,. The localization of
individual eigenstates [1,) with eigenenergy E, on the energy shell H(p,¢) = E can be
quantitatively described by the integral of the Husimi density over this energy shell
A,(E) = / dpsdg. (&) = / dp-dg: Py (px,p,f,E), e 0) : (11)

2m7h 2mh
PSOS pi<2E

It is instructive to analyse first the simple case of eigenstates |¢,,,,) = |n1) ® |na)
of a two-dimensional harmonic oscillator with energy E,, n, = fi(n1 +n2+1). Using (9),
the Husimi density is

I+ 1 1 LN\N™ (L™
H - = —| 2 x Yy z Y
nin o ’ 12
Pmm(paq) (G |thn; s )| exp( % > <2h> <2ﬁ> (12)

n1!n2!

On the Poincaré section (3) we have I, = 2E — I, and therefore

2K 2T
1 1 IN™ (2F — I\™
A (E :—/d[/d& ~E/h (-) <7) . 1
wa(B) =2 ;o g \2n o (13)

1
With [du u” (1 —uw)™ = n!m!/(n+ m+1)! we obtain
0

Anan(E) =

1 E n1+nz+1
) (14

b E <_
or by normalising to unit integral over the energy F the function Aunlm (E) = Apyny, (E) /R

of a given eigenstate, which is a Gamma distribution in E with a maximum at
Ermax = Enn, , average value (E) = E,, ,, + h and variance (AE)? = hz(Emnz/h +1).

Note that this distribution can also be read as a probability distribution of the
eigenstates (njny) on an energy shell with fixed energy E. Completeness of the
eigenstates immediately yields

dp,dq, FE
> Aum(B)= [ 2 (15)

ning pzzISZE
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and the renormalized distribution of the eigenstates on the energy shell is Poisson
distributed with a maximum at E, ,, may & E + h/2 — h?/(24E), average value
(Eniny) = E + I and variance (AE,,,,,)* = RE.

T T T
015 8
AI/(E) 01 B T
0.05 8
0 | |
15 20 25
E

Figure 3. The density on the energy shell A, (E) (normalized to unity when integrated
over F) as a function of the Poincaré section energy F for the Pullen-Edmonds system

for eight states with @ = 0.025, 0.05, 0.075, 0.1, and A = 0.25, 0.75 and E, ~ 20

belonging to different symmetry classes.

Therefore, we can assume that — up to a normalisation factor — the localization
of the eigenstates with energy E, on a Poincaré section at energy E is Poissonian

distributed according to

e~ B/h BN Ev/h
Ay(E) ~ T(E,/h+1) (%) : (16)

This is exactly true for the harmonic oscillator. For the Pullen-Edmonds system (2)
, figure 3 shows the numerically computed distribution ;L,(E) for eight states with
a = 0.025, 0.05, 0.075, 0.1, and h = 0.25, 0.75 and E, = 20 belonging to different
symietry classes as a function of the Poincaré section energy E. All curves almost
coincide and are surprisingly well described by the Poisson distribution (16), despite
of the fact that the states show different individual phase space localization structures
(compare figure 2). Even more surprising is the insensitivity of the E, dependence
with respect to a non-harmonic term in the Hamiltonian, as illustrated in figure 4
for a Poincaré section energy £ = 20 and o = 0.1, & = 0.25. Shown are states of
symmetry class A; (similar results were found for the other symmetry classes). The
overall dependence is well described by (16). The observed differences appear for states
which localize strongly at the boundary and at the centre of the classical Poincaré
section, which have smaller values of A (compare the last subplot of figure 2; similar

anomalous features of such ‘sombrero’ states have been reported previously [6]). As for
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the case of the two dimensional harmonic oscillator, the distributions have a maximum
at Ey(max) = E+h/2 — h2/(24E) = 20.125, mean value (E,) ~ E 4+ h = 20.25 and
variance (AE,)?* = hE = 5 for E = 20 and h = 0.25. The number of states contributing
significantly to the energy shell E, i.e. those in an interval E + AFE,, can therefore be
estimated by

AN
dE

where N° is the density of states (see (6), i.e. the surface of the three dimensional energy

2AE ~ 2(E/h)*?, (17)

shell in phase space divided by A*/2. For h = 0.25, this leads to approximately 10® states
localizing on the energy shell E = 20.

