A truncated shift—operator technique for the
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Abstract. A novel method is presented which allows a fast computation of complex
energy resonance states in Stark systems, i.e. systems in a homogeneous field. The
technique is based on the truncation of a shift—operator in momentum space. Numerical
results for space periodic and non-periodic systems illustrate the extreme simplicity of
the method.
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Systems in static homogeneous fields appear in many cases in atomic, molecular
and solid state physics [1]-[3]. At present, one observes a renewed interest stimulated by
dynamical studies of systems, where in addition to the static field the system is affected
by a strong time dependent fields [4]-[6].

In the present letter, we confine ourselves to the discussion of a new and extremely
simple method for computing complex energy resonance states in such systems.
In previous studies complex energy resonances in Stark systems have been almost
exclusively calculated by means of complex scaling techniques (see, e.g., [1, 7]). Here we
present an alternative method, which seems to be conceptually different and in several
aspects also more simpler in numerical applications.

To be specific, we discuss as an illustrating example a system with a single degree

of freedom
9

H=H,+ fz = %-l—V(T)—I—fT with V(z+ L) =V(z), (1)
i.e. a periodic potential in a static field (f > 0). This setup is well known in solid state
physics, but it is also of interest in recent studies of atoms interacting with standing
wave fields. In the latter case, the potential is often also modulated in time, e.g. time
periodic. We comment on this time dependent case in the concluding remarks below.

It is well known that the field term fz in the time dependent Schrodinger equation
ihay(t)) = HI(t)) (2)

can be removed by a gauge transformation to the momentum frame

[ (2)) = e Mp(8) = S()4(2)) (3)
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where

ihdi|$(1)) = Ho(t)|o(1)) (4)
with the Hamiltonian

Fo(t) = S'(1)HS(1) = 50— f1)" + V(). (5)

which is explicitly time dependent. We note, that S(t) acts as a shift-operator in

momentum space (p = hk):
S(t)|k) = |k — ft/h). (6)

The time evolution operators U and U for a time interval (0,T) are related by

U(T,0) = 5(T)U(T,0). (7)
Tn addition one can easily see that

U(vT,0) = et 1mL5(T)T(T,0)} (8)
and, of course,

U(vT,0) = U*(T,0) (9)

because the Hamiltonian (1) is time independent.

The Hamiltonian (5) is periodic in space. But as the displacement operator
D(L) = exp(L 0/0x) over a period L does not commute with the shift operator S(T'),
generally U(T,0) and D(L) do not commute. We have

S(T)D(L) = e VET/RD(L)S(T) (10)
and the commutator is

[S(T), D(L)] = (1 — el/1/H) 7T/ D(L) (11)
We observe that both operators commute if the condition

fZ;—L:27rq,q:l,2,3,... (12)

is satisfied.
In the following we choose ¢ = 1, i.e. a time T' = 27h/fL, the so-called Bloch
period. In this case [D(L),U(T,0)] = 0 and Floquet-Bloch theory can be applied to

construct the resonance states, i.e. the eigenstates of the Floquet operator satisfying

U(T,0)|¢a) = Aaltha) = e7T/|4,) (13)

with purely outgoing boundary conditions, i.e. we are interested in solutions, which
vanish for # — 400 and are purely outgoing for &+ — —oo. These are resonance states

with complex resonance energies €, = E, —i[',/2 and decay as

Pa(nT) = emimeaT/h)y (14)

with a lifetime 7 = L/T,. We point out, that the quasienergy resonances are defined

modulo 27h /T = fL and we take representative values in the first ‘Brillouin zone’,

where the real part of €, is in the interval [—fL/2, 4+ fL/2].
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It is convenient to carry out the calculations in the momentum representation with

an equidistant set of plane wave basis states

(z|n) = \/Lfe“’” n=0,+1, £2,... (15)
with

Ak = fT/h =2 /L. (16)
The shift-matrix is

(m[S(T)|n) = (mn — 1) = dmn-1, (17)

where the plane wave states are normalized to unity in a period L. Numerically, the

time evolution matrix (j'(T, 0) is calculated by, e.g.,

7
U(T,0) = [ exp [~iHo(t; — At/2) At/h] (18)

j=1

(with ¢; = jAt = jT/.J) or any other appropriate method.

