Exploiting past proof experience”

Matthias Fuchs
Fachbereich Informatik
Universitat Kaiserslautern

Postfach 3049
67653 Kaiserslautern
Germany
E-mail: fuchs@informatik.uni-kl.de

Abstract

We are going to present two methods that allow to exploit previous expe-
rience in the area of automated deduction. The first method adapts (learns)
the parameters of a heuristic employed for controlling the application of infer-
ence rules in order to find a known proof with as little redundant search effort
as possible. Adaptation is accomplished by a genetic algorithm. A heuristic
learned that way can then be profitably used to solve similar problems. The
second method attempts to re-enact a known proof in a flexible manner in order
to solve an unknown problem whose proof is believed to lie in (close) vicinity.
The experimental results obtained with an equational theorem prover show that
these methods not only allow for impressive speed-ups, but also make it possible
to handle problems that were out of reach before.

1 Introduction

Automated deduction is—at its lowest level—a search problem that spans huge search
spaces. The general undecidability of problems connected with (automated) deduction
entails an indeterminism that has to and can only be tackled with heuristics. Mostly,
automated deduction is employed to prove that a given conjecture can be deduced
from an also given set of axioms. In order to solve such tasks automated proving
systems utilize a (fixed) set of inference rules whose applications are responsible for
both indeterminism and the immense size (the “combinatorial explosion”) of the search
space. Despite a far superior inference rate the computer is inferior to (human) math-
ematicians when it comes to proving “challenging” theorems. One prominent reason
for this drawback of automated proving systems is their inability to make use of past

*This work was supported by the Deutsche Forschungsgemeinschaft (DFG).



experience, which is very often quite helpful or even an indispensable key to success.
Therefore, it stands to reason to upgrade automated proving systems on that score.

But exploiting past proof experience fruitfully is in general neither trivial nor does
it come without hazards. The main problem is that analogy in the widest sense is hard
to define, to detect and to apply in the area of automated deduction. In other branches
of artificial intelligence various applications of analogy have proven to be powerful tools
(see, for instance, [Ca86], [Bu89]). These research areas profit from the fact that “small
changes of the problem description (usually) cause small changes of the solution”. This
is definitely not true for automated deduction (proving). Consequently, we have to be
very careful about making use of past proof experience in order not to stumble into a
major pitfall of this kind of reuse, namely making things considerably worse compared
to proving from scratch (cp. [KN93]).

In spite of these bleak prospects of success we still think that it is worthwhile
equipping an automated proving system with the option to utilize experience gained
in the past.

In this report we are going to propose two distinct ways to make use of past proof
experience. Firstly, the parameters of a given (generic) heuristic for controlling the
application of inference rules are adapted so as to find a proof P of an also given proof
problem A obtained in the past with “as little redundancy as possible”. (Here, redun-
dancy refers to the exploration of paths in the search space which do not contribute to
attaining this particular proof P.) The heuristic adapted to P (i.e., the heuristic has
learned P) can then be applied to a (novel) proof problem A" “similar” to A, profiting
from the reduction of redundancy. An adapted heuristic indirectly reuses P by seizing
the essential properties of P with its parameters during the learning process, which
is realized by a genetic algorithm. Secondly, we propose a method that explicitly uti-
lizes a proof P found in the past. The method proceeds by flexibly following the path
through the search space corresponding to P. Flexibility is achieved by allowing for
gradual expansions of this prescribed path. This way proofs lying in (close) vicinity
of P can be found (very) quickly.

A number of experiments will demonstrate the viability of these two methods. Our
experiments will show that exploiting past proof experience can not only give rise to
salient speed-ups, but can also enable a proving system to handle problems it could not
cope with before. Among these problems are tasks even such respected and powerful
proving systems as OTTER 3.0 ([Mc94]) and Herky ([Zh92]) have difficulties with (see
in particular subsection 6.2).

The report is organized as follows. First, section 2 gives an overview of the general
problematic we have to face in this research area. Sections 3 and 4 introduce the meth-
ods ‘learning proof heuristics” and ‘extending proofs’ for utilizing proofs found in the
past. Section 5 briefly describes the proving system we employed for the experiments
documented in section 6. A discussion of related work in section 7 and a summary in
section 8 conclude this report.



2 The general problematic

The exploitation of past proof experience generally confronts us with the following
situation: We are given a problem description A" = (Az’, Th'), the task being to find
a proof of the theorem T'h' based on the axioms in Az’. In order to accomplish this
we rest on a proof P of some similar problem A = (Az,Th) found in the past. A’ is
referred to as the target (problem), while A is called the source (problem). In many
areas of artificial intelligence reusing solutions means modifying a known solution of
a source problem so that its modification provides at least a good starting point for
creating a solution of the target problem, if not already being a solution itself. A well-
known representative of this line of research is case-based reasoning ([Ko92]). Applied
to automated deduction (respectively proving) the proof P has to be modified so as
to become a proof of the target A’. But such modifications will in general entail new
proof problems caused by differences between the axioms or theorems of source and
target. This suggests a more general way of proceeding: In order to prove the target—
assuming a similarity between it and the source—we try to infer facts that are in some
way similar to those needed for the source proof P. This method works perfectly if
there is total correspondence between source and target, i.e., both Az and Az’ as well
as Th and Th' are identical (modulo renaming symbols). In that case, ‘similar’ means
‘identical’ and the source proof merely has to be re-enacted, thus avoiding almost
any form of redundancy. But this effect can also be achieved by simply storing and
retrieving proofs from a database (memory-based reasoning). The more interesting
case arises 1if source and target share some properties, but do not agree completely.
Under these conditions, the source proof P can still be useful as a guideline, but we
also have to permit deviations from the path traced out by P in order to find a proof
of the target theorem. These deviations from the source proof constitute the main
problematic of any form of proof reuse in general. On the one hand, we want to stay
close to the source proof to prune the search space effectively, which is the true motive
of reusing proof experience. On the other hand, we cannot stick rigidly to the source
proof unless source and target are identical (modulo renaming). Consequently, we need
a compromise between flexibility and rigidity (inflexibility) or, in other words, between
generality and specialization. A method for exploiting past proof experience is referred
to as being specialized if it allows for a significant reduction of search effort, but requires
a high degree of similarity between source and target in order to be successful. A more
general method, however, does not depend on the similarity of source and target to
a great extent, but naturally cannot cut down on search effort quite as effectively.
So, general (flexible) and specialized (rigid, inflexible) methods for utilizing past proof
experience are at opposite ends of a scale dividing up such methods. In the extreme
case, a general method does not assume any similarity between source and target
and hence basically proceeds ignoring the source. An extremely specialized method,
however, attempts to re-enact the given source proof and will fail if this is not possible
or if it cannot prove the target this way. Therefore, the degree of similarity between
source and target determines the appropriate method. Unfortunately, the degree of
similarity is in general very difficult to determine a prior:.