0.06

0.02

Figure 4. The density on the energy shell A, (F) as a function of the eigenenergy
E, for a Poincaré section energy £ = 20 for @ = 0.1, A = 0.25. Shown are states of
symmetry class Aj.

2.3. Phase space localization

In Sect. 2.1 we have demonstrated that individual eigenstates [¢b,) localize on
different classical structures in phase space. A quantitative measure of the degree of
(de)localization is provided by the Wehrl entropy [18, 19, 2]

dFdq o . L
S, = _/ (2mh)? pu (7, 0) lnpy) (7,4) (18)

which satisfies the inequality S, > 2 (= number of degrees of freedom). States, which

are strongly localized in phase space, are expected to have a small entropy, as, e.g., the
coherent states |@), whose entropy is equal to two.
The integration in (18) extends over the full four dimensional space, which is

numerically very time consuming. In order to limit the numerical expense we therefore
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restrict ourself in the present study to measure the quantum (de)localization on the
Poincaré section, i.e. we restrict the integration over the two-dimensional surface of

section (3):

dpydg, -
Sv = / g aq P (s @) I ) (s @) (19)
PSOS

where pH is the renormalized Husimi density, i.e. p!! divided over its integral over the
surface of section A,(E) (compare (11)). In addition, we take a Poincaré section at the
dominant energy F ~ F, as discussed in Sect. 2.2.

Note that instead of the entropy (18) one can alternatively consider the integral

over the square of the Husimi distribution

&' = / Ap-da 0] (20)

\ 2nh
pyS2E

i.e. the ‘mean inverse participation ratio’, which is equivalent to the use of a different
type of (Reny) entropy S{¥) = In ¢, instead of the Shannon-type entropy in (18) [4]. The
results are similar.

An upper bound for the entropy (19) is given by a uniform density distribution over

the classical Poincaré section, which gives

S =1n(E,/h) (21)
le. Smax = 438 for E = 20 (h = 0.25) and S"* = 4.61 for E = 25. A refined estimate
of the maximum value can be obtained by assuming a uniform distribution over the
classically chaotic region in phase space. A numerical computation of the classically
chaotic phase space area yields for @ = 0.05 the values $™ =~ 3.5 (E = 20) and

gmax’ 49 (E = 25) For @ = 0.1 these values increase to 4.2 (E = 20) and 4.5
(E = 25).

T
L ] o
4 . , . o % o 300 9 4 Q@ o% @%Q%G& 0%0@@%@0 &QJ
& 00 6% Q8 S @ o <> 3
TSR 8% Ry ARAL 5o % 3y LAY g %
36" %0%e %0 T oo 00 0 o 3_00 3 W0
o o o o o 6 ¢ o o O 50 @
0T g 0 B O G 00 @ 00 © o % ° o
o
R o %, ¢
L i L N 4
§ %%, 0 000”8 %° o 00 ¢
1t 1 1t 1
0 L 0 I
20 22.5 25 20 22.5 25
E, Ey

Figure 5. Phase space entropy S(*) versus the eigenenergy E, for eigenstates of the
Pullen-Edmonds system (& = 0.1, A = 0.25) in the energy interval 20 < E, < 25.

Figure 5 shows the phase space entropy §) as a function of the eigenenergy E,, for
the eigenstates in the energy interval 20 < E, < 25 for a = 0.05 and o = 0.1, (2 = 0.25)
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in the energy interval 20 < E,, < 25. We observe a small fraction of strongly localized
states with entropies close to two and a large fraction of highly delocalized (chaotic)
states with entropies somewhat below S™'. Inspection of the Husimi densities shows
that the low entropy states localize on the regular islands, as, e.g. states similar to (8)
and (9) in figure 2. With increasing a the number of these regular states is reduced.

The states with larger entropy populate the chaotic region.