We now look at the effect of finite basis sets, i. e. of truncating the matrices S(T)
and ﬁ(T,O) at |n| < N. First we observe, that the (2N + 1) x (2N + 1)-matrix S(T)
has non-zero entries only on a diagonal, which is shifted by one unit to the upper right.
A direct consequence of the truncation is that the eigenvectors |14) of the truncated
system U(T,0) = S(T) (j'(T,O) automatically satisfy the boundary condition for the
resonances states in momentum space, i.e. the components are zero at k = —Aknymax.
Then the eigenvalues A, and eigenvectors of the Floquet matrix F(T') = U(T,0)

yield the resonance energies

ea:Ea—%F:i%In)\, (19)
more precisely, the desired resonance energies are found among the 2V 41 eigenvalues of
the truncated matrix, typically as those energies €, with the smallest imaginary parts.

Before discussing further details, we will present results of numerical calculations

for an illustrating model system
2

H:HO—I—f:v:%—l—cos;v—l—f:c (20)

with parameters i = 0.5 and f = 0.2, i.e. Bloch period T' = 2.5. In this case, the matrix

elements of the Hamiltonian IA-.fo are

(m|Holn) = (nhAk — ft)0mn/2 + Vian (21)
with
1
an — 5(6m,n+1 + (Sm,n—1> . (22>

For the time propagation (18) J = 256 steps are used and the matrices are truncated
at N = 30. It is instructive to look at the iterates U”(T,0) = U(vT,0) of the matrix
U(T,0). Initially, this matrix is almost diagonal. With increasing v, due to the static
field this diagonal contribution moves to the upper right (in the direction of the outgoing
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wave) until it disappears for v > N. In contrast to this the contribution of the resonance
states is not shifted by the external field but stays in the center of the matrix. Figure
1 shows an image of the U”(T,0) for v = 20 (dark regions correspond to large values of
the matrix elements), where the shifted diagonal and the contributions of the resonances
are clearly visible.

In order to find the complex energy resonances, we now compute the eigenvalues
Ao of U(T,0). This yields 61 eigenvalues €,. For large enough N, we expect the ‘true’
resonances to be stable with respect to an increase of N. In order to explore this
behavior, we have repeated the computation for N = 40 and 50. The results are shown
simultaneously in Figure 2 in the complex A = exp(—ie) plane. Firstly, because all
resonances are decaying states, the A\, appear inside the unit disk A\, < 1. Secondly,
we observe a number of resonances (the ‘true’ ones), which are identical in all three
cases. The other ones are distributed in the vicinity of a radius |A| &~ 0.4 and appear
otherwise quite erratic. With increasing N more of these ‘false’ resonances appear (in
addition, more very unstable ‘true’ may be detected). The two classes can be quite
easily distinguished because the ‘false’ ones are very sensitive against variation of N or
other system parameters, as, e.g., the number of time intervals chosen for the numerical
computation of ﬁ(T, 0).

In Table 1 twelve ‘true’ eigenvalues are listed in comparison with resonance energies
obtained by means of exterior complex scaling [8] (the real part is chosen in the first
Brillouin zone [— f, fr]). The agreement is excellent. In addition, we want to emphasise
the simplicity of the computational encoding and the reliability of the method even for

small basis sets N and only few time steps J. The following MATLAB program

£=0.2; hbar=0.5; J=5; N=10;
M=2*N+1;
n=1:M; p=hbar*(n-N-1);
U=eye(M); d=0.5%ones(1,M-1);
for j=1:J
h=(p-hbar*(j-0.5)/J ). 2/2;
U=expm(-i*(diag(h,0)+diag(d,-1)+diag(d,1))/J/£)*U;
end
S=spdiags(ones(M,1),1,M,M);
D=eig(SxU);
D(length(D))=[];
D= ix*log(D);
[a,In]=sort(-imag(D));
E = D(In)*f

uses N = 10 and J = 5 and produces resonances (ordered with respect to increasing
imaginary part), where the first six resonances are already in good agreement with the
converged ones listed in the table (e.g. one obtains e5 = 0.45059 —10.26922 compared
to the exact result e5 = 0.45054323 — 10.26932098).
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The discussed method also suggests a simple calculation of the eigenstates

associated with the complex energies €,. Using the Floquet time-dependent eigenstates

U(t,0) [¢a(0)) = e7 ™ | (1)), [1ha(T)) = |¢a(0)) (23)

the resonance wave function is calculated by integration over one Bloch period,

T - T
[Ba(0)) = [ dt e U, 0)[wa(0)) = [ d (). (24)
0 0
In fact, [T, (0)) solves the time independent Schrodinger equation which follows from
T o -
[Ta(t)) = [ At U4 1 0)a(0)) = |24 (0)) (25)
0

As an example, the wave functions |(x|¥,)|* of the four most stable resonances of the
system (20) are shown in figure (3).