Since we assume a certain similarity between source and target the methods we are
going to present in sections 3 and 4 are situated near the “specialized end” of the scale,
while still offering reasonable flexibility. The experiments described in section 6 reveal
that a lot of problems with a varying degree of similarity can be profitably tackled
with these methods. We should like to emphasize that the success of our methods not
only consists in substantial speed-ups, but also in making it possible to solve problems

which could not be handled before.

3 Learning proof heuristics

Our first method for exploiting past proof experience originates from the following
considerations: Almost any automated proving system disposes of a set of heuristics
for controlling the application of its inference rules. Most of these heuristics are very
general (flexible) in the sense of section 2, because they are successfully applicable to a
wide range of problems (without falling back on source problems). Also, such heuristics
usually are parameterized. Consequently, each is a perfect candidate to become more
specialized by “tuning” its parameters, while still retaining a fair degree of flexibility
due to its inherent generality. The aim of adaptation (learning') consists in creating
a heuristic that is especially tailored to the needs of a given source problem A and a
known proof P (the source proof) of it. Adaptation is achieved by finding parameter
configurations for a given (generic) heuristic so that it can follow the path through the
search space set out by P without losing its way too often, thereby reducing redundancy
with respect to the search for P. The limitedness of commonly used heuristics will in
general prevent any learning procedure from finding a parameter configuration that
makes it possible to follow that path exactly, which stands in contrast to the demand
for flexibility. Hence, an adapted heuristic should be able to cope with moderate
differences between A and a target problem. Furthermore, if an adapted heuristic is
applied to a target problem which is (supposedly) similar to the source problem A
it learned, it does not consult the source proof P anymore. The “essence” of P has
been assimilated in the course of adaptation, making any further use of P obsolete.
Therefore, this method so to speak indirectly reuses proofs, and it has the advantage
of not causing any kind of overhead during its application.

After this basic description of our first method, we have to address its central prob-
lematic, namely the way adaptation (resp. learning) is to be accomplished. Commonly,
the parameters of a heuristic are flags or numerical values. Both types can very conve-
niently be represented by one or several bits. Hence, the whole set of parameters, i.e.,
a parameter configuration, is representable as a string of bits. This suggests the use of
a genetic algorithm. The following subsection will outline its foundations as well as its
application to our learning problem.

'We shall use the notions ‘adaptation’ and ‘learning’ synonymously.

4



3.1 Learning with the genetic algorithm

The genetic algorithm ([Ho75], [Da88], [Ra91])—GA for short—is an adaptive method
based on principles known from general genetics and biological evolution. It is very
useful for finding (near) optimal solutions to problems in many domains. It differs
from other optimization techniques in that it maintains a set of individuals (usually
with a fixed size) which is called a population or generation. Each of these individuals
corresponds to a (sub-optimal) solution of the given problem. An individual is thus
a representation of a solution that suits the GA. The GA constructs new individu-
als (and hence new solutions) using the best ones of its current population, replacing
those considered least fit (“survival of the fittest”). The assessment of individuals is
accomplished by the so-called fitness function. The construction of new individuals is
achieved by applying genetic operators which basically reflect and simulate the pro-
cesses involved in biological reproduction. The most important genetic operators are
crossover, mutation (and inversion). An important prerequisite for the GA to be ap-
plicable is a structure of the individuals that is amenable to these genetic operators.
Common is a representation as a string of bits of a fixed length n.

In our case, individuals correspond to parameter configurations of a heuristic for
selecting the next (deductive) inference to be performed by an automated prover. By
restricting the range of each parameter a parameter configuration can be represented by
a string of bits of fixed length which is constructed by concatenating the bit representa-
tion of each parameter of the configuration. Hence no problems are raised regarding the
applicability of the genetic operators. So, the major problem that remains is the design
of an appropriate fitness function. The fitness function is in general very important for
any GA application, because it establishes the only connection between the abstract
underlying search method and the actual optimization problem. Our problem consists
in finding a parameter configuration for a heuristic so that an automated prover us-
ing this (adapted) heuristic can find a proof of a given proof problem A = (Az,Th)
with “minimal redundancy”. The guidance during the search for an optimal parameter
configuration is provided by a (source) proof P of A found in the past.

Let W be a generic heuristic and w an instance of W corresponding to a parameter
configuration (an individual) we wish to assess, i.e., the parameters of W are set to
specific values. The quality of an w is expressed by the amount of redundancy w would
produce if a proof of A guided by w were attempted. So, the ideal and most exact
way to assess an w consists in proving or attempting to prove that T'h follows from Ax
using w and subsequently analyzing statistical data collected during the search. But
clearly enough this is impractical. The fitness function has to be applied to each (new)
individual during each cycle?, and hence a fitness function that needs at least a couple
of seconds (which has to be considered the lower limit to obtain expressive statistical
data during a proof attempt) for rating just one individual is untenable.