3. Global phase space localization

As demonstrated in the previous section, the quantum phase space distributions p!! of
the eigenstates reflect and respect the classical dynamical properties in phase space.
However, these states clearly show individual properties and it is desirable to develop a
measure for the global dynamical properties of the quantum system at a given energy
E. which is supposed to be a related to all eigenstates, with emphasis on those states
with E, ~ E, i.e. those states in the energy window given by AE, (compare Sect. 2.2).

Following [1, 4], the time evolved Husimi distribution of a wave packet |d@(¢)) initially

centred at a phase space point |d(0)) = |do) = |po, Qo) is averaged over time:

T
P — _ - = — - . ]- - =
ﬁH(a70[0) = IOH (p7q7' 09 0) = lim (f /dt pH(a,ao,t))
0
. 1
= (T

T—o0
1 2

This time averaged density describes the spreading of the initial wave packet over phase

O O

i
dt ‘{62| exp(—%Ht) |do)

space. This delocalization can be quantitatively measured by the entropy

oL dpdqd .o o o . H/> 5 » o
S<p0’q0> = _/ (2]:[_77?2 PH(PaQaPOa(IO) lan( y 45 Do, 0)) (23>

or — when we again restrict the integration to the two-dimensional surface of section (3)

,by

dp,dqg, -
S(pr;CJx0>:_ / o7 h Hl
PSOS

dpxdqx ~ _
== / ok IOH pxaQxapxgaqg:())lIlPH(pxanapr,qu), (24)

<2E

where p' is the renormalized time averaged Husimi density, i.e. p' divided over its
integral over the surface of section. In order to compare with the classical Poincaré
section, it is natural to vary the initial conditions (py,qo) over the two-dimensional
classical surface of section. A plot of S(pag, G, ) shows the overall delocalization over the

Poincaré section for a coherent wavepacket initially placed at (pa,, ¢s,) Similar concepts
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have been suggested by Thiele and coworkers [20, 21] and by Miiller [22] (see also the

early papers by Nordholm and Rice [23, 24]); for a general discussion of the use and

properties of entropies for analysing quantum localization see [4] and references therein.
The numerical computation is very much simplified by means of a decomposition

in eigenstates

2

T
p(a, o) = lim / 5T HE (@) o)

T
1 2 )~ 2
= Jim 7 [ 4t SNl Lok (25)
D e )t (@leb ) (ol @o)(doltou)) (] d) Z| (@lgan)l® ol
pw#Y

where the last equality assumes non-degenerate states, i.e. it is not valid for the states
in class Hg. In the following we only consider the non-degenerate states of classes
Ha,, Ha,, He, , Hs,, 1.€., we use initial states in (22), which are coherent states |dy)

projected onto the union of these subspaces. which yields
psym a OZO Z' a|77/)l/’ a0|77/)l//>|2 (26)

where the sum includes all |¢y> € {Ha,Ha,, Hs,, Hs,}.
In the numerical computation, the infinite sum in (26) can be truncated in view of

the localization on the energy shell (see Sect. 2.2). For E = 20, for example, only states

i

"'llll':' [T

dzx

Figure 6. Global quantum phase space entropy S(ps,,¢z,) of the Pullen-Edmonds
system (a = 0.05, i = 0.25) for E = 20 as a contour plot over phase space.
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in the interval 15 < E,, < 25 considerably contribute.

Figure 6 shows the global quantum phase space entropy S(ps,, ¢s,) for the Pullen—
Edmonds system (a = 0.05, & = 0.25) for E = 20 as a contour plot over phase
space. A comparison with figure 1 shows a clear correspondence between quantum and
classical phase space structures. The big resonance islands are clearly visible, however
the satellite islands are not resolved for &~ = 0.25. An additional quantum localization
on the unstable hyperbolic fixed point at (p,,g,) & (0, +4) appears as a local minimum
of the entropy. Figure 7 shows the same plot, however for an increased value of the
nonlinearity parameter @ = 0.1. Also here we find a remarkable agreement with the
classical Poincaré section, i.e. the four outer islands and the bifurcated central resonance,
appearing as two small resonances. Again we observe a strong quantum localization at
the classically unstable fixed point at the centre.