In the rest of the paper we discuss some possible extension of the proposed method.
Though designed for space periodic Hamiltonians Hy, the method can also be applied
to non-periodic ones with V(z) — 0 for |z| — oo, provided that their Fourier transform
exists. In the plane wave basis (15) with a fixed value of Ak, the system is periodic
in the periodicity interval —L/2 < z < L/2 with L = 2x/Ak. If Ak is chosen small
enough, the effects of this artificial periodicity will be neglectable.

As an example, we calculate the resonances for the Gaussian well

2
H=Hy+fo="5—Ac™ + fa (26)

with A = 4.5, f = 1.0 and 2 = 1.0, which has been studied using complex scaling
techniques [1]. Here, the matrix elements (22) must be replaced by

Vm,n = \/TE e_(n_m)2Ak2/4 . (27)
In the computation we used Ak = 1/3 and N = 45. The three most stable resonances

are obtained as €y = —3.2978304 — 14.467066 - 10~* ¢, = —1.460431 — 13.48173 - 107"
and e, = +3.01610 — 19.392 - 10~'. The lowest one was reported earlier [1] as
€0 = —3.297830 — 14.467 - 107, in good agreement with the present result.

In conclusion, we have demonstrated that the truncated shift—-matrix technique
offers a useful tool for calculating resonances in periodic or non-periodic systems in
homogeneous fields. The method can also be applied to systems with more than one
degree of freedom. In addition, we would like to point out, that it is also possible to treat
explicitly time periodic systems in the same manner, provided that the Bloch period is

an integer multiple of the time period. More detailed studies will be reported elsewhere

[9].
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Table 1. Resonances for the system (20) (A = 0.5, f = 0.2) in comparison with results
by exterior complex scaling (cs) [8]. The 12 most stable resonances are shown.

a Eq [,/2 ESs res/2
0 -0.15286770 -3.2363851e-09 -0.15286771 -3.2363488¢-09
1 0.30482723 -2.3630620e-06  0.30482722 -2.3630619¢-06
2 -0.54109934 -6.0492101e-04 -0.54109935 -6.0492101e-04
3 -0.20212214 -2.4735698¢-02 -0.20212215 -2.4735698 ¢-02
4 0.10823440 -1.3081073e-01  0.10823439 -1.3081072¢-01
5 0.45054323 -2.6932098¢-01  0.45054319 -2.6932097¢-01
6 -0.43656584 -3.8817725e-01 -0.43656579 -3.8817729¢-01
7 -0.00657671 -4.7856857e-01 -0.00657664 -4.7856836¢-01

8  0.48274813 -5.6308779e-01  0.48274215 -5.6309761e-01
9 -0.32533902 -6.2769474e-01 -0.32545833 -6.2766418e-01
10 2.29998451 -6.2836674e-01  0.29992308 -6.2835297e-01

11 -0.16091033 -6.5406891e-01 -0.16071272 -6.5393565e-01

Figure 1. ITmage of the matrix U¥(T,0) = U(vT,0) (v = 20, N = 30) for the periodic
potential (20). Dark regions mark large values of the matrix elements. The resonances
manifest inside the dark region in the center.
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Figure 2. Complex energy resonances ¢, for the periodic potential (20) for f = 0.2,
h = 0.5 in the complex A = exp(—iecT/h) plane (for a clearer presentation the radial
coordinate is scaled as |A|7). Results obtained from different values of the N are shown
simultaneously (N = 30 (<), N = 40 (»), N = 50(+4)). The ‘true’ resonances are
identified by coincidence.

Figure 3. Resonance wave functions t,(z) for the four most stable states o =
0, 1, 2, 3 for the cosine potential in a homogeneous field (20). Parameters are the
same as in Fig. (2) and Tab. (1). Shown are [th,(2)|?, the energy levels (dashed lines)
and the potential. The state a = 3 is already located above the barrier.