The following considerations offer an efficient alternative. Most redundancies during
a search for P are caused by inferring facts which do not contribute to finding P. The

20ne cycle of the GA comprises the rating of all individuals, selecting the best and replacing the
rest with offspring of the best.



source proof P corresponds to a particular path in the search space. With the help
of P all (potentially) inferable facts can be classified into two categories: On the one
hand, there are “useful” (positive) facts, which have to be inferred in order to follow
the path given by P. On the other hand, “useless” (negative) facts represent facts that
lead away from this path, entailing redundant search effort. (We emphasize that the
terms “positive” and “negative” must be seen in the context of finding the particular
proof P.) Consequently, an obvious method for estimating an w consists in measuring
its ability to distinguish positive facts from negative ones, i.e., its ability to cut off
misleading paths. Here, we have to face another problem: While the set P of positive
facts is finite (and usually rather small), the set of negative facts is in general infinite.
Hence we have to confine ourselves to a finite subset N of the set of (all) negative facts.
P and N can be extracted from the proof run that yielded P, for instance. But there is
one crucial problem in this approach, namely using a static N. Even in case we succeed
in adapting W “perfectly”, i.e., it associates weights® with the members of P and N
so that the highest weight of a fact in P is still below the weight of any fact in N, we
have absolutely no guarantee that such a perfect “adaptation” will carry over to an
improved search for a proof. As a matter of fact, it is even possible for the adapted
heuristic w to perform more poorly than the heuristic originally employed to find P.
The reason for such a behavior is the high probability that w may infer negative facts
different from those in N, which might actually complicate the search for P even more.
We therefore have to step back from the idea of using a static N.

The problems just outlined can—at least to a large extent—be compensated for by
periodically updating N, i.e., by maintaining a dynamic N. The adaptive procedure
(learning) then proceeds as follows: Starting with N = (}, the automated prover is run
for a given time T' (usually about 5sec) before calling the GA for the first time, and
then each time the GA has executed n. cycles. Each run through this outer loop (the
inner loop corresponds to a cycle of the GA) will be referred to as an iteration. For
these update runs the prover uses the w currently rated best. If the prover actually
succeeds in finding a proof, w will be among the output of the adaptive procedure.
Facts generated during time T which are not in P are considered as negative facts
and are added to N. It must be emphasized that newly occurring (negative) facts
are added to N and the “old” ones are not discarded. Otherwise, if replacing N each
time, chances are that we might run into some form of “oscillation” where the same NV
appear cyclically, which may have severely disadvantageous effects on the GA’s search
for an optimum.

We have now explained the central role the GA plays regarding our learning task.
We have also brought out that the central problematic of this GA application is the
design of a fitness function. Through the discussion above it has become clear that—
for efficiency and practicability reasons—we have to content ourselves with a fitness
function that simulates rather than actually performs proof runs. This simulation is
based on the sets P and N which depend on the source proof P. We already pointed
out that N has to be updated periodically. This measure is a remnant of the “ideal”

3Tt is assumed that a heuristic associates a weight (a natural number) with all potentially inferable
facts and that the fact with the smallest weight is actually inferred.



fitness function which is indispensable to be able to achieve a “realistic” simulation.
The following subsection describes the technical details of the fitness function.

3.2 Designing a fitness function

The fitness function of the GA works with the two sets P = {{(u;,v;) | 1 <53 <m}
and N, the latter being periodically updated after n. cycles of the GA. In order to
estimate the quality of an w, i.e., its ability to prefer elements of P to elements of N,
the following sets Z#(IV) C N associated with each (u;,v;) € P are pivotal. The
elements of each Z¥(N) are the currently known negative critical pairs which may be
preferred to the respective (u;,v;) € P during a search for P using w.

I7(N) = {{uw,0) € N | w((u,v)) <w({ujv5)},  1<j<m

A “perfect” adaptation entails Z#(N) = ) for all 1 < j < m. Since this will hardly
ever be the case we have to find a more subtle way of rating a given w. Basically,
the number of elements in each T¢¥(N) constitute a lead, indicating the (potential)
number of “obstacles” on the way to (u;,v;). Therefore our aim consists in minimizing
|Z¥(N)|. But matters are not that simple that merely adding up the |Z( V)| will do.
The key idea is to estimate the (detrimental) influence of each (u,v) € T¢(NV) for all
1 <5 < m. Essential for this estimation are the notions relevance and irrelevance. A
negative critical pair (u,v) is relevant (irrelevant) with respect to w and (uj,v;) € P
if w({u,v)) < w({uj,v;)) and it is (is not) selected before (u;,v;) during a proof run
using w. (Recall that the members of N stem from “occasional” update runs with just
one, namely the currently best w’. They can therefore in no way be representative w.r.t.
any w.) It must be emphasized that relevance or irrelevance are not global properties
of a negative critical pair (u,v), but must be seen with respect to a certain w and
(uj,vj) € P. A negative critical pair (u,v) may be relevant w.r.t. w and (u;,v;), but
may be irrelevant w.r.t. w’ and (uy,vg), or vice versa (where w # w’ or j # k). It is
clear that each irrelevant (u,v) € T¢(N) will make w look worse than it actually is,
unless it is identified as irrelevant. On the other hand, if a negative critical pair (u,v),
which is relevant w.r.t. a certain w and (uj,v;) € P, is not in N and consequently
not in any Z¥(N), then this w might look better than it actually is. Relevance or
irrelevance can only be decided if we really start a proof run using the respective w.
But this is exactly what we wanted to avoid. Therefore we have to use more efficient,
but of course less accurate criteria to estimate relevance and irrelevance.