Horizontal and vertical cuts through the entropy plots in Figs. 6 and 7 are shown
in Figs. 8 and 9, respectively. For a = 0.05 the entropy is clearly smaller than the
upper estimate of $™** = 4.38 (uniform density over the Poincaré section as discussed
in Sect. 2.3), however it considerably exceeds the estimate Smax’ ~ 3.5 (uniform
distribution on the classically chaotic region). This can be attributed to the marked
population of the Husimi distributions of the chaotic quantum states in the regular
regions. Similarly for a = 0.1, where the estimate $™ & 4.2 is slightly exceeded.
At the centres of the big stability islands, the entropy shows deep minima, where its

value is approximately equal to two, which is the global minimum of the Wehrl entropy

Figure 7. Same as figure 6, however for an increased value of the nonlinearity
parameter a = 0.1.
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S (%(]a Pz0>
S<Q$(17 ng)

Dz Az

Figure 8. Global quantum phase space entropy S(ps,,¢s,) the Pullen-Edmonds

system (@ = 0.05, & = 0.25) as a function of ¢, for p,, 0 (left) and pg, for

¢z, = 0 (right).

(18) or (19), i.e. the Husimi density is close to a coherent state in these points. The

localization at the other stable or unstable fixed points is much less pronounced.

4. Conclusions

In this paper we have extended the concept of quantumn phase space entropies, which
has previously been developed in studies of one-dimensional systems, to the case of two
degrees of freedom. We have demonstrated that the method provides a convenient
diagnostic tool for analysing and visualising the dynamical properties of quantum
systems in phase space. The resulting entropy plots are in close relationship to the

Poincaré surfaces of section in the study of classical dynamics. Moreover, it has been

45 : 45
4 4
35 35
—~ 3 —~ 3
=1 <
g g
Q: 25 Q: 25
= =
S S
= 2 = 2
n 0
15 15
1 1
05 05
-8 8 8 8
Dz Gz

Figure 9. Global quantum phase space entropy S(ps,,¢s,) the Pullen-Edmonds
system (o = 0.1, A = 0.25) as a function of ¢, for p;, = 0 (left) and p,, for ¢z, =0
(right).



Phase space entropies and global quantum phase space organisation 14

pointed out [1, 4] that the concept of a quantum entropy has a direct counterpart in
classical mechanics, which offers the possibility of a direct comparison of classical and
quantum properties to detect, e.g., quantum localization phenomena. This question
has not been addressed in the present study. Clearly, much more work is required to
explore the properties of the phase space entropy concept, both in quantum and classical

dynamics.

Acknowledgments

This work has been supported by the Deutsche Forschungsgemeinschaft (SPP

‘Zeitabhangige Phanomene wund Methoden in Quantensystemen der Physik wund
Chemie’).

References

[1] Mirbach B and Korsch H J 1995 Phys. Rev. Lett. 75 362

[2] Gorin T, Korsch H J and B Mirbach 1997 Chem. Phys. 217 145

[3] Wiescher H and Korsch HJ 1997 J. Phys. A 30 1763

[4] Mirbach B and Korsch H J 1998 Ann. Phys., NY in press

[5] Pullen R A and Edmonds A R 1981 J. Phys. A 14 L477

[6] Feingold M, Moiseyev N and Peres A 1985 Chem. Phys. Lett. 117 344

[7] Meyer H D J. Chem. Phys. 1986 84 3147

[8] R L Waterland R L, Yuan J-M, Martens C C, Gillilan R E and Reinhardt W P 1988 Phys. Rev.
Lett. 24 2933

5

16] Miiller K and Wintgen D 1994 J. Phys. B 27 2693

17] Arranz F J, Borondo F and Benito R M 1996 Phys. Rev. E 54 () 2458
18] Wehrl A 1978 Rev. Mod. Phys. 50 221

19] Orlowski A 1993 Phys. Rev. A 48 727

]
]
]
]
]
]
] Dando P A and Monteiro T S 1994 J. Phys. B 27 2681
]
]
]
]
]
]

(Reidel Publishing Company) p 391
[22] Miiller K 1992 Thesis University Heidelberg
[23] Nordholm K S J and Rice S A 1974 J. Chem. Phys. 61 203
[24] Nordholm S and Rice S A 1974 J. Chem. Phys. 61 768