We can here merely sketch these criteria that are worked into the fitness function 4.
(For a detailed discussion and the gradual development of ¥ see [Fu95].)

First of all, statistics concerning the frequency of occurrences of a (u,v) € N
during update runs give some clues regarding the relevance of (u,v). The total number
of occurrences p({(u,v)) < t., where i, is the number of the current iteration, as well as
the number 7,,,({(u,v)) < i, of the iteration (u,v) most recently occurred in are made
use of in this context. Basically, the more occurrences and the more recently they
took place, the more relevant (u,v) is considered to be. (See “occurrence component”

below.)



A (u,v) € I¢(N) may have a weight w((u,v)) smaller than or equal to w((u;,v;)).
Since (u,v) with w({(u,v)) = w({u;,v;)) is not necessarily an obstacle during the search
for (uj,v;) even if it is in the set C'P (FIFO policy), we distinguish these two cases.
Hence, (u,v) with w((u,v)) < w({u;,v;)) is considered more relevant than a (u’,v’)
with a weight equal to w({u;,v;)). (See ¢ below.)

Furthermore, the depth® §({u;,v;)) of a {(u;,v;) € P in the derivation graph com-
pared to the depth 6((u,v)) of a (u,v) € T#(V) also gives some hints as to the relevance
of (u,v): The deeper (u,v) compared to (u;,v;), the less relevant it is considered. (See
“depth component” below.)

The criteria just presented are realized by the following formulas (in one of many
possible ways), where 1 <j <m, D € N and (u,v) € Z¥(N).

plle)FL]if o((u,v)) = w({u;,v;
o ((0)) = {[ EL| i wo((u,v)) = w({uy,v;))

p({u,v)), otherwise

G((u) = B (5 () = (e = imr((u,0)))) - B (6({uz,05) = 8((u,0)) + D))

occurrence component depth component

where B(z) = z if > 0 and 1 otherwise. Hence (¥ = Y1, ,yeze(v) V7 ((u,v)) is a
measure for the “difficulties” we (probably) have to face when using w and trying to
reach (uj,v;) € P. If (¥ grows these difficulties (are thought to) augment.

So far we have only provided criteria dealing with relevance resp. irrelevance of
members of N. The last criterion aims at handling relevance of (negative) critical
pairs not (yet) in N. We utilized the following simple, obvious observation: Chances
that there are relevant (u,v) (w.r.t. a certain w and a (u;,v;) € P) which are not in N
and hence not in a T¢(N) increase over-proportionally (see o below) with |[Z¥(N)|.
We therefore count the elements of 7¢#(N) omitting those judged to be irrelevant on
account of the above criteria giving

gS= 3w (@ ((u0) = (i — ime((w,0)))) , 1< <m
(u,v)EIJ“’(N)
where 7(z) = 1 if > 0 and 0 otherwise.

The fitness function ¥ is a lexicographic combination of the four measures ¥4, U5,
Yc and ¥p. (The last two measures ¥ and ¥p compute average weights.)

Ja(w) = ia(m;’,c;*’), Oz(:z:,y)zrzc.yJ, C>0

i=1

Inlw) = B¢

Dolw) = > iz w({uj,v5)) (m > 0)

m

4The depth of an axiom is 0. The depth of an inferred critical pair is the maximum of the depths
of its ancestors plus 1. See also [Fu95].



Ipw) = _E(u,u)ejr]:[j«uvw) (N £ 0)

Given two adapted heuristics w and W', w is estimated to be better than w’ if ¥(w) <je
J(w'), where <., is the lexicographic comparison from left to right using the usual
ordering <. This completes the description of the fitness function.

The subsequent section introduces our second method.

4 Extending a proof path

The second method stems from a more straight forward approach to utilizing past
proof experience which has already been suggested in section 2: The first idea that
comes to mind when thinking about reusing a proof P found in the past (the source
proof) to prove a given theorem is to try to infer facts that are in some way similar
to those needed for the source proof (“derivational analogy”, e.g. [Ca86]). Unlike the
method proposed in section 3, which diminishes flexibility for the sake of the benefits
of increased specialization, we have to deal here with a method that is specialized and
hence less flexible by design. Therefore, we have to walk on the opposite way, sacrificing
a piece of specialization to obtain the indispensable degree of flexibility. This can be
achieved by combining in an appropriate way the inference of similar facts with one of
the general (flexible) heuristics the automated proving system at hand disposes of.

Basically, the combination consists in measuring the “distance” between a given
fact and facts lying on the path prescribed by P, which is overlapped by a general
heuristic, the so-called associated heuristic w. Usually, a potentially inferable fact A is
weighted by w, i.e., w associates with A a natural number w(A) € IN, and the fact with
the smallest weight is actually inferred. Here, we combine w(\) with a measure d())
of the “distance” between A and the facts whose (actual) inference allows to follow the
path traced out by P. Let Lp be a list of those latter facts. Furthermore, a fact A is
either an axiom or has been inferred with the help of n > 1 facts Aq,..., A\, already
known. In the latter case, we refer to A\q,..., A, as the ancestors of the descendant ).

We define the distance d(\) between a fact A and the facts in Lp as

0, A is an axiom (no ancestors)

d(\) = { Y(y(X),D(X)), A hasn > 1 ancestors

~ computes the average distance between the ancestors Ay,..., A, of A and the facts
in Lp, while D computes the (minimal) difference between X itself and the facts in Lp.
Y combines these two values. We set

7<A>:E§d<mJ , ¢<x,y>={ =) v

D) = min ({diff (\,\) | X' € Lp}) .



diff is a (syntactical) difference measure which is inverse to similarity. We employ
syntactical identity (modulo renaming variables) and subsumption as the most reliable
and accurate meters of similarity:

AN iff Fp:p(A) = N, where p performs the renaming of variables

A<X iff X subsumes X, which basically means testing ‘A implies X"’ (A, X' being
closed formulas, i.e., not containing free variables) and this test can be
decided on a syntactical level.

diff is now defined by

. n_ )0, A Nor Ad N
diff (A, X') = { 100, otherwise

We restrict diff to INjgo = {0,...,100}, so that also all the other functions will return
values from IN1gg, which is a standardization that makes computations more transpar-
ent. So, both for d and diff, 0 stands for a “perfect agreement” with respect to P,
whereas 100 stands for a “total disagreement”. Note that the distance 0 is assigned
to axioms without checking for any similarity, which is justified by the observation
that axioms have a high probability to be necessary for finding a proof (unless the set
of axioms is deliberately or carelessly “overloaded”). Note also that the design of ¢
causes the distance d()) to increase depending on the average distance of its ancestors
and its own difference, unless the latter is 0, which corresponds to A being identical to
or subsuming a fact in Lp.

The final weight @w(A) that this method associates with A complies with the general
convention, namely “the smaller the weight of a fact, the more useful it is considered
to be”.

w(A) =(dA) +p)-wd) , peN

The parameter p controls the effect of d(\), which will be dominant if p = 0. In that
case, if also d(A) = 0, then w(X) will be 0, too, regardless of the weight w(\) the
associated heuristic w contributes. As p grows, w(A) increasingly influences the final
weight, thus mitigating the inflexibility of the underlying method. For very large p, the
influence of d(\) becomes negligible, and the whole method basically degenerates into
the associated heuristic. Thus, w attempts to effect an extension of P which d tries to
confine, the whole interaction being controlled by p.

Before summarizing our experimental results in section 6, the subsequent section
concisely describes the automated proving system used for these experiments. We have
chosen an automated proving system for (purely) equational logic based on the Knuth—
Bendix completion procedure (UKB-procedure). Our choice has mainly been favored
by the existence of knowhow and implementations. We believe that our methods can
be utilized by almost any (automated) prover that employs parameterized heuristics
to control its inference machine and explicitly infers facts.

10



5 Equational theorem proving with the UKB-pro-
cedure

The unfailing Knuth-Bendix completion procedure ([KB70], [HR87], [BDP89]) is a

procedure for purely equational reasoning. We shall now describe its foundations.

Let F be a finite set of function symbols (operators) and V an enumerable set of
variables. 7 : F — IN determines the arity of any f € F. The set Term(F,V) of
terms over F and V is recursively defined by V C Term(F,V), and, given ty,...,t, €
Term(F,V), f € F, 7(f) =n, then f(t1,...,t,) € Term(F,V). An equation is a pair
of terms s and ¢, written as s = t. The UKB-procedure can be applied to investigate the
following problem: Given a set Az = {s1 = t1,...,s, = t,} of (implicitly) all-quantified
equations (the axioms) and an also (implicitly) all-quantified equation Th = s = ¢ (the
theorem or goal), is T'h a logical consequence of Az? If this is the case, then the UKB-
procedure can prove it by employing the usual operational semantics of equational
deduction (“replacing equals by equals”), i.e., showing Az F Th.

The UKB-procedure was originally conceived for transforming the initial set of
equations (Az) into a confluent and terminating (i.e., convergent) set R of rewrite
rules. Therefore, the UKB-procedure is forward-oriented by design. It proceeds by
deriving new equations from those in the current set R (which is initially empty).
Newly inferred equations are called eritical pairs and are collected in the set C'P.
(Initially, CP = Az.) During this inference process certain restrictions apply, most
of which are based on the use of a reduction ordering >. > is a partial ordering
on terms which has among others the property to be well-founded. An outstanding
advantage of the UKB-procedure is the simplification of the current sets C'P and R.
This eliminates much redundancy and also keeps the known facts as concise as possible.
Rewriting steps (substituting terms with terms that are smaller w.r.t. >)—also called
reductions—account for the majority of simplifications.

Equations in R are “active”, i.e., they take part in the generation of critical pairs.
The main loop of the UKB-procedure selects (and deletes) a critical pair ¢p from CP,
which then becomes a member of R, performs all possible simplifications and adds all
equations that can be inferred on account of ¢p to C'P. A goal is proved if both its
sides can be reduced to identical terms. Completion terminates if the set C'P eventually
becomes empty. Hence the crucial, indeterministic step of the UKB-procedure is the
selection of the next critical pair to become active. A judicious choice on that score
can speed up the proof (completion) process considerably, whereas poor choices can
slow it down extremely and even make it (practically) impossible. Due to the general
undecidability of Az - T'h only heuristics can be applied to resolve this indeterminism.

A heuristic for selecting the next critical pair usually associates a weight (a natural
number) with each critical pair. Commonly (and that is what we assume here) the
critical pair with the lowest weight is the one considered the most suitable and will
be selected. (If there are several critical pairs with the same lowest weight then the
one that has been in the set C'P for the longest time is picked (FIFO).) The heuristics
for choosing the next critical pair are based on a weighting function ¢ : F UV — NN,

11



where ¢(z) = w, € IN for all € V and ¢(f) = wy for all f € F. ¢ can be extended
to Term(F,V) by defining

Wy, ift=xeVy
o) = { Wi+ T $(L), L= [, it), [ € F, n=r1(/)

The heuristics add and maz associate with a critical pair (u,v) the weights ¢(u)+ é(v)
and max({¢(u), #(v)}), respectively. A further heuristic, occnest, assigns

ocenestoz((u,v)) = ($(u) + 6(v)) - I m;

feF

to a critical pair (u,v). occnest is goal oriented and therefore labeled with the current
goal which is negated and skolemized in order to handle variables properly. The fac-
tors my express some structural difference between the critical pair (u,v) and s # ¢ for
[ € F (see [DF94] or [Fu95] for details). The parameters of these heuristics are the
values w, and wy for all f € F. The default versions of these three heuristics (as used
by our system) can be obtained by choosing w, =1 and w; =2 for all f € F.

6 Experimental results

In this section an excerpt of the results of our experimentation will be presented. The
entries in the bodies of all subsequent tables display run-times (in seconds), obtained
on a SPARCstation 1. The equational prover used for these experiments, namely the
DISCOUNT system ([ADF95]), is written in C. The tools for computing the set P
needed by the learning method as well as the set L» employed by ‘path extension’ are
based on existing software for proof extraction and analysis (see [DS94a], [DS94b]).
Fach of the following subsections 6.1 and 6.2 deals with a different set of (proof or
completion) problems. In order to be able to estimate the achievements of our two
methods presented in sections 3 and 4, we shall also list the results produced by the
default versions of the heuristics add, max and occnest (cf. section 5) to provide a point
of reference. Whenever the method ‘path extension’ (cf. section 4) was employed we
set p =30 and the associated heuristic w = add (default version). It will be explained
by way of example how to interpret the tables to come.

6.1 The first set of problems: propositional logic

These problems go back to [Ta56]. The set of axioms Az is given by

ta) = & cn@)a) = ¢ ceaey.2))cly.cle,2) = 1
(e,ely,2) = ¢ clen(n(@) = 1 ez, y), cnly),n(x)) = 1
clele, ey, 2)), elele.y),elz,2)) = 1

and is an equational axiomatization of the propositional logic. (‘¢’ corresponds to

‘implication’, ‘n’ to ‘not” and ‘¢’ to ‘true’.) Consequently, the theorems are tautologies

of the propositional logic.

12



A A A A A A A A
add 276s | 276s | 340s | 330s | 318s | 333s | 321s | 318s
ocenest 14s 14s 67s 65s 69s 9.6s | 9.4s 29s
woeenest 17 T4s | 7.45s | 17s 17s 17s 8.2s | 8.3s 31s

P1 0.74s | 0.70s | 1.34s | 0.74s | 1.28s | 1.34s | 1.29s | 0.66s

P~ 0.30s | 0.32s | 0.54s | 0.31s | 0.34s | 0.52s | 0.34s | 0.93s

Ps 0.87s | 0.82s | 0.99s | 0.86s | 0.93s | 0.99s | 0.93s | 0.28s

Table 6.1.1

TRPE = oz, c(n(z),y)) =1 ThEE = c(n(z),c(n(y), c(z,2))) =1
Thy" = c(n(z),c(z,y)) =1 The® = ela,e(y,e(n(z),2))) =1
ThE: = c(z,e(n(y),c(n(z),z))) =1 ThPE = c(n(z), ey, c(z,2))) =t
ThEY = c(z,c(n(z), c(n(y),2))) =1 ThEE = c(n(e(n(z),y)),n(x)) =1

For any problem A = (Az"F Th) the heuristics add and maz agree completely. There-
fore, the first two rows of table 6.1.1 merely list the results obtained with add and
ocenest. For this set of problems the method ‘path extension’ (section 4) is clearly su-
perior to the ‘learning’ method (section 3). For the latter, table 6.1.1 shows one result
only, namely w{**"*** in the third row, which was generated by adapting occnest to the
proof of APL = (AzPL Thy). weerest is among the more successful instances obtained
by learning. The remaining rows exhibit the achievements of ‘path extension’. Con-
sider, for instance, row five which is headed by P;. The label P; means that the path
given by the (known) proof of AP was the basis when proving, e.g., AP" in 0.31sec.
The salient speed-ups are also present when using the proofs of AFL ... AP not
displayed by table 6.1.1. The main reason why ‘learning’ is here inferior to ‘path ex-
tension’ resides in the fact that the (known) proofs of the above theorems all involve
critical pairs that have a rather large number of function symbols. Since the heuristics
used here heavily depend on the number of function symbols, it is impossible to find
parameter configurations that allow to reduce sufficiently the number of (negative)
critical pairs receiving a lesser weight due to a considerably lesser number of function
symbols.

6.2 The second set of problems: completion tasks

The problems dealt with in this subsection are completion tasks (cp. [Ch93], [Zh92]).
The initial set of equations for such a task A, is

f(ej,l'): s 1§]§n
=€ , 1<y3<n
):

A
Q\H&
—
8 5
—~
S?%
~—



‘ H As ‘ Ao ‘ Aso ‘ Aso ‘ Ao ‘ Aso ‘ Ago ‘ Ao ‘ Aso ‘ Ago ‘ Ao ‘
add 1.6s | 2.9s |27.0s| 110s | 340s | 850s | o< o0 00 o0 o0
maz 3.9s | 8.0s [93.8s|1120s |4600s | oo o0 o0 o0 o0 o0
Herky || 4.2s | 6.8s [25.0s| 79.9s | 179s | 323s | 623s | 1031s | 1610s | 2238s | 2964s
Ps 0.20s | 0.34s [ 2.46s | 10.2s | 28.6s | 68.2s | 139s | 254s | 429s | 684s |1043s
Pso 0.36s | 0.47s [ 1.36s | 2.80s | 4.86s | 7.27s | 18.35 | 46.9s | 104s | 202s | 360s
wg** 110.23s [ 0.28s | 0.69s | 1.37s | 2.16s | 3.18s |4.16s | 5.34s | 6.87s | 8.56s | 10.1s
Table 6.2.1

Our completion process yields 3n + 6 rules, requiring the generation of at least 4n + 7
rules, if the reduction ordering is a LPO with precedence 2, >, -+ =, 11 >, [ >,
€y, >p - =p €1. We consider here the eleven instances obtained by choosing n &
{8,10,20,...,100}. Note that it still makes sense to talk about proofs in this con-
text if we view the completion process as proving the rules of the resulting convergent
system. The first two rows of table 6.2.1 list the results of the default heuristics add
and max. We omitted occnest because it does not make sense to use a goal oriented
heuristic for completion. The entry ‘oo’ indicates that no convergent system could
be produced because of memory shortage. The third row shows the results reported
in [Zh92] produced by Herky, which is one of the most powerful equational provers
currently available (see also [Zh93]). Note that Herky is implemented in LISP, but
can nevertheless defy serious C implementations (e.g., OTTER) w.r.t. many equational
problems (including those considered here). The fourth row displays the results ob-
tained when employing the method ‘path extension’ (section 4) with Lp set to the list
of all critical pairs necessary to generate a convergent set of rules starting with the
simplest of these tasks, namely Ag. (This row is therefore headed by Ps). It is obvious
that we can this way already achieve considerable improvements that culminate in a
successful completion of Ag, ..., A1go which is not possible when using default heu-
ristics. Nonetheless, it remains an imperfection that any critical pair occurring during
the completion process of A, (n > 8) that contains a function symbol not occurring
in Ag (i9,...,0, OF €g,...,€,) is considered as “totally different” (i.e., the value 100
is assigned to it by D). This is certainly not satisfactory from an analogical perspec-
tive. The results produced when this method rests on the completion of Asq (denoted
by Pso in the fifth row) illustrate this disadvantage by showing that the additional
information concerning the function symbols 19, ...,150 and eg, ..., e50 clearly pays off
with significantly lesser run-times.

When employing our ‘learning’ method (section 3), adapting maz to the comple-
tion of As, we obtain wg** displayed in the last row of table 6.2.1. w*** impressively
outperforms everything including Herky. The problematic concerning additional func-
tion symbols is resolved in compliance with the principle of this method which consists
in assigning “appropriate” values to the parameters of max. Therefore, when apply-

mar

ing wg** to the completion of A, (n > 8), the average weight of the weights w;, ..., w;

8
and the average of w.,, ..., w,, is assigned to w;,,...,w;, and w,,,...,w., respectively.

14



This way of proceeding is of course merely a heuristic itself. But it is justifiable and
easy to automate. In order to achieve a similar effect with ‘path extension’ a thorough
analysis of the completion process together with far-reaching changes of diff would be
necessary, all of which is not remotely as easy to automate. Furthermore, although Ps
works “optimally” for completing A, with n < 50, generating the minimal number of
rules (4n + 7), it is inferior to w§**® regarding run-times. wg***, which is very close to
the optimum, generating 4n + 13 rules for all A,, causes no overhead during its ap-
plication, whereas Pso has to submit each critical pair to |Lp,,| rather time consuming
tests necessary to compute D. (In case of Pso, |Lp,,| =450+ 7 = 207.) The time
spent by the adaptive procedure to produce wg*®” was ca. 3min. But we think that
this time is not a real issue, because adaptation can be done once and for all during
the “spare time” of the proving system.

7 Related work

Poor performance of automated proving systems when it comes to proving difficult
theorems, and the resulting lack of competitiveness compared to mathematicians are
the main reasons to improve the heuristics of the respective provers. Although most
designers of automated provers have recognized that the best and most natural way to
do this is by learning from previous successfully solved tasks (e.g., [BCP88], [Bu88] and
more recently [KW94]) the number of reports on automated approaches to learning in
this environment substantiated by experimental results is rather low. To our knowledge,
there has so far no work been done aiming at integrating an automated learning com-
ponent into a prover for purely equational logic. We are aware of two research papers
dealing with such a component for provers for first order logic ([SF71] and [SE90]).
Common to both approaches is the representation of knowledge as clauses (CNF), and
both use so-called features of clauses (see also [Su90]) as the basis of learning,.

Features reflect certain properties of clauses, e.g., the total number of literals, the
number of positive and negative literals etc. In [SFT1], fealure vectors are extracted
from the data provided by a successful proof, each feature vector belonging to one
clause derived during search. “Profit values” are associated with each feature vector,
each expressing in some respect the usefulness of the related clause. Learning consists
in finding functions approximating the ‘feature vector vs. profit value’-relation. These
functions are linear polynoms (in the features) whose coefficients are determined via
multiple regression analysis (see [SFT1] for details).

[SE90] also use feature vectors which are—properly encoded—presented to a neural
network. The desired input—output behavior of the net is extracted from successful
proofs (The only output unit is supposed to produce 1 for “useful” clauses, 0 for
“useless” ones).

Both approaches will not work when applied to pure equational deduction unless
additional features are introduced. Most of the current features are not distinctive when
the clauses are limited to unit clauses with the equality predicate as the only predicate.
Although we demonstrated the power of both our methods with an equational theorem

15



prover, it should have become clear that their applicability is not restricted to this
kind of prover at all. As a matter of fact, any theorem prover employing parameterized
heuristics and explicitly inferring facts can profit from these methods.

In the general context of proof reuse also the work reported in [KW94] ought to be
mentioned. The approach taken there combines ideas from explanation based learning
and analogical reasoning as well as abstraction techniques. It consequently differs
substantially from our approach, since proof reuse is accomplished by analyzing and
generalizing proofs found in the past, which are then—properly instantiated—utilized
for finding similar proofs. In [KW94], the notion ‘similarity’ is clearly defined, but
proofs have to be very similar in this sense in order for this approach to be successful
or applicable.

8 Summary

We have presented two methods that enable an automated proving system to make
use of proof experience gained in the past. The indispensable compromise regarding
generality (flexibility) and specialization (inflexibility, rigidity) of these methods is ob-
tained in distinct ways. The first method starts with a general and flexible heuristic,
achieving the desired degree of specialization by learning the parameters of this heuris-
tic based on experience from the past. The second method, which attempts to re-enact
a given proof and hence is very specialized by design, attains flexibility by integrating
a general, flexible heuristic into its framework.

The experiments conducted so far in the area of equational reasoning, which are
reported here only in part, have illustrated in a promising way the potential of both
methods. We emphasize that we not only achieved substantial speed-ups, but also
made it possible to handle problems that seemed out of reach before.

Finally, this report deals with the problematic how to make use of a known proof.
Future work has to concentrate on an inherent difficulty of proof reuse not addressed
in this report, namely to determine when to apply experiences gained in the past. A
judicious decision on that score is crucial in order to avoid a major pitfall of proof reuse
which consists in sometimes causing a change for the worse compared to proving from

scratch (cp. [KN93]).

16



References

[ADF95]

[BCPS8S]

[BDPS9]

[Bu88|

[Bug9]

[Ca86]

[Cho3]

[Da88]

[DF94]

[DS94a]

[DS94b)

[Fu95]

[HoT5]

Avenhaus, J.; Denzinger, J.; Fuchs, M.: DISCOUNT: A system for
distributed equational deduction, to appear in Proc. 6" RTA, Kaiserslautern,

FRG, 1995

Brock, B.; Cooper, S.; Pierce, W.: Analogical reasoning and proof dis-
covery, Proc. CADE 9, Argonne, I1., USA, 1988, LNCS 310, pp. 454-468

Bachmair, L.; Dershowitz, N.; Plaisted, D.A.: Completion without
Failure, Coll. on the Resolution of Equations in Algebraic Structures, Austin,

TX, USA (1987), Academic Press, 1989

Bundy, A.: The use of explicil plans to guide inductive proofs, Proc.
CADE 9, Argonne, 11, USA, 1988, LNCS 310, pp. 111-120

Burstein, M.H.: Analogy vs. CBR: The purpose of mapping, in: K.J. Ham-
mond (ed.), Proceedings: Second case-based reasoning workshop (DARPA),
Morgan Kaufmann, San Mateo, CA, USA, 1989, pp. 133-136

Carbonell, J.: Derivational analogy: a theory of reconstructive problem

solving and expertise acquisition, in: R.S. Michalski et al. (eds.), Machine
Intelligence; an Al approach, Vol. 2, 1986, pp. 371-392

Christian, J.: Flatlerms, discrimination nels, and fasl term rewriting,

JAR 10, 1993, pp. 95-113

Davis, L. (ed): Genelic algorithms and simulated annealing, Research notes
in artificial intelligence, 1988

Denzinger, J.; Fuchs, M.: Goal oriented equational theorem proving using
teamwork, Proc. 18" KI-94, Saarbriicken, LNAI 861, 1994, pp. 343-354; also
available as SEKI-Report SR-94-04, University of Kaiserslautern, 1994

Denzinger, J.; Schulz, S.: Analysis and Representalion of Fquational
Proofs Generated by a Distributed Completion Based Proof System, SEKI-
Report SR-94-05, University of Kaiserslautern, 1994

Denzinger, J.; Schulz, S.: Recording, Analyzing and Presenting Dis-
tributed Deduction Processes, Proc. PASCO 94, Linz, Austr., 1994

Fuchs, M.: Learning proof heuristics by adapting parameters, to appear as
SEKI-Report SR-95-XX, University of Kaiserslautern, 1995

Holland, J.H.: Adaptation in natural and artificial systems: An introduc-
tory analysis with applications to biology, control, and artificial intelligence,

Ann Arbor: Univ. of Michigan Press, 1975

17



[HRS7]

[KB70]

[KNO3]

[Ko092]

[KW4]

[Mc94]

[Ra91]

[SE90]

[SFT1]

[Su90]

[Ta56]

[Zh92]

[7h93)]

Hsiang, J.; Rusinowitch, M.: On word problems in equational theories,
Proc. 14" ICALP, Karlsruhe, FRG, LNCS 267, 1987, pp. 54-T1

Knuth, D.E.; Bendix, P.B.: Simple Word Problems in Universal Algebra,
Computational Algebra, J. Leech, Pergamon Press, 1970, pp. 263-297

Koehler, J.; Nebel, B.: Plan modification versus plan generation, Proc.
[JCAT "93, Chambery, FRA, 1993, pp. 1436-1444

Kolodner, J.L.: An introduction to case-based reasoning, Artificial Intelli-
gence Review 6, 1992, pp. 3-34

Kolbe, T.; Walther, C.: Reusing proofs, Proc. 11** ECAI’94, Amsterdam,
HOL, 1994, pp. 80-84

McCune, W.W.: OTTER 3.0 reference manual and guide, Techn. report
ANL-94/6, Argonne Natl. Laboratory, 1994

Rawlins, G. (ed): Foundations of genelic algorithms, Morgan Kaufmann,
1991

Suttner, C.; Ertel, W.: Automatic acquisition of search quiding heuristics,
Proc. CADE 10, Kaiserslautern, FRG, 1990, LNAT 449, pp. 470-484

Slagle, J.R.; Farrell, C.D.: Experiments in automatic learning for a mul-
tipurpose heuristic program, Communications of the ACM, Vol. 14, Nr. 2,
1971, pp. 91-99

Suttner, C.: Representing heuristic-relevant information for an automated
theorem prover, Proc. 6" IMYCS: aspects and prospects of theoretical com-
puter science, LNAT 464, 1990

Tarski, A.: Logic, Semantics, Metamathematics, Oxford University Press,
1956

Zhang, H.: Herky: High performance rewriting in RRL, Proc. CADE 11,
Saratoga Springs, NY, USA, 1992, LNAI 607, pp. 696700

Zhang, H.: Automaled proofs of equalily problems in Overbeek’s competi-
tion, JAR 11, 1993, pp. 333-351

18



